rcu: move TREE_RCU from softirq to kthread
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
64db4cff 52
9f77da9f
PM
53#include "rcutree.h"
54
64db4cff
PM
55/* Data structures. */
56
b668c9cf 57static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 58
4300aa64
PM
59#define RCU_STATE_INITIALIZER(structname) { \
60 .level = { &structname.node[0] }, \
64db4cff
PM
61 .levelcnt = { \
62 NUM_RCU_LVL_0, /* root of hierarchy. */ \
63 NUM_RCU_LVL_1, \
64 NUM_RCU_LVL_2, \
cf244dc0
PM
65 NUM_RCU_LVL_3, \
66 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 67 }, \
83f5b01f 68 .signaled = RCU_GP_IDLE, \
64db4cff
PM
69 .gpnum = -300, \
70 .completed = -300, \
4300aa64 71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
4300aa64 72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
64db4cff
PM
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
4300aa64 75 .name = #structname, \
64db4cff
PM
76}
77
d6714c22
PM
78struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 80
6258c4fb
IM
81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 83
bbad9379
PM
84int rcu_scheduler_active __read_mostly;
85EXPORT_SYMBOL_GPL(rcu_scheduler_active);
86
a26ac245
PM
87/*
88 * Control variables for per-CPU and per-rcu_node kthreads. These
89 * handle all flavors of RCU.
90 */
91static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
92static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
93static DEFINE_PER_CPU(char, rcu_cpu_has_work);
94static char rcu_kthreads_spawnable;
95
96static void rcu_node_kthread_setaffinity(struct rcu_node *rnp);
97static void invoke_rcu_kthread(void);
98
99#define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
100
fc2219d4
PM
101/*
102 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
103 * permit this function to be invoked without holding the root rcu_node
104 * structure's ->lock, but of course results can be subject to change.
105 */
106static int rcu_gp_in_progress(struct rcu_state *rsp)
107{
108 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
109}
110
b1f77b05 111/*
d6714c22 112 * Note a quiescent state. Because we do not need to know
b1f77b05 113 * how many quiescent states passed, just if there was at least
d6714c22 114 * one since the start of the grace period, this just sets a flag.
b1f77b05 115 */
d6714c22 116void rcu_sched_qs(int cpu)
b1f77b05 117{
25502a6c 118 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 119
c64ac3ce 120 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
121 barrier();
122 rdp->passed_quiesc = 1;
b1f77b05
IM
123}
124
d6714c22 125void rcu_bh_qs(int cpu)
b1f77b05 126{
25502a6c 127 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 128
c64ac3ce 129 rdp->passed_quiesc_completed = rdp->gpnum - 1;
c3422bea
PM
130 barrier();
131 rdp->passed_quiesc = 1;
b1f77b05 132}
64db4cff 133
25502a6c
PM
134/*
135 * Note a context switch. This is a quiescent state for RCU-sched,
136 * and requires special handling for preemptible RCU.
137 */
138void rcu_note_context_switch(int cpu)
139{
140 rcu_sched_qs(cpu);
141 rcu_preempt_note_context_switch(cpu);
142}
143
64db4cff 144#ifdef CONFIG_NO_HZ
90a4d2c0
PM
145DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
146 .dynticks_nesting = 1,
e59fb312 147 .dynticks = ATOMIC_INIT(1),
90a4d2c0 148};
64db4cff
PM
149#endif /* #ifdef CONFIG_NO_HZ */
150
151static int blimit = 10; /* Maximum callbacks per softirq. */
152static int qhimark = 10000; /* If this many pending, ignore blimit. */
153static int qlowmark = 100; /* Once only this many pending, use blimit. */
154
3d76c082
PM
155module_param(blimit, int, 0);
156module_param(qhimark, int, 0);
157module_param(qlowmark, int, 0);
158
a00e0d71 159int rcu_cpu_stall_suppress __read_mostly;
f2e0dd70 160module_param(rcu_cpu_stall_suppress, int, 0644);
742734ee 161
64db4cff 162static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 163static int rcu_pending(int cpu);
64db4cff
PM
164
165/*
d6714c22 166 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 167 */
d6714c22 168long rcu_batches_completed_sched(void)
64db4cff 169{
d6714c22 170 return rcu_sched_state.completed;
64db4cff 171}
d6714c22 172EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
173
174/*
175 * Return the number of RCU BH batches processed thus far for debug & stats.
176 */
177long rcu_batches_completed_bh(void)
178{
179 return rcu_bh_state.completed;
180}
181EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
182
bf66f18e
PM
183/*
184 * Force a quiescent state for RCU BH.
185 */
186void rcu_bh_force_quiescent_state(void)
187{
188 force_quiescent_state(&rcu_bh_state, 0);
189}
190EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
191
192/*
193 * Force a quiescent state for RCU-sched.
194 */
195void rcu_sched_force_quiescent_state(void)
196{
197 force_quiescent_state(&rcu_sched_state, 0);
198}
199EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
200
64db4cff
PM
201/*
202 * Does the CPU have callbacks ready to be invoked?
203 */
204static int
205cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
206{
207 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
208}
209
210/*
211 * Does the current CPU require a yet-as-unscheduled grace period?
212 */
213static int
214cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
215{
fc2219d4 216 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
217}
218
219/*
220 * Return the root node of the specified rcu_state structure.
221 */
222static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
223{
224 return &rsp->node[0];
225}
226
227#ifdef CONFIG_SMP
228
229/*
230 * If the specified CPU is offline, tell the caller that it is in
231 * a quiescent state. Otherwise, whack it with a reschedule IPI.
232 * Grace periods can end up waiting on an offline CPU when that
233 * CPU is in the process of coming online -- it will be added to the
234 * rcu_node bitmasks before it actually makes it online. The same thing
235 * can happen while a CPU is in the process of coming online. Because this
236 * race is quite rare, we check for it after detecting that the grace
237 * period has been delayed rather than checking each and every CPU
238 * each and every time we start a new grace period.
239 */
240static int rcu_implicit_offline_qs(struct rcu_data *rdp)
241{
242 /*
243 * If the CPU is offline, it is in a quiescent state. We can
244 * trust its state not to change because interrupts are disabled.
245 */
246 if (cpu_is_offline(rdp->cpu)) {
247 rdp->offline_fqs++;
248 return 1;
249 }
250
f41d911f
PM
251 /* If preemptable RCU, no point in sending reschedule IPI. */
252 if (rdp->preemptable)
253 return 0;
254
64db4cff
PM
255 /* The CPU is online, so send it a reschedule IPI. */
256 if (rdp->cpu != smp_processor_id())
257 smp_send_reschedule(rdp->cpu);
258 else
259 set_need_resched();
260 rdp->resched_ipi++;
261 return 0;
262}
263
264#endif /* #ifdef CONFIG_SMP */
265
266#ifdef CONFIG_NO_HZ
64db4cff
PM
267
268/**
269 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
270 *
271 * Enter nohz mode, in other words, -leave- the mode in which RCU
272 * read-side critical sections can occur. (Though RCU read-side
273 * critical sections can occur in irq handlers in nohz mode, a possibility
274 * handled by rcu_irq_enter() and rcu_irq_exit()).
275 */
276void rcu_enter_nohz(void)
277{
278 unsigned long flags;
279 struct rcu_dynticks *rdtp;
280
64db4cff
PM
281 local_irq_save(flags);
282 rdtp = &__get_cpu_var(rcu_dynticks);
e59fb312
PM
283 if (--rdtp->dynticks_nesting) {
284 local_irq_restore(flags);
285 return;
286 }
287 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
288 smp_mb__before_atomic_inc(); /* See above. */
289 atomic_inc(&rdtp->dynticks);
290 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
291 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff 292 local_irq_restore(flags);
e59fb312
PM
293
294 /* If the interrupt queued a callback, get out of dyntick mode. */
295 if (in_irq() &&
296 (__get_cpu_var(rcu_sched_data).nxtlist ||
297 __get_cpu_var(rcu_bh_data).nxtlist ||
298 rcu_preempt_needs_cpu(smp_processor_id())))
299 set_need_resched();
64db4cff
PM
300}
301
302/*
303 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
304 *
305 * Exit nohz mode, in other words, -enter- the mode in which RCU
306 * read-side critical sections normally occur.
307 */
308void rcu_exit_nohz(void)
309{
310 unsigned long flags;
311 struct rcu_dynticks *rdtp;
312
313 local_irq_save(flags);
314 rdtp = &__get_cpu_var(rcu_dynticks);
e59fb312
PM
315 if (rdtp->dynticks_nesting++) {
316 local_irq_restore(flags);
317 return;
318 }
319 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
320 atomic_inc(&rdtp->dynticks);
321 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
322 smp_mb__after_atomic_inc(); /* See above. */
323 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff 324 local_irq_restore(flags);
64db4cff
PM
325}
326
327/**
328 * rcu_nmi_enter - inform RCU of entry to NMI context
329 *
330 * If the CPU was idle with dynamic ticks active, and there is no
331 * irq handler running, this updates rdtp->dynticks_nmi to let the
332 * RCU grace-period handling know that the CPU is active.
