rcu: Add grace-period information to RCU CPU stall warnings
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
64db4cff 56
9f77da9f 57#include "rcutree.h"
29c00b4a
PM
58#include <trace/events/rcu.h>
59
60#include "rcu.h"
9f77da9f 61
64db4cff
PM
62/* Data structures. */
63
f885b7f2 64static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 65static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 66
037b64ed 67#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 68 .level = { &sname##_state.node[0] }, \
037b64ed 69 .call = cr, \
af446b70 70 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
71 .gpnum = -300, \
72 .completed = -300, \
6c90cc7b
PM
73 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 77 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
6c90cc7b 78 .name = #sname, \
64db4cff
PM
79}
80
037b64ed
PM
81struct rcu_state rcu_sched_state =
82 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 83DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 84
037b64ed 85struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 86DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 87
27f4d280 88static struct rcu_state *rcu_state;
6ce75a23 89LIST_HEAD(rcu_struct_flavors);
27f4d280 90
f885b7f2
PM
91/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
92static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 93module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
94int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
95static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
96 NUM_RCU_LVL_0,
97 NUM_RCU_LVL_1,
98 NUM_RCU_LVL_2,
99 NUM_RCU_LVL_3,
100 NUM_RCU_LVL_4,
101};
102int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
103
b0d30417
PM
104/*
105 * The rcu_scheduler_active variable transitions from zero to one just
106 * before the first task is spawned. So when this variable is zero, RCU
107 * can assume that there is but one task, allowing RCU to (for example)
108 * optimized synchronize_sched() to a simple barrier(). When this variable
109 * is one, RCU must actually do all the hard work required to detect real
110 * grace periods. This variable is also used to suppress boot-time false
111 * positives from lockdep-RCU error checking.
112 */
bbad9379
PM
113int rcu_scheduler_active __read_mostly;
114EXPORT_SYMBOL_GPL(rcu_scheduler_active);
115
b0d30417
PM
116/*
117 * The rcu_scheduler_fully_active variable transitions from zero to one
118 * during the early_initcall() processing, which is after the scheduler
119 * is capable of creating new tasks. So RCU processing (for example,
120 * creating tasks for RCU priority boosting) must be delayed until after
121 * rcu_scheduler_fully_active transitions from zero to one. We also
122 * currently delay invocation of any RCU callbacks until after this point.
123 *
124 * It might later prove better for people registering RCU callbacks during
125 * early boot to take responsibility for these callbacks, but one step at
126 * a time.
127 */
128static int rcu_scheduler_fully_active __read_mostly;
129
a46e0899
PM
130#ifdef CONFIG_RCU_BOOST
131
a26ac245
PM
132/*
133 * Control variables for per-CPU and per-rcu_node kthreads. These
134 * handle all flavors of RCU.
135 */
136static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 138DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 139DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 140
a46e0899
PM
141#endif /* #ifdef CONFIG_RCU_BOOST */
142
5d01bbd1 143static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
144static void invoke_rcu_core(void);
145static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 146
4a298656
PM
147/*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156unsigned long rcutorture_testseq;
157unsigned long rcutorture_vernum;
158
fc2219d4
PM
159/*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164static int rcu_gp_in_progress(struct rcu_state *rsp)
165{
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167}
168
b1f77b05 169/*
d6714c22 170 * Note a quiescent state. Because we do not need to know
b1f77b05 171 * how many quiescent states passed, just if there was at least
d6714c22 172 * one since the start of the grace period, this just sets a flag.
e4cc1f22 173 * The caller must have disabled preemption.
b1f77b05 174 */
d6714c22 175void rcu_sched_qs(int cpu)
b1f77b05 176{
25502a6c 177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 178
e4cc1f22 179 if (rdp->passed_quiesce == 0)
d4c08f2a 180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 181 rdp->passed_quiesce = 1;
b1f77b05
IM
182}
183
d6714c22 184void rcu_bh_qs(int cpu)
b1f77b05 185{
25502a6c 186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 187
e4cc1f22 188 if (rdp->passed_quiesce == 0)
d4c08f2a 189 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 190 rdp->passed_quiesce = 1;
b1f77b05 191}
64db4cff 192
25502a6c
PM
193/*
194 * Note a context switch. This is a quiescent state for RCU-sched,
195 * and requires special handling for preemptible RCU.
e4cc1f22 196 * The caller must have disabled preemption.
25502a6c
PM
197 */
198void rcu_note_context_switch(int cpu)
199{
300df91c 200 trace_rcu_utilization("Start context switch");
25502a6c 201 rcu_sched_qs(cpu);
cba6d0d6 202 rcu_preempt_note_context_switch(cpu);
300df91c 203 trace_rcu_utilization("End context switch");
25502a6c 204}
29ce8310 205EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 206
90a4d2c0 207DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 208 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 209 .dynticks = ATOMIC_INIT(1),
1fd2b442 210#if defined(CONFIG_RCU_USER_QS) && !defined(CONFIG_RCU_USER_QS_FORCE)
1e1a689f
FW
211 .ignore_user_qs = true,
212#endif
90a4d2c0 213};
64db4cff 214
e0f23060 215static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
216static int qhimark = 10000; /* If this many pending, ignore blimit. */
217static int qlowmark = 100; /* Once only this many pending, use blimit. */
218
7e5c2dfb
PM
219module_param(blimit, int, 0444);
220module_param(qhimark, int, 0444);
221module_param(qlowmark, int, 0444);
3d76c082 222
13cfcca0
PM
223int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
f2e0dd70 226module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 227module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 228
d40011f6
PM
229static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
230static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
231
232module_param(jiffies_till_first_fqs, ulong, 0644);
233module_param(jiffies_till_next_fqs, ulong, 0644);
234
4cdfc175
PM
235static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
236static void force_quiescent_state(struct rcu_state *rsp);
a157229c 237static int rcu_pending(int cpu);
64db4cff
PM
238
239/*
d6714c22 240 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 241 */
d6714c22 242long rcu_batches_completed_sched(void)
64db4cff 243{
d6714c22 244 return rcu_sched_state.completed;
64db4cff 245}
d6714c22 246EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
247
248/*
249 * Return the number of RCU BH batches processed thus far for debug & stats.
250 */
251long rcu_batches_completed_bh(void)
252{
253 return rcu_bh_state.completed;
254}
255EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
256
bf66f18e
PM
257/*
258 * Force a quiescent state for RCU BH.
259 */
260void rcu_bh_force_quiescent_state(void)
261{
4cdfc175 262 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
263}
264EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
265
4a298656
PM
266/*
267 * Record the number of times rcutorture tests have been initiated and
268 * terminated. This information allows the debugfs tracing stats to be
269 * correlated to the rcutorture messages, even when the rcutorture module
270 * is being repeatedly loaded and unloaded. In other words, we cannot
271 * store this state in rcutorture itself.
272 */
273void rcutorture_record_test_transition(void)
274{
275 rcutorture_testseq++;
276 rcutorture_vernum = 0;
277}
278EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
279
280/*
281 * Record the number of writer passes through the current rcutorture test.
282 * This is also used to correlate debugfs tracing stats with the rcutorture
283 * messages.
284 */
285void rcutorture_record_progress(unsigned long vernum)
286{
287 rcutorture_vernum++;
288}
289EXPORT_SYMBOL_GPL(rcutorture_record_progress);
290
bf66f18e
PM
291/*
292 * Force a quiescent state for RCU-sched.
293 */
294void rcu_sched_force_quiescent_state(void)
295{
4cdfc175 296 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
297}
298EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
299
64db4cff
PM
300/*
301 * Does the CPU have callbacks ready to be invoked?
302 */
303static int
304cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
305{
306 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
307}
308
309/*
310 * Does the current CPU require a yet-as-unscheduled grace period?
311 */
312static int
313cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
314{
a10d206e
PM
315 return *rdp->nxttail[RCU_DONE_TAIL +
316 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
317 !rcu_gp_in_progress(rsp);
64db4cff
PM
318}
319
320/*
321 * Return the root node of the specified rcu_state structure.
322 */
323static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
324{
325 return &rsp->node[0];
326}
327
9b2e4f18 328/*
adf5091e 329 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
330 *
331 * If the new value of the ->dynticks_nesting counter now is zero,
332 * we really have entered idle, and must do the appropriate accounting.
333 * The caller must have disabled interrupts.
334 */
adf5091e
FW
335static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
336 bool user)
9b2e4f18 337{
facc4e15 338 trace_rcu_dyntick("Start", oldval, 0);
cb349ca9 339 if (!user && !is_idle_task(current)) {
0989cb46
PM
340 struct task_struct *idle = idle_task(smp_processor_id());
341
facc4e15 342 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
bf1304e9 343 ftrace_dump(DUMP_ORIG);
0989cb46
PM
344 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
345 current->pid, current->comm,
346 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 347 }
aea1b35e 348 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
349 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
350 smp_mb__before_atomic_inc(); /* See above. */
351 atomic_inc(&rdtp->dynticks);
352 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
353 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
354
355 /*
adf5091e 356 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
357 * in an RCU read-side critical section.
358 */
359 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
360 "Illegal idle entry in RCU read-side critical section.");
361 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
362 "Illegal idle entry in RCU-bh read-side critical section.");
363 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
364 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 365}
64db4cff 366
adf5091e
FW
367/*
368 * Enter an RCU extended quiescent state, which can be either the
369 * idle loop or adaptive-tickless usermode execution.
64db4cff 370 */
adf5091e 371static void rcu_eqs_enter(bool user)
64db4cff 372{
4145fa7f 373 long long oldval;
64db4cff
PM
374 struct rcu_dynticks *rdtp;
375
64db4cff 376 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 377 oldval = rdtp->dynticks_nesting;
29e37d81
PM
378 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
379 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
380 rdtp->dynticks_nesting = 0;
381 else
382 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 383 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 384}
adf5091e
FW
385
386/**
387 * rcu_idle_enter - inform RCU that current CPU is entering idle
388 *
389 * Enter idle mode, in other words, -leave- the mode in which RCU
390 * read-side critical sections can occur. (Though RCU read-side
391 * critical sections can occur in irq handlers in idle, a possibility
392 * handled by irq_enter() and irq_exit().)
393 *
394 * We crowbar the ->dynticks_nesting field to zero to allow for
395 * the possibility of usermode upcalls having messed up our count
396 * of interrupt nesting level during the prior busy period.
397 */
398void rcu_idle_enter(void)
399{
c5d900bf
FW
400 unsigned long flags;
401
402 local_irq_save(flags);
cb349ca9 403 rcu_eqs_enter(false);
c5d900bf 404 local_irq_restore(flags);
adf5091e 405}
8a2ecf47 406EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 407
2b1d5024 408#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
409/**
410 * rcu_user_enter - inform RCU that we are resuming userspace.
411 *
412 * Enter RCU idle mode right before resuming userspace. No use of RCU
413 * is permitted between this call and rcu_user_exit(). This way the
414 * CPU doesn't need to maintain the tick for RCU maintenance purposes
415 * when the CPU runs in userspace.
416 */
417void rcu_user_enter(void)
418{
c5d900bf
FW
419 unsigned long flags;
420 struct rcu_dynticks *rdtp;
421
adf5091e
FW
422 /*
423 * Some contexts may involve an exception occuring in an irq,
424 * leading to that nesting:
425 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
426 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
427 * helpers are enough to protect RCU uses inside the exception. So
428 * just return immediately if we detect we are in an IRQ.
429 */
430 if (in_interrupt())
431 return;
432
c5d900bf
FW
433 WARN_ON_ONCE(!current->mm);
434
435 local_irq_save(flags);
436 rdtp = &__get_cpu_var(rcu_dynticks);
1e1a689f 437 if (!rdtp->ignore_user_qs && !rdtp->in_user) {
c5d900bf 438 rdtp->in_user = true;
cb349ca9 439 rcu_eqs_enter(true);
c5d900bf
FW
440 }
441 local_irq_restore(flags);
adf5091e
FW
442}
443
19dd1591
FW
444/**
445 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
446 * after the current irq returns.
