rcu: Check for illegal use of RCU from offlined CPUs
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
64db4cff 53
9f77da9f 54#include "rcutree.h"
29c00b4a
PM
55#include <trace/events/rcu.h>
56
57#include "rcu.h"
9f77da9f 58
64db4cff
PM
59/* Data structures. */
60
b668c9cf 61static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 62
4300aa64 63#define RCU_STATE_INITIALIZER(structname) { \
e99033c5 64 .level = { &structname##_state.node[0] }, \
64db4cff
PM
65 .levelcnt = { \
66 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_1, \
68 NUM_RCU_LVL_2, \
cf244dc0
PM
69 NUM_RCU_LVL_3, \
70 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 71 }, \
af446b70 72 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
73 .gpnum = -300, \
74 .completed = -300, \
e99033c5
PM
75 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
76 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
64db4cff
PM
77 .n_force_qs = 0, \
78 .n_force_qs_ngp = 0, \
4300aa64 79 .name = #structname, \
64db4cff
PM
80}
81
e99033c5 82struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
d6714c22 83DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 84
e99033c5 85struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
6258c4fb 86DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 87
27f4d280
PM
88static struct rcu_state *rcu_state;
89
b0d30417
PM
90/*
91 * The rcu_scheduler_active variable transitions from zero to one just
92 * before the first task is spawned. So when this variable is zero, RCU
93 * can assume that there is but one task, allowing RCU to (for example)
94 * optimized synchronize_sched() to a simple barrier(). When this variable
95 * is one, RCU must actually do all the hard work required to detect real
96 * grace periods. This variable is also used to suppress boot-time false
97 * positives from lockdep-RCU error checking.
98 */
bbad9379
PM
99int rcu_scheduler_active __read_mostly;
100EXPORT_SYMBOL_GPL(rcu_scheduler_active);
101
b0d30417
PM
102/*
103 * The rcu_scheduler_fully_active variable transitions from zero to one
104 * during the early_initcall() processing, which is after the scheduler
105 * is capable of creating new tasks. So RCU processing (for example,
106 * creating tasks for RCU priority boosting) must be delayed until after
107 * rcu_scheduler_fully_active transitions from zero to one. We also
108 * currently delay invocation of any RCU callbacks until after this point.
109 *
110 * It might later prove better for people registering RCU callbacks during
111 * early boot to take responsibility for these callbacks, but one step at
112 * a time.
113 */
114static int rcu_scheduler_fully_active __read_mostly;
115
a46e0899
PM
116#ifdef CONFIG_RCU_BOOST
117
a26ac245
PM
118/*
119 * Control variables for per-CPU and per-rcu_node kthreads. These
120 * handle all flavors of RCU.
121 */
122static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 123DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 124DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 125DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 126DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 127
a46e0899
PM
128#endif /* #ifdef CONFIG_RCU_BOOST */
129
0f962a5e 130static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
131static void invoke_rcu_core(void);
132static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 133
4a298656
PM
134/*
135 * Track the rcutorture test sequence number and the update version
136 * number within a given test. The rcutorture_testseq is incremented
137 * on every rcutorture module load and unload, so has an odd value
138 * when a test is running. The rcutorture_vernum is set to zero
139 * when rcutorture starts and is incremented on each rcutorture update.
140 * These variables enable correlating rcutorture output with the
141 * RCU tracing information.
142 */
143unsigned long rcutorture_testseq;
144unsigned long rcutorture_vernum;
145
fc2219d4
PM
146/*
147 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
148 * permit this function to be invoked without holding the root rcu_node
149 * structure's ->lock, but of course results can be subject to change.
150 */
151static int rcu_gp_in_progress(struct rcu_state *rsp)
152{
153 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
154}
155
b1f77b05 156/*
d6714c22 157 * Note a quiescent state. Because we do not need to know
b1f77b05 158 * how many quiescent states passed, just if there was at least
d6714c22 159 * one since the start of the grace period, this just sets a flag.
e4cc1f22 160 * The caller must have disabled preemption.
b1f77b05 161 */
d6714c22 162void rcu_sched_qs(int cpu)
b1f77b05 163{
25502a6c 164 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 165
e4cc1f22 166 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 167 barrier();
e4cc1f22 168 if (rdp->passed_quiesce == 0)
d4c08f2a 169 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 170 rdp->passed_quiesce = 1;
b1f77b05
IM
171}
172
d6714c22 173void rcu_bh_qs(int cpu)
b1f77b05 174{
25502a6c 175 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 176
e4cc1f22 177 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 178 barrier();
e4cc1f22 179 if (rdp->passed_quiesce == 0)
d4c08f2a 180 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 181 rdp->passed_quiesce = 1;
b1f77b05 182}
64db4cff 183
25502a6c
PM
184/*
185 * Note a context switch. This is a quiescent state for RCU-sched,
186 * and requires special handling for preemptible RCU.
e4cc1f22 187 * The caller must have disabled preemption.
25502a6c
PM
188 */
189void rcu_note_context_switch(int cpu)
190{
300df91c 191 trace_rcu_utilization("Start context switch");
25502a6c
PM
192 rcu_sched_qs(cpu);
193 rcu_preempt_note_context_switch(cpu);
300df91c 194 trace_rcu_utilization("End context switch");
25502a6c 195}
29ce8310 196EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 197
90a4d2c0 198DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
4145fa7f 199 .dynticks_nesting = DYNTICK_TASK_NESTING,
23b5c8fa 200 .dynticks = ATOMIC_INIT(1),
90a4d2c0 201};
64db4cff 202
e0f23060 203static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
204static int qhimark = 10000; /* If this many pending, ignore blimit. */
205static int qlowmark = 100; /* Once only this many pending, use blimit. */
206
3d76c082
PM
207module_param(blimit, int, 0);
208module_param(qhimark, int, 0);
209module_param(qlowmark, int, 0);
210
13cfcca0
PM
211int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
212int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
213
f2e0dd70 214module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 215module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 216
64db4cff 217static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 218static int rcu_pending(int cpu);
64db4cff
PM
219
220/*
d6714c22 221 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 222 */
d6714c22 223long rcu_batches_completed_sched(void)
64db4cff 224{
d6714c22 225 return rcu_sched_state.completed;
64db4cff 226}
d6714c22 227EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
228
229/*
230 * Return the number of RCU BH batches processed thus far for debug & stats.
231 */
232long rcu_batches_completed_bh(void)
233{
234 return rcu_bh_state.completed;
235}
236EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
237
bf66f18e
PM
238/*
239 * Force a quiescent state for RCU BH.
240 */
241void rcu_bh_force_quiescent_state(void)
242{
243 force_quiescent_state(&rcu_bh_state, 0);
244}
245EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
246
4a298656
PM
247/*
248 * Record the number of times rcutorture tests have been initiated and
249 * terminated. This information allows the debugfs tracing stats to be
250 * correlated to the rcutorture messages, even when the rcutorture module
251 * is being repeatedly loaded and unloaded. In other words, we cannot
252 * store this state in rcutorture itself.
253 */
254void rcutorture_record_test_transition(void)
255{
256 rcutorture_testseq++;
257 rcutorture_vernum = 0;
258}
259EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
260
261/*
262 * Record the number of writer passes through the current rcutorture test.
263 * This is also used to correlate debugfs tracing stats with the rcutorture
264 * messages.
265 */
266void rcutorture_record_progress(unsigned long vernum)
267{
268 rcutorture_vernum++;
269}
270EXPORT_SYMBOL_GPL(rcutorture_record_progress);
271
bf66f18e
PM
272/*
273 * Force a quiescent state for RCU-sched.
274 */
275void rcu_sched_force_quiescent_state(void)
276{
277 force_quiescent_state(&rcu_sched_state, 0);
278}
279EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
280
64db4cff
PM
281/*
282 * Does the CPU have callbacks ready to be invoked?
283 */
284static int
285cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
286{
287 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
288}
289
290/*
291 * Does the current CPU require a yet-as-unscheduled grace period?
292 */
293static int
294cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
295{
fc2219d4 296 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
297}
298
299/*
300 * Return the root node of the specified rcu_state structure.
301 */
302static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
303{
304 return &rsp->node[0];
305}
306
64db4cff
PM
307/*
308 * If the specified CPU is offline, tell the caller that it is in
309 * a quiescent state. Otherwise, whack it with a reschedule IPI.
310 * Grace periods can end up waiting on an offline CPU when that
311 * CPU is in the process of coming online -- it will be added to the
312 * rcu_node bitmasks before it actually makes it online. The same thing
313 * can happen while a CPU is in the process of coming online. Because this
314 * race is quite rare, we check for it after detecting that the grace
315 * period has been delayed rather than checking each and every CPU
316 * each and every time we start a new grace period.
317 */
318static int rcu_implicit_offline_qs(struct rcu_data *rdp)
319{
320 /*
321 * If the CPU is offline, it is in a quiescent state. We can
322 * trust its state not to change because interrupts are disabled.
323 */
324 if (cpu_is_offline(rdp->cpu)) {
d4c08f2a 325 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
326 rdp->offline_fqs++;
327 return 1;
328 }
329
9b2e4f18
PM
330 /*
331 * The CPU is online, so send it a reschedule IPI. This forces
332 * it through the scheduler, and (inefficiently) also handles cases
333 * where idle loops fail to inform RCU about the CPU being idle.
