nohz_full: Add full-system idle states and variables
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
f7f7bac9 56#include <linux/ftrace_event.h>
64db4cff 57
9f77da9f 58#include "rcutree.h"
29c00b4a
PM
59#include <trace/events/rcu.h>
60
61#include "rcu.h"
9f77da9f 62
f7f7bac9
SRRH
63/*
64 * Strings used in tracepoints need to be exported via the
65 * tracing system such that tools like perf and trace-cmd can
66 * translate the string address pointers to actual text.
67 */
68#define TPS(x) tracepoint_string(x)
69
64db4cff
PM
70/* Data structures. */
71
f885b7f2 72static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 73static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 74
f7f7bac9
SRRH
75/*
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
82 */
a41bfeb2 83#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
84static char sname##_varname[] = #sname; \
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 86struct rcu_state sname##_state = { \
6c90cc7b 87 .level = { &sname##_state.node[0] }, \
037b64ed 88 .call = cr, \
af446b70 89 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
90 .gpnum = 0UL - 300UL, \
91 .completed = 0UL - 300UL, \
7b2e6011 92 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
93 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
94 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 95 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 96 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 97 .name = sname##_varname, \
a4889858 98 .abbr = sabbr, \
a41bfeb2
SRRH
99}; \
100DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 101
a41bfeb2
SRRH
102RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
103RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 104
27f4d280 105static struct rcu_state *rcu_state;
6ce75a23 106LIST_HEAD(rcu_struct_flavors);
27f4d280 107
f885b7f2
PM
108/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
109static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 110module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
113 NUM_RCU_LVL_0,
114 NUM_RCU_LVL_1,
115 NUM_RCU_LVL_2,
116 NUM_RCU_LVL_3,
117 NUM_RCU_LVL_4,
118};
119int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
120
b0d30417
PM
121/*
122 * The rcu_scheduler_active variable transitions from zero to one just
123 * before the first task is spawned. So when this variable is zero, RCU
124 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 125 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
126 * is one, RCU must actually do all the hard work required to detect real
127 * grace periods. This variable is also used to suppress boot-time false
128 * positives from lockdep-RCU error checking.
129 */
bbad9379
PM
130int rcu_scheduler_active __read_mostly;
131EXPORT_SYMBOL_GPL(rcu_scheduler_active);
132
b0d30417
PM
133/*
134 * The rcu_scheduler_fully_active variable transitions from zero to one
135 * during the early_initcall() processing, which is after the scheduler
136 * is capable of creating new tasks. So RCU processing (for example,
137 * creating tasks for RCU priority boosting) must be delayed until after
138 * rcu_scheduler_fully_active transitions from zero to one. We also
139 * currently delay invocation of any RCU callbacks until after this point.
140 *
141 * It might later prove better for people registering RCU callbacks during
142 * early boot to take responsibility for these callbacks, but one step at
143 * a time.
144 */
145static int rcu_scheduler_fully_active __read_mostly;
146
a46e0899
PM
147#ifdef CONFIG_RCU_BOOST
148
a26ac245
PM
149/*
150 * Control variables for per-CPU and per-rcu_node kthreads. These
151 * handle all flavors of RCU.
152 */
153static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 156DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 157
a46e0899
PM
158#endif /* #ifdef CONFIG_RCU_BOOST */
159
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 163
4a298656
PM
164/*
165 * Track the rcutorture test sequence number and the update version
166 * number within a given test. The rcutorture_testseq is incremented
167 * on every rcutorture module load and unload, so has an odd value
168 * when a test is running. The rcutorture_vernum is set to zero
169 * when rcutorture starts and is incremented on each rcutorture update.
170 * These variables enable correlating rcutorture output with the
171 * RCU tracing information.
172 */
173unsigned long rcutorture_testseq;
174unsigned long rcutorture_vernum;
175
fc2219d4
PM
176/*
177 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
178 * permit this function to be invoked without holding the root rcu_node
179 * structure's ->lock, but of course results can be subject to change.
180 */
181static int rcu_gp_in_progress(struct rcu_state *rsp)
182{
183 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
184}
185
b1f77b05 186/*
d6714c22 187 * Note a quiescent state. Because we do not need to know
b1f77b05 188 * how many quiescent states passed, just if there was at least
d6714c22 189 * one since the start of the grace period, this just sets a flag.
e4cc1f22 190 * The caller must have disabled preemption.
b1f77b05 191 */
d6714c22 192void rcu_sched_qs(int cpu)
b1f77b05 193{
25502a6c 194 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 195
e4cc1f22 196 if (rdp->passed_quiesce == 0)
f7f7bac9 197 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 198 rdp->passed_quiesce = 1;
b1f77b05
IM
199}
200
d6714c22 201void rcu_bh_qs(int cpu)
b1f77b05 202{
25502a6c 203 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 204
e4cc1f22 205 if (rdp->passed_quiesce == 0)
f7f7bac9 206 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 207 rdp->passed_quiesce = 1;
b1f77b05 208}
64db4cff 209
25502a6c
PM
210/*
211 * Note a context switch. This is a quiescent state for RCU-sched,
212 * and requires special handling for preemptible RCU.
e4cc1f22 213 * The caller must have disabled preemption.
25502a6c
PM
214 */
215void rcu_note_context_switch(int cpu)
216{
f7f7bac9 217 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 218 rcu_sched_qs(cpu);
cba6d0d6 219 rcu_preempt_note_context_switch(cpu);
f7f7bac9 220 trace_rcu_utilization(TPS("End context switch"));
25502a6c 221}
29ce8310 222EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 223
90a4d2c0 224DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 225 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 226 .dynticks = ATOMIC_INIT(1),
2333210b
PM
227#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
228 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
229 .dynticks_idle = ATOMIC_INIT(1),
230#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 231};
64db4cff 232
878d7439
ED
233static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
234static long qhimark = 10000; /* If this many pending, ignore blimit. */
235static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 236
878d7439
ED
237module_param(blimit, long, 0444);
238module_param(qhimark, long, 0444);
239module_param(qlowmark, long, 0444);
3d76c082 240
026ad283
PM
241static ulong jiffies_till_first_fqs = ULONG_MAX;
242static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
243
244module_param(jiffies_till_first_fqs, ulong, 0644);
245module_param(jiffies_till_next_fqs, ulong, 0644);
246
910ee45d
PM
247static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
248 struct rcu_data *rdp);
4cdfc175
PM
249static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
250static void force_quiescent_state(struct rcu_state *rsp);
a157229c 251static int rcu_pending(int cpu);
64db4cff
PM
252
253/*
d6714c22 254 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 255 */
d6714c22 256long rcu_batches_completed_sched(void)
64db4cff 257{
d6714c22 258 return rcu_sched_state.completed;
64db4cff 259}
d6714c22 260EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
261
262/*
263 * Return the number of RCU BH batches processed thus far for debug & stats.
264 */
265long rcu_batches_completed_bh(void)
266{
267 return rcu_bh_state.completed;
268}
269EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
270
bf66f18e
PM
271/*
272 * Force a quiescent state for RCU BH.
273 */
274void rcu_bh_force_quiescent_state(void)
275{
4cdfc175 276 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
277}
278EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
279
4a298656
PM
280/*
281 * Record the number of times rcutorture tests have been initiated and
282 * terminated. This information allows the debugfs tracing stats to be
283 * correlated to the rcutorture messages, even when the rcutorture module
284 * is being repeatedly loaded and unloaded. In other words, we cannot
285 * store this state in rcutorture itself.
286 */
287void rcutorture_record_test_transition(void)
288{
289 rcutorture_testseq++;
290 rcutorture_vernum = 0;
291}
292EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
293
294/*
295 * Record the number of writer passes through the current rcutorture test.
296 * This is also used to correlate debugfs tracing stats with the rcutorture
297 * messages.
298 */
299void rcutorture_record_progress(unsigned long vernum)
300{
301 rcutorture_vernum++;
302}
303EXPORT_SYMBOL_GPL(rcutorture_record_progress);
304
bf66f18e
PM
305/*
306 * Force a quiescent state for RCU-sched.
307 */
308void rcu_sched_force_quiescent_state(void)
309{
4cdfc175 310 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
311}
312EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
313
64db4cff
PM
314/*
315 * Does the CPU have callbacks ready to be invoked?
316 */
317static int
318cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
319{
3fbfbf7a
PM
320 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
321 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
322}
323
324/*
dc35c893
PM
325 * Does the current CPU require a not-yet-started grace period?
326 * The caller must have disabled interrupts to prevent races with
327 * normal callback registry.
64db4cff
PM
328 */
329static int
330cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
331{
dc35c893 332 int i;
3fbfbf7a 333
dc35c893
PM
334 if (rcu_gp_in_progress(rsp))
335 return 0; /* No, a grace period is already in progress. */
dae6e64d 336 if (rcu_nocb_needs_gp(rsp))
34ed6246 337 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
338 if (!rdp->nxttail[RCU_NEXT_TAIL])
339 return 0; /* No, this is a no-CBs (or offline) CPU. */
340 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
341 return 1; /* Yes, this CPU has newly registered callbacks. */
342 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
343 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
344 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
345 rdp->nxtcompleted[i]))
346 return 1; /* Yes, CBs for future grace period. */
347 return 0; /* No grace period needed. */
64db4cff
PM
348}
349
350/*
351 * Return the root node of the specified rcu_state structure.
352 */
353static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
354{
355 return &rsp->node[0];
356}
357
9b2e4f18 358/*
adf5091e 359 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
360 *
361 * If the new value of the ->dynticks_nesting counter now is zero,
362 * we really have entered idle, and must do the appropriate accounting.
363 * The caller must have disabled interrupts.
364 */
adf5091e
FW
365static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
366 bool user)
9b2e4f18 367{
f7f7bac9 368 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 369 if (!user && !is_idle_task(current)) {
0989cb46
PM
370 struct task_struct *idle = idle_task(smp_processor_id());
371
f7f7bac9 372 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 373 ftrace_dump(DUMP_ORIG);
0989cb46
PM
374 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
375 current->pid, current->comm,
376 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 377 }
aea1b35e 378 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
379 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
380 smp_mb__before_atomic_inc(); /* See above. */
381 atomic_inc(&rdtp->dynticks);
382 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
383 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
384
385 /*
adf5091e 386 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
387 * in an RCU read-side critical section.
388 */
389 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
390 "Illegal idle entry in RCU read-side critical section.");
391 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
392 "Illegal idle entry in RCU-bh read-side critical section.");
393 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
394 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 395}
64db4cff 396
adf5091e
FW
397/*
398 * Enter an RCU extended quiescent state, which can be either the
399 * idle loop or adaptive-tickless usermode execution.
64db4cff 400 */
adf5091e 401static void rcu_eqs_enter(bool user)
64db4cff 402{
4145fa7f 403 long long oldval;
64db4cff
PM
404 struct rcu_dynticks *rdtp;
405
64db4cff 406 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 407 oldval = rdtp->dynticks_nesting;
29e37d81
PM
408 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
409 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
410 rdtp->dynticks_nesting = 0;
411 else
412 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 413 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 414}
adf5091e
FW
415
416/**
417 * rcu_idle_enter - inform RCU that current CPU is entering idle
418 *
419 * Enter idle mode, in other words, -leave- the mode in which RCU
420 * read-side critical sections can occur. (Though RCU read-side
421 * critical sections can occur in irq handlers in idle, a possibility
422 * handled by irq_enter() and irq_exit().)
423 *
424 * We crowbar the ->dynticks_nesting field to zero to allow for
425 * the possibility of usermode upcalls having messed up our count
426 * of interrupt nesting level during the prior busy period.
427 */
428void rcu_idle_enter(void)
429{
c5d900bf
FW
430 unsigned long flags;
431
432 local_irq_save(flags);
cb349ca9 433 rcu_eqs_enter(false);
eb348b89 434 rcu_sysidle_enter(&__get_cpu_var(rcu_dynticks), 0);
c5d900bf 435 local_irq_restore(flags);
adf5091e 436}
8a2ecf47 437EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 438
2b1d5024 439#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
440/**
441 * rcu_user_enter - inform RCU that we are resuming userspace.
442 *
443 * Enter RCU idle mode right before resuming userspace. No use of RCU
444 * is permitted between this call and rcu_user_exit(). This way the
445 * CPU doesn't need to maintain the tick for RCU maintenance purposes
446 * when the CPU runs in userspace.
447 */
448void rcu_user_enter(void)
449{
91d1aa43 450 rcu_eqs_enter(1);
adf5091e 451}
2b1d5024 452#endif /* CONFIG_RCU_USER_QS */
19dd1591 453
9b2e4f18
PM
454/**
455 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
456 *
457 * Exit from an interrupt handler, which might possibly result in entering
458 * idle mode, in other words, leaving the mode in which read-side critical
459 * sections can occur.