447 *
448 * This is similar to rcu_user_enter() but in the context of a non-nesting
449 * irq. After this call, RCU enters into idle mode when the interrupt
450 * returns.
451 */
452void rcu_user_enter_after_irq(void)
453{
454 unsigned long flags;
455 struct rcu_dynticks *rdtp;
456
457 local_irq_save(flags);
458 rdtp = &__get_cpu_var(rcu_dynticks);
459 /* Ensure this irq is interrupting a non-idle RCU state. */
460 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
461 rdtp->dynticks_nesting = 1;
462 local_irq_restore(flags);
463}
2b1d5024 464#endif /* CONFIG_RCU_USER_QS */
19dd1591 465
9b2e4f18
PM
466/**
467 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
468 *
469 * Exit from an interrupt handler, which might possibly result in entering
470 * idle mode, in other words, leaving the mode in which read-side critical
471 * sections can occur.
64db4cff 472 *
9b2e4f18
PM
473 * This code assumes that the idle loop never does anything that might
474 * result in unbalanced calls to irq_enter() and irq_exit(). If your
475 * architecture violates this assumption, RCU will give you what you
476 * deserve, good and hard. But very infrequently and irreproducibly.
477 *
478 * Use things like work queues to work around this limitation.
479 *
480 * You have been warned.
64db4cff 481 */
9b2e4f18 482void rcu_irq_exit(void)
64db4cff
PM
483{
484 unsigned long flags;
4145fa7f 485 long long oldval;
64db4cff
PM
486 struct rcu_dynticks *rdtp;
487
488 local_irq_save(flags);
489 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 490 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
491 rdtp->dynticks_nesting--;
492 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
493 if (rdtp->dynticks_nesting)
494 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
495 else
cb349ca9 496 rcu_eqs_enter_common(rdtp, oldval, true);
9b2e4f18
PM
497 local_irq_restore(flags);
498}
499
500/*
adf5091e 501 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
502 *
503 * If the new value of the ->dynticks_nesting counter was previously zero,
504 * we really have exited idle, and must do the appropriate accounting.
505 * The caller must have disabled interrupts.
506 */
adf5091e
FW
507static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
508 int user)
9b2e4f18 509{
23b5c8fa
PM
510 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
511 atomic_inc(&rdtp->dynticks);
512 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
513 smp_mb__after_atomic_inc(); /* See above. */
514 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 515 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 516 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
cb349ca9 517 if (!user && !is_idle_task(current)) {
0989cb46
PM
518 struct task_struct *idle = idle_task(smp_processor_id());
519
4145fa7f
PM
520 trace_rcu_dyntick("Error on exit: not idle task",
521 oldval, rdtp->dynticks_nesting);
bf1304e9 522 ftrace_dump(DUMP_ORIG);
0989cb46
PM
523 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
524 current->pid, current->comm,
525 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
526 }
527}
528
adf5091e
FW
529/*
530 * Exit an RCU extended quiescent state, which can be either the
531 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 532 */
adf5091e 533static void rcu_eqs_exit(bool user)
9b2e4f18 534{
9b2e4f18
PM
535 struct rcu_dynticks *rdtp;
536 long long oldval;
537
9b2e4f18
PM
538 rdtp = &__get_cpu_var(rcu_dynticks);
539 oldval = rdtp->dynticks_nesting;
29e37d81
PM
540 WARN_ON_ONCE(oldval < 0);
541 if (oldval & DYNTICK_TASK_NEST_MASK)
542 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
543 else
544 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 545 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 546}
adf5091e
FW
547
548/**
549 * rcu_idle_exit - inform RCU that current CPU is leaving idle
550 *
551 * Exit idle mode, in other words, -enter- the mode in which RCU
552 * read-side critical sections can occur.
553 *
554 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
555 * allow for the possibility of usermode upcalls messing up our count
556 * of interrupt nesting level during the busy period that is just
557 * now starting.
558 */
559void rcu_idle_exit(void)
560{
c5d900bf
FW
561 unsigned long flags;
562
563 local_irq_save(flags);
cb349ca9 564 rcu_eqs_exit(false);
c5d900bf 565 local_irq_restore(flags);
adf5091e 566}
8a2ecf47 567EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 568
2b1d5024 569#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
570/**
571 * rcu_user_exit - inform RCU that we are exiting userspace.
572 *
573 * Exit RCU idle mode while entering the kernel because it can
574 * run a RCU read side critical section anytime.
575 */
576void rcu_user_exit(void)
577{
c5d900bf
FW
578 unsigned long flags;
579 struct rcu_dynticks *rdtp;
580
adf5091e
FW
581 /*
582 * Some contexts may involve an exception occuring in an irq,
583 * leading to that nesting:
584 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()
585 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
586 * helpers are enough to protect RCU uses inside the exception. So
587 * just return immediately if we detect we are in an IRQ.
588 */
589 if (in_interrupt())
590 return;
591
c5d900bf
FW
592 local_irq_save(flags);
593 rdtp = &__get_cpu_var(rcu_dynticks);
594 if (rdtp->in_user) {
595 rdtp->in_user = false;
cb349ca9 596 rcu_eqs_exit(true);
c5d900bf
FW
597 }
598 local_irq_restore(flags);
adf5091e
FW
599}
600
19dd1591
FW
601/**
602 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
603 * idle mode after the current non-nesting irq returns.
604 *
605 * This is similar to rcu_user_exit() but in the context of an irq.
606 * This is called when the irq has interrupted a userspace RCU idle mode
607 * context. When the current non-nesting interrupt returns after this call,
608 * the CPU won't restore the RCU idle mode.
609 */
610void rcu_user_exit_after_irq(void)
611{
612 unsigned long flags;
613 struct rcu_dynticks *rdtp;
614
615 local_irq_save(flags);
616 rdtp = &__get_cpu_var(rcu_dynticks);
617 /* Ensure we are interrupting an RCU idle mode. */
618 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
619 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
620 local_irq_restore(flags);
621}
2b1d5024 622#endif /* CONFIG_RCU_USER_QS */
19dd1591 623
9b2e4f18
PM
624/**
625 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
626 *
627 * Enter an interrupt handler, which might possibly result in exiting
628 * idle mode, in other words, entering the mode in which read-side critical
629 * sections can occur.
630 *
631 * Note that the Linux kernel is fully capable of entering an interrupt
632 * handler that it never exits, for example when doing upcalls to
633 * user mode! This code assumes that the idle loop never does upcalls to
634 * user mode. If your architecture does do upcalls from the idle loop (or
635 * does anything else that results in unbalanced calls to the irq_enter()
636 * and irq_exit() functions), RCU will give you what you deserve, good
637 * and hard. But very infrequently and irreproducibly.
638 *
639 * Use things like work queues to work around this limitation.
640 *
641 * You have been warned.
642 */
643void rcu_irq_enter(void)
644{
645 unsigned long flags;
646 struct rcu_dynticks *rdtp;
647 long long oldval;
648
649 local_irq_save(flags);
650 rdtp = &__get_cpu_var(rcu_dynticks);
651 oldval = rdtp->dynticks_nesting;
652 rdtp->dynticks_nesting++;
653 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
654 if (oldval)
655 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
656 else
cb349ca9 657 rcu_eqs_exit_common(rdtp, oldval, true);
64db4cff 658 local_irq_restore(flags);
64db4cff
PM
659}
660
661/**
662 * rcu_nmi_enter - inform RCU of entry to NMI context
663 *
664 * If the CPU was idle with dynamic ticks active, and there is no
665 * irq handler running, this updates rdtp->dynticks_nmi to let the
666 * RCU grace-period handling know that the CPU is active.
667 */
668void rcu_nmi_enter(void)
669{
670 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
671
23b5c8fa
PM
672 if (rdtp->dynticks_nmi_nesting == 0 &&
673 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 674 return;
23b5c8fa
PM
675 rdtp->dynticks_nmi_nesting++;
676 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
677 atomic_inc(&rdtp->dynticks);
678 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
679 smp_mb__after_atomic_inc(); /* See above. */
680 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
681}
682
683/**
684 * rcu_nmi_exit - inform RCU of exit from NMI context
685 *
686 * If the CPU was idle with dynamic ticks active, and there is no
687 * irq handler running, this updates rdtp->dynticks_nmi to let the
688 * RCU grace-period handling know that the CPU is no longer active.
689 */
690void rcu_nmi_exit(void)
691{
692 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
693
23b5c8fa
PM
694 if (rdtp->dynticks_nmi_nesting == 0 ||
695 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 696 return;
23b5c8fa
PM
697 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
698 smp_mb__before_atomic_inc(); /* See above. */
699 atomic_inc(&rdtp->dynticks);
700 smp_mb__after_atomic_inc(); /* Force delay to next write. */
701 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
702}
703
704/**
9b2e4f18 705 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 706 *
9b2e4f18 707 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 708 * or NMI handler, return true.
64db4cff 709 */
9b2e4f18 710int rcu_is_cpu_idle(void)
64db4cff 711{
34240697
PM
712 int ret;
713
714 preempt_disable();
715 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
716 preempt_enable();
717 return ret;
64db4cff 718}
e6b80a3b 719EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 720
04e7e951
FW
721#ifdef CONFIG_RCU_USER_QS
722void rcu_user_hooks_switch(struct task_struct *prev,
723 struct task_struct *next)
724{
725 struct rcu_dynticks *rdtp;
726
727 /* Interrupts are disabled in context switch */
728 rdtp = &__get_cpu_var(rcu_dynticks);
729 if (!rdtp->ignore_user_qs) {
730 clear_tsk_thread_flag(prev, TIF_NOHZ);
731 set_tsk_thread_flag(next, TIF_NOHZ);
732 }
733}
734#endif /* #ifdef CONFIG_RCU_USER_QS */
735
62fde6ed 736#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
737
738/*
739 * Is the current CPU online? Disable preemption to avoid false positives
740 * that could otherwise happen due to the current CPU number being sampled,
741 * this task being preempted, its old CPU being taken offline, resuming
742 * on some other CPU, then determining that its old CPU is now offline.
743 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
744 * the check for rcu_scheduler_fully_active. Note also that it is OK
745 * for a CPU coming online to use RCU for one jiffy prior to marking itself
746 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
747 * offline to continue to use RCU for one jiffy after marking itself
748 * offline in the cpu_online_mask. This leniency is necessary given the
749 * non-atomic nature of the online and offline processing, for example,
750 * the fact that a CPU enters the scheduler after completing the CPU_DYING
751 * notifiers.
752 *
753 * This is also why RCU internally marks CPUs online during the
754 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
755 *
756 * Disable checking if in an NMI handler because we cannot safely report
757 * errors from NMI handlers anyway.
758 */
759bool rcu_lockdep_current_cpu_online(void)
760{
2036d94a
PM
761 struct rcu_data *rdp;
762 struct rcu_node *rnp;
c0d6d01b
PM
763 bool ret;
764
765 if (in_nmi())
766 return 1;
767 preempt_disable();
2036d94a
PM
768 rdp = &__get_cpu_var(rcu_sched_data);
769 rnp = rdp->mynode;
770 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
771 !rcu_scheduler_fully_active;
772 preempt_enable();
773 return ret;
774}
775EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
776
62fde6ed 777#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 778
64db4cff 779/**
9b2e4f18 780 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 781 *
9b2e4f18
PM
782 * If the current CPU is idle or running at a first-level (not nested)
783 * interrupt from idle, return true. The caller must have at least
784 * disabled preemption.
64db4cff 785 */
9b2e4f18 786int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 787{
9b2e4f18 788 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
789}
790
64db4cff
PM
791/*
792 * Snapshot the specified CPU's dynticks counter so that we can later
793 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 794 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
795 */
796static int dyntick_save_progress_counter(struct rcu_data *rdp)
797{
23b5c8fa 798 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 799 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
800}
801
802/*
803 * Return true if the specified CPU has passed through a quiescent
804 * state by virtue of being in or having passed through an dynticks
805 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 806 * for this same CPU, or by virtue of having been offline.
