rcu: Move TINY_RCU quiescent state out of extended quiescent state
[deliverable/linux.git] / kernel / rcutree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
f41d911f 28
5b61b0ba
MG
29#define RCU_KTHREAD_PRIO 1
30
31#ifdef CONFIG_RCU_BOOST
32#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
33#else
34#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
35#endif
36
26845c28
PM
37/*
38 * Check the RCU kernel configuration parameters and print informative
39 * messages about anything out of the ordinary. If you like #ifdef, you
40 * will love this function.
41 */
42static void __init rcu_bootup_announce_oddness(void)
43{
44#ifdef CONFIG_RCU_TRACE
45 printk(KERN_INFO "\tRCU debugfs-based tracing is enabled.\n");
46#endif
47#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
48 printk(KERN_INFO "\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
49 CONFIG_RCU_FANOUT);
50#endif
51#ifdef CONFIG_RCU_FANOUT_EXACT
52 printk(KERN_INFO "\tHierarchical RCU autobalancing is disabled.\n");
53#endif
54#ifdef CONFIG_RCU_FAST_NO_HZ
55 printk(KERN_INFO
56 "\tRCU dyntick-idle grace-period acceleration is enabled.\n");
57#endif
58#ifdef CONFIG_PROVE_RCU
59 printk(KERN_INFO "\tRCU lockdep checking is enabled.\n");
60#endif
61#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
62 printk(KERN_INFO "\tRCU torture testing starts during boot.\n");
63#endif
81a294c4 64#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
a858af28
PM
65 printk(KERN_INFO "\tDump stacks of tasks blocking RCU-preempt GP.\n");
66#endif
67#if defined(CONFIG_RCU_CPU_STALL_INFO)
68 printk(KERN_INFO "\tAdditional per-CPU info printed with stalls.\n");
26845c28
PM
69#endif
70#if NUM_RCU_LVL_4 != 0
cc5df65b 71 printk(KERN_INFO "\tFour-level hierarchy is enabled.\n");
26845c28 72#endif
f885b7f2
PM
73 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
74 printk(KERN_INFO "\tExperimental boot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393
PM
75 if (nr_cpu_ids != NR_CPUS)
76 printk(KERN_INFO "\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
26845c28
PM
77}
78
f41d911f
PM
79#ifdef CONFIG_TREE_PREEMPT_RCU
80
037b64ed
PM
81struct rcu_state rcu_preempt_state =
82 RCU_STATE_INITIALIZER(rcu_preempt, call_rcu);
f41d911f 83DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
27f4d280 84static struct rcu_state *rcu_state = &rcu_preempt_state;
f41d911f 85
d9a3da06
PM
86static int rcu_preempted_readers_exp(struct rcu_node *rnp);
87
f41d911f
PM
88/*
89 * Tell them what RCU they are running.
90 */
0e0fc1c2 91static void __init rcu_bootup_announce(void)
f41d911f 92{
6cc68793 93 printk(KERN_INFO "Preemptible hierarchical RCU implementation.\n");
26845c28 94 rcu_bootup_announce_oddness();
f41d911f
PM
95}
96
97/*
98 * Return the number of RCU-preempt batches processed thus far
99 * for debug and statistics.
100 */
101long rcu_batches_completed_preempt(void)
102{
103 return rcu_preempt_state.completed;
104}
105EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
106
107/*
108 * Return the number of RCU batches processed thus far for debug & stats.
109 */
110long rcu_batches_completed(void)
111{
112 return rcu_batches_completed_preempt();
113}
114EXPORT_SYMBOL_GPL(rcu_batches_completed);
115
bf66f18e
PM
116/*
117 * Force a quiescent state for preemptible RCU.
118 */
119void rcu_force_quiescent_state(void)
120{
121 force_quiescent_state(&rcu_preempt_state, 0);
122}
123EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
124
f41d911f 125/*
6cc68793 126 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
127 * that this just means that the task currently running on the CPU is
128 * not in a quiescent state. There might be any number of tasks blocked
129 * while in an RCU read-side critical section.
25502a6c
PM
130 *
131 * Unlike the other rcu_*_qs() functions, callers to this function
132 * must disable irqs in order to protect the assignment to
133 * ->rcu_read_unlock_special.
f41d911f 134 */
c3422bea 135static void rcu_preempt_qs(int cpu)
f41d911f
PM
136{
137 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
25502a6c 138
e4cc1f22 139 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 140 barrier();
e4cc1f22 141 if (rdp->passed_quiesce == 0)
d4c08f2a 142 trace_rcu_grace_period("rcu_preempt", rdp->gpnum, "cpuqs");
e4cc1f22 143 rdp->passed_quiesce = 1;
25502a6c 144 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
145}
146
147/*
c3422bea
PM
148 * We have entered the scheduler, and the current task might soon be
149 * context-switched away from. If this task is in an RCU read-side
150 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
151 * record that fact, so we enqueue the task on the blkd_tasks list.
152 * The task will dequeue itself when it exits the outermost enclosing
153 * RCU read-side critical section. Therefore, the current grace period
154 * cannot be permitted to complete until the blkd_tasks list entries
155 * predating the current grace period drain, in other words, until
156 * rnp->gp_tasks becomes NULL.
c3422bea
PM
157 *
158 * Caller must disable preemption.
f41d911f 159 */
cba6d0d6 160static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
161{
162 struct task_struct *t = current;
c3422bea 163 unsigned long flags;
f41d911f
PM
164 struct rcu_data *rdp;
165 struct rcu_node *rnp;
166
10f39bb1 167 if (t->rcu_read_lock_nesting > 0 &&
f41d911f
PM
168 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
169
170 /* Possibly blocking in an RCU read-side critical section. */
cba6d0d6 171 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 172 rnp = rdp->mynode;
1304afb2 173 raw_spin_lock_irqsave(&rnp->lock, flags);
f41d911f 174 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
86848966 175 t->rcu_blocked_node = rnp;
f41d911f
PM
176
177 /*
178 * If this CPU has already checked in, then this task
179 * will hold up the next grace period rather than the
180 * current grace period. Queue the task accordingly.
181 * If the task is queued for the current grace period
182 * (i.e., this CPU has not yet passed through a quiescent
183 * state for the current grace period), then as long
184 * as that task remains queued, the current grace period
12f5f524
PM
185 * cannot end. Note that there is some uncertainty as
186 * to exactly when the current grace period started.
187 * We take a conservative approach, which can result
188 * in unnecessarily waiting on tasks that started very
189 * slightly after the current grace period began. C'est
190 * la vie!!!
b0e165c0
PM
191 *
192 * But first, note that the current CPU must still be
193 * on line!
f41d911f 194 */
b0e165c0 195 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 196 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
197 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
198 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
199 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
200#ifdef CONFIG_RCU_BOOST
201 if (rnp->boost_tasks != NULL)
202 rnp->boost_tasks = rnp->gp_tasks;
203#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
204 } else {
205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206 if (rnp->qsmask & rdp->grpmask)
207 rnp->gp_tasks = &t->rcu_node_entry;
208 }
d4c08f2a
PM
209 trace_rcu_preempt_task(rdp->rsp->name,
210 t->pid,
211 (rnp->qsmask & rdp->grpmask)
212 ? rnp->gpnum
213 : rnp->gpnum + 1);
1304afb2 214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1
PM
215 } else if (t->rcu_read_lock_nesting < 0 &&
216 t->rcu_read_unlock_special) {
217
218 /*
219 * Complete exit from RCU read-side critical section on
220 * behalf of preempted instance of __rcu_read_unlock().
221 */
222 rcu_read_unlock_special(t);
f41d911f
PM
223 }
224
225 /*
226 * Either we were not in an RCU read-side critical section to
227 * begin with, or we have now recorded that critical section
228 * globally. Either way, we can now note a quiescent state
229 * for this CPU. Again, if we were in an RCU read-side critical
230 * section, and if that critical section was blocking the current
231 * grace period, then the fact that the task has been enqueued
232 * means that we continue to block the current grace period.
233 */
e7d8842e 234 local_irq_save(flags);
cba6d0d6 235 rcu_preempt_qs(cpu);
e7d8842e 236 local_irq_restore(flags);
f41d911f
PM
237}
238
fc2219d4
PM
239/*
240 * Check for preempted RCU readers blocking the current grace period
241 * for the specified rcu_node structure. If the caller needs a reliable
242 * answer, it must hold the rcu_node's ->lock.
243 */
27f4d280 244static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 245{
12f5f524 246 return rnp->gp_tasks != NULL;
fc2219d4
PM
247}
248
b668c9cf
PM
249/*
250 * Record a quiescent state for all tasks that were previously queued
251 * on the specified rcu_node structure and that were blocking the current
252 * RCU grace period. The caller must hold the specified rnp->lock with
253 * irqs disabled, and this lock is released upon return, but irqs remain
254 * disabled.
255 */
d3f6bad3 256static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
257 __releases(rnp->lock)
258{
259 unsigned long mask;
260 struct rcu_node *rnp_p;
261
27f4d280 262 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 263 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
264 return; /* Still need more quiescent states! */
265 }
266
267 rnp_p = rnp->parent;
268 if (rnp_p == NULL) {
269 /*
270 * Either there is only one rcu_node in the tree,
271 * or tasks were kicked up to root rcu_node due to
272 * CPUs going offline.
273 */
d3f6bad3 274 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
275 return;
276 }
277
278 /* Report up the rest of the hierarchy. */
279 mask = rnp->grpmask;
1304afb2
PM
280 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
281 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
d3f6bad3 282 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
283}
284
12f5f524
PM
285/*
286 * Advance a ->blkd_tasks-list pointer to the next entry, instead
287 * returning NULL if at the end of the list.
288 */
289static struct list_head *rcu_next_node_entry(struct task_struct *t,
290 struct rcu_node *rnp)
291{
292 struct list_head *np;
293
294 np = t->rcu_node_entry.next;
295 if (np == &rnp->blkd_tasks)
296 np = NULL;
297 return np;
298}
299
b668c9cf
PM
300/*
301 * Handle special cases during rcu_read_unlock(), such as needing to
302 * notify RCU core processing or task having blocked during the RCU
303 * read-side critical section.
