Merge tag 'mvebu-dt-4.2-3' of git://git.infradead.org/linux-mvebu into next/late
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
9edfbfed
PZ
122 lockdep_assert_held(&rq->lock);
123
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 125 return;
aa483808 126
fe44d621 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
128 if (delta < 0)
129 return;
fe44d621
PZ
130 rq->clock += delta;
131 update_rq_clock_task(rq, delta);
3e51f33f
PZ
132}
133
bf5c91ba
IM
134/*
135 * Debugging: various feature bits
136 */
f00b45c1 137
f00b45c1
PZ
138#define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
140
bf5c91ba 141const_debug unsigned int sysctl_sched_features =
391e43da 142#include "features.h"
f00b45c1
PZ
143 0;
144
145#undef SCHED_FEAT
146
147#ifdef CONFIG_SCHED_DEBUG
148#define SCHED_FEAT(name, enabled) \
149 #name ,
150
1292531f 151static const char * const sched_feat_names[] = {
391e43da 152#include "features.h"
f00b45c1
PZ
153};
154
155#undef SCHED_FEAT
156
34f3a814 157static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 158{
f00b45c1
PZ
159 int i;
160
f8b6d1cc 161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
162 if (!(sysctl_sched_features & (1UL << i)))
163 seq_puts(m, "NO_");
164 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 165 }
34f3a814 166 seq_puts(m, "\n");
f00b45c1 167
34f3a814 168 return 0;
f00b45c1
PZ
169}
170
f8b6d1cc
PZ
171#ifdef HAVE_JUMP_LABEL
172
c5905afb
IM
173#define jump_label_key__true STATIC_KEY_INIT_TRUE
174#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
175
176#define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
178
c5905afb 179struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
180#include "features.h"
181};
182
183#undef SCHED_FEAT
184
185static void sched_feat_disable(int i)
186{
c5905afb
IM
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190
191static void sched_feat_enable(int i)
192{
c5905afb
IM
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
195}
196#else
197static void sched_feat_disable(int i) { };
198static void sched_feat_enable(int i) { };
199#endif /* HAVE_JUMP_LABEL */
200
1a687c2e 201static int sched_feat_set(char *cmp)
f00b45c1 202{
f00b45c1 203 int i;
1a687c2e 204 int neg = 0;
f00b45c1 205
524429c3 206 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
207 neg = 1;
208 cmp += 3;
209 }
210
f8b6d1cc 211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 213 if (neg) {
f00b45c1 214 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
215 sched_feat_disable(i);
216 } else {
f00b45c1 217 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
218 sched_feat_enable(i);
219 }
f00b45c1
PZ
220 break;
221 }
222 }
223
1a687c2e
MG
224 return i;
225}
226
227static ssize_t
228sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
230{
231 char buf[64];
232 char *cmp;
233 int i;
5cd08fbf 234 struct inode *inode;
1a687c2e
MG
235
236 if (cnt > 63)
237 cnt = 63;
238
239 if (copy_from_user(&buf, ubuf, cnt))
240 return -EFAULT;
241
242 buf[cnt] = 0;
243 cmp = strstrip(buf);
244
5cd08fbf
JB
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
1a687c2e 248 i = sched_feat_set(cmp);
5cd08fbf 249 mutex_unlock(&inode->i_mutex);
f8b6d1cc 250 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
251 return -EINVAL;
252
42994724 253 *ppos += cnt;
f00b45c1
PZ
254
255 return cnt;
256}
257
34f3a814
LZ
258static int sched_feat_open(struct inode *inode, struct file *filp)
259{
260 return single_open(filp, sched_feat_show, NULL);
261}
262
828c0950 263static const struct file_operations sched_feat_fops = {
34f3a814
LZ
264 .open = sched_feat_open,
265 .write = sched_feat_write,
266 .read = seq_read,
267 .llseek = seq_lseek,
268 .release = single_release,
f00b45c1
PZ
269};
270
271static __init int sched_init_debug(void)
272{
f00b45c1
PZ
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
274 &sched_feat_fops);
275
276 return 0;
277}
278late_initcall(sched_init_debug);
f8b6d1cc 279#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 280
b82d9fdd
PZ
281/*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
e9e9250b
PZ
287/*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
fa85ae24 295/*
9f0c1e56 296 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
297 * default: 1s
298 */
9f0c1e56 299unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 300
029632fb 301__read_mostly int scheduler_running;
6892b75e 302
9f0c1e56
PZ
303/*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307int sysctl_sched_rt_runtime = 950000;
fa85ae24 308
3fa0818b
RR
309/* cpus with isolated domains */
310cpumask_var_t cpu_isolated_map;
311
1da177e4 312/*
cc2a73b5 313 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 314 */
a9957449 315static struct rq *this_rq_lock(void)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4
LT
319
320 local_irq_disable();
321 rq = this_rq();
05fa785c 322 raw_spin_lock(&rq->lock);
1da177e4
LT
323
324 return rq;
325}
326
8f4d37ec
PZ
327#ifdef CONFIG_SCHED_HRTICK
328/*
329 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 330 */
8f4d37ec 331
8f4d37ec
PZ
332static void hrtick_clear(struct rq *rq)
333{
334 if (hrtimer_active(&rq->hrtick_timer))
335 hrtimer_cancel(&rq->hrtick_timer);
336}
337
8f4d37ec
PZ
338/*
339 * High-resolution timer tick.
340 * Runs from hardirq context with interrupts disabled.
341 */
342static enum hrtimer_restart hrtick(struct hrtimer *timer)
343{
344 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
345
346 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
347
05fa785c 348 raw_spin_lock(&rq->lock);
3e51f33f 349 update_rq_clock(rq);
8f4d37ec 350 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 351 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
352
353 return HRTIMER_NORESTART;
354}
355
95e904c7 356#ifdef CONFIG_SMP
971ee28c
PZ
357
358static int __hrtick_restart(struct rq *rq)
359{
360 struct hrtimer *timer = &rq->hrtick_timer;
361 ktime_t time = hrtimer_get_softexpires(timer);
362
363 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364}
365
31656519
PZ
366/*
367 * called from hardirq (IPI) context
368 */
369static void __hrtick_start(void *arg)
b328ca18 370{
31656519 371 struct rq *rq = arg;
b328ca18 372
05fa785c 373 raw_spin_lock(&rq->lock);
971ee28c 374 __hrtick_restart(rq);
31656519 375 rq->hrtick_csd_pending = 0;
05fa785c 376 raw_spin_unlock(&rq->lock);
b328ca18
PZ
377}
378
31656519
PZ
379/*
380 * Called to set the hrtick timer state.
381 *
382 * called with rq->lock held and irqs disabled
383 */
029632fb 384void hrtick_start(struct rq *rq, u64 delay)
b328ca18 385{
31656519 386 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 387 ktime_t time;
388 s64 delta;
389
390 /*
391 * Don't schedule slices shorter than 10000ns, that just
392 * doesn't make sense and can cause timer DoS.
393 */
394 delta = max_t(s64, delay, 10000LL);
395 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 396
cc584b21 397 hrtimer_set_expires(timer, time);
31656519
PZ
398
399 if (rq == this_rq()) {
971ee28c 400 __hrtick_restart(rq);
31656519 401 } else if (!rq->hrtick_csd_pending) {
c46fff2a 402 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
403 rq->hrtick_csd_pending = 1;
404 }
b328ca18
PZ
405}
406
407static int
408hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
409{
410 int cpu = (int)(long)hcpu;
411
412 switch (action) {
413 case CPU_UP_CANCELED:
414 case CPU_UP_CANCELED_FROZEN:
415 case CPU_DOWN_PREPARE:
416 case CPU_DOWN_PREPARE_FROZEN:
417 case CPU_DEAD:
418 case CPU_DEAD_FROZEN:
31656519 419 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
420 return NOTIFY_OK;
421 }
422
423 return NOTIFY_DONE;
424}
425
fa748203 426static __init void init_hrtick(void)
b328ca18
PZ
427{
428 hotcpu_notifier(hotplug_hrtick, 0);
429}
31656519
PZ
430#else
431/*
432 * Called to set the hrtick timer state.
433 *
434 * called with rq->lock held and irqs disabled
435 */
029632fb 436void hrtick_start(struct rq *rq, u64 delay)
31656519 437{
86893335
WL
438 /*
439 * Don't schedule slices shorter than 10000ns, that just
440 * doesn't make sense. Rely on vruntime for fairness.
441 */
442 delay = max_t(u64, delay, 10000LL);
7f1e2ca9 443 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 444 HRTIMER_MODE_REL_PINNED, 0);
31656519 445}
b328ca18 446
006c75f1 447static inline void init_hrtick(void)
8f4d37ec 448{
8f4d37ec 449}
31656519 450#endif /* CONFIG_SMP */
8f4d37ec 451
31656519 452static void init_rq_hrtick(struct rq *rq)
8f4d37ec 453{
31656519
PZ
454#ifdef CONFIG_SMP
455 rq->hrtick_csd_pending = 0;
8f4d37ec 456
31656519
PZ
457 rq->hrtick_csd.flags = 0;
458 rq->hrtick_csd.func = __hrtick_start;
459 rq->hrtick_csd.info = rq;
460#endif
8f4d37ec 461
31656519
PZ
462 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
463 rq->hrtick_timer.function = hrtick;
8f4d37ec 464}
006c75f1 465#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
466static inline void hrtick_clear(struct rq *rq)
467{
468}
469
8f4d37ec
PZ
470static inline void init_rq_hrtick(struct rq *rq)
471{
472}
473
b328ca18
PZ
474static inline void init_hrtick(void)
475{
476}
006c75f1 477#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 478
fd99f91a
PZ
479/*
480 * cmpxchg based fetch_or, macro so it works for different integer types
481 */
482#define fetch_or(ptr, val) \
483({ typeof(*(ptr)) __old, __val = *(ptr); \
484 for (;;) { \
485 __old = cmpxchg((ptr), __val, __val | (val)); \
486 if (__old == __val) \
487 break; \
488 __val = __old; \
489 } \
490 __old; \
491})
492
e3baac47 493#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
494/*
495 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496 * this avoids any races wrt polling state changes and thereby avoids
497 * spurious IPIs.
498 */
499static bool set_nr_and_not_polling(struct task_struct *p)
500{
501 struct thread_info *ti = task_thread_info(p);
502 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503}
e3baac47
PZ
504
505/*
506 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
507 *
508 * If this returns true, then the idle task promises to call
509 * sched_ttwu_pending() and reschedule soon.
510 */
511static bool set_nr_if_polling(struct task_struct *p)
512{
513 struct thread_info *ti = task_thread_info(p);
514 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
515
516 for (;;) {
517 if (!(val & _TIF_POLLING_NRFLAG))
518 return false;
519 if (val & _TIF_NEED_RESCHED)
520 return true;
521 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
522 if (old == val)
523 break;
524 val = old;
525 }
526 return true;
527}
528
fd99f91a
PZ
529#else
530static bool set_nr_and_not_polling(struct task_struct *p)
531{
532 set_tsk_need_resched(p);
533 return true;
534}
e3baac47
PZ
535
536#ifdef CONFIG_SMP
537static bool set_nr_if_polling(struct task_struct *p)
538{
539 return false;
540}
541#endif
fd99f91a
PZ
542#endif
543
c24d20db 544/*
8875125e 545 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
546 *
547 * On UP this means the setting of the need_resched flag, on SMP it
548 * might also involve a cross-CPU call to trigger the scheduler on
549 * the target CPU.
550 */
8875125e 551void resched_curr(struct rq *rq)
c24d20db 552{
8875125e 553 struct task_struct *curr = rq->curr;
c24d20db
IM
554 int cpu;
555
8875125e 556 lockdep_assert_held(&rq->lock);
c24d20db 557
8875125e 558 if (test_tsk_need_resched(curr))
c24d20db
IM
559 return;
560
8875125e 561 cpu = cpu_of(rq);
fd99f91a 562
f27dde8d 563 if (cpu == smp_processor_id()) {
8875125e 564 set_tsk_need_resched(curr);
f27dde8d 565 set_preempt_need_resched();
c24d20db 566 return;
f27dde8d 567 }
c24d20db 568
8875125e 569 if (set_nr_and_not_polling(curr))
c24d20db 570 smp_send_reschedule(cpu);
dfc68f29
AL
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
573}
574
029632fb 575void resched_cpu(int cpu)
c24d20db
IM
576{
577 struct rq *rq = cpu_rq(cpu);
578 unsigned long flags;
579
05fa785c 580 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 581 return;
8875125e 582 resched_curr(rq);
05fa785c 583 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 584}
06d8308c 585
b021fe3e 586#ifdef CONFIG_SMP
3451d024 587#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
588/*
589 * In the semi idle case, use the nearest busy cpu for migrating timers
590 * from an idle cpu. This is good for power-savings.
591 *
592 * We don't do similar optimization for completely idle system, as
593 * selecting an idle cpu will add more delays to the timers than intended
594 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
595 */
6201b4d6 596int get_nohz_timer_target(int pinned)
83cd4fe2
VP
597{
598 int cpu = smp_processor_id();
599 int i;
600 struct sched_domain *sd;
601
6201b4d6
VK
602 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
603 return cpu;
604
057f3fad 605 rcu_read_lock();
83cd4fe2 606 for_each_domain(cpu, sd) {
057f3fad
PZ
607 for_each_cpu(i, sched_domain_span(sd)) {
608 if (!idle_cpu(i)) {
609 cpu = i;
610 goto unlock;
611 }
612 }
83cd4fe2 613 }
057f3fad
PZ
614unlock:
615 rcu_read_unlock();
83cd4fe2
VP
616 return cpu;
617}
06d8308c
TG
618/*
619 * When add_timer_on() enqueues a timer into the timer wheel of an
620 * idle CPU then this timer might expire before the next timer event
621 * which is scheduled to wake up that CPU. In case of a completely
622 * idle system the next event might even be infinite time into the
623 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
624 * leaves the inner idle loop so the newly added timer is taken into
625 * account when the CPU goes back to idle and evaluates the timer
626 * wheel for the next timer event.
627 */
1c20091e 628static void wake_up_idle_cpu(int cpu)
06d8308c
TG
629{
630 struct rq *rq = cpu_rq(cpu);
631
632 if (cpu == smp_processor_id())
633 return;
634
67b9ca70 635 if (set_nr_and_not_polling(rq->idle))
06d8308c 636 smp_send_reschedule(cpu);
dfc68f29
AL
637 else
638 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
639}
640
c5bfece2 641static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 642{
53c5fa16
FW
643 /*
644 * We just need the target to call irq_exit() and re-evaluate
645 * the next tick. The nohz full kick at least implies that.
646 * If needed we can still optimize that later with an
647 * empty IRQ.
648 */
c5bfece2 649 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
650 if (cpu != smp_processor_id() ||
651 tick_nohz_tick_stopped())
53c5fa16 652 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
653 return true;
654 }
655
656 return false;
657}
658
659void wake_up_nohz_cpu(int cpu)
660{
c5bfece2 661 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
662 wake_up_idle_cpu(cpu);
663}
664
ca38062e 665static inline bool got_nohz_idle_kick(void)
45bf76df 666{
1c792db7 667 int cpu = smp_processor_id();
873b4c65
VG
668
669 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
670 return false;
671
672 if (idle_cpu(cpu) && !need_resched())
673 return true;
674
675 /*
676 * We can't run Idle Load Balance on this CPU for this time so we
677 * cancel it and clear NOHZ_BALANCE_KICK
678 */
679 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
680 return false;
45bf76df
IM
681}
682
3451d024 683#else /* CONFIG_NO_HZ_COMMON */
45bf76df 684
ca38062e 685static inline bool got_nohz_idle_kick(void)
2069dd75 686{
ca38062e 687 return false;
2069dd75
PZ
688}
689
3451d024 690#endif /* CONFIG_NO_HZ_COMMON */
d842de87 691
ce831b38
FW
692#ifdef CONFIG_NO_HZ_FULL
693bool sched_can_stop_tick(void)
694{
1e78cdbd
RR
695 /*
696 * FIFO realtime policy runs the highest priority task. Other runnable
697 * tasks are of a lower priority. The scheduler tick does nothing.
698 */
699 if (current->policy == SCHED_FIFO)
700 return true;
701
702 /*
703 * Round-robin realtime tasks time slice with other tasks at the same
704 * realtime priority. Is this task the only one at this priority?
705 */
706 if (current->policy == SCHED_RR) {
707 struct sched_rt_entity *rt_se = &current->rt;
708
709 return rt_se->run_list.prev == rt_se->run_list.next;
710 }
711
3882ec64
FW
712 /*
713 * More than one running task need preemption.
714 * nr_running update is assumed to be visible
715 * after IPI is sent from wakers.
716 */
541b8264
VK
717 if (this_rq()->nr_running > 1)
718 return false;
ce831b38 719
541b8264 720 return true;
ce831b38
FW
721}
722#endif /* CONFIG_NO_HZ_FULL */
d842de87 723
029632fb 724void sched_avg_update(struct rq *rq)
18d95a28 725{
e9e9250b
PZ
726 s64 period = sched_avg_period();
727
78becc27 728 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
729 /*
730 * Inline assembly required to prevent the compiler
731 * optimising this loop into a divmod call.
732 * See __iter_div_u64_rem() for another example of this.
733 */
734 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
735 rq->age_stamp += period;
736 rq->rt_avg /= 2;
737 }
18d95a28
PZ
738}
739
6d6bc0ad 740#endif /* CONFIG_SMP */
18d95a28 741
a790de99
PT
742#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
743 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 744/*
8277434e
PT
745 * Iterate task_group tree rooted at *from, calling @down when first entering a
746 * node and @up when leaving it for the final time.
747 *
748 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 749 */
029632fb 750int walk_tg_tree_from(struct task_group *from,
8277434e 751 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
752{
753 struct task_group *parent, *child;
eb755805 754 int ret;
c09595f6 755
8277434e
PT
756 parent = from;
757
c09595f6 758down:
eb755805
PZ
759 ret = (*down)(parent, data);
760 if (ret)
8277434e 761 goto out;
c09595f6
PZ
762 list_for_each_entry_rcu(child, &parent->children, siblings) {
763 parent = child;
764 goto down;
765
766up:
767 continue;
768 }
eb755805 769 ret = (*up)(parent, data);
8277434e
PT
770 if (ret || parent == from)
771 goto out;
c09595f6
PZ
772
773 child = parent;
774 parent = parent->parent;
775 if (parent)
776 goto up;
8277434e 777out:
eb755805 778 return ret;
c09595f6
PZ
779}
780
029632fb 781int tg_nop(struct task_group *tg, void *data)
eb755805 782{
e2b245f8 783 return 0;
eb755805 784}
18d95a28
PZ
785#endif
786
45bf76df
IM
787static void set_load_weight(struct task_struct *p)
788{
f05998d4
NR
789 int prio = p->static_prio - MAX_RT_PRIO;
790 struct load_weight *load = &p->se.load;
791
dd41f596
IM
792 /*
793 * SCHED_IDLE tasks get minimal weight:
794 */
795 if (p->policy == SCHED_IDLE) {
c8b28116 796 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 797 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
798 return;
799 }
71f8bd46 800
c8b28116 801 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 802 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
803}
804
371fd7e7 805static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 806{
a64692a3 807 update_rq_clock(rq);
43148951 808 sched_info_queued(rq, p);
371fd7e7 809 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
810}
811
371fd7e7 812static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 813{
a64692a3 814 update_rq_clock(rq);
43148951 815 sched_info_dequeued(rq, p);
371fd7e7 816 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
817}
818
029632fb 819void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
820{
821 if (task_contributes_to_load(p))
822 rq->nr_uninterruptible--;
823
371fd7e7 824 enqueue_task(rq, p, flags);
1e3c88bd
PZ
825}
826
029632fb 827void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
828{
829 if (task_contributes_to_load(p))
830 rq->nr_uninterruptible++;
831
371fd7e7 832 dequeue_task(rq, p, flags);
1e3c88bd
PZ
833}
834
fe44d621 835static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 836{
095c0aa8
GC
837/*
838 * In theory, the compile should just see 0 here, and optimize out the call
839 * to sched_rt_avg_update. But I don't trust it...
840 */
841#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842 s64 steal = 0, irq_delta = 0;
843#endif
844#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 845 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
846
847 /*
848 * Since irq_time is only updated on {soft,}irq_exit, we might run into
849 * this case when a previous update_rq_clock() happened inside a
850 * {soft,}irq region.
851 *
852 * When this happens, we stop ->clock_task and only update the
853 * prev_irq_time stamp to account for the part that fit, so that a next
854 * update will consume the rest. This ensures ->clock_task is
855 * monotonic.
856 *
857 * It does however cause some slight miss-attribution of {soft,}irq
858 * time, a more accurate solution would be to update the irq_time using
859 * the current rq->clock timestamp, except that would require using
860 * atomic ops.
861 */
862 if (irq_delta > delta)
863 irq_delta = delta;
864
865 rq->prev_irq_time += irq_delta;
866 delta -= irq_delta;
095c0aa8
GC
867#endif
868#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 869 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
870 steal = paravirt_steal_clock(cpu_of(rq));
871 steal -= rq->prev_steal_time_rq;
872
873 if (unlikely(steal > delta))
874 steal = delta;
875
095c0aa8 876 rq->prev_steal_time_rq += steal;
095c0aa8
GC
877 delta -= steal;
878 }
879#endif
880
fe44d621
PZ
881 rq->clock_task += delta;
882
095c0aa8 883#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 884 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
885 sched_rt_avg_update(rq, irq_delta + steal);
886#endif
aa483808
VP
887}
888
34f971f6
PZ
889void sched_set_stop_task(int cpu, struct task_struct *stop)
890{
891 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
892 struct task_struct *old_stop = cpu_rq(cpu)->stop;
893
894 if (stop) {
895 /*
896 * Make it appear like a SCHED_FIFO task, its something
897 * userspace knows about and won't get confused about.
898 *
899 * Also, it will make PI more or less work without too
900 * much confusion -- but then, stop work should not
901 * rely on PI working anyway.
902 */
903 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
904
905 stop->sched_class = &stop_sched_class;
906 }
907
908 cpu_rq(cpu)->stop = stop;
909
910 if (old_stop) {
911 /*
912 * Reset it back to a normal scheduling class so that
913 * it can die in pieces.
914 */
915 old_stop->sched_class = &rt_sched_class;
916 }
917}
918
14531189 919/*
dd41f596 920 * __normal_prio - return the priority that is based on the static prio
14531189 921 */
14531189
IM
922static inline int __normal_prio(struct task_struct *p)
923{
dd41f596 924 return p->static_prio;
14531189
IM
925}
926
b29739f9
IM
927/*
928 * Calculate the expected normal priority: i.e. priority
929 * without taking RT-inheritance into account. Might be
930 * boosted by interactivity modifiers. Changes upon fork,
931 * setprio syscalls, and whenever the interactivity
932 * estimator recalculates.
933 */
36c8b586 934static inline int normal_prio(struct task_struct *p)
b29739f9
IM
935{
936 int prio;
937
aab03e05
DF
938 if (task_has_dl_policy(p))
939 prio = MAX_DL_PRIO-1;
940 else if (task_has_rt_policy(p))
b29739f9
IM
941 prio = MAX_RT_PRIO-1 - p->rt_priority;
942 else
943 prio = __normal_prio(p);
944 return prio;
945}
946
947/*
948 * Calculate the current priority, i.e. the priority
949 * taken into account by the scheduler. This value might
950 * be boosted by RT tasks, or might be boosted by
951 * interactivity modifiers. Will be RT if the task got
952 * RT-boosted. If not then it returns p->normal_prio.
953 */
36c8b586 954static int effective_prio(struct task_struct *p)
b29739f9
IM
955{
956 p->normal_prio = normal_prio(p);
957 /*
958 * If we are RT tasks or we were boosted to RT priority,
959 * keep the priority unchanged. Otherwise, update priority
960 * to the normal priority:
961 */
962 if (!rt_prio(p->prio))
963 return p->normal_prio;
964 return p->prio;
965}
966
1da177e4
LT
967/**
968 * task_curr - is this task currently executing on a CPU?
969 * @p: the task in question.
e69f6186
YB
970 *
971 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 972 */
36c8b586 973inline int task_curr(const struct task_struct *p)
1da177e4
LT
974{
975 return cpu_curr(task_cpu(p)) == p;
976}
977
67dfa1b7
KT
978/*
979 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
980 */
cb469845
SR
981static inline void check_class_changed(struct rq *rq, struct task_struct *p,
982 const struct sched_class *prev_class,
da7a735e 983 int oldprio)
cb469845
SR
984{
985 if (prev_class != p->sched_class) {
986 if (prev_class->switched_from)
da7a735e 987 prev_class->switched_from(rq, p);
67dfa1b7 988 /* Possble rq->lock 'hole'. */
da7a735e 989 p->sched_class->switched_to(rq, p);
2d3d891d 990 } else if (oldprio != p->prio || dl_task(p))
da7a735e 991 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
992}
993
029632fb 994void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
995{
996 const struct sched_class *class;
997
998 if (p->sched_class == rq->curr->sched_class) {
999 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1000 } else {
1001 for_each_class(class) {
1002 if (class == rq->curr->sched_class)
1003 break;
1004 if (class == p->sched_class) {
8875125e 1005 resched_curr(rq);
1e5a7405
PZ
1006 break;
1007 }
1008 }
1009 }
1010
1011 /*
1012 * A queue event has occurred, and we're going to schedule. In
1013 * this case, we can save a useless back to back clock update.
1014 */
da0c1e65 1015 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1016 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1017}
1018
1da177e4 1019#ifdef CONFIG_SMP
dd41f596 1020void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1021{
e2912009
PZ
1022#ifdef CONFIG_SCHED_DEBUG
1023 /*
1024 * We should never call set_task_cpu() on a blocked task,
1025 * ttwu() will sort out the placement.
1026 */
077614ee 1027 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1028 !p->on_rq);
0122ec5b
PZ
1029
1030#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1031 /*
1032 * The caller should hold either p->pi_lock or rq->lock, when changing
1033 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1034 *
1035 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1036 * see task_group().
6c6c54e1
PZ
1037 *
1038 * Furthermore, all task_rq users should acquire both locks, see
1039 * task_rq_lock().
1040 */
0122ec5b
PZ
1041 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1042 lockdep_is_held(&task_rq(p)->lock)));
1043#endif
e2912009
PZ
1044#endif
1045
de1d7286 1046 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1047
0c69774e 1048 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1049 if (p->sched_class->migrate_task_rq)
1050 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1051 p->se.nr_migrations++;
86038c5e 1052 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
0c69774e 1053 }
dd41f596
IM
1054
1055 __set_task_cpu(p, new_cpu);
c65cc870
IM
1056}
1057
ac66f547
PZ
1058static void __migrate_swap_task(struct task_struct *p, int cpu)
1059{
da0c1e65 1060 if (task_on_rq_queued(p)) {
ac66f547
PZ
1061 struct rq *src_rq, *dst_rq;
1062
1063 src_rq = task_rq(p);
1064 dst_rq = cpu_rq(cpu);
1065
1066 deactivate_task(src_rq, p, 0);
1067 set_task_cpu(p, cpu);
1068 activate_task(dst_rq, p, 0);
1069 check_preempt_curr(dst_rq, p, 0);
1070 } else {
1071 /*
1072 * Task isn't running anymore; make it appear like we migrated
1073 * it before it went to sleep. This means on wakeup we make the
1074 * previous cpu our targer instead of where it really is.
1075 */
1076 p->wake_cpu = cpu;
1077 }
1078}
1079
1080struct migration_swap_arg {
1081 struct task_struct *src_task, *dst_task;
1082 int src_cpu, dst_cpu;
1083};
1084
1085static int migrate_swap_stop(void *data)
1086{
1087 struct migration_swap_arg *arg = data;
1088 struct rq *src_rq, *dst_rq;
1089 int ret = -EAGAIN;
1090
1091 src_rq = cpu_rq(arg->src_cpu);
1092 dst_rq = cpu_rq(arg->dst_cpu);
1093
74602315
PZ
1094 double_raw_lock(&arg->src_task->pi_lock,
1095 &arg->dst_task->pi_lock);
ac66f547
PZ
1096 double_rq_lock(src_rq, dst_rq);
1097 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1098 goto unlock;
1099
1100 if (task_cpu(arg->src_task) != arg->src_cpu)
1101 goto unlock;
1102
1103 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1104 goto unlock;
1105
1106 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1107 goto unlock;
1108
1109 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1110 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1111
1112 ret = 0;
1113
1114unlock:
1115 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1116 raw_spin_unlock(&arg->dst_task->pi_lock);
1117 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1118
1119 return ret;
1120}
1121
1122/*
1123 * Cross migrate two tasks
1124 */
1125int migrate_swap(struct task_struct *cur, struct task_struct *p)
1126{
1127 struct migration_swap_arg arg;
1128 int ret = -EINVAL;
1129
ac66f547
PZ
1130 arg = (struct migration_swap_arg){
1131 .src_task = cur,
1132 .src_cpu = task_cpu(cur),
1133 .dst_task = p,
1134 .dst_cpu = task_cpu(p),
1135 };
1136
1137 if (arg.src_cpu == arg.dst_cpu)
1138 goto out;
1139
6acce3ef
PZ
1140 /*
1141 * These three tests are all lockless; this is OK since all of them
1142 * will be re-checked with proper locks held further down the line.
1143 */
ac66f547
PZ
1144 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1145 goto out;
1146
1147 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1148 goto out;
1149
1150 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1151 goto out;
1152
286549dc 1153 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1154 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1155
1156out:
ac66f547
PZ
1157 return ret;
1158}
1159
969c7921 1160struct migration_arg {
36c8b586 1161 struct task_struct *task;
1da177e4 1162 int dest_cpu;
70b97a7f 1163};
1da177e4 1164
969c7921
TH
1165static int migration_cpu_stop(void *data);
1166
1da177e4
LT
1167/*
1168 * wait_task_inactive - wait for a thread to unschedule.
1169 *
85ba2d86
RM
1170 * If @match_state is nonzero, it's the @p->state value just checked and
1171 * not expected to change. If it changes, i.e. @p might have woken up,
1172 * then return zero. When we succeed in waiting for @p to be off its CPU,
1173 * we return a positive number (its total switch count). If a second call
1174 * a short while later returns the same number, the caller can be sure that
1175 * @p has remained unscheduled the whole time.
1176 *
1da177e4
LT
1177 * The caller must ensure that the task *will* unschedule sometime soon,
1178 * else this function might spin for a *long* time. This function can't
1179 * be called with interrupts off, or it may introduce deadlock with
1180 * smp_call_function() if an IPI is sent by the same process we are
1181 * waiting to become inactive.
1182 */
85ba2d86 1183unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1184{
1185 unsigned long flags;
da0c1e65 1186 int running, queued;
85ba2d86 1187 unsigned long ncsw;
70b97a7f 1188 struct rq *rq;
1da177e4 1189
3a5c359a
AK
1190 for (;;) {
1191 /*
1192 * We do the initial early heuristics without holding
1193 * any task-queue locks at all. We'll only try to get
1194 * the runqueue lock when things look like they will
1195 * work out!
1196 */
1197 rq = task_rq(p);
fa490cfd 1198
3a5c359a
AK
1199 /*
1200 * If the task is actively running on another CPU
1201 * still, just relax and busy-wait without holding
1202 * any locks.
1203 *
1204 * NOTE! Since we don't hold any locks, it's not
1205 * even sure that "rq" stays as the right runqueue!
1206 * But we don't care, since "task_running()" will
1207 * return false if the runqueue has changed and p
1208 * is actually now running somewhere else!
1209 */
85ba2d86
RM
1210 while (task_running(rq, p)) {
1211 if (match_state && unlikely(p->state != match_state))
1212 return 0;
3a5c359a 1213 cpu_relax();
85ba2d86 1214 }
fa490cfd 1215
3a5c359a
AK
1216 /*
1217 * Ok, time to look more closely! We need the rq
1218 * lock now, to be *sure*. If we're wrong, we'll
1219 * just go back and repeat.
1220 */
1221 rq = task_rq_lock(p, &flags);
27a9da65 1222 trace_sched_wait_task(p);
3a5c359a 1223 running = task_running(rq, p);
da0c1e65 1224 queued = task_on_rq_queued(p);
85ba2d86 1225 ncsw = 0;
f31e11d8 1226 if (!match_state || p->state == match_state)
93dcf55f 1227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1228 task_rq_unlock(rq, p, &flags);
fa490cfd 1229
85ba2d86
RM
1230 /*
1231 * If it changed from the expected state, bail out now.