64db4cff
PM
807 */
808static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
809{
7eb4f455
PM
810 unsigned int curr;
811 unsigned int snap;
64db4cff 812
7eb4f455
PM
813 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
814 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
815
816 /*
817 * If the CPU passed through or entered a dynticks idle phase with
818 * no active irq/NMI handlers, then we can safely pretend that the CPU
819 * already acknowledged the request to pass through a quiescent
820 * state. Either way, that CPU cannot possibly be in an RCU
821 * read-side critical section that started before the beginning
822 * of the current RCU grace period.
823 */
7eb4f455 824 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 825 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
826 rdp->dynticks_fqs++;
827 return 1;
828 }
829
a82dcc76
PM
830 /*
831 * Check for the CPU being offline, but only if the grace period
832 * is old enough. We don't need to worry about the CPU changing
833 * state: If we see it offline even once, it has been through a
834 * quiescent state.
835 *
836 * The reason for insisting that the grace period be at least
837 * one jiffy old is that CPUs that are not quite online and that
838 * have just gone offline can still execute RCU read-side critical
839 * sections.
840 */
841 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
842 return 0; /* Grace period is not old enough. */
843 barrier();
844 if (cpu_is_offline(rdp->cpu)) {
845 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
846 rdp->offline_fqs++;
847 return 1;
848 }
849 return 0;
64db4cff
PM
850}
851
13cfcca0
PM
852static int jiffies_till_stall_check(void)
853{
854 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
855
856 /*
857 * Limit check must be consistent with the Kconfig limits
858 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
859 */
860 if (till_stall_check < 3) {
861 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
862 till_stall_check = 3;
863 } else if (till_stall_check > 300) {
864 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
865 till_stall_check = 300;
866 }
867 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
868}
869
64db4cff
PM
870static void record_gp_stall_check_time(struct rcu_state *rsp)
871{
872 rsp->gp_start = jiffies;
13cfcca0 873 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
874}
875
b637a328
PM
876/*
877 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
878 * for architectures that do not implement trigger_all_cpu_backtrace().
879 * The NMI-triggered stack traces are more accurate because they are
880 * printed by the target CPU.
881 */
882static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
883{
884 int cpu;
885 unsigned long flags;
886 struct rcu_node *rnp;
887
888 rcu_for_each_leaf_node(rsp, rnp) {
889 raw_spin_lock_irqsave(&rnp->lock, flags);
890 if (rnp->qsmask != 0) {
891 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
892 if (rnp->qsmask & (1UL << cpu))
893 dump_cpu_task(rnp->grplo + cpu);
894 }
895 raw_spin_unlock_irqrestore(&rnp->lock, flags);
896 }
897}
898
64db4cff
PM
899static void print_other_cpu_stall(struct rcu_state *rsp)
900{
901 int cpu;
902 long delta;
903 unsigned long flags;
285fe294 904 int ndetected = 0;
64db4cff 905 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
906
907 /* Only let one CPU complain about others per time interval. */
908
1304afb2 909 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 910 delta = jiffies - rsp->jiffies_stall;
fc2219d4 911 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 912 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
913 return;
914 }
13cfcca0 915 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 916 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 917
8cdd32a9
PM
918 /*
919 * OK, time to rat on our buddy...
920 * See Documentation/RCU/stallwarn.txt for info on how to debug
921 * RCU CPU stall warnings.
922 */
a858af28 923 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 924 rsp->name);
a858af28 925 print_cpu_stall_info_begin();
a0b6c9a7 926 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 927 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 928 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
929 if (rnp->qsmask != 0) {
930 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
931 if (rnp->qsmask & (1UL << cpu)) {
932 print_cpu_stall_info(rsp,
933 rnp->grplo + cpu);
934 ndetected++;
935 }
936 }
3acd9eb3 937 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 938 }
a858af28
PM
939
940 /*
941 * Now rat on any tasks that got kicked up to the root rcu_node
942 * due to CPU offlining.
943 */
944 rnp = rcu_get_root(rsp);
945 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 946 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
947 raw_spin_unlock_irqrestore(&rnp->lock, flags);
948
949 print_cpu_stall_info_end();
eee05882
PM
950 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu)\n",
951 smp_processor_id(), (long)(jiffies - rsp->gp_start),
952 rsp->gpnum, rsp->completed);
9bc8b558
PM
953 if (ndetected == 0)
954 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
955 else if (!trigger_all_cpu_backtrace())
b637a328 956 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 957
4cdfc175 958 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
959
960 rcu_print_detail_task_stall(rsp);
961
4cdfc175 962 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
963}
964
965static void print_cpu_stall(struct rcu_state *rsp)
966{
967 unsigned long flags;
968 struct rcu_node *rnp = rcu_get_root(rsp);
969
8cdd32a9
PM
970 /*
971 * OK, time to rat on ourselves...
972 * See Documentation/RCU/stallwarn.txt for info on how to debug
973 * RCU CPU stall warnings.
974 */
a858af28
PM
975 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
976 print_cpu_stall_info_begin();
977 print_cpu_stall_info(rsp, smp_processor_id());
978 print_cpu_stall_info_end();
eee05882
PM
979 pr_cont(" (t=%lu jiffies g=%lu c=%lu)\n",
980 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed);
4627e240
PM
981 if (!trigger_all_cpu_backtrace())
982 dump_stack();
c1dc0b9c 983
1304afb2 984 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 985 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
986 rsp->jiffies_stall = jiffies +
987 3 * jiffies_till_stall_check() + 3;
1304afb2 988 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 989
64db4cff
PM
990 set_need_resched(); /* kick ourselves to get things going. */
991}
992
993static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
994{
bad6e139
PM
995 unsigned long j;
996 unsigned long js;
64db4cff
PM
997 struct rcu_node *rnp;
998
742734ee 999 if (rcu_cpu_stall_suppress)
c68de209 1000 return;
bad6e139
PM
1001 j = ACCESS_ONCE(jiffies);
1002 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 1003 rnp = rdp->mynode;
c96ea7cf
PM
1004 if (rcu_gp_in_progress(rsp) &&
1005 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
1006
1007 /* We haven't checked in, so go dump stack. */
1008 print_cpu_stall(rsp);
1009
bad6e139
PM
1010 } else if (rcu_gp_in_progress(rsp) &&
1011 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1012
bad6e139 1013 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1014 print_other_cpu_stall(rsp);
1015 }
1016}
1017
c68de209
PM
1018static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
1019{
742734ee 1020 rcu_cpu_stall_suppress = 1;
c68de209
PM
1021 return NOTIFY_DONE;
1022}
1023
53d84e00
PM
1024/**
1025 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1026 *
1027 * Set the stall-warning timeout way off into the future, thus preventing
1028 * any RCU CPU stall-warning messages from appearing in the current set of
1029 * RCU grace periods.
1030 *
1031 * The caller must disable hard irqs.
1032 */
1033void rcu_cpu_stall_reset(void)
1034{
6ce75a23
PM
1035 struct rcu_state *rsp;
1036
1037 for_each_rcu_flavor(rsp)
1038 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
1039}
1040
c68de209
PM
1041static struct notifier_block rcu_panic_block = {
1042 .notifier_call = rcu_panic,
1043};
1044
1045static void __init check_cpu_stall_init(void)
1046{
1047 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
1048}
1049
64db4cff
PM
1050/*
1051 * Update CPU-local rcu_data state to record the newly noticed grace period.
1052 * This is used both when we started the grace period and when we notice
9160306e
PM
1053 * that someone else started the grace period. The caller must hold the
1054 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
1055 * and must have irqs disabled.
64db4cff 1056 */
9160306e
PM
1057static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1058{
1059 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
1060 /*
1061 * If the current grace period is waiting for this CPU,
1062 * set up to detect a quiescent state, otherwise don't
1063 * go looking for one.
1064 */
9160306e 1065 rdp->gpnum = rnp->gpnum;
d4c08f2a 1066 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
d7d6a11e
PM
1067 rdp->passed_quiesce = 0;
1068 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
a858af28 1069 zero_cpu_stall_ticks(rdp);
9160306e
PM
1070 }
1071}
1072
64db4cff
PM
1073static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
1074{
9160306e
PM
1075 unsigned long flags;
1076 struct rcu_node *rnp;
1077
1078 local_irq_save(flags);
1079 rnp = rdp->mynode;
1080 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 1081 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
1082 local_irq_restore(flags);
1083 return;
1084 }
1085 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 1086 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1087}
1088
1089/*
1090 * Did someone else start a new RCU grace period start since we last
1091 * checked? Update local state appropriately if so. Must be called
1092 * on the CPU corresponding to rdp.
1093 */
1094static int
1095check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
1096{
1097 unsigned long flags;
1098 int ret = 0;
1099
1100 local_irq_save(flags);
1101 if (rdp->gpnum != rsp->gpnum) {
1102 note_new_gpnum(rsp, rdp);
1103 ret = 1;
1104 }
1105 local_irq_restore(flags);
1106 return ret;
1107}
1108
3f5d3ea6
PM
1109/*
1110 * Initialize the specified rcu_data structure's callback list to empty.
1111 */
1112static void init_callback_list(struct rcu_data *rdp)
1113{
1114 int i;
1115
1116 rdp->nxtlist = NULL;
1117 for (i = 0; i < RCU_NEXT_SIZE; i++)
1118 rdp->nxttail[i] = &rdp->nxtlist;
1119}
1120
d09b62df
PM
1121/*
1122 * Advance this CPU's callbacks, but only if the current grace period
1123 * has ended. This may be called only from the CPU to whom the rdp
1124 * belongs. In addition, the corresponding leaf rcu_node structure's
1125 * ->lock must be held by the caller, with irqs disabled.
1126 */
1127static void
1128__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1129{
1130 /* Did another grace period end? */
1131 if (rdp->completed != rnp->completed) {
1132
1133 /* Advance callbacks. No harm if list empty. */
1134 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
1135 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
1136 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1137
1138 /* Remember that we saw this grace-period completion. */
1139 rdp->completed = rnp->completed;
d4c08f2a 1140 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 1141
5ff8e6f0
FW
1142 /*
1143 * If we were in an extended quiescent state, we may have
121dfc4b 1144 * missed some grace periods that others CPUs handled on
5ff8e6f0 1145 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
1146 * spurious new grace periods. If another grace period
1147 * has started, then rnp->gpnum will have advanced, so
d7d6a11e
PM
1148 * we will detect this later on. Of course, any quiescent
1149 * states we found for the old GP are now invalid.
5ff8e6f0 1150 */
d7d6a11e 1151 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed)) {
5ff8e6f0 1152 rdp->gpnum = rdp->completed;
d7d6a11e
PM
1153 rdp->passed_quiesce = 0;
1154 }
5ff8e6f0 1155
20377f32 1156 /*
121dfc4b
PM
1157 * If RCU does not need a quiescent state from this CPU,
1158 * then make sure that this CPU doesn't go looking for one.
20377f32 1159 */
121dfc4b 1160 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 1161 rdp->qs_pending = 0;
d09b62df
PM
1162 }
1163}
1164
1165/*
1166 * Advance this CPU's callbacks, but only if the current grace period
1167 * has ended. This may be called only from the CPU to whom the rdp
1168 * belongs.
1169 */
1170static void
1171rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1172{
1173 unsigned long flags;
1174 struct rcu_node *rnp;
1175
1176 local_irq_save(flags);
1177 rnp = rdp->mynode;
1178 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1179 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1180 local_irq_restore(flags);
1181 return;
1182 }
1183 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1184 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1185}
1186
1187/*
1188 * Do per-CPU grace-period initialization for running CPU. The caller
1189 * must hold the lock of the leaf rcu_node structure corresponding to
1190 * this CPU.