304 */
2a3fa843 305void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
306{
307 int empty;
d9a3da06 308 int empty_exp;
389abd48 309 int empty_exp_now;
f41d911f 310 unsigned long flags;
12f5f524 311 struct list_head *np;
82e78d80
PM
312#ifdef CONFIG_RCU_BOOST
313 struct rt_mutex *rbmp = NULL;
314#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
315 struct rcu_node *rnp;
316 int special;
317
318 /* NMI handlers cannot block and cannot safely manipulate state. */
319 if (in_nmi())
320 return;
321
322 local_irq_save(flags);
323
324 /*
325 * If RCU core is waiting for this CPU to exit critical section,
326 * let it know that we have done so.
327 */
328 special = t->rcu_read_unlock_special;
329 if (special & RCU_READ_UNLOCK_NEED_QS) {
c3422bea 330 rcu_preempt_qs(smp_processor_id());
f41d911f
PM
331 }
332
333 /* Hardware IRQ handlers cannot block. */
ec433f0c 334 if (in_irq() || in_serving_softirq()) {
f41d911f
PM
335 local_irq_restore(flags);
336 return;
337 }
338
339 /* Clean up if blocked during RCU read-side critical section. */
340 if (special & RCU_READ_UNLOCK_BLOCKED) {
341 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
342
dd5d19ba
PM
343 /*
344 * Remove this task from the list it blocked on. The
345 * task can migrate while we acquire the lock, but at
346 * most one time. So at most two passes through loop.
347 */
348 for (;;) {
86848966 349 rnp = t->rcu_blocked_node;
1304afb2 350 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
86848966 351 if (rnp == t->rcu_blocked_node)
dd5d19ba 352 break;
1304afb2 353 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 354 }
27f4d280 355 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
356 empty_exp = !rcu_preempted_readers_exp(rnp);
357 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 358 np = rcu_next_node_entry(t, rnp);
f41d911f 359 list_del_init(&t->rcu_node_entry);
82e78d80 360 t->rcu_blocked_node = NULL;
d4c08f2a
PM
361 trace_rcu_unlock_preempted_task("rcu_preempt",
362 rnp->gpnum, t->pid);
12f5f524
PM
363 if (&t->rcu_node_entry == rnp->gp_tasks)
364 rnp->gp_tasks = np;
365 if (&t->rcu_node_entry == rnp->exp_tasks)
366 rnp->exp_tasks = np;
27f4d280
PM
367#ifdef CONFIG_RCU_BOOST
368 if (&t->rcu_node_entry == rnp->boost_tasks)
369 rnp->boost_tasks = np;
82e78d80
PM
370 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
371 if (t->rcu_boost_mutex) {
372 rbmp = t->rcu_boost_mutex;
373 t->rcu_boost_mutex = NULL;
7765be2f 374 }
27f4d280 375#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
376
377 /*
378 * If this was the last task on the current list, and if
379 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
380 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
381 * so we must take a snapshot of the expedited state.
f41d911f 382 */
389abd48 383 empty_exp_now = !rcu_preempted_readers_exp(rnp);
d4c08f2a
PM
384 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
385 trace_rcu_quiescent_state_report("preempt_rcu",
386 rnp->gpnum,
387 0, rnp->qsmask,
388 rnp->level,
389 rnp->grplo,
390 rnp->grphi,
391 !!rnp->gp_tasks);
d3f6bad3 392 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 393 } else {
d4c08f2a 394 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 395 }
d9a3da06 396
27f4d280
PM
397#ifdef CONFIG_RCU_BOOST
398 /* Unboost if we were boosted. */
82e78d80
PM
399 if (rbmp)
400 rt_mutex_unlock(rbmp);
27f4d280
PM
401#endif /* #ifdef CONFIG_RCU_BOOST */
402
d9a3da06
PM
403 /*
404 * If this was the last task on the expedited lists,
405 * then we need to report up the rcu_node hierarchy.
406 */
389abd48 407 if (!empty_exp && empty_exp_now)
b40d293e 408 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
409 } else {
410 local_irq_restore(flags);
f41d911f 411 }
f41d911f
PM
412}
413
1ed509a2
PM
414#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
415
416/*
417 * Dump detailed information for all tasks blocking the current RCU
418 * grace period on the specified rcu_node structure.
419 */
420static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
421{
422 unsigned long flags;
1ed509a2
PM
423 struct task_struct *t;
424
12f5f524 425 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
426 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
427 raw_spin_unlock_irqrestore(&rnp->lock, flags);
428 return;
429 }
12f5f524
PM
430 t = list_entry(rnp->gp_tasks,
431 struct task_struct, rcu_node_entry);
432 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
433 sched_show_task(t);
434 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
435}
436
437/*
438 * Dump detailed information for all tasks blocking the current RCU
439 * grace period.
440 */
441static void rcu_print_detail_task_stall(struct rcu_state *rsp)
442{
443 struct rcu_node *rnp = rcu_get_root(rsp);
444
445 rcu_print_detail_task_stall_rnp(rnp);
446 rcu_for_each_leaf_node(rsp, rnp)
447 rcu_print_detail_task_stall_rnp(rnp);
448}
449
450#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
451
452static void rcu_print_detail_task_stall(struct rcu_state *rsp)
453{
454}
455
456#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
457
a858af28
PM
458#ifdef CONFIG_RCU_CPU_STALL_INFO
459
460static void rcu_print_task_stall_begin(struct rcu_node *rnp)
461{
462 printk(KERN_ERR "\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
463 rnp->level, rnp->grplo, rnp->grphi);
464}
465
466static void rcu_print_task_stall_end(void)
467{
468 printk(KERN_CONT "\n");
469}
470
471#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
472
473static void rcu_print_task_stall_begin(struct rcu_node *rnp)
474{
475}
476
477static void rcu_print_task_stall_end(void)
478{
479}
480
481#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
482
f41d911f
PM
483/*
484 * Scan the current list of tasks blocked within RCU read-side critical
485 * sections, printing out the tid of each.
486 */
9bc8b558 487static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 488{
f41d911f 489 struct task_struct *t;
9bc8b558 490 int ndetected = 0;
f41d911f 491
27f4d280 492 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 493 return 0;
a858af28 494 rcu_print_task_stall_begin(rnp);
12f5f524
PM
495 t = list_entry(rnp->gp_tasks,
496 struct task_struct, rcu_node_entry);
9bc8b558 497 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
a858af28 498 printk(KERN_CONT " P%d", t->pid);
9bc8b558
PM
499 ndetected++;
500 }
a858af28 501 rcu_print_task_stall_end();
9bc8b558 502 return ndetected;
f41d911f
PM
503}
504
b0e165c0
PM
505/*
506 * Check that the list of blocked tasks for the newly completed grace
507 * period is in fact empty. It is a serious bug to complete a grace
508 * period that still has RCU readers blocked! This function must be
509 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
510 * must be held by the caller.
12f5f524
PM
511 *
512 * Also, if there are blocked tasks on the list, they automatically
513 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
514 */
515static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
516{
27f4d280 517 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
518 if (!list_empty(&rnp->blkd_tasks))
519 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 520 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
521}
522
33f76148
PM
523#ifdef CONFIG_HOTPLUG_CPU
524
dd5d19ba
PM
525/*
526 * Handle tasklist migration for case in which all CPUs covered by the
527 * specified rcu_node have gone offline. Move them up to the root
528 * rcu_node. The reason for not just moving them to the immediate
529 * parent is to remove the need for rcu_read_unlock_special() to
530 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
531 * Returns true if there were tasks blocking the current RCU grace
532 * period.
dd5d19ba 533 *
237c80c5
PM
534 * Returns 1 if there was previously a task blocking the current grace
535 * period on the specified rcu_node structure.
536 *
dd5d19ba
PM
537 * The caller must hold rnp->lock with irqs disabled.
538 */
237c80c5
PM
539static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
540 struct rcu_node *rnp,
541 struct rcu_data *rdp)
dd5d19ba 542{
dd5d19ba
PM
543 struct list_head *lp;
544 struct list_head *lp_root;
d9a3da06 545 int retval = 0;
dd5d19ba 546 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 547 struct task_struct *t;
dd5d19ba 548
86848966
PM
549 if (rnp == rnp_root) {
550 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 551 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 552 }
12f5f524
PM
553
554 /* If we are on an internal node, complain bitterly. */
555 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
556
557 /*
12f5f524
PM
558 * Move tasks up to root rcu_node. Don't try to get fancy for
559 * this corner-case operation -- just put this node's tasks
560 * at the head of the root node's list, and update the root node's
561 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
562 * if non-NULL. This might result in waiting for more tasks than
563 * absolutely necessary, but this is a good performance/complexity
564 * tradeoff.
dd5d19ba 565 */
2036d94a 566 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
d9a3da06
PM
567 retval |= RCU_OFL_TASKS_NORM_GP;
568 if (rcu_preempted_readers_exp(rnp))
569 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
570 lp = &rnp->blkd_tasks;
571 lp_root = &rnp_root->blkd_tasks;
572 while (!list_empty(lp)) {
573 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
574 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
575 list_del(&t->rcu_node_entry);
576 t->rcu_blocked_node = rnp_root;
577 list_add(&t->rcu_node_entry, lp_root);
578 if (&t->rcu_node_entry == rnp->gp_tasks)
579 rnp_root->gp_tasks = rnp->gp_tasks;
580 if (&t->rcu_node_entry == rnp->exp_tasks)
581 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
582#ifdef CONFIG_RCU_BOOST
583 if (&t->rcu_node_entry == rnp->boost_tasks)
584 rnp_root->boost_tasks = rnp->boost_tasks;
585#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 586 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 587 }
27f4d280 588
1e3fd2b3
PM
589 rnp->gp_tasks = NULL;
590 rnp->exp_tasks = NULL;
27f4d280 591#ifdef CONFIG_RCU_BOOST
1e3fd2b3 592 rnp->boost_tasks = NULL;
5cc900cf
PM
593 /*
594 * In case root is being boosted and leaf was not. Make sure
595 * that we boost the tasks blocking the current grace period
596 * in this case.
