rcu: Have the RCU tracepoints use the tracepoint_string infrastructure
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
f7f7bac9 56#include <linux/ftrace_event.h>
64db4cff 57
9f77da9f 58#include "rcutree.h"
29c00b4a
PM
59#include <trace/events/rcu.h>
60
61#include "rcu.h"
9f77da9f 62
f7f7bac9
SRRH
63/*
64 * Strings used in tracepoints need to be exported via the
65 * tracing system such that tools like perf and trace-cmd can
66 * translate the string address pointers to actual text.
67 */
68#define TPS(x) tracepoint_string(x)
69
64db4cff
PM
70/* Data structures. */
71
f885b7f2 72static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 73static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 74
f7f7bac9
SRRH
75/*
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
82 */
a41bfeb2 83#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
84static char sname##_varname[] = #sname; \
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 86struct rcu_state sname##_state = { \
6c90cc7b 87 .level = { &sname##_state.node[0] }, \
037b64ed 88 .call = cr, \
af446b70 89 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
90 .gpnum = 0UL - 300UL, \
91 .completed = 0UL - 300UL, \
7b2e6011 92 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
93 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
94 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 95 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 96 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 97 .name = sname##_varname, \
a4889858 98 .abbr = sabbr, \
a41bfeb2
SRRH
99}; \
100DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 101
a41bfeb2
SRRH
102RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
103RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 104
27f4d280 105static struct rcu_state *rcu_state;
6ce75a23 106LIST_HEAD(rcu_struct_flavors);
27f4d280 107
f885b7f2
PM
108/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
109static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 110module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
112static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
113 NUM_RCU_LVL_0,
114 NUM_RCU_LVL_1,
115 NUM_RCU_LVL_2,
116 NUM_RCU_LVL_3,
117 NUM_RCU_LVL_4,
118};
119int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
120
b0d30417
PM
121/*
122 * The rcu_scheduler_active variable transitions from zero to one just
123 * before the first task is spawned. So when this variable is zero, RCU
124 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 125 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
126 * is one, RCU must actually do all the hard work required to detect real
127 * grace periods. This variable is also used to suppress boot-time false
128 * positives from lockdep-RCU error checking.
129 */
bbad9379
PM
130int rcu_scheduler_active __read_mostly;
131EXPORT_SYMBOL_GPL(rcu_scheduler_active);
132
b0d30417
PM
133/*
134 * The rcu_scheduler_fully_active variable transitions from zero to one
135 * during the early_initcall() processing, which is after the scheduler
136 * is capable of creating new tasks. So RCU processing (for example,
137 * creating tasks for RCU priority boosting) must be delayed until after
138 * rcu_scheduler_fully_active transitions from zero to one. We also
139 * currently delay invocation of any RCU callbacks until after this point.
140 *
141 * It might later prove better for people registering RCU callbacks during
142 * early boot to take responsibility for these callbacks, but one step at
143 * a time.
144 */
145static int rcu_scheduler_fully_active __read_mostly;
146
a46e0899
PM
147#ifdef CONFIG_RCU_BOOST
148
a26ac245
PM
149/*
150 * Control variables for per-CPU and per-rcu_node kthreads. These
151 * handle all flavors of RCU.
152 */
153static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 156DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 157
a46e0899
PM
158#endif /* #ifdef CONFIG_RCU_BOOST */
159
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 163
4a298656
PM
164/*
165 * Track the rcutorture test sequence number and the update version
166 * number within a given test. The rcutorture_testseq is incremented
167 * on every rcutorture module load and unload, so has an odd value
168 * when a test is running. The rcutorture_vernum is set to zero
169 * when rcutorture starts and is incremented on each rcutorture update.
170 * These variables enable correlating rcutorture output with the
171 * RCU tracing information.
172 */
173unsigned long rcutorture_testseq;
174unsigned long rcutorture_vernum;
175
fc2219d4
PM
176/*
177 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
178 * permit this function to be invoked without holding the root rcu_node
179 * structure's ->lock, but of course results can be subject to change.
180 */
181static int rcu_gp_in_progress(struct rcu_state *rsp)
182{
183 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
184}
185
b1f77b05 186/*
d6714c22 187 * Note a quiescent state. Because we do not need to know
b1f77b05 188 * how many quiescent states passed, just if there was at least
d6714c22 189 * one since the start of the grace period, this just sets a flag.
e4cc1f22 190 * The caller must have disabled preemption.
b1f77b05 191 */
d6714c22 192void rcu_sched_qs(int cpu)
b1f77b05 193{
25502a6c 194 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 195
e4cc1f22 196 if (rdp->passed_quiesce == 0)
f7f7bac9 197 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 198 rdp->passed_quiesce = 1;
b1f77b05
IM
199}
200
d6714c22 201void rcu_bh_qs(int cpu)
b1f77b05 202{
25502a6c 203 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 204
e4cc1f22 205 if (rdp->passed_quiesce == 0)
f7f7bac9 206 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 207 rdp->passed_quiesce = 1;
b1f77b05 208}
64db4cff 209
25502a6c
PM
210/*
211 * Note a context switch. This is a quiescent state for RCU-sched,
212 * and requires special handling for preemptible RCU.
e4cc1f22 213 * The caller must have disabled preemption.
25502a6c
PM
214 */
215void rcu_note_context_switch(int cpu)
216{
f7f7bac9 217 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 218 rcu_sched_qs(cpu);
cba6d0d6 219 rcu_preempt_note_context_switch(cpu);
f7f7bac9 220 trace_rcu_utilization(TPS("End context switch"));
25502a6c 221}
29ce8310 222EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 223
90a4d2c0 224DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 225 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 226 .dynticks = ATOMIC_INIT(1),
90a4d2c0 227};
64db4cff 228
878d7439
ED
229static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
230static long qhimark = 10000; /* If this many pending, ignore blimit. */
231static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 232
878d7439
ED
233module_param(blimit, long, 0444);
234module_param(qhimark, long, 0444);
235module_param(qlowmark, long, 0444);
3d76c082 236
026ad283
PM
237static ulong jiffies_till_first_fqs = ULONG_MAX;
238static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
239
240module_param(jiffies_till_first_fqs, ulong, 0644);
241module_param(jiffies_till_next_fqs, ulong, 0644);
242
910ee45d
PM
243static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
244 struct rcu_data *rdp);
4cdfc175
PM
245static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
246static void force_quiescent_state(struct rcu_state *rsp);
a157229c 247static int rcu_pending(int cpu);
64db4cff
PM
248
249/*
d6714c22 250 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 251 */
d6714c22 252long rcu_batches_completed_sched(void)
64db4cff 253{
d6714c22 254 return rcu_sched_state.completed;
64db4cff 255}
d6714c22 256EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
257
258/*
259 * Return the number of RCU BH batches processed thus far for debug & stats.
260 */
261long rcu_batches_completed_bh(void)
262{
263 return rcu_bh_state.completed;
264}
265EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
266
bf66f18e
PM
267/*
268 * Force a quiescent state for RCU BH.
269 */
270void rcu_bh_force_quiescent_state(void)
271{
4cdfc175 272 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
273}
274EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
275
4a298656
PM
276/*
277 * Record the number of times rcutorture tests have been initiated and
278 * terminated. This information allows the debugfs tracing stats to be
279 * correlated to the rcutorture messages, even when the rcutorture module
280 * is being repeatedly loaded and unloaded. In other words, we cannot
281 * store this state in rcutorture itself.
282 */
283void rcutorture_record_test_transition(void)
284{
285 rcutorture_testseq++;
286 rcutorture_vernum = 0;
287}
288EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
289
290/*
291 * Record the number of writer passes through the current rcutorture test.
292 * This is also used to correlate debugfs tracing stats with the rcutorture
293 * messages.
294 */
295void rcutorture_record_progress(unsigned long vernum)
296{
297 rcutorture_vernum++;
298}
299EXPORT_SYMBOL_GPL(rcutorture_record_progress);
300
bf66f18e
PM
301/*
302 * Force a quiescent state for RCU-sched.
303 */
304void rcu_sched_force_quiescent_state(void)
305{
4cdfc175 306 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
307}
308EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
309
64db4cff
PM
310/*
311 * Does the CPU have callbacks ready to be invoked?
312 */
313static int
314cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
315{
3fbfbf7a
PM
316 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
317 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
318}
319
320/*
dc35c893
PM
321 * Does the current CPU require a not-yet-started grace period?
322 * The caller must have disabled interrupts to prevent races with
323 * normal callback registry.
64db4cff
PM
324 */
325static int
326cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
327{
dc35c893 328 int i;
3fbfbf7a 329
dc35c893
PM
330 if (rcu_gp_in_progress(rsp))
331 return 0; /* No, a grace period is already in progress. */
dae6e64d 332 if (rcu_nocb_needs_gp(rsp))
34ed6246 333 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
334 if (!rdp->nxttail[RCU_NEXT_TAIL])
335 return 0; /* No, this is a no-CBs (or offline) CPU. */
336 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
337 return 1; /* Yes, this CPU has newly registered callbacks. */
338 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
339 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
340 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
341 rdp->nxtcompleted[i]))
342 return 1; /* Yes, CBs for future grace period. */
343 return 0; /* No grace period needed. */
64db4cff
PM
344}
345
346/*
347 * Return the root node of the specified rcu_state structure.
348 */
349static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
350{
351 return &rsp->node[0];
352}
353
9b2e4f18 354/*
adf5091e 355 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
356 *
357 * If the new value of the ->dynticks_nesting counter now is zero,
358 * we really have entered idle, and must do the appropriate accounting.
359 * The caller must have disabled interrupts.
360 */
adf5091e
FW
361static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
362 bool user)
9b2e4f18 363{
f7f7bac9 364 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 365 if (!user && !is_idle_task(current)) {
0989cb46
PM
366 struct task_struct *idle = idle_task(smp_processor_id());
367
f7f7bac9 368 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 369 ftrace_dump(DUMP_ORIG);
0989cb46
PM
370 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
371 current->pid, current->comm,
372 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 373 }
aea1b35e 374 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
375 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
376 smp_mb__before_atomic_inc(); /* See above. */
377 atomic_inc(&rdtp->dynticks);
378 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
379 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
380
381 /*
adf5091e 382 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
383 * in an RCU read-side critical section.
384 */
385 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
386 "Illegal idle entry in RCU read-side critical section.");
387 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
388 "Illegal idle entry in RCU-bh read-side critical section.");
389 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
390 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 391}
64db4cff 392
adf5091e
FW
393/*
394 * Enter an RCU extended quiescent state, which can be either the
395 * idle loop or adaptive-tickless usermode execution.
64db4cff 396 */
adf5091e 397static void rcu_eqs_enter(bool user)
64db4cff 398{
4145fa7f 399 long long oldval;
64db4cff
PM
400 struct rcu_dynticks *rdtp;
401
64db4cff 402 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 403 oldval = rdtp->dynticks_nesting;
29e37d81
PM
404 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
405 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
406 rdtp->dynticks_nesting = 0;
407 else
408 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 409 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 410}
adf5091e
FW
411
412/**
413 * rcu_idle_enter - inform RCU that current CPU is entering idle
414 *
415 * Enter idle mode, in other words, -leave- the mode in which RCU
416 * read-side critical sections can occur. (Though RCU read-side
417 * critical sections can occur in irq handlers in idle, a possibility
418 * handled by irq_enter() and irq_exit().)
419 *
420 * We crowbar the ->dynticks_nesting field to zero to allow for
421 * the possibility of usermode upcalls having messed up our count
422 * of interrupt nesting level during the prior busy period.
423 */
424void rcu_idle_enter(void)
425{
c5d900bf
FW
426 unsigned long flags;
427
428 local_irq_save(flags);
cb349ca9 429 rcu_eqs_enter(false);
c5d900bf 430 local_irq_restore(flags);
adf5091e 431}
8a2ecf47 432EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 433
2b1d5024 434#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
435/**
436 * rcu_user_enter - inform RCU that we are resuming userspace.
437 *
438 * Enter RCU idle mode right before resuming userspace. No use of RCU
439 * is permitted between this call and rcu_user_exit(). This way the
440 * CPU doesn't need to maintain the tick for RCU maintenance purposes
441 * when the CPU runs in userspace.
442 */
443void rcu_user_enter(void)
444{
91d1aa43 445 rcu_eqs_enter(1);
adf5091e
FW
446}
447
19dd1591
FW
448/**
449 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
450 * after the current irq returns.
451 *
452 * This is similar to rcu_user_enter() but in the context of a non-nesting
453 * irq. After this call, RCU enters into idle mode when the interrupt
454 * returns.
