sched/fair: Update comments after a variable rename
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
1da177e4
LT
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
8f4d37ec
PZ
173#ifdef CONFIG_SCHED_HRTICK
174/*
175 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 176 */
8f4d37ec 177
8f4d37ec
PZ
178static void hrtick_clear(struct rq *rq)
179{
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182}
183
8f4d37ec
PZ
184/*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188static enum hrtimer_restart hrtick(struct hrtimer *timer)
189{
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
05fa785c 194 raw_spin_lock(&rq->lock);
3e51f33f 195 update_rq_clock(rq);
8f4d37ec 196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 197 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
198
199 return HRTIMER_NORESTART;
200}
201
95e904c7 202#ifdef CONFIG_SMP
971ee28c 203
4961b6e1 204static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
205{
206 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 207
4961b6e1 208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
209}
210
31656519
PZ
211/*
212 * called from hardirq (IPI) context
213 */
214static void __hrtick_start(void *arg)
b328ca18 215{
31656519 216 struct rq *rq = arg;
b328ca18 217
05fa785c 218 raw_spin_lock(&rq->lock);
971ee28c 219 __hrtick_restart(rq);
31656519 220 rq->hrtick_csd_pending = 0;
05fa785c 221 raw_spin_unlock(&rq->lock);
b328ca18
PZ
222}
223
31656519
PZ
224/*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
029632fb 229void hrtick_start(struct rq *rq, u64 delay)
b328ca18 230{
31656519 231 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 241
cc584b21 242 hrtimer_set_expires(timer, time);
31656519
PZ
243
244 if (rq == this_rq()) {
971ee28c 245 __hrtick_restart(rq);
31656519 246 } else if (!rq->hrtick_csd_pending) {
c46fff2a 247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
248 rq->hrtick_csd_pending = 1;
249 }
b328ca18
PZ
250}
251
252static int
253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254{
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
31656519 264 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269}
270
fa748203 271static __init void init_hrtick(void)
b328ca18
PZ
272{
273 hotcpu_notifier(hotplug_hrtick, 0);
274}
31656519
PZ
275#else
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
029632fb 281void hrtick_start(struct rq *rq, u64 delay)
31656519 282{
86893335
WL
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
31656519 290}
b328ca18 291
006c75f1 292static inline void init_hrtick(void)
8f4d37ec 293{
8f4d37ec 294}
31656519 295#endif /* CONFIG_SMP */
8f4d37ec 296
31656519 297static void init_rq_hrtick(struct rq *rq)
8f4d37ec 298{
31656519
PZ
299#ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
8f4d37ec 301
31656519
PZ
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305#endif
8f4d37ec 306
31656519
PZ
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
8f4d37ec 309}
006c75f1 310#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
311static inline void hrtick_clear(struct rq *rq)
312{
313}
314
8f4d37ec
PZ
315static inline void init_rq_hrtick(struct rq *rq)
316{
317}
318
b328ca18
PZ
319static inline void init_hrtick(void)
320{
321}
006c75f1 322#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 323
5529578a
FW
324/*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327#define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340})
341
e3baac47 342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
343/*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348static bool set_nr_and_not_polling(struct task_struct *p)
349{
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352}
e3baac47
PZ
353
354/*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360static bool set_nr_if_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
316c1608 363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376}
377
fd99f91a
PZ
378#else
379static bool set_nr_and_not_polling(struct task_struct *p)
380{
381 set_tsk_need_resched(p);
382 return true;
383}
e3baac47
PZ
384
385#ifdef CONFIG_SMP
386static bool set_nr_if_polling(struct task_struct *p)
387{
388 return false;
389}
390#endif
fd99f91a
PZ
391#endif
392
76751049
PZ
393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394{
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415}
416
417void wake_up_q(struct wake_q_head *head)
418{
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437}
438
c24d20db 439/*
8875125e 440 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
8875125e 446void resched_curr(struct rq *rq)
c24d20db 447{
8875125e 448 struct task_struct *curr = rq->curr;
c24d20db
IM
449 int cpu;
450
8875125e 451 lockdep_assert_held(&rq->lock);
c24d20db 452
8875125e 453 if (test_tsk_need_resched(curr))
c24d20db
IM
454 return;
455
8875125e 456 cpu = cpu_of(rq);
fd99f91a 457
f27dde8d 458 if (cpu == smp_processor_id()) {
8875125e 459 set_tsk_need_resched(curr);
f27dde8d 460 set_preempt_need_resched();
c24d20db 461 return;
f27dde8d 462 }
c24d20db 463
8875125e 464 if (set_nr_and_not_polling(curr))
c24d20db 465 smp_send_reschedule(cpu);
dfc68f29
AL
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
468}
469
029632fb 470void resched_cpu(int cpu)
c24d20db
IM
471{
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
05fa785c 475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 476 return;
8875125e 477 resched_curr(rq);
05fa785c 478 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 479}
06d8308c 480
b021fe3e 481#ifdef CONFIG_SMP
3451d024 482#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
483/*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
bc7a34b8 491int get_nohz_timer_target(void)
83cd4fe2 492{
bc7a34b8 493 int i, cpu = smp_processor_id();
83cd4fe2
VP
494 struct sched_domain *sd;
495
9642d18e 496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
497 return cpu;
498
057f3fad 499 rcu_read_lock();
83cd4fe2 500 for_each_domain(cpu, sd) {
057f3fad 501 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
503 cpu = i;
504 goto unlock;
505 }
506 }
83cd4fe2 507 }
9642d18e
VH
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
057f3fad
PZ
511unlock:
512 rcu_read_unlock();
83cd4fe2
VP
513 return cpu;
514}
06d8308c
TG
515/*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
1c20091e 525static void wake_up_idle_cpu(int cpu)
06d8308c
TG
526{
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
67b9ca70 532 if (set_nr_and_not_polling(rq->idle))
06d8308c 533 smp_send_reschedule(cpu);
dfc68f29
AL
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
536}
537
c5bfece2 538static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 539{
53c5fa16
FW
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
c5bfece2 546 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
53c5fa16 549 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
550 return true;
551 }
552
553 return false;
554}
555
556void wake_up_nohz_cpu(int cpu)
557{
c5bfece2 558 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
559 wake_up_idle_cpu(cpu);
560}
561
ca38062e 562static inline bool got_nohz_idle_kick(void)
45bf76df 563{
1c792db7 564 int cpu = smp_processor_id();
873b4c65
VG
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
45bf76df
IM
578}
579
3451d024 580#else /* CONFIG_NO_HZ_COMMON */
45bf76df 581
ca38062e 582static inline bool got_nohz_idle_kick(void)
2069dd75 583{
ca38062e 584 return false;
2069dd75
PZ
585}
586
3451d024 587#endif /* CONFIG_NO_HZ_COMMON */
d842de87 588
ce831b38 589#ifdef CONFIG_NO_HZ_FULL
76d92ac3 590bool sched_can_stop_tick(struct rq *rq)
ce831b38 591{
76d92ac3
FW
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
1e78cdbd 598 /*
76d92ac3
FW
599 * FIFO realtime policy runs the highest priority task (after DEADLINE).
600 * Other runnable tasks are of a lower priority. The scheduler tick
601 * isn't needed.
1e78cdbd 602 */
76d92ac3
FW
603 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
604 if (fifo_nr_running)
1e78cdbd
RR
605 return true;
606
607 /*
608 * Round-robin realtime tasks time slice with other tasks at the same
76d92ac3 609 * realtime priority.
1e78cdbd 610 */
76d92ac3
FW
611 if (rq->rt.rr_nr_running) {
612 if (rq->rt.rr_nr_running == 1)
613 return true;
614 else
615 return false;
1e78cdbd
RR
616 }
617
76d92ac3
FW
618 /* Normal multitasking need periodic preemption checks */
619 if (rq->cfs.nr_running > 1)
541b8264 620 return false;
ce831b38 621
541b8264 622 return true;
ce831b38
FW
623}
624#endif /* CONFIG_NO_HZ_FULL */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
78becc27 630 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#endif /* CONFIG_SMP */
18d95a28 643
a790de99
PT
644#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
645 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 646/*
8277434e
PT
647 * Iterate task_group tree rooted at *from, calling @down when first entering a
648 * node and @up when leaving it for the final time.
649 *
650 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 651 */
029632fb 652int walk_tg_tree_from(struct task_group *from,
8277434e 653 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
654{
655 struct task_group *parent, *child;
eb755805 656 int ret;
c09595f6 657
8277434e
PT
658 parent = from;
659
c09595f6 660down:
eb755805
PZ
661 ret = (*down)(parent, data);
662 if (ret)
8277434e 663 goto out;
c09595f6
PZ
664 list_for_each_entry_rcu(child, &parent->children, siblings) {
665 parent = child;
666 goto down;
667
668up:
669 continue;
670 }
eb755805 671 ret = (*up)(parent, data);
8277434e
PT
672 if (ret || parent == from)
673 goto out;
c09595f6
PZ
674
675 child = parent;
676 parent = parent->parent;
677 if (parent)
678 goto up;
8277434e 679out:
eb755805 680 return ret;
c09595f6
PZ
681}
682
029632fb 683int tg_nop(struct task_group *tg, void *data)
eb755805 684{
e2b245f8 685 return 0;
eb755805 686}
18d95a28
PZ
687#endif
688
45bf76df
IM
689static void set_load_weight(struct task_struct *p)
690{
f05998d4
NR
691 int prio = p->static_prio - MAX_RT_PRIO;
692 struct load_weight *load = &p->se.load;
693
dd41f596
IM
694 /*
695 * SCHED_IDLE tasks get minimal weight:
696 */
20f9cd2a 697 if (idle_policy(p->policy)) {
c8b28116 698 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 699 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
700 return;
701 }
71f8bd46 702
ed82b8a1
AK
703 load->weight = scale_load(sched_prio_to_weight[prio]);
704 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
705}
706
1de64443 707static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 708{
a64692a3 709 update_rq_clock(rq);
1de64443
PZ
710 if (!(flags & ENQUEUE_RESTORE))
711 sched_info_queued(rq, p);
371fd7e7 712 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
713}
714
1de64443 715static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 716{
a64692a3 717 update_rq_clock(rq);
1de64443
PZ
718 if (!(flags & DEQUEUE_SAVE))
719 sched_info_dequeued(rq, p);
371fd7e7 720 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
721}
722
029632fb 723void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
724{
725 if (task_contributes_to_load(p))
726 rq->nr_uninterruptible--;
727
371fd7e7 728 enqueue_task(rq, p, flags);
1e3c88bd
PZ
729}
730
029632fb 731void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
732{
733 if (task_contributes_to_load(p))
734 rq->nr_uninterruptible++;
735
371fd7e7 736 dequeue_task(rq, p, flags);
1e3c88bd
PZ
737}
738
fe44d621 739static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 740{
095c0aa8
GC
741/*
742 * In theory, the compile should just see 0 here, and optimize out the call
743 * to sched_rt_avg_update. But I don't trust it...
744 */
745#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
746 s64 steal = 0, irq_delta = 0;
747#endif
748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 749 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
750
751 /*
752 * Since irq_time is only updated on {soft,}irq_exit, we might run into
753 * this case when a previous update_rq_clock() happened inside a
754 * {soft,}irq region.
755 *
756 * When this happens, we stop ->clock_task and only update the
757 * prev_irq_time stamp to account for the part that fit, so that a next
758 * update will consume the rest. This ensures ->clock_task is
759 * monotonic.
760 *
761 * It does however cause some slight miss-attribution of {soft,}irq
762 * time, a more accurate solution would be to update the irq_time using
763 * the current rq->clock timestamp, except that would require using
764 * atomic ops.
765 */
766 if (irq_delta > delta)
767 irq_delta = delta;
768
769 rq->prev_irq_time += irq_delta;
770 delta -= irq_delta;
095c0aa8
GC
771#endif
772#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 773 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
774 steal = paravirt_steal_clock(cpu_of(rq));
775 steal -= rq->prev_steal_time_rq;
776
777 if (unlikely(steal > delta))
778 steal = delta;
779
095c0aa8 780 rq->prev_steal_time_rq += steal;
095c0aa8
GC
781 delta -= steal;
782 }
783#endif
784
fe44d621
PZ
785 rq->clock_task += delta;
786
095c0aa8 787#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 788 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
789 sched_rt_avg_update(rq, irq_delta + steal);
790#endif
aa483808
VP
791}
792
34f971f6
PZ
793void sched_set_stop_task(int cpu, struct task_struct *stop)
794{
795 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
796 struct task_struct *old_stop = cpu_rq(cpu)->stop;
797
798 if (stop) {
799 /*
800 * Make it appear like a SCHED_FIFO task, its something
801 * userspace knows about and won't get confused about.
802 *
803 * Also, it will make PI more or less work without too
804 * much confusion -- but then, stop work should not
805 * rely on PI working anyway.
806 */
807 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
808
809 stop->sched_class = &stop_sched_class;
810 }
811
812 cpu_rq(cpu)->stop = stop;
813
814 if (old_stop) {
815 /*
816 * Reset it back to a normal scheduling class so that
817 * it can die in pieces.
818 */
819 old_stop->sched_class = &rt_sched_class;
820 }
821}
822
14531189 823/*
dd41f596 824 * __normal_prio - return the priority that is based on the static prio
14531189 825 */
14531189
IM
826static inline int __normal_prio(struct task_struct *p)
827{
dd41f596 828 return p->static_prio;
14531189
IM
829}
830
b29739f9
IM
831/*
832 * Calculate the expected normal priority: i.e. priority
833 * without taking RT-inheritance into account. Might be
834 * boosted by interactivity modifiers. Changes upon fork,
835 * setprio syscalls, and whenever the interactivity
836 * estimator recalculates.
837 */
36c8b586 838static inline int normal_prio(struct task_struct *p)
b29739f9
IM
839{
840 int prio;
841
aab03e05
DF
842 if (task_has_dl_policy(p))
843 prio = MAX_DL_PRIO-1;
844 else if (task_has_rt_policy(p))
b29739f9
IM
845 prio = MAX_RT_PRIO-1 - p->rt_priority;
846 else
847 prio = __normal_prio(p);
848 return prio;
849}
850
851/*
852 * Calculate the current priority, i.e. the priority
853 * taken into account by the scheduler. This value might
854 * be boosted by RT tasks, or might be boosted by
855 * interactivity modifiers. Will be RT if the task got
856 * RT-boosted. If not then it returns p->normal_prio.
857 */
36c8b586 858static int effective_prio(struct task_struct *p)
b29739f9
IM
859{
860 p->normal_prio = normal_prio(p);
861 /*
862 * If we are RT tasks or we were boosted to RT priority,
863 * keep the priority unchanged. Otherwise, update priority
864 * to the normal priority:
865 */
866 if (!rt_prio(p->prio))
867 return p->normal_prio;
868 return p->prio;
869}
870
1da177e4
LT
871/**
872 * task_curr - is this task currently executing on a CPU?
873 * @p: the task in question.
e69f6186
YB
874 *
875 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 876 */
36c8b586 877inline int task_curr(const struct task_struct *p)
1da177e4
LT
878{
879 return cpu_curr(task_cpu(p)) == p;
880}
881
67dfa1b7 882/*
4c9a4bc8
PZ
883 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
884 * use the balance_callback list if you want balancing.
885 *
886 * this means any call to check_class_changed() must be followed by a call to
887 * balance_callback().
67dfa1b7 888 */
cb469845
SR
889static inline void check_class_changed(struct rq *rq, struct task_struct *p,
890 const struct sched_class *prev_class,
da7a735e 891 int oldprio)
cb469845
SR
892{
893 if (prev_class != p->sched_class) {
894 if (prev_class->switched_from)
da7a735e 895 prev_class->switched_from(rq, p);
4c9a4bc8 896
da7a735e 897 p->sched_class->switched_to(rq, p);
2d3d891d 898 } else if (oldprio != p->prio || dl_task(p))
da7a735e 899 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
900}
901
029632fb 902void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
903{
904 const struct sched_class *class;
905
906 if (p->sched_class == rq->curr->sched_class) {
907 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
908 } else {
909 for_each_class(class) {
910 if (class == rq->curr->sched_class)
911 break;
912 if (class == p->sched_class) {
8875125e 913 resched_curr(rq);
1e5a7405
PZ
914 break;
915 }
916 }
917 }
918
919 /*
920 * A queue event has occurred, and we're going to schedule. In
921 * this case, we can save a useless back to back clock update.
922 */
da0c1e65 923 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 924 rq_clock_skip_update(rq, true);
1e5a7405
PZ
925}
926
1da177e4 927#ifdef CONFIG_SMP
5cc389bc
PZ
928/*
929 * This is how migration works:
930 *
931 * 1) we invoke migration_cpu_stop() on the target CPU using
932 * stop_one_cpu().
933 * 2) stopper starts to run (implicitly forcing the migrated thread
934 * off the CPU)
935 * 3) it checks whether the migrated task is still in the wrong runqueue.
936 * 4) if it's in the wrong runqueue then the migration thread removes
937 * it and puts it into the right queue.
938 * 5) stopper completes and stop_one_cpu() returns and the migration
939 * is done.
940 */
941
942/*
943 * move_queued_task - move a queued task to new rq.
944 *
945 * Returns (locked) new rq. Old rq's lock is released.
946 */
5e16bbc2 947static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 948{
5cc389bc
PZ
949 lockdep_assert_held(&rq->lock);
950
5cc389bc 951 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 952 dequeue_task(rq, p, 0);
5cc389bc
PZ
953 set_task_cpu(p, new_cpu);
954 raw_spin_unlock(&rq->lock);
955
956 rq = cpu_rq(new_cpu);
957
958 raw_spin_lock(&rq->lock);
959 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 960 enqueue_task(rq, p, 0);
3ea94de1 961 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
962 check_preempt_curr(rq, p, 0);
963
964 return rq;
965}
966
967struct migration_arg {
968 struct task_struct *task;
969 int dest_cpu;
970};
971
972/*
973 * Move (not current) task off this cpu, onto dest cpu. We're doing
974 * this because either it can't run here any more (set_cpus_allowed()
975 * away from this CPU, or CPU going down), or because we're
976 * attempting to rebalance this task on exec (sched_exec).
977 *
978 * So we race with normal scheduler movements, but that's OK, as long
979 * as the task is no longer on this CPU.
5cc389bc 980 */
5e16bbc2 981static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 982{
5cc389bc 983 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 984 return rq;
5cc389bc
PZ
985
986 /* Affinity changed (again). */
987 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 988 return rq;
5cc389bc 989
5e16bbc2
PZ
990 rq = move_queued_task(rq, p, dest_cpu);
991
992 return rq;
5cc389bc
PZ
993}
994
995/*
996 * migration_cpu_stop - this will be executed by a highprio stopper thread
997 * and performs thread migration by bumping thread off CPU then
998 * 'pushing' onto another runqueue.
999 */
1000static int migration_cpu_stop(void *data)
1001{
1002 struct migration_arg *arg = data;
5e16bbc2
PZ
1003 struct task_struct *p = arg->task;
1004 struct rq *rq = this_rq();
5cc389bc
PZ
1005
1006 /*
1007 * The original target cpu might have gone down and we might
1008 * be on another cpu but it doesn't matter.
1009 */
1010 local_irq_disable();
1011 /*
1012 * We need to explicitly wake pending tasks before running
1013 * __migrate_task() such that we will not miss enforcing cpus_allowed
1014 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1015 */
1016 sched_ttwu_pending();
5e16bbc2
PZ
1017
1018 raw_spin_lock(&p->pi_lock);
1019 raw_spin_lock(&rq->lock);
1020 /*
1021 * If task_rq(p) != rq, it cannot be migrated here, because we're
1022 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1023 * we're holding p->pi_lock.
1024 */
1025 if (task_rq(p) == rq && task_on_rq_queued(p))
1026 rq = __migrate_task(rq, p, arg->dest_cpu);
1027 raw_spin_unlock(&rq->lock);
1028 raw_spin_unlock(&p->pi_lock);
1029
5cc389bc
PZ
1030 local_irq_enable();
1031 return 0;
1032}
1033
c5b28038
PZ
1034/*
1035 * sched_class::set_cpus_allowed must do the below, but is not required to
1036 * actually call this function.
1037 */
1038void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1039{
5cc389bc
PZ
1040 cpumask_copy(&p->cpus_allowed, new_mask);
1041 p->nr_cpus_allowed = cpumask_weight(new_mask);
1042}
1043
c5b28038
PZ
1044void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1045{
6c37067e
PZ
1046 struct rq *rq = task_rq(p);
1047 bool queued, running;
1048
c5b28038 1049 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1050
1051 queued = task_on_rq_queued(p);
1052 running = task_current(rq, p);
1053
1054 if (queued) {
1055 /*
1056 * Because __kthread_bind() calls this on blocked tasks without
1057 * holding rq->lock.
1058 */
1059 lockdep_assert_held(&rq->lock);
1de64443 1060 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1061 }
1062 if (running)
1063 put_prev_task(rq, p);
1064
c5b28038 1065 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1066
1067 if (running)
1068 p->sched_class->set_curr_task(rq);
1069 if (queued)
1de64443 1070 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1071}
1072
5cc389bc
PZ
1073/*
1074 * Change a given task's CPU affinity. Migrate the thread to a
1075 * proper CPU and schedule it away if the CPU it's executing on
1076 * is removed from the allowed bitmask.
1077 *
1078 * NOTE: the caller must have a valid reference to the task, the
1079 * task must not exit() & deallocate itself prematurely. The
1080 * call is not atomic; no spinlocks may be held.
1081 */
25834c73
PZ
1082static int __set_cpus_allowed_ptr(struct task_struct *p,
1083 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1084{
1085 unsigned long flags;
1086 struct rq *rq;
1087 unsigned int dest_cpu;
1088 int ret = 0;
1089
1090 rq = task_rq_lock(p, &flags);
1091
25834c73
PZ
1092 /*
1093 * Must re-check here, to close a race against __kthread_bind(),
1094 * sched_setaffinity() is not guaranteed to observe the flag.
1095 */
1096 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1097 ret = -EINVAL;
1098 goto out;
1099 }
1100
5cc389bc
PZ
1101 if (cpumask_equal(&p->cpus_allowed, new_mask))
1102 goto out;
1103
1104 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1105 ret = -EINVAL;
1106 goto out;
1107 }
1108
1109 do_set_cpus_allowed(p, new_mask);
1110
1111 /* Can the task run on the task's current CPU? If so, we're done */
1112 if (cpumask_test_cpu(task_cpu(p), new_mask))
1113 goto out;
1114
1115 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1116 if (task_running(rq, p) || p->state == TASK_WAKING) {
1117 struct migration_arg arg = { p, dest_cpu };
1118 /* Need help from migration thread: drop lock and wait. */
1119 task_rq_unlock(rq, p, &flags);
1120 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1121 tlb_migrate_finish(p->mm);
1122 return 0;
cbce1a68
PZ
1123 } else if (task_on_rq_queued(p)) {
1124 /*
1125 * OK, since we're going to drop the lock immediately
1126 * afterwards anyway.
1127 */
1128 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1129 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1130 lockdep_pin_lock(&rq->lock);
1131 }
5cc389bc
PZ
1132out:
1133 task_rq_unlock(rq, p, &flags);
1134
1135 return ret;
1136}
25834c73
PZ
1137
1138int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1139{
1140 return __set_cpus_allowed_ptr(p, new_mask, false);
1141}
5cc389bc
PZ
1142EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1143
dd41f596 1144void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1145{
e2912009
PZ
1146#ifdef CONFIG_SCHED_DEBUG
1147 /*
1148 * We should never call set_task_cpu() on a blocked task,
1149 * ttwu() will sort out the placement.
1150 */
077614ee 1151 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1152 !p->on_rq);
0122ec5b 1153
3ea94de1
JP
1154 /*
1155 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1156 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1157 * time relying on p->on_rq.
1158 */
1159 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1160 p->sched_class == &fair_sched_class &&
1161 (p->on_rq && !task_on_rq_migrating(p)));
1162
0122ec5b 1163#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1164 /*
1165 * The caller should hold either p->pi_lock or rq->lock, when changing
1166 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1167 *
1168 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1169 * see task_group().
6c6c54e1
PZ
1170 *
1171 * Furthermore, all task_rq users should acquire both locks, see
1172 * task_rq_lock().
1173 */
0122ec5b
PZ
1174 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1175 lockdep_is_held(&task_rq(p)->lock)));
1176#endif
e2912009
PZ
1177#endif
1178
de1d7286 1179 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1180
0c69774e 1181 if (task_cpu(p) != new_cpu) {
0a74bef8 1182 if (p->sched_class->migrate_task_rq)
5a4fd036 1183 p->sched_class->migrate_task_rq(p);
0c69774e 1184 p->se.nr_migrations++;
ff303e66 1185 perf_event_task_migrate(p);
0c69774e 1186 }
dd41f596
IM
1187
1188 __set_task_cpu(p, new_cpu);
c65cc870
IM
1189}
1190
ac66f547
PZ
1191static void __migrate_swap_task(struct task_struct *p, int cpu)
1192{
da0c1e65 1193 if (task_on_rq_queued(p)) {
ac66f547
PZ
1194 struct rq *src_rq, *dst_rq;
1195
1196 src_rq = task_rq(p);
1197 dst_rq = cpu_rq(cpu);
1198
3ea94de1 1199 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1200 deactivate_task(src_rq, p, 0);
1201 set_task_cpu(p, cpu);
1202 activate_task(dst_rq, p, 0);
3ea94de1 1203 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1204 check_preempt_curr(dst_rq, p, 0);
1205 } else {
1206 /*
1207 * Task isn't running anymore; make it appear like we migrated
1208 * it before it went to sleep. This means on wakeup we make the
1209 * previous cpu our targer instead of where it really is.
1210 */
1211 p->wake_cpu = cpu;
1212 }
1213}
1214
1215struct migration_swap_arg {
1216 struct task_struct *src_task, *dst_task;
1217 int src_cpu, dst_cpu;
1218};
1219
1220static int migrate_swap_stop(void *data)
1221{
1222 struct migration_swap_arg *arg = data;
1223 struct rq *src_rq, *dst_rq;
1224 int ret = -EAGAIN;
1225
62694cd5
PZ
1226 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1227 return -EAGAIN;
1228
ac66f547
PZ
1229 src_rq = cpu_rq(arg->src_cpu);
1230 dst_rq = cpu_rq(arg->dst_cpu);
1231
74602315
PZ
1232 double_raw_lock(&arg->src_task->pi_lock,
1233 &arg->dst_task->pi_lock);
ac66f547 1234 double_rq_lock(src_rq, dst_rq);
62694cd5 1235
ac66f547
PZ
1236 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1237 goto unlock;
1238
1239 if (task_cpu(arg->src_task) != arg->src_cpu)
1240 goto unlock;
1241
1242 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1246 goto unlock;
1247
1248 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1249 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1250
1251 ret = 0;
1252
1253unlock:
1254 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1255 raw_spin_unlock(&arg->dst_task->pi_lock);
1256 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1257
1258 return ret;
1259}
1260
1261/*
1262 * Cross migrate two tasks
1263 */
1264int migrate_swap(struct task_struct *cur, struct task_struct *p)
1265{
1266 struct migration_swap_arg arg;
1267 int ret = -EINVAL;
1268
ac66f547
PZ
1269 arg = (struct migration_swap_arg){
1270 .src_task = cur,
1271 .src_cpu = task_cpu(cur),
1272 .dst_task = p,
1273 .dst_cpu = task_cpu(p),
1274 };
1275
1276 if (arg.src_cpu == arg.dst_cpu)
1277 goto out;
1278
6acce3ef
PZ
1279 /*
1280 * These three tests are all lockless; this is OK since all of them
1281 * will be re-checked with proper locks held further down the line.