64db4cff 460 *
9b2e4f18
PM
461 * This code assumes that the idle loop never does anything that might
462 * result in unbalanced calls to irq_enter() and irq_exit(). If your
463 * architecture violates this assumption, RCU will give you what you
464 * deserve, good and hard. But very infrequently and irreproducibly.
465 *
466 * Use things like work queues to work around this limitation.
467 *
468 * You have been warned.
64db4cff 469 */
9b2e4f18 470void rcu_irq_exit(void)
64db4cff
PM
471{
472 unsigned long flags;
4145fa7f 473 long long oldval;
64db4cff
PM
474 struct rcu_dynticks *rdtp;
475
476 local_irq_save(flags);
477 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 478 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
479 rdtp->dynticks_nesting--;
480 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 481 if (rdtp->dynticks_nesting)
f7f7bac9 482 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 483 else
cb349ca9 484 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 485 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
486 local_irq_restore(flags);
487}
488
489/*
adf5091e 490 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
491 *
492 * If the new value of the ->dynticks_nesting counter was previously zero,
493 * we really have exited idle, and must do the appropriate accounting.
494 * The caller must have disabled interrupts.
495 */
adf5091e
FW
496static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
497 int user)
9b2e4f18 498{
23b5c8fa
PM
499 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
500 atomic_inc(&rdtp->dynticks);
501 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
502 smp_mb__after_atomic_inc(); /* See above. */
503 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 504 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 505 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 506 if (!user && !is_idle_task(current)) {
0989cb46
PM
507 struct task_struct *idle = idle_task(smp_processor_id());
508
f7f7bac9 509 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 510 oldval, rdtp->dynticks_nesting);
bf1304e9 511 ftrace_dump(DUMP_ORIG);
0989cb46
PM
512 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
513 current->pid, current->comm,
514 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
515 }
516}
517
adf5091e
FW
518/*
519 * Exit an RCU extended quiescent state, which can be either the
520 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 521 */
adf5091e 522static void rcu_eqs_exit(bool user)
9b2e4f18 523{
9b2e4f18
PM
524 struct rcu_dynticks *rdtp;
525 long long oldval;
526
9b2e4f18
PM
527 rdtp = &__get_cpu_var(rcu_dynticks);
528 oldval = rdtp->dynticks_nesting;
29e37d81
PM
529 WARN_ON_ONCE(oldval < 0);
530 if (oldval & DYNTICK_TASK_NEST_MASK)
531 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
532 else
533 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 534 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 535}
adf5091e
FW
536
537/**
538 * rcu_idle_exit - inform RCU that current CPU is leaving idle
539 *
540 * Exit idle mode, in other words, -enter- the mode in which RCU
541 * read-side critical sections can occur.
542 *
543 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
544 * allow for the possibility of usermode upcalls messing up our count
545 * of interrupt nesting level during the busy period that is just
546 * now starting.
547 */
548void rcu_idle_exit(void)
549{
c5d900bf
FW
550 unsigned long flags;
551
552 local_irq_save(flags);
cb349ca9 553 rcu_eqs_exit(false);
eb348b89 554 rcu_sysidle_exit(&__get_cpu_var(rcu_dynticks), 0);
c5d900bf 555 local_irq_restore(flags);
adf5091e 556}
8a2ecf47 557EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 558
2b1d5024 559#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
560/**
561 * rcu_user_exit - inform RCU that we are exiting userspace.
562 *
563 * Exit RCU idle mode while entering the kernel because it can
564 * run a RCU read side critical section anytime.
565 */
566void rcu_user_exit(void)
567{
91d1aa43 568 rcu_eqs_exit(1);
adf5091e 569}
2b1d5024 570#endif /* CONFIG_RCU_USER_QS */
19dd1591 571
9b2e4f18
PM
572/**
573 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
574 *
575 * Enter an interrupt handler, which might possibly result in exiting
576 * idle mode, in other words, entering the mode in which read-side critical
577 * sections can occur.
578 *
579 * Note that the Linux kernel is fully capable of entering an interrupt
580 * handler that it never exits, for example when doing upcalls to
581 * user mode! This code assumes that the idle loop never does upcalls to
582 * user mode. If your architecture does do upcalls from the idle loop (or
583 * does anything else that results in unbalanced calls to the irq_enter()
584 * and irq_exit() functions), RCU will give you what you deserve, good
585 * and hard. But very infrequently and irreproducibly.
586 *
587 * Use things like work queues to work around this limitation.
588 *
589 * You have been warned.
590 */
591void rcu_irq_enter(void)
592{
593 unsigned long flags;
594 struct rcu_dynticks *rdtp;
595 long long oldval;
596
597 local_irq_save(flags);
598 rdtp = &__get_cpu_var(rcu_dynticks);
599 oldval = rdtp->dynticks_nesting;
600 rdtp->dynticks_nesting++;
601 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 602 if (oldval)
f7f7bac9 603 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 604 else
cb349ca9 605 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 606 rcu_sysidle_exit(rdtp, 1);
64db4cff 607 local_irq_restore(flags);
64db4cff
PM
608}
609
610/**
611 * rcu_nmi_enter - inform RCU of entry to NMI context
612 *
613 * If the CPU was idle with dynamic ticks active, and there is no
614 * irq handler running, this updates rdtp->dynticks_nmi to let the
615 * RCU grace-period handling know that the CPU is active.
616 */
617void rcu_nmi_enter(void)
618{
619 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
620
23b5c8fa
PM
621 if (rdtp->dynticks_nmi_nesting == 0 &&
622 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 623 return;
23b5c8fa
PM
624 rdtp->dynticks_nmi_nesting++;
625 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
626 atomic_inc(&rdtp->dynticks);
627 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
628 smp_mb__after_atomic_inc(); /* See above. */
629 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
630}
631
632/**
633 * rcu_nmi_exit - inform RCU of exit from NMI context
634 *
635 * If the CPU was idle with dynamic ticks active, and there is no
636 * irq handler running, this updates rdtp->dynticks_nmi to let the
637 * RCU grace-period handling know that the CPU is no longer active.
638 */
639void rcu_nmi_exit(void)
640{
641 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
642
23b5c8fa
PM
643 if (rdtp->dynticks_nmi_nesting == 0 ||
644 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 645 return;
23b5c8fa
PM
646 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
647 smp_mb__before_atomic_inc(); /* See above. */
648 atomic_inc(&rdtp->dynticks);
649 smp_mb__after_atomic_inc(); /* Force delay to next write. */
650 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
651}
652
653/**
9b2e4f18 654 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 655 *
9b2e4f18 656 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 657 * or NMI handler, return true.
64db4cff 658 */
9b2e4f18 659int rcu_is_cpu_idle(void)
64db4cff 660{
34240697
PM
661 int ret;
662
663 preempt_disable();
664 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
665 preempt_enable();
666 return ret;
64db4cff 667}
e6b80a3b 668EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 669
62fde6ed 670#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
671
672/*
673 * Is the current CPU online? Disable preemption to avoid false positives
674 * that could otherwise happen due to the current CPU number being sampled,
675 * this task being preempted, its old CPU being taken offline, resuming
676 * on some other CPU, then determining that its old CPU is now offline.
677 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
678 * the check for rcu_scheduler_fully_active. Note also that it is OK
679 * for a CPU coming online to use RCU for one jiffy prior to marking itself
680 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
681 * offline to continue to use RCU for one jiffy after marking itself
682 * offline in the cpu_online_mask. This leniency is necessary given the
683 * non-atomic nature of the online and offline processing, for example,
684 * the fact that a CPU enters the scheduler after completing the CPU_DYING
685 * notifiers.
686 *
687 * This is also why RCU internally marks CPUs online during the
688 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
689 *
690 * Disable checking if in an NMI handler because we cannot safely report
691 * errors from NMI handlers anyway.
692 */
693bool rcu_lockdep_current_cpu_online(void)
694{
2036d94a
PM
695 struct rcu_data *rdp;
696 struct rcu_node *rnp;
c0d6d01b
PM
697 bool ret;
698
699 if (in_nmi())
700 return 1;
701 preempt_disable();
2036d94a
PM
702 rdp = &__get_cpu_var(rcu_sched_data);
703 rnp = rdp->mynode;
704 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
705 !rcu_scheduler_fully_active;
706 preempt_enable();
707 return ret;
708}
709EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
710
62fde6ed 711#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 712
64db4cff 713/**
9b2e4f18 714 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 715 *
9b2e4f18
PM
716 * If the current CPU is idle or running at a first-level (not nested)
717 * interrupt from idle, return true. The caller must have at least
718 * disabled preemption.
64db4cff 719 */
62e3cb14 720static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 721{
9b2e4f18 722 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
723}
724
64db4cff
PM
725/*
726 * Snapshot the specified CPU's dynticks counter so that we can later
727 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 728 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
729 */
730static int dyntick_save_progress_counter(struct rcu_data *rdp)
731{
23b5c8fa 732 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 733 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
734}
735
736/*
737 * Return true if the specified CPU has passed through a quiescent
738 * state by virtue of being in or having passed through an dynticks
739 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 740 * for this same CPU, or by virtue of having been offline.
64db4cff
PM
741 */
742static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
743{
7eb4f455
PM
744 unsigned int curr;
745 unsigned int snap;
64db4cff 746
7eb4f455
PM
747 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
748 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
749
750 /*
751 * If the CPU passed through or entered a dynticks idle phase with
752 * no active irq/NMI handlers, then we can safely pretend that the CPU
753 * already acknowledged the request to pass through a quiescent
754 * state. Either way, that CPU cannot possibly be in an RCU
755 * read-side critical section that started before the beginning
756 * of the current RCU grace period.
757 */
7eb4f455 758 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 759 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
760 rdp->dynticks_fqs++;
761 return 1;
762 }
763
a82dcc76
PM
764 /*
765 * Check for the CPU being offline, but only if the grace period
766 * is old enough. We don't need to worry about the CPU changing
767 * state: If we see it offline even once, it has been through a
768 * quiescent state.
769 *
770 * The reason for insisting that the grace period be at least
771 * one jiffy old is that CPUs that are not quite online and that
772 * have just gone offline can still execute RCU read-side critical
773 * sections.
774 */
775 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
776 return 0; /* Grace period is not old enough. */
777 barrier();
778 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 779 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
780 rdp->offline_fqs++;
781 return 1;
782 }
65d798f0
PM
783
784 /*
785 * There is a possibility that a CPU in adaptive-ticks state
786 * might run in the kernel with the scheduling-clock tick disabled
787 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
788 * force the CPU to restart the scheduling-clock tick in this
789 * CPU is in this state.
790 */
791 rcu_kick_nohz_cpu(rdp->cpu);
792
a82dcc76 793 return 0;
64db4cff
PM
794}
795
64db4cff
PM
796static void record_gp_stall_check_time(struct rcu_state *rsp)
797{
798 rsp->gp_start = jiffies;
6bfc09e2 799 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
64db4cff
PM
800}
801
b637a328
PM
802/*
803 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
804 * for architectures that do not implement trigger_all_cpu_backtrace().
805 * The NMI-triggered stack traces are more accurate because they are
806 * printed by the target CPU.
807 */
808static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
809{
810 int cpu;
811 unsigned long flags;
812 struct rcu_node *rnp;
813
814 rcu_for_each_leaf_node(rsp, rnp) {
815 raw_spin_lock_irqsave(&rnp->lock, flags);
816 if (rnp->qsmask != 0) {
817 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
818 if (rnp->qsmask & (1UL << cpu))
819 dump_cpu_task(rnp->grplo + cpu);
820 }
821 raw_spin_unlock_irqrestore(&rnp->lock, flags);
822 }
823}
824
64db4cff
PM
825static void print_other_cpu_stall(struct rcu_state *rsp)
826{
827 int cpu;
828 long delta;
829 unsigned long flags;
285fe294 830 int ndetected = 0;
64db4cff 831 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 832 long totqlen = 0;
64db4cff
PM
833
834 /* Only let one CPU complain about others per time interval. */
835
1304afb2 836 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 837 delta = jiffies - rsp->jiffies_stall;
fc2219d4 838 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 839 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
840 return;
841 }
6bfc09e2 842 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 843 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 844
8cdd32a9
PM
845 /*
846 * OK, time to rat on our buddy...
847 * See Documentation/RCU/stallwarn.txt for info on how to debug
848 * RCU CPU stall warnings.