455 */
456void rcu_user_enter_after_irq(void)
457{
458 unsigned long flags;
459 struct rcu_dynticks *rdtp;
460
461 local_irq_save(flags);
462 rdtp = &__get_cpu_var(rcu_dynticks);
463 /* Ensure this irq is interrupting a non-idle RCU state. */
464 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
465 rdtp->dynticks_nesting = 1;
466 local_irq_restore(flags);
467}
2b1d5024 468#endif /* CONFIG_RCU_USER_QS */
19dd1591 469
9b2e4f18
PM
470/**
471 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
472 *
473 * Exit from an interrupt handler, which might possibly result in entering
474 * idle mode, in other words, leaving the mode in which read-side critical
475 * sections can occur.
64db4cff 476 *
9b2e4f18
PM
477 * This code assumes that the idle loop never does anything that might
478 * result in unbalanced calls to irq_enter() and irq_exit(). If your
479 * architecture violates this assumption, RCU will give you what you
480 * deserve, good and hard. But very infrequently and irreproducibly.
481 *
482 * Use things like work queues to work around this limitation.
483 *
484 * You have been warned.
64db4cff 485 */
9b2e4f18 486void rcu_irq_exit(void)
64db4cff
PM
487{
488 unsigned long flags;
4145fa7f 489 long long oldval;
64db4cff
PM
490 struct rcu_dynticks *rdtp;
491
492 local_irq_save(flags);
493 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 494 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
495 rdtp->dynticks_nesting--;
496 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 497 if (rdtp->dynticks_nesting)
f7f7bac9 498 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 499 else
cb349ca9 500 rcu_eqs_enter_common(rdtp, oldval, true);
9b2e4f18
PM
501 local_irq_restore(flags);
502}
503
504/*
adf5091e 505 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
506 *
507 * If the new value of the ->dynticks_nesting counter was previously zero,
508 * we really have exited idle, and must do the appropriate accounting.
509 * The caller must have disabled interrupts.
510 */
adf5091e
FW
511static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
512 int user)
9b2e4f18 513{
23b5c8fa
PM
514 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
515 atomic_inc(&rdtp->dynticks);
516 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
517 smp_mb__after_atomic_inc(); /* See above. */
518 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 519 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 520 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 521 if (!user && !is_idle_task(current)) {
0989cb46
PM
522 struct task_struct *idle = idle_task(smp_processor_id());
523
f7f7bac9 524 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 525 oldval, rdtp->dynticks_nesting);
bf1304e9 526 ftrace_dump(DUMP_ORIG);
0989cb46
PM
527 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
528 current->pid, current->comm,
529 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
530 }
531}
532
adf5091e
FW
533/*
534 * Exit an RCU extended quiescent state, which can be either the
535 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 536 */
adf5091e 537static void rcu_eqs_exit(bool user)
9b2e4f18 538{
9b2e4f18
PM
539 struct rcu_dynticks *rdtp;
540 long long oldval;
541
9b2e4f18
PM
542 rdtp = &__get_cpu_var(rcu_dynticks);
543 oldval = rdtp->dynticks_nesting;
29e37d81
PM
544 WARN_ON_ONCE(oldval < 0);
545 if (oldval & DYNTICK_TASK_NEST_MASK)
546 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
547 else
548 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 549 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 550}
adf5091e
FW
551
552/**
553 * rcu_idle_exit - inform RCU that current CPU is leaving idle
554 *
555 * Exit idle mode, in other words, -enter- the mode in which RCU
556 * read-side critical sections can occur.
557 *
558 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
559 * allow for the possibility of usermode upcalls messing up our count
560 * of interrupt nesting level during the busy period that is just
561 * now starting.
562 */
563void rcu_idle_exit(void)
564{
c5d900bf
FW
565 unsigned long flags;
566
567 local_irq_save(flags);
cb349ca9 568 rcu_eqs_exit(false);
c5d900bf 569 local_irq_restore(flags);
adf5091e 570}
8a2ecf47 571EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 572
2b1d5024 573#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
574/**
575 * rcu_user_exit - inform RCU that we are exiting userspace.
576 *
577 * Exit RCU idle mode while entering the kernel because it can
578 * run a RCU read side critical section anytime.
579 */
580void rcu_user_exit(void)
581{
91d1aa43 582 rcu_eqs_exit(1);
adf5091e
FW
583}
584
19dd1591
FW
585/**
586 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
587 * idle mode after the current non-nesting irq returns.
588 *
589 * This is similar to rcu_user_exit() but in the context of an irq.
590 * This is called when the irq has interrupted a userspace RCU idle mode
591 * context. When the current non-nesting interrupt returns after this call,
592 * the CPU won't restore the RCU idle mode.
593 */
594void rcu_user_exit_after_irq(void)
595{
596 unsigned long flags;
597 struct rcu_dynticks *rdtp;
598
599 local_irq_save(flags);
600 rdtp = &__get_cpu_var(rcu_dynticks);
601 /* Ensure we are interrupting an RCU idle mode. */
602 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
603 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
604 local_irq_restore(flags);
605}
2b1d5024 606#endif /* CONFIG_RCU_USER_QS */
19dd1591 607
9b2e4f18
PM
608/**
609 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
610 *
611 * Enter an interrupt handler, which might possibly result in exiting
612 * idle mode, in other words, entering the mode in which read-side critical
613 * sections can occur.
614 *
615 * Note that the Linux kernel is fully capable of entering an interrupt
616 * handler that it never exits, for example when doing upcalls to
617 * user mode! This code assumes that the idle loop never does upcalls to
618 * user mode. If your architecture does do upcalls from the idle loop (or
619 * does anything else that results in unbalanced calls to the irq_enter()
620 * and irq_exit() functions), RCU will give you what you deserve, good
621 * and hard. But very infrequently and irreproducibly.
622 *
623 * Use things like work queues to work around this limitation.
624 *
625 * You have been warned.
626 */
627void rcu_irq_enter(void)
628{
629 unsigned long flags;
630 struct rcu_dynticks *rdtp;
631 long long oldval;
632
633 local_irq_save(flags);
634 rdtp = &__get_cpu_var(rcu_dynticks);
635 oldval = rdtp->dynticks_nesting;
636 rdtp->dynticks_nesting++;
637 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 638 if (oldval)
f7f7bac9 639 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 640 else
cb349ca9 641 rcu_eqs_exit_common(rdtp, oldval, true);
64db4cff 642 local_irq_restore(flags);
64db4cff
PM
643}
644
645/**
646 * rcu_nmi_enter - inform RCU of entry to NMI context
647 *
648 * If the CPU was idle with dynamic ticks active, and there is no
649 * irq handler running, this updates rdtp->dynticks_nmi to let the
650 * RCU grace-period handling know that the CPU is active.
651 */
652void rcu_nmi_enter(void)
653{
654 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
655
23b5c8fa
PM
656 if (rdtp->dynticks_nmi_nesting == 0 &&
657 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 658 return;
23b5c8fa
PM
659 rdtp->dynticks_nmi_nesting++;
660 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
661 atomic_inc(&rdtp->dynticks);
662 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
663 smp_mb__after_atomic_inc(); /* See above. */
664 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
665}
666
667/**
668 * rcu_nmi_exit - inform RCU of exit from NMI context
669 *
670 * If the CPU was idle with dynamic ticks active, and there is no
671 * irq handler running, this updates rdtp->dynticks_nmi to let the
672 * RCU grace-period handling know that the CPU is no longer active.
673 */
674void rcu_nmi_exit(void)
675{
676 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
677
23b5c8fa
PM
678 if (rdtp->dynticks_nmi_nesting == 0 ||
679 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 680 return;
23b5c8fa
PM
681 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
682 smp_mb__before_atomic_inc(); /* See above. */
683 atomic_inc(&rdtp->dynticks);
684 smp_mb__after_atomic_inc(); /* Force delay to next write. */
685 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
686}
687
688/**
9b2e4f18 689 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 690 *
9b2e4f18 691 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 692 * or NMI handler, return true.
64db4cff 693 */
9b2e4f18 694int rcu_is_cpu_idle(void)
64db4cff 695{
34240697
PM
696 int ret;
697
698 preempt_disable();
699 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
700 preempt_enable();
701 return ret;
64db4cff 702}
e6b80a3b 703EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 704
62fde6ed 705#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
706
707/*
708 * Is the current CPU online? Disable preemption to avoid false positives
709 * that could otherwise happen due to the current CPU number being sampled,
710 * this task being preempted, its old CPU being taken offline, resuming
711 * on some other CPU, then determining that its old CPU is now offline.
712 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
713 * the check for rcu_scheduler_fully_active. Note also that it is OK
714 * for a CPU coming online to use RCU for one jiffy prior to marking itself
715 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
716 * offline to continue to use RCU for one jiffy after marking itself
717 * offline in the cpu_online_mask. This leniency is necessary given the
718 * non-atomic nature of the online and offline processing, for example,
719 * the fact that a CPU enters the scheduler after completing the CPU_DYING
720 * notifiers.
721 *
722 * This is also why RCU internally marks CPUs online during the
723 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
724 *
725 * Disable checking if in an NMI handler because we cannot safely report
726 * errors from NMI handlers anyway.
727 */
728bool rcu_lockdep_current_cpu_online(void)
729{
2036d94a
PM
730 struct rcu_data *rdp;
731 struct rcu_node *rnp;
c0d6d01b
PM
732 bool ret;
733
734 if (in_nmi())
735 return 1;
736 preempt_disable();
2036d94a
PM
737 rdp = &__get_cpu_var(rcu_sched_data);
738 rnp = rdp->mynode;
739 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
740 !rcu_scheduler_fully_active;
741 preempt_enable();
742 return ret;
743}
744EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
745
62fde6ed 746#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 747
64db4cff 748/**
9b2e4f18 749 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 750 *
9b2e4f18
PM
751 * If the current CPU is idle or running at a first-level (not nested)
752 * interrupt from idle, return true. The caller must have at least
753 * disabled preemption.
64db4cff 754 */
62e3cb14 755static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 756{
9b2e4f18 757 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
758}
759
64db4cff
PM
760/*
761 * Snapshot the specified CPU's dynticks counter so that we can later
762 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 763 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
764 */
765static int dyntick_save_progress_counter(struct rcu_data *rdp)
766{
23b5c8fa 767 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 768 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
769}
770
771/*
772 * Return true if the specified CPU has passed through a quiescent
773 * state by virtue of being in or having passed through an dynticks
774 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 775 * for this same CPU, or by virtue of having been offline.
64db4cff
PM
776 */
777static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
778{
7eb4f455
PM
779 unsigned int curr;
780 unsigned int snap;
64db4cff 781
7eb4f455
PM
782 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
783 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
784
785 /*
786 * If the CPU passed through or entered a dynticks idle phase with
787 * no active irq/NMI handlers, then we can safely pretend that the CPU
788 * already acknowledged the request to pass through a quiescent
789 * state. Either way, that CPU cannot possibly be in an RCU
790 * read-side critical section that started before the beginning
791 * of the current RCU grace period.
792 */
7eb4f455 793 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 794 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
795 rdp->dynticks_fqs++;
796 return 1;
797 }
798
a82dcc76
PM
799 /*
800 * Check for the CPU being offline, but only if the grace period
801 * is old enough. We don't need to worry about the CPU changing
802 * state: If we see it offline even once, it has been through a
803 * quiescent state.
804 *
805 * The reason for insisting that the grace period be at least
806 * one jiffy old is that CPUs that are not quite online and that
807 * have just gone offline can still execute RCU read-side critical
808 * sections.
809 */
810 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
811 return 0; /* Grace period is not old enough. */
812 barrier();
813 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 814 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
815 rdp->offline_fqs++;
816 return 1;
817 }
65d798f0
PM
818
819 /*
820 * There is a possibility that a CPU in adaptive-ticks state
821 * might run in the kernel with the scheduling-clock tick disabled
822 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
823 * force the CPU to restart the scheduling-clock tick in this
824 * CPU is in this state.
825 */
826 rcu_kick_nohz_cpu(rdp->cpu);
827
a82dcc76 828 return 0;
64db4cff
PM
829}
830
64db4cff
PM
831static void record_gp_stall_check_time(struct rcu_state *rsp)
832{
833 rsp->gp_start = jiffies;
6bfc09e2 834 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
64db4cff
PM
835}
836
b637a328
PM
837/*
838 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
839 * for architectures that do not implement trigger_all_cpu_backtrace().
840 * The NMI-triggered stack traces are more accurate because they are
841 * printed by the target CPU.
842 */
843static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
844{
845 int cpu;
846 unsigned long flags;
847 struct rcu_node *rnp;
848
849 rcu_for_each_leaf_node(rsp, rnp) {
850 raw_spin_lock_irqsave(&rnp->lock, flags);
851 if (rnp->qsmask != 0) {
852 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
853 if (rnp->qsmask & (1UL << cpu))
854 dump_cpu_task(rnp->grplo + cpu);
855 }
856 raw_spin_unlock_irqrestore(&rnp->lock, flags);
857 }
858}
859
64db4cff
PM
860static void print_other_cpu_stall(struct rcu_state *rsp)
861{
862 int cpu;
863 long delta;
864 unsigned long flags;
285fe294 865 int ndetected = 0;
64db4cff 866 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 867 long totqlen = 0;
64db4cff
PM
868
869 /* Only let one CPU complain about others per time interval. */
870
1304afb2 871 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 872 delta = jiffies - rsp->jiffies_stall;
fc2219d4 873 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 874 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
875 return;
876 }
6bfc09e2 877 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 878 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 879
8cdd32a9
PM
880 /*
881 * OK, time to rat on our buddy...