333 */
334void rcu_nmi_enter(void)
335{
336 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
337
e59fb312
PM
338 if (rdtp->dynticks_nmi_nesting == 0 &&
339 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 340 return;
e59fb312
PM
341 rdtp->dynticks_nmi_nesting++;
342 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
343 atomic_inc(&rdtp->dynticks);
344 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
345 smp_mb__after_atomic_inc(); /* See above. */
346 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
347}
348
349/**
350 * rcu_nmi_exit - inform RCU of exit from NMI context
351 *
352 * If the CPU was idle with dynamic ticks active, and there is no
353 * irq handler running, this updates rdtp->dynticks_nmi to let the
354 * RCU grace-period handling know that the CPU is no longer active.
355 */
356void rcu_nmi_exit(void)
357{
358 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
359
e59fb312
PM
360 if (rdtp->dynticks_nmi_nesting == 0 ||
361 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 362 return;
e59fb312
PM
363 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
364 smp_mb__before_atomic_inc(); /* See above. */
365 atomic_inc(&rdtp->dynticks);
366 smp_mb__after_atomic_inc(); /* Force delay to next write. */
367 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
368}
369
370/**
371 * rcu_irq_enter - inform RCU of entry to hard irq context
372 *
373 * If the CPU was idle with dynamic ticks active, this updates the
374 * rdtp->dynticks to let the RCU handling know that the CPU is active.
375 */
376void rcu_irq_enter(void)
377{
e59fb312 378 rcu_exit_nohz();
64db4cff
PM
379}
380
381/**
382 * rcu_irq_exit - inform RCU of exit from hard irq context
383 *
384 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
385 * to put let the RCU handling be aware that the CPU is going back to idle
386 * with no ticks.
387 */
388void rcu_irq_exit(void)
389{
e59fb312 390 rcu_enter_nohz();
64db4cff
PM
391}
392
64db4cff
PM
393#ifdef CONFIG_SMP
394
64db4cff
PM
395/*
396 * Snapshot the specified CPU's dynticks counter so that we can later
397 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 398 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
399 */
400static int dyntick_save_progress_counter(struct rcu_data *rdp)
401{
e59fb312
PM
402 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
403 return 0;
64db4cff
PM
404}
405
406/*
407 * Return true if the specified CPU has passed through a quiescent
408 * state by virtue of being in or having passed through an dynticks
409 * idle state since the last call to dyntick_save_progress_counter()
410 * for this same CPU.
411 */
412static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
413{
e59fb312
PM
414 unsigned long curr;
415 unsigned long snap;
64db4cff 416
e59fb312
PM
417 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
418 snap = (unsigned long)rdp->dynticks_snap;
64db4cff
PM
419
420 /*
421 * If the CPU passed through or entered a dynticks idle phase with
422 * no active irq/NMI handlers, then we can safely pretend that the CPU
423 * already acknowledged the request to pass through a quiescent
424 * state. Either way, that CPU cannot possibly be in an RCU
425 * read-side critical section that started before the beginning
426 * of the current RCU grace period.
427 */
e59fb312 428 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
64db4cff
PM
429 rdp->dynticks_fqs++;
430 return 1;
431 }
432
433 /* Go check for the CPU being offline. */
434 return rcu_implicit_offline_qs(rdp);
435}
436
437#endif /* #ifdef CONFIG_SMP */
438
439#else /* #ifdef CONFIG_NO_HZ */
440
64db4cff
PM
441#ifdef CONFIG_SMP
442
64db4cff
PM
443static int dyntick_save_progress_counter(struct rcu_data *rdp)
444{
445 return 0;
446}
447
448static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
449{
450 return rcu_implicit_offline_qs(rdp);
451}
452
453#endif /* #ifdef CONFIG_SMP */
454
455#endif /* #else #ifdef CONFIG_NO_HZ */
456
742734ee 457int rcu_cpu_stall_suppress __read_mostly;
c68de209 458
64db4cff
PM
459static void record_gp_stall_check_time(struct rcu_state *rsp)
460{
461 rsp->gp_start = jiffies;
462 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
463}
464
465static void print_other_cpu_stall(struct rcu_state *rsp)
466{
467 int cpu;
468 long delta;
469 unsigned long flags;
470 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
471
472 /* Only let one CPU complain about others per time interval. */
473
1304afb2 474 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 475 delta = jiffies - rsp->jiffies_stall;
fc2219d4 476 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 477 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
478 return;
479 }
480 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
a0b6c9a7
PM
481
482 /*
483 * Now rat on any tasks that got kicked up to the root rcu_node
484 * due to CPU offlining.
485 */
486 rcu_print_task_stall(rnp);
1304afb2 487 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 488
8cdd32a9
PM
489 /*
490 * OK, time to rat on our buddy...
491 * See Documentation/RCU/stallwarn.txt for info on how to debug
492 * RCU CPU stall warnings.
493 */
4300aa64
PM
494 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
495 rsp->name);
a0b6c9a7 496 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 497 raw_spin_lock_irqsave(&rnp->lock, flags);
f41d911f 498 rcu_print_task_stall(rnp);
3acd9eb3 499 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 500 if (rnp->qsmask == 0)
64db4cff 501 continue;
a0b6c9a7
PM
502 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
503 if (rnp->qsmask & (1UL << cpu))
504 printk(" %d", rnp->grplo + cpu);
64db4cff 505 }
4300aa64 506 printk("} (detected by %d, t=%ld jiffies)\n",
64db4cff 507 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
508 trigger_all_cpu_backtrace();
509
1ed509a2
PM
510 /* If so configured, complain about tasks blocking the grace period. */
511
512 rcu_print_detail_task_stall(rsp);
513
64db4cff
PM
514 force_quiescent_state(rsp, 0); /* Kick them all. */
515}
516
517static void print_cpu_stall(struct rcu_state *rsp)
518{
519 unsigned long flags;
520 struct rcu_node *rnp = rcu_get_root(rsp);
521
8cdd32a9
PM
522 /*
523 * OK, time to rat on ourselves...
524 * See Documentation/RCU/stallwarn.txt for info on how to debug
525 * RCU CPU stall warnings.
526 */
4300aa64
PM
527 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
528 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
529 trigger_all_cpu_backtrace();
530
1304afb2 531 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 532 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
64db4cff
PM
533 rsp->jiffies_stall =
534 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
1304afb2 535 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 536
64db4cff
PM
537 set_need_resched(); /* kick ourselves to get things going. */
538}
539
540static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
541{
542 long delta;
543 struct rcu_node *rnp;
544
742734ee 545 if (rcu_cpu_stall_suppress)
c68de209 546 return;
4ee0a603 547 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 548 rnp = rdp->mynode;
4ee0a603 549 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && delta >= 0) {
64db4cff
PM
550
551 /* We haven't checked in, so go dump stack. */
552 print_cpu_stall(rsp);
553
fc2219d4 554 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
555
556 /* They had two time units to dump stack, so complain. */
557 print_other_cpu_stall(rsp);
558 }
559}
560
c68de209
PM
561static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
562{
742734ee 563 rcu_cpu_stall_suppress = 1;
c68de209
PM
564 return NOTIFY_DONE;
565}
566
53d84e00
PM
567/**
568 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
569 *
570 * Set the stall-warning timeout way off into the future, thus preventing
571 * any RCU CPU stall-warning messages from appearing in the current set of
572 * RCU grace periods.
573 *
574 * The caller must disable hard irqs.
575 */
576void rcu_cpu_stall_reset(void)
577{
578 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
579 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
580 rcu_preempt_stall_reset();
581}
582
c68de209
PM
583static struct notifier_block rcu_panic_block = {
584 .notifier_call = rcu_panic,
585};
586
587static void __init check_cpu_stall_init(void)
588{
589 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
590}
591
64db4cff
PM
592/*
593 * Update CPU-local rcu_data state to record the newly noticed grace period.
594 * This is used both when we started the grace period and when we notice
9160306e
PM
595 * that someone else started the grace period. The caller must hold the
596 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
597 * and must have irqs disabled.
64db4cff 598 */
9160306e
PM
599static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
600{
601 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
602 /*
603 * If the current grace period is waiting for this CPU,
604 * set up to detect a quiescent state, otherwise don't
605 * go looking for one.
606 */
9160306e 607 rdp->gpnum = rnp->gpnum;
121dfc4b
PM
608 if (rnp->qsmask & rdp->grpmask) {
609 rdp->qs_pending = 1;
610 rdp->passed_quiesc = 0;
611 } else
612 rdp->qs_pending = 0;
9160306e
PM
613 }
614}
615
64db4cff
PM
616static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
617{
9160306e
PM
618 unsigned long flags;
619 struct rcu_node *rnp;
620
621 local_irq_save(flags);
622 rnp = rdp->mynode;
623 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 624 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
625 local_irq_restore(flags);
626 return;
627 }
628 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 629 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
630}
631
632/*
633 * Did someone else start a new RCU grace period start since we last
634 * checked? Update local state appropriately if so. Must be called
635 * on the CPU corresponding to rdp.
