Merge remote-tracking branch 'hsi/for-next'
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
1da177e4 78
96f951ed 79#include <asm/switch_to.h>
5517d86b 80#include <asm/tlb.h>
838225b4 81#include <asm/irq_regs.h>
db7e527d 82#include <asm/mutex.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 188 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 228 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
379d9ecb
PM
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
c5bfece2 586 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
53c5fa16 589 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
590 return true;
591 }
592
593 return false;
594}
595
379d9ecb
PM
596/*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
1c20091e
FW
601void wake_up_nohz_cpu(int cpu)
602{
c5bfece2 603 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
604 wake_up_idle_cpu(cpu);
605}
606
ca38062e 607static inline bool got_nohz_idle_kick(void)
45bf76df 608{
1c792db7 609 int cpu = smp_processor_id();
873b4c65
VG
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
45bf76df
IM
623}
624
3451d024 625#else /* CONFIG_NO_HZ_COMMON */
45bf76df 626
ca38062e 627static inline bool got_nohz_idle_kick(void)
2069dd75 628{
ca38062e 629 return false;
2069dd75
PZ
630}
631
3451d024 632#endif /* CONFIG_NO_HZ_COMMON */
d842de87 633
ce831b38 634#ifdef CONFIG_NO_HZ_FULL
76d92ac3 635bool sched_can_stop_tick(struct rq *rq)
ce831b38 636{
76d92ac3
FW
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
1e78cdbd 643 /*
2548d546
PZ
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
1e78cdbd 646 */
76d92ac3
FW
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
1e78cdbd
RR
652 }
653
2548d546
PZ
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
541b8264 668 return false;
ce831b38 669
541b8264 670 return true;
ce831b38
FW
671}
672#endif /* CONFIG_NO_HZ_FULL */
d842de87 673
029632fb 674void sched_avg_update(struct rq *rq)
18d95a28 675{
e9e9250b
PZ
676 s64 period = sched_avg_period();
677
78becc27 678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
18d95a28
PZ
688}
689
6d6bc0ad 690#endif /* CONFIG_SMP */
18d95a28 691
a790de99
PT
692#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 694/*
8277434e
PT
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 699 */
029632fb 700int walk_tg_tree_from(struct task_group *from,
8277434e 701 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
702{
703 struct task_group *parent, *child;
eb755805 704 int ret;
c09595f6 705
8277434e
PT
706 parent = from;
707
c09595f6 708down:
eb755805
PZ
709 ret = (*down)(parent, data);
710 if (ret)
8277434e 711 goto out;
c09595f6
PZ
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716up:
717 continue;
718 }
eb755805 719 ret = (*up)(parent, data);
8277434e
PT
720 if (ret || parent == from)
721 goto out;
c09595f6
PZ
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
8277434e 727out:
eb755805 728 return ret;
c09595f6
PZ
729}
730
029632fb 731int tg_nop(struct task_group *tg, void *data)
eb755805 732{
e2b245f8 733 return 0;
eb755805 734}
18d95a28
PZ
735#endif
736
45bf76df
IM
737static void set_load_weight(struct task_struct *p)
738{
f05998d4
NR
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
dd41f596
IM
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
20f9cd2a 745 if (idle_policy(p->policy)) {
c8b28116 746 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 747 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
748 return;
749 }
71f8bd46 750
ed82b8a1
AK
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
753}
754
1de64443 755static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 756{
a64692a3 757 update_rq_clock(rq);
1de64443
PZ
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
371fd7e7 760 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
761}
762
1de64443 763static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 764{
a64692a3 765 update_rq_clock(rq);
1de64443
PZ
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
371fd7e7 768 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
769}
770
029632fb 771void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
371fd7e7 776 enqueue_task(rq, p, flags);
1e3c88bd
PZ
777}
778
029632fb 779void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
371fd7e7 784 dequeue_task(rq, p, flags);
1e3c88bd
PZ
785}
786
fe44d621 787static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 788{
095c0aa8
GC
789/*
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
792 */
793#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795#endif
796#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
798
799 /*
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
803 *
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
808 *
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
813 */
814 if (irq_delta > delta)
815 irq_delta = delta;
816
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
095c0aa8
GC
819#endif
820#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 821 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
824
825 if (unlikely(steal > delta))
826 steal = delta;
827
095c0aa8 828 rq->prev_steal_time_rq += steal;
095c0aa8
GC
829 delta -= steal;
830 }
831#endif
832
fe44d621
PZ
833 rq->clock_task += delta;
834
095c0aa8 835#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
837 sched_rt_avg_update(rq, irq_delta + steal);
838#endif
aa483808
VP
839}
840
34f971f6
PZ
841void sched_set_stop_task(int cpu, struct task_struct *stop)
842{
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
845
846 if (stop) {
847 /*
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
850 *
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
854 */
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
856
857 stop->sched_class = &stop_sched_class;
858 }
859
860 cpu_rq(cpu)->stop = stop;
861
862 if (old_stop) {
863 /*
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
866 */
867 old_stop->sched_class = &rt_sched_class;
868 }
869}
870
14531189 871/*
dd41f596 872 * __normal_prio - return the priority that is based on the static prio
14531189 873 */
14531189
IM
874static inline int __normal_prio(struct task_struct *p)
875{
dd41f596 876 return p->static_prio;
14531189
IM
877}
878
b29739f9
IM
879/*
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
885 */
36c8b586 886static inline int normal_prio(struct task_struct *p)
b29739f9
IM
887{
888 int prio;
889
aab03e05
DF
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
b29739f9
IM
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897}
898
899/*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
36c8b586 906static int effective_prio(struct task_struct *p)
b29739f9
IM
907{
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917}
918
1da177e4
LT
919/**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
e69f6186
YB
922 *
923 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 924 */
36c8b586 925inline int task_curr(const struct task_struct *p)
1da177e4
LT
926{
927 return cpu_curr(task_cpu(p)) == p;
928}
929
67dfa1b7 930/*
4c9a4bc8
PZ
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
933 *
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
67dfa1b7 936 */
cb469845
SR
937static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
da7a735e 939 int oldprio)
cb469845
SR
940{
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
da7a735e 943 prev_class->switched_from(rq, p);
4c9a4bc8 944
da7a735e 945 p->sched_class->switched_to(rq, p);
2d3d891d 946 } else if (oldprio != p->prio || dl_task(p))
da7a735e 947 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
948}
949
029632fb 950void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
951{
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
8875125e 961 resched_curr(rq);
1e5a7405
PZ
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
da0c1e65 971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 972 rq_clock_skip_update(rq, true);
1e5a7405
PZ
973}
974
1da177e4 975#ifdef CONFIG_SMP
5cc389bc
PZ
976/*
977 * This is how migration works:
978 *
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
988 */
989
990/*
991 * move_queued_task - move a queued task to new rq.
992 *
993 * Returns (locked) new rq. Old rq's lock is released.
994 */
5e16bbc2 995static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 996{
5cc389bc
PZ
997 lockdep_assert_held(&rq->lock);
998
5cc389bc 999 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 1000 dequeue_task(rq, p, 0);
5cc389bc
PZ
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1003
1004 rq = cpu_rq(new_cpu);
1005
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1008 enqueue_task(rq, p, 0);
3ea94de1 1009 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1010 check_preempt_curr(rq, p, 0);
1011
1012 return rq;
1013}
1014
1015struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1018};
1019
1020/*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
5cc389bc 1028 */
5e16bbc2 1029static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1030{
5cc389bc 1031 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1032 return rq;
5cc389bc
PZ
1033
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1036 return rq;
5cc389bc 1037
5e16bbc2
PZ
1038 rq = move_queued_task(rq, p, dest_cpu);
1039
1040 return rq;
5cc389bc
PZ
1041}
1042
1043/*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048static int migration_cpu_stop(void *data)
1049{
1050 struct migration_arg *arg = data;
5e16bbc2
PZ
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
5cc389bc
PZ
1053
1054 /*
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1057 */
1058 local_irq_disable();
1059 /*
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 */
1064 sched_ttwu_pending();
5e16bbc2
PZ
1065
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1068 /*
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1072 */
1073 if (task_rq(p) == rq && task_on_rq_queued(p))
1074 rq = __migrate_task(rq, p, arg->dest_cpu);
1075 raw_spin_unlock(&rq->lock);
1076 raw_spin_unlock(&p->pi_lock);
1077
5cc389bc
PZ
1078 local_irq_enable();
1079 return 0;
1080}
1081
c5b28038
PZ
1082/*
1083 * sched_class::set_cpus_allowed must do the below, but is not required to
1084 * actually call this function.
1085 */
1086void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1087{
5cc389bc
PZ
1088 cpumask_copy(&p->cpus_allowed, new_mask);
1089 p->nr_cpus_allowed = cpumask_weight(new_mask);
1090}
1091
c5b28038
PZ
1092void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1093{
6c37067e
PZ
1094 struct rq *rq = task_rq(p);
1095 bool queued, running;
1096
c5b28038 1097 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1098
1099 queued = task_on_rq_queued(p);
1100 running = task_current(rq, p);
1101
1102 if (queued) {
1103 /*
1104 * Because __kthread_bind() calls this on blocked tasks without
1105 * holding rq->lock.
1106 */
1107 lockdep_assert_held(&rq->lock);
1de64443 1108 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1109 }
1110 if (running)
1111 put_prev_task(rq, p);
1112
c5b28038 1113 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1114
1115 if (running)
1116 p->sched_class->set_curr_task(rq);
1117 if (queued)
1de64443 1118 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1119}
1120
5cc389bc
PZ
1121/*
1122 * Change a given task's CPU affinity. Migrate the thread to a
1123 * proper CPU and schedule it away if the CPU it's executing on
1124 * is removed from the allowed bitmask.
1125 *
1126 * NOTE: the caller must have a valid reference to the task, the
1127 * task must not exit() & deallocate itself prematurely. The
1128 * call is not atomic; no spinlocks may be held.
1129 */
25834c73
PZ
1130static int __set_cpus_allowed_ptr(struct task_struct *p,
1131 const struct cpumask *new_mask, bool check)
5cc389bc 1132{
e9d867a6 1133 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1134 unsigned int dest_cpu;
eb580751
PZ
1135 struct rq_flags rf;
1136 struct rq *rq;
5cc389bc
PZ
1137 int ret = 0;
1138
eb580751 1139 rq = task_rq_lock(p, &rf);
5cc389bc 1140
e9d867a6
PZI
1141 if (p->flags & PF_KTHREAD) {
1142 /*
1143 * Kernel threads are allowed on online && !active CPUs
1144 */
1145 cpu_valid_mask = cpu_online_mask;
1146 }
1147
25834c73
PZ
1148 /*
1149 * Must re-check here, to close a race against __kthread_bind(),
1150 * sched_setaffinity() is not guaranteed to observe the flag.
1151 */
1152 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1153 ret = -EINVAL;
1154 goto out;
1155 }
1156
5cc389bc
PZ
1157 if (cpumask_equal(&p->cpus_allowed, new_mask))
1158 goto out;
1159
e9d867a6 1160 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1161 ret = -EINVAL;
1162 goto out;
1163 }
1164
1165 do_set_cpus_allowed(p, new_mask);
1166
e9d867a6
PZI
1167 if (p->flags & PF_KTHREAD) {
1168 /*
1169 * For kernel threads that do indeed end up on online &&
1170 * !active we want to ensure they are strict per-cpu threads.
1171 */
1172 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1173 !cpumask_intersects(new_mask, cpu_active_mask) &&
1174 p->nr_cpus_allowed != 1);
1175 }
1176
5cc389bc
PZ
1177 /* Can the task run on the task's current CPU? If so, we're done */
1178 if (cpumask_test_cpu(task_cpu(p), new_mask))
1179 goto out;
1180
e9d867a6 1181 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1182 if (task_running(rq, p) || p->state == TASK_WAKING) {
1183 struct migration_arg arg = { p, dest_cpu };
1184 /* Need help from migration thread: drop lock and wait. */
eb580751 1185 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1186 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1187 tlb_migrate_finish(p->mm);
1188 return 0;
cbce1a68
PZ
1189 } else if (task_on_rq_queued(p)) {
1190 /*
1191 * OK, since we're going to drop the lock immediately
1192 * afterwards anyway.
1193 */
e7904a28 1194 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1195 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1196 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1197 }
5cc389bc 1198out:
eb580751 1199 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1200
1201 return ret;
1202}
25834c73
PZ
1203
1204int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1205{
1206 return __set_cpus_allowed_ptr(p, new_mask, false);
1207}
5cc389bc
PZ
1208EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1209
dd41f596 1210void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1211{
e2912009
PZ
1212#ifdef CONFIG_SCHED_DEBUG
1213 /*
1214 * We should never call set_task_cpu() on a blocked task,
1215 * ttwu() will sort out the placement.
1216 */
077614ee 1217 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1218 !p->on_rq);
0122ec5b 1219
3ea94de1
JP
1220 /*
1221 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1222 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1223 * time relying on p->on_rq.
1224 */
1225 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1226 p->sched_class == &fair_sched_class &&
1227 (p->on_rq && !task_on_rq_migrating(p)));
1228
0122ec5b 1229#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1230 /*
1231 * The caller should hold either p->pi_lock or rq->lock, when changing
1232 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1233 *
1234 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1235 * see task_group().
6c6c54e1
PZ
1236 *
1237 * Furthermore, all task_rq users should acquire both locks, see
1238 * task_rq_lock().
1239 */
0122ec5b
PZ
1240 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1241 lockdep_is_held(&task_rq(p)->lock)));
1242#endif
e2912009
PZ
1243#endif
1244
de1d7286 1245 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1246
0c69774e 1247 if (task_cpu(p) != new_cpu) {
0a74bef8 1248 if (p->sched_class->migrate_task_rq)
5a4fd036 1249 p->sched_class->migrate_task_rq(p);
0c69774e 1250 p->se.nr_migrations++;
ff303e66 1251 perf_event_task_migrate(p);
0c69774e 1252 }
dd41f596
IM
1253
1254 __set_task_cpu(p, new_cpu);
c65cc870
IM
1255}
1256
ac66f547
PZ
1257static void __migrate_swap_task(struct task_struct *p, int cpu)
1258{
da0c1e65 1259 if (task_on_rq_queued(p)) {
ac66f547
PZ
1260 struct rq *src_rq, *dst_rq;
1261
1262 src_rq = task_rq(p);
1263 dst_rq = cpu_rq(cpu);
1264
3ea94de1 1265 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1266 deactivate_task(src_rq, p, 0);
1267 set_task_cpu(p, cpu);
1268 activate_task(dst_rq, p, 0);
3ea94de1 1269 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1270 check_preempt_curr(dst_rq, p, 0);
1271 } else {
1272 /*
1273 * Task isn't running anymore; make it appear like we migrated
1274 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1275 * previous cpu our target instead of where it really is.
ac66f547
PZ
1276 */
1277 p->wake_cpu = cpu;
1278 }
1279}
1280
1281struct migration_swap_arg {
1282 struct task_struct *src_task, *dst_task;
1283 int src_cpu, dst_cpu;
1284};
1285
1286static int migrate_swap_stop(void *data)
1287{
1288 struct migration_swap_arg *arg = data;
1289 struct rq *src_rq, *dst_rq;
1290 int ret = -EAGAIN;
1291
62694cd5
PZ
1292 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1293 return -EAGAIN;
1294
ac66f547
PZ
1295 src_rq = cpu_rq(arg->src_cpu);
1296 dst_rq = cpu_rq(arg->dst_cpu);
1297
74602315
PZ
1298 double_raw_lock(&arg->src_task->pi_lock,
1299 &arg->dst_task->pi_lock);
ac66f547 1300 double_rq_lock(src_rq, dst_rq);
62694cd5 1301
ac66f547
PZ
1302 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1303 goto unlock;
1304
1305 if (task_cpu(arg->src_task) != arg->src_cpu)
1306 goto unlock;
1307
1308 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1309 goto unlock;
1310
1311 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1312 goto unlock;
1313
1314 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1315 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1316
1317 ret = 0;
1318
1319unlock:
1320 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1321 raw_spin_unlock(&arg->dst_task->pi_lock);
1322 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1323
1324 return ret;
1325}
1326
1327/*
1328 * Cross migrate two tasks
1329 */
1330int migrate_swap(struct task_struct *cur, struct task_struct *p)
1331{
1332 struct migration_swap_arg arg;
1333 int ret = -EINVAL;
1334
ac66f547
PZ
1335 arg = (struct migration_swap_arg){
1336 .src_task = cur,
1337 .src_cpu = task_cpu(cur),
1338 .dst_task = p,
1339 .dst_cpu = task_cpu(p),
1340 };
1341
1342 if (arg.src_cpu == arg.dst_cpu)
1343 goto out;
1344
6acce3ef
PZ
1345 /*
1346 * These three tests are all lockless; this is OK since all of them
1347 * will be re-checked with proper locks held further down the line.
1348 */
ac66f547
PZ
1349 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1350 goto out;
1351
1352 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1353 goto out;
1354
1355 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1356 goto out;
1357
286549dc 1358 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1359 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1360
1361out:
ac66f547
PZ
1362 return ret;
1363}
1364
1da177e4
LT
1365/*
1366 * wait_task_inactive - wait for a thread to unschedule.
1367 *
85ba2d86
RM
1368 * If @match_state is nonzero, it's the @p->state value just checked and
1369 * not expected to change. If it changes, i.e. @p might have woken up,
1370 * then return zero. When we succeed in waiting for @p to be off its CPU,
1371 * we return a positive number (its total switch count). If a second call
1372 * a short while later returns the same number, the caller can be sure that
1373 * @p has remained unscheduled the whole time.
1374 *
1da177e4
LT
1375 * The caller must ensure that the task *will* unschedule sometime soon,
1376 * else this function might spin for a *long* time. This function can't
1377 * be called with interrupts off, or it may introduce deadlock with
1378 * smp_call_function() if an IPI is sent by the same process we are
1379 * waiting to become inactive.
1380 */
85ba2d86 1381unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1382{
da0c1e65 1383 int running, queued;
eb580751 1384 struct rq_flags rf;
85ba2d86 1385 unsigned long ncsw;
70b97a7f 1386 struct rq *rq;
1da177e4 1387
3a5c359a
AK
1388 for (;;) {
1389 /*
1390 * We do the initial early heuristics without holding
1391 * any task-queue locks at all. We'll only try to get
1392 * the runqueue lock when things look like they will
1393 * work out!
1394 */
1395 rq = task_rq(p);
fa490cfd 1396
3a5c359a
AK
1397 /*
1398 * If the task is actively running on another CPU
1399 * still, just relax and busy-wait without holding
1400 * any locks.
1401 *
1402 * NOTE! Since we don't hold any locks, it's not
1403 * even sure that "rq" stays as the right runqueue!
1404 * But we don't care, since "task_running()" will
1405 * return false if the runqueue has changed and p
1406 * is actually now running somewhere else!
1407 */
85ba2d86
RM
1408 while (task_running(rq, p)) {
1409 if (match_state && unlikely(p->state != match_state))
1410 return 0;
3a5c359a 1411 cpu_relax();
85ba2d86 1412 }
fa490cfd 1413
3a5c359a
AK
1414 /*
1415 * Ok, time to look more closely! We need the rq
1416 * lock now, to be *sure*. If we're wrong, we'll
1417 * just go back and repeat.
1418 */
eb580751 1419 rq = task_rq_lock(p, &rf);
27a9da65 1420 trace_sched_wait_task(p);
3a5c359a 1421 running = task_running(rq, p);
da0c1e65 1422 queued = task_on_rq_queued(p);
85ba2d86 1423 ncsw = 0;
f31e11d8 1424 if (!match_state || p->state == match_state)
93dcf55f 1425 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1426 task_rq_unlock(rq, p, &rf);
fa490cfd 1427
85ba2d86
RM
1428 /*
1429 * If it changed from the expected state, bail out now.
1430 */
1431 if (unlikely(!ncsw))
1432 break;
1433
3a5c359a
AK
1434 /*
1435 * Was it really running after all now that we
1436 * checked with the proper locks actually held?
1437 *
1438 * Oops. Go back and try again..
1439 */
1440 if (unlikely(running)) {
1441 cpu_relax();
1442 continue;
1443 }
fa490cfd 1444
3a5c359a
AK
1445 /*
1446 * It's not enough that it's not actively running,
1447 * it must be off the runqueue _entirely_, and not
1448 * preempted!
1449 *
80dd99b3 1450 * So if it was still runnable (but just not actively
3a5c359a
AK
1451 * running right now), it's preempted, and we should
1452 * yield - it could be a while.
1453 */
da0c1e65 1454 if (unlikely(queued)) {
8eb90c30
TG
1455 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1456
1457 set_current_state(TASK_UNINTERRUPTIBLE);
1458 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1459 continue;
1460 }
fa490cfd 1461
3a5c359a
AK
1462 /*
1463 * Ahh, all good. It wasn't running, and it wasn't
1464 * runnable, which means that it will never become
1465 * running in the future either. We're all done!
1466 */
1467 break;
1468 }
85ba2d86
RM
1469
1470 return ncsw;
1da177e4
LT
1471}
1472
1473/***
1474 * kick_process - kick a running thread to enter/exit the kernel
1475 * @p: the to-be-kicked thread
1476 *
1477 * Cause a process which is running on another CPU to enter
1478 * kernel-mode, without any delay. (to get signals handled.)
1479 *
25985edc 1480 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1481 * because all it wants to ensure is that the remote task enters
1482 * the kernel. If the IPI races and the task has been migrated
1483 * to another CPU then no harm is done and the purpose has been
1484 * achieved as well.
1485 */
36c8b586 1486void kick_process(struct task_struct *p)
1da177e4
LT
1487{
1488 int cpu;
1489
1490 preempt_disable();
1491 cpu = task_cpu(p);
1492 if ((cpu != smp_processor_id()) && task_curr(p))
1493 smp_send_reschedule(cpu);
1494 preempt_enable();
1495}
b43e3521 1496EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1497
30da688e 1498/*
013fdb80 1499 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1500 *
1501 * A few notes on cpu_active vs cpu_online:
1502 *
1503 * - cpu_active must be a subset of cpu_online
1504 *
1505 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1506 * see __set_cpus_allowed_ptr(). At this point the newly online
1507 * cpu isn't yet part of the sched domains, and balancing will not
1508 * see it.
1509 *
1510 * - on cpu-down we clear cpu_active() to mask the sched domains and
1511 * avoid the load balancer to place new tasks on the to be removed
1512 * cpu. Existing tasks will remain running there and will be taken
1513 * off.
1514 *
1515 * This means that fallback selection must not select !active CPUs.
1516 * And can assume that any active CPU must be online. Conversely
1517 * select_task_rq() below may allow selection of !active CPUs in order
1518 * to satisfy the above rules.
30da688e 1519 */
5da9a0fb
PZ
1520static int select_fallback_rq(int cpu, struct task_struct *p)
1521{
aa00d89c
TC
1522 int nid = cpu_to_node(cpu);
1523 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1524 enum { cpuset, possible, fail } state = cpuset;
1525 int dest_cpu;
5da9a0fb 1526
aa00d89c
TC
1527 /*
1528 * If the node that the cpu is on has been offlined, cpu_to_node()
1529 * will return -1. There is no cpu on the node, and we should
1530 * select the cpu on the other node.
1531 */
1532 if (nid != -1) {
1533 nodemask = cpumask_of_node(nid);
1534
1535 /* Look for allowed, online CPU in same node. */
1536 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1537 if (!cpu_active(dest_cpu))
1538 continue;
1539 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1540 return dest_cpu;
1541 }
2baab4e9 1542 }
5da9a0fb 1543
2baab4e9
PZ
1544 for (;;) {
1545 /* Any allowed, online CPU? */
e3831edd 1546 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1547 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1548 continue;
1549 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1550 continue;
1551 goto out;
1552 }
5da9a0fb 1553
e73e85f0 1554 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1555 switch (state) {
1556 case cpuset:
e73e85f0
ON
1557 if (IS_ENABLED(CONFIG_CPUSETS)) {
1558 cpuset_cpus_allowed_fallback(p);
1559 state = possible;
1560 break;
1561 }
1562 /* fall-through */
2baab4e9
PZ
1563 case possible:
1564 do_set_cpus_allowed(p, cpu_possible_mask);
1565 state = fail;
1566 break;
1567
1568 case fail:
1569 BUG();
1570 break;
1571 }
1572 }
1573
1574out:
1575 if (state != cpuset) {
1576 /*
1577 * Don't tell them about moving exiting tasks or
1578 * kernel threads (both mm NULL), since they never
1579 * leave kernel.
1580 */
1581 if (p->mm && printk_ratelimit()) {
aac74dc4 1582 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1583 task_pid_nr(p), p->comm, cpu);
1584 }
5da9a0fb
PZ
1585 }
1586
1587 return dest_cpu;
1588}
1589
e2912009 1590/*
013fdb80 1591 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1592 */
970b13ba 1593static inline
ac66f547 1594int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1595{
cbce1a68
PZ
1596 lockdep_assert_held(&p->pi_lock);
1597
50605ffb 1598 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1599 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1600 else
1601 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1602
1603 /*
1604 * In order not to call set_task_cpu() on a blocking task we need
1605 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1606 * cpu.
1607 *
1608 * Since this is common to all placement strategies, this lives here.
1609 *
1610 * [ this allows ->select_task() to simply return task_cpu(p) and
1611 * not worry about this generic constraint ]
1612 */
fa17b507 1613 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1614 !cpu_online(cpu)))
5da9a0fb 1615 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1616
1617 return cpu;
970b13ba 1618}
09a40af5
MG
1619
1620static void update_avg(u64 *avg, u64 sample)
1621{
1622 s64 diff = sample - *avg;
1623 *avg += diff >> 3;
1624}
25834c73
PZ
1625
1626#else
1627
1628static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1629 const struct cpumask *new_mask, bool check)
1630{
1631 return set_cpus_allowed_ptr(p, new_mask);
1632}
1633
5cc389bc 1634#endif /* CONFIG_SMP */
970b13ba 1635
d7c01d27 1636static void
b84cb5df 1637ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1638{
4fa8d299 1639 struct rq *rq;
b84cb5df 1640
4fa8d299
JP
1641 if (!schedstat_enabled())
1642 return;
1643
1644 rq = this_rq();
d7c01d27 1645
4fa8d299
JP
1646#ifdef CONFIG_SMP
1647 if (cpu == rq->cpu) {
ae92882e
JP
1648 schedstat_inc(rq->ttwu_local);
1649 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1650 } else {
1651 struct sched_domain *sd;
1652
ae92882e 1653 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1654 rcu_read_lock();
4fa8d299 1655 for_each_domain(rq->cpu, sd) {
d7c01d27 1656 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1657 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1658 break;
1659 }
1660 }
057f3fad 1661 rcu_read_unlock();
d7c01d27 1662 }
f339b9dc
PZ
1663
1664 if (wake_flags & WF_MIGRATED)
ae92882e 1665 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1666#endif /* CONFIG_SMP */
1667
ae92882e
JP
1668 schedstat_inc(rq->ttwu_count);
1669 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1670
1671 if (wake_flags & WF_SYNC)
ae92882e 1672 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1673}
1674
1de64443 1675static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1676{
9ed3811a 1677 activate_task(rq, p, en_flags);
da0c1e65 1678 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1679
1680 /* if a worker is waking up, notify workqueue */
1681 if (p->flags & PF_WQ_WORKER)
1682 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1683}
1684
23f41eeb
PZ
1685/*
1686 * Mark the task runnable and perform wakeup-preemption.
1687 */
e7904a28
PZ
1688static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1689 struct pin_cookie cookie)
9ed3811a 1690{
9ed3811a 1691 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1692 p->state = TASK_RUNNING;
fbd705a0
PZ
1693 trace_sched_wakeup(p);
1694
9ed3811a 1695#ifdef CONFIG_SMP
4c9a4bc8
PZ
1696 if (p->sched_class->task_woken) {
1697 /*
cbce1a68
PZ
1698 * Our task @p is fully woken up and running; so its safe to
1699 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1700 */
e7904a28 1701 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1702 p->sched_class->task_woken(rq, p);
e7904a28 1703 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1704 }
9ed3811a 1705
e69c6341 1706 if (rq->idle_stamp) {
78becc27 1707 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1708 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1709
abfafa54
JL
1710 update_avg(&rq->avg_idle, delta);
1711
1712 if (rq->avg_idle > max)
9ed3811a 1713 rq->avg_idle = max;
abfafa54 1714
9ed3811a
TH
1715 rq->idle_stamp = 0;
1716 }
1717#endif
1718}
1719
c05fbafb 1720static void
e7904a28
PZ
1721ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1722 struct pin_cookie cookie)
c05fbafb 1723{
b5179ac7
PZ
1724 int en_flags = ENQUEUE_WAKEUP;
1725
cbce1a68
PZ
1726 lockdep_assert_held(&rq->lock);
1727
c05fbafb
PZ
1728#ifdef CONFIG_SMP
1729 if (p->sched_contributes_to_load)
1730 rq->nr_uninterruptible--;
b5179ac7 1731
b5179ac7 1732 if (wake_flags & WF_MIGRATED)
59efa0ba 1733 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1734#endif
1735
b5179ac7 1736 ttwu_activate(rq, p, en_flags);
e7904a28 1737 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1738}
1739
1740/*
1741 * Called in case the task @p isn't fully descheduled from its runqueue,
1742 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1743 * since all we need to do is flip p->state to TASK_RUNNING, since
1744 * the task is still ->on_rq.
1745 */
1746static int ttwu_remote(struct task_struct *p, int wake_flags)
1747{
eb580751 1748 struct rq_flags rf;
c05fbafb
PZ
1749 struct rq *rq;
1750 int ret = 0;
1751
eb580751 1752 rq = __task_rq_lock(p, &rf);
da0c1e65 1753 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1754 /* check_preempt_curr() may use rq clock */
1755 update_rq_clock(rq);
e7904a28 1756 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1757 ret = 1;
1758 }
eb580751 1759 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1760
1761 return ret;
1762}
1763
317f3941 1764#ifdef CONFIG_SMP
e3baac47 1765void sched_ttwu_pending(void)
317f3941
PZ
1766{
1767 struct rq *rq = this_rq();
fa14ff4a 1768 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1769 struct pin_cookie cookie;
fa14ff4a 1770 struct task_struct *p;
e3baac47 1771 unsigned long flags;
317f3941 1772
e3baac47
PZ
1773 if (!llist)
1774 return;
1775
1776 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1777 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1778
fa14ff4a 1779 while (llist) {
b7e7ade3
PZ
1780 int wake_flags = 0;
1781
fa14ff4a
PZ
1782 p = llist_entry(llist, struct task_struct, wake_entry);
1783 llist = llist_next(llist);
b7e7ade3
PZ
1784
1785 if (p->sched_remote_wakeup)
1786 wake_flags = WF_MIGRATED;
1787
1788 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1789 }
1790
e7904a28 1791 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1792 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1793}
1794
1795void scheduler_ipi(void)
1796{
f27dde8d
PZ
1797 /*
1798 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1799 * TIF_NEED_RESCHED remotely (for the first time) will also send
1800 * this IPI.
1801 */
8cb75e0c 1802 preempt_fold_need_resched();
f27dde8d 1803
fd2ac4f4 1804 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1805 return;
1806
1807 /*
1808 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1809 * traditionally all their work was done from the interrupt return
1810 * path. Now that we actually do some work, we need to make sure
1811 * we do call them.
1812 *
1813 * Some archs already do call them, luckily irq_enter/exit nest
1814 * properly.
1815 *
1816 * Arguably we should visit all archs and update all handlers,
1817 * however a fair share of IPIs are still resched only so this would
1818 * somewhat pessimize the simple resched case.