882 * See Documentation/RCU/stallwarn.txt for info on how to debug
883 * RCU CPU stall warnings.
884 */
d7f3e207 885 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 886 rsp->name);
a858af28 887 print_cpu_stall_info_begin();
a0b6c9a7 888 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 889 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 890 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
891 if (rnp->qsmask != 0) {
892 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
893 if (rnp->qsmask & (1UL << cpu)) {
894 print_cpu_stall_info(rsp,
895 rnp->grplo + cpu);
896 ndetected++;
897 }
898 }
3acd9eb3 899 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 900 }
a858af28
PM
901
902 /*
903 * Now rat on any tasks that got kicked up to the root rcu_node
904 * due to CPU offlining.
905 */
906 rnp = rcu_get_root(rsp);
907 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 908 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
909 raw_spin_unlock_irqrestore(&rnp->lock, flags);
910
911 print_cpu_stall_info_end();
53bb857c
PM
912 for_each_possible_cpu(cpu)
913 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
914 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 915 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 916 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 917 if (ndetected == 0)
d7f3e207 918 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 919 else if (!trigger_all_cpu_backtrace())
b637a328 920 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 921
4cdfc175 922 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
923
924 rcu_print_detail_task_stall(rsp);
925
4cdfc175 926 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
927}
928
929static void print_cpu_stall(struct rcu_state *rsp)
930{
53bb857c 931 int cpu;
64db4cff
PM
932 unsigned long flags;
933 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 934 long totqlen = 0;
64db4cff 935
8cdd32a9
PM
936 /*
937 * OK, time to rat on ourselves...
938 * See Documentation/RCU/stallwarn.txt for info on how to debug
939 * RCU CPU stall warnings.
940 */
d7f3e207 941 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
942 print_cpu_stall_info_begin();
943 print_cpu_stall_info(rsp, smp_processor_id());
944 print_cpu_stall_info_end();
53bb857c
PM
945 for_each_possible_cpu(cpu)
946 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
947 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
948 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
949 if (!trigger_all_cpu_backtrace())
950 dump_stack();
c1dc0b9c 951
1304afb2 952 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 953 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 954 rsp->jiffies_stall = jiffies +
6bfc09e2 955 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 956 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 957
64db4cff
PM
958 set_need_resched(); /* kick ourselves to get things going. */
959}
960
961static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
962{
bad6e139
PM
963 unsigned long j;
964 unsigned long js;
64db4cff
PM
965 struct rcu_node *rnp;
966
742734ee 967 if (rcu_cpu_stall_suppress)
c68de209 968 return;
bad6e139
PM
969 j = ACCESS_ONCE(jiffies);
970 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 971 rnp = rdp->mynode;
c96ea7cf
PM
972 if (rcu_gp_in_progress(rsp) &&
973 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
974
975 /* We haven't checked in, so go dump stack. */
976 print_cpu_stall(rsp);
977
bad6e139
PM
978 } else if (rcu_gp_in_progress(rsp) &&
979 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 980
bad6e139 981 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
982 print_other_cpu_stall(rsp);
983 }
984}
985
53d84e00
PM
986/**
987 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
988 *
989 * Set the stall-warning timeout way off into the future, thus preventing
990 * any RCU CPU stall-warning messages from appearing in the current set of
991 * RCU grace periods.
992 *
993 * The caller must disable hard irqs.
994 */
995void rcu_cpu_stall_reset(void)
996{
6ce75a23
PM
997 struct rcu_state *rsp;
998
999 for_each_rcu_flavor(rsp)
1000 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
1001}
1002
3f5d3ea6
PM
1003/*
1004 * Initialize the specified rcu_data structure's callback list to empty.
1005 */
1006static void init_callback_list(struct rcu_data *rdp)
1007{
1008 int i;
1009
34ed6246
PM
1010 if (init_nocb_callback_list(rdp))
1011 return;
3f5d3ea6
PM
1012 rdp->nxtlist = NULL;
1013 for (i = 0; i < RCU_NEXT_SIZE; i++)
1014 rdp->nxttail[i] = &rdp->nxtlist;
1015}
1016
dc35c893
PM
1017/*
1018 * Determine the value that ->completed will have at the end of the
1019 * next subsequent grace period. This is used to tag callbacks so that
1020 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1021 * been dyntick-idle for an extended period with callbacks under the
1022 * influence of RCU_FAST_NO_HZ.
1023 *
1024 * The caller must hold rnp->lock with interrupts disabled.
1025 */
1026static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1027 struct rcu_node *rnp)
1028{
1029 /*
1030 * If RCU is idle, we just wait for the next grace period.
1031 * But we can only be sure that RCU is idle if we are looking
1032 * at the root rcu_node structure -- otherwise, a new grace
1033 * period might have started, but just not yet gotten around
1034 * to initializing the current non-root rcu_node structure.
1035 */
1036 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1037 return rnp->completed + 1;
1038
1039 /*
1040 * Otherwise, wait for a possible partial grace period and
1041 * then the subsequent full grace period.
1042 */
1043 return rnp->completed + 2;
1044}
1045
0446be48
PM
1046/*
1047 * Trace-event helper function for rcu_start_future_gp() and
1048 * rcu_nocb_wait_gp().
1049 */
1050static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1051 unsigned long c, const char *s)
0446be48
PM
1052{
1053 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1054 rnp->completed, c, rnp->level,
1055 rnp->grplo, rnp->grphi, s);
1056}
1057
1058/*
1059 * Start some future grace period, as needed to handle newly arrived
1060 * callbacks. The required future grace periods are recorded in each
1061 * rcu_node structure's ->need_future_gp field.
1062 *
1063 * The caller must hold the specified rcu_node structure's ->lock.
1064 */
1065static unsigned long __maybe_unused
1066rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1067{
1068 unsigned long c;
1069 int i;
1070 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1071
1072 /*
1073 * Pick up grace-period number for new callbacks. If this
1074 * grace period is already marked as needed, return to the caller.
1075 */
1076 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1077 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1078 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1079 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1080 return c;
1081 }
1082
1083 /*
1084 * If either this rcu_node structure or the root rcu_node structure
1085 * believe that a grace period is in progress, then we must wait
1086 * for the one following, which is in "c". Because our request
1087 * will be noticed at the end of the current grace period, we don't
1088 * need to explicitly start one.
1089 */
1090 if (rnp->gpnum != rnp->completed ||
1091 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1092 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1093 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1094 return c;
1095 }
1096
1097 /*
1098 * There might be no grace period in progress. If we don't already
1099 * hold it, acquire the root rcu_node structure's lock in order to
1100 * start one (if needed).
1101 */
1102 if (rnp != rnp_root)
1103 raw_spin_lock(&rnp_root->lock);
1104
1105 /*
1106 * Get a new grace-period number. If there really is no grace
1107 * period in progress, it will be smaller than the one we obtained
1108 * earlier. Adjust callbacks as needed. Note that even no-CBs
1109 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1110 */
1111 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1112 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1113 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1114 rdp->nxtcompleted[i] = c;
1115
1116 /*
1117 * If the needed for the required grace period is already
1118 * recorded, trace and leave.
1119 */
1120 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1121 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1122 goto unlock_out;
1123 }
1124
1125 /* Record the need for the future grace period. */
1126 rnp_root->need_future_gp[c & 0x1]++;
1127
1128 /* If a grace period is not already in progress, start one. */
1129 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1130 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1131 } else {
f7f7bac9 1132 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1133 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1134 }
1135unlock_out:
1136 if (rnp != rnp_root)
1137 raw_spin_unlock(&rnp_root->lock);
1138 return c;
1139}
1140
1141/*
1142 * Clean up any old requests for the just-ended grace period. Also return
1143 * whether any additional grace periods have been requested. Also invoke
1144 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1145 * waiting for this grace period to complete.
1146 */
1147static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1148{
1149 int c = rnp->completed;
1150 int needmore;
1151 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1152
1153 rcu_nocb_gp_cleanup(rsp, rnp);
1154 rnp->need_future_gp[c & 0x1] = 0;
1155 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1156 trace_rcu_future_gp(rnp, rdp, c,
1157 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1158 return needmore;
1159}
1160
dc35c893
PM
1161/*
1162 * If there is room, assign a ->completed number to any callbacks on
1163 * this CPU that have not already been assigned. Also accelerate any
1164 * callbacks that were previously assigned a ->completed number that has
1165 * since proven to be too conservative, which can happen if callbacks get
1166 * assigned a ->completed number while RCU is idle, but with reference to
1167 * a non-root rcu_node structure. This function is idempotent, so it does
1168 * not hurt to call it repeatedly.
1169 *
1170 * The caller must hold rnp->lock with interrupts disabled.
1171 */
1172static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1173 struct rcu_data *rdp)
1174{
1175 unsigned long c;
1176 int i;
1177
1178 /* If the CPU has no callbacks, nothing to do. */
1179 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1180 return;
1181
1182 /*
1183 * Starting from the sublist containing the callbacks most
1184 * recently assigned a ->completed number and working down, find the
1185 * first sublist that is not assignable to an upcoming grace period.
1186 * Such a sublist has something in it (first two tests) and has
1187 * a ->completed number assigned that will complete sooner than
1188 * the ->completed number for newly arrived callbacks (last test).
1189 *
1190 * The key point is that any later sublist can be assigned the
1191 * same ->completed number as the newly arrived callbacks, which
1192 * means that the callbacks in any of these later sublist can be
1193 * grouped into a single sublist, whether or not they have already
1194 * been assigned a ->completed number.
1195 */
1196 c = rcu_cbs_completed(rsp, rnp);
1197 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1198 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1199 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1200 break;
1201
1202 /*
1203 * If there are no sublist for unassigned callbacks, leave.
1204 * At the same time, advance "i" one sublist, so that "i" will
1205 * index into the sublist where all the remaining callbacks should
1206 * be grouped into.
1207 */
1208 if (++i >= RCU_NEXT_TAIL)
1209 return;
1210
1211 /*
1212 * Assign all subsequent callbacks' ->completed number to the next
1213 * full grace period and group them all in the sublist initially
1214 * indexed by "i".
1215 */
1216 for (; i <= RCU_NEXT_TAIL; i++) {
1217 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1218 rdp->nxtcompleted[i] = c;
1219 }
910ee45d
PM
1220 /* Record any needed additional grace periods. */
1221 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1222
1223 /* Trace depending on how much we were able to accelerate. */
1224 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1225 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1226 else
f7f7bac9 1227 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1228}
1229
1230/*
1231 * Move any callbacks whose grace period has completed to the
1232 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1233 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1234 * sublist. This function is idempotent, so it does not hurt to
1235 * invoke it repeatedly. As long as it is not invoked -too- often...
1236 *
1237 * The caller must hold rnp->lock with interrupts disabled.
1238 */
1239static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1240 struct rcu_data *rdp)
1241{
1242 int i, j;
1243
1244 /* If the CPU has no callbacks, nothing to do. */
1245 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1246 return;
1247
1248 /*
1249 * Find all callbacks whose ->completed numbers indicate that they
1250 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1251 */
1252 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1253 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1254 break;
1255 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1256 }
1257 /* Clean up any sublist tail pointers that were misordered above. */
1258 for (j = RCU_WAIT_TAIL; j < i; j++)
1259 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1260
1261 /* Copy down callbacks to fill in empty sublists. */
1262 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1263 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1264 break;
1265 rdp->nxttail[j] = rdp->nxttail[i];
1266 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1267 }
1268
1269 /* Classify any remaining callbacks. */
1270 rcu_accelerate_cbs(rsp, rnp, rdp);
1271}
1272
d09b62df 1273/*
ba9fbe95
PM
1274 * Update CPU-local rcu_data state to record the beginnings and ends of
1275 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1276 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1277 */
ba9fbe95 1278static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1279{
ba9fbe95 1280 /* Handle the ends of any preceding grace periods first. */
dc35c893 1281 if (rdp->completed == rnp->completed) {
d09b62df 1282
ba9fbe95 1283 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1284 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1285
dc35c893
PM
1286 } else {
1287
1288 /* Advance callbacks. */
1289 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1290
1291 /* Remember that we saw this grace-period completion. */
1292 rdp->completed = rnp->completed;
f7f7bac9 1293 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1294 }
398ebe60 1295
6eaef633
PM
1296 if (rdp->gpnum != rnp->gpnum) {
1297 /*
1298 * If the current grace period is waiting for this CPU,
1299 * set up to detect a quiescent state, otherwise don't
1300 * go looking for one.
