rcu: Clean up code based on review feedback from Josh Triplett
[deliverable/linux.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
64db4cff
PM
39#include <asm/atomic.h>
40#include <linux/bitops.h>
41#include <linux/module.h>
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
49
9f77da9f
PM
50#include "rcutree.h"
51
64db4cff
PM
52#ifdef CONFIG_DEBUG_LOCK_ALLOC
53static struct lock_class_key rcu_lock_key;
54struct lockdep_map rcu_lock_map =
55 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
56EXPORT_SYMBOL_GPL(rcu_lock_map);
57#endif
58
59/* Data structures. */
60
61#define RCU_STATE_INITIALIZER(name) { \
62 .level = { &name.node[0] }, \
63 .levelcnt = { \
64 NUM_RCU_LVL_0, /* root of hierarchy. */ \
65 NUM_RCU_LVL_1, \
66 NUM_RCU_LVL_2, \
67 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
68 }, \
69 .signaled = RCU_SIGNAL_INIT, \
70 .gpnum = -300, \
71 .completed = -300, \
72 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
73 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
74 .n_force_qs = 0, \
75 .n_force_qs_ngp = 0, \
76}
77
d6714c22
PM
78struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 80
6258c4fb
IM
81struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 83
f41d911f 84extern long rcu_batches_completed_sched(void);
dd5d19ba 85static struct rcu_node *rcu_get_root(struct rcu_state *rsp);
f41d911f
PM
86static void cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
87 struct rcu_node *rnp, unsigned long flags);
88static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags);
c935a331 89#ifdef CONFIG_HOTPLUG_CPU
33f76148 90static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp);
c935a331 91#endif /* #ifdef CONFIG_HOTPLUG_CPU */
f41d911f
PM
92static void __rcu_process_callbacks(struct rcu_state *rsp,
93 struct rcu_data *rdp);
94static void __call_rcu(struct rcu_head *head,
95 void (*func)(struct rcu_head *rcu),
96 struct rcu_state *rsp);
97static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp);
98static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp,
99 int preemptable);
100
101#include "rcutree_plugin.h"
102
fc2219d4
PM
103/*
104 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
105 * permit this function to be invoked without holding the root rcu_node
106 * structure's ->lock, but of course results can be subject to change.
107 */
108static int rcu_gp_in_progress(struct rcu_state *rsp)
109{
110 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
111}
112
b1f77b05 113/*
d6714c22 114 * Note a quiescent state. Because we do not need to know
b1f77b05 115 * how many quiescent states passed, just if there was at least
d6714c22 116 * one since the start of the grace period, this just sets a flag.
b1f77b05 117 */
d6714c22 118void rcu_sched_qs(int cpu)
b1f77b05 119{
f41d911f
PM
120 struct rcu_data *rdp;
121
f41d911f 122 rdp = &per_cpu(rcu_sched_data, cpu);
b1f77b05 123 rdp->passed_quiesc_completed = rdp->completed;
c3422bea
PM
124 barrier();
125 rdp->passed_quiesc = 1;
126 rcu_preempt_note_context_switch(cpu);
b1f77b05
IM
127}
128
d6714c22 129void rcu_bh_qs(int cpu)
b1f77b05 130{
f41d911f
PM
131 struct rcu_data *rdp;
132
f41d911f 133 rdp = &per_cpu(rcu_bh_data, cpu);
b1f77b05 134 rdp->passed_quiesc_completed = rdp->completed;
c3422bea
PM
135 barrier();
136 rdp->passed_quiesc = 1;
b1f77b05 137}
64db4cff
PM
138
139#ifdef CONFIG_NO_HZ
90a4d2c0
PM
140DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
141 .dynticks_nesting = 1,
142 .dynticks = 1,
143};
64db4cff
PM
144#endif /* #ifdef CONFIG_NO_HZ */
145
146static int blimit = 10; /* Maximum callbacks per softirq. */
147static int qhimark = 10000; /* If this many pending, ignore blimit. */
148static int qlowmark = 100; /* Once only this many pending, use blimit. */
149
150static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 151static int rcu_pending(int cpu);
64db4cff
PM
152
153/*
d6714c22 154 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 155 */
d6714c22 156long rcu_batches_completed_sched(void)
64db4cff 157{
d6714c22 158 return rcu_sched_state.completed;
64db4cff 159}
d6714c22 160EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
161
162/*
163 * Return the number of RCU BH batches processed thus far for debug & stats.
164 */
165long rcu_batches_completed_bh(void)
166{
167 return rcu_bh_state.completed;
168}
169EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
170
171/*
172 * Does the CPU have callbacks ready to be invoked?
173 */
174static int
175cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
176{
177 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
178}
179
180/*
181 * Does the current CPU require a yet-as-unscheduled grace period?
182 */
183static int
184cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
185{
fc2219d4 186 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
187}
188
189/*
190 * Return the root node of the specified rcu_state structure.
191 */
192static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
193{
194 return &rsp->node[0];
195}
196
197#ifdef CONFIG_SMP
198
199/*
200 * If the specified CPU is offline, tell the caller that it is in
201 * a quiescent state. Otherwise, whack it with a reschedule IPI.
202 * Grace periods can end up waiting on an offline CPU when that
203 * CPU is in the process of coming online -- it will be added to the
204 * rcu_node bitmasks before it actually makes it online. The same thing
205 * can happen while a CPU is in the process of coming online. Because this
206 * race is quite rare, we check for it after detecting that the grace
207 * period has been delayed rather than checking each and every CPU
208 * each and every time we start a new grace period.
209 */
210static int rcu_implicit_offline_qs(struct rcu_data *rdp)
211{
212 /*
213 * If the CPU is offline, it is in a quiescent state. We can
214 * trust its state not to change because interrupts are disabled.
215 */
216 if (cpu_is_offline(rdp->cpu)) {
217 rdp->offline_fqs++;
218 return 1;
219 }
220
f41d911f
PM
221 /* If preemptable RCU, no point in sending reschedule IPI. */
222 if (rdp->preemptable)
223 return 0;
224
64db4cff
PM
225 /* The CPU is online, so send it a reschedule IPI. */
226 if (rdp->cpu != smp_processor_id())
227 smp_send_reschedule(rdp->cpu);
228 else
229 set_need_resched();
230 rdp->resched_ipi++;
231 return 0;
232}
233
234#endif /* #ifdef CONFIG_SMP */
235
236#ifdef CONFIG_NO_HZ
64db4cff
PM
237
238/**
239 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
240 *
241 * Enter nohz mode, in other words, -leave- the mode in which RCU
242 * read-side critical sections can occur. (Though RCU read-side
243 * critical sections can occur in irq handlers in nohz mode, a possibility
244 * handled by rcu_irq_enter() and rcu_irq_exit()).