1819 */
1820 irq_enter();
fa14ff4a 1821 sched_ttwu_pending();
ca38062e
SS
1822
1823 /*
1824 * Check if someone kicked us for doing the nohz idle load balance.
1825 */
873b4c65 1826 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1827 this_rq()->idle_balance = 1;
ca38062e 1828 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1829 }
c5d753a5 1830 irq_exit();
317f3941
PZ
1831}
1832
b7e7ade3 1833static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1834{
e3baac47
PZ
1835 struct rq *rq = cpu_rq(cpu);
1836
b7e7ade3
PZ
1837 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1838
e3baac47
PZ
1839 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1840 if (!set_nr_if_polling(rq->idle))
1841 smp_send_reschedule(cpu);
1842 else
1843 trace_sched_wake_idle_without_ipi(cpu);
1844 }
317f3941 1845}
d6aa8f85 1846
f6be8af1
CL
1847void wake_up_if_idle(int cpu)
1848{
1849 struct rq *rq = cpu_rq(cpu);
1850 unsigned long flags;
1851
fd7de1e8
AL
1852 rcu_read_lock();
1853
1854 if (!is_idle_task(rcu_dereference(rq->curr)))
1855 goto out;
f6be8af1
CL
1856
1857 if (set_nr_if_polling(rq->idle)) {
1858 trace_sched_wake_idle_without_ipi(cpu);
1859 } else {
1860 raw_spin_lock_irqsave(&rq->lock, flags);
1861 if (is_idle_task(rq->curr))
1862 smp_send_reschedule(cpu);
1863 /* Else cpu is not in idle, do nothing here */
1864 raw_spin_unlock_irqrestore(&rq->lock, flags);
1865 }
fd7de1e8
AL
1866
1867out:
1868 rcu_read_unlock();
f6be8af1
CL
1869}
1870
39be3501 1871bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1872{
1873 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1874}
d6aa8f85 1875#endif /* CONFIG_SMP */
317f3941 1876
b5179ac7 1877static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1878{
1879 struct rq *rq = cpu_rq(cpu);
e7904a28 1880 struct pin_cookie cookie;
c05fbafb 1881
17d9f311 1882#if defined(CONFIG_SMP)
39be3501 1883 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1884 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1885 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1886 return;
1887 }
1888#endif
1889
c05fbafb 1890 raw_spin_lock(&rq->lock);
e7904a28 1891 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1892 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1893 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1894 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1895}
1896
8643cda5
PZ
1897/*
1898 * Notes on Program-Order guarantees on SMP systems.
1899 *
1900 * MIGRATION
1901 *
1902 * The basic program-order guarantee on SMP systems is that when a task [t]
1903 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1904 * execution on its new cpu [c1].
1905 *
1906 * For migration (of runnable tasks) this is provided by the following means:
1907 *
1908 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1909 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1910 * rq(c1)->lock (if not at the same time, then in that order).
1911 * C) LOCK of the rq(c1)->lock scheduling in task
1912 *
1913 * Transitivity guarantees that B happens after A and C after B.
1914 * Note: we only require RCpc transitivity.
1915 * Note: the cpu doing B need not be c0 or c1
1916 *
1917 * Example:
1918 *
1919 * CPU0 CPU1 CPU2
1920 *
1921 * LOCK rq(0)->lock
1922 * sched-out X
1923 * sched-in Y
1924 * UNLOCK rq(0)->lock
1925 *
1926 * LOCK rq(0)->lock // orders against CPU0
1927 * dequeue X
1928 * UNLOCK rq(0)->lock
1929 *
1930 * LOCK rq(1)->lock
1931 * enqueue X
1932 * UNLOCK rq(1)->lock
1933 *
1934 * LOCK rq(1)->lock // orders against CPU2
1935 * sched-out Z
1936 * sched-in X
1937 * UNLOCK rq(1)->lock
1938 *
1939 *
1940 * BLOCKING -- aka. SLEEP + WAKEUP
1941 *
1942 * For blocking we (obviously) need to provide the same guarantee as for
1943 * migration. However the means are completely different as there is no lock
1944 * chain to provide order. Instead we do:
1945 *
1946 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1947 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1948 *
1949 * Example:
1950 *
1951 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1952 *
1953 * LOCK rq(0)->lock LOCK X->pi_lock
1954 * dequeue X
1955 * sched-out X
1956 * smp_store_release(X->on_cpu, 0);
1957 *
1f03e8d2 1958 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1959 * X->state = WAKING
1960 * set_task_cpu(X,2)
1961 *
1962 * LOCK rq(2)->lock
1963 * enqueue X
1964 * X->state = RUNNING
1965 * UNLOCK rq(2)->lock
1966 *
1967 * LOCK rq(2)->lock // orders against CPU1
1968 * sched-out Z
1969 * sched-in X
1970 * UNLOCK rq(2)->lock
1971 *
1972 * UNLOCK X->pi_lock
1973 * UNLOCK rq(0)->lock
1974 *
1975 *
1976 * However; for wakeups there is a second guarantee we must provide, namely we
1977 * must observe the state that lead to our wakeup. That is, not only must our
1978 * task observe its own prior state, it must also observe the stores prior to
1979 * its wakeup.
1980 *
1981 * This means that any means of doing remote wakeups must order the CPU doing
1982 * the wakeup against the CPU the task is going to end up running on. This,
1983 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1984 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1985 *
1986 */
1987
9ed3811a 1988/**
1da177e4 1989 * try_to_wake_up - wake up a thread
9ed3811a 1990 * @p: the thread to be awakened
1da177e4 1991 * @state: the mask of task states that can be woken
9ed3811a 1992 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1993 *
1994 * Put it on the run-queue if it's not already there. The "current"
1995 * thread is always on the run-queue (except when the actual
1996 * re-schedule is in progress), and as such you're allowed to do
1997 * the simpler "current->state = TASK_RUNNING" to mark yourself
1998 * runnable without the overhead of this.
1999 *
e69f6186 2000 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 2001 * or @state didn't match @p's state.
1da177e4 2002 */
e4a52bcb
PZ
2003static int
2004try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2005{
1da177e4 2006 unsigned long flags;
c05fbafb 2007 int cpu, success = 0;
2398f2c6 2008
e0acd0a6
ON
2009 /*
2010 * If we are going to wake up a thread waiting for CONDITION we
2011 * need to ensure that CONDITION=1 done by the caller can not be
2012 * reordered with p->state check below. This pairs with mb() in
2013 * set_current_state() the waiting thread does.
2014 */
2015 smp_mb__before_spinlock();
013fdb80 2016 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2017 if (!(p->state & state))
1da177e4
LT
2018 goto out;
2019
fbd705a0
PZ
2020 trace_sched_waking(p);
2021
c05fbafb 2022 success = 1; /* we're going to change ->state */
1da177e4 2023 cpu = task_cpu(p);
1da177e4 2024
135e8c92
BS
2025 /*
2026 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2027 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2028 * in smp_cond_load_acquire() below.
2029 *
2030 * sched_ttwu_pending() try_to_wake_up()
2031 * [S] p->on_rq = 1; [L] P->state
2032 * UNLOCK rq->lock -----.
2033 * \
2034 * +--- RMB
2035 * schedule() /
2036 * LOCK rq->lock -----'
2037 * UNLOCK rq->lock
2038 *
2039 * [task p]
2040 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2041 *
2042 * Pairs with the UNLOCK+LOCK on rq->lock from the
2043 * last wakeup of our task and the schedule that got our task
2044 * current.
2045 */
2046 smp_rmb();
c05fbafb
PZ
2047 if (p->on_rq && ttwu_remote(p, wake_flags))
2048 goto stat;
1da177e4 2049
1da177e4 2050#ifdef CONFIG_SMP
ecf7d01c
PZ
2051 /*
2052 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2053 * possible to, falsely, observe p->on_cpu == 0.
2054 *
2055 * One must be running (->on_cpu == 1) in order to remove oneself
2056 * from the runqueue.
2057 *
2058 * [S] ->on_cpu = 1; [L] ->on_rq
2059 * UNLOCK rq->lock
2060 * RMB
2061 * LOCK rq->lock
2062 * [S] ->on_rq = 0; [L] ->on_cpu
2063 *
2064 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2065 * from the consecutive calls to schedule(); the first switching to our
2066 * task, the second putting it to sleep.
2067 */
2068 smp_rmb();
2069
e9c84311 2070 /*
c05fbafb
PZ
2071 * If the owning (remote) cpu is still in the middle of schedule() with
2072 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2073 *
2074 * Pairs with the smp_store_release() in finish_lock_switch().
2075 *
2076 * This ensures that tasks getting woken will be fully ordered against
2077 * their previous state and preserve Program Order.
0970d299 2078 */
1f03e8d2 2079 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2080
a8e4f2ea 2081 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2082 p->state = TASK_WAKING;
e7693a36 2083
ac66f547 2084 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2085 if (task_cpu(p) != cpu) {
2086 wake_flags |= WF_MIGRATED;
e4a52bcb 2087 set_task_cpu(p, cpu);
f339b9dc 2088 }
1da177e4 2089#endif /* CONFIG_SMP */
1da177e4 2090
b5179ac7 2091 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2092stat:
4fa8d299 2093 ttwu_stat(p, cpu, wake_flags);
1da177e4 2094out:
013fdb80 2095 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2096
2097 return success;
2098}
2099
21aa9af0
TH
2100/**
2101 * try_to_wake_up_local - try to wake up a local task with rq lock held
2102 * @p: the thread to be awakened
9279e0d2 2103 * @cookie: context's cookie for pinning
21aa9af0 2104 *
2acca55e 2105 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2106 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2107 * the current task.
21aa9af0 2108 */
e7904a28 2109static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2110{
2111 struct rq *rq = task_rq(p);
21aa9af0 2112
383efcd0
TH
2113 if (WARN_ON_ONCE(rq != this_rq()) ||
2114 WARN_ON_ONCE(p == current))
2115 return;
2116
21aa9af0
TH
2117 lockdep_assert_held(&rq->lock);
2118
2acca55e 2119 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2120 /*
2121 * This is OK, because current is on_cpu, which avoids it being
2122 * picked for load-balance and preemption/IRQs are still
2123 * disabled avoiding further scheduler activity on it and we've
2124 * not yet picked a replacement task.
2125 */
e7904a28 2126 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2127 raw_spin_unlock(&rq->lock);
2128 raw_spin_lock(&p->pi_lock);
2129 raw_spin_lock(&rq->lock);
e7904a28 2130 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2131 }
2132
21aa9af0 2133 if (!(p->state & TASK_NORMAL))
2acca55e 2134 goto out;
21aa9af0 2135
fbd705a0
PZ
2136 trace_sched_waking(p);
2137
da0c1e65 2138 if (!task_on_rq_queued(p))
d7c01d27
PZ
2139 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2140
e7904a28 2141 ttwu_do_wakeup(rq, p, 0, cookie);
4fa8d299 2142 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2143out:
2144 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2145}
2146
50fa610a
DH
2147/**
2148 * wake_up_process - Wake up a specific process
2149 * @p: The process to be woken up.
2150 *
2151 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2152 * processes.
2153 *
2154 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2155 *
2156 * It may be assumed that this function implies a write memory barrier before
2157 * changing the task state if and only if any tasks are woken up.
2158 */
7ad5b3a5 2159int wake_up_process(struct task_struct *p)
1da177e4 2160{
9067ac85 2161 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2162}
1da177e4
LT
2163EXPORT_SYMBOL(wake_up_process);
2164
7ad5b3a5 2165int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2166{
2167 return try_to_wake_up(p, state, 0);
2168}
2169
a5e7be3b
JL
2170/*
2171 * This function clears the sched_dl_entity static params.
2172 */
2173void __dl_clear_params(struct task_struct *p)
2174{
2175 struct sched_dl_entity *dl_se = &p->dl;
2176
2177 dl_se->dl_runtime = 0;
2178 dl_se->dl_deadline = 0;
2179 dl_se->dl_period = 0;
2180 dl_se->flags = 0;
2181 dl_se->dl_bw = 0;
40767b0d
PZ
2182
2183 dl_se->dl_throttled = 0;
40767b0d 2184 dl_se->dl_yielded = 0;
a5e7be3b
JL
2185}
2186
1da177e4
LT
2187/*
2188 * Perform scheduler related setup for a newly forked process p.
2189 * p is forked by current.
dd41f596
IM
2190 *
2191 * __sched_fork() is basic setup used by init_idle() too:
2192 */
5e1576ed 2193static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2194{
fd2f4419
PZ
2195 p->on_rq = 0;
2196
2197 p->se.on_rq = 0;
dd41f596
IM
2198 p->se.exec_start = 0;
2199 p->se.sum_exec_runtime = 0;
f6cf891c 2200 p->se.prev_sum_exec_runtime = 0;
6c594c21 2201 p->se.nr_migrations = 0;
da7a735e 2202 p->se.vruntime = 0;
fd2f4419 2203 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2204
ad936d86
BP
2205#ifdef CONFIG_FAIR_GROUP_SCHED
2206 p->se.cfs_rq = NULL;
2207#endif
2208
6cfb0d5d 2209#ifdef CONFIG_SCHEDSTATS
cb251765 2210 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2211 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2212#endif
476d139c 2213
aab03e05 2214 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2215 init_dl_task_timer(&p->dl);
a5e7be3b 2216 __dl_clear_params(p);
aab03e05 2217
fa717060 2218 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2219 p->rt.timeout = 0;
2220 p->rt.time_slice = sched_rr_timeslice;
2221 p->rt.on_rq = 0;
2222 p->rt.on_list = 0;
476d139c 2223
e107be36
AK
2224#ifdef CONFIG_PREEMPT_NOTIFIERS
2225 INIT_HLIST_HEAD(&p->preempt_notifiers);
2226#endif
cbee9f88
PZ
2227
2228#ifdef CONFIG_NUMA_BALANCING
2229 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2230 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2231 p->mm->numa_scan_seq = 0;
2232 }
2233
5e1576ed
RR
2234 if (clone_flags & CLONE_VM)
2235 p->numa_preferred_nid = current->numa_preferred_nid;
2236 else
2237 p->numa_preferred_nid = -1;
2238
cbee9f88
PZ
2239 p->node_stamp = 0ULL;
2240 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2241 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2242 p->numa_work.next = &p->numa_work;
44dba3d5 2243 p->numa_faults = NULL;
7e2703e6
RR
2244 p->last_task_numa_placement = 0;
2245 p->last_sum_exec_runtime = 0;
8c8a743c 2246
8c8a743c 2247 p->numa_group = NULL;
cbee9f88 2248#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2249}
2250
2a595721
SD
2251DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2252
1a687c2e 2253#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2254
1a687c2e
MG
2255void set_numabalancing_state(bool enabled)
2256{
2257 if (enabled)
2a595721 2258 static_branch_enable(&sched_numa_balancing);
1a687c2e 2259 else
2a595721 2260 static_branch_disable(&sched_numa_balancing);
1a687c2e 2261}
54a43d54
AK
2262
2263#ifdef CONFIG_PROC_SYSCTL
2264int sysctl_numa_balancing(struct ctl_table *table, int write,
2265 void __user *buffer, size_t *lenp, loff_t *ppos)
2266{
2267 struct ctl_table t;
2268 int err;
2a595721 2269 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2270
2271 if (write && !capable(CAP_SYS_ADMIN))
2272 return -EPERM;
2273
2274 t = *table;
2275 t.data = &state;
2276 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2277 if (err < 0)
2278 return err;
2279 if (write)
2280 set_numabalancing_state(state);
2281 return err;
2282}
2283#endif
2284#endif
dd41f596 2285
4698f88c
JP
2286#ifdef CONFIG_SCHEDSTATS
2287
cb251765 2288DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2289static bool __initdata __sched_schedstats = false;
cb251765 2290
cb251765
MG
2291static void set_schedstats(bool enabled)
2292{
2293 if (enabled)
2294 static_branch_enable(&sched_schedstats);
2295 else
2296 static_branch_disable(&sched_schedstats);
2297}
2298
2299void force_schedstat_enabled(void)
2300{
2301 if (!schedstat_enabled()) {
2302 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2303 static_branch_enable(&sched_schedstats);
2304 }
2305}
2306
2307static int __init setup_schedstats(char *str)
2308{
2309 int ret = 0;
2310 if (!str)
2311 goto out;
2312
4698f88c
JP
2313 /*
2314 * This code is called before jump labels have been set up, so we can't
2315 * change the static branch directly just yet. Instead set a temporary
2316 * variable so init_schedstats() can do it later.
2317 */
cb251765 2318 if (!strcmp(str, "enable")) {
4698f88c 2319 __sched_schedstats = true;
cb251765
MG
2320 ret = 1;
2321 } else if (!strcmp(str, "disable")) {
4698f88c 2322 __sched_schedstats = false;
cb251765
MG
2323 ret = 1;
2324 }
2325out:
2326 if (!ret)
2327 pr_warn("Unable to parse schedstats=\n");
2328
2329 return ret;
2330}
2331__setup("schedstats=", setup_schedstats);
2332
4698f88c
JP
2333static void __init init_schedstats(void)
2334{
2335 set_schedstats(__sched_schedstats);
2336}
2337
cb251765
MG
2338#ifdef CONFIG_PROC_SYSCTL
2339int sysctl_schedstats(struct ctl_table *table, int write,
2340 void __user *buffer, size_t *lenp, loff_t *ppos)
2341{
2342 struct ctl_table t;
2343 int err;
2344 int state = static_branch_likely(&sched_schedstats);
2345
2346 if (write && !capable(CAP_SYS_ADMIN))
2347 return -EPERM;
2348
2349 t = *table;
2350 t.data = &state;
2351 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2352 if (err < 0)
2353 return err;
2354 if (write)
2355 set_schedstats(state);
2356 return err;
2357}
4698f88c
JP
2358#endif /* CONFIG_PROC_SYSCTL */
2359#else /* !CONFIG_SCHEDSTATS */
2360static inline void init_schedstats(void) {}
2361#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2362
2363/*
2364 * fork()/clone()-time setup:
2365 */
aab03e05 2366int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2367{
0122ec5b 2368 unsigned long flags;
dd41f596
IM
2369 int cpu = get_cpu();
2370
5e1576ed 2371 __sched_fork(clone_flags, p);
06b83b5f 2372 /*
7dc603c9 2373 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2374 * nobody will actually run it, and a signal or other external
2375 * event cannot wake it up and insert it on the runqueue either.
2376 */
7dc603c9 2377 p->state = TASK_NEW;
dd41f596 2378
c350a04e
MG
2379 /*
2380 * Make sure we do not leak PI boosting priority to the child.
2381 */
2382 p->prio = current->normal_prio;
2383
b9dc29e7
MG
2384 /*
2385 * Revert to default priority/policy on fork if requested.
2386 */
2387 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2388 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2389 p->policy = SCHED_NORMAL;
6c697bdf 2390 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2391 p->rt_priority = 0;
2392 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2393 p->static_prio = NICE_TO_PRIO(0);
2394
2395 p->prio = p->normal_prio = __normal_prio(p);
2396 set_load_weight(p);
6c697bdf 2397
b9dc29e7
MG
2398 /*
2399 * We don't need the reset flag anymore after the fork. It has
2400 * fulfilled its duty:
2401 */
2402 p->sched_reset_on_fork = 0;
2403 }
ca94c442 2404
aab03e05
DF
2405 if (dl_prio(p->prio)) {
2406 put_cpu();
2407 return -EAGAIN;
2408 } else if (rt_prio(p->prio)) {
2409 p->sched_class = &rt_sched_class;
2410 } else {
2ddbf952 2411 p->sched_class = &fair_sched_class;
aab03e05 2412 }
b29739f9 2413
7dc603c9 2414 init_entity_runnable_average(&p->se);
cd29fe6f 2415
86951599
PZ
2416 /*
2417 * The child is not yet in the pid-hash so no cgroup attach races,
2418 * and the cgroup is pinned to this child due to cgroup_fork()
2419 * is ran before sched_fork().
2420 *
2421 * Silence PROVE_RCU.
2422 */
0122ec5b 2423 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2424 /*
2425 * We're setting the cpu for the first time, we don't migrate,
2426 * so use __set_task_cpu().
2427 */
2428 __set_task_cpu(p, cpu);
2429 if (p->sched_class->task_fork)
2430 p->sched_class->task_fork(p);
0122ec5b 2431 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2432
f6db8347 2433#ifdef CONFIG_SCHED_INFO
dd41f596 2434 if (likely(sched_info_on()))
52f17b6c 2435 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2436#endif
3ca7a440
PZ
2437#if defined(CONFIG_SMP)
2438 p->on_cpu = 0;
4866cde0 2439#endif
01028747 2440 init_task_preempt_count(p);
806c09a7 2441#ifdef CONFIG_SMP
917b627d 2442 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2443 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2444#endif
917b627d 2445
476d139c 2446 put_cpu();
aab03e05 2447 return 0;
1da177e4
LT
2448}
2449
332ac17e
DF
2450unsigned long to_ratio(u64 period, u64 runtime)
2451{
2452 if (runtime == RUNTIME_INF)
2453 return 1ULL << 20;
2454
2455 /*
2456 * Doing this here saves a lot of checks in all
2457 * the calling paths, and returning zero seems
2458 * safe for them anyway.
2459 */
2460 if (period == 0)
2461 return 0;
2462
2463 return div64_u64(runtime << 20, period);
2464}
2465
2466#ifdef CONFIG_SMP
2467inline struct dl_bw *dl_bw_of(int i)
2468{
f78f5b90
PM
2469 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2470 "sched RCU must be held");
332ac17e
DF
2471 return &cpu_rq(i)->rd->dl_bw;
2472}
2473
de212f18 2474static inline int dl_bw_cpus(int i)
332ac17e 2475{
de212f18
PZ
2476 struct root_domain *rd = cpu_rq(i)->rd;
2477 int cpus = 0;
2478
f78f5b90
PM
2479 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2480 "sched RCU must be held");
de212f18
PZ
2481 for_each_cpu_and(i, rd->span, cpu_active_mask)
2482 cpus++;
2483
2484 return cpus;
332ac17e
DF
2485}
2486#else
2487inline struct dl_bw *dl_bw_of(int i)
2488{
2489 return &cpu_rq(i)->dl.dl_bw;
2490}
2491
de212f18 2492static inline int dl_bw_cpus(int i)
332ac17e
DF
2493{
2494 return 1;
2495}
2496#endif
2497
332ac17e
DF
2498/*
2499 * We must be sure that accepting a new task (or allowing changing the
2500 * parameters of an existing one) is consistent with the bandwidth
2501 * constraints. If yes, this function also accordingly updates the currently
2502 * allocated bandwidth to reflect the new situation.
2503 *
2504 * This function is called while holding p's rq->lock.
40767b0d
PZ
2505 *
2506 * XXX we should delay bw change until the task's 0-lag point, see
2507 * __setparam_dl().
332ac17e
DF
2508 */
2509static int dl_overflow(struct task_struct *p, int policy,
2510 const struct sched_attr *attr)
2511{
2512
2513 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2514 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2515 u64 runtime = attr->sched_runtime;
2516 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2517 int cpus, err = -1;
332ac17e 2518
fec148c0
XP
2519 /* !deadline task may carry old deadline bandwidth */
2520 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2521 return 0;
2522
2523 /*
2524 * Either if a task, enters, leave, or stays -deadline but changes
2525 * its parameters, we may need to update accordingly the total
2526 * allocated bandwidth of the container.
2527 */
2528 raw_spin_lock(&dl_b->lock);
de212f18 2529 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2530 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2531 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2532 __dl_add(dl_b, new_bw);
2533 err = 0;
2534 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2535 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2536 __dl_clear(dl_b, p->dl.dl_bw);
2537 __dl_add(dl_b, new_bw);
2538 err = 0;
2539 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2540 __dl_clear(dl_b, p->dl.dl_bw);
2541 err = 0;
2542 }
2543 raw_spin_unlock(&dl_b->lock);
2544
2545 return err;
2546}
2547
2548extern void init_dl_bw(struct dl_bw *dl_b);
2549
1da177e4
LT
2550/*
2551 * wake_up_new_task - wake up a newly created task for the first time.
2552 *
2553 * This function will do some initial scheduler statistics housekeeping
2554 * that must be done for every newly created context, then puts the task
2555 * on the runqueue and wakes it.
2556 */
3e51e3ed 2557void wake_up_new_task(struct task_struct *p)
1da177e4 2558{
eb580751 2559 struct rq_flags rf;
dd41f596 2560 struct rq *rq;
fabf318e 2561
eb580751 2562 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2563 p->state = TASK_RUNNING;
fabf318e
PZ
2564#ifdef CONFIG_SMP
2565 /*
2566 * Fork balancing, do it here and not earlier because:
2567 * - cpus_allowed can change in the fork path
2568 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2569 *
2570 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2571 * as we're not fully set-up yet.
fabf318e 2572 */
e210bffd 2573 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2574#endif
b7fa30c9 2575 rq = __task_rq_lock(p, &rf);
2b8c41da 2576 post_init_entity_util_avg(&p->se);
0017d735 2577
cd29fe6f 2578 activate_task(rq, p, 0);
da0c1e65 2579 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2580 trace_sched_wakeup_new(p);
a7558e01 2581 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2582#ifdef CONFIG_SMP
0aaafaab
PZ
2583 if (p->sched_class->task_woken) {
2584 /*
2585 * Nothing relies on rq->lock after this, so its fine to
2586 * drop it.
2587 */
e7904a28 2588 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2589 p->sched_class->task_woken(rq, p);
e7904a28 2590 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2591 }
9a897c5a 2592#endif
eb580751 2593 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2594}
2595
e107be36
AK
2596#ifdef CONFIG_PREEMPT_NOTIFIERS
2597
1cde2930
PZ
2598static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2599
2ecd9d29
PZ
2600void preempt_notifier_inc(void)
2601{
2602 static_key_slow_inc(&preempt_notifier_key);
2603}
2604EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2605
2606void preempt_notifier_dec(void)
2607{
2608 static_key_slow_dec(&preempt_notifier_key);
2609}
2610EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2611
e107be36 2612/**
80dd99b3 2613 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2614 * @notifier: notifier struct to register
e107be36
AK
2615 */
2616void preempt_notifier_register(struct preempt_notifier *notifier)
2617{
2ecd9d29
PZ
2618 if (!static_key_false(&preempt_notifier_key))
2619 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2620
e107be36
AK
2621 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2622}
2623EXPORT_SYMBOL_GPL(preempt_notifier_register);
2624
2625/**
2626 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2627 * @notifier: notifier struct to unregister
e107be36 2628 *
d84525a8 2629 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2630 */
2631void preempt_notifier_unregister(struct preempt_notifier *notifier)
2632{
2633 hlist_del(&notifier->link);
2634}
2635EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2636
1cde2930 2637static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2638{
2639 struct preempt_notifier *notifier;
e107be36 2640
b67bfe0d 2641 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2642 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2643}
2644
1cde2930
PZ
2645static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2646{
2647 if (static_key_false(&preempt_notifier_key))
2648 __fire_sched_in_preempt_notifiers(curr);
2649}
2650
e107be36 2651static void
1cde2930
PZ
2652__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2653 struct task_struct *next)
e107be36
AK
2654{
2655 struct preempt_notifier *notifier;
e107be36 2656
b67bfe0d 2657 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2658 notifier->ops->sched_out(notifier, next);
2659}
2660
1cde2930
PZ
2661static __always_inline void
2662fire_sched_out_preempt_notifiers(struct task_struct *curr,
2663 struct task_struct *next)
2664{
2665 if (static_key_false(&preempt_notifier_key))
2666 __fire_sched_out_preempt_notifiers(curr, next);
2667}
2668
6d6bc0ad 2669#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2670
1cde2930 2671static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2672{
2673}
2674
1cde2930 2675static inline void
e107be36
AK
2676fire_sched_out_preempt_notifiers(struct task_struct *curr,
2677 struct task_struct *next)
2678{
2679}
2680
6d6bc0ad 2681#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2682
4866cde0
NP
2683/**
2684 * prepare_task_switch - prepare to switch tasks
2685 * @rq: the runqueue preparing to switch
421cee29 2686 * @prev: the current task that is being switched out
4866cde0
NP
2687 * @next: the task we are going to switch to.
2688 *
2689 * This is called with the rq lock held and interrupts off. It must
2690 * be paired with a subsequent finish_task_switch after the context
2691 * switch.
2692 *
2693 * prepare_task_switch sets up locking and calls architecture specific
2694 * hooks.
2695 */
e107be36
AK
2696static inline void
2697prepare_task_switch(struct rq *rq, struct task_struct *prev,
2698 struct task_struct *next)
4866cde0 2699{
43148951 2700 sched_info_switch(rq, prev, next);
fe4b04fa 2701 perf_event_task_sched_out(prev, next);
e107be36 2702 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2703 prepare_lock_switch(rq, next);
2704 prepare_arch_switch(next);
2705}
2706
1da177e4
LT
2707/**
2708 * finish_task_switch - clean up after a task-switch
2709 * @prev: the thread we just switched away from.
2710 *
4866cde0
NP
2711 * finish_task_switch must be called after the context switch, paired
2712 * with a prepare_task_switch call before the context switch.
2713 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2714 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2715 *
2716 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2717 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2718 * with the lock held can cause deadlocks; see schedule() for
2719 * details.)
dfa50b60
ON
2720 *
2721 * The context switch have flipped the stack from under us and restored the
2722 * local variables which were saved when this task called schedule() in the
2723 * past. prev == current is still correct but we need to recalculate this_rq
2724 * because prev may have moved to another CPU.
1da177e4 2725 */
dfa50b60 2726static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2727 __releases(rq->lock)
2728{
dfa50b60 2729 struct rq *rq = this_rq();
1da177e4 2730 struct mm_struct *mm = rq->prev_mm;
55a101f8 2731 long prev_state;
1da177e4 2732
609ca066
PZ
2733 /*
2734 * The previous task will have left us with a preempt_count of 2
2735 * because it left us after:
2736 *
2737 * schedule()
2738 * preempt_disable(); // 1
2739 * __schedule()
2740 * raw_spin_lock_irq(&rq->lock) // 2
2741 *
2742 * Also, see FORK_PREEMPT_COUNT.
2743 */
e2bf1c4b
PZ
2744 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2745 "corrupted preempt_count: %s/%d/0x%x\n",
2746 current->comm, current->pid, preempt_count()))
2747 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2748
1da177e4
LT
2749 rq->prev_mm = NULL;
2750
2751 /*
2752 * A task struct has one reference for the use as "current".
c394cc9f 2753 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2754 * schedule one last time. The schedule call will never return, and
2755 * the scheduled task must drop that reference.
95913d97
PZ
2756 *
2757 * We must observe prev->state before clearing prev->on_cpu (in
2758 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2759 * running on another CPU and we could rave with its RUNNING -> DEAD
2760 * transition, resulting in a double drop.
1da177e4 2761 */
55a101f8 2762 prev_state = prev->state;
bf9fae9f 2763 vtime_task_switch(prev);
a8d757ef 2764 perf_event_task_sched_in(prev, current);
4866cde0 2765 finish_lock_switch(rq, prev);
01f23e16 2766 finish_arch_post_lock_switch();
e8fa1362 2767
e107be36 2768 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2769 if (mm)
2770 mmdrop(mm);
c394cc9f 2771 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2772 if (prev->sched_class->task_dead)
2773 prev->sched_class->task_dead(prev);
2774
c6fd91f0 2775 /*
2776 * Remove function-return probe instances associated with this
2777 * task and put them back on the free list.