1191 */
1192static void
1193rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1194{
1195 /* Prior grace period ended, so advance callbacks for current CPU. */
1196 __rcu_process_gp_end(rsp, rnp, rdp);
1197
9160306e
PM
1198 /* Set state so that this CPU will detect the next quiescent state. */
1199 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1200}
1201
b3dbec76 1202/*
7fdefc10 1203 * Initialize a new grace period.
b3dbec76 1204 */
7fdefc10 1205static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1206{
1207 struct rcu_data *rdp;
7fdefc10 1208 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1209
7fdefc10 1210 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1211 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1212
7fdefc10
PM
1213 if (rcu_gp_in_progress(rsp)) {
1214 /* Grace period already in progress, don't start another. */
1215 raw_spin_unlock_irq(&rnp->lock);
1216 return 0;
1217 }
1218
7fdefc10
PM
1219 /* Advance to a new grace period and initialize state. */
1220 rsp->gpnum++;
1221 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
7fdefc10
PM
1222 record_gp_stall_check_time(rsp);
1223 raw_spin_unlock_irq(&rnp->lock);
1224
1225 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1226 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1227
1228 /*
1229 * Set the quiescent-state-needed bits in all the rcu_node
1230 * structures for all currently online CPUs in breadth-first order,
1231 * starting from the root rcu_node structure, relying on the layout
1232 * of the tree within the rsp->node[] array. Note that other CPUs
1233 * will access only the leaves of the hierarchy, thus seeing that no
1234 * grace period is in progress, at least until the corresponding
1235 * leaf node has been initialized. In addition, we have excluded
1236 * CPU-hotplug operations.
1237 *
1238 * The grace period cannot complete until the initialization
1239 * process finishes, because this kthread handles both.
1240 */
1241 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1242 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1243 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1244 rcu_preempt_check_blocked_tasks(rnp);
1245 rnp->qsmask = rnp->qsmaskinit;
1246 rnp->gpnum = rsp->gpnum;
25d30cf4 1247 WARN_ON_ONCE(rnp->completed != rsp->completed);
7fdefc10
PM
1248 rnp->completed = rsp->completed;
1249 if (rnp == rdp->mynode)
1250 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1251 rcu_preempt_boost_start_gp(rnp);
1252 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1253 rnp->level, rnp->grplo,
1254 rnp->grphi, rnp->qsmask);
1255 raw_spin_unlock_irq(&rnp->lock);
661a85dc
PM
1256#ifdef CONFIG_PROVE_RCU_DELAY
1257 if ((random32() % (rcu_num_nodes * 8)) == 0)
1258 schedule_timeout_uninterruptible(2);
1259#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1260 cond_resched();
1261 }
b3dbec76 1262
a4fbe35a 1263 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1264 return 1;
1265}
b3dbec76 1266
4cdfc175
PM
1267/*
1268 * Do one round of quiescent-state forcing.
1269 */
1270int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1271{
1272 int fqs_state = fqs_state_in;
1273 struct rcu_node *rnp = rcu_get_root(rsp);
1274
1275 rsp->n_force_qs++;
1276 if (fqs_state == RCU_SAVE_DYNTICK) {
1277 /* Collect dyntick-idle snapshots. */
1278 force_qs_rnp(rsp, dyntick_save_progress_counter);
1279 fqs_state = RCU_FORCE_QS;
1280 } else {
1281 /* Handle dyntick-idle and offline CPUs. */
1282 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1283 }
1284 /* Clear flag to prevent immediate re-entry. */
1285 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1286 raw_spin_lock_irq(&rnp->lock);
1287 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1288 raw_spin_unlock_irq(&rnp->lock);
1289 }
1290 return fqs_state;
1291}
1292
7fdefc10
PM
1293/*
1294 * Clean up after the old grace period.
1295 */
4cdfc175 1296static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1297{
1298 unsigned long gp_duration;
1299 struct rcu_data *rdp;
1300 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1301
7fdefc10
PM
1302 raw_spin_lock_irq(&rnp->lock);
1303 gp_duration = jiffies - rsp->gp_start;
1304 if (gp_duration > rsp->gp_max)
1305 rsp->gp_max = gp_duration;
b3dbec76 1306
7fdefc10
PM
1307 /*
1308 * We know the grace period is complete, but to everyone else
1309 * it appears to still be ongoing. But it is also the case
1310 * that to everyone else it looks like there is nothing that
1311 * they can do to advance the grace period. It is therefore
1312 * safe for us to drop the lock in order to mark the grace
1313 * period as completed in all of the rcu_node structures.
7fdefc10 1314 */
5d4b8659 1315 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1316
5d4b8659
PM
1317 /*
1318 * Propagate new ->completed value to rcu_node structures so
1319 * that other CPUs don't have to wait until the start of the next
1320 * grace period to process their callbacks. This also avoids
1321 * some nasty RCU grace-period initialization races by forcing
1322 * the end of the current grace period to be completely recorded in
1323 * all of the rcu_node structures before the beginning of the next
1324 * grace period is recorded in any of the rcu_node structures.
1325 */
1326 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1327 raw_spin_lock_irq(&rnp->lock);
5d4b8659
PM
1328 rnp->completed = rsp->gpnum;
1329 raw_spin_unlock_irq(&rnp->lock);
1330 cond_resched();
7fdefc10 1331 }
5d4b8659
PM
1332 rnp = rcu_get_root(rsp);
1333 raw_spin_lock_irq(&rnp->lock);
7fdefc10
PM
1334
1335 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1336 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1337 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1338 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1339 if (cpu_needs_another_gp(rsp, rdp))
1340 rsp->gp_flags = 1;
1341 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1342}
1343
1344/*
1345 * Body of kthread that handles grace periods.
1346 */
1347static int __noreturn rcu_gp_kthread(void *arg)
1348{
4cdfc175 1349 int fqs_state;
d40011f6 1350 unsigned long j;
4cdfc175 1351 int ret;
7fdefc10
PM
1352 struct rcu_state *rsp = arg;
1353 struct rcu_node *rnp = rcu_get_root(rsp);
1354
1355 for (;;) {
1356
1357 /* Handle grace-period start. */
1358 for (;;) {
4cdfc175
PM
1359 wait_event_interruptible(rsp->gp_wq,
1360 rsp->gp_flags &
1361 RCU_GP_FLAG_INIT);
1362 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1363 rcu_gp_init(rsp))
7fdefc10
PM
1364 break;
1365 cond_resched();
1366 flush_signals(current);
1367 }
cabc49c1 1368
4cdfc175
PM
1369 /* Handle quiescent-state forcing. */
1370 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1371 j = jiffies_till_first_fqs;
1372 if (j > HZ) {
1373 j = HZ;
1374 jiffies_till_first_fqs = HZ;
1375 }
cabc49c1 1376 for (;;) {
d40011f6 1377 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1378 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1379 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1380 (!ACCESS_ONCE(rnp->qsmask) &&
1381 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1382 j);
4cdfc175 1383 /* If grace period done, leave loop. */
cabc49c1 1384 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1385 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1386 break;
4cdfc175
PM
1387 /* If time for quiescent-state forcing, do it. */
1388 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1389 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1390 cond_resched();
1391 } else {
1392 /* Deal with stray signal. */
1393 cond_resched();
1394 flush_signals(current);
1395 }
d40011f6
PM
1396 j = jiffies_till_next_fqs;
1397 if (j > HZ) {
1398 j = HZ;
1399 jiffies_till_next_fqs = HZ;
1400 } else if (j < 1) {
1401 j = 1;
1402 jiffies_till_next_fqs = 1;
1403 }
cabc49c1 1404 }
4cdfc175
PM
1405
1406 /* Handle grace-period end. */
1407 rcu_gp_cleanup(rsp);
b3dbec76 1408 }
b3dbec76
PM
1409}
1410
64db4cff
PM
1411/*
1412 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1413 * in preparation for detecting the next grace period. The caller must hold
1414 * the root node's ->lock, which is released before return. Hard irqs must
1415 * be disabled.
e5601400
PM
1416 *
1417 * Note that it is legal for a dying CPU (which is marked as offline) to
1418 * invoke this function. This can happen when the dying CPU reports its
1419 * quiescent state.
64db4cff
PM
1420 */
1421static void
1422rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1423 __releases(rcu_get_root(rsp)->lock)
1424{
394f99a9 1425 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1426 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1427
b3dbec76 1428 if (!rsp->gp_kthread ||
afe24b12
PM
1429 !cpu_needs_another_gp(rsp, rdp)) {
1430 /*
b3dbec76
PM
1431 * Either we have not yet spawned the grace-period
1432 * task or this CPU does not need another grace period.
1433 * Either way, don't start a new grace period.
afe24b12
PM
1434 */
1435 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1436 return;
1437 }
b32e9eb6 1438
4cdfc175 1439 rsp->gp_flags = RCU_GP_FLAG_INIT;
b3dbec76
PM
1440 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1441 wake_up(&rsp->gp_wq);
64db4cff
PM
1442}
1443
f41d911f 1444/*
d3f6bad3
PM
1445 * Report a full set of quiescent states to the specified rcu_state
1446 * data structure. This involves cleaning up after the prior grace
1447 * period and letting rcu_start_gp() start up the next grace period
1448 * if one is needed. Note that the caller must hold rnp->lock, as
1449 * required by rcu_start_gp(), which will release it.
f41d911f 1450 */
d3f6bad3 1451static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1452 __releases(rcu_get_root(rsp)->lock)
f41d911f 1453{
fc2219d4 1454 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1455 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1456 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1457}
1458
64db4cff 1459/*
d3f6bad3
PM
1460 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1461 * Allows quiescent states for a group of CPUs to be reported at one go
1462 * to the specified rcu_node structure, though all the CPUs in the group
1463 * must be represented by the same rcu_node structure (which need not be
1464 * a leaf rcu_node structure, though it often will be). That structure's
1465 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1466 */
1467static void
d3f6bad3
PM
1468rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1469 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1470 __releases(rnp->lock)
1471{
28ecd580
PM
1472 struct rcu_node *rnp_c;
1473
64db4cff
PM
1474 /* Walk up the rcu_node hierarchy. */
1475 for (;;) {
1476 if (!(rnp->qsmask & mask)) {
1477
1478 /* Our bit has already been cleared, so done. */
1304afb2 1479 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1480 return;
1481 }
1482 rnp->qsmask &= ~mask;
d4c08f2a
PM
1483 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1484 mask, rnp->qsmask, rnp->level,
1485 rnp->grplo, rnp->grphi,
1486 !!rnp->gp_tasks);
27f4d280 1487 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1488
1489 /* Other bits still set at this level, so done. */
1304afb2 1490 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1491 return;
1492 }
1493 mask = rnp->grpmask;
1494 if (rnp->parent == NULL) {
1495
1496 /* No more levels. Exit loop holding root lock. */
1497
1498 break;
1499 }
1304afb2 1500 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1501 rnp_c = rnp;
64db4cff 1502 rnp = rnp->parent;
1304afb2 1503 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1504 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1505 }
1506
1507 /*
1508 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1509 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1510 * to clean up and start the next grace period if one is needed.
64db4cff 1511 */
d3f6bad3 1512 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1513}
1514
1515/*
d3f6bad3
PM
1516 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1517 * structure. This must be either called from the specified CPU, or
1518 * called when the specified CPU is known to be offline (and when it is
1519 * also known that no other CPU is concurrently trying to help the offline
1520 * CPU). The lastcomp argument is used to make sure we are still in the
1521 * grace period of interest. We don't want to end the current grace period
1522 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1523 */
1524static void
d7d6a11e 1525rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1526{
1527 unsigned long flags;
1528 unsigned long mask;
1529 struct rcu_node *rnp;
1530
1531 rnp = rdp->mynode;
1304afb2 1532 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1533 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1534 rnp->completed == rnp->gpnum) {
64db4cff
PM
1535
1536 /*
e4cc1f22
PM
1537 * The grace period in which this quiescent state was
1538 * recorded has ended, so don't report it upwards.
1539 * We will instead need a new quiescent state that lies
1540 * within the current grace period.