1232 */
1233 if (unlikely(!ncsw))
1234 break;
1235
3a5c359a
AK
1236 /*
1237 * Was it really running after all now that we
1238 * checked with the proper locks actually held?
1239 *
1240 * Oops. Go back and try again..
1241 */
1242 if (unlikely(running)) {
1243 cpu_relax();
1244 continue;
1245 }
fa490cfd 1246
3a5c359a
AK
1247 /*
1248 * It's not enough that it's not actively running,
1249 * it must be off the runqueue _entirely_, and not
1250 * preempted!
1251 *
80dd99b3 1252 * So if it was still runnable (but just not actively
3a5c359a
AK
1253 * running right now), it's preempted, and we should
1254 * yield - it could be a while.
1255 */
da0c1e65 1256 if (unlikely(queued)) {
8eb90c30
TG
1257 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1258
1259 set_current_state(TASK_UNINTERRUPTIBLE);
1260 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1261 continue;
1262 }
fa490cfd 1263
3a5c359a
AK
1264 /*
1265 * Ahh, all good. It wasn't running, and it wasn't
1266 * runnable, which means that it will never become
1267 * running in the future either. We're all done!
1268 */
1269 break;
1270 }
85ba2d86
RM
1271
1272 return ncsw;
1da177e4
LT
1273}
1274
1275/***
1276 * kick_process - kick a running thread to enter/exit the kernel
1277 * @p: the to-be-kicked thread
1278 *
1279 * Cause a process which is running on another CPU to enter
1280 * kernel-mode, without any delay. (to get signals handled.)
1281 *
25985edc 1282 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1283 * because all it wants to ensure is that the remote task enters
1284 * the kernel. If the IPI races and the task has been migrated
1285 * to another CPU then no harm is done and the purpose has been
1286 * achieved as well.
1287 */
36c8b586 1288void kick_process(struct task_struct *p)
1da177e4
LT
1289{
1290 int cpu;
1291
1292 preempt_disable();
1293 cpu = task_cpu(p);
1294 if ((cpu != smp_processor_id()) && task_curr(p))
1295 smp_send_reschedule(cpu);
1296 preempt_enable();
1297}
b43e3521 1298EXPORT_SYMBOL_GPL(kick_process);
476d139c 1299#endif /* CONFIG_SMP */
1da177e4 1300
970b13ba 1301#ifdef CONFIG_SMP
30da688e 1302/*
013fdb80 1303 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1304 */
5da9a0fb
PZ
1305static int select_fallback_rq(int cpu, struct task_struct *p)
1306{
aa00d89c
TC
1307 int nid = cpu_to_node(cpu);
1308 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1309 enum { cpuset, possible, fail } state = cpuset;
1310 int dest_cpu;
5da9a0fb 1311
aa00d89c
TC
1312 /*
1313 * If the node that the cpu is on has been offlined, cpu_to_node()
1314 * will return -1. There is no cpu on the node, and we should
1315 * select the cpu on the other node.
1316 */
1317 if (nid != -1) {
1318 nodemask = cpumask_of_node(nid);
1319
1320 /* Look for allowed, online CPU in same node. */
1321 for_each_cpu(dest_cpu, nodemask) {
1322 if (!cpu_online(dest_cpu))
1323 continue;
1324 if (!cpu_active(dest_cpu))
1325 continue;
1326 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1327 return dest_cpu;
1328 }
2baab4e9 1329 }
5da9a0fb 1330
2baab4e9
PZ
1331 for (;;) {
1332 /* Any allowed, online CPU? */
e3831edd 1333 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1334 if (!cpu_online(dest_cpu))
1335 continue;
1336 if (!cpu_active(dest_cpu))
1337 continue;
1338 goto out;
1339 }
5da9a0fb 1340
2baab4e9
PZ
1341 switch (state) {
1342 case cpuset:
1343 /* No more Mr. Nice Guy. */
1344 cpuset_cpus_allowed_fallback(p);
1345 state = possible;
1346 break;
1347
1348 case possible:
1349 do_set_cpus_allowed(p, cpu_possible_mask);
1350 state = fail;
1351 break;
1352
1353 case fail:
1354 BUG();
1355 break;
1356 }
1357 }
1358
1359out:
1360 if (state != cpuset) {
1361 /*
1362 * Don't tell them about moving exiting tasks or
1363 * kernel threads (both mm NULL), since they never
1364 * leave kernel.
1365 */
1366 if (p->mm && printk_ratelimit()) {
aac74dc4 1367 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1368 task_pid_nr(p), p->comm, cpu);
1369 }
5da9a0fb
PZ
1370 }
1371
1372 return dest_cpu;
1373}
1374
e2912009 1375/*
013fdb80 1376 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1377 */
970b13ba 1378static inline
ac66f547 1379int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1380{
6c1d9410
WL
1381 if (p->nr_cpus_allowed > 1)
1382 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1383
1384 /*
1385 * In order not to call set_task_cpu() on a blocking task we need
1386 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1387 * cpu.
1388 *
1389 * Since this is common to all placement strategies, this lives here.
1390 *
1391 * [ this allows ->select_task() to simply return task_cpu(p) and
1392 * not worry about this generic constraint ]
1393 */
fa17b507 1394 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1395 !cpu_online(cpu)))
5da9a0fb 1396 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1397
1398 return cpu;
970b13ba 1399}
09a40af5
MG
1400
1401static void update_avg(u64 *avg, u64 sample)
1402{
1403 s64 diff = sample - *avg;
1404 *avg += diff >> 3;
1405}
970b13ba
PZ
1406#endif
1407
d7c01d27 1408static void
b84cb5df 1409ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1410{
d7c01d27 1411#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1412 struct rq *rq = this_rq();
1413
d7c01d27
PZ
1414#ifdef CONFIG_SMP
1415 int this_cpu = smp_processor_id();
1416
1417 if (cpu == this_cpu) {
1418 schedstat_inc(rq, ttwu_local);
1419 schedstat_inc(p, se.statistics.nr_wakeups_local);
1420 } else {
1421 struct sched_domain *sd;
1422
1423 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1424 rcu_read_lock();
d7c01d27
PZ
1425 for_each_domain(this_cpu, sd) {
1426 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1427 schedstat_inc(sd, ttwu_wake_remote);
1428 break;
1429 }
1430 }
057f3fad 1431 rcu_read_unlock();
d7c01d27 1432 }
f339b9dc
PZ
1433
1434 if (wake_flags & WF_MIGRATED)
1435 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1436
d7c01d27
PZ
1437#endif /* CONFIG_SMP */
1438
1439 schedstat_inc(rq, ttwu_count);
9ed3811a 1440 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1441
1442 if (wake_flags & WF_SYNC)
9ed3811a 1443 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1444
d7c01d27
PZ
1445#endif /* CONFIG_SCHEDSTATS */
1446}
1447
1448static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1449{
9ed3811a 1450 activate_task(rq, p, en_flags);
da0c1e65 1451 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1452
1453 /* if a worker is waking up, notify workqueue */
1454 if (p->flags & PF_WQ_WORKER)
1455 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1456}
1457
23f41eeb
PZ
1458/*
1459 * Mark the task runnable and perform wakeup-preemption.
1460 */
89363381 1461static void
23f41eeb 1462ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1463{
9ed3811a 1464 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1465 trace_sched_wakeup(p, true);
9ed3811a
TH
1466
1467 p->state = TASK_RUNNING;
1468#ifdef CONFIG_SMP
1469 if (p->sched_class->task_woken)
1470 p->sched_class->task_woken(rq, p);
1471
e69c6341 1472 if (rq->idle_stamp) {
78becc27 1473 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1474 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1475
abfafa54
JL
1476 update_avg(&rq->avg_idle, delta);
1477
1478 if (rq->avg_idle > max)
9ed3811a 1479 rq->avg_idle = max;
abfafa54 1480
9ed3811a
TH
1481 rq->idle_stamp = 0;
1482 }
1483#endif
1484}
1485
c05fbafb
PZ
1486static void
1487ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1488{
1489#ifdef CONFIG_SMP
1490 if (p->sched_contributes_to_load)
1491 rq->nr_uninterruptible--;
1492#endif
1493
1494 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1495 ttwu_do_wakeup(rq, p, wake_flags);
1496}
1497
1498/*
1499 * Called in case the task @p isn't fully descheduled from its runqueue,
1500 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1501 * since all we need to do is flip p->state to TASK_RUNNING, since
1502 * the task is still ->on_rq.
1503 */
1504static int ttwu_remote(struct task_struct *p, int wake_flags)
1505{
1506 struct rq *rq;
1507 int ret = 0;
1508
1509 rq = __task_rq_lock(p);
da0c1e65 1510 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1511 /* check_preempt_curr() may use rq clock */
1512 update_rq_clock(rq);
c05fbafb
PZ
1513 ttwu_do_wakeup(rq, p, wake_flags);
1514 ret = 1;
1515 }
1516 __task_rq_unlock(rq);
1517
1518 return ret;
1519}
1520
317f3941 1521#ifdef CONFIG_SMP
e3baac47 1522void sched_ttwu_pending(void)
317f3941
PZ
1523{
1524 struct rq *rq = this_rq();
fa14ff4a
PZ
1525 struct llist_node *llist = llist_del_all(&rq->wake_list);
1526 struct task_struct *p;
e3baac47 1527 unsigned long flags;
317f3941 1528
e3baac47
PZ
1529 if (!llist)
1530 return;
1531
1532 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1533
fa14ff4a
PZ
1534 while (llist) {
1535 p = llist_entry(llist, struct task_struct, wake_entry);
1536 llist = llist_next(llist);
317f3941
PZ
1537 ttwu_do_activate(rq, p, 0);
1538 }
1539
e3baac47 1540 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1541}
1542
1543void scheduler_ipi(void)
1544{
f27dde8d
PZ
1545 /*
1546 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1547 * TIF_NEED_RESCHED remotely (for the first time) will also send
1548 * this IPI.
1549 */
8cb75e0c 1550 preempt_fold_need_resched();
f27dde8d 1551
fd2ac4f4 1552 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1553 return;
1554
1555 /*
1556 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1557 * traditionally all their work was done from the interrupt return
1558 * path. Now that we actually do some work, we need to make sure
1559 * we do call them.
1560 *
1561 * Some archs already do call them, luckily irq_enter/exit nest
1562 * properly.
1563 *
1564 * Arguably we should visit all archs and update all handlers,
1565 * however a fair share of IPIs are still resched only so this would
1566 * somewhat pessimize the simple resched case.
1567 */
1568 irq_enter();
fa14ff4a 1569 sched_ttwu_pending();
ca38062e
SS
1570
1571 /*
1572 * Check if someone kicked us for doing the nohz idle load balance.
1573 */
873b4c65 1574 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1575 this_rq()->idle_balance = 1;
ca38062e 1576 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1577 }
c5d753a5 1578 irq_exit();
317f3941
PZ
1579}
1580
1581static void ttwu_queue_remote(struct task_struct *p, int cpu)
1582{
e3baac47
PZ
1583 struct rq *rq = cpu_rq(cpu);
1584
1585 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1586 if (!set_nr_if_polling(rq->idle))
1587 smp_send_reschedule(cpu);
1588 else
1589 trace_sched_wake_idle_without_ipi(cpu);
1590 }
317f3941 1591}
d6aa8f85 1592
f6be8af1
CL
1593void wake_up_if_idle(int cpu)
1594{
1595 struct rq *rq = cpu_rq(cpu);
1596 unsigned long flags;
1597
fd7de1e8
AL
1598 rcu_read_lock();
1599
1600 if (!is_idle_task(rcu_dereference(rq->curr)))
1601 goto out;
f6be8af1
CL
1602
1603 if (set_nr_if_polling(rq->idle)) {
1604 trace_sched_wake_idle_without_ipi(cpu);
1605 } else {
1606 raw_spin_lock_irqsave(&rq->lock, flags);
1607 if (is_idle_task(rq->curr))
1608 smp_send_reschedule(cpu);
1609 /* Else cpu is not in idle, do nothing here */
1610 raw_spin_unlock_irqrestore(&rq->lock, flags);
1611 }
fd7de1e8
AL
1612
1613out:
1614 rcu_read_unlock();
f6be8af1
CL
1615}
1616
39be3501 1617bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1618{
1619 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1620}
d6aa8f85 1621#endif /* CONFIG_SMP */
317f3941 1622
c05fbafb
PZ
1623static void ttwu_queue(struct task_struct *p, int cpu)
1624{
1625 struct rq *rq = cpu_rq(cpu);
1626
17d9f311 1627#if defined(CONFIG_SMP)
39be3501 1628 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1629 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1630 ttwu_queue_remote(p, cpu);
1631 return;
1632 }
1633#endif
1634
c05fbafb
PZ
1635 raw_spin_lock(&rq->lock);
1636 ttwu_do_activate(rq, p, 0);
1637 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1638}
1639
1640/**
1da177e4 1641 * try_to_wake_up - wake up a thread
9ed3811a 1642 * @p: the thread to be awakened
1da177e4 1643 * @state: the mask of task states that can be woken
9ed3811a 1644 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1645 *
1646 * Put it on the run-queue if it's not already there. The "current"
1647 * thread is always on the run-queue (except when the actual
1648 * re-schedule is in progress), and as such you're allowed to do
1649 * the simpler "current->state = TASK_RUNNING" to mark yourself
1650 * runnable without the overhead of this.
1651 *
e69f6186 1652 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1653 * or @state didn't match @p's state.
1da177e4 1654 */
e4a52bcb
PZ
1655static int
1656try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1657{
1da177e4 1658 unsigned long flags;
c05fbafb 1659 int cpu, success = 0;
2398f2c6 1660
e0acd0a6
ON
1661 /*
1662 * If we are going to wake up a thread waiting for CONDITION we
1663 * need to ensure that CONDITION=1 done by the caller can not be
1664 * reordered with p->state check below. This pairs with mb() in
1665 * set_current_state() the waiting thread does.
1666 */
1667 smp_mb__before_spinlock();
013fdb80 1668 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1669 if (!(p->state & state))
1da177e4
LT
1670 goto out;
1671
c05fbafb 1672 success = 1; /* we're going to change ->state */
1da177e4 1673 cpu = task_cpu(p);
1da177e4 1674
c05fbafb
PZ
1675 if (p->on_rq && ttwu_remote(p, wake_flags))
1676 goto stat;
1da177e4 1677
1da177e4 1678#ifdef CONFIG_SMP
e9c84311 1679 /*
c05fbafb
PZ
1680 * If the owning (remote) cpu is still in the middle of schedule() with
1681 * this task as prev, wait until its done referencing the task.
e9c84311 1682 */
f3e94786 1683 while (p->on_cpu)
e4a52bcb 1684 cpu_relax();
0970d299 1685 /*
e4a52bcb 1686 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1687 */
e4a52bcb 1688 smp_rmb();
1da177e4 1689
a8e4f2ea 1690 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1691 p->state = TASK_WAKING;
e7693a36 1692
e4a52bcb 1693 if (p->sched_class->task_waking)
74f8e4b2 1694 p->sched_class->task_waking(p);
efbbd05a 1695
ac66f547 1696 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1697 if (task_cpu(p) != cpu) {
1698 wake_flags |= WF_MIGRATED;
e4a52bcb 1699 set_task_cpu(p, cpu);
f339b9dc 1700 }
1da177e4 1701#endif /* CONFIG_SMP */
1da177e4 1702
c05fbafb
PZ
1703 ttwu_queue(p, cpu);
1704stat:
b84cb5df 1705 ttwu_stat(p, cpu, wake_flags);
1da177e4 1706out:
013fdb80 1707 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1708
1709 return success;
1710}
1711
21aa9af0
TH
1712/**
1713 * try_to_wake_up_local - try to wake up a local task with rq lock held
1714 * @p: the thread to be awakened
1715 *
2acca55e 1716 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1717 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1718 * the current task.
21aa9af0
TH
1719 */
1720static void try_to_wake_up_local(struct task_struct *p)
1721{
1722 struct rq *rq = task_rq(p);
21aa9af0 1723
383efcd0
TH
1724 if (WARN_ON_ONCE(rq != this_rq()) ||
1725 WARN_ON_ONCE(p == current))
1726 return;
1727
21aa9af0
TH
1728 lockdep_assert_held(&rq->lock);
1729
2acca55e
PZ
1730 if (!raw_spin_trylock(&p->pi_lock)) {
1731 raw_spin_unlock(&rq->lock);
1732 raw_spin_lock(&p->pi_lock);
1733 raw_spin_lock(&rq->lock);
1734 }
1735
21aa9af0 1736 if (!(p->state & TASK_NORMAL))
2acca55e 1737 goto out;
21aa9af0 1738
da0c1e65 1739 if (!task_on_rq_queued(p))
d7c01d27
PZ
1740 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1741
23f41eeb 1742 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1743 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1744out:
1745 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1746}
1747
50fa610a
DH
1748/**
1749 * wake_up_process - Wake up a specific process
1750 * @p: The process to be woken up.
1751 *
1752 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1753 * processes.
1754 *
1755 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1756 *
1757 * It may be assumed that this function implies a write memory barrier before
1758 * changing the task state if and only if any tasks are woken up.
1759 */
7ad5b3a5 1760int wake_up_process(struct task_struct *p)
1da177e4 1761{
9067ac85
ON
1762 WARN_ON(task_is_stopped_or_traced(p));
1763 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1764}
1da177e4
LT
1765EXPORT_SYMBOL(wake_up_process);
1766
7ad5b3a5 1767int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1768{
1769 return try_to_wake_up(p, state, 0);
1770}
1771
a5e7be3b
JL
1772/*
1773 * This function clears the sched_dl_entity static params.
1774 */
1775void __dl_clear_params(struct task_struct *p)
1776{
1777 struct sched_dl_entity *dl_se = &p->dl;
1778
1779 dl_se->dl_runtime = 0;
1780 dl_se->dl_deadline = 0;
1781 dl_se->dl_period = 0;
1782 dl_se->flags = 0;
1783 dl_se->dl_bw = 0;
40767b0d
PZ
1784
1785 dl_se->dl_throttled = 0;
1786 dl_se->dl_new = 1;
1787 dl_se->dl_yielded = 0;
a5e7be3b
JL
1788}
1789
1da177e4
LT
1790/*
1791 * Perform scheduler related setup for a newly forked process p.
1792 * p is forked by current.
dd41f596
IM
1793 *
1794 * __sched_fork() is basic setup used by init_idle() too:
1795 */
5e1576ed 1796static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1797{
fd2f4419
PZ
1798 p->on_rq = 0;
1799
1800 p->se.on_rq = 0;
dd41f596
IM
1801 p->se.exec_start = 0;
1802 p->se.sum_exec_runtime = 0;
f6cf891c 1803 p->se.prev_sum_exec_runtime = 0;
6c594c21 1804 p->se.nr_migrations = 0;
da7a735e 1805 p->se.vruntime = 0;
bb04159d
KT
1806#ifdef CONFIG_SMP
1807 p->se.avg.decay_count = 0;
1808#endif
fd2f4419 1809 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1810
1811#ifdef CONFIG_SCHEDSTATS
41acab88 1812 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1813#endif
476d139c 1814
aab03e05 1815 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 1816 init_dl_task_timer(&p->dl);
a5e7be3b 1817 __dl_clear_params(p);
aab03e05 1818
fa717060 1819 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1820
e107be36
AK
1821#ifdef CONFIG_PREEMPT_NOTIFIERS
1822 INIT_HLIST_HEAD(&p->preempt_notifiers);
1823#endif
cbee9f88
PZ
1824
1825#ifdef CONFIG_NUMA_BALANCING
1826 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1827 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1828 p->mm->numa_scan_seq = 0;
1829 }
1830
5e1576ed
RR
1831 if (clone_flags & CLONE_VM)
1832 p->numa_preferred_nid = current->numa_preferred_nid;
1833 else
1834 p->numa_preferred_nid = -1;
1835
cbee9f88
PZ
1836 p->node_stamp = 0ULL;
1837 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1838 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1839 p->numa_work.next = &p->numa_work;
44dba3d5 1840 p->numa_faults = NULL;
7e2703e6
RR
1841 p->last_task_numa_placement = 0;
1842 p->last_sum_exec_runtime = 0;
8c8a743c 1843
8c8a743c 1844 p->numa_group = NULL;
cbee9f88 1845#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1846}
1847
1a687c2e 1848#ifdef CONFIG_NUMA_BALANCING
3105b86a 1849#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1850void set_numabalancing_state(bool enabled)
1851{
1852 if (enabled)
1853 sched_feat_set("NUMA");
1854 else
1855 sched_feat_set("NO_NUMA");
1856}
3105b86a
MG
1857#else
1858__read_mostly bool numabalancing_enabled;
1859
1860void set_numabalancing_state(bool enabled)
1861{
1862 numabalancing_enabled = enabled;
dd41f596 1863}
3105b86a 1864#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1865
1866#ifdef CONFIG_PROC_SYSCTL
1867int sysctl_numa_balancing(struct ctl_table *table, int write,
1868 void __user *buffer, size_t *lenp, loff_t *ppos)
1869{
1870 struct ctl_table t;
1871 int err;
1872 int state = numabalancing_enabled;
1873
1874 if (write && !capable(CAP_SYS_ADMIN))
1875 return -EPERM;
1876
1877 t = *table;
1878 t.data = &state;
1879 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1880 if (err < 0)
1881 return err;
1882 if (write)
1883 set_numabalancing_state(state);
1884 return err;
1885}
1886#endif
1887#endif
dd41f596
IM
1888
1889/*
1890 * fork()/clone()-time setup:
1891 */
aab03e05 1892int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1893{
0122ec5b 1894 unsigned long flags;
dd41f596
IM
1895 int cpu = get_cpu();
1896
5e1576ed 1897 __sched_fork(clone_flags, p);
06b83b5f 1898 /*
0017d735 1899 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1900 * nobody will actually run it, and a signal or other external
1901 * event cannot wake it up and insert it on the runqueue either.
1902 */
0017d735 1903 p->state = TASK_RUNNING;
dd41f596 1904
c350a04e
MG
1905 /*
1906 * Make sure we do not leak PI boosting priority to the child.
1907 */
1908 p->prio = current->normal_prio;
1909
b9dc29e7
MG
1910 /*
1911 * Revert to default priority/policy on fork if requested.
1912 */
1913 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1914 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1915 p->policy = SCHED_NORMAL;
6c697bdf 1916 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1917 p->rt_priority = 0;
1918 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1919 p->static_prio = NICE_TO_PRIO(0);
1920
1921 p->prio = p->normal_prio = __normal_prio(p);
1922 set_load_weight(p);
6c697bdf 1923
b9dc29e7
MG
1924 /*
1925 * We don't need the reset flag anymore after the fork. It has
1926 * fulfilled its duty:
1927 */
1928 p->sched_reset_on_fork = 0;
1929 }
ca94c442 1930
aab03e05
DF
1931 if (dl_prio(p->prio)) {
1932 put_cpu();
1933 return -EAGAIN;
1934 } else if (rt_prio(p->prio)) {
1935 p->sched_class = &rt_sched_class;
1936 } else {
2ddbf952 1937 p->sched_class = &fair_sched_class;
aab03e05 1938 }
b29739f9 1939
cd29fe6f
PZ
1940 if (p->sched_class->task_fork)
1941 p->sched_class->task_fork(p);
1942
86951599
PZ
1943 /*
1944 * The child is not yet in the pid-hash so no cgroup attach races,
1945 * and the cgroup is pinned to this child due to cgroup_fork()
1946 * is ran before sched_fork().
1947 *
1948 * Silence PROVE_RCU.
1949 */
0122ec5b 1950 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1951 set_task_cpu(p, cpu);
0122ec5b 1952 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1953
52f17b6c 1954#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1955 if (likely(sched_info_on()))
52f17b6c 1956 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1957#endif
3ca7a440
PZ
1958#if defined(CONFIG_SMP)
1959 p->on_cpu = 0;
4866cde0 1960#endif
01028747 1961 init_task_preempt_count(p);
806c09a7 1962#ifdef CONFIG_SMP
917b627d 1963 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1964 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1965#endif
917b627d 1966
476d139c 1967 put_cpu();
aab03e05 1968 return 0;
1da177e4
LT
1969}
1970
332ac17e
DF
1971unsigned long to_ratio(u64 period, u64 runtime)
1972{
1973 if (runtime == RUNTIME_INF)
1974 return 1ULL << 20;
1975
1976 /*
1977 * Doing this here saves a lot of checks in all
1978 * the calling paths, and returning zero seems
1979 * safe for them anyway.
1980 */
1981 if (period == 0)
1982 return 0;
1983
1984 return div64_u64(runtime << 20, period);
1985}
1986
1987#ifdef CONFIG_SMP
1988inline struct dl_bw *dl_bw_of(int i)
1989{
66339c31
KT
1990 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1991 "sched RCU must be held");
332ac17e
DF
1992 return &cpu_rq(i)->rd->dl_bw;
1993}
1994
de212f18 1995static inline int dl_bw_cpus(int i)
332ac17e 1996{
de212f18
PZ
1997 struct root_domain *rd = cpu_rq(i)->rd;
1998 int cpus = 0;
1999
66339c31
KT
2000 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2001 "sched RCU must be held");
de212f18
PZ
2002 for_each_cpu_and(i, rd->span, cpu_active_mask)
2003 cpus++;
2004
2005 return cpus;
332ac17e
DF
2006}
2007#else
2008inline struct dl_bw *dl_bw_of(int i)
2009{
2010 return &cpu_rq(i)->dl.dl_bw;
2011}
2012
de212f18 2013static inline int dl_bw_cpus(int i)
332ac17e
DF
2014{
2015 return 1;
2016}
2017#endif
2018
332ac17e
DF
2019/*
2020 * We must be sure that accepting a new task (or allowing changing the
2021 * parameters of an existing one) is consistent with the bandwidth
2022 * constraints. If yes, this function also accordingly updates the currently
2023 * allocated bandwidth to reflect the new situation.
2024 *
2025 * This function is called while holding p's rq->lock.
40767b0d
PZ
2026 *
2027 * XXX we should delay bw change until the task's 0-lag point, see
2028 * __setparam_dl().
332ac17e
DF
2029 */
2030static int dl_overflow(struct task_struct *p, int policy,
2031 const struct sched_attr *attr)
2032{
2033
2034 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2035 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2036 u64 runtime = attr->sched_runtime;
2037 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2038 int cpus, err = -1;
332ac17e
DF
2039
2040 if (new_bw == p->dl.dl_bw)
2041 return 0;
2042
2043 /*
2044 * Either if a task, enters, leave, or stays -deadline but changes
2045 * its parameters, we may need to update accordingly the total
2046 * allocated bandwidth of the container.
2047 */
2048 raw_spin_lock(&dl_b->lock);
de212f18 2049 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2050 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2051 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2052 __dl_add(dl_b, new_bw);
2053 err = 0;
2054 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2055 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2056 __dl_clear(dl_b, p->dl.dl_bw);
2057 __dl_add(dl_b, new_bw);
2058 err = 0;
2059 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2060 __dl_clear(dl_b, p->dl.dl_bw);
2061 err = 0;
2062 }
2063 raw_spin_unlock(&dl_b->lock);
2064
2065 return err;
2066}
2067
2068extern void init_dl_bw(struct dl_bw *dl_b);
2069
1da177e4
LT
2070/*
2071 * wake_up_new_task - wake up a newly created task for the first time.
2072 *
2073 * This function will do some initial scheduler statistics housekeeping
2074 * that must be done for every newly created context, then puts the task
2075 * on the runqueue and wakes it.
2076 */
3e51e3ed 2077void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2078{
2079 unsigned long flags;
dd41f596 2080 struct rq *rq;
fabf318e 2081
ab2515c4 2082 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2083#ifdef CONFIG_SMP
2084 /*
2085 * Fork balancing, do it here and not earlier because:
2086 * - cpus_allowed can change in the fork path
2087 * - any previously selected cpu might disappear through hotplug
fabf318e 2088 */
ac66f547 2089 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2090#endif
2091
a75cdaa9
AS
2092 /* Initialize new task's runnable average */
2093 init_task_runnable_average(p);
ab2515c4 2094 rq = __task_rq_lock(p);
cd29fe6f 2095 activate_task(rq, p, 0);
da0c1e65 2096 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2097 trace_sched_wakeup_new(p, true);
a7558e01 2098 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2099#ifdef CONFIG_SMP
efbbd05a
PZ
2100 if (p->sched_class->task_woken)
2101 p->sched_class->task_woken(rq, p);
9a897c5a 2102#endif
0122ec5b 2103 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2104}
2105
e107be36
AK
2106#ifdef CONFIG_PREEMPT_NOTIFIERS
2107
2108/**
80dd99b3 2109 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2110 * @notifier: notifier struct to register
e107be36
AK
2111 */
2112void preempt_notifier_register(struct preempt_notifier *notifier)
2113{
2114 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2115}
2116EXPORT_SYMBOL_GPL(preempt_notifier_register);
2117
2118/**
2119 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2120 * @notifier: notifier struct to unregister
e107be36
AK
2121 *
2122 * This is safe to call from within a preemption notifier.
2123 */
2124void preempt_notifier_unregister(struct preempt_notifier *notifier)
2125{
2126 hlist_del(&notifier->link);
2127}
2128EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2129
2130static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131{
2132 struct preempt_notifier *notifier;
e107be36 2133
b67bfe0d 2134 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2135 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2136}
2137
2138static void
2139fire_sched_out_preempt_notifiers(struct task_struct *curr,
2140 struct task_struct *next)
2141{
2142 struct preempt_notifier *notifier;
e107be36 2143
b67bfe0d 2144 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2145 notifier->ops->sched_out(notifier, next);
2146}
2147
6d6bc0ad 2148#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2149
2150static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2151{
2152}
2153
2154static void
2155fire_sched_out_preempt_notifiers(struct task_struct *curr,
2156 struct task_struct *next)
2157{
2158}
2159
6d6bc0ad 2160#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2161
4866cde0
NP
2162/**
2163 * prepare_task_switch - prepare to switch tasks
2164 * @rq: the runqueue preparing to switch
421cee29 2165 * @prev: the current task that is being switched out
4866cde0
NP
2166 * @next: the task we are going to switch to.
2167 *
2168 * This is called with the rq lock held and interrupts off. It must
2169 * be paired with a subsequent finish_task_switch after the context
2170 * switch.
2171 *
2172 * prepare_task_switch sets up locking and calls architecture specific
2173 * hooks.
2174 */
e107be36
AK
2175static inline void
2176prepare_task_switch(struct rq *rq, struct task_struct *prev,
2177 struct task_struct *next)
4866cde0 2178{
895dd92c 2179 trace_sched_switch(prev, next);
43148951 2180 sched_info_switch(rq, prev, next);
fe4b04fa 2181 perf_event_task_sched_out(prev, next);
e107be36 2182 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2183 prepare_lock_switch(rq, next);
2184 prepare_arch_switch(next);
2185}
2186
1da177e4
LT
2187/**
2188 * finish_task_switch - clean up after a task-switch
2189 * @prev: the thread we just switched away from.
2190 *
4866cde0
NP
2191 * finish_task_switch must be called after the context switch, paired
2192 * with a prepare_task_switch call before the context switch.
2193 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2194 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2195 *
2196 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2197 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2198 * with the lock held can cause deadlocks; see schedule() for
2199 * details.)
dfa50b60
ON
2200 *
2201 * The context switch have flipped the stack from under us and restored the
2202 * local variables which were saved when this task called schedule() in the
2203 * past. prev == current is still correct but we need to recalculate this_rq
2204 * because prev may have moved to another CPU.
1da177e4 2205 */
dfa50b60 2206static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2207 __releases(rq->lock)
2208{
dfa50b60 2209 struct rq *rq = this_rq();
1da177e4 2210 struct mm_struct *mm = rq->prev_mm;
55a101f8 2211 long prev_state;
1da177e4
LT
2212
2213 rq->prev_mm = NULL;
2214
2215 /*
2216 * A task struct has one reference for the use as "current".
c394cc9f 2217 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2218 * schedule one last time. The schedule call will never return, and
2219 * the scheduled task must drop that reference.
c394cc9f 2220 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2221 * still held, otherwise prev could be scheduled on another cpu, die
2222 * there before we look at prev->state, and then the reference would
2223 * be dropped twice.