9761eea8 2778 */
c6fd91f0 2779 kprobe_flush_task(prev);
1da177e4 2780 put_task_struct(prev);
c6fd91f0 2781 }
99e5ada9 2782
de734f89 2783 tick_nohz_task_switch();
dfa50b60 2784 return rq;
1da177e4
LT
2785}
2786
3f029d3c
GH
2787#ifdef CONFIG_SMP
2788
3f029d3c 2789/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2790static void __balance_callback(struct rq *rq)
3f029d3c 2791{
e3fca9e7
PZ
2792 struct callback_head *head, *next;
2793 void (*func)(struct rq *rq);
2794 unsigned long flags;
3f029d3c 2795
e3fca9e7
PZ
2796 raw_spin_lock_irqsave(&rq->lock, flags);
2797 head = rq->balance_callback;
2798 rq->balance_callback = NULL;
2799 while (head) {
2800 func = (void (*)(struct rq *))head->func;
2801 next = head->next;
2802 head->next = NULL;
2803 head = next;
3f029d3c 2804
e3fca9e7 2805 func(rq);
3f029d3c 2806 }
e3fca9e7
PZ
2807 raw_spin_unlock_irqrestore(&rq->lock, flags);
2808}
2809
2810static inline void balance_callback(struct rq *rq)
2811{
2812 if (unlikely(rq->balance_callback))
2813 __balance_callback(rq);
3f029d3c
GH
2814}
2815
2816#else
da19ab51 2817
e3fca9e7 2818static inline void balance_callback(struct rq *rq)
3f029d3c 2819{
1da177e4
LT
2820}
2821
3f029d3c
GH
2822#endif
2823
1da177e4
LT
2824/**
2825 * schedule_tail - first thing a freshly forked thread must call.
2826 * @prev: the thread we just switched away from.
2827 */
722a9f92 2828asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2829 __releases(rq->lock)
2830{
1a43a14a 2831 struct rq *rq;
da19ab51 2832
609ca066
PZ
2833 /*
2834 * New tasks start with FORK_PREEMPT_COUNT, see there and
2835 * finish_task_switch() for details.
2836 *
2837 * finish_task_switch() will drop rq->lock() and lower preempt_count
2838 * and the preempt_enable() will end up enabling preemption (on
2839 * PREEMPT_COUNT kernels).
2840 */
2841
dfa50b60 2842 rq = finish_task_switch(prev);
e3fca9e7 2843 balance_callback(rq);
1a43a14a 2844 preempt_enable();
70b97a7f 2845
1da177e4 2846 if (current->set_child_tid)
b488893a 2847 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2848}
2849
2850/*
dfa50b60 2851 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2852 */
04936948 2853static __always_inline struct rq *
70b97a7f 2854context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2855 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2856{
dd41f596 2857 struct mm_struct *mm, *oldmm;
1da177e4 2858
e107be36 2859 prepare_task_switch(rq, prev, next);
fe4b04fa 2860
dd41f596
IM
2861 mm = next->mm;
2862 oldmm = prev->active_mm;
9226d125
ZA
2863 /*
2864 * For paravirt, this is coupled with an exit in switch_to to
2865 * combine the page table reload and the switch backend into
2866 * one hypercall.
2867 */
224101ed 2868 arch_start_context_switch(prev);
9226d125 2869
31915ab4 2870 if (!mm) {
1da177e4
LT
2871 next->active_mm = oldmm;
2872 atomic_inc(&oldmm->mm_count);
2873 enter_lazy_tlb(oldmm, next);
2874 } else
f98db601 2875 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2876
31915ab4 2877 if (!prev->mm) {
1da177e4 2878 prev->active_mm = NULL;
1da177e4
LT
2879 rq->prev_mm = oldmm;
2880 }
3a5f5e48
IM
2881 /*
2882 * Since the runqueue lock will be released by the next
2883 * task (which is an invalid locking op but in the case
2884 * of the scheduler it's an obvious special-case), so we
2885 * do an early lockdep release here:
2886 */
e7904a28 2887 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2888 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2889
2890 /* Here we just switch the register state and the stack. */
2891 switch_to(prev, next, prev);
dd41f596 2892 barrier();
dfa50b60
ON
2893
2894 return finish_task_switch(prev);
1da177e4
LT
2895}
2896
2897/*
1c3e8264 2898 * nr_running and nr_context_switches:
1da177e4
LT
2899 *
2900 * externally visible scheduler statistics: current number of runnable
1c3e8264 2901 * threads, total number of context switches performed since bootup.
1da177e4
LT
2902 */
2903unsigned long nr_running(void)
2904{
2905 unsigned long i, sum = 0;
2906
2907 for_each_online_cpu(i)
2908 sum += cpu_rq(i)->nr_running;
2909
2910 return sum;
f711f609 2911}
1da177e4 2912
2ee507c4
TC
2913/*
2914 * Check if only the current task is running on the cpu.
00cc1633
DD
2915 *
2916 * Caution: this function does not check that the caller has disabled
2917 * preemption, thus the result might have a time-of-check-to-time-of-use
2918 * race. The caller is responsible to use it correctly, for example:
2919 *
2920 * - from a non-preemptable section (of course)
2921 *
2922 * - from a thread that is bound to a single CPU
2923 *
2924 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2925 */
2926bool single_task_running(void)
2927{
00cc1633 2928 return raw_rq()->nr_running == 1;
2ee507c4
TC
2929}
2930EXPORT_SYMBOL(single_task_running);
2931
1da177e4 2932unsigned long long nr_context_switches(void)
46cb4b7c 2933{
cc94abfc
SR
2934 int i;
2935 unsigned long long sum = 0;
46cb4b7c 2936
0a945022 2937 for_each_possible_cpu(i)
1da177e4 2938 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2939
1da177e4
LT
2940 return sum;
2941}
483b4ee6 2942
1da177e4
LT
2943unsigned long nr_iowait(void)
2944{
2945 unsigned long i, sum = 0;
483b4ee6 2946
0a945022 2947 for_each_possible_cpu(i)
1da177e4 2948 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2949
1da177e4
LT
2950 return sum;
2951}
483b4ee6 2952
8c215bd3 2953unsigned long nr_iowait_cpu(int cpu)
69d25870 2954{
8c215bd3 2955 struct rq *this = cpu_rq(cpu);
69d25870
AV
2956 return atomic_read(&this->nr_iowait);
2957}
46cb4b7c 2958
372ba8cb
MG
2959void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2960{
3289bdb4
PZ
2961 struct rq *rq = this_rq();
2962 *nr_waiters = atomic_read(&rq->nr_iowait);
2963 *load = rq->load.weight;
372ba8cb
MG
2964}
2965
dd41f596 2966#ifdef CONFIG_SMP
8a0be9ef 2967
46cb4b7c 2968/*
38022906
PZ
2969 * sched_exec - execve() is a valuable balancing opportunity, because at
2970 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2971 */
38022906 2972void sched_exec(void)
46cb4b7c 2973{
38022906 2974 struct task_struct *p = current;
1da177e4 2975 unsigned long flags;
0017d735 2976 int dest_cpu;
46cb4b7c 2977
8f42ced9 2978 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2979 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2980 if (dest_cpu == smp_processor_id())
2981 goto unlock;
38022906 2982
8f42ced9 2983 if (likely(cpu_active(dest_cpu))) {
969c7921 2984 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2985
8f42ced9
PZ
2986 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2987 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2988 return;
2989 }
0017d735 2990unlock:
8f42ced9 2991 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2992}
dd41f596 2993
1da177e4
LT
2994#endif
2995
1da177e4 2996DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2997DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2998
2999EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 3000EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 3001
6075620b
GG
3002/*
3003 * The function fair_sched_class.update_curr accesses the struct curr
3004 * and its field curr->exec_start; when called from task_sched_runtime(),
3005 * we observe a high rate of cache misses in practice.
3006 * Prefetching this data results in improved performance.
3007 */
3008static inline void prefetch_curr_exec_start(struct task_struct *p)
3009{
3010#ifdef CONFIG_FAIR_GROUP_SCHED
3011 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3012#else
3013 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3014#endif
3015 prefetch(curr);
3016 prefetch(&curr->exec_start);
3017}
3018
c5f8d995
HS
3019/*
3020 * Return accounted runtime for the task.
3021 * In case the task is currently running, return the runtime plus current's
3022 * pending runtime that have not been accounted yet.
3023 */
3024unsigned long long task_sched_runtime(struct task_struct *p)
3025{
eb580751 3026 struct rq_flags rf;
c5f8d995 3027 struct rq *rq;
6e998916 3028 u64 ns;
c5f8d995 3029
911b2898
PZ
3030#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3031 /*
3032 * 64-bit doesn't need locks to atomically read a 64bit value.
3033 * So we have a optimization chance when the task's delta_exec is 0.
3034 * Reading ->on_cpu is racy, but this is ok.
3035 *
3036 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3037 * If we race with it entering cpu, unaccounted time is 0. This is
3038 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3039 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3040 * been accounted, so we're correct here as well.
911b2898 3041 */
da0c1e65 3042 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3043 return p->se.sum_exec_runtime;
3044#endif
3045
eb580751 3046 rq = task_rq_lock(p, &rf);
6e998916
SG
3047 /*
3048 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3049 * project cycles that may never be accounted to this
3050 * thread, breaking clock_gettime().
3051 */
3052 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3053 prefetch_curr_exec_start(p);
6e998916
SG
3054 update_rq_clock(rq);
3055 p->sched_class->update_curr(rq);
3056 }
3057 ns = p->se.sum_exec_runtime;
eb580751 3058 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3059
3060 return ns;
3061}
48f24c4d 3062
7835b98b
CL
3063/*
3064 * This function gets called by the timer code, with HZ frequency.
3065 * We call it with interrupts disabled.
7835b98b
CL
3066 */
3067void scheduler_tick(void)
3068{
7835b98b
CL
3069 int cpu = smp_processor_id();
3070 struct rq *rq = cpu_rq(cpu);
dd41f596 3071 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3072
3073 sched_clock_tick();
dd41f596 3074
05fa785c 3075 raw_spin_lock(&rq->lock);
3e51f33f 3076 update_rq_clock(rq);
fa85ae24 3077 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3078 cpu_load_update_active(rq);
3289bdb4 3079 calc_global_load_tick(rq);
05fa785c 3080 raw_spin_unlock(&rq->lock);
7835b98b 3081
e9d2b064 3082 perf_event_task_tick();
e220d2dc 3083
e418e1c2 3084#ifdef CONFIG_SMP
6eb57e0d 3085 rq->idle_balance = idle_cpu(cpu);
7caff66f 3086 trigger_load_balance(rq);
e418e1c2 3087#endif
265f22a9 3088 rq_last_tick_reset(rq);
1da177e4
LT
3089}
3090
265f22a9
FW
3091#ifdef CONFIG_NO_HZ_FULL
3092/**
3093 * scheduler_tick_max_deferment
3094 *
3095 * Keep at least one tick per second when a single
3096 * active task is running because the scheduler doesn't
3097 * yet completely support full dynticks environment.
3098 *
3099 * This makes sure that uptime, CFS vruntime, load
3100 * balancing, etc... continue to move forward, even
3101 * with a very low granularity.
e69f6186
YB
3102 *
3103 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3104 */
3105u64 scheduler_tick_max_deferment(void)
3106{
3107 struct rq *rq = this_rq();
316c1608 3108 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3109
3110 next = rq->last_sched_tick + HZ;
3111
3112 if (time_before_eq(next, now))
3113 return 0;
3114
8fe8ff09 3115 return jiffies_to_nsecs(next - now);
1da177e4 3116}
265f22a9 3117#endif
1da177e4 3118
7e49fcce
SR
3119#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3120 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3121/*
3122 * If the value passed in is equal to the current preempt count
3123 * then we just disabled preemption. Start timing the latency.
3124 */
3125static inline void preempt_latency_start(int val)
3126{
3127 if (preempt_count() == val) {
3128 unsigned long ip = get_lock_parent_ip();
3129#ifdef CONFIG_DEBUG_PREEMPT
3130 current->preempt_disable_ip = ip;
3131#endif
3132 trace_preempt_off(CALLER_ADDR0, ip);
3133 }
3134}
7e49fcce 3135
edafe3a5 3136void preempt_count_add(int val)
1da177e4 3137{
6cd8a4bb 3138#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3139 /*
3140 * Underflow?
3141 */
9a11b49a
IM
3142 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3143 return;
6cd8a4bb 3144#endif
bdb43806 3145 __preempt_count_add(val);
6cd8a4bb 3146#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3147 /*
3148 * Spinlock count overflowing soon?
3149 */
33859f7f
MOS
3150 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3151 PREEMPT_MASK - 10);
6cd8a4bb 3152#endif
47252cfb 3153 preempt_latency_start(val);
1da177e4 3154}
bdb43806 3155EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3156NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3157
47252cfb
SR
3158/*
3159 * If the value passed in equals to the current preempt count
3160 * then we just enabled preemption. Stop timing the latency.
3161 */
3162static inline void preempt_latency_stop(int val)
3163{
3164 if (preempt_count() == val)
3165 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3166}
3167
edafe3a5 3168void preempt_count_sub(int val)
1da177e4 3169{
6cd8a4bb 3170#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3171 /*
3172 * Underflow?
3173 */
01e3eb82 3174 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3175 return;
1da177e4
LT
3176 /*
3177 * Is the spinlock portion underflowing?
3178 */
9a11b49a
IM
3179 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3180 !(preempt_count() & PREEMPT_MASK)))
3181 return;
6cd8a4bb 3182#endif
9a11b49a 3183
47252cfb 3184 preempt_latency_stop(val);
bdb43806 3185 __preempt_count_sub(val);
1da177e4 3186}
bdb43806 3187EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3188NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3189
47252cfb
SR
3190#else
3191static inline void preempt_latency_start(int val) { }
3192static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3193#endif
3194
3195/*
dd41f596 3196 * Print scheduling while atomic bug:
1da177e4 3197 */
dd41f596 3198static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3199{
d1c6d149
VN
3200 /* Save this before calling printk(), since that will clobber it */
3201 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3202
664dfa65
DJ
3203 if (oops_in_progress)
3204 return;
3205
3df0fc5b
PZ
3206 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3207 prev->comm, prev->pid, preempt_count());
838225b4 3208
dd41f596 3209 debug_show_held_locks(prev);
e21f5b15 3210 print_modules();
dd41f596
IM
3211 if (irqs_disabled())
3212 print_irqtrace_events(prev);
d1c6d149
VN
3213 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3214 && in_atomic_preempt_off()) {
8f47b187 3215 pr_err("Preemption disabled at:");
d1c6d149 3216 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3217 pr_cont("\n");
3218 }
748c7201
DBO
3219 if (panic_on_warn)
3220 panic("scheduling while atomic\n");
3221
6135fc1e 3222 dump_stack();
373d4d09 3223 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3224}
1da177e4 3225
dd41f596
IM
3226/*
3227 * Various schedule()-time debugging checks and statistics:
3228 */
3229static inline void schedule_debug(struct task_struct *prev)
3230{
0d9e2632 3231#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3232 if (task_stack_end_corrupted(prev))
3233 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3234#endif
b99def8b 3235
1dc0fffc 3236 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3237 __schedule_bug(prev);
1dc0fffc
PZ
3238 preempt_count_set(PREEMPT_DISABLED);
3239 }
b3fbab05 3240 rcu_sleep_check();
dd41f596 3241
1da177e4
LT
3242 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3243
ae92882e 3244 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3245}
3246
3247/*
3248 * Pick up the highest-prio task:
3249 */
3250static inline struct task_struct *
e7904a28 3251pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3252{
37e117c0 3253 const struct sched_class *class = &fair_sched_class;
dd41f596 3254 struct task_struct *p;
1da177e4
LT
3255
3256 /*
dd41f596
IM
3257 * Optimization: we know that if all tasks are in
3258 * the fair class we can call that function directly:
1da177e4 3259 */
37e117c0 3260 if (likely(prev->sched_class == class &&
38033c37 3261 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3262 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3263 if (unlikely(p == RETRY_TASK))
3264 goto again;
3265
3266 /* assumes fair_sched_class->next == idle_sched_class */
3267 if (unlikely(!p))
e7904a28 3268 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3269
3270 return p;
1da177e4
LT
3271 }
3272
37e117c0 3273again:
34f971f6 3274 for_each_class(class) {
e7904a28 3275 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3276 if (p) {
3277 if (unlikely(p == RETRY_TASK))
3278 goto again;
dd41f596 3279 return p;
37e117c0 3280 }
dd41f596 3281 }
34f971f6
PZ
3282
3283 BUG(); /* the idle class will always have a runnable task */
dd41f596 3284}
1da177e4 3285
dd41f596 3286/*
c259e01a 3287 * __schedule() is the main scheduler function.
edde96ea
PE
3288 *
3289 * The main means of driving the scheduler and thus entering this function are:
3290 *
3291 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3292 *
3293 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3294 * paths. For example, see arch/x86/entry_64.S.
3295 *
3296 * To drive preemption between tasks, the scheduler sets the flag in timer
3297 * interrupt handler scheduler_tick().
3298 *
3299 * 3. Wakeups don't really cause entry into schedule(). They add a
3300 * task to the run-queue and that's it.
3301 *
3302 * Now, if the new task added to the run-queue preempts the current
3303 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3304 * called on the nearest possible occasion:
3305 *
3306 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3307 *
3308 * - in syscall or exception context, at the next outmost
3309 * preempt_enable(). (this might be as soon as the wake_up()'s
3310 * spin_unlock()!)
3311 *
3312 * - in IRQ context, return from interrupt-handler to
3313 * preemptible context
3314 *
3315 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3316 * then at the next:
3317 *
3318 * - cond_resched() call
3319 * - explicit schedule() call
3320 * - return from syscall or exception to user-space
3321 * - return from interrupt-handler to user-space
bfd9b2b5 3322 *
b30f0e3f 3323 * WARNING: must be called with preemption disabled!
dd41f596 3324 */
499d7955 3325static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3326{
3327 struct task_struct *prev, *next;
67ca7bde 3328 unsigned long *switch_count;
e7904a28 3329 struct pin_cookie cookie;
dd41f596 3330 struct rq *rq;
31656519 3331 int cpu;
dd41f596 3332
dd41f596
IM
3333 cpu = smp_processor_id();
3334 rq = cpu_rq(cpu);
dd41f596 3335 prev = rq->curr;
dd41f596 3336
b99def8b
PZ
3337 /*
3338 * do_exit() calls schedule() with preemption disabled as an exception;
3339 * however we must fix that up, otherwise the next task will see an
3340 * inconsistent (higher) preempt count.
3341 *
3342 * It also avoids the below schedule_debug() test from complaining
3343 * about this.
3344 */
3345 if (unlikely(prev->state == TASK_DEAD))
3346 preempt_enable_no_resched_notrace();
3347
dd41f596 3348 schedule_debug(prev);
1da177e4 3349
31656519 3350 if (sched_feat(HRTICK))
f333fdc9 3351 hrtick_clear(rq);
8f4d37ec 3352
46a5d164
PM
3353 local_irq_disable();
3354 rcu_note_context_switch();
3355
e0acd0a6
ON
3356 /*
3357 * Make sure that signal_pending_state()->signal_pending() below
3358 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3359 * done by the caller to avoid the race with signal_wake_up().
3360 */
3361 smp_mb__before_spinlock();
46a5d164 3362 raw_spin_lock(&rq->lock);
e7904a28 3363 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3364
9edfbfed
PZ
3365 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3366
246d86b5 3367 switch_count = &prev->nivcsw;
fc13aeba 3368 if (!preempt && prev->state) {
21aa9af0 3369 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3370 prev->state = TASK_RUNNING;
21aa9af0 3371 } else {
2acca55e
PZ
3372 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3373 prev->on_rq = 0;
3374
21aa9af0 3375 /*
2acca55e
PZ
3376 * If a worker went to sleep, notify and ask workqueue
3377 * whether it wants to wake up a task to maintain
3378 * concurrency.
21aa9af0
TH
3379 */
3380 if (prev->flags & PF_WQ_WORKER) {
3381 struct task_struct *to_wakeup;
3382
9b7f6597 3383 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3384 if (to_wakeup)
e7904a28 3385 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3386 }
21aa9af0 3387 }
dd41f596 3388 switch_count = &prev->nvcsw;
1da177e4
LT
3389 }
3390
9edfbfed 3391 if (task_on_rq_queued(prev))
606dba2e
PZ
3392 update_rq_clock(rq);
3393
e7904a28 3394 next = pick_next_task(rq, prev, cookie);
f26f9aff 3395 clear_tsk_need_resched(prev);
f27dde8d 3396 clear_preempt_need_resched();
9edfbfed 3397 rq->clock_skip_update = 0;
1da177e4 3398
1da177e4 3399 if (likely(prev != next)) {
1da177e4
LT
3400 rq->nr_switches++;
3401 rq->curr = next;
3402 ++*switch_count;
3403
c73464b1 3404 trace_sched_switch(preempt, prev, next);
e7904a28 3405 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3406 } else {
e7904a28 3407 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3408 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3409 }
1da177e4 3410
e3fca9e7 3411 balance_callback(rq);
1da177e4 3412}
c259e01a 3413
9c40cef2
TG
3414static inline void sched_submit_work(struct task_struct *tsk)
3415{
3c7d5184 3416 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3417 return;
3418 /*
3419 * If we are going to sleep and we have plugged IO queued,
3420 * make sure to submit it to avoid deadlocks.
3421 */
3422 if (blk_needs_flush_plug(tsk))
3423 blk_schedule_flush_plug(tsk);
3424}
3425
722a9f92 3426asmlinkage __visible void __sched schedule(void)
c259e01a 3427{
9c40cef2
TG
3428 struct task_struct *tsk = current;
3429
3430 sched_submit_work(tsk);
bfd9b2b5 3431 do {
b30f0e3f 3432 preempt_disable();
fc13aeba 3433 __schedule(false);
b30f0e3f 3434 sched_preempt_enable_no_resched();
bfd9b2b5 3435 } while (need_resched());
c259e01a 3436}
1da177e4
LT
3437EXPORT_SYMBOL(schedule);
3438
91d1aa43 3439#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3440asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3441{
3442 /*
3443 * If we come here after a random call to set_need_resched(),
3444 * or we have been woken up remotely but the IPI has not yet arrived,
3445 * we haven't yet exited the RCU idle mode. Do it here manually until
3446 * we find a better solution.
7cc78f8f
AL
3447 *
3448 * NB: There are buggy callers of this function. Ideally we
c467ea76 3449 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3450 * too frequently to make sense yet.
20ab65e3 3451 */
7cc78f8f 3452 enum ctx_state prev_state = exception_enter();
20ab65e3 3453 schedule();
7cc78f8f 3454 exception_exit(prev_state);
20ab65e3
FW
3455}
3456#endif
3457
c5491ea7
TG
3458/**
3459 * schedule_preempt_disabled - called with preemption disabled
3460 *
3461 * Returns with preemption disabled. Note: preempt_count must be 1
3462 */
3463void __sched schedule_preempt_disabled(void)
3464{
ba74c144 3465 sched_preempt_enable_no_resched();
c5491ea7
TG
3466 schedule();
3467 preempt_disable();
3468}
3469
06b1f808 3470static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3471{
3472 do {
47252cfb
SR
3473 /*
3474 * Because the function tracer can trace preempt_count_sub()
3475 * and it also uses preempt_enable/disable_notrace(), if
3476 * NEED_RESCHED is set, the preempt_enable_notrace() called
3477 * by the function tracer will call this function again and
3478 * cause infinite recursion.
3479 *
3480 * Preemption must be disabled here before the function
3481 * tracer can trace. Break up preempt_disable() into two
3482 * calls. One to disable preemption without fear of being
3483 * traced. The other to still record the preemption latency,
3484 * which can also be traced by the function tracer.
3485 */
499d7955 3486 preempt_disable_notrace();
47252cfb 3487 preempt_latency_start(1);
fc13aeba 3488 __schedule(true);
47252cfb 3489 preempt_latency_stop(1);
499d7955 3490 preempt_enable_no_resched_notrace();
a18b5d01
FW
3491
3492 /*
3493 * Check again in case we missed a preemption opportunity
3494 * between schedule and now.
3495 */
a18b5d01
FW
3496 } while (need_resched());
3497}
3498
1da177e4
LT
3499#ifdef CONFIG_PREEMPT
3500/*
2ed6e34f 3501 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3502 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3503 * occur there and call schedule directly.
3504 */
722a9f92 3505asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3506{
1da177e4
LT
3507 /*
3508 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3509 * we do not want to preempt the current task. Just return..
1da177e4 3510 */
fbb00b56 3511 if (likely(!preemptible()))
1da177e4
LT
3512 return;
3513
a18b5d01 3514 preempt_schedule_common();
1da177e4 3515}
376e2424 3516NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3517EXPORT_SYMBOL(preempt_schedule);
009f60e2 3518
009f60e2 3519/**
4eaca0a8 3520 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3521 *
3522 * The tracing infrastructure uses preempt_enable_notrace to prevent
3523 * recursion and tracing preempt enabling caused by the tracing
3524 * infrastructure itself. But as tracing can happen in areas coming
3525 * from userspace or just about to enter userspace, a preempt enable
3526 * can occur before user_exit() is called. This will cause the scheduler
3527 * to be called when the system is still in usermode.
3528 *
3529 * To prevent this, the preempt_enable_notrace will use this function
3530 * instead of preempt_schedule() to exit user context if needed before
3531 * calling the scheduler.
3532 */
4eaca0a8 3533asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3534{
3535 enum ctx_state prev_ctx;
3536
3537 if (likely(!preemptible()))
3538 return;
3539
3540 do {
47252cfb
SR
3541 /*
3542 * Because the function tracer can trace preempt_count_sub()
3543 * and it also uses preempt_enable/disable_notrace(), if
3544 * NEED_RESCHED is set, the preempt_enable_notrace() called
3545 * by the function tracer will call this function again and
3546 * cause infinite recursion.
3547 *
3548 * Preemption must be disabled here before the function
3549 * tracer can trace. Break up preempt_disable() into two
3550 * calls. One to disable preemption without fear of being
3551 * traced. The other to still record the preemption latency,
3552 * which can also be traced by the function tracer.
3553 */
3d8f74dd 3554 preempt_disable_notrace();
47252cfb 3555 preempt_latency_start(1);
009f60e2
ON
3556 /*
3557 * Needs preempt disabled in case user_exit() is traced
3558 * and the tracer calls preempt_enable_notrace() causing
3559 * an infinite recursion.
3560 */
3561 prev_ctx = exception_enter();
fc13aeba 3562 __schedule(true);
009f60e2
ON
3563 exception_exit(prev_ctx);
3564
47252cfb 3565 preempt_latency_stop(1);
3d8f74dd 3566 preempt_enable_no_resched_notrace();
009f60e2
ON
3567 } while (need_resched());
3568}
4eaca0a8 3569EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3570
32e475d7 3571#endif /* CONFIG_PREEMPT */
1da177e4
LT
3572
3573/*
2ed6e34f 3574 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3575 * off of irq context.
3576 * Note, that this is called and return with irqs disabled. This will
3577 * protect us against recursive calling from irq.
3578 */
722a9f92 3579asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3580{
b22366cd 3581 enum ctx_state prev_state;
6478d880 3582
2ed6e34f 3583 /* Catch callers which need to be fixed */
f27dde8d 3584 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3585
b22366cd
FW
3586 prev_state = exception_enter();
3587
3a5c359a 3588 do {
3d8f74dd 3589 preempt_disable();
3a5c359a 3590 local_irq_enable();
fc13aeba 3591 __schedule(true);
3a5c359a 3592 local_irq_disable();
3d8f74dd 3593 sched_preempt_enable_no_resched();
5ed0cec0 3594 } while (need_resched());
b22366cd
FW
3595
3596 exception_exit(prev_state);
1da177e4
LT
3597}
3598
63859d4f 3599int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3600 void *key)
1da177e4 3601{
63859d4f 3602 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3603}
1da177e4
LT
3604EXPORT_SYMBOL(default_wake_function);
3605
b29739f9
IM
3606#ifdef CONFIG_RT_MUTEXES
3607
3608/*
3609 * rt_mutex_setprio - set the current priority of a task
3610 * @p: task
3611 * @prio: prio value (kernel-internal form)
3612 *
3613 * This function changes the 'effective' priority of a task. It does
3614 * not touch ->normal_prio like __setscheduler().
3615 *
c365c292
TG
3616 * Used by the rt_mutex code to implement priority inheritance
3617 * logic. Call site only calls if the priority of the task changed.
b29739f9 3618 */
36c8b586 3619void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3620{
ff77e468 3621 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3622 const struct sched_class *prev_class;
eb580751
PZ
3623 struct rq_flags rf;
3624 struct rq *rq;
b29739f9 3625
aab03e05 3626 BUG_ON(prio > MAX_PRIO);
b29739f9 3627
eb580751 3628 rq = __task_rq_lock(p, &rf);
b29739f9 3629
1c4dd99b
TG
3630 /*
3631 * Idle task boosting is a nono in general. There is one
3632 * exception, when PREEMPT_RT and NOHZ is active:
3633 *
3634 * The idle task calls get_next_timer_interrupt() and holds
3635 * the timer wheel base->lock on the CPU and another CPU wants
3636 * to access the timer (probably to cancel it). We can safely
3637 * ignore the boosting request, as the idle CPU runs this code
3638 * with interrupts disabled and will complete the lock
3639 * protected section without being interrupted. So there is no
3640 * real need to boost.
3641 */
3642 if (unlikely(p == rq->idle)) {
3643 WARN_ON(p != rq->curr);
3644 WARN_ON(p->pi_blocked_on);
3645 goto out_unlock;
3646 }
3647
a8027073 3648 trace_sched_pi_setprio(p, prio);
d5f9f942 3649 oldprio = p->prio;
ff77e468
PZ
3650
3651 if (oldprio == prio)
3652 queue_flag &= ~DEQUEUE_MOVE;
3653
83ab0aa0 3654 prev_class = p->sched_class;
da0c1e65 3655 queued = task_on_rq_queued(p);
051a1d1a 3656 running = task_current(rq, p);
da0c1e65 3657 if (queued)
ff77e468 3658 dequeue_task(rq, p, queue_flag);
0e1f3483 3659 if (running)
f3cd1c4e 3660 put_prev_task(rq, p);
dd41f596 3661
2d3d891d
DF
3662 /*
3663 * Boosting condition are:
3664 * 1. -rt task is running and holds mutex A
3665 * --> -dl task blocks on mutex A
3666 *
3667 * 2. -dl task is running and holds mutex A
3668 * --> -dl task blocks on mutex A and could preempt the
3669 * running task
3670 */
3671 if (dl_prio(prio)) {
466af29b
ON
3672 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3673 if (!dl_prio(p->normal_prio) ||
3674 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3675 p->dl.dl_boosted = 1;
ff77e468 3676 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3677 } else
3678 p->dl.dl_boosted = 0;
aab03e05 3679 p->sched_class = &dl_sched_class;
2d3d891d
DF
3680 } else if (rt_prio(prio)) {
3681 if (dl_prio(oldprio))
3682 p->dl.dl_boosted = 0;
3683 if (oldprio < prio)
ff77e468 3684 queue_flag |= ENQUEUE_HEAD;
dd41f596 3685 p->sched_class = &rt_sched_class;
2d3d891d
DF
3686 } else {
3687 if (dl_prio(oldprio))
3688 p->dl.dl_boosted = 0;
746db944
BS
3689 if (rt_prio(oldprio))
3690 p->rt.timeout = 0;
dd41f596 3691 p->sched_class = &fair_sched_class;
2d3d891d 3692 }
dd41f596 3693
b29739f9
IM
3694 p->prio = prio;
3695
0e1f3483
HS
3696 if (running)
3697 p->sched_class->set_curr_task(rq);
da0c1e65 3698 if (queued)
ff77e468 3699 enqueue_task(rq, p, queue_flag);
cb469845 3700
da7a735e 3701 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3702out_unlock:
4c9a4bc8 3703 preempt_disable(); /* avoid rq from going away on us */
eb580751 3704 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3705
3706 balance_callback(rq);
3707 preempt_enable();
b29739f9 3708}
b29739f9 3709#endif
d50dde5a 3710
36c8b586 3711void set_user_nice(struct task_struct *p, long nice)
1da177e4 3712{
da0c1e65 3713 int old_prio, delta, queued;
eb580751 3714 struct rq_flags rf;
70b97a7f 3715 struct rq *rq;
1da177e4 3716
75e45d51 3717 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3718 return;
3719 /*
3720 * We have to be careful, if called from sys_setpriority(),
3721 * the task might be in the middle of scheduling on another CPU.