64db4cff 1541 */
e4cc1f22 1542 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1543 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1544 return;
1545 }
1546 mask = rdp->grpmask;
1547 if ((rnp->qsmask & mask) == 0) {
1304afb2 1548 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1549 } else {
1550 rdp->qs_pending = 0;
1551
1552 /*
1553 * This GP can't end until cpu checks in, so all of our
1554 * callbacks can be processed during the next GP.
1555 */
64db4cff
PM
1556 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1557
d3f6bad3 1558 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1559 }
1560}
1561
1562/*
1563 * Check to see if there is a new grace period of which this CPU
1564 * is not yet aware, and if so, set up local rcu_data state for it.
1565 * Otherwise, see if this CPU has just passed through its first
1566 * quiescent state for this grace period, and record that fact if so.
1567 */
1568static void
1569rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1570{
1571 /* If there is now a new grace period, record and return. */
1572 if (check_for_new_grace_period(rsp, rdp))
1573 return;
1574
1575 /*
1576 * Does this CPU still need to do its part for current grace period?
1577 * If no, return and let the other CPUs do their part as well.
1578 */
1579 if (!rdp->qs_pending)
1580 return;
1581
1582 /*
1583 * Was there a quiescent state since the beginning of the grace
1584 * period? If no, then exit and wait for the next call.
1585 */
e4cc1f22 1586 if (!rdp->passed_quiesce)
64db4cff
PM
1587 return;
1588
d3f6bad3
PM
1589 /*
1590 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1591 * judge of that).
1592 */
d7d6a11e 1593 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1594}
1595
1596#ifdef CONFIG_HOTPLUG_CPU
1597
e74f4c45 1598/*
b1420f1c
PM
1599 * Send the specified CPU's RCU callbacks to the orphanage. The
1600 * specified CPU must be offline, and the caller must hold the
1601 * ->onofflock.
e74f4c45 1602 */
b1420f1c
PM
1603static void
1604rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1605 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1606{
b1420f1c
PM
1607 /*
1608 * Orphan the callbacks. First adjust the counts. This is safe
1609 * because ->onofflock excludes _rcu_barrier()'s adoption of
1610 * the callbacks, thus no memory barrier is required.
1611 */
a50c3af9 1612 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1613 rsp->qlen_lazy += rdp->qlen_lazy;
1614 rsp->qlen += rdp->qlen;
1615 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1616 rdp->qlen_lazy = 0;
1d1fb395 1617 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1618 }
1619
1620 /*
b1420f1c
PM
1621 * Next, move those callbacks still needing a grace period to
1622 * the orphanage, where some other CPU will pick them up.
1623 * Some of the callbacks might have gone partway through a grace
1624 * period, but that is too bad. They get to start over because we
1625 * cannot assume that grace periods are synchronized across CPUs.
1626 * We don't bother updating the ->nxttail[] array yet, instead
1627 * we just reset the whole thing later on.
a50c3af9 1628 */
b1420f1c
PM
1629 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1630 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1631 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1632 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1633 }
1634
1635 /*
b1420f1c
PM
1636 * Then move the ready-to-invoke callbacks to the orphanage,
1637 * where some other CPU will pick them up. These will not be
1638 * required to pass though another grace period: They are done.
a50c3af9 1639 */
e5601400 1640 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1641 *rsp->orphan_donetail = rdp->nxtlist;
1642 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1643 }
e74f4c45 1644
b1420f1c 1645 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1646 init_callback_list(rdp);
b1420f1c
PM
1647}
1648
1649/*
1650 * Adopt the RCU callbacks from the specified rcu_state structure's
1651 * orphanage. The caller must hold the ->onofflock.
1652 */
1653static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1654{
1655 int i;
1656 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1657
b1420f1c
PM
1658 /* Do the accounting first. */
1659 rdp->qlen_lazy += rsp->qlen_lazy;
1660 rdp->qlen += rsp->qlen;
1661 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1662 if (rsp->qlen_lazy != rsp->qlen)
1663 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1664 rsp->qlen_lazy = 0;
1665 rsp->qlen = 0;
1666
1667 /*
1668 * We do not need a memory barrier here because the only way we
1669 * can get here if there is an rcu_barrier() in flight is if
1670 * we are the task doing the rcu_barrier().
1671 */
1672
1673 /* First adopt the ready-to-invoke callbacks. */
1674 if (rsp->orphan_donelist != NULL) {
1675 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1676 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1677 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1678 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1679 rdp->nxttail[i] = rsp->orphan_donetail;
1680 rsp->orphan_donelist = NULL;
1681 rsp->orphan_donetail = &rsp->orphan_donelist;
1682 }
1683
1684 /* And then adopt the callbacks that still need a grace period. */
1685 if (rsp->orphan_nxtlist != NULL) {
1686 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1687 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1688 rsp->orphan_nxtlist = NULL;
1689 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1690 }
1691}
1692
1693/*
1694 * Trace the fact that this CPU is going offline.
1695 */
1696static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1697{
1698 RCU_TRACE(unsigned long mask);
1699 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1700 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1701
1702 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1703 trace_rcu_grace_period(rsp->name,
1704 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1705 "cpuofl");
64db4cff
PM
1706}
1707
1708/*
e5601400 1709 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1710 * this fact from process context. Do the remainder of the cleanup,
1711 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1712 * adopting them. There can only be one CPU hotplug operation at a time,
1713 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1714 */
e5601400 1715static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1716{
2036d94a
PM
1717 unsigned long flags;
1718 unsigned long mask;
1719 int need_report = 0;
e5601400 1720 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1721 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1722
2036d94a 1723 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1724 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1725
b1420f1c 1726 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1727
1728 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1729 mutex_lock(&rsp->onoff_mutex);
2036d94a
PM
1730 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1731
b1420f1c
PM
1732 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1733 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1734 rcu_adopt_orphan_cbs(rsp);
1735
2036d94a
PM
1736 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1737 mask = rdp->grpmask; /* rnp->grplo is constant. */
1738 do {
1739 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1740 rnp->qsmaskinit &= ~mask;
1741 if (rnp->qsmaskinit != 0) {
1742 if (rnp != rdp->mynode)
1743 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1744 break;
1745 }
1746 if (rnp == rdp->mynode)
1747 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1748 else
1749 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1750 mask = rnp->grpmask;
1751 rnp = rnp->parent;
1752 } while (rnp != NULL);
1753
1754 /*
1755 * We still hold the leaf rcu_node structure lock here, and
1756 * irqs are still disabled. The reason for this subterfuge is
1757 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1758 * held leads to deadlock.
1759 */
1760 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1761 rnp = rdp->mynode;
1762 if (need_report & RCU_OFL_TASKS_NORM_GP)
1763 rcu_report_unblock_qs_rnp(rnp, flags);
1764 else
1765 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1766 if (need_report & RCU_OFL_TASKS_EXP_GP)
1767 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1768 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1769 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1770 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1771 init_callback_list(rdp);
1772 /* Disallow further callbacks on this CPU. */
1773 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 1774 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
1775}
1776
1777#else /* #ifdef CONFIG_HOTPLUG_CPU */
1778
e5601400 1779static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1780{
1781}
1782
e5601400 1783static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1784{
1785}
1786
1787#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1788
1789/*
1790 * Invoke any RCU callbacks that have made it to the end of their grace
1791 * period. Thottle as specified by rdp->blimit.
1792 */
37c72e56 1793static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1794{
1795 unsigned long flags;
1796 struct rcu_head *next, *list, **tail;
b41772ab 1797 int bl, count, count_lazy, i;
64db4cff
PM
1798
1799 /* If no callbacks are ready, just return.*/
29c00b4a 1800 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1801 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1802 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1803 need_resched(), is_idle_task(current),
1804 rcu_is_callbacks_kthread());
64db4cff 1805 return;
29c00b4a 1806 }
64db4cff
PM
1807
1808 /*
1809 * Extract the list of ready callbacks, disabling to prevent
1810 * races with call_rcu() from interrupt handlers.
1811 */
1812 local_irq_save(flags);
8146c4e2 1813 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1814 bl = rdp->blimit;
486e2593 1815 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1816 list = rdp->nxtlist;
1817 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1818 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1819 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1820 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1821 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1822 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1823 local_irq_restore(flags);
1824
1825 /* Invoke callbacks. */
486e2593 1826 count = count_lazy = 0;
64db4cff
PM
1827 while (list) {
1828 next = list->next;
1829 prefetch(next);
551d55a9 1830 debug_rcu_head_unqueue(list);
486e2593
PM
1831 if (__rcu_reclaim(rsp->name, list))
1832 count_lazy++;
64db4cff 1833 list = next;
dff1672d
PM
1834 /* Stop only if limit reached and CPU has something to do. */
1835 if (++count >= bl &&
1836 (need_resched() ||
1837 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1838 break;
1839 }
1840
1841 local_irq_save(flags);
4968c300
PM
1842 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1843 is_idle_task(current),
1844 rcu_is_callbacks_kthread());
64db4cff
PM
1845
1846 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1847 if (list != NULL) {
1848 *tail = rdp->nxtlist;
1849 rdp->nxtlist = list;
b41772ab
PM
1850 for (i = 0; i < RCU_NEXT_SIZE; i++)
1851 if (&rdp->nxtlist == rdp->nxttail[i])
1852 rdp->nxttail[i] = tail;
64db4cff
PM
1853 else
1854 break;
1855 }
b1420f1c
PM
1856 smp_mb(); /* List handling before counting for rcu_barrier(). */
1857 rdp->qlen_lazy -= count_lazy;
1d1fb395 1858 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1859 rdp->n_cbs_invoked += count;
64db4cff
PM
1860
1861 /* Reinstate batch limit if we have worked down the excess. */
1862 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1863 rdp->blimit = blimit;
1864
37c72e56
PM
1865 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1866 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1867 rdp->qlen_last_fqs_check = 0;
1868 rdp->n_force_qs_snap = rsp->n_force_qs;
1869 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1870 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 1871 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 1872
64db4cff
PM
1873 local_irq_restore(flags);
1874
e0f23060 1875 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1876 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1877 invoke_rcu_core();
64db4cff
PM
1878}
1879
1880/*
1881 * Check to see if this CPU is in a non-context-switch quiescent state
1882 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1883 * Also schedule RCU core processing.
64db4cff 1884 *
9b2e4f18 1885 * This function must be called from hardirq context. It is normally
64db4cff
PM
1886 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1887 * false, there is no point in invoking rcu_check_callbacks().
1888 */
1889void rcu_check_callbacks(int cpu, int user)
1890{
300df91c 1891 trace_rcu_utilization("Start scheduler-tick");
a858af28 1892 increment_cpu_stall_ticks();
9b2e4f18 1893 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1894
1895 /*
1896 * Get here if this CPU took its interrupt from user
1897 * mode or from the idle loop, and if this is not a
1898 * nested interrupt. In this case, the CPU is in
d6714c22 1899 * a quiescent state, so note it.
64db4cff
PM
1900 *
1901 * No memory barrier is required here because both
d6714c22
PM
1902 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1903 * variables that other CPUs neither access nor modify,
1904 * at least not while the corresponding CPU is online.
64db4cff
PM
1905 */
1906
d6714c22
PM
1907 rcu_sched_qs(cpu);
1908 rcu_bh_qs(cpu);
64db4cff
PM
1909
1910 } else if (!in_softirq()) {
1911
1912 /*
1913 * Get here if this CPU did not take its interrupt from
1914 * softirq, in other words, if it is not interrupting
1915 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1916 * critical section, so note it.
64db4cff
PM
1917 */
1918
d6714c22 1919 rcu_bh_qs(cpu);
64db4cff 1920 }
f41d911f 1921 rcu_preempt_check_callbacks(cpu);
d21670ac 1922 if (rcu_pending(cpu))
a46e0899 1923 invoke_rcu_core();
300df91c 1924 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1925}
1926
64db4cff
PM
1927/*
1928 * Scan the leaf rcu_node structures, processing dyntick state for any that
1929 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1930 * Also initiate boosting for any threads blocked on the root rcu_node.
