nohz_full: Add Kconfig parameter for scalable detection of all-idle state
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
f7f7bac9 56#include <linux/ftrace_event.h>
64db4cff 57
9f77da9f 58#include "rcutree.h"
29c00b4a
PM
59#include <trace/events/rcu.h>
60
61#include "rcu.h"
9f77da9f 62
f7f7bac9
SRRH
63/*
64 * Strings used in tracepoints need to be exported via the
65 * tracing system such that tools like perf and trace-cmd can
66 * translate the string address pointers to actual text.
67 */
68#define TPS(x) tracepoint_string(x)
69
64db4cff
PM
70/* Data structures. */
71
f885b7f2 72static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 73static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 74
f7f7bac9
SRRH
75/*
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
82 */
a41bfeb2 83#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
84static char sname##_varname[] = #sname; \
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 86struct rcu_state sname##_state = { \
6c90cc7b 87 .level = { &sname##_state.node[0] }, \
037b64ed 88 .call = cr, \
af446b70 89 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
90 .gpnum = 0UL - 300UL, \
91 .completed = 0UL - 300UL, \
7b2e6011 92 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
93 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
94 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 95 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 96 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 97 .name = sname##_varname, \
a4889858 98 .abbr = sabbr, \
a41bfeb2
SRRH
99}; \
100DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 101
a41bfeb2
SRRH
102RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
103RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 104
27f4d280 105static struct rcu_state *rcu_state;
6ce75a23 106LIST_HEAD(rcu_struct_flavors);
27f4d280 107
f885b7f2
PM
108/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
109static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 110module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
113 NUM_RCU_LVL_0,
114 NUM_RCU_LVL_1,
115 NUM_RCU_LVL_2,
116 NUM_RCU_LVL_3,
117 NUM_RCU_LVL_4,
118};
119int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
120
b0d30417
PM
121/*
122 * The rcu_scheduler_active variable transitions from zero to one just
123 * before the first task is spawned. So when this variable is zero, RCU
124 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 125 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
126 * is one, RCU must actually do all the hard work required to detect real
127 * grace periods. This variable is also used to suppress boot-time false
128 * positives from lockdep-RCU error checking.
129 */
bbad9379
PM
130int rcu_scheduler_active __read_mostly;
131EXPORT_SYMBOL_GPL(rcu_scheduler_active);
132
b0d30417
PM
133/*
134 * The rcu_scheduler_fully_active variable transitions from zero to one
135 * during the early_initcall() processing, which is after the scheduler
136 * is capable of creating new tasks. So RCU processing (for example,
137 * creating tasks for RCU priority boosting) must be delayed until after
138 * rcu_scheduler_fully_active transitions from zero to one. We also
139 * currently delay invocation of any RCU callbacks until after this point.
140 *
141 * It might later prove better for people registering RCU callbacks during
142 * early boot to take responsibility for these callbacks, but one step at
143 * a time.
144 */
145static int rcu_scheduler_fully_active __read_mostly;
146
a46e0899
PM
147#ifdef CONFIG_RCU_BOOST
148
a26ac245
PM
149/*
150 * Control variables for per-CPU and per-rcu_node kthreads. These
151 * handle all flavors of RCU.
152 */
153static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 156DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 157
a46e0899
PM
158#endif /* #ifdef CONFIG_RCU_BOOST */
159
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 163
4a298656
PM
164/*
165 * Track the rcutorture test sequence number and the update version
166 * number within a given test. The rcutorture_testseq is incremented
167 * on every rcutorture module load and unload, so has an odd value
168 * when a test is running. The rcutorture_vernum is set to zero
169 * when rcutorture starts and is incremented on each rcutorture update.
170 * These variables enable correlating rcutorture output with the
171 * RCU tracing information.
172 */
173unsigned long rcutorture_testseq;
174unsigned long rcutorture_vernum;
175
fc2219d4
PM
176/*
177 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
178 * permit this function to be invoked without holding the root rcu_node
179 * structure's ->lock, but of course results can be subject to change.
180 */
181static int rcu_gp_in_progress(struct rcu_state *rsp)
182{
183 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
184}
185
b1f77b05 186/*
d6714c22 187 * Note a quiescent state. Because we do not need to know
b1f77b05 188 * how many quiescent states passed, just if there was at least
d6714c22 189 * one since the start of the grace period, this just sets a flag.
e4cc1f22 190 * The caller must have disabled preemption.
b1f77b05 191 */
d6714c22 192void rcu_sched_qs(int cpu)
b1f77b05 193{
25502a6c 194 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 195
e4cc1f22 196 if (rdp->passed_quiesce == 0)
f7f7bac9 197 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 198 rdp->passed_quiesce = 1;
b1f77b05
IM
199}
200
d6714c22 201void rcu_bh_qs(int cpu)
b1f77b05 202{
25502a6c 203 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 204
e4cc1f22 205 if (rdp->passed_quiesce == 0)
f7f7bac9 206 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 207 rdp->passed_quiesce = 1;
b1f77b05 208}
64db4cff 209
25502a6c
PM
210/*
211 * Note a context switch. This is a quiescent state for RCU-sched,
212 * and requires special handling for preemptible RCU.
e4cc1f22 213 * The caller must have disabled preemption.
25502a6c
PM
214 */
215void rcu_note_context_switch(int cpu)
216{
f7f7bac9 217 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 218 rcu_sched_qs(cpu);
cba6d0d6 219 rcu_preempt_note_context_switch(cpu);
f7f7bac9 220 trace_rcu_utilization(TPS("End context switch"));
25502a6c 221}
29ce8310 222EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 223
90a4d2c0 224DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 225 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 226 .dynticks = ATOMIC_INIT(1),
90a4d2c0 227};
64db4cff 228
878d7439
ED
229static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
230static long qhimark = 10000; /* If this many pending, ignore blimit. */
231static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 232
878d7439
ED
233module_param(blimit, long, 0444);
234module_param(qhimark, long, 0444);
235module_param(qlowmark, long, 0444);
3d76c082 236
026ad283
PM
237static ulong jiffies_till_first_fqs = ULONG_MAX;
238static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
239
240module_param(jiffies_till_first_fqs, ulong, 0644);
241module_param(jiffies_till_next_fqs, ulong, 0644);
242
910ee45d
PM
243static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
244 struct rcu_data *rdp);
4cdfc175
PM
245static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
246static void force_quiescent_state(struct rcu_state *rsp);
a157229c 247static int rcu_pending(int cpu);
64db4cff
PM
248
249/*
d6714c22 250 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 251 */
d6714c22 252long rcu_batches_completed_sched(void)
64db4cff 253{
d6714c22 254 return rcu_sched_state.completed;
64db4cff 255}
d6714c22 256EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
257
258/*
259 * Return the number of RCU BH batches processed thus far for debug & stats.
260 */
261long rcu_batches_completed_bh(void)
262{
263 return rcu_bh_state.completed;
264}
265EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
266
bf66f18e
PM
267/*
268 * Force a quiescent state for RCU BH.
269 */
270void rcu_bh_force_quiescent_state(void)
271{
4cdfc175 272 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
273}
274EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
275
4a298656
PM
276/*
277 * Record the number of times rcutorture tests have been initiated and
278 * terminated. This information allows the debugfs tracing stats to be
279 * correlated to the rcutorture messages, even when the rcutorture module
280 * is being repeatedly loaded and unloaded. In other words, we cannot
281 * store this state in rcutorture itself.
282 */
283void rcutorture_record_test_transition(void)
284{
285 rcutorture_testseq++;
286 rcutorture_vernum = 0;
287}
288EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
289
290/*
291 * Record the number of writer passes through the current rcutorture test.
292 * This is also used to correlate debugfs tracing stats with the rcutorture
293 * messages.
294 */
295void rcutorture_record_progress(unsigned long vernum)
296{
297 rcutorture_vernum++;
298}
299EXPORT_SYMBOL_GPL(rcutorture_record_progress);
300
bf66f18e
PM
301/*
302 * Force a quiescent state for RCU-sched.
303 */
304void rcu_sched_force_quiescent_state(void)
305{
4cdfc175 306 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
307}
308EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
309
64db4cff
PM
310/*
311 * Does the CPU have callbacks ready to be invoked?
312 */
313static int
314cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
315{
3fbfbf7a
PM
316 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
317 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
318}
319
320/*
dc35c893
PM
321 * Does the current CPU require a not-yet-started grace period?
322 * The caller must have disabled interrupts to prevent races with
323 * normal callback registry.
64db4cff
PM
324 */
325static int
326cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
327{
dc35c893 328 int i;
3fbfbf7a 329
dc35c893
PM
330 if (rcu_gp_in_progress(rsp))
331 return 0; /* No, a grace period is already in progress. */
dae6e64d 332 if (rcu_nocb_needs_gp(rsp))
34ed6246 333 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
334 if (!rdp->nxttail[RCU_NEXT_TAIL])
335 return 0; /* No, this is a no-CBs (or offline) CPU. */
336 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
337 return 1; /* Yes, this CPU has newly registered callbacks. */
338 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
339 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
340 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
341 rdp->nxtcompleted[i]))
342 return 1; /* Yes, CBs for future grace period. */
343 return 0; /* No grace period needed. */
64db4cff
PM
344}
345
346/*
347 * Return the root node of the specified rcu_state structure.
348 */
349static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
350{
351 return &rsp->node[0];
352}
353
9b2e4f18 354/*
adf5091e 355 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
356 *
357 * If the new value of the ->dynticks_nesting counter now is zero,
358 * we really have entered idle, and must do the appropriate accounting.
359 * The caller must have disabled interrupts.
360 */
adf5091e
FW
361static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
362 bool user)
9b2e4f18 363{
f7f7bac9 364 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 365 if (!user && !is_idle_task(current)) {
0989cb46
PM
366 struct task_struct *idle = idle_task(smp_processor_id());
367
f7f7bac9 368 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 369 ftrace_dump(DUMP_ORIG);
0989cb46
PM
370 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
371 current->pid, current->comm,
372 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 373 }
aea1b35e 374 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
375 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
376 smp_mb__before_atomic_inc(); /* See above. */
377 atomic_inc(&rdtp->dynticks);
378 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
379 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
380
381 /*
adf5091e 382 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
383 * in an RCU read-side critical section.
384 */
385 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
386 "Illegal idle entry in RCU read-side critical section.");
387 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
388 "Illegal idle entry in RCU-bh read-side critical section.");
389 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
390 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 391}
64db4cff 392
adf5091e
FW
393/*
394 * Enter an RCU extended quiescent state, which can be either the
395 * idle loop or adaptive-tickless usermode execution.
64db4cff 396 */
adf5091e 397static void rcu_eqs_enter(bool user)
64db4cff 398{
4145fa7f 399 long long oldval;
64db4cff
PM
400 struct rcu_dynticks *rdtp;
401
64db4cff 402 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 403 oldval = rdtp->dynticks_nesting;
29e37d81
PM
404 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
405 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
406 rdtp->dynticks_nesting = 0;
407 else
408 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 409 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 410}
adf5091e
FW
411
412/**
413 * rcu_idle_enter - inform RCU that current CPU is entering idle
414 *
415 * Enter idle mode, in other words, -leave- the mode in which RCU
416 * read-side critical sections can occur. (Though RCU read-side
417 * critical sections can occur in irq handlers in idle, a possibility
418 * handled by irq_enter() and irq_exit().)
419 *
420 * We crowbar the ->dynticks_nesting field to zero to allow for
421 * the possibility of usermode upcalls having messed up our count
422 * of interrupt nesting level during the prior busy period.
423 */
424void rcu_idle_enter(void)
425{
c5d900bf
FW
426 unsigned long flags;
427
428 local_irq_save(flags);
cb349ca9 429 rcu_eqs_enter(false);
c5d900bf 430 local_irq_restore(flags);
adf5091e 431}
8a2ecf47 432EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 433
2b1d5024 434#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
435/**
436 * rcu_user_enter - inform RCU that we are resuming userspace.
437 *
438 * Enter RCU idle mode right before resuming userspace. No use of RCU
439 * is permitted between this call and rcu_user_exit(). This way the
440 * CPU doesn't need to maintain the tick for RCU maintenance purposes
441 * when the CPU runs in userspace.
442 */
443void rcu_user_enter(void)
444{
91d1aa43 445 rcu_eqs_enter(1);
adf5091e 446}
2b1d5024 447#endif /* CONFIG_RCU_USER_QS */
19dd1591 448
9b2e4f18
PM
449/**
450 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
451 *
452 * Exit from an interrupt handler, which might possibly result in entering
453 * idle mode, in other words, leaving the mode in which read-side critical
454 * sections can occur.