849 */
d7f3e207 850 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 851 rsp->name);
a858af28 852 print_cpu_stall_info_begin();
a0b6c9a7 853 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 854 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 855 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
856 if (rnp->qsmask != 0) {
857 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
858 if (rnp->qsmask & (1UL << cpu)) {
859 print_cpu_stall_info(rsp,
860 rnp->grplo + cpu);
861 ndetected++;
862 }
863 }
3acd9eb3 864 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 865 }
a858af28
PM
866
867 /*
868 * Now rat on any tasks that got kicked up to the root rcu_node
869 * due to CPU offlining.
870 */
871 rnp = rcu_get_root(rsp);
872 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 873 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
874 raw_spin_unlock_irqrestore(&rnp->lock, flags);
875
876 print_cpu_stall_info_end();
53bb857c
PM
877 for_each_possible_cpu(cpu)
878 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
879 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 880 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 881 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 882 if (ndetected == 0)
d7f3e207 883 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 884 else if (!trigger_all_cpu_backtrace())
b637a328 885 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 886
4cdfc175 887 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
888
889 rcu_print_detail_task_stall(rsp);
890
4cdfc175 891 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
892}
893
894static void print_cpu_stall(struct rcu_state *rsp)
895{
53bb857c 896 int cpu;
64db4cff
PM
897 unsigned long flags;
898 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 899 long totqlen = 0;
64db4cff 900
8cdd32a9
PM
901 /*
902 * OK, time to rat on ourselves...
903 * See Documentation/RCU/stallwarn.txt for info on how to debug
904 * RCU CPU stall warnings.
905 */
d7f3e207 906 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
907 print_cpu_stall_info_begin();
908 print_cpu_stall_info(rsp, smp_processor_id());
909 print_cpu_stall_info_end();
53bb857c
PM
910 for_each_possible_cpu(cpu)
911 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
912 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
913 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
914 if (!trigger_all_cpu_backtrace())
915 dump_stack();
c1dc0b9c 916
1304afb2 917 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 918 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 919 rsp->jiffies_stall = jiffies +
6bfc09e2 920 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 921 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 922
64db4cff
PM
923 set_need_resched(); /* kick ourselves to get things going. */
924}
925
926static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
927{
bad6e139
PM
928 unsigned long j;
929 unsigned long js;
64db4cff
PM
930 struct rcu_node *rnp;
931
742734ee 932 if (rcu_cpu_stall_suppress)
c68de209 933 return;
bad6e139
PM
934 j = ACCESS_ONCE(jiffies);
935 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 936 rnp = rdp->mynode;
c96ea7cf
PM
937 if (rcu_gp_in_progress(rsp) &&
938 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
939
940 /* We haven't checked in, so go dump stack. */
941 print_cpu_stall(rsp);
942
bad6e139
PM
943 } else if (rcu_gp_in_progress(rsp) &&
944 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 945
bad6e139 946 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
947 print_other_cpu_stall(rsp);
948 }
949}
950
53d84e00
PM
951/**
952 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
953 *
954 * Set the stall-warning timeout way off into the future, thus preventing
955 * any RCU CPU stall-warning messages from appearing in the current set of
956 * RCU grace periods.
957 *
958 * The caller must disable hard irqs.
959 */
960void rcu_cpu_stall_reset(void)
961{
6ce75a23
PM
962 struct rcu_state *rsp;
963
964 for_each_rcu_flavor(rsp)
965 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
966}
967
3f5d3ea6
PM
968/*
969 * Initialize the specified rcu_data structure's callback list to empty.
970 */
971static void init_callback_list(struct rcu_data *rdp)
972{
973 int i;
974
34ed6246
PM
975 if (init_nocb_callback_list(rdp))
976 return;
3f5d3ea6
PM
977 rdp->nxtlist = NULL;
978 for (i = 0; i < RCU_NEXT_SIZE; i++)
979 rdp->nxttail[i] = &rdp->nxtlist;
980}
981
dc35c893
PM
982/*
983 * Determine the value that ->completed will have at the end of the
984 * next subsequent grace period. This is used to tag callbacks so that
985 * a CPU can invoke callbacks in a timely fashion even if that CPU has
986 * been dyntick-idle for an extended period with callbacks under the
987 * influence of RCU_FAST_NO_HZ.
988 *
989 * The caller must hold rnp->lock with interrupts disabled.
990 */
991static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
992 struct rcu_node *rnp)
993{
994 /*
995 * If RCU is idle, we just wait for the next grace period.
996 * But we can only be sure that RCU is idle if we are looking
997 * at the root rcu_node structure -- otherwise, a new grace
998 * period might have started, but just not yet gotten around
999 * to initializing the current non-root rcu_node structure.
1000 */
1001 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1002 return rnp->completed + 1;
1003
1004 /*
1005 * Otherwise, wait for a possible partial grace period and
1006 * then the subsequent full grace period.
1007 */
1008 return rnp->completed + 2;
1009}
1010
0446be48
PM
1011/*
1012 * Trace-event helper function for rcu_start_future_gp() and
1013 * rcu_nocb_wait_gp().
1014 */
1015static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1016 unsigned long c, const char *s)
0446be48
PM
1017{
1018 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1019 rnp->completed, c, rnp->level,
1020 rnp->grplo, rnp->grphi, s);
1021}
1022
1023/*
1024 * Start some future grace period, as needed to handle newly arrived
1025 * callbacks. The required future grace periods are recorded in each
1026 * rcu_node structure's ->need_future_gp field.
1027 *
1028 * The caller must hold the specified rcu_node structure's ->lock.
1029 */
1030static unsigned long __maybe_unused
1031rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1032{
1033 unsigned long c;
1034 int i;
1035 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1036
1037 /*
1038 * Pick up grace-period number for new callbacks. If this
1039 * grace period is already marked as needed, return to the caller.
1040 */
1041 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1042 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1043 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1044 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1045 return c;
1046 }
1047
1048 /*
1049 * If either this rcu_node structure or the root rcu_node structure
1050 * believe that a grace period is in progress, then we must wait
1051 * for the one following, which is in "c". Because our request
1052 * will be noticed at the end of the current grace period, we don't
1053 * need to explicitly start one.
1054 */
1055 if (rnp->gpnum != rnp->completed ||
1056 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1057 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1058 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1059 return c;
1060 }
1061
1062 /*
1063 * There might be no grace period in progress. If we don't already
1064 * hold it, acquire the root rcu_node structure's lock in order to
1065 * start one (if needed).
1066 */
1067 if (rnp != rnp_root)
1068 raw_spin_lock(&rnp_root->lock);
1069
1070 /*
1071 * Get a new grace-period number. If there really is no grace
1072 * period in progress, it will be smaller than the one we obtained
1073 * earlier. Adjust callbacks as needed. Note that even no-CBs
1074 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1075 */
1076 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1077 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1078 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1079 rdp->nxtcompleted[i] = c;
1080
1081 /*
1082 * If the needed for the required grace period is already
1083 * recorded, trace and leave.
1084 */
1085 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1086 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1087 goto unlock_out;
1088 }
1089
1090 /* Record the need for the future grace period. */
1091 rnp_root->need_future_gp[c & 0x1]++;
1092
1093 /* If a grace period is not already in progress, start one. */
1094 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1095 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1096 } else {
f7f7bac9 1097 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1098 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1099 }
1100unlock_out:
1101 if (rnp != rnp_root)
1102 raw_spin_unlock(&rnp_root->lock);
1103 return c;
1104}
1105
1106/*
1107 * Clean up any old requests for the just-ended grace period. Also return
1108 * whether any additional grace periods have been requested. Also invoke
1109 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1110 * waiting for this grace period to complete.
1111 */
1112static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1113{
1114 int c = rnp->completed;
1115 int needmore;
1116 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1117
1118 rcu_nocb_gp_cleanup(rsp, rnp);
1119 rnp->need_future_gp[c & 0x1] = 0;
1120 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1121 trace_rcu_future_gp(rnp, rdp, c,
1122 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1123 return needmore;
1124}
1125
dc35c893
PM
1126/*
1127 * If there is room, assign a ->completed number to any callbacks on
1128 * this CPU that have not already been assigned. Also accelerate any
1129 * callbacks that were previously assigned a ->completed number that has
1130 * since proven to be too conservative, which can happen if callbacks get
1131 * assigned a ->completed number while RCU is idle, but with reference to
1132 * a non-root rcu_node structure. This function is idempotent, so it does
1133 * not hurt to call it repeatedly.
1134 *
1135 * The caller must hold rnp->lock with interrupts disabled.
1136 */
1137static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1138 struct rcu_data *rdp)
1139{
1140 unsigned long c;
1141 int i;
1142
1143 /* If the CPU has no callbacks, nothing to do. */
1144 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1145 return;
1146
1147 /*
1148 * Starting from the sublist containing the callbacks most
1149 * recently assigned a ->completed number and working down, find the
1150 * first sublist that is not assignable to an upcoming grace period.
1151 * Such a sublist has something in it (first two tests) and has
1152 * a ->completed number assigned that will complete sooner than
1153 * the ->completed number for newly arrived callbacks (last test).
1154 *
1155 * The key point is that any later sublist can be assigned the
1156 * same ->completed number as the newly arrived callbacks, which
1157 * means that the callbacks in any of these later sublist can be
1158 * grouped into a single sublist, whether or not they have already
1159 * been assigned a ->completed number.
1160 */
1161 c = rcu_cbs_completed(rsp, rnp);
1162 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1163 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1164 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1165 break;
1166
1167 /*
1168 * If there are no sublist for unassigned callbacks, leave.
1169 * At the same time, advance "i" one sublist, so that "i" will
1170 * index into the sublist where all the remaining callbacks should
1171 * be grouped into.
1172 */
1173 if (++i >= RCU_NEXT_TAIL)
1174 return;
1175
1176 /*
1177 * Assign all subsequent callbacks' ->completed number to the next
1178 * full grace period and group them all in the sublist initially
1179 * indexed by "i".
1180 */
1181 for (; i <= RCU_NEXT_TAIL; i++) {
1182 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1183 rdp->nxtcompleted[i] = c;
1184 }
910ee45d
PM
1185 /* Record any needed additional grace periods. */
1186 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1187
1188 /* Trace depending on how much we were able to accelerate. */
1189 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1190 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1191 else
f7f7bac9 1192 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1193}
1194
1195/*
1196 * Move any callbacks whose grace period has completed to the
1197 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1198 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1199 * sublist. This function is idempotent, so it does not hurt to
1200 * invoke it repeatedly. As long as it is not invoked -too- often...
1201 *
1202 * The caller must hold rnp->lock with interrupts disabled.
1203 */
1204static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1205 struct rcu_data *rdp)
1206{
1207 int i, j;
1208
1209 /* If the CPU has no callbacks, nothing to do. */
1210 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1211 return;
1212
1213 /*
1214 * Find all callbacks whose ->completed numbers indicate that they
1215 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1216 */
1217 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1218 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1219 break;
1220 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1221 }
1222 /* Clean up any sublist tail pointers that were misordered above. */
1223 for (j = RCU_WAIT_TAIL; j < i; j++)
1224 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1225
1226 /* Copy down callbacks to fill in empty sublists. */
1227 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1228 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1229 break;
1230 rdp->nxttail[j] = rdp->nxttail[i];
1231 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1232 }
1233
1234 /* Classify any remaining callbacks. */
1235 rcu_accelerate_cbs(rsp, rnp, rdp);
1236}
1237
d09b62df 1238/*
ba9fbe95
PM
1239 * Update CPU-local rcu_data state to record the beginnings and ends of
1240 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1241 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1242 */
ba9fbe95 1243static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1244{
ba9fbe95 1245 /* Handle the ends of any preceding grace periods first. */
dc35c893 1246 if (rdp->completed == rnp->completed) {
d09b62df 1247
ba9fbe95 1248 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1249 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1250
dc35c893
PM
1251 } else {
1252
1253 /* Advance callbacks. */
1254 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1255
1256 /* Remember that we saw this grace-period completion. */
1257 rdp->completed = rnp->completed;
f7f7bac9 1258 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1259 }
398ebe60 1260
6eaef633
PM
1261 if (rdp->gpnum != rnp->gpnum) {
1262 /*
1263 * If the current grace period is waiting for this CPU,
1264 * set up to detect a quiescent state, otherwise don't
1265 * go looking for one.