334 */
64db4cff
PM
335 if (rdp->cpu != smp_processor_id())
336 smp_send_reschedule(rdp->cpu);
337 else
338 set_need_resched();
339 rdp->resched_ipi++;
340 return 0;
341}
342
9b2e4f18
PM
343/*
344 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
345 *
346 * If the new value of the ->dynticks_nesting counter now is zero,
347 * we really have entered idle, and must do the appropriate accounting.
348 * The caller must have disabled interrupts.
349 */
4145fa7f 350static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 351{
facc4e15 352 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 353 if (!is_idle_task(current)) {
0989cb46
PM
354 struct task_struct *idle = idle_task(smp_processor_id());
355
facc4e15 356 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 357 ftrace_dump(DUMP_ALL);
0989cb46
PM
358 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
359 current->pid, current->comm,
360 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 361 }
aea1b35e 362 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
363 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
364 smp_mb__before_atomic_inc(); /* See above. */
365 atomic_inc(&rdtp->dynticks);
366 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
367 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
368
369 /*
370 * The idle task is not permitted to enter the idle loop while
371 * in an RCU read-side critical section.
372 */
373 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
374 "Illegal idle entry in RCU read-side critical section.");
375 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
376 "Illegal idle entry in RCU-bh read-side critical section.");
377 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
378 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 379}
64db4cff
PM
380
381/**
9b2e4f18 382 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 383 *
9b2e4f18 384 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 385 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
386 * critical sections can occur in irq handlers in idle, a possibility
387 * handled by irq_enter() and irq_exit().)
388 *
389 * We crowbar the ->dynticks_nesting field to zero to allow for
390 * the possibility of usermode upcalls having messed up our count
391 * of interrupt nesting level during the prior busy period.
64db4cff 392 */
9b2e4f18 393void rcu_idle_enter(void)
64db4cff
PM
394{
395 unsigned long flags;
4145fa7f 396 long long oldval;
64db4cff
PM
397 struct rcu_dynticks *rdtp;
398
64db4cff
PM
399 local_irq_save(flags);
400 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 401 oldval = rdtp->dynticks_nesting;
9b2e4f18 402 rdtp->dynticks_nesting = 0;
4145fa7f 403 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
404 local_irq_restore(flags);
405}
406
9b2e4f18
PM
407/**
408 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
409 *
410 * Exit from an interrupt handler, which might possibly result in entering
411 * idle mode, in other words, leaving the mode in which read-side critical
412 * sections can occur.
64db4cff 413 *
9b2e4f18
PM
414 * This code assumes that the idle loop never does anything that might
415 * result in unbalanced calls to irq_enter() and irq_exit(). If your
416 * architecture violates this assumption, RCU will give you what you
417 * deserve, good and hard. But very infrequently and irreproducibly.
418 *
419 * Use things like work queues to work around this limitation.
420 *
421 * You have been warned.
64db4cff 422 */
9b2e4f18 423void rcu_irq_exit(void)
64db4cff
PM
424{
425 unsigned long flags;
4145fa7f 426 long long oldval;
64db4cff
PM
427 struct rcu_dynticks *rdtp;
428
429 local_irq_save(flags);
430 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 431 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
432 rdtp->dynticks_nesting--;
433 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
434 if (rdtp->dynticks_nesting)
435 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
436 else
437 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
438 local_irq_restore(flags);
439}
440
441/*
442 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
443 *
444 * If the new value of the ->dynticks_nesting counter was previously zero,
445 * we really have exited idle, and must do the appropriate accounting.
446 * The caller must have disabled interrupts.
447 */
448static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
449{
23b5c8fa
PM
450 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
451 atomic_inc(&rdtp->dynticks);
452 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
453 smp_mb__after_atomic_inc(); /* See above. */
454 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 455 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 456 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 457 if (!is_idle_task(current)) {
0989cb46
PM
458 struct task_struct *idle = idle_task(smp_processor_id());
459
4145fa7f
PM
460 trace_rcu_dyntick("Error on exit: not idle task",
461 oldval, rdtp->dynticks_nesting);
9b2e4f18 462 ftrace_dump(DUMP_ALL);
0989cb46
PM
463 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
464 current->pid, current->comm,
465 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
466 }
467}
468
469/**
470 * rcu_idle_exit - inform RCU that current CPU is leaving idle
471 *
472 * Exit idle mode, in other words, -enter- the mode in which RCU
473 * read-side critical sections can occur.
474 *
4145fa7f
PM
475 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NESTING to
476 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
477 * of interrupt nesting level during the busy period that is just
478 * now starting.
479 */
480void rcu_idle_exit(void)
481{
482 unsigned long flags;
483 struct rcu_dynticks *rdtp;
484 long long oldval;
485
486 local_irq_save(flags);
487 rdtp = &__get_cpu_var(rcu_dynticks);
488 oldval = rdtp->dynticks_nesting;
489 WARN_ON_ONCE(oldval != 0);
4145fa7f 490 rdtp->dynticks_nesting = DYNTICK_TASK_NESTING;
9b2e4f18
PM
491 rcu_idle_exit_common(rdtp, oldval);
492 local_irq_restore(flags);
493}
494
495/**
496 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
497 *
498 * Enter an interrupt handler, which might possibly result in exiting
499 * idle mode, in other words, entering the mode in which read-side critical
500 * sections can occur.
501 *
502 * Note that the Linux kernel is fully capable of entering an interrupt
503 * handler that it never exits, for example when doing upcalls to
504 * user mode! This code assumes that the idle loop never does upcalls to
505 * user mode. If your architecture does do upcalls from the idle loop (or
506 * does anything else that results in unbalanced calls to the irq_enter()
507 * and irq_exit() functions), RCU will give you what you deserve, good
508 * and hard. But very infrequently and irreproducibly.
509 *
510 * Use things like work queues to work around this limitation.
511 *
512 * You have been warned.
513 */
514void rcu_irq_enter(void)
515{
516 unsigned long flags;
517 struct rcu_dynticks *rdtp;
518 long long oldval;
519
520 local_irq_save(flags);
521 rdtp = &__get_cpu_var(rcu_dynticks);
522 oldval = rdtp->dynticks_nesting;
523 rdtp->dynticks_nesting++;
524 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
525 if (oldval)
526 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
527 else
528 rcu_idle_exit_common(rdtp, oldval);
64db4cff 529 local_irq_restore(flags);
64db4cff
PM
530}
531
532/**
533 * rcu_nmi_enter - inform RCU of entry to NMI context
534 *
535 * If the CPU was idle with dynamic ticks active, and there is no
536 * irq handler running, this updates rdtp->dynticks_nmi to let the
537 * RCU grace-period handling know that the CPU is active.
538 */
539void rcu_nmi_enter(void)
540{
541 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
542
23b5c8fa
PM
543 if (rdtp->dynticks_nmi_nesting == 0 &&
544 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 545 return;
23b5c8fa
PM
546 rdtp->dynticks_nmi_nesting++;
547 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
548 atomic_inc(&rdtp->dynticks);
549 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
550 smp_mb__after_atomic_inc(); /* See above. */
551 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
552}
553
554/**
555 * rcu_nmi_exit - inform RCU of exit from NMI context
556 *
557 * If the CPU was idle with dynamic ticks active, and there is no
558 * irq handler running, this updates rdtp->dynticks_nmi to let the
559 * RCU grace-period handling know that the CPU is no longer active.
560 */
561void rcu_nmi_exit(void)
562{
563 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
564
23b5c8fa
PM
565 if (rdtp->dynticks_nmi_nesting == 0 ||
566 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 567 return;
23b5c8fa
PM
568 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
569 smp_mb__before_atomic_inc(); /* See above. */
570 atomic_inc(&rdtp->dynticks);
571 smp_mb__after_atomic_inc(); /* Force delay to next write. */
572 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
573}
574
9b2e4f18
PM
575#ifdef CONFIG_PROVE_RCU
576
64db4cff 577/**
9b2e4f18 578 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 579 *
9b2e4f18 580 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 581 * or NMI handler, return true.
64db4cff 582 */
9b2e4f18 583int rcu_is_cpu_idle(void)
64db4cff 584{
34240697
PM
585 int ret;
586
587 preempt_disable();
588 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
589 preempt_enable();
590 return ret;
64db4cff 591}
e6b80a3b 592EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 593
c0d6d01b
PM
594#ifdef CONFIG_HOTPLUG_CPU
595
596/*
597 * Is the current CPU online? Disable preemption to avoid false positives
598 * that could otherwise happen due to the current CPU number being sampled,
599 * this task being preempted, its old CPU being taken offline, resuming
600 * on some other CPU, then determining that its old CPU is now offline.
601 * It is OK to use RCU on an offline processor during initial boot, hence
602 * the check for rcu_scheduler_fully_active.
603 *
604 * Disable checking if in an NMI handler because we cannot safely report
605 * errors from NMI handlers anyway.
606 */
607bool rcu_lockdep_current_cpu_online(void)
608{
609 bool ret;
610
611 if (in_nmi())
612 return 1;
613 preempt_disable();
614 ret = cpu_online(smp_processor_id()) ||
615 !rcu_scheduler_fully_active;
616 preempt_enable();
617 return ret;
618}
619EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
620
621#endif /* #ifdef CONFIG_HOTPLUG_CPU */
622
9b2e4f18
PM
623#endif /* #ifdef CONFIG_PROVE_RCU */
624
64db4cff 625/**
9b2e4f18 626 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 627 *
9b2e4f18
PM
628 * If the current CPU is idle or running at a first-level (not nested)
629 * interrupt from idle, return true. The caller must have at least
630 * disabled preemption.
