sched/clock, x86: Use a static_key for sched_clock_stable
[deliverable/linux.git] / kernel / sched / clock.c
CommitLineData
3e51f33f
PZ
1/*
2 * sched_clock for unstable cpu clocks
3 *
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
5 *
c300ba25
SR
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
3e51f33f
PZ
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
c676329a
PZ
13 *
14 * What:
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
c676329a
PZ
29 * local_clock() -- is cpu_clock() on the current cpu.
30 *
ef08f0ff
PZ
31 * sched_clock_cpu(i)
32 *
c676329a
PZ
33 * How:
34 *
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
39 *
40 * Otherwise it tries to create a semi stable clock from a mixture of other
41 * clocks, including:
42 *
43 * - GTOD (clock monotomic)
3e51f33f
PZ
44 * - sched_clock()
45 * - explicit idle events
46 *
c676329a
PZ
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
49 * expected window.
3e51f33f
PZ
50 *
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
53 *
3e51f33f 54 */
3e51f33f 55#include <linux/spinlock.h>
6409c4da 56#include <linux/hardirq.h>
9984de1a 57#include <linux/export.h>
b342501c
IM
58#include <linux/percpu.h>
59#include <linux/ktime.h>
60#include <linux/sched.h>
35af99e6 61#include <linux/static_key.h>
3e51f33f 62
2c3d103b
HD
63/*
64 * Scheduler clock - returns current time in nanosec units.
65 * This is default implementation.
66 * Architectures and sub-architectures can override this.
67 */
68unsigned long long __attribute__((weak)) sched_clock(void)
69{
92d23f70
R
70 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
71 * (NSEC_PER_SEC / HZ);
2c3d103b 72}
b6ac23af 73EXPORT_SYMBOL_GPL(sched_clock);
3e51f33f 74
5bb6b1ea 75__read_mostly int sched_clock_running;
c1955a3d 76
3e51f33f 77#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
35af99e6
PZ
78static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
79
80int sched_clock_stable(void)
81{
82 if (static_key_false(&__sched_clock_stable))
83 return false;
84 return true;
85}
86
87void set_sched_clock_stable(void)
88{
89 if (!sched_clock_stable())
90 static_key_slow_dec(&__sched_clock_stable);
91}
92
93void clear_sched_clock_stable(void)
94{
95 /* XXX worry about clock continuity */
96 if (sched_clock_stable())
97 static_key_slow_inc(&__sched_clock_stable);
98}
3e51f33f
PZ
99
100struct sched_clock_data {
3e51f33f
PZ
101 u64 tick_raw;
102 u64 tick_gtod;
103 u64 clock;
104};
105
106static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
107
108static inline struct sched_clock_data *this_scd(void)
109{
110 return &__get_cpu_var(sched_clock_data);
111}
112
113static inline struct sched_clock_data *cpu_sdc(int cpu)
114{
115 return &per_cpu(sched_clock_data, cpu);
116}
117
118void sched_clock_init(void)
119{
120 u64 ktime_now = ktime_to_ns(ktime_get());
3e51f33f
PZ
121 int cpu;
122
123 for_each_possible_cpu(cpu) {
124 struct sched_clock_data *scd = cpu_sdc(cpu);
125
a381759d 126 scd->tick_raw = 0;
3e51f33f
PZ
127 scd->tick_gtod = ktime_now;
128 scd->clock = ktime_now;
129 }
a381759d
PZ
130
131 sched_clock_running = 1;
3e51f33f
PZ
132}
133
354879bb 134/*
b342501c 135 * min, max except they take wrapping into account
354879bb
PZ
136 */
137
138static inline u64 wrap_min(u64 x, u64 y)
139{
140 return (s64)(x - y) < 0 ? x : y;
141}
142
143static inline u64 wrap_max(u64 x, u64 y)