597 */
27f4d280
PM
598 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
599 if (rnp_root->boost_tasks != NULL &&
5cc900cf
PM
600 rnp_root->boost_tasks != rnp_root->gp_tasks &&
601 rnp_root->boost_tasks != rnp_root->exp_tasks)
27f4d280
PM
602 rnp_root->boost_tasks = rnp_root->gp_tasks;
603 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
604#endif /* #ifdef CONFIG_RCU_BOOST */
605
237c80c5 606 return retval;
dd5d19ba
PM
607}
608
e5601400
PM
609#endif /* #ifdef CONFIG_HOTPLUG_CPU */
610
f41d911f
PM
611/*
612 * Check for a quiescent state from the current CPU. When a task blocks,
613 * the task is recorded in the corresponding CPU's rcu_node structure,
614 * which is checked elsewhere.
615 *
616 * Caller must disable hard irqs.
617 */
618static void rcu_preempt_check_callbacks(int cpu)
619{
620 struct task_struct *t = current;
621
622 if (t->rcu_read_lock_nesting == 0) {
c3422bea 623 rcu_preempt_qs(cpu);
f41d911f
PM
624 return;
625 }
10f39bb1
PM
626 if (t->rcu_read_lock_nesting > 0 &&
627 per_cpu(rcu_preempt_data, cpu).qs_pending)
c3422bea 628 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
629}
630
a46e0899
PM
631#ifdef CONFIG_RCU_BOOST
632
09223371
SL
633static void rcu_preempt_do_callbacks(void)
634{
635 rcu_do_batch(&rcu_preempt_state, &__get_cpu_var(rcu_preempt_data));
636}
637
a46e0899
PM
638#endif /* #ifdef CONFIG_RCU_BOOST */
639
f41d911f 640/*
6cc68793 641 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
642 */
643void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
644{
486e2593 645 __call_rcu(head, func, &rcu_preempt_state, 0);
f41d911f
PM
646}
647EXPORT_SYMBOL_GPL(call_rcu);
648
486e2593
PM
649/*
650 * Queue an RCU callback for lazy invocation after a grace period.
651 * This will likely be later named something like "call_rcu_lazy()",
652 * but this change will require some way of tagging the lazy RCU
653 * callbacks in the list of pending callbacks. Until then, this
654 * function may only be called from __kfree_rcu().
655 */
656void kfree_call_rcu(struct rcu_head *head,
657 void (*func)(struct rcu_head *rcu))
658{
659 __call_rcu(head, func, &rcu_preempt_state, 1);
660}
661EXPORT_SYMBOL_GPL(kfree_call_rcu);
662
6ebb237b
PM
663/**
664 * synchronize_rcu - wait until a grace period has elapsed.
665 *
666 * Control will return to the caller some time after a full grace
667 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
668 * read-side critical sections have completed. Note, however, that
669 * upon return from synchronize_rcu(), the caller might well be executing
670 * concurrently with new RCU read-side critical sections that began while
671 * synchronize_rcu() was waiting. RCU read-side critical sections are
672 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
6ebb237b
PM
673 */
674void synchronize_rcu(void)
675{
fe15d706
PM
676 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
677 !lock_is_held(&rcu_lock_map) &&
678 !lock_is_held(&rcu_sched_lock_map),
679 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
680 if (!rcu_scheduler_active)
681 return;
2c42818e 682 wait_rcu_gp(call_rcu);
6ebb237b
PM
683}
684EXPORT_SYMBOL_GPL(synchronize_rcu);
685
d9a3da06
PM
686static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
687static long sync_rcu_preempt_exp_count;
688static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
689
690/*
691 * Return non-zero if there are any tasks in RCU read-side critical
692 * sections blocking the current preemptible-RCU expedited grace period.
693 * If there is no preemptible-RCU expedited grace period currently in
694 * progress, returns zero unconditionally.
695 */
696static int rcu_preempted_readers_exp(struct rcu_node *rnp)
697{
12f5f524 698 return rnp->exp_tasks != NULL;
d9a3da06
PM
699}
700
701/*
702 * return non-zero if there is no RCU expedited grace period in progress
703 * for the specified rcu_node structure, in other words, if all CPUs and
704 * tasks covered by the specified rcu_node structure have done their bit
705 * for the current expedited grace period. Works only for preemptible
706 * RCU -- other RCU implementation use other means.
707 *
708 * Caller must hold sync_rcu_preempt_exp_mutex.
709 */
710static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
711{
712 return !rcu_preempted_readers_exp(rnp) &&
713 ACCESS_ONCE(rnp->expmask) == 0;
714}
715
716/*
717 * Report the exit from RCU read-side critical section for the last task
718 * that queued itself during or before the current expedited preemptible-RCU
719 * grace period. This event is reported either to the rcu_node structure on
720 * which the task was queued or to one of that rcu_node structure's ancestors,
721 * recursively up the tree. (Calm down, calm down, we do the recursion
722 * iteratively!)
723 *
b40d293e
TG
724 * Most callers will set the "wake" flag, but the task initiating the
725 * expedited grace period need not wake itself.
726 *
d9a3da06
PM
727 * Caller must hold sync_rcu_preempt_exp_mutex.
728 */
b40d293e
TG
729static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
730 bool wake)
d9a3da06
PM
731{
732 unsigned long flags;
733 unsigned long mask;
734
1304afb2 735 raw_spin_lock_irqsave(&rnp->lock, flags);
d9a3da06 736 for (;;) {
131906b0
PM
737 if (!sync_rcu_preempt_exp_done(rnp)) {
738 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 739 break;
131906b0 740 }
d9a3da06 741 if (rnp->parent == NULL) {
131906b0 742 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b40d293e
TG
743 if (wake)
744 wake_up(&sync_rcu_preempt_exp_wq);
d9a3da06
PM
745 break;
746 }
747 mask = rnp->grpmask;
1304afb2 748 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 749 rnp = rnp->parent;
1304afb2 750 raw_spin_lock(&rnp->lock); /* irqs already disabled */
d9a3da06
PM
751 rnp->expmask &= ~mask;
752 }
d9a3da06
PM
753}
754
755/*
756 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
757 * grace period for the specified rcu_node structure. If there are no such
758 * tasks, report it up the rcu_node hierarchy.
759 *
760 * Caller must hold sync_rcu_preempt_exp_mutex and rsp->onofflock.
761 */
762static void
763sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
764{
1217ed1b 765 unsigned long flags;
12f5f524 766 int must_wait = 0;
d9a3da06 767
1217ed1b 768 raw_spin_lock_irqsave(&rnp->lock, flags);
c701d5d9 769 if (list_empty(&rnp->blkd_tasks)) {
1217ed1b 770 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 771 } else {
12f5f524 772 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 773 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
774 must_wait = 1;
775 }
d9a3da06 776 if (!must_wait)
b40d293e 777 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
778}
779
236fefaf
PM
780/**
781 * synchronize_rcu_expedited - Brute-force RCU grace period
782 *
783 * Wait for an RCU-preempt grace period, but expedite it. The basic
784 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
785 * the ->blkd_tasks lists and wait for this list to drain. This consumes
786 * significant time on all CPUs and is unfriendly to real-time workloads,
787 * so is thus not recommended for any sort of common-case code.
788 * In fact, if you are using synchronize_rcu_expedited() in a loop,
789 * please restructure your code to batch your updates, and then Use a
790 * single synchronize_rcu() instead.
791 *
792 * Note that it is illegal to call this function while holding any lock
793 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
794 * to call this function from a CPU-hotplug notifier. Failing to observe
795 * these restriction will result in deadlock.
019129d5
PM
796 */
797void synchronize_rcu_expedited(void)
798{
d9a3da06
PM
799 unsigned long flags;
800 struct rcu_node *rnp;
801 struct rcu_state *rsp = &rcu_preempt_state;
802 long snap;
803 int trycount = 0;
804
805 smp_mb(); /* Caller's modifications seen first by other CPUs. */
806 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
807 smp_mb(); /* Above access cannot bleed into critical section. */
808
809 /*
810 * Acquire lock, falling back to synchronize_rcu() if too many
811 * lock-acquisition failures. Of course, if someone does the
812 * expedited grace period for us, just leave.
813 */
814 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
c701d5d9 815 if (trycount++ < 10) {
d9a3da06 816 udelay(trycount * num_online_cpus());
c701d5d9 817 } else {
d9a3da06
PM
818 synchronize_rcu();
819 return;
820 }
821 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
822 goto mb_ret; /* Others did our work for us. */
823 }
824 if ((ACCESS_ONCE(sync_rcu_preempt_exp_count) - snap) > 0)
825 goto unlock_mb_ret; /* Others did our work for us. */
826
12f5f524 827 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
828 synchronize_sched_expedited();
829
1304afb2 830 raw_spin_lock_irqsave(&rsp->onofflock, flags);
d9a3da06
PM
831
832 /* Initialize ->expmask for all non-leaf rcu_node structures. */
833 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1304afb2 834 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
d9a3da06 835 rnp->expmask = rnp->qsmaskinit;
1304afb2 836 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
d9a3da06
PM
837 }
838
12f5f524 839 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
840 rcu_for_each_leaf_node(rsp, rnp)
841 sync_rcu_preempt_exp_init(rsp, rnp);
842 if (NUM_RCU_NODES > 1)
843 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
844
1304afb2 845 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
d9a3da06 846
12f5f524 847 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
848 rnp = rcu_get_root(rsp);
849 wait_event(sync_rcu_preempt_exp_wq,
850 sync_rcu_preempt_exp_done(rnp));
851
852 /* Clean up and exit. */
853 smp_mb(); /* ensure expedited GP seen before counter increment. */
854 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
855unlock_mb_ret:
856 mutex_unlock(&sync_rcu_preempt_exp_mutex);
857mb_ret:
858 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
859}
860EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
861
e74f4c45
PM
862/**
863 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
864 */
865void rcu_barrier(void)
866{
037b64ed 867 _rcu_barrier(&rcu_preempt_state);
e74f4c45
PM
868}
869EXPORT_SYMBOL_GPL(rcu_barrier);
870
1eba8f84 871/*
6cc68793 872 * Initialize preemptible RCU's state structures.