1266 */
1267 rdp->gpnum = rnp->gpnum;
f7f7bac9 1268 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1269 rdp->passed_quiesce = 0;
1270 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1271 zero_cpu_stall_ticks(rdp);
1272 }
1273}
1274
d34ea322 1275static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1276{
1277 unsigned long flags;
1278 struct rcu_node *rnp;
1279
1280 local_irq_save(flags);
1281 rnp = rdp->mynode;
d34ea322
PM
1282 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1283 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1284 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1285 local_irq_restore(flags);
1286 return;
1287 }
d34ea322 1288 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1289 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1290}
1291
b3dbec76 1292/*
7fdefc10 1293 * Initialize a new grace period.
b3dbec76 1294 */
7fdefc10 1295static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1296{
1297 struct rcu_data *rdp;
7fdefc10 1298 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1299
7fdefc10 1300 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1301 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1302
7fdefc10
PM
1303 if (rcu_gp_in_progress(rsp)) {
1304 /* Grace period already in progress, don't start another. */
1305 raw_spin_unlock_irq(&rnp->lock);
1306 return 0;
1307 }
1308
7fdefc10
PM
1309 /* Advance to a new grace period and initialize state. */
1310 rsp->gpnum++;
f7f7bac9 1311 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1312 record_gp_stall_check_time(rsp);
1313 raw_spin_unlock_irq(&rnp->lock);
1314
1315 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1316 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1317
1318 /*
1319 * Set the quiescent-state-needed bits in all the rcu_node
1320 * structures for all currently online CPUs in breadth-first order,
1321 * starting from the root rcu_node structure, relying on the layout
1322 * of the tree within the rsp->node[] array. Note that other CPUs
1323 * will access only the leaves of the hierarchy, thus seeing that no
1324 * grace period is in progress, at least until the corresponding
1325 * leaf node has been initialized. In addition, we have excluded
1326 * CPU-hotplug operations.
1327 *
1328 * The grace period cannot complete until the initialization
1329 * process finishes, because this kthread handles both.
1330 */
1331 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1332 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1333 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1334 rcu_preempt_check_blocked_tasks(rnp);
1335 rnp->qsmask = rnp->qsmaskinit;
0446be48 1336 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1337 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1338 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1339 if (rnp == rdp->mynode)
ce3d9c03 1340 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1341 rcu_preempt_boost_start_gp(rnp);
1342 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1343 rnp->level, rnp->grplo,
1344 rnp->grphi, rnp->qsmask);
1345 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1346#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1347 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1348 system_state == SYSTEM_RUNNING)
971394f3 1349 udelay(200);
661a85dc 1350#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1351 cond_resched();
1352 }
b3dbec76 1353
a4fbe35a 1354 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1355 return 1;
1356}
b3dbec76 1357
4cdfc175
PM
1358/*
1359 * Do one round of quiescent-state forcing.
1360 */
1361int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1362{
1363 int fqs_state = fqs_state_in;
1364 struct rcu_node *rnp = rcu_get_root(rsp);
1365
1366 rsp->n_force_qs++;
1367 if (fqs_state == RCU_SAVE_DYNTICK) {
1368 /* Collect dyntick-idle snapshots. */
1369 force_qs_rnp(rsp, dyntick_save_progress_counter);
1370 fqs_state = RCU_FORCE_QS;
1371 } else {
1372 /* Handle dyntick-idle and offline CPUs. */
1373 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1374 }
1375 /* Clear flag to prevent immediate re-entry. */
1376 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1377 raw_spin_lock_irq(&rnp->lock);
1378 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1379 raw_spin_unlock_irq(&rnp->lock);
1380 }
1381 return fqs_state;
1382}
1383
7fdefc10
PM
1384/*
1385 * Clean up after the old grace period.
1386 */
4cdfc175 1387static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1388{
1389 unsigned long gp_duration;
dae6e64d 1390 int nocb = 0;
7fdefc10
PM
1391 struct rcu_data *rdp;
1392 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1393
7fdefc10
PM
1394 raw_spin_lock_irq(&rnp->lock);
1395 gp_duration = jiffies - rsp->gp_start;
1396 if (gp_duration > rsp->gp_max)
1397 rsp->gp_max = gp_duration;
b3dbec76 1398
7fdefc10
PM
1399 /*
1400 * We know the grace period is complete, but to everyone else
1401 * it appears to still be ongoing. But it is also the case
1402 * that to everyone else it looks like there is nothing that
1403 * they can do to advance the grace period. It is therefore
1404 * safe for us to drop the lock in order to mark the grace
1405 * period as completed in all of the rcu_node structures.
7fdefc10 1406 */
5d4b8659 1407 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1408
5d4b8659
PM
1409 /*
1410 * Propagate new ->completed value to rcu_node structures so
1411 * that other CPUs don't have to wait until the start of the next
1412 * grace period to process their callbacks. This also avoids
1413 * some nasty RCU grace-period initialization races by forcing
1414 * the end of the current grace period to be completely recorded in
1415 * all of the rcu_node structures before the beginning of the next
1416 * grace period is recorded in any of the rcu_node structures.
1417 */
1418 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1419 raw_spin_lock_irq(&rnp->lock);
0446be48 1420 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1421 rdp = this_cpu_ptr(rsp->rda);
1422 if (rnp == rdp->mynode)
470716fc 1423 __note_gp_changes(rsp, rnp, rdp);
0446be48 1424 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1425 raw_spin_unlock_irq(&rnp->lock);
1426 cond_resched();
7fdefc10 1427 }
5d4b8659
PM
1428 rnp = rcu_get_root(rsp);
1429 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1430 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1431
1432 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1433 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1434 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1435 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1436 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
7fdefc10
PM
1437 if (cpu_needs_another_gp(rsp, rdp))
1438 rsp->gp_flags = 1;
1439 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1440}
1441
1442/*
1443 * Body of kthread that handles grace periods.
1444 */
1445static int __noreturn rcu_gp_kthread(void *arg)
1446{
4cdfc175 1447 int fqs_state;
d40011f6 1448 unsigned long j;
4cdfc175 1449 int ret;
7fdefc10
PM
1450 struct rcu_state *rsp = arg;
1451 struct rcu_node *rnp = rcu_get_root(rsp);
1452
1453 for (;;) {
1454
1455 /* Handle grace-period start. */
1456 for (;;) {
4cdfc175
PM
1457 wait_event_interruptible(rsp->gp_wq,
1458 rsp->gp_flags &
1459 RCU_GP_FLAG_INIT);
1460 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1461 rcu_gp_init(rsp))
7fdefc10
PM
1462 break;
1463 cond_resched();
1464 flush_signals(current);
1465 }
cabc49c1 1466
4cdfc175
PM
1467 /* Handle quiescent-state forcing. */
1468 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1469 j = jiffies_till_first_fqs;
1470 if (j > HZ) {
1471 j = HZ;
1472 jiffies_till_first_fqs = HZ;
1473 }
cabc49c1 1474 for (;;) {
d40011f6 1475 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1476 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1477 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1478 (!ACCESS_ONCE(rnp->qsmask) &&
1479 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1480 j);
4cdfc175 1481 /* If grace period done, leave loop. */
cabc49c1 1482 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1483 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1484 break;
4cdfc175
PM
1485 /* If time for quiescent-state forcing, do it. */
1486 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1487 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1488 cond_resched();
1489 } else {
1490 /* Deal with stray signal. */
1491 cond_resched();
1492 flush_signals(current);
1493 }
d40011f6
PM
1494 j = jiffies_till_next_fqs;
1495 if (j > HZ) {
1496 j = HZ;
1497 jiffies_till_next_fqs = HZ;
1498 } else if (j < 1) {
1499 j = 1;
1500 jiffies_till_next_fqs = 1;
1501 }
cabc49c1 1502 }
4cdfc175
PM
1503
1504 /* Handle grace-period end. */
1505 rcu_gp_cleanup(rsp);
b3dbec76 1506 }
b3dbec76
PM
1507}
1508
016a8d5b
SR
1509static void rsp_wakeup(struct irq_work *work)
1510{
1511 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1512
1513 /* Wake up rcu_gp_kthread() to start the grace period. */
1514 wake_up(&rsp->gp_wq);
1515}
1516
64db4cff
PM
1517/*
1518 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1519 * in preparation for detecting the next grace period. The caller must hold
b8462084 1520 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1521 *
1522 * Note that it is legal for a dying CPU (which is marked as offline) to
1523 * invoke this function. This can happen when the dying CPU reports its
1524 * quiescent state.
64db4cff
PM
1525 */
1526static void
910ee45d
PM
1527rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1528 struct rcu_data *rdp)
64db4cff 1529{
b8462084 1530 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1531 /*
b3dbec76 1532 * Either we have not yet spawned the grace-period
62da1921
PM
1533 * task, this CPU does not need another grace period,
1534 * or a grace period is already in progress.
b3dbec76 1535 * Either way, don't start a new grace period.
afe24b12 1536 */
afe24b12
PM
1537 return;
1538 }
4cdfc175 1539 rsp->gp_flags = RCU_GP_FLAG_INIT;
62da1921 1540
016a8d5b
SR
1541 /*
1542 * We can't do wakeups while holding the rnp->lock, as that
1543 * could cause possible deadlocks with the rq->lock. Deter
1544 * the wakeup to interrupt context.
1545 */
1546 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1547}
1548
910ee45d
PM
1549/*
1550 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1551 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1552 * is invoked indirectly from rcu_advance_cbs(), which would result in
1553 * endless recursion -- or would do so if it wasn't for the self-deadlock
1554 * that is encountered beforehand.
1555 */
1556static void
1557rcu_start_gp(struct rcu_state *rsp)
1558{
1559 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1560 struct rcu_node *rnp = rcu_get_root(rsp);
1561
1562 /*
1563 * If there is no grace period in progress right now, any
1564 * callbacks we have up to this point will be satisfied by the
1565 * next grace period. Also, advancing the callbacks reduces the
1566 * probability of false positives from cpu_needs_another_gp()
1567 * resulting in pointless grace periods. So, advance callbacks
1568 * then start the grace period!
1569 */
1570 rcu_advance_cbs(rsp, rnp, rdp);
1571 rcu_start_gp_advanced(rsp, rnp, rdp);
1572}
1573
f41d911f 1574/*
d3f6bad3
PM
1575 * Report a full set of quiescent states to the specified rcu_state
1576 * data structure. This involves cleaning up after the prior grace
1577 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1578 * if one is needed. Note that the caller must hold rnp->lock, which
1579 * is released before return.
f41d911f 1580 */
d3f6bad3 1581static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1582 __releases(rcu_get_root(rsp)->lock)
f41d911f 1583{
fc2219d4 1584 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1585 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1586 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1587}
1588
64db4cff 1589/*
d3f6bad3
PM
1590 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1591 * Allows quiescent states for a group of CPUs to be reported at one go
1592 * to the specified rcu_node structure, though all the CPUs in the group
1593 * must be represented by the same rcu_node structure (which need not be
1594 * a leaf rcu_node structure, though it often will be). That structure's
1595 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1596 */
1597static void
d3f6bad3
PM
1598rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1599 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1600 __releases(rnp->lock)
1601{
28ecd580
PM
1602 struct rcu_node *rnp_c;
1603
64db4cff
PM
1604 /* Walk up the rcu_node hierarchy. */
1605 for (;;) {
1606 if (!(rnp->qsmask & mask)) {
1607
1608 /* Our bit has already been cleared, so done. */
1304afb2 1609 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1610 return;
1611 }
1612 rnp->qsmask &= ~mask;
d4c08f2a
PM
1613 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1614 mask, rnp->qsmask, rnp->level,
1615 rnp->grplo, rnp->grphi,
1616 !!rnp->gp_tasks);
27f4d280 1617 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1618
1619 /* Other bits still set at this level, so done. */
1304afb2 1620 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1621 return;
1622 }
1623 mask = rnp->grpmask;
1624 if (rnp->parent == NULL) {
1625
1626 /* No more levels. Exit loop holding root lock. */
1627
1628 break;
1629 }
1304afb2 1630 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1631 rnp_c = rnp;
64db4cff 1632 rnp = rnp->parent;
1304afb2 1633 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1634 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1635 }
1636
1637 /*
1638 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1639 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1640 * to clean up and start the next grace period if one is needed.
64db4cff 1641 */
d3f6bad3 1642 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1643}
1644
1645/*
d3f6bad3
PM
1646 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1647 * structure. This must be either called from the specified CPU, or
1648 * called when the specified CPU is known to be offline (and when it is
1649 * also known that no other CPU is concurrently trying to help the offline
1650 * CPU). The lastcomp argument is used to make sure we are still in the
1651 * grace period of interest. We don't want to end the current grace period
1652 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1653 */
1654static void
d7d6a11e 1655rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1656{
1657 unsigned long flags;
1658 unsigned long mask;
1659 struct rcu_node *rnp;
1660
1661 rnp = rdp->mynode;
1304afb2 1662 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1663 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1664 rnp->completed == rnp->gpnum) {
64db4cff
PM
1665
1666 /*
e4cc1f22
PM
1667 * The grace period in which this quiescent state was
1668 * recorded has ended, so don't report it upwards.
1669 * We will instead need a new quiescent state that lies
1670 * within the current grace period.