64db4cff 455 *
9b2e4f18
PM
456 * This code assumes that the idle loop never does anything that might
457 * result in unbalanced calls to irq_enter() and irq_exit(). If your
458 * architecture violates this assumption, RCU will give you what you
459 * deserve, good and hard. But very infrequently and irreproducibly.
460 *
461 * Use things like work queues to work around this limitation.
462 *
463 * You have been warned.
64db4cff 464 */
9b2e4f18 465void rcu_irq_exit(void)
64db4cff
PM
466{
467 unsigned long flags;
4145fa7f 468 long long oldval;
64db4cff
PM
469 struct rcu_dynticks *rdtp;
470
471 local_irq_save(flags);
472 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 473 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
474 rdtp->dynticks_nesting--;
475 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 476 if (rdtp->dynticks_nesting)
f7f7bac9 477 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 478 else
cb349ca9 479 rcu_eqs_enter_common(rdtp, oldval, true);
9b2e4f18
PM
480 local_irq_restore(flags);
481}
482
483/*
adf5091e 484 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
485 *
486 * If the new value of the ->dynticks_nesting counter was previously zero,
487 * we really have exited idle, and must do the appropriate accounting.
488 * The caller must have disabled interrupts.
489 */
adf5091e
FW
490static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
491 int user)
9b2e4f18 492{
23b5c8fa
PM
493 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
494 atomic_inc(&rdtp->dynticks);
495 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
496 smp_mb__after_atomic_inc(); /* See above. */
497 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 498 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 499 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 500 if (!user && !is_idle_task(current)) {
0989cb46
PM
501 struct task_struct *idle = idle_task(smp_processor_id());
502
f7f7bac9 503 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 504 oldval, rdtp->dynticks_nesting);
bf1304e9 505 ftrace_dump(DUMP_ORIG);
0989cb46
PM
506 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
507 current->pid, current->comm,
508 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
509 }
510}
511
adf5091e
FW
512/*
513 * Exit an RCU extended quiescent state, which can be either the
514 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 515 */
adf5091e 516static void rcu_eqs_exit(bool user)
9b2e4f18 517{
9b2e4f18
PM
518 struct rcu_dynticks *rdtp;
519 long long oldval;
520
9b2e4f18
PM
521 rdtp = &__get_cpu_var(rcu_dynticks);
522 oldval = rdtp->dynticks_nesting;
29e37d81
PM
523 WARN_ON_ONCE(oldval < 0);
524 if (oldval & DYNTICK_TASK_NEST_MASK)
525 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
526 else
527 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 528 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 529}
adf5091e
FW
530
531/**
532 * rcu_idle_exit - inform RCU that current CPU is leaving idle
533 *
534 * Exit idle mode, in other words, -enter- the mode in which RCU
535 * read-side critical sections can occur.
536 *
537 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
538 * allow for the possibility of usermode upcalls messing up our count
539 * of interrupt nesting level during the busy period that is just
540 * now starting.
541 */
542void rcu_idle_exit(void)
543{
c5d900bf
FW
544 unsigned long flags;
545
546 local_irq_save(flags);
cb349ca9 547 rcu_eqs_exit(false);
c5d900bf 548 local_irq_restore(flags);
adf5091e 549}
8a2ecf47 550EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 551
2b1d5024 552#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
553/**
554 * rcu_user_exit - inform RCU that we are exiting userspace.
555 *
556 * Exit RCU idle mode while entering the kernel because it can
557 * run a RCU read side critical section anytime.
558 */
559void rcu_user_exit(void)
560{
91d1aa43 561 rcu_eqs_exit(1);
adf5091e 562}
2b1d5024 563#endif /* CONFIG_RCU_USER_QS */
19dd1591 564
9b2e4f18
PM
565/**
566 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
567 *
568 * Enter an interrupt handler, which might possibly result in exiting
569 * idle mode, in other words, entering the mode in which read-side critical
570 * sections can occur.
571 *
572 * Note that the Linux kernel is fully capable of entering an interrupt
573 * handler that it never exits, for example when doing upcalls to
574 * user mode! This code assumes that the idle loop never does upcalls to
575 * user mode. If your architecture does do upcalls from the idle loop (or
576 * does anything else that results in unbalanced calls to the irq_enter()
577 * and irq_exit() functions), RCU will give you what you deserve, good
578 * and hard. But very infrequently and irreproducibly.
579 *
580 * Use things like work queues to work around this limitation.
581 *
582 * You have been warned.
583 */
584void rcu_irq_enter(void)
585{
586 unsigned long flags;
587 struct rcu_dynticks *rdtp;
588 long long oldval;
589
590 local_irq_save(flags);
591 rdtp = &__get_cpu_var(rcu_dynticks);
592 oldval = rdtp->dynticks_nesting;
593 rdtp->dynticks_nesting++;
594 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 595 if (oldval)
f7f7bac9 596 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 597 else
cb349ca9 598 rcu_eqs_exit_common(rdtp, oldval, true);
64db4cff 599 local_irq_restore(flags);
64db4cff
PM
600}
601
602/**
603 * rcu_nmi_enter - inform RCU of entry to NMI context
604 *
605 * If the CPU was idle with dynamic ticks active, and there is no
606 * irq handler running, this updates rdtp->dynticks_nmi to let the
607 * RCU grace-period handling know that the CPU is active.
608 */
609void rcu_nmi_enter(void)
610{
611 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
612
23b5c8fa
PM
613 if (rdtp->dynticks_nmi_nesting == 0 &&
614 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 615 return;
23b5c8fa
PM
616 rdtp->dynticks_nmi_nesting++;
617 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
618 atomic_inc(&rdtp->dynticks);
619 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
620 smp_mb__after_atomic_inc(); /* See above. */
621 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
622}
623
624/**
625 * rcu_nmi_exit - inform RCU of exit from NMI context
626 *
627 * If the CPU was idle with dynamic ticks active, and there is no
628 * irq handler running, this updates rdtp->dynticks_nmi to let the
629 * RCU grace-period handling know that the CPU is no longer active.
630 */
631void rcu_nmi_exit(void)
632{
633 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
634
23b5c8fa
PM
635 if (rdtp->dynticks_nmi_nesting == 0 ||
636 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 637 return;
23b5c8fa
PM
638 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
639 smp_mb__before_atomic_inc(); /* See above. */
640 atomic_inc(&rdtp->dynticks);
641 smp_mb__after_atomic_inc(); /* Force delay to next write. */
642 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
643}
644
645/**
9b2e4f18 646 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 647 *
9b2e4f18 648 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 649 * or NMI handler, return true.
64db4cff 650 */
9b2e4f18 651int rcu_is_cpu_idle(void)
64db4cff 652{
34240697
PM
653 int ret;
654
655 preempt_disable();
656 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
657 preempt_enable();
658 return ret;
64db4cff 659}
e6b80a3b 660EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 661
62fde6ed 662#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
663
664/*
665 * Is the current CPU online? Disable preemption to avoid false positives
666 * that could otherwise happen due to the current CPU number being sampled,
667 * this task being preempted, its old CPU being taken offline, resuming
668 * on some other CPU, then determining that its old CPU is now offline.
669 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
670 * the check for rcu_scheduler_fully_active. Note also that it is OK
671 * for a CPU coming online to use RCU for one jiffy prior to marking itself
672 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
673 * offline to continue to use RCU for one jiffy after marking itself
674 * offline in the cpu_online_mask. This leniency is necessary given the
675 * non-atomic nature of the online and offline processing, for example,
676 * the fact that a CPU enters the scheduler after completing the CPU_DYING
677 * notifiers.
678 *
679 * This is also why RCU internally marks CPUs online during the
680 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
681 *
682 * Disable checking if in an NMI handler because we cannot safely report
683 * errors from NMI handlers anyway.
684 */
685bool rcu_lockdep_current_cpu_online(void)
686{
2036d94a
PM
687 struct rcu_data *rdp;
688 struct rcu_node *rnp;
c0d6d01b
PM
689 bool ret;
690
691 if (in_nmi())
692 return 1;
693 preempt_disable();
2036d94a
PM
694 rdp = &__get_cpu_var(rcu_sched_data);
695 rnp = rdp->mynode;
696 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
697 !rcu_scheduler_fully_active;
698 preempt_enable();
699 return ret;
700}
701EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
702
62fde6ed 703#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 704
64db4cff 705/**
9b2e4f18 706 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 707 *
9b2e4f18
PM
708 * If the current CPU is idle or running at a first-level (not nested)
709 * interrupt from idle, return true. The caller must have at least
710 * disabled preemption.
64db4cff 711 */
62e3cb14 712static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 713{
9b2e4f18 714 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
715}
716
64db4cff
PM
717/*
718 * Snapshot the specified CPU's dynticks counter so that we can later
719 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 720 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
721 */
722static int dyntick_save_progress_counter(struct rcu_data *rdp)
723{
23b5c8fa 724 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 725 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
726}
727
728/*
729 * Return true if the specified CPU has passed through a quiescent
730 * state by virtue of being in or having passed through an dynticks
731 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 732 * for this same CPU, or by virtue of having been offline.
64db4cff
PM
733 */
734static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
735{
7eb4f455
PM
736 unsigned int curr;
737 unsigned int snap;
64db4cff 738
7eb4f455
PM
739 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
740 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
741
742 /*
743 * If the CPU passed through or entered a dynticks idle phase with
744 * no active irq/NMI handlers, then we can safely pretend that the CPU
745 * already acknowledged the request to pass through a quiescent
746 * state. Either way, that CPU cannot possibly be in an RCU
747 * read-side critical section that started before the beginning
748 * of the current RCU grace period.
749 */
7eb4f455 750 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 751 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
752 rdp->dynticks_fqs++;
753 return 1;
754 }
755
a82dcc76
PM
756 /*
757 * Check for the CPU being offline, but only if the grace period
758 * is old enough. We don't need to worry about the CPU changing
759 * state: If we see it offline even once, it has been through a
760 * quiescent state.
761 *
762 * The reason for insisting that the grace period be at least
763 * one jiffy old is that CPUs that are not quite online and that
764 * have just gone offline can still execute RCU read-side critical
765 * sections.
766 */
767 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
768 return 0; /* Grace period is not old enough. */
769 barrier();
770 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 771 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
772 rdp->offline_fqs++;
773 return 1;
774 }
65d798f0
PM
775
776 /*
777 * There is a possibility that a CPU in adaptive-ticks state
778 * might run in the kernel with the scheduling-clock tick disabled
779 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
780 * force the CPU to restart the scheduling-clock tick in this
781 * CPU is in this state.
782 */
783 rcu_kick_nohz_cpu(rdp->cpu);
784
a82dcc76 785 return 0;
64db4cff
PM
786}
787
64db4cff
PM
788static void record_gp_stall_check_time(struct rcu_state *rsp)
789{
790 rsp->gp_start = jiffies;
6bfc09e2 791 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
64db4cff
PM
792}
793
b637a328
PM
794/*
795 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
796 * for architectures that do not implement trigger_all_cpu_backtrace().
797 * The NMI-triggered stack traces are more accurate because they are
798 * printed by the target CPU.
799 */
800static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
801{
802 int cpu;
803 unsigned long flags;
804 struct rcu_node *rnp;
805
806 rcu_for_each_leaf_node(rsp, rnp) {
807 raw_spin_lock_irqsave(&rnp->lock, flags);
808 if (rnp->qsmask != 0) {
809 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
810 if (rnp->qsmask & (1UL << cpu))
811 dump_cpu_task(rnp->grplo + cpu);
812 }
813 raw_spin_unlock_irqrestore(&rnp->lock, flags);
814 }
815}
816
64db4cff
PM
817static void print_other_cpu_stall(struct rcu_state *rsp)
818{
819 int cpu;
820 long delta;
821 unsigned long flags;
285fe294 822 int ndetected = 0;
64db4cff 823 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 824 long totqlen = 0;
64db4cff
PM
825
826 /* Only let one CPU complain about others per time interval. */
827
1304afb2 828 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 829 delta = jiffies - rsp->jiffies_stall;
fc2219d4 830 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 831 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
832 return;
833 }
6bfc09e2 834 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 835 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 836
8cdd32a9
PM
837 /*
838 * OK, time to rat on our buddy...
839 * See Documentation/RCU/stallwarn.txt for info on how to debug
840 * RCU CPU stall warnings.
841 */
d7f3e207 842 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 843 rsp->name);
a858af28 844 print_cpu_stall_info_begin();
a0b6c9a7 845 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 846 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 847 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
848 if (rnp->qsmask != 0) {
849 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
850 if (rnp->qsmask & (1UL << cpu)) {
851 print_cpu_stall_info(rsp,
852 rnp->grplo + cpu);
853 ndetected++;
854 }
855 }
3acd9eb3 856 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 857 }
a858af28
PM
858
859 /*
860 * Now rat on any tasks that got kicked up to the root rcu_node
861 * due to CPU offlining.