2224 * Manfred Spraul <manfred@colorfullife.com>
2225 */
55a101f8 2226 prev_state = prev->state;
bf9fae9f 2227 vtime_task_switch(prev);
4866cde0 2228 finish_arch_switch(prev);
a8d757ef 2229 perf_event_task_sched_in(prev, current);
4866cde0 2230 finish_lock_switch(rq, prev);
01f23e16 2231 finish_arch_post_lock_switch();
e8fa1362 2232
e107be36 2233 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2234 if (mm)
2235 mmdrop(mm);
c394cc9f 2236 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2237 if (prev->sched_class->task_dead)
2238 prev->sched_class->task_dead(prev);
2239
c6fd91f0 2240 /*
2241 * Remove function-return probe instances associated with this
2242 * task and put them back on the free list.
9761eea8 2243 */
c6fd91f0 2244 kprobe_flush_task(prev);
1da177e4 2245 put_task_struct(prev);
c6fd91f0 2246 }
99e5ada9
FW
2247
2248 tick_nohz_task_switch(current);
dfa50b60 2249 return rq;
1da177e4
LT
2250}
2251
3f029d3c
GH
2252#ifdef CONFIG_SMP
2253
3f029d3c
GH
2254/* rq->lock is NOT held, but preemption is disabled */
2255static inline void post_schedule(struct rq *rq)
2256{
2257 if (rq->post_schedule) {
2258 unsigned long flags;
2259
05fa785c 2260 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2261 if (rq->curr->sched_class->post_schedule)
2262 rq->curr->sched_class->post_schedule(rq);
05fa785c 2263 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2264
2265 rq->post_schedule = 0;
2266 }
2267}
2268
2269#else
da19ab51 2270
3f029d3c
GH
2271static inline void post_schedule(struct rq *rq)
2272{
1da177e4
LT
2273}
2274
3f029d3c
GH
2275#endif
2276
1da177e4
LT
2277/**
2278 * schedule_tail - first thing a freshly forked thread must call.
2279 * @prev: the thread we just switched away from.
2280 */
722a9f92 2281asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2282 __releases(rq->lock)
2283{
1a43a14a 2284 struct rq *rq;
da19ab51 2285
1a43a14a
ON
2286 /* finish_task_switch() drops rq->lock and enables preemtion */
2287 preempt_disable();
dfa50b60 2288 rq = finish_task_switch(prev);
3f029d3c 2289 post_schedule(rq);
1a43a14a 2290 preempt_enable();
70b97a7f 2291
1da177e4 2292 if (current->set_child_tid)
b488893a 2293 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2294}
2295
2296/*
dfa50b60 2297 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2298 */
dfa50b60 2299static inline struct rq *
70b97a7f 2300context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2301 struct task_struct *next)
1da177e4 2302{
dd41f596 2303 struct mm_struct *mm, *oldmm;
1da177e4 2304
e107be36 2305 prepare_task_switch(rq, prev, next);
fe4b04fa 2306
dd41f596
IM
2307 mm = next->mm;
2308 oldmm = prev->active_mm;
9226d125
ZA
2309 /*
2310 * For paravirt, this is coupled with an exit in switch_to to
2311 * combine the page table reload and the switch backend into
2312 * one hypercall.
2313 */
224101ed 2314 arch_start_context_switch(prev);
9226d125 2315
31915ab4 2316 if (!mm) {
1da177e4
LT
2317 next->active_mm = oldmm;
2318 atomic_inc(&oldmm->mm_count);
2319 enter_lazy_tlb(oldmm, next);
2320 } else
2321 switch_mm(oldmm, mm, next);
2322
31915ab4 2323 if (!prev->mm) {
1da177e4 2324 prev->active_mm = NULL;
1da177e4
LT
2325 rq->prev_mm = oldmm;
2326 }
3a5f5e48
IM
2327 /*
2328 * Since the runqueue lock will be released by the next
2329 * task (which is an invalid locking op but in the case
2330 * of the scheduler it's an obvious special-case), so we
2331 * do an early lockdep release here:
2332 */
8a25d5de 2333 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2334
91d1aa43 2335 context_tracking_task_switch(prev, next);
1da177e4
LT
2336 /* Here we just switch the register state and the stack. */
2337 switch_to(prev, next, prev);
dd41f596 2338 barrier();
dfa50b60
ON
2339
2340 return finish_task_switch(prev);
1da177e4
LT
2341}
2342
2343/*
1c3e8264 2344 * nr_running and nr_context_switches:
1da177e4
LT
2345 *
2346 * externally visible scheduler statistics: current number of runnable
1c3e8264 2347 * threads, total number of context switches performed since bootup.
1da177e4
LT
2348 */
2349unsigned long nr_running(void)
2350{
2351 unsigned long i, sum = 0;
2352
2353 for_each_online_cpu(i)
2354 sum += cpu_rq(i)->nr_running;
2355
2356 return sum;
f711f609 2357}
1da177e4 2358
2ee507c4
TC
2359/*
2360 * Check if only the current task is running on the cpu.
2361 */
2362bool single_task_running(void)
2363{
2364 if (cpu_rq(smp_processor_id())->nr_running == 1)
2365 return true;
2366 else
2367 return false;
2368}
2369EXPORT_SYMBOL(single_task_running);
2370
1da177e4 2371unsigned long long nr_context_switches(void)
46cb4b7c 2372{
cc94abfc
SR
2373 int i;
2374 unsigned long long sum = 0;
46cb4b7c 2375
0a945022 2376 for_each_possible_cpu(i)
1da177e4 2377 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2378
1da177e4
LT
2379 return sum;
2380}
483b4ee6 2381
1da177e4
LT
2382unsigned long nr_iowait(void)
2383{
2384 unsigned long i, sum = 0;
483b4ee6 2385
0a945022 2386 for_each_possible_cpu(i)
1da177e4 2387 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2388
1da177e4
LT
2389 return sum;
2390}
483b4ee6 2391
8c215bd3 2392unsigned long nr_iowait_cpu(int cpu)
69d25870 2393{
8c215bd3 2394 struct rq *this = cpu_rq(cpu);
69d25870
AV
2395 return atomic_read(&this->nr_iowait);
2396}
46cb4b7c 2397
372ba8cb
MG
2398void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2399{
2400 struct rq *this = this_rq();
2401 *nr_waiters = atomic_read(&this->nr_iowait);
2402 *load = this->cpu_load[0];
2403}
2404
dd41f596 2405#ifdef CONFIG_SMP
8a0be9ef 2406
46cb4b7c 2407/*
38022906
PZ
2408 * sched_exec - execve() is a valuable balancing opportunity, because at
2409 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2410 */
38022906 2411void sched_exec(void)
46cb4b7c 2412{
38022906 2413 struct task_struct *p = current;
1da177e4 2414 unsigned long flags;
0017d735 2415 int dest_cpu;
46cb4b7c 2416
8f42ced9 2417 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2418 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2419 if (dest_cpu == smp_processor_id())
2420 goto unlock;
38022906 2421
8f42ced9 2422 if (likely(cpu_active(dest_cpu))) {
969c7921 2423 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2424
8f42ced9
PZ
2425 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2426 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2427 return;
2428 }
0017d735 2429unlock:
8f42ced9 2430 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2431}
dd41f596 2432
1da177e4
LT
2433#endif
2434
1da177e4 2435DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2436DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2437
2438EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2439EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2440
c5f8d995
HS
2441/*
2442 * Return accounted runtime for the task.
2443 * In case the task is currently running, return the runtime plus current's
2444 * pending runtime that have not been accounted yet.
2445 */
2446unsigned long long task_sched_runtime(struct task_struct *p)
2447{
2448 unsigned long flags;
2449 struct rq *rq;
6e998916 2450 u64 ns;
c5f8d995 2451
911b2898
PZ
2452#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2453 /*
2454 * 64-bit doesn't need locks to atomically read a 64bit value.
2455 * So we have a optimization chance when the task's delta_exec is 0.
2456 * Reading ->on_cpu is racy, but this is ok.
2457 *
2458 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2459 * If we race with it entering cpu, unaccounted time is 0. This is
2460 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2461 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2462 * been accounted, so we're correct here as well.
911b2898 2463 */
da0c1e65 2464 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2465 return p->se.sum_exec_runtime;
2466#endif
2467
c5f8d995 2468 rq = task_rq_lock(p, &flags);
6e998916
SG
2469 /*
2470 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2471 * project cycles that may never be accounted to this
2472 * thread, breaking clock_gettime().
2473 */
2474 if (task_current(rq, p) && task_on_rq_queued(p)) {
2475 update_rq_clock(rq);
2476 p->sched_class->update_curr(rq);
2477 }
2478 ns = p->se.sum_exec_runtime;
0122ec5b 2479 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2480
2481 return ns;
2482}
48f24c4d 2483
7835b98b
CL
2484/*
2485 * This function gets called by the timer code, with HZ frequency.
2486 * We call it with interrupts disabled.
7835b98b
CL
2487 */
2488void scheduler_tick(void)
2489{
7835b98b
CL
2490 int cpu = smp_processor_id();
2491 struct rq *rq = cpu_rq(cpu);
dd41f596 2492 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2493
2494 sched_clock_tick();
dd41f596 2495
05fa785c 2496 raw_spin_lock(&rq->lock);
3e51f33f 2497 update_rq_clock(rq);
fa85ae24 2498 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2499 update_cpu_load_active(rq);
05fa785c 2500 raw_spin_unlock(&rq->lock);
7835b98b 2501
e9d2b064 2502 perf_event_task_tick();
e220d2dc 2503
e418e1c2 2504#ifdef CONFIG_SMP
6eb57e0d 2505 rq->idle_balance = idle_cpu(cpu);
7caff66f 2506 trigger_load_balance(rq);
e418e1c2 2507#endif
265f22a9 2508 rq_last_tick_reset(rq);
1da177e4
LT
2509}
2510
265f22a9
FW
2511#ifdef CONFIG_NO_HZ_FULL
2512/**
2513 * scheduler_tick_max_deferment
2514 *
2515 * Keep at least one tick per second when a single
2516 * active task is running because the scheduler doesn't
2517 * yet completely support full dynticks environment.
2518 *
2519 * This makes sure that uptime, CFS vruntime, load
2520 * balancing, etc... continue to move forward, even
2521 * with a very low granularity.
e69f6186
YB
2522 *
2523 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2524 */
2525u64 scheduler_tick_max_deferment(void)
2526{
2527 struct rq *rq = this_rq();
2528 unsigned long next, now = ACCESS_ONCE(jiffies);
2529
2530 next = rq->last_sched_tick + HZ;
2531
2532 if (time_before_eq(next, now))
2533 return 0;
2534
8fe8ff09 2535 return jiffies_to_nsecs(next - now);
1da177e4 2536}
265f22a9 2537#endif
1da177e4 2538
132380a0 2539notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2540{
2541 if (in_lock_functions(addr)) {
2542 addr = CALLER_ADDR2;
2543 if (in_lock_functions(addr))
2544 addr = CALLER_ADDR3;
2545 }
2546 return addr;
2547}
1da177e4 2548
7e49fcce
SR
2549#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2550 defined(CONFIG_PREEMPT_TRACER))
2551
edafe3a5 2552void preempt_count_add(int val)
1da177e4 2553{
6cd8a4bb 2554#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2555 /*
2556 * Underflow?
2557 */
9a11b49a
IM
2558 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2559 return;
6cd8a4bb 2560#endif
bdb43806 2561 __preempt_count_add(val);
6cd8a4bb 2562#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2563 /*
2564 * Spinlock count overflowing soon?
2565 */
33859f7f
MOS
2566 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2567 PREEMPT_MASK - 10);
6cd8a4bb 2568#endif
8f47b187
TG
2569 if (preempt_count() == val) {
2570 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2571#ifdef CONFIG_DEBUG_PREEMPT
2572 current->preempt_disable_ip = ip;
2573#endif
2574 trace_preempt_off(CALLER_ADDR0, ip);
2575 }
1da177e4 2576}
bdb43806 2577EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2578NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2579
edafe3a5 2580void preempt_count_sub(int val)
1da177e4 2581{
6cd8a4bb 2582#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2583 /*
2584 * Underflow?
2585 */
01e3eb82 2586 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2587 return;
1da177e4
LT
2588 /*
2589 * Is the spinlock portion underflowing?
2590 */
9a11b49a
IM
2591 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2592 !(preempt_count() & PREEMPT_MASK)))
2593 return;
6cd8a4bb 2594#endif
9a11b49a 2595
6cd8a4bb
SR
2596 if (preempt_count() == val)
2597 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2598 __preempt_count_sub(val);
1da177e4 2599}
bdb43806 2600EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2601NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2602
2603#endif
2604
2605/*
dd41f596 2606 * Print scheduling while atomic bug:
1da177e4 2607 */
dd41f596 2608static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2609{
664dfa65
DJ
2610 if (oops_in_progress)
2611 return;
2612
3df0fc5b
PZ
2613 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2614 prev->comm, prev->pid, preempt_count());
838225b4 2615
dd41f596 2616 debug_show_held_locks(prev);
e21f5b15 2617 print_modules();
dd41f596
IM
2618 if (irqs_disabled())
2619 print_irqtrace_events(prev);
8f47b187
TG
2620#ifdef CONFIG_DEBUG_PREEMPT
2621 if (in_atomic_preempt_off()) {
2622 pr_err("Preemption disabled at:");
2623 print_ip_sym(current->preempt_disable_ip);
2624 pr_cont("\n");
2625 }
2626#endif
6135fc1e 2627 dump_stack();
373d4d09 2628 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2629}
1da177e4 2630
dd41f596
IM
2631/*
2632 * Various schedule()-time debugging checks and statistics:
2633 */
2634static inline void schedule_debug(struct task_struct *prev)
2635{
0d9e2632
AT
2636#ifdef CONFIG_SCHED_STACK_END_CHECK
2637 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2638#endif
1da177e4 2639 /*
41a2d6cf 2640 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2641 * schedule() atomically, we ignore that path. Otherwise whine
2642 * if we are scheduling when we should not.
1da177e4 2643 */
192301e7 2644 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2645 __schedule_bug(prev);
b3fbab05 2646 rcu_sleep_check();
dd41f596 2647
1da177e4
LT
2648 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2649
2d72376b 2650 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2651}
2652
2653/*
2654 * Pick up the highest-prio task:
2655 */
2656static inline struct task_struct *
606dba2e 2657pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2658{
37e117c0 2659 const struct sched_class *class = &fair_sched_class;
dd41f596 2660 struct task_struct *p;
1da177e4
LT
2661
2662 /*
dd41f596
IM
2663 * Optimization: we know that if all tasks are in
2664 * the fair class we can call that function directly:
1da177e4 2665 */
37e117c0 2666 if (likely(prev->sched_class == class &&
38033c37 2667 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2668 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2669 if (unlikely(p == RETRY_TASK))
2670 goto again;
2671
2672 /* assumes fair_sched_class->next == idle_sched_class */
2673 if (unlikely(!p))
2674 p = idle_sched_class.pick_next_task(rq, prev);
2675
2676 return p;
1da177e4
LT
2677 }
2678
37e117c0 2679again:
34f971f6 2680 for_each_class(class) {
606dba2e 2681 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2682 if (p) {
2683 if (unlikely(p == RETRY_TASK))
2684 goto again;
dd41f596 2685 return p;
37e117c0 2686 }
dd41f596 2687 }
34f971f6
PZ
2688
2689 BUG(); /* the idle class will always have a runnable task */
dd41f596 2690}
1da177e4 2691
dd41f596 2692/*
c259e01a 2693 * __schedule() is the main scheduler function.
edde96ea
PE
2694 *
2695 * The main means of driving the scheduler and thus entering this function are:
2696 *
2697 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2698 *
2699 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2700 * paths. For example, see arch/x86/entry_64.S.
2701 *
2702 * To drive preemption between tasks, the scheduler sets the flag in timer
2703 * interrupt handler scheduler_tick().
2704 *
2705 * 3. Wakeups don't really cause entry into schedule(). They add a
2706 * task to the run-queue and that's it.
2707 *
2708 * Now, if the new task added to the run-queue preempts the current
2709 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2710 * called on the nearest possible occasion:
2711 *
2712 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2713 *
2714 * - in syscall or exception context, at the next outmost
2715 * preempt_enable(). (this might be as soon as the wake_up()'s
2716 * spin_unlock()!)
2717 *
2718 * - in IRQ context, return from interrupt-handler to
2719 * preemptible context
2720 *
2721 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2722 * then at the next:
2723 *
2724 * - cond_resched() call
2725 * - explicit schedule() call
2726 * - return from syscall or exception to user-space
2727 * - return from interrupt-handler to user-space
bfd9b2b5
FW
2728 *
2729 * WARNING: all callers must re-check need_resched() afterward and reschedule
2730 * accordingly in case an event triggered the need for rescheduling (such as
2731 * an interrupt waking up a task) while preemption was disabled in __schedule().
dd41f596 2732 */
c259e01a 2733static void __sched __schedule(void)
dd41f596
IM
2734{
2735 struct task_struct *prev, *next;
67ca7bde 2736 unsigned long *switch_count;
dd41f596 2737 struct rq *rq;
31656519 2738 int cpu;
dd41f596 2739
ff743345 2740 preempt_disable();
dd41f596
IM
2741 cpu = smp_processor_id();
2742 rq = cpu_rq(cpu);
38200cf2 2743 rcu_note_context_switch();
dd41f596 2744 prev = rq->curr;
dd41f596 2745
dd41f596 2746 schedule_debug(prev);
1da177e4 2747
31656519 2748 if (sched_feat(HRTICK))
f333fdc9 2749 hrtick_clear(rq);
8f4d37ec 2750
e0acd0a6
ON
2751 /*
2752 * Make sure that signal_pending_state()->signal_pending() below
2753 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2754 * done by the caller to avoid the race with signal_wake_up().
2755 */
2756 smp_mb__before_spinlock();
05fa785c 2757 raw_spin_lock_irq(&rq->lock);
1da177e4 2758
9edfbfed
PZ
2759 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2760
246d86b5 2761 switch_count = &prev->nivcsw;
1da177e4 2762 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2763 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2764 prev->state = TASK_RUNNING;
21aa9af0 2765 } else {
2acca55e
PZ
2766 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2767 prev->on_rq = 0;
2768
21aa9af0 2769 /*
2acca55e
PZ
2770 * If a worker went to sleep, notify and ask workqueue
2771 * whether it wants to wake up a task to maintain
2772 * concurrency.
21aa9af0
TH
2773 */
2774 if (prev->flags & PF_WQ_WORKER) {
2775 struct task_struct *to_wakeup;
2776
2777 to_wakeup = wq_worker_sleeping(prev, cpu);
2778 if (to_wakeup)
2779 try_to_wake_up_local(to_wakeup);
2780 }
21aa9af0 2781 }
dd41f596 2782 switch_count = &prev->nvcsw;
1da177e4
LT
2783 }
2784
9edfbfed 2785 if (task_on_rq_queued(prev))
606dba2e
PZ
2786 update_rq_clock(rq);
2787
2788 next = pick_next_task(rq, prev);
f26f9aff 2789 clear_tsk_need_resched(prev);
f27dde8d 2790 clear_preempt_need_resched();
9edfbfed 2791 rq->clock_skip_update = 0;
1da177e4 2792
1da177e4 2793 if (likely(prev != next)) {
1da177e4
LT
2794 rq->nr_switches++;
2795 rq->curr = next;
2796 ++*switch_count;
2797
dfa50b60
ON
2798 rq = context_switch(rq, prev, next); /* unlocks the rq */
2799 cpu = cpu_of(rq);
1da177e4 2800 } else
05fa785c 2801 raw_spin_unlock_irq(&rq->lock);
1da177e4 2802
3f029d3c 2803 post_schedule(rq);
1da177e4 2804
ba74c144 2805 sched_preempt_enable_no_resched();
1da177e4 2806}
c259e01a 2807
9c40cef2
TG
2808static inline void sched_submit_work(struct task_struct *tsk)
2809{
3c7d5184 2810 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2811 return;
2812 /*
2813 * If we are going to sleep and we have plugged IO queued,
2814 * make sure to submit it to avoid deadlocks.
2815 */
2816 if (blk_needs_flush_plug(tsk))
2817 blk_schedule_flush_plug(tsk);
2818}
2819
722a9f92 2820asmlinkage __visible void __sched schedule(void)
c259e01a 2821{
9c40cef2
TG
2822 struct task_struct *tsk = current;
2823
2824 sched_submit_work(tsk);
bfd9b2b5
FW
2825 do {
2826 __schedule();
2827 } while (need_resched());
c259e01a 2828}
1da177e4
LT
2829EXPORT_SYMBOL(schedule);
2830
91d1aa43 2831#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2832asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2833{
2834 /*
2835 * If we come here after a random call to set_need_resched(),
2836 * or we have been woken up remotely but the IPI has not yet arrived,
2837 * we haven't yet exited the RCU idle mode. Do it here manually until
2838 * we find a better solution.
7cc78f8f
AL
2839 *
2840 * NB: There are buggy callers of this function. Ideally we
c467ea76 2841 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 2842 * too frequently to make sense yet.
20ab65e3 2843 */
7cc78f8f 2844 enum ctx_state prev_state = exception_enter();
20ab65e3 2845 schedule();
7cc78f8f 2846 exception_exit(prev_state);
20ab65e3
FW
2847}
2848#endif
2849
c5491ea7
TG
2850/**
2851 * schedule_preempt_disabled - called with preemption disabled
2852 *
2853 * Returns with preemption disabled. Note: preempt_count must be 1
2854 */
2855void __sched schedule_preempt_disabled(void)
2856{
ba74c144 2857 sched_preempt_enable_no_resched();
c5491ea7
TG
2858 schedule();
2859 preempt_disable();
2860}
2861
06b1f808 2862static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
2863{
2864 do {
2865 __preempt_count_add(PREEMPT_ACTIVE);
2866 __schedule();
2867 __preempt_count_sub(PREEMPT_ACTIVE);
2868
2869 /*
2870 * Check again in case we missed a preemption opportunity
2871 * between schedule and now.
2872 */
2873 barrier();
2874 } while (need_resched());
2875}
2876
1da177e4
LT
2877#ifdef CONFIG_PREEMPT
2878/*
2ed6e34f 2879 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2880 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2881 * occur there and call schedule directly.
2882 */
722a9f92 2883asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2884{
1da177e4
LT
2885 /*
2886 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2887 * we do not want to preempt the current task. Just return..
1da177e4 2888 */
fbb00b56 2889 if (likely(!preemptible()))
1da177e4
LT
2890 return;
2891
a18b5d01 2892 preempt_schedule_common();
1da177e4 2893}
376e2424 2894NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2895EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2896
2897#ifdef CONFIG_CONTEXT_TRACKING
2898/**
2899 * preempt_schedule_context - preempt_schedule called by tracing
2900 *
2901 * The tracing infrastructure uses preempt_enable_notrace to prevent
2902 * recursion and tracing preempt enabling caused by the tracing
2903 * infrastructure itself. But as tracing can happen in areas coming
2904 * from userspace or just about to enter userspace, a preempt enable
2905 * can occur before user_exit() is called. This will cause the scheduler
2906 * to be called when the system is still in usermode.
2907 *
2908 * To prevent this, the preempt_enable_notrace will use this function
2909 * instead of preempt_schedule() to exit user context if needed before
2910 * calling the scheduler.
2911 */
2912asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2913{
2914 enum ctx_state prev_ctx;
2915
2916 if (likely(!preemptible()))
2917 return;
2918
2919 do {
2920 __preempt_count_add(PREEMPT_ACTIVE);
2921 /*
2922 * Needs preempt disabled in case user_exit() is traced
2923 * and the tracer calls preempt_enable_notrace() causing
2924 * an infinite recursion.
2925 */
2926 prev_ctx = exception_enter();
2927 __schedule();
2928 exception_exit(prev_ctx);
2929
2930 __preempt_count_sub(PREEMPT_ACTIVE);
2931 barrier();
2932 } while (need_resched());
2933}
2934EXPORT_SYMBOL_GPL(preempt_schedule_context);
2935#endif /* CONFIG_CONTEXT_TRACKING */
2936
32e475d7 2937#endif /* CONFIG_PREEMPT */
1da177e4
LT
2938
2939/*
2ed6e34f 2940 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2941 * off of irq context.
2942 * Note, that this is called and return with irqs disabled. This will
2943 * protect us against recursive calling from irq.
2944 */
722a9f92 2945asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2946{
b22366cd 2947 enum ctx_state prev_state;
6478d880 2948
2ed6e34f 2949 /* Catch callers which need to be fixed */
f27dde8d 2950 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2951
b22366cd
FW
2952 prev_state = exception_enter();
2953
3a5c359a 2954 do {
bdb43806 2955 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2956 local_irq_enable();
c259e01a 2957 __schedule();
3a5c359a 2958 local_irq_disable();
bdb43806 2959 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2960
3a5c359a
AK
2961 /*
2962 * Check again in case we missed a preemption opportunity
2963 * between schedule and now.
2964 */
2965 barrier();
5ed0cec0 2966 } while (need_resched());
b22366cd
FW
2967
2968 exception_exit(prev_state);
1da177e4
LT
2969}
2970
63859d4f 2971int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2972 void *key)
1da177e4 2973{
63859d4f 2974 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2975}
1da177e4
LT
2976EXPORT_SYMBOL(default_wake_function);
2977
b29739f9
IM
2978#ifdef CONFIG_RT_MUTEXES
2979
2980/*
2981 * rt_mutex_setprio - set the current priority of a task
2982 * @p: task
2983 * @prio: prio value (kernel-internal form)
2984 *
2985 * This function changes the 'effective' priority of a task. It does
2986 * not touch ->normal_prio like __setscheduler().
2987 *
c365c292
TG
2988 * Used by the rt_mutex code to implement priority inheritance
2989 * logic. Call site only calls if the priority of the task changed.
b29739f9 2990 */
36c8b586 2991void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2992{
da0c1e65 2993 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 2994 struct rq *rq;
83ab0aa0 2995 const struct sched_class *prev_class;
b29739f9 2996
aab03e05 2997 BUG_ON(prio > MAX_PRIO);
b29739f9 2998
0122ec5b 2999 rq = __task_rq_lock(p);
b29739f9 3000
1c4dd99b
TG
3001 /*
3002 * Idle task boosting is a nono in general. There is one
3003 * exception, when PREEMPT_RT and NOHZ is active:
3004 *
3005 * The idle task calls get_next_timer_interrupt() and holds
3006 * the timer wheel base->lock on the CPU and another CPU wants
3007 * to access the timer (probably to cancel it). We can safely
3008 * ignore the boosting request, as the idle CPU runs this code
3009 * with interrupts disabled and will complete the lock
3010 * protected section without being interrupted. So there is no
3011 * real need to boost.
3012 */
3013 if (unlikely(p == rq->idle)) {
3014 WARN_ON(p != rq->curr);
3015 WARN_ON(p->pi_blocked_on);
3016 goto out_unlock;
3017 }
3018
a8027073 3019 trace_sched_pi_setprio(p, prio);
d5f9f942 3020 oldprio = p->prio;
83ab0aa0 3021 prev_class = p->sched_class;
da0c1e65 3022 queued = task_on_rq_queued(p);
051a1d1a 3023 running = task_current(rq, p);
da0c1e65 3024 if (queued)
69be72c1 3025 dequeue_task(rq, p, 0);
0e1f3483 3026 if (running)
f3cd1c4e 3027 put_prev_task(rq, p);
dd41f596 3028
2d3d891d
DF
3029 /*
3030 * Boosting condition are:
3031 * 1. -rt task is running and holds mutex A
3032 * --> -dl task blocks on mutex A
3033 *
3034 * 2. -dl task is running and holds mutex A
3035 * --> -dl task blocks on mutex A and could preempt the
3036 * running task
3037 */
3038 if (dl_prio(prio)) {
466af29b
ON
3039 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3040 if (!dl_prio(p->normal_prio) ||
3041 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3042 p->dl.dl_boosted = 1;
3043 p->dl.dl_throttled = 0;
3044 enqueue_flag = ENQUEUE_REPLENISH;
3045 } else
3046 p->dl.dl_boosted = 0;
aab03e05 3047 p->sched_class = &dl_sched_class;
2d3d891d
DF
3048 } else if (rt_prio(prio)) {
3049 if (dl_prio(oldprio))
3050 p->dl.dl_boosted = 0;
3051 if (oldprio < prio)
3052 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3053 p->sched_class = &rt_sched_class;
2d3d891d
DF
3054 } else {
3055 if (dl_prio(oldprio))
3056 p->dl.dl_boosted = 0;
746db944
BS
3057 if (rt_prio(oldprio))
3058 p->rt.timeout = 0;
dd41f596 3059 p->sched_class = &fair_sched_class;
2d3d891d 3060 }
dd41f596 3061
b29739f9
IM
3062 p->prio = prio;
3063
0e1f3483
HS
3064 if (running)
3065 p->sched_class->set_curr_task(rq);
da0c1e65 3066 if (queued)
2d3d891d 3067 enqueue_task(rq, p, enqueue_flag);
cb469845 3068
da7a735e 3069 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3070out_unlock:
0122ec5b 3071 __task_rq_unlock(rq);
b29739f9 3072}
b29739f9 3073#endif
d50dde5a 3074
36c8b586 3075void set_user_nice(struct task_struct *p, long nice)
1da177e4 3076{
da0c1e65 3077 int old_prio, delta, queued;
1da177e4 3078 unsigned long flags;
70b97a7f 3079 struct rq *rq;
1da177e4 3080
75e45d51 3081 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3082 return;
3083 /*
3084 * We have to be careful, if called from sys_setpriority(),
3085 * the task might be in the middle of scheduling on another CPU.
3086 */
3087 rq = task_rq_lock(p, &flags);
3088 /*
3089 * The RT priorities are set via sched_setscheduler(), but we still
3090 * allow the 'normal' nice value to be set - but as expected
3091 * it wont have any effect on scheduling until the task is
aab03e05 3092 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3093 */
aab03e05 3094 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3095 p->static_prio = NICE_TO_PRIO(nice);
3096 goto out_unlock;
3097 }
da0c1e65
KT
3098 queued = task_on_rq_queued(p);
3099 if (queued)
69be72c1 3100 dequeue_task(rq, p, 0);
1da177e4 3101
1da177e4 3102 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3103 set_load_weight(p);
b29739f9
IM
3104 old_prio = p->prio;
3105 p->prio = effective_prio(p);
3106 delta = p->prio - old_prio;
1da177e4 3107
da0c1e65 3108 if (queued) {
371fd7e7 3109 enqueue_task(rq, p, 0);
1da177e4 3110 /*
d5f9f942
AM
3111 * If the task increased its priority or is running and
3112 * lowered its priority, then reschedule its CPU:
1da177e4 3113 */
d5f9f942 3114 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3115 resched_curr(rq);
1da177e4
LT
3116 }
3117out_unlock:
0122ec5b 3118 task_rq_unlock(rq, p, &flags);
1da177e4 3119}
1da177e4
LT
3120EXPORT_SYMBOL(set_user_nice);
3121
e43379f1
MM
3122/*
3123 * can_nice - check if a task can reduce its nice value
3124 * @p: task
3125 * @nice: nice value
3126 */
36c8b586 3127int can_nice(const struct task_struct *p, const int nice)
e43379f1 3128{
024f4747 3129 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3130 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3131
78d7d407 3132 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3133 capable(CAP_SYS_NICE));
3134}
3135
1da177e4
LT
3136#ifdef __ARCH_WANT_SYS_NICE
3137
3138/*
3139 * sys_nice - change the priority of the current process.
3140 * @increment: priority increment
3141 *
3142 * sys_setpriority is a more generic, but much slower function that
3143 * does similar things.
3144 */
5add95d4 3145SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3146{
48f24c4d 3147 long nice, retval;
1da177e4
LT
3148
3149 /*
3150 * Setpriority might change our priority at the same moment.
3151 * We don't have to worry. Conceptually one call occurs first
3152 * and we have a single winner.
3153 */
a9467fa3 3154 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3155 nice = task_nice(current) + increment;
1da177e4 3156
a9467fa3 3157 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3158 if (increment < 0 && !can_nice(current, nice))
3159 return -EPERM;
3160
1da177e4
LT
3161 retval = security_task_setnice(current, nice);
3162 if (retval)
3163 return retval;
3164
3165 set_user_nice(current, nice);
3166 return 0;
3167}
3168
3169#endif
3170
3171/**
3172 * task_prio - return the priority value of a given task.
3173 * @p: the task in question.
3174 *
e69f6186 3175 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3176 * RT tasks are offset by -200. Normal tasks are centered
3177 * around 0, value goes from -16 to +15.
3178 */
36c8b586 3179int task_prio(const struct task_struct *p)
1da177e4
LT
3180{
3181 return p->prio - MAX_RT_PRIO;
3182}
3183
1da177e4
LT
3184/**
3185 * idle_cpu - is a given cpu idle currently?