636 */
637static int
638check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
639{
640 unsigned long flags;
641 int ret = 0;
642
643 local_irq_save(flags);
644 if (rdp->gpnum != rsp->gpnum) {
645 note_new_gpnum(rsp, rdp);
646 ret = 1;
647 }
648 local_irq_restore(flags);
649 return ret;
650}
651
d09b62df
PM
652/*
653 * Advance this CPU's callbacks, but only if the current grace period
654 * has ended. This may be called only from the CPU to whom the rdp
655 * belongs. In addition, the corresponding leaf rcu_node structure's
656 * ->lock must be held by the caller, with irqs disabled.
657 */
658static void
659__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
660{
661 /* Did another grace period end? */
662 if (rdp->completed != rnp->completed) {
663
664 /* Advance callbacks. No harm if list empty. */
665 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
666 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
667 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
668
669 /* Remember that we saw this grace-period completion. */
670 rdp->completed = rnp->completed;
20377f32 671
5ff8e6f0
FW
672 /*
673 * If we were in an extended quiescent state, we may have
121dfc4b 674 * missed some grace periods that others CPUs handled on
5ff8e6f0 675 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
676 * spurious new grace periods. If another grace period
677 * has started, then rnp->gpnum will have advanced, so
678 * we will detect this later on.
5ff8e6f0 679 */
121dfc4b 680 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
681 rdp->gpnum = rdp->completed;
682
20377f32 683 /*
121dfc4b
PM
684 * If RCU does not need a quiescent state from this CPU,
685 * then make sure that this CPU doesn't go looking for one.
20377f32 686 */
121dfc4b 687 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 688 rdp->qs_pending = 0;
d09b62df
PM
689 }
690}
691
692/*
693 * Advance this CPU's callbacks, but only if the current grace period
694 * has ended. This may be called only from the CPU to whom the rdp
695 * belongs.
696 */
697static void
698rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
699{
700 unsigned long flags;
701 struct rcu_node *rnp;
702
703 local_irq_save(flags);
704 rnp = rdp->mynode;
705 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 706 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
707 local_irq_restore(flags);
708 return;
709 }
710 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 711 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
712}
713
714/*
715 * Do per-CPU grace-period initialization for running CPU. The caller
716 * must hold the lock of the leaf rcu_node structure corresponding to
717 * this CPU.
718 */
719static void
720rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
721{
722 /* Prior grace period ended, so advance callbacks for current CPU. */
723 __rcu_process_gp_end(rsp, rnp, rdp);
724
725 /*
726 * Because this CPU just now started the new grace period, we know
727 * that all of its callbacks will be covered by this upcoming grace
728 * period, even the ones that were registered arbitrarily recently.
729 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
730 *
731 * Other CPUs cannot be sure exactly when the grace period started.
732 * Therefore, their recently registered callbacks must pass through
733 * an additional RCU_NEXT_READY stage, so that they will be handled
734 * by the next RCU grace period.
735 */
736 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
737 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
738
739 /* Set state so that this CPU will detect the next quiescent state. */
740 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
741}
742
64db4cff
PM
743/*
744 * Start a new RCU grace period if warranted, re-initializing the hierarchy
745 * in preparation for detecting the next grace period. The caller must hold
746 * the root node's ->lock, which is released before return. Hard irqs must
747 * be disabled.
748 */
749static void
750rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
751 __releases(rcu_get_root(rsp)->lock)
752{
394f99a9 753 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 754 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 755
07079d53 756 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
46a1e34e
PM
757 if (cpu_needs_another_gp(rsp, rdp))
758 rsp->fqs_need_gp = 1;
b32e9eb6 759 if (rnp->completed == rsp->completed) {
1304afb2 760 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b32e9eb6
PM
761 return;
762 }
1304afb2 763 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
764
765 /*
766 * Propagate new ->completed value to rcu_node structures
767 * so that other CPUs don't have to wait until the start
768 * of the next grace period to process their callbacks.
769 */
770 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 771 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b32e9eb6 772 rnp->completed = rsp->completed;
1304afb2 773 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
b32e9eb6
PM
774 }
775 local_irq_restore(flags);
64db4cff
PM
776 return;
777 }
778
779 /* Advance to a new grace period and initialize state. */
780 rsp->gpnum++;
c3422bea 781 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
782 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
783 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 784 record_gp_stall_check_time(rsp);
64db4cff 785
64db4cff
PM
786 /* Special-case the common single-level case. */
787 if (NUM_RCU_NODES == 1) {
b0e165c0 788 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 789 rnp->qsmask = rnp->qsmaskinit;
de078d87 790 rnp->gpnum = rsp->gpnum;
d09b62df 791 rnp->completed = rsp->completed;
c12172c0 792 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
d09b62df 793 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 794 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
795 return;
796 }
797
1304afb2 798 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff
PM
799
800
801 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 802 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
803
804 /*
b835db1f
PM
805 * Set the quiescent-state-needed bits in all the rcu_node
806 * structures for all currently online CPUs in breadth-first
807 * order, starting from the root rcu_node structure. This
808 * operation relies on the layout of the hierarchy within the
809 * rsp->node[] array. Note that other CPUs will access only
810 * the leaves of the hierarchy, which still indicate that no
811 * grace period is in progress, at least until the corresponding
812 * leaf node has been initialized. In addition, we have excluded
813 * CPU-hotplug operations.
64db4cff
PM
814 *
815 * Note that the grace period cannot complete until we finish
816 * the initialization process, as there will be at least one
817 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
818 * one corresponding to this CPU, due to the fact that we have
819 * irqs disabled.
64db4cff 820 */
a0b6c9a7 821 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 822 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 823 rcu_preempt_check_blocked_tasks(rnp);
49e29126 824 rnp->qsmask = rnp->qsmaskinit;
de078d87 825 rnp->gpnum = rsp->gpnum;
d09b62df
PM
826 rnp->completed = rsp->completed;
827 if (rnp == rdp->mynode)
828 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1304afb2 829 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
830 }
831
83f5b01f 832 rnp = rcu_get_root(rsp);
1304afb2 833 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff 834 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
835 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
836 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
837}
838
f41d911f 839/*
d3f6bad3
PM
840 * Report a full set of quiescent states to the specified rcu_state
841 * data structure. This involves cleaning up after the prior grace
842 * period and letting rcu_start_gp() start up the next grace period
843 * if one is needed. Note that the caller must hold rnp->lock, as
844 * required by rcu_start_gp(), which will release it.
f41d911f 845 */
d3f6bad3 846static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 847 __releases(rcu_get_root(rsp)->lock)
f41d911f 848{
fc2219d4 849 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
e59fb312
PM
850
851 /*
852 * Ensure that all grace-period and pre-grace-period activity
853 * is seen before the assignment to rsp->completed.
854 */
855 smp_mb(); /* See above block comment. */
f41d911f 856 rsp->completed = rsp->gpnum;
83f5b01f 857 rsp->signaled = RCU_GP_IDLE;
f41d911f
PM
858 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
859}
860
64db4cff 861/*
d3f6bad3
PM
862 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
863 * Allows quiescent states for a group of CPUs to be reported at one go
864 * to the specified rcu_node structure, though all the CPUs in the group
865 * must be represented by the same rcu_node structure (which need not be
866 * a leaf rcu_node structure, though it often will be). That structure's
867 * lock must be held upon entry, and it is released before return.
64db4cff
PM
868 */
869static void
d3f6bad3
PM
870rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
871 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
872 __releases(rnp->lock)
873{
28ecd580
PM
874 struct rcu_node *rnp_c;
875
64db4cff
PM
876 /* Walk up the rcu_node hierarchy. */
877 for (;;) {
878 if (!(rnp->qsmask & mask)) {
879
880 /* Our bit has already been cleared, so done. */
1304afb2 881 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
882 return;
883 }
884 rnp->qsmask &= ~mask;
f41d911f 885 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
886
887 /* Other bits still set at this level, so done. */
1304afb2 888 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
889 return;
890 }
891 mask = rnp->grpmask;
892 if (rnp->parent == NULL) {
893
894 /* No more levels. Exit loop holding root lock. */
895
896 break;
897 }
1304afb2 898 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 899 rnp_c = rnp;
64db4cff 900 rnp = rnp->parent;
1304afb2 901 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 902 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
903 }
904
905 /*
906 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 907 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 908 * to clean up and start the next grace period if one is needed.
64db4cff 909 */
d3f6bad3 910 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
911}
912
913/*
d3f6bad3
PM
914 * Record a quiescent state for the specified CPU to that CPU's rcu_data
915 * structure. This must be either called from the specified CPU, or
916 * called when the specified CPU is known to be offline (and when it is
917 * also known that no other CPU is concurrently trying to help the offline
918 * CPU). The lastcomp argument is used to make sure we are still in the
919 * grace period of interest. We don't want to end the current grace period
920 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
921 */
922static void
d3f6bad3 923rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
64db4cff
PM
924{
925 unsigned long flags;
926 unsigned long mask;
927 struct rcu_node *rnp;
928
929 rnp = rdp->mynode;
1304afb2 930 raw_spin_lock_irqsave(&rnp->lock, flags);
560d4bc0 931 if (lastcomp != rnp->completed) {
64db4cff
PM
932
933 /*
934 * Someone beat us to it for this grace period, so leave.