245 */
246void rcu_enter_nohz(void)
247{
248 unsigned long flags;
249 struct rcu_dynticks *rdtp;
250
251 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
252 local_irq_save(flags);
253 rdtp = &__get_cpu_var(rcu_dynticks);
254 rdtp->dynticks++;
255 rdtp->dynticks_nesting--;
86848966 256 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
257 local_irq_restore(flags);
258}
259
260/*
261 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
262 *
263 * Exit nohz mode, in other words, -enter- the mode in which RCU
264 * read-side critical sections normally occur.
265 */
266void rcu_exit_nohz(void)
267{
268 unsigned long flags;
269 struct rcu_dynticks *rdtp;
270
271 local_irq_save(flags);
272 rdtp = &__get_cpu_var(rcu_dynticks);
273 rdtp->dynticks++;
274 rdtp->dynticks_nesting++;
86848966 275 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
276 local_irq_restore(flags);
277 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
278}
279
280/**
281 * rcu_nmi_enter - inform RCU of entry to NMI context
282 *
283 * If the CPU was idle with dynamic ticks active, and there is no
284 * irq handler running, this updates rdtp->dynticks_nmi to let the
285 * RCU grace-period handling know that the CPU is active.
286 */
287void rcu_nmi_enter(void)
288{
289 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
290
291 if (rdtp->dynticks & 0x1)
292 return;
293 rdtp->dynticks_nmi++;
86848966 294 WARN_ON_ONCE(!(rdtp->dynticks_nmi & 0x1));
64db4cff
PM
295 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
296}
297
298/**
299 * rcu_nmi_exit - inform RCU of exit from NMI context
300 *
301 * If the CPU was idle with dynamic ticks active, and there is no
302 * irq handler running, this updates rdtp->dynticks_nmi to let the
303 * RCU grace-period handling know that the CPU is no longer active.
304 */
305void rcu_nmi_exit(void)
306{
307 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
308
309 if (rdtp->dynticks & 0x1)
310 return;
311 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
312 rdtp->dynticks_nmi++;
86848966 313 WARN_ON_ONCE(rdtp->dynticks_nmi & 0x1);
64db4cff
PM
314}
315
316/**
317 * rcu_irq_enter - inform RCU of entry to hard irq context
318 *
319 * If the CPU was idle with dynamic ticks active, this updates the
320 * rdtp->dynticks to let the RCU handling know that the CPU is active.
321 */
322void rcu_irq_enter(void)
323{
324 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
325
326 if (rdtp->dynticks_nesting++)
327 return;
328 rdtp->dynticks++;
86848966 329 WARN_ON_ONCE(!(rdtp->dynticks & 0x1));
64db4cff
PM
330 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
331}
332
333/**
334 * rcu_irq_exit - inform RCU of exit from hard irq context
335 *
336 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
337 * to put let the RCU handling be aware that the CPU is going back to idle
338 * with no ticks.
339 */
340void rcu_irq_exit(void)
341{
342 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
343
344 if (--rdtp->dynticks_nesting)
345 return;
346 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
347 rdtp->dynticks++;
86848966 348 WARN_ON_ONCE(rdtp->dynticks & 0x1);
64db4cff
PM
349
350 /* If the interrupt queued a callback, get out of dyntick mode. */
d6714c22 351 if (__get_cpu_var(rcu_sched_data).nxtlist ||
64db4cff
PM
352 __get_cpu_var(rcu_bh_data).nxtlist)
353 set_need_resched();
354}
355
356/*
357 * Record the specified "completed" value, which is later used to validate
358 * dynticks counter manipulations. Specify "rsp->completed - 1" to
359 * unconditionally invalidate any future dynticks manipulations (which is
360 * useful at the beginning of a grace period).
361 */
362static void dyntick_record_completed(struct rcu_state *rsp, long comp)
363{
364 rsp->dynticks_completed = comp;
365}
366
367#ifdef CONFIG_SMP
368
369/*
370 * Recall the previously recorded value of the completion for dynticks.
371 */
372static long dyntick_recall_completed(struct rcu_state *rsp)
373{
374 return rsp->dynticks_completed;
375}
376
377/*
378 * Snapshot the specified CPU's dynticks counter so that we can later
379 * credit them with an implicit quiescent state. Return 1 if this CPU
380 * is already in a quiescent state courtesy of dynticks idle mode.
381 */
382static int dyntick_save_progress_counter(struct rcu_data *rdp)
383{
384 int ret;
385 int snap;
386 int snap_nmi;
387
388 snap = rdp->dynticks->dynticks;
389 snap_nmi = rdp->dynticks->dynticks_nmi;
390 smp_mb(); /* Order sampling of snap with end of grace period. */
391 rdp->dynticks_snap = snap;
392 rdp->dynticks_nmi_snap = snap_nmi;
393 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
394 if (ret)
395 rdp->dynticks_fqs++;
396 return ret;
397}
398
399/*
400 * Return true if the specified CPU has passed through a quiescent
401 * state by virtue of being in or having passed through an dynticks
402 * idle state since the last call to dyntick_save_progress_counter()
403 * for this same CPU.
404 */
405static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
406{
407 long curr;
408 long curr_nmi;
409 long snap;
410 long snap_nmi;
411
412 curr = rdp->dynticks->dynticks;
413 snap = rdp->dynticks_snap;
414 curr_nmi = rdp->dynticks->dynticks_nmi;
415 snap_nmi = rdp->dynticks_nmi_snap;
416 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
417
418 /*
419 * If the CPU passed through or entered a dynticks idle phase with
420 * no active irq/NMI handlers, then we can safely pretend that the CPU
421 * already acknowledged the request to pass through a quiescent
422 * state. Either way, that CPU cannot possibly be in an RCU
423 * read-side critical section that started before the beginning
424 * of the current RCU grace period.
425 */
426 if ((curr != snap || (curr & 0x1) == 0) &&
427 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
428 rdp->dynticks_fqs++;
429 return 1;
430 }
431
432 /* Go check for the CPU being offline. */
433 return rcu_implicit_offline_qs(rdp);
434}
435
436#endif /* #ifdef CONFIG_SMP */
437
438#else /* #ifdef CONFIG_NO_HZ */
439
440static void dyntick_record_completed(struct rcu_state *rsp, long comp)
441{
442}
443
444#ifdef CONFIG_SMP
445
446/*
447 * If there are no dynticks, then the only way that a CPU can passively
448 * be in a quiescent state is to be offline. Unlike dynticks idle, which
449 * is a point in time during the prior (already finished) grace period,
450 * an offline CPU is always in a quiescent state, and thus can be
451 * unconditionally applied. So just return the current value of completed.