1301 */
1302 rdp->gpnum = rnp->gpnum;
f7f7bac9 1303 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1304 rdp->passed_quiesce = 0;
1305 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1306 zero_cpu_stall_ticks(rdp);
1307 }
1308}
1309
d34ea322 1310static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1311{
1312 unsigned long flags;
1313 struct rcu_node *rnp;
1314
1315 local_irq_save(flags);
1316 rnp = rdp->mynode;
d34ea322
PM
1317 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1318 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1319 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1320 local_irq_restore(flags);
1321 return;
1322 }
d34ea322 1323 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1324 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1325}
1326
b3dbec76 1327/*
7fdefc10 1328 * Initialize a new grace period.
b3dbec76 1329 */
7fdefc10 1330static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1331{
1332 struct rcu_data *rdp;
7fdefc10 1333 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1334
7fdefc10 1335 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1336 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1337
7fdefc10
PM
1338 if (rcu_gp_in_progress(rsp)) {
1339 /* Grace period already in progress, don't start another. */
1340 raw_spin_unlock_irq(&rnp->lock);
1341 return 0;
1342 }
1343
7fdefc10
PM
1344 /* Advance to a new grace period and initialize state. */
1345 rsp->gpnum++;
f7f7bac9 1346 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1347 record_gp_stall_check_time(rsp);
1348 raw_spin_unlock_irq(&rnp->lock);
1349
1350 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1351 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1352
1353 /*
1354 * Set the quiescent-state-needed bits in all the rcu_node
1355 * structures for all currently online CPUs in breadth-first order,
1356 * starting from the root rcu_node structure, relying on the layout
1357 * of the tree within the rsp->node[] array. Note that other CPUs
1358 * will access only the leaves of the hierarchy, thus seeing that no
1359 * grace period is in progress, at least until the corresponding
1360 * leaf node has been initialized. In addition, we have excluded
1361 * CPU-hotplug operations.
1362 *
1363 * The grace period cannot complete until the initialization
1364 * process finishes, because this kthread handles both.
1365 */
1366 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1367 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1368 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1369 rcu_preempt_check_blocked_tasks(rnp);
1370 rnp->qsmask = rnp->qsmaskinit;
0446be48 1371 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1372 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1373 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1374 if (rnp == rdp->mynode)
ce3d9c03 1375 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1376 rcu_preempt_boost_start_gp(rnp);
1377 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1378 rnp->level, rnp->grplo,
1379 rnp->grphi, rnp->qsmask);
1380 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1381#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1382 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1383 system_state == SYSTEM_RUNNING)
971394f3 1384 udelay(200);
661a85dc 1385#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1386 cond_resched();
1387 }
b3dbec76 1388
a4fbe35a 1389 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1390 return 1;
1391}
b3dbec76 1392
4cdfc175
PM
1393/*
1394 * Do one round of quiescent-state forcing.
1395 */
1396int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1397{
1398 int fqs_state = fqs_state_in;
1399 struct rcu_node *rnp = rcu_get_root(rsp);
1400
1401 rsp->n_force_qs++;
1402 if (fqs_state == RCU_SAVE_DYNTICK) {
1403 /* Collect dyntick-idle snapshots. */
1404 force_qs_rnp(rsp, dyntick_save_progress_counter);
1405 fqs_state = RCU_FORCE_QS;
1406 } else {
1407 /* Handle dyntick-idle and offline CPUs. */
1408 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1409 }
1410 /* Clear flag to prevent immediate re-entry. */
1411 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1412 raw_spin_lock_irq(&rnp->lock);
1413 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1414 raw_spin_unlock_irq(&rnp->lock);
1415 }
1416 return fqs_state;
1417}
1418
7fdefc10
PM
1419/*
1420 * Clean up after the old grace period.
1421 */
4cdfc175 1422static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1423{
1424 unsigned long gp_duration;
dae6e64d 1425 int nocb = 0;
7fdefc10
PM
1426 struct rcu_data *rdp;
1427 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1428
7fdefc10
PM
1429 raw_spin_lock_irq(&rnp->lock);
1430 gp_duration = jiffies - rsp->gp_start;
1431 if (gp_duration > rsp->gp_max)
1432 rsp->gp_max = gp_duration;
b3dbec76 1433
7fdefc10
PM
1434 /*
1435 * We know the grace period is complete, but to everyone else
1436 * it appears to still be ongoing. But it is also the case
1437 * that to everyone else it looks like there is nothing that
1438 * they can do to advance the grace period. It is therefore
1439 * safe for us to drop the lock in order to mark the grace
1440 * period as completed in all of the rcu_node structures.
7fdefc10 1441 */
5d4b8659 1442 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1443
5d4b8659
PM
1444 /*
1445 * Propagate new ->completed value to rcu_node structures so
1446 * that other CPUs don't have to wait until the start of the next
1447 * grace period to process their callbacks. This also avoids
1448 * some nasty RCU grace-period initialization races by forcing
1449 * the end of the current grace period to be completely recorded in
1450 * all of the rcu_node structures before the beginning of the next
1451 * grace period is recorded in any of the rcu_node structures.
1452 */
1453 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1454 raw_spin_lock_irq(&rnp->lock);
0446be48 1455 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1456 rdp = this_cpu_ptr(rsp->rda);
1457 if (rnp == rdp->mynode)
470716fc 1458 __note_gp_changes(rsp, rnp, rdp);
0446be48 1459 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1460 raw_spin_unlock_irq(&rnp->lock);
1461 cond_resched();
7fdefc10 1462 }
5d4b8659
PM
1463 rnp = rcu_get_root(rsp);
1464 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1465 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1466
1467 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1468 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1469 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1470 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1471 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
7fdefc10
PM
1472 if (cpu_needs_another_gp(rsp, rdp))
1473 rsp->gp_flags = 1;
1474 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1475}
1476
1477/*
1478 * Body of kthread that handles grace periods.
1479 */
1480static int __noreturn rcu_gp_kthread(void *arg)
1481{
4cdfc175 1482 int fqs_state;
d40011f6 1483 unsigned long j;
4cdfc175 1484 int ret;
7fdefc10
PM
1485 struct rcu_state *rsp = arg;
1486 struct rcu_node *rnp = rcu_get_root(rsp);
1487
1488 for (;;) {
1489
1490 /* Handle grace-period start. */
1491 for (;;) {
4cdfc175
PM
1492 wait_event_interruptible(rsp->gp_wq,
1493 rsp->gp_flags &
1494 RCU_GP_FLAG_INIT);
1495 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1496 rcu_gp_init(rsp))
7fdefc10
PM
1497 break;
1498 cond_resched();
1499 flush_signals(current);
1500 }
cabc49c1 1501
4cdfc175
PM
1502 /* Handle quiescent-state forcing. */
1503 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1504 j = jiffies_till_first_fqs;
1505 if (j > HZ) {
1506 j = HZ;
1507 jiffies_till_first_fqs = HZ;
1508 }
cabc49c1 1509 for (;;) {
d40011f6 1510 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1511 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1512 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1513 (!ACCESS_ONCE(rnp->qsmask) &&
1514 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1515 j);
4cdfc175 1516 /* If grace period done, leave loop. */
cabc49c1 1517 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1518 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1519 break;
4cdfc175
PM
1520 /* If time for quiescent-state forcing, do it. */
1521 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1522 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1523 cond_resched();
1524 } else {
1525 /* Deal with stray signal. */
1526 cond_resched();
1527 flush_signals(current);
1528 }
d40011f6
PM
1529 j = jiffies_till_next_fqs;
1530 if (j > HZ) {
1531 j = HZ;
1532 jiffies_till_next_fqs = HZ;
1533 } else if (j < 1) {
1534 j = 1;
1535 jiffies_till_next_fqs = 1;
1536 }
cabc49c1 1537 }
4cdfc175
PM
1538
1539 /* Handle grace-period end. */
1540 rcu_gp_cleanup(rsp);
b3dbec76 1541 }
b3dbec76
PM
1542}
1543
016a8d5b
SR
1544static void rsp_wakeup(struct irq_work *work)
1545{
1546 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1547
1548 /* Wake up rcu_gp_kthread() to start the grace period. */
1549 wake_up(&rsp->gp_wq);
1550}
1551
64db4cff
PM
1552/*
1553 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1554 * in preparation for detecting the next grace period. The caller must hold
b8462084 1555 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1556 *
1557 * Note that it is legal for a dying CPU (which is marked as offline) to
1558 * invoke this function. This can happen when the dying CPU reports its
1559 * quiescent state.
64db4cff
PM
1560 */
1561static void
910ee45d
PM
1562rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1563 struct rcu_data *rdp)
64db4cff 1564{
b8462084 1565 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1566 /*
b3dbec76 1567 * Either we have not yet spawned the grace-period
62da1921
PM
1568 * task, this CPU does not need another grace period,
1569 * or a grace period is already in progress.
b3dbec76 1570 * Either way, don't start a new grace period.
afe24b12 1571 */
afe24b12
PM
1572 return;
1573 }
4cdfc175 1574 rsp->gp_flags = RCU_GP_FLAG_INIT;
62da1921 1575
016a8d5b
SR
1576 /*
1577 * We can't do wakeups while holding the rnp->lock, as that
1578 * could cause possible deadlocks with the rq->lock. Deter
1579 * the wakeup to interrupt context.
1580 */
1581 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1582}
1583
910ee45d
PM
1584/*
1585 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1586 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1587 * is invoked indirectly from rcu_advance_cbs(), which would result in
1588 * endless recursion -- or would do so if it wasn't for the self-deadlock
1589 * that is encountered beforehand.
1590 */
1591static void
1592rcu_start_gp(struct rcu_state *rsp)
1593{
1594 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1595 struct rcu_node *rnp = rcu_get_root(rsp);
1596
1597 /*
1598 * If there is no grace period in progress right now, any
1599 * callbacks we have up to this point will be satisfied by the
1600 * next grace period. Also, advancing the callbacks reduces the
1601 * probability of false positives from cpu_needs_another_gp()
1602 * resulting in pointless grace periods. So, advance callbacks
1603 * then start the grace period!
1604 */
1605 rcu_advance_cbs(rsp, rnp, rdp);
1606 rcu_start_gp_advanced(rsp, rnp, rdp);
1607}
1608
f41d911f 1609/*
d3f6bad3
PM
1610 * Report a full set of quiescent states to the specified rcu_state
1611 * data structure. This involves cleaning up after the prior grace
1612 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1613 * if one is needed. Note that the caller must hold rnp->lock, which
1614 * is released before return.
f41d911f 1615 */
d3f6bad3 1616static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1617 __releases(rcu_get_root(rsp)->lock)
f41d911f 1618{
fc2219d4 1619 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1620 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1621 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1622}
1623
64db4cff 1624/*
d3f6bad3
PM
1625 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1626 * Allows quiescent states for a group of CPUs to be reported at one go
1627 * to the specified rcu_node structure, though all the CPUs in the group
1628 * must be represented by the same rcu_node structure (which need not be
1629 * a leaf rcu_node structure, though it often will be). That structure's
1630 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1631 */
1632static void
d3f6bad3
PM
1633rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1634 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1635 __releases(rnp->lock)
1636{
28ecd580
PM
1637 struct rcu_node *rnp_c;
1638
64db4cff
PM
1639 /* Walk up the rcu_node hierarchy. */
1640 for (;;) {
1641 if (!(rnp->qsmask & mask)) {
1642
1643 /* Our bit has already been cleared, so done. */
1304afb2 1644 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1645 return;
1646 }
1647 rnp->qsmask &= ~mask;
d4c08f2a
PM
1648 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1649 mask, rnp->qsmask, rnp->level,
1650 rnp->grplo, rnp->grphi,
1651 !!rnp->gp_tasks);
27f4d280 1652 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1653
1654 /* Other bits still set at this level, so done. */
1304afb2 1655 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1656 return;
1657 }
1658 mask = rnp->grpmask;
1659 if (rnp->parent == NULL) {
1660
1661 /* No more levels. Exit loop holding root lock. */
1662
1663 break;
1664 }
1304afb2 1665 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1666 rnp_c = rnp;
64db4cff 1667 rnp = rnp->parent;
1304afb2 1668 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1669 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1670 }
1671
1672 /*
1673 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1674 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1675 * to clean up and start the next grace period if one is needed.