935 * The race with GP start is resolved by the fact that we
936 * hold the leaf rcu_node lock, so that the per-CPU bits
937 * cannot yet be initialized -- so we would simply find our
d3f6bad3
PM
938 * CPU's bit already cleared in rcu_report_qs_rnp() if this
939 * race occurred.
64db4cff
PM
940 */
941 rdp->passed_quiesc = 0; /* try again later! */
1304afb2 942 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
943 return;
944 }
945 mask = rdp->grpmask;
946 if ((rnp->qsmask & mask) == 0) {
1304afb2 947 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
948 } else {
949 rdp->qs_pending = 0;
950
951 /*
952 * This GP can't end until cpu checks in, so all of our
953 * callbacks can be processed during the next GP.
954 */
64db4cff
PM
955 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
956
d3f6bad3 957 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
958 }
959}
960
961/*
962 * Check to see if there is a new grace period of which this CPU
963 * is not yet aware, and if so, set up local rcu_data state for it.
964 * Otherwise, see if this CPU has just passed through its first
965 * quiescent state for this grace period, and record that fact if so.
966 */
967static void
968rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
969{
970 /* If there is now a new grace period, record and return. */
971 if (check_for_new_grace_period(rsp, rdp))
972 return;
973
974 /*
975 * Does this CPU still need to do its part for current grace period?
976 * If no, return and let the other CPUs do their part as well.
977 */
978 if (!rdp->qs_pending)
979 return;
980
981 /*
982 * Was there a quiescent state since the beginning of the grace
983 * period? If no, then exit and wait for the next call.
984 */
985 if (!rdp->passed_quiesc)
986 return;
987
d3f6bad3
PM
988 /*
989 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
990 * judge of that).
991 */
992 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
64db4cff
PM
993}
994
995#ifdef CONFIG_HOTPLUG_CPU
996
e74f4c45 997/*
29494be7
LJ
998 * Move a dying CPU's RCU callbacks to online CPU's callback list.
999 * Synchronization is not required because this function executes
1000 * in stop_machine() context.
e74f4c45 1001 */
29494be7 1002static void rcu_send_cbs_to_online(struct rcu_state *rsp)
e74f4c45
PM
1003{
1004 int i;
29494be7
LJ
1005 /* current DYING CPU is cleared in the cpu_online_mask */
1006 int receive_cpu = cpumask_any(cpu_online_mask);
394f99a9 1007 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
29494be7 1008 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
e74f4c45
PM
1009
1010 if (rdp->nxtlist == NULL)
1011 return; /* irqs disabled, so comparison is stable. */
29494be7
LJ
1012
1013 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1014 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1015 receive_rdp->qlen += rdp->qlen;
1016 receive_rdp->n_cbs_adopted += rdp->qlen;
1017 rdp->n_cbs_orphaned += rdp->qlen;
1018
e74f4c45
PM
1019 rdp->nxtlist = NULL;
1020 for (i = 0; i < RCU_NEXT_SIZE; i++)
1021 rdp->nxttail[i] = &rdp->nxtlist;
e74f4c45 1022 rdp->qlen = 0;
e74f4c45
PM
1023}
1024
64db4cff
PM
1025/*
1026 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1027 * and move all callbacks from the outgoing CPU to the current one.
a26ac245
PM
1028 * There can only be one CPU hotplug operation at a time, so no other
1029 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff
PM
1030 */
1031static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1032{
64db4cff 1033 unsigned long flags;
64db4cff 1034 unsigned long mask;
d9a3da06 1035 int need_report = 0;
394f99a9 1036 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff 1037 struct rcu_node *rnp;
a26ac245
PM
1038 struct task_struct *t;
1039
1040 /* Stop the CPU's kthread. */
1041 t = per_cpu(rcu_cpu_kthread_task, cpu);
1042 if (t != NULL) {
1043 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1044 kthread_stop(t);
1045 }
64db4cff
PM
1046
1047 /* Exclude any attempts to start a new grace period. */
1304afb2 1048 raw_spin_lock_irqsave(&rsp->onofflock, flags);
64db4cff
PM
1049
1050 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 1051 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
1052 mask = rdp->grpmask; /* rnp->grplo is constant. */
1053 do {
1304afb2 1054 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
1055 rnp->qsmaskinit &= ~mask;
1056 if (rnp->qsmaskinit != 0) {
b668c9cf 1057 if (rnp != rdp->mynode)
1304afb2 1058 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1059 break;
1060 }
b668c9cf 1061 if (rnp == rdp->mynode)
d9a3da06 1062 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
b668c9cf 1063 else
1304afb2 1064 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 1065 mask = rnp->grpmask;
64db4cff
PM
1066 rnp = rnp->parent;
1067 } while (rnp != NULL);
64db4cff 1068
b668c9cf
PM
1069 /*
1070 * We still hold the leaf rcu_node structure lock here, and
1071 * irqs are still disabled. The reason for this subterfuge is
d3f6bad3
PM
1072 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1073 * held leads to deadlock.
b668c9cf 1074 */
1304afb2 1075 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
b668c9cf 1076 rnp = rdp->mynode;
d9a3da06 1077 if (need_report & RCU_OFL_TASKS_NORM_GP)
d3f6bad3 1078 rcu_report_unblock_qs_rnp(rnp, flags);
b668c9cf 1079 else
1304afb2 1080 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
1081 if (need_report & RCU_OFL_TASKS_EXP_GP)
1082 rcu_report_exp_rnp(rsp, rnp);
a26ac245
PM
1083
1084 /*
1085 * If there are no more online CPUs for this rcu_node structure,
1086 * kill the rcu_node structure's kthread. Otherwise, adjust its
1087 * affinity.
1088 */
1089 t = rnp->node_kthread_task;
1090 if (t != NULL &&
1091 rnp->qsmaskinit == 0) {
1092 kthread_stop(t);
1093 rnp->node_kthread_task = NULL;
1094 } else
1095 rcu_node_kthread_setaffinity(rnp);
64db4cff
PM
1096}
1097
1098/*
1099 * Remove the specified CPU from the RCU hierarchy and move any pending
1100 * callbacks that it might have to the current CPU. This code assumes
1101 * that at least one CPU in the system will remain running at all times.
1102 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1103 */
1104static void rcu_offline_cpu(int cpu)
1105{
d6714c22 1106 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 1107 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 1108 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
1109}
1110
1111#else /* #ifdef CONFIG_HOTPLUG_CPU */
1112
29494be7 1113static void rcu_send_cbs_to_online(struct rcu_state *rsp)
e74f4c45
PM
1114{
1115}
1116
64db4cff
PM
1117static void rcu_offline_cpu(int cpu)
1118{
1119}
1120
1121#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1122
1123/*
1124 * Invoke any RCU callbacks that have made it to the end of their grace
1125 * period. Thottle as specified by rdp->blimit.
1126 */
37c72e56 1127static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1128{
1129 unsigned long flags;
1130 struct rcu_head *next, *list, **tail;
1131 int count;
1132
1133 /* If no callbacks are ready, just return.*/
1134 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1135 return;
1136
1137 /*
1138 * Extract the list of ready callbacks, disabling to prevent
1139 * races with call_rcu() from interrupt handlers.
1140 */
1141 local_irq_save(flags);
1142 list = rdp->nxtlist;
1143 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1144 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1145 tail = rdp->nxttail[RCU_DONE_TAIL];
1146 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1147 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1148 rdp->nxttail[count] = &rdp->nxtlist;
1149 local_irq_restore(flags);
1150
1151 /* Invoke callbacks. */
1152 count = 0;
1153 while (list) {
1154 next = list->next;
1155 prefetch(next);
551d55a9 1156 debug_rcu_head_unqueue(list);
64db4cff
PM
1157 list->func(list);
1158 list = next;
1159 if (++count >= rdp->blimit)
1160 break;
1161 }
1162
1163 local_irq_save(flags);
1164
1165 /* Update count, and requeue any remaining callbacks. */
1166 rdp->qlen -= count;
269dcc1c 1167 rdp->n_cbs_invoked += count;
64db4cff
PM
1168 if (list != NULL) {
1169 *tail = rdp->nxtlist;
1170 rdp->nxtlist = list;
1171 for (count = 0; count < RCU_NEXT_SIZE; count++)
1172 if (&rdp->nxtlist == rdp->nxttail[count])
1173 rdp->nxttail[count] = tail;
1174 else
1175 break;
1176 }
1177
1178 /* Reinstate batch limit if we have worked down the excess. */
1179 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1180 rdp->blimit = blimit;
1181
37c72e56
PM
1182 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1183 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1184 rdp->qlen_last_fqs_check = 0;
1185 rdp->n_force_qs_snap = rsp->n_force_qs;
1186 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1187 rdp->qlen_last_fqs_check = rdp->qlen;
1188
64db4cff
PM
1189 local_irq_restore(flags);
1190
1191 /* Re-raise the RCU softirq if there are callbacks remaining. */
1192 if (cpu_has_callbacks_ready_to_invoke(rdp))
a26ac245 1193 invoke_rcu_kthread();
64db4cff
PM
1194}
1195
1196/*
1197 * Check to see if this CPU is in a non-context-switch quiescent state
1198 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1199 * Also schedule the RCU softirq handler.