3186 * @cpu: the processor in question.
e69f6186
YB
3187 *
3188 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3189 */
3190int idle_cpu(int cpu)
3191{
908a3283
TG
3192 struct rq *rq = cpu_rq(cpu);
3193
3194 if (rq->curr != rq->idle)
3195 return 0;
3196
3197 if (rq->nr_running)
3198 return 0;
3199
3200#ifdef CONFIG_SMP
3201 if (!llist_empty(&rq->wake_list))
3202 return 0;
3203#endif
3204
3205 return 1;
1da177e4
LT
3206}
3207
1da177e4
LT
3208/**
3209 * idle_task - return the idle task for a given cpu.
3210 * @cpu: the processor in question.
e69f6186
YB
3211 *
3212 * Return: The idle task for the cpu @cpu.
1da177e4 3213 */
36c8b586 3214struct task_struct *idle_task(int cpu)
1da177e4
LT
3215{
3216 return cpu_rq(cpu)->idle;
3217}
3218
3219/**
3220 * find_process_by_pid - find a process with a matching PID value.
3221 * @pid: the pid in question.
e69f6186
YB
3222 *
3223 * The task of @pid, if found. %NULL otherwise.
1da177e4 3224 */
a9957449 3225static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3226{
228ebcbe 3227 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3228}
3229
aab03e05
DF
3230/*
3231 * This function initializes the sched_dl_entity of a newly becoming
3232 * SCHED_DEADLINE task.
3233 *
3234 * Only the static values are considered here, the actual runtime and the
3235 * absolute deadline will be properly calculated when the task is enqueued
3236 * for the first time with its new policy.
3237 */
3238static void
3239__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3240{
3241 struct sched_dl_entity *dl_se = &p->dl;
3242
aab03e05
DF
3243 dl_se->dl_runtime = attr->sched_runtime;
3244 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3245 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3246 dl_se->flags = attr->sched_flags;
332ac17e 3247 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3248
3249 /*
3250 * Changing the parameters of a task is 'tricky' and we're not doing
3251 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3252 *
3253 * What we SHOULD do is delay the bandwidth release until the 0-lag
3254 * point. This would include retaining the task_struct until that time
3255 * and change dl_overflow() to not immediately decrement the current
3256 * amount.
3257 *
3258 * Instead we retain the current runtime/deadline and let the new
3259 * parameters take effect after the current reservation period lapses.
3260 * This is safe (albeit pessimistic) because the 0-lag point is always
3261 * before the current scheduling deadline.
3262 *
3263 * We can still have temporary overloads because we do not delay the
3264 * change in bandwidth until that time; so admission control is
3265 * not on the safe side. It does however guarantee tasks will never
3266 * consume more than promised.
3267 */
aab03e05
DF
3268}
3269
c13db6b1
SR
3270/*
3271 * sched_setparam() passes in -1 for its policy, to let the functions
3272 * it calls know not to change it.
3273 */
3274#define SETPARAM_POLICY -1
3275
c365c292
TG
3276static void __setscheduler_params(struct task_struct *p,
3277 const struct sched_attr *attr)
1da177e4 3278{
d50dde5a
DF
3279 int policy = attr->sched_policy;
3280
c13db6b1 3281 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3282 policy = p->policy;
3283
1da177e4 3284 p->policy = policy;
d50dde5a 3285
aab03e05
DF
3286 if (dl_policy(policy))
3287 __setparam_dl(p, attr);
39fd8fd2 3288 else if (fair_policy(policy))
d50dde5a
DF
3289 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3290
39fd8fd2
PZ
3291 /*
3292 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3293 * !rt_policy. Always setting this ensures that things like
3294 * getparam()/getattr() don't report silly values for !rt tasks.
3295 */
3296 p->rt_priority = attr->sched_priority;
383afd09 3297 p->normal_prio = normal_prio(p);
c365c292
TG
3298 set_load_weight(p);
3299}
39fd8fd2 3300
c365c292
TG
3301/* Actually do priority change: must hold pi & rq lock. */
3302static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3303 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3304{
3305 __setscheduler_params(p, attr);
d50dde5a 3306
383afd09 3307 /*
0782e63b
TG
3308 * Keep a potential priority boosting if called from
3309 * sched_setscheduler().
383afd09 3310 */
0782e63b
TG
3311 if (keep_boost)
3312 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3313 else
3314 p->prio = normal_prio(p);
383afd09 3315
aab03e05
DF
3316 if (dl_prio(p->prio))
3317 p->sched_class = &dl_sched_class;
3318 else if (rt_prio(p->prio))
ffd44db5
PZ
3319 p->sched_class = &rt_sched_class;
3320 else
3321 p->sched_class = &fair_sched_class;
1da177e4 3322}
aab03e05
DF
3323
3324static void
3325__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3326{
3327 struct sched_dl_entity *dl_se = &p->dl;
3328
3329 attr->sched_priority = p->rt_priority;
3330 attr->sched_runtime = dl_se->dl_runtime;
3331 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3332 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3333 attr->sched_flags = dl_se->flags;
3334}
3335
3336/*
3337 * This function validates the new parameters of a -deadline task.
3338 * We ask for the deadline not being zero, and greater or equal
755378a4 3339 * than the runtime, as well as the period of being zero or
332ac17e 3340 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3341 * user parameters are above the internal resolution of 1us (we
3342 * check sched_runtime only since it is always the smaller one) and
3343 * below 2^63 ns (we have to check both sched_deadline and
3344 * sched_period, as the latter can be zero).
aab03e05
DF
3345 */
3346static bool
3347__checkparam_dl(const struct sched_attr *attr)
3348{
b0827819
JL
3349 /* deadline != 0 */
3350 if (attr->sched_deadline == 0)
3351 return false;
3352
3353 /*
3354 * Since we truncate DL_SCALE bits, make sure we're at least
3355 * that big.
3356 */
3357 if (attr->sched_runtime < (1ULL << DL_SCALE))
3358 return false;
3359
3360 /*
3361 * Since we use the MSB for wrap-around and sign issues, make
3362 * sure it's not set (mind that period can be equal to zero).
3363 */
3364 if (attr->sched_deadline & (1ULL << 63) ||
3365 attr->sched_period & (1ULL << 63))
3366 return false;
3367
3368 /* runtime <= deadline <= period (if period != 0) */
3369 if ((attr->sched_period != 0 &&
3370 attr->sched_period < attr->sched_deadline) ||
3371 attr->sched_deadline < attr->sched_runtime)
3372 return false;
3373
3374 return true;
aab03e05
DF
3375}
3376
c69e8d9c
DH
3377/*
3378 * check the target process has a UID that matches the current process's
3379 */
3380static bool check_same_owner(struct task_struct *p)
3381{
3382 const struct cred *cred = current_cred(), *pcred;
3383 bool match;
3384
3385 rcu_read_lock();
3386 pcred = __task_cred(p);
9c806aa0
EB
3387 match = (uid_eq(cred->euid, pcred->euid) ||
3388 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3389 rcu_read_unlock();
3390 return match;
3391}
3392
75381608
WL
3393static bool dl_param_changed(struct task_struct *p,
3394 const struct sched_attr *attr)
3395{
3396 struct sched_dl_entity *dl_se = &p->dl;
3397
3398 if (dl_se->dl_runtime != attr->sched_runtime ||
3399 dl_se->dl_deadline != attr->sched_deadline ||
3400 dl_se->dl_period != attr->sched_period ||
3401 dl_se->flags != attr->sched_flags)
3402 return true;
3403
3404 return false;
3405}
3406
d50dde5a
DF
3407static int __sched_setscheduler(struct task_struct *p,
3408 const struct sched_attr *attr,
3409 bool user)
1da177e4 3410{
383afd09
SR
3411 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3412 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3413 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3414 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3415 unsigned long flags;
83ab0aa0 3416 const struct sched_class *prev_class;
70b97a7f 3417 struct rq *rq;
ca94c442 3418 int reset_on_fork;
1da177e4 3419
66e5393a
SR
3420 /* may grab non-irq protected spin_locks */
3421 BUG_ON(in_interrupt());
1da177e4
LT
3422recheck:
3423 /* double check policy once rq lock held */
ca94c442
LP
3424 if (policy < 0) {
3425 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3426 policy = oldpolicy = p->policy;
ca94c442 3427 } else {
7479f3c9 3428 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3429
aab03e05
DF
3430 if (policy != SCHED_DEADLINE &&
3431 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3432 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3433 policy != SCHED_IDLE)
3434 return -EINVAL;
3435 }
3436
7479f3c9
PZ
3437 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3438 return -EINVAL;
3439
1da177e4
LT
3440 /*
3441 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3442 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3443 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3444 */
0bb040a4 3445 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3446 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3447 return -EINVAL;
aab03e05
DF
3448 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3449 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3450 return -EINVAL;
3451
37e4ab3f
OC
3452 /*
3453 * Allow unprivileged RT tasks to decrease priority:
3454 */
961ccddd 3455 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3456 if (fair_policy(policy)) {
d0ea0268 3457 if (attr->sched_nice < task_nice(p) &&
eaad4513 3458 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3459 return -EPERM;
3460 }
3461
e05606d3 3462 if (rt_policy(policy)) {
a44702e8
ON
3463 unsigned long rlim_rtprio =
3464 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3465
3466 /* can't set/change the rt policy */
3467 if (policy != p->policy && !rlim_rtprio)
3468 return -EPERM;
3469
3470 /* can't increase priority */
d50dde5a
DF
3471 if (attr->sched_priority > p->rt_priority &&
3472 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3473 return -EPERM;
3474 }
c02aa73b 3475
d44753b8
JL
3476 /*
3477 * Can't set/change SCHED_DEADLINE policy at all for now
3478 * (safest behavior); in the future we would like to allow
3479 * unprivileged DL tasks to increase their relative deadline
3480 * or reduce their runtime (both ways reducing utilization)
3481 */
3482 if (dl_policy(policy))
3483 return -EPERM;
3484
dd41f596 3485 /*
c02aa73b
DH
3486 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3487 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3488 */
c02aa73b 3489 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3490 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3491 return -EPERM;
3492 }
5fe1d75f 3493
37e4ab3f 3494 /* can't change other user's priorities */
c69e8d9c 3495 if (!check_same_owner(p))
37e4ab3f 3496 return -EPERM;
ca94c442
LP
3497
3498 /* Normal users shall not reset the sched_reset_on_fork flag */
3499 if (p->sched_reset_on_fork && !reset_on_fork)
3500 return -EPERM;
37e4ab3f 3501 }
1da177e4 3502
725aad24 3503 if (user) {
b0ae1981 3504 retval = security_task_setscheduler(p);
725aad24
JF
3505 if (retval)
3506 return retval;
3507 }
3508
b29739f9
IM
3509 /*
3510 * make sure no PI-waiters arrive (or leave) while we are
3511 * changing the priority of the task:
0122ec5b 3512 *
25985edc 3513 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3514 * runqueue lock must be held.
3515 */
0122ec5b 3516 rq = task_rq_lock(p, &flags);
dc61b1d6 3517
34f971f6
PZ
3518 /*
3519 * Changing the policy of the stop threads its a very bad idea
3520 */
3521 if (p == rq->stop) {
0122ec5b 3522 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3523 return -EINVAL;
3524 }
3525
a51e9198 3526 /*
d6b1e911
TG
3527 * If not changing anything there's no need to proceed further,
3528 * but store a possible modification of reset_on_fork.
a51e9198 3529 */
d50dde5a 3530 if (unlikely(policy == p->policy)) {
d0ea0268 3531 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3532 goto change;
3533 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3534 goto change;
75381608 3535 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3536 goto change;
d50dde5a 3537
d6b1e911 3538 p->sched_reset_on_fork = reset_on_fork;
45afb173 3539 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3540 return 0;
3541 }
d50dde5a 3542change:
a51e9198 3543
dc61b1d6 3544 if (user) {
332ac17e 3545#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3546 /*
3547 * Do not allow realtime tasks into groups that have no runtime
3548 * assigned.
3549 */
3550 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3551 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3552 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3553 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3554 return -EPERM;
3555 }
dc61b1d6 3556#endif
332ac17e
DF
3557#ifdef CONFIG_SMP
3558 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3559 cpumask_t *span = rq->rd->span;
332ac17e
DF
3560
3561 /*
3562 * Don't allow tasks with an affinity mask smaller than
3563 * the entire root_domain to become SCHED_DEADLINE. We
3564 * will also fail if there's no bandwidth available.
3565 */
e4099a5e
PZ
3566 if (!cpumask_subset(span, &p->cpus_allowed) ||
3567 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3568 task_rq_unlock(rq, p, &flags);
3569 return -EPERM;
3570 }
3571 }
3572#endif
3573 }
dc61b1d6 3574
1da177e4
LT
3575 /* recheck policy now with rq lock held */
3576 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3577 policy = oldpolicy = -1;
0122ec5b 3578 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3579 goto recheck;
3580 }
332ac17e
DF
3581
3582 /*
3583 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3584 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3585 * is available.
3586 */
e4099a5e 3587 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3588 task_rq_unlock(rq, p, &flags);
3589 return -EBUSY;
3590 }
3591
c365c292
TG
3592 p->sched_reset_on_fork = reset_on_fork;
3593 oldprio = p->prio;
3594
3595 /*
0782e63b
TG
3596 * Take priority boosted tasks into account. If the new
3597 * effective priority is unchanged, we just store the new
c365c292
TG
3598 * normal parameters and do not touch the scheduler class and
3599 * the runqueue. This will be done when the task deboost
3600 * itself.
3601 */
0782e63b
TG
3602 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3603 if (new_effective_prio == oldprio) {
c365c292
TG
3604 __setscheduler_params(p, attr);
3605 task_rq_unlock(rq, p, &flags);
3606 return 0;
3607 }
3608
da0c1e65 3609 queued = task_on_rq_queued(p);
051a1d1a 3610 running = task_current(rq, p);
da0c1e65 3611 if (queued)
4ca9b72b 3612 dequeue_task(rq, p, 0);
0e1f3483 3613 if (running)
f3cd1c4e 3614 put_prev_task(rq, p);
f6b53205 3615
83ab0aa0 3616 prev_class = p->sched_class;
0782e63b 3617 __setscheduler(rq, p, attr, true);
f6b53205 3618
0e1f3483
HS
3619 if (running)
3620 p->sched_class->set_curr_task(rq);
da0c1e65 3621 if (queued) {
81a44c54
TG
3622 /*
3623 * We enqueue to tail when the priority of a task is
3624 * increased (user space view).
3625 */
3626 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3627 }
cb469845 3628
da7a735e 3629 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3630 task_rq_unlock(rq, p, &flags);
b29739f9 3631
95e02ca9
TG
3632 rt_mutex_adjust_pi(p);
3633
1da177e4
LT
3634 return 0;
3635}
961ccddd 3636
7479f3c9
PZ
3637static int _sched_setscheduler(struct task_struct *p, int policy,
3638 const struct sched_param *param, bool check)
3639{
3640 struct sched_attr attr = {
3641 .sched_policy = policy,
3642 .sched_priority = param->sched_priority,
3643 .sched_nice = PRIO_TO_NICE(p->static_prio),
3644 };
3645
c13db6b1
SR
3646 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3647 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3648 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3649 policy &= ~SCHED_RESET_ON_FORK;
3650 attr.sched_policy = policy;
3651 }
3652
3653 return __sched_setscheduler(p, &attr, check);
3654}
961ccddd
RR
3655/**
3656 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3657 * @p: the task in question.
3658 * @policy: new policy.
3659 * @param: structure containing the new RT priority.
3660 *
e69f6186
YB
3661 * Return: 0 on success. An error code otherwise.
3662 *
961ccddd
RR
3663 * NOTE that the task may be already dead.
3664 */
3665int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3666 const struct sched_param *param)
961ccddd 3667{
7479f3c9 3668 return _sched_setscheduler(p, policy, param, true);
961ccddd 3669}
1da177e4
LT
3670EXPORT_SYMBOL_GPL(sched_setscheduler);
3671
d50dde5a
DF
3672int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3673{
3674 return __sched_setscheduler(p, attr, true);
3675}
3676EXPORT_SYMBOL_GPL(sched_setattr);
3677
961ccddd
RR
3678/**
3679 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3680 * @p: the task in question.
3681 * @policy: new policy.
3682 * @param: structure containing the new RT priority.
3683 *
3684 * Just like sched_setscheduler, only don't bother checking if the
3685 * current context has permission. For example, this is needed in
3686 * stop_machine(): we create temporary high priority worker threads,
3687 * but our caller might not have that capability.
e69f6186
YB
3688 *
3689 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3690 */
3691int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3692 const struct sched_param *param)
961ccddd 3693{
7479f3c9 3694 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3695}
3696
95cdf3b7
IM
3697static int
3698do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3699{
1da177e4
LT
3700 struct sched_param lparam;
3701 struct task_struct *p;
36c8b586 3702 int retval;
1da177e4
LT
3703
3704 if (!param || pid < 0)
3705 return -EINVAL;
3706 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3707 return -EFAULT;
5fe1d75f
ON
3708
3709 rcu_read_lock();
3710 retval = -ESRCH;
1da177e4 3711 p = find_process_by_pid(pid);
5fe1d75f
ON
3712 if (p != NULL)
3713 retval = sched_setscheduler(p, policy, &lparam);
3714 rcu_read_unlock();
36c8b586 3715
1da177e4
LT
3716 return retval;
3717}
3718
d50dde5a
DF
3719/*
3720 * Mimics kernel/events/core.c perf_copy_attr().
3721 */
3722static int sched_copy_attr(struct sched_attr __user *uattr,
3723 struct sched_attr *attr)
3724{
3725 u32 size;
3726 int ret;
3727
3728 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3729 return -EFAULT;
3730
3731 /*
3732 * zero the full structure, so that a short copy will be nice.
3733 */
3734 memset(attr, 0, sizeof(*attr));
3735
3736 ret = get_user(size, &uattr->size);
3737 if (ret)
3738 return ret;
3739
3740 if (size > PAGE_SIZE) /* silly large */
3741 goto err_size;
3742
3743 if (!size) /* abi compat */
3744 size = SCHED_ATTR_SIZE_VER0;
3745
3746 if (size < SCHED_ATTR_SIZE_VER0)
3747 goto err_size;
3748
3749 /*
3750 * If we're handed a bigger struct than we know of,
3751 * ensure all the unknown bits are 0 - i.e. new
3752 * user-space does not rely on any kernel feature
3753 * extensions we dont know about yet.
3754 */
3755 if (size > sizeof(*attr)) {
3756 unsigned char __user *addr;
3757 unsigned char __user *end;
3758 unsigned char val;
3759
3760 addr = (void __user *)uattr + sizeof(*attr);
3761 end = (void __user *)uattr + size;
3762
3763 for (; addr < end; addr++) {
3764 ret = get_user(val, addr);
3765 if (ret)
3766 return ret;
3767 if (val)
3768 goto err_size;
3769 }
3770 size = sizeof(*attr);
3771 }
3772
3773 ret = copy_from_user(attr, uattr, size);
3774 if (ret)
3775 return -EFAULT;
3776
3777 /*
3778 * XXX: do we want to be lenient like existing syscalls; or do we want
3779 * to be strict and return an error on out-of-bounds values?
3780 */
75e45d51 3781 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3782
e78c7bca 3783 return 0;
d50dde5a
DF
3784
3785err_size:
3786 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3787 return -E2BIG;
d50dde5a
DF
3788}
3789
1da177e4
LT
3790/**
3791 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3792 * @pid: the pid in question.
3793 * @policy: new policy.
3794 * @param: structure containing the new RT priority.
e69f6186
YB
3795 *
3796 * Return: 0 on success. An error code otherwise.
1da177e4 3797 */
5add95d4
HC
3798SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3799 struct sched_param __user *, param)
1da177e4 3800{
c21761f1
JB
3801 /* negative values for policy are not valid */
3802 if (policy < 0)
3803 return -EINVAL;
3804
1da177e4
LT
3805 return do_sched_setscheduler(pid, policy, param);
3806}
3807
3808/**
3809 * sys_sched_setparam - set/change the RT priority of a thread
3810 * @pid: the pid in question.
3811 * @param: structure containing the new RT priority.
e69f6186
YB
3812 *
3813 * Return: 0 on success. An error code otherwise.
1da177e4 3814 */
5add95d4 3815SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3816{
c13db6b1 3817 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3818}
3819
d50dde5a
DF
3820/**
3821 * sys_sched_setattr - same as above, but with extended sched_attr
3822 * @pid: the pid in question.
5778fccf 3823 * @uattr: structure containing the extended parameters.
db66d756 3824 * @flags: for future extension.
d50dde5a 3825 */
6d35ab48
PZ
3826SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3827 unsigned int, flags)
d50dde5a
DF
3828{
3829 struct sched_attr attr;
3830 struct task_struct *p;
3831 int retval;
3832
6d35ab48 3833 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3834 return -EINVAL;
3835
143cf23d
MK
3836 retval = sched_copy_attr(uattr, &attr);
3837 if (retval)
3838 return retval;
d50dde5a 3839
b14ed2c2 3840 if ((int)attr.sched_policy < 0)
dbdb2275 3841 return -EINVAL;
d50dde5a
DF
3842
3843 rcu_read_lock();
3844 retval = -ESRCH;
3845 p = find_process_by_pid(pid);
3846 if (p != NULL)
3847 retval = sched_setattr(p, &attr);
3848 rcu_read_unlock();
3849
3850 return retval;
3851}
3852
1da177e4
LT
3853/**
3854 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3855 * @pid: the pid in question.
e69f6186
YB
3856 *
3857 * Return: On success, the policy of the thread. Otherwise, a negative error
3858 * code.
1da177e4 3859 */
5add95d4 3860SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3861{
36c8b586 3862 struct task_struct *p;
3a5c359a 3863 int retval;
1da177e4
LT
3864
3865 if (pid < 0)
3a5c359a 3866 return -EINVAL;
1da177e4
LT
3867
3868 retval = -ESRCH;
5fe85be0 3869 rcu_read_lock();
1da177e4
LT
3870 p = find_process_by_pid(pid);
3871 if (p) {
3872 retval = security_task_getscheduler(p);
3873 if (!retval)
ca94c442
LP
3874 retval = p->policy
3875 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3876 }
5fe85be0 3877 rcu_read_unlock();
1da177e4
LT
3878 return retval;
3879}
3880
3881/**
ca94c442 3882 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3883 * @pid: the pid in question.
3884 * @param: structure containing the RT priority.
e69f6186
YB
3885 *
3886 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3887 * code.
1da177e4 3888 */
5add95d4 3889SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3890{
ce5f7f82 3891 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3892 struct task_struct *p;
3a5c359a 3893 int retval;
1da177e4
LT
3894
3895 if (!param || pid < 0)
3a5c359a 3896 return -EINVAL;
1da177e4 3897
5fe85be0 3898 rcu_read_lock();
1da177e4
LT
3899 p = find_process_by_pid(pid);
3900 retval = -ESRCH;
3901 if (!p)
3902 goto out_unlock;
3903
3904 retval = security_task_getscheduler(p);
3905 if (retval)
3906 goto out_unlock;
3907
ce5f7f82
PZ
3908 if (task_has_rt_policy(p))
3909 lp.sched_priority = p->rt_priority;
5fe85be0 3910 rcu_read_unlock();
1da177e4
LT
3911
3912 /*
3913 * This one might sleep, we cannot do it with a spinlock held ...
3914 */
3915 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3916
1da177e4
LT
3917 return retval;
3918
3919out_unlock:
5fe85be0 3920 rcu_read_unlock();
1da177e4
LT
3921 return retval;
3922}
3923
d50dde5a
DF
3924static int sched_read_attr(struct sched_attr __user *uattr,
3925 struct sched_attr *attr,
3926 unsigned int usize)
3927{
3928 int ret;
3929
3930 if (!access_ok(VERIFY_WRITE, uattr, usize))
3931 return -EFAULT;
3932
3933 /*
3934 * If we're handed a smaller struct than we know of,
3935 * ensure all the unknown bits are 0 - i.e. old
3936 * user-space does not get uncomplete information.
3937 */
3938 if (usize < sizeof(*attr)) {
3939 unsigned char *addr;
3940 unsigned char *end;
3941
3942 addr = (void *)attr + usize;
3943 end = (void *)attr + sizeof(*attr);
3944
3945 for (; addr < end; addr++) {
3946 if (*addr)
22400674 3947 return -EFBIG;
d50dde5a
DF
3948 }
3949
3950 attr->size = usize;
3951 }
3952
4efbc454 3953 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3954 if (ret)
3955 return -EFAULT;
3956
22400674 3957 return 0;
d50dde5a
DF
3958}
3959
3960/**
aab03e05 3961 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3962 * @pid: the pid in question.
5778fccf 3963 * @uattr: structure containing the extended parameters.
d50dde5a 3964 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3965 * @flags: for future extension.
d50dde5a 3966 */
6d35ab48
PZ
3967SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3968 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3969{
3970 struct sched_attr attr = {
3971 .size = sizeof(struct sched_attr),
3972 };
3973 struct task_struct *p;
3974 int retval;
3975
3976 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3977 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3978 return -EINVAL;
3979
3980 rcu_read_lock();
3981 p = find_process_by_pid(pid);
3982 retval = -ESRCH;
3983 if (!p)
3984 goto out_unlock;
3985
3986 retval = security_task_getscheduler(p);
3987 if (retval)
3988 goto out_unlock;
3989
3990 attr.sched_policy = p->policy;
7479f3c9
PZ
3991 if (p->sched_reset_on_fork)
3992 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3993 if (task_has_dl_policy(p))
3994 __getparam_dl(p, &attr);
3995 else if (task_has_rt_policy(p))
d50dde5a
DF
3996 attr.sched_priority = p->rt_priority;
3997 else
d0ea0268 3998 attr.sched_nice = task_nice(p);
d50dde5a
DF
3999
4000 rcu_read_unlock();
4001
4002 retval = sched_read_attr(uattr, &attr, size);
4003 return retval;
4004
4005out_unlock:
4006 rcu_read_unlock();
4007 return retval;
4008}
4009
96f874e2 4010long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4011{
5a16f3d3 4012 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4013 struct task_struct *p;
4014 int retval;
1da177e4 4015
23f5d142 4016 rcu_read_lock();
1da177e4
LT
4017
4018 p = find_process_by_pid(pid);
4019 if (!p) {
23f5d142 4020 rcu_read_unlock();
1da177e4
LT
4021 return -ESRCH;
4022 }
4023
23f5d142 4024 /* Prevent p going away */
1da177e4 4025 get_task_struct(p);
23f5d142 4026 rcu_read_unlock();
1da177e4 4027
14a40ffc
TH
4028 if (p->flags & PF_NO_SETAFFINITY) {
4029 retval = -EINVAL;
4030 goto out_put_task;
4031 }
5a16f3d3
RR
4032 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4033 retval = -ENOMEM;
4034 goto out_put_task;
4035 }
4036 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4037 retval = -ENOMEM;
4038 goto out_free_cpus_allowed;
4039 }
1da177e4 4040 retval = -EPERM;
4c44aaaf
EB
4041 if (!check_same_owner(p)) {
4042 rcu_read_lock();
4043 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4044 rcu_read_unlock();
16303ab2 4045 goto out_free_new_mask;
4c44aaaf
EB
4046 }
4047 rcu_read_unlock();
4048 }
1da177e4 4049
b0ae1981 4050 retval = security_task_setscheduler(p);
e7834f8f 4051 if (retval)
16303ab2 4052 goto out_free_new_mask;
e7834f8f 4053
e4099a5e
PZ
4054
4055 cpuset_cpus_allowed(p, cpus_allowed);
4056 cpumask_and(new_mask, in_mask, cpus_allowed);
4057
332ac17e
DF
4058 /*
4059 * Since bandwidth control happens on root_domain basis,
4060 * if admission test is enabled, we only admit -deadline
4061 * tasks allowed to run on all the CPUs in the task's
4062 * root_domain.
4063 */
4064#ifdef CONFIG_SMP
f1e3a093
KT
4065 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4066 rcu_read_lock();
4067 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4068 retval = -EBUSY;
f1e3a093 4069 rcu_read_unlock();
16303ab2 4070 goto out_free_new_mask;
332ac17e 4071 }
f1e3a093 4072 rcu_read_unlock();
332ac17e
DF
4073 }
4074#endif
49246274 4075again:
5a16f3d3 4076 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4077
8707d8b8 4078 if (!retval) {
5a16f3d3
RR
4079 cpuset_cpus_allowed(p, cpus_allowed);
4080 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4081 /*
4082 * We must have raced with a concurrent cpuset
4083 * update. Just reset the cpus_allowed to the
4084 * cpuset's cpus_allowed
4085 */
5a16f3d3 4086 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4087 goto again;
4088 }
4089 }
16303ab2 4090out_free_new_mask:
5a16f3d3
RR
4091 free_cpumask_var(new_mask);
4092out_free_cpus_allowed:
4093 free_cpumask_var(cpus_allowed);
4094out_put_task:
1da177e4 4095 put_task_struct(p);
1da177e4
LT
4096 return retval;
4097}
4098
4099static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4100 struct cpumask *new_mask)
1da177e4 4101{
96f874e2
RR
4102 if (len < cpumask_size())
4103 cpumask_clear(new_mask);
4104 else if (len > cpumask_size())
4105 len = cpumask_size();
4106
1da177e4
LT
4107 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4108}
4109
4110/**
4111 * sys_sched_setaffinity - set the cpu affinity of a process
4112 * @pid: pid of the process
4113 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4114 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4115 *
4116 * Return: 0 on success. An error code otherwise.
1da177e4 4117 */
5add95d4
HC
4118SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4119 unsigned long __user *, user_mask_ptr)
1da177e4 4120{
5a16f3d3 4121 cpumask_var_t new_mask;
1da177e4
LT
4122 int retval;
4123
5a16f3d3
RR
4124 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4125 return -ENOMEM;
1da177e4 4126
5a16f3d3
RR
4127 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4128 if (retval == 0)
4129 retval = sched_setaffinity(pid, new_mask);
4130 free_cpumask_var(new_mask);
4131 return retval;
1da177e4
LT
4132}
4133
96f874e2 4134long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4135{
36c8b586 4136 struct task_struct *p;
31605683 4137 unsigned long flags;
1da177e4 4138 int retval;
1da177e4 4139
23f5d142 4140 rcu_read_lock();
1da177e4
LT
4141
4142 retval = -ESRCH;
4143 p = find_process_by_pid(pid);
4144 if (!p)
4145 goto out_unlock;
4146
e7834f8f
DQ
4147 retval = security_task_getscheduler(p);
4148 if (retval)
4149 goto out_unlock;
4150
013fdb80 4151 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4152 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4153 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4154
4155out_unlock:
23f5d142 4156 rcu_read_unlock();
1da177e4 4157
9531b62f 4158 return retval;
1da177e4
LT
4159}
4160
4161/**
4162 * sys_sched_getaffinity - get the cpu affinity of a process
4163 * @pid: pid of the process
4164 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4165 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4166 *
4167 * Return: 0 on success. An error code otherwise.
1da177e4 4168 */
5add95d4
HC
4169SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4170 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4171{
4172 int ret;
f17c8607 4173 cpumask_var_t mask;
1da177e4 4174
84fba5ec 4175 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4176 return -EINVAL;
4177 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4178 return -EINVAL;
4179
f17c8607
RR
4180 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4181 return -ENOMEM;
1da177e4 4182
f17c8607
RR
4183 ret = sched_getaffinity(pid, mask);
4184 if (ret == 0) {
8bc037fb 4185 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4186
4187 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4188 ret = -EFAULT;
4189 else
cd3d8031 4190 ret = retlen;
f17c8607
RR
4191 }
4192 free_cpumask_var(mask);
1da177e4 4193
f17c8607 4194 return ret;
1da177e4
LT
4195}
4196
4197/**
4198 * sys_sched_yield - yield the current processor to other threads.
4199 *
dd41f596
IM
4200 * This function yields the current CPU to other tasks. If there are no
4201 * other threads running on this CPU then this function will return.
e69f6186
YB
4202 *
4203 * Return: 0.