3722 */
eb580751 3723 rq = task_rq_lock(p, &rf);
1da177e4
LT
3724 /*
3725 * The RT priorities are set via sched_setscheduler(), but we still
3726 * allow the 'normal' nice value to be set - but as expected
3727 * it wont have any effect on scheduling until the task is
aab03e05 3728 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3729 */
aab03e05 3730 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3731 p->static_prio = NICE_TO_PRIO(nice);
3732 goto out_unlock;
3733 }
da0c1e65
KT
3734 queued = task_on_rq_queued(p);
3735 if (queued)
1de64443 3736 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3737
1da177e4 3738 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3739 set_load_weight(p);
b29739f9
IM
3740 old_prio = p->prio;
3741 p->prio = effective_prio(p);
3742 delta = p->prio - old_prio;
1da177e4 3743
da0c1e65 3744 if (queued) {
1de64443 3745 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3746 /*
d5f9f942
AM
3747 * If the task increased its priority or is running and
3748 * lowered its priority, then reschedule its CPU:
1da177e4 3749 */
d5f9f942 3750 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3751 resched_curr(rq);
1da177e4
LT
3752 }
3753out_unlock:
eb580751 3754 task_rq_unlock(rq, p, &rf);
1da177e4 3755}
1da177e4
LT
3756EXPORT_SYMBOL(set_user_nice);
3757
e43379f1
MM
3758/*
3759 * can_nice - check if a task can reduce its nice value
3760 * @p: task
3761 * @nice: nice value
3762 */
36c8b586 3763int can_nice(const struct task_struct *p, const int nice)
e43379f1 3764{
024f4747 3765 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3766 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3767
78d7d407 3768 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3769 capable(CAP_SYS_NICE));
3770}
3771
1da177e4
LT
3772#ifdef __ARCH_WANT_SYS_NICE
3773
3774/*
3775 * sys_nice - change the priority of the current process.
3776 * @increment: priority increment
3777 *
3778 * sys_setpriority is a more generic, but much slower function that
3779 * does similar things.
3780 */
5add95d4 3781SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3782{
48f24c4d 3783 long nice, retval;
1da177e4
LT
3784
3785 /*
3786 * Setpriority might change our priority at the same moment.
3787 * We don't have to worry. Conceptually one call occurs first
3788 * and we have a single winner.
3789 */
a9467fa3 3790 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3791 nice = task_nice(current) + increment;
1da177e4 3792
a9467fa3 3793 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3794 if (increment < 0 && !can_nice(current, nice))
3795 return -EPERM;
3796
1da177e4
LT
3797 retval = security_task_setnice(current, nice);
3798 if (retval)
3799 return retval;
3800
3801 set_user_nice(current, nice);
3802 return 0;
3803}
3804
3805#endif
3806
3807/**
3808 * task_prio - return the priority value of a given task.
3809 * @p: the task in question.
3810 *
e69f6186 3811 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3812 * RT tasks are offset by -200. Normal tasks are centered
3813 * around 0, value goes from -16 to +15.
3814 */
36c8b586 3815int task_prio(const struct task_struct *p)
1da177e4
LT
3816{
3817 return p->prio - MAX_RT_PRIO;
3818}
3819
1da177e4
LT
3820/**
3821 * idle_cpu - is a given cpu idle currently?
3822 * @cpu: the processor in question.
e69f6186
YB
3823 *
3824 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3825 */
3826int idle_cpu(int cpu)
3827{
908a3283
TG
3828 struct rq *rq = cpu_rq(cpu);
3829
3830 if (rq->curr != rq->idle)
3831 return 0;
3832
3833 if (rq->nr_running)
3834 return 0;
3835
3836#ifdef CONFIG_SMP
3837 if (!llist_empty(&rq->wake_list))
3838 return 0;
3839#endif
3840
3841 return 1;
1da177e4
LT
3842}
3843
1da177e4
LT
3844/**
3845 * idle_task - return the idle task for a given cpu.
3846 * @cpu: the processor in question.
e69f6186
YB
3847 *
3848 * Return: The idle task for the cpu @cpu.
1da177e4 3849 */
36c8b586 3850struct task_struct *idle_task(int cpu)
1da177e4
LT
3851{
3852 return cpu_rq(cpu)->idle;
3853}
3854
3855/**
3856 * find_process_by_pid - find a process with a matching PID value.
3857 * @pid: the pid in question.
e69f6186
YB
3858 *
3859 * The task of @pid, if found. %NULL otherwise.
1da177e4 3860 */
a9957449 3861static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3862{
228ebcbe 3863 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3864}
3865
aab03e05
DF
3866/*
3867 * This function initializes the sched_dl_entity of a newly becoming
3868 * SCHED_DEADLINE task.
3869 *
3870 * Only the static values are considered here, the actual runtime and the
3871 * absolute deadline will be properly calculated when the task is enqueued
3872 * for the first time with its new policy.
3873 */
3874static void
3875__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3876{
3877 struct sched_dl_entity *dl_se = &p->dl;
3878
aab03e05
DF
3879 dl_se->dl_runtime = attr->sched_runtime;
3880 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3881 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3882 dl_se->flags = attr->sched_flags;
332ac17e 3883 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3884
3885 /*
3886 * Changing the parameters of a task is 'tricky' and we're not doing
3887 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3888 *
3889 * What we SHOULD do is delay the bandwidth release until the 0-lag
3890 * point. This would include retaining the task_struct until that time
3891 * and change dl_overflow() to not immediately decrement the current
3892 * amount.
3893 *
3894 * Instead we retain the current runtime/deadline and let the new
3895 * parameters take effect after the current reservation period lapses.
3896 * This is safe (albeit pessimistic) because the 0-lag point is always
3897 * before the current scheduling deadline.
3898 *
3899 * We can still have temporary overloads because we do not delay the
3900 * change in bandwidth until that time; so admission control is
3901 * not on the safe side. It does however guarantee tasks will never
3902 * consume more than promised.
3903 */
aab03e05
DF
3904}
3905
c13db6b1
SR
3906/*
3907 * sched_setparam() passes in -1 for its policy, to let the functions
3908 * it calls know not to change it.
3909 */
3910#define SETPARAM_POLICY -1
3911
c365c292
TG
3912static void __setscheduler_params(struct task_struct *p,
3913 const struct sched_attr *attr)
1da177e4 3914{
d50dde5a
DF
3915 int policy = attr->sched_policy;
3916
c13db6b1 3917 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3918 policy = p->policy;
3919
1da177e4 3920 p->policy = policy;
d50dde5a 3921
aab03e05
DF
3922 if (dl_policy(policy))
3923 __setparam_dl(p, attr);
39fd8fd2 3924 else if (fair_policy(policy))
d50dde5a
DF
3925 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3926
39fd8fd2
PZ
3927 /*
3928 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3929 * !rt_policy. Always setting this ensures that things like
3930 * getparam()/getattr() don't report silly values for !rt tasks.
3931 */
3932 p->rt_priority = attr->sched_priority;
383afd09 3933 p->normal_prio = normal_prio(p);
c365c292
TG
3934 set_load_weight(p);
3935}
39fd8fd2 3936
c365c292
TG
3937/* Actually do priority change: must hold pi & rq lock. */
3938static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3939 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3940{
3941 __setscheduler_params(p, attr);
d50dde5a 3942
383afd09 3943 /*
0782e63b
TG
3944 * Keep a potential priority boosting if called from
3945 * sched_setscheduler().
383afd09 3946 */
0782e63b
TG
3947 if (keep_boost)
3948 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3949 else
3950 p->prio = normal_prio(p);
383afd09 3951
aab03e05
DF
3952 if (dl_prio(p->prio))
3953 p->sched_class = &dl_sched_class;
3954 else if (rt_prio(p->prio))
ffd44db5
PZ
3955 p->sched_class = &rt_sched_class;
3956 else
3957 p->sched_class = &fair_sched_class;
1da177e4 3958}
aab03e05
DF
3959
3960static void
3961__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3962{
3963 struct sched_dl_entity *dl_se = &p->dl;
3964
3965 attr->sched_priority = p->rt_priority;
3966 attr->sched_runtime = dl_se->dl_runtime;
3967 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3968 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3969 attr->sched_flags = dl_se->flags;
3970}
3971
3972/*
3973 * This function validates the new parameters of a -deadline task.
3974 * We ask for the deadline not being zero, and greater or equal
755378a4 3975 * than the runtime, as well as the period of being zero or
332ac17e 3976 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3977 * user parameters are above the internal resolution of 1us (we
3978 * check sched_runtime only since it is always the smaller one) and
3979 * below 2^63 ns (we have to check both sched_deadline and
3980 * sched_period, as the latter can be zero).
aab03e05
DF
3981 */
3982static bool
3983__checkparam_dl(const struct sched_attr *attr)
3984{
b0827819
JL
3985 /* deadline != 0 */
3986 if (attr->sched_deadline == 0)
3987 return false;
3988
3989 /*
3990 * Since we truncate DL_SCALE bits, make sure we're at least
3991 * that big.
3992 */
3993 if (attr->sched_runtime < (1ULL << DL_SCALE))
3994 return false;
3995
3996 /*
3997 * Since we use the MSB for wrap-around and sign issues, make
3998 * sure it's not set (mind that period can be equal to zero).
3999 */
4000 if (attr->sched_deadline & (1ULL << 63) ||
4001 attr->sched_period & (1ULL << 63))
4002 return false;
4003
4004 /* runtime <= deadline <= period (if period != 0) */
4005 if ((attr->sched_period != 0 &&
4006 attr->sched_period < attr->sched_deadline) ||
4007 attr->sched_deadline < attr->sched_runtime)
4008 return false;
4009
4010 return true;
aab03e05
DF
4011}
4012
c69e8d9c
DH
4013/*
4014 * check the target process has a UID that matches the current process's
4015 */
4016static bool check_same_owner(struct task_struct *p)
4017{
4018 const struct cred *cred = current_cred(), *pcred;
4019 bool match;
4020
4021 rcu_read_lock();
4022 pcred = __task_cred(p);
9c806aa0
EB
4023 match = (uid_eq(cred->euid, pcred->euid) ||
4024 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4025 rcu_read_unlock();
4026 return match;
4027}
4028
75381608
WL
4029static bool dl_param_changed(struct task_struct *p,
4030 const struct sched_attr *attr)
4031{
4032 struct sched_dl_entity *dl_se = &p->dl;
4033
4034 if (dl_se->dl_runtime != attr->sched_runtime ||
4035 dl_se->dl_deadline != attr->sched_deadline ||
4036 dl_se->dl_period != attr->sched_period ||
4037 dl_se->flags != attr->sched_flags)
4038 return true;
4039
4040 return false;
4041}
4042
d50dde5a
DF
4043static int __sched_setscheduler(struct task_struct *p,
4044 const struct sched_attr *attr,
dbc7f069 4045 bool user, bool pi)
1da177e4 4046{
383afd09
SR
4047 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4048 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4049 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4050 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4051 const struct sched_class *prev_class;
eb580751 4052 struct rq_flags rf;
ca94c442 4053 int reset_on_fork;
ff77e468 4054 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4055 struct rq *rq;
1da177e4 4056
66e5393a
SR
4057 /* may grab non-irq protected spin_locks */
4058 BUG_ON(in_interrupt());
1da177e4
LT
4059recheck:
4060 /* double check policy once rq lock held */
ca94c442
LP
4061 if (policy < 0) {
4062 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4063 policy = oldpolicy = p->policy;
ca94c442 4064 } else {
7479f3c9 4065 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4066
20f9cd2a 4067 if (!valid_policy(policy))
ca94c442
LP
4068 return -EINVAL;
4069 }
4070
7479f3c9
PZ
4071 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4072 return -EINVAL;
4073
1da177e4
LT
4074 /*
4075 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4076 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4077 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4078 */
0bb040a4 4079 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4080 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4081 return -EINVAL;
aab03e05
DF
4082 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4083 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4084 return -EINVAL;
4085
37e4ab3f
OC
4086 /*
4087 * Allow unprivileged RT tasks to decrease priority:
4088 */
961ccddd 4089 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4090 if (fair_policy(policy)) {
d0ea0268 4091 if (attr->sched_nice < task_nice(p) &&
eaad4513 4092 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4093 return -EPERM;
4094 }
4095
e05606d3 4096 if (rt_policy(policy)) {
a44702e8
ON
4097 unsigned long rlim_rtprio =
4098 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4099
4100 /* can't set/change the rt policy */
4101 if (policy != p->policy && !rlim_rtprio)
4102 return -EPERM;
4103
4104 /* can't increase priority */
d50dde5a
DF
4105 if (attr->sched_priority > p->rt_priority &&
4106 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4107 return -EPERM;
4108 }
c02aa73b 4109
d44753b8
JL
4110 /*
4111 * Can't set/change SCHED_DEADLINE policy at all for now
4112 * (safest behavior); in the future we would like to allow
4113 * unprivileged DL tasks to increase their relative deadline
4114 * or reduce their runtime (both ways reducing utilization)
4115 */
4116 if (dl_policy(policy))
4117 return -EPERM;
4118
dd41f596 4119 /*
c02aa73b
DH
4120 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4121 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4122 */
20f9cd2a 4123 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4124 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4125 return -EPERM;
4126 }
5fe1d75f 4127
37e4ab3f 4128 /* can't change other user's priorities */
c69e8d9c 4129 if (!check_same_owner(p))
37e4ab3f 4130 return -EPERM;
ca94c442
LP
4131
4132 /* Normal users shall not reset the sched_reset_on_fork flag */
4133 if (p->sched_reset_on_fork && !reset_on_fork)
4134 return -EPERM;
37e4ab3f 4135 }
1da177e4 4136
725aad24 4137 if (user) {
b0ae1981 4138 retval = security_task_setscheduler(p);
725aad24
JF
4139 if (retval)
4140 return retval;
4141 }
4142
b29739f9
IM
4143 /*
4144 * make sure no PI-waiters arrive (or leave) while we are
4145 * changing the priority of the task:
0122ec5b 4146 *
25985edc 4147 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4148 * runqueue lock must be held.
4149 */
eb580751 4150 rq = task_rq_lock(p, &rf);
dc61b1d6 4151
34f971f6
PZ
4152 /*
4153 * Changing the policy of the stop threads its a very bad idea
4154 */
4155 if (p == rq->stop) {
eb580751 4156 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4157 return -EINVAL;
4158 }
4159
a51e9198 4160 /*
d6b1e911
TG
4161 * If not changing anything there's no need to proceed further,
4162 * but store a possible modification of reset_on_fork.
a51e9198 4163 */
d50dde5a 4164 if (unlikely(policy == p->policy)) {
d0ea0268 4165 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4166 goto change;
4167 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4168 goto change;
75381608 4169 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4170 goto change;
d50dde5a 4171
d6b1e911 4172 p->sched_reset_on_fork = reset_on_fork;
eb580751 4173 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4174 return 0;
4175 }
d50dde5a 4176change:
a51e9198 4177
dc61b1d6 4178 if (user) {
332ac17e 4179#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4180 /*
4181 * Do not allow realtime tasks into groups that have no runtime
4182 * assigned.
4183 */
4184 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4185 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4186 !task_group_is_autogroup(task_group(p))) {
eb580751 4187 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4188 return -EPERM;
4189 }
dc61b1d6 4190#endif
332ac17e
DF
4191#ifdef CONFIG_SMP
4192 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4193 cpumask_t *span = rq->rd->span;
332ac17e
DF
4194
4195 /*
4196 * Don't allow tasks with an affinity mask smaller than
4197 * the entire root_domain to become SCHED_DEADLINE. We
4198 * will also fail if there's no bandwidth available.
4199 */
e4099a5e
PZ
4200 if (!cpumask_subset(span, &p->cpus_allowed) ||
4201 rq->rd->dl_bw.bw == 0) {
eb580751 4202 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4203 return -EPERM;
4204 }
4205 }
4206#endif
4207 }
dc61b1d6 4208
1da177e4
LT
4209 /* recheck policy now with rq lock held */
4210 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4211 policy = oldpolicy = -1;
eb580751 4212 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4213 goto recheck;
4214 }
332ac17e
DF
4215
4216 /*
4217 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4218 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4219 * is available.
4220 */
e4099a5e 4221 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4222 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4223 return -EBUSY;
4224 }
4225
c365c292
TG
4226 p->sched_reset_on_fork = reset_on_fork;
4227 oldprio = p->prio;
4228
dbc7f069
PZ
4229 if (pi) {
4230 /*
4231 * Take priority boosted tasks into account. If the new
4232 * effective priority is unchanged, we just store the new
4233 * normal parameters and do not touch the scheduler class and
4234 * the runqueue. This will be done when the task deboost
4235 * itself.
4236 */
4237 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4238 if (new_effective_prio == oldprio)
4239 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4240 }
4241
da0c1e65 4242 queued = task_on_rq_queued(p);
051a1d1a 4243 running = task_current(rq, p);
da0c1e65 4244 if (queued)
ff77e468 4245 dequeue_task(rq, p, queue_flags);
0e1f3483 4246 if (running)
f3cd1c4e 4247 put_prev_task(rq, p);
f6b53205 4248
83ab0aa0 4249 prev_class = p->sched_class;
dbc7f069 4250 __setscheduler(rq, p, attr, pi);
f6b53205 4251
0e1f3483
HS
4252 if (running)
4253 p->sched_class->set_curr_task(rq);
da0c1e65 4254 if (queued) {
81a44c54
TG
4255 /*
4256 * We enqueue to tail when the priority of a task is
4257 * increased (user space view).
4258 */
ff77e468
PZ
4259 if (oldprio < p->prio)
4260 queue_flags |= ENQUEUE_HEAD;
1de64443 4261
ff77e468 4262 enqueue_task(rq, p, queue_flags);
81a44c54 4263 }
cb469845 4264
da7a735e 4265 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4266 preempt_disable(); /* avoid rq from going away on us */
eb580751 4267 task_rq_unlock(rq, p, &rf);
b29739f9 4268
dbc7f069
PZ
4269 if (pi)
4270 rt_mutex_adjust_pi(p);
95e02ca9 4271
4c9a4bc8
PZ
4272 /*
4273 * Run balance callbacks after we've adjusted the PI chain.
4274 */
4275 balance_callback(rq);
4276 preempt_enable();
95e02ca9 4277
1da177e4
LT
4278 return 0;
4279}
961ccddd 4280
7479f3c9
PZ
4281static int _sched_setscheduler(struct task_struct *p, int policy,
4282 const struct sched_param *param, bool check)
4283{
4284 struct sched_attr attr = {
4285 .sched_policy = policy,
4286 .sched_priority = param->sched_priority,
4287 .sched_nice = PRIO_TO_NICE(p->static_prio),
4288 };
4289
c13db6b1
SR
4290 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4291 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4292 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4293 policy &= ~SCHED_RESET_ON_FORK;
4294 attr.sched_policy = policy;
4295 }
4296
dbc7f069 4297 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4298}
961ccddd
RR
4299/**
4300 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4301 * @p: the task in question.
4302 * @policy: new policy.
4303 * @param: structure containing the new RT priority.
4304 *
e69f6186
YB
4305 * Return: 0 on success. An error code otherwise.
4306 *
961ccddd
RR
4307 * NOTE that the task may be already dead.
4308 */
4309int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4310 const struct sched_param *param)
961ccddd 4311{
7479f3c9 4312 return _sched_setscheduler(p, policy, param, true);
961ccddd 4313}
1da177e4
LT
4314EXPORT_SYMBOL_GPL(sched_setscheduler);
4315
d50dde5a
DF
4316int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4317{
dbc7f069 4318 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4319}
4320EXPORT_SYMBOL_GPL(sched_setattr);
4321
961ccddd
RR
4322/**
4323 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4324 * @p: the task in question.
4325 * @policy: new policy.
4326 * @param: structure containing the new RT priority.
4327 *
4328 * Just like sched_setscheduler, only don't bother checking if the
4329 * current context has permission. For example, this is needed in
4330 * stop_machine(): we create temporary high priority worker threads,
4331 * but our caller might not have that capability.
e69f6186
YB
4332 *
4333 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4334 */
4335int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4336 const struct sched_param *param)
961ccddd 4337{
7479f3c9 4338 return _sched_setscheduler(p, policy, param, false);
961ccddd 4339}
84778472 4340EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4341
95cdf3b7
IM
4342static int
4343do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4344{
1da177e4
LT
4345 struct sched_param lparam;
4346 struct task_struct *p;
36c8b586 4347 int retval;
1da177e4
LT
4348
4349 if (!param || pid < 0)
4350 return -EINVAL;
4351 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4352 return -EFAULT;
5fe1d75f
ON
4353
4354 rcu_read_lock();
4355 retval = -ESRCH;
1da177e4 4356 p = find_process_by_pid(pid);
5fe1d75f
ON
4357 if (p != NULL)
4358 retval = sched_setscheduler(p, policy, &lparam);
4359 rcu_read_unlock();
36c8b586 4360
1da177e4
LT
4361 return retval;
4362}
4363
d50dde5a
DF
4364/*
4365 * Mimics kernel/events/core.c perf_copy_attr().
4366 */
4367static int sched_copy_attr(struct sched_attr __user *uattr,
4368 struct sched_attr *attr)
4369{
4370 u32 size;
4371 int ret;
4372
4373 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4374 return -EFAULT;
4375
4376 /*
4377 * zero the full structure, so that a short copy will be nice.
4378 */
4379 memset(attr, 0, sizeof(*attr));
4380
4381 ret = get_user(size, &uattr->size);
4382 if (ret)
4383 return ret;
4384
4385 if (size > PAGE_SIZE) /* silly large */
4386 goto err_size;
4387
4388 if (!size) /* abi compat */
4389 size = SCHED_ATTR_SIZE_VER0;
4390
4391 if (size < SCHED_ATTR_SIZE_VER0)
4392 goto err_size;
4393
4394 /*
4395 * If we're handed a bigger struct than we know of,
4396 * ensure all the unknown bits are 0 - i.e. new
4397 * user-space does not rely on any kernel feature
4398 * extensions we dont know about yet.
4399 */
4400 if (size > sizeof(*attr)) {
4401 unsigned char __user *addr;
4402 unsigned char __user *end;
4403 unsigned char val;
4404
4405 addr = (void __user *)uattr + sizeof(*attr);
4406 end = (void __user *)uattr + size;
4407
4408 for (; addr < end; addr++) {
4409 ret = get_user(val, addr);
4410 if (ret)
4411 return ret;
4412 if (val)
4413 goto err_size;
4414 }
4415 size = sizeof(*attr);
4416 }
4417
4418 ret = copy_from_user(attr, uattr, size);
4419 if (ret)
4420 return -EFAULT;
4421
4422 /*
4423 * XXX: do we want to be lenient like existing syscalls; or do we want
4424 * to be strict and return an error on out-of-bounds values?
4425 */
75e45d51 4426 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4427
e78c7bca 4428 return 0;
d50dde5a
DF
4429
4430err_size:
4431 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4432 return -E2BIG;
d50dde5a
DF
4433}
4434
1da177e4
LT
4435/**
4436 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4437 * @pid: the pid in question.
4438 * @policy: new policy.
4439 * @param: structure containing the new RT priority.
e69f6186
YB
4440 *
4441 * Return: 0 on success. An error code otherwise.
1da177e4 4442 */
5add95d4
HC
4443SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4444 struct sched_param __user *, param)
1da177e4 4445{
c21761f1
JB
4446 /* negative values for policy are not valid */
4447 if (policy < 0)
4448 return -EINVAL;
4449
1da177e4
LT
4450 return do_sched_setscheduler(pid, policy, param);
4451}
4452
4453/**
4454 * sys_sched_setparam - set/change the RT priority of a thread
4455 * @pid: the pid in question.
4456 * @param: structure containing the new RT priority.
e69f6186
YB
4457 *
4458 * Return: 0 on success. An error code otherwise.
1da177e4 4459 */
5add95d4 4460SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4461{
c13db6b1 4462 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4463}
4464
d50dde5a
DF
4465/**
4466 * sys_sched_setattr - same as above, but with extended sched_attr
4467 * @pid: the pid in question.
5778fccf 4468 * @uattr: structure containing the extended parameters.
db66d756 4469 * @flags: for future extension.
d50dde5a 4470 */
6d35ab48
PZ
4471SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4472 unsigned int, flags)
d50dde5a
DF
4473{
4474 struct sched_attr attr;
4475 struct task_struct *p;
4476 int retval;
4477
6d35ab48 4478 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4479 return -EINVAL;
4480
143cf23d
MK
4481 retval = sched_copy_attr(uattr, &attr);
4482 if (retval)
4483 return retval;
d50dde5a 4484
b14ed2c2 4485 if ((int)attr.sched_policy < 0)
dbdb2275 4486 return -EINVAL;
d50dde5a
DF
4487
4488 rcu_read_lock();
4489 retval = -ESRCH;
4490 p = find_process_by_pid(pid);
4491 if (p != NULL)
4492 retval = sched_setattr(p, &attr);
4493 rcu_read_unlock();
4494
4495 return retval;
4496}
4497
1da177e4
LT
4498/**
4499 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4500 * @pid: the pid in question.
e69f6186
YB
4501 *
4502 * Return: On success, the policy of the thread. Otherwise, a negative error
4503 * code.
1da177e4 4504 */
5add95d4 4505SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4506{
36c8b586 4507 struct task_struct *p;
3a5c359a 4508 int retval;
1da177e4
LT
4509
4510 if (pid < 0)
3a5c359a 4511 return -EINVAL;
1da177e4
LT
4512
4513 retval = -ESRCH;
5fe85be0 4514 rcu_read_lock();
1da177e4
LT
4515 p = find_process_by_pid(pid);
4516 if (p) {
4517 retval = security_task_getscheduler(p);
4518 if (!retval)
ca94c442
LP
4519 retval = p->policy
4520 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4521 }
5fe85be0 4522 rcu_read_unlock();
1da177e4
LT
4523 return retval;
4524}
4525
4526/**
ca94c442 4527 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4528 * @pid: the pid in question.
4529 * @param: structure containing the RT priority.
e69f6186
YB
4530 *
4531 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4532 * code.
1da177e4 4533 */
5add95d4 4534SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4535{
ce5f7f82 4536 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4537 struct task_struct *p;
3a5c359a 4538 int retval;
1da177e4
LT
4539
4540 if (!param || pid < 0)
3a5c359a 4541 return -EINVAL;
1da177e4 4542
5fe85be0 4543 rcu_read_lock();
1da177e4
LT
4544 p = find_process_by_pid(pid);
4545 retval = -ESRCH;
4546 if (!p)
4547 goto out_unlock;
4548
4549 retval = security_task_getscheduler(p);
4550 if (retval)
4551 goto out_unlock;
4552
ce5f7f82
PZ
4553 if (task_has_rt_policy(p))
4554 lp.sched_priority = p->rt_priority;
5fe85be0 4555 rcu_read_unlock();
1da177e4
LT
4556
4557 /*
4558 * This one might sleep, we cannot do it with a spinlock held ...
4559 */
4560 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4561
1da177e4
LT
4562 return retval;
4563
4564out_unlock:
5fe85be0 4565 rcu_read_unlock();
1da177e4
LT
4566 return retval;
4567}
4568
d50dde5a
DF
4569static int sched_read_attr(struct sched_attr __user *uattr,
4570 struct sched_attr *attr,
4571 unsigned int usize)
4572{
4573 int ret;
4574
4575 if (!access_ok(VERIFY_WRITE, uattr, usize))
4576 return -EFAULT;
4577
4578 /*
4579 * If we're handed a smaller struct than we know of,
4580 * ensure all the unknown bits are 0 - i.e. old
4581 * user-space does not get uncomplete information.
4582 */
4583 if (usize < sizeof(*attr)) {
4584 unsigned char *addr;
4585 unsigned char *end;
4586
4587 addr = (void *)attr + usize;
4588 end = (void *)attr + sizeof(*attr);
4589
4590 for (; addr < end; addr++) {
4591 if (*addr)
22400674 4592 return -EFBIG;
d50dde5a
DF
4593 }
4594
4595 attr->size = usize;
4596 }
4597
4efbc454 4598 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4599 if (ret)
4600 return -EFAULT;
4601
22400674 4602 return 0;
d50dde5a
DF
4603}
4604
4605/**
aab03e05 4606 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4607 * @pid: the pid in question.
5778fccf 4608 * @uattr: structure containing the extended parameters.
d50dde5a 4609 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4610 * @flags: for future extension.
d50dde5a 4611 */
6d35ab48
PZ
4612SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4613 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4614{
4615 struct sched_attr attr = {
4616 .size = sizeof(struct sched_attr),
4617 };
4618 struct task_struct *p;
4619 int retval;
4620
4621 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4622 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4623 return -EINVAL;
4624
4625 rcu_read_lock();
4626 p = find_process_by_pid(pid);
4627 retval = -ESRCH;
4628 if (!p)
4629 goto out_unlock;
4630
4631 retval = security_task_getscheduler(p);
4632 if (retval)
4633 goto out_unlock;
4634
4635 attr.sched_policy = p->policy;
7479f3c9
PZ
4636 if (p->sched_reset_on_fork)
4637 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4638 if (task_has_dl_policy(p))
4639 __getparam_dl(p, &attr);
4640 else if (task_has_rt_policy(p))
d50dde5a
DF
4641 attr.sched_priority = p->rt_priority;
4642 else
d0ea0268 4643 attr.sched_nice = task_nice(p);
d50dde5a
DF
4644
4645 rcu_read_unlock();
4646
4647 retval = sched_read_attr(uattr, &attr, size);
4648 return retval;
4649
4650out_unlock:
4651 rcu_read_unlock();
4652 return retval;
4653}
4654
96f874e2 4655long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4656{
5a16f3d3 4657 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4658 struct task_struct *p;
4659 int retval;
1da177e4 4660
23f5d142 4661 rcu_read_lock();
1da177e4
LT
4662
4663 p = find_process_by_pid(pid);
4664 if (!p) {
23f5d142 4665 rcu_read_unlock();
1da177e4
LT
4666 return -ESRCH;
4667 }
4668
23f5d142 4669 /* Prevent p going away */
1da177e4 4670 get_task_struct(p);
23f5d142 4671 rcu_read_unlock();
1da177e4 4672
14a40ffc
TH
4673 if (p->flags & PF_NO_SETAFFINITY) {
4674 retval = -EINVAL;
4675 goto out_put_task;
4676 }
5a16f3d3
RR
4677 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4678 retval = -ENOMEM;
4679 goto out_put_task;
4680 }
4681 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4682 retval = -ENOMEM;
4683 goto out_free_cpus_allowed;
4684 }
1da177e4 4685 retval = -EPERM;
4c44aaaf
EB
4686 if (!check_same_owner(p)) {
4687 rcu_read_lock();
4688 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4689 rcu_read_unlock();
16303ab2 4690 goto out_free_new_mask;
4c44aaaf
EB
4691 }
4692 rcu_read_unlock();
4693 }
1da177e4 4694
b0ae1981 4695 retval = security_task_setscheduler(p);
e7834f8f 4696 if (retval)
16303ab2 4697 goto out_free_new_mask;
e7834f8f 4698
e4099a5e
PZ
4699
4700 cpuset_cpus_allowed(p, cpus_allowed);
4701 cpumask_and(new_mask, in_mask, cpus_allowed);
4702
332ac17e
DF
4703 /*
4704 * Since bandwidth control happens on root_domain basis,
4705 * if admission test is enabled, we only admit -deadline
4706 * tasks allowed to run on all the CPUs in the task's
4707 * root_domain.