64db4cff 631 */
9b2e4f18 632int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 633{
9b2e4f18 634 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
635}
636
64db4cff
PM
637/*
638 * Snapshot the specified CPU's dynticks counter so that we can later
639 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 640 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
641 */
642static int dyntick_save_progress_counter(struct rcu_data *rdp)
643{
23b5c8fa 644 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 645 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
646}
647
648/*
649 * Return true if the specified CPU has passed through a quiescent
650 * state by virtue of being in or having passed through an dynticks
651 * idle state since the last call to dyntick_save_progress_counter()
652 * for this same CPU.
653 */
654static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
655{
7eb4f455
PM
656 unsigned int curr;
657 unsigned int snap;
64db4cff 658
7eb4f455
PM
659 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
660 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
661
662 /*
663 * If the CPU passed through or entered a dynticks idle phase with
664 * no active irq/NMI handlers, then we can safely pretend that the CPU
665 * already acknowledged the request to pass through a quiescent
666 * state. Either way, that CPU cannot possibly be in an RCU
667 * read-side critical section that started before the beginning
668 * of the current RCU grace period.
669 */
7eb4f455 670 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 671 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
672 rdp->dynticks_fqs++;
673 return 1;
674 }
675
676 /* Go check for the CPU being offline. */
677 return rcu_implicit_offline_qs(rdp);
678}
679
13cfcca0
PM
680static int jiffies_till_stall_check(void)
681{
682 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
683
684 /*
685 * Limit check must be consistent with the Kconfig limits
686 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
687 */
688 if (till_stall_check < 3) {
689 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
690 till_stall_check = 3;
691 } else if (till_stall_check > 300) {
692 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
693 till_stall_check = 300;
694 }
695 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
696}
697
64db4cff
PM
698static void record_gp_stall_check_time(struct rcu_state *rsp)
699{
700 rsp->gp_start = jiffies;
13cfcca0 701 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
702}
703
704static void print_other_cpu_stall(struct rcu_state *rsp)
705{
706 int cpu;
707 long delta;
708 unsigned long flags;
9bc8b558 709 int ndetected;
64db4cff 710 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
711
712 /* Only let one CPU complain about others per time interval. */
713
1304afb2 714 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 715 delta = jiffies - rsp->jiffies_stall;
fc2219d4 716 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 717 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
718 return;
719 }
13cfcca0 720 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 721 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 722
8cdd32a9
PM
723 /*
724 * OK, time to rat on our buddy...
725 * See Documentation/RCU/stallwarn.txt for info on how to debug
726 * RCU CPU stall warnings.
727 */
a858af28 728 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 729 rsp->name);
a858af28 730 print_cpu_stall_info_begin();
a0b6c9a7 731 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 732 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 733 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 734 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 735 if (rnp->qsmask == 0)
64db4cff 736 continue;
a0b6c9a7 737 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 738 if (rnp->qsmask & (1UL << cpu)) {
a858af28 739 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
740 ndetected++;
741 }
64db4cff 742 }
a858af28
PM
743
744 /*
745 * Now rat on any tasks that got kicked up to the root rcu_node
746 * due to CPU offlining.
747 */
748 rnp = rcu_get_root(rsp);
749 raw_spin_lock_irqsave(&rnp->lock, flags);
750 ndetected = rcu_print_task_stall(rnp);
751 raw_spin_unlock_irqrestore(&rnp->lock, flags);
752
753 print_cpu_stall_info_end();
754 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 755 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
756 if (ndetected == 0)
757 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
758 else if (!trigger_all_cpu_backtrace())
4627e240 759 dump_stack();
c1dc0b9c 760
1ed509a2
PM
761 /* If so configured, complain about tasks blocking the grace period. */
762
763 rcu_print_detail_task_stall(rsp);
764
64db4cff
PM
765 force_quiescent_state(rsp, 0); /* Kick them all. */
766}
767
768static void print_cpu_stall(struct rcu_state *rsp)
769{
770 unsigned long flags;
771 struct rcu_node *rnp = rcu_get_root(rsp);
772
8cdd32a9
PM
773 /*
774 * OK, time to rat on ourselves...
775 * See Documentation/RCU/stallwarn.txt for info on how to debug
776 * RCU CPU stall warnings.
777 */
a858af28
PM
778 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
779 print_cpu_stall_info_begin();
780 print_cpu_stall_info(rsp, smp_processor_id());
781 print_cpu_stall_info_end();
782 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
783 if (!trigger_all_cpu_backtrace())
784 dump_stack();
c1dc0b9c 785
1304afb2 786 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 787 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
788 rsp->jiffies_stall = jiffies +
789 3 * jiffies_till_stall_check() + 3;
1304afb2 790 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 791
64db4cff
PM
792 set_need_resched(); /* kick ourselves to get things going. */
793}
794
795static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
796{
bad6e139
PM
797 unsigned long j;
798 unsigned long js;
64db4cff
PM
799 struct rcu_node *rnp;
800
742734ee 801 if (rcu_cpu_stall_suppress)
c68de209 802 return;
bad6e139
PM
803 j = ACCESS_ONCE(jiffies);
804 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 805 rnp = rdp->mynode;
bad6e139 806 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
807
808 /* We haven't checked in, so go dump stack. */
809 print_cpu_stall(rsp);
810
bad6e139
PM
811 } else if (rcu_gp_in_progress(rsp) &&
812 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 813
bad6e139 814 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
815 print_other_cpu_stall(rsp);
816 }
817}
818
c68de209
PM
819static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
820{
742734ee 821 rcu_cpu_stall_suppress = 1;
c68de209
PM
822 return NOTIFY_DONE;
823}
824
53d84e00
PM
825/**
826 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
827 *
828 * Set the stall-warning timeout way off into the future, thus preventing
829 * any RCU CPU stall-warning messages from appearing in the current set of
830 * RCU grace periods.
831 *
832 * The caller must disable hard irqs.
833 */
834void rcu_cpu_stall_reset(void)
835{
836 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
837 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
838 rcu_preempt_stall_reset();
839}
840
c68de209
PM
841static struct notifier_block rcu_panic_block = {
842 .notifier_call = rcu_panic,
843};
844
845static void __init check_cpu_stall_init(void)
846{
847 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
848}
849
64db4cff
PM
850/*
851 * Update CPU-local rcu_data state to record the newly noticed grace period.
852 * This is used both when we started the grace period and when we notice
9160306e
PM
853 * that someone else started the grace period. The caller must hold the
854 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
855 * and must have irqs disabled.
64db4cff 856 */
9160306e
PM
857static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
858{
859 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
860 /*
861 * If the current grace period is waiting for this CPU,
862 * set up to detect a quiescent state, otherwise don't
863 * go looking for one.
864 */
9160306e 865 rdp->gpnum = rnp->gpnum;
d4c08f2a 866 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
867 if (rnp->qsmask & rdp->grpmask) {
868 rdp->qs_pending = 1;
e4cc1f22 869 rdp->passed_quiesce = 0;
121dfc4b
PM
870 } else
871 rdp->qs_pending = 0;
a858af28 872 zero_cpu_stall_ticks(rdp);
9160306e
PM
873 }
874}
875
64db4cff
PM
876static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
877{
9160306e
PM
878 unsigned long flags;
879 struct rcu_node *rnp;
880
881 local_irq_save(flags);
882 rnp = rdp->mynode;
883 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 884 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
885 local_irq_restore(flags);
886 return;
887 }
888 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 889 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
890}
891
892/*
893 * Did someone else start a new RCU grace period start since we last
894 * checked? Update local state appropriately if so. Must be called
895 * on the CPU corresponding to rdp.
896 */
897static int
898check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
899{
900 unsigned long flags;
901 int ret = 0;
902
903 local_irq_save(flags);
904 if (rdp->gpnum != rsp->gpnum) {
905 note_new_gpnum(rsp, rdp);
906 ret = 1;
907 }
908 local_irq_restore(flags);
909 return ret;
910}
911
d09b62df
PM
912/*
913 * Advance this CPU's callbacks, but only if the current grace period
914 * has ended. This may be called only from the CPU to whom the rdp
915 * belongs. In addition, the corresponding leaf rcu_node structure's
916 * ->lock must be held by the caller, with irqs disabled.
917 */
918static void
919__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
920{
921 /* Did another grace period end? */
922 if (rdp->completed != rnp->completed) {
923
924 /* Advance callbacks. No harm if list empty. */
925 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
926 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
927 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
928
929 /* Remember that we saw this grace-period completion. */
930 rdp->completed = rnp->completed;
d4c08f2a 931 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 932
5ff8e6f0
FW
933 /*
934 * If we were in an extended quiescent state, we may have
121dfc4b 935 * missed some grace periods that others CPUs handled on
5ff8e6f0 936 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
937 * spurious new grace periods. If another grace period
938 * has started, then rnp->gpnum will have advanced, so
939 * we will detect this later on.
5ff8e6f0 940 */
121dfc4b 941 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
942 rdp->gpnum = rdp->completed;
943
20377f32 944 /*
121dfc4b
PM
945 * If RCU does not need a quiescent state from this CPU,
946 * then make sure that this CPU doesn't go looking for one.
20377f32 947 */
121dfc4b 948 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 949 rdp->qs_pending = 0;
d09b62df
PM
950 }
951}
952
953/*
954 * Advance this CPU's callbacks, but only if the current grace period
955 * has ended. This may be called only from the CPU to whom the rdp
956 * belongs.