64db4cff 1676 */
d3f6bad3 1677 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1678}
1679
1680/*
d3f6bad3
PM
1681 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1682 * structure. This must be either called from the specified CPU, or
1683 * called when the specified CPU is known to be offline (and when it is
1684 * also known that no other CPU is concurrently trying to help the offline
1685 * CPU). The lastcomp argument is used to make sure we are still in the
1686 * grace period of interest. We don't want to end the current grace period
1687 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1688 */
1689static void
d7d6a11e 1690rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1691{
1692 unsigned long flags;
1693 unsigned long mask;
1694 struct rcu_node *rnp;
1695
1696 rnp = rdp->mynode;
1304afb2 1697 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1698 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1699 rnp->completed == rnp->gpnum) {
64db4cff
PM
1700
1701 /*
e4cc1f22
PM
1702 * The grace period in which this quiescent state was
1703 * recorded has ended, so don't report it upwards.
1704 * We will instead need a new quiescent state that lies
1705 * within the current grace period.
64db4cff 1706 */
e4cc1f22 1707 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1708 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1709 return;
1710 }
1711 mask = rdp->grpmask;
1712 if ((rnp->qsmask & mask) == 0) {
1304afb2 1713 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1714 } else {
1715 rdp->qs_pending = 0;
1716
1717 /*
1718 * This GP can't end until cpu checks in, so all of our
1719 * callbacks can be processed during the next GP.
1720 */
dc35c893 1721 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1722
d3f6bad3 1723 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1724 }
1725}
1726
1727/*
1728 * Check to see if there is a new grace period of which this CPU
1729 * is not yet aware, and if so, set up local rcu_data state for it.
1730 * Otherwise, see if this CPU has just passed through its first
1731 * quiescent state for this grace period, and record that fact if so.
1732 */
1733static void
1734rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1735{
05eb552b
PM
1736 /* Check for grace-period ends and beginnings. */
1737 note_gp_changes(rsp, rdp);
64db4cff
PM
1738
1739 /*
1740 * Does this CPU still need to do its part for current grace period?
1741 * If no, return and let the other CPUs do their part as well.
1742 */
1743 if (!rdp->qs_pending)
1744 return;
1745
1746 /*
1747 * Was there a quiescent state since the beginning of the grace
1748 * period? If no, then exit and wait for the next call.
1749 */
e4cc1f22 1750 if (!rdp->passed_quiesce)
64db4cff
PM
1751 return;
1752
d3f6bad3
PM
1753 /*
1754 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1755 * judge of that).
1756 */
d7d6a11e 1757 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1758}
1759
1760#ifdef CONFIG_HOTPLUG_CPU
1761
e74f4c45 1762/*
b1420f1c
PM
1763 * Send the specified CPU's RCU callbacks to the orphanage. The
1764 * specified CPU must be offline, and the caller must hold the
7b2e6011 1765 * ->orphan_lock.
e74f4c45 1766 */
b1420f1c
PM
1767static void
1768rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1769 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1770{
3fbfbf7a 1771 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1772 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1773 return;
1774
b1420f1c
PM
1775 /*
1776 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1777 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1778 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1779 */
a50c3af9 1780 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1781 rsp->qlen_lazy += rdp->qlen_lazy;
1782 rsp->qlen += rdp->qlen;
1783 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1784 rdp->qlen_lazy = 0;
1d1fb395 1785 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1786 }
1787
1788 /*
b1420f1c
PM
1789 * Next, move those callbacks still needing a grace period to
1790 * the orphanage, where some other CPU will pick them up.
1791 * Some of the callbacks might have gone partway through a grace
1792 * period, but that is too bad. They get to start over because we
1793 * cannot assume that grace periods are synchronized across CPUs.
1794 * We don't bother updating the ->nxttail[] array yet, instead
1795 * we just reset the whole thing later on.
a50c3af9 1796 */
b1420f1c
PM
1797 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1798 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1799 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1800 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1801 }
1802
1803 /*
b1420f1c
PM
1804 * Then move the ready-to-invoke callbacks to the orphanage,
1805 * where some other CPU will pick them up. These will not be
1806 * required to pass though another grace period: They are done.
a50c3af9 1807 */
e5601400 1808 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1809 *rsp->orphan_donetail = rdp->nxtlist;
1810 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1811 }
e74f4c45 1812
b1420f1c 1813 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1814 init_callback_list(rdp);
b1420f1c
PM
1815}
1816
1817/*
1818 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1819 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c
PM
1820 */
1821static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1822{
1823 int i;
1824 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1825
3fbfbf7a
PM
1826 /* No-CBs CPUs are handled specially. */
1827 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1828 return;
1829
b1420f1c
PM
1830 /* Do the accounting first. */
1831 rdp->qlen_lazy += rsp->qlen_lazy;
1832 rdp->qlen += rsp->qlen;
1833 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1834 if (rsp->qlen_lazy != rsp->qlen)
1835 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1836 rsp->qlen_lazy = 0;
1837 rsp->qlen = 0;
1838
1839 /*
1840 * We do not need a memory barrier here because the only way we
1841 * can get here if there is an rcu_barrier() in flight is if
1842 * we are the task doing the rcu_barrier().
1843 */
1844
1845 /* First adopt the ready-to-invoke callbacks. */
1846 if (rsp->orphan_donelist != NULL) {
1847 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1848 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1849 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1850 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1851 rdp->nxttail[i] = rsp->orphan_donetail;
1852 rsp->orphan_donelist = NULL;
1853 rsp->orphan_donetail = &rsp->orphan_donelist;
1854 }
1855
1856 /* And then adopt the callbacks that still need a grace period. */
1857 if (rsp->orphan_nxtlist != NULL) {
1858 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1859 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1860 rsp->orphan_nxtlist = NULL;
1861 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1862 }
1863}
1864
1865/*
1866 * Trace the fact that this CPU is going offline.
1867 */
1868static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1869{
1870 RCU_TRACE(unsigned long mask);
1871 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1872 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1873
1874 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1875 trace_rcu_grace_period(rsp->name,
1876 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1877 TPS("cpuofl"));
64db4cff
PM
1878}
1879
1880/*
e5601400 1881 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1882 * this fact from process context. Do the remainder of the cleanup,
1883 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1884 * adopting them. There can only be one CPU hotplug operation at a time,
1885 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1886 */
e5601400 1887static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1888{
2036d94a
PM
1889 unsigned long flags;
1890 unsigned long mask;
1891 int need_report = 0;
e5601400 1892 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1893 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1894
2036d94a 1895 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1896 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1897
b1420f1c 1898 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1899
1900 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1901 mutex_lock(&rsp->onoff_mutex);
7b2e6011 1902 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 1903
b1420f1c
PM
1904 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1905 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1906 rcu_adopt_orphan_cbs(rsp);
1907
2036d94a
PM
1908 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1909 mask = rdp->grpmask; /* rnp->grplo is constant. */
1910 do {
1911 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1912 rnp->qsmaskinit &= ~mask;
1913 if (rnp->qsmaskinit != 0) {
1914 if (rnp != rdp->mynode)
1915 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1916 break;
1917 }
1918 if (rnp == rdp->mynode)
1919 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1920 else
1921 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1922 mask = rnp->grpmask;
1923 rnp = rnp->parent;
1924 } while (rnp != NULL);
1925
1926 /*
1927 * We still hold the leaf rcu_node structure lock here, and
1928 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 1929 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
1930 * held leads to deadlock.
1931 */
7b2e6011 1932 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
1933 rnp = rdp->mynode;
1934 if (need_report & RCU_OFL_TASKS_NORM_GP)
1935 rcu_report_unblock_qs_rnp(rnp, flags);
1936 else
1937 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1938 if (need_report & RCU_OFL_TASKS_EXP_GP)
1939 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1940 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1941 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1942 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1943 init_callback_list(rdp);
1944 /* Disallow further callbacks on this CPU. */
1945 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 1946 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
1947}
1948
1949#else /* #ifdef CONFIG_HOTPLUG_CPU */
1950
e5601400 1951static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1952{
1953}
1954
e5601400 1955static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1956{
1957}
1958
1959#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1960
1961/*
1962 * Invoke any RCU callbacks that have made it to the end of their grace
1963 * period. Thottle as specified by rdp->blimit.
1964 */
37c72e56 1965static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1966{
1967 unsigned long flags;
1968 struct rcu_head *next, *list, **tail;
878d7439
ED
1969 long bl, count, count_lazy;
1970 int i;
64db4cff 1971
dc35c893 1972 /* If no callbacks are ready, just return. */
29c00b4a 1973 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1974 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1975 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1976 need_resched(), is_idle_task(current),
1977 rcu_is_callbacks_kthread());
64db4cff 1978 return;
29c00b4a 1979 }
64db4cff
PM
1980
1981 /*
1982 * Extract the list of ready callbacks, disabling to prevent
1983 * races with call_rcu() from interrupt handlers.
1984 */
1985 local_irq_save(flags);
8146c4e2 1986 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1987 bl = rdp->blimit;
486e2593 1988 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1989 list = rdp->nxtlist;
1990 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1991 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1992 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1993 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1994 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1995 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1996 local_irq_restore(flags);
1997
1998 /* Invoke callbacks. */
486e2593 1999 count = count_lazy = 0;
64db4cff
PM
2000 while (list) {
2001 next = list->next;
2002 prefetch(next);
551d55a9 2003 debug_rcu_head_unqueue(list);
486e2593
PM
2004 if (__rcu_reclaim(rsp->name, list))
2005 count_lazy++;
64db4cff 2006 list = next;
dff1672d
PM
2007 /* Stop only if limit reached and CPU has something to do. */
2008 if (++count >= bl &&
2009 (need_resched() ||
2010 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2011 break;
2012 }
2013
2014 local_irq_save(flags);
4968c300
PM
2015 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2016 is_idle_task(current),
2017 rcu_is_callbacks_kthread());
64db4cff
PM
2018
2019 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2020 if (list != NULL) {
2021 *tail = rdp->nxtlist;
2022 rdp->nxtlist = list;
b41772ab
PM
2023 for (i = 0; i < RCU_NEXT_SIZE; i++)
2024 if (&rdp->nxtlist == rdp->nxttail[i])
2025 rdp->nxttail[i] = tail;
64db4cff
PM
2026 else
2027 break;
2028 }
b1420f1c
PM
2029 smp_mb(); /* List handling before counting for rcu_barrier(). */
2030 rdp->qlen_lazy -= count_lazy;
1d1fb395 2031 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2032 rdp->n_cbs_invoked += count;
64db4cff
PM
2033
2034 /* Reinstate batch limit if we have worked down the excess. */
2035 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2036 rdp->blimit = blimit;
2037
37c72e56
PM
2038 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2039 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2040 rdp->qlen_last_fqs_check = 0;
2041 rdp->n_force_qs_snap = rsp->n_force_qs;
2042 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2043 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2044 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2045
64db4cff
PM
2046 local_irq_restore(flags);
2047
e0f23060 2048 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2049 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2050 invoke_rcu_core();
64db4cff
PM
2051}
2052
2053/*
2054 * Check to see if this CPU is in a non-context-switch quiescent state
2055 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2056 * Also schedule RCU core processing.
64db4cff 2057 *
9b2e4f18 2058 * This function must be called from hardirq context. It is normally
64db4cff
PM
2059 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2060 * false, there is no point in invoking rcu_check_callbacks().
2061 */
2062void rcu_check_callbacks(int cpu, int user)
2063{
f7f7bac9 2064 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2065 increment_cpu_stall_ticks();
9b2e4f18 2066 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2067
2068 /*
2069 * Get here if this CPU took its interrupt from user
2070 * mode or from the idle loop, and if this is not a
2071 * nested interrupt. In this case, the CPU is in
d6714c22 2072 * a quiescent state, so note it.
64db4cff
PM
2073 *
2074 * No memory barrier is required here because both
d6714c22
PM
2075 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2076 * variables that other CPUs neither access nor modify,
2077 * at least not while the corresponding CPU is online.
64db4cff
PM
2078 */
2079
d6714c22
PM
2080 rcu_sched_qs(cpu);
2081 rcu_bh_qs(cpu);
64db4cff
PM
2082
2083 } else if (!in_softirq()) {
2084
2085 /*
2086 * Get here if this CPU did not take its interrupt from
2087 * softirq, in other words, if it is not interrupting
2088 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2089 * critical section, so note it.
64db4cff
PM
2090 */
2091
d6714c22 2092 rcu_bh_qs(cpu);
64db4cff 2093 }
f41d911f 2094 rcu_preempt_check_callbacks(cpu);
d21670ac 2095 if (rcu_pending(cpu))
a46e0899 2096 invoke_rcu_core();
f7f7bac9 2097 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2098}
2099
64db4cff
PM
2100/*
2101 * Scan the leaf rcu_node structures, processing dyntick state for any that
2102 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2103 * Also initiate boosting for any threads blocked on the root rcu_node.
2104 *
ee47eb9f 2105 * The caller must have suppressed start of new grace periods.