1200 *
1201 * This function must be called with hardirqs disabled. It is normally
1202 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1203 * false, there is no point in invoking rcu_check_callbacks().
1204 */
1205void rcu_check_callbacks(int cpu, int user)
1206{
1207 if (user ||
a6826048
PM
1208 (idle_cpu(cpu) && rcu_scheduler_active &&
1209 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1210
1211 /*
1212 * Get here if this CPU took its interrupt from user
1213 * mode or from the idle loop, and if this is not a
1214 * nested interrupt. In this case, the CPU is in
d6714c22 1215 * a quiescent state, so note it.
64db4cff
PM
1216 *
1217 * No memory barrier is required here because both
d6714c22
PM
1218 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1219 * variables that other CPUs neither access nor modify,
1220 * at least not while the corresponding CPU is online.
64db4cff
PM
1221 */
1222
d6714c22
PM
1223 rcu_sched_qs(cpu);
1224 rcu_bh_qs(cpu);
64db4cff
PM
1225
1226 } else if (!in_softirq()) {
1227
1228 /*
1229 * Get here if this CPU did not take its interrupt from
1230 * softirq, in other words, if it is not interrupting
1231 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1232 * critical section, so note it.
64db4cff
PM
1233 */
1234
d6714c22 1235 rcu_bh_qs(cpu);
64db4cff 1236 }
f41d911f 1237 rcu_preempt_check_callbacks(cpu);
d21670ac 1238 if (rcu_pending(cpu))
a26ac245 1239 invoke_rcu_kthread();
64db4cff
PM
1240}
1241
1242#ifdef CONFIG_SMP
1243
1244/*
1245 * Scan the leaf rcu_node structures, processing dyntick state for any that
1246 * have not yet encountered a quiescent state, using the function specified.
ee47eb9f 1247 * The caller must have suppressed start of new grace periods.
64db4cff 1248 */
45f014c5 1249static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1250{
1251 unsigned long bit;
1252 int cpu;
1253 unsigned long flags;
1254 unsigned long mask;
a0b6c9a7 1255 struct rcu_node *rnp;
64db4cff 1256
a0b6c9a7 1257 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1258 mask = 0;
1304afb2 1259 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1260 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1261 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1262 return;
64db4cff 1263 }
a0b6c9a7 1264 if (rnp->qsmask == 0) {
1304afb2 1265 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1266 continue;
1267 }
a0b6c9a7 1268 cpu = rnp->grplo;
64db4cff 1269 bit = 1;
a0b6c9a7 1270 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1271 if ((rnp->qsmask & bit) != 0 &&
1272 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1273 mask |= bit;
1274 }
45f014c5 1275 if (mask != 0) {
64db4cff 1276
d3f6bad3
PM
1277 /* rcu_report_qs_rnp() releases rnp->lock. */
1278 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1279 continue;
1280 }
1304afb2 1281 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1282 }
64db4cff
PM
1283}
1284
1285/*
1286 * Force quiescent states on reluctant CPUs, and also detect which
1287 * CPUs are in dyntick-idle mode.
1288 */
1289static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1290{
1291 unsigned long flags;
64db4cff 1292 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1293
fc2219d4 1294 if (!rcu_gp_in_progress(rsp))
64db4cff 1295 return; /* No grace period in progress, nothing to force. */
1304afb2 1296 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff
PM
1297 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1298 return; /* Someone else is already on the job. */
1299 }
20133cfc 1300 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1301 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1302 rsp->n_force_qs++;
1304afb2 1303 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1304 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1305 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1306 rsp->n_force_qs_ngp++;
1304afb2 1307 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1308 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1309 }
07079d53 1310 rsp->fqs_active = 1;
f3a8b5c6 1311 switch (rsp->signaled) {
83f5b01f 1312 case RCU_GP_IDLE:
64db4cff
PM
1313 case RCU_GP_INIT:
1314
83f5b01f 1315 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1316
1317 case RCU_SAVE_DYNTICK:
64db4cff
PM
1318 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1319 break; /* So gcc recognizes the dead code. */
1320
f261414f
LJ
1321 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1322
64db4cff 1323 /* Record dyntick-idle state. */
45f014c5 1324 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1325 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1326 if (rcu_gp_in_progress(rsp))
64db4cff 1327 rsp->signaled = RCU_FORCE_QS;
ee47eb9f 1328 break;
64db4cff
PM
1329
1330 case RCU_FORCE_QS:
1331
1332 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1333 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1334 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1335
1336 /* Leave state in case more forcing is required. */
1337
1304afb2 1338 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1339 break;
64db4cff 1340 }
07079d53 1341 rsp->fqs_active = 0;
46a1e34e 1342 if (rsp->fqs_need_gp) {
1304afb2 1343 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1344 rsp->fqs_need_gp = 0;
1345 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1346 return;
1347 }
1304afb2 1348 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1349unlock_fqs_ret:
1304afb2 1350 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
64db4cff
PM
1351}
1352
1353#else /* #ifdef CONFIG_SMP */
1354
1355static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1356{
1357 set_need_resched();
1358}
1359
1360#endif /* #else #ifdef CONFIG_SMP */
1361
1362/*
1363 * This does the RCU processing work from softirq context for the
1364 * specified rcu_state and rcu_data structures. This may be called
1365 * only from the CPU to whom the rdp belongs.
1366 */
1367static void
1368__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1369{
1370 unsigned long flags;
1371
2e597558
PM
1372 WARN_ON_ONCE(rdp->beenonline == 0);
1373
64db4cff
PM
1374 /*
1375 * If an RCU GP has gone long enough, go check for dyntick
1376 * idle CPUs and, if needed, send resched IPIs.
1377 */
20133cfc 1378 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1379 force_quiescent_state(rsp, 1);
1380
1381 /*
1382 * Advance callbacks in response to end of earlier grace
1383 * period that some other CPU ended.
1384 */
1385 rcu_process_gp_end(rsp, rdp);
1386
1387 /* Update RCU state based on any recent quiescent states. */
1388 rcu_check_quiescent_state(rsp, rdp);
1389
1390 /* Does this CPU require a not-yet-started grace period? */
1391 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1392 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1393 rcu_start_gp(rsp, flags); /* releases above lock */
1394 }
1395
1396 /* If there are callbacks ready, invoke them. */
37c72e56 1397 rcu_do_batch(rsp, rdp);
64db4cff
PM
1398}
1399
1400/*
1401 * Do softirq processing for the current CPU.
1402 */
a26ac245 1403static void rcu_process_callbacks(void)
64db4cff 1404{
d6714c22
PM
1405 __rcu_process_callbacks(&rcu_sched_state,
1406 &__get_cpu_var(rcu_sched_data));
64db4cff 1407 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1408 rcu_preempt_process_callbacks();
a47cd880
PM
1409
1410 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1411 rcu_needs_cpu_flush();
64db4cff
PM
1412}
1413
a26ac245
PM
1414/*
1415 * Wake up the current CPU's kthread. This replaces raise_softirq()
1416 * in earlier versions of RCU. Note that because we are running on
1417 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1418 * cannot disappear out from under us.
1419 */
1420static void invoke_rcu_kthread(void)
1421{
1422 unsigned long flags;
1423 wait_queue_head_t *q;
1424 int cpu;
1425
1426 local_irq_save(flags);
1427 cpu = smp_processor_id();
1428 per_cpu(rcu_cpu_has_work, cpu) = 1;
1429 if (per_cpu(rcu_cpu_kthread_task, cpu) == NULL) {
1430 local_irq_restore(flags);
1431 return;
1432 }
1433 q = &per_cpu(rcu_cpu_wq, cpu);
1434 wake_up(q);
1435 local_irq_restore(flags);
1436}
1437
1438/*
1439 * Timer handler to initiate the waking up of per-CPU kthreads that
1440 * have yielded the CPU due to excess numbers of RCU callbacks.
1441 */
1442static void rcu_cpu_kthread_timer(unsigned long arg)
1443{
1444 unsigned long flags;
1445 struct rcu_data *rdp = (struct rcu_data *)arg;
1446 struct rcu_node *rnp = rdp->mynode;
1447 struct task_struct *t;
1448
1449 raw_spin_lock_irqsave(&rnp->lock, flags);
1450 rnp->wakemask |= rdp->grpmask;
1451 t = rnp->node_kthread_task;
1452 if (t == NULL) {
1453 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1454 return;
1455 }
1456 wake_up_process(t);
1457 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1458}
1459
1460/*
1461 * Drop to non-real-time priority and yield, but only after posting a
1462 * timer that will cause us to regain our real-time priority if we
1463 * remain preempted. Either way, we restore our real-time priority
1464 * before returning.