1282 */
ac66f547
PZ
1283 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1284 goto out;
1285
1286 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1290 goto out;
1291
286549dc 1292 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1293 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1294
1295out:
ac66f547
PZ
1296 return ret;
1297}
1298
1da177e4
LT
1299/*
1300 * wait_task_inactive - wait for a thread to unschedule.
1301 *
85ba2d86
RM
1302 * If @match_state is nonzero, it's the @p->state value just checked and
1303 * not expected to change. If it changes, i.e. @p might have woken up,
1304 * then return zero. When we succeed in waiting for @p to be off its CPU,
1305 * we return a positive number (its total switch count). If a second call
1306 * a short while later returns the same number, the caller can be sure that
1307 * @p has remained unscheduled the whole time.
1308 *
1da177e4
LT
1309 * The caller must ensure that the task *will* unschedule sometime soon,
1310 * else this function might spin for a *long* time. This function can't
1311 * be called with interrupts off, or it may introduce deadlock with
1312 * smp_call_function() if an IPI is sent by the same process we are
1313 * waiting to become inactive.
1314 */
85ba2d86 1315unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1316{
1317 unsigned long flags;
da0c1e65 1318 int running, queued;
85ba2d86 1319 unsigned long ncsw;
70b97a7f 1320 struct rq *rq;
1da177e4 1321
3a5c359a
AK
1322 for (;;) {
1323 /*
1324 * We do the initial early heuristics without holding
1325 * any task-queue locks at all. We'll only try to get
1326 * the runqueue lock when things look like they will
1327 * work out!
1328 */
1329 rq = task_rq(p);
fa490cfd 1330
3a5c359a
AK
1331 /*
1332 * If the task is actively running on another CPU
1333 * still, just relax and busy-wait without holding
1334 * any locks.
1335 *
1336 * NOTE! Since we don't hold any locks, it's not
1337 * even sure that "rq" stays as the right runqueue!
1338 * But we don't care, since "task_running()" will
1339 * return false if the runqueue has changed and p
1340 * is actually now running somewhere else!
1341 */
85ba2d86
RM
1342 while (task_running(rq, p)) {
1343 if (match_state && unlikely(p->state != match_state))
1344 return 0;
3a5c359a 1345 cpu_relax();
85ba2d86 1346 }
fa490cfd 1347
3a5c359a
AK
1348 /*
1349 * Ok, time to look more closely! We need the rq
1350 * lock now, to be *sure*. If we're wrong, we'll
1351 * just go back and repeat.
1352 */
1353 rq = task_rq_lock(p, &flags);
27a9da65 1354 trace_sched_wait_task(p);
3a5c359a 1355 running = task_running(rq, p);
da0c1e65 1356 queued = task_on_rq_queued(p);
85ba2d86 1357 ncsw = 0;
f31e11d8 1358 if (!match_state || p->state == match_state)
93dcf55f 1359 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1360 task_rq_unlock(rq, p, &flags);
fa490cfd 1361
85ba2d86
RM
1362 /*
1363 * If it changed from the expected state, bail out now.
1364 */
1365 if (unlikely(!ncsw))
1366 break;
1367
3a5c359a
AK
1368 /*
1369 * Was it really running after all now that we
1370 * checked with the proper locks actually held?
1371 *
1372 * Oops. Go back and try again..
1373 */
1374 if (unlikely(running)) {
1375 cpu_relax();
1376 continue;
1377 }
fa490cfd 1378
3a5c359a
AK
1379 /*
1380 * It's not enough that it's not actively running,
1381 * it must be off the runqueue _entirely_, and not
1382 * preempted!
1383 *
80dd99b3 1384 * So if it was still runnable (but just not actively
3a5c359a
AK
1385 * running right now), it's preempted, and we should
1386 * yield - it could be a while.
1387 */
da0c1e65 1388 if (unlikely(queued)) {
8eb90c30
TG
1389 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1390
1391 set_current_state(TASK_UNINTERRUPTIBLE);
1392 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1393 continue;
1394 }
fa490cfd 1395
3a5c359a
AK
1396 /*
1397 * Ahh, all good. It wasn't running, and it wasn't
1398 * runnable, which means that it will never become
1399 * running in the future either. We're all done!
1400 */
1401 break;
1402 }
85ba2d86
RM
1403
1404 return ncsw;
1da177e4
LT
1405}
1406
1407/***
1408 * kick_process - kick a running thread to enter/exit the kernel
1409 * @p: the to-be-kicked thread
1410 *
1411 * Cause a process which is running on another CPU to enter
1412 * kernel-mode, without any delay. (to get signals handled.)
1413 *
25985edc 1414 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1415 * because all it wants to ensure is that the remote task enters
1416 * the kernel. If the IPI races and the task has been migrated
1417 * to another CPU then no harm is done and the purpose has been
1418 * achieved as well.
1419 */
36c8b586 1420void kick_process(struct task_struct *p)
1da177e4
LT
1421{
1422 int cpu;
1423
1424 preempt_disable();
1425 cpu = task_cpu(p);
1426 if ((cpu != smp_processor_id()) && task_curr(p))
1427 smp_send_reschedule(cpu);
1428 preempt_enable();
1429}
b43e3521 1430EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1431
30da688e 1432/*
013fdb80 1433 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1434 */
5da9a0fb
PZ
1435static int select_fallback_rq(int cpu, struct task_struct *p)
1436{
aa00d89c
TC
1437 int nid = cpu_to_node(cpu);
1438 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1439 enum { cpuset, possible, fail } state = cpuset;
1440 int dest_cpu;
5da9a0fb 1441
aa00d89c
TC
1442 /*
1443 * If the node that the cpu is on has been offlined, cpu_to_node()
1444 * will return -1. There is no cpu on the node, and we should
1445 * select the cpu on the other node.
1446 */
1447 if (nid != -1) {
1448 nodemask = cpumask_of_node(nid);
1449
1450 /* Look for allowed, online CPU in same node. */
1451 for_each_cpu(dest_cpu, nodemask) {
1452 if (!cpu_online(dest_cpu))
1453 continue;
1454 if (!cpu_active(dest_cpu))
1455 continue;
1456 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1457 return dest_cpu;
1458 }
2baab4e9 1459 }
5da9a0fb 1460
2baab4e9
PZ
1461 for (;;) {
1462 /* Any allowed, online CPU? */
e3831edd 1463 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1464 if (!cpu_online(dest_cpu))
1465 continue;
1466 if (!cpu_active(dest_cpu))
1467 continue;
1468 goto out;
1469 }
5da9a0fb 1470
e73e85f0 1471 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1472 switch (state) {
1473 case cpuset:
e73e85f0
ON
1474 if (IS_ENABLED(CONFIG_CPUSETS)) {
1475 cpuset_cpus_allowed_fallback(p);
1476 state = possible;
1477 break;
1478 }
1479 /* fall-through */
2baab4e9
PZ
1480 case possible:
1481 do_set_cpus_allowed(p, cpu_possible_mask);
1482 state = fail;
1483 break;
1484
1485 case fail:
1486 BUG();
1487 break;
1488 }
1489 }
1490
1491out:
1492 if (state != cpuset) {
1493 /*
1494 * Don't tell them about moving exiting tasks or
1495 * kernel threads (both mm NULL), since they never
1496 * leave kernel.
1497 */
1498 if (p->mm && printk_ratelimit()) {
aac74dc4 1499 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1500 task_pid_nr(p), p->comm, cpu);
1501 }
5da9a0fb
PZ
1502 }
1503
1504 return dest_cpu;
1505}
1506
e2912009 1507/*
013fdb80 1508 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1509 */
970b13ba 1510static inline
ac66f547 1511int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1512{
cbce1a68
PZ
1513 lockdep_assert_held(&p->pi_lock);
1514
6c1d9410
WL
1515 if (p->nr_cpus_allowed > 1)
1516 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1517
1518 /*
1519 * In order not to call set_task_cpu() on a blocking task we need
1520 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1521 * cpu.
1522 *
1523 * Since this is common to all placement strategies, this lives here.
1524 *
1525 * [ this allows ->select_task() to simply return task_cpu(p) and
1526 * not worry about this generic constraint ]
1527 */
fa17b507 1528 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1529 !cpu_online(cpu)))
5da9a0fb 1530 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1531
1532 return cpu;
970b13ba 1533}
09a40af5
MG
1534
1535static void update_avg(u64 *avg, u64 sample)
1536{
1537 s64 diff = sample - *avg;
1538 *avg += diff >> 3;
1539}
25834c73
PZ
1540
1541#else
1542
1543static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1544 const struct cpumask *new_mask, bool check)
1545{
1546 return set_cpus_allowed_ptr(p, new_mask);
1547}
1548
5cc389bc 1549#endif /* CONFIG_SMP */
970b13ba 1550
d7c01d27 1551static void
b84cb5df 1552ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1553{
d7c01d27 1554#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1555 struct rq *rq = this_rq();
1556
d7c01d27
PZ
1557#ifdef CONFIG_SMP
1558 int this_cpu = smp_processor_id();
1559
1560 if (cpu == this_cpu) {
1561 schedstat_inc(rq, ttwu_local);
1562 schedstat_inc(p, se.statistics.nr_wakeups_local);
1563 } else {
1564 struct sched_domain *sd;
1565
1566 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1567 rcu_read_lock();
d7c01d27
PZ
1568 for_each_domain(this_cpu, sd) {
1569 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1570 schedstat_inc(sd, ttwu_wake_remote);
1571 break;
1572 }
1573 }
057f3fad 1574 rcu_read_unlock();
d7c01d27 1575 }
f339b9dc
PZ
1576
1577 if (wake_flags & WF_MIGRATED)
1578 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1579
d7c01d27
PZ
1580#endif /* CONFIG_SMP */
1581
1582 schedstat_inc(rq, ttwu_count);
9ed3811a 1583 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1584
1585 if (wake_flags & WF_SYNC)
9ed3811a 1586 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1587
d7c01d27
PZ
1588#endif /* CONFIG_SCHEDSTATS */
1589}
1590
1de64443 1591static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1592{
9ed3811a 1593 activate_task(rq, p, en_flags);
da0c1e65 1594 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1595
1596 /* if a worker is waking up, notify workqueue */
1597 if (p->flags & PF_WQ_WORKER)
1598 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1599}
1600
23f41eeb
PZ
1601/*
1602 * Mark the task runnable and perform wakeup-preemption.
1603 */
89363381 1604static void
23f41eeb 1605ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1606{
9ed3811a 1607 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1608 p->state = TASK_RUNNING;
fbd705a0
PZ
1609 trace_sched_wakeup(p);
1610
9ed3811a 1611#ifdef CONFIG_SMP
4c9a4bc8
PZ
1612 if (p->sched_class->task_woken) {
1613 /*
cbce1a68
PZ
1614 * Our task @p is fully woken up and running; so its safe to
1615 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1616 */
cbce1a68 1617 lockdep_unpin_lock(&rq->lock);
9ed3811a 1618 p->sched_class->task_woken(rq, p);
cbce1a68 1619 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1620 }
9ed3811a 1621
e69c6341 1622 if (rq->idle_stamp) {
78becc27 1623 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1624 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1625
abfafa54
JL
1626 update_avg(&rq->avg_idle, delta);
1627
1628 if (rq->avg_idle > max)
9ed3811a 1629 rq->avg_idle = max;
abfafa54 1630
9ed3811a
TH
1631 rq->idle_stamp = 0;
1632 }
1633#endif
1634}
1635
c05fbafb
PZ
1636static void
1637ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1638{
cbce1a68
PZ
1639 lockdep_assert_held(&rq->lock);
1640
c05fbafb
PZ
1641#ifdef CONFIG_SMP
1642 if (p->sched_contributes_to_load)
1643 rq->nr_uninterruptible--;
1644#endif
1645
1646 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1647 ttwu_do_wakeup(rq, p, wake_flags);
1648}
1649
1650/*
1651 * Called in case the task @p isn't fully descheduled from its runqueue,
1652 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1653 * since all we need to do is flip p->state to TASK_RUNNING, since
1654 * the task is still ->on_rq.
1655 */
1656static int ttwu_remote(struct task_struct *p, int wake_flags)
1657{
1658 struct rq *rq;
1659 int ret = 0;
1660
1661 rq = __task_rq_lock(p);
da0c1e65 1662 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1663 /* check_preempt_curr() may use rq clock */
1664 update_rq_clock(rq);
c05fbafb
PZ
1665 ttwu_do_wakeup(rq, p, wake_flags);
1666 ret = 1;
1667 }
1668 __task_rq_unlock(rq);
1669
1670 return ret;
1671}
1672
317f3941 1673#ifdef CONFIG_SMP
e3baac47 1674void sched_ttwu_pending(void)
317f3941
PZ
1675{
1676 struct rq *rq = this_rq();
fa14ff4a
PZ
1677 struct llist_node *llist = llist_del_all(&rq->wake_list);
1678 struct task_struct *p;
e3baac47 1679 unsigned long flags;
317f3941 1680
e3baac47
PZ
1681 if (!llist)
1682 return;
1683
1684 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1685 lockdep_pin_lock(&rq->lock);
317f3941 1686
fa14ff4a
PZ
1687 while (llist) {
1688 p = llist_entry(llist, struct task_struct, wake_entry);
1689 llist = llist_next(llist);
317f3941
PZ
1690 ttwu_do_activate(rq, p, 0);
1691 }
1692
cbce1a68 1693 lockdep_unpin_lock(&rq->lock);
e3baac47 1694 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1695}
1696
1697void scheduler_ipi(void)
1698{
f27dde8d
PZ
1699 /*
1700 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1701 * TIF_NEED_RESCHED remotely (for the first time) will also send
1702 * this IPI.
1703 */
8cb75e0c 1704 preempt_fold_need_resched();
f27dde8d 1705
fd2ac4f4 1706 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1707 return;
1708
1709 /*
1710 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1711 * traditionally all their work was done from the interrupt return
1712 * path. Now that we actually do some work, we need to make sure
1713 * we do call them.
1714 *
1715 * Some archs already do call them, luckily irq_enter/exit nest
1716 * properly.
1717 *
1718 * Arguably we should visit all archs and update all handlers,
1719 * however a fair share of IPIs are still resched only so this would
1720 * somewhat pessimize the simple resched case.
1721 */
1722 irq_enter();
fa14ff4a 1723 sched_ttwu_pending();
ca38062e
SS
1724
1725 /*
1726 * Check if someone kicked us for doing the nohz idle load balance.
1727 */
873b4c65 1728 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1729 this_rq()->idle_balance = 1;
ca38062e 1730 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1731 }
c5d753a5 1732 irq_exit();
317f3941
PZ
1733}
1734
1735static void ttwu_queue_remote(struct task_struct *p, int cpu)
1736{
e3baac47
PZ
1737 struct rq *rq = cpu_rq(cpu);
1738
1739 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1740 if (!set_nr_if_polling(rq->idle))
1741 smp_send_reschedule(cpu);
1742 else
1743 trace_sched_wake_idle_without_ipi(cpu);
1744 }
317f3941 1745}
d6aa8f85 1746
f6be8af1
CL
1747void wake_up_if_idle(int cpu)
1748{
1749 struct rq *rq = cpu_rq(cpu);
1750 unsigned long flags;
1751
fd7de1e8
AL
1752 rcu_read_lock();
1753
1754 if (!is_idle_task(rcu_dereference(rq->curr)))
1755 goto out;
f6be8af1
CL
1756
1757 if (set_nr_if_polling(rq->idle)) {
1758 trace_sched_wake_idle_without_ipi(cpu);
1759 } else {
1760 raw_spin_lock_irqsave(&rq->lock, flags);
1761 if (is_idle_task(rq->curr))
1762 smp_send_reschedule(cpu);
1763 /* Else cpu is not in idle, do nothing here */
1764 raw_spin_unlock_irqrestore(&rq->lock, flags);
1765 }
fd7de1e8
AL
1766
1767out:
1768 rcu_read_unlock();
f6be8af1
CL
1769}
1770
39be3501 1771bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1772{
1773 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1774}
d6aa8f85 1775#endif /* CONFIG_SMP */
317f3941 1776
c05fbafb
PZ
1777static void ttwu_queue(struct task_struct *p, int cpu)
1778{
1779 struct rq *rq = cpu_rq(cpu);
1780
17d9f311 1781#if defined(CONFIG_SMP)
39be3501 1782 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1783 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1784 ttwu_queue_remote(p, cpu);
1785 return;
1786 }
1787#endif
1788
c05fbafb 1789 raw_spin_lock(&rq->lock);
cbce1a68 1790 lockdep_pin_lock(&rq->lock);
c05fbafb 1791 ttwu_do_activate(rq, p, 0);
cbce1a68 1792 lockdep_unpin_lock(&rq->lock);
c05fbafb 1793 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1794}
1795
8643cda5
PZ
1796/*
1797 * Notes on Program-Order guarantees on SMP systems.
1798 *
1799 * MIGRATION
1800 *
1801 * The basic program-order guarantee on SMP systems is that when a task [t]
1802 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1803 * execution on its new cpu [c1].
1804 *
1805 * For migration (of runnable tasks) this is provided by the following means:
1806 *
1807 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1808 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1809 * rq(c1)->lock (if not at the same time, then in that order).
1810 * C) LOCK of the rq(c1)->lock scheduling in task
1811 *
1812 * Transitivity guarantees that B happens after A and C after B.
1813 * Note: we only require RCpc transitivity.
1814 * Note: the cpu doing B need not be c0 or c1
1815 *
1816 * Example:
1817 *
1818 * CPU0 CPU1 CPU2
1819 *
1820 * LOCK rq(0)->lock
1821 * sched-out X
1822 * sched-in Y
1823 * UNLOCK rq(0)->lock
1824 *
1825 * LOCK rq(0)->lock // orders against CPU0
1826 * dequeue X
1827 * UNLOCK rq(0)->lock
1828 *
1829 * LOCK rq(1)->lock
1830 * enqueue X
1831 * UNLOCK rq(1)->lock
1832 *
1833 * LOCK rq(1)->lock // orders against CPU2
1834 * sched-out Z
1835 * sched-in X
1836 * UNLOCK rq(1)->lock
1837 *
1838 *
1839 * BLOCKING -- aka. SLEEP + WAKEUP
1840 *
1841 * For blocking we (obviously) need to provide the same guarantee as for
1842 * migration. However the means are completely different as there is no lock
1843 * chain to provide order. Instead we do:
1844 *
1845 * 1) smp_store_release(X->on_cpu, 0)
1846 * 2) smp_cond_acquire(!X->on_cpu)
1847 *
1848 * Example:
1849 *
1850 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1851 *
1852 * LOCK rq(0)->lock LOCK X->pi_lock
1853 * dequeue X
1854 * sched-out X
1855 * smp_store_release(X->on_cpu, 0);
1856 *
1857 * smp_cond_acquire(!X->on_cpu);
1858 * X->state = WAKING
1859 * set_task_cpu(X,2)
1860 *
1861 * LOCK rq(2)->lock
1862 * enqueue X
1863 * X->state = RUNNING
1864 * UNLOCK rq(2)->lock
1865 *
1866 * LOCK rq(2)->lock // orders against CPU1
1867 * sched-out Z
1868 * sched-in X
1869 * UNLOCK rq(2)->lock
1870 *
1871 * UNLOCK X->pi_lock
1872 * UNLOCK rq(0)->lock
1873 *
1874 *
1875 * However; for wakeups there is a second guarantee we must provide, namely we
1876 * must observe the state that lead to our wakeup. That is, not only must our
1877 * task observe its own prior state, it must also observe the stores prior to
1878 * its wakeup.
1879 *
1880 * This means that any means of doing remote wakeups must order the CPU doing
1881 * the wakeup against the CPU the task is going to end up running on. This,
1882 * however, is already required for the regular Program-Order guarantee above,
1883 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1884 *
1885 */
1886
9ed3811a 1887/**
1da177e4 1888 * try_to_wake_up - wake up a thread
9ed3811a 1889 * @p: the thread to be awakened
1da177e4 1890 * @state: the mask of task states that can be woken
9ed3811a 1891 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1892 *
1893 * Put it on the run-queue if it's not already there. The "current"
1894 * thread is always on the run-queue (except when the actual
1895 * re-schedule is in progress), and as such you're allowed to do
1896 * the simpler "current->state = TASK_RUNNING" to mark yourself
1897 * runnable without the overhead of this.
1898 *
e69f6186 1899 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1900 * or @state didn't match @p's state.
1da177e4 1901 */
e4a52bcb
PZ
1902static int
1903try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1904{
1da177e4 1905 unsigned long flags;
c05fbafb 1906 int cpu, success = 0;
2398f2c6 1907
e0acd0a6
ON
1908 /*
1909 * If we are going to wake up a thread waiting for CONDITION we
1910 * need to ensure that CONDITION=1 done by the caller can not be
1911 * reordered with p->state check below. This pairs with mb() in
1912 * set_current_state() the waiting thread does.
1913 */
1914 smp_mb__before_spinlock();
013fdb80 1915 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1916 if (!(p->state & state))
1da177e4
LT
1917 goto out;
1918
fbd705a0
PZ
1919 trace_sched_waking(p);
1920
c05fbafb 1921 success = 1; /* we're going to change ->state */
1da177e4 1922 cpu = task_cpu(p);
1da177e4 1923
c05fbafb
PZ
1924 if (p->on_rq && ttwu_remote(p, wake_flags))
1925 goto stat;
1da177e4 1926
1da177e4 1927#ifdef CONFIG_SMP
ecf7d01c
PZ
1928 /*
1929 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1930 * possible to, falsely, observe p->on_cpu == 0.
1931 *
1932 * One must be running (->on_cpu == 1) in order to remove oneself
1933 * from the runqueue.
1934 *
1935 * [S] ->on_cpu = 1; [L] ->on_rq
1936 * UNLOCK rq->lock
1937 * RMB
1938 * LOCK rq->lock
1939 * [S] ->on_rq = 0; [L] ->on_cpu
1940 *
1941 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1942 * from the consecutive calls to schedule(); the first switching to our
1943 * task, the second putting it to sleep.
1944 */
1945 smp_rmb();
1946
e9c84311 1947 /*
c05fbafb
PZ
1948 * If the owning (remote) cpu is still in the middle of schedule() with
1949 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
1950 *
1951 * Pairs with the smp_store_release() in finish_lock_switch().
1952 *
1953 * This ensures that tasks getting woken will be fully ordered against
1954 * their previous state and preserve Program Order.
0970d299 1955 */
b3e0b1b6 1956 smp_cond_acquire(!p->on_cpu);
1da177e4 1957
a8e4f2ea 1958 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1959 p->state = TASK_WAKING;
e7693a36 1960
e4a52bcb 1961 if (p->sched_class->task_waking)
74f8e4b2 1962 p->sched_class->task_waking(p);
efbbd05a 1963
ac66f547 1964 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1965 if (task_cpu(p) != cpu) {
1966 wake_flags |= WF_MIGRATED;
e4a52bcb 1967 set_task_cpu(p, cpu);
f339b9dc 1968 }
1da177e4 1969#endif /* CONFIG_SMP */
1da177e4 1970
c05fbafb
PZ
1971 ttwu_queue(p, cpu);
1972stat:
cb251765
MG
1973 if (schedstat_enabled())
1974 ttwu_stat(p, cpu, wake_flags);
1da177e4 1975out:
013fdb80 1976 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1977
1978 return success;
1979}
1980
21aa9af0
TH
1981/**
1982 * try_to_wake_up_local - try to wake up a local task with rq lock held
1983 * @p: the thread to be awakened
1984 *
2acca55e 1985 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1986 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1987 * the current task.
21aa9af0
TH
1988 */
1989static void try_to_wake_up_local(struct task_struct *p)
1990{
1991 struct rq *rq = task_rq(p);
21aa9af0 1992
383efcd0
TH
1993 if (WARN_ON_ONCE(rq != this_rq()) ||
1994 WARN_ON_ONCE(p == current))
1995 return;
1996
21aa9af0
TH
1997 lockdep_assert_held(&rq->lock);
1998
2acca55e 1999 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2000 /*
2001 * This is OK, because current is on_cpu, which avoids it being
2002 * picked for load-balance and preemption/IRQs are still
2003 * disabled avoiding further scheduler activity on it and we've
2004 * not yet picked a replacement task.
2005 */
2006 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2007 raw_spin_unlock(&rq->lock);
2008 raw_spin_lock(&p->pi_lock);
2009 raw_spin_lock(&rq->lock);
cbce1a68 2010 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2011 }
2012
21aa9af0 2013 if (!(p->state & TASK_NORMAL))
2acca55e 2014 goto out;
21aa9af0 2015
fbd705a0
PZ
2016 trace_sched_waking(p);
2017
da0c1e65 2018 if (!task_on_rq_queued(p))
d7c01d27
PZ
2019 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2020
23f41eeb 2021 ttwu_do_wakeup(rq, p, 0);
cb251765
MG
2022 if (schedstat_enabled())
2023 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2024out:
2025 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2026}
2027
50fa610a
DH
2028/**
2029 * wake_up_process - Wake up a specific process
2030 * @p: The process to be woken up.
2031 *
2032 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2033 * processes.
2034 *
2035 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2036 *
2037 * It may be assumed that this function implies a write memory barrier before
2038 * changing the task state if and only if any tasks are woken up.
2039 */
7ad5b3a5 2040int wake_up_process(struct task_struct *p)
1da177e4 2041{
9067ac85 2042 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2043}
1da177e4
LT
2044EXPORT_SYMBOL(wake_up_process);
2045
7ad5b3a5 2046int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2047{
2048 return try_to_wake_up(p, state, 0);
2049}
2050
a5e7be3b
JL
2051/*
2052 * This function clears the sched_dl_entity static params.
2053 */
2054void __dl_clear_params(struct task_struct *p)
2055{
2056 struct sched_dl_entity *dl_se = &p->dl;
2057
2058 dl_se->dl_runtime = 0;
2059 dl_se->dl_deadline = 0;
2060 dl_se->dl_period = 0;
2061 dl_se->flags = 0;
2062 dl_se->dl_bw = 0;
40767b0d
PZ
2063
2064 dl_se->dl_throttled = 0;
40767b0d 2065 dl_se->dl_yielded = 0;
a5e7be3b
JL
2066}
2067
1da177e4
LT
2068/*
2069 * Perform scheduler related setup for a newly forked process p.