862 */
863 rnp = rcu_get_root(rsp);
864 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 865 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
866 raw_spin_unlock_irqrestore(&rnp->lock, flags);
867
868 print_cpu_stall_info_end();
53bb857c
PM
869 for_each_possible_cpu(cpu)
870 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
871 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 872 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 873 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 874 if (ndetected == 0)
d7f3e207 875 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 876 else if (!trigger_all_cpu_backtrace())
b637a328 877 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 878
4cdfc175 879 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
880
881 rcu_print_detail_task_stall(rsp);
882
4cdfc175 883 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
884}
885
886static void print_cpu_stall(struct rcu_state *rsp)
887{
53bb857c 888 int cpu;
64db4cff
PM
889 unsigned long flags;
890 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 891 long totqlen = 0;
64db4cff 892
8cdd32a9
PM
893 /*
894 * OK, time to rat on ourselves...
895 * See Documentation/RCU/stallwarn.txt for info on how to debug
896 * RCU CPU stall warnings.
897 */
d7f3e207 898 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
899 print_cpu_stall_info_begin();
900 print_cpu_stall_info(rsp, smp_processor_id());
901 print_cpu_stall_info_end();
53bb857c
PM
902 for_each_possible_cpu(cpu)
903 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
904 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
905 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
906 if (!trigger_all_cpu_backtrace())
907 dump_stack();
c1dc0b9c 908
1304afb2 909 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 910 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 911 rsp->jiffies_stall = jiffies +
6bfc09e2 912 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 913 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 914
64db4cff
PM
915 set_need_resched(); /* kick ourselves to get things going. */
916}
917
918static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
919{
bad6e139
PM
920 unsigned long j;
921 unsigned long js;
64db4cff
PM
922 struct rcu_node *rnp;
923
742734ee 924 if (rcu_cpu_stall_suppress)
c68de209 925 return;
bad6e139
PM
926 j = ACCESS_ONCE(jiffies);
927 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 928 rnp = rdp->mynode;
c96ea7cf
PM
929 if (rcu_gp_in_progress(rsp) &&
930 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
931
932 /* We haven't checked in, so go dump stack. */
933 print_cpu_stall(rsp);
934
bad6e139
PM
935 } else if (rcu_gp_in_progress(rsp) &&
936 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 937
bad6e139 938 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
939 print_other_cpu_stall(rsp);
940 }
941}
942
53d84e00
PM
943/**
944 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
945 *
946 * Set the stall-warning timeout way off into the future, thus preventing
947 * any RCU CPU stall-warning messages from appearing in the current set of
948 * RCU grace periods.
949 *
950 * The caller must disable hard irqs.
951 */
952void rcu_cpu_stall_reset(void)
953{
6ce75a23
PM
954 struct rcu_state *rsp;
955
956 for_each_rcu_flavor(rsp)
957 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
958}
959
3f5d3ea6
PM
960/*
961 * Initialize the specified rcu_data structure's callback list to empty.
962 */
963static void init_callback_list(struct rcu_data *rdp)
964{
965 int i;
966
34ed6246
PM
967 if (init_nocb_callback_list(rdp))
968 return;
3f5d3ea6
PM
969 rdp->nxtlist = NULL;
970 for (i = 0; i < RCU_NEXT_SIZE; i++)
971 rdp->nxttail[i] = &rdp->nxtlist;
972}
973
dc35c893
PM
974/*
975 * Determine the value that ->completed will have at the end of the
976 * next subsequent grace period. This is used to tag callbacks so that
977 * a CPU can invoke callbacks in a timely fashion even if that CPU has
978 * been dyntick-idle for an extended period with callbacks under the
979 * influence of RCU_FAST_NO_HZ.
980 *
981 * The caller must hold rnp->lock with interrupts disabled.
982 */
983static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
984 struct rcu_node *rnp)
985{
986 /*
987 * If RCU is idle, we just wait for the next grace period.
988 * But we can only be sure that RCU is idle if we are looking
989 * at the root rcu_node structure -- otherwise, a new grace
990 * period might have started, but just not yet gotten around
991 * to initializing the current non-root rcu_node structure.
992 */
993 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
994 return rnp->completed + 1;
995
996 /*
997 * Otherwise, wait for a possible partial grace period and
998 * then the subsequent full grace period.
999 */
1000 return rnp->completed + 2;
1001}
1002
0446be48
PM
1003/*
1004 * Trace-event helper function for rcu_start_future_gp() and
1005 * rcu_nocb_wait_gp().
1006 */
1007static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1008 unsigned long c, const char *s)
0446be48
PM
1009{
1010 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1011 rnp->completed, c, rnp->level,
1012 rnp->grplo, rnp->grphi, s);
1013}
1014
1015/*
1016 * Start some future grace period, as needed to handle newly arrived
1017 * callbacks. The required future grace periods are recorded in each
1018 * rcu_node structure's ->need_future_gp field.
1019 *
1020 * The caller must hold the specified rcu_node structure's ->lock.
1021 */
1022static unsigned long __maybe_unused
1023rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1024{
1025 unsigned long c;
1026 int i;
1027 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1028
1029 /*
1030 * Pick up grace-period number for new callbacks. If this
1031 * grace period is already marked as needed, return to the caller.
1032 */
1033 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1034 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1035 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1036 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1037 return c;
1038 }
1039
1040 /*
1041 * If either this rcu_node structure or the root rcu_node structure
1042 * believe that a grace period is in progress, then we must wait
1043 * for the one following, which is in "c". Because our request
1044 * will be noticed at the end of the current grace period, we don't
1045 * need to explicitly start one.
1046 */
1047 if (rnp->gpnum != rnp->completed ||
1048 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1049 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1050 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1051 return c;
1052 }
1053
1054 /*
1055 * There might be no grace period in progress. If we don't already
1056 * hold it, acquire the root rcu_node structure's lock in order to
1057 * start one (if needed).
1058 */
1059 if (rnp != rnp_root)
1060 raw_spin_lock(&rnp_root->lock);
1061
1062 /*
1063 * Get a new grace-period number. If there really is no grace
1064 * period in progress, it will be smaller than the one we obtained
1065 * earlier. Adjust callbacks as needed. Note that even no-CBs
1066 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1067 */
1068 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1069 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1070 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1071 rdp->nxtcompleted[i] = c;
1072
1073 /*
1074 * If the needed for the required grace period is already
1075 * recorded, trace and leave.
1076 */
1077 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1078 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1079 goto unlock_out;
1080 }
1081
1082 /* Record the need for the future grace period. */
1083 rnp_root->need_future_gp[c & 0x1]++;
1084
1085 /* If a grace period is not already in progress, start one. */
1086 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1087 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1088 } else {
f7f7bac9 1089 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1090 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1091 }
1092unlock_out:
1093 if (rnp != rnp_root)
1094 raw_spin_unlock(&rnp_root->lock);
1095 return c;
1096}
1097
1098/*
1099 * Clean up any old requests for the just-ended grace period. Also return
1100 * whether any additional grace periods have been requested. Also invoke
1101 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1102 * waiting for this grace period to complete.
1103 */
1104static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1105{
1106 int c = rnp->completed;
1107 int needmore;
1108 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1109
1110 rcu_nocb_gp_cleanup(rsp, rnp);
1111 rnp->need_future_gp[c & 0x1] = 0;
1112 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1113 trace_rcu_future_gp(rnp, rdp, c,
1114 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1115 return needmore;
1116}
1117
dc35c893
PM
1118/*
1119 * If there is room, assign a ->completed number to any callbacks on
1120 * this CPU that have not already been assigned. Also accelerate any
1121 * callbacks that were previously assigned a ->completed number that has
1122 * since proven to be too conservative, which can happen if callbacks get
1123 * assigned a ->completed number while RCU is idle, but with reference to
1124 * a non-root rcu_node structure. This function is idempotent, so it does
1125 * not hurt to call it repeatedly.
1126 *
1127 * The caller must hold rnp->lock with interrupts disabled.
1128 */
1129static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1130 struct rcu_data *rdp)
1131{
1132 unsigned long c;
1133 int i;
1134
1135 /* If the CPU has no callbacks, nothing to do. */
1136 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1137 return;
1138
1139 /*
1140 * Starting from the sublist containing the callbacks most
1141 * recently assigned a ->completed number and working down, find the
1142 * first sublist that is not assignable to an upcoming grace period.
1143 * Such a sublist has something in it (first two tests) and has
1144 * a ->completed number assigned that will complete sooner than
1145 * the ->completed number for newly arrived callbacks (last test).
1146 *
1147 * The key point is that any later sublist can be assigned the
1148 * same ->completed number as the newly arrived callbacks, which
1149 * means that the callbacks in any of these later sublist can be
1150 * grouped into a single sublist, whether or not they have already
1151 * been assigned a ->completed number.
1152 */
1153 c = rcu_cbs_completed(rsp, rnp);
1154 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1155 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1156 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1157 break;
1158
1159 /*
1160 * If there are no sublist for unassigned callbacks, leave.
1161 * At the same time, advance "i" one sublist, so that "i" will
1162 * index into the sublist where all the remaining callbacks should
1163 * be grouped into.
1164 */
1165 if (++i >= RCU_NEXT_TAIL)
1166 return;
1167
1168 /*
1169 * Assign all subsequent callbacks' ->completed number to the next
1170 * full grace period and group them all in the sublist initially
1171 * indexed by "i".
1172 */
1173 for (; i <= RCU_NEXT_TAIL; i++) {
1174 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1175 rdp->nxtcompleted[i] = c;
1176 }
910ee45d
PM
1177 /* Record any needed additional grace periods. */
1178 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1179
1180 /* Trace depending on how much we were able to accelerate. */
1181 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1182 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1183 else
f7f7bac9 1184 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1185}
1186
1187/*
1188 * Move any callbacks whose grace period has completed to the
1189 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1190 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1191 * sublist. This function is idempotent, so it does not hurt to
1192 * invoke it repeatedly. As long as it is not invoked -too- often...
1193 *
1194 * The caller must hold rnp->lock with interrupts disabled.
1195 */
1196static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1197 struct rcu_data *rdp)
1198{
1199 int i, j;
1200
1201 /* If the CPU has no callbacks, nothing to do. */
1202 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1203 return;
1204
1205 /*
1206 * Find all callbacks whose ->completed numbers indicate that they
1207 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1208 */
1209 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1210 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1211 break;
1212 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1213 }
1214 /* Clean up any sublist tail pointers that were misordered above. */
1215 for (j = RCU_WAIT_TAIL; j < i; j++)
1216 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1217
1218 /* Copy down callbacks to fill in empty sublists. */
1219 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1220 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1221 break;
1222 rdp->nxttail[j] = rdp->nxttail[i];
1223 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1224 }
1225
1226 /* Classify any remaining callbacks. */
1227 rcu_accelerate_cbs(rsp, rnp, rdp);
1228}
1229
d09b62df 1230/*
ba9fbe95
PM
1231 * Update CPU-local rcu_data state to record the beginnings and ends of
1232 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1233 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1234 */
ba9fbe95 1235static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1236{
ba9fbe95 1237 /* Handle the ends of any preceding grace periods first. */
dc35c893 1238 if (rdp->completed == rnp->completed) {
d09b62df 1239
ba9fbe95 1240 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1241 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1242
dc35c893
PM
1243 } else {
1244
1245 /* Advance callbacks. */
1246 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1247
1248 /* Remember that we saw this grace-period completion. */
1249 rdp->completed = rnp->completed;
f7f7bac9 1250 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1251 }
398ebe60 1252
6eaef633
PM
1253 if (rdp->gpnum != rnp->gpnum) {
1254 /*
1255 * If the current grace period is waiting for this CPU,
1256 * set up to detect a quiescent state, otherwise don't
1257 * go looking for one.