64db4cff 2106 */
45f014c5 2107static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
2108{
2109 unsigned long bit;
2110 int cpu;
2111 unsigned long flags;
2112 unsigned long mask;
a0b6c9a7 2113 struct rcu_node *rnp;
64db4cff 2114
a0b6c9a7 2115 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2116 cond_resched();
64db4cff 2117 mask = 0;
1304afb2 2118 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2119 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2120 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2121 return;
64db4cff 2122 }
a0b6c9a7 2123 if (rnp->qsmask == 0) {
1217ed1b 2124 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2125 continue;
2126 }
a0b6c9a7 2127 cpu = rnp->grplo;
64db4cff 2128 bit = 1;
a0b6c9a7 2129 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
2130 if ((rnp->qsmask & bit) != 0 &&
2131 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
2132 mask |= bit;
2133 }
45f014c5 2134 if (mask != 0) {
64db4cff 2135
d3f6bad3
PM
2136 /* rcu_report_qs_rnp() releases rnp->lock. */
2137 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2138 continue;
2139 }
1304afb2 2140 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2141 }
27f4d280 2142 rnp = rcu_get_root(rsp);
1217ed1b
PM
2143 if (rnp->qsmask == 0) {
2144 raw_spin_lock_irqsave(&rnp->lock, flags);
2145 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2146 }
64db4cff
PM
2147}
2148
2149/*
2150 * Force quiescent states on reluctant CPUs, and also detect which
2151 * CPUs are in dyntick-idle mode.
2152 */
4cdfc175 2153static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2154{
2155 unsigned long flags;
394f2769
PM
2156 bool ret;
2157 struct rcu_node *rnp;
2158 struct rcu_node *rnp_old = NULL;
2159
2160 /* Funnel through hierarchy to reduce memory contention. */
2161 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2162 for (; rnp != NULL; rnp = rnp->parent) {
2163 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2164 !raw_spin_trylock(&rnp->fqslock);
2165 if (rnp_old != NULL)
2166 raw_spin_unlock(&rnp_old->fqslock);
2167 if (ret) {
2168 rsp->n_force_qs_lh++;
2169 return;
2170 }
2171 rnp_old = rnp;
2172 }
2173 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2174
394f2769
PM
2175 /* Reached the root of the rcu_node tree, acquire lock. */
2176 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2177 raw_spin_unlock(&rnp_old->fqslock);
2178 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2179 rsp->n_force_qs_lh++;
2180 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2181 return; /* Someone beat us to it. */
46a1e34e 2182 }
4cdfc175 2183 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2184 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2185 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2186}
2187
64db4cff 2188/*
e0f23060
PM
2189 * This does the RCU core processing work for the specified rcu_state
2190 * and rcu_data structures. This may be called only from the CPU to
2191 * whom the rdp belongs.
64db4cff
PM
2192 */
2193static void
1bca8cf1 2194__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2195{
2196 unsigned long flags;
1bca8cf1 2197 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2198
2e597558
PM
2199 WARN_ON_ONCE(rdp->beenonline == 0);
2200
64db4cff
PM
2201 /* Update RCU state based on any recent quiescent states. */
2202 rcu_check_quiescent_state(rsp, rdp);
2203
2204 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2205 local_irq_save(flags);
64db4cff 2206 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2207 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2208 rcu_start_gp(rsp);
2209 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2210 } else {
2211 local_irq_restore(flags);
64db4cff
PM
2212 }
2213
2214 /* If there are callbacks ready, invoke them. */
09223371 2215 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2216 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2217}
2218
64db4cff 2219/*
e0f23060 2220 * Do RCU core processing for the current CPU.
64db4cff 2221 */
09223371 2222static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2223{
6ce75a23
PM
2224 struct rcu_state *rsp;
2225
bfa00b4c
PM
2226 if (cpu_is_offline(smp_processor_id()))
2227 return;
f7f7bac9 2228 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2229 for_each_rcu_flavor(rsp)
2230 __rcu_process_callbacks(rsp);
f7f7bac9 2231 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2232}
2233
a26ac245 2234/*
e0f23060
PM
2235 * Schedule RCU callback invocation. If the specified type of RCU
2236 * does not support RCU priority boosting, just do a direct call,
2237 * otherwise wake up the per-CPU kernel kthread. Note that because we
2238 * are running on the current CPU with interrupts disabled, the
2239 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2240 */
a46e0899 2241static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2242{
b0d30417
PM
2243 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2244 return;
a46e0899
PM
2245 if (likely(!rsp->boost)) {
2246 rcu_do_batch(rsp, rdp);
a26ac245
PM
2247 return;
2248 }
a46e0899 2249 invoke_rcu_callbacks_kthread();
a26ac245
PM
2250}
2251
a46e0899 2252static void invoke_rcu_core(void)
09223371 2253{
b0f74036
PM
2254 if (cpu_online(smp_processor_id()))
2255 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2256}
2257
29154c57
PM
2258/*
2259 * Handle any core-RCU processing required by a call_rcu() invocation.
2260 */
2261static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2262 struct rcu_head *head, unsigned long flags)
64db4cff 2263{
62fde6ed
PM
2264 /*
2265 * If called from an extended quiescent state, invoke the RCU
2266 * core in order to force a re-evaluation of RCU's idleness.
2267 */
a16b7a69 2268 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2269 invoke_rcu_core();
2270
a16b7a69 2271 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2272 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2273 return;
64db4cff 2274
37c72e56
PM
2275 /*
2276 * Force the grace period if too many callbacks or too long waiting.
2277 * Enforce hysteresis, and don't invoke force_quiescent_state()
2278 * if some other CPU has recently done so. Also, don't bother
2279 * invoking force_quiescent_state() if the newly enqueued callback
2280 * is the only one waiting for a grace period to complete.
2281 */
2655d57e 2282 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2283
2284 /* Are we ignoring a completed grace period? */
470716fc 2285 note_gp_changes(rsp, rdp);
b52573d2
PM
2286
2287 /* Start a new grace period if one not already started. */
2288 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2289 struct rcu_node *rnp_root = rcu_get_root(rsp);
2290
b8462084
PM
2291 raw_spin_lock(&rnp_root->lock);
2292 rcu_start_gp(rsp);
2293 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2294 } else {
2295 /* Give the grace period a kick. */
2296 rdp->blimit = LONG_MAX;
2297 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2298 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2299 force_quiescent_state(rsp);
b52573d2
PM
2300 rdp->n_force_qs_snap = rsp->n_force_qs;
2301 rdp->qlen_last_fqs_check = rdp->qlen;
2302 }
4cdfc175 2303 }
29154c57
PM
2304}
2305
3fbfbf7a
PM
2306/*
2307 * Helper function for call_rcu() and friends. The cpu argument will
2308 * normally be -1, indicating "currently running CPU". It may specify
2309 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2310 * is expected to specify a CPU.
2311 */
64db4cff
PM
2312static void
2313__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2314 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2315{
2316 unsigned long flags;
2317 struct rcu_data *rdp;
2318
0bb7b59d 2319 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 2320 debug_rcu_head_queue(head);
64db4cff
PM
2321 head->func = func;
2322 head->next = NULL;
2323
64db4cff
PM
2324 /*
2325 * Opportunistically note grace-period endings and beginnings.
2326 * Note that we might see a beginning right after we see an
2327 * end, but never vice versa, since this CPU has to pass through
2328 * a quiescent state betweentimes.
2329 */
2330 local_irq_save(flags);
394f99a9 2331 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2332
2333 /* Add the callback to our list. */
3fbfbf7a
PM
2334 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2335 int offline;
2336
2337 if (cpu != -1)
2338 rdp = per_cpu_ptr(rsp->rda, cpu);
2339 offline = !__call_rcu_nocb(rdp, head, lazy);
2340 WARN_ON_ONCE(offline);
0d8ee37e 2341 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2342 local_irq_restore(flags);
2343 return;
2344 }
29154c57 2345 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2346 if (lazy)
2347 rdp->qlen_lazy++;
c57afe80
PM
2348 else
2349 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2350 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2351 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2352 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2353
d4c08f2a
PM
2354 if (__is_kfree_rcu_offset((unsigned long)func))
2355 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2356 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2357 else
486e2593 2358 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2359
29154c57
PM
2360 /* Go handle any RCU core processing required. */
2361 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2362 local_irq_restore(flags);
2363}
2364
2365/*
d6714c22 2366 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2367 */
d6714c22 2368void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2369{
3fbfbf7a 2370 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2371}
d6714c22 2372EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2373
2374/*
486e2593 2375 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2376 */
2377void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2378{
3fbfbf7a 2379 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2380}
2381EXPORT_SYMBOL_GPL(call_rcu_bh);
2382
6d813391
PM
2383/*
2384 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2385 * any blocking grace-period wait automatically implies a grace period
2386 * if there is only one CPU online at any point time during execution
2387 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2388 * occasionally incorrectly indicate that there are multiple CPUs online
2389 * when there was in fact only one the whole time, as this just adds
2390 * some overhead: RCU still operates correctly.
6d813391
PM
2391 */
2392static inline int rcu_blocking_is_gp(void)
2393{
95f0c1de
PM
2394 int ret;
2395
6d813391 2396 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2397 preempt_disable();
2398 ret = num_online_cpus() <= 1;
2399 preempt_enable();
2400 return ret;
6d813391
PM
2401}
2402
6ebb237b
PM
2403/**
2404 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2405 *
2406 * Control will return to the caller some time after a full rcu-sched
2407 * grace period has elapsed, in other words after all currently executing
2408 * rcu-sched read-side critical sections have completed. These read-side
2409 * critical sections are delimited by rcu_read_lock_sched() and
2410 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2411 * local_irq_disable(), and so on may be used in place of
2412 * rcu_read_lock_sched().
2413 *
2414 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2415 * non-threaded hardware-interrupt handlers, in progress on entry will
2416 * have completed before this primitive returns. However, this does not
2417 * guarantee that softirq handlers will have completed, since in some
2418 * kernels, these handlers can run in process context, and can block.
2419 *
2420 * Note that this guarantee implies further memory-ordering guarantees.
2421 * On systems with more than one CPU, when synchronize_sched() returns,
2422 * each CPU is guaranteed to have executed a full memory barrier since the
2423 * end of its last RCU-sched read-side critical section whose beginning
2424 * preceded the call to synchronize_sched(). In addition, each CPU having
2425 * an RCU read-side critical section that extends beyond the return from
2426 * synchronize_sched() is guaranteed to have executed a full memory barrier
2427 * after the beginning of synchronize_sched() and before the beginning of
2428 * that RCU read-side critical section. Note that these guarantees include
2429 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2430 * that are executing in the kernel.
2431 *
2432 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2433 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2434 * to have executed a full memory barrier during the execution of
2435 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2436 * again only if the system has more than one CPU).
6ebb237b
PM
2437 *
2438 * This primitive provides the guarantees made by the (now removed)
2439 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2440 * guarantees that rcu_read_lock() sections will have completed.
2441 * In "classic RCU", these two guarantees happen to be one and
2442 * the same, but can differ in realtime RCU implementations.
2443 */
2444void synchronize_sched(void)
2445{
fe15d706
PM
2446 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2447 !lock_is_held(&rcu_lock_map) &&
2448 !lock_is_held(&rcu_sched_lock_map),
2449 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2450 if (rcu_blocking_is_gp())
2451 return;
3705b88d
AM
2452 if (rcu_expedited)
2453 synchronize_sched_expedited();
2454 else
2455 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2456}
2457EXPORT_SYMBOL_GPL(synchronize_sched);
2458
2459/**
2460 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2461 *
2462 * Control will return to the caller some time after a full rcu_bh grace
2463 * period has elapsed, in other words after all currently executing rcu_bh
2464 * read-side critical sections have completed. RCU read-side critical
2465 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2466 * and may be nested.
f0a0e6f2
PM
2467 *
2468 * See the description of synchronize_sched() for more detailed information
2469 * on memory ordering guarantees.
6ebb237b
PM
2470 */
2471void synchronize_rcu_bh(void)
2472{
fe15d706
PM
2473 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2474 !lock_is_held(&rcu_lock_map) &&
2475 !lock_is_held(&rcu_sched_lock_map),
2476 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2477 if (rcu_blocking_is_gp())
2478 return;
3705b88d
AM
2479 if (rcu_expedited)
2480 synchronize_rcu_bh_expedited();
2481 else
2482 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2483}
2484EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2485
3d3b7db0
PM
2486static int synchronize_sched_expedited_cpu_stop(void *data)
2487{
2488 /*
2489 * There must be a full memory barrier on each affected CPU
2490 * between the time that try_stop_cpus() is called and the
2491 * time that it returns.
2492 *
2493 * In the current initial implementation of cpu_stop, the
2494 * above condition is already met when the control reaches
2495 * this point and the following smp_mb() is not strictly
2496 * necessary. Do smp_mb() anyway for documentation and
2497 * robustness against future implementation changes.