2070 * p is forked by current.
dd41f596
IM
2071 *
2072 * __sched_fork() is basic setup used by init_idle() too:
2073 */
5e1576ed 2074static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2075{
fd2f4419
PZ
2076 p->on_rq = 0;
2077
2078 p->se.on_rq = 0;
dd41f596
IM
2079 p->se.exec_start = 0;
2080 p->se.sum_exec_runtime = 0;
f6cf891c 2081 p->se.prev_sum_exec_runtime = 0;
6c594c21 2082 p->se.nr_migrations = 0;
da7a735e 2083 p->se.vruntime = 0;
fd2f4419 2084 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2085
ad936d86
BP
2086#ifdef CONFIG_FAIR_GROUP_SCHED
2087 p->se.cfs_rq = NULL;
2088#endif
2089
6cfb0d5d 2090#ifdef CONFIG_SCHEDSTATS
cb251765 2091 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2092 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2093#endif
476d139c 2094
aab03e05 2095 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2096 init_dl_task_timer(&p->dl);
a5e7be3b 2097 __dl_clear_params(p);
aab03e05 2098
fa717060 2099 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2100 p->rt.timeout = 0;
2101 p->rt.time_slice = sched_rr_timeslice;
2102 p->rt.on_rq = 0;
2103 p->rt.on_list = 0;
476d139c 2104
e107be36
AK
2105#ifdef CONFIG_PREEMPT_NOTIFIERS
2106 INIT_HLIST_HEAD(&p->preempt_notifiers);
2107#endif
cbee9f88
PZ
2108
2109#ifdef CONFIG_NUMA_BALANCING
2110 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2111 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2112 p->mm->numa_scan_seq = 0;
2113 }
2114
5e1576ed
RR
2115 if (clone_flags & CLONE_VM)
2116 p->numa_preferred_nid = current->numa_preferred_nid;
2117 else
2118 p->numa_preferred_nid = -1;
2119
cbee9f88
PZ
2120 p->node_stamp = 0ULL;
2121 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2122 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2123 p->numa_work.next = &p->numa_work;
44dba3d5 2124 p->numa_faults = NULL;
7e2703e6
RR
2125 p->last_task_numa_placement = 0;
2126 p->last_sum_exec_runtime = 0;
8c8a743c 2127
8c8a743c 2128 p->numa_group = NULL;
cbee9f88 2129#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2130}
2131
2a595721
SD
2132DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2133
1a687c2e 2134#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2135
1a687c2e
MG
2136void set_numabalancing_state(bool enabled)
2137{
2138 if (enabled)
2a595721 2139 static_branch_enable(&sched_numa_balancing);
1a687c2e 2140 else
2a595721 2141 static_branch_disable(&sched_numa_balancing);
1a687c2e 2142}
54a43d54
AK
2143
2144#ifdef CONFIG_PROC_SYSCTL
2145int sysctl_numa_balancing(struct ctl_table *table, int write,
2146 void __user *buffer, size_t *lenp, loff_t *ppos)
2147{
2148 struct ctl_table t;
2149 int err;
2a595721 2150 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2151
2152 if (write && !capable(CAP_SYS_ADMIN))
2153 return -EPERM;
2154
2155 t = *table;
2156 t.data = &state;
2157 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2158 if (err < 0)
2159 return err;
2160 if (write)
2161 set_numabalancing_state(state);
2162 return err;
2163}
2164#endif
2165#endif
dd41f596 2166
cb251765
MG
2167DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2168
2169#ifdef CONFIG_SCHEDSTATS
2170static void set_schedstats(bool enabled)
2171{
2172 if (enabled)
2173 static_branch_enable(&sched_schedstats);
2174 else
2175 static_branch_disable(&sched_schedstats);
2176}
2177
2178void force_schedstat_enabled(void)
2179{
2180 if (!schedstat_enabled()) {
2181 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2182 static_branch_enable(&sched_schedstats);
2183 }
2184}
2185
2186static int __init setup_schedstats(char *str)
2187{
2188 int ret = 0;
2189 if (!str)
2190 goto out;
2191
2192 if (!strcmp(str, "enable")) {
2193 set_schedstats(true);
2194 ret = 1;
2195 } else if (!strcmp(str, "disable")) {
2196 set_schedstats(false);
2197 ret = 1;
2198 }
2199out:
2200 if (!ret)
2201 pr_warn("Unable to parse schedstats=\n");
2202
2203 return ret;
2204}
2205__setup("schedstats=", setup_schedstats);
2206
2207#ifdef CONFIG_PROC_SYSCTL
2208int sysctl_schedstats(struct ctl_table *table, int write,
2209 void __user *buffer, size_t *lenp, loff_t *ppos)
2210{
2211 struct ctl_table t;
2212 int err;
2213 int state = static_branch_likely(&sched_schedstats);
2214
2215 if (write && !capable(CAP_SYS_ADMIN))
2216 return -EPERM;
2217
2218 t = *table;
2219 t.data = &state;
2220 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2221 if (err < 0)
2222 return err;
2223 if (write)
2224 set_schedstats(state);
2225 return err;
2226}
2227#endif
2228#endif
dd41f596
IM
2229
2230/*
2231 * fork()/clone()-time setup:
2232 */
aab03e05 2233int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2234{
0122ec5b 2235 unsigned long flags;
dd41f596
IM
2236 int cpu = get_cpu();
2237
5e1576ed 2238 __sched_fork(clone_flags, p);
06b83b5f 2239 /*
0017d735 2240 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2241 * nobody will actually run it, and a signal or other external
2242 * event cannot wake it up and insert it on the runqueue either.
2243 */
0017d735 2244 p->state = TASK_RUNNING;
dd41f596 2245
c350a04e
MG
2246 /*
2247 * Make sure we do not leak PI boosting priority to the child.
2248 */
2249 p->prio = current->normal_prio;
2250
b9dc29e7
MG
2251 /*
2252 * Revert to default priority/policy on fork if requested.
2253 */
2254 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2255 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2256 p->policy = SCHED_NORMAL;
6c697bdf 2257 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2258 p->rt_priority = 0;
2259 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2260 p->static_prio = NICE_TO_PRIO(0);
2261
2262 p->prio = p->normal_prio = __normal_prio(p);
2263 set_load_weight(p);
6c697bdf 2264
b9dc29e7
MG
2265 /*
2266 * We don't need the reset flag anymore after the fork. It has
2267 * fulfilled its duty:
2268 */
2269 p->sched_reset_on_fork = 0;
2270 }
ca94c442 2271
aab03e05
DF
2272 if (dl_prio(p->prio)) {
2273 put_cpu();
2274 return -EAGAIN;
2275 } else if (rt_prio(p->prio)) {
2276 p->sched_class = &rt_sched_class;
2277 } else {
2ddbf952 2278 p->sched_class = &fair_sched_class;
aab03e05 2279 }
b29739f9 2280
cd29fe6f
PZ
2281 if (p->sched_class->task_fork)
2282 p->sched_class->task_fork(p);
2283
86951599
PZ
2284 /*
2285 * The child is not yet in the pid-hash so no cgroup attach races,
2286 * and the cgroup is pinned to this child due to cgroup_fork()
2287 * is ran before sched_fork().
2288 *
2289 * Silence PROVE_RCU.
2290 */
0122ec5b 2291 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2292 set_task_cpu(p, cpu);
0122ec5b 2293 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2294
f6db8347 2295#ifdef CONFIG_SCHED_INFO
dd41f596 2296 if (likely(sched_info_on()))
52f17b6c 2297 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2298#endif
3ca7a440
PZ
2299#if defined(CONFIG_SMP)
2300 p->on_cpu = 0;
4866cde0 2301#endif
01028747 2302 init_task_preempt_count(p);
806c09a7 2303#ifdef CONFIG_SMP
917b627d 2304 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2305 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2306#endif
917b627d 2307
476d139c 2308 put_cpu();
aab03e05 2309 return 0;
1da177e4
LT
2310}
2311
332ac17e
DF
2312unsigned long to_ratio(u64 period, u64 runtime)
2313{
2314 if (runtime == RUNTIME_INF)
2315 return 1ULL << 20;
2316
2317 /*
2318 * Doing this here saves a lot of checks in all
2319 * the calling paths, and returning zero seems
2320 * safe for them anyway.
2321 */
2322 if (period == 0)
2323 return 0;
2324
2325 return div64_u64(runtime << 20, period);
2326}
2327
2328#ifdef CONFIG_SMP
2329inline struct dl_bw *dl_bw_of(int i)
2330{
f78f5b90
PM
2331 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2332 "sched RCU must be held");
332ac17e
DF
2333 return &cpu_rq(i)->rd->dl_bw;
2334}
2335
de212f18 2336static inline int dl_bw_cpus(int i)
332ac17e 2337{
de212f18
PZ
2338 struct root_domain *rd = cpu_rq(i)->rd;
2339 int cpus = 0;
2340
f78f5b90
PM
2341 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2342 "sched RCU must be held");
de212f18
PZ
2343 for_each_cpu_and(i, rd->span, cpu_active_mask)
2344 cpus++;
2345
2346 return cpus;
332ac17e
DF
2347}
2348#else
2349inline struct dl_bw *dl_bw_of(int i)
2350{
2351 return &cpu_rq(i)->dl.dl_bw;
2352}
2353
de212f18 2354static inline int dl_bw_cpus(int i)
332ac17e
DF
2355{
2356 return 1;
2357}
2358#endif
2359
332ac17e
DF
2360/*
2361 * We must be sure that accepting a new task (or allowing changing the
2362 * parameters of an existing one) is consistent with the bandwidth
2363 * constraints. If yes, this function also accordingly updates the currently
2364 * allocated bandwidth to reflect the new situation.
2365 *
2366 * This function is called while holding p's rq->lock.
40767b0d
PZ
2367 *
2368 * XXX we should delay bw change until the task's 0-lag point, see
2369 * __setparam_dl().
332ac17e
DF
2370 */
2371static int dl_overflow(struct task_struct *p, int policy,
2372 const struct sched_attr *attr)
2373{
2374
2375 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2376 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2377 u64 runtime = attr->sched_runtime;
2378 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2379 int cpus, err = -1;
332ac17e
DF
2380
2381 if (new_bw == p->dl.dl_bw)
2382 return 0;
2383
2384 /*
2385 * Either if a task, enters, leave, or stays -deadline but changes
2386 * its parameters, we may need to update accordingly the total
2387 * allocated bandwidth of the container.
2388 */
2389 raw_spin_lock(&dl_b->lock);
de212f18 2390 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2391 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2392 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2393 __dl_add(dl_b, new_bw);
2394 err = 0;
2395 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2396 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2397 __dl_clear(dl_b, p->dl.dl_bw);
2398 __dl_add(dl_b, new_bw);
2399 err = 0;
2400 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2401 __dl_clear(dl_b, p->dl.dl_bw);
2402 err = 0;
2403 }
2404 raw_spin_unlock(&dl_b->lock);
2405
2406 return err;
2407}
2408
2409extern void init_dl_bw(struct dl_bw *dl_b);
2410
1da177e4
LT
2411/*
2412 * wake_up_new_task - wake up a newly created task for the first time.
2413 *
2414 * This function will do some initial scheduler statistics housekeeping
2415 * that must be done for every newly created context, then puts the task
2416 * on the runqueue and wakes it.
2417 */
3e51e3ed 2418void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2419{
2420 unsigned long flags;
dd41f596 2421 struct rq *rq;
fabf318e 2422
ab2515c4 2423 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2424 /* Initialize new task's runnable average */
2425 init_entity_runnable_average(&p->se);
fabf318e
PZ
2426#ifdef CONFIG_SMP
2427 /*
2428 * Fork balancing, do it here and not earlier because:
2429 * - cpus_allowed can change in the fork path
2430 * - any previously selected cpu might disappear through hotplug
fabf318e 2431 */
ac66f547 2432 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2433#endif
2434
ab2515c4 2435 rq = __task_rq_lock(p);
cd29fe6f 2436 activate_task(rq, p, 0);
da0c1e65 2437 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2438 trace_sched_wakeup_new(p);
a7558e01 2439 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2440#ifdef CONFIG_SMP
0aaafaab
PZ
2441 if (p->sched_class->task_woken) {
2442 /*
2443 * Nothing relies on rq->lock after this, so its fine to
2444 * drop it.
2445 */
2446 lockdep_unpin_lock(&rq->lock);
efbbd05a 2447 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2448 lockdep_pin_lock(&rq->lock);
2449 }
9a897c5a 2450#endif
0122ec5b 2451 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2452}
2453
e107be36
AK
2454#ifdef CONFIG_PREEMPT_NOTIFIERS
2455
1cde2930
PZ
2456static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2457
2ecd9d29
PZ
2458void preempt_notifier_inc(void)
2459{
2460 static_key_slow_inc(&preempt_notifier_key);
2461}
2462EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2463
2464void preempt_notifier_dec(void)
2465{
2466 static_key_slow_dec(&preempt_notifier_key);
2467}
2468EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2469
e107be36 2470/**
80dd99b3 2471 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2472 * @notifier: notifier struct to register
e107be36
AK
2473 */
2474void preempt_notifier_register(struct preempt_notifier *notifier)
2475{
2ecd9d29
PZ
2476 if (!static_key_false(&preempt_notifier_key))
2477 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2478
e107be36
AK
2479 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2480}
2481EXPORT_SYMBOL_GPL(preempt_notifier_register);
2482
2483/**
2484 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2485 * @notifier: notifier struct to unregister
e107be36 2486 *
d84525a8 2487 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2488 */
2489void preempt_notifier_unregister(struct preempt_notifier *notifier)
2490{
2491 hlist_del(&notifier->link);
2492}
2493EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2494
1cde2930 2495static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2496{
2497 struct preempt_notifier *notifier;
e107be36 2498
b67bfe0d 2499 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2500 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2501}
2502
1cde2930
PZ
2503static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2504{
2505 if (static_key_false(&preempt_notifier_key))
2506 __fire_sched_in_preempt_notifiers(curr);
2507}
2508
e107be36 2509static void
1cde2930
PZ
2510__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2511 struct task_struct *next)
e107be36
AK
2512{
2513 struct preempt_notifier *notifier;
e107be36 2514
b67bfe0d 2515 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2516 notifier->ops->sched_out(notifier, next);
2517}
2518
1cde2930
PZ
2519static __always_inline void
2520fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521 struct task_struct *next)
2522{
2523 if (static_key_false(&preempt_notifier_key))
2524 __fire_sched_out_preempt_notifiers(curr, next);
2525}
2526
6d6bc0ad 2527#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2528
1cde2930 2529static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2530{
2531}
2532
1cde2930 2533static inline void
e107be36
AK
2534fire_sched_out_preempt_notifiers(struct task_struct *curr,
2535 struct task_struct *next)
2536{
2537}
2538
6d6bc0ad 2539#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2540
4866cde0
NP
2541/**
2542 * prepare_task_switch - prepare to switch tasks
2543 * @rq: the runqueue preparing to switch
421cee29 2544 * @prev: the current task that is being switched out
4866cde0
NP
2545 * @next: the task we are going to switch to.
2546 *
2547 * This is called with the rq lock held and interrupts off. It must
2548 * be paired with a subsequent finish_task_switch after the context
2549 * switch.
2550 *
2551 * prepare_task_switch sets up locking and calls architecture specific
2552 * hooks.
2553 */
e107be36
AK
2554static inline void
2555prepare_task_switch(struct rq *rq, struct task_struct *prev,
2556 struct task_struct *next)
4866cde0 2557{
43148951 2558 sched_info_switch(rq, prev, next);
fe4b04fa 2559 perf_event_task_sched_out(prev, next);
e107be36 2560 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2561 prepare_lock_switch(rq, next);
2562 prepare_arch_switch(next);
2563}
2564
1da177e4
LT
2565/**
2566 * finish_task_switch - clean up after a task-switch
2567 * @prev: the thread we just switched away from.
2568 *
4866cde0
NP
2569 * finish_task_switch must be called after the context switch, paired
2570 * with a prepare_task_switch call before the context switch.
2571 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2572 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2573 *
2574 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2575 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2576 * with the lock held can cause deadlocks; see schedule() for
2577 * details.)
dfa50b60
ON
2578 *
2579 * The context switch have flipped the stack from under us and restored the
2580 * local variables which were saved when this task called schedule() in the
2581 * past. prev == current is still correct but we need to recalculate this_rq
2582 * because prev may have moved to another CPU.
1da177e4 2583 */
dfa50b60 2584static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2585 __releases(rq->lock)
2586{
dfa50b60 2587 struct rq *rq = this_rq();
1da177e4 2588 struct mm_struct *mm = rq->prev_mm;
55a101f8 2589 long prev_state;
1da177e4 2590
609ca066
PZ
2591 /*
2592 * The previous task will have left us with a preempt_count of 2
2593 * because it left us after:
2594 *
2595 * schedule()
2596 * preempt_disable(); // 1
2597 * __schedule()
2598 * raw_spin_lock_irq(&rq->lock) // 2
2599 *
2600 * Also, see FORK_PREEMPT_COUNT.
2601 */
e2bf1c4b
PZ
2602 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2603 "corrupted preempt_count: %s/%d/0x%x\n",
2604 current->comm, current->pid, preempt_count()))
2605 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2606
1da177e4
LT
2607 rq->prev_mm = NULL;
2608
2609 /*
2610 * A task struct has one reference for the use as "current".
c394cc9f 2611 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2612 * schedule one last time. The schedule call will never return, and
2613 * the scheduled task must drop that reference.
95913d97
PZ
2614 *
2615 * We must observe prev->state before clearing prev->on_cpu (in
2616 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2617 * running on another CPU and we could rave with its RUNNING -> DEAD
2618 * transition, resulting in a double drop.
1da177e4 2619 */
55a101f8 2620 prev_state = prev->state;
bf9fae9f 2621 vtime_task_switch(prev);
a8d757ef 2622 perf_event_task_sched_in(prev, current);
4866cde0 2623 finish_lock_switch(rq, prev);
01f23e16 2624 finish_arch_post_lock_switch();
e8fa1362 2625
e107be36 2626 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2627 if (mm)
2628 mmdrop(mm);
c394cc9f 2629 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2630 if (prev->sched_class->task_dead)
2631 prev->sched_class->task_dead(prev);
2632
c6fd91f0 2633 /*
2634 * Remove function-return probe instances associated with this
2635 * task and put them back on the free list.
9761eea8 2636 */
c6fd91f0 2637 kprobe_flush_task(prev);
1da177e4 2638 put_task_struct(prev);
c6fd91f0 2639 }
99e5ada9 2640
de734f89 2641 tick_nohz_task_switch();
dfa50b60 2642 return rq;
1da177e4
LT
2643}
2644
3f029d3c
GH
2645#ifdef CONFIG_SMP
2646
3f029d3c 2647/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2648static void __balance_callback(struct rq *rq)
3f029d3c 2649{
e3fca9e7
PZ
2650 struct callback_head *head, *next;
2651 void (*func)(struct rq *rq);
2652 unsigned long flags;
3f029d3c 2653
e3fca9e7
PZ
2654 raw_spin_lock_irqsave(&rq->lock, flags);
2655 head = rq->balance_callback;
2656 rq->balance_callback = NULL;
2657 while (head) {
2658 func = (void (*)(struct rq *))head->func;
2659 next = head->next;
2660 head->next = NULL;
2661 head = next;
3f029d3c 2662
e3fca9e7 2663 func(rq);
3f029d3c 2664 }
e3fca9e7
PZ
2665 raw_spin_unlock_irqrestore(&rq->lock, flags);
2666}
2667
2668static inline void balance_callback(struct rq *rq)
2669{
2670 if (unlikely(rq->balance_callback))
2671 __balance_callback(rq);
3f029d3c
GH
2672}
2673
2674#else
da19ab51 2675
e3fca9e7 2676static inline void balance_callback(struct rq *rq)
3f029d3c 2677{
1da177e4
LT
2678}
2679
3f029d3c
GH
2680#endif
2681
1da177e4
LT
2682/**
2683 * schedule_tail - first thing a freshly forked thread must call.
2684 * @prev: the thread we just switched away from.
2685 */
722a9f92 2686asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2687 __releases(rq->lock)
2688{
1a43a14a 2689 struct rq *rq;
da19ab51 2690
609ca066
PZ
2691 /*
2692 * New tasks start with FORK_PREEMPT_COUNT, see there and
2693 * finish_task_switch() for details.
2694 *
2695 * finish_task_switch() will drop rq->lock() and lower preempt_count
2696 * and the preempt_enable() will end up enabling preemption (on
2697 * PREEMPT_COUNT kernels).
2698 */
2699
dfa50b60 2700 rq = finish_task_switch(prev);
e3fca9e7 2701 balance_callback(rq);
1a43a14a 2702 preempt_enable();
70b97a7f 2703
1da177e4 2704 if (current->set_child_tid)
b488893a 2705 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2706}
2707
2708/*
dfa50b60 2709 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2710 */
04936948 2711static __always_inline struct rq *
70b97a7f 2712context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2713 struct task_struct *next)
1da177e4 2714{
dd41f596 2715 struct mm_struct *mm, *oldmm;
1da177e4 2716
e107be36 2717 prepare_task_switch(rq, prev, next);
fe4b04fa 2718
dd41f596
IM
2719 mm = next->mm;
2720 oldmm = prev->active_mm;
9226d125
ZA
2721 /*
2722 * For paravirt, this is coupled with an exit in switch_to to
2723 * combine the page table reload and the switch backend into
2724 * one hypercall.
2725 */
224101ed 2726 arch_start_context_switch(prev);
9226d125 2727
31915ab4 2728 if (!mm) {
1da177e4
LT
2729 next->active_mm = oldmm;
2730 atomic_inc(&oldmm->mm_count);
2731 enter_lazy_tlb(oldmm, next);
2732 } else
2733 switch_mm(oldmm, mm, next);
2734
31915ab4 2735 if (!prev->mm) {
1da177e4 2736 prev->active_mm = NULL;
1da177e4
LT
2737 rq->prev_mm = oldmm;
2738 }
3a5f5e48
IM
2739 /*
2740 * Since the runqueue lock will be released by the next
2741 * task (which is an invalid locking op but in the case
2742 * of the scheduler it's an obvious special-case), so we
2743 * do an early lockdep release here:
2744 */
cbce1a68 2745 lockdep_unpin_lock(&rq->lock);
8a25d5de 2746 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2747
2748 /* Here we just switch the register state and the stack. */
2749 switch_to(prev, next, prev);
dd41f596 2750 barrier();
dfa50b60
ON
2751
2752 return finish_task_switch(prev);
1da177e4
LT
2753}
2754
2755/*
1c3e8264 2756 * nr_running and nr_context_switches:
1da177e4
LT
2757 *
2758 * externally visible scheduler statistics: current number of runnable
1c3e8264 2759 * threads, total number of context switches performed since bootup.
1da177e4
LT
2760 */
2761unsigned long nr_running(void)
2762{
2763 unsigned long i, sum = 0;
2764
2765 for_each_online_cpu(i)
2766 sum += cpu_rq(i)->nr_running;
2767
2768 return sum;
f711f609 2769}
1da177e4 2770
2ee507c4
TC
2771/*
2772 * Check if only the current task is running on the cpu.
00cc1633
DD
2773 *
2774 * Caution: this function does not check that the caller has disabled
2775 * preemption, thus the result might have a time-of-check-to-time-of-use
2776 * race. The caller is responsible to use it correctly, for example:
2777 *
2778 * - from a non-preemptable section (of course)
2779 *
2780 * - from a thread that is bound to a single CPU
2781 *
2782 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2783 */
2784bool single_task_running(void)
2785{
00cc1633 2786 return raw_rq()->nr_running == 1;
2ee507c4
TC
2787}
2788EXPORT_SYMBOL(single_task_running);
2789
1da177e4 2790unsigned long long nr_context_switches(void)
46cb4b7c 2791{
cc94abfc
SR
2792 int i;
2793 unsigned long long sum = 0;
46cb4b7c 2794
0a945022 2795 for_each_possible_cpu(i)
1da177e4 2796 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2797
1da177e4
LT
2798 return sum;
2799}
483b4ee6 2800
1da177e4
LT
2801unsigned long nr_iowait(void)
2802{
2803 unsigned long i, sum = 0;
483b4ee6 2804
0a945022 2805 for_each_possible_cpu(i)
1da177e4 2806 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2807
1da177e4
LT
2808 return sum;
2809}
483b4ee6 2810
8c215bd3 2811unsigned long nr_iowait_cpu(int cpu)
69d25870 2812{
8c215bd3 2813 struct rq *this = cpu_rq(cpu);
69d25870
AV
2814 return atomic_read(&this->nr_iowait);
2815}
46cb4b7c 2816
372ba8cb
MG
2817void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2818{
3289bdb4
PZ
2819 struct rq *rq = this_rq();
2820 *nr_waiters = atomic_read(&rq->nr_iowait);
2821 *load = rq->load.weight;
372ba8cb
MG
2822}
2823
dd41f596 2824#ifdef CONFIG_SMP
8a0be9ef 2825
46cb4b7c 2826/*
38022906
PZ
2827 * sched_exec - execve() is a valuable balancing opportunity, because at
2828 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2829 */
38022906 2830void sched_exec(void)
46cb4b7c 2831{
38022906 2832 struct task_struct *p = current;
1da177e4 2833 unsigned long flags;
0017d735 2834 int dest_cpu;
46cb4b7c 2835
8f42ced9 2836 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2837 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2838 if (dest_cpu == smp_processor_id())
2839 goto unlock;
38022906 2840
8f42ced9 2841 if (likely(cpu_active(dest_cpu))) {
969c7921 2842 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2843
8f42ced9
PZ
2844 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2845 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2846 return;
2847 }
0017d735 2848unlock:
8f42ced9 2849 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2850}
dd41f596 2851
1da177e4
LT
2852#endif
2853
1da177e4 2854DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2855DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2856
2857EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2858EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2859
c5f8d995
HS
2860/*
2861 * Return accounted runtime for the task.
2862 * In case the task is currently running, return the runtime plus current's
2863 * pending runtime that have not been accounted yet.
2864 */
2865unsigned long long task_sched_runtime(struct task_struct *p)
2866{
2867 unsigned long flags;
2868 struct rq *rq;
6e998916 2869 u64 ns;
c5f8d995 2870
911b2898
PZ
2871#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2872 /*
2873 * 64-bit doesn't need locks to atomically read a 64bit value.
2874 * So we have a optimization chance when the task's delta_exec is 0.
2875 * Reading ->on_cpu is racy, but this is ok.
2876 *
2877 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2878 * If we race with it entering cpu, unaccounted time is 0. This is
2879 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2880 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2881 * been accounted, so we're correct here as well.
911b2898 2882 */
da0c1e65 2883 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2884 return p->se.sum_exec_runtime;
2885#endif
2886
c5f8d995 2887 rq = task_rq_lock(p, &flags);
6e998916
SG
2888 /*
2889 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2890 * project cycles that may never be accounted to this
2891 * thread, breaking clock_gettime().
2892 */
2893 if (task_current(rq, p) && task_on_rq_queued(p)) {
2894 update_rq_clock(rq);
2895 p->sched_class->update_curr(rq);
2896 }
2897 ns = p->se.sum_exec_runtime;
0122ec5b 2898 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2899
2900 return ns;
2901}
48f24c4d 2902
7835b98b
CL
2903/*
2904 * This function gets called by the timer code, with HZ frequency.
2905 * We call it with interrupts disabled.
7835b98b
CL
2906 */
2907void scheduler_tick(void)
2908{
7835b98b
CL
2909 int cpu = smp_processor_id();
2910 struct rq *rq = cpu_rq(cpu);
dd41f596 2911 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2912
2913 sched_clock_tick();
dd41f596 2914
05fa785c 2915 raw_spin_lock(&rq->lock);
3e51f33f 2916 update_rq_clock(rq);
fa85ae24 2917 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2918 update_cpu_load_active(rq);
3289bdb4 2919 calc_global_load_tick(rq);
05fa785c 2920 raw_spin_unlock(&rq->lock);
7835b98b 2921
e9d2b064 2922 perf_event_task_tick();
e220d2dc 2923
e418e1c2 2924#ifdef CONFIG_SMP
6eb57e0d 2925 rq->idle_balance = idle_cpu(cpu);
7caff66f 2926 trigger_load_balance(rq);
e418e1c2 2927#endif
265f22a9 2928 rq_last_tick_reset(rq);
1da177e4
LT
2929}
2930
265f22a9
FW
2931#ifdef CONFIG_NO_HZ_FULL
2932/**
2933 * scheduler_tick_max_deferment
2934 *
2935 * Keep at least one tick per second when a single
2936 * active task is running because the scheduler doesn't
2937 * yet completely support full dynticks environment.