1258 */
1259 rdp->gpnum = rnp->gpnum;
f7f7bac9 1260 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1261 rdp->passed_quiesce = 0;
1262 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1263 zero_cpu_stall_ticks(rdp);
1264 }
1265}
1266
d34ea322 1267static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1268{
1269 unsigned long flags;
1270 struct rcu_node *rnp;
1271
1272 local_irq_save(flags);
1273 rnp = rdp->mynode;
d34ea322
PM
1274 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1275 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1276 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1277 local_irq_restore(flags);
1278 return;
1279 }
d34ea322 1280 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1281 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1282}
1283
b3dbec76 1284/*
7fdefc10 1285 * Initialize a new grace period.
b3dbec76 1286 */
7fdefc10 1287static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1288{
1289 struct rcu_data *rdp;
7fdefc10 1290 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1291
7fdefc10 1292 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1293 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1294
7fdefc10
PM
1295 if (rcu_gp_in_progress(rsp)) {
1296 /* Grace period already in progress, don't start another. */
1297 raw_spin_unlock_irq(&rnp->lock);
1298 return 0;
1299 }
1300
7fdefc10
PM
1301 /* Advance to a new grace period and initialize state. */
1302 rsp->gpnum++;
f7f7bac9 1303 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1304 record_gp_stall_check_time(rsp);
1305 raw_spin_unlock_irq(&rnp->lock);
1306
1307 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1308 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1309
1310 /*
1311 * Set the quiescent-state-needed bits in all the rcu_node
1312 * structures for all currently online CPUs in breadth-first order,
1313 * starting from the root rcu_node structure, relying on the layout
1314 * of the tree within the rsp->node[] array. Note that other CPUs
1315 * will access only the leaves of the hierarchy, thus seeing that no
1316 * grace period is in progress, at least until the corresponding
1317 * leaf node has been initialized. In addition, we have excluded
1318 * CPU-hotplug operations.
1319 *
1320 * The grace period cannot complete until the initialization
1321 * process finishes, because this kthread handles both.
1322 */
1323 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1324 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1325 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1326 rcu_preempt_check_blocked_tasks(rnp);
1327 rnp->qsmask = rnp->qsmaskinit;
0446be48 1328 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1329 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1330 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1331 if (rnp == rdp->mynode)
ce3d9c03 1332 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1333 rcu_preempt_boost_start_gp(rnp);
1334 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1335 rnp->level, rnp->grplo,
1336 rnp->grphi, rnp->qsmask);
1337 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1338#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1339 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1340 system_state == SYSTEM_RUNNING)
971394f3 1341 udelay(200);
661a85dc 1342#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1343 cond_resched();
1344 }
b3dbec76 1345
a4fbe35a 1346 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1347 return 1;
1348}
b3dbec76 1349
4cdfc175
PM
1350/*
1351 * Do one round of quiescent-state forcing.
1352 */
1353int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1354{
1355 int fqs_state = fqs_state_in;
1356 struct rcu_node *rnp = rcu_get_root(rsp);
1357
1358 rsp->n_force_qs++;
1359 if (fqs_state == RCU_SAVE_DYNTICK) {
1360 /* Collect dyntick-idle snapshots. */
1361 force_qs_rnp(rsp, dyntick_save_progress_counter);
1362 fqs_state = RCU_FORCE_QS;
1363 } else {
1364 /* Handle dyntick-idle and offline CPUs. */
1365 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1366 }
1367 /* Clear flag to prevent immediate re-entry. */
1368 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1369 raw_spin_lock_irq(&rnp->lock);
1370 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1371 raw_spin_unlock_irq(&rnp->lock);
1372 }
1373 return fqs_state;
1374}
1375
7fdefc10
PM
1376/*
1377 * Clean up after the old grace period.
1378 */
4cdfc175 1379static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1380{
1381 unsigned long gp_duration;
dae6e64d 1382 int nocb = 0;
7fdefc10
PM
1383 struct rcu_data *rdp;
1384 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1385
7fdefc10
PM
1386 raw_spin_lock_irq(&rnp->lock);
1387 gp_duration = jiffies - rsp->gp_start;
1388 if (gp_duration > rsp->gp_max)
1389 rsp->gp_max = gp_duration;
b3dbec76 1390
7fdefc10
PM
1391 /*
1392 * We know the grace period is complete, but to everyone else
1393 * it appears to still be ongoing. But it is also the case
1394 * that to everyone else it looks like there is nothing that
1395 * they can do to advance the grace period. It is therefore
1396 * safe for us to drop the lock in order to mark the grace
1397 * period as completed in all of the rcu_node structures.
7fdefc10 1398 */
5d4b8659 1399 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1400
5d4b8659
PM
1401 /*
1402 * Propagate new ->completed value to rcu_node structures so
1403 * that other CPUs don't have to wait until the start of the next
1404 * grace period to process their callbacks. This also avoids
1405 * some nasty RCU grace-period initialization races by forcing
1406 * the end of the current grace period to be completely recorded in
1407 * all of the rcu_node structures before the beginning of the next
1408 * grace period is recorded in any of the rcu_node structures.
1409 */
1410 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1411 raw_spin_lock_irq(&rnp->lock);
0446be48 1412 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1413 rdp = this_cpu_ptr(rsp->rda);
1414 if (rnp == rdp->mynode)
470716fc 1415 __note_gp_changes(rsp, rnp, rdp);
0446be48 1416 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1417 raw_spin_unlock_irq(&rnp->lock);
1418 cond_resched();
7fdefc10 1419 }
5d4b8659
PM
1420 rnp = rcu_get_root(rsp);
1421 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1422 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1423
1424 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1425 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1426 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1427 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1428 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
7fdefc10
PM
1429 if (cpu_needs_another_gp(rsp, rdp))
1430 rsp->gp_flags = 1;
1431 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1432}
1433
1434/*
1435 * Body of kthread that handles grace periods.
1436 */
1437static int __noreturn rcu_gp_kthread(void *arg)
1438{
4cdfc175 1439 int fqs_state;
d40011f6 1440 unsigned long j;
4cdfc175 1441 int ret;
7fdefc10
PM
1442 struct rcu_state *rsp = arg;
1443 struct rcu_node *rnp = rcu_get_root(rsp);
1444
1445 for (;;) {
1446
1447 /* Handle grace-period start. */
1448 for (;;) {
4cdfc175
PM
1449 wait_event_interruptible(rsp->gp_wq,
1450 rsp->gp_flags &
1451 RCU_GP_FLAG_INIT);
1452 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1453 rcu_gp_init(rsp))
7fdefc10
PM
1454 break;
1455 cond_resched();
1456 flush_signals(current);
1457 }
cabc49c1 1458
4cdfc175
PM
1459 /* Handle quiescent-state forcing. */
1460 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1461 j = jiffies_till_first_fqs;
1462 if (j > HZ) {
1463 j = HZ;
1464 jiffies_till_first_fqs = HZ;
1465 }
cabc49c1 1466 for (;;) {
d40011f6 1467 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1468 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1469 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1470 (!ACCESS_ONCE(rnp->qsmask) &&
1471 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1472 j);
4cdfc175 1473 /* If grace period done, leave loop. */
cabc49c1 1474 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1475 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1476 break;
4cdfc175
PM
1477 /* If time for quiescent-state forcing, do it. */
1478 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1479 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1480 cond_resched();
1481 } else {
1482 /* Deal with stray signal. */
1483 cond_resched();
1484 flush_signals(current);
1485 }
d40011f6
PM
1486 j = jiffies_till_next_fqs;
1487 if (j > HZ) {
1488 j = HZ;
1489 jiffies_till_next_fqs = HZ;
1490 } else if (j < 1) {
1491 j = 1;
1492 jiffies_till_next_fqs = 1;
1493 }
cabc49c1 1494 }
4cdfc175
PM
1495
1496 /* Handle grace-period end. */
1497 rcu_gp_cleanup(rsp);
b3dbec76 1498 }
b3dbec76
PM
1499}
1500
016a8d5b
SR
1501static void rsp_wakeup(struct irq_work *work)
1502{
1503 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1504
1505 /* Wake up rcu_gp_kthread() to start the grace period. */
1506 wake_up(&rsp->gp_wq);
1507}
1508
64db4cff
PM
1509/*
1510 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1511 * in preparation for detecting the next grace period. The caller must hold
b8462084 1512 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1513 *
1514 * Note that it is legal for a dying CPU (which is marked as offline) to
1515 * invoke this function. This can happen when the dying CPU reports its
1516 * quiescent state.
64db4cff
PM
1517 */
1518static void
910ee45d
PM
1519rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1520 struct rcu_data *rdp)
64db4cff 1521{
b8462084 1522 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1523 /*
b3dbec76 1524 * Either we have not yet spawned the grace-period
62da1921
PM
1525 * task, this CPU does not need another grace period,
1526 * or a grace period is already in progress.
b3dbec76 1527 * Either way, don't start a new grace period.
afe24b12 1528 */
afe24b12
PM
1529 return;
1530 }
4cdfc175 1531 rsp->gp_flags = RCU_GP_FLAG_INIT;
62da1921 1532
016a8d5b
SR
1533 /*
1534 * We can't do wakeups while holding the rnp->lock, as that
1535 * could cause possible deadlocks with the rq->lock. Deter
1536 * the wakeup to interrupt context.
1537 */
1538 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1539}
1540
910ee45d
PM
1541/*
1542 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1543 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1544 * is invoked indirectly from rcu_advance_cbs(), which would result in
1545 * endless recursion -- or would do so if it wasn't for the self-deadlock
1546 * that is encountered beforehand.
1547 */
1548static void
1549rcu_start_gp(struct rcu_state *rsp)
1550{
1551 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1552 struct rcu_node *rnp = rcu_get_root(rsp);
1553
1554 /*
1555 * If there is no grace period in progress right now, any
1556 * callbacks we have up to this point will be satisfied by the
1557 * next grace period. Also, advancing the callbacks reduces the
1558 * probability of false positives from cpu_needs_another_gp()
1559 * resulting in pointless grace periods. So, advance callbacks
1560 * then start the grace period!
1561 */
1562 rcu_advance_cbs(rsp, rnp, rdp);
1563 rcu_start_gp_advanced(rsp, rnp, rdp);
1564}
1565
f41d911f 1566/*
d3f6bad3
PM
1567 * Report a full set of quiescent states to the specified rcu_state
1568 * data structure. This involves cleaning up after the prior grace
1569 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1570 * if one is needed. Note that the caller must hold rnp->lock, which
1571 * is released before return.
f41d911f 1572 */
d3f6bad3 1573static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1574 __releases(rcu_get_root(rsp)->lock)
f41d911f 1575{
fc2219d4 1576 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1577 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1578 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1579}
1580
64db4cff 1581/*
d3f6bad3
PM
1582 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1583 * Allows quiescent states for a group of CPUs to be reported at one go
1584 * to the specified rcu_node structure, though all the CPUs in the group
1585 * must be represented by the same rcu_node structure (which need not be
1586 * a leaf rcu_node structure, though it often will be). That structure's
1587 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1588 */
1589static void
d3f6bad3
PM
1590rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1591 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1592 __releases(rnp->lock)
1593{
28ecd580
PM
1594 struct rcu_node *rnp_c;
1595
64db4cff
PM
1596 /* Walk up the rcu_node hierarchy. */
1597 for (;;) {
1598 if (!(rnp->qsmask & mask)) {
1599
1600 /* Our bit has already been cleared, so done. */
1304afb2 1601 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1602 return;
1603 }
1604 rnp->qsmask &= ~mask;
d4c08f2a
PM
1605 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1606 mask, rnp->qsmask, rnp->level,
1607 rnp->grplo, rnp->grphi,
1608 !!rnp->gp_tasks);
27f4d280 1609 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1610
1611 /* Other bits still set at this level, so done. */
1304afb2 1612 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1613 return;
1614 }
1615 mask = rnp->grpmask;
1616 if (rnp->parent == NULL) {
1617
1618 /* No more levels. Exit loop holding root lock. */
1619
1620 break;
1621 }
1304afb2 1622 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1623 rnp_c = rnp;
64db4cff 1624 rnp = rnp->parent;
1304afb2 1625 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1626 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1627 }
1628
1629 /*
1630 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1631 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1632 * to clean up and start the next grace period if one is needed.
64db4cff 1633 */
d3f6bad3 1634 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1635}
1636
1637/*
d3f6bad3
PM
1638 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1639 * structure. This must be either called from the specified CPU, or
1640 * called when the specified CPU is known to be offline (and when it is
1641 * also known that no other CPU is concurrently trying to help the offline
1642 * CPU). The lastcomp argument is used to make sure we are still in the
1643 * grace period of interest. We don't want to end the current grace period
1644 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1645 */
1646static void
d7d6a11e 1647rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1648{
1649 unsigned long flags;
1650 unsigned long mask;
1651 struct rcu_node *rnp;
1652
1653 rnp = rdp->mynode;
1304afb2 1654 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1655 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1656 rnp->completed == rnp->gpnum) {
64db4cff
PM
1657
1658 /*
e4cc1f22
PM
1659 * The grace period in which this quiescent state was
1660 * recorded has ended, so don't report it upwards.
1661 * We will instead need a new quiescent state that lies
1662 * within the current grace period.