1eba8f84
PM
873 */
874static void __init __rcu_init_preempt(void)
875{
394f99a9 876 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
877}
878
f41d911f
PM
879#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
880
27f4d280
PM
881static struct rcu_state *rcu_state = &rcu_sched_state;
882
f41d911f
PM
883/*
884 * Tell them what RCU they are running.
885 */
0e0fc1c2 886static void __init rcu_bootup_announce(void)
f41d911f
PM
887{
888 printk(KERN_INFO "Hierarchical RCU implementation.\n");
26845c28 889 rcu_bootup_announce_oddness();
f41d911f
PM
890}
891
892/*
893 * Return the number of RCU batches processed thus far for debug & stats.
894 */
895long rcu_batches_completed(void)
896{
897 return rcu_batches_completed_sched();
898}
899EXPORT_SYMBOL_GPL(rcu_batches_completed);
900
bf66f18e
PM
901/*
902 * Force a quiescent state for RCU, which, because there is no preemptible
903 * RCU, becomes the same as rcu-sched.
904 */
905void rcu_force_quiescent_state(void)
906{
907 rcu_sched_force_quiescent_state();
908}
909EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
910
cba6d0d6
PM
911/*
912 * Because preemptible RCU does not exist, we never have to check for
913 * CPUs being in quiescent states.
914 */
915static void rcu_preempt_note_context_switch(int cpu)
916{
917}
918
fc2219d4 919/*
6cc68793 920 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
921 * RCU readers.
922 */
27f4d280 923static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
924{
925 return 0;
926}
927
b668c9cf
PM
928#ifdef CONFIG_HOTPLUG_CPU
929
930/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 931static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf 932{
1304afb2 933 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
934}
935
936#endif /* #ifdef CONFIG_HOTPLUG_CPU */
937
1ed509a2 938/*
6cc68793 939 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
940 * tasks blocked within RCU read-side critical sections.
941 */
942static void rcu_print_detail_task_stall(struct rcu_state *rsp)
943{
944}
945
f41d911f 946/*
6cc68793 947 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
948 * tasks blocked within RCU read-side critical sections.
949 */
9bc8b558 950static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 951{
9bc8b558 952 return 0;
f41d911f
PM
953}
954
b0e165c0 955/*
6cc68793 956 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
957 * so there is no need to check for blocked tasks. So check only for
958 * bogus qsmask values.
b0e165c0
PM
959 */
960static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
961{
49e29126 962 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
963}
964
33f76148
PM
965#ifdef CONFIG_HOTPLUG_CPU
966
dd5d19ba 967/*
6cc68793 968 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
969 * tasks that were blocked within RCU read-side critical sections, and
970 * such non-existent tasks cannot possibly have been blocking the current
971 * grace period.
dd5d19ba 972 */
237c80c5
PM
973static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
974 struct rcu_node *rnp,
975 struct rcu_data *rdp)
dd5d19ba 976{
237c80c5 977 return 0;
dd5d19ba
PM
978}
979
e5601400
PM
980#endif /* #ifdef CONFIG_HOTPLUG_CPU */
981
f41d911f 982/*
6cc68793 983 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
984 * to check.
985 */
1eba8f84 986static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
987{
988}
989
486e2593
PM
990/*
991 * Queue an RCU callback for lazy invocation after a grace period.
992 * This will likely be later named something like "call_rcu_lazy()",
993 * but this change will require some way of tagging the lazy RCU
994 * callbacks in the list of pending callbacks. Until then, this
995 * function may only be called from __kfree_rcu().
996 *
997 * Because there is no preemptible RCU, we use RCU-sched instead.
998 */
999void kfree_call_rcu(struct rcu_head *head,
1000 void (*func)(struct rcu_head *rcu))
1001{
1002 __call_rcu(head, func, &rcu_sched_state, 1);
1003}
1004EXPORT_SYMBOL_GPL(kfree_call_rcu);
1005
019129d5
PM
1006/*
1007 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1008 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1009 */
1010void synchronize_rcu_expedited(void)
1011{
1012 synchronize_sched_expedited();
1013}
1014EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1015
d9a3da06
PM
1016#ifdef CONFIG_HOTPLUG_CPU
1017
1018/*
6cc68793 1019 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1020 * report on tasks preempted in RCU read-side critical sections during
1021 * expedited RCU grace periods.
1022 */
b40d293e
TG
1023static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1024 bool wake)
d9a3da06 1025{
d9a3da06
PM
1026}
1027
1028#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1029
e74f4c45 1030/*
6cc68793 1031 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1032 * another name for rcu_barrier_sched().
1033 */
1034void rcu_barrier(void)
1035{
1036 rcu_barrier_sched();
1037}
1038EXPORT_SYMBOL_GPL(rcu_barrier);
1039
1eba8f84 1040/*
6cc68793 1041 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1042 */
1043static void __init __rcu_init_preempt(void)
1044{
1045}
1046
f41d911f 1047#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1048
27f4d280
PM
1049#ifdef CONFIG_RCU_BOOST
1050
1051#include "rtmutex_common.h"
1052
0ea1f2eb
PM
1053#ifdef CONFIG_RCU_TRACE
1054
1055static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1056{
1057 if (list_empty(&rnp->blkd_tasks))
1058 rnp->n_balk_blkd_tasks++;
1059 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1060 rnp->n_balk_exp_gp_tasks++;
1061 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1062 rnp->n_balk_boost_tasks++;
1063 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1064 rnp->n_balk_notblocked++;
1065 else if (rnp->gp_tasks != NULL &&
a9f4793d 1066 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1067 rnp->n_balk_notyet++;
1068 else
1069 rnp->n_balk_nos++;
1070}
1071
1072#else /* #ifdef CONFIG_RCU_TRACE */
1073
1074static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1075{
1076}
1077
1078#endif /* #else #ifdef CONFIG_RCU_TRACE */
1079
27f4d280
PM
1080/*
1081 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1082 * or ->boost_tasks, advancing the pointer to the next task in the
1083 * ->blkd_tasks list.
1084 *
1085 * Note that irqs must be enabled: boosting the task can block.
1086 * Returns 1 if there are more tasks needing to be boosted.
1087 */
1088static int rcu_boost(struct rcu_node *rnp)
1089{
1090 unsigned long flags;
1091 struct rt_mutex mtx;
1092 struct task_struct *t;
1093 struct list_head *tb;
1094
1095 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1096 return 0; /* Nothing left to boost. */
1097
1098 raw_spin_lock_irqsave(&rnp->lock, flags);
1099
1100 /*
1101 * Recheck under the lock: all tasks in need of boosting
1102 * might exit their RCU read-side critical sections on their own.
1103 */
1104 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1105 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1106 return 0;
1107 }
1108
1109 /*
1110 * Preferentially boost tasks blocking expedited grace periods.
1111 * This cannot starve the normal grace periods because a second
1112 * expedited grace period must boost all blocked tasks, including
1113 * those blocking the pre-existing normal grace period.
1114 */
0ea1f2eb 1115 if (rnp->exp_tasks != NULL) {
27f4d280 1116 tb = rnp->exp_tasks;
0ea1f2eb
PM
1117 rnp->n_exp_boosts++;
1118 } else {
27f4d280 1119 tb = rnp->boost_tasks;
0ea1f2eb
PM
1120 rnp->n_normal_boosts++;
1121 }
1122 rnp->n_tasks_boosted++;
27f4d280
PM
1123
1124 /*
1125 * We boost task t by manufacturing an rt_mutex that appears to
1126 * be held by task t. We leave a pointer to that rt_mutex where
1127 * task t can find it, and task t will release the mutex when it
1128 * exits its outermost RCU read-side critical section. Then
1129 * simply acquiring this artificial rt_mutex will boost task
1130 * t's priority. (Thanks to tglx for suggesting this approach!)
1131 *
1132 * Note that task t must acquire rnp->lock to remove itself from
1133 * the ->blkd_tasks list, which it will do from exit() if from
1134 * nowhere else. We therefore are guaranteed that task t will
1135 * stay around at least until we drop rnp->lock. Note that
1136 * rnp->lock also resolves races between our priority boosting
1137 * and task t's exiting its outermost RCU read-side critical
1138 * section.
1139 */
1140 t = container_of(tb, struct task_struct, rcu_node_entry);
1141 rt_mutex_init_proxy_locked(&mtx, t);
1142 t->rcu_boost_mutex = &mtx;
27f4d280
PM
1143 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1144 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1145 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1146
4f89b336
PM
1147 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1148 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1149}
1150
1151/*
1152 * Timer handler to initiate waking up of boost kthreads that
1153 * have yielded the CPU due to excessive numbers of tasks to
1154 * boost. We wake up the per-rcu_node kthread, which in turn
1155 * will wake up the booster kthread.
1156 */
1157static void rcu_boost_kthread_timer(unsigned long arg)
1158{
1217ed1b 1159 invoke_rcu_node_kthread((struct rcu_node *)arg);
27f4d280
PM
1160}
1161
1162/*
1163 * Priority-boosting kthread. One per leaf rcu_node and one for the
1164 * root rcu_node.