4708 */
4709#ifdef CONFIG_SMP
f1e3a093
KT
4710 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4711 rcu_read_lock();
4712 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4713 retval = -EBUSY;
f1e3a093 4714 rcu_read_unlock();
16303ab2 4715 goto out_free_new_mask;
332ac17e 4716 }
f1e3a093 4717 rcu_read_unlock();
332ac17e
DF
4718 }
4719#endif
49246274 4720again:
25834c73 4721 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4722
8707d8b8 4723 if (!retval) {
5a16f3d3
RR
4724 cpuset_cpus_allowed(p, cpus_allowed);
4725 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4726 /*
4727 * We must have raced with a concurrent cpuset
4728 * update. Just reset the cpus_allowed to the
4729 * cpuset's cpus_allowed
4730 */
5a16f3d3 4731 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4732 goto again;
4733 }
4734 }
16303ab2 4735out_free_new_mask:
5a16f3d3
RR
4736 free_cpumask_var(new_mask);
4737out_free_cpus_allowed:
4738 free_cpumask_var(cpus_allowed);
4739out_put_task:
1da177e4 4740 put_task_struct(p);
1da177e4
LT
4741 return retval;
4742}
4743
4744static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4745 struct cpumask *new_mask)
1da177e4 4746{
96f874e2
RR
4747 if (len < cpumask_size())
4748 cpumask_clear(new_mask);
4749 else if (len > cpumask_size())
4750 len = cpumask_size();
4751
1da177e4
LT
4752 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4753}
4754
4755/**
4756 * sys_sched_setaffinity - set the cpu affinity of a process
4757 * @pid: pid of the process
4758 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4759 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4760 *
4761 * Return: 0 on success. An error code otherwise.
1da177e4 4762 */
5add95d4
HC
4763SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4764 unsigned long __user *, user_mask_ptr)
1da177e4 4765{
5a16f3d3 4766 cpumask_var_t new_mask;
1da177e4
LT
4767 int retval;
4768
5a16f3d3
RR
4769 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4770 return -ENOMEM;
1da177e4 4771
5a16f3d3
RR
4772 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4773 if (retval == 0)
4774 retval = sched_setaffinity(pid, new_mask);
4775 free_cpumask_var(new_mask);
4776 return retval;
1da177e4
LT
4777}
4778
96f874e2 4779long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4780{
36c8b586 4781 struct task_struct *p;
31605683 4782 unsigned long flags;
1da177e4 4783 int retval;
1da177e4 4784
23f5d142 4785 rcu_read_lock();
1da177e4
LT
4786
4787 retval = -ESRCH;
4788 p = find_process_by_pid(pid);
4789 if (!p)
4790 goto out_unlock;
4791
e7834f8f
DQ
4792 retval = security_task_getscheduler(p);
4793 if (retval)
4794 goto out_unlock;
4795
013fdb80 4796 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4797 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4798 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4799
4800out_unlock:
23f5d142 4801 rcu_read_unlock();
1da177e4 4802
9531b62f 4803 return retval;
1da177e4
LT
4804}
4805
4806/**
4807 * sys_sched_getaffinity - get the cpu affinity of a process
4808 * @pid: pid of the process
4809 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4810 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4811 *
599b4840
ZW
4812 * Return: size of CPU mask copied to user_mask_ptr on success. An
4813 * error code otherwise.
1da177e4 4814 */
5add95d4
HC
4815SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4816 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4817{
4818 int ret;
f17c8607 4819 cpumask_var_t mask;
1da177e4 4820
84fba5ec 4821 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4822 return -EINVAL;
4823 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4824 return -EINVAL;
4825
f17c8607
RR
4826 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4827 return -ENOMEM;
1da177e4 4828
f17c8607
RR
4829 ret = sched_getaffinity(pid, mask);
4830 if (ret == 0) {
8bc037fb 4831 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4832
4833 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4834 ret = -EFAULT;
4835 else
cd3d8031 4836 ret = retlen;
f17c8607
RR
4837 }
4838 free_cpumask_var(mask);
1da177e4 4839
f17c8607 4840 return ret;
1da177e4
LT
4841}
4842
4843/**
4844 * sys_sched_yield - yield the current processor to other threads.
4845 *
dd41f596
IM
4846 * This function yields the current CPU to other tasks. If there are no
4847 * other threads running on this CPU then this function will return.
e69f6186
YB
4848 *
4849 * Return: 0.
1da177e4 4850 */
5add95d4 4851SYSCALL_DEFINE0(sched_yield)
1da177e4 4852{
70b97a7f 4853 struct rq *rq = this_rq_lock();
1da177e4 4854
ae92882e 4855 schedstat_inc(rq->yld_count);
4530d7ab 4856 current->sched_class->yield_task(rq);
1da177e4
LT
4857
4858 /*
4859 * Since we are going to call schedule() anyway, there's
4860 * no need to preempt or enable interrupts:
4861 */
4862 __release(rq->lock);
8a25d5de 4863 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4864 do_raw_spin_unlock(&rq->lock);
ba74c144 4865 sched_preempt_enable_no_resched();
1da177e4
LT
4866
4867 schedule();
4868
4869 return 0;
4870}
4871
02b67cc3 4872int __sched _cond_resched(void)
1da177e4 4873{
fe32d3cd 4874 if (should_resched(0)) {
a18b5d01 4875 preempt_schedule_common();
1da177e4
LT
4876 return 1;
4877 }
4878 return 0;
4879}
02b67cc3 4880EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4881
4882/*
613afbf8 4883 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4884 * call schedule, and on return reacquire the lock.
4885 *
41a2d6cf 4886 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4887 * operations here to prevent schedule() from being called twice (once via
4888 * spin_unlock(), once by hand).
4889 */
613afbf8 4890int __cond_resched_lock(spinlock_t *lock)
1da177e4 4891{
fe32d3cd 4892 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4893 int ret = 0;
4894
f607c668
PZ
4895 lockdep_assert_held(lock);
4896
4a81e832 4897 if (spin_needbreak(lock) || resched) {
1da177e4 4898 spin_unlock(lock);
d86ee480 4899 if (resched)
a18b5d01 4900 preempt_schedule_common();
95c354fe
NP
4901 else
4902 cpu_relax();
6df3cecb 4903 ret = 1;
1da177e4 4904 spin_lock(lock);
1da177e4 4905 }
6df3cecb 4906 return ret;
1da177e4 4907}
613afbf8 4908EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4909
613afbf8 4910int __sched __cond_resched_softirq(void)
1da177e4
LT
4911{
4912 BUG_ON(!in_softirq());
4913
fe32d3cd 4914 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4915 local_bh_enable();
a18b5d01 4916 preempt_schedule_common();
1da177e4
LT
4917 local_bh_disable();
4918 return 1;
4919 }
4920 return 0;
4921}
613afbf8 4922EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4923
1da177e4
LT
4924/**
4925 * yield - yield the current processor to other threads.
4926 *
8e3fabfd
PZ
4927 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4928 *
4929 * The scheduler is at all times free to pick the calling task as the most
4930 * eligible task to run, if removing the yield() call from your code breaks
4931 * it, its already broken.
4932 *
4933 * Typical broken usage is:
4934 *
4935 * while (!event)
4936 * yield();
4937 *
4938 * where one assumes that yield() will let 'the other' process run that will
4939 * make event true. If the current task is a SCHED_FIFO task that will never
4940 * happen. Never use yield() as a progress guarantee!!
4941 *
4942 * If you want to use yield() to wait for something, use wait_event().
4943 * If you want to use yield() to be 'nice' for others, use cond_resched().
4944 * If you still want to use yield(), do not!
1da177e4
LT
4945 */
4946void __sched yield(void)
4947{
4948 set_current_state(TASK_RUNNING);
4949 sys_sched_yield();
4950}
1da177e4
LT
4951EXPORT_SYMBOL(yield);
4952
d95f4122
MG
4953/**
4954 * yield_to - yield the current processor to another thread in
4955 * your thread group, or accelerate that thread toward the
4956 * processor it's on.
16addf95
RD
4957 * @p: target task
4958 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4959 *
4960 * It's the caller's job to ensure that the target task struct
4961 * can't go away on us before we can do any checks.
4962 *
e69f6186 4963 * Return:
7b270f60
PZ
4964 * true (>0) if we indeed boosted the target task.
4965 * false (0) if we failed to boost the target.
4966 * -ESRCH if there's no task to yield to.
d95f4122 4967 */
fa93384f 4968int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4969{
4970 struct task_struct *curr = current;
4971 struct rq *rq, *p_rq;
4972 unsigned long flags;
c3c18640 4973 int yielded = 0;
d95f4122
MG
4974
4975 local_irq_save(flags);
4976 rq = this_rq();
4977
4978again:
4979 p_rq = task_rq(p);
7b270f60
PZ
4980 /*
4981 * If we're the only runnable task on the rq and target rq also
4982 * has only one task, there's absolutely no point in yielding.
4983 */
4984 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4985 yielded = -ESRCH;
4986 goto out_irq;
4987 }
4988
d95f4122 4989 double_rq_lock(rq, p_rq);
39e24d8f 4990 if (task_rq(p) != p_rq) {
d95f4122
MG
4991 double_rq_unlock(rq, p_rq);
4992 goto again;
4993 }
4994
4995 if (!curr->sched_class->yield_to_task)
7b270f60 4996 goto out_unlock;
d95f4122
MG
4997
4998 if (curr->sched_class != p->sched_class)
7b270f60 4999 goto out_unlock;
d95f4122
MG
5000
5001 if (task_running(p_rq, p) || p->state)
7b270f60 5002 goto out_unlock;
d95f4122
MG
5003
5004 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5005 if (yielded) {
ae92882e 5006 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5007 /*
5008 * Make p's CPU reschedule; pick_next_entity takes care of
5009 * fairness.
5010 */
5011 if (preempt && rq != p_rq)
8875125e 5012 resched_curr(p_rq);
6d1cafd8 5013 }
d95f4122 5014
7b270f60 5015out_unlock:
d95f4122 5016 double_rq_unlock(rq, p_rq);
7b270f60 5017out_irq:
d95f4122
MG
5018 local_irq_restore(flags);
5019
7b270f60 5020 if (yielded > 0)
d95f4122
MG
5021 schedule();
5022
5023 return yielded;
5024}
5025EXPORT_SYMBOL_GPL(yield_to);
5026
1da177e4 5027/*
41a2d6cf 5028 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5029 * that process accounting knows that this is a task in IO wait state.
1da177e4 5030 */
1da177e4
LT
5031long __sched io_schedule_timeout(long timeout)
5032{
9cff8ade
N
5033 int old_iowait = current->in_iowait;
5034 struct rq *rq;
1da177e4
LT
5035 long ret;
5036
9cff8ade 5037 current->in_iowait = 1;
10d784ea 5038 blk_schedule_flush_plug(current);
9cff8ade 5039
0ff92245 5040 delayacct_blkio_start();
9cff8ade 5041 rq = raw_rq();
1da177e4
LT
5042 atomic_inc(&rq->nr_iowait);
5043 ret = schedule_timeout(timeout);
9cff8ade 5044 current->in_iowait = old_iowait;
1da177e4 5045 atomic_dec(&rq->nr_iowait);
0ff92245 5046 delayacct_blkio_end();
9cff8ade 5047
1da177e4
LT
5048 return ret;
5049}
9cff8ade 5050EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5051
5052/**
5053 * sys_sched_get_priority_max - return maximum RT priority.
5054 * @policy: scheduling class.
5055 *
e69f6186
YB
5056 * Return: On success, this syscall returns the maximum
5057 * rt_priority that can be used by a given scheduling class.
5058 * On failure, a negative error code is returned.
1da177e4 5059 */
5add95d4 5060SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5061{
5062 int ret = -EINVAL;
5063
5064 switch (policy) {
5065 case SCHED_FIFO:
5066 case SCHED_RR:
5067 ret = MAX_USER_RT_PRIO-1;
5068 break;
aab03e05 5069 case SCHED_DEADLINE:
1da177e4 5070 case SCHED_NORMAL:
b0a9499c 5071 case SCHED_BATCH:
dd41f596 5072 case SCHED_IDLE:
1da177e4
LT
5073 ret = 0;
5074 break;
5075 }
5076 return ret;
5077}
5078
5079/**
5080 * sys_sched_get_priority_min - return minimum RT priority.
5081 * @policy: scheduling class.
5082 *
e69f6186
YB
5083 * Return: On success, this syscall returns the minimum
5084 * rt_priority that can be used by a given scheduling class.
5085 * On failure, a negative error code is returned.
1da177e4 5086 */
5add95d4 5087SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5088{
5089 int ret = -EINVAL;
5090
5091 switch (policy) {
5092 case SCHED_FIFO:
5093 case SCHED_RR:
5094 ret = 1;
5095 break;
aab03e05 5096 case SCHED_DEADLINE:
1da177e4 5097 case SCHED_NORMAL:
b0a9499c 5098 case SCHED_BATCH:
dd41f596 5099 case SCHED_IDLE:
1da177e4
LT
5100 ret = 0;
5101 }
5102 return ret;
5103}
5104
5105/**
5106 * sys_sched_rr_get_interval - return the default timeslice of a process.
5107 * @pid: pid of the process.
5108 * @interval: userspace pointer to the timeslice value.
5109 *
5110 * this syscall writes the default timeslice value of a given process
5111 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5112 *
5113 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5114 * an error code.
1da177e4 5115 */
17da2bd9 5116SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5117 struct timespec __user *, interval)
1da177e4 5118{
36c8b586 5119 struct task_struct *p;
a4ec24b4 5120 unsigned int time_slice;
eb580751
PZ
5121 struct rq_flags rf;
5122 struct timespec t;
dba091b9 5123 struct rq *rq;
3a5c359a 5124 int retval;
1da177e4
LT
5125
5126 if (pid < 0)
3a5c359a 5127 return -EINVAL;
1da177e4
LT
5128
5129 retval = -ESRCH;
1a551ae7 5130 rcu_read_lock();
1da177e4
LT
5131 p = find_process_by_pid(pid);
5132 if (!p)
5133 goto out_unlock;
5134
5135 retval = security_task_getscheduler(p);
5136 if (retval)
5137 goto out_unlock;
5138
eb580751 5139 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5140 time_slice = 0;
5141 if (p->sched_class->get_rr_interval)
5142 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5143 task_rq_unlock(rq, p, &rf);
a4ec24b4 5144
1a551ae7 5145 rcu_read_unlock();
a4ec24b4 5146 jiffies_to_timespec(time_slice, &t);
1da177e4 5147 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5148 return retval;
3a5c359a 5149
1da177e4 5150out_unlock:
1a551ae7 5151 rcu_read_unlock();
1da177e4
LT
5152 return retval;
5153}
5154
7c731e0a 5155static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5156
82a1fcb9 5157void sched_show_task(struct task_struct *p)
1da177e4 5158{
1da177e4 5159 unsigned long free = 0;
4e79752c 5160 int ppid;
1f8a7633 5161 unsigned long state = p->state;
1da177e4 5162
1f8a7633
TH
5163 if (state)
5164 state = __ffs(state) + 1;
28d0686c 5165 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5166 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5167#if BITS_PER_LONG == 32
1da177e4 5168 if (state == TASK_RUNNING)
3df0fc5b 5169 printk(KERN_CONT " running ");
1da177e4 5170 else
3df0fc5b 5171 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5172#else
5173 if (state == TASK_RUNNING)
3df0fc5b 5174 printk(KERN_CONT " running task ");
1da177e4 5175 else
3df0fc5b 5176 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5177#endif
5178#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5179 free = stack_not_used(p);
1da177e4 5180#endif
a90e984c 5181 ppid = 0;
4e79752c 5182 rcu_read_lock();
a90e984c
ON
5183 if (pid_alive(p))
5184 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5185 rcu_read_unlock();
3df0fc5b 5186 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5187 task_pid_nr(p), ppid,
aa47b7e0 5188 (unsigned long)task_thread_info(p)->flags);
1da177e4 5189
3d1cb205 5190 print_worker_info(KERN_INFO, p);
5fb5e6de 5191 show_stack(p, NULL);
1da177e4
LT
5192}
5193
e59e2ae2 5194void show_state_filter(unsigned long state_filter)
1da177e4 5195{
36c8b586 5196 struct task_struct *g, *p;
1da177e4 5197
4bd77321 5198#if BITS_PER_LONG == 32
3df0fc5b
PZ
5199 printk(KERN_INFO
5200 " task PC stack pid father\n");
1da177e4 5201#else
3df0fc5b
PZ
5202 printk(KERN_INFO
5203 " task PC stack pid father\n");
1da177e4 5204#endif
510f5acc 5205 rcu_read_lock();
5d07f420 5206 for_each_process_thread(g, p) {
1da177e4
LT
5207 /*
5208 * reset the NMI-timeout, listing all files on a slow
25985edc 5209 * console might take a lot of time:
57675cb9
AR
5210 * Also, reset softlockup watchdogs on all CPUs, because
5211 * another CPU might be blocked waiting for us to process
5212 * an IPI.
1da177e4
LT
5213 */
5214 touch_nmi_watchdog();
57675cb9 5215 touch_all_softlockup_watchdogs();
39bc89fd 5216 if (!state_filter || (p->state & state_filter))
82a1fcb9 5217 sched_show_task(p);
5d07f420 5218 }
1da177e4 5219
dd41f596 5220#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5221 if (!state_filter)
5222 sysrq_sched_debug_show();
dd41f596 5223#endif
510f5acc 5224 rcu_read_unlock();
e59e2ae2
IM
5225 /*
5226 * Only show locks if all tasks are dumped:
5227 */
93335a21 5228 if (!state_filter)
e59e2ae2 5229 debug_show_all_locks();
1da177e4
LT
5230}
5231
0db0628d 5232void init_idle_bootup_task(struct task_struct *idle)
1df21055 5233{
dd41f596 5234 idle->sched_class = &idle_sched_class;
1df21055
IM
5235}
5236
f340c0d1
IM
5237/**
5238 * init_idle - set up an idle thread for a given CPU
5239 * @idle: task in question
5240 * @cpu: cpu the idle task belongs to
5241 *
5242 * NOTE: this function does not set the idle thread's NEED_RESCHED
5243 * flag, to make booting more robust.
5244 */
0db0628d 5245void init_idle(struct task_struct *idle, int cpu)
1da177e4 5246{
70b97a7f 5247 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5248 unsigned long flags;
5249
25834c73
PZ
5250 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5251 raw_spin_lock(&rq->lock);
5cbd54ef 5252
5e1576ed 5253 __sched_fork(0, idle);
06b83b5f 5254 idle->state = TASK_RUNNING;
dd41f596
IM
5255 idle->se.exec_start = sched_clock();
5256
e1b77c92
MR
5257 kasan_unpoison_task_stack(idle);
5258
de9b8f5d
PZ
5259#ifdef CONFIG_SMP
5260 /*
5261 * Its possible that init_idle() gets called multiple times on a task,
5262 * in that case do_set_cpus_allowed() will not do the right thing.
5263 *
5264 * And since this is boot we can forgo the serialization.
5265 */
5266 set_cpus_allowed_common(idle, cpumask_of(cpu));
5267#endif
6506cf6c
PZ
5268 /*
5269 * We're having a chicken and egg problem, even though we are
5270 * holding rq->lock, the cpu isn't yet set to this cpu so the
5271 * lockdep check in task_group() will fail.
5272 *
5273 * Similar case to sched_fork(). / Alternatively we could
5274 * use task_rq_lock() here and obtain the other rq->lock.
5275 *
5276 * Silence PROVE_RCU
5277 */
5278 rcu_read_lock();
dd41f596 5279 __set_task_cpu(idle, cpu);
6506cf6c 5280 rcu_read_unlock();
1da177e4 5281
1da177e4 5282 rq->curr = rq->idle = idle;
da0c1e65 5283 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5284#ifdef CONFIG_SMP
3ca7a440 5285 idle->on_cpu = 1;
4866cde0 5286#endif
25834c73
PZ
5287 raw_spin_unlock(&rq->lock);
5288 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5289
5290 /* Set the preempt count _outside_ the spinlocks! */
01028747 5291 init_idle_preempt_count(idle, cpu);
55cd5340 5292
dd41f596
IM
5293 /*
5294 * The idle tasks have their own, simple scheduling class:
5295 */
5296 idle->sched_class = &idle_sched_class;
868baf07 5297 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5298 vtime_init_idle(idle, cpu);
de9b8f5d 5299#ifdef CONFIG_SMP
f1c6f1a7
CE
5300 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5301#endif
19978ca6
IM
5302}
5303
f82f8042
JL
5304int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5305 const struct cpumask *trial)
5306{
5307 int ret = 1, trial_cpus;
5308 struct dl_bw *cur_dl_b;
5309 unsigned long flags;
5310
bb2bc55a
MG
5311 if (!cpumask_weight(cur))
5312 return ret;
5313
75e23e49 5314 rcu_read_lock_sched();
f82f8042
JL
5315 cur_dl_b = dl_bw_of(cpumask_any(cur));
5316 trial_cpus = cpumask_weight(trial);
5317
5318 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5319 if (cur_dl_b->bw != -1 &&
5320 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5321 ret = 0;
5322 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5323 rcu_read_unlock_sched();
f82f8042
JL
5324
5325 return ret;
5326}
5327
7f51412a
JL
5328int task_can_attach(struct task_struct *p,
5329 const struct cpumask *cs_cpus_allowed)
5330{
5331 int ret = 0;
5332
5333 /*
5334 * Kthreads which disallow setaffinity shouldn't be moved
5335 * to a new cpuset; we don't want to change their cpu
5336 * affinity and isolating such threads by their set of
5337 * allowed nodes is unnecessary. Thus, cpusets are not
5338 * applicable for such threads. This prevents checking for
5339 * success of set_cpus_allowed_ptr() on all attached tasks
5340 * before cpus_allowed may be changed.
5341 */
5342 if (p->flags & PF_NO_SETAFFINITY) {
5343 ret = -EINVAL;
5344 goto out;
5345 }
5346
5347#ifdef CONFIG_SMP
5348 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5349 cs_cpus_allowed)) {
5350 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5351 cs_cpus_allowed);
75e23e49 5352 struct dl_bw *dl_b;
7f51412a
JL
5353 bool overflow;
5354 int cpus;
5355 unsigned long flags;
5356
75e23e49
JL
5357 rcu_read_lock_sched();
5358 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5359 raw_spin_lock_irqsave(&dl_b->lock, flags);
5360 cpus = dl_bw_cpus(dest_cpu);
5361 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5362 if (overflow)
5363 ret = -EBUSY;
5364 else {
5365 /*
5366 * We reserve space for this task in the destination
5367 * root_domain, as we can't fail after this point.
5368 * We will free resources in the source root_domain
5369 * later on (see set_cpus_allowed_dl()).
5370 */
5371 __dl_add(dl_b, p->dl.dl_bw);
5372 }
5373 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5374 rcu_read_unlock_sched();
7f51412a
JL
5375
5376 }
5377#endif
5378out:
5379 return ret;
5380}
5381
1da177e4 5382#ifdef CONFIG_SMP
1da177e4 5383
e26fbffd
TG
5384static bool sched_smp_initialized __read_mostly;
5385
e6628d5b
MG
5386#ifdef CONFIG_NUMA_BALANCING
5387/* Migrate current task p to target_cpu */
5388int migrate_task_to(struct task_struct *p, int target_cpu)
5389{
5390 struct migration_arg arg = { p, target_cpu };
5391 int curr_cpu = task_cpu(p);
5392
5393 if (curr_cpu == target_cpu)
5394 return 0;
5395
5396 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5397 return -EINVAL;
5398
5399 /* TODO: This is not properly updating schedstats */
5400
286549dc 5401 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5402 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5403}
0ec8aa00
PZ
5404
5405/*
5406 * Requeue a task on a given node and accurately track the number of NUMA
5407 * tasks on the runqueues
5408 */
5409void sched_setnuma(struct task_struct *p, int nid)
5410{
da0c1e65 5411 bool queued, running;
eb580751
PZ
5412 struct rq_flags rf;
5413 struct rq *rq;
0ec8aa00 5414
eb580751 5415 rq = task_rq_lock(p, &rf);
da0c1e65 5416 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5417 running = task_current(rq, p);
5418
da0c1e65 5419 if (queued)
1de64443 5420 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5421 if (running)
f3cd1c4e 5422 put_prev_task(rq, p);
0ec8aa00
PZ
5423
5424 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5425
5426 if (running)
5427 p->sched_class->set_curr_task(rq);
da0c1e65 5428 if (queued)
1de64443 5429 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5430 task_rq_unlock(rq, p, &rf);
0ec8aa00 5431}
5cc389bc 5432#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5433
1da177e4 5434#ifdef CONFIG_HOTPLUG_CPU
054b9108 5435/*
48c5ccae
PZ
5436 * Ensures that the idle task is using init_mm right before its cpu goes
5437 * offline.
054b9108 5438 */
48c5ccae 5439void idle_task_exit(void)
1da177e4 5440{
48c5ccae 5441 struct mm_struct *mm = current->active_mm;
e76bd8d9 5442
48c5ccae 5443 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5444
a53efe5f 5445 if (mm != &init_mm) {
f98db601 5446 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5447 finish_arch_post_lock_switch();
5448 }
48c5ccae 5449 mmdrop(mm);
1da177e4
LT
5450}
5451
5452/*
5d180232
PZ
5453 * Since this CPU is going 'away' for a while, fold any nr_active delta
5454 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5455 * nr_active count is stable. We need to take the teardown thread which
5456 * is calling this into account, so we hand in adjust = 1 to the load
5457 * calculation.
5d180232
PZ
5458 *
5459 * Also see the comment "Global load-average calculations".
1da177e4 5460 */
5d180232 5461static void calc_load_migrate(struct rq *rq)
1da177e4 5462{
d60585c5 5463 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5464 if (delta)
5465 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5466}
5467
3f1d2a31
PZ
5468static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5469{
5470}
5471
5472static const struct sched_class fake_sched_class = {
5473 .put_prev_task = put_prev_task_fake,
5474};
5475
5476static struct task_struct fake_task = {
5477 /*
5478 * Avoid pull_{rt,dl}_task()
5479 */
5480 .prio = MAX_PRIO + 1,
5481 .sched_class = &fake_sched_class,
5482};
5483
48f24c4d 5484/*
48c5ccae
PZ
5485 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5486 * try_to_wake_up()->select_task_rq().
5487 *
5488 * Called with rq->lock held even though we'er in stop_machine() and
5489 * there's no concurrency possible, we hold the required locks anyway
5490 * because of lock validation efforts.
1da177e4 5491 */
5e16bbc2 5492static void migrate_tasks(struct rq *dead_rq)
1da177e4 5493{
5e16bbc2 5494 struct rq *rq = dead_rq;
48c5ccae 5495 struct task_struct *next, *stop = rq->stop;
e7904a28 5496 struct pin_cookie cookie;
48c5ccae 5497 int dest_cpu;
1da177e4
LT
5498
5499 /*
48c5ccae
PZ
5500 * Fudge the rq selection such that the below task selection loop
5501 * doesn't get stuck on the currently eligible stop task.
5502 *
5503 * We're currently inside stop_machine() and the rq is either stuck
5504 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5505 * either way we should never end up calling schedule() until we're
5506 * done here.
1da177e4 5507 */
48c5ccae 5508 rq->stop = NULL;
48f24c4d 5509
77bd3970
FW
5510 /*
5511 * put_prev_task() and pick_next_task() sched
5512 * class method both need to have an up-to-date
5513 * value of rq->clock[_task]
5514 */
5515 update_rq_clock(rq);
5516
5e16bbc2 5517 for (;;) {
48c5ccae
PZ
5518 /*
5519 * There's this thread running, bail when that's the only
5520 * remaining thread.
5521 */
5522 if (rq->nr_running == 1)
dd41f596 5523 break;
48c5ccae 5524
cbce1a68 5525 /*
5473e0cc 5526 * pick_next_task assumes pinned rq->lock.
cbce1a68 5527 */
e7904a28
PZ
5528 cookie = lockdep_pin_lock(&rq->lock);
5529 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5530 BUG_ON(!next);
79c53799 5531 next->sched_class->put_prev_task(rq, next);
e692ab53 5532
5473e0cc
WL
5533 /*
5534 * Rules for changing task_struct::cpus_allowed are holding
5535 * both pi_lock and rq->lock, such that holding either
5536 * stabilizes the mask.
5537 *
5538 * Drop rq->lock is not quite as disastrous as it usually is
5539 * because !cpu_active at this point, which means load-balance
5540 * will not interfere. Also, stop-machine.
5541 */
e7904a28 5542 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5543 raw_spin_unlock(&rq->lock);
5544 raw_spin_lock(&next->pi_lock);
5545 raw_spin_lock(&rq->lock);
5546
5547 /*
5548 * Since we're inside stop-machine, _nothing_ should have
5549 * changed the task, WARN if weird stuff happened, because in
5550 * that case the above rq->lock drop is a fail too.