2498 */
2499 smp_mb(); /* See above comment block. */
2500 return 0;
2501}
2502
236fefaf
PM
2503/**
2504 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2505 *
2506 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2507 * approach to force the grace period to end quickly. This consumes
2508 * significant time on all CPUs and is unfriendly to real-time workloads,
2509 * so is thus not recommended for any sort of common-case code. In fact,
2510 * if you are using synchronize_sched_expedited() in a loop, please
2511 * restructure your code to batch your updates, and then use a single
2512 * synchronize_sched() instead.
3d3b7db0 2513 *
236fefaf
PM
2514 * Note that it is illegal to call this function while holding any lock
2515 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2516 * to call this function from a CPU-hotplug notifier. Failing to observe
2517 * these restriction will result in deadlock.
3d3b7db0
PM
2518 *
2519 * This implementation can be thought of as an application of ticket
2520 * locking to RCU, with sync_sched_expedited_started and
2521 * sync_sched_expedited_done taking on the roles of the halves
2522 * of the ticket-lock word. Each task atomically increments
2523 * sync_sched_expedited_started upon entry, snapshotting the old value,
2524 * then attempts to stop all the CPUs. If this succeeds, then each
2525 * CPU will have executed a context switch, resulting in an RCU-sched
2526 * grace period. We are then done, so we use atomic_cmpxchg() to
2527 * update sync_sched_expedited_done to match our snapshot -- but
2528 * only if someone else has not already advanced past our snapshot.
2529 *
2530 * On the other hand, if try_stop_cpus() fails, we check the value
2531 * of sync_sched_expedited_done. If it has advanced past our
2532 * initial snapshot, then someone else must have forced a grace period
2533 * some time after we took our snapshot. In this case, our work is
2534 * done for us, and we can simply return. Otherwise, we try again,
2535 * but keep our initial snapshot for purposes of checking for someone
2536 * doing our work for us.
2537 *
2538 * If we fail too many times in a row, we fall back to synchronize_sched().
2539 */
2540void synchronize_sched_expedited(void)
2541{
1924bcb0
PM
2542 long firstsnap, s, snap;
2543 int trycount = 0;
40694d66 2544 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2545
1924bcb0
PM
2546 /*
2547 * If we are in danger of counter wrap, just do synchronize_sched().
2548 * By allowing sync_sched_expedited_started to advance no more than
2549 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2550 * that more than 3.5 billion CPUs would be required to force a
2551 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2552 * course be required on a 64-bit system.
2553 */
40694d66
PM
2554 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2555 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2556 ULONG_MAX / 8)) {
2557 synchronize_sched();
a30489c5 2558 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2559 return;
2560 }
3d3b7db0 2561
1924bcb0
PM
2562 /*
2563 * Take a ticket. Note that atomic_inc_return() implies a
2564 * full memory barrier.
2565 */
40694d66 2566 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2567 firstsnap = snap;
3d3b7db0 2568 get_online_cpus();
1cc85961 2569 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2570
2571 /*
2572 * Each pass through the following loop attempts to force a
2573 * context switch on each CPU.
2574 */
2575 while (try_stop_cpus(cpu_online_mask,
2576 synchronize_sched_expedited_cpu_stop,
2577 NULL) == -EAGAIN) {
2578 put_online_cpus();
a30489c5 2579 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2580
1924bcb0 2581 /* Check to see if someone else did our work for us. */
40694d66 2582 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2583 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2584 /* ensure test happens before caller kfree */
2585 smp_mb__before_atomic_inc(); /* ^^^ */
2586 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2587 return;
2588 }
3d3b7db0
PM
2589
2590 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2591 if (trycount++ < 10) {
3d3b7db0 2592 udelay(trycount * num_online_cpus());
c701d5d9 2593 } else {
3705b88d 2594 wait_rcu_gp(call_rcu_sched);
a30489c5 2595 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2596 return;
2597 }
2598
1924bcb0 2599 /* Recheck to see if someone else did our work for us. */
40694d66 2600 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2601 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2602 /* ensure test happens before caller kfree */
2603 smp_mb__before_atomic_inc(); /* ^^^ */
2604 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2605 return;
2606 }
2607
2608 /*
2609 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2610 * callers to piggyback on our grace period. We retry
2611 * after they started, so our grace period works for them,
2612 * and they started after our first try, so their grace
2613 * period works for us.
3d3b7db0
PM
2614 */
2615 get_online_cpus();
40694d66 2616 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2617 smp_mb(); /* ensure read is before try_stop_cpus(). */
2618 }
a30489c5 2619 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2620
2621 /*
2622 * Everyone up to our most recent fetch is covered by our grace
2623 * period. Update the counter, but only if our work is still
2624 * relevant -- which it won't be if someone who started later
1924bcb0 2625 * than we did already did their update.
3d3b7db0
PM
2626 */
2627 do {
a30489c5 2628 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2629 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2630 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2631 /* ensure test happens before caller kfree */
2632 smp_mb__before_atomic_inc(); /* ^^^ */
2633 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2634 break;
2635 }
40694d66 2636 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2637 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2638
2639 put_online_cpus();
2640}
2641EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2642
64db4cff
PM
2643/*
2644 * Check to see if there is any immediate RCU-related work to be done
2645 * by the current CPU, for the specified type of RCU, returning 1 if so.
2646 * The checks are in order of increasing expense: checks that can be
2647 * carried out against CPU-local state are performed first. However,
2648 * we must check for CPU stalls first, else we might not get a chance.
2649 */
2650static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2651{
2f51f988
PM
2652 struct rcu_node *rnp = rdp->mynode;
2653
64db4cff
PM
2654 rdp->n_rcu_pending++;
2655
2656 /* Check for CPU stalls, if enabled. */
2657 check_cpu_stall(rsp, rdp);
2658
2659 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2660 if (rcu_scheduler_fully_active &&
2661 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2662 rdp->n_rp_qs_pending++;
e4cc1f22 2663 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2664 rdp->n_rp_report_qs++;
64db4cff 2665 return 1;
7ba5c840 2666 }
64db4cff
PM
2667
2668 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2669 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2670 rdp->n_rp_cb_ready++;
64db4cff 2671 return 1;
7ba5c840 2672 }
64db4cff
PM
2673
2674 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2675 if (cpu_needs_another_gp(rsp, rdp)) {
2676 rdp->n_rp_cpu_needs_gp++;
64db4cff 2677 return 1;
7ba5c840 2678 }
64db4cff
PM
2679
2680 /* Has another RCU grace period completed? */
2f51f988 2681 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2682 rdp->n_rp_gp_completed++;
64db4cff 2683 return 1;
7ba5c840 2684 }
64db4cff
PM
2685
2686 /* Has a new RCU grace period started? */
2f51f988 2687 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2688 rdp->n_rp_gp_started++;
64db4cff 2689 return 1;
7ba5c840 2690 }
64db4cff 2691
64db4cff 2692 /* nothing to do */
7ba5c840 2693 rdp->n_rp_need_nothing++;
64db4cff
PM
2694 return 0;
2695}
2696
2697/*
2698 * Check to see if there is any immediate RCU-related work to be done
2699 * by the current CPU, returning 1 if so. This function is part of the
2700 * RCU implementation; it is -not- an exported member of the RCU API.
2701 */
a157229c 2702static int rcu_pending(int cpu)
64db4cff 2703{
6ce75a23
PM
2704 struct rcu_state *rsp;
2705
2706 for_each_rcu_flavor(rsp)
2707 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2708 return 1;
2709 return 0;
64db4cff
PM
2710}
2711
2712/*
c0f4dfd4
PM
2713 * Return true if the specified CPU has any callback. If all_lazy is
2714 * non-NULL, store an indication of whether all callbacks are lazy.
2715 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2716 */
c0f4dfd4 2717static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2718{
c0f4dfd4
PM
2719 bool al = true;
2720 bool hc = false;
2721 struct rcu_data *rdp;
6ce75a23
PM
2722 struct rcu_state *rsp;
2723
c0f4dfd4
PM
2724 for_each_rcu_flavor(rsp) {
2725 rdp = per_cpu_ptr(rsp->rda, cpu);
2726 if (rdp->qlen != rdp->qlen_lazy)
2727 al = false;
2728 if (rdp->nxtlist)
2729 hc = true;
2730 }
2731 if (all_lazy)
2732 *all_lazy = al;
2733 return hc;
64db4cff
PM
2734}
2735
a83eff0a
PM
2736/*
2737 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2738 * the compiler is expected to optimize this away.
2739 */
e66c33d5 2740static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2741 int cpu, unsigned long done)
2742{
2743 trace_rcu_barrier(rsp->name, s, cpu,
2744 atomic_read(&rsp->barrier_cpu_count), done);
2745}
2746
b1420f1c
PM
2747/*
2748 * RCU callback function for _rcu_barrier(). If we are last, wake
2749 * up the task executing _rcu_barrier().
2750 */
24ebbca8 2751static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2752{
24ebbca8
PM
2753 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2754 struct rcu_state *rsp = rdp->rsp;
2755
a83eff0a
PM
2756 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2757 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2758 complete(&rsp->barrier_completion);
a83eff0a
PM
2759 } else {
2760 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2761 }
d0ec774c
PM
2762}
2763
2764/*
2765 * Called with preemption disabled, and from cross-cpu IRQ context.
2766 */
2767static void rcu_barrier_func(void *type)
2768{
037b64ed 2769 struct rcu_state *rsp = type;
06668efa 2770 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2771
a83eff0a 2772 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2773 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2774 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2775}
2776
d0ec774c
PM
2777/*
2778 * Orchestrate the specified type of RCU barrier, waiting for all
2779 * RCU callbacks of the specified type to complete.
2780 */
037b64ed 2781static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2782{
b1420f1c 2783 int cpu;
b1420f1c 2784 struct rcu_data *rdp;
cf3a9c48
PM
2785 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2786 unsigned long snap_done;
b1420f1c 2787
a83eff0a 2788 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2789
e74f4c45 2790 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2791 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2792
cf3a9c48
PM
2793 /*
2794 * Ensure that all prior references, including to ->n_barrier_done,
2795 * are ordered before the _rcu_barrier() machinery.
2796 */
2797 smp_mb(); /* See above block comment. */
2798
2799 /*
2800 * Recheck ->n_barrier_done to see if others did our work for us.
2801 * This means checking ->n_barrier_done for an even-to-odd-to-even
2802 * transition. The "if" expression below therefore rounds the old
2803 * value up to the next even number and adds two before comparing.
2804 */
2805 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2806 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2807 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2808 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2809 smp_mb(); /* caller's subsequent code after above check. */
2810 mutex_unlock(&rsp->barrier_mutex);
2811 return;
2812 }
2813
2814 /*
2815 * Increment ->n_barrier_done to avoid duplicate work. Use
2816 * ACCESS_ONCE() to prevent the compiler from speculating
2817 * the increment to precede the early-exit check.
2818 */
2819 ACCESS_ONCE(rsp->n_barrier_done)++;
2820 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2821 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2822 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2823
d0ec774c 2824 /*
b1420f1c
PM
2825 * Initialize the count to one rather than to zero in order to
2826 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2827 * (or preemption of this task). Exclude CPU-hotplug operations
2828 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2829 */
7db74df8 2830 init_completion(&rsp->barrier_completion);
24ebbca8 2831 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2832 get_online_cpus();
b1420f1c
PM
2833
2834 /*
1331e7a1
PM
2835 * Force each CPU with callbacks to register a new callback.
2836 * When that callback is invoked, we will know that all of the
2837 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2838 */
3fbfbf7a 2839 for_each_possible_cpu(cpu) {
d1e43fa5 2840 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2841 continue;
b1420f1c 2842 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 2843 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
2844 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2845 rsp->n_barrier_done);
2846 atomic_inc(&rsp->barrier_cpu_count);
2847 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2848 rsp, cpu, 0);
2849 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2850 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2851 rsp->n_barrier_done);
037b64ed 2852 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2853 } else {
a83eff0a
PM
2854 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2855 rsp->n_barrier_done);
b1420f1c
PM
2856 }
2857 }
1331e7a1 2858 put_online_cpus();
b1420f1c
PM
2859
2860 /*
2861 * Now that we have an rcu_barrier_callback() callback on each
2862 * CPU, and thus each counted, remove the initial count.