452 */
453static long dyntick_recall_completed(struct rcu_state *rsp)
454{
455 return rsp->completed;
456}
457
458static int dyntick_save_progress_counter(struct rcu_data *rdp)
459{
460 return 0;
461}
462
463static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
464{
465 return rcu_implicit_offline_qs(rdp);
466}
467
468#endif /* #ifdef CONFIG_SMP */
469
470#endif /* #else #ifdef CONFIG_NO_HZ */
471
472#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
473
474static void record_gp_stall_check_time(struct rcu_state *rsp)
475{
476 rsp->gp_start = jiffies;
477 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
478}
479
480static void print_other_cpu_stall(struct rcu_state *rsp)
481{
482 int cpu;
483 long delta;
484 unsigned long flags;
485 struct rcu_node *rnp = rcu_get_root(rsp);
486 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
487 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
488
489 /* Only let one CPU complain about others per time interval. */
490
491 spin_lock_irqsave(&rnp->lock, flags);
492 delta = jiffies - rsp->jiffies_stall;
fc2219d4 493 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
64db4cff
PM
494 spin_unlock_irqrestore(&rnp->lock, flags);
495 return;
496 }
497 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
498 spin_unlock_irqrestore(&rnp->lock, flags);
499
500 /* OK, time to rat on our buddy... */
501
502 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
503 for (; rnp_cur < rnp_end; rnp_cur++) {
f41d911f 504 rcu_print_task_stall(rnp);
64db4cff
PM
505 if (rnp_cur->qsmask == 0)
506 continue;
507 for (cpu = 0; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
508 if (rnp_cur->qsmask & (1UL << cpu))
509 printk(" %d", rnp_cur->grplo + cpu);
510 }
511 printk(" (detected by %d, t=%ld jiffies)\n",
512 smp_processor_id(), (long)(jiffies - rsp->gp_start));
c1dc0b9c
IM
513 trigger_all_cpu_backtrace();
514
64db4cff
PM
515 force_quiescent_state(rsp, 0); /* Kick them all. */
516}
517
518static void print_cpu_stall(struct rcu_state *rsp)
519{
520 unsigned long flags;
521 struct rcu_node *rnp = rcu_get_root(rsp);
522
523 printk(KERN_ERR "INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
524 smp_processor_id(), jiffies - rsp->gp_start);
c1dc0b9c
IM
525 trigger_all_cpu_backtrace();
526
64db4cff
PM
527 spin_lock_irqsave(&rnp->lock, flags);
528 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
529 rsp->jiffies_stall =
530 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
531 spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 532
64db4cff
PM
533 set_need_resched(); /* kick ourselves to get things going. */
534}
535
536static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
537{
538 long delta;
539 struct rcu_node *rnp;
540
541 delta = jiffies - rsp->jiffies_stall;
542 rnp = rdp->mynode;
543 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
544
545 /* We haven't checked in, so go dump stack. */
546 print_cpu_stall(rsp);
547
fc2219d4 548 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
64db4cff
PM
549
550 /* They had two time units to dump stack, so complain. */
551 print_other_cpu_stall(rsp);
552 }
553}
554
555#else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
556
557static void record_gp_stall_check_time(struct rcu_state *rsp)
558{
559}
560
561static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
562{
563}
564
565#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
566
567/*
568 * Update CPU-local rcu_data state to record the newly noticed grace period.
569 * This is used both when we started the grace period and when we notice
570 * that someone else started the grace period.
571 */
572static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
573{
574 rdp->qs_pending = 1;
575 rdp->passed_quiesc = 0;
576 rdp->gpnum = rsp->gpnum;
64db4cff
PM
577}
578
579/*
580 * Did someone else start a new RCU grace period start since we last
581 * checked? Update local state appropriately if so. Must be called
582 * on the CPU corresponding to rdp.
583 */
584static int
585check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
586{
587 unsigned long flags;
588 int ret = 0;
589
590 local_irq_save(flags);
591 if (rdp->gpnum != rsp->gpnum) {
592 note_new_gpnum(rsp, rdp);
593 ret = 1;
594 }
595 local_irq_restore(flags);
596 return ret;
597}
598
599/*
600 * Start a new RCU grace period if warranted, re-initializing the hierarchy
601 * in preparation for detecting the next grace period. The caller must hold
602 * the root node's ->lock, which is released before return. Hard irqs must
603 * be disabled.
604 */
605static void
606rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
607 __releases(rcu_get_root(rsp)->lock)
608{
609 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
610 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
611
612 if (!cpu_needs_another_gp(rsp, rdp)) {
613 spin_unlock_irqrestore(&rnp->lock, flags);
614 return;
615 }
616
617 /* Advance to a new grace period and initialize state. */
618 rsp->gpnum++;
c3422bea 619 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
64db4cff
PM
620 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
621 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
622 record_gp_stall_check_time(rsp);
623 dyntick_record_completed(rsp, rsp->completed - 1);
624 note_new_gpnum(rsp, rdp);
625
626 /*
627 * Because we are first, we know that all our callbacks will
628 * be covered by this upcoming grace period, even the ones
629 * that were registered arbitrarily recently.
630 */
631 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
632 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
633
634 /* Special-case the common single-level case. */
635 if (NUM_RCU_NODES == 1) {
b0e165c0 636 rcu_preempt_check_blocked_tasks(rnp);
28ecd580 637 rnp->qsmask = rnp->qsmaskinit;
de078d87 638 rnp->gpnum = rsp->gpnum;
c12172c0 639 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
64db4cff
PM
640 spin_unlock_irqrestore(&rnp->lock, flags);
641 return;
642 }
643
644 spin_unlock(&rnp->lock); /* leave irqs disabled. */
645
646
647 /* Exclude any concurrent CPU-hotplug operations. */
648 spin_lock(&rsp->onofflock); /* irqs already disabled. */
649
650 /*
b835db1f
PM
651 * Set the quiescent-state-needed bits in all the rcu_node
652 * structures for all currently online CPUs in breadth-first
653 * order, starting from the root rcu_node structure. This
654 * operation relies on the layout of the hierarchy within the
655 * rsp->node[] array. Note that other CPUs will access only
656 * the leaves of the hierarchy, which still indicate that no
657 * grace period is in progress, at least until the corresponding
658 * leaf node has been initialized. In addition, we have excluded
659 * CPU-hotplug operations.
64db4cff
PM
660 *
661 * Note that the grace period cannot complete until we finish
662 * the initialization process, as there will be at least one
663 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
664 * one corresponding to this CPU, due to the fact that we have
665 * irqs disabled.