1165 */
1166static int rcu_boost_kthread(void *arg)
1167{
1168 struct rcu_node *rnp = (struct rcu_node *)arg;
1169 int spincnt = 0;
1170 int more2boost;
1171
385680a9 1172 trace_rcu_utilization("Start boost kthread@init");
27f4d280 1173 for (;;) {
d71df90e 1174 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
385680a9 1175 trace_rcu_utilization("End boost kthread@rcu_wait");
08bca60a 1176 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
385680a9 1177 trace_rcu_utilization("Start boost kthread@rcu_wait");
d71df90e 1178 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1179 more2boost = rcu_boost(rnp);
1180 if (more2boost)
1181 spincnt++;
1182 else
1183 spincnt = 0;
1184 if (spincnt > 10) {
385680a9 1185 trace_rcu_utilization("End boost kthread@rcu_yield");
27f4d280 1186 rcu_yield(rcu_boost_kthread_timer, (unsigned long)rnp);
385680a9 1187 trace_rcu_utilization("Start boost kthread@rcu_yield");
27f4d280
PM
1188 spincnt = 0;
1189 }
1190 }
1217ed1b 1191 /* NOTREACHED */
385680a9 1192 trace_rcu_utilization("End boost kthread@notreached");
27f4d280
PM
1193 return 0;
1194}
1195
1196/*
1197 * Check to see if it is time to start boosting RCU readers that are
1198 * blocking the current grace period, and, if so, tell the per-rcu_node
1199 * kthread to start boosting them. If there is an expedited grace
1200 * period in progress, it is always time to boost.
1201 *
b065a853
PM
1202 * The caller must hold rnp->lock, which this function releases.
1203 * The ->boost_kthread_task is immortal, so we don't need to worry
1204 * about it going away.
27f4d280 1205 */
1217ed1b 1206static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280
PM
1207{
1208 struct task_struct *t;
1209
0ea1f2eb
PM
1210 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1211 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1212 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1213 return;
0ea1f2eb 1214 }
27f4d280
PM
1215 if (rnp->exp_tasks != NULL ||
1216 (rnp->gp_tasks != NULL &&
1217 rnp->boost_tasks == NULL &&
1218 rnp->qsmask == 0 &&
1219 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1220 if (rnp->exp_tasks == NULL)
1221 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1222 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1223 t = rnp->boost_kthread_task;
1224 if (t != NULL)
1225 wake_up_process(t);
1217ed1b 1226 } else {
0ea1f2eb 1227 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1228 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1229 }
27f4d280
PM
1230}
1231
a46e0899
PM
1232/*
1233 * Wake up the per-CPU kthread to invoke RCU callbacks.
1234 */
1235static void invoke_rcu_callbacks_kthread(void)
1236{
1237 unsigned long flags;
1238
1239 local_irq_save(flags);
1240 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121
SL
1241 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1242 current != __this_cpu_read(rcu_cpu_kthread_task))
1243 wake_up_process(__this_cpu_read(rcu_cpu_kthread_task));
a46e0899
PM
1244 local_irq_restore(flags);
1245}
1246
dff1672d
PM
1247/*
1248 * Is the current CPU running the RCU-callbacks kthread?
1249 * Caller must have preemption disabled.
1250 */
1251static bool rcu_is_callbacks_kthread(void)
1252{
1253 return __get_cpu_var(rcu_cpu_kthread_task) == current;
1254}
1255
0f962a5e
PM
1256/*
1257 * Set the affinity of the boost kthread. The CPU-hotplug locks are
1258 * held, so no one should be messing with the existence of the boost
1259 * kthread.
1260 */
27f4d280
PM
1261static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp,
1262 cpumask_var_t cm)
1263{
27f4d280
PM
1264 struct task_struct *t;
1265
27f4d280
PM
1266 t = rnp->boost_kthread_task;
1267 if (t != NULL)
1268 set_cpus_allowed_ptr(rnp->boost_kthread_task, cm);
27f4d280
PM
1269}
1270
1271#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1272
1273/*
1274 * Do priority-boost accounting for the start of a new grace period.
1275 */
1276static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1277{
1278 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1279}
1280
27f4d280
PM
1281/*
1282 * Create an RCU-boost kthread for the specified node if one does not
1283 * already exist. We only create this kthread for preemptible RCU.
1284 * Returns zero if all is well, a negated errno otherwise.
1285 */
1286static int __cpuinit rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1287 struct rcu_node *rnp,
1288 int rnp_index)
1289{
1290 unsigned long flags;
1291 struct sched_param sp;
1292 struct task_struct *t;
1293
1294 if (&rcu_preempt_state != rsp)
1295 return 0;
a46e0899 1296 rsp->boost = 1;
27f4d280
PM
1297 if (rnp->boost_kthread_task != NULL)
1298 return 0;
1299 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1300 "rcub/%d", rnp_index);
27f4d280
PM
1301 if (IS_ERR(t))
1302 return PTR_ERR(t);
1303 raw_spin_lock_irqsave(&rnp->lock, flags);
1304 rnp->boost_kthread_task = t;
1305 raw_spin_unlock_irqrestore(&rnp->lock, flags);
5b61b0ba 1306 sp.sched_priority = RCU_BOOST_PRIO;
27f4d280 1307 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1308 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1309 return 0;
1310}
1311
f8b7fc6b
PM
1312#ifdef CONFIG_HOTPLUG_CPU
1313
1314/*
1315 * Stop the RCU's per-CPU kthread when its CPU goes offline,.
1316 */
1317static void rcu_stop_cpu_kthread(int cpu)
1318{
1319 struct task_struct *t;
1320
1321 /* Stop the CPU's kthread. */
1322 t = per_cpu(rcu_cpu_kthread_task, cpu);
1323 if (t != NULL) {
1324 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1325 kthread_stop(t);
1326 }
1327}
1328
1329#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1330
1331static void rcu_kthread_do_work(void)
1332{
1333 rcu_do_batch(&rcu_sched_state, &__get_cpu_var(rcu_sched_data));
1334 rcu_do_batch(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1335 rcu_preempt_do_callbacks();
1336}
1337
1338/*
1339 * Wake up the specified per-rcu_node-structure kthread.
1340 * Because the per-rcu_node kthreads are immortal, we don't need
1341 * to do anything to keep them alive.
1342 */
1343static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1344{
1345 struct task_struct *t;
1346
1347 t = rnp->node_kthread_task;
1348 if (t != NULL)
1349 wake_up_process(t);
1350}
1351
1352/*
1353 * Set the specified CPU's kthread to run RT or not, as specified by
1354 * the to_rt argument. The CPU-hotplug locks are held, so the task
1355 * is not going away.
1356 */
1357static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1358{
1359 int policy;
1360 struct sched_param sp;
1361 struct task_struct *t;
1362
1363 t = per_cpu(rcu_cpu_kthread_task, cpu);
1364 if (t == NULL)
1365 return;
1366 if (to_rt) {
1367 policy = SCHED_FIFO;
1368 sp.sched_priority = RCU_KTHREAD_PRIO;
1369 } else {
1370 policy = SCHED_NORMAL;
1371 sp.sched_priority = 0;
1372 }
1373 sched_setscheduler_nocheck(t, policy, &sp);
1374}
1375
1376/*
1377 * Timer handler to initiate the waking up of per-CPU kthreads that
1378 * have yielded the CPU due to excess numbers of RCU callbacks.
1379 * We wake up the per-rcu_node kthread, which in turn will wake up
1380 * the booster kthread.
1381 */
1382static void rcu_cpu_kthread_timer(unsigned long arg)
1383{
1384 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1385 struct rcu_node *rnp = rdp->mynode;
1386
1387 atomic_or(rdp->grpmask, &rnp->wakemask);
1388 invoke_rcu_node_kthread(rnp);
1389}
1390
1391/*
1392 * Drop to non-real-time priority and yield, but only after posting a
1393 * timer that will cause us to regain our real-time priority if we
1394 * remain preempted. Either way, we restore our real-time priority
1395 * before returning.
1396 */
1397static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1398{
1399 struct sched_param sp;
1400 struct timer_list yield_timer;
5b61b0ba 1401 int prio = current->rt_priority;
f8b7fc6b
PM
1402
1403 setup_timer_on_stack(&yield_timer, f, arg);
1404 mod_timer(&yield_timer, jiffies + 2);
1405 sp.sched_priority = 0;
1406 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1407 set_user_nice(current, 19);
1408 schedule();
5b61b0ba
MG
1409 set_user_nice(current, 0);
1410 sp.sched_priority = prio;
f8b7fc6b
PM
1411 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1412 del_timer(&yield_timer);
1413}
1414
1415/*
1416 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1417 * This can happen while the corresponding CPU is either coming online
1418 * or going offline. We cannot wait until the CPU is fully online
1419 * before starting the kthread, because the various notifier functions
1420 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1421 * the corresponding CPU is online.
1422 *
1423 * Return 1 if the kthread needs to stop, 0 otherwise.
1424 *
1425 * Caller must disable bh. This function can momentarily enable it.
1426 */
1427static int rcu_cpu_kthread_should_stop(int cpu)
1428{
1429 while (cpu_is_offline(cpu) ||
1430 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1431 smp_processor_id() != cpu) {
1432 if (kthread_should_stop())
1433 return 1;
1434 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1435 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1436 local_bh_enable();
1437 schedule_timeout_uninterruptible(1);
1438 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1439 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1440 local_bh_disable();
1441 }
1442 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1443 return 0;
1444}
1445
1446/*
1447 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1448 * RCU softirq used in flavors and configurations of RCU that do not
1449 * support RCU priority boosting.
f8b7fc6b
PM
1450 */
1451static int rcu_cpu_kthread(void *arg)
1452{
1453 int cpu = (int)(long)arg;
1454 unsigned long flags;
1455 int spincnt = 0;
1456 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1457 char work;
1458 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1459
385680a9 1460 trace_rcu_utilization("Start CPU kthread@init");
f8b7fc6b
PM
1461 for (;;) {
1462 *statusp = RCU_KTHREAD_WAITING;
385680a9 1463 trace_rcu_utilization("End CPU kthread@rcu_wait");
f8b7fc6b 1464 rcu_wait(*workp != 0 || kthread_should_stop());
385680a9 1465 trace_rcu_utilization("Start CPU kthread@rcu_wait");
f8b7fc6b
PM
1466 local_bh_disable();
1467 if (rcu_cpu_kthread_should_stop(cpu)) {
1468 local_bh_enable();
1469 break;
1470 }
1471 *statusp = RCU_KTHREAD_RUNNING;
1472 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1473 local_irq_save(flags);
1474 work = *workp;
1475 *workp = 0;
1476 local_irq_restore(flags);
1477 if (work)
1478 rcu_kthread_do_work();
1479 local_bh_enable();
1480 if (*workp != 0)
1481 spincnt++;
1482 else
1483 spincnt = 0;
1484 if (spincnt > 10) {
1485 *statusp = RCU_KTHREAD_YIELDING;
385680a9 1486 trace_rcu_utilization("End CPU kthread@rcu_yield");
f8b7fc6b 1487 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
385680a9 1488 trace_rcu_utilization("Start CPU kthread@rcu_yield");
f8b7fc6b
PM
1489 spincnt = 0;
1490 }
1491 }
1492 *statusp = RCU_KTHREAD_STOPPED;
385680a9 1493 trace_rcu_utilization("End CPU kthread@term");
f8b7fc6b
PM
1494 return 0;
1495}
1496
1497/*
1498 * Spawn a per-CPU kthread, setting up affinity and priority.