64db4cff 1671 */
e4cc1f22 1672 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1673 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1674 return;
1675 }
1676 mask = rdp->grpmask;
1677 if ((rnp->qsmask & mask) == 0) {
1304afb2 1678 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1679 } else {
1680 rdp->qs_pending = 0;
1681
1682 /*
1683 * This GP can't end until cpu checks in, so all of our
1684 * callbacks can be processed during the next GP.
1685 */
dc35c893 1686 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1687
d3f6bad3 1688 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1689 }
1690}
1691
1692/*
1693 * Check to see if there is a new grace period of which this CPU
1694 * is not yet aware, and if so, set up local rcu_data state for it.
1695 * Otherwise, see if this CPU has just passed through its first
1696 * quiescent state for this grace period, and record that fact if so.
1697 */
1698static void
1699rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1700{
05eb552b
PM
1701 /* Check for grace-period ends and beginnings. */
1702 note_gp_changes(rsp, rdp);
64db4cff
PM
1703
1704 /*
1705 * Does this CPU still need to do its part for current grace period?
1706 * If no, return and let the other CPUs do their part as well.
1707 */
1708 if (!rdp->qs_pending)
1709 return;
1710
1711 /*
1712 * Was there a quiescent state since the beginning of the grace
1713 * period? If no, then exit and wait for the next call.
1714 */
e4cc1f22 1715 if (!rdp->passed_quiesce)
64db4cff
PM
1716 return;
1717
d3f6bad3
PM
1718 /*
1719 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1720 * judge of that).
1721 */
d7d6a11e 1722 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1723}
1724
1725#ifdef CONFIG_HOTPLUG_CPU
1726
e74f4c45 1727/*
b1420f1c
PM
1728 * Send the specified CPU's RCU callbacks to the orphanage. The
1729 * specified CPU must be offline, and the caller must hold the
7b2e6011 1730 * ->orphan_lock.
e74f4c45 1731 */
b1420f1c
PM
1732static void
1733rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1734 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1735{
3fbfbf7a 1736 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1737 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1738 return;
1739
b1420f1c
PM
1740 /*
1741 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1742 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1743 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1744 */
a50c3af9 1745 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1746 rsp->qlen_lazy += rdp->qlen_lazy;
1747 rsp->qlen += rdp->qlen;
1748 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1749 rdp->qlen_lazy = 0;
1d1fb395 1750 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1751 }
1752
1753 /*
b1420f1c
PM
1754 * Next, move those callbacks still needing a grace period to
1755 * the orphanage, where some other CPU will pick them up.
1756 * Some of the callbacks might have gone partway through a grace
1757 * period, but that is too bad. They get to start over because we
1758 * cannot assume that grace periods are synchronized across CPUs.
1759 * We don't bother updating the ->nxttail[] array yet, instead
1760 * we just reset the whole thing later on.
a50c3af9 1761 */
b1420f1c
PM
1762 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1763 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1764 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1765 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1766 }
1767
1768 /*
b1420f1c
PM
1769 * Then move the ready-to-invoke callbacks to the orphanage,
1770 * where some other CPU will pick them up. These will not be
1771 * required to pass though another grace period: They are done.
a50c3af9 1772 */
e5601400 1773 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1774 *rsp->orphan_donetail = rdp->nxtlist;
1775 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1776 }
e74f4c45 1777
b1420f1c 1778 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1779 init_callback_list(rdp);
b1420f1c
PM
1780}
1781
1782/*
1783 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1784 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c
PM
1785 */
1786static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1787{
1788 int i;
1789 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1790
3fbfbf7a
PM
1791 /* No-CBs CPUs are handled specially. */
1792 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1793 return;
1794
b1420f1c
PM
1795 /* Do the accounting first. */
1796 rdp->qlen_lazy += rsp->qlen_lazy;
1797 rdp->qlen += rsp->qlen;
1798 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1799 if (rsp->qlen_lazy != rsp->qlen)
1800 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1801 rsp->qlen_lazy = 0;
1802 rsp->qlen = 0;
1803
1804 /*
1805 * We do not need a memory barrier here because the only way we
1806 * can get here if there is an rcu_barrier() in flight is if
1807 * we are the task doing the rcu_barrier().
1808 */
1809
1810 /* First adopt the ready-to-invoke callbacks. */
1811 if (rsp->orphan_donelist != NULL) {
1812 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1813 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1814 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1815 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1816 rdp->nxttail[i] = rsp->orphan_donetail;
1817 rsp->orphan_donelist = NULL;
1818 rsp->orphan_donetail = &rsp->orphan_donelist;
1819 }
1820
1821 /* And then adopt the callbacks that still need a grace period. */
1822 if (rsp->orphan_nxtlist != NULL) {
1823 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1824 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1825 rsp->orphan_nxtlist = NULL;
1826 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1827 }
1828}
1829
1830/*
1831 * Trace the fact that this CPU is going offline.
1832 */
1833static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1834{
1835 RCU_TRACE(unsigned long mask);
1836 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1837 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1838
1839 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1840 trace_rcu_grace_period(rsp->name,
1841 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1842 TPS("cpuofl"));
64db4cff
PM
1843}
1844
1845/*
e5601400 1846 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1847 * this fact from process context. Do the remainder of the cleanup,
1848 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1849 * adopting them. There can only be one CPU hotplug operation at a time,
1850 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1851 */
e5601400 1852static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1853{
2036d94a
PM
1854 unsigned long flags;
1855 unsigned long mask;
1856 int need_report = 0;
e5601400 1857 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1858 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1859
2036d94a 1860 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1861 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1862
b1420f1c 1863 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1864
1865 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1866 mutex_lock(&rsp->onoff_mutex);
7b2e6011 1867 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 1868
b1420f1c
PM
1869 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1870 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1871 rcu_adopt_orphan_cbs(rsp);
1872
2036d94a
PM
1873 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1874 mask = rdp->grpmask; /* rnp->grplo is constant. */
1875 do {
1876 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1877 rnp->qsmaskinit &= ~mask;
1878 if (rnp->qsmaskinit != 0) {
1879 if (rnp != rdp->mynode)
1880 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1881 break;
1882 }
1883 if (rnp == rdp->mynode)
1884 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1885 else
1886 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1887 mask = rnp->grpmask;
1888 rnp = rnp->parent;
1889 } while (rnp != NULL);
1890
1891 /*
1892 * We still hold the leaf rcu_node structure lock here, and
1893 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 1894 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
1895 * held leads to deadlock.
1896 */
7b2e6011 1897 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
1898 rnp = rdp->mynode;
1899 if (need_report & RCU_OFL_TASKS_NORM_GP)
1900 rcu_report_unblock_qs_rnp(rnp, flags);
1901 else
1902 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1903 if (need_report & RCU_OFL_TASKS_EXP_GP)
1904 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1905 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1906 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1907 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1908 init_callback_list(rdp);
1909 /* Disallow further callbacks on this CPU. */
1910 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 1911 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
1912}
1913
1914#else /* #ifdef CONFIG_HOTPLUG_CPU */
1915
e5601400 1916static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1917{
1918}
1919
e5601400 1920static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1921{
1922}
1923
1924#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1925
1926/*
1927 * Invoke any RCU callbacks that have made it to the end of their grace
1928 * period. Thottle as specified by rdp->blimit.
1929 */
37c72e56 1930static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1931{
1932 unsigned long flags;
1933 struct rcu_head *next, *list, **tail;
878d7439
ED
1934 long bl, count, count_lazy;
1935 int i;
64db4cff 1936
dc35c893 1937 /* If no callbacks are ready, just return. */
29c00b4a 1938 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1939 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1940 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1941 need_resched(), is_idle_task(current),
1942 rcu_is_callbacks_kthread());
64db4cff 1943 return;
29c00b4a 1944 }
64db4cff
PM
1945
1946 /*
1947 * Extract the list of ready callbacks, disabling to prevent
1948 * races with call_rcu() from interrupt handlers.
1949 */
1950 local_irq_save(flags);
8146c4e2 1951 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1952 bl = rdp->blimit;
486e2593 1953 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1954 list = rdp->nxtlist;
1955 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1956 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1957 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1958 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1959 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1960 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1961 local_irq_restore(flags);
1962
1963 /* Invoke callbacks. */
486e2593 1964 count = count_lazy = 0;
64db4cff
PM
1965 while (list) {
1966 next = list->next;
1967 prefetch(next);
551d55a9 1968 debug_rcu_head_unqueue(list);
486e2593
PM
1969 if (__rcu_reclaim(rsp->name, list))
1970 count_lazy++;
64db4cff 1971 list = next;
dff1672d
PM
1972 /* Stop only if limit reached and CPU has something to do. */
1973 if (++count >= bl &&
1974 (need_resched() ||
1975 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1976 break;
1977 }
1978
1979 local_irq_save(flags);
4968c300
PM
1980 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1981 is_idle_task(current),
1982 rcu_is_callbacks_kthread());
64db4cff
PM
1983
1984 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1985 if (list != NULL) {
1986 *tail = rdp->nxtlist;
1987 rdp->nxtlist = list;
b41772ab
PM
1988 for (i = 0; i < RCU_NEXT_SIZE; i++)
1989 if (&rdp->nxtlist == rdp->nxttail[i])
1990 rdp->nxttail[i] = tail;
64db4cff
PM
1991 else
1992 break;
1993 }
b1420f1c
PM
1994 smp_mb(); /* List handling before counting for rcu_barrier(). */
1995 rdp->qlen_lazy -= count_lazy;
1d1fb395 1996 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1997 rdp->n_cbs_invoked += count;
64db4cff
PM
1998
1999 /* Reinstate batch limit if we have worked down the excess. */
2000 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2001 rdp->blimit = blimit;
2002
37c72e56
PM
2003 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2004 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2005 rdp->qlen_last_fqs_check = 0;
2006 rdp->n_force_qs_snap = rsp->n_force_qs;
2007 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2008 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2009 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2010
64db4cff
PM
2011 local_irq_restore(flags);
2012
e0f23060 2013 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2014 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2015 invoke_rcu_core();
64db4cff
PM
2016}
2017
2018/*
2019 * Check to see if this CPU is in a non-context-switch quiescent state
2020 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2021 * Also schedule RCU core processing.
64db4cff 2022 *
9b2e4f18 2023 * This function must be called from hardirq context. It is normally
64db4cff
PM
2024 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2025 * false, there is no point in invoking rcu_check_callbacks().
2026 */
2027void rcu_check_callbacks(int cpu, int user)
2028{
f7f7bac9 2029 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2030 increment_cpu_stall_ticks();
9b2e4f18 2031 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2032
2033 /*
2034 * Get here if this CPU took its interrupt from user
2035 * mode or from the idle loop, and if this is not a
2036 * nested interrupt. In this case, the CPU is in
d6714c22 2037 * a quiescent state, so note it.
64db4cff
PM
2038 *
2039 * No memory barrier is required here because both
d6714c22
PM
2040 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2041 * variables that other CPUs neither access nor modify,
2042 * at least not while the corresponding CPU is online.
64db4cff
PM
2043 */
2044
d6714c22
PM
2045 rcu_sched_qs(cpu);
2046 rcu_bh_qs(cpu);
64db4cff
PM
2047
2048 } else if (!in_softirq()) {
2049
2050 /*
2051 * Get here if this CPU did not take its interrupt from
2052 * softirq, in other words, if it is not interrupting
2053 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2054 * critical section, so note it.
64db4cff
PM
2055 */
2056
d6714c22 2057 rcu_bh_qs(cpu);
64db4cff 2058 }
f41d911f 2059 rcu_preempt_check_callbacks(cpu);
d21670ac 2060 if (rcu_pending(cpu))
a46e0899 2061 invoke_rcu_core();
f7f7bac9 2062 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2063}
2064
64db4cff
PM
2065/*
2066 * Scan the leaf rcu_node structures, processing dyntick state for any that
2067 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2068 * Also initiate boosting for any threads blocked on the root rcu_node.
2069 *
ee47eb9f 2070 * The caller must have suppressed start of new grace periods.
64db4cff 2071 */
45f014c5 2072static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
2073{
2074 unsigned long bit;
2075 int cpu;
2076 unsigned long flags;
2077 unsigned long mask;
a0b6c9a7 2078 struct rcu_node *rnp;
64db4cff 2079
a0b6c9a7 2080 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2081 cond_resched();
64db4cff 2082 mask = 0;
1304afb2 2083 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2084 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2085 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2086 return;
64db4cff 2087 }
a0b6c9a7 2088 if (rnp->qsmask == 0) {
1217ed1b 2089 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2090 continue;
2091 }
a0b6c9a7 2092 cpu = rnp->grplo;
64db4cff 2093 bit = 1;
a0b6c9a7 2094 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
2095 if ((rnp->qsmask & bit) != 0 &&
2096 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
2097 mask |= bit;
2098 }
45f014c5 2099 if (mask != 0) {
64db4cff 2100
d3f6bad3
PM
2101 /* rcu_report_qs_rnp() releases rnp->lock. */
2102 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2103 continue;
2104 }
1304afb2 2105 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2106 }
27f4d280 2107 rnp = rcu_get_root(rsp);
1217ed1b
PM
2108 if (rnp->qsmask == 0) {
2109 raw_spin_lock_irqsave(&rnp->lock, flags);
2110 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2111 }
64db4cff
PM
2112}
2113
2114/*
2115 * Force quiescent states on reluctant CPUs, and also detect which
2116 * CPUs are in dyntick-idle mode.