1465 */
1466static void rcu_yield(int cpu)
1467{
1468 struct rcu_data *rdp = per_cpu_ptr(rcu_sched_state.rda, cpu);
1469 struct sched_param sp;
1470 struct timer_list yield_timer;
1471
1472 setup_timer_on_stack(&yield_timer, rcu_cpu_kthread_timer, (unsigned long)rdp);
1473 mod_timer(&yield_timer, jiffies + 2);
1474 sp.sched_priority = 0;
1475 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1476 schedule();
1477 sp.sched_priority = RCU_KTHREAD_PRIO;
1478 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1479 del_timer(&yield_timer);
1480}
1481
1482/*
1483 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1484 * This can happen while the corresponding CPU is either coming online
1485 * or going offline. We cannot wait until the CPU is fully online
1486 * before starting the kthread, because the various notifier functions
1487 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1488 * the corresponding CPU is online.
1489 *
1490 * Return 1 if the kthread needs to stop, 0 otherwise.
1491 *
1492 * Caller must disable bh. This function can momentarily enable it.
1493 */
1494static int rcu_cpu_kthread_should_stop(int cpu)
1495{
1496 while (cpu_is_offline(cpu) ||
1497 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1498 smp_processor_id() != cpu) {
1499 if (kthread_should_stop())
1500 return 1;
1501 local_bh_enable();
1502 schedule_timeout_uninterruptible(1);
1503 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1504 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1505 local_bh_disable();
1506 }
1507 return 0;
1508}
1509
1510/*
1511 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1512 * earlier RCU softirq.
1513 */
1514static int rcu_cpu_kthread(void *arg)
1515{
1516 int cpu = (int)(long)arg;
1517 unsigned long flags;
1518 int spincnt = 0;
1519 wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
1520 char work;
1521 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1522
1523 for (;;) {
1524 wait_event_interruptible(*wqp,
1525 *workp != 0 || kthread_should_stop());
1526 local_bh_disable();
1527 if (rcu_cpu_kthread_should_stop(cpu)) {
1528 local_bh_enable();
1529 break;
1530 }
1531 local_irq_save(flags);
1532 work = *workp;
1533 *workp = 0;
1534 local_irq_restore(flags);
1535 if (work)
1536 rcu_process_callbacks();
1537 local_bh_enable();
1538 if (*workp != 0)
1539 spincnt++;
1540 else
1541 spincnt = 0;
1542 if (spincnt > 10) {
1543 rcu_yield(cpu);
1544 spincnt = 0;
1545 }
1546 }
1547 return 0;
1548}
1549
1550/*
1551 * Spawn a per-CPU kthread, setting up affinity and priority.
1552 * Because the CPU hotplug lock is held, no other CPU will be attempting
1553 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1554 * attempting to access it during boot, but the locking in kthread_bind()
1555 * will enforce sufficient ordering.
1556 */
1557static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1558{
1559 struct sched_param sp;
1560 struct task_struct *t;
1561
1562 if (!rcu_kthreads_spawnable ||
1563 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1564 return 0;
1565 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1566 if (IS_ERR(t))
1567 return PTR_ERR(t);
1568 kthread_bind(t, cpu);
1569 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1570 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1571 wake_up_process(t);
1572 sp.sched_priority = RCU_KTHREAD_PRIO;
1573 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1574 return 0;
1575}
1576
1577/*
1578 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1579 * kthreads when needed. We ignore requests to wake up kthreads
1580 * for offline CPUs, which is OK because force_quiescent_state()
1581 * takes care of this case.
1582 */
1583static int rcu_node_kthread(void *arg)
1584{
1585 int cpu;
1586 unsigned long flags;
1587 unsigned long mask;
1588 struct rcu_node *rnp = (struct rcu_node *)arg;
1589 struct sched_param sp;
1590 struct task_struct *t;
1591
1592 for (;;) {
1593 wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0 ||
1594 kthread_should_stop());
1595 if (kthread_should_stop())
1596 break;
1597 raw_spin_lock_irqsave(&rnp->lock, flags);
1598 mask = rnp->wakemask;
1599 rnp->wakemask = 0;
1600 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1601 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1602 if ((mask & 0x1) == 0)
1603 continue;
1604 preempt_disable();
1605 t = per_cpu(rcu_cpu_kthread_task, cpu);
1606 if (!cpu_online(cpu) || t == NULL) {
1607 preempt_enable();
1608 continue;
1609 }
1610 per_cpu(rcu_cpu_has_work, cpu) = 1;
1611 sp.sched_priority = RCU_KTHREAD_PRIO;
1612 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1613 preempt_enable();
1614 }
1615 }
1616 return 0;
1617}
1618
1619/*
1620 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1621 * served by the rcu_node in question.
1622 */
1623static void rcu_node_kthread_setaffinity(struct rcu_node *rnp)
1624{
1625 cpumask_var_t cm;
1626 int cpu;
1627 unsigned long mask = rnp->qsmaskinit;
1628
1629 if (rnp->node_kthread_task == NULL ||
1630 rnp->qsmaskinit == 0)
1631 return;
1632 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1633 return;
1634 cpumask_clear(cm);
1635 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1636 if (mask & 0x1)
1637 cpumask_set_cpu(cpu, cm);
1638 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1639 free_cpumask_var(cm);
1640}
1641
1642/*
1643 * Spawn a per-rcu_node kthread, setting priority and affinity.
1644 */
1645static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1646 struct rcu_node *rnp)
1647{
1648 int rnp_index = rnp - &rsp->node[0];
1649 struct sched_param sp;
1650 struct task_struct *t;
1651
1652 if (!rcu_kthreads_spawnable ||
1653 rnp->qsmaskinit == 0 ||
1654 rnp->node_kthread_task != NULL)
1655 return 0;
1656 t = kthread_create(rcu_node_kthread, (void *)rnp, "rcun%d", rnp_index);
1657 if (IS_ERR(t))
1658 return PTR_ERR(t);
1659 rnp->node_kthread_task = t;
1660 wake_up_process(t);
1661 sp.sched_priority = 99;
1662 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1663 return 0;
1664}
1665
1666/*
1667 * Spawn all kthreads -- called as soon as the scheduler is running.
1668 */
1669static int __init rcu_spawn_kthreads(void)
1670{
1671 int cpu;
1672 struct rcu_node *rnp;
1673
1674 rcu_kthreads_spawnable = 1;
1675 for_each_possible_cpu(cpu) {
1676 init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
1677 per_cpu(rcu_cpu_has_work, cpu) = 0;
1678 if (cpu_online(cpu))
1679 (void)rcu_spawn_one_cpu_kthread(cpu);
1680 }
1681 rcu_for_each_leaf_node(&rcu_sched_state, rnp) {
1682 init_waitqueue_head(&rnp->node_wq);
1683 (void)rcu_spawn_one_node_kthread(&rcu_sched_state, rnp);
1684 }
1685 return 0;
1686}
1687early_initcall(rcu_spawn_kthreads);
1688
64db4cff
PM
1689static void
1690__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1691 struct rcu_state *rsp)
1692{
1693 unsigned long flags;
1694 struct rcu_data *rdp;
1695
551d55a9 1696 debug_rcu_head_queue(head);
64db4cff
PM
1697 head->func = func;
1698 head->next = NULL;
1699
1700 smp_mb(); /* Ensure RCU update seen before callback registry. */
1701
1702 /*
1703 * Opportunistically note grace-period endings and beginnings.
1704 * Note that we might see a beginning right after we see an
1705 * end, but never vice versa, since this CPU has to pass through
1706 * a quiescent state betweentimes.
1707 */
1708 local_irq_save(flags);
394f99a9 1709 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1710
1711 /* Add the callback to our list. */
1712 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1713 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1714
37c72e56
PM
1715 /*
1716 * Force the grace period if too many callbacks or too long waiting.
1717 * Enforce hysteresis, and don't invoke force_quiescent_state()
1718 * if some other CPU has recently done so. Also, don't bother
1719 * invoking force_quiescent_state() if the newly enqueued callback
1720 * is the only one waiting for a grace period to complete.
1721 */
1722 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1723
1724 /* Are we ignoring a completed grace period? */
1725 rcu_process_gp_end(rsp, rdp);
1726 check_for_new_grace_period(rsp, rdp);
1727
1728 /* Start a new grace period if one not already started. */
1729 if (!rcu_gp_in_progress(rsp)) {
1730 unsigned long nestflag;
1731 struct rcu_node *rnp_root = rcu_get_root(rsp);
1732
1733 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1734 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1735 } else {
1736 /* Give the grace period a kick. */
1737 rdp->blimit = LONG_MAX;
1738 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1739 *rdp->nxttail[RCU_DONE_TAIL] != head)
1740 force_quiescent_state(rsp, 0);
1741 rdp->n_force_qs_snap = rsp->n_force_qs;
1742 rdp->qlen_last_fqs_check = rdp->qlen;
1743 }
20133cfc 1744 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1745 force_quiescent_state(rsp, 1);
1746 local_irq_restore(flags);
1747}
1748
1749/*
d6714c22 1750 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1751 */
d6714c22 1752void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1753{
d6714c22 1754 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1755}
d6714c22 1756EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1757
1758/*
1759 * Queue an RCU for invocation after a quicker grace period.