64db4cff 666 */
49e29126
PM
667 for (rnp = &rsp->node[0]; rnp < &rsp->node[NUM_RCU_NODES]; rnp++) {
668 spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 669 rcu_preempt_check_blocked_tasks(rnp);
49e29126 670 rnp->qsmask = rnp->qsmaskinit;
de078d87 671 rnp->gpnum = rsp->gpnum;
49e29126 672 spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
673 }
674
675 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
676 spin_unlock_irqrestore(&rsp->onofflock, flags);
677}
678
679/*
680 * Advance this CPU's callbacks, but only if the current grace period
681 * has ended. This may be called only from the CPU to whom the rdp
682 * belongs.
683 */
684static void
685rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
686{
687 long completed_snap;
688 unsigned long flags;
689
690 local_irq_save(flags);
691 completed_snap = ACCESS_ONCE(rsp->completed); /* outside of lock. */
692
693 /* Did another grace period end? */
694 if (rdp->completed != completed_snap) {
695
696 /* Advance callbacks. No harm if list empty. */
697 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
698 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
699 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
700
701 /* Remember that we saw this grace-period completion. */
702 rdp->completed = completed_snap;
703 }
704 local_irq_restore(flags);
705}
706
f41d911f
PM
707/*
708 * Clean up after the prior grace period and let rcu_start_gp() start up
709 * the next grace period if one is needed. Note that the caller must
710 * hold rnp->lock, as required by rcu_start_gp(), which will release it.
711 */
712static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags)
fc2219d4 713 __releases(rcu_get_root(rsp)->lock)
f41d911f 714{
fc2219d4 715 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
f41d911f
PM
716 rsp->completed = rsp->gpnum;
717 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
718 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
719}
720
64db4cff
PM
721/*
722 * Similar to cpu_quiet(), for which it is a helper function. Allows
723 * a group of CPUs to be quieted at one go, though all the CPUs in the
724 * group must be represented by the same leaf rcu_node structure.
725 * That structure's lock must be held upon entry, and it is released
726 * before return.
727 */
728static void
729cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp,
730 unsigned long flags)
731 __releases(rnp->lock)
732{
28ecd580
PM
733 struct rcu_node *rnp_c;
734
64db4cff
PM
735 /* Walk up the rcu_node hierarchy. */
736 for (;;) {
737 if (!(rnp->qsmask & mask)) {
738
739 /* Our bit has already been cleared, so done. */
740 spin_unlock_irqrestore(&rnp->lock, flags);
741 return;
742 }
743 rnp->qsmask &= ~mask;
f41d911f 744 if (rnp->qsmask != 0 || rcu_preempted_readers(rnp)) {
64db4cff
PM
745
746 /* Other bits still set at this level, so done. */
747 spin_unlock_irqrestore(&rnp->lock, flags);
748 return;
749 }
750 mask = rnp->grpmask;
751 if (rnp->parent == NULL) {
752
753 /* No more levels. Exit loop holding root lock. */
754
755 break;
756 }
757 spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 758 rnp_c = rnp;
64db4cff
PM
759 rnp = rnp->parent;
760 spin_lock_irqsave(&rnp->lock, flags);
28ecd580 761 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
762 }
763
764 /*
765 * Get here if we are the last CPU to pass through a quiescent
f41d911f
PM
766 * state for this grace period. Invoke cpu_quiet_msk_finish()
767 * to clean up and start the next grace period if one is needed.
64db4cff 768 */
f41d911f 769 cpu_quiet_msk_finish(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
770}
771
772/*
773 * Record a quiescent state for the specified CPU, which must either be
e7d8842e
PM
774 * the current CPU. The lastcomp argument is used to make sure we are
775 * still in the grace period of interest. We don't want to end the current
776 * grace period based on quiescent states detected in an earlier grace
777 * period!
64db4cff
PM
778 */
779static void
780cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
781{
782 unsigned long flags;
783 unsigned long mask;
784 struct rcu_node *rnp;
785
786 rnp = rdp->mynode;
787 spin_lock_irqsave(&rnp->lock, flags);
788 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
789
790 /*
791 * Someone beat us to it for this grace period, so leave.
792 * The race with GP start is resolved by the fact that we
793 * hold the leaf rcu_node lock, so that the per-CPU bits
794 * cannot yet be initialized -- so we would simply find our
795 * CPU's bit already cleared in cpu_quiet_msk() if this race
796 * occurred.
797 */
798 rdp->passed_quiesc = 0; /* try again later! */
799 spin_unlock_irqrestore(&rnp->lock, flags);
800 return;
801 }
802 mask = rdp->grpmask;
803 if ((rnp->qsmask & mask) == 0) {
804 spin_unlock_irqrestore(&rnp->lock, flags);
805 } else {
806 rdp->qs_pending = 0;
807
808 /*
809 * This GP can't end until cpu checks in, so all of our
810 * callbacks can be processed during the next GP.
811 */
64db4cff
PM
812 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
813
814 cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */
815 }
816}
817
818/*
819 * Check to see if there is a new grace period of which this CPU
820 * is not yet aware, and if so, set up local rcu_data state for it.
821 * Otherwise, see if this CPU has just passed through its first
822 * quiescent state for this grace period, and record that fact if so.
823 */
824static void
825rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
826{
827 /* If there is now a new grace period, record and return. */
828 if (check_for_new_grace_period(rsp, rdp))
829 return;
830
831 /*
832 * Does this CPU still need to do its part for current grace period?
833 * If no, return and let the other CPUs do their part as well.
834 */
835 if (!rdp->qs_pending)
836 return;
837
838 /*
839 * Was there a quiescent state since the beginning of the grace
840 * period? If no, then exit and wait for the next call.
841 */
842 if (!rdp->passed_quiesc)
843 return;
844
845 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
846 cpu_quiet(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
847}
848
849#ifdef CONFIG_HOTPLUG_CPU
850
851/*
852 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
853 * and move all callbacks from the outgoing CPU to the current one.
854 */
855static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
856{
857 int i;
858 unsigned long flags;
859 long lastcomp;
860 unsigned long mask;
861 struct rcu_data *rdp = rsp->rda[cpu];
862 struct rcu_data *rdp_me;
863 struct rcu_node *rnp;
864
865 /* Exclude any attempts to start a new grace period. */
866 spin_lock_irqsave(&rsp->onofflock, flags);
867
868 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
28ecd580 869 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
64db4cff
PM
870 mask = rdp->grpmask; /* rnp->grplo is constant. */
871 do {
872 spin_lock(&rnp->lock); /* irqs already disabled. */
873 rnp->qsmaskinit &= ~mask;
874 if (rnp->qsmaskinit != 0) {
f41d911f 875 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
876 break;
877 }
28ecd580 878 rcu_preempt_offline_tasks(rsp, rnp, rdp);
64db4cff 879 mask = rnp->grpmask;
f41d911f 880 spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
881 rnp = rnp->parent;
882 } while (rnp != NULL);
883 lastcomp = rsp->completed;
884
885 spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
886
64db4cff
PM
887 /*
888 * Move callbacks from the outgoing CPU to the running CPU.