64db4cff 1663 */
e4cc1f22 1664 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1665 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1666 return;
1667 }
1668 mask = rdp->grpmask;
1669 if ((rnp->qsmask & mask) == 0) {
1304afb2 1670 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1671 } else {
1672 rdp->qs_pending = 0;
1673
1674 /*
1675 * This GP can't end until cpu checks in, so all of our
1676 * callbacks can be processed during the next GP.
1677 */
dc35c893 1678 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1679
d3f6bad3 1680 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1681 }
1682}
1683
1684/*
1685 * Check to see if there is a new grace period of which this CPU
1686 * is not yet aware, and if so, set up local rcu_data state for it.
1687 * Otherwise, see if this CPU has just passed through its first
1688 * quiescent state for this grace period, and record that fact if so.
1689 */
1690static void
1691rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1692{
05eb552b
PM
1693 /* Check for grace-period ends and beginnings. */
1694 note_gp_changes(rsp, rdp);
64db4cff
PM
1695
1696 /*
1697 * Does this CPU still need to do its part for current grace period?
1698 * If no, return and let the other CPUs do their part as well.
1699 */
1700 if (!rdp->qs_pending)
1701 return;
1702
1703 /*
1704 * Was there a quiescent state since the beginning of the grace
1705 * period? If no, then exit and wait for the next call.
1706 */
e4cc1f22 1707 if (!rdp->passed_quiesce)
64db4cff
PM
1708 return;
1709
d3f6bad3
PM
1710 /*
1711 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1712 * judge of that).
1713 */
d7d6a11e 1714 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1715}
1716
1717#ifdef CONFIG_HOTPLUG_CPU
1718
e74f4c45 1719/*
b1420f1c
PM
1720 * Send the specified CPU's RCU callbacks to the orphanage. The
1721 * specified CPU must be offline, and the caller must hold the
7b2e6011 1722 * ->orphan_lock.
e74f4c45 1723 */
b1420f1c
PM
1724static void
1725rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1726 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1727{
3fbfbf7a 1728 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1729 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1730 return;
1731
b1420f1c
PM
1732 /*
1733 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1734 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1735 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1736 */
a50c3af9 1737 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1738 rsp->qlen_lazy += rdp->qlen_lazy;
1739 rsp->qlen += rdp->qlen;
1740 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1741 rdp->qlen_lazy = 0;
1d1fb395 1742 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1743 }
1744
1745 /*
b1420f1c
PM
1746 * Next, move those callbacks still needing a grace period to
1747 * the orphanage, where some other CPU will pick them up.
1748 * Some of the callbacks might have gone partway through a grace
1749 * period, but that is too bad. They get to start over because we
1750 * cannot assume that grace periods are synchronized across CPUs.
1751 * We don't bother updating the ->nxttail[] array yet, instead
1752 * we just reset the whole thing later on.
a50c3af9 1753 */
b1420f1c
PM
1754 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1755 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1756 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1757 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1758 }
1759
1760 /*
b1420f1c
PM
1761 * Then move the ready-to-invoke callbacks to the orphanage,
1762 * where some other CPU will pick them up. These will not be
1763 * required to pass though another grace period: They are done.
a50c3af9 1764 */
e5601400 1765 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1766 *rsp->orphan_donetail = rdp->nxtlist;
1767 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1768 }
e74f4c45 1769
b1420f1c 1770 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1771 init_callback_list(rdp);
b1420f1c
PM
1772}
1773
1774/*
1775 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1776 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c
PM
1777 */
1778static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1779{
1780 int i;
1781 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1782
3fbfbf7a
PM
1783 /* No-CBs CPUs are handled specially. */
1784 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1785 return;
1786
b1420f1c
PM
1787 /* Do the accounting first. */
1788 rdp->qlen_lazy += rsp->qlen_lazy;
1789 rdp->qlen += rsp->qlen;
1790 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1791 if (rsp->qlen_lazy != rsp->qlen)
1792 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1793 rsp->qlen_lazy = 0;
1794 rsp->qlen = 0;
1795
1796 /*
1797 * We do not need a memory barrier here because the only way we
1798 * can get here if there is an rcu_barrier() in flight is if
1799 * we are the task doing the rcu_barrier().
1800 */
1801
1802 /* First adopt the ready-to-invoke callbacks. */
1803 if (rsp->orphan_donelist != NULL) {
1804 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1805 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1806 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1807 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1808 rdp->nxttail[i] = rsp->orphan_donetail;
1809 rsp->orphan_donelist = NULL;
1810 rsp->orphan_donetail = &rsp->orphan_donelist;
1811 }
1812
1813 /* And then adopt the callbacks that still need a grace period. */
1814 if (rsp->orphan_nxtlist != NULL) {
1815 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1816 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1817 rsp->orphan_nxtlist = NULL;
1818 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1819 }
1820}
1821
1822/*
1823 * Trace the fact that this CPU is going offline.
1824 */
1825static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1826{
1827 RCU_TRACE(unsigned long mask);
1828 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1829 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1830
1831 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1832 trace_rcu_grace_period(rsp->name,
1833 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1834 TPS("cpuofl"));
64db4cff
PM
1835}
1836
1837/*
e5601400 1838 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1839 * this fact from process context. Do the remainder of the cleanup,
1840 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1841 * adopting them. There can only be one CPU hotplug operation at a time,
1842 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1843 */
e5601400 1844static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1845{
2036d94a
PM
1846 unsigned long flags;
1847 unsigned long mask;
1848 int need_report = 0;
e5601400 1849 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1850 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1851
2036d94a 1852 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1853 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1854
b1420f1c 1855 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1856
1857 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1858 mutex_lock(&rsp->onoff_mutex);
7b2e6011 1859 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 1860
b1420f1c
PM
1861 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1862 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1863 rcu_adopt_orphan_cbs(rsp);
1864
2036d94a
PM
1865 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1866 mask = rdp->grpmask; /* rnp->grplo is constant. */
1867 do {
1868 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1869 rnp->qsmaskinit &= ~mask;
1870 if (rnp->qsmaskinit != 0) {
1871 if (rnp != rdp->mynode)
1872 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1873 break;
1874 }
1875 if (rnp == rdp->mynode)
1876 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1877 else
1878 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1879 mask = rnp->grpmask;
1880 rnp = rnp->parent;
1881 } while (rnp != NULL);
1882
1883 /*
1884 * We still hold the leaf rcu_node structure lock here, and
1885 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 1886 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
1887 * held leads to deadlock.
1888 */
7b2e6011 1889 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
1890 rnp = rdp->mynode;
1891 if (need_report & RCU_OFL_TASKS_NORM_GP)
1892 rcu_report_unblock_qs_rnp(rnp, flags);
1893 else
1894 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1895 if (need_report & RCU_OFL_TASKS_EXP_GP)
1896 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1897 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1898 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1899 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1900 init_callback_list(rdp);
1901 /* Disallow further callbacks on this CPU. */
1902 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 1903 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
1904}
1905
1906#else /* #ifdef CONFIG_HOTPLUG_CPU */
1907
e5601400 1908static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1909{
1910}
1911
e5601400 1912static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1913{
1914}
1915
1916#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1917
1918/*
1919 * Invoke any RCU callbacks that have made it to the end of their grace
1920 * period. Thottle as specified by rdp->blimit.
1921 */
37c72e56 1922static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1923{
1924 unsigned long flags;
1925 struct rcu_head *next, *list, **tail;
878d7439
ED
1926 long bl, count, count_lazy;
1927 int i;
64db4cff 1928
dc35c893 1929 /* If no callbacks are ready, just return. */
29c00b4a 1930 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1931 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1932 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1933 need_resched(), is_idle_task(current),
1934 rcu_is_callbacks_kthread());
64db4cff 1935 return;
29c00b4a 1936 }
64db4cff
PM
1937
1938 /*
1939 * Extract the list of ready callbacks, disabling to prevent
1940 * races with call_rcu() from interrupt handlers.
1941 */
1942 local_irq_save(flags);
8146c4e2 1943 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1944 bl = rdp->blimit;
486e2593 1945 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1946 list = rdp->nxtlist;
1947 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1948 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1949 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1950 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1951 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1952 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1953 local_irq_restore(flags);
1954
1955 /* Invoke callbacks. */
486e2593 1956 count = count_lazy = 0;
64db4cff
PM
1957 while (list) {
1958 next = list->next;
1959 prefetch(next);
551d55a9 1960 debug_rcu_head_unqueue(list);
486e2593
PM
1961 if (__rcu_reclaim(rsp->name, list))
1962 count_lazy++;
64db4cff 1963 list = next;
dff1672d
PM
1964 /* Stop only if limit reached and CPU has something to do. */
1965 if (++count >= bl &&
1966 (need_resched() ||
1967 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1968 break;
1969 }
1970
1971 local_irq_save(flags);
4968c300
PM
1972 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1973 is_idle_task(current),
1974 rcu_is_callbacks_kthread());
64db4cff
PM
1975
1976 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1977 if (list != NULL) {
1978 *tail = rdp->nxtlist;
1979 rdp->nxtlist = list;
b41772ab
PM
1980 for (i = 0; i < RCU_NEXT_SIZE; i++)
1981 if (&rdp->nxtlist == rdp->nxttail[i])
1982 rdp->nxttail[i] = tail;
64db4cff
PM
1983 else
1984 break;
1985 }
b1420f1c
PM
1986 smp_mb(); /* List handling before counting for rcu_barrier(). */
1987 rdp->qlen_lazy -= count_lazy;
1d1fb395 1988 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1989 rdp->n_cbs_invoked += count;
64db4cff
PM
1990
1991 /* Reinstate batch limit if we have worked down the excess. */
1992 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1993 rdp->blimit = blimit;
1994
37c72e56
PM
1995 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1996 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1997 rdp->qlen_last_fqs_check = 0;
1998 rdp->n_force_qs_snap = rsp->n_force_qs;
1999 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2000 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2001 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2002
64db4cff
PM
2003 local_irq_restore(flags);
2004
e0f23060 2005 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2006 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2007 invoke_rcu_core();
64db4cff
PM
2008}
2009
2010/*
2011 * Check to see if this CPU is in a non-context-switch quiescent state
2012 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2013 * Also schedule RCU core processing.
64db4cff 2014 *
9b2e4f18 2015 * This function must be called from hardirq context. It is normally
64db4cff
PM
2016 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2017 * false, there is no point in invoking rcu_check_callbacks().
2018 */
2019void rcu_check_callbacks(int cpu, int user)
2020{
f7f7bac9 2021 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2022 increment_cpu_stall_ticks();
9b2e4f18 2023 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2024
2025 /*
2026 * Get here if this CPU took its interrupt from user
2027 * mode or from the idle loop, and if this is not a
2028 * nested interrupt. In this case, the CPU is in
d6714c22 2029 * a quiescent state, so note it.
64db4cff
PM
2030 *
2031 * No memory barrier is required here because both
d6714c22
PM
2032 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2033 * variables that other CPUs neither access nor modify,
2034 * at least not while the corresponding CPU is online.
64db4cff
PM
2035 */
2036
d6714c22
PM
2037 rcu_sched_qs(cpu);
2038 rcu_bh_qs(cpu);
64db4cff
PM
2039
2040 } else if (!in_softirq()) {
2041
2042 /*
2043 * Get here if this CPU did not take its interrupt from
2044 * softirq, in other words, if it is not interrupting
2045 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2046 * critical section, so note it.
64db4cff
PM
2047 */
2048
d6714c22 2049 rcu_bh_qs(cpu);
64db4cff 2050 }
f41d911f 2051 rcu_preempt_check_callbacks(cpu);
d21670ac 2052 if (rcu_pending(cpu))
a46e0899 2053 invoke_rcu_core();
f7f7bac9 2054 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2055}
2056
64db4cff
PM
2057/*
2058 * Scan the leaf rcu_node structures, processing dyntick state for any that
2059 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2060 * Also initiate boosting for any threads blocked on the root rcu_node.
2061 *
ee47eb9f 2062 * The caller must have suppressed start of new grace periods.
64db4cff 2063 */
45f014c5 2064static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
2065{
2066 unsigned long bit;
2067 int cpu;
2068 unsigned long flags;
2069 unsigned long mask;
a0b6c9a7 2070 struct rcu_node *rnp;
64db4cff 2071
a0b6c9a7 2072 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2073 cond_resched();
64db4cff 2074 mask = 0;
1304afb2 2075 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2076 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2077 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2078 return;
64db4cff 2079 }
a0b6c9a7 2080 if (rnp->qsmask == 0) {
1217ed1b 2081 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2082 continue;
2083 }
a0b6c9a7 2084 cpu = rnp->grplo;
64db4cff 2085 bit = 1;
a0b6c9a7 2086 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
2087 if ((rnp->qsmask & bit) != 0 &&
2088 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
2089 mask |= bit;
2090 }
45f014c5 2091 if (mask != 0) {
64db4cff 2092
d3f6bad3
PM
2093 /* rcu_report_qs_rnp() releases rnp->lock. */
2094 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2095 continue;
2096 }
1304afb2 2097 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2098 }
27f4d280 2099 rnp = rcu_get_root(rsp);
1217ed1b
PM
2100 if (rnp->qsmask == 0) {
2101 raw_spin_lock_irqsave(&rnp->lock, flags);
2102 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2103 }
64db4cff
PM
2104}
2105
2106/*
2107 * Force quiescent states on reluctant CPUs, and also detect which
2108 * CPUs are in dyntick-idle mode.