1931 *
ee47eb9f 1932 * The caller must have suppressed start of new grace periods.
64db4cff 1933 */
45f014c5 1934static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1935{
1936 unsigned long bit;
1937 int cpu;
1938 unsigned long flags;
1939 unsigned long mask;
a0b6c9a7 1940 struct rcu_node *rnp;
64db4cff 1941
a0b6c9a7 1942 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 1943 cond_resched();
64db4cff 1944 mask = 0;
1304afb2 1945 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1946 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1947 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1948 return;
64db4cff 1949 }
a0b6c9a7 1950 if (rnp->qsmask == 0) {
1217ed1b 1951 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1952 continue;
1953 }
a0b6c9a7 1954 cpu = rnp->grplo;
64db4cff 1955 bit = 1;
a0b6c9a7 1956 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1957 if ((rnp->qsmask & bit) != 0 &&
1958 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1959 mask |= bit;
1960 }
45f014c5 1961 if (mask != 0) {
64db4cff 1962
d3f6bad3
PM
1963 /* rcu_report_qs_rnp() releases rnp->lock. */
1964 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1965 continue;
1966 }
1304afb2 1967 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1968 }
27f4d280 1969 rnp = rcu_get_root(rsp);
1217ed1b
PM
1970 if (rnp->qsmask == 0) {
1971 raw_spin_lock_irqsave(&rnp->lock, flags);
1972 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1973 }
64db4cff
PM
1974}
1975
1976/*
1977 * Force quiescent states on reluctant CPUs, and also detect which
1978 * CPUs are in dyntick-idle mode.
1979 */
4cdfc175 1980static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
1981{
1982 unsigned long flags;
394f2769
PM
1983 bool ret;
1984 struct rcu_node *rnp;
1985 struct rcu_node *rnp_old = NULL;
1986
1987 /* Funnel through hierarchy to reduce memory contention. */
1988 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1989 for (; rnp != NULL; rnp = rnp->parent) {
1990 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1991 !raw_spin_trylock(&rnp->fqslock);
1992 if (rnp_old != NULL)
1993 raw_spin_unlock(&rnp_old->fqslock);
1994 if (ret) {
1995 rsp->n_force_qs_lh++;
1996 return;
1997 }
1998 rnp_old = rnp;
1999 }
2000 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2001
394f2769
PM
2002 /* Reached the root of the rcu_node tree, acquire lock. */
2003 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2004 raw_spin_unlock(&rnp_old->fqslock);
2005 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2006 rsp->n_force_qs_lh++;
2007 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2008 return; /* Someone beat us to it. */
46a1e34e 2009 }
4cdfc175 2010 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2011 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2012 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2013}
2014
64db4cff 2015/*
e0f23060
PM
2016 * This does the RCU core processing work for the specified rcu_state
2017 * and rcu_data structures. This may be called only from the CPU to
2018 * whom the rdp belongs.
64db4cff
PM
2019 */
2020static void
1bca8cf1 2021__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2022{
2023 unsigned long flags;
1bca8cf1 2024 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2025
2e597558
PM
2026 WARN_ON_ONCE(rdp->beenonline == 0);
2027
64db4cff
PM
2028 /*
2029 * Advance callbacks in response to end of earlier grace
2030 * period that some other CPU ended.
2031 */
2032 rcu_process_gp_end(rsp, rdp);
2033
2034 /* Update RCU state based on any recent quiescent states. */
2035 rcu_check_quiescent_state(rsp, rdp);
2036
2037 /* Does this CPU require a not-yet-started grace period? */
2038 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 2039 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
2040 rcu_start_gp(rsp, flags); /* releases above lock */
2041 }
2042
2043 /* If there are callbacks ready, invoke them. */
09223371 2044 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2045 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2046}
2047
64db4cff 2048/*
e0f23060 2049 * Do RCU core processing for the current CPU.
64db4cff 2050 */
09223371 2051static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2052{
6ce75a23
PM
2053 struct rcu_state *rsp;
2054
bfa00b4c
PM
2055 if (cpu_is_offline(smp_processor_id()))
2056 return;
300df91c 2057 trace_rcu_utilization("Start RCU core");
6ce75a23
PM
2058 for_each_rcu_flavor(rsp)
2059 __rcu_process_callbacks(rsp);
300df91c 2060 trace_rcu_utilization("End RCU core");
64db4cff
PM
2061}
2062
a26ac245 2063/*
e0f23060
PM
2064 * Schedule RCU callback invocation. If the specified type of RCU
2065 * does not support RCU priority boosting, just do a direct call,
2066 * otherwise wake up the per-CPU kernel kthread. Note that because we
2067 * are running on the current CPU with interrupts disabled, the
2068 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2069 */
a46e0899 2070static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2071{
b0d30417
PM
2072 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2073 return;
a46e0899
PM
2074 if (likely(!rsp->boost)) {
2075 rcu_do_batch(rsp, rdp);
a26ac245
PM
2076 return;
2077 }
a46e0899 2078 invoke_rcu_callbacks_kthread();
a26ac245
PM
2079}
2080
a46e0899 2081static void invoke_rcu_core(void)
09223371
SL
2082{
2083 raise_softirq(RCU_SOFTIRQ);
2084}
2085
29154c57
PM
2086/*
2087 * Handle any core-RCU processing required by a call_rcu() invocation.
2088 */
2089static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2090 struct rcu_head *head, unsigned long flags)
64db4cff 2091{
62fde6ed
PM
2092 /*
2093 * If called from an extended quiescent state, invoke the RCU
2094 * core in order to force a re-evaluation of RCU's idleness.
2095 */
a16b7a69 2096 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2097 invoke_rcu_core();
2098
a16b7a69 2099 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2100 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2101 return;
64db4cff 2102
37c72e56
PM
2103 /*
2104 * Force the grace period if too many callbacks or too long waiting.
2105 * Enforce hysteresis, and don't invoke force_quiescent_state()
2106 * if some other CPU has recently done so. Also, don't bother
2107 * invoking force_quiescent_state() if the newly enqueued callback
2108 * is the only one waiting for a grace period to complete.
2109 */
2655d57e 2110 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2111
2112 /* Are we ignoring a completed grace period? */
2113 rcu_process_gp_end(rsp, rdp);
2114 check_for_new_grace_period(rsp, rdp);
2115
2116 /* Start a new grace period if one not already started. */
2117 if (!rcu_gp_in_progress(rsp)) {
2118 unsigned long nestflag;
2119 struct rcu_node *rnp_root = rcu_get_root(rsp);
2120
2121 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
2122 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
2123 } else {
2124 /* Give the grace period a kick. */
2125 rdp->blimit = LONG_MAX;
2126 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2127 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2128 force_quiescent_state(rsp);
b52573d2
PM
2129 rdp->n_force_qs_snap = rsp->n_force_qs;
2130 rdp->qlen_last_fqs_check = rdp->qlen;
2131 }
4cdfc175 2132 }
29154c57
PM
2133}
2134
64db4cff
PM
2135static void
2136__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 2137 struct rcu_state *rsp, bool lazy)
64db4cff
PM
2138{
2139 unsigned long flags;
2140 struct rcu_data *rdp;
2141
0bb7b59d 2142 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 2143 debug_rcu_head_queue(head);
64db4cff
PM
2144 head->func = func;
2145 head->next = NULL;
2146
64db4cff
PM
2147 /*
2148 * Opportunistically note grace-period endings and beginnings.
2149 * Note that we might see a beginning right after we see an
2150 * end, but never vice versa, since this CPU has to pass through
2151 * a quiescent state betweentimes.
2152 */
2153 local_irq_save(flags);
394f99a9 2154 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2155
2156 /* Add the callback to our list. */
0d8ee37e
PM
2157 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL)) {
2158 /* _call_rcu() is illegal on offline CPU; leak the callback. */
2159 WARN_ON_ONCE(1);
2160 local_irq_restore(flags);
2161 return;
2162 }
29154c57 2163 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2164 if (lazy)
2165 rdp->qlen_lazy++;
c57afe80
PM
2166 else
2167 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2168 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2169 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2170 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2171
d4c08f2a
PM
2172 if (__is_kfree_rcu_offset((unsigned long)func))
2173 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2174 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2175 else
486e2593 2176 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2177
29154c57
PM
2178 /* Go handle any RCU core processing required. */
2179 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2180 local_irq_restore(flags);
2181}
2182
2183/*
d6714c22 2184 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2185 */
d6714c22 2186void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2187{
486e2593 2188 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 2189}
d6714c22 2190EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2191
2192/*
486e2593 2193 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2194 */
2195void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2196{
486e2593 2197 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
2198}
2199EXPORT_SYMBOL_GPL(call_rcu_bh);
2200
6d813391
PM
2201/*
2202 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2203 * any blocking grace-period wait automatically implies a grace period
2204 * if there is only one CPU online at any point time during execution
2205 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2206 * occasionally incorrectly indicate that there are multiple CPUs online
2207 * when there was in fact only one the whole time, as this just adds
2208 * some overhead: RCU still operates correctly.
6d813391
PM
2209 */
2210static inline int rcu_blocking_is_gp(void)
2211{
95f0c1de
PM
2212 int ret;
2213
6d813391 2214 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2215 preempt_disable();
2216 ret = num_online_cpus() <= 1;
2217 preempt_enable();
2218 return ret;
6d813391
PM
2219}
2220
6ebb237b
PM
2221/**
2222 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2223 *
2224 * Control will return to the caller some time after a full rcu-sched
2225 * grace period has elapsed, in other words after all currently executing
2226 * rcu-sched read-side critical sections have completed. These read-side
2227 * critical sections are delimited by rcu_read_lock_sched() and
2228 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2229 * local_irq_disable(), and so on may be used in place of
2230 * rcu_read_lock_sched().
2231 *
2232 * This means that all preempt_disable code sequences, including NMI and
2233 * hardware-interrupt handlers, in progress on entry will have completed
2234 * before this primitive returns. However, this does not guarantee that
2235 * softirq handlers will have completed, since in some kernels, these
2236 * handlers can run in process context, and can block.
2237 *
2238 * This primitive provides the guarantees made by the (now removed)
2239 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2240 * guarantees that rcu_read_lock() sections will have completed.
2241 * In "classic RCU", these two guarantees happen to be one and
2242 * the same, but can differ in realtime RCU implementations.
2243 */
2244void synchronize_sched(void)
2245{
fe15d706
PM
2246 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2247 !lock_is_held(&rcu_lock_map) &&
2248 !lock_is_held(&rcu_sched_lock_map),
2249 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2250 if (rcu_blocking_is_gp())
2251 return;
2c42818e 2252 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2253}
2254EXPORT_SYMBOL_GPL(synchronize_sched);
2255
2256/**
2257 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2258 *
2259 * Control will return to the caller some time after a full rcu_bh grace
2260 * period has elapsed, in other words after all currently executing rcu_bh
2261 * read-side critical sections have completed. RCU read-side critical
2262 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2263 * and may be nested.
2264 */
2265void synchronize_rcu_bh(void)
2266{
fe15d706
PM
2267 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2268 !lock_is_held(&rcu_lock_map) &&
2269 !lock_is_held(&rcu_sched_lock_map),
2270 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2271 if (rcu_blocking_is_gp())
2272 return;
2c42818e 2273 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2274}
2275EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2276
3d3b7db0
PM
2277static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2278static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2279
2280static int synchronize_sched_expedited_cpu_stop(void *data)
2281{
2282 /*
2283 * There must be a full memory barrier on each affected CPU
2284 * between the time that try_stop_cpus() is called and the
2285 * time that it returns.
2286 *
2287 * In the current initial implementation of cpu_stop, the
2288 * above condition is already met when the control reaches
2289 * this point and the following smp_mb() is not strictly
2290 * necessary. Do smp_mb() anyway for documentation and
2291 * robustness against future implementation changes.