957 */
958static void
959rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
960{
961 unsigned long flags;
962 struct rcu_node *rnp;
963
964 local_irq_save(flags);
965 rnp = rdp->mynode;
966 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 967 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
968 local_irq_restore(flags);
969 return;
970 }
971 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 972 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
973}
974
975/*
976 * Do per-CPU grace-period initialization for running CPU. The caller
977 * must hold the lock of the leaf rcu_node structure corresponding to
978 * this CPU.
979 */
980static void
981rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
982{
983 /* Prior grace period ended, so advance callbacks for current CPU. */
984 __rcu_process_gp_end(rsp, rnp, rdp);
985
986 /*
987 * Because this CPU just now started the new grace period, we know
988 * that all of its callbacks will be covered by this upcoming grace
989 * period, even the ones that were registered arbitrarily recently.
990 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
991 *
992 * Other CPUs cannot be sure exactly when the grace period started.
993 * Therefore, their recently registered callbacks must pass through
994 * an additional RCU_NEXT_READY stage, so that they will be handled
995 * by the next RCU grace period.
996 */
997 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
998 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
999
1000 /* Set state so that this CPU will detect the next quiescent state. */
1001 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1002}
1003
64db4cff
PM
1004/*
1005 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1006 * in preparation for detecting the next grace period. The caller must hold
1007 * the root node's ->lock, which is released before return. Hard irqs must
1008 * be disabled.
e5601400
PM
1009 *
1010 * Note that it is legal for a dying CPU (which is marked as offline) to
1011 * invoke this function. This can happen when the dying CPU reports its
1012 * quiescent state.
64db4cff
PM
1013 */
1014static void
1015rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1016 __releases(rcu_get_root(rsp)->lock)
1017{
394f99a9 1018 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1019 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1020
037067a1 1021 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1022 !cpu_needs_another_gp(rsp, rdp)) {
1023 /*
1024 * Either the scheduler hasn't yet spawned the first
1025 * non-idle task or this CPU does not need another
1026 * grace period. Either way, don't start a new grace
1027 * period.
1028 */
1029 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1030 return;
1031 }
b32e9eb6 1032
afe24b12 1033 if (rsp->fqs_active) {
b32e9eb6 1034 /*
afe24b12
PM
1035 * This CPU needs a grace period, but force_quiescent_state()
1036 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1037 */
afe24b12
PM
1038 rsp->fqs_need_gp = 1;
1039 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1040 return;
1041 }
1042
1043 /* Advance to a new grace period and initialize state. */
1044 rsp->gpnum++;
d4c08f2a 1045 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1046 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1047 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1048 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1049 record_gp_stall_check_time(rsp);
1304afb2 1050 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1051
64db4cff 1052 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1053 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1054
1055 /*
b835db1f
PM
1056 * Set the quiescent-state-needed bits in all the rcu_node
1057 * structures for all currently online CPUs in breadth-first
1058 * order, starting from the root rcu_node structure. This
1059 * operation relies on the layout of the hierarchy within the
1060 * rsp->node[] array. Note that other CPUs will access only
1061 * the leaves of the hierarchy, which still indicate that no
1062 * grace period is in progress, at least until the corresponding
1063 * leaf node has been initialized. In addition, we have excluded
1064 * CPU-hotplug operations.
64db4cff
PM
1065 *
1066 * Note that the grace period cannot complete until we finish
1067 * the initialization process, as there will be at least one
1068 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1069 * one corresponding to this CPU, due to the fact that we have
1070 * irqs disabled.
64db4cff 1071 */
a0b6c9a7 1072 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1073 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1074 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1075 rnp->qsmask = rnp->qsmaskinit;
de078d87 1076 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1077 rnp->completed = rsp->completed;
1078 if (rnp == rdp->mynode)
1079 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1080 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1081 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1082 rnp->level, rnp->grplo,
1083 rnp->grphi, rnp->qsmask);
1304afb2 1084 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1085 }
1086
83f5b01f 1087 rnp = rcu_get_root(rsp);
1304afb2 1088 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1089 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1090 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1091 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1092}
1093
f41d911f 1094/*
d3f6bad3
PM
1095 * Report a full set of quiescent states to the specified rcu_state
1096 * data structure. This involves cleaning up after the prior grace
1097 * period and letting rcu_start_gp() start up the next grace period
1098 * if one is needed. Note that the caller must hold rnp->lock, as
1099 * required by rcu_start_gp(), which will release it.
f41d911f 1100 */
d3f6bad3 1101static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1102 __releases(rcu_get_root(rsp)->lock)
f41d911f 1103{
15ba0ba8 1104 unsigned long gp_duration;
afe24b12
PM
1105 struct rcu_node *rnp = rcu_get_root(rsp);
1106 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1107
fc2219d4 1108 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1109
1110 /*
1111 * Ensure that all grace-period and pre-grace-period activity
1112 * is seen before the assignment to rsp->completed.
1113 */
1114 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1115 gp_duration = jiffies - rsp->gp_start;
1116 if (gp_duration > rsp->gp_max)
1117 rsp->gp_max = gp_duration;
afe24b12
PM
1118
1119 /*
1120 * We know the grace period is complete, but to everyone else
1121 * it appears to still be ongoing. But it is also the case
1122 * that to everyone else it looks like there is nothing that
1123 * they can do to advance the grace period. It is therefore
1124 * safe for us to drop the lock in order to mark the grace
1125 * period as completed in all of the rcu_node structures.
1126 *
1127 * But if this CPU needs another grace period, it will take
1128 * care of this while initializing the next grace period.
1129 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1130 * because the callbacks have not yet been advanced: Those
1131 * callbacks are waiting on the grace period that just now
1132 * completed.
1133 */
1134 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1135 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1136
1137 /*
1138 * Propagate new ->completed value to rcu_node structures
1139 * so that other CPUs don't have to wait until the start
1140 * of the next grace period to process their callbacks.
1141 */
1142 rcu_for_each_node_breadth_first(rsp, rnp) {
1143 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1144 rnp->completed = rsp->gpnum;
1145 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1146 }
1147 rnp = rcu_get_root(rsp);
1148 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1149 }
1150
1151 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1152 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1153 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1154 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1155}
1156
64db4cff 1157/*
d3f6bad3
PM
1158 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1159 * Allows quiescent states for a group of CPUs to be reported at one go
1160 * to the specified rcu_node structure, though all the CPUs in the group
1161 * must be represented by the same rcu_node structure (which need not be
1162 * a leaf rcu_node structure, though it often will be). That structure's
1163 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1164 */
1165static void
d3f6bad3
PM
1166rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1167 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1168 __releases(rnp->lock)
1169{
28ecd580
PM
1170 struct rcu_node *rnp_c;
1171
64db4cff
PM
1172 /* Walk up the rcu_node hierarchy. */
1173 for (;;) {
1174 if (!(rnp->qsmask & mask)) {
1175
1176 /* Our bit has already been cleared, so done. */
1304afb2 1177 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1178 return;
1179 }
1180 rnp->qsmask &= ~mask;
d4c08f2a
PM
1181 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1182 mask, rnp->qsmask, rnp->level,
1183 rnp->grplo, rnp->grphi,
1184 !!rnp->gp_tasks);
27f4d280 1185 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1186
1187 /* Other bits still set at this level, so done. */
1304afb2 1188 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1189 return;
1190 }
1191 mask = rnp->grpmask;
1192 if (rnp->parent == NULL) {
1193
1194 /* No more levels. Exit loop holding root lock. */
1195
1196 break;
1197 }
1304afb2 1198 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1199 rnp_c = rnp;
64db4cff 1200 rnp = rnp->parent;
1304afb2 1201 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1202 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1203 }
1204
1205 /*
1206 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1207 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1208 * to clean up and start the next grace period if one is needed.
64db4cff 1209 */
d3f6bad3 1210 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1211}
1212
1213/*
d3f6bad3
PM
1214 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1215 * structure. This must be either called from the specified CPU, or
1216 * called when the specified CPU is known to be offline (and when it is
1217 * also known that no other CPU is concurrently trying to help the offline
1218 * CPU). The lastcomp argument is used to make sure we are still in the
1219 * grace period of interest. We don't want to end the current grace period
1220 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1221 */
1222static void
e4cc1f22 1223rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1224{
1225 unsigned long flags;
1226 unsigned long mask;
1227 struct rcu_node *rnp;
1228
1229 rnp = rdp->mynode;
1304afb2 1230 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1231 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1232
1233 /*
e4cc1f22
PM
1234 * The grace period in which this quiescent state was
1235 * recorded has ended, so don't report it upwards.
1236 * We will instead need a new quiescent state that lies
1237 * within the current grace period.
64db4cff 1238 */
e4cc1f22 1239 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1240 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1241 return;
1242 }
1243 mask = rdp->grpmask;
1244 if ((rnp->qsmask & mask) == 0) {
1304afb2 1245 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1246 } else {
1247 rdp->qs_pending = 0;
1248
1249 /*
1250 * This GP can't end until cpu checks in, so all of our
1251 * callbacks can be processed during the next GP.
1252 */
64db4cff
PM
1253 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1254
d3f6bad3 1255 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1256 }
1257}
1258
1259/*
1260 * Check to see if there is a new grace period of which this CPU
1261 * is not yet aware, and if so, set up local rcu_data state for it.
1262 * Otherwise, see if this CPU has just passed through its first
1263 * quiescent state for this grace period, and record that fact if so.
1264 */
1265static void
1266rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1267{
1268 /* If there is now a new grace period, record and return. */
1269 if (check_for_new_grace_period(rsp, rdp))
1270 return;
1271
1272 /*
1273 * Does this CPU still need to do its part for current grace period?
1274 * If no, return and let the other CPUs do their part as well.