889 * Note that the outgoing CPU is now quiscent, so it is now
d6714c22 890 * (uncharacteristically) safe to access its rcu_data structure.
64db4cff
PM
891 * Note also that we must carefully retain the order of the
892 * outgoing CPU's callbacks in order for rcu_barrier() to work
893 * correctly. Finally, note that we start all the callbacks
894 * afresh, even those that have passed through a grace period
895 * and are therefore ready to invoke. The theory is that hotplug
896 * events are rare, and that if they are frequent enough to
897 * indefinitely delay callbacks, you have far worse things to
898 * be worrying about.
899 */
900 rdp_me = rsp->rda[smp_processor_id()];
901 if (rdp->nxtlist != NULL) {
902 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
903 rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
904 rdp->nxtlist = NULL;
905 for (i = 0; i < RCU_NEXT_SIZE; i++)
906 rdp->nxttail[i] = &rdp->nxtlist;
907 rdp_me->qlen += rdp->qlen;
908 rdp->qlen = 0;
909 }
910 local_irq_restore(flags);
911}
912
913/*
914 * Remove the specified CPU from the RCU hierarchy and move any pending
915 * callbacks that it might have to the current CPU. This code assumes
916 * that at least one CPU in the system will remain running at all times.
917 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
918 */
919static void rcu_offline_cpu(int cpu)
920{
d6714c22 921 __rcu_offline_cpu(cpu, &rcu_sched_state);
64db4cff 922 __rcu_offline_cpu(cpu, &rcu_bh_state);
33f76148 923 rcu_preempt_offline_cpu(cpu);
64db4cff
PM
924}
925
926#else /* #ifdef CONFIG_HOTPLUG_CPU */
927
928static void rcu_offline_cpu(int cpu)
929{
930}
931
932#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
933
934/*
935 * Invoke any RCU callbacks that have made it to the end of their grace
936 * period. Thottle as specified by rdp->blimit.
937 */
938static void rcu_do_batch(struct rcu_data *rdp)
939{
940 unsigned long flags;
941 struct rcu_head *next, *list, **tail;
942 int count;
943
944 /* If no callbacks are ready, just return.*/
945 if (!cpu_has_callbacks_ready_to_invoke(rdp))
946 return;
947
948 /*
949 * Extract the list of ready callbacks, disabling to prevent
950 * races with call_rcu() from interrupt handlers.
951 */
952 local_irq_save(flags);
953 list = rdp->nxtlist;
954 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
955 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
956 tail = rdp->nxttail[RCU_DONE_TAIL];
957 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
958 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
959 rdp->nxttail[count] = &rdp->nxtlist;
960 local_irq_restore(flags);
961
962 /* Invoke callbacks. */
963 count = 0;
964 while (list) {
965 next = list->next;
966 prefetch(next);
967 list->func(list);
968 list = next;
969 if (++count >= rdp->blimit)
970 break;
971 }
972
973 local_irq_save(flags);
974
975 /* Update count, and requeue any remaining callbacks. */
976 rdp->qlen -= count;
977 if (list != NULL) {
978 *tail = rdp->nxtlist;
979 rdp->nxtlist = list;
980 for (count = 0; count < RCU_NEXT_SIZE; count++)
981 if (&rdp->nxtlist == rdp->nxttail[count])
982 rdp->nxttail[count] = tail;
983 else
984 break;
985 }
986
987 /* Reinstate batch limit if we have worked down the excess. */
988 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
989 rdp->blimit = blimit;
990
991 local_irq_restore(flags);
992
993 /* Re-raise the RCU softirq if there are callbacks remaining. */
994 if (cpu_has_callbacks_ready_to_invoke(rdp))
995 raise_softirq(RCU_SOFTIRQ);
996}
997
998/*
999 * Check to see if this CPU is in a non-context-switch quiescent state
1000 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1001 * Also schedule the RCU softirq handler.
1002 *
1003 * This function must be called with hardirqs disabled. It is normally
1004 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1005 * false, there is no point in invoking rcu_check_callbacks().
1006 */
1007void rcu_check_callbacks(int cpu, int user)
1008{
a157229c
PM
1009 if (!rcu_pending(cpu))
1010 return; /* if nothing for RCU to do. */
64db4cff 1011 if (user ||
a6826048
PM
1012 (idle_cpu(cpu) && rcu_scheduler_active &&
1013 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
64db4cff
PM
1014
1015 /*
1016 * Get here if this CPU took its interrupt from user
1017 * mode or from the idle loop, and if this is not a
1018 * nested interrupt. In this case, the CPU is in
d6714c22 1019 * a quiescent state, so note it.
64db4cff
PM
1020 *
1021 * No memory barrier is required here because both
d6714c22
PM
1022 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1023 * variables that other CPUs neither access nor modify,
1024 * at least not while the corresponding CPU is online.
64db4cff
PM
1025 */
1026
d6714c22
PM
1027 rcu_sched_qs(cpu);
1028 rcu_bh_qs(cpu);
64db4cff
PM
1029
1030 } else if (!in_softirq()) {
1031
1032 /*
1033 * Get here if this CPU did not take its interrupt from
1034 * softirq, in other words, if it is not interrupting
1035 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1036 * critical section, so note it.
64db4cff
PM
1037 */
1038
d6714c22 1039 rcu_bh_qs(cpu);
64db4cff 1040 }
f41d911f 1041 rcu_preempt_check_callbacks(cpu);
64db4cff
PM
1042 raise_softirq(RCU_SOFTIRQ);
1043}
1044
1045#ifdef CONFIG_SMP
1046
1047/*
1048 * Scan the leaf rcu_node structures, processing dyntick state for any that
1049 * have not yet encountered a quiescent state, using the function specified.
1050 * Returns 1 if the current grace period ends while scanning (possibly
1051 * because we made it end).