5551 */
5552 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5553 raw_spin_unlock(&next->pi_lock);
5554 continue;
5555 }
5556
48c5ccae 5557 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5558 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5559
5e16bbc2
PZ
5560 rq = __migrate_task(rq, next, dest_cpu);
5561 if (rq != dead_rq) {
5562 raw_spin_unlock(&rq->lock);
5563 rq = dead_rq;
5564 raw_spin_lock(&rq->lock);
5565 }
5473e0cc 5566 raw_spin_unlock(&next->pi_lock);
1da177e4 5567 }
dce48a84 5568
48c5ccae 5569 rq->stop = stop;
dce48a84 5570}
1da177e4
LT
5571#endif /* CONFIG_HOTPLUG_CPU */
5572
1f11eb6a
GH
5573static void set_rq_online(struct rq *rq)
5574{
5575 if (!rq->online) {
5576 const struct sched_class *class;
5577
c6c4927b 5578 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5579 rq->online = 1;
5580
5581 for_each_class(class) {
5582 if (class->rq_online)
5583 class->rq_online(rq);
5584 }
5585 }
5586}
5587
5588static void set_rq_offline(struct rq *rq)
5589{
5590 if (rq->online) {
5591 const struct sched_class *class;
5592
5593 for_each_class(class) {
5594 if (class->rq_offline)
5595 class->rq_offline(rq);
5596 }
5597
c6c4927b 5598 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5599 rq->online = 0;
5600 }
5601}
5602
9cf7243d 5603static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5604{
969c7921 5605 struct rq *rq = cpu_rq(cpu);
1da177e4 5606
a803f026
CM
5607 rq->age_stamp = sched_clock_cpu(cpu);
5608}
5609
4cb98839
PZ
5610static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5611
3e9830dc 5612#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5613
d039ac60 5614static __read_mostly int sched_debug_enabled;
f6630114 5615
d039ac60 5616static int __init sched_debug_setup(char *str)
f6630114 5617{
d039ac60 5618 sched_debug_enabled = 1;
f6630114
MT
5619
5620 return 0;
5621}
d039ac60
PZ
5622early_param("sched_debug", sched_debug_setup);
5623
5624static inline bool sched_debug(void)
5625{
5626 return sched_debug_enabled;
5627}
f6630114 5628
7c16ec58 5629static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5630 struct cpumask *groupmask)
1da177e4 5631{
4dcf6aff 5632 struct sched_group *group = sd->groups;
1da177e4 5633
96f874e2 5634 cpumask_clear(groupmask);
4dcf6aff
IM
5635
5636 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5637
5638 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5639 printk("does not load-balance\n");
4dcf6aff 5640 if (sd->parent)
3df0fc5b
PZ
5641 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5642 " has parent");
4dcf6aff 5643 return -1;
41c7ce9a
NP
5644 }
5645
333470ee
TH
5646 printk(KERN_CONT "span %*pbl level %s\n",
5647 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5648
758b2cdc 5649 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5650 printk(KERN_ERR "ERROR: domain->span does not contain "
5651 "CPU%d\n", cpu);
4dcf6aff 5652 }
758b2cdc 5653 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5654 printk(KERN_ERR "ERROR: domain->groups does not contain"
5655 " CPU%d\n", cpu);
4dcf6aff 5656 }
1da177e4 5657
4dcf6aff 5658 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5659 do {
4dcf6aff 5660 if (!group) {
3df0fc5b
PZ
5661 printk("\n");
5662 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5663 break;
5664 }
5665
758b2cdc 5666 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5667 printk(KERN_CONT "\n");
5668 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5669 break;
5670 }
1da177e4 5671
cb83b629
PZ
5672 if (!(sd->flags & SD_OVERLAP) &&
5673 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5674 printk(KERN_CONT "\n");
5675 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5676 break;
5677 }
1da177e4 5678
758b2cdc 5679 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5680
333470ee
TH
5681 printk(KERN_CONT " %*pbl",
5682 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5683 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5684 printk(KERN_CONT " (cpu_capacity = %d)",
5685 group->sgc->capacity);
381512cf 5686 }
1da177e4 5687
4dcf6aff
IM
5688 group = group->next;
5689 } while (group != sd->groups);
3df0fc5b 5690 printk(KERN_CONT "\n");
1da177e4 5691
758b2cdc 5692 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5693 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5694
758b2cdc
RR
5695 if (sd->parent &&
5696 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5697 printk(KERN_ERR "ERROR: parent span is not a superset "
5698 "of domain->span\n");
4dcf6aff
IM
5699 return 0;
5700}
1da177e4 5701
4dcf6aff
IM
5702static void sched_domain_debug(struct sched_domain *sd, int cpu)
5703{
5704 int level = 0;
1da177e4 5705
d039ac60 5706 if (!sched_debug_enabled)
f6630114
MT
5707 return;
5708
4dcf6aff
IM
5709 if (!sd) {
5710 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5711 return;
5712 }
1da177e4 5713
4dcf6aff
IM
5714 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5715
5716 for (;;) {
4cb98839 5717 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5718 break;
1da177e4
LT
5719 level++;
5720 sd = sd->parent;
33859f7f 5721 if (!sd)
4dcf6aff
IM
5722 break;
5723 }
1da177e4 5724}
6d6bc0ad 5725#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5726# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5727static inline bool sched_debug(void)
5728{
5729 return false;
5730}
6d6bc0ad 5731#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5732
1a20ff27 5733static int sd_degenerate(struct sched_domain *sd)
245af2c7 5734{
758b2cdc 5735 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5736 return 1;
5737
5738 /* Following flags need at least 2 groups */
5739 if (sd->flags & (SD_LOAD_BALANCE |
5740 SD_BALANCE_NEWIDLE |
5741 SD_BALANCE_FORK |
89c4710e 5742 SD_BALANCE_EXEC |
5d4dfddd 5743 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5744 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5745 SD_SHARE_PKG_RESOURCES |
5746 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5747 if (sd->groups != sd->groups->next)
5748 return 0;
5749 }
5750
5751 /* Following flags don't use groups */
c88d5910 5752 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5753 return 0;
5754
5755 return 1;
5756}
5757
48f24c4d
IM
5758static int
5759sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5760{
5761 unsigned long cflags = sd->flags, pflags = parent->flags;
5762
5763 if (sd_degenerate(parent))
5764 return 1;
5765
758b2cdc 5766 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5767 return 0;
5768
245af2c7
SS
5769 /* Flags needing groups don't count if only 1 group in parent */
5770 if (parent->groups == parent->groups->next) {
5771 pflags &= ~(SD_LOAD_BALANCE |
5772 SD_BALANCE_NEWIDLE |
5773 SD_BALANCE_FORK |
89c4710e 5774 SD_BALANCE_EXEC |
1f6e6c7c 5775 SD_ASYM_CPUCAPACITY |
5d4dfddd 5776 SD_SHARE_CPUCAPACITY |
10866e62 5777 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5778 SD_PREFER_SIBLING |
5779 SD_SHARE_POWERDOMAIN);
5436499e
KC
5780 if (nr_node_ids == 1)
5781 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5782 }
5783 if (~cflags & pflags)
5784 return 0;
5785
5786 return 1;
5787}
5788
dce840a0 5789static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5790{
dce840a0 5791 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5792
68e74568 5793 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5794 cpudl_cleanup(&rd->cpudl);
1baca4ce 5795 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5796 free_cpumask_var(rd->rto_mask);
5797 free_cpumask_var(rd->online);
5798 free_cpumask_var(rd->span);
5799 kfree(rd);
5800}
5801
57d885fe
GH
5802static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5803{
a0490fa3 5804 struct root_domain *old_rd = NULL;
57d885fe 5805 unsigned long flags;
57d885fe 5806
05fa785c 5807 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5808
5809 if (rq->rd) {
a0490fa3 5810 old_rd = rq->rd;
57d885fe 5811
c6c4927b 5812 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5813 set_rq_offline(rq);
57d885fe 5814
c6c4927b 5815 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5816
a0490fa3 5817 /*
0515973f 5818 * If we dont want to free the old_rd yet then
a0490fa3
IM
5819 * set old_rd to NULL to skip the freeing later
5820 * in this function:
5821 */
5822 if (!atomic_dec_and_test(&old_rd->refcount))
5823 old_rd = NULL;
57d885fe
GH
5824 }
5825
5826 atomic_inc(&rd->refcount);
5827 rq->rd = rd;
5828
c6c4927b 5829 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5830 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5831 set_rq_online(rq);
57d885fe 5832
05fa785c 5833 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5834
5835 if (old_rd)
dce840a0 5836 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5837}
5838
68c38fc3 5839static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5840{
5841 memset(rd, 0, sizeof(*rd));
5842
8295c699 5843 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5844 goto out;
8295c699 5845 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5846 goto free_span;
8295c699 5847 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5848 goto free_online;
8295c699 5849 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5850 goto free_dlo_mask;
6e0534f2 5851
332ac17e 5852 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5853 if (cpudl_init(&rd->cpudl) != 0)
5854 goto free_dlo_mask;
332ac17e 5855
68c38fc3 5856 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5857 goto free_rto_mask;
c6c4927b 5858 return 0;
6e0534f2 5859
68e74568
RR
5860free_rto_mask:
5861 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5862free_dlo_mask:
5863 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5864free_online:
5865 free_cpumask_var(rd->online);
5866free_span:
5867 free_cpumask_var(rd->span);
0c910d28 5868out:
c6c4927b 5869 return -ENOMEM;
57d885fe
GH
5870}
5871
029632fb
PZ
5872/*
5873 * By default the system creates a single root-domain with all cpus as
5874 * members (mimicking the global state we have today).
5875 */
5876struct root_domain def_root_domain;
5877
57d885fe
GH
5878static void init_defrootdomain(void)
5879{
68c38fc3 5880 init_rootdomain(&def_root_domain);
c6c4927b 5881
57d885fe
GH
5882 atomic_set(&def_root_domain.refcount, 1);
5883}
5884
dc938520 5885static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5886{
5887 struct root_domain *rd;
5888
5889 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5890 if (!rd)
5891 return NULL;
5892
68c38fc3 5893 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5894 kfree(rd);
5895 return NULL;
5896 }
57d885fe
GH
5897
5898 return rd;
5899}
5900
63b2ca30 5901static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5902{
5903 struct sched_group *tmp, *first;
5904
5905 if (!sg)
5906 return;
5907
5908 first = sg;
5909 do {
5910 tmp = sg->next;
5911
63b2ca30
NP
5912 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5913 kfree(sg->sgc);
e3589f6c
PZ
5914
5915 kfree(sg);
5916 sg = tmp;
5917 } while (sg != first);
5918}
5919
dce840a0
PZ
5920static void free_sched_domain(struct rcu_head *rcu)
5921{
5922 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5923
5924 /*
5925 * If its an overlapping domain it has private groups, iterate and
5926 * nuke them all.
5927 */
5928 if (sd->flags & SD_OVERLAP) {
5929 free_sched_groups(sd->groups, 1);
5930 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5931 kfree(sd->groups->sgc);
dce840a0 5932 kfree(sd->groups);
9c3f75cb 5933 }
dce840a0
PZ
5934 kfree(sd);
5935}
5936
5937static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5938{
5939 call_rcu(&sd->rcu, free_sched_domain);
5940}
5941
5942static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5943{
5944 for (; sd; sd = sd->parent)
5945 destroy_sched_domain(sd, cpu);
5946}
5947
518cd623
PZ
5948/*
5949 * Keep a special pointer to the highest sched_domain that has
5950 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5951 * allows us to avoid some pointer chasing select_idle_sibling().
5952 *
5953 * Also keep a unique ID per domain (we use the first cpu number in
5954 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5955 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5956 */
5957DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5958DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5959DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5960DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5961DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5962DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5963
5964static void update_top_cache_domain(int cpu)
5965{
5966 struct sched_domain *sd;
5d4cf996 5967 struct sched_domain *busy_sd = NULL;
518cd623 5968 int id = cpu;
7d9ffa89 5969 int size = 1;
518cd623
PZ
5970
5971 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5972 if (sd) {
518cd623 5973 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5974 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5975 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5976 }
5d4cf996 5977 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5978
5979 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5980 per_cpu(sd_llc_size, cpu) = size;
518cd623 5981 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5982
5983 sd = lowest_flag_domain(cpu, SD_NUMA);
5984 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5985
5986 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5987 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5988}
5989
1da177e4 5990/*
0eab9146 5991 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5992 * hold the hotplug lock.
5993 */
0eab9146
IM
5994static void
5995cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5996{
70b97a7f 5997 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5998 struct sched_domain *tmp;
5999
6000 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6001 for (tmp = sd; tmp; ) {
245af2c7
SS
6002 struct sched_domain *parent = tmp->parent;
6003 if (!parent)
6004 break;
f29c9b1c 6005
1a848870 6006 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6007 tmp->parent = parent->parent;
1a848870
SS
6008 if (parent->parent)
6009 parent->parent->child = tmp;
10866e62
PZ
6010 /*
6011 * Transfer SD_PREFER_SIBLING down in case of a
6012 * degenerate parent; the spans match for this
6013 * so the property transfers.
6014 */
6015 if (parent->flags & SD_PREFER_SIBLING)
6016 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 6017 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6018 } else
6019 tmp = tmp->parent;
245af2c7
SS
6020 }
6021
1a848870 6022 if (sd && sd_degenerate(sd)) {
dce840a0 6023 tmp = sd;
245af2c7 6024 sd = sd->parent;
dce840a0 6025 destroy_sched_domain(tmp, cpu);
1a848870
SS
6026 if (sd)
6027 sd->child = NULL;
6028 }
1da177e4 6029
4cb98839 6030 sched_domain_debug(sd, cpu);
1da177e4 6031
57d885fe 6032 rq_attach_root(rq, rd);
dce840a0 6033 tmp = rq->sd;
674311d5 6034 rcu_assign_pointer(rq->sd, sd);
dce840a0 6035 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6036
6037 update_top_cache_domain(cpu);
1da177e4
LT
6038}
6039
1da177e4
LT
6040/* Setup the mask of cpus configured for isolated domains */
6041static int __init isolated_cpu_setup(char *str)
6042{
a6e4491c
PB
6043 int ret;
6044
bdddd296 6045 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6046 ret = cpulist_parse(str, cpu_isolated_map);
6047 if (ret) {
6048 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6049 return 0;
6050 }
1da177e4
LT
6051 return 1;
6052}
8927f494 6053__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6054
49a02c51 6055struct s_data {
21d42ccf 6056 struct sched_domain ** __percpu sd;
49a02c51
AH
6057 struct root_domain *rd;
6058};
6059
2109b99e 6060enum s_alloc {
2109b99e 6061 sa_rootdomain,
21d42ccf 6062 sa_sd,
dce840a0 6063 sa_sd_storage,
2109b99e
AH
6064 sa_none,
6065};
6066
c1174876
PZ
6067/*
6068 * Build an iteration mask that can exclude certain CPUs from the upwards
6069 * domain traversal.
6070 *
6071 * Asymmetric node setups can result in situations where the domain tree is of
6072 * unequal depth, make sure to skip domains that already cover the entire
6073 * range.
6074 *
6075 * In that case build_sched_domains() will have terminated the iteration early
6076 * and our sibling sd spans will be empty. Domains should always include the
6077 * cpu they're built on, so check that.
6078 *
6079 */
6080static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6081{
6082 const struct cpumask *span = sched_domain_span(sd);
6083 struct sd_data *sdd = sd->private;
6084 struct sched_domain *sibling;
6085 int i;
6086
6087 for_each_cpu(i, span) {
6088 sibling = *per_cpu_ptr(sdd->sd, i);
6089 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6090 continue;
6091
6092 cpumask_set_cpu(i, sched_group_mask(sg));
6093 }
6094}
6095
6096/*
6097 * Return the canonical balance cpu for this group, this is the first cpu
6098 * of this group that's also in the iteration mask.
6099 */
6100int group_balance_cpu(struct sched_group *sg)
6101{
6102 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6103}
6104
e3589f6c
PZ
6105static int
6106build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6107{
6108 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6109 const struct cpumask *span = sched_domain_span(sd);
6110 struct cpumask *covered = sched_domains_tmpmask;
6111 struct sd_data *sdd = sd->private;
aaecac4a 6112 struct sched_domain *sibling;
e3589f6c
PZ
6113 int i;
6114
6115 cpumask_clear(covered);
6116
6117 for_each_cpu(i, span) {
6118 struct cpumask *sg_span;
6119
6120 if (cpumask_test_cpu(i, covered))
6121 continue;
6122
aaecac4a 6123 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6124
6125 /* See the comment near build_group_mask(). */
aaecac4a 6126 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6127 continue;
6128
e3589f6c 6129 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6130 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6131
6132 if (!sg)
6133 goto fail;
6134
6135 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6136 if (sibling->child)
6137 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6138 else
e3589f6c
PZ
6139 cpumask_set_cpu(i, sg_span);
6140
6141 cpumask_or(covered, covered, sg_span);
6142
63b2ca30
NP
6143 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6144 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6145 build_group_mask(sd, sg);
6146
c3decf0d 6147 /*
63b2ca30 6148 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6149 * domains and no possible iteration will get us here, we won't
6150 * die on a /0 trap.
6151 */
ca8ce3d0 6152 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6153
c1174876
PZ
6154 /*
6155 * Make sure the first group of this domain contains the
6156 * canonical balance cpu. Otherwise the sched_domain iteration
6157 * breaks. See update_sg_lb_stats().
6158 */
74a5ce20 6159 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6160 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6161 groups = sg;
6162
6163 if (!first)
6164 first = sg;
6165 if (last)
6166 last->next = sg;
6167 last = sg;
6168 last->next = first;
6169 }
6170 sd->groups = groups;
6171
6172 return 0;
6173
6174fail:
6175 free_sched_groups(first, 0);
6176
6177 return -ENOMEM;
6178}
6179
dce840a0 6180static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6181{
dce840a0
PZ
6182 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6183 struct sched_domain *child = sd->child;
1da177e4 6184
dce840a0
PZ
6185 if (child)
6186 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6187
9c3f75cb 6188 if (sg) {
dce840a0 6189 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6190 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6191 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6192 }
dce840a0
PZ
6193
6194 return cpu;
1e9f28fa 6195}
1e9f28fa 6196
01a08546 6197/*
dce840a0
PZ
6198 * build_sched_groups will build a circular linked list of the groups
6199 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6200 * and ->cpu_capacity to 0.
e3589f6c
PZ
6201 *
6202 * Assumes the sched_domain tree is fully constructed
01a08546 6203 */
e3589f6c
PZ
6204static int
6205build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6206{
dce840a0
PZ
6207 struct sched_group *first = NULL, *last = NULL;
6208 struct sd_data *sdd = sd->private;
6209 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6210 struct cpumask *covered;
dce840a0 6211 int i;
9c1cfda2 6212
e3589f6c
PZ
6213 get_group(cpu, sdd, &sd->groups);
6214 atomic_inc(&sd->groups->ref);
6215
0936629f 6216 if (cpu != cpumask_first(span))
e3589f6c
PZ
6217 return 0;
6218
f96225fd
PZ
6219 lockdep_assert_held(&sched_domains_mutex);
6220 covered = sched_domains_tmpmask;
6221
dce840a0 6222 cpumask_clear(covered);
6711cab4 6223
dce840a0
PZ
6224 for_each_cpu(i, span) {
6225 struct sched_group *sg;
cd08e923 6226 int group, j;
6711cab4 6227
dce840a0
PZ
6228 if (cpumask_test_cpu(i, covered))
6229 continue;
6711cab4 6230
cd08e923 6231 group = get_group(i, sdd, &sg);
c1174876 6232 cpumask_setall(sched_group_mask(sg));
0601a88d 6233
dce840a0
PZ
6234 for_each_cpu(j, span) {
6235 if (get_group(j, sdd, NULL) != group)
6236 continue;
0601a88d 6237
dce840a0
PZ
6238 cpumask_set_cpu(j, covered);
6239 cpumask_set_cpu(j, sched_group_cpus(sg));
6240 }
0601a88d 6241
dce840a0
PZ
6242 if (!first)
6243 first = sg;
6244 if (last)
6245 last->next = sg;
6246 last = sg;
6247 }
6248 last->next = first;
e3589f6c
PZ
6249
6250 return 0;
0601a88d 6251}
51888ca2 6252
89c4710e 6253/*
63b2ca30 6254 * Initialize sched groups cpu_capacity.
89c4710e 6255 *
63b2ca30 6256 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6257 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6258 * Typically cpu_capacity for all the groups in a sched domain will be same
6259 * unless there are asymmetries in the topology. If there are asymmetries,
6260 * group having more cpu_capacity will pickup more load compared to the
6261 * group having less cpu_capacity.
89c4710e 6262 */
63b2ca30 6263static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6264{
e3589f6c 6265 struct sched_group *sg = sd->groups;
89c4710e 6266
94c95ba6 6267 WARN_ON(!sg);
e3589f6c
PZ
6268
6269 do {
6270 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6271 sg = sg->next;
6272 } while (sg != sd->groups);
89c4710e 6273
c1174876 6274 if (cpu != group_balance_cpu(sg))
e3589f6c 6275 return;
aae6d3dd 6276
63b2ca30
NP
6277 update_group_capacity(sd, cpu);
6278 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6279}
6280
7c16ec58
MT
6281/*
6282 * Initializers for schedule domains
6283 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6284 */
6285
1d3504fc 6286static int default_relax_domain_level = -1;
60495e77 6287int sched_domain_level_max;
1d3504fc
HS
6288
6289static int __init setup_relax_domain_level(char *str)
6290{
a841f8ce
DS
6291 if (kstrtoint(str, 0, &default_relax_domain_level))
6292 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6293
1d3504fc
HS
6294 return 1;
6295}
6296__setup("relax_domain_level=", setup_relax_domain_level);
6297
6298static void set_domain_attribute(struct sched_domain *sd,
6299 struct sched_domain_attr *attr)
6300{
6301 int request;
6302
6303 if (!attr || attr->relax_domain_level < 0) {
6304 if (default_relax_domain_level < 0)
6305 return;
6306 else
6307 request = default_relax_domain_level;
6308 } else
6309 request = attr->relax_domain_level;
6310 if (request < sd->level) {
6311 /* turn off idle balance on this domain */
c88d5910 6312 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6313 } else {
6314 /* turn on idle balance on this domain */
c88d5910 6315 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6316 }
6317}
6318
54ab4ff4
PZ
6319static void __sdt_free(const struct cpumask *cpu_map);
6320static int __sdt_alloc(const struct cpumask *cpu_map);
6321
2109b99e
AH
6322static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6323 const struct cpumask *cpu_map)
6324{
6325 switch (what) {
2109b99e 6326 case sa_rootdomain:
822ff793
PZ
6327 if (!atomic_read(&d->rd->refcount))
6328 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6329 case sa_sd:
6330 free_percpu(d->sd); /* fall through */
dce840a0 6331 case sa_sd_storage:
54ab4ff4 6332 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6333 case sa_none:
6334 break;
6335 }
6336}
3404c8d9 6337
2109b99e
AH
6338static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6339 const struct cpumask *cpu_map)
6340{
dce840a0
PZ
6341 memset(d, 0, sizeof(*d));
6342
54ab4ff4
PZ
6343 if (__sdt_alloc(cpu_map))
6344 return sa_sd_storage;
dce840a0
PZ
6345 d->sd = alloc_percpu(struct sched_domain *);
6346 if (!d->sd)
6347 return sa_sd_storage;
2109b99e 6348 d->rd = alloc_rootdomain();
dce840a0 6349 if (!d->rd)
21d42ccf 6350 return sa_sd;
2109b99e
AH
6351 return sa_rootdomain;
6352}
57d885fe 6353
dce840a0
PZ
6354/*
6355 * NULL the sd_data elements we've used to build the sched_domain and
6356 * sched_group structure so that the subsequent __free_domain_allocs()
6357 * will not free the data we're using.
6358 */
6359static void claim_allocations(int cpu, struct sched_domain *sd)
6360{
6361 struct sd_data *sdd = sd->private;
dce840a0
PZ
6362
6363 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6364 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6365
e3589f6c 6366 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6367 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6368
63b2ca30
NP
6369 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6370 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6371}
6372
cb83b629 6373#ifdef CONFIG_NUMA
cb83b629 6374static int sched_domains_numa_levels;
e3fe70b1 6375enum numa_topology_type sched_numa_topology_type;
cb83b629 6376static int *sched_domains_numa_distance;
9942f79b 6377int sched_max_numa_distance;
cb83b629
PZ
6378static struct cpumask ***sched_domains_numa_masks;
6379static int sched_domains_curr_level;
143e1e28 6380#endif
cb83b629 6381
143e1e28
VG
6382/*
6383 * SD_flags allowed in topology descriptions.
6384 *
94f438c8
PZ
6385 * These flags are purely descriptive of the topology and do not prescribe
6386 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6387 * function:
143e1e28 6388 *
94f438c8
PZ
6389 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6390 * SD_SHARE_PKG_RESOURCES - describes shared caches
6391 * SD_NUMA - describes NUMA topologies
6392 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6393 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6394 *
6395 * Odd one out, which beside describing the topology has a quirk also
6396 * prescribes the desired behaviour that goes along with it:
6397 *
6398 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6399 */
6400#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6401 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6402 SD_SHARE_PKG_RESOURCES | \
6403 SD_NUMA | \
d77b3ed5 6404 SD_ASYM_PACKING | \
1f6e6c7c 6405 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6406 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6407
6408static struct sched_domain *
3676b13e
MR
6409sd_init(struct sched_domain_topology_level *tl,
6410 struct sched_domain *child, int cpu)
cb83b629
PZ
6411{
6412 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6413 int sd_weight, sd_flags = 0;
6414
6415#ifdef CONFIG_NUMA
6416 /*
6417 * Ugly hack to pass state to sd_numa_mask()...
6418 */
6419 sched_domains_curr_level = tl->numa_level;
6420#endif
6421
6422 sd_weight = cpumask_weight(tl->mask(cpu));
6423
6424 if (tl->sd_flags)
6425 sd_flags = (*tl->sd_flags)();
6426 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6427 "wrong sd_flags in topology description\n"))
6428 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6429
6430 *sd = (struct sched_domain){
6431 .min_interval = sd_weight,
6432 .max_interval = 2*sd_weight,
6433 .busy_factor = 32,
870a0bb5 6434 .imbalance_pct = 125,
143e1e28
VG
6435
6436 .cache_nice_tries = 0,
6437 .busy_idx = 0,
6438 .idle_idx = 0,
cb83b629
PZ
6439 .newidle_idx = 0,
6440 .wake_idx = 0,
6441 .forkexec_idx = 0,
6442
6443 .flags = 1*SD_LOAD_BALANCE
6444 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6445 | 1*SD_BALANCE_EXEC
6446 | 1*SD_BALANCE_FORK
cb83b629 6447 | 0*SD_BALANCE_WAKE
143e1e28 6448 | 1*SD_WAKE_AFFINE
5d4dfddd 6449 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6450 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6451 | 0*SD_SERIALIZE
cb83b629 6452 | 0*SD_PREFER_SIBLING
143e1e28
VG
6453 | 0*SD_NUMA
6454 | sd_flags
cb83b629 6455 ,
143e1e28 6456
cb83b629
PZ
6457 .last_balance = jiffies,
6458 .balance_interval = sd_weight,
143e1e28 6459 .smt_gain = 0,
2b4cfe64
JL
6460 .max_newidle_lb_cost = 0,
6461 .next_decay_max_lb_cost = jiffies,
3676b13e 6462 .child = child,
143e1e28
VG
6463#ifdef CONFIG_SCHED_DEBUG
6464 .name = tl->name,
6465#endif
cb83b629 6466 };
cb83b629
PZ
6467
6468 /*
143e1e28 6469 * Convert topological properties into behaviour.
cb83b629 6470 */
143e1e28 6471
9ee1cda5
MR
6472 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6473 struct sched_domain *t = sd;
6474
6475 for_each_lower_domain(t)
6476 t->flags |= SD_BALANCE_WAKE;
6477 }
6478
5d4dfddd 6479 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6480 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6481 sd->imbalance_pct = 110;
6482 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6483
6484 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6485 sd->imbalance_pct = 117;
6486 sd->cache_nice_tries = 1;
6487 sd->busy_idx = 2;
6488
6489#ifdef CONFIG_NUMA
6490 } else if (sd->flags & SD_NUMA) {
6491 sd->cache_nice_tries = 2;
6492 sd->busy_idx = 3;
6493 sd->idle_idx = 2;
6494
6495 sd->flags |= SD_SERIALIZE;
6496 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6497 sd->flags &= ~(SD_BALANCE_EXEC |
6498 SD_BALANCE_FORK |
6499 SD_WAKE_AFFINE);
6500 }
6501
6502#endif
6503 } else {
6504 sd->flags |= SD_PREFER_SIBLING;
6505 sd->cache_nice_tries = 1;
6506 sd->busy_idx = 2;
6507 sd->idle_idx = 1;
6508 }
6509
6510 sd->private = &tl->data;
cb83b629
PZ
6511
6512 return sd;
6513}
6514
143e1e28
VG
6515/*
6516 * Topology list, bottom-up.
6517 */
6518static struct sched_domain_topology_level default_topology[] = {
6519#ifdef CONFIG_SCHED_SMT
6520 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6521#endif
6522#ifdef CONFIG_SCHED_MC
6523 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6524#endif
6525 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6526 { NULL, },
6527};
6528
c6e1e7b5
JG
6529static struct sched_domain_topology_level *sched_domain_topology =
6530 default_topology;
143e1e28
VG
6531
6532#define for_each_sd_topology(tl) \
6533 for (tl = sched_domain_topology; tl->mask; tl++)
6534
6535void set_sched_topology(struct sched_domain_topology_level *tl)
6536{
6537 sched_domain_topology = tl;
6538}
6539
6540#ifdef CONFIG_NUMA
6541
cb83b629
PZ
6542static const struct cpumask *sd_numa_mask(int cpu)
6543{
6544 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6545}
6546
d039ac60
PZ
6547static void sched_numa_warn(const char *str)
6548{
6549 static int done = false;
6550 int i,j;
6551
6552 if (done)
6553 return;
6554
6555 done = true;
6556
6557 printk(KERN_WARNING "ERROR: %s\n\n", str);
6558
6559 for (i = 0; i < nr_node_ids; i++) {
6560 printk(KERN_WARNING " ");
6561 for (j = 0; j < nr_node_ids; j++)
6562 printk(KERN_CONT "%02d ", node_distance(i,j));
6563 printk(KERN_CONT "\n");
6564 }
6565 printk(KERN_WARNING "\n");
6566}
6567
9942f79b 6568bool find_numa_distance(int distance)
d039ac60
PZ
6569{
6570 int i;
6571
6572 if (distance == node_distance(0, 0))
6573 return true;
6574
6575 for (i = 0; i < sched_domains_numa_levels; i++) {
6576 if (sched_domains_numa_distance[i] == distance)
6577 return true;
6578 }
6579
6580 return false;
6581}
6582
e3fe70b1
RR
6583/*
6584 * A system can have three types of NUMA topology:
6585 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6586 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6587 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6588 *
6589 * The difference between a glueless mesh topology and a backplane
6590 * topology lies in whether communication between not directly
6591 * connected nodes goes through intermediary nodes (where programs
6592 * could run), or through backplane controllers. This affects
6593 * placement of programs.
6594 *
6595 * The type of topology can be discerned with the following tests:
6596 * - If the maximum distance between any nodes is 1 hop, the system
6597 * is directly connected.
6598 * - If for two nodes A and B, located N > 1 hops away from each other,
6599 * there is an intermediary node C, which is < N hops away from both
6600 * nodes A and B, the system is a glueless mesh.
6601 */
6602static void init_numa_topology_type(void)
6603{
6604 int a, b, c, n;
6605
6606 n = sched_max_numa_distance;
6607
e237882b 6608 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6609 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6610 return;
6611 }
e3fe70b1
RR
6612
6613 for_each_online_node(a) {
6614 for_each_online_node(b) {
6615 /* Find two nodes furthest removed from each other. */
6616 if (node_distance(a, b) < n)
6617 continue;
6618
6619 /* Is there an intermediary node between a and b? */
6620 for_each_online_node(c) {
6621 if (node_distance(a, c) < n &&
6622 node_distance(b, c) < n) {
6623 sched_numa_topology_type =
6624 NUMA_GLUELESS_MESH;
6625 return;
6626 }
6627 }
6628
6629 sched_numa_topology_type = NUMA_BACKPLANE;
6630 return;
6631 }
6632 }
6633}
6634
cb83b629
PZ
6635static void sched_init_numa(void)
6636{
6637 int next_distance, curr_distance = node_distance(0, 0);
6638 struct sched_domain_topology_level *tl;
6639 int level = 0;
6640 int i, j, k;
6641
cb83b629
PZ
6642 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6643 if (!sched_domains_numa_distance)
6644 return;
6645
6646 /*
6647 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6648 * unique distances in the node_distance() table.
6649 *
6650 * Assumes node_distance(0,j) includes all distances in
6651 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6652 */
6653 next_distance = curr_distance;
6654 for (i = 0; i < nr_node_ids; i++) {
6655 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6656 for (k = 0; k < nr_node_ids; k++) {
6657 int distance = node_distance(i, k);
6658
6659 if (distance > curr_distance &&
6660 (distance < next_distance ||
6661 next_distance == curr_distance))
6662 next_distance = distance;
6663
6664 /*
6665 * While not a strong assumption it would be nice to know
6666 * about cases where if node A is connected to B, B is not
6667 * equally connected to A.