1275 */
1276 if (!rdp->qs_pending)
1277 return;
1278
1279 /*
1280 * Was there a quiescent state since the beginning of the grace
1281 * period? If no, then exit and wait for the next call.
1282 */
e4cc1f22 1283 if (!rdp->passed_quiesce)
64db4cff
PM
1284 return;
1285
d3f6bad3
PM
1286 /*
1287 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1288 * judge of that).
1289 */
e4cc1f22 1290 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1291}
1292
1293#ifdef CONFIG_HOTPLUG_CPU
1294
e74f4c45 1295/*
29494be7 1296 * Move a dying CPU's RCU callbacks to online CPU's callback list.
e5601400
PM
1297 * Also record a quiescent state for this CPU for the current grace period.
1298 * Synchronization and interrupt disabling are not required because
1299 * this function executes in stop_machine() context. Therefore, cleanup
1300 * operations that might block must be done later from the CPU_DEAD
1301 * notifier.
1302 *
1303 * Note that the outgoing CPU's bit has already been cleared in the
1304 * cpu_online_mask. This allows us to randomly pick a callback
1305 * destination from the bits set in that mask.
e74f4c45 1306 */
e5601400 1307static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45 1308{
e5601400 1309 unsigned long flags;
e74f4c45 1310 int i;
e5601400
PM
1311 unsigned long mask;
1312 int need_report;
29494be7 1313 int receive_cpu = cpumask_any(cpu_online_mask);
394f99a9 1314 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
29494be7 1315 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
e5601400
PM
1316 struct rcu_node *rnp = rdp->mynode; /* For dying CPU. */
1317
a50c3af9
PM
1318 /* First, adjust the counts. */
1319 if (rdp->nxtlist != NULL) {
1320 receive_rdp->qlen_lazy += rdp->qlen_lazy;
1321 receive_rdp->qlen += rdp->qlen;
1322 rdp->qlen_lazy = 0;
1323 rdp->qlen = 0;
1324 }
1325
1326 /*
1327 * Next, move ready-to-invoke callbacks to be invoked on some
1328 * other CPU. These will not be required to pass through another
1329 * grace period: They are done, regardless of CPU.
1330 */
1331 if (rdp->nxtlist != NULL &&
1332 rdp->nxttail[RCU_DONE_TAIL] != &rdp->nxtlist) {
1333 struct rcu_head *oldhead;
1334 struct rcu_head **oldtail;
1335 struct rcu_head **newtail;
1336
1337 oldhead = rdp->nxtlist;
1338 oldtail = receive_rdp->nxttail[RCU_DONE_TAIL];
1339 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1340 *rdp->nxttail[RCU_DONE_TAIL] = *oldtail;
1341 *receive_rdp->nxttail[RCU_DONE_TAIL] = oldhead;
1342 newtail = rdp->nxttail[RCU_DONE_TAIL];
1343 for (i = RCU_DONE_TAIL; i < RCU_NEXT_SIZE; i++) {
1344 if (receive_rdp->nxttail[i] == oldtail)
1345 receive_rdp->nxttail[i] = newtail;
1346 if (rdp->nxttail[i] == newtail)
1347 rdp->nxttail[i] = &rdp->nxtlist;
1348 }
1349 }
1350
1351 /*
1352 * Finally, put the rest of the callbacks at the end of the list.
1353 * The ones that made it partway through get to start over: We
1354 * cannot assume that grace periods are synchronized across CPUs.
1355 * (We could splice RCU_WAIT_TAIL into RCU_NEXT_READY_TAIL, but
1356 * this does not seem compelling. Not yet, anyway.)
1357 */
e5601400
PM
1358 if (rdp->nxtlist != NULL) {
1359 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1360 receive_rdp->nxttail[RCU_NEXT_TAIL] =
1361 rdp->nxttail[RCU_NEXT_TAIL];
e5601400
PM
1362 receive_rdp->n_cbs_adopted += rdp->qlen;
1363 rdp->n_cbs_orphaned += rdp->qlen;
1364
1365 rdp->nxtlist = NULL;
1366 for (i = 0; i < RCU_NEXT_SIZE; i++)
1367 rdp->nxttail[i] = &rdp->nxtlist;
e5601400 1368 }
e74f4c45 1369
a50c3af9
PM
1370 /*
1371 * Record a quiescent state for the dying CPU. This is safe
1372 * only because we have already cleared out the callbacks.
1373 * (Otherwise, the RCU core might try to schedule the invocation
1374 * of callbacks on this now-offline CPU, which would be bad.)
1375 */
64db4cff 1376 mask = rdp->grpmask; /* rnp->grplo is constant. */
e5601400
PM
1377 trace_rcu_grace_period(rsp->name,
1378 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1379 "cpuofl");
1380 rcu_report_qs_rdp(smp_processor_id(), rsp, rdp, rsp->gpnum);
1381 /* Note that rcu_report_qs_rdp() might call trace_rcu_grace_period(). */
1382
1383 /*
1384 * Remove the dying CPU from the bitmasks in the rcu_node
1385 * hierarchy. Because we are in stop_machine() context, we
1386 * automatically exclude ->onofflock critical sections.
1387 */
64db4cff 1388 do {
e5601400 1389 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff
PM
1390 rnp->qsmaskinit &= ~mask;
1391 if (rnp->qsmaskinit != 0) {
e5601400 1392 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1393 break;
1394 }
d4c08f2a 1395 if (rnp == rdp->mynode) {
d9a3da06 1396 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
e5601400
PM
1397 if (need_report & RCU_OFL_TASKS_NORM_GP)
1398 rcu_report_unblock_qs_rnp(rnp, flags);
1399 else
1400 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1401 if (need_report & RCU_OFL_TASKS_EXP_GP)
1402 rcu_report_exp_rnp(rsp, rnp, true);
d4c08f2a 1403 } else
e5601400 1404 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1405 mask = rnp->grpmask;
64db4cff
PM
1406 rnp = rnp->parent;
1407 } while (rnp != NULL);
64db4cff
PM
1408}
1409
1410/*
e5601400
PM
1411 * The CPU has been completely removed, and some other CPU is reporting
1412 * this fact from process context. Do the remainder of the cleanup.
1413 * There can only be one CPU hotplug operation at a time, so no other
1414 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1415 */
e5601400 1416static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1417{
e5601400
PM
1418 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1419 struct rcu_node *rnp = rdp->mynode;
1420
1421 rcu_stop_cpu_kthread(cpu);
1422 rcu_node_kthread_setaffinity(rnp, -1);
64db4cff
PM
1423}
1424
1425#else /* #ifdef CONFIG_HOTPLUG_CPU */
1426
e5601400 1427static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1428{
1429}
1430
e5601400 1431static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1432{
1433}
1434
1435#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1436
1437/*
1438 * Invoke any RCU callbacks that have made it to the end of their grace
1439 * period. Thottle as specified by rdp->blimit.
1440 */
37c72e56 1441static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1442{
1443 unsigned long flags;
1444 struct rcu_head *next, *list, **tail;
486e2593 1445 int bl, count, count_lazy;
64db4cff
PM
1446
1447 /* If no callbacks are ready, just return.*/
29c00b4a 1448 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1449 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1450 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1451 need_resched(), is_idle_task(current),
1452 rcu_is_callbacks_kthread());
64db4cff 1453 return;
29c00b4a 1454 }
64db4cff
PM
1455
1456 /*
1457 * Extract the list of ready callbacks, disabling to prevent
1458 * races with call_rcu() from interrupt handlers.
1459 */
1460 local_irq_save(flags);
8146c4e2 1461 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1462 bl = rdp->blimit;
486e2593 1463 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1464 list = rdp->nxtlist;
1465 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1466 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1467 tail = rdp->nxttail[RCU_DONE_TAIL];
1468 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1469 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1470 rdp->nxttail[count] = &rdp->nxtlist;
1471 local_irq_restore(flags);
1472
1473 /* Invoke callbacks. */
486e2593 1474 count = count_lazy = 0;
64db4cff
PM
1475 while (list) {
1476 next = list->next;
1477 prefetch(next);
551d55a9 1478 debug_rcu_head_unqueue(list);
486e2593
PM
1479 if (__rcu_reclaim(rsp->name, list))
1480 count_lazy++;
64db4cff 1481 list = next;
dff1672d
PM
1482 /* Stop only if limit reached and CPU has something to do. */
1483 if (++count >= bl &&
1484 (need_resched() ||
1485 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1486 break;
1487 }
1488
1489 local_irq_save(flags);
4968c300
PM
1490 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1491 is_idle_task(current),
1492 rcu_is_callbacks_kthread());
64db4cff
PM
1493
1494 /* Update count, and requeue any remaining callbacks. */
486e2593 1495 rdp->qlen_lazy -= count_lazy;
64db4cff 1496 rdp->qlen -= count;
269dcc1c 1497 rdp->n_cbs_invoked += count;
64db4cff
PM
1498 if (list != NULL) {
1499 *tail = rdp->nxtlist;
1500 rdp->nxtlist = list;
1501 for (count = 0; count < RCU_NEXT_SIZE; count++)
1502 if (&rdp->nxtlist == rdp->nxttail[count])
1503 rdp->nxttail[count] = tail;
1504 else
1505 break;
1506 }
1507
1508 /* Reinstate batch limit if we have worked down the excess. */
1509 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1510 rdp->blimit = blimit;
1511
37c72e56
PM
1512 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1513 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1514 rdp->qlen_last_fqs_check = 0;
1515 rdp->n_force_qs_snap = rsp->n_force_qs;
1516 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1517 rdp->qlen_last_fqs_check = rdp->qlen;
1518
64db4cff
PM
1519 local_irq_restore(flags);
1520
e0f23060 1521 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1522 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1523 invoke_rcu_core();
64db4cff
PM
1524}
1525
1526/*
1527 * Check to see if this CPU is in a non-context-switch quiescent state
1528 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1529 * Also schedule RCU core processing.