2117 */
4cdfc175 2118static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2119{
2120 unsigned long flags;
394f2769
PM
2121 bool ret;
2122 struct rcu_node *rnp;
2123 struct rcu_node *rnp_old = NULL;
2124
2125 /* Funnel through hierarchy to reduce memory contention. */
2126 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2127 for (; rnp != NULL; rnp = rnp->parent) {
2128 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2129 !raw_spin_trylock(&rnp->fqslock);
2130 if (rnp_old != NULL)
2131 raw_spin_unlock(&rnp_old->fqslock);
2132 if (ret) {
2133 rsp->n_force_qs_lh++;
2134 return;
2135 }
2136 rnp_old = rnp;
2137 }
2138 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2139
394f2769
PM
2140 /* Reached the root of the rcu_node tree, acquire lock. */
2141 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2142 raw_spin_unlock(&rnp_old->fqslock);
2143 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2144 rsp->n_force_qs_lh++;
2145 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2146 return; /* Someone beat us to it. */
46a1e34e 2147 }
4cdfc175 2148 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2149 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2150 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2151}
2152
64db4cff 2153/*
e0f23060
PM
2154 * This does the RCU core processing work for the specified rcu_state
2155 * and rcu_data structures. This may be called only from the CPU to
2156 * whom the rdp belongs.
64db4cff
PM
2157 */
2158static void
1bca8cf1 2159__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2160{
2161 unsigned long flags;
1bca8cf1 2162 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2163
2e597558
PM
2164 WARN_ON_ONCE(rdp->beenonline == 0);
2165
64db4cff
PM
2166 /* Update RCU state based on any recent quiescent states. */
2167 rcu_check_quiescent_state(rsp, rdp);
2168
2169 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2170 local_irq_save(flags);
64db4cff 2171 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2172 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2173 rcu_start_gp(rsp);
2174 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2175 } else {
2176 local_irq_restore(flags);
64db4cff
PM
2177 }
2178
2179 /* If there are callbacks ready, invoke them. */
09223371 2180 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2181 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2182}
2183
64db4cff 2184/*
e0f23060 2185 * Do RCU core processing for the current CPU.
64db4cff 2186 */
09223371 2187static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2188{
6ce75a23
PM
2189 struct rcu_state *rsp;
2190
bfa00b4c
PM
2191 if (cpu_is_offline(smp_processor_id()))
2192 return;
f7f7bac9 2193 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2194 for_each_rcu_flavor(rsp)
2195 __rcu_process_callbacks(rsp);
f7f7bac9 2196 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2197}
2198
a26ac245 2199/*
e0f23060
PM
2200 * Schedule RCU callback invocation. If the specified type of RCU
2201 * does not support RCU priority boosting, just do a direct call,
2202 * otherwise wake up the per-CPU kernel kthread. Note that because we
2203 * are running on the current CPU with interrupts disabled, the
2204 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2205 */
a46e0899 2206static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2207{
b0d30417
PM
2208 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2209 return;
a46e0899
PM
2210 if (likely(!rsp->boost)) {
2211 rcu_do_batch(rsp, rdp);
a26ac245
PM
2212 return;
2213 }
a46e0899 2214 invoke_rcu_callbacks_kthread();
a26ac245
PM
2215}
2216
a46e0899 2217static void invoke_rcu_core(void)
09223371 2218{
b0f74036
PM
2219 if (cpu_online(smp_processor_id()))
2220 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2221}
2222
29154c57
PM
2223/*
2224 * Handle any core-RCU processing required by a call_rcu() invocation.
2225 */
2226static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2227 struct rcu_head *head, unsigned long flags)
64db4cff 2228{
62fde6ed
PM
2229 /*
2230 * If called from an extended quiescent state, invoke the RCU
2231 * core in order to force a re-evaluation of RCU's idleness.
2232 */
a16b7a69 2233 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2234 invoke_rcu_core();
2235
a16b7a69 2236 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2237 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2238 return;
64db4cff 2239
37c72e56
PM
2240 /*
2241 * Force the grace period if too many callbacks or too long waiting.
2242 * Enforce hysteresis, and don't invoke force_quiescent_state()
2243 * if some other CPU has recently done so. Also, don't bother
2244 * invoking force_quiescent_state() if the newly enqueued callback
2245 * is the only one waiting for a grace period to complete.
2246 */
2655d57e 2247 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2248
2249 /* Are we ignoring a completed grace period? */
470716fc 2250 note_gp_changes(rsp, rdp);
b52573d2
PM
2251
2252 /* Start a new grace period if one not already started. */
2253 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2254 struct rcu_node *rnp_root = rcu_get_root(rsp);
2255
b8462084
PM
2256 raw_spin_lock(&rnp_root->lock);
2257 rcu_start_gp(rsp);
2258 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2259 } else {
2260 /* Give the grace period a kick. */
2261 rdp->blimit = LONG_MAX;
2262 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2263 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2264 force_quiescent_state(rsp);
b52573d2
PM
2265 rdp->n_force_qs_snap = rsp->n_force_qs;
2266 rdp->qlen_last_fqs_check = rdp->qlen;
2267 }
4cdfc175 2268 }
29154c57
PM
2269}
2270
3fbfbf7a
PM
2271/*
2272 * Helper function for call_rcu() and friends. The cpu argument will
2273 * normally be -1, indicating "currently running CPU". It may specify
2274 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2275 * is expected to specify a CPU.
2276 */
64db4cff
PM
2277static void
2278__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2279 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2280{
2281 unsigned long flags;
2282 struct rcu_data *rdp;
2283
0bb7b59d 2284 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 2285 debug_rcu_head_queue(head);
64db4cff
PM
2286 head->func = func;
2287 head->next = NULL;
2288
64db4cff
PM
2289 /*
2290 * Opportunistically note grace-period endings and beginnings.
2291 * Note that we might see a beginning right after we see an
2292 * end, but never vice versa, since this CPU has to pass through
2293 * a quiescent state betweentimes.
2294 */
2295 local_irq_save(flags);
394f99a9 2296 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2297
2298 /* Add the callback to our list. */
3fbfbf7a
PM
2299 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2300 int offline;
2301
2302 if (cpu != -1)
2303 rdp = per_cpu_ptr(rsp->rda, cpu);
2304 offline = !__call_rcu_nocb(rdp, head, lazy);
2305 WARN_ON_ONCE(offline);
0d8ee37e 2306 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2307 local_irq_restore(flags);
2308 return;
2309 }
29154c57 2310 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2311 if (lazy)
2312 rdp->qlen_lazy++;
c57afe80
PM
2313 else
2314 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2315 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2316 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2317 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2318
d4c08f2a
PM
2319 if (__is_kfree_rcu_offset((unsigned long)func))
2320 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2321 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2322 else
486e2593 2323 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2324
29154c57
PM
2325 /* Go handle any RCU core processing required. */
2326 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2327 local_irq_restore(flags);
2328}
2329
2330/*
d6714c22 2331 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2332 */
d6714c22 2333void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2334{
3fbfbf7a 2335 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2336}
d6714c22 2337EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2338
2339/*
486e2593 2340 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2341 */
2342void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2343{
3fbfbf7a 2344 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2345}
2346EXPORT_SYMBOL_GPL(call_rcu_bh);
2347
6d813391
PM
2348/*
2349 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2350 * any blocking grace-period wait automatically implies a grace period
2351 * if there is only one CPU online at any point time during execution
2352 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2353 * occasionally incorrectly indicate that there are multiple CPUs online
2354 * when there was in fact only one the whole time, as this just adds
2355 * some overhead: RCU still operates correctly.
6d813391
PM
2356 */
2357static inline int rcu_blocking_is_gp(void)
2358{
95f0c1de
PM
2359 int ret;
2360
6d813391 2361 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2362 preempt_disable();
2363 ret = num_online_cpus() <= 1;
2364 preempt_enable();
2365 return ret;
6d813391
PM
2366}
2367
6ebb237b
PM
2368/**
2369 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2370 *
2371 * Control will return to the caller some time after a full rcu-sched
2372 * grace period has elapsed, in other words after all currently executing
2373 * rcu-sched read-side critical sections have completed. These read-side
2374 * critical sections are delimited by rcu_read_lock_sched() and
2375 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2376 * local_irq_disable(), and so on may be used in place of
2377 * rcu_read_lock_sched().
2378 *
2379 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2380 * non-threaded hardware-interrupt handlers, in progress on entry will
2381 * have completed before this primitive returns. However, this does not
2382 * guarantee that softirq handlers will have completed, since in some
2383 * kernels, these handlers can run in process context, and can block.
2384 *
2385 * Note that this guarantee implies further memory-ordering guarantees.
2386 * On systems with more than one CPU, when synchronize_sched() returns,
2387 * each CPU is guaranteed to have executed a full memory barrier since the
2388 * end of its last RCU-sched read-side critical section whose beginning
2389 * preceded the call to synchronize_sched(). In addition, each CPU having
2390 * an RCU read-side critical section that extends beyond the return from
2391 * synchronize_sched() is guaranteed to have executed a full memory barrier
2392 * after the beginning of synchronize_sched() and before the beginning of
2393 * that RCU read-side critical section. Note that these guarantees include
2394 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2395 * that are executing in the kernel.
2396 *
2397 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2398 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2399 * to have executed a full memory barrier during the execution of
2400 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2401 * again only if the system has more than one CPU).
6ebb237b
PM
2402 *
2403 * This primitive provides the guarantees made by the (now removed)
2404 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2405 * guarantees that rcu_read_lock() sections will have completed.
2406 * In "classic RCU", these two guarantees happen to be one and
2407 * the same, but can differ in realtime RCU implementations.
2408 */
2409void synchronize_sched(void)
2410{
fe15d706
PM
2411 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2412 !lock_is_held(&rcu_lock_map) &&
2413 !lock_is_held(&rcu_sched_lock_map),
2414 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2415 if (rcu_blocking_is_gp())
2416 return;
3705b88d
AM
2417 if (rcu_expedited)
2418 synchronize_sched_expedited();
2419 else
2420 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2421}
2422EXPORT_SYMBOL_GPL(synchronize_sched);
2423
2424/**
2425 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2426 *
2427 * Control will return to the caller some time after a full rcu_bh grace
2428 * period has elapsed, in other words after all currently executing rcu_bh
2429 * read-side critical sections have completed. RCU read-side critical
2430 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2431 * and may be nested.
f0a0e6f2
PM
2432 *
2433 * See the description of synchronize_sched() for more detailed information
2434 * on memory ordering guarantees.
6ebb237b
PM
2435 */
2436void synchronize_rcu_bh(void)
2437{
fe15d706
PM
2438 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2439 !lock_is_held(&rcu_lock_map) &&
2440 !lock_is_held(&rcu_sched_lock_map),
2441 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2442 if (rcu_blocking_is_gp())
2443 return;
3705b88d
AM
2444 if (rcu_expedited)
2445 synchronize_rcu_bh_expedited();
2446 else
2447 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2448}
2449EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2450
3d3b7db0
PM
2451static int synchronize_sched_expedited_cpu_stop(void *data)
2452{
2453 /*
2454 * There must be a full memory barrier on each affected CPU
2455 * between the time that try_stop_cpus() is called and the
2456 * time that it returns.
2457 *
2458 * In the current initial implementation of cpu_stop, the
2459 * above condition is already met when the control reaches
2460 * this point and the following smp_mb() is not strictly
2461 * necessary. Do smp_mb() anyway for documentation and
2462 * robustness against future implementation changes.
2463 */
2464 smp_mb(); /* See above comment block. */
2465 return 0;
2466}
2467
236fefaf
PM
2468/**
2469 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2470 *
2471 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2472 * approach to force the grace period to end quickly. This consumes
2473 * significant time on all CPUs and is unfriendly to real-time workloads,
2474 * so is thus not recommended for any sort of common-case code. In fact,
2475 * if you are using synchronize_sched_expedited() in a loop, please
2476 * restructure your code to batch your updates, and then use a single
2477 * synchronize_sched() instead.