6668 */
6669 if (sched_debug() && node_distance(k, i) != distance)
6670 sched_numa_warn("Node-distance not symmetric");
6671
6672 if (sched_debug() && i && !find_numa_distance(distance))
6673 sched_numa_warn("Node-0 not representative");
6674 }
6675 if (next_distance != curr_distance) {
6676 sched_domains_numa_distance[level++] = next_distance;
6677 sched_domains_numa_levels = level;
6678 curr_distance = next_distance;
6679 } else break;
cb83b629 6680 }
d039ac60
PZ
6681
6682 /*
6683 * In case of sched_debug() we verify the above assumption.
6684 */
6685 if (!sched_debug())
6686 break;
cb83b629 6687 }
c123588b
AR
6688
6689 if (!level)
6690 return;
6691
cb83b629
PZ
6692 /*
6693 * 'level' contains the number of unique distances, excluding the
6694 * identity distance node_distance(i,i).
6695 *
28b4a521 6696 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6697 * numbers.
6698 */
6699
5f7865f3
TC
6700 /*
6701 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6702 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6703 * the array will contain less then 'level' members. This could be
6704 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6705 * in other functions.
6706 *
6707 * We reset it to 'level' at the end of this function.
6708 */
6709 sched_domains_numa_levels = 0;
6710
cb83b629
PZ
6711 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6712 if (!sched_domains_numa_masks)
6713 return;
6714
6715 /*
6716 * Now for each level, construct a mask per node which contains all
6717 * cpus of nodes that are that many hops away from us.
6718 */
6719 for (i = 0; i < level; i++) {
6720 sched_domains_numa_masks[i] =
6721 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6722 if (!sched_domains_numa_masks[i])
6723 return;
6724
6725 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6726 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6727 if (!mask)
6728 return;
6729
6730 sched_domains_numa_masks[i][j] = mask;
6731
9c03ee14 6732 for_each_node(k) {
dd7d8634 6733 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6734 continue;
6735
6736 cpumask_or(mask, mask, cpumask_of_node(k));
6737 }
6738 }
6739 }
6740
143e1e28
VG
6741 /* Compute default topology size */
6742 for (i = 0; sched_domain_topology[i].mask; i++);
6743
c515db8c 6744 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6745 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6746 if (!tl)
6747 return;
6748
6749 /*
6750 * Copy the default topology bits..
6751 */
143e1e28
VG
6752 for (i = 0; sched_domain_topology[i].mask; i++)
6753 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6754
6755 /*
6756 * .. and append 'j' levels of NUMA goodness.
6757 */
6758 for (j = 0; j < level; i++, j++) {
6759 tl[i] = (struct sched_domain_topology_level){
cb83b629 6760 .mask = sd_numa_mask,
143e1e28 6761 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6762 .flags = SDTL_OVERLAP,
6763 .numa_level = j,
143e1e28 6764 SD_INIT_NAME(NUMA)
cb83b629
PZ
6765 };
6766 }
6767
6768 sched_domain_topology = tl;
5f7865f3
TC
6769
6770 sched_domains_numa_levels = level;
9942f79b 6771 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6772
6773 init_numa_topology_type();
cb83b629 6774}
301a5cba 6775
135fb3e1 6776static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6777{
301a5cba 6778 int node = cpu_to_node(cpu);
135fb3e1 6779 int i, j;
301a5cba
TC
6780
6781 for (i = 0; i < sched_domains_numa_levels; i++) {
6782 for (j = 0; j < nr_node_ids; j++) {
6783 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6784 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6785 }
6786 }
6787}
6788
135fb3e1 6789static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6790{
6791 int i, j;
135fb3e1 6792
301a5cba
TC
6793 for (i = 0; i < sched_domains_numa_levels; i++) {
6794 for (j = 0; j < nr_node_ids; j++)
6795 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6796 }
6797}
6798
cb83b629 6799#else
135fb3e1
TG
6800static inline void sched_init_numa(void) { }
6801static void sched_domains_numa_masks_set(unsigned int cpu) { }
6802static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6803#endif /* CONFIG_NUMA */
6804
54ab4ff4
PZ
6805static int __sdt_alloc(const struct cpumask *cpu_map)
6806{
6807 struct sched_domain_topology_level *tl;
6808 int j;
6809
27723a68 6810 for_each_sd_topology(tl) {
54ab4ff4
PZ
6811 struct sd_data *sdd = &tl->data;
6812
6813 sdd->sd = alloc_percpu(struct sched_domain *);
6814 if (!sdd->sd)
6815 return -ENOMEM;
6816
6817 sdd->sg = alloc_percpu(struct sched_group *);
6818 if (!sdd->sg)
6819 return -ENOMEM;
6820
63b2ca30
NP
6821 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6822 if (!sdd->sgc)
9c3f75cb
PZ
6823 return -ENOMEM;
6824
54ab4ff4
PZ
6825 for_each_cpu(j, cpu_map) {
6826 struct sched_domain *sd;
6827 struct sched_group *sg;
63b2ca30 6828 struct sched_group_capacity *sgc;
54ab4ff4 6829
5cc389bc 6830 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6831 GFP_KERNEL, cpu_to_node(j));
6832 if (!sd)
6833 return -ENOMEM;
6834
6835 *per_cpu_ptr(sdd->sd, j) = sd;
6836
6837 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6838 GFP_KERNEL, cpu_to_node(j));
6839 if (!sg)
6840 return -ENOMEM;
6841
30b4e9eb
IM
6842 sg->next = sg;
6843
54ab4ff4 6844 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6845
63b2ca30 6846 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6847 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6848 if (!sgc)
9c3f75cb
PZ
6849 return -ENOMEM;
6850
63b2ca30 6851 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6852 }
6853 }
6854
6855 return 0;
6856}
6857
6858static void __sdt_free(const struct cpumask *cpu_map)
6859{
6860 struct sched_domain_topology_level *tl;
6861 int j;
6862
27723a68 6863 for_each_sd_topology(tl) {
54ab4ff4
PZ
6864 struct sd_data *sdd = &tl->data;
6865
6866 for_each_cpu(j, cpu_map) {
fb2cf2c6 6867 struct sched_domain *sd;
6868
6869 if (sdd->sd) {
6870 sd = *per_cpu_ptr(sdd->sd, j);
6871 if (sd && (sd->flags & SD_OVERLAP))
6872 free_sched_groups(sd->groups, 0);
6873 kfree(*per_cpu_ptr(sdd->sd, j));
6874 }
6875
6876 if (sdd->sg)
6877 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6878 if (sdd->sgc)
6879 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6880 }
6881 free_percpu(sdd->sd);
fb2cf2c6 6882 sdd->sd = NULL;
54ab4ff4 6883 free_percpu(sdd->sg);
fb2cf2c6 6884 sdd->sg = NULL;
63b2ca30
NP
6885 free_percpu(sdd->sgc);
6886 sdd->sgc = NULL;
54ab4ff4
PZ
6887 }
6888}
6889
2c402dc3 6890struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6891 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6892 struct sched_domain *child, int cpu)
2c402dc3 6893{
3676b13e 6894 struct sched_domain *sd = sd_init(tl, child, cpu);
2c402dc3 6895
2c402dc3 6896 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6897 if (child) {
6898 sd->level = child->level + 1;
6899 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6900 child->parent = sd;
6ae72dff
PZ
6901
6902 if (!cpumask_subset(sched_domain_span(child),
6903 sched_domain_span(sd))) {
6904 pr_err("BUG: arch topology borken\n");
6905#ifdef CONFIG_SCHED_DEBUG
6906 pr_err(" the %s domain not a subset of the %s domain\n",
6907 child->name, sd->name);
6908#endif
6909 /* Fixup, ensure @sd has at least @child cpus. */
6910 cpumask_or(sched_domain_span(sd),
6911 sched_domain_span(sd),
6912 sched_domain_span(child));
6913 }
6914
60495e77 6915 }
a841f8ce 6916 set_domain_attribute(sd, attr);
2c402dc3
PZ
6917
6918 return sd;
6919}
6920
2109b99e
AH
6921/*
6922 * Build sched domains for a given set of cpus and attach the sched domains
6923 * to the individual cpus
6924 */
dce840a0
PZ
6925static int build_sched_domains(const struct cpumask *cpu_map,
6926 struct sched_domain_attr *attr)
2109b99e 6927{
1c632169 6928 enum s_alloc alloc_state;
dce840a0 6929 struct sched_domain *sd;
2109b99e 6930 struct s_data d;
cd92bfd3 6931 struct rq *rq = NULL;
822ff793 6932 int i, ret = -ENOMEM;
9c1cfda2 6933
2109b99e
AH
6934 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6935 if (alloc_state != sa_rootdomain)
6936 goto error;
9c1cfda2 6937
dce840a0 6938 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6939 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6940 struct sched_domain_topology_level *tl;
6941
3bd65a80 6942 sd = NULL;
27723a68 6943 for_each_sd_topology(tl) {
4a850cbe 6944 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6945 if (tl == sched_domain_topology)
6946 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6947 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6948 sd->flags |= SD_OVERLAP;
d110235d
PZ
6949 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6950 break;
e3589f6c 6951 }
dce840a0
PZ
6952 }
6953
6954 /* Build the groups for the domains */
6955 for_each_cpu(i, cpu_map) {
6956 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6957 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6958 if (sd->flags & SD_OVERLAP) {
6959 if (build_overlap_sched_groups(sd, i))
6960 goto error;
6961 } else {
6962 if (build_sched_groups(sd, i))
6963 goto error;
6964 }
1cf51902 6965 }
a06dadbe 6966 }
9c1cfda2 6967
ced549fa 6968 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6969 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6970 if (!cpumask_test_cpu(i, cpu_map))
6971 continue;
9c1cfda2 6972
dce840a0
PZ
6973 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6974 claim_allocations(i, sd);
63b2ca30 6975 init_sched_groups_capacity(i, sd);
dce840a0 6976 }
f712c0c7 6977 }
9c1cfda2 6978
1da177e4 6979 /* Attach the domains */
dce840a0 6980 rcu_read_lock();
abcd083a 6981 for_each_cpu(i, cpu_map) {
cd92bfd3 6982 rq = cpu_rq(i);
21d42ccf 6983 sd = *per_cpu_ptr(d.sd, i);
cd92bfd3
DE
6984
6985 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
6986 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
6987 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
6988
49a02c51 6989 cpu_attach_domain(sd, d.rd, i);
1da177e4 6990 }
dce840a0 6991 rcu_read_unlock();
51888ca2 6992
cd92bfd3
DE
6993 if (rq) {
6994 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
6995 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
6996 }
6997
822ff793 6998 ret = 0;
51888ca2 6999error:
2109b99e 7000 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7001 return ret;
1da177e4 7002}
029190c5 7003
acc3f5d7 7004static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7005static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7006static struct sched_domain_attr *dattr_cur;
7007 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7008
7009/*
7010 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7011 * cpumask) fails, then fallback to a single sched domain,
7012 * as determined by the single cpumask fallback_doms.
029190c5 7013 */
4212823f 7014static cpumask_var_t fallback_doms;
029190c5 7015
ee79d1bd
HC
7016/*
7017 * arch_update_cpu_topology lets virtualized architectures update the
7018 * cpu core maps. It is supposed to return 1 if the topology changed
7019 * or 0 if it stayed the same.
7020 */
52f5684c 7021int __weak arch_update_cpu_topology(void)
22e52b07 7022{
ee79d1bd 7023 return 0;
22e52b07
HC
7024}
7025
acc3f5d7
RR
7026cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7027{
7028 int i;
7029 cpumask_var_t *doms;
7030
7031 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7032 if (!doms)
7033 return NULL;
7034 for (i = 0; i < ndoms; i++) {
7035 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7036 free_sched_domains(doms, i);
7037 return NULL;
7038 }
7039 }
7040 return doms;
7041}
7042
7043void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7044{
7045 unsigned int i;
7046 for (i = 0; i < ndoms; i++)
7047 free_cpumask_var(doms[i]);
7048 kfree(doms);
7049}
7050
1a20ff27 7051/*
41a2d6cf 7052 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7053 * For now this just excludes isolated cpus, but could be used to
7054 * exclude other special cases in the future.
1a20ff27 7055 */
c4a8849a 7056static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7057{
7378547f
MM
7058 int err;
7059
22e52b07 7060 arch_update_cpu_topology();
029190c5 7061 ndoms_cur = 1;
acc3f5d7 7062 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7063 if (!doms_cur)
acc3f5d7
RR
7064 doms_cur = &fallback_doms;
7065 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7066 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7067 register_sched_domain_sysctl();
7378547f
MM
7068
7069 return err;
1a20ff27
DG
7070}
7071
1a20ff27
DG
7072/*
7073 * Detach sched domains from a group of cpus specified in cpu_map
7074 * These cpus will now be attached to the NULL domain
7075 */
96f874e2 7076static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7077{
7078 int i;
7079
dce840a0 7080 rcu_read_lock();
abcd083a 7081 for_each_cpu(i, cpu_map)
57d885fe 7082 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7083 rcu_read_unlock();
1a20ff27
DG
7084}
7085
1d3504fc
HS
7086/* handle null as "default" */
7087static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7088 struct sched_domain_attr *new, int idx_new)
7089{
7090 struct sched_domain_attr tmp;
7091
7092 /* fast path */
7093 if (!new && !cur)
7094 return 1;
7095
7096 tmp = SD_ATTR_INIT;
7097 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7098 new ? (new + idx_new) : &tmp,
7099 sizeof(struct sched_domain_attr));
7100}
7101
029190c5
PJ
7102/*
7103 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7104 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7105 * doms_new[] to the current sched domain partitioning, doms_cur[].
7106 * It destroys each deleted domain and builds each new domain.
7107 *
acc3f5d7 7108 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7109 * The masks don't intersect (don't overlap.) We should setup one
7110 * sched domain for each mask. CPUs not in any of the cpumasks will
7111 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7112 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7113 * it as it is.
7114 *
acc3f5d7
RR
7115 * The passed in 'doms_new' should be allocated using
7116 * alloc_sched_domains. This routine takes ownership of it and will
7117 * free_sched_domains it when done with it. If the caller failed the
7118 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7119 * and partition_sched_domains() will fallback to the single partition
7120 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7121 *
96f874e2 7122 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7123 * ndoms_new == 0 is a special case for destroying existing domains,
7124 * and it will not create the default domain.
dfb512ec 7125 *
029190c5
PJ
7126 * Call with hotplug lock held
7127 */
acc3f5d7 7128void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7129 struct sched_domain_attr *dattr_new)
029190c5 7130{
dfb512ec 7131 int i, j, n;
d65bd5ec 7132 int new_topology;
029190c5 7133
712555ee 7134 mutex_lock(&sched_domains_mutex);
a1835615 7135
7378547f
MM
7136 /* always unregister in case we don't destroy any domains */
7137 unregister_sched_domain_sysctl();
7138
d65bd5ec
HC
7139 /* Let architecture update cpu core mappings. */
7140 new_topology = arch_update_cpu_topology();
7141
dfb512ec 7142 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7143
7144 /* Destroy deleted domains */
7145 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7146 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7147 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7148 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7149 goto match1;
7150 }
7151 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7152 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7153match1:
7154 ;
7155 }
7156
c8d2d47a 7157 n = ndoms_cur;
e761b772 7158 if (doms_new == NULL) {
c8d2d47a 7159 n = 0;
acc3f5d7 7160 doms_new = &fallback_doms;
6ad4c188 7161 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7162 WARN_ON_ONCE(dattr_new);
e761b772
MK
7163 }
7164
029190c5
PJ
7165 /* Build new domains */
7166 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7167 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7168 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7169 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7170 goto match2;
7171 }
7172 /* no match - add a new doms_new */
dce840a0 7173 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7174match2:
7175 ;
7176 }
7177
7178 /* Remember the new sched domains */
acc3f5d7
RR
7179 if (doms_cur != &fallback_doms)
7180 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7181 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7182 doms_cur = doms_new;
1d3504fc 7183 dattr_cur = dattr_new;
029190c5 7184 ndoms_cur = ndoms_new;
7378547f
MM
7185
7186 register_sched_domain_sysctl();
a1835615 7187
712555ee 7188 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7189}
7190
d35be8ba
SB
7191static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7192
1da177e4 7193/*
3a101d05
TH
7194 * Update cpusets according to cpu_active mask. If cpusets are
7195 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7196 * around partition_sched_domains().
d35be8ba
SB
7197 *
7198 * If we come here as part of a suspend/resume, don't touch cpusets because we
7199 * want to restore it back to its original state upon resume anyway.
1da177e4 7200 */
40190a78 7201static void cpuset_cpu_active(void)
e761b772 7202{
40190a78 7203 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7204 /*
7205 * num_cpus_frozen tracks how many CPUs are involved in suspend
7206 * resume sequence. As long as this is not the last online
7207 * operation in the resume sequence, just build a single sched
7208 * domain, ignoring cpusets.
7209 */
7210 num_cpus_frozen--;
7211 if (likely(num_cpus_frozen)) {
7212 partition_sched_domains(1, NULL, NULL);
135fb3e1 7213 return;
d35be8ba 7214 }
d35be8ba
SB
7215 /*
7216 * This is the last CPU online operation. So fall through and
7217 * restore the original sched domains by considering the
7218 * cpuset configurations.
7219 */
3a101d05 7220 }
135fb3e1 7221 cpuset_update_active_cpus(true);
3a101d05 7222}
e761b772 7223
40190a78 7224static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7225{
3c18d447 7226 unsigned long flags;
3c18d447 7227 struct dl_bw *dl_b;
533445c6
OS
7228 bool overflow;
7229 int cpus;
3c18d447 7230
40190a78 7231 if (!cpuhp_tasks_frozen) {
533445c6
OS
7232 rcu_read_lock_sched();
7233 dl_b = dl_bw_of(cpu);
3c18d447 7234
533445c6
OS
7235 raw_spin_lock_irqsave(&dl_b->lock, flags);
7236 cpus = dl_bw_cpus(cpu);
7237 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7238 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7239
533445c6 7240 rcu_read_unlock_sched();
3c18d447 7241
533445c6 7242 if (overflow)
135fb3e1 7243 return -EBUSY;
7ddf96b0 7244 cpuset_update_active_cpus(false);
135fb3e1 7245 } else {
d35be8ba
SB
7246 num_cpus_frozen++;
7247 partition_sched_domains(1, NULL, NULL);
e761b772 7248 }
135fb3e1 7249 return 0;
e761b772 7250}
e761b772 7251
40190a78 7252int sched_cpu_activate(unsigned int cpu)
135fb3e1 7253{
7d976699
TG
7254 struct rq *rq = cpu_rq(cpu);
7255 unsigned long flags;
7256
40190a78 7257 set_cpu_active(cpu, true);
135fb3e1 7258
40190a78 7259 if (sched_smp_initialized) {
135fb3e1 7260 sched_domains_numa_masks_set(cpu);
40190a78 7261 cpuset_cpu_active();
e761b772 7262 }
7d976699
TG
7263
7264 /*
7265 * Put the rq online, if not already. This happens:
7266 *
7267 * 1) In the early boot process, because we build the real domains
7268 * after all cpus have been brought up.
7269 *
7270 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7271 * domains.
7272 */
7273 raw_spin_lock_irqsave(&rq->lock, flags);
7274 if (rq->rd) {
7275 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7276 set_rq_online(rq);
7277 }
7278 raw_spin_unlock_irqrestore(&rq->lock, flags);
7279
7280 update_max_interval();
7281
40190a78 7282 return 0;
135fb3e1
TG
7283}
7284
40190a78 7285int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7286{
135fb3e1
TG
7287 int ret;
7288
40190a78 7289 set_cpu_active(cpu, false);
b2454caa
PZ
7290 /*
7291 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7292 * users of this state to go away such that all new such users will
7293 * observe it.
7294 *
7295 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7296 * not imply sync_sched(), so wait for both.
7297 *
7298 * Do sync before park smpboot threads to take care the rcu boost case.
7299 */
7300 if (IS_ENABLED(CONFIG_PREEMPT))
7301 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7302 else
7303 synchronize_rcu();
40190a78
TG
7304
7305 if (!sched_smp_initialized)
7306 return 0;
7307
7308 ret = cpuset_cpu_inactive(cpu);
7309 if (ret) {
7310 set_cpu_active(cpu, true);
7311 return ret;
135fb3e1 7312 }
40190a78
TG
7313 sched_domains_numa_masks_clear(cpu);
7314 return 0;
135fb3e1
TG
7315}
7316
94baf7a5
TG
7317static void sched_rq_cpu_starting(unsigned int cpu)
7318{
7319 struct rq *rq = cpu_rq(cpu);
7320
7321 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7322 update_max_interval();
7323}
7324
135fb3e1
TG
7325int sched_cpu_starting(unsigned int cpu)
7326{
7327 set_cpu_rq_start_time(cpu);
94baf7a5 7328 sched_rq_cpu_starting(cpu);
135fb3e1 7329 return 0;
e761b772 7330}
e761b772 7331
f2785ddb
TG
7332#ifdef CONFIG_HOTPLUG_CPU
7333int sched_cpu_dying(unsigned int cpu)
7334{
7335 struct rq *rq = cpu_rq(cpu);
7336 unsigned long flags;
7337
7338 /* Handle pending wakeups and then migrate everything off */
7339 sched_ttwu_pending();
7340 raw_spin_lock_irqsave(&rq->lock, flags);
7341 if (rq->rd) {
7342 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7343 set_rq_offline(rq);
7344 }
7345 migrate_tasks(rq);
7346 BUG_ON(rq->nr_running != 1);
7347 raw_spin_unlock_irqrestore(&rq->lock, flags);
7348 calc_load_migrate(rq);
7349 update_max_interval();
20a5c8cc 7350 nohz_balance_exit_idle(cpu);
e5ef27d0 7351 hrtick_clear(rq);
f2785ddb
TG
7352 return 0;
7353}
7354#endif
7355
1da177e4
LT
7356void __init sched_init_smp(void)
7357{
dcc30a35
RR
7358 cpumask_var_t non_isolated_cpus;
7359
7360 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7361 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7362
cb83b629
PZ
7363 sched_init_numa();
7364
6acce3ef
PZ
7365 /*
7366 * There's no userspace yet to cause hotplug operations; hence all the
7367 * cpu masks are stable and all blatant races in the below code cannot
7368 * happen.
7369 */
712555ee 7370 mutex_lock(&sched_domains_mutex);
c4a8849a 7371 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7372 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7373 if (cpumask_empty(non_isolated_cpus))
7374 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7375 mutex_unlock(&sched_domains_mutex);
e761b772 7376
5c1e1767 7377 /* Move init over to a non-isolated CPU */
dcc30a35 7378 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7379 BUG();
19978ca6 7380 sched_init_granularity();
dcc30a35 7381 free_cpumask_var(non_isolated_cpus);
4212823f 7382
0e3900e6 7383 init_sched_rt_class();
1baca4ce 7384 init_sched_dl_class();
e26fbffd 7385 sched_smp_initialized = true;
1da177e4 7386}
e26fbffd
TG
7387
7388static int __init migration_init(void)
7389{
94baf7a5 7390 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7391 return 0;
1da177e4 7392}
e26fbffd
TG
7393early_initcall(migration_init);
7394
1da177e4
LT
7395#else
7396void __init sched_init_smp(void)
7397{
19978ca6 7398 sched_init_granularity();
1da177e4
LT
7399}
7400#endif /* CONFIG_SMP */
7401
7402int in_sched_functions(unsigned long addr)
7403{
1da177e4
LT
7404 return in_lock_functions(addr) ||
7405 (addr >= (unsigned long)__sched_text_start
7406 && addr < (unsigned long)__sched_text_end);
7407}
7408
029632fb 7409#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7410/*
7411 * Default task group.
7412 * Every task in system belongs to this group at bootup.
7413 */
029632fb 7414struct task_group root_task_group;
35cf4e50 7415LIST_HEAD(task_groups);
b0367629
WL
7416
7417/* Cacheline aligned slab cache for task_group */
7418static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7419#endif
6f505b16 7420
e6252c3e 7421DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7422
1da177e4
LT
7423void __init sched_init(void)
7424{
dd41f596 7425 int i, j;
434d53b0
MT
7426 unsigned long alloc_size = 0, ptr;
7427
7428#ifdef CONFIG_FAIR_GROUP_SCHED
7429 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7430#endif
7431#ifdef CONFIG_RT_GROUP_SCHED
7432 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7433#endif
434d53b0 7434 if (alloc_size) {
36b7b6d4 7435 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7436
7437#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7438 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7439 ptr += nr_cpu_ids * sizeof(void **);
7440
07e06b01 7441 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7442 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7443
6d6bc0ad 7444#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7445#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7446 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7447 ptr += nr_cpu_ids * sizeof(void **);
7448
07e06b01 7449 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7450 ptr += nr_cpu_ids * sizeof(void **);
7451
6d6bc0ad 7452#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7453 }
df7c8e84 7454#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7455 for_each_possible_cpu(i) {
7456 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7457 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7458 }
b74e6278 7459#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7460
332ac17e
DF
7461 init_rt_bandwidth(&def_rt_bandwidth,
7462 global_rt_period(), global_rt_runtime());
7463 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7464 global_rt_period(), global_rt_runtime());
332ac17e 7465
57d885fe
GH
7466#ifdef CONFIG_SMP
7467 init_defrootdomain();
7468#endif
7469
d0b27fa7 7470#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7471 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7472 global_rt_period(), global_rt_runtime());
6d6bc0ad 7473#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7474
7c941438 7475#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7476 task_group_cache = KMEM_CACHE(task_group, 0);
7477
07e06b01
YZ
7478 list_add(&root_task_group.list, &task_groups);
7479 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7480 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7481 autogroup_init(&init_task);
7c941438 7482#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7483
0a945022 7484 for_each_possible_cpu(i) {
70b97a7f 7485 struct rq *rq;
1da177e4
LT
7486
7487 rq = cpu_rq(i);
05fa785c 7488 raw_spin_lock_init(&rq->lock);
7897986b 7489 rq->nr_running = 0;
dce48a84
TG
7490 rq->calc_load_active = 0;
7491 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7492 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7493 init_rt_rq(&rq->rt);
7494 init_dl_rq(&rq->dl);
dd41f596 7495#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7496 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7497 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7498 /*
07e06b01 7499 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7500 *
7501 * In case of task-groups formed thr' the cgroup filesystem, it
7502 * gets 100% of the cpu resources in the system. This overall
7503 * system cpu resource is divided among the tasks of
07e06b01 7504 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7505 * based on each entity's (task or task-group's) weight
7506 * (se->load.weight).
7507 *
07e06b01 7508 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7509 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7510 * then A0's share of the cpu resource is:
7511 *
0d905bca 7512 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7513 *
07e06b01
YZ
7514 * We achieve this by letting root_task_group's tasks sit
7515 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7516 */
ab84d31e 7517 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7518 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7519#endif /* CONFIG_FAIR_GROUP_SCHED */
7520
7521 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7522#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7523 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7524#endif
1da177e4 7525
dd41f596
IM
7526 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7527 rq->cpu_load[j] = 0;
fdf3e95d 7528
1da177e4 7529#ifdef CONFIG_SMP
41c7ce9a 7530 rq->sd = NULL;
57d885fe 7531 rq->rd = NULL;
ca6d75e6 7532 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7533 rq->balance_callback = NULL;
1da177e4 7534 rq->active_balance = 0;
dd41f596 7535 rq->next_balance = jiffies;
1da177e4 7536 rq->push_cpu = 0;
0a2966b4 7537 rq->cpu = i;
1f11eb6a 7538 rq->online = 0;
eae0c9df
MG
7539 rq->idle_stamp = 0;
7540 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7541 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7542
7543 INIT_LIST_HEAD(&rq->cfs_tasks);
7544
dc938520 7545 rq_attach_root(rq, &def_root_domain);
3451d024 7546#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7547 rq->last_load_update_tick = jiffies;
1c792db7 7548 rq->nohz_flags = 0;
83cd4fe2 7549#endif
265f22a9
FW
7550#ifdef CONFIG_NO_HZ_FULL
7551 rq->last_sched_tick = 0;
7552#endif
9fd81dd5 7553#endif /* CONFIG_SMP */
8f4d37ec 7554 init_rq_hrtick(rq);
1da177e4 7555 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7556 }
7557
2dd73a4f 7558 set_load_weight(&init_task);
b50f60ce 7559
1da177e4
LT
7560 /*
7561 * The boot idle thread does lazy MMU switching as well:
7562 */
7563 atomic_inc(&init_mm.mm_count);
7564 enter_lazy_tlb(&init_mm, current);
7565
1b537c7d
YD
7566 /*
7567 * During early bootup we pretend to be a normal task:
7568 */
7569 current->sched_class = &fair_sched_class;
7570
1da177e4
LT
7571 /*
7572 * Make us the idle thread. Technically, schedule() should not be
7573 * called from this thread, however somewhere below it might be,
7574 * but because we are the idle thread, we just pick up running again
7575 * when this runqueue becomes "idle".
7576 */
7577 init_idle(current, smp_processor_id());
dce48a84
TG
7578
7579 calc_load_update = jiffies + LOAD_FREQ;
7580
bf4d83f6 7581#ifdef CONFIG_SMP
4cb98839 7582 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7583 /* May be allocated at isolcpus cmdline parse time */
7584 if (cpu_isolated_map == NULL)
7585 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7586 idle_thread_set_boot_cpu();
9cf7243d 7587 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7588#endif
7589 init_sched_fair_class();
6a7b3dc3 7590
4698f88c
JP
7591 init_schedstats();
7592
6892b75e 7593 scheduler_running = 1;
1da177e4
LT
7594}
7595
d902db1e 7596#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7597static inline int preempt_count_equals(int preempt_offset)
7598{
da7142e2 7599 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7600
4ba8216c 7601 return (nested == preempt_offset);
e4aafea2
FW
7602}
7603
d894837f 7604void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7605{
8eb23b9f
PZ
7606 /*
7607 * Blocking primitives will set (and therefore destroy) current->state,
7608 * since we will exit with TASK_RUNNING make sure we enter with it,
7609 * otherwise we will destroy state.