1da177e4 4204 */
5add95d4 4205SYSCALL_DEFINE0(sched_yield)
1da177e4 4206{
70b97a7f 4207 struct rq *rq = this_rq_lock();
1da177e4 4208
2d72376b 4209 schedstat_inc(rq, yld_count);
4530d7ab 4210 current->sched_class->yield_task(rq);
1da177e4
LT
4211
4212 /*
4213 * Since we are going to call schedule() anyway, there's
4214 * no need to preempt or enable interrupts:
4215 */
4216 __release(rq->lock);
8a25d5de 4217 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4218 do_raw_spin_unlock(&rq->lock);
ba74c144 4219 sched_preempt_enable_no_resched();
1da177e4
LT
4220
4221 schedule();
4222
4223 return 0;
4224}
4225
02b67cc3 4226int __sched _cond_resched(void)
1da177e4 4227{
d86ee480 4228 if (should_resched()) {
a18b5d01 4229 preempt_schedule_common();
1da177e4
LT
4230 return 1;
4231 }
4232 return 0;
4233}
02b67cc3 4234EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4235
4236/*
613afbf8 4237 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4238 * call schedule, and on return reacquire the lock.
4239 *
41a2d6cf 4240 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4241 * operations here to prevent schedule() from being called twice (once via
4242 * spin_unlock(), once by hand).
4243 */
613afbf8 4244int __cond_resched_lock(spinlock_t *lock)
1da177e4 4245{
d86ee480 4246 int resched = should_resched();
6df3cecb
JK
4247 int ret = 0;
4248
f607c668
PZ
4249 lockdep_assert_held(lock);
4250
4a81e832 4251 if (spin_needbreak(lock) || resched) {
1da177e4 4252 spin_unlock(lock);
d86ee480 4253 if (resched)
a18b5d01 4254 preempt_schedule_common();
95c354fe
NP
4255 else
4256 cpu_relax();
6df3cecb 4257 ret = 1;
1da177e4 4258 spin_lock(lock);
1da177e4 4259 }
6df3cecb 4260 return ret;
1da177e4 4261}
613afbf8 4262EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4263
613afbf8 4264int __sched __cond_resched_softirq(void)
1da177e4
LT
4265{
4266 BUG_ON(!in_softirq());
4267
d86ee480 4268 if (should_resched()) {
98d82567 4269 local_bh_enable();
a18b5d01 4270 preempt_schedule_common();
1da177e4
LT
4271 local_bh_disable();
4272 return 1;
4273 }
4274 return 0;
4275}
613afbf8 4276EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4277
1da177e4
LT
4278/**
4279 * yield - yield the current processor to other threads.
4280 *
8e3fabfd
PZ
4281 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4282 *
4283 * The scheduler is at all times free to pick the calling task as the most
4284 * eligible task to run, if removing the yield() call from your code breaks
4285 * it, its already broken.
4286 *
4287 * Typical broken usage is:
4288 *
4289 * while (!event)
4290 * yield();
4291 *
4292 * where one assumes that yield() will let 'the other' process run that will
4293 * make event true. If the current task is a SCHED_FIFO task that will never
4294 * happen. Never use yield() as a progress guarantee!!
4295 *
4296 * If you want to use yield() to wait for something, use wait_event().
4297 * If you want to use yield() to be 'nice' for others, use cond_resched().
4298 * If you still want to use yield(), do not!
1da177e4
LT
4299 */
4300void __sched yield(void)
4301{
4302 set_current_state(TASK_RUNNING);
4303 sys_sched_yield();
4304}
1da177e4
LT
4305EXPORT_SYMBOL(yield);
4306
d95f4122
MG
4307/**
4308 * yield_to - yield the current processor to another thread in
4309 * your thread group, or accelerate that thread toward the
4310 * processor it's on.
16addf95
RD
4311 * @p: target task
4312 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4313 *
4314 * It's the caller's job to ensure that the target task struct
4315 * can't go away on us before we can do any checks.
4316 *
e69f6186 4317 * Return:
7b270f60
PZ
4318 * true (>0) if we indeed boosted the target task.
4319 * false (0) if we failed to boost the target.
4320 * -ESRCH if there's no task to yield to.
d95f4122 4321 */
fa93384f 4322int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4323{
4324 struct task_struct *curr = current;
4325 struct rq *rq, *p_rq;
4326 unsigned long flags;
c3c18640 4327 int yielded = 0;
d95f4122
MG
4328
4329 local_irq_save(flags);
4330 rq = this_rq();
4331
4332again:
4333 p_rq = task_rq(p);
7b270f60
PZ
4334 /*
4335 * If we're the only runnable task on the rq and target rq also
4336 * has only one task, there's absolutely no point in yielding.
4337 */
4338 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4339 yielded = -ESRCH;
4340 goto out_irq;
4341 }
4342
d95f4122 4343 double_rq_lock(rq, p_rq);
39e24d8f 4344 if (task_rq(p) != p_rq) {
d95f4122
MG
4345 double_rq_unlock(rq, p_rq);
4346 goto again;
4347 }
4348
4349 if (!curr->sched_class->yield_to_task)
7b270f60 4350 goto out_unlock;
d95f4122
MG
4351
4352 if (curr->sched_class != p->sched_class)
7b270f60 4353 goto out_unlock;
d95f4122
MG
4354
4355 if (task_running(p_rq, p) || p->state)
7b270f60 4356 goto out_unlock;
d95f4122
MG
4357
4358 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4359 if (yielded) {
d95f4122 4360 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4361 /*
4362 * Make p's CPU reschedule; pick_next_entity takes care of
4363 * fairness.
4364 */
4365 if (preempt && rq != p_rq)
8875125e 4366 resched_curr(p_rq);
6d1cafd8 4367 }
d95f4122 4368
7b270f60 4369out_unlock:
d95f4122 4370 double_rq_unlock(rq, p_rq);
7b270f60 4371out_irq:
d95f4122
MG
4372 local_irq_restore(flags);
4373
7b270f60 4374 if (yielded > 0)
d95f4122
MG
4375 schedule();
4376
4377 return yielded;
4378}
4379EXPORT_SYMBOL_GPL(yield_to);
4380
1da177e4 4381/*
41a2d6cf 4382 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4383 * that process accounting knows that this is a task in IO wait state.
1da177e4 4384 */
1da177e4
LT
4385long __sched io_schedule_timeout(long timeout)
4386{
9cff8ade
N
4387 int old_iowait = current->in_iowait;
4388 struct rq *rq;
1da177e4
LT
4389 long ret;
4390
9cff8ade 4391 current->in_iowait = 1;
10d784ea 4392 blk_schedule_flush_plug(current);
9cff8ade 4393
0ff92245 4394 delayacct_blkio_start();
9cff8ade 4395 rq = raw_rq();
1da177e4
LT
4396 atomic_inc(&rq->nr_iowait);
4397 ret = schedule_timeout(timeout);
9cff8ade 4398 current->in_iowait = old_iowait;
1da177e4 4399 atomic_dec(&rq->nr_iowait);
0ff92245 4400 delayacct_blkio_end();
9cff8ade 4401
1da177e4
LT
4402 return ret;
4403}
9cff8ade 4404EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4405
4406/**
4407 * sys_sched_get_priority_max - return maximum RT priority.
4408 * @policy: scheduling class.
4409 *
e69f6186
YB
4410 * Return: On success, this syscall returns the maximum
4411 * rt_priority that can be used by a given scheduling class.
4412 * On failure, a negative error code is returned.
1da177e4 4413 */
5add95d4 4414SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4415{
4416 int ret = -EINVAL;
4417
4418 switch (policy) {
4419 case SCHED_FIFO:
4420 case SCHED_RR:
4421 ret = MAX_USER_RT_PRIO-1;
4422 break;
aab03e05 4423 case SCHED_DEADLINE:
1da177e4 4424 case SCHED_NORMAL:
b0a9499c 4425 case SCHED_BATCH:
dd41f596 4426 case SCHED_IDLE:
1da177e4
LT
4427 ret = 0;
4428 break;
4429 }
4430 return ret;
4431}
4432
4433/**
4434 * sys_sched_get_priority_min - return minimum RT priority.
4435 * @policy: scheduling class.
4436 *
e69f6186
YB
4437 * Return: On success, this syscall returns the minimum
4438 * rt_priority that can be used by a given scheduling class.
4439 * On failure, a negative error code is returned.
1da177e4 4440 */
5add95d4 4441SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4442{
4443 int ret = -EINVAL;
4444
4445 switch (policy) {
4446 case SCHED_FIFO:
4447 case SCHED_RR:
4448 ret = 1;
4449 break;
aab03e05 4450 case SCHED_DEADLINE:
1da177e4 4451 case SCHED_NORMAL:
b0a9499c 4452 case SCHED_BATCH:
dd41f596 4453 case SCHED_IDLE:
1da177e4
LT
4454 ret = 0;
4455 }
4456 return ret;
4457}
4458
4459/**
4460 * sys_sched_rr_get_interval - return the default timeslice of a process.
4461 * @pid: pid of the process.
4462 * @interval: userspace pointer to the timeslice value.
4463 *
4464 * this syscall writes the default timeslice value of a given process
4465 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4466 *
4467 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4468 * an error code.
1da177e4 4469 */
17da2bd9 4470SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4471 struct timespec __user *, interval)
1da177e4 4472{
36c8b586 4473 struct task_struct *p;
a4ec24b4 4474 unsigned int time_slice;
dba091b9
TG
4475 unsigned long flags;
4476 struct rq *rq;
3a5c359a 4477 int retval;
1da177e4 4478 struct timespec t;
1da177e4
LT
4479
4480 if (pid < 0)
3a5c359a 4481 return -EINVAL;
1da177e4
LT
4482
4483 retval = -ESRCH;
1a551ae7 4484 rcu_read_lock();
1da177e4
LT
4485 p = find_process_by_pid(pid);
4486 if (!p)
4487 goto out_unlock;
4488
4489 retval = security_task_getscheduler(p);
4490 if (retval)
4491 goto out_unlock;
4492
dba091b9 4493 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4494 time_slice = 0;
4495 if (p->sched_class->get_rr_interval)
4496 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4497 task_rq_unlock(rq, p, &flags);
a4ec24b4 4498
1a551ae7 4499 rcu_read_unlock();
a4ec24b4 4500 jiffies_to_timespec(time_slice, &t);
1da177e4 4501 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4502 return retval;
3a5c359a 4503
1da177e4 4504out_unlock:
1a551ae7 4505 rcu_read_unlock();
1da177e4
LT
4506 return retval;
4507}
4508
7c731e0a 4509static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4510
82a1fcb9 4511void sched_show_task(struct task_struct *p)
1da177e4 4512{
1da177e4 4513 unsigned long free = 0;
4e79752c 4514 int ppid;
1f8a7633 4515 unsigned long state = p->state;
1da177e4 4516
1f8a7633
TH
4517 if (state)
4518 state = __ffs(state) + 1;
28d0686c 4519 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4520 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4521#if BITS_PER_LONG == 32
1da177e4 4522 if (state == TASK_RUNNING)
3df0fc5b 4523 printk(KERN_CONT " running ");
1da177e4 4524 else
3df0fc5b 4525 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4526#else
4527 if (state == TASK_RUNNING)
3df0fc5b 4528 printk(KERN_CONT " running task ");
1da177e4 4529 else
3df0fc5b 4530 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4531#endif
4532#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4533 free = stack_not_used(p);
1da177e4 4534#endif
a90e984c 4535 ppid = 0;
4e79752c 4536 rcu_read_lock();
a90e984c
ON
4537 if (pid_alive(p))
4538 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4539 rcu_read_unlock();
3df0fc5b 4540 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4541 task_pid_nr(p), ppid,
aa47b7e0 4542 (unsigned long)task_thread_info(p)->flags);
1da177e4 4543
3d1cb205 4544 print_worker_info(KERN_INFO, p);
5fb5e6de 4545 show_stack(p, NULL);
1da177e4
LT
4546}
4547
e59e2ae2 4548void show_state_filter(unsigned long state_filter)
1da177e4 4549{
36c8b586 4550 struct task_struct *g, *p;
1da177e4 4551
4bd77321 4552#if BITS_PER_LONG == 32
3df0fc5b
PZ
4553 printk(KERN_INFO
4554 " task PC stack pid father\n");
1da177e4 4555#else
3df0fc5b
PZ
4556 printk(KERN_INFO
4557 " task PC stack pid father\n");
1da177e4 4558#endif
510f5acc 4559 rcu_read_lock();
5d07f420 4560 for_each_process_thread(g, p) {
1da177e4
LT
4561 /*
4562 * reset the NMI-timeout, listing all files on a slow
25985edc 4563 * console might take a lot of time:
1da177e4
LT
4564 */
4565 touch_nmi_watchdog();
39bc89fd 4566 if (!state_filter || (p->state & state_filter))
82a1fcb9 4567 sched_show_task(p);
5d07f420 4568 }
1da177e4 4569
04c9167f
JF
4570 touch_all_softlockup_watchdogs();
4571
dd41f596
IM
4572#ifdef CONFIG_SCHED_DEBUG
4573 sysrq_sched_debug_show();
4574#endif
510f5acc 4575 rcu_read_unlock();
e59e2ae2
IM
4576 /*
4577 * Only show locks if all tasks are dumped:
4578 */
93335a21 4579 if (!state_filter)
e59e2ae2 4580 debug_show_all_locks();
1da177e4
LT
4581}
4582
0db0628d 4583void init_idle_bootup_task(struct task_struct *idle)
1df21055 4584{
dd41f596 4585 idle->sched_class = &idle_sched_class;
1df21055
IM
4586}
4587
f340c0d1
IM
4588/**
4589 * init_idle - set up an idle thread for a given CPU
4590 * @idle: task in question
4591 * @cpu: cpu the idle task belongs to
4592 *
4593 * NOTE: this function does not set the idle thread's NEED_RESCHED
4594 * flag, to make booting more robust.
4595 */
0db0628d 4596void init_idle(struct task_struct *idle, int cpu)
1da177e4 4597{
70b97a7f 4598 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4599 unsigned long flags;
4600
05fa785c 4601 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4602
5e1576ed 4603 __sched_fork(0, idle);
06b83b5f 4604 idle->state = TASK_RUNNING;
dd41f596
IM
4605 idle->se.exec_start = sched_clock();
4606
1e1b6c51 4607 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4608 /*
4609 * We're having a chicken and egg problem, even though we are
4610 * holding rq->lock, the cpu isn't yet set to this cpu so the
4611 * lockdep check in task_group() will fail.
4612 *
4613 * Similar case to sched_fork(). / Alternatively we could
4614 * use task_rq_lock() here and obtain the other rq->lock.
4615 *
4616 * Silence PROVE_RCU
4617 */
4618 rcu_read_lock();
dd41f596 4619 __set_task_cpu(idle, cpu);
6506cf6c 4620 rcu_read_unlock();
1da177e4 4621
1da177e4 4622 rq->curr = rq->idle = idle;
da0c1e65 4623 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4624#if defined(CONFIG_SMP)
4625 idle->on_cpu = 1;
4866cde0 4626#endif
05fa785c 4627 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4628
4629 /* Set the preempt count _outside_ the spinlocks! */
01028747 4630 init_idle_preempt_count(idle, cpu);
55cd5340 4631
dd41f596
IM
4632 /*
4633 * The idle tasks have their own, simple scheduling class:
4634 */
4635 idle->sched_class = &idle_sched_class;
868baf07 4636 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4637 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4638#if defined(CONFIG_SMP)
4639 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4640#endif
19978ca6
IM
4641}
4642
f82f8042
JL
4643int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4644 const struct cpumask *trial)
4645{
4646 int ret = 1, trial_cpus;
4647 struct dl_bw *cur_dl_b;
4648 unsigned long flags;
4649
bb2bc55a
MG
4650 if (!cpumask_weight(cur))
4651 return ret;
4652
75e23e49 4653 rcu_read_lock_sched();
f82f8042
JL
4654 cur_dl_b = dl_bw_of(cpumask_any(cur));
4655 trial_cpus = cpumask_weight(trial);
4656
4657 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4658 if (cur_dl_b->bw != -1 &&
4659 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4660 ret = 0;
4661 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4662 rcu_read_unlock_sched();
f82f8042
JL
4663
4664 return ret;
4665}
4666
7f51412a
JL
4667int task_can_attach(struct task_struct *p,
4668 const struct cpumask *cs_cpus_allowed)
4669{
4670 int ret = 0;
4671
4672 /*
4673 * Kthreads which disallow setaffinity shouldn't be moved
4674 * to a new cpuset; we don't want to change their cpu
4675 * affinity and isolating such threads by their set of
4676 * allowed nodes is unnecessary. Thus, cpusets are not
4677 * applicable for such threads. This prevents checking for
4678 * success of set_cpus_allowed_ptr() on all attached tasks
4679 * before cpus_allowed may be changed.
4680 */
4681 if (p->flags & PF_NO_SETAFFINITY) {
4682 ret = -EINVAL;
4683 goto out;
4684 }
4685
4686#ifdef CONFIG_SMP
4687 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4688 cs_cpus_allowed)) {
4689 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4690 cs_cpus_allowed);
75e23e49 4691 struct dl_bw *dl_b;
7f51412a
JL
4692 bool overflow;
4693 int cpus;
4694 unsigned long flags;
4695
75e23e49
JL
4696 rcu_read_lock_sched();
4697 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4698 raw_spin_lock_irqsave(&dl_b->lock, flags);
4699 cpus = dl_bw_cpus(dest_cpu);
4700 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4701 if (overflow)
4702 ret = -EBUSY;
4703 else {
4704 /*
4705 * We reserve space for this task in the destination
4706 * root_domain, as we can't fail after this point.
4707 * We will free resources in the source root_domain
4708 * later on (see set_cpus_allowed_dl()).
4709 */
4710 __dl_add(dl_b, p->dl.dl_bw);
4711 }
4712 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4713 rcu_read_unlock_sched();
7f51412a
JL
4714
4715 }
4716#endif
4717out:
4718 return ret;
4719}
4720
1da177e4 4721#ifdef CONFIG_SMP
a15b12ac
KT
4722/*
4723 * move_queued_task - move a queued task to new rq.
4724 *
4725 * Returns (locked) new rq. Old rq's lock is released.
4726 */
4727static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4728{
4729 struct rq *rq = task_rq(p);
4730
4731 lockdep_assert_held(&rq->lock);
4732
4733 dequeue_task(rq, p, 0);
4734 p->on_rq = TASK_ON_RQ_MIGRATING;
4735 set_task_cpu(p, new_cpu);
4736 raw_spin_unlock(&rq->lock);
4737
4738 rq = cpu_rq(new_cpu);
4739
4740 raw_spin_lock(&rq->lock);
4741 BUG_ON(task_cpu(p) != new_cpu);
4742 p->on_rq = TASK_ON_RQ_QUEUED;
4743 enqueue_task(rq, p, 0);
4744 check_preempt_curr(rq, p, 0);
4745
4746 return rq;
4747}
4748
1e1b6c51
KM
4749void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4750{
1b537c7d 4751 if (p->sched_class->set_cpus_allowed)
1e1b6c51 4752 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4753
4754 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4755 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4756}
4757
1da177e4
LT
4758/*
4759 * This is how migration works:
4760 *
969c7921
TH
4761 * 1) we invoke migration_cpu_stop() on the target CPU using
4762 * stop_one_cpu().
4763 * 2) stopper starts to run (implicitly forcing the migrated thread
4764 * off the CPU)
4765 * 3) it checks whether the migrated task is still in the wrong runqueue.
4766 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4767 * it and puts it into the right queue.
969c7921
TH
4768 * 5) stopper completes and stop_one_cpu() returns and the migration
4769 * is done.
1da177e4
LT
4770 */
4771
4772/*
4773 * Change a given task's CPU affinity. Migrate the thread to a
4774 * proper CPU and schedule it away if the CPU it's executing on
4775 * is removed from the allowed bitmask.
4776 *
4777 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4778 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4779 * call is not atomic; no spinlocks may be held.
4780 */
96f874e2 4781int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4782{
4783 unsigned long flags;
70b97a7f 4784 struct rq *rq;
969c7921 4785 unsigned int dest_cpu;
48f24c4d 4786 int ret = 0;
1da177e4
LT
4787
4788 rq = task_rq_lock(p, &flags);
e2912009 4789
db44fc01
YZ
4790 if (cpumask_equal(&p->cpus_allowed, new_mask))
4791 goto out;
4792
6ad4c188 4793 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4794 ret = -EINVAL;
4795 goto out;
4796 }
4797
1e1b6c51 4798 do_set_cpus_allowed(p, new_mask);
73fe6aae 4799
1da177e4 4800 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4801 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4802 goto out;
4803
969c7921 4804 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4805 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4806 struct migration_arg arg = { p, dest_cpu };
1da177e4 4807 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4808 task_rq_unlock(rq, p, &flags);
969c7921 4809 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4810 tlb_migrate_finish(p->mm);
4811 return 0;
a15b12ac
KT
4812 } else if (task_on_rq_queued(p))
4813 rq = move_queued_task(p, dest_cpu);
1da177e4 4814out:
0122ec5b 4815 task_rq_unlock(rq, p, &flags);
48f24c4d 4816
1da177e4
LT
4817 return ret;
4818}
cd8ba7cd 4819EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4820
4821/*
41a2d6cf 4822 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4823 * this because either it can't run here any more (set_cpus_allowed()
4824 * away from this CPU, or CPU going down), or because we're
4825 * attempting to rebalance this task on exec (sched_exec).
4826 *
4827 * So we race with normal scheduler movements, but that's OK, as long
4828 * as the task is no longer on this CPU.
efc30814
KK
4829 *
4830 * Returns non-zero if task was successfully migrated.
1da177e4 4831 */
efc30814 4832static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4833{
a1e01829 4834 struct rq *rq;
e2912009 4835 int ret = 0;
1da177e4 4836
e761b772 4837 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4838 return ret;
1da177e4 4839
a1e01829 4840 rq = cpu_rq(src_cpu);
1da177e4 4841
0122ec5b 4842 raw_spin_lock(&p->pi_lock);
a1e01829 4843 raw_spin_lock(&rq->lock);
1da177e4
LT
4844 /* Already moved. */
4845 if (task_cpu(p) != src_cpu)
b1e38734 4846 goto done;
a1e01829 4847
1da177e4 4848 /* Affinity changed (again). */
fa17b507 4849 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4850 goto fail;
1da177e4 4851
e2912009
PZ
4852 /*
4853 * If we're not on a rq, the next wake-up will ensure we're
4854 * placed properly.
4855 */
a15b12ac
KT
4856 if (task_on_rq_queued(p))
4857 rq = move_queued_task(p, dest_cpu);
b1e38734 4858done:
efc30814 4859 ret = 1;
b1e38734 4860fail:
a1e01829 4861 raw_spin_unlock(&rq->lock);
0122ec5b 4862 raw_spin_unlock(&p->pi_lock);
efc30814 4863 return ret;
1da177e4
LT
4864}
4865
e6628d5b
MG
4866#ifdef CONFIG_NUMA_BALANCING
4867/* Migrate current task p to target_cpu */
4868int migrate_task_to(struct task_struct *p, int target_cpu)
4869{
4870 struct migration_arg arg = { p, target_cpu };
4871 int curr_cpu = task_cpu(p);
4872
4873 if (curr_cpu == target_cpu)
4874 return 0;
4875
4876 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4877 return -EINVAL;
4878
4879 /* TODO: This is not properly updating schedstats */
4880
286549dc 4881 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4882 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4883}
0ec8aa00
PZ
4884
4885/*
4886 * Requeue a task on a given node and accurately track the number of NUMA
4887 * tasks on the runqueues
4888 */
4889void sched_setnuma(struct task_struct *p, int nid)
4890{
4891 struct rq *rq;
4892 unsigned long flags;
da0c1e65 4893 bool queued, running;
0ec8aa00
PZ
4894
4895 rq = task_rq_lock(p, &flags);
da0c1e65 4896 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4897 running = task_current(rq, p);
4898
da0c1e65 4899 if (queued)
0ec8aa00
PZ
4900 dequeue_task(rq, p, 0);
4901 if (running)
f3cd1c4e 4902 put_prev_task(rq, p);
0ec8aa00
PZ
4903
4904 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4905
4906 if (running)
4907 p->sched_class->set_curr_task(rq);
da0c1e65 4908 if (queued)
0ec8aa00
PZ
4909 enqueue_task(rq, p, 0);
4910 task_rq_unlock(rq, p, &flags);
4911}
e6628d5b
MG
4912#endif
4913
1da177e4 4914/*
969c7921
TH
4915 * migration_cpu_stop - this will be executed by a highprio stopper thread
4916 * and performs thread migration by bumping thread off CPU then
4917 * 'pushing' onto another runqueue.
1da177e4 4918 */
969c7921 4919static int migration_cpu_stop(void *data)
1da177e4 4920{
969c7921 4921 struct migration_arg *arg = data;
f7b4cddc 4922
969c7921
TH
4923 /*
4924 * The original target cpu might have gone down and we might
4925 * be on another cpu but it doesn't matter.
4926 */
f7b4cddc 4927 local_irq_disable();
5cd038f5
LJ
4928 /*
4929 * We need to explicitly wake pending tasks before running
4930 * __migrate_task() such that we will not miss enforcing cpus_allowed
4931 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4932 */
4933 sched_ttwu_pending();
969c7921 4934 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4935 local_irq_enable();
1da177e4 4936 return 0;
f7b4cddc
ON
4937}
4938
1da177e4 4939#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4940
054b9108 4941/*
48c5ccae
PZ
4942 * Ensures that the idle task is using init_mm right before its cpu goes
4943 * offline.
054b9108 4944 */
48c5ccae 4945void idle_task_exit(void)
1da177e4 4946{
48c5ccae 4947 struct mm_struct *mm = current->active_mm;
e76bd8d9 4948
48c5ccae 4949 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4950
a53efe5f 4951 if (mm != &init_mm) {
48c5ccae 4952 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4953 finish_arch_post_lock_switch();
4954 }
48c5ccae 4955 mmdrop(mm);
1da177e4
LT
4956}
4957
4958/*
5d180232
PZ
4959 * Since this CPU is going 'away' for a while, fold any nr_active delta
4960 * we might have. Assumes we're called after migrate_tasks() so that the
4961 * nr_active count is stable.
4962 *
4963 * Also see the comment "Global load-average calculations".
1da177e4 4964 */
5d180232 4965static void calc_load_migrate(struct rq *rq)
1da177e4 4966{
5d180232
PZ
4967 long delta = calc_load_fold_active(rq);
4968 if (delta)
4969 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4970}
4971
3f1d2a31
PZ
4972static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4973{
4974}
4975
4976static const struct sched_class fake_sched_class = {
4977 .put_prev_task = put_prev_task_fake,
4978};
4979
4980static struct task_struct fake_task = {
4981 /*
4982 * Avoid pull_{rt,dl}_task()
4983 */
4984 .prio = MAX_PRIO + 1,
4985 .sched_class = &fake_sched_class,
4986};
4987
48f24c4d 4988/*
48c5ccae
PZ
4989 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4990 * try_to_wake_up()->select_task_rq().
4991 *
4992 * Called with rq->lock held even though we'er in stop_machine() and
4993 * there's no concurrency possible, we hold the required locks anyway
4994 * because of lock validation efforts.
1da177e4 4995 */
48c5ccae 4996static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4997{
70b97a7f 4998 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4999 struct task_struct *next, *stop = rq->stop;
5000 int dest_cpu;
1da177e4
LT
5001
5002 /*
48c5ccae
PZ
5003 * Fudge the rq selection such that the below task selection loop
5004 * doesn't get stuck on the currently eligible stop task.
5005 *
5006 * We're currently inside stop_machine() and the rq is either stuck
5007 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5008 * either way we should never end up calling schedule() until we're
5009 * done here.
1da177e4 5010 */
48c5ccae 5011 rq->stop = NULL;
48f24c4d 5012
77bd3970
FW
5013 /*
5014 * put_prev_task() and pick_next_task() sched
5015 * class method both need to have an up-to-date
5016 * value of rq->clock[_task]
5017 */
5018 update_rq_clock(rq);
5019
dd41f596 5020 for ( ; ; ) {
48c5ccae
PZ
5021 /*
5022 * There's this thread running, bail when that's the only
5023 * remaining thread.
5024 */
5025 if (rq->nr_running == 1)
dd41f596 5026 break;
48c5ccae 5027
3f1d2a31 5028 next = pick_next_task(rq, &fake_task);
48c5ccae 5029 BUG_ON(!next);
79c53799 5030 next->sched_class->put_prev_task(rq, next);
e692ab53 5031
48c5ccae
PZ
5032 /* Find suitable destination for @next, with force if needed. */
5033 dest_cpu = select_fallback_rq(dead_cpu, next);
5034 raw_spin_unlock(&rq->lock);
5035
5036 __migrate_task(next, dead_cpu, dest_cpu);
5037
5038 raw_spin_lock(&rq->lock);
1da177e4 5039 }
dce48a84 5040
48c5ccae 5041 rq->stop = stop;
dce48a84 5042}
48c5ccae 5043
1da177e4
LT
5044#endif /* CONFIG_HOTPLUG_CPU */
5045
e692ab53
NP
5046#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5047
5048static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5049 {
5050 .procname = "sched_domain",
c57baf1e 5051 .mode = 0555,
e0361851 5052 },
56992309 5053 {}
e692ab53
NP
5054};
5055
5056static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5057 {
5058 .procname = "kernel",
c57baf1e 5059 .mode = 0555,
e0361851
AD
5060 .child = sd_ctl_dir,
5061 },
56992309 5062 {}
e692ab53
NP
5063};
5064
5065static struct ctl_table *sd_alloc_ctl_entry(int n)
5066{
5067 struct ctl_table *entry =
5cf9f062 5068 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5069
e692ab53
NP
5070 return entry;
5071}
5072
6382bc90
MM
5073static void sd_free_ctl_entry(struct ctl_table **tablep)
5074{
cd790076 5075 struct ctl_table *entry;
6382bc90 5076
cd790076
MM
5077 /*
5078 * In the intermediate directories, both the child directory and
5079 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5080 * will always be set. In the lowest directory the names are
cd790076
MM
5081 * static strings and all have proc handlers.
5082 */
5083 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5084 if (entry->child)
5085 sd_free_ctl_entry(&entry->child);
cd790076
MM
5086 if (entry->proc_handler == NULL)
5087 kfree(entry->procname);
5088 }
6382bc90
MM
5089
5090 kfree(*tablep);
5091 *tablep = NULL;
5092}
5093
201c373e 5094static int min_load_idx = 0;
fd9b86d3 5095static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5096
e692ab53 5097static void
e0361851 5098set_table_entry(struct ctl_table *entry,
e692ab53 5099 const char *procname, void *data, int maxlen,
201c373e
NK
5100 umode_t mode, proc_handler *proc_handler,
5101 bool load_idx)
e692ab53 5102{
e692ab53
NP
5103 entry->procname = procname;
5104 entry->data = data;
5105 entry->maxlen = maxlen;
5106 entry->mode = mode;
5107 entry->proc_handler = proc_handler;
201c373e
NK
5108
5109 if (load_idx) {
5110 entry->extra1 = &min_load_idx;
5111 entry->extra2 = &max_load_idx;
5112 }
e692ab53
NP
5113}
5114
5115static struct ctl_table *
5116sd_alloc_ctl_domain_table(struct sched_domain *sd)
5117{
37e6bae8 5118 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5119
ad1cdc1d
MM
5120 if (table == NULL)
5121 return NULL;
5122
e0361851 5123 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5124 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5125 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5126 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5127 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5128 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5129 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5130 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5131 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5132 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5133 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5134 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5135 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5136 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5137 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5138 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5139 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5140 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5141 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5142 &sd->cache_nice_tries,
201c373e 5143 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5144 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5145 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5146 set_table_entry(&table[11], "max_newidle_lb_cost",
5147 &sd->max_newidle_lb_cost,
5148 sizeof(long), 0644, proc_doulongvec_minmax, false);
5149 set_table_entry(&table[12], "name", sd->name,
201c373e 5150 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5151 /* &table[13] is terminator */
e692ab53
NP
5152
5153 return table;
5154}
5155
be7002e6 5156static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5157{
5158 struct ctl_table *entry, *table;
5159 struct sched_domain *sd;
5160 int domain_num = 0, i;
5161 char buf[32];
5162
5163 for_each_domain(cpu, sd)
5164 domain_num++;
5165 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5166 if (table == NULL)
5167 return NULL;
e692ab53
NP
5168
5169 i = 0;
5170 for_each_domain(cpu, sd) {
5171 snprintf(buf, 32, "domain%d", i);
e692ab53 5172 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5173 entry->mode = 0555;
e692ab53
NP
5174 entry->child = sd_alloc_ctl_domain_table(sd);
5175 entry++;
5176 i++;
5177 }
5178 return table;
5179}
5180
5181static struct ctl_table_header *sd_sysctl_header;
6382bc90 5182static void register_sched_domain_sysctl(void)
e692ab53 5183{
6ad4c188 5184 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5185 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5186 char buf[32];
5187
7378547f
MM
5188 WARN_ON(sd_ctl_dir[0].child);
5189 sd_ctl_dir[0].child = entry;
5190
ad1cdc1d
MM
5191 if (entry == NULL)
5192 return;
5193
6ad4c188 5194 for_each_possible_cpu(i) {
e692ab53 5195 snprintf(buf, 32, "cpu%d", i);
e692ab53 5196 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5197 entry->mode = 0555;
e692ab53 5198 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5199 entry++;
e692ab53 5200 }
7378547f
MM
5201
5202 WARN_ON(sd_sysctl_header);
e692ab53
NP
5203 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5204}
6382bc90 5205
7378547f 5206/* may be called multiple times per register */
6382bc90
MM
5207static void unregister_sched_domain_sysctl(void)
5208{
7378547f
MM
5209 if (sd_sysctl_header)
5210 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5211 sd_sysctl_header = NULL;
7378547f
MM
5212 if (sd_ctl_dir[0].child)
5213 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5214}
e692ab53 5215#else
6382bc90
MM
5216static void register_sched_domain_sysctl(void)
5217{
5218}
5219static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5220{
5221}
5222#endif
5223
1f11eb6a
GH
5224static void set_rq_online(struct rq *rq)
5225{
5226 if (!rq->online) {
5227 const struct sched_class *class;
5228
c6c4927b 5229 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5230 rq->online = 1;
5231
5232 for_each_class(class) {
5233 if (class->rq_online)
5234 class->rq_online(rq);
5235 }
5236 }
5237}
5238
5239static void set_rq_offline(struct rq *rq)
5240{
5241 if (rq->online) {
5242 const struct sched_class *class;
5243
5244 for_each_class(class) {
5245 if (class->rq_offline)
5246 class->rq_offline(rq);
5247 }
5248
c6c4927b 5249 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5250 rq->online = 0;
5251 }
5252}
5253
1da177e4
LT
5254/*
5255 * migration_call - callback that gets triggered when a CPU is added.