2938 *
2939 * This makes sure that uptime, CFS vruntime, load
2940 * balancing, etc... continue to move forward, even
2941 * with a very low granularity.
e69f6186
YB
2942 *
2943 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2944 */
2945u64 scheduler_tick_max_deferment(void)
2946{
2947 struct rq *rq = this_rq();
316c1608 2948 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2949
2950 next = rq->last_sched_tick + HZ;
2951
2952 if (time_before_eq(next, now))
2953 return 0;
2954
8fe8ff09 2955 return jiffies_to_nsecs(next - now);
1da177e4 2956}
265f22a9 2957#endif
1da177e4 2958
7e49fcce
SR
2959#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2960 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
2961/*
2962 * If the value passed in is equal to the current preempt count
2963 * then we just disabled preemption. Start timing the latency.
2964 */
2965static inline void preempt_latency_start(int val)
2966{
2967 if (preempt_count() == val) {
2968 unsigned long ip = get_lock_parent_ip();
2969#ifdef CONFIG_DEBUG_PREEMPT
2970 current->preempt_disable_ip = ip;
2971#endif
2972 trace_preempt_off(CALLER_ADDR0, ip);
2973 }
2974}
7e49fcce 2975
edafe3a5 2976void preempt_count_add(int val)
1da177e4 2977{
6cd8a4bb 2978#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2979 /*
2980 * Underflow?
2981 */
9a11b49a
IM
2982 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2983 return;
6cd8a4bb 2984#endif
bdb43806 2985 __preempt_count_add(val);
6cd8a4bb 2986#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2987 /*
2988 * Spinlock count overflowing soon?
2989 */
33859f7f
MOS
2990 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2991 PREEMPT_MASK - 10);
6cd8a4bb 2992#endif
47252cfb 2993 preempt_latency_start(val);
1da177e4 2994}
bdb43806 2995EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2996NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2997
47252cfb
SR
2998/*
2999 * If the value passed in equals to the current preempt count
3000 * then we just enabled preemption. Stop timing the latency.
3001 */
3002static inline void preempt_latency_stop(int val)
3003{
3004 if (preempt_count() == val)
3005 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3006}
3007
edafe3a5 3008void preempt_count_sub(int val)
1da177e4 3009{
6cd8a4bb 3010#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3011 /*
3012 * Underflow?
3013 */
01e3eb82 3014 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3015 return;
1da177e4
LT
3016 /*
3017 * Is the spinlock portion underflowing?
3018 */
9a11b49a
IM
3019 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3020 !(preempt_count() & PREEMPT_MASK)))
3021 return;
6cd8a4bb 3022#endif
9a11b49a 3023
47252cfb 3024 preempt_latency_stop(val);
bdb43806 3025 __preempt_count_sub(val);
1da177e4 3026}
bdb43806 3027EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3028NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3029
47252cfb
SR
3030#else
3031static inline void preempt_latency_start(int val) { }
3032static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3033#endif
3034
3035/*
dd41f596 3036 * Print scheduling while atomic bug:
1da177e4 3037 */
dd41f596 3038static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3039{
664dfa65
DJ
3040 if (oops_in_progress)
3041 return;
3042
3df0fc5b
PZ
3043 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3044 prev->comm, prev->pid, preempt_count());
838225b4 3045
dd41f596 3046 debug_show_held_locks(prev);
e21f5b15 3047 print_modules();
dd41f596
IM
3048 if (irqs_disabled())
3049 print_irqtrace_events(prev);
8f47b187
TG
3050#ifdef CONFIG_DEBUG_PREEMPT
3051 if (in_atomic_preempt_off()) {
3052 pr_err("Preemption disabled at:");
3053 print_ip_sym(current->preempt_disable_ip);
3054 pr_cont("\n");
3055 }
3056#endif
6135fc1e 3057 dump_stack();
373d4d09 3058 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3059}
1da177e4 3060
dd41f596
IM
3061/*
3062 * Various schedule()-time debugging checks and statistics:
3063 */
3064static inline void schedule_debug(struct task_struct *prev)
3065{
0d9e2632 3066#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3067 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3068#endif
b99def8b 3069
1dc0fffc 3070 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3071 __schedule_bug(prev);
1dc0fffc
PZ
3072 preempt_count_set(PREEMPT_DISABLED);
3073 }
b3fbab05 3074 rcu_sleep_check();
dd41f596 3075
1da177e4
LT
3076 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3077
2d72376b 3078 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3079}
3080
3081/*
3082 * Pick up the highest-prio task:
3083 */
3084static inline struct task_struct *
606dba2e 3085pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3086{
37e117c0 3087 const struct sched_class *class = &fair_sched_class;
dd41f596 3088 struct task_struct *p;
1da177e4
LT
3089
3090 /*
dd41f596
IM
3091 * Optimization: we know that if all tasks are in
3092 * the fair class we can call that function directly:
1da177e4 3093 */
37e117c0 3094 if (likely(prev->sched_class == class &&
38033c37 3095 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3096 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3097 if (unlikely(p == RETRY_TASK))
3098 goto again;
3099
3100 /* assumes fair_sched_class->next == idle_sched_class */
3101 if (unlikely(!p))
3102 p = idle_sched_class.pick_next_task(rq, prev);
3103
3104 return p;
1da177e4
LT
3105 }
3106
37e117c0 3107again:
34f971f6 3108 for_each_class(class) {
606dba2e 3109 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3110 if (p) {
3111 if (unlikely(p == RETRY_TASK))
3112 goto again;
dd41f596 3113 return p;
37e117c0 3114 }
dd41f596 3115 }
34f971f6
PZ
3116
3117 BUG(); /* the idle class will always have a runnable task */
dd41f596 3118}
1da177e4 3119
dd41f596 3120/*
c259e01a 3121 * __schedule() is the main scheduler function.
edde96ea
PE
3122 *
3123 * The main means of driving the scheduler and thus entering this function are:
3124 *
3125 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3126 *
3127 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3128 * paths. For example, see arch/x86/entry_64.S.
3129 *
3130 * To drive preemption between tasks, the scheduler sets the flag in timer
3131 * interrupt handler scheduler_tick().
3132 *
3133 * 3. Wakeups don't really cause entry into schedule(). They add a
3134 * task to the run-queue and that's it.
3135 *
3136 * Now, if the new task added to the run-queue preempts the current
3137 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3138 * called on the nearest possible occasion:
3139 *
3140 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3141 *
3142 * - in syscall or exception context, at the next outmost
3143 * preempt_enable(). (this might be as soon as the wake_up()'s
3144 * spin_unlock()!)
3145 *
3146 * - in IRQ context, return from interrupt-handler to
3147 * preemptible context
3148 *
3149 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3150 * then at the next:
3151 *
3152 * - cond_resched() call
3153 * - explicit schedule() call
3154 * - return from syscall or exception to user-space
3155 * - return from interrupt-handler to user-space
bfd9b2b5 3156 *
b30f0e3f 3157 * WARNING: must be called with preemption disabled!
dd41f596 3158 */
499d7955 3159static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3160{
3161 struct task_struct *prev, *next;
67ca7bde 3162 unsigned long *switch_count;
dd41f596 3163 struct rq *rq;
31656519 3164 int cpu;
dd41f596 3165
dd41f596
IM
3166 cpu = smp_processor_id();
3167 rq = cpu_rq(cpu);
dd41f596 3168 prev = rq->curr;
dd41f596 3169
b99def8b
PZ
3170 /*
3171 * do_exit() calls schedule() with preemption disabled as an exception;
3172 * however we must fix that up, otherwise the next task will see an
3173 * inconsistent (higher) preempt count.
3174 *
3175 * It also avoids the below schedule_debug() test from complaining
3176 * about this.
3177 */
3178 if (unlikely(prev->state == TASK_DEAD))
3179 preempt_enable_no_resched_notrace();
3180
dd41f596 3181 schedule_debug(prev);
1da177e4 3182
31656519 3183 if (sched_feat(HRTICK))
f333fdc9 3184 hrtick_clear(rq);
8f4d37ec 3185
46a5d164
PM
3186 local_irq_disable();
3187 rcu_note_context_switch();
3188
e0acd0a6
ON
3189 /*
3190 * Make sure that signal_pending_state()->signal_pending() below
3191 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3192 * done by the caller to avoid the race with signal_wake_up().
3193 */
3194 smp_mb__before_spinlock();
46a5d164 3195 raw_spin_lock(&rq->lock);
cbce1a68 3196 lockdep_pin_lock(&rq->lock);
1da177e4 3197
9edfbfed
PZ
3198 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3199
246d86b5 3200 switch_count = &prev->nivcsw;
fc13aeba 3201 if (!preempt && prev->state) {
21aa9af0 3202 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3203 prev->state = TASK_RUNNING;
21aa9af0 3204 } else {
2acca55e
PZ
3205 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3206 prev->on_rq = 0;
3207
21aa9af0 3208 /*
2acca55e
PZ
3209 * If a worker went to sleep, notify and ask workqueue
3210 * whether it wants to wake up a task to maintain
3211 * concurrency.
21aa9af0
TH
3212 */
3213 if (prev->flags & PF_WQ_WORKER) {
3214 struct task_struct *to_wakeup;
3215
9b7f6597 3216 to_wakeup = wq_worker_sleeping(prev);
21aa9af0
TH
3217 if (to_wakeup)
3218 try_to_wake_up_local(to_wakeup);
3219 }
21aa9af0 3220 }
dd41f596 3221 switch_count = &prev->nvcsw;
1da177e4
LT
3222 }
3223
9edfbfed 3224 if (task_on_rq_queued(prev))
606dba2e
PZ
3225 update_rq_clock(rq);
3226
3227 next = pick_next_task(rq, prev);
f26f9aff 3228 clear_tsk_need_resched(prev);
f27dde8d 3229 clear_preempt_need_resched();
9edfbfed 3230 rq->clock_skip_update = 0;
1da177e4 3231
1da177e4 3232 if (likely(prev != next)) {
1da177e4
LT
3233 rq->nr_switches++;
3234 rq->curr = next;
3235 ++*switch_count;
3236
c73464b1 3237 trace_sched_switch(preempt, prev, next);
dfa50b60 3238 rq = context_switch(rq, prev, next); /* unlocks the rq */
cbce1a68
PZ
3239 } else {
3240 lockdep_unpin_lock(&rq->lock);
05fa785c 3241 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3242 }
1da177e4 3243
e3fca9e7 3244 balance_callback(rq);
1da177e4 3245}
8e05e96a 3246STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3247
9c40cef2
TG
3248static inline void sched_submit_work(struct task_struct *tsk)
3249{
3c7d5184 3250 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3251 return;
3252 /*
3253 * If we are going to sleep and we have plugged IO queued,
3254 * make sure to submit it to avoid deadlocks.
3255 */
3256 if (blk_needs_flush_plug(tsk))
3257 blk_schedule_flush_plug(tsk);
3258}
3259
722a9f92 3260asmlinkage __visible void __sched schedule(void)
c259e01a 3261{
9c40cef2
TG
3262 struct task_struct *tsk = current;
3263
3264 sched_submit_work(tsk);
bfd9b2b5 3265 do {
b30f0e3f 3266 preempt_disable();
fc13aeba 3267 __schedule(false);
b30f0e3f 3268 sched_preempt_enable_no_resched();
bfd9b2b5 3269 } while (need_resched());
c259e01a 3270}
1da177e4
LT
3271EXPORT_SYMBOL(schedule);
3272
91d1aa43 3273#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3274asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3275{
3276 /*
3277 * If we come here after a random call to set_need_resched(),
3278 * or we have been woken up remotely but the IPI has not yet arrived,
3279 * we haven't yet exited the RCU idle mode. Do it here manually until
3280 * we find a better solution.
7cc78f8f
AL
3281 *
3282 * NB: There are buggy callers of this function. Ideally we
c467ea76 3283 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3284 * too frequently to make sense yet.
20ab65e3 3285 */
7cc78f8f 3286 enum ctx_state prev_state = exception_enter();
20ab65e3 3287 schedule();
7cc78f8f 3288 exception_exit(prev_state);
20ab65e3
FW
3289}
3290#endif
3291
c5491ea7
TG
3292/**
3293 * schedule_preempt_disabled - called with preemption disabled
3294 *
3295 * Returns with preemption disabled. Note: preempt_count must be 1
3296 */
3297void __sched schedule_preempt_disabled(void)
3298{
ba74c144 3299 sched_preempt_enable_no_resched();
c5491ea7
TG
3300 schedule();
3301 preempt_disable();
3302}
3303
06b1f808 3304static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3305{
3306 do {
47252cfb
SR
3307 /*
3308 * Because the function tracer can trace preempt_count_sub()
3309 * and it also uses preempt_enable/disable_notrace(), if
3310 * NEED_RESCHED is set, the preempt_enable_notrace() called
3311 * by the function tracer will call this function again and
3312 * cause infinite recursion.
3313 *
3314 * Preemption must be disabled here before the function
3315 * tracer can trace. Break up preempt_disable() into two
3316 * calls. One to disable preemption without fear of being
3317 * traced. The other to still record the preemption latency,
3318 * which can also be traced by the function tracer.
3319 */
499d7955 3320 preempt_disable_notrace();
47252cfb 3321 preempt_latency_start(1);
fc13aeba 3322 __schedule(true);
47252cfb 3323 preempt_latency_stop(1);
499d7955 3324 preempt_enable_no_resched_notrace();
a18b5d01
FW
3325
3326 /*
3327 * Check again in case we missed a preemption opportunity
3328 * between schedule and now.
3329 */
a18b5d01
FW
3330 } while (need_resched());
3331}
3332
1da177e4
LT
3333#ifdef CONFIG_PREEMPT
3334/*
2ed6e34f 3335 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3336 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3337 * occur there and call schedule directly.
3338 */
722a9f92 3339asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3340{
1da177e4
LT
3341 /*
3342 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3343 * we do not want to preempt the current task. Just return..
1da177e4 3344 */
fbb00b56 3345 if (likely(!preemptible()))
1da177e4
LT
3346 return;
3347
a18b5d01 3348 preempt_schedule_common();
1da177e4 3349}
376e2424 3350NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3351EXPORT_SYMBOL(preempt_schedule);
009f60e2 3352
009f60e2 3353/**
4eaca0a8 3354 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3355 *
3356 * The tracing infrastructure uses preempt_enable_notrace to prevent
3357 * recursion and tracing preempt enabling caused by the tracing
3358 * infrastructure itself. But as tracing can happen in areas coming
3359 * from userspace or just about to enter userspace, a preempt enable
3360 * can occur before user_exit() is called. This will cause the scheduler
3361 * to be called when the system is still in usermode.
3362 *
3363 * To prevent this, the preempt_enable_notrace will use this function
3364 * instead of preempt_schedule() to exit user context if needed before
3365 * calling the scheduler.
3366 */
4eaca0a8 3367asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3368{
3369 enum ctx_state prev_ctx;
3370
3371 if (likely(!preemptible()))
3372 return;
3373
3374 do {
47252cfb
SR
3375 /*
3376 * Because the function tracer can trace preempt_count_sub()
3377 * and it also uses preempt_enable/disable_notrace(), if
3378 * NEED_RESCHED is set, the preempt_enable_notrace() called
3379 * by the function tracer will call this function again and
3380 * cause infinite recursion.
3381 *
3382 * Preemption must be disabled here before the function
3383 * tracer can trace. Break up preempt_disable() into two
3384 * calls. One to disable preemption without fear of being
3385 * traced. The other to still record the preemption latency,
3386 * which can also be traced by the function tracer.
3387 */
3d8f74dd 3388 preempt_disable_notrace();
47252cfb 3389 preempt_latency_start(1);
009f60e2
ON
3390 /*
3391 * Needs preempt disabled in case user_exit() is traced
3392 * and the tracer calls preempt_enable_notrace() causing
3393 * an infinite recursion.
3394 */
3395 prev_ctx = exception_enter();
fc13aeba 3396 __schedule(true);
009f60e2
ON
3397 exception_exit(prev_ctx);
3398
47252cfb 3399 preempt_latency_stop(1);
3d8f74dd 3400 preempt_enable_no_resched_notrace();
009f60e2
ON
3401 } while (need_resched());
3402}
4eaca0a8 3403EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3404
32e475d7 3405#endif /* CONFIG_PREEMPT */
1da177e4
LT
3406
3407/*
2ed6e34f 3408 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3409 * off of irq context.
3410 * Note, that this is called and return with irqs disabled. This will
3411 * protect us against recursive calling from irq.
3412 */
722a9f92 3413asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3414{
b22366cd 3415 enum ctx_state prev_state;
6478d880 3416
2ed6e34f 3417 /* Catch callers which need to be fixed */
f27dde8d 3418 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3419
b22366cd
FW
3420 prev_state = exception_enter();
3421
3a5c359a 3422 do {
3d8f74dd 3423 preempt_disable();
3a5c359a 3424 local_irq_enable();
fc13aeba 3425 __schedule(true);
3a5c359a 3426 local_irq_disable();
3d8f74dd 3427 sched_preempt_enable_no_resched();
5ed0cec0 3428 } while (need_resched());
b22366cd
FW
3429
3430 exception_exit(prev_state);
1da177e4
LT
3431}
3432
63859d4f 3433int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3434 void *key)
1da177e4 3435{
63859d4f 3436 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3437}
1da177e4
LT
3438EXPORT_SYMBOL(default_wake_function);
3439
b29739f9
IM
3440#ifdef CONFIG_RT_MUTEXES
3441
3442/*
3443 * rt_mutex_setprio - set the current priority of a task
3444 * @p: task
3445 * @prio: prio value (kernel-internal form)
3446 *
3447 * This function changes the 'effective' priority of a task. It does
3448 * not touch ->normal_prio like __setscheduler().
3449 *
c365c292
TG
3450 * Used by the rt_mutex code to implement priority inheritance
3451 * logic. Call site only calls if the priority of the task changed.
b29739f9 3452 */
36c8b586 3453void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3454{
ff77e468 3455 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
70b97a7f 3456 struct rq *rq;
83ab0aa0 3457 const struct sched_class *prev_class;
b29739f9 3458
aab03e05 3459 BUG_ON(prio > MAX_PRIO);
b29739f9 3460
0122ec5b 3461 rq = __task_rq_lock(p);
b29739f9 3462
1c4dd99b
TG
3463 /*
3464 * Idle task boosting is a nono in general. There is one
3465 * exception, when PREEMPT_RT and NOHZ is active:
3466 *
3467 * The idle task calls get_next_timer_interrupt() and holds
3468 * the timer wheel base->lock on the CPU and another CPU wants
3469 * to access the timer (probably to cancel it). We can safely
3470 * ignore the boosting request, as the idle CPU runs this code
3471 * with interrupts disabled and will complete the lock
3472 * protected section without being interrupted. So there is no
3473 * real need to boost.
3474 */
3475 if (unlikely(p == rq->idle)) {
3476 WARN_ON(p != rq->curr);
3477 WARN_ON(p->pi_blocked_on);
3478 goto out_unlock;
3479 }
3480
a8027073 3481 trace_sched_pi_setprio(p, prio);
d5f9f942 3482 oldprio = p->prio;
ff77e468
PZ
3483
3484 if (oldprio == prio)
3485 queue_flag &= ~DEQUEUE_MOVE;
3486
83ab0aa0 3487 prev_class = p->sched_class;
da0c1e65 3488 queued = task_on_rq_queued(p);
051a1d1a 3489 running = task_current(rq, p);
da0c1e65 3490 if (queued)
ff77e468 3491 dequeue_task(rq, p, queue_flag);
0e1f3483 3492 if (running)
f3cd1c4e 3493 put_prev_task(rq, p);
dd41f596 3494
2d3d891d
DF
3495 /*
3496 * Boosting condition are:
3497 * 1. -rt task is running and holds mutex A
3498 * --> -dl task blocks on mutex A
3499 *
3500 * 2. -dl task is running and holds mutex A
3501 * --> -dl task blocks on mutex A and could preempt the
3502 * running task
3503 */
3504 if (dl_prio(prio)) {
466af29b
ON
3505 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3506 if (!dl_prio(p->normal_prio) ||
3507 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3508 p->dl.dl_boosted = 1;
ff77e468 3509 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3510 } else
3511 p->dl.dl_boosted = 0;
aab03e05 3512 p->sched_class = &dl_sched_class;
2d3d891d
DF
3513 } else if (rt_prio(prio)) {
3514 if (dl_prio(oldprio))
3515 p->dl.dl_boosted = 0;
3516 if (oldprio < prio)
ff77e468 3517 queue_flag |= ENQUEUE_HEAD;
dd41f596 3518 p->sched_class = &rt_sched_class;
2d3d891d
DF
3519 } else {
3520 if (dl_prio(oldprio))
3521 p->dl.dl_boosted = 0;
746db944
BS
3522 if (rt_prio(oldprio))
3523 p->rt.timeout = 0;
dd41f596 3524 p->sched_class = &fair_sched_class;
2d3d891d 3525 }
dd41f596 3526
b29739f9
IM
3527 p->prio = prio;
3528
0e1f3483
HS
3529 if (running)
3530 p->sched_class->set_curr_task(rq);
da0c1e65 3531 if (queued)
ff77e468 3532 enqueue_task(rq, p, queue_flag);
cb469845 3533
da7a735e 3534 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3535out_unlock:
4c9a4bc8 3536 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3537 __task_rq_unlock(rq);
4c9a4bc8
PZ
3538
3539 balance_callback(rq);
3540 preempt_enable();
b29739f9 3541}
b29739f9 3542#endif
d50dde5a 3543
36c8b586 3544void set_user_nice(struct task_struct *p, long nice)
1da177e4 3545{
da0c1e65 3546 int old_prio, delta, queued;
1da177e4 3547 unsigned long flags;
70b97a7f 3548 struct rq *rq;
1da177e4 3549
75e45d51 3550 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3551 return;
3552 /*
3553 * We have to be careful, if called from sys_setpriority(),
3554 * the task might be in the middle of scheduling on another CPU.
3555 */
3556 rq = task_rq_lock(p, &flags);
3557 /*
3558 * The RT priorities are set via sched_setscheduler(), but we still
3559 * allow the 'normal' nice value to be set - but as expected
3560 * it wont have any effect on scheduling until the task is
aab03e05 3561 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3562 */
aab03e05 3563 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3564 p->static_prio = NICE_TO_PRIO(nice);
3565 goto out_unlock;
3566 }
da0c1e65
KT
3567 queued = task_on_rq_queued(p);
3568 if (queued)
1de64443 3569 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3570
1da177e4 3571 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3572 set_load_weight(p);
b29739f9
IM
3573 old_prio = p->prio;
3574 p->prio = effective_prio(p);
3575 delta = p->prio - old_prio;
1da177e4 3576
da0c1e65 3577 if (queued) {
1de64443 3578 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3579 /*
d5f9f942
AM
3580 * If the task increased its priority or is running and
3581 * lowered its priority, then reschedule its CPU:
1da177e4 3582 */
d5f9f942 3583 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3584 resched_curr(rq);
1da177e4
LT
3585 }
3586out_unlock:
0122ec5b 3587 task_rq_unlock(rq, p, &flags);
1da177e4 3588}
1da177e4
LT
3589EXPORT_SYMBOL(set_user_nice);
3590
e43379f1
MM
3591/*
3592 * can_nice - check if a task can reduce its nice value
3593 * @p: task
3594 * @nice: nice value
3595 */
36c8b586 3596int can_nice(const struct task_struct *p, const int nice)
e43379f1 3597{
024f4747 3598 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3599 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3600
78d7d407 3601 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3602 capable(CAP_SYS_NICE));
3603}
3604
1da177e4
LT
3605#ifdef __ARCH_WANT_SYS_NICE
3606
3607/*
3608 * sys_nice - change the priority of the current process.
3609 * @increment: priority increment
3610 *
3611 * sys_setpriority is a more generic, but much slower function that
3612 * does similar things.
3613 */
5add95d4 3614SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3615{
48f24c4d 3616 long nice, retval;
1da177e4
LT
3617
3618 /*
3619 * Setpriority might change our priority at the same moment.
3620 * We don't have to worry. Conceptually one call occurs first
3621 * and we have a single winner.
3622 */
a9467fa3 3623 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3624 nice = task_nice(current) + increment;
1da177e4 3625
a9467fa3 3626 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3627 if (increment < 0 && !can_nice(current, nice))
3628 return -EPERM;
3629
1da177e4
LT
3630 retval = security_task_setnice(current, nice);
3631 if (retval)
3632 return retval;
3633
3634 set_user_nice(current, nice);
3635 return 0;
3636}
3637
3638#endif
3639
3640/**
3641 * task_prio - return the priority value of a given task.
3642 * @p: the task in question.
3643 *
e69f6186 3644 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3645 * RT tasks are offset by -200. Normal tasks are centered
3646 * around 0, value goes from -16 to +15.
3647 */
36c8b586 3648int task_prio(const struct task_struct *p)
1da177e4
LT
3649{
3650 return p->prio - MAX_RT_PRIO;
3651}
3652
1da177e4
LT
3653/**
3654 * idle_cpu - is a given cpu idle currently?
3655 * @cpu: the processor in question.
e69f6186
YB
3656 *
3657 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3658 */
3659int idle_cpu(int cpu)
3660{
908a3283
TG
3661 struct rq *rq = cpu_rq(cpu);
3662
3663 if (rq->curr != rq->idle)
3664 return 0;
3665
3666 if (rq->nr_running)
3667 return 0;
3668
3669#ifdef CONFIG_SMP
3670 if (!llist_empty(&rq->wake_list))
3671 return 0;
3672#endif
3673
3674 return 1;
1da177e4
LT
3675}
3676
1da177e4
LT
3677/**
3678 * idle_task - return the idle task for a given cpu.
3679 * @cpu: the processor in question.
e69f6186
YB
3680 *
3681 * Return: The idle task for the cpu @cpu.
1da177e4 3682 */
36c8b586 3683struct task_struct *idle_task(int cpu)
1da177e4
LT
3684{
3685 return cpu_rq(cpu)->idle;
3686}
3687
3688/**
3689 * find_process_by_pid - find a process with a matching PID value.
3690 * @pid: the pid in question.
e69f6186
YB
3691 *
3692 * The task of @pid, if found. %NULL otherwise.
1da177e4 3693 */
a9957449 3694static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3695{
228ebcbe 3696 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3697}
3698
aab03e05
DF
3699/*
3700 * This function initializes the sched_dl_entity of a newly becoming
3701 * SCHED_DEADLINE task.
3702 *
3703 * Only the static values are considered here, the actual runtime and the
3704 * absolute deadline will be properly calculated when the task is enqueued
3705 * for the first time with its new policy.