1052 */
1053static int rcu_process_dyntick(struct rcu_state *rsp, long lastcomp,
1054 int (*f)(struct rcu_data *))
1055{
1056 unsigned long bit;
1057 int cpu;
1058 unsigned long flags;
1059 unsigned long mask;
1060 struct rcu_node *rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
1061 struct rcu_node *rnp_end = &rsp->node[NUM_RCU_NODES];
1062
1063 for (; rnp_cur < rnp_end; rnp_cur++) {
1064 mask = 0;
1065 spin_lock_irqsave(&rnp_cur->lock, flags);
1066 if (rsp->completed != lastcomp) {
1067 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1068 return 1;
1069 }
1070 if (rnp_cur->qsmask == 0) {
1071 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1072 continue;
1073 }
1074 cpu = rnp_cur->grplo;
1075 bit = 1;
1076 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
1077 if ((rnp_cur->qsmask & bit) != 0 && f(rsp->rda[cpu]))
1078 mask |= bit;
1079 }
1080 if (mask != 0 && rsp->completed == lastcomp) {
1081
1082 /* cpu_quiet_msk() releases rnp_cur->lock. */
1083 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
1084 continue;
1085 }
1086 spin_unlock_irqrestore(&rnp_cur->lock, flags);
1087 }
1088 return 0;
1089}
1090
1091/*
1092 * Force quiescent states on reluctant CPUs, and also detect which
1093 * CPUs are in dyntick-idle mode.
1094 */
1095static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1096{
1097 unsigned long flags;
1098 long lastcomp;
64db4cff
PM
1099 struct rcu_node *rnp = rcu_get_root(rsp);
1100 u8 signaled;
1101
fc2219d4 1102 if (!rcu_gp_in_progress(rsp))
64db4cff
PM
1103 return; /* No grace period in progress, nothing to force. */
1104 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
1105 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1106 return; /* Someone else is already on the job. */
1107 }
1108 if (relaxed &&
ef631b0c 1109 (long)(rsp->jiffies_force_qs - jiffies) >= 0)
64db4cff
PM
1110 goto unlock_ret; /* no emergency and done recently. */
1111 rsp->n_force_qs++;
1112 spin_lock(&rnp->lock);
1113 lastcomp = rsp->completed;
1114 signaled = rsp->signaled;
1115 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff
PM
1116 if (lastcomp == rsp->gpnum) {
1117 rsp->n_force_qs_ngp++;
1118 spin_unlock(&rnp->lock);
1119 goto unlock_ret; /* no GP in progress, time updated. */
1120 }
1121 spin_unlock(&rnp->lock);
1122 switch (signaled) {
1123 case RCU_GP_INIT:
1124
1125 break; /* grace period still initializing, ignore. */
1126
1127 case RCU_SAVE_DYNTICK:
1128
1129 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1130 break; /* So gcc recognizes the dead code. */
1131
1132 /* Record dyntick-idle state. */
1133 if (rcu_process_dyntick(rsp, lastcomp,
1134 dyntick_save_progress_counter))
1135 goto unlock_ret;
1136
1137 /* Update state, record completion counter. */
1138 spin_lock(&rnp->lock);
1139 if (lastcomp == rsp->completed) {
1140 rsp->signaled = RCU_FORCE_QS;
1141 dyntick_record_completed(rsp, lastcomp);
1142 }
1143 spin_unlock(&rnp->lock);
1144 break;
1145
1146 case RCU_FORCE_QS:
1147
1148 /* Check dyntick-idle state, send IPI to laggarts. */
1149 if (rcu_process_dyntick(rsp, dyntick_recall_completed(rsp),
1150 rcu_implicit_dynticks_qs))
1151 goto unlock_ret;
1152
1153 /* Leave state in case more forcing is required. */
1154
1155 break;
1156 }
1157unlock_ret:
1158 spin_unlock_irqrestore(&rsp->fqslock, flags);
1159}
1160
1161#else /* #ifdef CONFIG_SMP */
1162
1163static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1164{
1165 set_need_resched();
1166}
1167
1168#endif /* #else #ifdef CONFIG_SMP */
1169
1170/*
1171 * This does the RCU processing work from softirq context for the
1172 * specified rcu_state and rcu_data structures. This may be called
1173 * only from the CPU to whom the rdp belongs.
1174 */
1175static void
1176__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1177{
1178 unsigned long flags;
1179
2e597558
PM
1180 WARN_ON_ONCE(rdp->beenonline == 0);
1181
64db4cff
PM
1182 /*
1183 * If an RCU GP has gone long enough, go check for dyntick
1184 * idle CPUs and, if needed, send resched IPIs.
1185 */
ef631b0c 1186 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1187 force_quiescent_state(rsp, 1);
1188
1189 /*
1190 * Advance callbacks in response to end of earlier grace
1191 * period that some other CPU ended.
1192 */
1193 rcu_process_gp_end(rsp, rdp);
1194
1195 /* Update RCU state based on any recent quiescent states. */
1196 rcu_check_quiescent_state(rsp, rdp);
1197
1198 /* Does this CPU require a not-yet-started grace period? */
1199 if (cpu_needs_another_gp(rsp, rdp)) {
1200 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1201 rcu_start_gp(rsp, flags); /* releases above lock */
1202 }
1203
1204 /* If there are callbacks ready, invoke them. */
1205 rcu_do_batch(rdp);
1206}
1207
1208/*
1209 * Do softirq processing for the current CPU.
1210 */
1211static void rcu_process_callbacks(struct softirq_action *unused)
1212{
1213 /*
1214 * Memory references from any prior RCU read-side critical sections
1215 * executed by the interrupted code must be seen before any RCU
1216 * grace-period manipulations below.
1217 */
1218 smp_mb(); /* See above block comment. */
1219
d6714c22
PM
1220 __rcu_process_callbacks(&rcu_sched_state,
1221 &__get_cpu_var(rcu_sched_data));
64db4cff 1222 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1223 rcu_preempt_process_callbacks();
64db4cff
PM
1224
1225 /*
1226 * Memory references from any later RCU read-side critical sections
1227 * executed by the interrupted code must be seen after any RCU
1228 * grace-period manipulations above.
1229 */
1230 smp_mb(); /* See above block comment. */
1231}
1232
1233static void
1234__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1235 struct rcu_state *rsp)
1236{
1237 unsigned long flags;
1238 struct rcu_data *rdp;
1239
1240 head->func = func;
1241 head->next = NULL;
1242
1243 smp_mb(); /* Ensure RCU update seen before callback registry. */
1244
1245 /*
1246 * Opportunistically note grace-period endings and beginnings.
1247 * Note that we might see a beginning right after we see an
1248 * end, but never vice versa, since this CPU has to pass through
1249 * a quiescent state betweentimes.