2109 */
4cdfc175 2110static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2111{
2112 unsigned long flags;
394f2769
PM
2113 bool ret;
2114 struct rcu_node *rnp;
2115 struct rcu_node *rnp_old = NULL;
2116
2117 /* Funnel through hierarchy to reduce memory contention. */
2118 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2119 for (; rnp != NULL; rnp = rnp->parent) {
2120 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2121 !raw_spin_trylock(&rnp->fqslock);
2122 if (rnp_old != NULL)
2123 raw_spin_unlock(&rnp_old->fqslock);
2124 if (ret) {
2125 rsp->n_force_qs_lh++;
2126 return;
2127 }
2128 rnp_old = rnp;
2129 }
2130 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2131
394f2769
PM
2132 /* Reached the root of the rcu_node tree, acquire lock. */
2133 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2134 raw_spin_unlock(&rnp_old->fqslock);
2135 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2136 rsp->n_force_qs_lh++;
2137 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2138 return; /* Someone beat us to it. */
46a1e34e 2139 }
4cdfc175 2140 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2141 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2142 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2143}
2144
64db4cff 2145/*
e0f23060
PM
2146 * This does the RCU core processing work for the specified rcu_state
2147 * and rcu_data structures. This may be called only from the CPU to
2148 * whom the rdp belongs.
64db4cff
PM
2149 */
2150static void
1bca8cf1 2151__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2152{
2153 unsigned long flags;
1bca8cf1 2154 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2155
2e597558
PM
2156 WARN_ON_ONCE(rdp->beenonline == 0);
2157
64db4cff
PM
2158 /* Update RCU state based on any recent quiescent states. */
2159 rcu_check_quiescent_state(rsp, rdp);
2160
2161 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2162 local_irq_save(flags);
64db4cff 2163 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2164 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2165 rcu_start_gp(rsp);
2166 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2167 } else {
2168 local_irq_restore(flags);
64db4cff
PM
2169 }
2170
2171 /* If there are callbacks ready, invoke them. */
09223371 2172 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2173 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2174}
2175
64db4cff 2176/*
e0f23060 2177 * Do RCU core processing for the current CPU.
64db4cff 2178 */
09223371 2179static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2180{
6ce75a23
PM
2181 struct rcu_state *rsp;
2182
bfa00b4c
PM
2183 if (cpu_is_offline(smp_processor_id()))
2184 return;
f7f7bac9 2185 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2186 for_each_rcu_flavor(rsp)
2187 __rcu_process_callbacks(rsp);
f7f7bac9 2188 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2189}
2190
a26ac245 2191/*
e0f23060
PM
2192 * Schedule RCU callback invocation. If the specified type of RCU
2193 * does not support RCU priority boosting, just do a direct call,
2194 * otherwise wake up the per-CPU kernel kthread. Note that because we
2195 * are running on the current CPU with interrupts disabled, the
2196 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2197 */
a46e0899 2198static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2199{
b0d30417
PM
2200 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2201 return;
a46e0899
PM
2202 if (likely(!rsp->boost)) {
2203 rcu_do_batch(rsp, rdp);
a26ac245
PM
2204 return;
2205 }
a46e0899 2206 invoke_rcu_callbacks_kthread();
a26ac245
PM
2207}
2208
a46e0899 2209static void invoke_rcu_core(void)
09223371 2210{
b0f74036
PM
2211 if (cpu_online(smp_processor_id()))
2212 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2213}
2214
29154c57
PM
2215/*
2216 * Handle any core-RCU processing required by a call_rcu() invocation.
2217 */
2218static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2219 struct rcu_head *head, unsigned long flags)
64db4cff 2220{
62fde6ed
PM
2221 /*
2222 * If called from an extended quiescent state, invoke the RCU
2223 * core in order to force a re-evaluation of RCU's idleness.
2224 */
a16b7a69 2225 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2226 invoke_rcu_core();
2227
a16b7a69 2228 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2229 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2230 return;
64db4cff 2231
37c72e56
PM
2232 /*
2233 * Force the grace period if too many callbacks or too long waiting.
2234 * Enforce hysteresis, and don't invoke force_quiescent_state()
2235 * if some other CPU has recently done so. Also, don't bother
2236 * invoking force_quiescent_state() if the newly enqueued callback
2237 * is the only one waiting for a grace period to complete.
2238 */
2655d57e 2239 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2240
2241 /* Are we ignoring a completed grace period? */
470716fc 2242 note_gp_changes(rsp, rdp);
b52573d2
PM
2243
2244 /* Start a new grace period if one not already started. */
2245 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2246 struct rcu_node *rnp_root = rcu_get_root(rsp);
2247
b8462084
PM
2248 raw_spin_lock(&rnp_root->lock);
2249 rcu_start_gp(rsp);
2250 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2251 } else {
2252 /* Give the grace period a kick. */
2253 rdp->blimit = LONG_MAX;
2254 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2255 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2256 force_quiescent_state(rsp);
b52573d2
PM
2257 rdp->n_force_qs_snap = rsp->n_force_qs;
2258 rdp->qlen_last_fqs_check = rdp->qlen;
2259 }
4cdfc175 2260 }
29154c57
PM
2261}
2262
3fbfbf7a
PM
2263/*
2264 * Helper function for call_rcu() and friends. The cpu argument will
2265 * normally be -1, indicating "currently running CPU". It may specify
2266 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2267 * is expected to specify a CPU.
2268 */
64db4cff
PM
2269static void
2270__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2271 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2272{
2273 unsigned long flags;
2274 struct rcu_data *rdp;
2275
0bb7b59d 2276 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 2277 debug_rcu_head_queue(head);
64db4cff
PM
2278 head->func = func;
2279 head->next = NULL;
2280
64db4cff
PM
2281 /*
2282 * Opportunistically note grace-period endings and beginnings.
2283 * Note that we might see a beginning right after we see an
2284 * end, but never vice versa, since this CPU has to pass through
2285 * a quiescent state betweentimes.
2286 */
2287 local_irq_save(flags);
394f99a9 2288 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2289
2290 /* Add the callback to our list. */
3fbfbf7a
PM
2291 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2292 int offline;
2293
2294 if (cpu != -1)
2295 rdp = per_cpu_ptr(rsp->rda, cpu);
2296 offline = !__call_rcu_nocb(rdp, head, lazy);
2297 WARN_ON_ONCE(offline);
0d8ee37e 2298 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2299 local_irq_restore(flags);
2300 return;
2301 }
29154c57 2302 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2303 if (lazy)
2304 rdp->qlen_lazy++;
c57afe80
PM
2305 else
2306 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2307 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2308 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2309 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2310
d4c08f2a
PM
2311 if (__is_kfree_rcu_offset((unsigned long)func))
2312 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2313 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2314 else
486e2593 2315 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2316
29154c57
PM
2317 /* Go handle any RCU core processing required. */
2318 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2319 local_irq_restore(flags);
2320}
2321
2322/*
d6714c22 2323 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2324 */
d6714c22 2325void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2326{
3fbfbf7a 2327 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2328}
d6714c22 2329EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2330
2331/*
486e2593 2332 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2333 */
2334void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2335{
3fbfbf7a 2336 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2337}
2338EXPORT_SYMBOL_GPL(call_rcu_bh);
2339
6d813391
PM
2340/*
2341 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2342 * any blocking grace-period wait automatically implies a grace period
2343 * if there is only one CPU online at any point time during execution
2344 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2345 * occasionally incorrectly indicate that there are multiple CPUs online
2346 * when there was in fact only one the whole time, as this just adds
2347 * some overhead: RCU still operates correctly.
6d813391
PM
2348 */
2349static inline int rcu_blocking_is_gp(void)
2350{
95f0c1de
PM
2351 int ret;
2352
6d813391 2353 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2354 preempt_disable();
2355 ret = num_online_cpus() <= 1;
2356 preempt_enable();
2357 return ret;
6d813391
PM
2358}
2359
6ebb237b
PM
2360/**
2361 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2362 *
2363 * Control will return to the caller some time after a full rcu-sched
2364 * grace period has elapsed, in other words after all currently executing
2365 * rcu-sched read-side critical sections have completed. These read-side
2366 * critical sections are delimited by rcu_read_lock_sched() and
2367 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2368 * local_irq_disable(), and so on may be used in place of
2369 * rcu_read_lock_sched().
2370 *
2371 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2372 * non-threaded hardware-interrupt handlers, in progress on entry will
2373 * have completed before this primitive returns. However, this does not
2374 * guarantee that softirq handlers will have completed, since in some
2375 * kernels, these handlers can run in process context, and can block.
2376 *
2377 * Note that this guarantee implies further memory-ordering guarantees.
2378 * On systems with more than one CPU, when synchronize_sched() returns,
2379 * each CPU is guaranteed to have executed a full memory barrier since the
2380 * end of its last RCU-sched read-side critical section whose beginning
2381 * preceded the call to synchronize_sched(). In addition, each CPU having
2382 * an RCU read-side critical section that extends beyond the return from
2383 * synchronize_sched() is guaranteed to have executed a full memory barrier
2384 * after the beginning of synchronize_sched() and before the beginning of
2385 * that RCU read-side critical section. Note that these guarantees include
2386 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2387 * that are executing in the kernel.
2388 *
2389 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2390 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2391 * to have executed a full memory barrier during the execution of
2392 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2393 * again only if the system has more than one CPU).
6ebb237b
PM
2394 *
2395 * This primitive provides the guarantees made by the (now removed)
2396 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2397 * guarantees that rcu_read_lock() sections will have completed.
2398 * In "classic RCU", these two guarantees happen to be one and
2399 * the same, but can differ in realtime RCU implementations.
2400 */
2401void synchronize_sched(void)
2402{
fe15d706
PM
2403 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2404 !lock_is_held(&rcu_lock_map) &&
2405 !lock_is_held(&rcu_sched_lock_map),
2406 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2407 if (rcu_blocking_is_gp())
2408 return;
3705b88d
AM
2409 if (rcu_expedited)
2410 synchronize_sched_expedited();
2411 else
2412 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2413}
2414EXPORT_SYMBOL_GPL(synchronize_sched);
2415
2416/**
2417 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2418 *
2419 * Control will return to the caller some time after a full rcu_bh grace
2420 * period has elapsed, in other words after all currently executing rcu_bh
2421 * read-side critical sections have completed. RCU read-side critical
2422 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2423 * and may be nested.
f0a0e6f2
PM
2424 *
2425 * See the description of synchronize_sched() for more detailed information
2426 * on memory ordering guarantees.
6ebb237b
PM
2427 */
2428void synchronize_rcu_bh(void)
2429{
fe15d706
PM
2430 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2431 !lock_is_held(&rcu_lock_map) &&
2432 !lock_is_held(&rcu_sched_lock_map),
2433 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2434 if (rcu_blocking_is_gp())
2435 return;
3705b88d
AM
2436 if (rcu_expedited)
2437 synchronize_rcu_bh_expedited();
2438 else
2439 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2440}
2441EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2442
3d3b7db0
PM
2443static int synchronize_sched_expedited_cpu_stop(void *data)
2444{
2445 /*
2446 * There must be a full memory barrier on each affected CPU
2447 * between the time that try_stop_cpus() is called and the
2448 * time that it returns.
2449 *
2450 * In the current initial implementation of cpu_stop, the
2451 * above condition is already met when the control reaches
2452 * this point and the following smp_mb() is not strictly
2453 * necessary. Do smp_mb() anyway for documentation and
2454 * robustness against future implementation changes.
2455 */
2456 smp_mb(); /* See above comment block. */
2457 return 0;
2458}
2459
236fefaf
PM
2460/**
2461 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2462 *
2463 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2464 * approach to force the grace period to end quickly. This consumes
2465 * significant time on all CPUs and is unfriendly to real-time workloads,
2466 * so is thus not recommended for any sort of common-case code. In fact,
2467 * if you are using synchronize_sched_expedited() in a loop, please
2468 * restructure your code to batch your updates, and then use a single
2469 * synchronize_sched() instead.