5256 * Here we can start up the necessary migration thread for the new CPU.
5257 */
0db0628d 5258static int
48f24c4d 5259migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5260{
48f24c4d 5261 int cpu = (long)hcpu;
1da177e4 5262 unsigned long flags;
969c7921 5263 struct rq *rq = cpu_rq(cpu);
1da177e4 5264
48c5ccae 5265 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5266
1da177e4 5267 case CPU_UP_PREPARE:
a468d389 5268 rq->calc_load_update = calc_load_update;
1da177e4 5269 break;
48f24c4d 5270
1da177e4 5271 case CPU_ONLINE:
1f94ef59 5272 /* Update our root-domain */
05fa785c 5273 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5274 if (rq->rd) {
c6c4927b 5275 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5276
5277 set_rq_online(rq);
1f94ef59 5278 }
05fa785c 5279 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5280 break;
48f24c4d 5281
1da177e4 5282#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5283 case CPU_DYING:
317f3941 5284 sched_ttwu_pending();
57d885fe 5285 /* Update our root-domain */
05fa785c 5286 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5287 if (rq->rd) {
c6c4927b 5288 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5289 set_rq_offline(rq);
57d885fe 5290 }
48c5ccae
PZ
5291 migrate_tasks(cpu);
5292 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5293 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5294 break;
48c5ccae 5295
5d180232 5296 case CPU_DEAD:
f319da0c 5297 calc_load_migrate(rq);
57d885fe 5298 break;
1da177e4
LT
5299#endif
5300 }
49c022e6
PZ
5301
5302 update_max_interval();
5303
1da177e4
LT
5304 return NOTIFY_OK;
5305}
5306
f38b0820
PM
5307/*
5308 * Register at high priority so that task migration (migrate_all_tasks)
5309 * happens before everything else. This has to be lower priority than
cdd6c482 5310 * the notifier in the perf_event subsystem, though.
1da177e4 5311 */
0db0628d 5312static struct notifier_block migration_notifier = {
1da177e4 5313 .notifier_call = migration_call,
50a323b7 5314 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5315};
5316
a803f026
CM
5317static void __cpuinit set_cpu_rq_start_time(void)
5318{
5319 int cpu = smp_processor_id();
5320 struct rq *rq = cpu_rq(cpu);
5321 rq->age_stamp = sched_clock_cpu(cpu);
5322}
5323
0db0628d 5324static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5325 unsigned long action, void *hcpu)
5326{
5327 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5328 case CPU_STARTING:
5329 set_cpu_rq_start_time();
5330 return NOTIFY_OK;
3a101d05
TH
5331 case CPU_DOWN_FAILED:
5332 set_cpu_active((long)hcpu, true);
5333 return NOTIFY_OK;
5334 default:
5335 return NOTIFY_DONE;
5336 }
5337}
5338
0db0628d 5339static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5340 unsigned long action, void *hcpu)
5341{
5342 switch (action & ~CPU_TASKS_FROZEN) {
5343 case CPU_DOWN_PREPARE:
3c18d447 5344 set_cpu_active((long)hcpu, false);
3a101d05 5345 return NOTIFY_OK;
3c18d447
JL
5346 default:
5347 return NOTIFY_DONE;
3a101d05
TH
5348 }
5349}
5350
7babe8db 5351static int __init migration_init(void)
1da177e4
LT
5352{
5353 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5354 int err;
48f24c4d 5355
3a101d05 5356 /* Initialize migration for the boot CPU */
07dccf33
AM
5357 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5358 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5359 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5360 register_cpu_notifier(&migration_notifier);
7babe8db 5361
3a101d05
TH
5362 /* Register cpu active notifiers */
5363 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5364 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5365
a004cd42 5366 return 0;
1da177e4 5367}
7babe8db 5368early_initcall(migration_init);
1da177e4
LT
5369#endif
5370
5371#ifdef CONFIG_SMP
476f3534 5372
4cb98839
PZ
5373static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5374
3e9830dc 5375#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5376
d039ac60 5377static __read_mostly int sched_debug_enabled;
f6630114 5378
d039ac60 5379static int __init sched_debug_setup(char *str)
f6630114 5380{
d039ac60 5381 sched_debug_enabled = 1;
f6630114
MT
5382
5383 return 0;
5384}
d039ac60
PZ
5385early_param("sched_debug", sched_debug_setup);
5386
5387static inline bool sched_debug(void)
5388{
5389 return sched_debug_enabled;
5390}
f6630114 5391
7c16ec58 5392static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5393 struct cpumask *groupmask)
1da177e4 5394{
4dcf6aff 5395 struct sched_group *group = sd->groups;
1da177e4 5396
96f874e2 5397 cpumask_clear(groupmask);
4dcf6aff
IM
5398
5399 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5400
5401 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5402 printk("does not load-balance\n");
4dcf6aff 5403 if (sd->parent)
3df0fc5b
PZ
5404 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5405 " has parent");
4dcf6aff 5406 return -1;
41c7ce9a
NP
5407 }
5408
333470ee
TH
5409 printk(KERN_CONT "span %*pbl level %s\n",
5410 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5411
758b2cdc 5412 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5413 printk(KERN_ERR "ERROR: domain->span does not contain "
5414 "CPU%d\n", cpu);
4dcf6aff 5415 }
758b2cdc 5416 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5417 printk(KERN_ERR "ERROR: domain->groups does not contain"
5418 " CPU%d\n", cpu);
4dcf6aff 5419 }
1da177e4 5420
4dcf6aff 5421 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5422 do {
4dcf6aff 5423 if (!group) {
3df0fc5b
PZ
5424 printk("\n");
5425 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5426 break;
5427 }
5428
758b2cdc 5429 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5430 printk(KERN_CONT "\n");
5431 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5432 break;
5433 }
1da177e4 5434
cb83b629
PZ
5435 if (!(sd->flags & SD_OVERLAP) &&
5436 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5437 printk(KERN_CONT "\n");
5438 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5439 break;
5440 }
1da177e4 5441
758b2cdc 5442 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5443
333470ee
TH
5444 printk(KERN_CONT " %*pbl",
5445 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5446 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5447 printk(KERN_CONT " (cpu_capacity = %d)",
5448 group->sgc->capacity);
381512cf 5449 }
1da177e4 5450
4dcf6aff
IM
5451 group = group->next;
5452 } while (group != sd->groups);
3df0fc5b 5453 printk(KERN_CONT "\n");
1da177e4 5454
758b2cdc 5455 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5456 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5457
758b2cdc
RR
5458 if (sd->parent &&
5459 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5460 printk(KERN_ERR "ERROR: parent span is not a superset "
5461 "of domain->span\n");
4dcf6aff
IM
5462 return 0;
5463}
1da177e4 5464
4dcf6aff
IM
5465static void sched_domain_debug(struct sched_domain *sd, int cpu)
5466{
5467 int level = 0;
1da177e4 5468
d039ac60 5469 if (!sched_debug_enabled)
f6630114
MT
5470 return;
5471
4dcf6aff
IM
5472 if (!sd) {
5473 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5474 return;
5475 }
1da177e4 5476
4dcf6aff
IM
5477 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5478
5479 for (;;) {
4cb98839 5480 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5481 break;
1da177e4
LT
5482 level++;
5483 sd = sd->parent;
33859f7f 5484 if (!sd)
4dcf6aff
IM
5485 break;
5486 }
1da177e4 5487}
6d6bc0ad 5488#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5489# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5490static inline bool sched_debug(void)
5491{
5492 return false;
5493}
6d6bc0ad 5494#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5495
1a20ff27 5496static int sd_degenerate(struct sched_domain *sd)
245af2c7 5497{
758b2cdc 5498 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5499 return 1;
5500
5501 /* Following flags need at least 2 groups */
5502 if (sd->flags & (SD_LOAD_BALANCE |
5503 SD_BALANCE_NEWIDLE |
5504 SD_BALANCE_FORK |
89c4710e 5505 SD_BALANCE_EXEC |
5d4dfddd 5506 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5507 SD_SHARE_PKG_RESOURCES |
5508 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5509 if (sd->groups != sd->groups->next)
5510 return 0;
5511 }
5512
5513 /* Following flags don't use groups */
c88d5910 5514 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5515 return 0;
5516
5517 return 1;
5518}
5519
48f24c4d
IM
5520static int
5521sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5522{
5523 unsigned long cflags = sd->flags, pflags = parent->flags;
5524
5525 if (sd_degenerate(parent))
5526 return 1;
5527
758b2cdc 5528 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5529 return 0;
5530
245af2c7
SS
5531 /* Flags needing groups don't count if only 1 group in parent */
5532 if (parent->groups == parent->groups->next) {
5533 pflags &= ~(SD_LOAD_BALANCE |
5534 SD_BALANCE_NEWIDLE |
5535 SD_BALANCE_FORK |
89c4710e 5536 SD_BALANCE_EXEC |
5d4dfddd 5537 SD_SHARE_CPUCAPACITY |
10866e62 5538 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5539 SD_PREFER_SIBLING |
5540 SD_SHARE_POWERDOMAIN);
5436499e
KC
5541 if (nr_node_ids == 1)
5542 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5543 }
5544 if (~cflags & pflags)
5545 return 0;
5546
5547 return 1;
5548}
5549
dce840a0 5550static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5551{
dce840a0 5552 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5553
68e74568 5554 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5555 cpudl_cleanup(&rd->cpudl);
1baca4ce 5556 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5557 free_cpumask_var(rd->rto_mask);
5558 free_cpumask_var(rd->online);
5559 free_cpumask_var(rd->span);
5560 kfree(rd);
5561}
5562
57d885fe
GH
5563static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5564{
a0490fa3 5565 struct root_domain *old_rd = NULL;
57d885fe 5566 unsigned long flags;
57d885fe 5567
05fa785c 5568 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5569
5570 if (rq->rd) {
a0490fa3 5571 old_rd = rq->rd;
57d885fe 5572
c6c4927b 5573 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5574 set_rq_offline(rq);
57d885fe 5575
c6c4927b 5576 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5577
a0490fa3 5578 /*
0515973f 5579 * If we dont want to free the old_rd yet then
a0490fa3
IM
5580 * set old_rd to NULL to skip the freeing later
5581 * in this function:
5582 */
5583 if (!atomic_dec_and_test(&old_rd->refcount))
5584 old_rd = NULL;
57d885fe
GH
5585 }
5586
5587 atomic_inc(&rd->refcount);
5588 rq->rd = rd;
5589
c6c4927b 5590 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5591 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5592 set_rq_online(rq);
57d885fe 5593
05fa785c 5594 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5595
5596 if (old_rd)
dce840a0 5597 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5598}
5599
68c38fc3 5600static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5601{
5602 memset(rd, 0, sizeof(*rd));
5603
68c38fc3 5604 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5605 goto out;
68c38fc3 5606 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5607 goto free_span;
1baca4ce 5608 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5609 goto free_online;
1baca4ce
JL
5610 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5611 goto free_dlo_mask;
6e0534f2 5612
332ac17e 5613 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5614 if (cpudl_init(&rd->cpudl) != 0)
5615 goto free_dlo_mask;
332ac17e 5616
68c38fc3 5617 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5618 goto free_rto_mask;
c6c4927b 5619 return 0;
6e0534f2 5620
68e74568
RR
5621free_rto_mask:
5622 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5623free_dlo_mask:
5624 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5625free_online:
5626 free_cpumask_var(rd->online);
5627free_span:
5628 free_cpumask_var(rd->span);
0c910d28 5629out:
c6c4927b 5630 return -ENOMEM;
57d885fe
GH
5631}
5632
029632fb
PZ
5633/*
5634 * By default the system creates a single root-domain with all cpus as
5635 * members (mimicking the global state we have today).
5636 */
5637struct root_domain def_root_domain;
5638
57d885fe
GH
5639static void init_defrootdomain(void)
5640{
68c38fc3 5641 init_rootdomain(&def_root_domain);
c6c4927b 5642
57d885fe
GH
5643 atomic_set(&def_root_domain.refcount, 1);
5644}
5645
dc938520 5646static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5647{
5648 struct root_domain *rd;
5649
5650 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5651 if (!rd)
5652 return NULL;
5653
68c38fc3 5654 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5655 kfree(rd);
5656 return NULL;
5657 }
57d885fe
GH
5658
5659 return rd;
5660}
5661
63b2ca30 5662static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5663{
5664 struct sched_group *tmp, *first;
5665
5666 if (!sg)
5667 return;
5668
5669 first = sg;
5670 do {
5671 tmp = sg->next;
5672
63b2ca30
NP
5673 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5674 kfree(sg->sgc);
e3589f6c
PZ
5675
5676 kfree(sg);
5677 sg = tmp;
5678 } while (sg != first);
5679}
5680
dce840a0
PZ
5681static void free_sched_domain(struct rcu_head *rcu)
5682{
5683 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5684
5685 /*
5686 * If its an overlapping domain it has private groups, iterate and
5687 * nuke them all.
5688 */
5689 if (sd->flags & SD_OVERLAP) {
5690 free_sched_groups(sd->groups, 1);
5691 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5692 kfree(sd->groups->sgc);
dce840a0 5693 kfree(sd->groups);
9c3f75cb 5694 }
dce840a0
PZ
5695 kfree(sd);
5696}
5697
5698static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5699{
5700 call_rcu(&sd->rcu, free_sched_domain);
5701}
5702
5703static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5704{
5705 for (; sd; sd = sd->parent)
5706 destroy_sched_domain(sd, cpu);
5707}
5708
518cd623
PZ
5709/*
5710 * Keep a special pointer to the highest sched_domain that has
5711 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5712 * allows us to avoid some pointer chasing select_idle_sibling().
5713 *
5714 * Also keep a unique ID per domain (we use the first cpu number in
5715 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5716 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5717 */
5718DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5719DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5720DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5721DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5722DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5723DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5724
5725static void update_top_cache_domain(int cpu)
5726{
5727 struct sched_domain *sd;
5d4cf996 5728 struct sched_domain *busy_sd = NULL;
518cd623 5729 int id = cpu;
7d9ffa89 5730 int size = 1;
518cd623
PZ
5731
5732 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5733 if (sd) {
518cd623 5734 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5735 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5736 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5737 }
5d4cf996 5738 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5739
5740 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5741 per_cpu(sd_llc_size, cpu) = size;
518cd623 5742 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5743
5744 sd = lowest_flag_domain(cpu, SD_NUMA);
5745 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5746
5747 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5748 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5749}
5750
1da177e4 5751/*
0eab9146 5752 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5753 * hold the hotplug lock.
5754 */
0eab9146
IM
5755static void
5756cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5757{
70b97a7f 5758 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5759 struct sched_domain *tmp;
5760
5761 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5762 for (tmp = sd; tmp; ) {
245af2c7
SS
5763 struct sched_domain *parent = tmp->parent;
5764 if (!parent)
5765 break;
f29c9b1c 5766
1a848870 5767 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5768 tmp->parent = parent->parent;
1a848870
SS
5769 if (parent->parent)
5770 parent->parent->child = tmp;
10866e62
PZ
5771 /*
5772 * Transfer SD_PREFER_SIBLING down in case of a
5773 * degenerate parent; the spans match for this
5774 * so the property transfers.
5775 */
5776 if (parent->flags & SD_PREFER_SIBLING)
5777 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5778 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5779 } else
5780 tmp = tmp->parent;
245af2c7
SS
5781 }
5782
1a848870 5783 if (sd && sd_degenerate(sd)) {
dce840a0 5784 tmp = sd;
245af2c7 5785 sd = sd->parent;
dce840a0 5786 destroy_sched_domain(tmp, cpu);
1a848870
SS
5787 if (sd)
5788 sd->child = NULL;
5789 }
1da177e4 5790
4cb98839 5791 sched_domain_debug(sd, cpu);
1da177e4 5792
57d885fe 5793 rq_attach_root(rq, rd);
dce840a0 5794 tmp = rq->sd;
674311d5 5795 rcu_assign_pointer(rq->sd, sd);
dce840a0 5796 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5797
5798 update_top_cache_domain(cpu);
1da177e4
LT
5799}
5800
1da177e4
LT
5801/* Setup the mask of cpus configured for isolated domains */
5802static int __init isolated_cpu_setup(char *str)
5803{
bdddd296 5804 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5805 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5806 return 1;
5807}
5808
8927f494 5809__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5810
49a02c51 5811struct s_data {
21d42ccf 5812 struct sched_domain ** __percpu sd;
49a02c51
AH
5813 struct root_domain *rd;
5814};
5815
2109b99e 5816enum s_alloc {
2109b99e 5817 sa_rootdomain,
21d42ccf 5818 sa_sd,
dce840a0 5819 sa_sd_storage,
2109b99e
AH
5820 sa_none,
5821};
5822
c1174876
PZ
5823/*
5824 * Build an iteration mask that can exclude certain CPUs from the upwards
5825 * domain traversal.
5826 *
5827 * Asymmetric node setups can result in situations where the domain tree is of
5828 * unequal depth, make sure to skip domains that already cover the entire
5829 * range.
5830 *
5831 * In that case build_sched_domains() will have terminated the iteration early
5832 * and our sibling sd spans will be empty. Domains should always include the
5833 * cpu they're built on, so check that.
5834 *
5835 */
5836static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5837{
5838 const struct cpumask *span = sched_domain_span(sd);
5839 struct sd_data *sdd = sd->private;
5840 struct sched_domain *sibling;
5841 int i;
5842
5843 for_each_cpu(i, span) {
5844 sibling = *per_cpu_ptr(sdd->sd, i);
5845 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5846 continue;
5847
5848 cpumask_set_cpu(i, sched_group_mask(sg));
5849 }
5850}
5851
5852/*
5853 * Return the canonical balance cpu for this group, this is the first cpu
5854 * of this group that's also in the iteration mask.
5855 */
5856int group_balance_cpu(struct sched_group *sg)
5857{
5858 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5859}
5860
e3589f6c
PZ
5861static int
5862build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5863{
5864 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5865 const struct cpumask *span = sched_domain_span(sd);
5866 struct cpumask *covered = sched_domains_tmpmask;
5867 struct sd_data *sdd = sd->private;
aaecac4a 5868 struct sched_domain *sibling;
e3589f6c
PZ
5869 int i;
5870
5871 cpumask_clear(covered);
5872
5873 for_each_cpu(i, span) {
5874 struct cpumask *sg_span;
5875
5876 if (cpumask_test_cpu(i, covered))
5877 continue;
5878
aaecac4a 5879 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5880
5881 /* See the comment near build_group_mask(). */
aaecac4a 5882 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5883 continue;
5884
e3589f6c 5885 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5886 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5887
5888 if (!sg)
5889 goto fail;
5890
5891 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5892 if (sibling->child)
5893 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5894 else
e3589f6c
PZ
5895 cpumask_set_cpu(i, sg_span);
5896
5897 cpumask_or(covered, covered, sg_span);
5898
63b2ca30
NP
5899 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5900 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5901 build_group_mask(sd, sg);
5902
c3decf0d 5903 /*
63b2ca30 5904 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5905 * domains and no possible iteration will get us here, we won't
5906 * die on a /0 trap.
5907 */
ca8ce3d0 5908 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 5909
c1174876
PZ
5910 /*
5911 * Make sure the first group of this domain contains the
5912 * canonical balance cpu. Otherwise the sched_domain iteration
5913 * breaks. See update_sg_lb_stats().
5914 */
74a5ce20 5915 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5916 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5917 groups = sg;
5918
5919 if (!first)
5920 first = sg;
5921 if (last)
5922 last->next = sg;
5923 last = sg;
5924 last->next = first;
5925 }
5926 sd->groups = groups;
5927
5928 return 0;
5929
5930fail:
5931 free_sched_groups(first, 0);
5932
5933 return -ENOMEM;
5934}
5935
dce840a0 5936static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5937{
dce840a0
PZ
5938 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5939 struct sched_domain *child = sd->child;
1da177e4 5940
dce840a0
PZ
5941 if (child)
5942 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5943
9c3f75cb 5944 if (sg) {
dce840a0 5945 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5946 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5947 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5948 }
dce840a0
PZ
5949
5950 return cpu;
1e9f28fa 5951}
1e9f28fa 5952
01a08546 5953/*
dce840a0
PZ
5954 * build_sched_groups will build a circular linked list of the groups
5955 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5956 * and ->cpu_capacity to 0.
e3589f6c
PZ
5957 *
5958 * Assumes the sched_domain tree is fully constructed
01a08546 5959 */
e3589f6c
PZ
5960static int
5961build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5962{
dce840a0
PZ
5963 struct sched_group *first = NULL, *last = NULL;
5964 struct sd_data *sdd = sd->private;
5965 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5966 struct cpumask *covered;
dce840a0 5967 int i;
9c1cfda2 5968
e3589f6c
PZ
5969 get_group(cpu, sdd, &sd->groups);
5970 atomic_inc(&sd->groups->ref);
5971
0936629f 5972 if (cpu != cpumask_first(span))
e3589f6c
PZ
5973 return 0;
5974
f96225fd
PZ
5975 lockdep_assert_held(&sched_domains_mutex);
5976 covered = sched_domains_tmpmask;
5977
dce840a0 5978 cpumask_clear(covered);
6711cab4 5979
dce840a0
PZ
5980 for_each_cpu(i, span) {
5981 struct sched_group *sg;
cd08e923 5982 int group, j;
6711cab4 5983
dce840a0
PZ
5984 if (cpumask_test_cpu(i, covered))
5985 continue;
6711cab4 5986
cd08e923 5987 group = get_group(i, sdd, &sg);
c1174876 5988 cpumask_setall(sched_group_mask(sg));
0601a88d 5989
dce840a0
PZ
5990 for_each_cpu(j, span) {
5991 if (get_group(j, sdd, NULL) != group)
5992 continue;
0601a88d 5993
dce840a0
PZ
5994 cpumask_set_cpu(j, covered);
5995 cpumask_set_cpu(j, sched_group_cpus(sg));
5996 }
0601a88d 5997
dce840a0
PZ
5998 if (!first)
5999 first = sg;
6000 if (last)
6001 last->next = sg;
6002 last = sg;
6003 }
6004 last->next = first;
e3589f6c
PZ
6005
6006 return 0;
0601a88d 6007}
51888ca2 6008
89c4710e 6009/*
63b2ca30 6010 * Initialize sched groups cpu_capacity.
89c4710e 6011 *
63b2ca30 6012 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6013 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6014 * Typically cpu_capacity for all the groups in a sched domain will be same
6015 * unless there are asymmetries in the topology. If there are asymmetries,
6016 * group having more cpu_capacity will pickup more load compared to the
6017 * group having less cpu_capacity.
89c4710e 6018 */
63b2ca30 6019static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6020{
e3589f6c 6021 struct sched_group *sg = sd->groups;
89c4710e 6022
94c95ba6 6023 WARN_ON(!sg);
e3589f6c
PZ
6024
6025 do {
6026 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6027 sg = sg->next;
6028 } while (sg != sd->groups);
89c4710e 6029
c1174876 6030 if (cpu != group_balance_cpu(sg))
e3589f6c 6031 return;
aae6d3dd 6032
63b2ca30
NP
6033 update_group_capacity(sd, cpu);
6034 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6035}
6036
7c16ec58
MT
6037/*
6038 * Initializers for schedule domains
6039 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6040 */
6041
1d3504fc 6042static int default_relax_domain_level = -1;
60495e77 6043int sched_domain_level_max;
1d3504fc
HS
6044
6045static int __init setup_relax_domain_level(char *str)
6046{
a841f8ce
DS
6047 if (kstrtoint(str, 0, &default_relax_domain_level))
6048 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6049
1d3504fc
HS
6050 return 1;
6051}
6052__setup("relax_domain_level=", setup_relax_domain_level);
6053
6054static void set_domain_attribute(struct sched_domain *sd,
6055 struct sched_domain_attr *attr)
6056{
6057 int request;
6058
6059 if (!attr || attr->relax_domain_level < 0) {
6060 if (default_relax_domain_level < 0)
6061 return;
6062 else
6063 request = default_relax_domain_level;
6064 } else
6065 request = attr->relax_domain_level;
6066 if (request < sd->level) {
6067 /* turn off idle balance on this domain */
c88d5910 6068 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6069 } else {
6070 /* turn on idle balance on this domain */
c88d5910 6071 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6072 }
6073}
6074
54ab4ff4
PZ
6075static void __sdt_free(const struct cpumask *cpu_map);
6076static int __sdt_alloc(const struct cpumask *cpu_map);
6077
2109b99e
AH
6078static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6079 const struct cpumask *cpu_map)
6080{
6081 switch (what) {
2109b99e 6082 case sa_rootdomain:
822ff793
PZ
6083 if (!atomic_read(&d->rd->refcount))
6084 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6085 case sa_sd:
6086 free_percpu(d->sd); /* fall through */
dce840a0 6087 case sa_sd_storage:
54ab4ff4 6088 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6089 case sa_none:
6090 break;
6091 }
6092}
3404c8d9 6093
2109b99e
AH
6094static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6095 const struct cpumask *cpu_map)
6096{
dce840a0
PZ
6097 memset(d, 0, sizeof(*d));
6098
54ab4ff4
PZ
6099 if (__sdt_alloc(cpu_map))
6100 return sa_sd_storage;
dce840a0
PZ
6101 d->sd = alloc_percpu(struct sched_domain *);
6102 if (!d->sd)
6103 return sa_sd_storage;
2109b99e 6104 d->rd = alloc_rootdomain();
dce840a0 6105 if (!d->rd)
21d42ccf 6106 return sa_sd;
2109b99e
AH
6107 return sa_rootdomain;
6108}
57d885fe 6109
dce840a0
PZ
6110/*
6111 * NULL the sd_data elements we've used to build the sched_domain and
6112 * sched_group structure so that the subsequent __free_domain_allocs()
6113 * will not free the data we're using.
6114 */
6115static void claim_allocations(int cpu, struct sched_domain *sd)
6116{
6117 struct sd_data *sdd = sd->private;
dce840a0
PZ
6118
6119 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6120 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6121
e3589f6c 6122 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6123 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6124
63b2ca30
NP
6125 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6126 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6127}
6128
cb83b629 6129#ifdef CONFIG_NUMA
cb83b629 6130static int sched_domains_numa_levels;
e3fe70b1 6131enum numa_topology_type sched_numa_topology_type;
cb83b629 6132static int *sched_domains_numa_distance;
9942f79b 6133int sched_max_numa_distance;
cb83b629
PZ
6134static struct cpumask ***sched_domains_numa_masks;
6135static int sched_domains_curr_level;
143e1e28 6136#endif
cb83b629 6137
143e1e28
VG
6138/*
6139 * SD_flags allowed in topology descriptions.
6140 *
5d4dfddd 6141 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6142 * SD_SHARE_PKG_RESOURCES - describes shared caches
6143 * SD_NUMA - describes NUMA topologies
d77b3ed5 6144 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6145 *
6146 * Odd one out:
6147 * SD_ASYM_PACKING - describes SMT quirks
6148 */
6149#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6150 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6151 SD_SHARE_PKG_RESOURCES | \
6152 SD_NUMA | \
d77b3ed5
VG
6153 SD_ASYM_PACKING | \
6154 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6155
6156static struct sched_domain *
143e1e28 6157sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6158{
6159 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6160 int sd_weight, sd_flags = 0;
6161
6162#ifdef CONFIG_NUMA
6163 /*
6164 * Ugly hack to pass state to sd_numa_mask()...
6165 */
6166 sched_domains_curr_level = tl->numa_level;
6167#endif
6168
6169 sd_weight = cpumask_weight(tl->mask(cpu));
6170
6171 if (tl->sd_flags)
6172 sd_flags = (*tl->sd_flags)();
6173 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6174 "wrong sd_flags in topology description\n"))
6175 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6176
6177 *sd = (struct sched_domain){
6178 .min_interval = sd_weight,
6179 .max_interval = 2*sd_weight,
6180 .busy_factor = 32,
870a0bb5 6181 .imbalance_pct = 125,
143e1e28
VG
6182
6183 .cache_nice_tries = 0,
6184 .busy_idx = 0,
6185 .idle_idx = 0,
cb83b629
PZ
6186 .newidle_idx = 0,
6187 .wake_idx = 0,
6188 .forkexec_idx = 0,
6189
6190 .flags = 1*SD_LOAD_BALANCE
6191 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6192 | 1*SD_BALANCE_EXEC
6193 | 1*SD_BALANCE_FORK
cb83b629 6194 | 0*SD_BALANCE_WAKE
143e1e28 6195 | 1*SD_WAKE_AFFINE
5d4dfddd 6196 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6197 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6198 | 0*SD_SERIALIZE
cb83b629 6199 | 0*SD_PREFER_SIBLING
143e1e28
VG
6200 | 0*SD_NUMA
6201 | sd_flags
cb83b629 6202 ,
143e1e28 6203
cb83b629
PZ
6204 .last_balance = jiffies,
6205 .balance_interval = sd_weight,
143e1e28 6206 .smt_gain = 0,
2b4cfe64
JL
6207 .max_newidle_lb_cost = 0,
6208 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6209#ifdef CONFIG_SCHED_DEBUG
6210 .name = tl->name,
6211#endif
cb83b629 6212 };
cb83b629
PZ
6213
6214 /*
143e1e28 6215 * Convert topological properties into behaviour.
cb83b629 6216 */
143e1e28 6217
5d4dfddd 6218 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6219 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6220 sd->imbalance_pct = 110;
6221 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6222
6223 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6224 sd->imbalance_pct = 117;
6225 sd->cache_nice_tries = 1;
6226 sd->busy_idx = 2;
6227
6228#ifdef CONFIG_NUMA
6229 } else if (sd->flags & SD_NUMA) {
6230 sd->cache_nice_tries = 2;
6231 sd->busy_idx = 3;
6232 sd->idle_idx = 2;
6233
6234 sd->flags |= SD_SERIALIZE;
6235 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6236 sd->flags &= ~(SD_BALANCE_EXEC |
6237 SD_BALANCE_FORK |
6238 SD_WAKE_AFFINE);
6239 }
6240
6241#endif
6242 } else {
6243 sd->flags |= SD_PREFER_SIBLING;
6244 sd->cache_nice_tries = 1;
6245 sd->busy_idx = 2;
6246 sd->idle_idx = 1;
6247 }
6248
6249 sd->private = &tl->data;
cb83b629
PZ
6250
6251 return sd;
6252}
6253
143e1e28
VG
6254/*
6255 * Topology list, bottom-up.