64db4cff 1530 *
9b2e4f18 1531 * This function must be called from hardirq context. It is normally
64db4cff
PM
1532 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1533 * false, there is no point in invoking rcu_check_callbacks().
1534 */
1535void rcu_check_callbacks(int cpu, int user)
1536{
300df91c 1537 trace_rcu_utilization("Start scheduler-tick");
a858af28 1538 increment_cpu_stall_ticks();
9b2e4f18 1539 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1540
1541 /*
1542 * Get here if this CPU took its interrupt from user
1543 * mode or from the idle loop, and if this is not a
1544 * nested interrupt. In this case, the CPU is in
d6714c22 1545 * a quiescent state, so note it.
64db4cff
PM
1546 *
1547 * No memory barrier is required here because both
d6714c22
PM
1548 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1549 * variables that other CPUs neither access nor modify,
1550 * at least not while the corresponding CPU is online.
64db4cff
PM
1551 */
1552
d6714c22
PM
1553 rcu_sched_qs(cpu);
1554 rcu_bh_qs(cpu);
64db4cff
PM
1555
1556 } else if (!in_softirq()) {
1557
1558 /*
1559 * Get here if this CPU did not take its interrupt from
1560 * softirq, in other words, if it is not interrupting
1561 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1562 * critical section, so note it.
64db4cff
PM
1563 */
1564
d6714c22 1565 rcu_bh_qs(cpu);
64db4cff 1566 }
f41d911f 1567 rcu_preempt_check_callbacks(cpu);
d21670ac 1568 if (rcu_pending(cpu))
a46e0899 1569 invoke_rcu_core();
300df91c 1570 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1571}
1572
64db4cff
PM
1573/*
1574 * Scan the leaf rcu_node structures, processing dyntick state for any that
1575 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1576 * Also initiate boosting for any threads blocked on the root rcu_node.
1577 *
ee47eb9f 1578 * The caller must have suppressed start of new grace periods.
64db4cff 1579 */
45f014c5 1580static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1581{
1582 unsigned long bit;
1583 int cpu;
1584 unsigned long flags;
1585 unsigned long mask;
a0b6c9a7 1586 struct rcu_node *rnp;
64db4cff 1587
a0b6c9a7 1588 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1589 mask = 0;
1304afb2 1590 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1591 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1592 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1593 return;
64db4cff 1594 }
a0b6c9a7 1595 if (rnp->qsmask == 0) {
1217ed1b 1596 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1597 continue;
1598 }
a0b6c9a7 1599 cpu = rnp->grplo;
64db4cff 1600 bit = 1;
a0b6c9a7 1601 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1602 if ((rnp->qsmask & bit) != 0 &&
1603 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1604 mask |= bit;
1605 }
45f014c5 1606 if (mask != 0) {
64db4cff 1607
d3f6bad3
PM
1608 /* rcu_report_qs_rnp() releases rnp->lock. */
1609 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1610 continue;
1611 }
1304afb2 1612 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1613 }
27f4d280 1614 rnp = rcu_get_root(rsp);
1217ed1b
PM
1615 if (rnp->qsmask == 0) {
1616 raw_spin_lock_irqsave(&rnp->lock, flags);
1617 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1618 }
64db4cff
PM
1619}
1620
1621/*
1622 * Force quiescent states on reluctant CPUs, and also detect which
1623 * CPUs are in dyntick-idle mode.
1624 */
1625static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1626{
1627 unsigned long flags;
64db4cff 1628 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1629
300df91c
PM
1630 trace_rcu_utilization("Start fqs");
1631 if (!rcu_gp_in_progress(rsp)) {
1632 trace_rcu_utilization("End fqs");
64db4cff 1633 return; /* No grace period in progress, nothing to force. */
300df91c 1634 }
1304afb2 1635 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1636 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1637 trace_rcu_utilization("End fqs");
64db4cff
PM
1638 return; /* Someone else is already on the job. */
1639 }
20133cfc 1640 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1641 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1642 rsp->n_force_qs++;
1304afb2 1643 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1644 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1645 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1646 rsp->n_force_qs_ngp++;
1304afb2 1647 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1648 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1649 }
07079d53 1650 rsp->fqs_active = 1;
af446b70 1651 switch (rsp->fqs_state) {
83f5b01f 1652 case RCU_GP_IDLE:
64db4cff
PM
1653 case RCU_GP_INIT:
1654
83f5b01f 1655 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1656
1657 case RCU_SAVE_DYNTICK:
64db4cff
PM
1658 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1659 break; /* So gcc recognizes the dead code. */
1660
f261414f
LJ
1661 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1662
64db4cff 1663 /* Record dyntick-idle state. */
45f014c5 1664 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1665 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1666 if (rcu_gp_in_progress(rsp))
af446b70 1667 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1668 break;
64db4cff
PM
1669
1670 case RCU_FORCE_QS:
1671
1672 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1673 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1674 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1675
1676 /* Leave state in case more forcing is required. */
1677
1304afb2 1678 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1679 break;
64db4cff 1680 }
07079d53 1681 rsp->fqs_active = 0;
46a1e34e 1682 if (rsp->fqs_need_gp) {
1304afb2 1683 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1684 rsp->fqs_need_gp = 0;
1685 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1686 trace_rcu_utilization("End fqs");
46a1e34e
PM
1687 return;
1688 }
1304afb2 1689 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1690unlock_fqs_ret:
1304afb2 1691 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1692 trace_rcu_utilization("End fqs");
64db4cff
PM
1693}
1694
64db4cff 1695/*
e0f23060
PM
1696 * This does the RCU core processing work for the specified rcu_state
1697 * and rcu_data structures. This may be called only from the CPU to
1698 * whom the rdp belongs.
64db4cff
PM
1699 */
1700static void
1701__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1702{
1703 unsigned long flags;
1704
2e597558
PM
1705 WARN_ON_ONCE(rdp->beenonline == 0);
1706
64db4cff
PM
1707 /*
1708 * If an RCU GP has gone long enough, go check for dyntick
1709 * idle CPUs and, if needed, send resched IPIs.
1710 */
20133cfc 1711 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1712 force_quiescent_state(rsp, 1);
1713
1714 /*
1715 * Advance callbacks in response to end of earlier grace
1716 * period that some other CPU ended.
1717 */
1718 rcu_process_gp_end(rsp, rdp);
1719
1720 /* Update RCU state based on any recent quiescent states. */
1721 rcu_check_quiescent_state(rsp, rdp);
1722
1723 /* Does this CPU require a not-yet-started grace period? */
1724 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1725 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1726 rcu_start_gp(rsp, flags); /* releases above lock */
1727 }
1728
1729 /* If there are callbacks ready, invoke them. */
09223371 1730 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1731 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1732}
1733
64db4cff 1734/*
e0f23060 1735 * Do RCU core processing for the current CPU.
64db4cff 1736 */
09223371 1737static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1738{
300df91c 1739 trace_rcu_utilization("Start RCU core");
d6714c22
PM
1740 __rcu_process_callbacks(&rcu_sched_state,
1741 &__get_cpu_var(rcu_sched_data));
64db4cff 1742 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1743 rcu_preempt_process_callbacks();
300df91c 1744 trace_rcu_utilization("End RCU core");
64db4cff
PM
1745}
1746
a26ac245 1747/*
e0f23060
PM
1748 * Schedule RCU callback invocation. If the specified type of RCU
1749 * does not support RCU priority boosting, just do a direct call,
1750 * otherwise wake up the per-CPU kernel kthread. Note that because we
1751 * are running on the current CPU with interrupts disabled, the
1752 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1753 */
a46e0899 1754static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1755{
b0d30417
PM
1756 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1757 return;
a46e0899
PM
1758 if (likely(!rsp->boost)) {
1759 rcu_do_batch(rsp, rdp);
a26ac245
PM
1760 return;
1761 }
a46e0899 1762 invoke_rcu_callbacks_kthread();
a26ac245
PM
1763}
1764
a46e0899 1765static void invoke_rcu_core(void)
09223371
SL
1766{
1767 raise_softirq(RCU_SOFTIRQ);
1768}
1769
64db4cff
PM
1770static void
1771__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1772 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1773{
1774 unsigned long flags;
1775 struct rcu_data *rdp;
1776
0bb7b59d 1777 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1778 debug_rcu_head_queue(head);
64db4cff
PM
1779 head->func = func;
1780 head->next = NULL;
1781
1782 smp_mb(); /* Ensure RCU update seen before callback registry. */
1783
1784 /*
1785 * Opportunistically note grace-period endings and beginnings.
1786 * Note that we might see a beginning right after we see an
1787 * end, but never vice versa, since this CPU has to pass through
1788 * a quiescent state betweentimes.
1789 */
1790 local_irq_save(flags);
e5601400 1791 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
394f99a9 1792 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1793
1794 /* Add the callback to our list. */
1795 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1796 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1797 rdp->qlen++;
486e2593
PM
1798 if (lazy)
1799 rdp->qlen_lazy++;
2655d57e 1800
d4c08f2a
PM
1801 if (__is_kfree_rcu_offset((unsigned long)func))
1802 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1803 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1804 else
486e2593 1805 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1806
2655d57e
PM
1807 /* If interrupts were disabled, don't dive into RCU core. */
1808 if (irqs_disabled_flags(flags)) {
1809 local_irq_restore(flags);
1810 return;
1811 }
64db4cff 1812
37c72e56
PM
1813 /*
1814 * Force the grace period if too many callbacks or too long waiting.