3d3b7db0 2478 *
236fefaf
PM
2479 * Note that it is illegal to call this function while holding any lock
2480 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2481 * to call this function from a CPU-hotplug notifier. Failing to observe
2482 * these restriction will result in deadlock.
3d3b7db0
PM
2483 *
2484 * This implementation can be thought of as an application of ticket
2485 * locking to RCU, with sync_sched_expedited_started and
2486 * sync_sched_expedited_done taking on the roles of the halves
2487 * of the ticket-lock word. Each task atomically increments
2488 * sync_sched_expedited_started upon entry, snapshotting the old value,
2489 * then attempts to stop all the CPUs. If this succeeds, then each
2490 * CPU will have executed a context switch, resulting in an RCU-sched
2491 * grace period. We are then done, so we use atomic_cmpxchg() to
2492 * update sync_sched_expedited_done to match our snapshot -- but
2493 * only if someone else has not already advanced past our snapshot.
2494 *
2495 * On the other hand, if try_stop_cpus() fails, we check the value
2496 * of sync_sched_expedited_done. If it has advanced past our
2497 * initial snapshot, then someone else must have forced a grace period
2498 * some time after we took our snapshot. In this case, our work is
2499 * done for us, and we can simply return. Otherwise, we try again,
2500 * but keep our initial snapshot for purposes of checking for someone
2501 * doing our work for us.
2502 *
2503 * If we fail too many times in a row, we fall back to synchronize_sched().
2504 */
2505void synchronize_sched_expedited(void)
2506{
1924bcb0
PM
2507 long firstsnap, s, snap;
2508 int trycount = 0;
40694d66 2509 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2510
1924bcb0
PM
2511 /*
2512 * If we are in danger of counter wrap, just do synchronize_sched().
2513 * By allowing sync_sched_expedited_started to advance no more than
2514 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2515 * that more than 3.5 billion CPUs would be required to force a
2516 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2517 * course be required on a 64-bit system.
2518 */
40694d66
PM
2519 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2520 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2521 ULONG_MAX / 8)) {
2522 synchronize_sched();
a30489c5 2523 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2524 return;
2525 }
3d3b7db0 2526
1924bcb0
PM
2527 /*
2528 * Take a ticket. Note that atomic_inc_return() implies a
2529 * full memory barrier.
2530 */
40694d66 2531 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2532 firstsnap = snap;
3d3b7db0 2533 get_online_cpus();
1cc85961 2534 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2535
2536 /*
2537 * Each pass through the following loop attempts to force a
2538 * context switch on each CPU.
2539 */
2540 while (try_stop_cpus(cpu_online_mask,
2541 synchronize_sched_expedited_cpu_stop,
2542 NULL) == -EAGAIN) {
2543 put_online_cpus();
a30489c5 2544 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2545
1924bcb0 2546 /* Check to see if someone else did our work for us. */
40694d66 2547 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2548 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2549 /* ensure test happens before caller kfree */
2550 smp_mb__before_atomic_inc(); /* ^^^ */
2551 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2552 return;
2553 }
3d3b7db0
PM
2554
2555 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2556 if (trycount++ < 10) {
3d3b7db0 2557 udelay(trycount * num_online_cpus());
c701d5d9 2558 } else {
3705b88d 2559 wait_rcu_gp(call_rcu_sched);
a30489c5 2560 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2561 return;
2562 }
2563
1924bcb0 2564 /* Recheck to see if someone else did our work for us. */
40694d66 2565 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2566 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2567 /* ensure test happens before caller kfree */
2568 smp_mb__before_atomic_inc(); /* ^^^ */
2569 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2570 return;
2571 }
2572
2573 /*
2574 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2575 * callers to piggyback on our grace period. We retry
2576 * after they started, so our grace period works for them,
2577 * and they started after our first try, so their grace
2578 * period works for us.
3d3b7db0
PM
2579 */
2580 get_online_cpus();
40694d66 2581 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2582 smp_mb(); /* ensure read is before try_stop_cpus(). */
2583 }
a30489c5 2584 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2585
2586 /*
2587 * Everyone up to our most recent fetch is covered by our grace
2588 * period. Update the counter, but only if our work is still
2589 * relevant -- which it won't be if someone who started later
1924bcb0 2590 * than we did already did their update.
3d3b7db0
PM
2591 */
2592 do {
a30489c5 2593 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2594 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2595 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2596 /* ensure test happens before caller kfree */
2597 smp_mb__before_atomic_inc(); /* ^^^ */
2598 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2599 break;
2600 }
40694d66 2601 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2602 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2603
2604 put_online_cpus();
2605}
2606EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2607
64db4cff
PM
2608/*
2609 * Check to see if there is any immediate RCU-related work to be done
2610 * by the current CPU, for the specified type of RCU, returning 1 if so.
2611 * The checks are in order of increasing expense: checks that can be
2612 * carried out against CPU-local state are performed first. However,
2613 * we must check for CPU stalls first, else we might not get a chance.
2614 */
2615static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2616{
2f51f988
PM
2617 struct rcu_node *rnp = rdp->mynode;
2618
64db4cff
PM
2619 rdp->n_rcu_pending++;
2620
2621 /* Check for CPU stalls, if enabled. */
2622 check_cpu_stall(rsp, rdp);
2623
2624 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2625 if (rcu_scheduler_fully_active &&
2626 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2627 rdp->n_rp_qs_pending++;
e4cc1f22 2628 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2629 rdp->n_rp_report_qs++;
64db4cff 2630 return 1;
7ba5c840 2631 }
64db4cff
PM
2632
2633 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2634 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2635 rdp->n_rp_cb_ready++;
64db4cff 2636 return 1;
7ba5c840 2637 }
64db4cff
PM
2638
2639 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2640 if (cpu_needs_another_gp(rsp, rdp)) {
2641 rdp->n_rp_cpu_needs_gp++;
64db4cff 2642 return 1;
7ba5c840 2643 }
64db4cff
PM
2644
2645 /* Has another RCU grace period completed? */
2f51f988 2646 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2647 rdp->n_rp_gp_completed++;
64db4cff 2648 return 1;
7ba5c840 2649 }
64db4cff
PM
2650
2651 /* Has a new RCU grace period started? */
2f51f988 2652 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2653 rdp->n_rp_gp_started++;
64db4cff 2654 return 1;
7ba5c840 2655 }
64db4cff 2656
64db4cff 2657 /* nothing to do */
7ba5c840 2658 rdp->n_rp_need_nothing++;
64db4cff
PM
2659 return 0;
2660}
2661
2662/*
2663 * Check to see if there is any immediate RCU-related work to be done
2664 * by the current CPU, returning 1 if so. This function is part of the
2665 * RCU implementation; it is -not- an exported member of the RCU API.
2666 */
a157229c 2667static int rcu_pending(int cpu)
64db4cff 2668{
6ce75a23
PM
2669 struct rcu_state *rsp;
2670
2671 for_each_rcu_flavor(rsp)
2672 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2673 return 1;
2674 return 0;
64db4cff
PM
2675}
2676
2677/*
c0f4dfd4
PM
2678 * Return true if the specified CPU has any callback. If all_lazy is
2679 * non-NULL, store an indication of whether all callbacks are lazy.
2680 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2681 */
c0f4dfd4 2682static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2683{
c0f4dfd4
PM
2684 bool al = true;
2685 bool hc = false;
2686 struct rcu_data *rdp;
6ce75a23
PM
2687 struct rcu_state *rsp;
2688
c0f4dfd4
PM
2689 for_each_rcu_flavor(rsp) {
2690 rdp = per_cpu_ptr(rsp->rda, cpu);
2691 if (rdp->qlen != rdp->qlen_lazy)
2692 al = false;
2693 if (rdp->nxtlist)
2694 hc = true;
2695 }
2696 if (all_lazy)
2697 *all_lazy = al;
2698 return hc;
64db4cff
PM
2699}
2700
a83eff0a
PM
2701/*
2702 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2703 * the compiler is expected to optimize this away.
2704 */
e66c33d5 2705static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2706 int cpu, unsigned long done)
2707{
2708 trace_rcu_barrier(rsp->name, s, cpu,
2709 atomic_read(&rsp->barrier_cpu_count), done);
2710}
2711
b1420f1c
PM
2712/*
2713 * RCU callback function for _rcu_barrier(). If we are last, wake
2714 * up the task executing _rcu_barrier().
2715 */
24ebbca8 2716static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2717{
24ebbca8
PM
2718 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2719 struct rcu_state *rsp = rdp->rsp;
2720
a83eff0a
PM
2721 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2722 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2723 complete(&rsp->barrier_completion);
a83eff0a
PM
2724 } else {
2725 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2726 }
d0ec774c
PM
2727}
2728
2729/*
2730 * Called with preemption disabled, and from cross-cpu IRQ context.
2731 */
2732static void rcu_barrier_func(void *type)
2733{
037b64ed 2734 struct rcu_state *rsp = type;
06668efa 2735 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2736
a83eff0a 2737 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2738 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2739 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2740}
2741
d0ec774c
PM
2742/*
2743 * Orchestrate the specified type of RCU barrier, waiting for all
2744 * RCU callbacks of the specified type to complete.
2745 */
037b64ed 2746static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2747{
b1420f1c 2748 int cpu;
b1420f1c 2749 struct rcu_data *rdp;
cf3a9c48
PM
2750 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2751 unsigned long snap_done;
b1420f1c 2752
a83eff0a 2753 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2754
e74f4c45 2755 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2756 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2757
cf3a9c48
PM
2758 /*
2759 * Ensure that all prior references, including to ->n_barrier_done,
2760 * are ordered before the _rcu_barrier() machinery.
2761 */
2762 smp_mb(); /* See above block comment. */
2763
2764 /*
2765 * Recheck ->n_barrier_done to see if others did our work for us.
2766 * This means checking ->n_barrier_done for an even-to-odd-to-even
2767 * transition. The "if" expression below therefore rounds the old
2768 * value up to the next even number and adds two before comparing.
2769 */
2770 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2771 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2772 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2773 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2774 smp_mb(); /* caller's subsequent code after above check. */
2775 mutex_unlock(&rsp->barrier_mutex);
2776 return;
2777 }
2778
2779 /*
2780 * Increment ->n_barrier_done to avoid duplicate work. Use
2781 * ACCESS_ONCE() to prevent the compiler from speculating
2782 * the increment to precede the early-exit check.
2783 */
2784 ACCESS_ONCE(rsp->n_barrier_done)++;
2785 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2786 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2787 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2788
d0ec774c 2789 /*
b1420f1c
PM
2790 * Initialize the count to one rather than to zero in order to
2791 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2792 * (or preemption of this task). Exclude CPU-hotplug operations
2793 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2794 */
7db74df8 2795 init_completion(&rsp->barrier_completion);
24ebbca8 2796 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2797 get_online_cpus();
b1420f1c
PM
2798
2799 /*
1331e7a1
PM
2800 * Force each CPU with callbacks to register a new callback.
2801 * When that callback is invoked, we will know that all of the
2802 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2803 */
3fbfbf7a 2804 for_each_possible_cpu(cpu) {
d1e43fa5 2805 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2806 continue;
b1420f1c 2807 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 2808 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
2809 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2810 rsp->n_barrier_done);
2811 atomic_inc(&rsp->barrier_cpu_count);
2812 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2813 rsp, cpu, 0);
2814 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2815 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2816 rsp->n_barrier_done);
037b64ed 2817 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2818 } else {
a83eff0a
PM
2819 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2820 rsp->n_barrier_done);
b1420f1c
PM
2821 }
2822 }
1331e7a1 2823 put_online_cpus();
b1420f1c
PM
2824
2825 /*
2826 * Now that we have an rcu_barrier_callback() callback on each
2827 * CPU, and thus each counted, remove the initial count.