1499 * Because the CPU hotplug lock is held, no other CPU will be attempting
1500 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1501 * attempting to access it during boot, but the locking in kthread_bind()
1502 * will enforce sufficient ordering.
1503 *
1504 * Please note that we cannot simply refuse to wake up the per-CPU
1505 * kthread because kthreads are created in TASK_UNINTERRUPTIBLE state,
1506 * which can result in softlockup complaints if the task ends up being
1507 * idle for more than a couple of minutes.
1508 *
1509 * However, please note also that we cannot bind the per-CPU kthread to its
1510 * CPU until that CPU is fully online. We also cannot wait until the
1511 * CPU is fully online before we create its per-CPU kthread, as this would
1512 * deadlock the system when CPU notifiers tried waiting for grace
1513 * periods. So we bind the per-CPU kthread to its CPU only if the CPU
1514 * is online. If its CPU is not yet fully online, then the code in
1515 * rcu_cpu_kthread() will wait until it is fully online, and then do
1516 * the binding.
1517 */
1518static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1519{
1520 struct sched_param sp;
1521 struct task_struct *t;
1522
b0d30417 1523 if (!rcu_scheduler_fully_active ||
f8b7fc6b
PM
1524 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1525 return 0;
1f288094
ED
1526 t = kthread_create_on_node(rcu_cpu_kthread,
1527 (void *)(long)cpu,
1528 cpu_to_node(cpu),
5b61b0ba 1529 "rcuc/%d", cpu);
f8b7fc6b
PM
1530 if (IS_ERR(t))
1531 return PTR_ERR(t);
1532 if (cpu_online(cpu))
1533 kthread_bind(t, cpu);
1534 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1535 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1536 sp.sched_priority = RCU_KTHREAD_PRIO;
1537 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1538 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1539 wake_up_process(t); /* Get to TASK_INTERRUPTIBLE quickly. */
1540 return 0;
1541}
1542
1543/*
1544 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1545 * kthreads when needed. We ignore requests to wake up kthreads
1546 * for offline CPUs, which is OK because force_quiescent_state()
1547 * takes care of this case.
1548 */
1549static int rcu_node_kthread(void *arg)
1550{
1551 int cpu;
1552 unsigned long flags;
1553 unsigned long mask;
1554 struct rcu_node *rnp = (struct rcu_node *)arg;
1555 struct sched_param sp;
1556 struct task_struct *t;
1557
1558 for (;;) {
1559 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1560 rcu_wait(atomic_read(&rnp->wakemask) != 0);
1561 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1562 raw_spin_lock_irqsave(&rnp->lock, flags);
1563 mask = atomic_xchg(&rnp->wakemask, 0);
1564 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1565 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1566 if ((mask & 0x1) == 0)
1567 continue;
1568 preempt_disable();
1569 t = per_cpu(rcu_cpu_kthread_task, cpu);
1570 if (!cpu_online(cpu) || t == NULL) {
1571 preempt_enable();
1572 continue;
1573 }
1574 per_cpu(rcu_cpu_has_work, cpu) = 1;
1575 sp.sched_priority = RCU_KTHREAD_PRIO;
1576 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1577 preempt_enable();
1578 }
1579 }
1580 /* NOTREACHED */
1581 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1582 return 0;
1583}
1584
1585/*
1586 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1587 * served by the rcu_node in question. The CPU hotplug lock is still
1588 * held, so the value of rnp->qsmaskinit will be stable.
1589 *
1590 * We don't include outgoingcpu in the affinity set, use -1 if there is
1591 * no outgoing CPU. If there are no CPUs left in the affinity set,
1592 * this function allows the kthread to execute on any CPU.
1593 */
1594static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1595{
1596 cpumask_var_t cm;
1597 int cpu;
1598 unsigned long mask = rnp->qsmaskinit;
1599
1600 if (rnp->node_kthread_task == NULL)
1601 return;
1602 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1603 return;
1604 cpumask_clear(cm);
1605 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1606 if ((mask & 0x1) && cpu != outgoingcpu)
1607 cpumask_set_cpu(cpu, cm);
1608 if (cpumask_weight(cm) == 0) {
1609 cpumask_setall(cm);
1610 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1611 cpumask_clear_cpu(cpu, cm);
1612 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1613 }
1614 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1615 rcu_boost_kthread_setaffinity(rnp, cm);
1616 free_cpumask_var(cm);
1617}
1618
1619/*
1620 * Spawn a per-rcu_node kthread, setting priority and affinity.
1621 * Called during boot before online/offline can happen, or, if
1622 * during runtime, with the main CPU-hotplug locks held. So only
1623 * one of these can be executing at a time.
1624 */
1625static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1626 struct rcu_node *rnp)
1627{
1628 unsigned long flags;
1629 int rnp_index = rnp - &rsp->node[0];
1630 struct sched_param sp;
1631 struct task_struct *t;
1632
b0d30417 1633 if (!rcu_scheduler_fully_active ||
f8b7fc6b
PM
1634 rnp->qsmaskinit == 0)
1635 return 0;
1636 if (rnp->node_kthread_task == NULL) {
1637 t = kthread_create(rcu_node_kthread, (void *)rnp,
5b61b0ba 1638 "rcun/%d", rnp_index);
f8b7fc6b
PM
1639 if (IS_ERR(t))
1640 return PTR_ERR(t);
1641 raw_spin_lock_irqsave(&rnp->lock, flags);
1642 rnp->node_kthread_task = t;
1643 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1644 sp.sched_priority = 99;
1645 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1646 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1647 }
1648 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1649}
1650
1651/*
1652 * Spawn all kthreads -- called as soon as the scheduler is running.
1653 */
1654static int __init rcu_spawn_kthreads(void)
1655{
1656 int cpu;
1657 struct rcu_node *rnp;
1658
b0d30417 1659 rcu_scheduler_fully_active = 1;
f8b7fc6b
PM
1660 for_each_possible_cpu(cpu) {
1661 per_cpu(rcu_cpu_has_work, cpu) = 0;
1662 if (cpu_online(cpu))
1663 (void)rcu_spawn_one_cpu_kthread(cpu);
1664 }
1665 rnp = rcu_get_root(rcu_state);
1666 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1667 if (NUM_RCU_NODES > 1) {
1668 rcu_for_each_leaf_node(rcu_state, rnp)
1669 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1670 }
1671 return 0;
1672}
1673early_initcall(rcu_spawn_kthreads);
1674
1675static void __cpuinit rcu_prepare_kthreads(int cpu)
1676{
1677 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
1678 struct rcu_node *rnp = rdp->mynode;
1679
1680 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
b0d30417 1681 if (rcu_scheduler_fully_active) {
f8b7fc6b
PM
1682 (void)rcu_spawn_one_cpu_kthread(cpu);
1683 if (rnp->node_kthread_task == NULL)
1684 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1685 }
1686}
1687
27f4d280
PM
1688#else /* #ifdef CONFIG_RCU_BOOST */
1689
1217ed1b 1690static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280 1691{
1217ed1b 1692 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1693}
1694
a46e0899 1695static void invoke_rcu_callbacks_kthread(void)
27f4d280 1696{
a46e0899 1697 WARN_ON_ONCE(1);
27f4d280
PM
1698}
1699
dff1672d
PM
1700static bool rcu_is_callbacks_kthread(void)
1701{
1702 return false;
1703}
1704
27f4d280
PM
1705static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1706{
1707}
1708
f8b7fc6b
PM
1709#ifdef CONFIG_HOTPLUG_CPU
1710
1711static void rcu_stop_cpu_kthread(int cpu)
1712{
1713}
1714
1715#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1716
1717static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1718{
1719}
1720
1721static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1722{
1723}
1724
b0d30417
PM
1725static int __init rcu_scheduler_really_started(void)
1726{
1727 rcu_scheduler_fully_active = 1;
1728 return 0;
1729}
1730early_initcall(rcu_scheduler_really_started);
1731
f8b7fc6b
PM
1732static void __cpuinit rcu_prepare_kthreads(int cpu)
1733{
1734}
1735
27f4d280
PM
1736#endif /* #else #ifdef CONFIG_RCU_BOOST */
1737
8bd93a2c
PM
1738#if !defined(CONFIG_RCU_FAST_NO_HZ)
1739
1740/*
1741 * Check to see if any future RCU-related work will need to be done
1742 * by the current CPU, even if none need be done immediately, returning
1743 * 1 if so. This function is part of the RCU implementation; it is -not-
1744 * an exported member of the RCU API.
1745 *
7cb92499
PM
1746 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1747 * any flavor of RCU.
8bd93a2c 1748 */
aa9b1630 1749int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
8bd93a2c 1750{
aa9b1630 1751 *delta_jiffies = ULONG_MAX;
aea1b35e
PM
1752 return rcu_cpu_has_callbacks(cpu);
1753}
1754
7cb92499
PM
1755/*
1756 * Because we do not have RCU_FAST_NO_HZ, don't bother initializing for it.