6256 */
6257static struct sched_domain_topology_level default_topology[] = {
6258#ifdef CONFIG_SCHED_SMT
6259 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6260#endif
6261#ifdef CONFIG_SCHED_MC
6262 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6263#endif
6264 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6265 { NULL, },
6266};
6267
6268struct sched_domain_topology_level *sched_domain_topology = default_topology;
6269
6270#define for_each_sd_topology(tl) \
6271 for (tl = sched_domain_topology; tl->mask; tl++)
6272
6273void set_sched_topology(struct sched_domain_topology_level *tl)
6274{
6275 sched_domain_topology = tl;
6276}
6277
6278#ifdef CONFIG_NUMA
6279
cb83b629
PZ
6280static const struct cpumask *sd_numa_mask(int cpu)
6281{
6282 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6283}
6284
d039ac60
PZ
6285static void sched_numa_warn(const char *str)
6286{
6287 static int done = false;
6288 int i,j;
6289
6290 if (done)
6291 return;
6292
6293 done = true;
6294
6295 printk(KERN_WARNING "ERROR: %s\n\n", str);
6296
6297 for (i = 0; i < nr_node_ids; i++) {
6298 printk(KERN_WARNING " ");
6299 for (j = 0; j < nr_node_ids; j++)
6300 printk(KERN_CONT "%02d ", node_distance(i,j));
6301 printk(KERN_CONT "\n");
6302 }
6303 printk(KERN_WARNING "\n");
6304}
6305
9942f79b 6306bool find_numa_distance(int distance)
d039ac60
PZ
6307{
6308 int i;
6309
6310 if (distance == node_distance(0, 0))
6311 return true;
6312
6313 for (i = 0; i < sched_domains_numa_levels; i++) {
6314 if (sched_domains_numa_distance[i] == distance)
6315 return true;
6316 }
6317
6318 return false;
6319}
6320
e3fe70b1
RR
6321/*
6322 * A system can have three types of NUMA topology:
6323 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6324 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6325 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6326 *
6327 * The difference between a glueless mesh topology and a backplane
6328 * topology lies in whether communication between not directly
6329 * connected nodes goes through intermediary nodes (where programs
6330 * could run), or through backplane controllers. This affects
6331 * placement of programs.
6332 *
6333 * The type of topology can be discerned with the following tests:
6334 * - If the maximum distance between any nodes is 1 hop, the system
6335 * is directly connected.
6336 * - If for two nodes A and B, located N > 1 hops away from each other,
6337 * there is an intermediary node C, which is < N hops away from both
6338 * nodes A and B, the system is a glueless mesh.
6339 */
6340static void init_numa_topology_type(void)
6341{
6342 int a, b, c, n;
6343
6344 n = sched_max_numa_distance;
6345
6346 if (n <= 1)
6347 sched_numa_topology_type = NUMA_DIRECT;
6348
6349 for_each_online_node(a) {
6350 for_each_online_node(b) {
6351 /* Find two nodes furthest removed from each other. */
6352 if (node_distance(a, b) < n)
6353 continue;
6354
6355 /* Is there an intermediary node between a and b? */
6356 for_each_online_node(c) {
6357 if (node_distance(a, c) < n &&
6358 node_distance(b, c) < n) {
6359 sched_numa_topology_type =
6360 NUMA_GLUELESS_MESH;
6361 return;
6362 }
6363 }
6364
6365 sched_numa_topology_type = NUMA_BACKPLANE;
6366 return;
6367 }
6368 }
6369}
6370
cb83b629
PZ
6371static void sched_init_numa(void)
6372{
6373 int next_distance, curr_distance = node_distance(0, 0);
6374 struct sched_domain_topology_level *tl;
6375 int level = 0;
6376 int i, j, k;
6377
cb83b629
PZ
6378 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6379 if (!sched_domains_numa_distance)
6380 return;
6381
6382 /*
6383 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6384 * unique distances in the node_distance() table.
6385 *
6386 * Assumes node_distance(0,j) includes all distances in
6387 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6388 */
6389 next_distance = curr_distance;
6390 for (i = 0; i < nr_node_ids; i++) {
6391 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6392 for (k = 0; k < nr_node_ids; k++) {
6393 int distance = node_distance(i, k);
6394
6395 if (distance > curr_distance &&
6396 (distance < next_distance ||
6397 next_distance == curr_distance))
6398 next_distance = distance;
6399
6400 /*
6401 * While not a strong assumption it would be nice to know
6402 * about cases where if node A is connected to B, B is not
6403 * equally connected to A.
6404 */
6405 if (sched_debug() && node_distance(k, i) != distance)
6406 sched_numa_warn("Node-distance not symmetric");
6407
6408 if (sched_debug() && i && !find_numa_distance(distance))
6409 sched_numa_warn("Node-0 not representative");
6410 }
6411 if (next_distance != curr_distance) {
6412 sched_domains_numa_distance[level++] = next_distance;
6413 sched_domains_numa_levels = level;
6414 curr_distance = next_distance;
6415 } else break;
cb83b629 6416 }
d039ac60
PZ
6417
6418 /*
6419 * In case of sched_debug() we verify the above assumption.
6420 */
6421 if (!sched_debug())
6422 break;
cb83b629 6423 }
c123588b
AR
6424
6425 if (!level)
6426 return;
6427
cb83b629
PZ
6428 /*
6429 * 'level' contains the number of unique distances, excluding the
6430 * identity distance node_distance(i,i).
6431 *
28b4a521 6432 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6433 * numbers.
6434 */
6435
5f7865f3
TC
6436 /*
6437 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6438 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6439 * the array will contain less then 'level' members. This could be
6440 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6441 * in other functions.
6442 *
6443 * We reset it to 'level' at the end of this function.
6444 */
6445 sched_domains_numa_levels = 0;
6446
cb83b629
PZ
6447 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6448 if (!sched_domains_numa_masks)
6449 return;
6450
6451 /*
6452 * Now for each level, construct a mask per node which contains all
6453 * cpus of nodes that are that many hops away from us.
6454 */
6455 for (i = 0; i < level; i++) {
6456 sched_domains_numa_masks[i] =
6457 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6458 if (!sched_domains_numa_masks[i])
6459 return;
6460
6461 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6462 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6463 if (!mask)
6464 return;
6465
6466 sched_domains_numa_masks[i][j] = mask;
6467
6468 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6469 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6470 continue;
6471
6472 cpumask_or(mask, mask, cpumask_of_node(k));
6473 }
6474 }
6475 }
6476
143e1e28
VG
6477 /* Compute default topology size */
6478 for (i = 0; sched_domain_topology[i].mask; i++);
6479
c515db8c 6480 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6481 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6482 if (!tl)
6483 return;
6484
6485 /*
6486 * Copy the default topology bits..
6487 */
143e1e28
VG
6488 for (i = 0; sched_domain_topology[i].mask; i++)
6489 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6490
6491 /*
6492 * .. and append 'j' levels of NUMA goodness.
6493 */
6494 for (j = 0; j < level; i++, j++) {
6495 tl[i] = (struct sched_domain_topology_level){
cb83b629 6496 .mask = sd_numa_mask,
143e1e28 6497 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6498 .flags = SDTL_OVERLAP,
6499 .numa_level = j,
143e1e28 6500 SD_INIT_NAME(NUMA)
cb83b629
PZ
6501 };
6502 }
6503
6504 sched_domain_topology = tl;
5f7865f3
TC
6505
6506 sched_domains_numa_levels = level;
9942f79b 6507 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6508
6509 init_numa_topology_type();
cb83b629 6510}
301a5cba
TC
6511
6512static void sched_domains_numa_masks_set(int cpu)
6513{
6514 int i, j;
6515 int node = cpu_to_node(cpu);
6516
6517 for (i = 0; i < sched_domains_numa_levels; i++) {
6518 for (j = 0; j < nr_node_ids; j++) {
6519 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6520 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6521 }
6522 }
6523}
6524
6525static void sched_domains_numa_masks_clear(int cpu)
6526{
6527 int i, j;
6528 for (i = 0; i < sched_domains_numa_levels; i++) {
6529 for (j = 0; j < nr_node_ids; j++)
6530 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6531 }
6532}
6533
6534/*
6535 * Update sched_domains_numa_masks[level][node] array when new cpus
6536 * are onlined.
6537 */
6538static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6539 unsigned long action,
6540 void *hcpu)
6541{
6542 int cpu = (long)hcpu;
6543
6544 switch (action & ~CPU_TASKS_FROZEN) {
6545 case CPU_ONLINE:
6546 sched_domains_numa_masks_set(cpu);
6547 break;
6548
6549 case CPU_DEAD:
6550 sched_domains_numa_masks_clear(cpu);
6551 break;
6552
6553 default:
6554 return NOTIFY_DONE;
6555 }
6556
6557 return NOTIFY_OK;
cb83b629
PZ
6558}
6559#else
6560static inline void sched_init_numa(void)
6561{
6562}
301a5cba
TC
6563
6564static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6565 unsigned long action,
6566 void *hcpu)
6567{
6568 return 0;
6569}
cb83b629
PZ
6570#endif /* CONFIG_NUMA */
6571
54ab4ff4
PZ
6572static int __sdt_alloc(const struct cpumask *cpu_map)
6573{
6574 struct sched_domain_topology_level *tl;
6575 int j;
6576
27723a68 6577 for_each_sd_topology(tl) {
54ab4ff4
PZ
6578 struct sd_data *sdd = &tl->data;
6579
6580 sdd->sd = alloc_percpu(struct sched_domain *);
6581 if (!sdd->sd)
6582 return -ENOMEM;
6583
6584 sdd->sg = alloc_percpu(struct sched_group *);
6585 if (!sdd->sg)
6586 return -ENOMEM;
6587
63b2ca30
NP
6588 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6589 if (!sdd->sgc)
9c3f75cb
PZ
6590 return -ENOMEM;
6591
54ab4ff4
PZ
6592 for_each_cpu(j, cpu_map) {
6593 struct sched_domain *sd;
6594 struct sched_group *sg;
63b2ca30 6595 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6596
6597 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6598 GFP_KERNEL, cpu_to_node(j));
6599 if (!sd)
6600 return -ENOMEM;
6601
6602 *per_cpu_ptr(sdd->sd, j) = sd;
6603
6604 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6605 GFP_KERNEL, cpu_to_node(j));
6606 if (!sg)
6607 return -ENOMEM;
6608
30b4e9eb
IM
6609 sg->next = sg;
6610
54ab4ff4 6611 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6612
63b2ca30 6613 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6614 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6615 if (!sgc)
9c3f75cb
PZ
6616 return -ENOMEM;
6617
63b2ca30 6618 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6619 }
6620 }
6621
6622 return 0;
6623}
6624
6625static void __sdt_free(const struct cpumask *cpu_map)
6626{
6627 struct sched_domain_topology_level *tl;
6628 int j;
6629
27723a68 6630 for_each_sd_topology(tl) {
54ab4ff4
PZ
6631 struct sd_data *sdd = &tl->data;
6632
6633 for_each_cpu(j, cpu_map) {
fb2cf2c6 6634 struct sched_domain *sd;
6635
6636 if (sdd->sd) {
6637 sd = *per_cpu_ptr(sdd->sd, j);
6638 if (sd && (sd->flags & SD_OVERLAP))
6639 free_sched_groups(sd->groups, 0);
6640 kfree(*per_cpu_ptr(sdd->sd, j));
6641 }
6642
6643 if (sdd->sg)
6644 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6645 if (sdd->sgc)
6646 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6647 }
6648 free_percpu(sdd->sd);
fb2cf2c6 6649 sdd->sd = NULL;
54ab4ff4 6650 free_percpu(sdd->sg);
fb2cf2c6 6651 sdd->sg = NULL;
63b2ca30
NP
6652 free_percpu(sdd->sgc);
6653 sdd->sgc = NULL;
54ab4ff4
PZ
6654 }
6655}
6656
2c402dc3 6657struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6658 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6659 struct sched_domain *child, int cpu)
2c402dc3 6660{
143e1e28 6661 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6662 if (!sd)
d069b916 6663 return child;
2c402dc3 6664
2c402dc3 6665 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6666 if (child) {
6667 sd->level = child->level + 1;
6668 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6669 child->parent = sd;
c75e0128 6670 sd->child = child;
6ae72dff
PZ
6671
6672 if (!cpumask_subset(sched_domain_span(child),
6673 sched_domain_span(sd))) {
6674 pr_err("BUG: arch topology borken\n");
6675#ifdef CONFIG_SCHED_DEBUG
6676 pr_err(" the %s domain not a subset of the %s domain\n",
6677 child->name, sd->name);
6678#endif
6679 /* Fixup, ensure @sd has at least @child cpus. */
6680 cpumask_or(sched_domain_span(sd),
6681 sched_domain_span(sd),
6682 sched_domain_span(child));
6683 }
6684
60495e77 6685 }
a841f8ce 6686 set_domain_attribute(sd, attr);
2c402dc3
PZ
6687
6688 return sd;
6689}
6690
2109b99e
AH
6691/*
6692 * Build sched domains for a given set of cpus and attach the sched domains
6693 * to the individual cpus
6694 */
dce840a0
PZ
6695static int build_sched_domains(const struct cpumask *cpu_map,
6696 struct sched_domain_attr *attr)
2109b99e 6697{
1c632169 6698 enum s_alloc alloc_state;
dce840a0 6699 struct sched_domain *sd;
2109b99e 6700 struct s_data d;
822ff793 6701 int i, ret = -ENOMEM;
9c1cfda2 6702
2109b99e
AH
6703 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6704 if (alloc_state != sa_rootdomain)
6705 goto error;
9c1cfda2 6706
dce840a0 6707 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6708 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6709 struct sched_domain_topology_level *tl;
6710
3bd65a80 6711 sd = NULL;
27723a68 6712 for_each_sd_topology(tl) {
4a850cbe 6713 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6714 if (tl == sched_domain_topology)
6715 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6716 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6717 sd->flags |= SD_OVERLAP;
d110235d
PZ
6718 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6719 break;
e3589f6c 6720 }
dce840a0
PZ
6721 }
6722
6723 /* Build the groups for the domains */
6724 for_each_cpu(i, cpu_map) {
6725 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6726 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6727 if (sd->flags & SD_OVERLAP) {
6728 if (build_overlap_sched_groups(sd, i))
6729 goto error;
6730 } else {
6731 if (build_sched_groups(sd, i))
6732 goto error;
6733 }
1cf51902 6734 }
a06dadbe 6735 }
9c1cfda2 6736
ced549fa 6737 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6738 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6739 if (!cpumask_test_cpu(i, cpu_map))
6740 continue;
9c1cfda2 6741
dce840a0
PZ
6742 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6743 claim_allocations(i, sd);
63b2ca30 6744 init_sched_groups_capacity(i, sd);
dce840a0 6745 }
f712c0c7 6746 }
9c1cfda2 6747
1da177e4 6748 /* Attach the domains */
dce840a0 6749 rcu_read_lock();
abcd083a 6750 for_each_cpu(i, cpu_map) {
21d42ccf 6751 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6752 cpu_attach_domain(sd, d.rd, i);
1da177e4 6753 }
dce840a0 6754 rcu_read_unlock();
51888ca2 6755
822ff793 6756 ret = 0;
51888ca2 6757error:
2109b99e 6758 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6759 return ret;
1da177e4 6760}
029190c5 6761
acc3f5d7 6762static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6763static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6764static struct sched_domain_attr *dattr_cur;
6765 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6766
6767/*
6768 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6769 * cpumask) fails, then fallback to a single sched domain,
6770 * as determined by the single cpumask fallback_doms.
029190c5 6771 */
4212823f 6772static cpumask_var_t fallback_doms;
029190c5 6773
ee79d1bd
HC
6774/*
6775 * arch_update_cpu_topology lets virtualized architectures update the
6776 * cpu core maps. It is supposed to return 1 if the topology changed
6777 * or 0 if it stayed the same.
6778 */
52f5684c 6779int __weak arch_update_cpu_topology(void)
22e52b07 6780{
ee79d1bd 6781 return 0;
22e52b07
HC
6782}
6783
acc3f5d7
RR
6784cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6785{
6786 int i;
6787 cpumask_var_t *doms;
6788
6789 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6790 if (!doms)
6791 return NULL;
6792 for (i = 0; i < ndoms; i++) {
6793 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6794 free_sched_domains(doms, i);
6795 return NULL;
6796 }
6797 }
6798 return doms;
6799}
6800
6801void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6802{
6803 unsigned int i;
6804 for (i = 0; i < ndoms; i++)
6805 free_cpumask_var(doms[i]);
6806 kfree(doms);
6807}
6808
1a20ff27 6809/*
41a2d6cf 6810 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6811 * For now this just excludes isolated cpus, but could be used to
6812 * exclude other special cases in the future.
1a20ff27 6813 */
c4a8849a 6814static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6815{
7378547f
MM
6816 int err;
6817
22e52b07 6818 arch_update_cpu_topology();
029190c5 6819 ndoms_cur = 1;
acc3f5d7 6820 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6821 if (!doms_cur)
acc3f5d7
RR
6822 doms_cur = &fallback_doms;
6823 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6824 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6825 register_sched_domain_sysctl();
7378547f
MM
6826
6827 return err;
1a20ff27
DG
6828}
6829
1a20ff27
DG
6830/*
6831 * Detach sched domains from a group of cpus specified in cpu_map
6832 * These cpus will now be attached to the NULL domain
6833 */
96f874e2 6834static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6835{
6836 int i;
6837
dce840a0 6838 rcu_read_lock();
abcd083a 6839 for_each_cpu(i, cpu_map)
57d885fe 6840 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6841 rcu_read_unlock();
1a20ff27
DG
6842}
6843
1d3504fc
HS
6844/* handle null as "default" */
6845static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6846 struct sched_domain_attr *new, int idx_new)
6847{
6848 struct sched_domain_attr tmp;
6849
6850 /* fast path */
6851 if (!new && !cur)
6852 return 1;
6853
6854 tmp = SD_ATTR_INIT;
6855 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6856 new ? (new + idx_new) : &tmp,
6857 sizeof(struct sched_domain_attr));
6858}
6859
029190c5
PJ
6860/*
6861 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6862 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6863 * doms_new[] to the current sched domain partitioning, doms_cur[].
6864 * It destroys each deleted domain and builds each new domain.
6865 *
acc3f5d7 6866 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6867 * The masks don't intersect (don't overlap.) We should setup one
6868 * sched domain for each mask. CPUs not in any of the cpumasks will
6869 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6870 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6871 * it as it is.
6872 *
acc3f5d7
RR
6873 * The passed in 'doms_new' should be allocated using
6874 * alloc_sched_domains. This routine takes ownership of it and will
6875 * free_sched_domains it when done with it. If the caller failed the
6876 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6877 * and partition_sched_domains() will fallback to the single partition
6878 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6879 *
96f874e2 6880 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6881 * ndoms_new == 0 is a special case for destroying existing domains,
6882 * and it will not create the default domain.
dfb512ec 6883 *
029190c5
PJ
6884 * Call with hotplug lock held
6885 */
acc3f5d7 6886void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6887 struct sched_domain_attr *dattr_new)
029190c5 6888{
dfb512ec 6889 int i, j, n;
d65bd5ec 6890 int new_topology;
029190c5 6891
712555ee 6892 mutex_lock(&sched_domains_mutex);
a1835615 6893
7378547f
MM
6894 /* always unregister in case we don't destroy any domains */
6895 unregister_sched_domain_sysctl();
6896
d65bd5ec
HC
6897 /* Let architecture update cpu core mappings. */
6898 new_topology = arch_update_cpu_topology();
6899
dfb512ec 6900 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6901
6902 /* Destroy deleted domains */
6903 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6904 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6905 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6906 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6907 goto match1;
6908 }
6909 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6910 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6911match1:
6912 ;
6913 }
6914
c8d2d47a 6915 n = ndoms_cur;
e761b772 6916 if (doms_new == NULL) {
c8d2d47a 6917 n = 0;
acc3f5d7 6918 doms_new = &fallback_doms;
6ad4c188 6919 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6920 WARN_ON_ONCE(dattr_new);
e761b772
MK
6921 }
6922
029190c5
PJ
6923 /* Build new domains */
6924 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6925 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6926 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6927 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6928 goto match2;
6929 }
6930 /* no match - add a new doms_new */
dce840a0 6931 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6932match2:
6933 ;
6934 }
6935
6936 /* Remember the new sched domains */
acc3f5d7
RR
6937 if (doms_cur != &fallback_doms)
6938 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6939 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6940 doms_cur = doms_new;
1d3504fc 6941 dattr_cur = dattr_new;
029190c5 6942 ndoms_cur = ndoms_new;
7378547f
MM
6943
6944 register_sched_domain_sysctl();
a1835615 6945
712555ee 6946 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6947}
6948
d35be8ba
SB
6949static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6950
1da177e4 6951/*
3a101d05
TH
6952 * Update cpusets according to cpu_active mask. If cpusets are
6953 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6954 * around partition_sched_domains().
d35be8ba
SB
6955 *
6956 * If we come here as part of a suspend/resume, don't touch cpusets because we
6957 * want to restore it back to its original state upon resume anyway.
1da177e4 6958 */
0b2e918a
TH
6959static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6960 void *hcpu)
e761b772 6961{
d35be8ba
SB
6962 switch (action) {
6963 case CPU_ONLINE_FROZEN:
6964 case CPU_DOWN_FAILED_FROZEN:
6965
6966 /*
6967 * num_cpus_frozen tracks how many CPUs are involved in suspend
6968 * resume sequence. As long as this is not the last online
6969 * operation in the resume sequence, just build a single sched
6970 * domain, ignoring cpusets.
6971 */
6972 num_cpus_frozen--;
6973 if (likely(num_cpus_frozen)) {
6974 partition_sched_domains(1, NULL, NULL);
6975 break;
6976 }
6977
6978 /*
6979 * This is the last CPU online operation. So fall through and
6980 * restore the original sched domains by considering the
6981 * cpuset configurations.
6982 */
6983
e761b772 6984 case CPU_ONLINE:
7ddf96b0 6985 cpuset_update_active_cpus(true);
d35be8ba 6986 break;
3a101d05
TH
6987 default:
6988 return NOTIFY_DONE;
6989 }
d35be8ba 6990 return NOTIFY_OK;
3a101d05 6991}
e761b772 6992
0b2e918a
TH
6993static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6994 void *hcpu)
3a101d05 6995{
3c18d447
JL
6996 unsigned long flags;
6997 long cpu = (long)hcpu;
6998 struct dl_bw *dl_b;
533445c6
OS
6999 bool overflow;
7000 int cpus;
3c18d447 7001
533445c6 7002 switch (action) {
3a101d05 7003 case CPU_DOWN_PREPARE:
533445c6
OS
7004 rcu_read_lock_sched();
7005 dl_b = dl_bw_of(cpu);
3c18d447 7006
533445c6
OS
7007 raw_spin_lock_irqsave(&dl_b->lock, flags);
7008 cpus = dl_bw_cpus(cpu);
7009 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7010 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7011
533445c6 7012 rcu_read_unlock_sched();
3c18d447 7013
533445c6
OS
7014 if (overflow)
7015 return notifier_from_errno(-EBUSY);
7ddf96b0 7016 cpuset_update_active_cpus(false);
d35be8ba
SB
7017 break;
7018 case CPU_DOWN_PREPARE_FROZEN:
7019 num_cpus_frozen++;
7020 partition_sched_domains(1, NULL, NULL);
7021 break;
e761b772
MK
7022 default:
7023 return NOTIFY_DONE;
7024 }
d35be8ba 7025 return NOTIFY_OK;
e761b772 7026}
e761b772 7027
1da177e4
LT
7028void __init sched_init_smp(void)
7029{
dcc30a35
RR
7030 cpumask_var_t non_isolated_cpus;
7031
7032 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7033 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7034
cb83b629
PZ
7035 sched_init_numa();
7036
6acce3ef
PZ
7037 /*
7038 * There's no userspace yet to cause hotplug operations; hence all the
7039 * cpu masks are stable and all blatant races in the below code cannot
7040 * happen.
7041 */
712555ee 7042 mutex_lock(&sched_domains_mutex);
c4a8849a 7043 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7044 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7045 if (cpumask_empty(non_isolated_cpus))
7046 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7047 mutex_unlock(&sched_domains_mutex);
e761b772 7048
301a5cba 7049 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7050 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7051 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7052
b328ca18 7053 init_hrtick();
5c1e1767
NP
7054
7055 /* Move init over to a non-isolated CPU */
dcc30a35 7056 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7057 BUG();
19978ca6 7058 sched_init_granularity();
dcc30a35 7059 free_cpumask_var(non_isolated_cpus);
4212823f 7060
0e3900e6 7061 init_sched_rt_class();
1baca4ce 7062 init_sched_dl_class();
1da177e4
LT
7063}
7064#else
7065void __init sched_init_smp(void)
7066{
19978ca6 7067 sched_init_granularity();
1da177e4
LT
7068}
7069#endif /* CONFIG_SMP */
7070
cd1bb94b
AB
7071const_debug unsigned int sysctl_timer_migration = 1;
7072
1da177e4
LT
7073int in_sched_functions(unsigned long addr)
7074{
1da177e4
LT
7075 return in_lock_functions(addr) ||
7076 (addr >= (unsigned long)__sched_text_start
7077 && addr < (unsigned long)__sched_text_end);
7078}
7079
029632fb 7080#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7081/*
7082 * Default task group.
7083 * Every task in system belongs to this group at bootup.
7084 */
029632fb 7085struct task_group root_task_group;
35cf4e50 7086LIST_HEAD(task_groups);
052f1dc7 7087#endif
6f505b16 7088
e6252c3e 7089DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7090
1da177e4
LT
7091void __init sched_init(void)
7092{
dd41f596 7093 int i, j;
434d53b0
MT
7094 unsigned long alloc_size = 0, ptr;
7095
7096#ifdef CONFIG_FAIR_GROUP_SCHED
7097 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7098#endif
7099#ifdef CONFIG_RT_GROUP_SCHED
7100 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7101#endif
434d53b0 7102 if (alloc_size) {
36b7b6d4 7103 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7104
7105#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7106 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7107 ptr += nr_cpu_ids * sizeof(void **);
7108
07e06b01 7109 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7110 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7111
6d6bc0ad 7112#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7113#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7114 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7115 ptr += nr_cpu_ids * sizeof(void **);
7116
07e06b01 7117 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7118 ptr += nr_cpu_ids * sizeof(void **);
7119
6d6bc0ad 7120#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7121 }
df7c8e84 7122#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7123 for_each_possible_cpu(i) {
7124 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7125 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7126 }
b74e6278 7127#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7128
332ac17e
DF
7129 init_rt_bandwidth(&def_rt_bandwidth,
7130 global_rt_period(), global_rt_runtime());
7131 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7132 global_rt_period(), global_rt_runtime());
332ac17e 7133
57d885fe
GH
7134#ifdef CONFIG_SMP
7135 init_defrootdomain();
7136#endif
7137
d0b27fa7 7138#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7139 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7140 global_rt_period(), global_rt_runtime());
6d6bc0ad 7141#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7142
7c941438 7143#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7144 list_add(&root_task_group.list, &task_groups);
7145 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7146 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7147 autogroup_init(&init_task);
54c707e9 7148
7c941438 7149#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7150
0a945022 7151 for_each_possible_cpu(i) {
70b97a7f 7152 struct rq *rq;
1da177e4
LT
7153
7154 rq = cpu_rq(i);
05fa785c 7155 raw_spin_lock_init(&rq->lock);
7897986b 7156 rq->nr_running = 0;
dce48a84
TG
7157 rq->calc_load_active = 0;
7158 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7159 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7160 init_rt_rq(&rq->rt);
7161 init_dl_rq(&rq->dl);
dd41f596 7162#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7163 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7164 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7165 /*
07e06b01 7166 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7167 *
7168 * In case of task-groups formed thr' the cgroup filesystem, it
7169 * gets 100% of the cpu resources in the system. This overall
7170 * system cpu resource is divided among the tasks of
07e06b01 7171 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7172 * based on each entity's (task or task-group's) weight
7173 * (se->load.weight).
7174 *
07e06b01 7175 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7176 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7177 * then A0's share of the cpu resource is:
7178 *
0d905bca 7179 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7180 *
07e06b01
YZ
7181 * We achieve this by letting root_task_group's tasks sit
7182 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7183 */
ab84d31e 7184 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7185 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7186#endif /* CONFIG_FAIR_GROUP_SCHED */
7187
7188 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7189#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7190 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7191#endif
1da177e4 7192
dd41f596
IM
7193 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7194 rq->cpu_load[j] = 0;
fdf3e95d
VP
7195
7196 rq->last_load_update_tick = jiffies;
7197
1da177e4 7198#ifdef CONFIG_SMP
41c7ce9a 7199 rq->sd = NULL;
57d885fe 7200 rq->rd = NULL;
ca6d75e6 7201 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
3f029d3c 7202 rq->post_schedule = 0;
1da177e4 7203 rq->active_balance = 0;
dd41f596 7204 rq->next_balance = jiffies;
1da177e4 7205 rq->push_cpu = 0;
0a2966b4 7206 rq->cpu = i;
1f11eb6a 7207 rq->online = 0;
eae0c9df
MG
7208 rq->idle_stamp = 0;
7209 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7210 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7211
7212 INIT_LIST_HEAD(&rq->cfs_tasks);
7213
dc938520 7214 rq_attach_root(rq, &def_root_domain);
3451d024 7215#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7216 rq->nohz_flags = 0;
83cd4fe2 7217#endif
265f22a9
FW
7218#ifdef CONFIG_NO_HZ_FULL
7219 rq->last_sched_tick = 0;
7220#endif
1da177e4 7221#endif
8f4d37ec 7222 init_rq_hrtick(rq);
1da177e4 7223 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7224 }
7225
2dd73a4f 7226 set_load_weight(&init_task);
b50f60ce 7227
e107be36
AK
7228#ifdef CONFIG_PREEMPT_NOTIFIERS
7229 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7230#endif
7231
1da177e4
LT
7232 /*
7233 * The boot idle thread does lazy MMU switching as well:
7234 */
7235 atomic_inc(&init_mm.mm_count);
7236 enter_lazy_tlb(&init_mm, current);
7237
1b537c7d
YD
7238 /*
7239 * During early bootup we pretend to be a normal task:
7240 */
7241 current->sched_class = &fair_sched_class;
7242
1da177e4
LT
7243 /*
7244 * Make us the idle thread. Technically, schedule() should not be
7245 * called from this thread, however somewhere below it might be,
7246 * but because we are the idle thread, we just pick up running again
7247 * when this runqueue becomes "idle".
7248 */
7249 init_idle(current, smp_processor_id());
dce48a84
TG
7250
7251 calc_load_update = jiffies + LOAD_FREQ;
7252
bf4d83f6 7253#ifdef CONFIG_SMP
4cb98839 7254 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7255 /* May be allocated at isolcpus cmdline parse time */
7256 if (cpu_isolated_map == NULL)
7257 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7258 idle_thread_set_boot_cpu();
a803f026 7259 set_cpu_rq_start_time();
029632fb
PZ
7260#endif
7261 init_sched_fair_class();
6a7b3dc3 7262
6892b75e 7263 scheduler_running = 1;
1da177e4
LT
7264}
7265
d902db1e 7266#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7267static inline int preempt_count_equals(int preempt_offset)
7268{
234da7bc 7269 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7270
4ba8216c 7271 return (nested == preempt_offset);
e4aafea2
FW
7272}
7273
d894837f 7274void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7275{
8eb23b9f
PZ
7276 /*
7277 * Blocking primitives will set (and therefore destroy) current->state,
7278 * since we will exit with TASK_RUNNING make sure we enter with it,
7279 * otherwise we will destroy state.