1815 * Enforce hysteresis, and don't invoke force_quiescent_state()
1816 * if some other CPU has recently done so. Also, don't bother
1817 * invoking force_quiescent_state() if the newly enqueued callback
1818 * is the only one waiting for a grace period to complete.
1819 */
2655d57e 1820 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1821
1822 /* Are we ignoring a completed grace period? */
1823 rcu_process_gp_end(rsp, rdp);
1824 check_for_new_grace_period(rsp, rdp);
1825
1826 /* Start a new grace period if one not already started. */
1827 if (!rcu_gp_in_progress(rsp)) {
1828 unsigned long nestflag;
1829 struct rcu_node *rnp_root = rcu_get_root(rsp);
1830
1831 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1832 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1833 } else {
1834 /* Give the grace period a kick. */
1835 rdp->blimit = LONG_MAX;
1836 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1837 *rdp->nxttail[RCU_DONE_TAIL] != head)
1838 force_quiescent_state(rsp, 0);
1839 rdp->n_force_qs_snap = rsp->n_force_qs;
1840 rdp->qlen_last_fqs_check = rdp->qlen;
1841 }
20133cfc 1842 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1843 force_quiescent_state(rsp, 1);
1844 local_irq_restore(flags);
1845}
1846
1847/*
d6714c22 1848 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1849 */
d6714c22 1850void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1851{
486e2593 1852 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1853}
d6714c22 1854EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1855
1856/*
486e2593 1857 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1858 */
1859void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1860{
486e2593 1861 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1862}
1863EXPORT_SYMBOL_GPL(call_rcu_bh);
1864
6ebb237b
PM
1865/**
1866 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1867 *
1868 * Control will return to the caller some time after a full rcu-sched
1869 * grace period has elapsed, in other words after all currently executing
1870 * rcu-sched read-side critical sections have completed. These read-side
1871 * critical sections are delimited by rcu_read_lock_sched() and
1872 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1873 * local_irq_disable(), and so on may be used in place of
1874 * rcu_read_lock_sched().
1875 *
1876 * This means that all preempt_disable code sequences, including NMI and
1877 * hardware-interrupt handlers, in progress on entry will have completed
1878 * before this primitive returns. However, this does not guarantee that
1879 * softirq handlers will have completed, since in some kernels, these
1880 * handlers can run in process context, and can block.
1881 *
1882 * This primitive provides the guarantees made by the (now removed)
1883 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1884 * guarantees that rcu_read_lock() sections will have completed.
1885 * In "classic RCU", these two guarantees happen to be one and
1886 * the same, but can differ in realtime RCU implementations.
1887 */
1888void synchronize_sched(void)
1889{
fe15d706
PM
1890 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1891 !lock_is_held(&rcu_lock_map) &&
1892 !lock_is_held(&rcu_sched_lock_map),
1893 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
1894 if (rcu_blocking_is_gp())
1895 return;
2c42818e 1896 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
1897}
1898EXPORT_SYMBOL_GPL(synchronize_sched);
1899
1900/**
1901 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1902 *
1903 * Control will return to the caller some time after a full rcu_bh grace
1904 * period has elapsed, in other words after all currently executing rcu_bh
1905 * read-side critical sections have completed. RCU read-side critical
1906 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1907 * and may be nested.
1908 */
1909void synchronize_rcu_bh(void)
1910{
fe15d706
PM
1911 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
1912 !lock_is_held(&rcu_lock_map) &&
1913 !lock_is_held(&rcu_sched_lock_map),
1914 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
1915 if (rcu_blocking_is_gp())
1916 return;
2c42818e 1917 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
1918}
1919EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1920
64db4cff
PM
1921/*
1922 * Check to see if there is any immediate RCU-related work to be done
1923 * by the current CPU, for the specified type of RCU, returning 1 if so.
1924 * The checks are in order of increasing expense: checks that can be
1925 * carried out against CPU-local state are performed first. However,
1926 * we must check for CPU stalls first, else we might not get a chance.
1927 */
1928static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1929{
2f51f988
PM
1930 struct rcu_node *rnp = rdp->mynode;
1931
64db4cff
PM
1932 rdp->n_rcu_pending++;
1933
1934 /* Check for CPU stalls, if enabled. */
1935 check_cpu_stall(rsp, rdp);
1936
1937 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
1938 if (rcu_scheduler_fully_active &&
1939 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
1940
1941 /*
1942 * If force_quiescent_state() coming soon and this CPU
1943 * needs a quiescent state, and this is either RCU-sched
1944 * or RCU-bh, force a local reschedule.
1945 */
d21670ac 1946 rdp->n_rp_qs_pending++;
6cc68793 1947 if (!rdp->preemptible &&
d25eb944
PM
1948 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1949 jiffies))
1950 set_need_resched();
e4cc1f22 1951 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 1952 rdp->n_rp_report_qs++;
64db4cff 1953 return 1;
7ba5c840 1954 }
64db4cff
PM
1955
1956 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1957 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1958 rdp->n_rp_cb_ready++;
64db4cff 1959 return 1;
7ba5c840 1960 }
64db4cff
PM
1961
1962 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1963 if (cpu_needs_another_gp(rsp, rdp)) {
1964 rdp->n_rp_cpu_needs_gp++;
64db4cff 1965 return 1;
7ba5c840 1966 }
64db4cff
PM
1967
1968 /* Has another RCU grace period completed? */
2f51f988 1969 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 1970 rdp->n_rp_gp_completed++;
64db4cff 1971 return 1;
7ba5c840 1972 }
64db4cff
PM
1973
1974 /* Has a new RCU grace period started? */
2f51f988 1975 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 1976 rdp->n_rp_gp_started++;
64db4cff 1977 return 1;
7ba5c840 1978 }
64db4cff
PM
1979
1980 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1981 if (rcu_gp_in_progress(rsp) &&
20133cfc 1982 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 1983 rdp->n_rp_need_fqs++;
64db4cff 1984 return 1;
7ba5c840 1985 }
64db4cff
PM
1986
1987 /* nothing to do */
7ba5c840 1988 rdp->n_rp_need_nothing++;
64db4cff
PM
1989 return 0;
1990}
1991
1992/*
1993 * Check to see if there is any immediate RCU-related work to be done
1994 * by the current CPU, returning 1 if so. This function is part of the
1995 * RCU implementation; it is -not- an exported member of the RCU API.
1996 */
a157229c 1997static int rcu_pending(int cpu)
64db4cff 1998{
d6714c22 1999 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
2000 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2001 rcu_preempt_pending(cpu);
64db4cff
PM
2002}
2003
2004/*
2005 * Check to see if any future RCU-related work will need to be done
2006 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2007 * 1 if so.
64db4cff 2008 */
aea1b35e 2009static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
2010{
2011 /* RCU callbacks either ready or pending? */
d6714c22 2012 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f 2013 per_cpu(rcu_bh_data, cpu).nxtlist ||
30fbcc90 2014 rcu_preempt_cpu_has_callbacks(cpu);
64db4cff
PM
2015}
2016
d0ec774c
PM
2017static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2018static atomic_t rcu_barrier_cpu_count;
2019static DEFINE_MUTEX(rcu_barrier_mutex);
2020static struct completion rcu_barrier_completion;
d0ec774c
PM
2021
2022static void rcu_barrier_callback(struct rcu_head *notused)
2023{
2024 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2025 complete(&rcu_barrier_completion);
2026}
2027
2028/*
2029 * Called with preemption disabled, and from cross-cpu IRQ context.
2030 */
2031static void rcu_barrier_func(void *type)
2032{
2033 int cpu = smp_processor_id();
2034 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2035 void (*call_rcu_func)(struct rcu_head *head,
2036 void (*func)(struct rcu_head *head));
2037
2038 atomic_inc(&rcu_barrier_cpu_count);
2039 call_rcu_func = type;
2040 call_rcu_func(head, rcu_barrier_callback);
2041}
2042
d0ec774c
PM
2043/*
2044 * Orchestrate the specified type of RCU barrier, waiting for all
2045 * RCU callbacks of the specified type to complete.