2828 */
24ebbca8 2829 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2830 complete(&rsp->barrier_completion);
b1420f1c 2831
cf3a9c48
PM
2832 /* Increment ->n_barrier_done to prevent duplicate work. */
2833 smp_mb(); /* Keep increment after above mechanism. */
2834 ACCESS_ONCE(rsp->n_barrier_done)++;
2835 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2836 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2837 smp_mb(); /* Keep increment before caller's subsequent code. */
2838
b1420f1c 2839 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2840 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2841
2842 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2843 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2844}
d0ec774c
PM
2845
2846/**
2847 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2848 */
2849void rcu_barrier_bh(void)
2850{
037b64ed 2851 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2852}
2853EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2854
2855/**
2856 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2857 */
2858void rcu_barrier_sched(void)
2859{
037b64ed 2860 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2861}
2862EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2863
64db4cff 2864/*
27569620 2865 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2866 */
27569620
PM
2867static void __init
2868rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2869{
2870 unsigned long flags;
394f99a9 2871 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2872 struct rcu_node *rnp = rcu_get_root(rsp);
2873
2874 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2875 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2876 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2877 init_callback_list(rdp);
486e2593 2878 rdp->qlen_lazy = 0;
1d1fb395 2879 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2880 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2881 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2882 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2883 rdp->cpu = cpu;
d4c08f2a 2884 rdp->rsp = rsp;
3fbfbf7a 2885 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 2886 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2887}
2888
2889/*
2890 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2891 * offline event can be happening at a given time. Note also that we
2892 * can accept some slop in the rsp->completed access due to the fact
2893 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2894 */
49fb4c62 2895static void
6cc68793 2896rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2897{
2898 unsigned long flags;
64db4cff 2899 unsigned long mask;
394f99a9 2900 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2901 struct rcu_node *rnp = rcu_get_root(rsp);
2902
a4fbe35a
PM
2903 /* Exclude new grace periods. */
2904 mutex_lock(&rsp->onoff_mutex);
2905
64db4cff 2906 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2907 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2908 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2909 rdp->preemptible = preemptible;
37c72e56
PM
2910 rdp->qlen_last_fqs_check = 0;
2911 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2912 rdp->blimit = blimit;
0d8ee37e 2913 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 2914 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 2915 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
2916 atomic_set(&rdp->dynticks->dynticks,
2917 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 2918 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 2919
64db4cff
PM
2920 /* Add CPU to rcu_node bitmasks. */
2921 rnp = rdp->mynode;
2922 mask = rdp->grpmask;
2923 do {
2924 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2925 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2926 rnp->qsmaskinit |= mask;
2927 mask = rnp->grpmask;
d09b62df 2928 if (rnp == rdp->mynode) {
06ae115a
PM
2929 /*
2930 * If there is a grace period in progress, we will
2931 * set up to wait for it next time we run the
2932 * RCU core code.
2933 */
2934 rdp->gpnum = rnp->completed;
d09b62df 2935 rdp->completed = rnp->completed;
06ae115a
PM
2936 rdp->passed_quiesce = 0;
2937 rdp->qs_pending = 0;
f7f7bac9 2938 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 2939 }
1304afb2 2940 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2941 rnp = rnp->parent;
2942 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 2943 local_irq_restore(flags);
64db4cff 2944
a4fbe35a 2945 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2946}
2947
49fb4c62 2948static void rcu_prepare_cpu(int cpu)
64db4cff 2949{
6ce75a23
PM
2950 struct rcu_state *rsp;
2951
2952 for_each_rcu_flavor(rsp)
2953 rcu_init_percpu_data(cpu, rsp,
2954 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2955}
2956
2957/*
f41d911f 2958 * Handle CPU online/offline notification events.
64db4cff 2959 */
49fb4c62 2960static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 2961 unsigned long action, void *hcpu)
64db4cff
PM
2962{
2963 long cpu = (long)hcpu;
27f4d280 2964 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2965 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2966 struct rcu_state *rsp;
64db4cff 2967
f7f7bac9 2968 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
2969 switch (action) {
2970 case CPU_UP_PREPARE:
2971 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2972 rcu_prepare_cpu(cpu);
2973 rcu_prepare_kthreads(cpu);
a26ac245
PM
2974 break;
2975 case CPU_ONLINE:
0f962a5e 2976 case CPU_DOWN_FAILED:
5d01bbd1 2977 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
2978 break;
2979 case CPU_DOWN_PREPARE:
34ed6246 2980 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 2981 break;
d0ec774c
PM
2982 case CPU_DYING:
2983 case CPU_DYING_FROZEN:
6ce75a23
PM
2984 for_each_rcu_flavor(rsp)
2985 rcu_cleanup_dying_cpu(rsp);
d0ec774c 2986 break;
64db4cff
PM
2987 case CPU_DEAD:
2988 case CPU_DEAD_FROZEN:
2989 case CPU_UP_CANCELED:
2990 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2991 for_each_rcu_flavor(rsp)
2992 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2993 break;
2994 default:
2995 break;
2996 }
f7f7bac9 2997 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 2998 return NOTIFY_OK;
64db4cff
PM
2999}
3000
b3dbec76
PM
3001/*
3002 * Spawn the kthread that handles this RCU flavor's grace periods.
3003 */
3004static int __init rcu_spawn_gp_kthread(void)
3005{
3006 unsigned long flags;
3007 struct rcu_node *rnp;
3008 struct rcu_state *rsp;
3009 struct task_struct *t;
3010
3011 for_each_rcu_flavor(rsp) {
f170168b 3012 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3013 BUG_ON(IS_ERR(t));
3014 rnp = rcu_get_root(rsp);
3015 raw_spin_lock_irqsave(&rnp->lock, flags);
3016 rsp->gp_kthread = t;
3017 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3018 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3019 }
3020 return 0;
3021}
3022early_initcall(rcu_spawn_gp_kthread);
3023
bbad9379
PM
3024/*
3025 * This function is invoked towards the end of the scheduler's initialization
3026 * process. Before this is called, the idle task might contain
3027 * RCU read-side critical sections (during which time, this idle
3028 * task is booting the system). After this function is called, the
3029 * idle tasks are prohibited from containing RCU read-side critical
3030 * sections. This function also enables RCU lockdep checking.
3031 */
3032void rcu_scheduler_starting(void)
3033{
3034 WARN_ON(num_online_cpus() != 1);
3035 WARN_ON(nr_context_switches() > 0);
3036 rcu_scheduler_active = 1;
3037}
3038
64db4cff
PM
3039/*
3040 * Compute the per-level fanout, either using the exact fanout specified
3041 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3042 */
3043#ifdef CONFIG_RCU_FANOUT_EXACT
3044static void __init rcu_init_levelspread(struct rcu_state *rsp)
3045{
3046 int i;
3047
f885b7f2 3048 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3049 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3050 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3051}
3052#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3053static void __init rcu_init_levelspread(struct rcu_state *rsp)
3054{
3055 int ccur;
3056 int cprv;
3057 int i;
3058
4dbd6bb3 3059 cprv = nr_cpu_ids;
f885b7f2 3060 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3061 ccur = rsp->levelcnt[i];
3062 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3063 cprv = ccur;
3064 }
3065}
3066#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3067
3068/*
3069 * Helper function for rcu_init() that initializes one rcu_state structure.
3070 */
394f99a9
LJ
3071static void __init rcu_init_one(struct rcu_state *rsp,
3072 struct rcu_data __percpu *rda)
64db4cff 3073{
394f2769
PM
3074 static char *buf[] = { "rcu_node_0",
3075 "rcu_node_1",
3076 "rcu_node_2",
3077 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3078 static char *fqs[] = { "rcu_node_fqs_0",
3079 "rcu_node_fqs_1",
3080 "rcu_node_fqs_2",
3081 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3082 int cpustride = 1;
3083 int i;
3084 int j;
3085 struct rcu_node *rnp;
3086
b6407e86
PM
3087 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3088
4930521a
PM
3089 /* Silence gcc 4.8 warning about array index out of range. */
3090 if (rcu_num_lvls > RCU_NUM_LVLS)
3091 panic("rcu_init_one: rcu_num_lvls overflow");
3092
64db4cff
PM
3093 /* Initialize the level-tracking arrays. */
3094
f885b7f2
PM
3095 for (i = 0; i < rcu_num_lvls; i++)
3096 rsp->levelcnt[i] = num_rcu_lvl[i];
3097 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3098 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3099 rcu_init_levelspread(rsp);
3100
3101 /* Initialize the elements themselves, starting from the leaves. */
3102
f885b7f2 3103 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3104 cpustride *= rsp->levelspread[i];
3105 rnp = rsp->level[i];
3106 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3107 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3108 lockdep_set_class_and_name(&rnp->lock,
3109 &rcu_node_class[i], buf[i]);
394f2769
PM
3110 raw_spin_lock_init(&rnp->fqslock);
3111 lockdep_set_class_and_name(&rnp->fqslock,
3112 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3113 rnp->gpnum = rsp->gpnum;
3114 rnp->completed = rsp->completed;
64db4cff
PM
3115 rnp->qsmask = 0;
3116 rnp->qsmaskinit = 0;
3117 rnp->grplo = j * cpustride;
3118 rnp->grphi = (j + 1) * cpustride - 1;
3119 if (rnp->grphi >= NR_CPUS)
3120 rnp->grphi = NR_CPUS - 1;
3121 if (i == 0) {
3122 rnp->grpnum = 0;
3123 rnp->grpmask = 0;
3124 rnp->parent = NULL;
3125 } else {
3126 rnp->grpnum = j % rsp->levelspread[i - 1];
3127 rnp->grpmask = 1UL << rnp->grpnum;
3128 rnp->parent = rsp->level[i - 1] +
3129 j / rsp->levelspread[i - 1];
3130 }
3131 rnp->level = i;
12f5f524 3132 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3133 rcu_init_one_nocb(rnp);
64db4cff
PM
3134 }
3135 }
0c34029a 3136
394f99a9 3137 rsp->rda = rda;
b3dbec76 3138 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3139 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3140 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3141 for_each_possible_cpu(i) {
4a90a068 3142 while (i > rnp->grphi)
0c34029a 3143 rnp++;
394f99a9 3144 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3145 rcu_boot_init_percpu_data(i, rsp);
3146 }
6ce75a23 3147 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3148}
3149
f885b7f2
PM
3150/*
3151 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3152 * replace the definitions in rcutree.h because those are needed to size
3153 * the ->node array in the rcu_state structure.
3154 */
3155static void __init rcu_init_geometry(void)
3156{
026ad283 3157 ulong d;
f885b7f2
PM
3158 int i;
3159 int j;
cca6f393 3160 int n = nr_cpu_ids;
f885b7f2
PM
3161 int rcu_capacity[MAX_RCU_LVLS + 1];
3162
026ad283
PM
3163 /*
3164 * Initialize any unspecified boot parameters.
3165 * The default values of jiffies_till_first_fqs and
3166 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3167 * value, which is a function of HZ, then adding one for each
3168 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3169 */
3170 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3171 if (jiffies_till_first_fqs == ULONG_MAX)
3172 jiffies_till_first_fqs = d;
3173 if (jiffies_till_next_fqs == ULONG_MAX)
3174 jiffies_till_next_fqs = d;
3175
f885b7f2 3176 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3177 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3178 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3179 return;
3180
3181 /*
3182 * Compute number of nodes that can be handled an rcu_node tree
3183 * with the given number of levels. Setting rcu_capacity[0] makes
3184 * some of the arithmetic easier.
3185 */
3186 rcu_capacity[0] = 1;
3187 rcu_capacity[1] = rcu_fanout_leaf;
3188 for (i = 2; i <= MAX_RCU_LVLS; i++)
3189 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3190
3191 /*
3192 * The boot-time rcu_fanout_leaf parameter is only permitted
3193 * to increase the leaf-level fanout, not decrease it. Of course,
3194 * the leaf-level fanout cannot exceed the number of bits in
3195 * the rcu_node masks. Finally, the tree must be able to accommodate
3196 * the configured number of CPUs. Complain and fall back to the
3197 * compile-time values if these limits are exceeded.
3198 */
3199 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3200 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3201 n > rcu_capacity[MAX_RCU_LVLS]) {
3202 WARN_ON(1);
3203 return;
3204 }
3205
3206 /* Calculate the number of rcu_nodes at each level of the tree. */
3207 for (i = 1; i <= MAX_RCU_LVLS; i++)
3208 if (n <= rcu_capacity[i]) {
3209 for (j = 0; j <= i; j++)
3210 num_rcu_lvl[j] =
3211 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3212 rcu_num_lvls = i;
3213 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3214 num_rcu_lvl[j] = 0;
3215 break;
3216 }
3217
3218 /* Calculate the total number of rcu_node structures. */
3219 rcu_num_nodes = 0;
3220 for (i = 0; i <= MAX_RCU_LVLS; i++)
3221 rcu_num_nodes += num_rcu_lvl[i];
3222 rcu_num_nodes -= n;
3223}
3224
9f680ab4 3225void __init rcu_init(void)
64db4cff 3226{
017c4261 3227 int cpu;
9f680ab4 3228
f41d911f 3229 rcu_bootup_announce();
f885b7f2 3230 rcu_init_geometry();
394f99a9
LJ
3231 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3232 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 3233 __rcu_init_preempt();
b5b39360 3234 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3235
3236 /*
3237 * We don't need protection against CPU-hotplug here because
3238 * this is called early in boot, before either interrupts
3239 * or the scheduler are operational.
3240 */
3241 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
3242 for_each_online_cpu(cpu)
3243 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3244}
3245
1eba8f84 3246#include "rcutree_plugin.h"
This page took 0.512335 seconds and 5 git commands to generate.