144{
145 return (s64)(x - y) > 0 ? x : y;
146}
147
3e51f33f
PZ
148/*
149 * update the percpu scd from the raw @now value
150 *
151 * - filter out backward motion
354879bb 152 * - use the GTOD tick value to create a window to filter crazy TSC values
3e51f33f 153 */
def0a9b2 154static u64 sched_clock_local(struct sched_clock_data *scd)
3e51f33f 155{
def0a9b2
PZ
156 u64 now, clock, old_clock, min_clock, max_clock;
157 s64 delta;
3e51f33f 158
def0a9b2
PZ
159again:
160 now = sched_clock();
161 delta = now - scd->tick_raw;
354879bb
PZ
162 if (unlikely(delta < 0))
163 delta = 0;
3e51f33f 164
def0a9b2
PZ
165 old_clock = scd->clock;
166
354879bb
PZ
167 /*
168 * scd->clock = clamp(scd->tick_gtod + delta,
b342501c
IM
169 * max(scd->tick_gtod, scd->clock),
170 * scd->tick_gtod + TICK_NSEC);
354879bb 171 */
3e51f33f 172
354879bb 173 clock = scd->tick_gtod + delta;
def0a9b2
PZ
174 min_clock = wrap_max(scd->tick_gtod, old_clock);
175 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
3e51f33f 176
354879bb
PZ
177 clock = wrap_max(clock, min_clock);
178 clock = wrap_min(clock, max_clock);
3e51f33f 179
152f9d07 180 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
def0a9b2 181 goto again;
56b90612 182
def0a9b2 183 return clock;
3e51f33f
PZ
184}
185
def0a9b2 186static u64 sched_clock_remote(struct sched_clock_data *scd)
3e51f33f 187{
def0a9b2
PZ
188 struct sched_clock_data *my_scd = this_scd();
189 u64 this_clock, remote_clock;
190 u64 *ptr, old_val, val;
191
a1cbcaa9
TG
192#if BITS_PER_LONG != 64
193again:
194 /*
195 * Careful here: The local and the remote clock values need to
196 * be read out atomic as we need to compare the values and
197 * then update either the local or the remote side. So the
198 * cmpxchg64 below only protects one readout.
199 *
200 * We must reread via sched_clock_local() in the retry case on
201 * 32bit as an NMI could use sched_clock_local() via the
202 * tracer and hit between the readout of
203 * the low32bit and the high 32bit portion.
204 */
205 this_clock = sched_clock_local(my_scd);
206 /*
207 * We must enforce atomic readout on 32bit, otherwise the
208 * update on the remote cpu can hit inbetween the readout of
209 * the low32bit and the high 32bit portion.
210 */
211 remote_clock = cmpxchg64(&scd->clock, 0, 0);
212#else
213 /*
214 * On 64bit the read of [my]scd->clock is atomic versus the
215 * update, so we can avoid the above 32bit dance.
216 */
def0a9b2
PZ
217 sched_clock_local(my_scd);
218again:
219 this_clock = my_scd->clock;
220 remote_clock = scd->clock;
a1cbcaa9 221#endif
def0a9b2
PZ
222
223 /*
224 * Use the opportunity that we have both locks
225 * taken to couple the two clocks: we take the
226 * larger time as the latest time for both
227 * runqueues. (this creates monotonic movement)
228 */
229 if (likely((s64)(remote_clock - this_clock) < 0)) {
230 ptr = &scd->clock;
231 old_val = remote_clock;
232 val = this_clock;
3e51f33f 233 } else {
def0a9b2
PZ
234 /*
235 * Should be rare, but possible:
236 */
237 ptr = &my_scd->clock;
238 old_val = this_clock;
239 val = remote_clock;
3e51f33f 240 }
def0a9b2 241
152f9d07 242 if (cmpxchg64(ptr, old_val, val) != old_val)
def0a9b2
PZ
243 goto again;
244
245 return val;
3e51f33f
PZ
246}
247
c676329a
PZ
248/*
249 * Similar to cpu_clock(), but requires local IRQs to be disabled.
250 *
251 * See cpu_clock().