1757 */
1758static void rcu_prepare_for_idle_init(int cpu)
1759{
1760}
1761
1762/*
1763 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1764 * after it.
1765 */
1766static void rcu_cleanup_after_idle(int cpu)
1767{
1768}
1769
aea1b35e 1770/*
a858af28 1771 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1772 * is nothing.
1773 */
1774static void rcu_prepare_for_idle(int cpu)
1775{
1776}
1777
c57afe80
PM
1778/*
1779 * Don't bother keeping a running count of the number of RCU callbacks
1780 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1781 */
1782static void rcu_idle_count_callbacks_posted(void)
1783{
1784}
1785
8bd93a2c
PM
1786#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1787
f23f7fa1
PM
1788/*
1789 * This code is invoked when a CPU goes idle, at which point we want
1790 * to have the CPU do everything required for RCU so that it can enter
1791 * the energy-efficient dyntick-idle mode. This is handled by a
1792 * state machine implemented by rcu_prepare_for_idle() below.
1793 *
1794 * The following three proprocessor symbols control this state machine:
1795 *
1796 * RCU_IDLE_FLUSHES gives the maximum number of times that we will attempt
1797 * to satisfy RCU. Beyond this point, it is better to incur a periodic
1798 * scheduling-clock interrupt than to loop through the state machine
1799 * at full power.
1800 * RCU_IDLE_OPT_FLUSHES gives the number of RCU_IDLE_FLUSHES that are
1801 * optional if RCU does not need anything immediately from this
1802 * CPU, even if this CPU still has RCU callbacks queued. The first
1803 * times through the state machine are mandatory: we need to give
1804 * the state machine a chance to communicate a quiescent state
1805 * to the RCU core.
1806 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1807 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1808 * is sized to be roughly one RCU grace period. Those energy-efficiency
1809 * benchmarkers who might otherwise be tempted to set this to a large
1810 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1811 * system. And if you are -that- concerned about energy efficiency,
1812 * just power the system down and be done with it!
778d250a
PM
1813 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1814 * permitted to sleep in dyntick-idle mode with only lazy RCU
1815 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1816 *
1817 * The values below work well in practice. If future workloads require
1818 * adjustment, they can be converted into kernel config parameters, though
1819 * making the state machine smarter might be a better option.
1820 */
1821#define RCU_IDLE_FLUSHES 5 /* Number of dyntick-idle tries. */
1822#define RCU_IDLE_OPT_FLUSHES 3 /* Optional dyntick-idle tries. */
e84c48ae 1823#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1824#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1825
9d2ad243
PM
1826extern int tick_nohz_enabled;
1827
486e2593
PM
1828/*
1829 * Does the specified flavor of RCU have non-lazy callbacks pending on
1830 * the specified CPU? Both RCU flavor and CPU are specified by the
1831 * rcu_data structure.
1832 */
1833static bool __rcu_cpu_has_nonlazy_callbacks(struct rcu_data *rdp)
1834{
1835 return rdp->qlen != rdp->qlen_lazy;
1836}
1837
1838#ifdef CONFIG_TREE_PREEMPT_RCU
1839
1840/*
1841 * Are there non-lazy RCU-preempt callbacks? (There cannot be if there
1842 * is no RCU-preempt in the kernel.)
1843 */
1844static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1845{
1846 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
1847
1848 return __rcu_cpu_has_nonlazy_callbacks(rdp);
1849}
1850
1851#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1852
1853static bool rcu_preempt_cpu_has_nonlazy_callbacks(int cpu)
1854{
1855 return 0;
1856}
1857
1858#endif /* else #ifdef CONFIG_TREE_PREEMPT_RCU */
1859
1860/*
1861 * Does any flavor of RCU have non-lazy callbacks on the specified CPU?
1862 */
1863static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
1864{
1865 return __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_sched_data, cpu)) ||
1866 __rcu_cpu_has_nonlazy_callbacks(&per_cpu(rcu_bh_data, cpu)) ||
1867 rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
1868}
1869
aa9b1630
PM
1870/*
1871 * Allow the CPU to enter dyntick-idle mode if either: (1) There are no
1872 * callbacks on this CPU, (2) this CPU has not yet attempted to enter
1873 * dyntick-idle mode, or (3) this CPU is in the process of attempting to
1874 * enter dyntick-idle mode. Otherwise, if we have recently tried and failed
1875 * to enter dyntick-idle mode, we refuse to try to enter it. After all,
1876 * it is better to incur scheduling-clock interrupts than to spin
1877 * continuously for the same time duration!
1878 *
1879 * The delta_jiffies argument is used to store the time when RCU is
1880 * going to need the CPU again if it still has callbacks. The reason
1881 * for this is that rcu_prepare_for_idle() might need to post a timer,
1882 * but if so, it will do so after tick_nohz_stop_sched_tick() has set
1883 * the wakeup time for this CPU. This means that RCU's timer can be
1884 * delayed until the wakeup time, which defeats the purpose of posting
1885 * a timer.
1886 */
1887int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
1888{
1889 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1890
1891 /* Flag a new idle sojourn to the idle-entry state machine. */
1892 rdtp->idle_first_pass = 1;
1893 /* If no callbacks, RCU doesn't need the CPU. */
1894 if (!rcu_cpu_has_callbacks(cpu)) {
1895 *delta_jiffies = ULONG_MAX;
1896 return 0;
1897 }
1898 if (rdtp->dyntick_holdoff == jiffies) {
1899 /* RCU recently tried and failed, so don't try again. */
1900 *delta_jiffies = 1;
1901 return 1;
1902 }
1903 /* Set up for the possibility that RCU will post a timer. */
e84c48ae
PM
1904 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
1905 *delta_jiffies = round_up(RCU_IDLE_GP_DELAY + jiffies,
1906 RCU_IDLE_GP_DELAY) - jiffies;
1907 } else {
1908 *delta_jiffies = jiffies + RCU_IDLE_LAZY_GP_DELAY;
1909 *delta_jiffies = round_jiffies(*delta_jiffies) - jiffies;
1910 }
aa9b1630
PM
1911 return 0;
1912}
1913
21e52e15
PM
1914/*
1915 * Handler for smp_call_function_single(). The only point of this
1916 * handler is to wake the CPU up, so the handler does only tracing.
1917 */
1918void rcu_idle_demigrate(void *unused)
1919{
1920 trace_rcu_prep_idle("Demigrate");
1921}
1922
7cb92499
PM
1923/*
1924 * Timer handler used to force CPU to start pushing its remaining RCU
1925 * callbacks in the case where it entered dyntick-idle mode with callbacks
1926 * pending. The hander doesn't really need to do anything because the
1927 * real work is done upon re-entry to idle, or by the next scheduling-clock
1928 * interrupt should idle not be re-entered.
21e52e15
PM
1929 *
1930 * One special case: the timer gets migrated without awakening the CPU
1931 * on which the timer was scheduled on. In this case, we must wake up
1932 * that CPU. We do so with smp_call_function_single().
7cb92499 1933 */
21e52e15 1934static void rcu_idle_gp_timer_func(unsigned long cpu_in)
7cb92499 1935{
21e52e15
PM
1936 int cpu = (int)cpu_in;
1937
7cb92499 1938 trace_rcu_prep_idle("Timer");
21e52e15
PM
1939 if (cpu != smp_processor_id())
1940 smp_call_function_single(cpu, rcu_idle_demigrate, NULL, 0);
1941 else
1942 WARN_ON_ONCE(1); /* Getting here can hang the system... */
7cb92499
PM
1943}
1944
1945/*
1946 * Initialize the timer used to pull CPUs out of dyntick-idle mode.
1947 */
1948static void rcu_prepare_for_idle_init(int cpu)
1949{
5955f7ee
PM
1950 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1951
1952 rdtp->dyntick_holdoff = jiffies - 1;
1953 setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
1954 rdtp->idle_gp_timer_expires = jiffies - 1;
1955 rdtp->idle_first_pass = 1;
7cb92499
PM
1956}
1957
1958/*
1959 * Clean up for exit from idle. Because we are exiting from idle, there
5955f7ee 1960 * is no longer any point to ->idle_gp_timer, so cancel it. This will
7cb92499
PM
1961 * do nothing if this timer is not active, so just cancel it unconditionally.
1962 */
1963static void rcu_cleanup_after_idle(int cpu)
1964{
5955f7ee
PM
1965 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1966
1967 del_timer(&rdtp->idle_gp_timer);
2fdbb31b 1968 trace_rcu_prep_idle("Cleanup after idle");
9d2ad243 1969 rdtp->tick_nohz_enabled_snap = ACCESS_ONCE(tick_nohz_enabled);
7cb92499
PM
1970}
1971
aea1b35e
PM
1972/*
1973 * Check to see if any RCU-related work can be done by the current CPU,
1974 * and if so, schedule a softirq to get it done. This function is part
1975 * of the RCU implementation; it is -not- an exported member of the RCU API.
8bd93a2c 1976 *
aea1b35e
PM
1977 * The idea is for the current CPU to clear out all work required by the
1978 * RCU core for the current grace period, so that this CPU can be permitted
1979 * to enter dyntick-idle mode. In some cases, it will need to be awakened
1980 * at the end of the grace period by whatever CPU ends the grace period.
1981 * This allows CPUs to go dyntick-idle more quickly, and to reduce the
1982 * number of wakeups by a modest integer factor.
a47cd880
PM
1983 *
1984 * Because it is not legal to invoke rcu_process_callbacks() with irqs
1985 * disabled, we do one pass of force_quiescent_state(), then do a
a46e0899 1986 * invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
5955f7ee 1987 * later. The ->dyntick_drain field controls the sequencing.
aea1b35e
PM
1988 *
1989 * The caller must have disabled interrupts.