1760 */
1761void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1762{
1763 __call_rcu(head, func, &rcu_bh_state);
1764}
1765EXPORT_SYMBOL_GPL(call_rcu_bh);
1766
6ebb237b
PM
1767/**
1768 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1769 *
1770 * Control will return to the caller some time after a full rcu-sched
1771 * grace period has elapsed, in other words after all currently executing
1772 * rcu-sched read-side critical sections have completed. These read-side
1773 * critical sections are delimited by rcu_read_lock_sched() and
1774 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1775 * local_irq_disable(), and so on may be used in place of
1776 * rcu_read_lock_sched().
1777 *
1778 * This means that all preempt_disable code sequences, including NMI and
1779 * hardware-interrupt handlers, in progress on entry will have completed
1780 * before this primitive returns. However, this does not guarantee that
1781 * softirq handlers will have completed, since in some kernels, these
1782 * handlers can run in process context, and can block.
1783 *
1784 * This primitive provides the guarantees made by the (now removed)
1785 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1786 * guarantees that rcu_read_lock() sections will have completed.
1787 * In "classic RCU", these two guarantees happen to be one and
1788 * the same, but can differ in realtime RCU implementations.
1789 */
1790void synchronize_sched(void)
1791{
1792 struct rcu_synchronize rcu;
1793
1794 if (rcu_blocking_is_gp())
1795 return;
1796
72d5a9f7 1797 init_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1798 init_completion(&rcu.completion);
1799 /* Will wake me after RCU finished. */
1800 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1801 /* Wait for it. */
1802 wait_for_completion(&rcu.completion);
72d5a9f7 1803 destroy_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1804}
1805EXPORT_SYMBOL_GPL(synchronize_sched);
1806
1807/**
1808 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1809 *
1810 * Control will return to the caller some time after a full rcu_bh grace
1811 * period has elapsed, in other words after all currently executing rcu_bh
1812 * read-side critical sections have completed. RCU read-side critical
1813 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1814 * and may be nested.
1815 */
1816void synchronize_rcu_bh(void)
1817{
1818 struct rcu_synchronize rcu;
1819
1820 if (rcu_blocking_is_gp())
1821 return;
1822
72d5a9f7 1823 init_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1824 init_completion(&rcu.completion);
1825 /* Will wake me after RCU finished. */
1826 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1827 /* Wait for it. */
1828 wait_for_completion(&rcu.completion);
72d5a9f7 1829 destroy_rcu_head_on_stack(&rcu.head);
6ebb237b
PM
1830}
1831EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1832
64db4cff
PM
1833/*
1834 * Check to see if there is any immediate RCU-related work to be done
1835 * by the current CPU, for the specified type of RCU, returning 1 if so.
1836 * The checks are in order of increasing expense: checks that can be
1837 * carried out against CPU-local state are performed first. However,
1838 * we must check for CPU stalls first, else we might not get a chance.
1839 */
1840static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1841{
2f51f988
PM
1842 struct rcu_node *rnp = rdp->mynode;
1843
64db4cff
PM
1844 rdp->n_rcu_pending++;
1845
1846 /* Check for CPU stalls, if enabled. */
1847 check_cpu_stall(rsp, rdp);
1848
1849 /* Is the RCU core waiting for a quiescent state from this CPU? */
d21670ac 1850 if (rdp->qs_pending && !rdp->passed_quiesc) {
d25eb944
PM
1851
1852 /*
1853 * If force_quiescent_state() coming soon and this CPU
1854 * needs a quiescent state, and this is either RCU-sched
1855 * or RCU-bh, force a local reschedule.
1856 */
d21670ac 1857 rdp->n_rp_qs_pending++;
d25eb944
PM
1858 if (!rdp->preemptable &&
1859 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1860 jiffies))
1861 set_need_resched();
d21670ac
PM
1862 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1863 rdp->n_rp_report_qs++;
64db4cff 1864 return 1;
7ba5c840 1865 }
64db4cff
PM
1866
1867 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1868 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1869 rdp->n_rp_cb_ready++;
64db4cff 1870 return 1;
7ba5c840 1871 }
64db4cff
PM
1872
1873 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1874 if (cpu_needs_another_gp(rsp, rdp)) {
1875 rdp->n_rp_cpu_needs_gp++;
64db4cff 1876 return 1;
7ba5c840 1877 }
64db4cff
PM
1878
1879 /* Has another RCU grace period completed? */
2f51f988 1880 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1881 rdp->n_rp_gp_completed++;
64db4cff 1882 return 1;
7ba5c840 1883 }
64db4cff
PM
1884
1885 /* Has a new RCU grace period started? */
2f51f988 1886 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1887 rdp->n_rp_gp_started++;
64db4cff 1888 return 1;
7ba5c840 1889 }
64db4cff
PM
1890
1891 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1892 if (rcu_gp_in_progress(rsp) &&
20133cfc 1893 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 1894 rdp->n_rp_need_fqs++;
64db4cff 1895 return 1;
7ba5c840 1896 }
64db4cff
PM
1897
1898 /* nothing to do */
7ba5c840 1899 rdp->n_rp_need_nothing++;
64db4cff
PM
1900 return 0;
1901}
1902
1903/*
1904 * Check to see if there is any immediate RCU-related work to be done
1905 * by the current CPU, returning 1 if so. This function is part of the
1906 * RCU implementation; it is -not- an exported member of the RCU API.
1907 */
a157229c 1908static int rcu_pending(int cpu)
64db4cff 1909{
d6714c22 1910 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1911 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1912 rcu_preempt_pending(cpu);
64db4cff
PM
1913}
1914
1915/*
1916 * Check to see if any future RCU-related work will need to be done
1917 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 1918 * 1 if so.
64db4cff 1919 */
8bd93a2c 1920static int rcu_needs_cpu_quick_check(int cpu)
64db4cff
PM
1921{
1922 /* RCU callbacks either ready or pending? */
d6714c22 1923 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1924 per_cpu(rcu_bh_data, cpu).nxtlist ||
1925 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1926}
1927
d0ec774c
PM
1928static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
1929static atomic_t rcu_barrier_cpu_count;
1930static DEFINE_MUTEX(rcu_barrier_mutex);
1931static struct completion rcu_barrier_completion;
d0ec774c
PM
1932
1933static void rcu_barrier_callback(struct rcu_head *notused)
1934{
1935 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1936 complete(&rcu_barrier_completion);
1937}
1938
1939/*
1940 * Called with preemption disabled, and from cross-cpu IRQ context.
1941 */
1942static void rcu_barrier_func(void *type)
1943{
1944 int cpu = smp_processor_id();
1945 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
1946 void (*call_rcu_func)(struct rcu_head *head,
1947 void (*func)(struct rcu_head *head));
1948
1949 atomic_inc(&rcu_barrier_cpu_count);
1950 call_rcu_func = type;
1951 call_rcu_func(head, rcu_barrier_callback);
1952}
1953
d0ec774c
PM
1954/*
1955 * Orchestrate the specified type of RCU barrier, waiting for all
1956 * RCU callbacks of the specified type to complete.
1957 */
e74f4c45
PM
1958static void _rcu_barrier(struct rcu_state *rsp,
1959 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
1960 void (*func)(struct rcu_head *head)))
1961{
1962 BUG_ON(in_interrupt());
e74f4c45 1963 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
1964 mutex_lock(&rcu_barrier_mutex);
1965 init_completion(&rcu_barrier_completion);
1966 /*
1967 * Initialize rcu_barrier_cpu_count to 1, then invoke
1968 * rcu_barrier_func() on each CPU, so that each CPU also has
1969 * incremented rcu_barrier_cpu_count. Only then is it safe to
1970 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1971 * might complete its grace period before all of the other CPUs
1972 * did their increment, causing this function to return too
2d999e03
PM
1973 * early. Note that on_each_cpu() disables irqs, which prevents
1974 * any CPUs from coming online or going offline until each online
1975 * CPU has queued its RCU-barrier callback.
d0ec774c
PM
1976 */
1977 atomic_set(&rcu_barrier_cpu_count, 1);
1978 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
1979 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
1980 complete(&rcu_barrier_completion);
1981 wait_for_completion(&rcu_barrier_completion);
1982 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 1983}
d0ec774c
PM
1984
1985/**
1986 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1987 */
1988void rcu_barrier_bh(void)
1989{
e74f4c45 1990 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
1991}
1992EXPORT_SYMBOL_GPL(rcu_barrier_bh);
1993
1994/**
1995 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1996 */
1997void rcu_barrier_sched(void)
1998{
e74f4c45 1999 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
2000}
2001EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2002
64db4cff 2003/*
27569620 2004 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2005 */
27569620
PM
2006static void __init
2007rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2008{
2009 unsigned long flags;
2010 int i;
394f99a9 2011 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2012 struct rcu_node *rnp = rcu_get_root(rsp);
2013
2014 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2015 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2016 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2017 rdp->nxtlist = NULL;
2018 for (i = 0; i < RCU_NEXT_SIZE; i++)
2019 rdp->nxttail[i] = &rdp->nxtlist;
2020 rdp->qlen = 0;
2021#ifdef CONFIG_NO_HZ
2022 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2023#endif /* #ifdef CONFIG_NO_HZ */
2024 rdp->cpu = cpu;
1304afb2 2025 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2026}
2027
2028/*
2029 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2030 * offline event can be happening at a given time. Note also that we
2031 * can accept some slop in the rsp->completed access due to the fact
2032 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2033 */
e4fa4c97 2034static void __cpuinit
f41d911f 2035rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
2036{
2037 unsigned long flags;
64db4cff 2038 unsigned long mask;
394f99a9 2039 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2040 struct rcu_node *rnp = rcu_get_root(rsp);
2041
2042 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2043 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
2044 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2045 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2046 rdp->beenonline = 1; /* We have now been online. */
f41d911f 2047 rdp->preemptable = preemptable;
37c72e56
PM
2048 rdp->qlen_last_fqs_check = 0;
2049 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2050 rdp->blimit = blimit;
1304afb2 2051 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2052
2053 /*
2054 * A new grace period might start here. If so, we won't be part
2055 * of it, but that is OK, as we are currently in a quiescent state.