7280 */
00845eb9 7281 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7282 "do not call blocking ops when !TASK_RUNNING; "
7283 "state=%lx set at [<%p>] %pS\n",
7284 current->state,
7285 (void *)current->task_state_change,
00845eb9 7286 (void *)current->task_state_change);
8eb23b9f 7287
3427445a
PZ
7288 ___might_sleep(file, line, preempt_offset);
7289}
7290EXPORT_SYMBOL(__might_sleep);
7291
7292void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7293{
1da177e4
LT
7294 static unsigned long prev_jiffy; /* ratelimiting */
7295
b3fbab05 7296 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7297 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7298 !is_idle_task(current)) ||
e4aafea2 7299 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7300 return;
7301 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7302 return;
7303 prev_jiffy = jiffies;
7304
3df0fc5b
PZ
7305 printk(KERN_ERR
7306 "BUG: sleeping function called from invalid context at %s:%d\n",
7307 file, line);
7308 printk(KERN_ERR
7309 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7310 in_atomic(), irqs_disabled(),
7311 current->pid, current->comm);
aef745fc 7312
a8b686b3
ES
7313 if (task_stack_end_corrupted(current))
7314 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7315
aef745fc
IM
7316 debug_show_held_locks(current);
7317 if (irqs_disabled())
7318 print_irqtrace_events(current);
8f47b187
TG
7319#ifdef CONFIG_DEBUG_PREEMPT
7320 if (!preempt_count_equals(preempt_offset)) {
7321 pr_err("Preemption disabled at:");
7322 print_ip_sym(current->preempt_disable_ip);
7323 pr_cont("\n");
7324 }
7325#endif
aef745fc 7326 dump_stack();
1da177e4 7327}
3427445a 7328EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7329#endif
7330
7331#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7332static void normalize_task(struct rq *rq, struct task_struct *p)
7333{
da7a735e 7334 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7335 struct sched_attr attr = {
7336 .sched_policy = SCHED_NORMAL,
7337 };
da7a735e 7338 int old_prio = p->prio;
da0c1e65 7339 int queued;
3e51f33f 7340
da0c1e65
KT
7341 queued = task_on_rq_queued(p);
7342 if (queued)
4ca9b72b 7343 dequeue_task(rq, p, 0);
0782e63b 7344 __setscheduler(rq, p, &attr, false);
da0c1e65 7345 if (queued) {
4ca9b72b 7346 enqueue_task(rq, p, 0);
8875125e 7347 resched_curr(rq);
3a5e4dc1 7348 }
da7a735e
PZ
7349
7350 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7351}
7352
1da177e4
LT
7353void normalize_rt_tasks(void)
7354{
a0f98a1c 7355 struct task_struct *g, *p;
1da177e4 7356 unsigned long flags;
70b97a7f 7357 struct rq *rq;
1da177e4 7358
3472eaa1 7359 read_lock(&tasklist_lock);
5d07f420 7360 for_each_process_thread(g, p) {
178be793
IM
7361 /*
7362 * Only normalize user tasks:
7363 */
3472eaa1 7364 if (p->flags & PF_KTHREAD)
178be793
IM
7365 continue;
7366
6cfb0d5d 7367 p->se.exec_start = 0;
6cfb0d5d 7368#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7369 p->se.statistics.wait_start = 0;
7370 p->se.statistics.sleep_start = 0;
7371 p->se.statistics.block_start = 0;
6cfb0d5d 7372#endif
dd41f596 7373
aab03e05 7374 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7375 /*
7376 * Renice negative nice level userspace
7377 * tasks back to 0:
7378 */
3472eaa1 7379 if (task_nice(p) < 0)
dd41f596 7380 set_user_nice(p, 0);
1da177e4 7381 continue;
dd41f596 7382 }
1da177e4 7383
3472eaa1 7384 rq = task_rq_lock(p, &flags);
178be793 7385 normalize_task(rq, p);
3472eaa1 7386 task_rq_unlock(rq, p, &flags);
5d07f420 7387 }
3472eaa1 7388 read_unlock(&tasklist_lock);
1da177e4
LT
7389}
7390
7391#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7392
67fc4e0c 7393#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7394/*
67fc4e0c 7395 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7396 *
7397 * They can only be called when the whole system has been
7398 * stopped - every CPU needs to be quiescent, and no scheduling
7399 * activity can take place. Using them for anything else would
7400 * be a serious bug, and as a result, they aren't even visible
7401 * under any other configuration.
7402 */
7403
7404/**
7405 * curr_task - return the current task for a given cpu.
7406 * @cpu: the processor in question.
7407 *
7408 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7409 *
7410 * Return: The current task for @cpu.
1df5c10a 7411 */
36c8b586 7412struct task_struct *curr_task(int cpu)
1df5c10a
LT
7413{
7414 return cpu_curr(cpu);
7415}
7416
67fc4e0c
JW
7417#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7418
7419#ifdef CONFIG_IA64
1df5c10a
LT
7420/**
7421 * set_curr_task - set the current task for a given cpu.
7422 * @cpu: the processor in question.
7423 * @p: the task pointer to set.
7424 *
7425 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7426 * are serviced on a separate stack. It allows the architecture to switch the
7427 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7428 * must be called with all CPU's synchronized, and interrupts disabled, the
7429 * and caller must save the original value of the current task (see
7430 * curr_task() above) and restore that value before reenabling interrupts and
7431 * re-starting the system.
7432 *
7433 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7434 */
36c8b586 7435void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7436{
7437 cpu_curr(cpu) = p;
7438}
7439
7440#endif
29f59db3 7441
7c941438 7442#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7443/* task_group_lock serializes the addition/removal of task groups */
7444static DEFINE_SPINLOCK(task_group_lock);
7445
bccbe08a
PZ
7446static void free_sched_group(struct task_group *tg)
7447{
7448 free_fair_sched_group(tg);
7449 free_rt_sched_group(tg);
e9aa1dd1 7450 autogroup_free(tg);
bccbe08a
PZ
7451 kfree(tg);
7452}
7453
7454/* allocate runqueue etc for a new task group */
ec7dc8ac 7455struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7456{
7457 struct task_group *tg;
bccbe08a
PZ
7458
7459 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7460 if (!tg)
7461 return ERR_PTR(-ENOMEM);
7462
ec7dc8ac 7463 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7464 goto err;
7465
ec7dc8ac 7466 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7467 goto err;
7468
ace783b9
LZ
7469 return tg;
7470
7471err:
7472 free_sched_group(tg);
7473 return ERR_PTR(-ENOMEM);
7474}
7475
7476void sched_online_group(struct task_group *tg, struct task_group *parent)
7477{
7478 unsigned long flags;
7479
8ed36996 7480 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7481 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7482
7483 WARN_ON(!parent); /* root should already exist */
7484
7485 tg->parent = parent;
f473aa5e 7486 INIT_LIST_HEAD(&tg->children);
09f2724a 7487 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7488 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7489}
7490
9b5b7751 7491/* rcu callback to free various structures associated with a task group */
6f505b16 7492static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7493{
29f59db3 7494 /* now it should be safe to free those cfs_rqs */
6f505b16 7495 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7496}
7497
9b5b7751 7498/* Destroy runqueue etc associated with a task group */
4cf86d77 7499void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7500{
7501 /* wait for possible concurrent references to cfs_rqs complete */
7502 call_rcu(&tg->rcu, free_sched_group_rcu);
7503}
7504
7505void sched_offline_group(struct task_group *tg)
29f59db3 7506{
8ed36996 7507 unsigned long flags;
9b5b7751 7508 int i;
29f59db3 7509
3d4b47b4
PZ
7510 /* end participation in shares distribution */
7511 for_each_possible_cpu(i)
bccbe08a 7512 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7513
7514 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7515 list_del_rcu(&tg->list);
f473aa5e 7516 list_del_rcu(&tg->siblings);
8ed36996 7517 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7518}
7519
9b5b7751 7520/* change task's runqueue when it moves between groups.
3a252015
IM
7521 * The caller of this function should have put the task in its new group
7522 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7523 * reflect its new group.
9b5b7751
SV
7524 */
7525void sched_move_task(struct task_struct *tsk)
29f59db3 7526{
8323f26c 7527 struct task_group *tg;
da0c1e65 7528 int queued, running;
29f59db3
SV
7529 unsigned long flags;
7530 struct rq *rq;
7531
7532 rq = task_rq_lock(tsk, &flags);
7533
051a1d1a 7534 running = task_current(rq, tsk);
da0c1e65 7535 queued = task_on_rq_queued(tsk);
29f59db3 7536
da0c1e65 7537 if (queued)
29f59db3 7538 dequeue_task(rq, tsk, 0);
0e1f3483 7539 if (unlikely(running))
f3cd1c4e 7540 put_prev_task(rq, tsk);
29f59db3 7541
f7b8a47d
KT
7542 /*
7543 * All callers are synchronized by task_rq_lock(); we do not use RCU
7544 * which is pointless here. Thus, we pass "true" to task_css_check()
7545 * to prevent lockdep warnings.
7546 */
7547 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7548 struct task_group, css);
7549 tg = autogroup_task_group(tsk, tg);
7550 tsk->sched_task_group = tg;
7551
810b3817 7552#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7553 if (tsk->sched_class->task_move_group)
da0c1e65 7554 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7555 else
810b3817 7556#endif
b2b5ce02 7557 set_task_rq(tsk, task_cpu(tsk));
810b3817 7558
0e1f3483
HS
7559 if (unlikely(running))
7560 tsk->sched_class->set_curr_task(rq);
da0c1e65 7561 if (queued)
371fd7e7 7562 enqueue_task(rq, tsk, 0);
29f59db3 7563
0122ec5b 7564 task_rq_unlock(rq, tsk, &flags);
29f59db3 7565}
7c941438 7566#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7567
a790de99
PT
7568#ifdef CONFIG_RT_GROUP_SCHED
7569/*
7570 * Ensure that the real time constraints are schedulable.
7571 */
7572static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7573
9a7e0b18
PZ
7574/* Must be called with tasklist_lock held */
7575static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7576{
9a7e0b18 7577 struct task_struct *g, *p;
b40b2e8e 7578
1fe89e1b
PZ
7579 /*
7580 * Autogroups do not have RT tasks; see autogroup_create().
7581 */
7582 if (task_group_is_autogroup(tg))
7583 return 0;
7584
5d07f420 7585 for_each_process_thread(g, p) {
8651c658 7586 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7587 return 1;
5d07f420 7588 }
b40b2e8e 7589
9a7e0b18
PZ
7590 return 0;
7591}
b40b2e8e 7592
9a7e0b18
PZ
7593struct rt_schedulable_data {
7594 struct task_group *tg;
7595 u64 rt_period;
7596 u64 rt_runtime;
7597};
b40b2e8e 7598
a790de99 7599static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7600{
7601 struct rt_schedulable_data *d = data;
7602 struct task_group *child;
7603 unsigned long total, sum = 0;
7604 u64 period, runtime;
b40b2e8e 7605
9a7e0b18
PZ
7606 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7607 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7608
9a7e0b18
PZ
7609 if (tg == d->tg) {
7610 period = d->rt_period;
7611 runtime = d->rt_runtime;
b40b2e8e 7612 }
b40b2e8e 7613
4653f803
PZ
7614 /*
7615 * Cannot have more runtime than the period.
7616 */
7617 if (runtime > period && runtime != RUNTIME_INF)
7618 return -EINVAL;
6f505b16 7619
4653f803
PZ
7620 /*
7621 * Ensure we don't starve existing RT tasks.
7622 */
9a7e0b18
PZ
7623 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7624 return -EBUSY;
6f505b16 7625
9a7e0b18 7626 total = to_ratio(period, runtime);
6f505b16 7627
4653f803
PZ
7628 /*
7629 * Nobody can have more than the global setting allows.
7630 */
7631 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7632 return -EINVAL;
6f505b16 7633
4653f803
PZ
7634 /*
7635 * The sum of our children's runtime should not exceed our own.
7636 */
9a7e0b18
PZ
7637 list_for_each_entry_rcu(child, &tg->children, siblings) {
7638 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7639 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7640
9a7e0b18
PZ
7641 if (child == d->tg) {
7642 period = d->rt_period;
7643 runtime = d->rt_runtime;
7644 }
6f505b16 7645
9a7e0b18 7646 sum += to_ratio(period, runtime);
9f0c1e56 7647 }
6f505b16 7648
9a7e0b18
PZ
7649 if (sum > total)
7650 return -EINVAL;
7651
7652 return 0;
6f505b16
PZ
7653}
7654
9a7e0b18 7655static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7656{
8277434e
PT
7657 int ret;
7658
9a7e0b18
PZ
7659 struct rt_schedulable_data data = {
7660 .tg = tg,
7661 .rt_period = period,
7662 .rt_runtime = runtime,
7663 };
7664
8277434e
PT
7665 rcu_read_lock();
7666 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7667 rcu_read_unlock();
7668
7669 return ret;
521f1a24
DG
7670}
7671
ab84d31e 7672static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7673 u64 rt_period, u64 rt_runtime)
6f505b16 7674{
ac086bc2 7675 int i, err = 0;
9f0c1e56 7676
2636ed5f
PZ
7677 /*
7678 * Disallowing the root group RT runtime is BAD, it would disallow the
7679 * kernel creating (and or operating) RT threads.
7680 */
7681 if (tg == &root_task_group && rt_runtime == 0)
7682 return -EINVAL;
7683
7684 /* No period doesn't make any sense. */
7685 if (rt_period == 0)
7686 return -EINVAL;
7687
9f0c1e56 7688 mutex_lock(&rt_constraints_mutex);
521f1a24 7689 read_lock(&tasklist_lock);
9a7e0b18
PZ
7690 err = __rt_schedulable(tg, rt_period, rt_runtime);
7691 if (err)
9f0c1e56 7692 goto unlock;
ac086bc2 7693
0986b11b 7694 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7695 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7696 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7697
7698 for_each_possible_cpu(i) {
7699 struct rt_rq *rt_rq = tg->rt_rq[i];
7700
0986b11b 7701 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7702 rt_rq->rt_runtime = rt_runtime;
0986b11b 7703 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7704 }
0986b11b 7705 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7706unlock:
521f1a24 7707 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7708 mutex_unlock(&rt_constraints_mutex);
7709
7710 return err;
6f505b16
PZ
7711}
7712
25cc7da7 7713static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7714{
7715 u64 rt_runtime, rt_period;
7716
7717 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7718 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7719 if (rt_runtime_us < 0)
7720 rt_runtime = RUNTIME_INF;
7721
ab84d31e 7722 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7723}
7724
25cc7da7 7725static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7726{
7727 u64 rt_runtime_us;
7728
d0b27fa7 7729 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7730 return -1;
7731
d0b27fa7 7732 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7733 do_div(rt_runtime_us, NSEC_PER_USEC);
7734 return rt_runtime_us;
7735}
d0b27fa7 7736
25cc7da7 7737static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7738{
7739 u64 rt_runtime, rt_period;
7740
7741 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7742 rt_runtime = tg->rt_bandwidth.rt_runtime;
7743
ab84d31e 7744 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7745}
7746
25cc7da7 7747static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7748{
7749 u64 rt_period_us;
7750
7751 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7752 do_div(rt_period_us, NSEC_PER_USEC);
7753 return rt_period_us;
7754}
332ac17e 7755#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7756
332ac17e 7757#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7758static int sched_rt_global_constraints(void)
7759{
7760 int ret = 0;
7761
7762 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7763 read_lock(&tasklist_lock);
4653f803 7764 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7765 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7766 mutex_unlock(&rt_constraints_mutex);
7767
7768 return ret;
7769}
54e99124 7770
25cc7da7 7771static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7772{
7773 /* Don't accept realtime tasks when there is no way for them to run */
7774 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7775 return 0;
7776
7777 return 1;
7778}
7779
6d6bc0ad 7780#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7781static int sched_rt_global_constraints(void)
7782{
ac086bc2 7783 unsigned long flags;
332ac17e 7784 int i, ret = 0;
ec5d4989 7785
0986b11b 7786 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7787 for_each_possible_cpu(i) {
7788 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7789
0986b11b 7790 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7791 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7792 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7793 }
0986b11b 7794 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7795
332ac17e 7796 return ret;
d0b27fa7 7797}
6d6bc0ad 7798#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7799
a1963b81 7800static int sched_dl_global_validate(void)
332ac17e 7801{
1724813d
PZ
7802 u64 runtime = global_rt_runtime();
7803 u64 period = global_rt_period();
332ac17e 7804 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7805 struct dl_bw *dl_b;
1724813d 7806 int cpu, ret = 0;
49516342 7807 unsigned long flags;
332ac17e
DF
7808
7809 /*
7810 * Here we want to check the bandwidth not being set to some
7811 * value smaller than the currently allocated bandwidth in
7812 * any of the root_domains.
7813 *
7814 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7815 * cycling on root_domains... Discussion on different/better
7816 * solutions is welcome!
7817 */
1724813d 7818 for_each_possible_cpu(cpu) {
f10e00f4
KT
7819 rcu_read_lock_sched();
7820 dl_b = dl_bw_of(cpu);
332ac17e 7821
49516342 7822 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7823 if (new_bw < dl_b->total_bw)
7824 ret = -EBUSY;
49516342 7825 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7826
f10e00f4
KT
7827 rcu_read_unlock_sched();
7828
1724813d
PZ
7829 if (ret)
7830 break;
332ac17e
DF
7831 }
7832
1724813d 7833 return ret;
332ac17e
DF
7834}
7835
1724813d 7836static void sched_dl_do_global(void)
ce0dbbbb 7837{
1724813d 7838 u64 new_bw = -1;
f10e00f4 7839 struct dl_bw *dl_b;
1724813d 7840 int cpu;
49516342 7841 unsigned long flags;
ce0dbbbb 7842
1724813d
PZ
7843 def_dl_bandwidth.dl_period = global_rt_period();
7844 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7845
7846 if (global_rt_runtime() != RUNTIME_INF)
7847 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7848
7849 /*
7850 * FIXME: As above...
7851 */
7852 for_each_possible_cpu(cpu) {
f10e00f4
KT
7853 rcu_read_lock_sched();
7854 dl_b = dl_bw_of(cpu);
1724813d 7855
49516342 7856 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7857 dl_b->bw = new_bw;
49516342 7858 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7859
7860 rcu_read_unlock_sched();
ce0dbbbb 7861 }
1724813d
PZ
7862}
7863
7864static int sched_rt_global_validate(void)
7865{
7866 if (sysctl_sched_rt_period <= 0)
7867 return -EINVAL;
7868
e9e7cb38
JL
7869 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7870 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7871 return -EINVAL;
7872
7873 return 0;
7874}
7875
7876static void sched_rt_do_global(void)
7877{
7878 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7879 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7880}
7881
d0b27fa7 7882int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7883 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7884 loff_t *ppos)
7885{
d0b27fa7
PZ
7886 int old_period, old_runtime;
7887 static DEFINE_MUTEX(mutex);
1724813d 7888 int ret;
d0b27fa7
PZ
7889
7890 mutex_lock(&mutex);
7891 old_period = sysctl_sched_rt_period;
7892 old_runtime = sysctl_sched_rt_runtime;
7893
8d65af78 7894 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7895
7896 if (!ret && write) {
1724813d
PZ
7897 ret = sched_rt_global_validate();
7898 if (ret)
7899 goto undo;
7900
a1963b81 7901 ret = sched_dl_global_validate();
1724813d
PZ
7902 if (ret)
7903 goto undo;
7904
a1963b81 7905 ret = sched_rt_global_constraints();
1724813d
PZ
7906 if (ret)
7907 goto undo;
7908
7909 sched_rt_do_global();
7910 sched_dl_do_global();
7911 }
7912 if (0) {
7913undo:
7914 sysctl_sched_rt_period = old_period;
7915 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7916 }
7917 mutex_unlock(&mutex);
7918
7919 return ret;
7920}
68318b8e 7921
1724813d 7922int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7923 void __user *buffer, size_t *lenp,
7924 loff_t *ppos)
7925{
7926 int ret;
332ac17e 7927 static DEFINE_MUTEX(mutex);
332ac17e
DF
7928
7929 mutex_lock(&mutex);
332ac17e 7930 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7931 /* make sure that internally we keep jiffies */
7932 /* also, writing zero resets timeslice to default */
332ac17e 7933 if (!ret && write) {
1724813d
PZ
7934 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7935 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7936 }
7937 mutex_unlock(&mutex);
332ac17e
DF
7938 return ret;
7939}
7940
052f1dc7 7941#ifdef CONFIG_CGROUP_SCHED
68318b8e 7942
a7c6d554 7943static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7944{
a7c6d554 7945 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7946}
7947
eb95419b
TH
7948static struct cgroup_subsys_state *
7949cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7950{
eb95419b
TH
7951 struct task_group *parent = css_tg(parent_css);
7952 struct task_group *tg;
68318b8e 7953
eb95419b 7954 if (!parent) {
68318b8e 7955 /* This is early initialization for the top cgroup */
07e06b01 7956 return &root_task_group.css;
68318b8e
SV
7957 }
7958
ec7dc8ac 7959 tg = sched_create_group(parent);
68318b8e
SV
7960 if (IS_ERR(tg))
7961 return ERR_PTR(-ENOMEM);
7962
68318b8e
SV
7963 return &tg->css;
7964}
7965
eb95419b 7966static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7967{
eb95419b 7968 struct task_group *tg = css_tg(css);
5c9d535b 7969 struct task_group *parent = css_tg(css->parent);
ace783b9 7970
63876986
TH
7971 if (parent)
7972 sched_online_group(tg, parent);
ace783b9
LZ
7973 return 0;
7974}
7975
eb95419b 7976static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7977{
eb95419b 7978 struct task_group *tg = css_tg(css);
68318b8e
SV
7979
7980 sched_destroy_group(tg);
7981}
7982
eb95419b 7983static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7984{
eb95419b 7985 struct task_group *tg = css_tg(css);
ace783b9
LZ
7986
7987 sched_offline_group(tg);
7988}
7989
eeb61e53
KT
7990static void cpu_cgroup_fork(struct task_struct *task)
7991{
7992 sched_move_task(task);
7993}
7994
eb95419b 7995static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7996 struct cgroup_taskset *tset)
68318b8e 7997{
bb9d97b6
TH
7998 struct task_struct *task;
7999
924f0d9a 8000 cgroup_taskset_for_each(task, tset) {
b68aa230 8001#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8002 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8003 return -EINVAL;
b68aa230 8004#else
bb9d97b6
TH
8005 /* We don't support RT-tasks being in separate groups */
8006 if (task->sched_class != &fair_sched_class)
8007 return -EINVAL;
b68aa230 8008#endif
bb9d97b6 8009 }
be367d09
BB
8010 return 0;
8011}
68318b8e 8012
eb95419b 8013static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8014 struct cgroup_taskset *tset)
68318b8e 8015{
bb9d97b6
TH
8016 struct task_struct *task;
8017
924f0d9a 8018 cgroup_taskset_for_each(task, tset)
bb9d97b6 8019 sched_move_task(task);
68318b8e
SV
8020}
8021
eb95419b
TH
8022static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8023 struct cgroup_subsys_state *old_css,
8024 struct task_struct *task)
068c5cc5
PZ
8025{
8026 /*
8027 * cgroup_exit() is called in the copy_process() failure path.
8028 * Ignore this case since the task hasn't ran yet, this avoids
8029 * trying to poke a half freed task state from generic code.
8030 */
8031 if (!(task->flags & PF_EXITING))
8032 return;
8033
8034 sched_move_task(task);
8035}
8036
052f1dc7 8037#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8038static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8039 struct cftype *cftype, u64 shareval)
68318b8e 8040{
182446d0 8041 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8042}
8043
182446d0
TH
8044static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8045 struct cftype *cft)
68318b8e 8046{
182446d0 8047 struct task_group *tg = css_tg(css);
68318b8e 8048
c8b28116 8049 return (u64) scale_load_down(tg->shares);
68318b8e 8050}
ab84d31e
PT
8051
8052#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8053static DEFINE_MUTEX(cfs_constraints_mutex);
8054
ab84d31e
PT
8055const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8056const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8057
a790de99
PT
8058static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8059
ab84d31e
PT
8060static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8061{
56f570e5 8062 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8063 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8064
8065 if (tg == &root_task_group)
8066 return -EINVAL;
8067
8068 /*
8069 * Ensure we have at some amount of bandwidth every period. This is
8070 * to prevent reaching a state of large arrears when throttled via
8071 * entity_tick() resulting in prolonged exit starvation.
8072 */
8073 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8074 return -EINVAL;
8075
8076 /*
8077 * Likewise, bound things on the otherside by preventing insane quota
8078 * periods. This also allows us to normalize in computing quota
8079 * feasibility.
8080 */
8081 if (period > max_cfs_quota_period)
8082 return -EINVAL;
8083
0e59bdae
KT
8084 /*
8085 * Prevent race between setting of cfs_rq->runtime_enabled and
8086 * unthrottle_offline_cfs_rqs().
8087 */
8088 get_online_cpus();
a790de99
PT
8089 mutex_lock(&cfs_constraints_mutex);
8090 ret = __cfs_schedulable(tg, period, quota);
8091 if (ret)
8092 goto out_unlock;
8093
58088ad0 8094 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8095 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8096 /*
8097 * If we need to toggle cfs_bandwidth_used, off->on must occur
8098 * before making related changes, and on->off must occur afterwards
8099 */
8100 if (runtime_enabled && !runtime_was_enabled)
8101 cfs_bandwidth_usage_inc();
ab84d31e
PT
8102 raw_spin_lock_irq(&cfs_b->lock);
8103 cfs_b->period = ns_to_ktime(period);
8104 cfs_b->quota = quota;
58088ad0 8105
a9cf55b2 8106 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8107 /* restart the period timer (if active) to handle new period expiry */
8108 if (runtime_enabled && cfs_b->timer_active) {
8109 /* force a reprogram */
09dc4ab0 8110 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8111 }
ab84d31e
PT
8112 raw_spin_unlock_irq(&cfs_b->lock);
8113
0e59bdae 8114 for_each_online_cpu(i) {
ab84d31e 8115 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8116 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8117
8118 raw_spin_lock_irq(&rq->lock);
58088ad0 8119 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8120 cfs_rq->runtime_remaining = 0;
671fd9da 8121
029632fb 8122 if (cfs_rq->throttled)
671fd9da 8123 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8124 raw_spin_unlock_irq(&rq->lock);
8125 }
1ee14e6c
BS
8126 if (runtime_was_enabled && !runtime_enabled)
8127 cfs_bandwidth_usage_dec();
a790de99
PT
8128out_unlock:
8129 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8130 put_online_cpus();
ab84d31e 8131
a790de99 8132 return ret;
ab84d31e
PT
8133}
8134
8135int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8136{
8137 u64 quota, period;
8138
029632fb 8139 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8140 if (cfs_quota_us < 0)
8141 quota = RUNTIME_INF;
8142 else
8143 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8144
8145 return tg_set_cfs_bandwidth(tg, period, quota);
8146}
8147
8148long tg_get_cfs_quota(struct task_group *tg)
8149{
8150 u64 quota_us;
8151
029632fb 8152 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8153 return -1;
8154
029632fb 8155 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8156 do_div(quota_us, NSEC_PER_USEC);
8157
8158 return quota_us;
8159}
8160
8161int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8162{
8163 u64 quota, period;
8164
8165 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8166 quota = tg->cfs_bandwidth.quota;
ab84d31e 8167
ab84d31e
PT
8168 return tg_set_cfs_bandwidth(tg, period, quota);
8169}
8170
8171long tg_get_cfs_period(struct task_group *tg)
8172{
8173 u64 cfs_period_us;
8174
029632fb 8175 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8176 do_div(cfs_period_us, NSEC_PER_USEC);
8177
8178 return cfs_period_us;
8179}
8180
182446d0
TH
8181static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8182 struct cftype *cft)
ab84d31e 8183{
182446d0 8184 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8185}
8186
182446d0
TH
8187static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8188 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8189{
182446d0 8190 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8191}
8192
182446d0
TH
8193static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8194 struct cftype *cft)
ab84d31e 8195{
182446d0 8196 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8197}
8198
182446d0
TH
8199static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8200 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8201{
182446d0 8202 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8203}
8204
a790de99
PT
8205struct cfs_schedulable_data {
8206 struct task_group *tg;
8207 u64 period, quota;
8208};
8209
8210/*
8211 * normalize group quota/period to be quota/max_period
8212 * note: units are usecs
8213 */
8214static u64 normalize_cfs_quota(struct task_group *tg,
8215 struct cfs_schedulable_data *d)
8216{
8217 u64 quota, period;
8218
8219 if (tg == d->tg) {
8220 period = d->period;
8221 quota = d->quota;
8222 } else {
8223 period = tg_get_cfs_period(tg);
8224 quota = tg_get_cfs_quota(tg);
8225 }
8226
8227 /* note: these should typically be equivalent */
8228 if (quota == RUNTIME_INF || quota == -1)
8229 return RUNTIME_INF;
8230
8231 return to_ratio(period, quota);
8232}
8233
8234static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8235{
8236 struct cfs_schedulable_data *d = data;
029632fb 8237 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8238 s64 quota = 0, parent_quota = -1;
8239
8240 if (!tg->parent) {
8241 quota = RUNTIME_INF;
8242 } else {
029632fb 8243 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8244
8245 quota = normalize_cfs_quota(tg, d);
9c58c79a 8246 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8247
8248 /*
8249 * ensure max(child_quota) <= parent_quota, inherit when no
8250 * limit is set
8251 */
8252 if (quota == RUNTIME_INF)
8253 quota = parent_quota;
8254 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8255 return -EINVAL;
8256 }
9c58c79a 8257 cfs_b->hierarchical_quota = quota;
a790de99
PT
8258
8259 return 0;
8260}
8261
8262static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8263{
8277434e 8264 int ret;
a790de99
PT
8265 struct cfs_schedulable_data data = {
8266 .tg = tg,
8267 .period = period,
8268 .quota = quota,
8269 };
8270
8271 if (quota != RUNTIME_INF) {
8272 do_div(data.period, NSEC_PER_USEC);
8273 do_div(data.quota, NSEC_PER_USEC);
8274 }
8275
8277434e
PT
8276 rcu_read_lock();
8277 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8278 rcu_read_unlock();
8279
8280 return ret;
a790de99 8281}
e8da1b18 8282
2da8ca82 8283static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8284{
2da8ca82 8285 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8286 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8287
44ffc75b
TH
8288 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8289 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8290 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8291
8292 return 0;
8293}
ab84d31e 8294#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8295#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8296
052f1dc7 8297#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8298static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8299 struct cftype *cft, s64 val)
6f505b16 8300{
182446d0 8301 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8302}
8303
182446d0
TH
8304static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8305 struct cftype *cft)
6f505b16 8306{
182446d0 8307 return sched_group_rt_runtime(css_tg(css));
6f505b16 8308}
d0b27fa7 8309
182446d0
TH
8310static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8311 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8312{
182446d0 8313 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8314}
8315
182446d0
TH
8316static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8317 struct cftype *cft)
d0b27fa7 8318{
182446d0 8319 return sched_group_rt_period(css_tg(css));
d0b27fa7 8320}
6d6bc0ad 8321#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8322
fe5c7cc2 8323static struct cftype cpu_files[] = {
052f1dc7 8324#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8325 {
8326 .name = "shares",
f4c753b7
PM
8327 .read_u64 = cpu_shares_read_u64,
8328 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8329 },
052f1dc7 8330#endif
ab84d31e
PT
8331#ifdef CONFIG_CFS_BANDWIDTH
8332 {
8333 .name = "cfs_quota_us",
8334 .read_s64 = cpu_cfs_quota_read_s64,
8335 .write_s64 = cpu_cfs_quota_write_s64,
8336 },
8337 {
8338 .name = "cfs_period_us",
8339 .read_u64 = cpu_cfs_period_read_u64,
8340 .write_u64 = cpu_cfs_period_write_u64,
8341 },
e8da1b18
NR
8342 {
8343 .name = "stat",
2da8ca82 8344 .seq_show = cpu_stats_show,
e8da1b18 8345 },
ab84d31e 8346#endif
052f1dc7 8347#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8348 {
9f0c1e56 8349 .name = "rt_runtime_us",
06ecb27c
PM
8350 .read_s64 = cpu_rt_runtime_read,
8351 .write_s64 = cpu_rt_runtime_write,
6f505b16 8352 },
d0b27fa7
PZ
8353 {
8354 .name = "rt_period_us",
f4c753b7
PM
8355 .read_u64 = cpu_rt_period_read_uint,
8356 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8357 },
052f1dc7 8358#endif
4baf6e33 8359 { } /* terminate */
68318b8e
SV
8360};
8361
073219e9 8362struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8363 .css_alloc = cpu_cgroup_css_alloc,
8364 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8365 .css_online = cpu_cgroup_css_online,
8366 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8367 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8368 .can_attach = cpu_cgroup_can_attach,
8369 .attach = cpu_cgroup_attach,
068c5cc5 8370 .exit = cpu_cgroup_exit,
5577964e 8371 .legacy_cftypes = cpu_files,
68318b8e
SV
8372 .early_init = 1,
8373};
8374
052f1dc7 8375#endif /* CONFIG_CGROUP_SCHED */
d842de87 8376
b637a328
PM
8377void dump_cpu_task(int cpu)
8378{
8379 pr_info("Task dump for CPU %d:\n", cpu);
8380 sched_show_task(cpu_curr(cpu));
8381}
This page took 2.852654 seconds and 5 git commands to generate.