8bd93a2c 1990 */
aea1b35e 1991static void rcu_prepare_for_idle(int cpu)
8bd93a2c 1992{
f511fc62 1993 struct timer_list *tp;
5955f7ee 1994 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
9d2ad243
PM
1995 int tne;
1996
1997 /* Handle nohz enablement switches conservatively. */
1998 tne = ACCESS_ONCE(tick_nohz_enabled);
1999 if (tne != rdtp->tick_nohz_enabled_snap) {
2000 if (rcu_cpu_has_callbacks(cpu))
2001 invoke_rcu_core(); /* force nohz to see update. */
2002 rdtp->tick_nohz_enabled_snap = tne;
2003 return;
2004 }
2005 if (!tne)
2006 return;
f511fc62 2007
c57afe80
PM
2008 /*
2009 * If this is an idle re-entry, for example, due to use of
2010 * RCU_NONIDLE() or the new idle-loop tracing API within the idle
2011 * loop, then don't take any state-machine actions, unless the
2012 * momentary exit from idle queued additional non-lazy callbacks.
5955f7ee 2013 * Instead, repost the ->idle_gp_timer if this CPU has callbacks
c57afe80
PM
2014 * pending.
2015 */
5955f7ee
PM
2016 if (!rdtp->idle_first_pass &&
2017 (rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
f511fc62 2018 if (rcu_cpu_has_callbacks(cpu)) {
5955f7ee
PM
2019 tp = &rdtp->idle_gp_timer;
2020 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
f511fc62 2021 }
c57afe80
PM
2022 return;
2023 }
5955f7ee
PM
2024 rdtp->idle_first_pass = 0;
2025 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
c57afe80 2026
3084f2f8 2027 /*
f535a607
PM
2028 * If there are no callbacks on this CPU, enter dyntick-idle mode.
2029 * Also reset state to avoid prejudicing later attempts.
3084f2f8 2030 */
aea1b35e 2031 if (!rcu_cpu_has_callbacks(cpu)) {
5955f7ee
PM
2032 rdtp->dyntick_holdoff = jiffies - 1;
2033 rdtp->dyntick_drain = 0;
433cdddc 2034 trace_rcu_prep_idle("No callbacks");
aea1b35e 2035 return;
77e38ed3 2036 }
3084f2f8
PM
2037
2038 /*
2039 * If in holdoff mode, just return. We will presumably have
2040 * refrained from disabling the scheduling-clock tick.
2041 */
5955f7ee 2042 if (rdtp->dyntick_holdoff == jiffies) {
433cdddc 2043 trace_rcu_prep_idle("In holdoff");
aea1b35e 2044 return;
433cdddc 2045 }
a47cd880 2046
5955f7ee
PM
2047 /* Check and update the ->dyntick_drain sequencing. */
2048 if (rdtp->dyntick_drain <= 0) {
a47cd880 2049 /* First time through, initialize the counter. */
5955f7ee
PM
2050 rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
2051 } else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
c3ce910b
PM
2052 !rcu_pending(cpu) &&
2053 !local_softirq_pending()) {
7cb92499 2054 /* Can we go dyntick-idle despite still having callbacks? */
5955f7ee
PM
2055 rdtp->dyntick_drain = 0;
2056 rdtp->dyntick_holdoff = jiffies;
fd4b3526
PM
2057 if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
2058 trace_rcu_prep_idle("Dyntick with callbacks");
5955f7ee 2059 rdtp->idle_gp_timer_expires =
e84c48ae
PM
2060 round_up(jiffies + RCU_IDLE_GP_DELAY,
2061 RCU_IDLE_GP_DELAY);
fd4b3526 2062 } else {
5955f7ee 2063 rdtp->idle_gp_timer_expires =
e84c48ae 2064 round_jiffies(jiffies + RCU_IDLE_LAZY_GP_DELAY);
fd4b3526
PM
2065 trace_rcu_prep_idle("Dyntick with lazy callbacks");
2066 }
5955f7ee
PM
2067 tp = &rdtp->idle_gp_timer;
2068 mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
2069 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
f23f7fa1 2070 return; /* Nothing more to do immediately. */
5955f7ee 2071 } else if (--(rdtp->dyntick_drain) <= 0) {
a47cd880 2072 /* We have hit the limit, so time to give up. */
5955f7ee 2073 rdtp->dyntick_holdoff = jiffies;
433cdddc 2074 trace_rcu_prep_idle("Begin holdoff");
aea1b35e
PM
2075 invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
2076 return;
a47cd880
PM
2077 }
2078
aea1b35e
PM
2079 /*
2080 * Do one step of pushing the remaining RCU callbacks through
2081 * the RCU core state machine.
2082 */
2083#ifdef CONFIG_TREE_PREEMPT_RCU
2084 if (per_cpu(rcu_preempt_data, cpu).nxtlist) {
2085 rcu_preempt_qs(cpu);
2086 force_quiescent_state(&rcu_preempt_state, 0);
aea1b35e
PM
2087 }
2088#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
a47cd880
PM
2089 if (per_cpu(rcu_sched_data, cpu).nxtlist) {
2090 rcu_sched_qs(cpu);
2091 force_quiescent_state(&rcu_sched_state, 0);
a47cd880
PM
2092 }
2093 if (per_cpu(rcu_bh_data, cpu).nxtlist) {
2094 rcu_bh_qs(cpu);
2095 force_quiescent_state(&rcu_bh_state, 0);
8bd93a2c
PM
2096 }
2097
433cdddc
PM
2098 /*
2099 * If RCU callbacks are still pending, RCU still needs this CPU.
2100 * So try forcing the callbacks through the grace period.
2101 */
3ad0decf 2102 if (rcu_cpu_has_callbacks(cpu)) {
433cdddc 2103 trace_rcu_prep_idle("More callbacks");
a46e0899 2104 invoke_rcu_core();
c701d5d9 2105 } else {
433cdddc 2106 trace_rcu_prep_idle("Callbacks drained");
c701d5d9 2107 }
8bd93a2c
PM
2108}
2109
c57afe80 2110/*
98248a0e
PM
2111 * Keep a running count of the number of non-lazy callbacks posted
2112 * on this CPU. This running counter (which is never decremented) allows
2113 * rcu_prepare_for_idle() to detect when something out of the idle loop
2114 * posts a callback, even if an equal number of callbacks are invoked.
2115 * Of course, callbacks should only be posted from within a trace event
2116 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
2117 */
2118static void rcu_idle_count_callbacks_posted(void)
2119{
5955f7ee 2120 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
2121}
2122
8bd93a2c 2123#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
2124
2125#ifdef CONFIG_RCU_CPU_STALL_INFO
2126
2127#ifdef CONFIG_RCU_FAST_NO_HZ
2128
2129static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2130{
5955f7ee
PM
2131 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
2132 struct timer_list *tltp = &rdtp->idle_gp_timer;
a858af28 2133
2ee3dc80 2134 sprintf(cp, "drain=%d %c timer=%lu",
5955f7ee
PM
2135 rdtp->dyntick_drain,
2136 rdtp->dyntick_holdoff == jiffies ? 'H' : '.',
2ee3dc80 2137 timer_pending(tltp) ? tltp->expires - jiffies : -1);
a858af28
PM
2138}
2139
2140#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
2141
2142static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
2143{
1c17e4d4 2144 *cp = '\0';
a858af28
PM
2145}
2146
2147#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
2148
2149/* Initiate the stall-info list. */
2150static void print_cpu_stall_info_begin(void)
2151{
2152 printk(KERN_CONT "\n");
2153}
2154
2155/*
2156 * Print out diagnostic information for the specified stalled CPU.
2157 *
2158 * If the specified CPU is aware of the current RCU grace period
2159 * (flavor specified by rsp), then print the number of scheduling
2160 * clock interrupts the CPU has taken during the time that it has
2161 * been aware. Otherwise, print the number of RCU grace periods
2162 * that this CPU is ignorant of, for example, "1" if the CPU was
2163 * aware of the previous grace period.
2164 *
2165 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
2166 */
2167static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2168{
2169 char fast_no_hz[72];
2170 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2171 struct rcu_dynticks *rdtp = rdp->dynticks;
2172 char *ticks_title;
2173 unsigned long ticks_value;
2174
2175 if (rsp->gpnum == rdp->gpnum) {
2176 ticks_title = "ticks this GP";
2177 ticks_value = rdp->ticks_this_gp;
2178 } else {
2179 ticks_title = "GPs behind";
2180 ticks_value = rsp->gpnum - rdp->gpnum;
2181 }
2182 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
2183 printk(KERN_ERR "\t%d: (%lu %s) idle=%03x/%llx/%d %s\n",
2184 cpu, ticks_value, ticks_title,
2185 atomic_read(&rdtp->dynticks) & 0xfff,
2186 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
2187 fast_no_hz);
2188}
2189
2190/* Terminate the stall-info list. */
2191static void print_cpu_stall_info_end(void)
2192{
2193 printk(KERN_ERR "\t");
2194}
2195
2196/* Zero ->ticks_this_gp for all flavors of RCU. */
2197static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2198{
2199 rdp->ticks_this_gp = 0;
2200}
2201
2202/* Increment ->ticks_this_gp for all flavors of RCU. */
2203static void increment_cpu_stall_ticks(void)
2204{
115f7a7c
PM
2205 struct rcu_state *rsp;
2206
2207 for_each_rcu_flavor(rsp)
2208 __this_cpu_ptr(rsp->rda)->ticks_this_gp++;
a858af28
PM
2209}
2210
2211#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
2212
2213static void print_cpu_stall_info_begin(void)
2214{
2215 printk(KERN_CONT " {");
2216}
2217
2218static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
2219{
2220 printk(KERN_CONT " %d", cpu);
2221}
2222
2223static void print_cpu_stall_info_end(void)
2224{
2225 printk(KERN_CONT "} ");
2226}
2227
2228static void zero_cpu_stall_ticks(struct rcu_data *rdp)
2229{
2230}
2231
2232static void increment_cpu_stall_ticks(void)
2233{
2234}
2235
2236#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
This page took 0.266833 seconds and 5 git commands to generate.