3706 */
3707static void
3708__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3709{
3710 struct sched_dl_entity *dl_se = &p->dl;
3711
aab03e05
DF
3712 dl_se->dl_runtime = attr->sched_runtime;
3713 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3714 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3715 dl_se->flags = attr->sched_flags;
332ac17e 3716 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3717
3718 /*
3719 * Changing the parameters of a task is 'tricky' and we're not doing
3720 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3721 *
3722 * What we SHOULD do is delay the bandwidth release until the 0-lag
3723 * point. This would include retaining the task_struct until that time
3724 * and change dl_overflow() to not immediately decrement the current
3725 * amount.
3726 *
3727 * Instead we retain the current runtime/deadline and let the new
3728 * parameters take effect after the current reservation period lapses.
3729 * This is safe (albeit pessimistic) because the 0-lag point is always
3730 * before the current scheduling deadline.
3731 *
3732 * We can still have temporary overloads because we do not delay the
3733 * change in bandwidth until that time; so admission control is
3734 * not on the safe side. It does however guarantee tasks will never
3735 * consume more than promised.
3736 */
aab03e05
DF
3737}
3738
c13db6b1
SR
3739/*
3740 * sched_setparam() passes in -1 for its policy, to let the functions
3741 * it calls know not to change it.
3742 */
3743#define SETPARAM_POLICY -1
3744
c365c292
TG
3745static void __setscheduler_params(struct task_struct *p,
3746 const struct sched_attr *attr)
1da177e4 3747{
d50dde5a
DF
3748 int policy = attr->sched_policy;
3749
c13db6b1 3750 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3751 policy = p->policy;
3752
1da177e4 3753 p->policy = policy;
d50dde5a 3754
aab03e05
DF
3755 if (dl_policy(policy))
3756 __setparam_dl(p, attr);
39fd8fd2 3757 else if (fair_policy(policy))
d50dde5a
DF
3758 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3759
39fd8fd2
PZ
3760 /*
3761 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3762 * !rt_policy. Always setting this ensures that things like
3763 * getparam()/getattr() don't report silly values for !rt tasks.
3764 */
3765 p->rt_priority = attr->sched_priority;
383afd09 3766 p->normal_prio = normal_prio(p);
c365c292
TG
3767 set_load_weight(p);
3768}
39fd8fd2 3769
c365c292
TG
3770/* Actually do priority change: must hold pi & rq lock. */
3771static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3772 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3773{
3774 __setscheduler_params(p, attr);
d50dde5a 3775
383afd09 3776 /*
0782e63b
TG
3777 * Keep a potential priority boosting if called from
3778 * sched_setscheduler().
383afd09 3779 */
0782e63b
TG
3780 if (keep_boost)
3781 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3782 else
3783 p->prio = normal_prio(p);
383afd09 3784
aab03e05
DF
3785 if (dl_prio(p->prio))
3786 p->sched_class = &dl_sched_class;
3787 else if (rt_prio(p->prio))
ffd44db5
PZ
3788 p->sched_class = &rt_sched_class;
3789 else
3790 p->sched_class = &fair_sched_class;
1da177e4 3791}
aab03e05
DF
3792
3793static void
3794__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3795{
3796 struct sched_dl_entity *dl_se = &p->dl;
3797
3798 attr->sched_priority = p->rt_priority;
3799 attr->sched_runtime = dl_se->dl_runtime;
3800 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3801 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3802 attr->sched_flags = dl_se->flags;
3803}
3804
3805/*
3806 * This function validates the new parameters of a -deadline task.
3807 * We ask for the deadline not being zero, and greater or equal
755378a4 3808 * than the runtime, as well as the period of being zero or
332ac17e 3809 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3810 * user parameters are above the internal resolution of 1us (we
3811 * check sched_runtime only since it is always the smaller one) and
3812 * below 2^63 ns (we have to check both sched_deadline and
3813 * sched_period, as the latter can be zero).
aab03e05
DF
3814 */
3815static bool
3816__checkparam_dl(const struct sched_attr *attr)
3817{
b0827819
JL
3818 /* deadline != 0 */
3819 if (attr->sched_deadline == 0)
3820 return false;
3821
3822 /*
3823 * Since we truncate DL_SCALE bits, make sure we're at least
3824 * that big.
3825 */
3826 if (attr->sched_runtime < (1ULL << DL_SCALE))
3827 return false;
3828
3829 /*
3830 * Since we use the MSB for wrap-around and sign issues, make
3831 * sure it's not set (mind that period can be equal to zero).
3832 */
3833 if (attr->sched_deadline & (1ULL << 63) ||
3834 attr->sched_period & (1ULL << 63))
3835 return false;
3836
3837 /* runtime <= deadline <= period (if period != 0) */
3838 if ((attr->sched_period != 0 &&
3839 attr->sched_period < attr->sched_deadline) ||
3840 attr->sched_deadline < attr->sched_runtime)
3841 return false;
3842
3843 return true;
aab03e05
DF
3844}
3845
c69e8d9c
DH
3846/*
3847 * check the target process has a UID that matches the current process's
3848 */
3849static bool check_same_owner(struct task_struct *p)
3850{
3851 const struct cred *cred = current_cred(), *pcred;
3852 bool match;
3853
3854 rcu_read_lock();
3855 pcred = __task_cred(p);
9c806aa0
EB
3856 match = (uid_eq(cred->euid, pcred->euid) ||
3857 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3858 rcu_read_unlock();
3859 return match;
3860}
3861
75381608
WL
3862static bool dl_param_changed(struct task_struct *p,
3863 const struct sched_attr *attr)
3864{
3865 struct sched_dl_entity *dl_se = &p->dl;
3866
3867 if (dl_se->dl_runtime != attr->sched_runtime ||
3868 dl_se->dl_deadline != attr->sched_deadline ||
3869 dl_se->dl_period != attr->sched_period ||
3870 dl_se->flags != attr->sched_flags)
3871 return true;
3872
3873 return false;
3874}
3875
d50dde5a
DF
3876static int __sched_setscheduler(struct task_struct *p,
3877 const struct sched_attr *attr,
dbc7f069 3878 bool user, bool pi)
1da177e4 3879{
383afd09
SR
3880 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3881 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3882 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3883 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3884 unsigned long flags;
83ab0aa0 3885 const struct sched_class *prev_class;
70b97a7f 3886 struct rq *rq;
ca94c442 3887 int reset_on_fork;
ff77e468 3888 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
1da177e4 3889
66e5393a
SR
3890 /* may grab non-irq protected spin_locks */
3891 BUG_ON(in_interrupt());
1da177e4
LT
3892recheck:
3893 /* double check policy once rq lock held */
ca94c442
LP
3894 if (policy < 0) {
3895 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3896 policy = oldpolicy = p->policy;
ca94c442 3897 } else {
7479f3c9 3898 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3899
20f9cd2a 3900 if (!valid_policy(policy))
ca94c442
LP
3901 return -EINVAL;
3902 }
3903
7479f3c9
PZ
3904 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3905 return -EINVAL;
3906
1da177e4
LT
3907 /*
3908 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3909 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3910 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3911 */
0bb040a4 3912 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3913 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3914 return -EINVAL;
aab03e05
DF
3915 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3916 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3917 return -EINVAL;
3918
37e4ab3f
OC
3919 /*
3920 * Allow unprivileged RT tasks to decrease priority:
3921 */
961ccddd 3922 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3923 if (fair_policy(policy)) {
d0ea0268 3924 if (attr->sched_nice < task_nice(p) &&
eaad4513 3925 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3926 return -EPERM;
3927 }
3928
e05606d3 3929 if (rt_policy(policy)) {
a44702e8
ON
3930 unsigned long rlim_rtprio =
3931 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3932
3933 /* can't set/change the rt policy */
3934 if (policy != p->policy && !rlim_rtprio)
3935 return -EPERM;
3936
3937 /* can't increase priority */
d50dde5a
DF
3938 if (attr->sched_priority > p->rt_priority &&
3939 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3940 return -EPERM;
3941 }
c02aa73b 3942
d44753b8
JL
3943 /*
3944 * Can't set/change SCHED_DEADLINE policy at all for now
3945 * (safest behavior); in the future we would like to allow
3946 * unprivileged DL tasks to increase their relative deadline
3947 * or reduce their runtime (both ways reducing utilization)
3948 */
3949 if (dl_policy(policy))
3950 return -EPERM;
3951
dd41f596 3952 /*
c02aa73b
DH
3953 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3954 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3955 */
20f9cd2a 3956 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3957 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3958 return -EPERM;
3959 }
5fe1d75f 3960
37e4ab3f 3961 /* can't change other user's priorities */
c69e8d9c 3962 if (!check_same_owner(p))
37e4ab3f 3963 return -EPERM;
ca94c442
LP
3964
3965 /* Normal users shall not reset the sched_reset_on_fork flag */
3966 if (p->sched_reset_on_fork && !reset_on_fork)
3967 return -EPERM;
37e4ab3f 3968 }
1da177e4 3969
725aad24 3970 if (user) {
b0ae1981 3971 retval = security_task_setscheduler(p);
725aad24
JF
3972 if (retval)
3973 return retval;
3974 }
3975
b29739f9
IM
3976 /*
3977 * make sure no PI-waiters arrive (or leave) while we are
3978 * changing the priority of the task:
0122ec5b 3979 *
25985edc 3980 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3981 * runqueue lock must be held.
3982 */
0122ec5b 3983 rq = task_rq_lock(p, &flags);
dc61b1d6 3984
34f971f6
PZ
3985 /*
3986 * Changing the policy of the stop threads its a very bad idea
3987 */
3988 if (p == rq->stop) {
0122ec5b 3989 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3990 return -EINVAL;
3991 }
3992
a51e9198 3993 /*
d6b1e911
TG
3994 * If not changing anything there's no need to proceed further,
3995 * but store a possible modification of reset_on_fork.
a51e9198 3996 */
d50dde5a 3997 if (unlikely(policy == p->policy)) {
d0ea0268 3998 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3999 goto change;
4000 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4001 goto change;
75381608 4002 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4003 goto change;
d50dde5a 4004
d6b1e911 4005 p->sched_reset_on_fork = reset_on_fork;
45afb173 4006 task_rq_unlock(rq, p, &flags);
a51e9198
DF
4007 return 0;
4008 }
d50dde5a 4009change:
a51e9198 4010
dc61b1d6 4011 if (user) {
332ac17e 4012#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4013 /*
4014 * Do not allow realtime tasks into groups that have no runtime
4015 * assigned.
4016 */
4017 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4018 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4019 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4020 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4021 return -EPERM;
4022 }
dc61b1d6 4023#endif
332ac17e
DF
4024#ifdef CONFIG_SMP
4025 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4026 cpumask_t *span = rq->rd->span;
332ac17e
DF
4027
4028 /*
4029 * Don't allow tasks with an affinity mask smaller than
4030 * the entire root_domain to become SCHED_DEADLINE. We
4031 * will also fail if there's no bandwidth available.
4032 */
e4099a5e
PZ
4033 if (!cpumask_subset(span, &p->cpus_allowed) ||
4034 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
4035 task_rq_unlock(rq, p, &flags);
4036 return -EPERM;
4037 }
4038 }
4039#endif
4040 }
dc61b1d6 4041
1da177e4
LT
4042 /* recheck policy now with rq lock held */
4043 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4044 policy = oldpolicy = -1;
0122ec5b 4045 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4046 goto recheck;
4047 }
332ac17e
DF
4048
4049 /*
4050 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4051 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4052 * is available.
4053 */
e4099a5e 4054 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
4055 task_rq_unlock(rq, p, &flags);
4056 return -EBUSY;
4057 }
4058
c365c292
TG
4059 p->sched_reset_on_fork = reset_on_fork;
4060 oldprio = p->prio;
4061
dbc7f069
PZ
4062 if (pi) {
4063 /*
4064 * Take priority boosted tasks into account. If the new
4065 * effective priority is unchanged, we just store the new
4066 * normal parameters and do not touch the scheduler class and
4067 * the runqueue. This will be done when the task deboost
4068 * itself.
4069 */
4070 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4071 if (new_effective_prio == oldprio)
4072 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4073 }
4074
da0c1e65 4075 queued = task_on_rq_queued(p);
051a1d1a 4076 running = task_current(rq, p);
da0c1e65 4077 if (queued)
ff77e468 4078 dequeue_task(rq, p, queue_flags);
0e1f3483 4079 if (running)
f3cd1c4e 4080 put_prev_task(rq, p);
f6b53205 4081
83ab0aa0 4082 prev_class = p->sched_class;
dbc7f069 4083 __setscheduler(rq, p, attr, pi);
f6b53205 4084
0e1f3483
HS
4085 if (running)
4086 p->sched_class->set_curr_task(rq);
da0c1e65 4087 if (queued) {
81a44c54
TG
4088 /*
4089 * We enqueue to tail when the priority of a task is
4090 * increased (user space view).
4091 */
ff77e468
PZ
4092 if (oldprio < p->prio)
4093 queue_flags |= ENQUEUE_HEAD;
1de64443 4094
ff77e468 4095 enqueue_task(rq, p, queue_flags);
81a44c54 4096 }
cb469845 4097
da7a735e 4098 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4099 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4100 task_rq_unlock(rq, p, &flags);
b29739f9 4101
dbc7f069
PZ
4102 if (pi)
4103 rt_mutex_adjust_pi(p);
95e02ca9 4104
4c9a4bc8
PZ
4105 /*
4106 * Run balance callbacks after we've adjusted the PI chain.
4107 */
4108 balance_callback(rq);
4109 preempt_enable();
95e02ca9 4110
1da177e4
LT
4111 return 0;
4112}
961ccddd 4113
7479f3c9
PZ
4114static int _sched_setscheduler(struct task_struct *p, int policy,
4115 const struct sched_param *param, bool check)
4116{
4117 struct sched_attr attr = {
4118 .sched_policy = policy,
4119 .sched_priority = param->sched_priority,
4120 .sched_nice = PRIO_TO_NICE(p->static_prio),
4121 };
4122
c13db6b1
SR
4123 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4124 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4125 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4126 policy &= ~SCHED_RESET_ON_FORK;
4127 attr.sched_policy = policy;
4128 }
4129
dbc7f069 4130 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4131}
961ccddd
RR
4132/**
4133 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4134 * @p: the task in question.
4135 * @policy: new policy.
4136 * @param: structure containing the new RT priority.
4137 *
e69f6186
YB
4138 * Return: 0 on success. An error code otherwise.
4139 *
961ccddd
RR
4140 * NOTE that the task may be already dead.
4141 */
4142int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4143 const struct sched_param *param)
961ccddd 4144{
7479f3c9 4145 return _sched_setscheduler(p, policy, param, true);
961ccddd 4146}
1da177e4
LT
4147EXPORT_SYMBOL_GPL(sched_setscheduler);
4148
d50dde5a
DF
4149int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4150{
dbc7f069 4151 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4152}
4153EXPORT_SYMBOL_GPL(sched_setattr);
4154
961ccddd
RR
4155/**
4156 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4157 * @p: the task in question.
4158 * @policy: new policy.
4159 * @param: structure containing the new RT priority.
4160 *
4161 * Just like sched_setscheduler, only don't bother checking if the
4162 * current context has permission. For example, this is needed in
4163 * stop_machine(): we create temporary high priority worker threads,
4164 * but our caller might not have that capability.
e69f6186
YB
4165 *
4166 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4167 */
4168int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4169 const struct sched_param *param)
961ccddd 4170{
7479f3c9 4171 return _sched_setscheduler(p, policy, param, false);
961ccddd 4172}
84778472 4173EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4174
95cdf3b7
IM
4175static int
4176do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4177{
1da177e4
LT
4178 struct sched_param lparam;
4179 struct task_struct *p;
36c8b586 4180 int retval;
1da177e4
LT
4181
4182 if (!param || pid < 0)
4183 return -EINVAL;
4184 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4185 return -EFAULT;
5fe1d75f
ON
4186
4187 rcu_read_lock();
4188 retval = -ESRCH;
1da177e4 4189 p = find_process_by_pid(pid);
5fe1d75f
ON
4190 if (p != NULL)
4191 retval = sched_setscheduler(p, policy, &lparam);
4192 rcu_read_unlock();
36c8b586 4193
1da177e4
LT
4194 return retval;
4195}
4196
d50dde5a
DF
4197/*
4198 * Mimics kernel/events/core.c perf_copy_attr().
4199 */
4200static int sched_copy_attr(struct sched_attr __user *uattr,
4201 struct sched_attr *attr)
4202{
4203 u32 size;
4204 int ret;
4205
4206 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4207 return -EFAULT;
4208
4209 /*
4210 * zero the full structure, so that a short copy will be nice.
4211 */
4212 memset(attr, 0, sizeof(*attr));
4213
4214 ret = get_user(size, &uattr->size);
4215 if (ret)
4216 return ret;
4217
4218 if (size > PAGE_SIZE) /* silly large */
4219 goto err_size;
4220
4221 if (!size) /* abi compat */
4222 size = SCHED_ATTR_SIZE_VER0;
4223
4224 if (size < SCHED_ATTR_SIZE_VER0)
4225 goto err_size;
4226
4227 /*
4228 * If we're handed a bigger struct than we know of,
4229 * ensure all the unknown bits are 0 - i.e. new
4230 * user-space does not rely on any kernel feature
4231 * extensions we dont know about yet.
4232 */
4233 if (size > sizeof(*attr)) {
4234 unsigned char __user *addr;
4235 unsigned char __user *end;
4236 unsigned char val;
4237
4238 addr = (void __user *)uattr + sizeof(*attr);
4239 end = (void __user *)uattr + size;
4240
4241 for (; addr < end; addr++) {
4242 ret = get_user(val, addr);
4243 if (ret)
4244 return ret;
4245 if (val)
4246 goto err_size;
4247 }
4248 size = sizeof(*attr);
4249 }
4250
4251 ret = copy_from_user(attr, uattr, size);
4252 if (ret)
4253 return -EFAULT;
4254
4255 /*
4256 * XXX: do we want to be lenient like existing syscalls; or do we want
4257 * to be strict and return an error on out-of-bounds values?
4258 */
75e45d51 4259 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4260
e78c7bca 4261 return 0;
d50dde5a
DF
4262
4263err_size:
4264 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4265 return -E2BIG;
d50dde5a
DF
4266}
4267
1da177e4
LT
4268/**
4269 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4270 * @pid: the pid in question.
4271 * @policy: new policy.
4272 * @param: structure containing the new RT priority.
e69f6186
YB
4273 *
4274 * Return: 0 on success. An error code otherwise.
1da177e4 4275 */
5add95d4
HC
4276SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4277 struct sched_param __user *, param)
1da177e4 4278{
c21761f1
JB
4279 /* negative values for policy are not valid */
4280 if (policy < 0)
4281 return -EINVAL;
4282
1da177e4
LT
4283 return do_sched_setscheduler(pid, policy, param);
4284}
4285
4286/**
4287 * sys_sched_setparam - set/change the RT priority of a thread
4288 * @pid: the pid in question.
4289 * @param: structure containing the new RT priority.
e69f6186
YB
4290 *
4291 * Return: 0 on success. An error code otherwise.
1da177e4 4292 */
5add95d4 4293SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4294{
c13db6b1 4295 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4296}
4297
d50dde5a
DF
4298/**
4299 * sys_sched_setattr - same as above, but with extended sched_attr
4300 * @pid: the pid in question.
5778fccf 4301 * @uattr: structure containing the extended parameters.
db66d756 4302 * @flags: for future extension.
d50dde5a 4303 */
6d35ab48
PZ
4304SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4305 unsigned int, flags)
d50dde5a
DF
4306{
4307 struct sched_attr attr;
4308 struct task_struct *p;
4309 int retval;
4310
6d35ab48 4311 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4312 return -EINVAL;
4313
143cf23d
MK
4314 retval = sched_copy_attr(uattr, &attr);
4315 if (retval)
4316 return retval;
d50dde5a 4317
b14ed2c2 4318 if ((int)attr.sched_policy < 0)
dbdb2275 4319 return -EINVAL;
d50dde5a
DF
4320
4321 rcu_read_lock();
4322 retval = -ESRCH;
4323 p = find_process_by_pid(pid);
4324 if (p != NULL)
4325 retval = sched_setattr(p, &attr);
4326 rcu_read_unlock();
4327
4328 return retval;
4329}
4330
1da177e4
LT
4331/**
4332 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4333 * @pid: the pid in question.
e69f6186
YB
4334 *
4335 * Return: On success, the policy of the thread. Otherwise, a negative error
4336 * code.
1da177e4 4337 */
5add95d4 4338SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4339{
36c8b586 4340 struct task_struct *p;
3a5c359a 4341 int retval;
1da177e4
LT
4342
4343 if (pid < 0)
3a5c359a 4344 return -EINVAL;
1da177e4
LT
4345
4346 retval = -ESRCH;
5fe85be0 4347 rcu_read_lock();
1da177e4
LT
4348 p = find_process_by_pid(pid);
4349 if (p) {
4350 retval = security_task_getscheduler(p);
4351 if (!retval)
ca94c442
LP
4352 retval = p->policy
4353 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4354 }
5fe85be0 4355 rcu_read_unlock();
1da177e4
LT
4356 return retval;
4357}
4358
4359/**
ca94c442 4360 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4361 * @pid: the pid in question.
4362 * @param: structure containing the RT priority.
e69f6186
YB
4363 *
4364 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4365 * code.
1da177e4 4366 */
5add95d4 4367SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4368{
ce5f7f82 4369 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4370 struct task_struct *p;
3a5c359a 4371 int retval;
1da177e4
LT
4372
4373 if (!param || pid < 0)
3a5c359a 4374 return -EINVAL;
1da177e4 4375
5fe85be0 4376 rcu_read_lock();
1da177e4
LT
4377 p = find_process_by_pid(pid);
4378 retval = -ESRCH;
4379 if (!p)
4380 goto out_unlock;
4381
4382 retval = security_task_getscheduler(p);
4383 if (retval)
4384 goto out_unlock;
4385
ce5f7f82
PZ
4386 if (task_has_rt_policy(p))
4387 lp.sched_priority = p->rt_priority;
5fe85be0 4388 rcu_read_unlock();
1da177e4
LT
4389
4390 /*
4391 * This one might sleep, we cannot do it with a spinlock held ...
4392 */
4393 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4394
1da177e4
LT
4395 return retval;
4396
4397out_unlock:
5fe85be0 4398 rcu_read_unlock();
1da177e4
LT
4399 return retval;
4400}
4401
d50dde5a
DF
4402static int sched_read_attr(struct sched_attr __user *uattr,
4403 struct sched_attr *attr,
4404 unsigned int usize)
4405{
4406 int ret;
4407
4408 if (!access_ok(VERIFY_WRITE, uattr, usize))
4409 return -EFAULT;
4410
4411 /*
4412 * If we're handed a smaller struct than we know of,
4413 * ensure all the unknown bits are 0 - i.e. old
4414 * user-space does not get uncomplete information.
4415 */
4416 if (usize < sizeof(*attr)) {
4417 unsigned char *addr;
4418 unsigned char *end;
4419
4420 addr = (void *)attr + usize;
4421 end = (void *)attr + sizeof(*attr);
4422
4423 for (; addr < end; addr++) {
4424 if (*addr)
22400674 4425 return -EFBIG;
d50dde5a
DF
4426 }
4427
4428 attr->size = usize;
4429 }
4430
4efbc454 4431 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4432 if (ret)
4433 return -EFAULT;
4434
22400674 4435 return 0;
d50dde5a
DF
4436}
4437
4438/**
aab03e05 4439 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4440 * @pid: the pid in question.
5778fccf 4441 * @uattr: structure containing the extended parameters.
d50dde5a 4442 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4443 * @flags: for future extension.
d50dde5a 4444 */
6d35ab48
PZ
4445SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4446 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4447{
4448 struct sched_attr attr = {
4449 .size = sizeof(struct sched_attr),
4450 };
4451 struct task_struct *p;
4452 int retval;
4453
4454 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4455 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4456 return -EINVAL;
4457
4458 rcu_read_lock();
4459 p = find_process_by_pid(pid);
4460 retval = -ESRCH;
4461 if (!p)
4462 goto out_unlock;
4463
4464 retval = security_task_getscheduler(p);
4465 if (retval)
4466 goto out_unlock;
4467
4468 attr.sched_policy = p->policy;
7479f3c9
PZ
4469 if (p->sched_reset_on_fork)
4470 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4471 if (task_has_dl_policy(p))
4472 __getparam_dl(p, &attr);
4473 else if (task_has_rt_policy(p))
d50dde5a
DF
4474 attr.sched_priority = p->rt_priority;
4475 else
d0ea0268 4476 attr.sched_nice = task_nice(p);
d50dde5a
DF
4477
4478 rcu_read_unlock();
4479
4480 retval = sched_read_attr(uattr, &attr, size);
4481 return retval;
4482
4483out_unlock:
4484 rcu_read_unlock();
4485 return retval;
4486}
4487
96f874e2 4488long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4489{
5a16f3d3 4490 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4491 struct task_struct *p;
4492 int retval;
1da177e4 4493
23f5d142 4494 rcu_read_lock();
1da177e4
LT
4495
4496 p = find_process_by_pid(pid);
4497 if (!p) {
23f5d142 4498 rcu_read_unlock();
1da177e4
LT
4499 return -ESRCH;
4500 }
4501
23f5d142 4502 /* Prevent p going away */
1da177e4 4503 get_task_struct(p);
23f5d142 4504 rcu_read_unlock();
1da177e4 4505
14a40ffc
TH
4506 if (p->flags & PF_NO_SETAFFINITY) {
4507 retval = -EINVAL;
4508 goto out_put_task;
4509 }
5a16f3d3
RR
4510 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4511 retval = -ENOMEM;
4512 goto out_put_task;
4513 }
4514 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4515 retval = -ENOMEM;
4516 goto out_free_cpus_allowed;
4517 }
1da177e4 4518 retval = -EPERM;
4c44aaaf
EB
4519 if (!check_same_owner(p)) {
4520 rcu_read_lock();
4521 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4522 rcu_read_unlock();
16303ab2 4523 goto out_free_new_mask;
4c44aaaf
EB
4524 }
4525 rcu_read_unlock();
4526 }
1da177e4 4527
b0ae1981 4528 retval = security_task_setscheduler(p);
e7834f8f 4529 if (retval)
16303ab2 4530 goto out_free_new_mask;
e7834f8f 4531
e4099a5e
PZ
4532
4533 cpuset_cpus_allowed(p, cpus_allowed);
4534 cpumask_and(new_mask, in_mask, cpus_allowed);
4535
332ac17e
DF
4536 /*
4537 * Since bandwidth control happens on root_domain basis,
4538 * if admission test is enabled, we only admit -deadline
4539 * tasks allowed to run on all the CPUs in the task's
4540 * root_domain.
4541 */
4542#ifdef CONFIG_SMP
f1e3a093
KT
4543 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4544 rcu_read_lock();
4545 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4546 retval = -EBUSY;
f1e3a093 4547 rcu_read_unlock();
16303ab2 4548 goto out_free_new_mask;
332ac17e 4549 }
f1e3a093 4550 rcu_read_unlock();
332ac17e
DF
4551 }
4552#endif
49246274 4553again:
25834c73 4554 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4555
8707d8b8 4556 if (!retval) {
5a16f3d3
RR
4557 cpuset_cpus_allowed(p, cpus_allowed);
4558 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4559 /*
4560 * We must have raced with a concurrent cpuset
4561 * update. Just reset the cpus_allowed to the
4562 * cpuset's cpus_allowed
4563 */
5a16f3d3 4564 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4565 goto again;
4566 }
4567 }
16303ab2 4568out_free_new_mask:
5a16f3d3
RR
4569 free_cpumask_var(new_mask);
4570out_free_cpus_allowed:
4571 free_cpumask_var(cpus_allowed);
4572out_put_task:
1da177e4 4573 put_task_struct(p);
1da177e4
LT
4574 return retval;
4575}
4576
4577static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4578 struct cpumask *new_mask)
1da177e4 4579{
96f874e2
RR
4580 if (len < cpumask_size())
4581 cpumask_clear(new_mask);
4582 else if (len > cpumask_size())
4583 len = cpumask_size();
4584
1da177e4
LT
4585 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4586}
4587
4588/**
4589 * sys_sched_setaffinity - set the cpu affinity of a process
4590 * @pid: pid of the process
4591 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4592 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4593 *
4594 * Return: 0 on success. An error code otherwise.