7610 */
00845eb9 7611 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7612 "do not call blocking ops when !TASK_RUNNING; "
7613 "state=%lx set at [<%p>] %pS\n",
7614 current->state,
7615 (void *)current->task_state_change,
00845eb9 7616 (void *)current->task_state_change);
8eb23b9f 7617
3427445a
PZ
7618 ___might_sleep(file, line, preempt_offset);
7619}
7620EXPORT_SYMBOL(__might_sleep);
7621
7622void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7623{
1da177e4 7624 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7625 unsigned long preempt_disable_ip;
1da177e4 7626
b3fbab05 7627 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7628 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7629 !is_idle_task(current)) ||
e4aafea2 7630 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7631 return;
7632 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7633 return;
7634 prev_jiffy = jiffies;
7635
d1c6d149
VN
7636 /* Save this before calling printk(), since that will clobber it */
7637 preempt_disable_ip = get_preempt_disable_ip(current);
7638
3df0fc5b
PZ
7639 printk(KERN_ERR
7640 "BUG: sleeping function called from invalid context at %s:%d\n",
7641 file, line);
7642 printk(KERN_ERR
7643 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7644 in_atomic(), irqs_disabled(),
7645 current->pid, current->comm);
aef745fc 7646
a8b686b3
ES
7647 if (task_stack_end_corrupted(current))
7648 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7649
aef745fc
IM
7650 debug_show_held_locks(current);
7651 if (irqs_disabled())
7652 print_irqtrace_events(current);
d1c6d149
VN
7653 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7654 && !preempt_count_equals(preempt_offset)) {
8f47b187 7655 pr_err("Preemption disabled at:");
d1c6d149 7656 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7657 pr_cont("\n");
7658 }
aef745fc 7659 dump_stack();
f0b22e39 7660 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7661}
3427445a 7662EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7663#endif
7664
7665#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7666void normalize_rt_tasks(void)
3a5e4dc1 7667{
dbc7f069 7668 struct task_struct *g, *p;
d50dde5a
DF
7669 struct sched_attr attr = {
7670 .sched_policy = SCHED_NORMAL,
7671 };
1da177e4 7672
3472eaa1 7673 read_lock(&tasklist_lock);
5d07f420 7674 for_each_process_thread(g, p) {
178be793
IM
7675 /*
7676 * Only normalize user tasks:
7677 */
3472eaa1 7678 if (p->flags & PF_KTHREAD)
178be793
IM
7679 continue;
7680
4fa8d299
JP
7681 p->se.exec_start = 0;
7682 schedstat_set(p->se.statistics.wait_start, 0);
7683 schedstat_set(p->se.statistics.sleep_start, 0);
7684 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7685
aab03e05 7686 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7687 /*
7688 * Renice negative nice level userspace
7689 * tasks back to 0:
7690 */
3472eaa1 7691 if (task_nice(p) < 0)
dd41f596 7692 set_user_nice(p, 0);
1da177e4 7693 continue;
dd41f596 7694 }
1da177e4 7695
dbc7f069 7696 __sched_setscheduler(p, &attr, false, false);
5d07f420 7697 }
3472eaa1 7698 read_unlock(&tasklist_lock);
1da177e4
LT
7699}
7700
7701#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7702
67fc4e0c 7703#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7704/*
67fc4e0c 7705 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7706 *
7707 * They can only be called when the whole system has been
7708 * stopped - every CPU needs to be quiescent, and no scheduling
7709 * activity can take place. Using them for anything else would
7710 * be a serious bug, and as a result, they aren't even visible
7711 * under any other configuration.
7712 */
7713
7714/**
7715 * curr_task - return the current task for a given cpu.
7716 * @cpu: the processor in question.
7717 *
7718 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7719 *
7720 * Return: The current task for @cpu.
1df5c10a 7721 */
36c8b586 7722struct task_struct *curr_task(int cpu)
1df5c10a
LT
7723{
7724 return cpu_curr(cpu);
7725}
7726
67fc4e0c
JW
7727#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7728
7729#ifdef CONFIG_IA64
1df5c10a
LT
7730/**
7731 * set_curr_task - set the current task for a given cpu.
7732 * @cpu: the processor in question.
7733 * @p: the task pointer to set.
7734 *
7735 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7736 * are serviced on a separate stack. It allows the architecture to switch the
7737 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7738 * must be called with all CPU's synchronized, and interrupts disabled, the
7739 * and caller must save the original value of the current task (see
7740 * curr_task() above) and restore that value before reenabling interrupts and
7741 * re-starting the system.
7742 *
7743 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7744 */
36c8b586 7745void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7746{
7747 cpu_curr(cpu) = p;
7748}
7749
7750#endif
29f59db3 7751
7c941438 7752#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7753/* task_group_lock serializes the addition/removal of task groups */
7754static DEFINE_SPINLOCK(task_group_lock);
7755
2f5177f0 7756static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7757{
7758 free_fair_sched_group(tg);
7759 free_rt_sched_group(tg);
e9aa1dd1 7760 autogroup_free(tg);
b0367629 7761 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7762}
7763
7764/* allocate runqueue etc for a new task group */
ec7dc8ac 7765struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7766{
7767 struct task_group *tg;
bccbe08a 7768
b0367629 7769 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7770 if (!tg)
7771 return ERR_PTR(-ENOMEM);
7772
ec7dc8ac 7773 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7774 goto err;
7775
ec7dc8ac 7776 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7777 goto err;
7778
ace783b9
LZ
7779 return tg;
7780
7781err:
2f5177f0 7782 sched_free_group(tg);
ace783b9
LZ
7783 return ERR_PTR(-ENOMEM);
7784}
7785
7786void sched_online_group(struct task_group *tg, struct task_group *parent)
7787{
7788 unsigned long flags;
7789
8ed36996 7790 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7791 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7792
7793 WARN_ON(!parent); /* root should already exist */
7794
7795 tg->parent = parent;
f473aa5e 7796 INIT_LIST_HEAD(&tg->children);
09f2724a 7797 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7798 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7799
7800 online_fair_sched_group(tg);
29f59db3
SV
7801}
7802
9b5b7751 7803/* rcu callback to free various structures associated with a task group */
2f5177f0 7804static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7805{
29f59db3 7806 /* now it should be safe to free those cfs_rqs */
2f5177f0 7807 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7808}
7809
4cf86d77 7810void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7811{
7812 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7813 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7814}
7815
7816void sched_offline_group(struct task_group *tg)
29f59db3 7817{
8ed36996 7818 unsigned long flags;
29f59db3 7819
3d4b47b4 7820 /* end participation in shares distribution */
6fe1f348 7821 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7822
7823 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7824 list_del_rcu(&tg->list);
f473aa5e 7825 list_del_rcu(&tg->siblings);
8ed36996 7826 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7827}
7828
ea86cb4b 7829static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7830{
8323f26c 7831 struct task_group *tg;
29f59db3 7832
f7b8a47d
KT
7833 /*
7834 * All callers are synchronized by task_rq_lock(); we do not use RCU
7835 * which is pointless here. Thus, we pass "true" to task_css_check()
7836 * to prevent lockdep warnings.
7837 */
7838 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7839 struct task_group, css);
7840 tg = autogroup_task_group(tsk, tg);
7841 tsk->sched_task_group = tg;
7842
810b3817 7843#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7844 if (tsk->sched_class->task_change_group)
7845 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7846 else
810b3817 7847#endif
b2b5ce02 7848 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7849}
7850
7851/*
7852 * Change task's runqueue when it moves between groups.
7853 *
7854 * The caller of this function should have put the task in its new group by
7855 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7856 * its new group.
7857 */
7858void sched_move_task(struct task_struct *tsk)
7859{
7860 int queued, running;
7861 struct rq_flags rf;
7862 struct rq *rq;
7863
7864 rq = task_rq_lock(tsk, &rf);
7865
7866 running = task_current(rq, tsk);
7867 queued = task_on_rq_queued(tsk);
7868
7869 if (queued)
7870 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7871 if (unlikely(running))
7872 put_prev_task(rq, tsk);
7873
7874 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7875
0e1f3483
HS
7876 if (unlikely(running))
7877 tsk->sched_class->set_curr_task(rq);
da0c1e65 7878 if (queued)
ff77e468 7879 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7880
eb580751 7881 task_rq_unlock(rq, tsk, &rf);
29f59db3 7882}
7c941438 7883#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7884
a790de99
PT
7885#ifdef CONFIG_RT_GROUP_SCHED
7886/*
7887 * Ensure that the real time constraints are schedulable.
7888 */
7889static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7890
9a7e0b18
PZ
7891/* Must be called with tasklist_lock held */
7892static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7893{
9a7e0b18 7894 struct task_struct *g, *p;
b40b2e8e 7895
1fe89e1b
PZ
7896 /*
7897 * Autogroups do not have RT tasks; see autogroup_create().
7898 */
7899 if (task_group_is_autogroup(tg))
7900 return 0;
7901
5d07f420 7902 for_each_process_thread(g, p) {
8651c658 7903 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7904 return 1;
5d07f420 7905 }
b40b2e8e 7906
9a7e0b18
PZ
7907 return 0;
7908}
b40b2e8e 7909
9a7e0b18
PZ
7910struct rt_schedulable_data {
7911 struct task_group *tg;
7912 u64 rt_period;
7913 u64 rt_runtime;
7914};
b40b2e8e 7915
a790de99 7916static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7917{
7918 struct rt_schedulable_data *d = data;
7919 struct task_group *child;
7920 unsigned long total, sum = 0;
7921 u64 period, runtime;
b40b2e8e 7922
9a7e0b18
PZ
7923 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7924 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7925
9a7e0b18
PZ
7926 if (tg == d->tg) {
7927 period = d->rt_period;
7928 runtime = d->rt_runtime;
b40b2e8e 7929 }
b40b2e8e 7930
4653f803
PZ
7931 /*
7932 * Cannot have more runtime than the period.
7933 */
7934 if (runtime > period && runtime != RUNTIME_INF)
7935 return -EINVAL;
6f505b16 7936
4653f803
PZ
7937 /*
7938 * Ensure we don't starve existing RT tasks.
7939 */
9a7e0b18
PZ
7940 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7941 return -EBUSY;
6f505b16 7942
9a7e0b18 7943 total = to_ratio(period, runtime);
6f505b16 7944
4653f803
PZ
7945 /*
7946 * Nobody can have more than the global setting allows.
7947 */
7948 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7949 return -EINVAL;
6f505b16 7950
4653f803
PZ
7951 /*
7952 * The sum of our children's runtime should not exceed our own.
7953 */
9a7e0b18
PZ
7954 list_for_each_entry_rcu(child, &tg->children, siblings) {
7955 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7956 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7957
9a7e0b18
PZ
7958 if (child == d->tg) {
7959 period = d->rt_period;
7960 runtime = d->rt_runtime;
7961 }
6f505b16 7962
9a7e0b18 7963 sum += to_ratio(period, runtime);
9f0c1e56 7964 }
6f505b16 7965
9a7e0b18
PZ
7966 if (sum > total)
7967 return -EINVAL;
7968
7969 return 0;
6f505b16
PZ
7970}
7971
9a7e0b18 7972static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7973{
8277434e
PT
7974 int ret;
7975
9a7e0b18
PZ
7976 struct rt_schedulable_data data = {
7977 .tg = tg,
7978 .rt_period = period,
7979 .rt_runtime = runtime,
7980 };
7981
8277434e
PT
7982 rcu_read_lock();
7983 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7984 rcu_read_unlock();
7985
7986 return ret;
521f1a24
DG
7987}
7988
ab84d31e 7989static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7990 u64 rt_period, u64 rt_runtime)
6f505b16 7991{
ac086bc2 7992 int i, err = 0;
9f0c1e56 7993
2636ed5f
PZ
7994 /*
7995 * Disallowing the root group RT runtime is BAD, it would disallow the
7996 * kernel creating (and or operating) RT threads.
7997 */
7998 if (tg == &root_task_group && rt_runtime == 0)
7999 return -EINVAL;
8000
8001 /* No period doesn't make any sense. */
8002 if (rt_period == 0)
8003 return -EINVAL;
8004
9f0c1e56 8005 mutex_lock(&rt_constraints_mutex);
521f1a24 8006 read_lock(&tasklist_lock);
9a7e0b18
PZ
8007 err = __rt_schedulable(tg, rt_period, rt_runtime);
8008 if (err)
9f0c1e56 8009 goto unlock;
ac086bc2 8010
0986b11b 8011 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8012 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8013 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8014
8015 for_each_possible_cpu(i) {
8016 struct rt_rq *rt_rq = tg->rt_rq[i];
8017
0986b11b 8018 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8019 rt_rq->rt_runtime = rt_runtime;
0986b11b 8020 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8021 }
0986b11b 8022 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8023unlock:
521f1a24 8024 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8025 mutex_unlock(&rt_constraints_mutex);
8026
8027 return err;
6f505b16
PZ
8028}
8029
25cc7da7 8030static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8031{
8032 u64 rt_runtime, rt_period;
8033
8034 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8035 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8036 if (rt_runtime_us < 0)
8037 rt_runtime = RUNTIME_INF;
8038
ab84d31e 8039 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8040}
8041
25cc7da7 8042static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8043{
8044 u64 rt_runtime_us;
8045
d0b27fa7 8046 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8047 return -1;
8048
d0b27fa7 8049 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8050 do_div(rt_runtime_us, NSEC_PER_USEC);
8051 return rt_runtime_us;
8052}
d0b27fa7 8053
ce2f5fe4 8054static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8055{
8056 u64 rt_runtime, rt_period;
8057
ce2f5fe4 8058 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8059 rt_runtime = tg->rt_bandwidth.rt_runtime;
8060
ab84d31e 8061 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8062}
8063
25cc7da7 8064static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8065{
8066 u64 rt_period_us;
8067
8068 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8069 do_div(rt_period_us, NSEC_PER_USEC);
8070 return rt_period_us;
8071}
332ac17e 8072#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8073
332ac17e 8074#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8075static int sched_rt_global_constraints(void)
8076{
8077 int ret = 0;
8078
8079 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8080 read_lock(&tasklist_lock);
4653f803 8081 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8082 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8083 mutex_unlock(&rt_constraints_mutex);
8084
8085 return ret;
8086}
54e99124 8087
25cc7da7 8088static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8089{
8090 /* Don't accept realtime tasks when there is no way for them to run */
8091 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8092 return 0;
8093
8094 return 1;
8095}
8096
6d6bc0ad 8097#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8098static int sched_rt_global_constraints(void)
8099{
ac086bc2 8100 unsigned long flags;
8c5e9554 8101 int i;
ec5d4989 8102
0986b11b 8103 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8104 for_each_possible_cpu(i) {
8105 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8106
0986b11b 8107 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8108 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8109 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8110 }
0986b11b 8111 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8112
8c5e9554 8113 return 0;
d0b27fa7 8114}
6d6bc0ad 8115#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8116
a1963b81 8117static int sched_dl_global_validate(void)
332ac17e 8118{
1724813d
PZ
8119 u64 runtime = global_rt_runtime();
8120 u64 period = global_rt_period();
332ac17e 8121 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8122 struct dl_bw *dl_b;
1724813d 8123 int cpu, ret = 0;
49516342 8124 unsigned long flags;
332ac17e
DF
8125
8126 /*
8127 * Here we want to check the bandwidth not being set to some
8128 * value smaller than the currently allocated bandwidth in
8129 * any of the root_domains.
8130 *
8131 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8132 * cycling on root_domains... Discussion on different/better
8133 * solutions is welcome!
8134 */
1724813d 8135 for_each_possible_cpu(cpu) {
f10e00f4
KT
8136 rcu_read_lock_sched();
8137 dl_b = dl_bw_of(cpu);
332ac17e 8138
49516342 8139 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8140 if (new_bw < dl_b->total_bw)
8141 ret = -EBUSY;
49516342 8142 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8143
f10e00f4
KT
8144 rcu_read_unlock_sched();
8145
1724813d
PZ
8146 if (ret)
8147 break;
332ac17e
DF
8148 }
8149
1724813d 8150 return ret;
332ac17e
DF
8151}
8152
1724813d 8153static void sched_dl_do_global(void)
ce0dbbbb 8154{
1724813d 8155 u64 new_bw = -1;
f10e00f4 8156 struct dl_bw *dl_b;
1724813d 8157 int cpu;
49516342 8158 unsigned long flags;
ce0dbbbb 8159
1724813d
PZ
8160 def_dl_bandwidth.dl_period = global_rt_period();
8161 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8162
8163 if (global_rt_runtime() != RUNTIME_INF)
8164 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8165
8166 /*
8167 * FIXME: As above...
8168 */
8169 for_each_possible_cpu(cpu) {
f10e00f4
KT
8170 rcu_read_lock_sched();
8171 dl_b = dl_bw_of(cpu);
1724813d 8172
49516342 8173 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8174 dl_b->bw = new_bw;
49516342 8175 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8176
8177 rcu_read_unlock_sched();
ce0dbbbb 8178 }
1724813d
PZ
8179}
8180
8181static int sched_rt_global_validate(void)
8182{
8183 if (sysctl_sched_rt_period <= 0)
8184 return -EINVAL;
8185
e9e7cb38
JL
8186 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8187 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8188 return -EINVAL;
8189
8190 return 0;
8191}
8192
8193static void sched_rt_do_global(void)
8194{
8195 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8196 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8197}
8198
d0b27fa7 8199int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8200 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8201 loff_t *ppos)
8202{
d0b27fa7
PZ
8203 int old_period, old_runtime;
8204 static DEFINE_MUTEX(mutex);
1724813d 8205 int ret;
d0b27fa7
PZ
8206
8207 mutex_lock(&mutex);
8208 old_period = sysctl_sched_rt_period;
8209 old_runtime = sysctl_sched_rt_runtime;
8210
8d65af78 8211 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8212
8213 if (!ret && write) {
1724813d
PZ
8214 ret = sched_rt_global_validate();
8215 if (ret)
8216 goto undo;
8217
a1963b81 8218 ret = sched_dl_global_validate();
1724813d
PZ
8219 if (ret)
8220 goto undo;
8221
a1963b81 8222 ret = sched_rt_global_constraints();
1724813d
PZ
8223 if (ret)
8224 goto undo;
8225
8226 sched_rt_do_global();
8227 sched_dl_do_global();
8228 }
8229 if (0) {
8230undo:
8231 sysctl_sched_rt_period = old_period;
8232 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8233 }
8234 mutex_unlock(&mutex);
8235
8236 return ret;
8237}
68318b8e 8238
1724813d 8239int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8240 void __user *buffer, size_t *lenp,
8241 loff_t *ppos)
8242{
8243 int ret;
332ac17e 8244 static DEFINE_MUTEX(mutex);
332ac17e
DF
8245
8246 mutex_lock(&mutex);
332ac17e 8247 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8248 /* make sure that internally we keep jiffies */
8249 /* also, writing zero resets timeslice to default */
332ac17e 8250 if (!ret && write) {
1724813d
PZ
8251 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8252 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8253 }
8254 mutex_unlock(&mutex);
332ac17e
DF
8255 return ret;
8256}
8257
052f1dc7 8258#ifdef CONFIG_CGROUP_SCHED
68318b8e 8259
a7c6d554 8260static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8261{
a7c6d554 8262 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8263}
8264
eb95419b
TH
8265static struct cgroup_subsys_state *
8266cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8267{
eb95419b
TH
8268 struct task_group *parent = css_tg(parent_css);
8269 struct task_group *tg;
68318b8e 8270
eb95419b 8271 if (!parent) {
68318b8e 8272 /* This is early initialization for the top cgroup */
07e06b01 8273 return &root_task_group.css;
68318b8e
SV
8274 }
8275
ec7dc8ac 8276 tg = sched_create_group(parent);
68318b8e
SV
8277 if (IS_ERR(tg))
8278 return ERR_PTR(-ENOMEM);
8279
2f5177f0
PZ
8280 sched_online_group(tg, parent);
8281
68318b8e
SV
8282 return &tg->css;
8283}
8284
2f5177f0 8285static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8286{
eb95419b 8287 struct task_group *tg = css_tg(css);
ace783b9 8288
2f5177f0 8289 sched_offline_group(tg);
ace783b9
LZ
8290}
8291
eb95419b 8292static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8293{
eb95419b 8294 struct task_group *tg = css_tg(css);
68318b8e 8295
2f5177f0
PZ
8296 /*
8297 * Relies on the RCU grace period between css_released() and this.
8298 */
8299 sched_free_group(tg);
ace783b9
LZ
8300}
8301
ea86cb4b
VG
8302/*
8303 * This is called before wake_up_new_task(), therefore we really only
8304 * have to set its group bits, all the other stuff does not apply.
8305 */
b53202e6 8306static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8307{
ea86cb4b
VG
8308 struct rq_flags rf;
8309 struct rq *rq;
8310
8311 rq = task_rq_lock(task, &rf);
8312
8313 sched_change_group(task, TASK_SET_GROUP);
8314
8315 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8316}
8317
1f7dd3e5 8318static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8319{
bb9d97b6 8320 struct task_struct *task;
1f7dd3e5 8321 struct cgroup_subsys_state *css;
7dc603c9 8322 int ret = 0;
bb9d97b6 8323
1f7dd3e5 8324 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8325#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8326 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8327 return -EINVAL;
b68aa230 8328#else
bb9d97b6
TH
8329 /* We don't support RT-tasks being in separate groups */
8330 if (task->sched_class != &fair_sched_class)
8331 return -EINVAL;
b68aa230 8332#endif
7dc603c9
PZ
8333 /*
8334 * Serialize against wake_up_new_task() such that if its
8335 * running, we're sure to observe its full state.
8336 */
8337 raw_spin_lock_irq(&task->pi_lock);
8338 /*
8339 * Avoid calling sched_move_task() before wake_up_new_task()
8340 * has happened. This would lead to problems with PELT, due to
8341 * move wanting to detach+attach while we're not attached yet.
8342 */
8343 if (task->state == TASK_NEW)
8344 ret = -EINVAL;
8345 raw_spin_unlock_irq(&task->pi_lock);
8346
8347 if (ret)
8348 break;
bb9d97b6 8349 }
7dc603c9 8350 return ret;
be367d09 8351}
68318b8e 8352
1f7dd3e5 8353static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8354{
bb9d97b6 8355 struct task_struct *task;
1f7dd3e5 8356 struct cgroup_subsys_state *css;
bb9d97b6 8357
1f7dd3e5 8358 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8359 sched_move_task(task);
68318b8e
SV
8360}
8361
052f1dc7 8362#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8363static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8364 struct cftype *cftype, u64 shareval)
68318b8e 8365{
182446d0 8366 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8367}
8368
182446d0
TH
8369static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8370 struct cftype *cft)
68318b8e 8371{
182446d0 8372 struct task_group *tg = css_tg(css);
68318b8e 8373
c8b28116 8374 return (u64) scale_load_down(tg->shares);
68318b8e 8375}
ab84d31e
PT
8376
8377#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8378static DEFINE_MUTEX(cfs_constraints_mutex);
8379
ab84d31e
PT
8380const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8381const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8382
a790de99
PT
8383static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8384
ab84d31e
PT
8385static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8386{
56f570e5 8387 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8388 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8389
8390 if (tg == &root_task_group)
8391 return -EINVAL;
8392
8393 /*
8394 * Ensure we have at some amount of bandwidth every period. This is
8395 * to prevent reaching a state of large arrears when throttled via
8396 * entity_tick() resulting in prolonged exit starvation.
8397 */
8398 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8399 return -EINVAL;
8400
8401 /*
8402 * Likewise, bound things on the otherside by preventing insane quota
8403 * periods. This also allows us to normalize in computing quota
8404 * feasibility.
8405 */
8406 if (period > max_cfs_quota_period)
8407 return -EINVAL;
8408
0e59bdae
KT
8409 /*
8410 * Prevent race between setting of cfs_rq->runtime_enabled and
8411 * unthrottle_offline_cfs_rqs().
8412 */
8413 get_online_cpus();
a790de99
PT
8414 mutex_lock(&cfs_constraints_mutex);
8415 ret = __cfs_schedulable(tg, period, quota);
8416 if (ret)
8417 goto out_unlock;
8418
58088ad0 8419 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8420 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8421 /*
8422 * If we need to toggle cfs_bandwidth_used, off->on must occur
8423 * before making related changes, and on->off must occur afterwards
8424 */
8425 if (runtime_enabled && !runtime_was_enabled)
8426 cfs_bandwidth_usage_inc();
ab84d31e
PT
8427 raw_spin_lock_irq(&cfs_b->lock);
8428 cfs_b->period = ns_to_ktime(period);
8429 cfs_b->quota = quota;
58088ad0 8430
a9cf55b2 8431 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8432 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8433 if (runtime_enabled)
8434 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8435 raw_spin_unlock_irq(&cfs_b->lock);
8436
0e59bdae 8437 for_each_online_cpu(i) {
ab84d31e 8438 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8439 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8440
8441 raw_spin_lock_irq(&rq->lock);
58088ad0 8442 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8443 cfs_rq->runtime_remaining = 0;
671fd9da 8444
029632fb 8445 if (cfs_rq->throttled)
671fd9da 8446 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8447 raw_spin_unlock_irq(&rq->lock);
8448 }
1ee14e6c
BS
8449 if (runtime_was_enabled && !runtime_enabled)
8450 cfs_bandwidth_usage_dec();
a790de99
PT
8451out_unlock:
8452 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8453 put_online_cpus();
ab84d31e 8454
a790de99 8455 return ret;
ab84d31e
PT
8456}
8457
8458int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8459{
8460 u64 quota, period;
8461
029632fb 8462 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8463 if (cfs_quota_us < 0)
8464 quota = RUNTIME_INF;
8465 else
8466 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8467
8468 return tg_set_cfs_bandwidth(tg, period, quota);
8469}
8470
8471long tg_get_cfs_quota(struct task_group *tg)
8472{
8473 u64 quota_us;
8474
029632fb 8475 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8476 return -1;
8477
029632fb 8478 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8479 do_div(quota_us, NSEC_PER_USEC);
8480
8481 return quota_us;
8482}
8483
8484int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8485{
8486 u64 quota, period;
8487
8488 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8489 quota = tg->cfs_bandwidth.quota;
ab84d31e 8490
ab84d31e
PT
8491 return tg_set_cfs_bandwidth(tg, period, quota);
8492}
8493
8494long tg_get_cfs_period(struct task_group *tg)
8495{
8496 u64 cfs_period_us;
8497
029632fb 8498 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8499 do_div(cfs_period_us, NSEC_PER_USEC);
8500
8501 return cfs_period_us;
8502}
8503
182446d0
TH
8504static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8505 struct cftype *cft)
ab84d31e 8506{
182446d0 8507 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8508}
8509
182446d0
TH
8510static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8511 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8512{
182446d0 8513 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8514}
8515
182446d0
TH
8516static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8517 struct cftype *cft)
ab84d31e 8518{
182446d0 8519 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8520}
8521
182446d0
TH
8522static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8523 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8524{
182446d0 8525 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8526}
8527
a790de99
PT
8528struct cfs_schedulable_data {
8529 struct task_group *tg;
8530 u64 period, quota;
8531};
8532
8533/*
8534 * normalize group quota/period to be quota/max_period
8535 * note: units are usecs
8536 */
8537static u64 normalize_cfs_quota(struct task_group *tg,
8538 struct cfs_schedulable_data *d)
8539{
8540 u64 quota, period;
8541
8542 if (tg == d->tg) {
8543 period = d->period;
8544 quota = d->quota;
8545 } else {
8546 period = tg_get_cfs_period(tg);
8547 quota = tg_get_cfs_quota(tg);
8548 }
8549
8550 /* note: these should typically be equivalent */
8551 if (quota == RUNTIME_INF || quota == -1)
8552 return RUNTIME_INF;
8553
8554 return to_ratio(period, quota);
8555}
8556
8557static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8558{
8559 struct cfs_schedulable_data *d = data;
029632fb 8560 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8561 s64 quota = 0, parent_quota = -1;
8562
8563 if (!tg->parent) {
8564 quota = RUNTIME_INF;
8565 } else {
029632fb 8566 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8567
8568 quota = normalize_cfs_quota(tg, d);
9c58c79a 8569 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8570
8571 /*
8572 * ensure max(child_quota) <= parent_quota, inherit when no
8573 * limit is set
8574 */
8575 if (quota == RUNTIME_INF)
8576 quota = parent_quota;
8577 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8578 return -EINVAL;
8579 }
9c58c79a 8580 cfs_b->hierarchical_quota = quota;
a790de99
PT
8581
8582 return 0;
8583}
8584
8585static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8586{
8277434e 8587 int ret;
a790de99
PT
8588 struct cfs_schedulable_data data = {
8589 .tg = tg,
8590 .period = period,
8591 .quota = quota,
8592 };
8593
8594 if (quota != RUNTIME_INF) {
8595 do_div(data.period, NSEC_PER_USEC);
8596 do_div(data.quota, NSEC_PER_USEC);
8597 }
8598
8277434e
PT
8599 rcu_read_lock();
8600 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8601 rcu_read_unlock();
8602
8603 return ret;
a790de99 8604}
e8da1b18 8605
2da8ca82 8606static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8607{
2da8ca82 8608 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8609 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8610
44ffc75b
TH
8611 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8612 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8613 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8614
8615 return 0;
8616}
ab84d31e 8617#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8618#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8619
052f1dc7 8620#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8621static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8622 struct cftype *cft, s64 val)
6f505b16 8623{
182446d0 8624 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8625}
8626
182446d0
TH
8627static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8628 struct cftype *cft)
6f505b16 8629{
182446d0 8630 return sched_group_rt_runtime(css_tg(css));
6f505b16 8631}
d0b27fa7 8632
182446d0
TH
8633static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8634 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8635{
182446d0 8636 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8637}
8638
182446d0
TH
8639static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8640 struct cftype *cft)
d0b27fa7 8641{
182446d0 8642 return sched_group_rt_period(css_tg(css));
d0b27fa7 8643}
6d6bc0ad 8644#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8645
fe5c7cc2 8646static struct cftype cpu_files[] = {
052f1dc7 8647#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8648 {
8649 .name = "shares",
f4c753b7
PM
8650 .read_u64 = cpu_shares_read_u64,
8651 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8652 },
052f1dc7 8653#endif
ab84d31e
PT
8654#ifdef CONFIG_CFS_BANDWIDTH
8655 {
8656 .name = "cfs_quota_us",
8657 .read_s64 = cpu_cfs_quota_read_s64,
8658 .write_s64 = cpu_cfs_quota_write_s64,
8659 },
8660 {
8661 .name = "cfs_period_us",
8662 .read_u64 = cpu_cfs_period_read_u64,
8663 .write_u64 = cpu_cfs_period_write_u64,
8664 },
e8da1b18
NR
8665 {
8666 .name = "stat",
2da8ca82 8667 .seq_show = cpu_stats_show,
e8da1b18 8668 },
ab84d31e 8669#endif
052f1dc7 8670#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8671 {
9f0c1e56 8672 .name = "rt_runtime_us",
06ecb27c
PM
8673 .read_s64 = cpu_rt_runtime_read,
8674 .write_s64 = cpu_rt_runtime_write,
6f505b16 8675 },
d0b27fa7
PZ
8676 {
8677 .name = "rt_period_us",
f4c753b7
PM
8678 .read_u64 = cpu_rt_period_read_uint,
8679 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8680 },
052f1dc7 8681#endif
4baf6e33 8682 { } /* terminate */
68318b8e
SV
8683};
8684
073219e9 8685struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8686 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8687 .css_released = cpu_cgroup_css_released,
92fb9748 8688 .css_free = cpu_cgroup_css_free,
eeb61e53 8689 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8690 .can_attach = cpu_cgroup_can_attach,
8691 .attach = cpu_cgroup_attach,
5577964e 8692 .legacy_cftypes = cpu_files,
b38e42e9 8693 .early_init = true,
68318b8e
SV
8694};
8695
052f1dc7 8696#endif /* CONFIG_CGROUP_SCHED */
d842de87 8697
b637a328
PM
8698void dump_cpu_task(int cpu)
8699{
8700 pr_info("Task dump for CPU %d:\n", cpu);
8701 sched_show_task(cpu_curr(cpu));
8702}
ed82b8a1
AK
8703
8704/*
8705 * Nice levels are multiplicative, with a gentle 10% change for every
8706 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8707 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8708 * that remained on nice 0.
8709 *
8710 * The "10% effect" is relative and cumulative: from _any_ nice level,
8711 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8712 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8713 * If a task goes up by ~10% and another task goes down by ~10% then
8714 * the relative distance between them is ~25%.)
8715 */
8716const int sched_prio_to_weight[40] = {
8717 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8718 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8719 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8720 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8721 /* 0 */ 1024, 820, 655, 526, 423,
8722 /* 5 */ 335, 272, 215, 172, 137,
8723 /* 10 */ 110, 87, 70, 56, 45,
8724 /* 15 */ 36, 29, 23, 18, 15,
8725};
8726
8727/*
8728 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8729 *
8730 * In cases where the weight does not change often, we can use the
8731 * precalculated inverse to speed up arithmetics by turning divisions
8732 * into multiplications:
8733 */
8734const u32 sched_prio_to_wmult[40] = {
8735 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8736 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8737 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8738 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8739 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8740 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8741 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8742 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8743};
This page took 3.17114 seconds and 5 git commands to generate.