1250 */
1251 local_irq_save(flags);
1252 rdp = rsp->rda[smp_processor_id()];
1253 rcu_process_gp_end(rsp, rdp);
1254 check_for_new_grace_period(rsp, rdp);
1255
1256 /* Add the callback to our list. */
1257 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1258 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1259
1260 /* Start a new grace period if one not already started. */
fc2219d4 1261 if (!rcu_gp_in_progress(rsp)) {
64db4cff
PM
1262 unsigned long nestflag;
1263 struct rcu_node *rnp_root = rcu_get_root(rsp);
1264
1265 spin_lock_irqsave(&rnp_root->lock, nestflag);
1266 rcu_start_gp(rsp, nestflag); /* releases rnp_root->lock. */
1267 }
1268
1269 /* Force the grace period if too many callbacks or too long waiting. */
1270 if (unlikely(++rdp->qlen > qhimark)) {
1271 rdp->blimit = LONG_MAX;
1272 force_quiescent_state(rsp, 0);
ef631b0c 1273 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)
64db4cff
PM
1274 force_quiescent_state(rsp, 1);
1275 local_irq_restore(flags);
1276}
1277
1278/*
d6714c22 1279 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1280 */
d6714c22 1281void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1282{
d6714c22 1283 __call_rcu(head, func, &rcu_sched_state);
64db4cff 1284}
d6714c22 1285EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1286
1287/*
1288 * Queue an RCU for invocation after a quicker grace period.
1289 */
1290void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1291{
1292 __call_rcu(head, func, &rcu_bh_state);
1293}
1294EXPORT_SYMBOL_GPL(call_rcu_bh);
1295
1296/*
1297 * Check to see if there is any immediate RCU-related work to be done
1298 * by the current CPU, for the specified type of RCU, returning 1 if so.
1299 * The checks are in order of increasing expense: checks that can be
1300 * carried out against CPU-local state are performed first. However,
1301 * we must check for CPU stalls first, else we might not get a chance.
1302 */
1303static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1304{
1305 rdp->n_rcu_pending++;
1306
1307 /* Check for CPU stalls, if enabled. */
1308 check_cpu_stall(rsp, rdp);
1309
1310 /* Is the RCU core waiting for a quiescent state from this CPU? */
7ba5c840
PM
1311 if (rdp->qs_pending) {
1312 rdp->n_rp_qs_pending++;
64db4cff 1313 return 1;
7ba5c840 1314 }
64db4cff
PM
1315
1316 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
1317 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1318 rdp->n_rp_cb_ready++;
64db4cff 1319 return 1;
7ba5c840 1320 }
64db4cff
PM
1321
1322 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
1323 if (cpu_needs_another_gp(rsp, rdp)) {
1324 rdp->n_rp_cpu_needs_gp++;
64db4cff 1325 return 1;
7ba5c840 1326 }
64db4cff
PM
1327
1328 /* Has another RCU grace period completed? */
7ba5c840
PM
1329 if (ACCESS_ONCE(rsp->completed) != rdp->completed) { /* outside lock */
1330 rdp->n_rp_gp_completed++;
64db4cff 1331 return 1;
7ba5c840 1332 }
64db4cff
PM
1333
1334 /* Has a new RCU grace period started? */
7ba5c840
PM
1335 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum) { /* outside lock */
1336 rdp->n_rp_gp_started++;
64db4cff 1337 return 1;
7ba5c840 1338 }
64db4cff
PM
1339
1340 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 1341 if (rcu_gp_in_progress(rsp) &&
7ba5c840
PM
1342 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) - jiffies) < 0)) {
1343 rdp->n_rp_need_fqs++;
64db4cff 1344 return 1;
7ba5c840 1345 }
64db4cff
PM
1346
1347 /* nothing to do */
7ba5c840 1348 rdp->n_rp_need_nothing++;
64db4cff
PM
1349 return 0;
1350}
1351
1352/*
1353 * Check to see if there is any immediate RCU-related work to be done
1354 * by the current CPU, returning 1 if so. This function is part of the
1355 * RCU implementation; it is -not- an exported member of the RCU API.
1356 */
a157229c 1357static int rcu_pending(int cpu)
64db4cff 1358{
d6714c22 1359 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
1360 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
1361 rcu_preempt_pending(cpu);
64db4cff
PM
1362}
1363
1364/*
1365 * Check to see if any future RCU-related work will need to be done
1366 * by the current CPU, even if none need be done immediately, returning
1367 * 1 if so. This function is part of the RCU implementation; it is -not-
1368 * an exported member of the RCU API.
1369 */
1370int rcu_needs_cpu(int cpu)
1371{
1372 /* RCU callbacks either ready or pending? */
d6714c22 1373 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f
PM
1374 per_cpu(rcu_bh_data, cpu).nxtlist ||
1375 rcu_preempt_needs_cpu(cpu);
64db4cff
PM
1376}
1377
1378/*
27569620 1379 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 1380 */
27569620
PM
1381static void __init
1382rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
1383{
1384 unsigned long flags;
1385 int i;
27569620
PM
1386 struct rcu_data *rdp = rsp->rda[cpu];
1387 struct rcu_node *rnp = rcu_get_root(rsp);
1388
1389 /* Set up local state, ensuring consistent view of global state. */
1390 spin_lock_irqsave(&rnp->lock, flags);
1391 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
1392 rdp->nxtlist = NULL;
1393 for (i = 0; i < RCU_NEXT_SIZE; i++)
1394 rdp->nxttail[i] = &rdp->nxtlist;
1395 rdp->qlen = 0;
1396#ifdef CONFIG_NO_HZ
1397 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
1398#endif /* #ifdef CONFIG_NO_HZ */
1399 rdp->cpu = cpu;
1400 spin_unlock_irqrestore(&rnp->lock, flags);
1401}
1402
1403/*
1404 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1405 * offline event can be happening at a given time. Note also that we
1406 * can accept some slop in the rsp->completed access due to the fact
1407 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 1408 */
e4fa4c97 1409static void __cpuinit
f41d911f 1410rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
64db4cff
PM
1411{
1412 unsigned long flags;
64db4cff
PM
1413 long lastcomp;
1414 unsigned long mask;
1415 struct rcu_data *rdp = rsp->rda[cpu];
1416 struct rcu_node *rnp = rcu_get_root(rsp);
1417
1418 /* Set up local state, ensuring consistent view of global state. */
1419 spin_lock_irqsave(&rnp->lock, flags);
1420 lastcomp = rsp->completed;
1421 rdp->completed = lastcomp;
1422 rdp->gpnum = lastcomp;
1423 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
1424 rdp->qs_pending = 1; /* so set up to respond to current GP. */
1425 rdp->beenonline = 1; /* We have now been online. */
f41d911f 1426 rdp->preemptable = preemptable;
64db4cff 1427 rdp->passed_quiesc_completed = lastcomp - 1;
64db4cff 1428 rdp->blimit = blimit;
64db4cff
PM
1429 spin_unlock(&rnp->lock); /* irqs remain disabled. */
1430
1431 /*
1432 * A new grace period might start here. If so, we won't be part
1433 * of it, but that is OK, as we are currently in a quiescent state.