2292 */
2293 smp_mb(); /* See above comment block. */
2294 return 0;
2295}
2296
236fefaf
PM
2297/**
2298 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2299 *
2300 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2301 * approach to force the grace period to end quickly. This consumes
2302 * significant time on all CPUs and is unfriendly to real-time workloads,
2303 * so is thus not recommended for any sort of common-case code. In fact,
2304 * if you are using synchronize_sched_expedited() in a loop, please
2305 * restructure your code to batch your updates, and then use a single
2306 * synchronize_sched() instead.
3d3b7db0 2307 *
236fefaf
PM
2308 * Note that it is illegal to call this function while holding any lock
2309 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2310 * to call this function from a CPU-hotplug notifier. Failing to observe
2311 * these restriction will result in deadlock.
3d3b7db0
PM
2312 *
2313 * This implementation can be thought of as an application of ticket
2314 * locking to RCU, with sync_sched_expedited_started and
2315 * sync_sched_expedited_done taking on the roles of the halves
2316 * of the ticket-lock word. Each task atomically increments
2317 * sync_sched_expedited_started upon entry, snapshotting the old value,
2318 * then attempts to stop all the CPUs. If this succeeds, then each
2319 * CPU will have executed a context switch, resulting in an RCU-sched
2320 * grace period. We are then done, so we use atomic_cmpxchg() to
2321 * update sync_sched_expedited_done to match our snapshot -- but
2322 * only if someone else has not already advanced past our snapshot.
2323 *
2324 * On the other hand, if try_stop_cpus() fails, we check the value
2325 * of sync_sched_expedited_done. If it has advanced past our
2326 * initial snapshot, then someone else must have forced a grace period
2327 * some time after we took our snapshot. In this case, our work is
2328 * done for us, and we can simply return. Otherwise, we try again,
2329 * but keep our initial snapshot for purposes of checking for someone
2330 * doing our work for us.
2331 *
2332 * If we fail too many times in a row, we fall back to synchronize_sched().
2333 */
2334void synchronize_sched_expedited(void)
2335{
2336 int firstsnap, s, snap, trycount = 0;
2337
2338 /* Note that atomic_inc_return() implies full memory barrier. */
2339 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2340 get_online_cpus();
1cc85961 2341 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2342
2343 /*
2344 * Each pass through the following loop attempts to force a
2345 * context switch on each CPU.
2346 */
2347 while (try_stop_cpus(cpu_online_mask,
2348 synchronize_sched_expedited_cpu_stop,
2349 NULL) == -EAGAIN) {
2350 put_online_cpus();
2351
2352 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2353 if (trycount++ < 10) {
3d3b7db0 2354 udelay(trycount * num_online_cpus());
c701d5d9 2355 } else {
3d3b7db0
PM
2356 synchronize_sched();
2357 return;
2358 }
2359
2360 /* Check to see if someone else did our work for us. */
2361 s = atomic_read(&sync_sched_expedited_done);
2362 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2363 smp_mb(); /* ensure test happens before caller kfree */
2364 return;
2365 }
2366
2367 /*
2368 * Refetching sync_sched_expedited_started allows later
2369 * callers to piggyback on our grace period. We subtract
2370 * 1 to get the same token that the last incrementer got.
2371 * We retry after they started, so our grace period works
2372 * for them, and they started after our first try, so their
2373 * grace period works for us.
2374 */
2375 get_online_cpus();
2376 snap = atomic_read(&sync_sched_expedited_started);
2377 smp_mb(); /* ensure read is before try_stop_cpus(). */
2378 }
2379
2380 /*
2381 * Everyone up to our most recent fetch is covered by our grace
2382 * period. Update the counter, but only if our work is still
2383 * relevant -- which it won't be if someone who started later
2384 * than we did beat us to the punch.
2385 */
2386 do {
2387 s = atomic_read(&sync_sched_expedited_done);
2388 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2389 smp_mb(); /* ensure test happens before caller kfree */
2390 break;
2391 }
2392 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2393
2394 put_online_cpus();
2395}
2396EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2397
64db4cff
PM
2398/*
2399 * Check to see if there is any immediate RCU-related work to be done
2400 * by the current CPU, for the specified type of RCU, returning 1 if so.
2401 * The checks are in order of increasing expense: checks that can be
2402 * carried out against CPU-local state are performed first. However,
2403 * we must check for CPU stalls first, else we might not get a chance.
2404 */
2405static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2406{
2f51f988
PM
2407 struct rcu_node *rnp = rdp->mynode;
2408
64db4cff
PM
2409 rdp->n_rcu_pending++;
2410
2411 /* Check for CPU stalls, if enabled. */
2412 check_cpu_stall(rsp, rdp);
2413
2414 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2415 if (rcu_scheduler_fully_active &&
2416 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2417 rdp->n_rp_qs_pending++;
e4cc1f22 2418 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2419 rdp->n_rp_report_qs++;
64db4cff 2420 return 1;
7ba5c840 2421 }
64db4cff
PM
2422
2423 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2424 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2425 rdp->n_rp_cb_ready++;
64db4cff 2426 return 1;
7ba5c840 2427 }
64db4cff
PM
2428
2429 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2430 if (cpu_needs_another_gp(rsp, rdp)) {
2431 rdp->n_rp_cpu_needs_gp++;
64db4cff 2432 return 1;
7ba5c840 2433 }
64db4cff
PM
2434
2435 /* Has another RCU grace period completed? */
2f51f988 2436 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2437 rdp->n_rp_gp_completed++;
64db4cff 2438 return 1;
7ba5c840 2439 }
64db4cff
PM
2440
2441 /* Has a new RCU grace period started? */
2f51f988 2442 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2443 rdp->n_rp_gp_started++;
64db4cff 2444 return 1;
7ba5c840 2445 }
64db4cff 2446
64db4cff 2447 /* nothing to do */
7ba5c840 2448 rdp->n_rp_need_nothing++;
64db4cff
PM
2449 return 0;
2450}
2451
2452/*
2453 * Check to see if there is any immediate RCU-related work to be done
2454 * by the current CPU, returning 1 if so. This function is part of the
2455 * RCU implementation; it is -not- an exported member of the RCU API.
2456 */
a157229c 2457static int rcu_pending(int cpu)
64db4cff 2458{
6ce75a23
PM
2459 struct rcu_state *rsp;
2460
2461 for_each_rcu_flavor(rsp)
2462 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2463 return 1;
2464 return 0;
64db4cff
PM
2465}
2466
2467/*
2468 * Check to see if any future RCU-related work will need to be done
2469 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2470 * 1 if so.
64db4cff 2471 */
aea1b35e 2472static int rcu_cpu_has_callbacks(int cpu)
64db4cff 2473{
6ce75a23
PM
2474 struct rcu_state *rsp;
2475
64db4cff 2476 /* RCU callbacks either ready or pending? */
6ce75a23
PM
2477 for_each_rcu_flavor(rsp)
2478 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2479 return 1;
2480 return 0;
64db4cff
PM
2481}
2482
a83eff0a
PM
2483/*
2484 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2485 * the compiler is expected to optimize this away.
2486 */
2487static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2488 int cpu, unsigned long done)
2489{
2490 trace_rcu_barrier(rsp->name, s, cpu,
2491 atomic_read(&rsp->barrier_cpu_count), done);
2492}
2493
b1420f1c
PM
2494/*
2495 * RCU callback function for _rcu_barrier(). If we are last, wake
2496 * up the task executing _rcu_barrier().
2497 */
24ebbca8 2498static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2499{
24ebbca8
PM
2500 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2501 struct rcu_state *rsp = rdp->rsp;
2502
a83eff0a
PM
2503 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2504 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2505 complete(&rsp->barrier_completion);
a83eff0a
PM
2506 } else {
2507 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2508 }
d0ec774c
PM
2509}
2510
2511/*
2512 * Called with preemption disabled, and from cross-cpu IRQ context.
2513 */
2514static void rcu_barrier_func(void *type)
2515{
037b64ed 2516 struct rcu_state *rsp = type;
06668efa 2517 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2518
a83eff0a 2519 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2520 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2521 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2522}
2523
d0ec774c
PM
2524/*
2525 * Orchestrate the specified type of RCU barrier, waiting for all
2526 * RCU callbacks of the specified type to complete.
2527 */
037b64ed 2528static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2529{
b1420f1c 2530 int cpu;
b1420f1c 2531 struct rcu_data *rdp;
cf3a9c48
PM
2532 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2533 unsigned long snap_done;
b1420f1c 2534
a83eff0a 2535 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2536
e74f4c45 2537 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2538 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2539
cf3a9c48
PM
2540 /*
2541 * Ensure that all prior references, including to ->n_barrier_done,
2542 * are ordered before the _rcu_barrier() machinery.
2543 */
2544 smp_mb(); /* See above block comment. */
2545
2546 /*
2547 * Recheck ->n_barrier_done to see if others did our work for us.
2548 * This means checking ->n_barrier_done for an even-to-odd-to-even
2549 * transition. The "if" expression below therefore rounds the old
2550 * value up to the next even number and adds two before comparing.
2551 */
2552 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2553 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2554 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2555 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2556 smp_mb(); /* caller's subsequent code after above check. */
2557 mutex_unlock(&rsp->barrier_mutex);
2558 return;
2559 }
2560
2561 /*
2562 * Increment ->n_barrier_done to avoid duplicate work. Use
2563 * ACCESS_ONCE() to prevent the compiler from speculating
2564 * the increment to precede the early-exit check.
2565 */
2566 ACCESS_ONCE(rsp->n_barrier_done)++;
2567 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2568 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2569 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2570
d0ec774c 2571 /*
b1420f1c
PM
2572 * Initialize the count to one rather than to zero in order to
2573 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2574 * (or preemption of this task). Exclude CPU-hotplug operations
2575 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2576 */
7db74df8 2577 init_completion(&rsp->barrier_completion);
24ebbca8 2578 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2579 get_online_cpus();
b1420f1c
PM
2580
2581 /*
1331e7a1
PM
2582 * Force each CPU with callbacks to register a new callback.
2583 * When that callback is invoked, we will know that all of the
2584 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2585 */
1331e7a1 2586 for_each_online_cpu(cpu) {
b1420f1c 2587 rdp = per_cpu_ptr(rsp->rda, cpu);
1331e7a1 2588 if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2589 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2590 rsp->n_barrier_done);
037b64ed 2591 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2592 } else {
a83eff0a
PM
2593 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2594 rsp->n_barrier_done);
b1420f1c
PM
2595 }
2596 }
1331e7a1 2597 put_online_cpus();
b1420f1c
PM
2598
2599 /*
2600 * Now that we have an rcu_barrier_callback() callback on each
2601 * CPU, and thus each counted, remove the initial count.