252 */
3e51f33f
PZ
253u64 sched_clock_cpu(int cpu)
254{
b342501c 255 struct sched_clock_data *scd;
def0a9b2
PZ
256 u64 clock;
257
35af99e6 258 if (sched_clock_stable())
b342501c 259 return sched_clock();
a381759d 260
a381759d
PZ
261 if (unlikely(!sched_clock_running))
262 return 0ull;
263
ef08f0ff 264 preempt_disable();
def0a9b2 265 scd = cpu_sdc(cpu);
3e51f33f 266
def0a9b2
PZ
267 if (cpu != smp_processor_id())
268 clock = sched_clock_remote(scd);
269 else
270 clock = sched_clock_local(scd);
ef08f0ff 271 preempt_enable();
e4e4e534 272
3e51f33f
PZ
273 return clock;
274}
275
276void sched_clock_tick(void)
277{
8325d9c0 278 struct sched_clock_data *scd;
3e51f33f
PZ
279 u64 now, now_gtod;
280
35af99e6 281 if (sched_clock_stable())
8325d9c0
PZ
282 return;
283
a381759d
PZ
284 if (unlikely(!sched_clock_running))
285 return;
286
3e51f33f
PZ
287 WARN_ON_ONCE(!irqs_disabled());
288
8325d9c0 289 scd = this_scd();
3e51f33f 290 now_gtod = ktime_to_ns(ktime_get());
a83bc47c 291 now = sched_clock();
3e51f33f 292
3e51f33f
PZ
293 scd->tick_raw = now;
294 scd->tick_gtod = now_gtod;
def0a9b2 295 sched_clock_local(scd);
3e51f33f
PZ
296}
297
298/*
299 * We are going deep-idle (irqs are disabled):
300 */
301void sched_clock_idle_sleep_event(void)
302{
303 sched_clock_cpu(smp_processor_id());
304}
305EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
306
307/*
308 * We just idled delta nanoseconds (called with irqs disabled):
309 */
310void sched_clock_idle_wakeup_event(u64 delta_ns)
311{
1c5745aa
TG
312 if (timekeeping_suspended)
313 return;
314
354879bb 315 sched_clock_tick();
3e51f33f
PZ
316 touch_softlockup_watchdog();
317}
318EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
319
c676329a
PZ
320/*
321 * As outlined at the top, provides a fast, high resolution, nanosecond
322 * time source that is monotonic per cpu argument and has bounded drift
323 * between cpus.
324 *
325 * ######################### BIG FAT WARNING ##########################
326 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
327 * # go backwards !! #
328 * ####################################################################
329 */
330u64 cpu_clock(int cpu)
b9f8fcd5 331{
35af99e6
PZ
332 if (static_key_false(&__sched_clock_stable))
333 return sched_clock_cpu(cpu);
334
335 return sched_clock();
b9f8fcd5
DM
336}
337
c676329a
PZ
338/*
339 * Similar to cpu_clock() for the current cpu. Time will only be observed
340 * to be monotonic if care is taken to only compare timestampt taken on the
341 * same CPU.
342 *
343 * See cpu_clock().
344 */
345u64 local_clock(void)
346{
35af99e6
PZ
347 if (static_key_false(&__sched_clock_stable))
348 return sched_clock_cpu(raw_smp_processor_id());
349
350 return sched_clock();
c676329a
PZ
351}
352
8325d9c0
PZ
353#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
354
355void sched_clock_init(void)
356{
357 sched_clock_running = 1;
358}
359
360u64 sched_clock_cpu(int cpu)
361{
362 if (unlikely(!sched_clock_running))
363 return 0;
364
365 return sched_clock();
366}
367
c676329a 368u64 cpu_clock(int cpu)
76a2a6ee 369{
35af99e6 370 return sched_clock();
b9f8fcd5 371}
76a2a6ee 372
c676329a
PZ
373u64 local_clock(void)
374{
35af99e6 375 return sched_clock();
c676329a
PZ
376}
377
b9f8fcd5 378#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
76a2a6ee 379
4c9fe8ad 380EXPORT_SYMBOL_GPL(cpu_clock);
c676329a 381EXPORT_SYMBOL_GPL(local_clock);
This page took 0.336503 seconds and 5 git commands to generate.