2056 */
2057
2058 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2059 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2060
2061 /* Add CPU to rcu_node bitmasks. */
2062 rnp = rdp->mynode;
2063 mask = rdp->grpmask;
2064 do {
2065 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2066 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2067 rnp->qsmaskinit |= mask;
2068 mask = rnp->grpmask;
d09b62df
PM
2069 if (rnp == rdp->mynode) {
2070 rdp->gpnum = rnp->completed; /* if GP in progress... */
2071 rdp->completed = rnp->completed;
2072 rdp->passed_quiesc_completed = rnp->completed - 1;
2073 }
1304afb2 2074 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2075 rnp = rnp->parent;
2076 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2077
1304afb2 2078 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2079}
2080
2081static void __cpuinit rcu_online_cpu(int cpu)
2082{
f41d911f
PM
2083 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2084 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2085 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2086}
2087
a26ac245
PM
2088static void __cpuinit rcu_online_kthreads(int cpu)
2089{
2090 struct rcu_data *rdp = per_cpu_ptr(rcu_sched_state.rda, cpu);
2091 struct rcu_node *rnp = rdp->mynode;
2092
2093 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2094 if (rcu_kthreads_spawnable) {
2095 (void)rcu_spawn_one_cpu_kthread(cpu);
2096 if (rnp->node_kthread_task == NULL)
2097 (void)rcu_spawn_one_node_kthread(&rcu_sched_state, rnp);
2098 }
2099}
2100
64db4cff 2101/*
f41d911f 2102 * Handle CPU online/offline notification events.
64db4cff 2103 */
9f680ab4
PM
2104static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2105 unsigned long action, void *hcpu)
64db4cff
PM
2106{
2107 long cpu = (long)hcpu;
a26ac245
PM
2108 struct rcu_data *rdp = per_cpu_ptr(rcu_sched_state.rda, cpu);
2109 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
2110
2111 switch (action) {
2112 case CPU_UP_PREPARE:
2113 case CPU_UP_PREPARE_FROZEN:
2114 rcu_online_cpu(cpu);
a26ac245
PM
2115 rcu_online_kthreads(cpu);
2116 break;
2117 case CPU_ONLINE:
2118 rcu_node_kthread_setaffinity(rnp);
64db4cff 2119 break;
d0ec774c
PM
2120 case CPU_DYING:
2121 case CPU_DYING_FROZEN:
2122 /*
2d999e03
PM
2123 * The whole machine is "stopped" except this CPU, so we can
2124 * touch any data without introducing corruption. We send the
2125 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2126 */
29494be7
LJ
2127 rcu_send_cbs_to_online(&rcu_bh_state);
2128 rcu_send_cbs_to_online(&rcu_sched_state);
2129 rcu_preempt_send_cbs_to_online();
d0ec774c 2130 break;
64db4cff
PM
2131 case CPU_DEAD:
2132 case CPU_DEAD_FROZEN:
2133 case CPU_UP_CANCELED:
2134 case CPU_UP_CANCELED_FROZEN:
2135 rcu_offline_cpu(cpu);
2136 break;
2137 default:
2138 break;
2139 }
2140 return NOTIFY_OK;
2141}
2142
bbad9379
PM
2143/*
2144 * This function is invoked towards the end of the scheduler's initialization
2145 * process. Before this is called, the idle task might contain
2146 * RCU read-side critical sections (during which time, this idle
2147 * task is booting the system). After this function is called, the
2148 * idle tasks are prohibited from containing RCU read-side critical
2149 * sections. This function also enables RCU lockdep checking.
2150 */
2151void rcu_scheduler_starting(void)
2152{
2153 WARN_ON(num_online_cpus() != 1);
2154 WARN_ON(nr_context_switches() > 0);
2155 rcu_scheduler_active = 1;
2156}
2157
64db4cff
PM
2158/*
2159 * Compute the per-level fanout, either using the exact fanout specified
2160 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2161 */
2162#ifdef CONFIG_RCU_FANOUT_EXACT
2163static void __init rcu_init_levelspread(struct rcu_state *rsp)
2164{
2165 int i;
2166
0209f649 2167 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
64db4cff 2168 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
0209f649 2169 rsp->levelspread[0] = RCU_FANOUT_LEAF;
64db4cff
PM
2170}
2171#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2172static void __init rcu_init_levelspread(struct rcu_state *rsp)
2173{
2174 int ccur;
2175 int cprv;
2176 int i;
2177
2178 cprv = NR_CPUS;
2179 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2180 ccur = rsp->levelcnt[i];
2181 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2182 cprv = ccur;
2183 }
2184}
2185#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2186
2187/*
2188 * Helper function for rcu_init() that initializes one rcu_state structure.
2189 */
394f99a9
LJ
2190static void __init rcu_init_one(struct rcu_state *rsp,
2191 struct rcu_data __percpu *rda)
64db4cff 2192{
b6407e86
PM
2193 static char *buf[] = { "rcu_node_level_0",
2194 "rcu_node_level_1",
2195 "rcu_node_level_2",
2196 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2197 int cpustride = 1;
2198 int i;
2199 int j;
2200 struct rcu_node *rnp;
2201
b6407e86
PM
2202 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2203
64db4cff
PM
2204 /* Initialize the level-tracking arrays. */
2205
2206 for (i = 1; i < NUM_RCU_LVLS; i++)
2207 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2208 rcu_init_levelspread(rsp);
2209
2210 /* Initialize the elements themselves, starting from the leaves. */
2211
2212 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2213 cpustride *= rsp->levelspread[i];
2214 rnp = rsp->level[i];
2215 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2216 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2217 lockdep_set_class_and_name(&rnp->lock,
2218 &rcu_node_class[i], buf[i]);
f41d911f 2219 rnp->gpnum = 0;
64db4cff
PM
2220 rnp->qsmask = 0;
2221 rnp->qsmaskinit = 0;
2222 rnp->grplo = j * cpustride;
2223 rnp->grphi = (j + 1) * cpustride - 1;
2224 if (rnp->grphi >= NR_CPUS)
2225 rnp->grphi = NR_CPUS - 1;
2226 if (i == 0) {
2227 rnp->grpnum = 0;
2228 rnp->grpmask = 0;
2229 rnp->parent = NULL;
2230 } else {
2231 rnp->grpnum = j % rsp->levelspread[i - 1];
2232 rnp->grpmask = 1UL << rnp->grpnum;
2233 rnp->parent = rsp->level[i - 1] +
2234 j / rsp->levelspread[i - 1];
2235 }
2236 rnp->level = i;
12f5f524 2237 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2238 }
2239 }
0c34029a 2240
394f99a9 2241 rsp->rda = rda;
0c34029a
LJ
2242 rnp = rsp->level[NUM_RCU_LVLS - 1];
2243 for_each_possible_cpu(i) {
4a90a068 2244 while (i > rnp->grphi)
0c34029a 2245 rnp++;
394f99a9 2246 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2247 rcu_boot_init_percpu_data(i, rsp);
2248 }
64db4cff
PM
2249}
2250
9f680ab4 2251void __init rcu_init(void)
64db4cff 2252{
017c4261 2253 int cpu;
9f680ab4 2254
f41d911f 2255 rcu_bootup_announce();
394f99a9
LJ
2256 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2257 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2258 __rcu_init_preempt();
9f680ab4
PM
2259
2260 /*
2261 * We don't need protection against CPU-hotplug here because
2262 * this is called early in boot, before either interrupts
2263 * or the scheduler are operational.
2264 */
2265 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2266 for_each_online_cpu(cpu)
2267 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2268 check_cpu_stall_init();
64db4cff
PM
2269}
2270
1eba8f84 2271#include "rcutree_plugin.h"
This page took 0.247107 seconds and 5 git commands to generate.