2602 */
24ebbca8 2603 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2604 complete(&rsp->barrier_completion);
b1420f1c 2605
cf3a9c48
PM
2606 /* Increment ->n_barrier_done to prevent duplicate work. */
2607 smp_mb(); /* Keep increment after above mechanism. */
2608 ACCESS_ONCE(rsp->n_barrier_done)++;
2609 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2610 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2611 smp_mb(); /* Keep increment before caller's subsequent code. */
2612
b1420f1c 2613 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2614 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2615
2616 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2617 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2618}
d0ec774c
PM
2619
2620/**
2621 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2622 */
2623void rcu_barrier_bh(void)
2624{
037b64ed 2625 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2626}
2627EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2628
2629/**
2630 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2631 */
2632void rcu_barrier_sched(void)
2633{
037b64ed 2634 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2635}
2636EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2637
64db4cff 2638/*
27569620 2639 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2640 */
27569620
PM
2641static void __init
2642rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2643{
2644 unsigned long flags;
394f99a9 2645 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2646 struct rcu_node *rnp = rcu_get_root(rsp);
2647
2648 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2649 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2650 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2651 init_callback_list(rdp);
486e2593 2652 rdp->qlen_lazy = 0;
1d1fb395 2653 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2654 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2655 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2656 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
c5d900bf
FW
2657#ifdef CONFIG_RCU_USER_QS
2658 WARN_ON_ONCE(rdp->dynticks->in_user);
2659#endif
27569620 2660 rdp->cpu = cpu;
d4c08f2a 2661 rdp->rsp = rsp;
1304afb2 2662 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2663}
2664
2665/*
2666 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2667 * offline event can be happening at a given time. Note also that we
2668 * can accept some slop in the rsp->completed access due to the fact
2669 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2670 */
e4fa4c97 2671static void __cpuinit
6cc68793 2672rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2673{
2674 unsigned long flags;
64db4cff 2675 unsigned long mask;
394f99a9 2676 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2677 struct rcu_node *rnp = rcu_get_root(rsp);
2678
a4fbe35a
PM
2679 /* Exclude new grace periods. */
2680 mutex_lock(&rsp->onoff_mutex);
2681
64db4cff 2682 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2683 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2684 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2685 rdp->preemptible = preemptible;
37c72e56
PM
2686 rdp->qlen_last_fqs_check = 0;
2687 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2688 rdp->blimit = blimit;
0d8ee37e 2689 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 2690 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2691 atomic_set(&rdp->dynticks->dynticks,
2692 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2693 rcu_prepare_for_idle_init(cpu);
1304afb2 2694 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 2695
64db4cff
PM
2696 /* Add CPU to rcu_node bitmasks. */
2697 rnp = rdp->mynode;
2698 mask = rdp->grpmask;
2699 do {
2700 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2701 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2702 rnp->qsmaskinit |= mask;
2703 mask = rnp->grpmask;
d09b62df 2704 if (rnp == rdp->mynode) {
06ae115a
PM
2705 /*
2706 * If there is a grace period in progress, we will
2707 * set up to wait for it next time we run the
2708 * RCU core code.
2709 */
2710 rdp->gpnum = rnp->completed;
d09b62df 2711 rdp->completed = rnp->completed;
06ae115a
PM
2712 rdp->passed_quiesce = 0;
2713 rdp->qs_pending = 0;
d4c08f2a 2714 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2715 }
1304afb2 2716 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2717 rnp = rnp->parent;
2718 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 2719 local_irq_restore(flags);
64db4cff 2720
a4fbe35a 2721 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2722}
2723
d72bce0e 2724static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2725{
6ce75a23
PM
2726 struct rcu_state *rsp;
2727
2728 for_each_rcu_flavor(rsp)
2729 rcu_init_percpu_data(cpu, rsp,
2730 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2731}
2732
2733/*
f41d911f 2734 * Handle CPU online/offline notification events.
64db4cff 2735 */
9f680ab4
PM
2736static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2737 unsigned long action, void *hcpu)
64db4cff
PM
2738{
2739 long cpu = (long)hcpu;
27f4d280 2740 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2741 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2742 struct rcu_state *rsp;
64db4cff 2743
300df91c 2744 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2745 switch (action) {
2746 case CPU_UP_PREPARE:
2747 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2748 rcu_prepare_cpu(cpu);
2749 rcu_prepare_kthreads(cpu);
a26ac245
PM
2750 break;
2751 case CPU_ONLINE:
0f962a5e 2752 case CPU_DOWN_FAILED:
5d01bbd1 2753 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
2754 break;
2755 case CPU_DOWN_PREPARE:
5d01bbd1 2756 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 2757 break;
d0ec774c
PM
2758 case CPU_DYING:
2759 case CPU_DYING_FROZEN:
2760 /*
2d999e03
PM
2761 * The whole machine is "stopped" except this CPU, so we can
2762 * touch any data without introducing corruption. We send the
2763 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2764 */
6ce75a23
PM
2765 for_each_rcu_flavor(rsp)
2766 rcu_cleanup_dying_cpu(rsp);
7cb92499 2767 rcu_cleanup_after_idle(cpu);
d0ec774c 2768 break;
64db4cff
PM
2769 case CPU_DEAD:
2770 case CPU_DEAD_FROZEN:
2771 case CPU_UP_CANCELED:
2772 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2773 for_each_rcu_flavor(rsp)
2774 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2775 break;
2776 default:
2777 break;
2778 }
300df91c 2779 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2780 return NOTIFY_OK;
2781}
2782
b3dbec76
PM
2783/*
2784 * Spawn the kthread that handles this RCU flavor's grace periods.
2785 */
2786static int __init rcu_spawn_gp_kthread(void)
2787{
2788 unsigned long flags;
2789 struct rcu_node *rnp;
2790 struct rcu_state *rsp;
2791 struct task_struct *t;
2792
2793 for_each_rcu_flavor(rsp) {
2794 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2795 BUG_ON(IS_ERR(t));
2796 rnp = rcu_get_root(rsp);
2797 raw_spin_lock_irqsave(&rnp->lock, flags);
2798 rsp->gp_kthread = t;
2799 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2800 }
2801 return 0;
2802}
2803early_initcall(rcu_spawn_gp_kthread);
2804
bbad9379
PM
2805/*
2806 * This function is invoked towards the end of the scheduler's initialization
2807 * process. Before this is called, the idle task might contain
2808 * RCU read-side critical sections (during which time, this idle
2809 * task is booting the system). After this function is called, the
2810 * idle tasks are prohibited from containing RCU read-side critical
2811 * sections. This function also enables RCU lockdep checking.
2812 */
2813void rcu_scheduler_starting(void)
2814{
2815 WARN_ON(num_online_cpus() != 1);
2816 WARN_ON(nr_context_switches() > 0);
2817 rcu_scheduler_active = 1;
2818}
2819
64db4cff
PM
2820/*
2821 * Compute the per-level fanout, either using the exact fanout specified
2822 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2823 */
2824#ifdef CONFIG_RCU_FANOUT_EXACT
2825static void __init rcu_init_levelspread(struct rcu_state *rsp)
2826{
2827 int i;
2828
f885b7f2 2829 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2830 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2831 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2832}
2833#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2834static void __init rcu_init_levelspread(struct rcu_state *rsp)
2835{
2836 int ccur;
2837 int cprv;
2838 int i;
2839
4dbd6bb3 2840 cprv = nr_cpu_ids;
f885b7f2 2841 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2842 ccur = rsp->levelcnt[i];
2843 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2844 cprv = ccur;
2845 }
2846}
2847#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2848
2849/*
2850 * Helper function for rcu_init() that initializes one rcu_state structure.
2851 */
394f99a9
LJ
2852static void __init rcu_init_one(struct rcu_state *rsp,
2853 struct rcu_data __percpu *rda)
64db4cff 2854{
394f2769
PM
2855 static char *buf[] = { "rcu_node_0",
2856 "rcu_node_1",
2857 "rcu_node_2",
2858 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2859 static char *fqs[] = { "rcu_node_fqs_0",
2860 "rcu_node_fqs_1",
2861 "rcu_node_fqs_2",
2862 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2863 int cpustride = 1;
2864 int i;
2865 int j;
2866 struct rcu_node *rnp;
2867
b6407e86
PM
2868 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2869
64db4cff
PM
2870 /* Initialize the level-tracking arrays. */
2871
f885b7f2
PM
2872 for (i = 0; i < rcu_num_lvls; i++)
2873 rsp->levelcnt[i] = num_rcu_lvl[i];
2874 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2875 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2876 rcu_init_levelspread(rsp);
2877
2878 /* Initialize the elements themselves, starting from the leaves. */
2879
f885b7f2 2880 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2881 cpustride *= rsp->levelspread[i];
2882 rnp = rsp->level[i];
2883 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2884 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2885 lockdep_set_class_and_name(&rnp->lock,
2886 &rcu_node_class[i], buf[i]);
394f2769
PM
2887 raw_spin_lock_init(&rnp->fqslock);
2888 lockdep_set_class_and_name(&rnp->fqslock,
2889 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
2890 rnp->gpnum = rsp->gpnum;
2891 rnp->completed = rsp->completed;
64db4cff
PM
2892 rnp->qsmask = 0;
2893 rnp->qsmaskinit = 0;
2894 rnp->grplo = j * cpustride;
2895 rnp->grphi = (j + 1) * cpustride - 1;
2896 if (rnp->grphi >= NR_CPUS)
2897 rnp->grphi = NR_CPUS - 1;
2898 if (i == 0) {
2899 rnp->grpnum = 0;
2900 rnp->grpmask = 0;
2901 rnp->parent = NULL;
2902 } else {
2903 rnp->grpnum = j % rsp->levelspread[i - 1];
2904 rnp->grpmask = 1UL << rnp->grpnum;
2905 rnp->parent = rsp->level[i - 1] +
2906 j / rsp->levelspread[i - 1];
2907 }
2908 rnp->level = i;
12f5f524 2909 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2910 }
2911 }
0c34029a 2912
394f99a9 2913 rsp->rda = rda;
b3dbec76 2914 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 2915 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2916 for_each_possible_cpu(i) {
4a90a068 2917 while (i > rnp->grphi)
0c34029a 2918 rnp++;
394f99a9 2919 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2920 rcu_boot_init_percpu_data(i, rsp);
2921 }
6ce75a23 2922 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
2923}
2924
f885b7f2
PM
2925/*
2926 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2927 * replace the definitions in rcutree.h because those are needed to size
2928 * the ->node array in the rcu_state structure.
2929 */
2930static void __init rcu_init_geometry(void)
2931{
2932 int i;
2933 int j;
cca6f393 2934 int n = nr_cpu_ids;
f885b7f2
PM
2935 int rcu_capacity[MAX_RCU_LVLS + 1];
2936
2937 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
2938 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
2939 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
2940 return;
2941
2942 /*
2943 * Compute number of nodes that can be handled an rcu_node tree
2944 * with the given number of levels. Setting rcu_capacity[0] makes
2945 * some of the arithmetic easier.
2946 */
2947 rcu_capacity[0] = 1;
2948 rcu_capacity[1] = rcu_fanout_leaf;
2949 for (i = 2; i <= MAX_RCU_LVLS; i++)
2950 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2951
2952 /*
2953 * The boot-time rcu_fanout_leaf parameter is only permitted
2954 * to increase the leaf-level fanout, not decrease it. Of course,
2955 * the leaf-level fanout cannot exceed the number of bits in
2956 * the rcu_node masks. Finally, the tree must be able to accommodate
2957 * the configured number of CPUs. Complain and fall back to the
2958 * compile-time values if these limits are exceeded.
2959 */
2960 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2961 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2962 n > rcu_capacity[MAX_RCU_LVLS]) {
2963 WARN_ON(1);
2964 return;
2965 }
2966
2967 /* Calculate the number of rcu_nodes at each level of the tree. */
2968 for (i = 1; i <= MAX_RCU_LVLS; i++)
2969 if (n <= rcu_capacity[i]) {
2970 for (j = 0; j <= i; j++)
2971 num_rcu_lvl[j] =
2972 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2973 rcu_num_lvls = i;
2974 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2975 num_rcu_lvl[j] = 0;
2976 break;
2977 }
2978
2979 /* Calculate the total number of rcu_node structures. */
2980 rcu_num_nodes = 0;
2981 for (i = 0; i <= MAX_RCU_LVLS; i++)
2982 rcu_num_nodes += num_rcu_lvl[i];
2983 rcu_num_nodes -= n;
2984}
2985
9f680ab4 2986void __init rcu_init(void)
64db4cff 2987{
017c4261 2988 int cpu;
9f680ab4 2989
f41d911f 2990 rcu_bootup_announce();
f885b7f2 2991 rcu_init_geometry();
394f99a9
LJ
2992 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2993 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2994 __rcu_init_preempt();
09223371 2995 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2996
2997 /*
2998 * We don't need protection against CPU-hotplug here because
2999 * this is called early in boot, before either interrupts
3000 * or the scheduler are operational.
3001 */
3002 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
3003 for_each_online_cpu(cpu)
3004 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 3005 check_cpu_stall_init();
64db4cff
PM
3006}
3007
1eba8f84 3008#include "rcutree_plugin.h"
This page took 0.402673 seconds and 5 git commands to generate.