2863 */
24ebbca8 2864 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2865 complete(&rsp->barrier_completion);
b1420f1c 2866
cf3a9c48
PM
2867 /* Increment ->n_barrier_done to prevent duplicate work. */
2868 smp_mb(); /* Keep increment after above mechanism. */
2869 ACCESS_ONCE(rsp->n_barrier_done)++;
2870 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2871 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2872 smp_mb(); /* Keep increment before caller's subsequent code. */
2873
b1420f1c 2874 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2875 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2876
2877 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2878 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2879}
d0ec774c
PM
2880
2881/**
2882 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2883 */
2884void rcu_barrier_bh(void)
2885{
037b64ed 2886 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2887}
2888EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2889
2890/**
2891 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2892 */
2893void rcu_barrier_sched(void)
2894{
037b64ed 2895 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2896}
2897EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2898
64db4cff 2899/*
27569620 2900 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2901 */
27569620
PM
2902static void __init
2903rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2904{
2905 unsigned long flags;
394f99a9 2906 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2907 struct rcu_node *rnp = rcu_get_root(rsp);
2908
2909 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2910 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2911 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2912 init_callback_list(rdp);
486e2593 2913 rdp->qlen_lazy = 0;
1d1fb395 2914 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2915 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2916 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2917 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2918 rdp->cpu = cpu;
d4c08f2a 2919 rdp->rsp = rsp;
3fbfbf7a 2920 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 2921 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2922}
2923
2924/*
2925 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2926 * offline event can be happening at a given time. Note also that we
2927 * can accept some slop in the rsp->completed access due to the fact
2928 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2929 */
49fb4c62 2930static void
6cc68793 2931rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2932{
2933 unsigned long flags;
64db4cff 2934 unsigned long mask;
394f99a9 2935 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2936 struct rcu_node *rnp = rcu_get_root(rsp);
2937
a4fbe35a
PM
2938 /* Exclude new grace periods. */
2939 mutex_lock(&rsp->onoff_mutex);
2940
64db4cff 2941 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2942 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2943 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2944 rdp->preemptible = preemptible;
37c72e56
PM
2945 rdp->qlen_last_fqs_check = 0;
2946 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2947 rdp->blimit = blimit;
0d8ee37e 2948 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 2949 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2950 atomic_set(&rdp->dynticks->dynticks,
2951 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 2952 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 2953
64db4cff
PM
2954 /* Add CPU to rcu_node bitmasks. */
2955 rnp = rdp->mynode;
2956 mask = rdp->grpmask;
2957 do {
2958 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2959 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2960 rnp->qsmaskinit |= mask;
2961 mask = rnp->grpmask;
d09b62df 2962 if (rnp == rdp->mynode) {
06ae115a
PM
2963 /*
2964 * If there is a grace period in progress, we will
2965 * set up to wait for it next time we run the
2966 * RCU core code.
2967 */
2968 rdp->gpnum = rnp->completed;
d09b62df 2969 rdp->completed = rnp->completed;
06ae115a
PM
2970 rdp->passed_quiesce = 0;
2971 rdp->qs_pending = 0;
f7f7bac9 2972 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 2973 }
1304afb2 2974 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2975 rnp = rnp->parent;
2976 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 2977 local_irq_restore(flags);
64db4cff 2978
a4fbe35a 2979 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2980}
2981
49fb4c62 2982static void rcu_prepare_cpu(int cpu)
64db4cff 2983{
6ce75a23
PM
2984 struct rcu_state *rsp;
2985
2986 for_each_rcu_flavor(rsp)
2987 rcu_init_percpu_data(cpu, rsp,
2988 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2989}
2990
2991/*
f41d911f 2992 * Handle CPU online/offline notification events.
64db4cff 2993 */
49fb4c62 2994static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 2995 unsigned long action, void *hcpu)
64db4cff
PM
2996{
2997 long cpu = (long)hcpu;
27f4d280 2998 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2999 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3000 struct rcu_state *rsp;
64db4cff 3001
f7f7bac9 3002 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3003 switch (action) {
3004 case CPU_UP_PREPARE:
3005 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3006 rcu_prepare_cpu(cpu);
3007 rcu_prepare_kthreads(cpu);
a26ac245
PM
3008 break;
3009 case CPU_ONLINE:
0f962a5e 3010 case CPU_DOWN_FAILED:
5d01bbd1 3011 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3012 break;
3013 case CPU_DOWN_PREPARE:
34ed6246 3014 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3015 break;
d0ec774c
PM
3016 case CPU_DYING:
3017 case CPU_DYING_FROZEN:
6ce75a23
PM
3018 for_each_rcu_flavor(rsp)
3019 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3020 break;
64db4cff
PM
3021 case CPU_DEAD:
3022 case CPU_DEAD_FROZEN:
3023 case CPU_UP_CANCELED:
3024 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3025 for_each_rcu_flavor(rsp)
3026 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3027 break;
3028 default:
3029 break;
3030 }
f7f7bac9 3031 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3032 return NOTIFY_OK;
64db4cff
PM
3033}
3034
b3dbec76
PM
3035/*
3036 * Spawn the kthread that handles this RCU flavor's grace periods.
3037 */
3038static int __init rcu_spawn_gp_kthread(void)
3039{
3040 unsigned long flags;
3041 struct rcu_node *rnp;
3042 struct rcu_state *rsp;
3043 struct task_struct *t;
3044
3045 for_each_rcu_flavor(rsp) {
f170168b 3046 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3047 BUG_ON(IS_ERR(t));
3048 rnp = rcu_get_root(rsp);
3049 raw_spin_lock_irqsave(&rnp->lock, flags);
3050 rsp->gp_kthread = t;
3051 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3052 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3053 }
3054 return 0;
3055}
3056early_initcall(rcu_spawn_gp_kthread);
3057
bbad9379
PM
3058/*
3059 * This function is invoked towards the end of the scheduler's initialization
3060 * process. Before this is called, the idle task might contain
3061 * RCU read-side critical sections (during which time, this idle
3062 * task is booting the system). After this function is called, the
3063 * idle tasks are prohibited from containing RCU read-side critical
3064 * sections. This function also enables RCU lockdep checking.
3065 */
3066void rcu_scheduler_starting(void)
3067{
3068 WARN_ON(num_online_cpus() != 1);
3069 WARN_ON(nr_context_switches() > 0);
3070 rcu_scheduler_active = 1;
3071}
3072
64db4cff
PM
3073/*
3074 * Compute the per-level fanout, either using the exact fanout specified
3075 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3076 */
3077#ifdef CONFIG_RCU_FANOUT_EXACT
3078static void __init rcu_init_levelspread(struct rcu_state *rsp)
3079{
3080 int i;
3081
f885b7f2 3082 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3083 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3084 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3085}
3086#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3087static void __init rcu_init_levelspread(struct rcu_state *rsp)
3088{
3089 int ccur;
3090 int cprv;
3091 int i;
3092
4dbd6bb3 3093 cprv = nr_cpu_ids;
f885b7f2 3094 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3095 ccur = rsp->levelcnt[i];
3096 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3097 cprv = ccur;
3098 }
3099}
3100#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3101
3102/*
3103 * Helper function for rcu_init() that initializes one rcu_state structure.
3104 */
394f99a9
LJ
3105static void __init rcu_init_one(struct rcu_state *rsp,
3106 struct rcu_data __percpu *rda)
64db4cff 3107{
394f2769
PM
3108 static char *buf[] = { "rcu_node_0",
3109 "rcu_node_1",
3110 "rcu_node_2",
3111 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3112 static char *fqs[] = { "rcu_node_fqs_0",
3113 "rcu_node_fqs_1",
3114 "rcu_node_fqs_2",
3115 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3116 int cpustride = 1;
3117 int i;
3118 int j;
3119 struct rcu_node *rnp;
3120
b6407e86
PM
3121 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3122
4930521a
PM
3123 /* Silence gcc 4.8 warning about array index out of range. */
3124 if (rcu_num_lvls > RCU_NUM_LVLS)
3125 panic("rcu_init_one: rcu_num_lvls overflow");
3126
64db4cff
PM
3127 /* Initialize the level-tracking arrays. */
3128
f885b7f2
PM
3129 for (i = 0; i < rcu_num_lvls; i++)
3130 rsp->levelcnt[i] = num_rcu_lvl[i];
3131 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3132 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3133 rcu_init_levelspread(rsp);
3134
3135 /* Initialize the elements themselves, starting from the leaves. */
3136
f885b7f2 3137 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3138 cpustride *= rsp->levelspread[i];
3139 rnp = rsp->level[i];
3140 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3141 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3142 lockdep_set_class_and_name(&rnp->lock,
3143 &rcu_node_class[i], buf[i]);
394f2769
PM
3144 raw_spin_lock_init(&rnp->fqslock);
3145 lockdep_set_class_and_name(&rnp->fqslock,
3146 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3147 rnp->gpnum = rsp->gpnum;
3148 rnp->completed = rsp->completed;
64db4cff
PM
3149 rnp->qsmask = 0;
3150 rnp->qsmaskinit = 0;
3151 rnp->grplo = j * cpustride;
3152 rnp->grphi = (j + 1) * cpustride - 1;
3153 if (rnp->grphi >= NR_CPUS)
3154 rnp->grphi = NR_CPUS - 1;
3155 if (i == 0) {
3156 rnp->grpnum = 0;
3157 rnp->grpmask = 0;
3158 rnp->parent = NULL;
3159 } else {
3160 rnp->grpnum = j % rsp->levelspread[i - 1];
3161 rnp->grpmask = 1UL << rnp->grpnum;
3162 rnp->parent = rsp->level[i - 1] +
3163 j / rsp->levelspread[i - 1];
3164 }
3165 rnp->level = i;
12f5f524 3166 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3167 rcu_init_one_nocb(rnp);
64db4cff
PM
3168 }
3169 }
0c34029a 3170
394f99a9 3171 rsp->rda = rda;
b3dbec76 3172 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3173 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3174 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3175 for_each_possible_cpu(i) {
4a90a068 3176 while (i > rnp->grphi)
0c34029a 3177 rnp++;
394f99a9 3178 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3179 rcu_boot_init_percpu_data(i, rsp);
3180 }
6ce75a23 3181 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3182}
3183
f885b7f2
PM
3184/*
3185 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3186 * replace the definitions in rcutree.h because those are needed to size
3187 * the ->node array in the rcu_state structure.
3188 */
3189static void __init rcu_init_geometry(void)
3190{
026ad283 3191 ulong d;
f885b7f2
PM
3192 int i;
3193 int j;
cca6f393 3194 int n = nr_cpu_ids;
f885b7f2
PM
3195 int rcu_capacity[MAX_RCU_LVLS + 1];
3196
026ad283
PM
3197 /*
3198 * Initialize any unspecified boot parameters.
3199 * The default values of jiffies_till_first_fqs and
3200 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3201 * value, which is a function of HZ, then adding one for each
3202 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3203 */
3204 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3205 if (jiffies_till_first_fqs == ULONG_MAX)
3206 jiffies_till_first_fqs = d;
3207 if (jiffies_till_next_fqs == ULONG_MAX)
3208 jiffies_till_next_fqs = d;
3209
f885b7f2 3210 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3211 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3212 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3213 return;
3214
3215 /*
3216 * Compute number of nodes that can be handled an rcu_node tree
3217 * with the given number of levels. Setting rcu_capacity[0] makes
3218 * some of the arithmetic easier.
3219 */
3220 rcu_capacity[0] = 1;
3221 rcu_capacity[1] = rcu_fanout_leaf;
3222 for (i = 2; i <= MAX_RCU_LVLS; i++)
3223 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3224
3225 /*
3226 * The boot-time rcu_fanout_leaf parameter is only permitted
3227 * to increase the leaf-level fanout, not decrease it. Of course,
3228 * the leaf-level fanout cannot exceed the number of bits in
3229 * the rcu_node masks. Finally, the tree must be able to accommodate
3230 * the configured number of CPUs. Complain and fall back to the
3231 * compile-time values if these limits are exceeded.
3232 */
3233 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3234 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3235 n > rcu_capacity[MAX_RCU_LVLS]) {
3236 WARN_ON(1);
3237 return;
3238 }
3239
3240 /* Calculate the number of rcu_nodes at each level of the tree. */
3241 for (i = 1; i <= MAX_RCU_LVLS; i++)
3242 if (n <= rcu_capacity[i]) {
3243 for (j = 0; j <= i; j++)
3244 num_rcu_lvl[j] =
3245 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3246 rcu_num_lvls = i;
3247 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3248 num_rcu_lvl[j] = 0;
3249 break;
3250 }
3251
3252 /* Calculate the total number of rcu_node structures. */
3253 rcu_num_nodes = 0;
3254 for (i = 0; i <= MAX_RCU_LVLS; i++)
3255 rcu_num_nodes += num_rcu_lvl[i];
3256 rcu_num_nodes -= n;
3257}
3258
9f680ab4 3259void __init rcu_init(void)
64db4cff 3260{
017c4261 3261 int cpu;
9f680ab4 3262
f41d911f 3263 rcu_bootup_announce();
f885b7f2 3264 rcu_init_geometry();
394f99a9
LJ
3265 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3266 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 3267 __rcu_init_preempt();
b5b39360 3268 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3269
3270 /*
3271 * We don't need protection against CPU-hotplug here because
3272 * this is called early in boot, before either interrupts
3273 * or the scheduler are operational.
3274 */
3275 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
3276 for_each_online_cpu(cpu)
3277 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3278}
3279
1eba8f84 3280#include "rcutree_plugin.h"
This page took 0.488488 seconds and 5 git commands to generate.