1434 */
1435
1436 /* Exclude any attempts to start a new GP on large systems. */
1437 spin_lock(&rsp->onofflock); /* irqs already disabled. */
1438
1439 /* Add CPU to rcu_node bitmasks. */
1440 rnp = rdp->mynode;
1441 mask = rdp->grpmask;
1442 do {
1443 /* Exclude any attempts to start a new GP on small systems. */
1444 spin_lock(&rnp->lock); /* irqs already disabled. */
1445 rnp->qsmaskinit |= mask;
1446 mask = rnp->grpmask;
1447 spin_unlock(&rnp->lock); /* irqs already disabled. */
1448 rnp = rnp->parent;
1449 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
1450
e7d8842e 1451 spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1452}
1453
1454static void __cpuinit rcu_online_cpu(int cpu)
1455{
f41d911f
PM
1456 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
1457 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
1458 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
1459}
1460
1461/*
f41d911f 1462 * Handle CPU online/offline notification events.
64db4cff 1463 */
2e597558
PM
1464int __cpuinit rcu_cpu_notify(struct notifier_block *self,
1465 unsigned long action, void *hcpu)
64db4cff
PM
1466{
1467 long cpu = (long)hcpu;
1468
1469 switch (action) {
1470 case CPU_UP_PREPARE:
1471 case CPU_UP_PREPARE_FROZEN:
1472 rcu_online_cpu(cpu);
1473 break;
1474 case CPU_DEAD:
1475 case CPU_DEAD_FROZEN:
1476 case CPU_UP_CANCELED:
1477 case CPU_UP_CANCELED_FROZEN:
1478 rcu_offline_cpu(cpu);
1479 break;
1480 default:
1481 break;
1482 }
1483 return NOTIFY_OK;
1484}
1485
1486/*
1487 * Compute the per-level fanout, either using the exact fanout specified
1488 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1489 */
1490#ifdef CONFIG_RCU_FANOUT_EXACT
1491static void __init rcu_init_levelspread(struct rcu_state *rsp)
1492{
1493 int i;
1494
1495 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
1496 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
1497}
1498#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1499static void __init rcu_init_levelspread(struct rcu_state *rsp)
1500{
1501 int ccur;
1502 int cprv;
1503 int i;
1504
1505 cprv = NR_CPUS;
1506 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1507 ccur = rsp->levelcnt[i];
1508 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
1509 cprv = ccur;
1510 }
1511}
1512#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1513
1514/*
1515 * Helper function for rcu_init() that initializes one rcu_state structure.
1516 */
1517static void __init rcu_init_one(struct rcu_state *rsp)
1518{
1519 int cpustride = 1;
1520 int i;
1521 int j;
1522 struct rcu_node *rnp;
1523
1524 /* Initialize the level-tracking arrays. */
1525
1526 for (i = 1; i < NUM_RCU_LVLS; i++)
1527 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
1528 rcu_init_levelspread(rsp);
1529
1530 /* Initialize the elements themselves, starting from the leaves. */
1531
1532 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
1533 cpustride *= rsp->levelspread[i];
1534 rnp = rsp->level[i];
1535 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1536 spin_lock_init(&rnp->lock);
f41d911f 1537 rnp->gpnum = 0;
64db4cff
PM
1538 rnp->qsmask = 0;
1539 rnp->qsmaskinit = 0;
1540 rnp->grplo = j * cpustride;
1541 rnp->grphi = (j + 1) * cpustride - 1;
1542 if (rnp->grphi >= NR_CPUS)
1543 rnp->grphi = NR_CPUS - 1;
1544 if (i == 0) {
1545 rnp->grpnum = 0;
1546 rnp->grpmask = 0;
1547 rnp->parent = NULL;
1548 } else {
1549 rnp->grpnum = j % rsp->levelspread[i - 1];
1550 rnp->grpmask = 1UL << rnp->grpnum;
1551 rnp->parent = rsp->level[i - 1] +
1552 j / rsp->levelspread[i - 1];
1553 }
1554 rnp->level = i;
f41d911f
PM
1555 INIT_LIST_HEAD(&rnp->blocked_tasks[0]);
1556 INIT_LIST_HEAD(&rnp->blocked_tasks[1]);
64db4cff
PM
1557 }
1558 }
1559}
1560
1561/*
f41d911f
PM
1562 * Helper macro for __rcu_init() and __rcu_init_preempt(). To be used
1563 * nowhere else! Assigns leaf node pointers into each CPU's rcu_data
1564 * structure.
64db4cff 1565 */
65cf8f86 1566#define RCU_INIT_FLAVOR(rsp, rcu_data) \
64db4cff 1567do { \
65cf8f86 1568 rcu_init_one(rsp); \
64db4cff
PM
1569 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1570 j = 0; \
1571 for_each_possible_cpu(i) { \
1572 if (i > rnp[j].grphi) \
1573 j++; \
1574 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1575 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
65cf8f86 1576 rcu_boot_init_percpu_data(i, rsp); \
64db4cff
PM
1577 } \
1578} while (0)
1579
f41d911f
PM
1580#ifdef CONFIG_TREE_PREEMPT_RCU
1581
1582void __init __rcu_init_preempt(void)
1583{
1584 int i; /* All used by RCU_INIT_FLAVOR(). */
1585 int j;
1586 struct rcu_node *rnp;
1587
1588 RCU_INIT_FLAVOR(&rcu_preempt_state, rcu_preempt_data);
1589}
1590
1591#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1592
1593void __init __rcu_init_preempt(void)
1594{
1595}
1596
1597#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
64db4cff
PM
1598
1599void __init __rcu_init(void)
1600{
f41d911f 1601 int i; /* All used by RCU_INIT_FLAVOR(). */
64db4cff
PM
1602 int j;
1603 struct rcu_node *rnp;
1604
f41d911f 1605 rcu_bootup_announce();
64db4cff
PM
1606#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1607 printk(KERN_INFO "RCU-based detection of stalled CPUs is enabled.\n");
1608#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
65cf8f86
PM
1609 RCU_INIT_FLAVOR(&rcu_sched_state, rcu_sched_data);
1610 RCU_INIT_FLAVOR(&rcu_bh_state, rcu_bh_data);
f41d911f 1611 __rcu_init_preempt();
2e597558 1612 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
64db4cff
PM
1613}
1614
1615module_param(blimit, int, 0);
1616module_param(qhimark, int, 0);
1617module_param(qlowmark, int, 0);
This page took 0.181267 seconds and 5 git commands to generate.