1da177e4 4595 */
5add95d4
HC
4596SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4597 unsigned long __user *, user_mask_ptr)
1da177e4 4598{
5a16f3d3 4599 cpumask_var_t new_mask;
1da177e4
LT
4600 int retval;
4601
5a16f3d3
RR
4602 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4603 return -ENOMEM;
1da177e4 4604
5a16f3d3
RR
4605 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4606 if (retval == 0)
4607 retval = sched_setaffinity(pid, new_mask);
4608 free_cpumask_var(new_mask);
4609 return retval;
1da177e4
LT
4610}
4611
96f874e2 4612long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4613{
36c8b586 4614 struct task_struct *p;
31605683 4615 unsigned long flags;
1da177e4 4616 int retval;
1da177e4 4617
23f5d142 4618 rcu_read_lock();
1da177e4
LT
4619
4620 retval = -ESRCH;
4621 p = find_process_by_pid(pid);
4622 if (!p)
4623 goto out_unlock;
4624
e7834f8f
DQ
4625 retval = security_task_getscheduler(p);
4626 if (retval)
4627 goto out_unlock;
4628
013fdb80 4629 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4630 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4632
4633out_unlock:
23f5d142 4634 rcu_read_unlock();
1da177e4 4635
9531b62f 4636 return retval;
1da177e4
LT
4637}
4638
4639/**
4640 * sys_sched_getaffinity - get the cpu affinity of a process
4641 * @pid: pid of the process
4642 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4643 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4644 *
4645 * Return: 0 on success. An error code otherwise.
1da177e4 4646 */
5add95d4
HC
4647SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4648 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4649{
4650 int ret;
f17c8607 4651 cpumask_var_t mask;
1da177e4 4652
84fba5ec 4653 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4654 return -EINVAL;
4655 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4656 return -EINVAL;
4657
f17c8607
RR
4658 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4659 return -ENOMEM;
1da177e4 4660
f17c8607
RR
4661 ret = sched_getaffinity(pid, mask);
4662 if (ret == 0) {
8bc037fb 4663 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4664
4665 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4666 ret = -EFAULT;
4667 else
cd3d8031 4668 ret = retlen;
f17c8607
RR
4669 }
4670 free_cpumask_var(mask);
1da177e4 4671
f17c8607 4672 return ret;
1da177e4
LT
4673}
4674
4675/**
4676 * sys_sched_yield - yield the current processor to other threads.
4677 *
dd41f596
IM
4678 * This function yields the current CPU to other tasks. If there are no
4679 * other threads running on this CPU then this function will return.
e69f6186
YB
4680 *
4681 * Return: 0.
1da177e4 4682 */
5add95d4 4683SYSCALL_DEFINE0(sched_yield)
1da177e4 4684{
70b97a7f 4685 struct rq *rq = this_rq_lock();
1da177e4 4686
2d72376b 4687 schedstat_inc(rq, yld_count);
4530d7ab 4688 current->sched_class->yield_task(rq);
1da177e4
LT
4689
4690 /*
4691 * Since we are going to call schedule() anyway, there's
4692 * no need to preempt or enable interrupts:
4693 */
4694 __release(rq->lock);
8a25d5de 4695 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4696 do_raw_spin_unlock(&rq->lock);
ba74c144 4697 sched_preempt_enable_no_resched();
1da177e4
LT
4698
4699 schedule();
4700
4701 return 0;
4702}
4703
02b67cc3 4704int __sched _cond_resched(void)
1da177e4 4705{
fe32d3cd 4706 if (should_resched(0)) {
a18b5d01 4707 preempt_schedule_common();
1da177e4
LT
4708 return 1;
4709 }
4710 return 0;
4711}
02b67cc3 4712EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4713
4714/*
613afbf8 4715 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4716 * call schedule, and on return reacquire the lock.
4717 *
41a2d6cf 4718 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4719 * operations here to prevent schedule() from being called twice (once via
4720 * spin_unlock(), once by hand).
4721 */
613afbf8 4722int __cond_resched_lock(spinlock_t *lock)
1da177e4 4723{
fe32d3cd 4724 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4725 int ret = 0;
4726
f607c668
PZ
4727 lockdep_assert_held(lock);
4728
4a81e832 4729 if (spin_needbreak(lock) || resched) {
1da177e4 4730 spin_unlock(lock);
d86ee480 4731 if (resched)
a18b5d01 4732 preempt_schedule_common();
95c354fe
NP
4733 else
4734 cpu_relax();
6df3cecb 4735 ret = 1;
1da177e4 4736 spin_lock(lock);
1da177e4 4737 }
6df3cecb 4738 return ret;
1da177e4 4739}
613afbf8 4740EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4741
613afbf8 4742int __sched __cond_resched_softirq(void)
1da177e4
LT
4743{
4744 BUG_ON(!in_softirq());
4745
fe32d3cd 4746 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4747 local_bh_enable();
a18b5d01 4748 preempt_schedule_common();
1da177e4
LT
4749 local_bh_disable();
4750 return 1;
4751 }
4752 return 0;
4753}
613afbf8 4754EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4755
1da177e4
LT
4756/**
4757 * yield - yield the current processor to other threads.
4758 *
8e3fabfd
PZ
4759 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4760 *
4761 * The scheduler is at all times free to pick the calling task as the most
4762 * eligible task to run, if removing the yield() call from your code breaks
4763 * it, its already broken.
4764 *
4765 * Typical broken usage is:
4766 *
4767 * while (!event)
4768 * yield();
4769 *
4770 * where one assumes that yield() will let 'the other' process run that will
4771 * make event true. If the current task is a SCHED_FIFO task that will never
4772 * happen. Never use yield() as a progress guarantee!!
4773 *
4774 * If you want to use yield() to wait for something, use wait_event().
4775 * If you want to use yield() to be 'nice' for others, use cond_resched().
4776 * If you still want to use yield(), do not!
1da177e4
LT
4777 */
4778void __sched yield(void)
4779{
4780 set_current_state(TASK_RUNNING);
4781 sys_sched_yield();
4782}
1da177e4
LT
4783EXPORT_SYMBOL(yield);
4784
d95f4122
MG
4785/**
4786 * yield_to - yield the current processor to another thread in
4787 * your thread group, or accelerate that thread toward the
4788 * processor it's on.
16addf95
RD
4789 * @p: target task
4790 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4791 *
4792 * It's the caller's job to ensure that the target task struct
4793 * can't go away on us before we can do any checks.
4794 *
e69f6186 4795 * Return:
7b270f60
PZ
4796 * true (>0) if we indeed boosted the target task.
4797 * false (0) if we failed to boost the target.
4798 * -ESRCH if there's no task to yield to.
d95f4122 4799 */
fa93384f 4800int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4801{
4802 struct task_struct *curr = current;
4803 struct rq *rq, *p_rq;
4804 unsigned long flags;
c3c18640 4805 int yielded = 0;
d95f4122
MG
4806
4807 local_irq_save(flags);
4808 rq = this_rq();
4809
4810again:
4811 p_rq = task_rq(p);
7b270f60
PZ
4812 /*
4813 * If we're the only runnable task on the rq and target rq also
4814 * has only one task, there's absolutely no point in yielding.
4815 */
4816 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4817 yielded = -ESRCH;
4818 goto out_irq;
4819 }
4820
d95f4122 4821 double_rq_lock(rq, p_rq);
39e24d8f 4822 if (task_rq(p) != p_rq) {
d95f4122
MG
4823 double_rq_unlock(rq, p_rq);
4824 goto again;
4825 }
4826
4827 if (!curr->sched_class->yield_to_task)
7b270f60 4828 goto out_unlock;
d95f4122
MG
4829
4830 if (curr->sched_class != p->sched_class)
7b270f60 4831 goto out_unlock;
d95f4122
MG
4832
4833 if (task_running(p_rq, p) || p->state)
7b270f60 4834 goto out_unlock;
d95f4122
MG
4835
4836 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4837 if (yielded) {
d95f4122 4838 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4839 /*
4840 * Make p's CPU reschedule; pick_next_entity takes care of
4841 * fairness.
4842 */
4843 if (preempt && rq != p_rq)
8875125e 4844 resched_curr(p_rq);
6d1cafd8 4845 }
d95f4122 4846
7b270f60 4847out_unlock:
d95f4122 4848 double_rq_unlock(rq, p_rq);
7b270f60 4849out_irq:
d95f4122
MG
4850 local_irq_restore(flags);
4851
7b270f60 4852 if (yielded > 0)
d95f4122
MG
4853 schedule();
4854
4855 return yielded;
4856}
4857EXPORT_SYMBOL_GPL(yield_to);
4858
1da177e4 4859/*
41a2d6cf 4860 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4861 * that process accounting knows that this is a task in IO wait state.
1da177e4 4862 */
1da177e4
LT
4863long __sched io_schedule_timeout(long timeout)
4864{
9cff8ade
N
4865 int old_iowait = current->in_iowait;
4866 struct rq *rq;
1da177e4
LT
4867 long ret;
4868
9cff8ade 4869 current->in_iowait = 1;
10d784ea 4870 blk_schedule_flush_plug(current);
9cff8ade 4871
0ff92245 4872 delayacct_blkio_start();
9cff8ade 4873 rq = raw_rq();
1da177e4
LT
4874 atomic_inc(&rq->nr_iowait);
4875 ret = schedule_timeout(timeout);
9cff8ade 4876 current->in_iowait = old_iowait;
1da177e4 4877 atomic_dec(&rq->nr_iowait);
0ff92245 4878 delayacct_blkio_end();
9cff8ade 4879
1da177e4
LT
4880 return ret;
4881}
9cff8ade 4882EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4883
4884/**
4885 * sys_sched_get_priority_max - return maximum RT priority.
4886 * @policy: scheduling class.
4887 *
e69f6186
YB
4888 * Return: On success, this syscall returns the maximum
4889 * rt_priority that can be used by a given scheduling class.
4890 * On failure, a negative error code is returned.
1da177e4 4891 */
5add95d4 4892SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4893{
4894 int ret = -EINVAL;
4895
4896 switch (policy) {
4897 case SCHED_FIFO:
4898 case SCHED_RR:
4899 ret = MAX_USER_RT_PRIO-1;
4900 break;
aab03e05 4901 case SCHED_DEADLINE:
1da177e4 4902 case SCHED_NORMAL:
b0a9499c 4903 case SCHED_BATCH:
dd41f596 4904 case SCHED_IDLE:
1da177e4
LT
4905 ret = 0;
4906 break;
4907 }
4908 return ret;
4909}
4910
4911/**
4912 * sys_sched_get_priority_min - return minimum RT priority.
4913 * @policy: scheduling class.
4914 *
e69f6186
YB
4915 * Return: On success, this syscall returns the minimum
4916 * rt_priority that can be used by a given scheduling class.
4917 * On failure, a negative error code is returned.
1da177e4 4918 */
5add95d4 4919SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4920{
4921 int ret = -EINVAL;
4922
4923 switch (policy) {
4924 case SCHED_FIFO:
4925 case SCHED_RR:
4926 ret = 1;
4927 break;
aab03e05 4928 case SCHED_DEADLINE:
1da177e4 4929 case SCHED_NORMAL:
b0a9499c 4930 case SCHED_BATCH:
dd41f596 4931 case SCHED_IDLE:
1da177e4
LT
4932 ret = 0;
4933 }
4934 return ret;
4935}
4936
4937/**
4938 * sys_sched_rr_get_interval - return the default timeslice of a process.
4939 * @pid: pid of the process.
4940 * @interval: userspace pointer to the timeslice value.
4941 *
4942 * this syscall writes the default timeslice value of a given process
4943 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4944 *
4945 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4946 * an error code.
1da177e4 4947 */
17da2bd9 4948SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4949 struct timespec __user *, interval)
1da177e4 4950{
36c8b586 4951 struct task_struct *p;
a4ec24b4 4952 unsigned int time_slice;
dba091b9
TG
4953 unsigned long flags;
4954 struct rq *rq;
3a5c359a 4955 int retval;
1da177e4 4956 struct timespec t;
1da177e4
LT
4957
4958 if (pid < 0)
3a5c359a 4959 return -EINVAL;
1da177e4
LT
4960
4961 retval = -ESRCH;
1a551ae7 4962 rcu_read_lock();
1da177e4
LT
4963 p = find_process_by_pid(pid);
4964 if (!p)
4965 goto out_unlock;
4966
4967 retval = security_task_getscheduler(p);
4968 if (retval)
4969 goto out_unlock;
4970
dba091b9 4971 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4972 time_slice = 0;
4973 if (p->sched_class->get_rr_interval)
4974 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4975 task_rq_unlock(rq, p, &flags);
a4ec24b4 4976
1a551ae7 4977 rcu_read_unlock();
a4ec24b4 4978 jiffies_to_timespec(time_slice, &t);
1da177e4 4979 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4980 return retval;
3a5c359a 4981
1da177e4 4982out_unlock:
1a551ae7 4983 rcu_read_unlock();
1da177e4
LT
4984 return retval;
4985}
4986
7c731e0a 4987static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4988
82a1fcb9 4989void sched_show_task(struct task_struct *p)
1da177e4 4990{
1da177e4 4991 unsigned long free = 0;
4e79752c 4992 int ppid;
1f8a7633 4993 unsigned long state = p->state;
1da177e4 4994
1f8a7633
TH
4995 if (state)
4996 state = __ffs(state) + 1;
28d0686c 4997 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4998 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4999#if BITS_PER_LONG == 32
1da177e4 5000 if (state == TASK_RUNNING)
3df0fc5b 5001 printk(KERN_CONT " running ");
1da177e4 5002 else
3df0fc5b 5003 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5004#else
5005 if (state == TASK_RUNNING)
3df0fc5b 5006 printk(KERN_CONT " running task ");
1da177e4 5007 else
3df0fc5b 5008 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5009#endif
5010#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5011 free = stack_not_used(p);
1da177e4 5012#endif
a90e984c 5013 ppid = 0;
4e79752c 5014 rcu_read_lock();
a90e984c
ON
5015 if (pid_alive(p))
5016 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5017 rcu_read_unlock();
3df0fc5b 5018 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5019 task_pid_nr(p), ppid,
aa47b7e0 5020 (unsigned long)task_thread_info(p)->flags);
1da177e4 5021
3d1cb205 5022 print_worker_info(KERN_INFO, p);
5fb5e6de 5023 show_stack(p, NULL);
1da177e4
LT
5024}
5025
e59e2ae2 5026void show_state_filter(unsigned long state_filter)
1da177e4 5027{
36c8b586 5028 struct task_struct *g, *p;
1da177e4 5029
4bd77321 5030#if BITS_PER_LONG == 32
3df0fc5b
PZ
5031 printk(KERN_INFO
5032 " task PC stack pid father\n");
1da177e4 5033#else
3df0fc5b
PZ
5034 printk(KERN_INFO
5035 " task PC stack pid father\n");
1da177e4 5036#endif
510f5acc 5037 rcu_read_lock();
5d07f420 5038 for_each_process_thread(g, p) {
1da177e4
LT
5039 /*
5040 * reset the NMI-timeout, listing all files on a slow
25985edc 5041 * console might take a lot of time:
1da177e4
LT
5042 */
5043 touch_nmi_watchdog();
39bc89fd 5044 if (!state_filter || (p->state & state_filter))
82a1fcb9 5045 sched_show_task(p);
5d07f420 5046 }
1da177e4 5047
04c9167f
JF
5048 touch_all_softlockup_watchdogs();
5049
dd41f596
IM
5050#ifdef CONFIG_SCHED_DEBUG
5051 sysrq_sched_debug_show();
5052#endif
510f5acc 5053 rcu_read_unlock();
e59e2ae2
IM
5054 /*
5055 * Only show locks if all tasks are dumped:
5056 */
93335a21 5057 if (!state_filter)
e59e2ae2 5058 debug_show_all_locks();
1da177e4
LT
5059}
5060
0db0628d 5061void init_idle_bootup_task(struct task_struct *idle)
1df21055 5062{
dd41f596 5063 idle->sched_class = &idle_sched_class;
1df21055
IM
5064}
5065
f340c0d1
IM
5066/**
5067 * init_idle - set up an idle thread for a given CPU
5068 * @idle: task in question
5069 * @cpu: cpu the idle task belongs to
5070 *
5071 * NOTE: this function does not set the idle thread's NEED_RESCHED
5072 * flag, to make booting more robust.
5073 */
0db0628d 5074void init_idle(struct task_struct *idle, int cpu)
1da177e4 5075{
70b97a7f 5076 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5077 unsigned long flags;
5078
25834c73
PZ
5079 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5080 raw_spin_lock(&rq->lock);
5cbd54ef 5081
5e1576ed 5082 __sched_fork(0, idle);
06b83b5f 5083 idle->state = TASK_RUNNING;
dd41f596
IM
5084 idle->se.exec_start = sched_clock();
5085
e1b77c92
MR
5086 kasan_unpoison_task_stack(idle);
5087
de9b8f5d
PZ
5088#ifdef CONFIG_SMP
5089 /*
5090 * Its possible that init_idle() gets called multiple times on a task,
5091 * in that case do_set_cpus_allowed() will not do the right thing.
5092 *
5093 * And since this is boot we can forgo the serialization.
5094 */
5095 set_cpus_allowed_common(idle, cpumask_of(cpu));
5096#endif
6506cf6c
PZ
5097 /*
5098 * We're having a chicken and egg problem, even though we are
5099 * holding rq->lock, the cpu isn't yet set to this cpu so the
5100 * lockdep check in task_group() will fail.
5101 *
5102 * Similar case to sched_fork(). / Alternatively we could
5103 * use task_rq_lock() here and obtain the other rq->lock.
5104 *
5105 * Silence PROVE_RCU
5106 */
5107 rcu_read_lock();
dd41f596 5108 __set_task_cpu(idle, cpu);
6506cf6c 5109 rcu_read_unlock();
1da177e4 5110
1da177e4 5111 rq->curr = rq->idle = idle;
da0c1e65 5112 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5113#ifdef CONFIG_SMP
3ca7a440 5114 idle->on_cpu = 1;
4866cde0 5115#endif
25834c73
PZ
5116 raw_spin_unlock(&rq->lock);
5117 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5118
5119 /* Set the preempt count _outside_ the spinlocks! */
01028747 5120 init_idle_preempt_count(idle, cpu);
55cd5340 5121
dd41f596
IM
5122 /*
5123 * The idle tasks have their own, simple scheduling class:
5124 */
5125 idle->sched_class = &idle_sched_class;
868baf07 5126 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5127 vtime_init_idle(idle, cpu);
de9b8f5d 5128#ifdef CONFIG_SMP
f1c6f1a7
CE
5129 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5130#endif
19978ca6
IM
5131}
5132
f82f8042
JL
5133int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5134 const struct cpumask *trial)
5135{
5136 int ret = 1, trial_cpus;
5137 struct dl_bw *cur_dl_b;
5138 unsigned long flags;
5139
bb2bc55a
MG
5140 if (!cpumask_weight(cur))
5141 return ret;
5142
75e23e49 5143 rcu_read_lock_sched();
f82f8042
JL
5144 cur_dl_b = dl_bw_of(cpumask_any(cur));
5145 trial_cpus = cpumask_weight(trial);
5146
5147 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5148 if (cur_dl_b->bw != -1 &&
5149 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5150 ret = 0;
5151 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5152 rcu_read_unlock_sched();
f82f8042
JL
5153
5154 return ret;
5155}
5156
7f51412a
JL
5157int task_can_attach(struct task_struct *p,
5158 const struct cpumask *cs_cpus_allowed)
5159{
5160 int ret = 0;
5161
5162 /*
5163 * Kthreads which disallow setaffinity shouldn't be moved
5164 * to a new cpuset; we don't want to change their cpu
5165 * affinity and isolating such threads by their set of
5166 * allowed nodes is unnecessary. Thus, cpusets are not
5167 * applicable for such threads. This prevents checking for
5168 * success of set_cpus_allowed_ptr() on all attached tasks
5169 * before cpus_allowed may be changed.
5170 */
5171 if (p->flags & PF_NO_SETAFFINITY) {
5172 ret = -EINVAL;
5173 goto out;
5174 }
5175
5176#ifdef CONFIG_SMP
5177 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5178 cs_cpus_allowed)) {
5179 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5180 cs_cpus_allowed);
75e23e49 5181 struct dl_bw *dl_b;
7f51412a
JL
5182 bool overflow;
5183 int cpus;
5184 unsigned long flags;
5185
75e23e49
JL
5186 rcu_read_lock_sched();
5187 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5188 raw_spin_lock_irqsave(&dl_b->lock, flags);
5189 cpus = dl_bw_cpus(dest_cpu);
5190 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5191 if (overflow)
5192 ret = -EBUSY;
5193 else {
5194 /*
5195 * We reserve space for this task in the destination
5196 * root_domain, as we can't fail after this point.
5197 * We will free resources in the source root_domain
5198 * later on (see set_cpus_allowed_dl()).
5199 */
5200 __dl_add(dl_b, p->dl.dl_bw);
5201 }
5202 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5203 rcu_read_unlock_sched();
7f51412a
JL
5204
5205 }
5206#endif
5207out:
5208 return ret;
5209}
5210
1da177e4 5211#ifdef CONFIG_SMP
1da177e4 5212
e6628d5b
MG
5213#ifdef CONFIG_NUMA_BALANCING
5214/* Migrate current task p to target_cpu */
5215int migrate_task_to(struct task_struct *p, int target_cpu)
5216{
5217 struct migration_arg arg = { p, target_cpu };
5218 int curr_cpu = task_cpu(p);
5219
5220 if (curr_cpu == target_cpu)
5221 return 0;
5222
5223 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5224 return -EINVAL;
5225
5226 /* TODO: This is not properly updating schedstats */
5227
286549dc 5228 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5229 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5230}
0ec8aa00
PZ
5231
5232/*
5233 * Requeue a task on a given node and accurately track the number of NUMA
5234 * tasks on the runqueues
5235 */
5236void sched_setnuma(struct task_struct *p, int nid)
5237{
5238 struct rq *rq;
5239 unsigned long flags;
da0c1e65 5240 bool queued, running;
0ec8aa00
PZ
5241
5242 rq = task_rq_lock(p, &flags);
da0c1e65 5243 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5244 running = task_current(rq, p);
5245
da0c1e65 5246 if (queued)
1de64443 5247 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5248 if (running)
f3cd1c4e 5249 put_prev_task(rq, p);
0ec8aa00
PZ
5250
5251 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5252
5253 if (running)
5254 p->sched_class->set_curr_task(rq);
da0c1e65 5255 if (queued)
1de64443 5256 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5257 task_rq_unlock(rq, p, &flags);
5258}
5cc389bc 5259#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5260
1da177e4 5261#ifdef CONFIG_HOTPLUG_CPU
054b9108 5262/*
48c5ccae
PZ
5263 * Ensures that the idle task is using init_mm right before its cpu goes
5264 * offline.
054b9108 5265 */
48c5ccae 5266void idle_task_exit(void)
1da177e4 5267{
48c5ccae 5268 struct mm_struct *mm = current->active_mm;
e76bd8d9 5269
48c5ccae 5270 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5271
a53efe5f 5272 if (mm != &init_mm) {
48c5ccae 5273 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5274 finish_arch_post_lock_switch();
5275 }
48c5ccae 5276 mmdrop(mm);
1da177e4
LT
5277}
5278
5279/*
5d180232
PZ
5280 * Since this CPU is going 'away' for a while, fold any nr_active delta
5281 * we might have. Assumes we're called after migrate_tasks() so that the
5282 * nr_active count is stable.
5283 *
5284 * Also see the comment "Global load-average calculations".
1da177e4 5285 */
5d180232 5286static void calc_load_migrate(struct rq *rq)
1da177e4 5287{
5d180232
PZ
5288 long delta = calc_load_fold_active(rq);
5289 if (delta)
5290 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5291}
5292
3f1d2a31
PZ
5293static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5294{
5295}
5296
5297static const struct sched_class fake_sched_class = {
5298 .put_prev_task = put_prev_task_fake,
5299};
5300
5301static struct task_struct fake_task = {
5302 /*
5303 * Avoid pull_{rt,dl}_task()
5304 */
5305 .prio = MAX_PRIO + 1,
5306 .sched_class = &fake_sched_class,
5307};
5308
48f24c4d 5309/*
48c5ccae
PZ
5310 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5311 * try_to_wake_up()->select_task_rq().
5312 *
5313 * Called with rq->lock held even though we'er in stop_machine() and
5314 * there's no concurrency possible, we hold the required locks anyway
5315 * because of lock validation efforts.
1da177e4 5316 */
5e16bbc2 5317static void migrate_tasks(struct rq *dead_rq)
1da177e4 5318{
5e16bbc2 5319 struct rq *rq = dead_rq;
48c5ccae
PZ
5320 struct task_struct *next, *stop = rq->stop;
5321 int dest_cpu;
1da177e4
LT
5322
5323 /*
48c5ccae
PZ
5324 * Fudge the rq selection such that the below task selection loop
5325 * doesn't get stuck on the currently eligible stop task.
5326 *
5327 * We're currently inside stop_machine() and the rq is either stuck
5328 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5329 * either way we should never end up calling schedule() until we're
5330 * done here.
1da177e4 5331 */
48c5ccae 5332 rq->stop = NULL;
48f24c4d 5333
77bd3970
FW
5334 /*
5335 * put_prev_task() and pick_next_task() sched
5336 * class method both need to have an up-to-date
5337 * value of rq->clock[_task]
5338 */
5339 update_rq_clock(rq);
5340
5e16bbc2 5341 for (;;) {
48c5ccae
PZ
5342 /*
5343 * There's this thread running, bail when that's the only
5344 * remaining thread.
5345 */
5346 if (rq->nr_running == 1)
dd41f596 5347 break;
48c5ccae 5348
cbce1a68 5349 /*
5473e0cc 5350 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5351 */
5352 lockdep_pin_lock(&rq->lock);
3f1d2a31 5353 next = pick_next_task(rq, &fake_task);
48c5ccae 5354 BUG_ON(!next);
79c53799 5355 next->sched_class->put_prev_task(rq, next);
e692ab53 5356
5473e0cc
WL
5357 /*
5358 * Rules for changing task_struct::cpus_allowed are holding
5359 * both pi_lock and rq->lock, such that holding either
5360 * stabilizes the mask.
5361 *
5362 * Drop rq->lock is not quite as disastrous as it usually is
5363 * because !cpu_active at this point, which means load-balance
5364 * will not interfere. Also, stop-machine.