2046 */
e74f4c45
PM
2047static void _rcu_barrier(struct rcu_state *rsp,
2048 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
2049 void (*func)(struct rcu_head *head)))
2050{
2051 BUG_ON(in_interrupt());
e74f4c45 2052 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c
PM
2053 mutex_lock(&rcu_barrier_mutex);
2054 init_completion(&rcu_barrier_completion);
2055 /*
2056 * Initialize rcu_barrier_cpu_count to 1, then invoke
2057 * rcu_barrier_func() on each CPU, so that each CPU also has
2058 * incremented rcu_barrier_cpu_count. Only then is it safe to
2059 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2060 * might complete its grace period before all of the other CPUs
2061 * did their increment, causing this function to return too
2d999e03
PM
2062 * early. Note that on_each_cpu() disables irqs, which prevents
2063 * any CPUs from coming online or going offline until each online
2064 * CPU has queued its RCU-barrier callback.
d0ec774c
PM
2065 */
2066 atomic_set(&rcu_barrier_cpu_count, 1);
2067 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2068 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2069 complete(&rcu_barrier_completion);
2070 wait_for_completion(&rcu_barrier_completion);
2071 mutex_unlock(&rcu_barrier_mutex);
d0ec774c 2072}
d0ec774c
PM
2073
2074/**
2075 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2076 */
2077void rcu_barrier_bh(void)
2078{
e74f4c45 2079 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
2080}
2081EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2082
2083/**
2084 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2085 */
2086void rcu_barrier_sched(void)
2087{
e74f4c45 2088 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
2089}
2090EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2091
64db4cff 2092/*
27569620 2093 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2094 */
27569620
PM
2095static void __init
2096rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2097{
2098 unsigned long flags;
2099 int i;
394f99a9 2100 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2101 struct rcu_node *rnp = rcu_get_root(rsp);
2102
2103 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2104 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2105 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2106 rdp->nxtlist = NULL;
2107 for (i = 0; i < RCU_NEXT_SIZE; i++)
2108 rdp->nxttail[i] = &rdp->nxtlist;
486e2593 2109 rdp->qlen_lazy = 0;
27569620 2110 rdp->qlen = 0;
27569620 2111 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
4145fa7f 2112 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_NESTING);
9b2e4f18 2113 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2114 rdp->cpu = cpu;
d4c08f2a 2115 rdp->rsp = rsp;
1304afb2 2116 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2117}
2118
2119/*
2120 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2121 * offline event can be happening at a given time. Note also that we
2122 * can accept some slop in the rsp->completed access due to the fact
2123 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2124 */
e4fa4c97 2125static void __cpuinit
6cc68793 2126rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2127{
2128 unsigned long flags;
64db4cff 2129 unsigned long mask;
394f99a9 2130 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2131 struct rcu_node *rnp = rcu_get_root(rsp);
2132
2133 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2134 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2135 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2136 rdp->preemptible = preemptible;
37c72e56
PM
2137 rdp->qlen_last_fqs_check = 0;
2138 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2139 rdp->blimit = blimit;
c92b131b
PM
2140 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_NESTING;
2141 atomic_set(&rdp->dynticks->dynticks,
2142 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2143 rcu_prepare_for_idle_init(cpu);
1304afb2 2144 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2145
2146 /*
2147 * A new grace period might start here. If so, we won't be part
2148 * of it, but that is OK, as we are currently in a quiescent state.
2149 */
2150
2151 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2152 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2153
2154 /* Add CPU to rcu_node bitmasks. */
2155 rnp = rdp->mynode;
2156 mask = rdp->grpmask;
2157 do {
2158 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2159 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2160 rnp->qsmaskinit |= mask;
2161 mask = rnp->grpmask;
d09b62df 2162 if (rnp == rdp->mynode) {
06ae115a
PM
2163 /*
2164 * If there is a grace period in progress, we will
2165 * set up to wait for it next time we run the
2166 * RCU core code.
2167 */
2168 rdp->gpnum = rnp->completed;
d09b62df 2169 rdp->completed = rnp->completed;
06ae115a
PM
2170 rdp->passed_quiesce = 0;
2171 rdp->qs_pending = 0;
e4cc1f22 2172 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2173 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2174 }
1304afb2 2175 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2176 rnp = rnp->parent;
2177 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2178
1304afb2 2179 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2180}
2181
d72bce0e 2182static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2183{
f41d911f
PM
2184 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2185 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2186 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2187}
2188
2189/*
f41d911f 2190 * Handle CPU online/offline notification events.
64db4cff 2191 */
9f680ab4
PM
2192static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2193 unsigned long action, void *hcpu)
64db4cff
PM
2194{
2195 long cpu = (long)hcpu;
27f4d280 2196 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2197 struct rcu_node *rnp = rdp->mynode;
64db4cff 2198
300df91c 2199 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2200 switch (action) {
2201 case CPU_UP_PREPARE:
2202 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2203 rcu_prepare_cpu(cpu);
2204 rcu_prepare_kthreads(cpu);
a26ac245
PM
2205 break;
2206 case CPU_ONLINE:
0f962a5e
PM
2207 case CPU_DOWN_FAILED:
2208 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2209 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2210 break;
2211 case CPU_DOWN_PREPARE:
2212 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2213 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2214 break;
d0ec774c
PM
2215 case CPU_DYING:
2216 case CPU_DYING_FROZEN:
2217 /*
2d999e03
PM
2218 * The whole machine is "stopped" except this CPU, so we can
2219 * touch any data without introducing corruption. We send the
2220 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2221 */
e5601400
PM
2222 rcu_cleanup_dying_cpu(&rcu_bh_state);
2223 rcu_cleanup_dying_cpu(&rcu_sched_state);
2224 rcu_preempt_cleanup_dying_cpu();
7cb92499 2225 rcu_cleanup_after_idle(cpu);
d0ec774c 2226 break;
64db4cff
PM
2227 case CPU_DEAD:
2228 case CPU_DEAD_FROZEN:
2229 case CPU_UP_CANCELED:
2230 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2231 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2232 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2233 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2234 break;
2235 default:
2236 break;
2237 }
300df91c 2238 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2239 return NOTIFY_OK;
2240}
2241
bbad9379
PM
2242/*
2243 * This function is invoked towards the end of the scheduler's initialization
2244 * process. Before this is called, the idle task might contain
2245 * RCU read-side critical sections (during which time, this idle
2246 * task is booting the system). After this function is called, the
2247 * idle tasks are prohibited from containing RCU read-side critical
2248 * sections. This function also enables RCU lockdep checking.
2249 */
2250void rcu_scheduler_starting(void)
2251{
2252 WARN_ON(num_online_cpus() != 1);
2253 WARN_ON(nr_context_switches() > 0);
2254 rcu_scheduler_active = 1;
2255}
2256
64db4cff
PM
2257/*
2258 * Compute the per-level fanout, either using the exact fanout specified
2259 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2260 */
2261#ifdef CONFIG_RCU_FANOUT_EXACT
2262static void __init rcu_init_levelspread(struct rcu_state *rsp)
2263{
2264 int i;
2265
0209f649 2266 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
64db4cff 2267 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
0209f649 2268 rsp->levelspread[0] = RCU_FANOUT_LEAF;
64db4cff
PM
2269}
2270#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2271static void __init rcu_init_levelspread(struct rcu_state *rsp)
2272{
2273 int ccur;
2274 int cprv;
2275 int i;
2276
2277 cprv = NR_CPUS;
2278 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2279 ccur = rsp->levelcnt[i];
2280 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2281 cprv = ccur;
2282 }
2283}
2284#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2285
2286/*
2287 * Helper function for rcu_init() that initializes one rcu_state structure.
2288 */
394f99a9
LJ
2289static void __init rcu_init_one(struct rcu_state *rsp,
2290 struct rcu_data __percpu *rda)
64db4cff 2291{
b6407e86
PM
2292 static char *buf[] = { "rcu_node_level_0",
2293 "rcu_node_level_1",
2294 "rcu_node_level_2",
2295 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2296 int cpustride = 1;
2297 int i;
2298 int j;
2299 struct rcu_node *rnp;
2300
b6407e86
PM
2301 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2302
64db4cff
PM
2303 /* Initialize the level-tracking arrays. */
2304
2305 for (i = 1; i < NUM_RCU_LVLS; i++)
2306 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2307 rcu_init_levelspread(rsp);
2308
2309 /* Initialize the elements themselves, starting from the leaves. */
2310
2311 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2312 cpustride *= rsp->levelspread[i];
2313 rnp = rsp->level[i];
2314 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2315 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2316 lockdep_set_class_and_name(&rnp->lock,
2317 &rcu_node_class[i], buf[i]);
f41d911f 2318 rnp->gpnum = 0;
64db4cff
PM
2319 rnp->qsmask = 0;
2320 rnp->qsmaskinit = 0;
2321 rnp->grplo = j * cpustride;
2322 rnp->grphi = (j + 1) * cpustride - 1;
2323 if (rnp->grphi >= NR_CPUS)
2324 rnp->grphi = NR_CPUS - 1;
2325 if (i == 0) {
2326 rnp->grpnum = 0;
2327 rnp->grpmask = 0;
2328 rnp->parent = NULL;
2329 } else {
2330 rnp->grpnum = j % rsp->levelspread[i - 1];
2331 rnp->grpmask = 1UL << rnp->grpnum;
2332 rnp->parent = rsp->level[i - 1] +
2333 j / rsp->levelspread[i - 1];
2334 }
2335 rnp->level = i;
12f5f524 2336 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2337 }
2338 }
0c34029a 2339
394f99a9 2340 rsp->rda = rda;
0c34029a
LJ
2341 rnp = rsp->level[NUM_RCU_LVLS - 1];
2342 for_each_possible_cpu(i) {
4a90a068 2343 while (i > rnp->grphi)
0c34029a 2344 rnp++;
394f99a9 2345 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2346 rcu_boot_init_percpu_data(i, rsp);
2347 }
64db4cff
PM
2348}
2349
9f680ab4 2350void __init rcu_init(void)
64db4cff 2351{
017c4261 2352 int cpu;
9f680ab4 2353
f41d911f 2354 rcu_bootup_announce();
394f99a9
LJ
2355 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2356 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2357 __rcu_init_preempt();
09223371 2358 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2359
2360 /*
2361 * We don't need protection against CPU-hotplug here because
2362 * this is called early in boot, before either interrupts
2363 * or the scheduler are operational.
2364 */
2365 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2366 for_each_online_cpu(cpu)
2367 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2368 check_cpu_stall_init();
64db4cff
PM
2369}
2370
1eba8f84 2371#include "rcutree_plugin.h"
This page took 0.313351 seconds and 5 git commands to generate.