3d3b7db0 2470 *
236fefaf
PM
2471 * Note that it is illegal to call this function while holding any lock
2472 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2473 * to call this function from a CPU-hotplug notifier. Failing to observe
2474 * these restriction will result in deadlock.
3d3b7db0
PM
2475 *
2476 * This implementation can be thought of as an application of ticket
2477 * locking to RCU, with sync_sched_expedited_started and
2478 * sync_sched_expedited_done taking on the roles of the halves
2479 * of the ticket-lock word. Each task atomically increments
2480 * sync_sched_expedited_started upon entry, snapshotting the old value,
2481 * then attempts to stop all the CPUs. If this succeeds, then each
2482 * CPU will have executed a context switch, resulting in an RCU-sched
2483 * grace period. We are then done, so we use atomic_cmpxchg() to
2484 * update sync_sched_expedited_done to match our snapshot -- but
2485 * only if someone else has not already advanced past our snapshot.
2486 *
2487 * On the other hand, if try_stop_cpus() fails, we check the value
2488 * of sync_sched_expedited_done. If it has advanced past our
2489 * initial snapshot, then someone else must have forced a grace period
2490 * some time after we took our snapshot. In this case, our work is
2491 * done for us, and we can simply return. Otherwise, we try again,
2492 * but keep our initial snapshot for purposes of checking for someone
2493 * doing our work for us.
2494 *
2495 * If we fail too many times in a row, we fall back to synchronize_sched().
2496 */
2497void synchronize_sched_expedited(void)
2498{
1924bcb0
PM
2499 long firstsnap, s, snap;
2500 int trycount = 0;
40694d66 2501 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2502
1924bcb0
PM
2503 /*
2504 * If we are in danger of counter wrap, just do synchronize_sched().
2505 * By allowing sync_sched_expedited_started to advance no more than
2506 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2507 * that more than 3.5 billion CPUs would be required to force a
2508 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2509 * course be required on a 64-bit system.
2510 */
40694d66
PM
2511 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2512 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2513 ULONG_MAX / 8)) {
2514 synchronize_sched();
a30489c5 2515 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2516 return;
2517 }
3d3b7db0 2518
1924bcb0
PM
2519 /*
2520 * Take a ticket. Note that atomic_inc_return() implies a
2521 * full memory barrier.
2522 */
40694d66 2523 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2524 firstsnap = snap;
3d3b7db0 2525 get_online_cpus();
1cc85961 2526 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2527
2528 /*
2529 * Each pass through the following loop attempts to force a
2530 * context switch on each CPU.
2531 */
2532 while (try_stop_cpus(cpu_online_mask,
2533 synchronize_sched_expedited_cpu_stop,
2534 NULL) == -EAGAIN) {
2535 put_online_cpus();
a30489c5 2536 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2537
1924bcb0 2538 /* Check to see if someone else did our work for us. */
40694d66 2539 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2540 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2541 /* ensure test happens before caller kfree */
2542 smp_mb__before_atomic_inc(); /* ^^^ */
2543 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2544 return;
2545 }
3d3b7db0
PM
2546
2547 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2548 if (trycount++ < 10) {
3d3b7db0 2549 udelay(trycount * num_online_cpus());
c701d5d9 2550 } else {
3705b88d 2551 wait_rcu_gp(call_rcu_sched);
a30489c5 2552 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2553 return;
2554 }
2555
1924bcb0 2556 /* Recheck to see if someone else did our work for us. */
40694d66 2557 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2558 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2559 /* ensure test happens before caller kfree */
2560 smp_mb__before_atomic_inc(); /* ^^^ */
2561 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2562 return;
2563 }
2564
2565 /*
2566 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2567 * callers to piggyback on our grace period. We retry
2568 * after they started, so our grace period works for them,
2569 * and they started after our first try, so their grace
2570 * period works for us.
3d3b7db0
PM
2571 */
2572 get_online_cpus();
40694d66 2573 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2574 smp_mb(); /* ensure read is before try_stop_cpus(). */
2575 }
a30489c5 2576 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2577
2578 /*
2579 * Everyone up to our most recent fetch is covered by our grace
2580 * period. Update the counter, but only if our work is still
2581 * relevant -- which it won't be if someone who started later
1924bcb0 2582 * than we did already did their update.
3d3b7db0
PM
2583 */
2584 do {
a30489c5 2585 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2586 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2587 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2588 /* ensure test happens before caller kfree */
2589 smp_mb__before_atomic_inc(); /* ^^^ */
2590 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2591 break;
2592 }
40694d66 2593 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2594 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2595
2596 put_online_cpus();
2597}
2598EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2599
64db4cff
PM
2600/*
2601 * Check to see if there is any immediate RCU-related work to be done
2602 * by the current CPU, for the specified type of RCU, returning 1 if so.
2603 * The checks are in order of increasing expense: checks that can be
2604 * carried out against CPU-local state are performed first. However,
2605 * we must check for CPU stalls first, else we might not get a chance.
2606 */
2607static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2608{
2f51f988
PM
2609 struct rcu_node *rnp = rdp->mynode;
2610
64db4cff
PM
2611 rdp->n_rcu_pending++;
2612
2613 /* Check for CPU stalls, if enabled. */
2614 check_cpu_stall(rsp, rdp);
2615
2616 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2617 if (rcu_scheduler_fully_active &&
2618 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2619 rdp->n_rp_qs_pending++;
e4cc1f22 2620 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2621 rdp->n_rp_report_qs++;
64db4cff 2622 return 1;
7ba5c840 2623 }
64db4cff
PM
2624
2625 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2626 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2627 rdp->n_rp_cb_ready++;
64db4cff 2628 return 1;
7ba5c840 2629 }
64db4cff
PM
2630
2631 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2632 if (cpu_needs_another_gp(rsp, rdp)) {
2633 rdp->n_rp_cpu_needs_gp++;
64db4cff 2634 return 1;
7ba5c840 2635 }
64db4cff
PM
2636
2637 /* Has another RCU grace period completed? */
2f51f988 2638 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2639 rdp->n_rp_gp_completed++;
64db4cff 2640 return 1;
7ba5c840 2641 }
64db4cff
PM
2642
2643 /* Has a new RCU grace period started? */
2f51f988 2644 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2645 rdp->n_rp_gp_started++;
64db4cff 2646 return 1;
7ba5c840 2647 }
64db4cff 2648
64db4cff 2649 /* nothing to do */
7ba5c840 2650 rdp->n_rp_need_nothing++;
64db4cff
PM
2651 return 0;
2652}
2653
2654/*
2655 * Check to see if there is any immediate RCU-related work to be done
2656 * by the current CPU, returning 1 if so. This function is part of the
2657 * RCU implementation; it is -not- an exported member of the RCU API.
2658 */
a157229c 2659static int rcu_pending(int cpu)
64db4cff 2660{
6ce75a23
PM
2661 struct rcu_state *rsp;
2662
2663 for_each_rcu_flavor(rsp)
2664 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2665 return 1;
2666 return 0;
64db4cff
PM
2667}
2668
2669/*
c0f4dfd4
PM
2670 * Return true if the specified CPU has any callback. If all_lazy is
2671 * non-NULL, store an indication of whether all callbacks are lazy.
2672 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2673 */
c0f4dfd4 2674static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2675{
c0f4dfd4
PM
2676 bool al = true;
2677 bool hc = false;
2678 struct rcu_data *rdp;
6ce75a23
PM
2679 struct rcu_state *rsp;
2680
c0f4dfd4
PM
2681 for_each_rcu_flavor(rsp) {
2682 rdp = per_cpu_ptr(rsp->rda, cpu);
2683 if (rdp->qlen != rdp->qlen_lazy)
2684 al = false;
2685 if (rdp->nxtlist)
2686 hc = true;
2687 }
2688 if (all_lazy)
2689 *all_lazy = al;
2690 return hc;
64db4cff
PM
2691}
2692
a83eff0a
PM
2693/*
2694 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2695 * the compiler is expected to optimize this away.
2696 */
e66c33d5 2697static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2698 int cpu, unsigned long done)
2699{
2700 trace_rcu_barrier(rsp->name, s, cpu,
2701 atomic_read(&rsp->barrier_cpu_count), done);
2702}
2703
b1420f1c
PM
2704/*
2705 * RCU callback function for _rcu_barrier(). If we are last, wake
2706 * up the task executing _rcu_barrier().
2707 */
24ebbca8 2708static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2709{
24ebbca8
PM
2710 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2711 struct rcu_state *rsp = rdp->rsp;
2712
a83eff0a
PM
2713 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2714 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2715 complete(&rsp->barrier_completion);
a83eff0a
PM
2716 } else {
2717 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2718 }
d0ec774c
PM
2719}
2720
2721/*
2722 * Called with preemption disabled, and from cross-cpu IRQ context.
2723 */
2724static void rcu_barrier_func(void *type)
2725{
037b64ed 2726 struct rcu_state *rsp = type;
06668efa 2727 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2728
a83eff0a 2729 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2730 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2731 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2732}
2733
d0ec774c
PM
2734/*
2735 * Orchestrate the specified type of RCU barrier, waiting for all
2736 * RCU callbacks of the specified type to complete.
2737 */
037b64ed 2738static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2739{
b1420f1c 2740 int cpu;
b1420f1c 2741 struct rcu_data *rdp;
cf3a9c48
PM
2742 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2743 unsigned long snap_done;
b1420f1c 2744
a83eff0a 2745 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2746
e74f4c45 2747 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2748 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2749
cf3a9c48
PM
2750 /*
2751 * Ensure that all prior references, including to ->n_barrier_done,
2752 * are ordered before the _rcu_barrier() machinery.
2753 */
2754 smp_mb(); /* See above block comment. */
2755
2756 /*
2757 * Recheck ->n_barrier_done to see if others did our work for us.
2758 * This means checking ->n_barrier_done for an even-to-odd-to-even
2759 * transition. The "if" expression below therefore rounds the old
2760 * value up to the next even number and adds two before comparing.
2761 */
2762 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2763 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2764 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2765 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2766 smp_mb(); /* caller's subsequent code after above check. */
2767 mutex_unlock(&rsp->barrier_mutex);
2768 return;
2769 }
2770
2771 /*
2772 * Increment ->n_barrier_done to avoid duplicate work. Use
2773 * ACCESS_ONCE() to prevent the compiler from speculating
2774 * the increment to precede the early-exit check.
2775 */
2776 ACCESS_ONCE(rsp->n_barrier_done)++;
2777 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2778 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2779 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2780
d0ec774c 2781 /*
b1420f1c
PM
2782 * Initialize the count to one rather than to zero in order to
2783 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2784 * (or preemption of this task). Exclude CPU-hotplug operations
2785 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2786 */
7db74df8 2787 init_completion(&rsp->barrier_completion);
24ebbca8 2788 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2789 get_online_cpus();
b1420f1c
PM
2790
2791 /*
1331e7a1
PM
2792 * Force each CPU with callbacks to register a new callback.
2793 * When that callback is invoked, we will know that all of the
2794 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2795 */
3fbfbf7a 2796 for_each_possible_cpu(cpu) {
d1e43fa5 2797 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2798 continue;
b1420f1c 2799 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 2800 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
2801 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2802 rsp->n_barrier_done);
2803 atomic_inc(&rsp->barrier_cpu_count);
2804 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2805 rsp, cpu, 0);
2806 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2807 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2808 rsp->n_barrier_done);
037b64ed 2809 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2810 } else {
a83eff0a
PM
2811 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2812 rsp->n_barrier_done);
b1420f1c
PM
2813 }
2814 }
1331e7a1 2815 put_online_cpus();
b1420f1c
PM
2816
2817 /*
2818 * Now that we have an rcu_barrier_callback() callback on each
2819 * CPU, and thus each counted, remove the initial count.