5365 */
5366 lockdep_unpin_lock(&rq->lock);
5367 raw_spin_unlock(&rq->lock);
5368 raw_spin_lock(&next->pi_lock);
5369 raw_spin_lock(&rq->lock);
5370
5371 /*
5372 * Since we're inside stop-machine, _nothing_ should have
5373 * changed the task, WARN if weird stuff happened, because in
5374 * that case the above rq->lock drop is a fail too.
5375 */
5376 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5377 raw_spin_unlock(&next->pi_lock);
5378 continue;
5379 }
5380
48c5ccae 5381 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5382 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5383
5e16bbc2
PZ
5384 rq = __migrate_task(rq, next, dest_cpu);
5385 if (rq != dead_rq) {
5386 raw_spin_unlock(&rq->lock);
5387 rq = dead_rq;
5388 raw_spin_lock(&rq->lock);
5389 }
5473e0cc 5390 raw_spin_unlock(&next->pi_lock);
1da177e4 5391 }
dce48a84 5392
48c5ccae 5393 rq->stop = stop;
dce48a84 5394}
1da177e4
LT
5395#endif /* CONFIG_HOTPLUG_CPU */
5396
1f11eb6a
GH
5397static void set_rq_online(struct rq *rq)
5398{
5399 if (!rq->online) {
5400 const struct sched_class *class;
5401
c6c4927b 5402 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5403 rq->online = 1;
5404
5405 for_each_class(class) {
5406 if (class->rq_online)
5407 class->rq_online(rq);
5408 }
5409 }
5410}
5411
5412static void set_rq_offline(struct rq *rq)
5413{
5414 if (rq->online) {
5415 const struct sched_class *class;
5416
5417 for_each_class(class) {
5418 if (class->rq_offline)
5419 class->rq_offline(rq);
5420 }
5421
c6c4927b 5422 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5423 rq->online = 0;
5424 }
5425}
5426
1da177e4
LT
5427/*
5428 * migration_call - callback that gets triggered when a CPU is added.
5429 * Here we can start up the necessary migration thread for the new CPU.
5430 */
0db0628d 5431static int
48f24c4d 5432migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5433{
48f24c4d 5434 int cpu = (long)hcpu;
1da177e4 5435 unsigned long flags;
969c7921 5436 struct rq *rq = cpu_rq(cpu);
1da177e4 5437
48c5ccae 5438 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5439
1da177e4 5440 case CPU_UP_PREPARE:
a468d389 5441 rq->calc_load_update = calc_load_update;
e9532e69 5442 account_reset_rq(rq);
1da177e4 5443 break;
48f24c4d 5444
1da177e4 5445 case CPU_ONLINE:
1f94ef59 5446 /* Update our root-domain */
05fa785c 5447 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5448 if (rq->rd) {
c6c4927b 5449 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5450
5451 set_rq_online(rq);
1f94ef59 5452 }
05fa785c 5453 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5454 break;
48f24c4d 5455
1da177e4 5456#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5457 case CPU_DYING:
317f3941 5458 sched_ttwu_pending();
57d885fe 5459 /* Update our root-domain */
05fa785c 5460 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5461 if (rq->rd) {
c6c4927b 5462 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5463 set_rq_offline(rq);
57d885fe 5464 }
5e16bbc2 5465 migrate_tasks(rq);
48c5ccae 5466 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5467 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5468 break;
48c5ccae 5469
5d180232 5470 case CPU_DEAD:
f319da0c 5471 calc_load_migrate(rq);
57d885fe 5472 break;
1da177e4
LT
5473#endif
5474 }
49c022e6
PZ
5475
5476 update_max_interval();
5477
1da177e4
LT
5478 return NOTIFY_OK;
5479}
5480
f38b0820
PM
5481/*
5482 * Register at high priority so that task migration (migrate_all_tasks)
5483 * happens before everything else. This has to be lower priority than
cdd6c482 5484 * the notifier in the perf_event subsystem, though.
1da177e4 5485 */
0db0628d 5486static struct notifier_block migration_notifier = {
1da177e4 5487 .notifier_call = migration_call,
50a323b7 5488 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5489};
5490
6a82b60d 5491static void set_cpu_rq_start_time(void)
a803f026
CM
5492{
5493 int cpu = smp_processor_id();
5494 struct rq *rq = cpu_rq(cpu);
5495 rq->age_stamp = sched_clock_cpu(cpu);
5496}
5497
0db0628d 5498static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5499 unsigned long action, void *hcpu)
5500{
07f06cb3
PZ
5501 int cpu = (long)hcpu;
5502
3a101d05 5503 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5504 case CPU_STARTING:
5505 set_cpu_rq_start_time();
5506 return NOTIFY_OK;
07f06cb3 5507
3a101d05 5508 case CPU_DOWN_FAILED:
07f06cb3 5509 set_cpu_active(cpu, true);
3a101d05 5510 return NOTIFY_OK;
07f06cb3 5511
3a101d05
TH
5512 default:
5513 return NOTIFY_DONE;
5514 }
5515}
5516
0db0628d 5517static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5518 unsigned long action, void *hcpu)
5519{
5520 switch (action & ~CPU_TASKS_FROZEN) {
5521 case CPU_DOWN_PREPARE:
3c18d447 5522 set_cpu_active((long)hcpu, false);
3a101d05 5523 return NOTIFY_OK;
3c18d447
JL
5524 default:
5525 return NOTIFY_DONE;
3a101d05
TH
5526 }
5527}
5528
7babe8db 5529static int __init migration_init(void)
1da177e4
LT
5530{
5531 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5532 int err;
48f24c4d 5533
3a101d05 5534 /* Initialize migration for the boot CPU */
07dccf33
AM
5535 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5536 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5537 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5538 register_cpu_notifier(&migration_notifier);
7babe8db 5539
3a101d05
TH
5540 /* Register cpu active notifiers */
5541 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5542 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5543
a004cd42 5544 return 0;
1da177e4 5545}
7babe8db 5546early_initcall(migration_init);
476f3534 5547
4cb98839
PZ
5548static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5549
3e9830dc 5550#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5551
d039ac60 5552static __read_mostly int sched_debug_enabled;
f6630114 5553
d039ac60 5554static int __init sched_debug_setup(char *str)
f6630114 5555{
d039ac60 5556 sched_debug_enabled = 1;
f6630114
MT
5557
5558 return 0;
5559}
d039ac60
PZ
5560early_param("sched_debug", sched_debug_setup);
5561
5562static inline bool sched_debug(void)
5563{
5564 return sched_debug_enabled;
5565}
f6630114 5566
7c16ec58 5567static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5568 struct cpumask *groupmask)
1da177e4 5569{
4dcf6aff 5570 struct sched_group *group = sd->groups;
1da177e4 5571
96f874e2 5572 cpumask_clear(groupmask);
4dcf6aff
IM
5573
5574 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5575
5576 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5577 printk("does not load-balance\n");
4dcf6aff 5578 if (sd->parent)
3df0fc5b
PZ
5579 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5580 " has parent");
4dcf6aff 5581 return -1;
41c7ce9a
NP
5582 }
5583
333470ee
TH
5584 printk(KERN_CONT "span %*pbl level %s\n",
5585 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5586
758b2cdc 5587 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5588 printk(KERN_ERR "ERROR: domain->span does not contain "
5589 "CPU%d\n", cpu);
4dcf6aff 5590 }
758b2cdc 5591 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5592 printk(KERN_ERR "ERROR: domain->groups does not contain"
5593 " CPU%d\n", cpu);
4dcf6aff 5594 }
1da177e4 5595
4dcf6aff 5596 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5597 do {
4dcf6aff 5598 if (!group) {
3df0fc5b
PZ
5599 printk("\n");
5600 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5601 break;
5602 }
5603
758b2cdc 5604 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5605 printk(KERN_CONT "\n");
5606 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5607 break;
5608 }
1da177e4 5609
cb83b629
PZ
5610 if (!(sd->flags & SD_OVERLAP) &&
5611 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5612 printk(KERN_CONT "\n");
5613 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5614 break;
5615 }
1da177e4 5616
758b2cdc 5617 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5618
333470ee
TH
5619 printk(KERN_CONT " %*pbl",
5620 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5621 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5622 printk(KERN_CONT " (cpu_capacity = %d)",
5623 group->sgc->capacity);
381512cf 5624 }
1da177e4 5625
4dcf6aff
IM
5626 group = group->next;
5627 } while (group != sd->groups);
3df0fc5b 5628 printk(KERN_CONT "\n");
1da177e4 5629
758b2cdc 5630 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5631 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5632
758b2cdc
RR
5633 if (sd->parent &&
5634 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5635 printk(KERN_ERR "ERROR: parent span is not a superset "
5636 "of domain->span\n");
4dcf6aff
IM
5637 return 0;
5638}
1da177e4 5639
4dcf6aff
IM
5640static void sched_domain_debug(struct sched_domain *sd, int cpu)
5641{
5642 int level = 0;
1da177e4 5643
d039ac60 5644 if (!sched_debug_enabled)
f6630114
MT
5645 return;
5646
4dcf6aff
IM
5647 if (!sd) {
5648 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5649 return;
5650 }
1da177e4 5651
4dcf6aff
IM
5652 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5653
5654 for (;;) {
4cb98839 5655 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5656 break;
1da177e4
LT
5657 level++;
5658 sd = sd->parent;
33859f7f 5659 if (!sd)
4dcf6aff
IM
5660 break;
5661 }
1da177e4 5662}
6d6bc0ad 5663#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5664# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5665static inline bool sched_debug(void)
5666{
5667 return false;
5668}
6d6bc0ad 5669#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5670
1a20ff27 5671static int sd_degenerate(struct sched_domain *sd)
245af2c7 5672{
758b2cdc 5673 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5674 return 1;
5675
5676 /* Following flags need at least 2 groups */
5677 if (sd->flags & (SD_LOAD_BALANCE |
5678 SD_BALANCE_NEWIDLE |
5679 SD_BALANCE_FORK |
89c4710e 5680 SD_BALANCE_EXEC |
5d4dfddd 5681 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5682 SD_SHARE_PKG_RESOURCES |
5683 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5684 if (sd->groups != sd->groups->next)
5685 return 0;
5686 }
5687
5688 /* Following flags don't use groups */
c88d5910 5689 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5690 return 0;
5691
5692 return 1;
5693}
5694
48f24c4d
IM
5695static int
5696sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5697{
5698 unsigned long cflags = sd->flags, pflags = parent->flags;
5699
5700 if (sd_degenerate(parent))
5701 return 1;
5702
758b2cdc 5703 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5704 return 0;
5705
245af2c7
SS
5706 /* Flags needing groups don't count if only 1 group in parent */
5707 if (parent->groups == parent->groups->next) {
5708 pflags &= ~(SD_LOAD_BALANCE |
5709 SD_BALANCE_NEWIDLE |
5710 SD_BALANCE_FORK |
89c4710e 5711 SD_BALANCE_EXEC |
5d4dfddd 5712 SD_SHARE_CPUCAPACITY |
10866e62 5713 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5714 SD_PREFER_SIBLING |
5715 SD_SHARE_POWERDOMAIN);
5436499e
KC
5716 if (nr_node_ids == 1)
5717 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5718 }
5719 if (~cflags & pflags)
5720 return 0;
5721
5722 return 1;
5723}
5724
dce840a0 5725static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5726{
dce840a0 5727 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5728
68e74568 5729 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5730 cpudl_cleanup(&rd->cpudl);
1baca4ce 5731 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5732 free_cpumask_var(rd->rto_mask);
5733 free_cpumask_var(rd->online);
5734 free_cpumask_var(rd->span);
5735 kfree(rd);
5736}
5737
57d885fe
GH
5738static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5739{
a0490fa3 5740 struct root_domain *old_rd = NULL;
57d885fe 5741 unsigned long flags;
57d885fe 5742
05fa785c 5743 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5744
5745 if (rq->rd) {
a0490fa3 5746 old_rd = rq->rd;
57d885fe 5747
c6c4927b 5748 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5749 set_rq_offline(rq);
57d885fe 5750
c6c4927b 5751 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5752
a0490fa3 5753 /*
0515973f 5754 * If we dont want to free the old_rd yet then
a0490fa3
IM
5755 * set old_rd to NULL to skip the freeing later
5756 * in this function:
5757 */
5758 if (!atomic_dec_and_test(&old_rd->refcount))
5759 old_rd = NULL;
57d885fe
GH
5760 }
5761
5762 atomic_inc(&rd->refcount);
5763 rq->rd = rd;
5764
c6c4927b 5765 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5766 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5767 set_rq_online(rq);
57d885fe 5768
05fa785c 5769 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5770
5771 if (old_rd)
dce840a0 5772 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5773}
5774
68c38fc3 5775static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5776{
5777 memset(rd, 0, sizeof(*rd));
5778
8295c699 5779 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5780 goto out;
8295c699 5781 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5782 goto free_span;
8295c699 5783 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5784 goto free_online;
8295c699 5785 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5786 goto free_dlo_mask;
6e0534f2 5787
332ac17e 5788 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5789 if (cpudl_init(&rd->cpudl) != 0)
5790 goto free_dlo_mask;
332ac17e 5791
68c38fc3 5792 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5793 goto free_rto_mask;
c6c4927b 5794 return 0;
6e0534f2 5795
68e74568
RR
5796free_rto_mask:
5797 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5798free_dlo_mask:
5799 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5800free_online:
5801 free_cpumask_var(rd->online);
5802free_span:
5803 free_cpumask_var(rd->span);
0c910d28 5804out:
c6c4927b 5805 return -ENOMEM;
57d885fe
GH
5806}
5807
029632fb
PZ
5808/*
5809 * By default the system creates a single root-domain with all cpus as
5810 * members (mimicking the global state we have today).
5811 */
5812struct root_domain def_root_domain;
5813
57d885fe
GH
5814static void init_defrootdomain(void)
5815{
68c38fc3 5816 init_rootdomain(&def_root_domain);
c6c4927b 5817
57d885fe
GH
5818 atomic_set(&def_root_domain.refcount, 1);
5819}
5820
dc938520 5821static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5822{
5823 struct root_domain *rd;
5824
5825 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5826 if (!rd)
5827 return NULL;
5828
68c38fc3 5829 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5830 kfree(rd);
5831 return NULL;
5832 }
57d885fe
GH
5833
5834 return rd;
5835}
5836
63b2ca30 5837static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5838{
5839 struct sched_group *tmp, *first;
5840
5841 if (!sg)
5842 return;
5843
5844 first = sg;
5845 do {
5846 tmp = sg->next;
5847
63b2ca30
NP
5848 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5849 kfree(sg->sgc);
e3589f6c
PZ
5850
5851 kfree(sg);
5852 sg = tmp;
5853 } while (sg != first);
5854}
5855
dce840a0
PZ
5856static void free_sched_domain(struct rcu_head *rcu)
5857{
5858 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5859
5860 /*
5861 * If its an overlapping domain it has private groups, iterate and
5862 * nuke them all.
5863 */
5864 if (sd->flags & SD_OVERLAP) {
5865 free_sched_groups(sd->groups, 1);
5866 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5867 kfree(sd->groups->sgc);
dce840a0 5868 kfree(sd->groups);
9c3f75cb 5869 }
dce840a0
PZ
5870 kfree(sd);
5871}
5872
5873static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5874{
5875 call_rcu(&sd->rcu, free_sched_domain);
5876}
5877
5878static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5879{
5880 for (; sd; sd = sd->parent)
5881 destroy_sched_domain(sd, cpu);
5882}
5883
518cd623
PZ
5884/*
5885 * Keep a special pointer to the highest sched_domain that has
5886 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5887 * allows us to avoid some pointer chasing select_idle_sibling().
5888 *
5889 * Also keep a unique ID per domain (we use the first cpu number in
5890 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5891 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5892 */
5893DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5894DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5895DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5896DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5897DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5898DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5899
5900static void update_top_cache_domain(int cpu)
5901{
5902 struct sched_domain *sd;
5d4cf996 5903 struct sched_domain *busy_sd = NULL;
518cd623 5904 int id = cpu;
7d9ffa89 5905 int size = 1;
518cd623
PZ
5906
5907 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5908 if (sd) {
518cd623 5909 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5910 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5911 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5912 }
5d4cf996 5913 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5914
5915 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5916 per_cpu(sd_llc_size, cpu) = size;
518cd623 5917 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5918
5919 sd = lowest_flag_domain(cpu, SD_NUMA);
5920 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5921
5922 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5923 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5924}
5925
1da177e4 5926/*
0eab9146 5927 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5928 * hold the hotplug lock.
5929 */
0eab9146
IM
5930static void
5931cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5932{
70b97a7f 5933 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5934 struct sched_domain *tmp;
5935
5936 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5937 for (tmp = sd; tmp; ) {
245af2c7
SS
5938 struct sched_domain *parent = tmp->parent;
5939 if (!parent)
5940 break;
f29c9b1c 5941
1a848870 5942 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5943 tmp->parent = parent->parent;
1a848870
SS
5944 if (parent->parent)
5945 parent->parent->child = tmp;
10866e62
PZ
5946 /*
5947 * Transfer SD_PREFER_SIBLING down in case of a
5948 * degenerate parent; the spans match for this
5949 * so the property transfers.
5950 */
5951 if (parent->flags & SD_PREFER_SIBLING)
5952 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5953 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5954 } else
5955 tmp = tmp->parent;
245af2c7
SS
5956 }
5957
1a848870 5958 if (sd && sd_degenerate(sd)) {
dce840a0 5959 tmp = sd;
245af2c7 5960 sd = sd->parent;
dce840a0 5961 destroy_sched_domain(tmp, cpu);
1a848870
SS
5962 if (sd)
5963 sd->child = NULL;
5964 }
1da177e4 5965
4cb98839 5966 sched_domain_debug(sd, cpu);
1da177e4 5967
57d885fe 5968 rq_attach_root(rq, rd);
dce840a0 5969 tmp = rq->sd;
674311d5 5970 rcu_assign_pointer(rq->sd, sd);
dce840a0 5971 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5972
5973 update_top_cache_domain(cpu);
1da177e4
LT
5974}
5975
1da177e4
LT
5976/* Setup the mask of cpus configured for isolated domains */
5977static int __init isolated_cpu_setup(char *str)
5978{
a6e4491c
PB
5979 int ret;
5980
bdddd296 5981 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5982 ret = cpulist_parse(str, cpu_isolated_map);
5983 if (ret) {
5984 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5985 return 0;
5986 }
1da177e4
LT
5987 return 1;
5988}
8927f494 5989__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5990
49a02c51 5991struct s_data {
21d42ccf 5992 struct sched_domain ** __percpu sd;
49a02c51
AH
5993 struct root_domain *rd;
5994};
5995
2109b99e 5996enum s_alloc {
2109b99e 5997 sa_rootdomain,
21d42ccf 5998 sa_sd,
dce840a0 5999 sa_sd_storage,
2109b99e
AH
6000 sa_none,
6001};
6002
c1174876
PZ
6003/*
6004 * Build an iteration mask that can exclude certain CPUs from the upwards
6005 * domain traversal.
6006 *
6007 * Asymmetric node setups can result in situations where the domain tree is of
6008 * unequal depth, make sure to skip domains that already cover the entire
6009 * range.
6010 *
6011 * In that case build_sched_domains() will have terminated the iteration early
6012 * and our sibling sd spans will be empty. Domains should always include the
6013 * cpu they're built on, so check that.
6014 *
6015 */
6016static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6017{
6018 const struct cpumask *span = sched_domain_span(sd);
6019 struct sd_data *sdd = sd->private;
6020 struct sched_domain *sibling;
6021 int i;
6022
6023 for_each_cpu(i, span) {
6024 sibling = *per_cpu_ptr(sdd->sd, i);
6025 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6026 continue;
6027
6028 cpumask_set_cpu(i, sched_group_mask(sg));
6029 }
6030}
6031
6032/*
6033 * Return the canonical balance cpu for this group, this is the first cpu
6034 * of this group that's also in the iteration mask.
6035 */
6036int group_balance_cpu(struct sched_group *sg)
6037{
6038 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6039}
6040
e3589f6c
PZ
6041static int
6042build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6043{
6044 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6045 const struct cpumask *span = sched_domain_span(sd);
6046 struct cpumask *covered = sched_domains_tmpmask;
6047 struct sd_data *sdd = sd->private;
aaecac4a 6048 struct sched_domain *sibling;
e3589f6c
PZ
6049 int i;
6050
6051 cpumask_clear(covered);
6052
6053 for_each_cpu(i, span) {
6054 struct cpumask *sg_span;
6055
6056 if (cpumask_test_cpu(i, covered))
6057 continue;
6058
aaecac4a 6059 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6060
6061 /* See the comment near build_group_mask(). */
aaecac4a 6062 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6063 continue;
6064
e3589f6c 6065 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6066 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6067
6068 if (!sg)
6069 goto fail;
6070
6071 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6072 if (sibling->child)
6073 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6074 else
e3589f6c
PZ
6075 cpumask_set_cpu(i, sg_span);
6076
6077 cpumask_or(covered, covered, sg_span);
6078
63b2ca30
NP
6079 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6080 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6081 build_group_mask(sd, sg);
6082
c3decf0d 6083 /*
63b2ca30 6084 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6085 * domains and no possible iteration will get us here, we won't
6086 * die on a /0 trap.
6087 */
ca8ce3d0 6088 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6089
c1174876
PZ
6090 /*
6091 * Make sure the first group of this domain contains the
6092 * canonical balance cpu. Otherwise the sched_domain iteration
6093 * breaks. See update_sg_lb_stats().
6094 */
74a5ce20 6095 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6096 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6097 groups = sg;
6098
6099 if (!first)
6100 first = sg;
6101 if (last)
6102 last->next = sg;
6103 last = sg;
6104 last->next = first;
6105 }
6106 sd->groups = groups;
6107
6108 return 0;
6109
6110fail:
6111 free_sched_groups(first, 0);
6112
6113 return -ENOMEM;
6114}
6115
dce840a0 6116static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6117{
dce840a0
PZ
6118 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6119 struct sched_domain *child = sd->child;
1da177e4 6120
dce840a0
PZ
6121 if (child)
6122 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6123
9c3f75cb 6124 if (sg) {
dce840a0 6125 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6126 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6127 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6128 }
dce840a0
PZ
6129
6130 return cpu;
1e9f28fa 6131}
1e9f28fa 6132
01a08546 6133/*
dce840a0
PZ
6134 * build_sched_groups will build a circular linked list of the groups
6135 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6136 * and ->cpu_capacity to 0.
e3589f6c
PZ
6137 *
6138 * Assumes the sched_domain tree is fully constructed
01a08546 6139 */
e3589f6c
PZ
6140static int
6141build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6142{
dce840a0
PZ
6143 struct sched_group *first = NULL, *last = NULL;
6144 struct sd_data *sdd = sd->private;
6145 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6146 struct cpumask *covered;
dce840a0 6147 int i;
9c1cfda2 6148
e3589f6c
PZ
6149 get_group(cpu, sdd, &sd->groups);
6150 atomic_inc(&sd->groups->ref);
6151
0936629f 6152 if (cpu != cpumask_first(span))
e3589f6c
PZ
6153 return 0;
6154
f96225fd
PZ
6155 lockdep_assert_held(&sched_domains_mutex);
6156 covered = sched_domains_tmpmask;
6157
dce840a0 6158 cpumask_clear(covered);
6711cab4 6159
dce840a0
PZ
6160 for_each_cpu(i, span) {
6161 struct sched_group *sg;
cd08e923 6162 int group, j;
6711cab4 6163
dce840a0
PZ
6164 if (cpumask_test_cpu(i, covered))
6165 continue;
6711cab4 6166
cd08e923 6167 group = get_group(i, sdd, &sg);
c1174876 6168 cpumask_setall(sched_group_mask(sg));
0601a88d 6169
dce840a0
PZ
6170 for_each_cpu(j, span) {
6171 if (get_group(j, sdd, NULL) != group)
6172 continue;
0601a88d 6173
dce840a0
PZ
6174 cpumask_set_cpu(j, covered);
6175 cpumask_set_cpu(j, sched_group_cpus(sg));
6176 }
0601a88d 6177
dce840a0
PZ
6178 if (!first)
6179 first = sg;
6180 if (last)
6181 last->next = sg;
6182 last = sg;
6183 }
6184 last->next = first;
e3589f6c
PZ
6185
6186 return 0;
0601a88d 6187}
51888ca2 6188
89c4710e 6189/*
63b2ca30 6190 * Initialize sched groups cpu_capacity.
89c4710e 6191 *
63b2ca30 6192 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6193 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6194 * Typically cpu_capacity for all the groups in a sched domain will be same
6195 * unless there are asymmetries in the topology. If there are asymmetries,
6196 * group having more cpu_capacity will pickup more load compared to the
6197 * group having less cpu_capacity.
89c4710e 6198 */
63b2ca30 6199static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6200{
e3589f6c 6201 struct sched_group *sg = sd->groups;
89c4710e 6202
94c95ba6 6203 WARN_ON(!sg);
e3589f6c
PZ
6204
6205 do {
6206 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6207 sg = sg->next;
6208 } while (sg != sd->groups);
89c4710e 6209
c1174876 6210 if (cpu != group_balance_cpu(sg))
e3589f6c 6211 return;
aae6d3dd 6212
63b2ca30
NP
6213 update_group_capacity(sd, cpu);
6214 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6215}
6216
7c16ec58
MT
6217/*
6218 * Initializers for schedule domains
6219 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6220 */
6221
1d3504fc 6222static int default_relax_domain_level = -1;
60495e77 6223int sched_domain_level_max;
1d3504fc
HS
6224
6225static int __init setup_relax_domain_level(char *str)
6226{
a841f8ce
DS
6227 if (kstrtoint(str, 0, &default_relax_domain_level))
6228 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6229
1d3504fc
HS
6230 return 1;
6231}
6232__setup("relax_domain_level=", setup_relax_domain_level);
6233
6234static void set_domain_attribute(struct sched_domain *sd,
6235 struct sched_domain_attr *attr)
6236{
6237 int request;
6238
6239 if (!attr || attr->relax_domain_level < 0) {
6240 if (default_relax_domain_level < 0)
6241 return;
6242 else
6243 request = default_relax_domain_level;
6244 } else
6245 request = attr->relax_domain_level;
6246 if (request < sd->level) {
6247 /* turn off idle balance on this domain */
c88d5910 6248 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6249 } else {
6250 /* turn on idle balance on this domain */
c88d5910 6251 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6252 }
6253}
6254
54ab4ff4
PZ
6255static void __sdt_free(const struct cpumask *cpu_map);
6256static int __sdt_alloc(const struct cpumask *cpu_map);
6257
2109b99e
AH
6258static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6259 const struct cpumask *cpu_map)
6260{
6261 switch (what) {
2109b99e 6262 case sa_rootdomain:
822ff793
PZ
6263 if (!atomic_read(&d->rd->refcount))
6264 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6265 case sa_sd:
6266 free_percpu(d->sd); /* fall through */
dce840a0 6267 case sa_sd_storage:
54ab4ff4 6268 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6269 case sa_none:
6270 break;
6271 }
6272}
3404c8d9 6273
2109b99e
AH
6274static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6275 const struct cpumask *cpu_map)
6276{
dce840a0
PZ
6277 memset(d, 0, sizeof(*d));
6278
54ab4ff4
PZ
6279 if (__sdt_alloc(cpu_map))
6280 return sa_sd_storage;
dce840a0
PZ
6281 d->sd = alloc_percpu(struct sched_domain *);
6282 if (!d->sd)
6283 return sa_sd_storage;
2109b99e 6284 d->rd = alloc_rootdomain();
dce840a0 6285 if (!d->rd)
21d42ccf 6286 return sa_sd;
2109b99e
AH
6287 return sa_rootdomain;
6288}
57d885fe 6289
dce840a0
PZ
6290/*
6291 * NULL the sd_data elements we've used to build the sched_domain and
6292 * sched_group structure so that the subsequent __free_domain_allocs()
6293 * will not free the data we're using.