2820 */
24ebbca8 2821 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2822 complete(&rsp->barrier_completion);
b1420f1c 2823
cf3a9c48
PM
2824 /* Increment ->n_barrier_done to prevent duplicate work. */
2825 smp_mb(); /* Keep increment after above mechanism. */
2826 ACCESS_ONCE(rsp->n_barrier_done)++;
2827 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2828 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2829 smp_mb(); /* Keep increment before caller's subsequent code. */
2830
b1420f1c 2831 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2832 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2833
2834 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2835 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2836}
d0ec774c
PM
2837
2838/**
2839 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2840 */
2841void rcu_barrier_bh(void)
2842{
037b64ed 2843 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2844}
2845EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2846
2847/**
2848 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2849 */
2850void rcu_barrier_sched(void)
2851{
037b64ed 2852 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2853}
2854EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2855
64db4cff 2856/*
27569620 2857 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2858 */
27569620
PM
2859static void __init
2860rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2861{
2862 unsigned long flags;
394f99a9 2863 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2864 struct rcu_node *rnp = rcu_get_root(rsp);
2865
2866 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2867 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2868 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2869 init_callback_list(rdp);
486e2593 2870 rdp->qlen_lazy = 0;
1d1fb395 2871 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2872 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2873 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2874 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2875 rdp->cpu = cpu;
d4c08f2a 2876 rdp->rsp = rsp;
3fbfbf7a 2877 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 2878 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2879}
2880
2881/*
2882 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2883 * offline event can be happening at a given time. Note also that we
2884 * can accept some slop in the rsp->completed access due to the fact
2885 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2886 */
49fb4c62 2887static void
6cc68793 2888rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2889{
2890 unsigned long flags;
64db4cff 2891 unsigned long mask;
394f99a9 2892 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2893 struct rcu_node *rnp = rcu_get_root(rsp);
2894
a4fbe35a
PM
2895 /* Exclude new grace periods. */
2896 mutex_lock(&rsp->onoff_mutex);
2897
64db4cff 2898 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2899 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2900 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2901 rdp->preemptible = preemptible;
37c72e56
PM
2902 rdp->qlen_last_fqs_check = 0;
2903 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2904 rdp->blimit = blimit;
0d8ee37e 2905 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 2906 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2907 atomic_set(&rdp->dynticks->dynticks,
2908 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 2909 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 2910
64db4cff
PM
2911 /* Add CPU to rcu_node bitmasks. */
2912 rnp = rdp->mynode;
2913 mask = rdp->grpmask;
2914 do {
2915 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2916 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2917 rnp->qsmaskinit |= mask;
2918 mask = rnp->grpmask;
d09b62df 2919 if (rnp == rdp->mynode) {
06ae115a
PM
2920 /*
2921 * If there is a grace period in progress, we will
2922 * set up to wait for it next time we run the
2923 * RCU core code.
2924 */
2925 rdp->gpnum = rnp->completed;
d09b62df 2926 rdp->completed = rnp->completed;
06ae115a
PM
2927 rdp->passed_quiesce = 0;
2928 rdp->qs_pending = 0;
f7f7bac9 2929 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 2930 }
1304afb2 2931 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2932 rnp = rnp->parent;
2933 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 2934 local_irq_restore(flags);
64db4cff 2935
a4fbe35a 2936 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2937}
2938
49fb4c62 2939static void rcu_prepare_cpu(int cpu)
64db4cff 2940{
6ce75a23
PM
2941 struct rcu_state *rsp;
2942
2943 for_each_rcu_flavor(rsp)
2944 rcu_init_percpu_data(cpu, rsp,
2945 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2946}
2947
2948/*
f41d911f 2949 * Handle CPU online/offline notification events.
64db4cff 2950 */
49fb4c62 2951static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 2952 unsigned long action, void *hcpu)
64db4cff
PM
2953{
2954 long cpu = (long)hcpu;
27f4d280 2955 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2956 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2957 struct rcu_state *rsp;
64db4cff 2958
f7f7bac9 2959 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
2960 switch (action) {
2961 case CPU_UP_PREPARE:
2962 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2963 rcu_prepare_cpu(cpu);
2964 rcu_prepare_kthreads(cpu);
a26ac245
PM
2965 break;
2966 case CPU_ONLINE:
0f962a5e 2967 case CPU_DOWN_FAILED:
5d01bbd1 2968 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
2969 break;
2970 case CPU_DOWN_PREPARE:
34ed6246 2971 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 2972 break;
d0ec774c
PM
2973 case CPU_DYING:
2974 case CPU_DYING_FROZEN:
6ce75a23
PM
2975 for_each_rcu_flavor(rsp)
2976 rcu_cleanup_dying_cpu(rsp);
d0ec774c 2977 break;
64db4cff
PM
2978 case CPU_DEAD:
2979 case CPU_DEAD_FROZEN:
2980 case CPU_UP_CANCELED:
2981 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2982 for_each_rcu_flavor(rsp)
2983 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2984 break;
2985 default:
2986 break;
2987 }
f7f7bac9 2988 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 2989 return NOTIFY_OK;
64db4cff
PM
2990}
2991
b3dbec76
PM
2992/*
2993 * Spawn the kthread that handles this RCU flavor's grace periods.
2994 */
2995static int __init rcu_spawn_gp_kthread(void)
2996{
2997 unsigned long flags;
2998 struct rcu_node *rnp;
2999 struct rcu_state *rsp;
3000 struct task_struct *t;
3001
3002 for_each_rcu_flavor(rsp) {
f170168b 3003 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3004 BUG_ON(IS_ERR(t));
3005 rnp = rcu_get_root(rsp);
3006 raw_spin_lock_irqsave(&rnp->lock, flags);
3007 rsp->gp_kthread = t;
3008 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3009 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3010 }
3011 return 0;
3012}
3013early_initcall(rcu_spawn_gp_kthread);
3014
bbad9379
PM
3015/*
3016 * This function is invoked towards the end of the scheduler's initialization
3017 * process. Before this is called, the idle task might contain
3018 * RCU read-side critical sections (during which time, this idle
3019 * task is booting the system). After this function is called, the
3020 * idle tasks are prohibited from containing RCU read-side critical
3021 * sections. This function also enables RCU lockdep checking.
3022 */
3023void rcu_scheduler_starting(void)
3024{
3025 WARN_ON(num_online_cpus() != 1);
3026 WARN_ON(nr_context_switches() > 0);
3027 rcu_scheduler_active = 1;
3028}
3029
64db4cff
PM
3030/*
3031 * Compute the per-level fanout, either using the exact fanout specified
3032 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3033 */
3034#ifdef CONFIG_RCU_FANOUT_EXACT
3035static void __init rcu_init_levelspread(struct rcu_state *rsp)
3036{
3037 int i;
3038
f885b7f2 3039 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3040 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3041 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3042}
3043#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3044static void __init rcu_init_levelspread(struct rcu_state *rsp)
3045{
3046 int ccur;
3047 int cprv;
3048 int i;
3049
4dbd6bb3 3050 cprv = nr_cpu_ids;
f885b7f2 3051 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3052 ccur = rsp->levelcnt[i];
3053 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3054 cprv = ccur;
3055 }
3056}
3057#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3058
3059/*
3060 * Helper function for rcu_init() that initializes one rcu_state structure.
3061 */
394f99a9
LJ
3062static void __init rcu_init_one(struct rcu_state *rsp,
3063 struct rcu_data __percpu *rda)
64db4cff 3064{
394f2769
PM
3065 static char *buf[] = { "rcu_node_0",
3066 "rcu_node_1",
3067 "rcu_node_2",
3068 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3069 static char *fqs[] = { "rcu_node_fqs_0",
3070 "rcu_node_fqs_1",
3071 "rcu_node_fqs_2",
3072 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3073 int cpustride = 1;
3074 int i;
3075 int j;
3076 struct rcu_node *rnp;
3077
b6407e86
PM
3078 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3079
4930521a
PM
3080 /* Silence gcc 4.8 warning about array index out of range. */
3081 if (rcu_num_lvls > RCU_NUM_LVLS)
3082 panic("rcu_init_one: rcu_num_lvls overflow");
3083
64db4cff
PM
3084 /* Initialize the level-tracking arrays. */
3085
f885b7f2
PM
3086 for (i = 0; i < rcu_num_lvls; i++)
3087 rsp->levelcnt[i] = num_rcu_lvl[i];
3088 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3089 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3090 rcu_init_levelspread(rsp);
3091
3092 /* Initialize the elements themselves, starting from the leaves. */
3093
f885b7f2 3094 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3095 cpustride *= rsp->levelspread[i];
3096 rnp = rsp->level[i];
3097 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3098 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3099 lockdep_set_class_and_name(&rnp->lock,
3100 &rcu_node_class[i], buf[i]);
394f2769
PM
3101 raw_spin_lock_init(&rnp->fqslock);
3102 lockdep_set_class_and_name(&rnp->fqslock,
3103 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3104 rnp->gpnum = rsp->gpnum;
3105 rnp->completed = rsp->completed;
64db4cff
PM
3106 rnp->qsmask = 0;
3107 rnp->qsmaskinit = 0;
3108 rnp->grplo = j * cpustride;
3109 rnp->grphi = (j + 1) * cpustride - 1;
3110 if (rnp->grphi >= NR_CPUS)
3111 rnp->grphi = NR_CPUS - 1;
3112 if (i == 0) {
3113 rnp->grpnum = 0;
3114 rnp->grpmask = 0;
3115 rnp->parent = NULL;
3116 } else {
3117 rnp->grpnum = j % rsp->levelspread[i - 1];
3118 rnp->grpmask = 1UL << rnp->grpnum;
3119 rnp->parent = rsp->level[i - 1] +
3120 j / rsp->levelspread[i - 1];
3121 }
3122 rnp->level = i;
12f5f524 3123 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3124 rcu_init_one_nocb(rnp);
64db4cff
PM
3125 }
3126 }
0c34029a 3127
394f99a9 3128 rsp->rda = rda;
b3dbec76 3129 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3130 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3131 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3132 for_each_possible_cpu(i) {
4a90a068 3133 while (i > rnp->grphi)
0c34029a 3134 rnp++;
394f99a9 3135 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3136 rcu_boot_init_percpu_data(i, rsp);
3137 }
6ce75a23 3138 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3139}
3140
f885b7f2
PM
3141/*
3142 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3143 * replace the definitions in rcutree.h because those are needed to size
3144 * the ->node array in the rcu_state structure.
3145 */
3146static void __init rcu_init_geometry(void)
3147{
026ad283 3148 ulong d;
f885b7f2
PM
3149 int i;
3150 int j;
cca6f393 3151 int n = nr_cpu_ids;
f885b7f2
PM
3152 int rcu_capacity[MAX_RCU_LVLS + 1];
3153
026ad283
PM
3154 /*
3155 * Initialize any unspecified boot parameters.
3156 * The default values of jiffies_till_first_fqs and
3157 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3158 * value, which is a function of HZ, then adding one for each
3159 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3160 */
3161 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3162 if (jiffies_till_first_fqs == ULONG_MAX)
3163 jiffies_till_first_fqs = d;
3164 if (jiffies_till_next_fqs == ULONG_MAX)
3165 jiffies_till_next_fqs = d;
3166
f885b7f2 3167 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3168 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3169 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3170 return;
3171
3172 /*
3173 * Compute number of nodes that can be handled an rcu_node tree
3174 * with the given number of levels. Setting rcu_capacity[0] makes
3175 * some of the arithmetic easier.
3176 */
3177 rcu_capacity[0] = 1;
3178 rcu_capacity[1] = rcu_fanout_leaf;
3179 for (i = 2; i <= MAX_RCU_LVLS; i++)
3180 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3181
3182 /*
3183 * The boot-time rcu_fanout_leaf parameter is only permitted
3184 * to increase the leaf-level fanout, not decrease it. Of course,
3185 * the leaf-level fanout cannot exceed the number of bits in
3186 * the rcu_node masks. Finally, the tree must be able to accommodate
3187 * the configured number of CPUs. Complain and fall back to the
3188 * compile-time values if these limits are exceeded.
3189 */
3190 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3191 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3192 n > rcu_capacity[MAX_RCU_LVLS]) {
3193 WARN_ON(1);
3194 return;
3195 }
3196
3197 /* Calculate the number of rcu_nodes at each level of the tree. */
3198 for (i = 1; i <= MAX_RCU_LVLS; i++)
3199 if (n <= rcu_capacity[i]) {
3200 for (j = 0; j <= i; j++)
3201 num_rcu_lvl[j] =
3202 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3203 rcu_num_lvls = i;
3204 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3205 num_rcu_lvl[j] = 0;
3206 break;
3207 }
3208
3209 /* Calculate the total number of rcu_node structures. */
3210 rcu_num_nodes = 0;
3211 for (i = 0; i <= MAX_RCU_LVLS; i++)
3212 rcu_num_nodes += num_rcu_lvl[i];
3213 rcu_num_nodes -= n;
3214}
3215
9f680ab4 3216void __init rcu_init(void)
64db4cff 3217{
017c4261 3218 int cpu;
9f680ab4 3219
f41d911f 3220 rcu_bootup_announce();
f885b7f2 3221 rcu_init_geometry();
394f99a9
LJ
3222 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3223 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 3224 __rcu_init_preempt();
b5b39360 3225 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3226
3227 /*
3228 * We don't need protection against CPU-hotplug here because
3229 * this is called early in boot, before either interrupts
3230 * or the scheduler are operational.
3231 */
3232 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
3233 for_each_online_cpu(cpu)
3234 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3235}
3236
1eba8f84 3237#include "rcutree_plugin.h"
This page took 0.48605 seconds and 5 git commands to generate.