6294 */
6295static void claim_allocations(int cpu, struct sched_domain *sd)
6296{
6297 struct sd_data *sdd = sd->private;
dce840a0
PZ
6298
6299 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6300 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6301
e3589f6c 6302 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6303 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6304
63b2ca30
NP
6305 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6306 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6307}
6308
cb83b629 6309#ifdef CONFIG_NUMA
cb83b629 6310static int sched_domains_numa_levels;
e3fe70b1 6311enum numa_topology_type sched_numa_topology_type;
cb83b629 6312static int *sched_domains_numa_distance;
9942f79b 6313int sched_max_numa_distance;
cb83b629
PZ
6314static struct cpumask ***sched_domains_numa_masks;
6315static int sched_domains_curr_level;
143e1e28 6316#endif
cb83b629 6317
143e1e28
VG
6318/*
6319 * SD_flags allowed in topology descriptions.
6320 *
5d4dfddd 6321 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6322 * SD_SHARE_PKG_RESOURCES - describes shared caches
6323 * SD_NUMA - describes NUMA topologies
d77b3ed5 6324 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6325 *
6326 * Odd one out:
6327 * SD_ASYM_PACKING - describes SMT quirks
6328 */
6329#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6330 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6331 SD_SHARE_PKG_RESOURCES | \
6332 SD_NUMA | \
d77b3ed5
VG
6333 SD_ASYM_PACKING | \
6334 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6335
6336static struct sched_domain *
143e1e28 6337sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6338{
6339 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6340 int sd_weight, sd_flags = 0;
6341
6342#ifdef CONFIG_NUMA
6343 /*
6344 * Ugly hack to pass state to sd_numa_mask()...
6345 */
6346 sched_domains_curr_level = tl->numa_level;
6347#endif
6348
6349 sd_weight = cpumask_weight(tl->mask(cpu));
6350
6351 if (tl->sd_flags)
6352 sd_flags = (*tl->sd_flags)();
6353 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6354 "wrong sd_flags in topology description\n"))
6355 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6356
6357 *sd = (struct sched_domain){
6358 .min_interval = sd_weight,
6359 .max_interval = 2*sd_weight,
6360 .busy_factor = 32,
870a0bb5 6361 .imbalance_pct = 125,
143e1e28
VG
6362
6363 .cache_nice_tries = 0,
6364 .busy_idx = 0,
6365 .idle_idx = 0,
cb83b629
PZ
6366 .newidle_idx = 0,
6367 .wake_idx = 0,
6368 .forkexec_idx = 0,
6369
6370 .flags = 1*SD_LOAD_BALANCE
6371 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6372 | 1*SD_BALANCE_EXEC
6373 | 1*SD_BALANCE_FORK
cb83b629 6374 | 0*SD_BALANCE_WAKE
143e1e28 6375 | 1*SD_WAKE_AFFINE
5d4dfddd 6376 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6377 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6378 | 0*SD_SERIALIZE
cb83b629 6379 | 0*SD_PREFER_SIBLING
143e1e28
VG
6380 | 0*SD_NUMA
6381 | sd_flags
cb83b629 6382 ,
143e1e28 6383
cb83b629
PZ
6384 .last_balance = jiffies,
6385 .balance_interval = sd_weight,
143e1e28 6386 .smt_gain = 0,
2b4cfe64
JL
6387 .max_newidle_lb_cost = 0,
6388 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6389#ifdef CONFIG_SCHED_DEBUG
6390 .name = tl->name,
6391#endif
cb83b629 6392 };
cb83b629
PZ
6393
6394 /*
143e1e28 6395 * Convert topological properties into behaviour.
cb83b629 6396 */
143e1e28 6397
5d4dfddd 6398 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6399 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6400 sd->imbalance_pct = 110;
6401 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6402
6403 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6404 sd->imbalance_pct = 117;
6405 sd->cache_nice_tries = 1;
6406 sd->busy_idx = 2;
6407
6408#ifdef CONFIG_NUMA
6409 } else if (sd->flags & SD_NUMA) {
6410 sd->cache_nice_tries = 2;
6411 sd->busy_idx = 3;
6412 sd->idle_idx = 2;
6413
6414 sd->flags |= SD_SERIALIZE;
6415 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6416 sd->flags &= ~(SD_BALANCE_EXEC |
6417 SD_BALANCE_FORK |
6418 SD_WAKE_AFFINE);
6419 }
6420
6421#endif
6422 } else {
6423 sd->flags |= SD_PREFER_SIBLING;
6424 sd->cache_nice_tries = 1;
6425 sd->busy_idx = 2;
6426 sd->idle_idx = 1;
6427 }
6428
6429 sd->private = &tl->data;
cb83b629
PZ
6430
6431 return sd;
6432}
6433
143e1e28
VG
6434/*
6435 * Topology list, bottom-up.
6436 */
6437static struct sched_domain_topology_level default_topology[] = {
6438#ifdef CONFIG_SCHED_SMT
6439 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6440#endif
6441#ifdef CONFIG_SCHED_MC
6442 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6443#endif
6444 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6445 { NULL, },
6446};
6447
c6e1e7b5
JG
6448static struct sched_domain_topology_level *sched_domain_topology =
6449 default_topology;
143e1e28
VG
6450
6451#define for_each_sd_topology(tl) \
6452 for (tl = sched_domain_topology; tl->mask; tl++)
6453
6454void set_sched_topology(struct sched_domain_topology_level *tl)
6455{
6456 sched_domain_topology = tl;
6457}
6458
6459#ifdef CONFIG_NUMA
6460
cb83b629
PZ
6461static const struct cpumask *sd_numa_mask(int cpu)
6462{
6463 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6464}
6465
d039ac60
PZ
6466static void sched_numa_warn(const char *str)
6467{
6468 static int done = false;
6469 int i,j;
6470
6471 if (done)
6472 return;
6473
6474 done = true;
6475
6476 printk(KERN_WARNING "ERROR: %s\n\n", str);
6477
6478 for (i = 0; i < nr_node_ids; i++) {
6479 printk(KERN_WARNING " ");
6480 for (j = 0; j < nr_node_ids; j++)
6481 printk(KERN_CONT "%02d ", node_distance(i,j));
6482 printk(KERN_CONT "\n");
6483 }
6484 printk(KERN_WARNING "\n");
6485}
6486
9942f79b 6487bool find_numa_distance(int distance)
d039ac60
PZ
6488{
6489 int i;
6490
6491 if (distance == node_distance(0, 0))
6492 return true;
6493
6494 for (i = 0; i < sched_domains_numa_levels; i++) {
6495 if (sched_domains_numa_distance[i] == distance)
6496 return true;
6497 }
6498
6499 return false;
6500}
6501
e3fe70b1
RR
6502/*
6503 * A system can have three types of NUMA topology:
6504 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6505 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6506 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6507 *
6508 * The difference between a glueless mesh topology and a backplane
6509 * topology lies in whether communication between not directly
6510 * connected nodes goes through intermediary nodes (where programs
6511 * could run), or through backplane controllers. This affects
6512 * placement of programs.
6513 *
6514 * The type of topology can be discerned with the following tests:
6515 * - If the maximum distance between any nodes is 1 hop, the system
6516 * is directly connected.
6517 * - If for two nodes A and B, located N > 1 hops away from each other,
6518 * there is an intermediary node C, which is < N hops away from both
6519 * nodes A and B, the system is a glueless mesh.
6520 */
6521static void init_numa_topology_type(void)
6522{
6523 int a, b, c, n;
6524
6525 n = sched_max_numa_distance;
6526
e237882b 6527 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6528 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6529 return;
6530 }
e3fe70b1
RR
6531
6532 for_each_online_node(a) {
6533 for_each_online_node(b) {
6534 /* Find two nodes furthest removed from each other. */
6535 if (node_distance(a, b) < n)
6536 continue;
6537
6538 /* Is there an intermediary node between a and b? */
6539 for_each_online_node(c) {
6540 if (node_distance(a, c) < n &&
6541 node_distance(b, c) < n) {
6542 sched_numa_topology_type =
6543 NUMA_GLUELESS_MESH;
6544 return;
6545 }
6546 }
6547
6548 sched_numa_topology_type = NUMA_BACKPLANE;
6549 return;
6550 }
6551 }
6552}
6553
cb83b629
PZ
6554static void sched_init_numa(void)
6555{
6556 int next_distance, curr_distance = node_distance(0, 0);
6557 struct sched_domain_topology_level *tl;
6558 int level = 0;
6559 int i, j, k;
6560
cb83b629
PZ
6561 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6562 if (!sched_domains_numa_distance)
6563 return;
6564
6565 /*
6566 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6567 * unique distances in the node_distance() table.
6568 *
6569 * Assumes node_distance(0,j) includes all distances in
6570 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6571 */
6572 next_distance = curr_distance;
6573 for (i = 0; i < nr_node_ids; i++) {
6574 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6575 for (k = 0; k < nr_node_ids; k++) {
6576 int distance = node_distance(i, k);
6577
6578 if (distance > curr_distance &&
6579 (distance < next_distance ||
6580 next_distance == curr_distance))
6581 next_distance = distance;
6582
6583 /*
6584 * While not a strong assumption it would be nice to know
6585 * about cases where if node A is connected to B, B is not
6586 * equally connected to A.
6587 */
6588 if (sched_debug() && node_distance(k, i) != distance)
6589 sched_numa_warn("Node-distance not symmetric");
6590
6591 if (sched_debug() && i && !find_numa_distance(distance))
6592 sched_numa_warn("Node-0 not representative");
6593 }
6594 if (next_distance != curr_distance) {
6595 sched_domains_numa_distance[level++] = next_distance;
6596 sched_domains_numa_levels = level;
6597 curr_distance = next_distance;
6598 } else break;
cb83b629 6599 }
d039ac60
PZ
6600
6601 /*
6602 * In case of sched_debug() we verify the above assumption.
6603 */
6604 if (!sched_debug())
6605 break;
cb83b629 6606 }
c123588b
AR
6607
6608 if (!level)
6609 return;
6610
cb83b629
PZ
6611 /*
6612 * 'level' contains the number of unique distances, excluding the
6613 * identity distance node_distance(i,i).
6614 *
28b4a521 6615 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6616 * numbers.
6617 */
6618
5f7865f3
TC
6619 /*
6620 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6621 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6622 * the array will contain less then 'level' members. This could be
6623 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6624 * in other functions.
6625 *
6626 * We reset it to 'level' at the end of this function.
6627 */
6628 sched_domains_numa_levels = 0;
6629
cb83b629
PZ
6630 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6631 if (!sched_domains_numa_masks)
6632 return;
6633
6634 /*
6635 * Now for each level, construct a mask per node which contains all
6636 * cpus of nodes that are that many hops away from us.
6637 */
6638 for (i = 0; i < level; i++) {
6639 sched_domains_numa_masks[i] =
6640 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6641 if (!sched_domains_numa_masks[i])
6642 return;
6643
6644 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6645 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6646 if (!mask)
6647 return;
6648
6649 sched_domains_numa_masks[i][j] = mask;
6650
9c03ee14 6651 for_each_node(k) {
dd7d8634 6652 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6653 continue;
6654
6655 cpumask_or(mask, mask, cpumask_of_node(k));
6656 }
6657 }
6658 }
6659
143e1e28
VG
6660 /* Compute default topology size */
6661 for (i = 0; sched_domain_topology[i].mask; i++);
6662
c515db8c 6663 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6664 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6665 if (!tl)
6666 return;
6667
6668 /*
6669 * Copy the default topology bits..
6670 */
143e1e28
VG
6671 for (i = 0; sched_domain_topology[i].mask; i++)
6672 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6673
6674 /*
6675 * .. and append 'j' levels of NUMA goodness.
6676 */
6677 for (j = 0; j < level; i++, j++) {
6678 tl[i] = (struct sched_domain_topology_level){
cb83b629 6679 .mask = sd_numa_mask,
143e1e28 6680 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6681 .flags = SDTL_OVERLAP,
6682 .numa_level = j,
143e1e28 6683 SD_INIT_NAME(NUMA)
cb83b629
PZ
6684 };
6685 }
6686
6687 sched_domain_topology = tl;
5f7865f3
TC
6688
6689 sched_domains_numa_levels = level;
9942f79b 6690 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6691
6692 init_numa_topology_type();
cb83b629 6693}
301a5cba
TC
6694
6695static void sched_domains_numa_masks_set(int cpu)
6696{
6697 int i, j;
6698 int node = cpu_to_node(cpu);
6699
6700 for (i = 0; i < sched_domains_numa_levels; i++) {
6701 for (j = 0; j < nr_node_ids; j++) {
6702 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6703 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6704 }
6705 }
6706}
6707
6708static void sched_domains_numa_masks_clear(int cpu)
6709{
6710 int i, j;
6711 for (i = 0; i < sched_domains_numa_levels; i++) {
6712 for (j = 0; j < nr_node_ids; j++)
6713 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6714 }
6715}
6716
6717/*
6718 * Update sched_domains_numa_masks[level][node] array when new cpus
6719 * are onlined.
6720 */
6721static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6722 unsigned long action,
6723 void *hcpu)
6724{
6725 int cpu = (long)hcpu;
6726
6727 switch (action & ~CPU_TASKS_FROZEN) {
6728 case CPU_ONLINE:
6729 sched_domains_numa_masks_set(cpu);
6730 break;
6731
6732 case CPU_DEAD:
6733 sched_domains_numa_masks_clear(cpu);
6734 break;
6735
6736 default:
6737 return NOTIFY_DONE;
6738 }
6739
6740 return NOTIFY_OK;
cb83b629
PZ
6741}
6742#else
6743static inline void sched_init_numa(void)
6744{
6745}
301a5cba
TC
6746
6747static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6748 unsigned long action,
6749 void *hcpu)
6750{
6751 return 0;
6752}
cb83b629
PZ
6753#endif /* CONFIG_NUMA */
6754
54ab4ff4
PZ
6755static int __sdt_alloc(const struct cpumask *cpu_map)
6756{
6757 struct sched_domain_topology_level *tl;
6758 int j;
6759
27723a68 6760 for_each_sd_topology(tl) {
54ab4ff4
PZ
6761 struct sd_data *sdd = &tl->data;
6762
6763 sdd->sd = alloc_percpu(struct sched_domain *);
6764 if (!sdd->sd)
6765 return -ENOMEM;
6766
6767 sdd->sg = alloc_percpu(struct sched_group *);
6768 if (!sdd->sg)
6769 return -ENOMEM;
6770
63b2ca30
NP
6771 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6772 if (!sdd->sgc)
9c3f75cb
PZ
6773 return -ENOMEM;
6774
54ab4ff4
PZ
6775 for_each_cpu(j, cpu_map) {
6776 struct sched_domain *sd;
6777 struct sched_group *sg;
63b2ca30 6778 struct sched_group_capacity *sgc;
54ab4ff4 6779
5cc389bc 6780 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6781 GFP_KERNEL, cpu_to_node(j));
6782 if (!sd)
6783 return -ENOMEM;
6784
6785 *per_cpu_ptr(sdd->sd, j) = sd;
6786
6787 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6788 GFP_KERNEL, cpu_to_node(j));
6789 if (!sg)
6790 return -ENOMEM;
6791
30b4e9eb
IM
6792 sg->next = sg;
6793
54ab4ff4 6794 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6795
63b2ca30 6796 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6797 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6798 if (!sgc)
9c3f75cb
PZ
6799 return -ENOMEM;
6800
63b2ca30 6801 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6802 }
6803 }
6804
6805 return 0;
6806}
6807
6808static void __sdt_free(const struct cpumask *cpu_map)
6809{
6810 struct sched_domain_topology_level *tl;
6811 int j;
6812
27723a68 6813 for_each_sd_topology(tl) {
54ab4ff4
PZ
6814 struct sd_data *sdd = &tl->data;
6815
6816 for_each_cpu(j, cpu_map) {
fb2cf2c6 6817 struct sched_domain *sd;
6818
6819 if (sdd->sd) {
6820 sd = *per_cpu_ptr(sdd->sd, j);
6821 if (sd && (sd->flags & SD_OVERLAP))
6822 free_sched_groups(sd->groups, 0);
6823 kfree(*per_cpu_ptr(sdd->sd, j));
6824 }
6825
6826 if (sdd->sg)
6827 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6828 if (sdd->sgc)
6829 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6830 }
6831 free_percpu(sdd->sd);
fb2cf2c6 6832 sdd->sd = NULL;
54ab4ff4 6833 free_percpu(sdd->sg);
fb2cf2c6 6834 sdd->sg = NULL;
63b2ca30
NP
6835 free_percpu(sdd->sgc);
6836 sdd->sgc = NULL;
54ab4ff4
PZ
6837 }
6838}
6839
2c402dc3 6840struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6841 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6842 struct sched_domain *child, int cpu)
2c402dc3 6843{
143e1e28 6844 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6845 if (!sd)
d069b916 6846 return child;
2c402dc3 6847
2c402dc3 6848 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6849 if (child) {
6850 sd->level = child->level + 1;
6851 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6852 child->parent = sd;
c75e0128 6853 sd->child = child;
6ae72dff
PZ
6854
6855 if (!cpumask_subset(sched_domain_span(child),
6856 sched_domain_span(sd))) {
6857 pr_err("BUG: arch topology borken\n");
6858#ifdef CONFIG_SCHED_DEBUG
6859 pr_err(" the %s domain not a subset of the %s domain\n",
6860 child->name, sd->name);
6861#endif
6862 /* Fixup, ensure @sd has at least @child cpus. */
6863 cpumask_or(sched_domain_span(sd),
6864 sched_domain_span(sd),
6865 sched_domain_span(child));
6866 }
6867
60495e77 6868 }
a841f8ce 6869 set_domain_attribute(sd, attr);
2c402dc3
PZ
6870
6871 return sd;
6872}
6873
2109b99e
AH
6874/*
6875 * Build sched domains for a given set of cpus and attach the sched domains
6876 * to the individual cpus
6877 */
dce840a0
PZ
6878static int build_sched_domains(const struct cpumask *cpu_map,
6879 struct sched_domain_attr *attr)
2109b99e 6880{
1c632169 6881 enum s_alloc alloc_state;
dce840a0 6882 struct sched_domain *sd;
2109b99e 6883 struct s_data d;
822ff793 6884 int i, ret = -ENOMEM;
9c1cfda2 6885
2109b99e
AH
6886 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6887 if (alloc_state != sa_rootdomain)
6888 goto error;
9c1cfda2 6889
dce840a0 6890 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6891 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6892 struct sched_domain_topology_level *tl;
6893
3bd65a80 6894 sd = NULL;
27723a68 6895 for_each_sd_topology(tl) {
4a850cbe 6896 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6897 if (tl == sched_domain_topology)
6898 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6899 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6900 sd->flags |= SD_OVERLAP;
d110235d
PZ
6901 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6902 break;
e3589f6c 6903 }
dce840a0
PZ
6904 }
6905
6906 /* Build the groups for the domains */
6907 for_each_cpu(i, cpu_map) {
6908 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6909 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6910 if (sd->flags & SD_OVERLAP) {
6911 if (build_overlap_sched_groups(sd, i))
6912 goto error;
6913 } else {
6914 if (build_sched_groups(sd, i))
6915 goto error;
6916 }
1cf51902 6917 }
a06dadbe 6918 }
9c1cfda2 6919
ced549fa 6920 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6921 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6922 if (!cpumask_test_cpu(i, cpu_map))
6923 continue;
9c1cfda2 6924
dce840a0
PZ
6925 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6926 claim_allocations(i, sd);
63b2ca30 6927 init_sched_groups_capacity(i, sd);
dce840a0 6928 }
f712c0c7 6929 }
9c1cfda2 6930
1da177e4 6931 /* Attach the domains */
dce840a0 6932 rcu_read_lock();
abcd083a 6933 for_each_cpu(i, cpu_map) {
21d42ccf 6934 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6935 cpu_attach_domain(sd, d.rd, i);
1da177e4 6936 }
dce840a0 6937 rcu_read_unlock();
51888ca2 6938
822ff793 6939 ret = 0;
51888ca2 6940error:
2109b99e 6941 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6942 return ret;
1da177e4 6943}
029190c5 6944
acc3f5d7 6945static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6946static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6947static struct sched_domain_attr *dattr_cur;
6948 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6949
6950/*
6951 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6952 * cpumask) fails, then fallback to a single sched domain,
6953 * as determined by the single cpumask fallback_doms.
029190c5 6954 */
4212823f 6955static cpumask_var_t fallback_doms;
029190c5 6956
ee79d1bd
HC
6957/*
6958 * arch_update_cpu_topology lets virtualized architectures update the
6959 * cpu core maps. It is supposed to return 1 if the topology changed
6960 * or 0 if it stayed the same.
6961 */
52f5684c 6962int __weak arch_update_cpu_topology(void)
22e52b07 6963{
ee79d1bd 6964 return 0;
22e52b07
HC
6965}
6966
acc3f5d7
RR
6967cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6968{
6969 int i;
6970 cpumask_var_t *doms;
6971
6972 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6973 if (!doms)
6974 return NULL;
6975 for (i = 0; i < ndoms; i++) {
6976 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6977 free_sched_domains(doms, i);
6978 return NULL;
6979 }
6980 }
6981 return doms;
6982}
6983
6984void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6985{
6986 unsigned int i;
6987 for (i = 0; i < ndoms; i++)
6988 free_cpumask_var(doms[i]);
6989 kfree(doms);
6990}
6991
1a20ff27 6992/*
41a2d6cf 6993 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6994 * For now this just excludes isolated cpus, but could be used to
6995 * exclude other special cases in the future.
1a20ff27 6996 */
c4a8849a 6997static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6998{
7378547f
MM
6999 int err;
7000
22e52b07 7001 arch_update_cpu_topology();
029190c5 7002 ndoms_cur = 1;
acc3f5d7 7003 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7004 if (!doms_cur)
acc3f5d7
RR
7005 doms_cur = &fallback_doms;
7006 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7007 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7008 register_sched_domain_sysctl();
7378547f
MM
7009
7010 return err;
1a20ff27
DG
7011}
7012
1a20ff27
DG
7013/*
7014 * Detach sched domains from a group of cpus specified in cpu_map
7015 * These cpus will now be attached to the NULL domain
7016 */
96f874e2 7017static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7018{
7019 int i;
7020
dce840a0 7021 rcu_read_lock();
abcd083a 7022 for_each_cpu(i, cpu_map)
57d885fe 7023 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7024 rcu_read_unlock();
1a20ff27
DG
7025}
7026
1d3504fc
HS
7027/* handle null as "default" */
7028static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7029 struct sched_domain_attr *new, int idx_new)
7030{
7031 struct sched_domain_attr tmp;
7032
7033 /* fast path */
7034 if (!new && !cur)
7035 return 1;
7036
7037 tmp = SD_ATTR_INIT;
7038 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7039 new ? (new + idx_new) : &tmp,
7040 sizeof(struct sched_domain_attr));
7041}
7042
029190c5
PJ
7043/*
7044 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7045 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7046 * doms_new[] to the current sched domain partitioning, doms_cur[].
7047 * It destroys each deleted domain and builds each new domain.
7048 *
acc3f5d7 7049 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7050 * The masks don't intersect (don't overlap.) We should setup one
7051 * sched domain for each mask. CPUs not in any of the cpumasks will
7052 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7053 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7054 * it as it is.
7055 *
acc3f5d7
RR
7056 * The passed in 'doms_new' should be allocated using
7057 * alloc_sched_domains. This routine takes ownership of it and will
7058 * free_sched_domains it when done with it. If the caller failed the
7059 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7060 * and partition_sched_domains() will fallback to the single partition
7061 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7062 *
96f874e2 7063 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7064 * ndoms_new == 0 is a special case for destroying existing domains,
7065 * and it will not create the default domain.
dfb512ec 7066 *
029190c5
PJ
7067 * Call with hotplug lock held
7068 */
acc3f5d7 7069void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7070 struct sched_domain_attr *dattr_new)
029190c5 7071{
dfb512ec 7072 int i, j, n;
d65bd5ec 7073 int new_topology;
029190c5 7074
712555ee 7075 mutex_lock(&sched_domains_mutex);
a1835615 7076
7378547f
MM
7077 /* always unregister in case we don't destroy any domains */
7078 unregister_sched_domain_sysctl();
7079
d65bd5ec
HC
7080 /* Let architecture update cpu core mappings. */
7081 new_topology = arch_update_cpu_topology();
7082
dfb512ec 7083 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7084
7085 /* Destroy deleted domains */
7086 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7087 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7088 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7089 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7090 goto match1;
7091 }
7092 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7093 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7094match1:
7095 ;
7096 }
7097
c8d2d47a 7098 n = ndoms_cur;
e761b772 7099 if (doms_new == NULL) {
c8d2d47a 7100 n = 0;
acc3f5d7 7101 doms_new = &fallback_doms;
6ad4c188 7102 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7103 WARN_ON_ONCE(dattr_new);
e761b772
MK
7104 }
7105
029190c5
PJ
7106 /* Build new domains */
7107 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7108 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7109 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7110 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7111 goto match2;
7112 }
7113 /* no match - add a new doms_new */
dce840a0 7114 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7115match2:
7116 ;
7117 }
7118
7119 /* Remember the new sched domains */
acc3f5d7
RR
7120 if (doms_cur != &fallback_doms)
7121 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7122 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7123 doms_cur = doms_new;
1d3504fc 7124 dattr_cur = dattr_new;
029190c5 7125 ndoms_cur = ndoms_new;
7378547f
MM
7126
7127 register_sched_domain_sysctl();
a1835615 7128
712555ee 7129 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7130}
7131
d35be8ba
SB
7132static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7133
1da177e4 7134/*
3a101d05
TH
7135 * Update cpusets according to cpu_active mask. If cpusets are
7136 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7137 * around partition_sched_domains().
d35be8ba
SB
7138 *
7139 * If we come here as part of a suspend/resume, don't touch cpusets because we
7140 * want to restore it back to its original state upon resume anyway.
1da177e4 7141 */
0b2e918a
TH
7142static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7143 void *hcpu)
e761b772 7144{
d35be8ba
SB
7145 switch (action) {
7146 case CPU_ONLINE_FROZEN:
7147 case CPU_DOWN_FAILED_FROZEN:
7148
7149 /*
7150 * num_cpus_frozen tracks how many CPUs are involved in suspend
7151 * resume sequence. As long as this is not the last online
7152 * operation in the resume sequence, just build a single sched
7153 * domain, ignoring cpusets.
7154 */
7155 num_cpus_frozen--;
7156 if (likely(num_cpus_frozen)) {
7157 partition_sched_domains(1, NULL, NULL);
7158 break;
7159 }
7160
7161 /*
7162 * This is the last CPU online operation. So fall through and
7163 * restore the original sched domains by considering the
7164 * cpuset configurations.
7165 */
7166
e761b772 7167 case CPU_ONLINE:
7ddf96b0 7168 cpuset_update_active_cpus(true);
d35be8ba 7169 break;
3a101d05
TH
7170 default:
7171 return NOTIFY_DONE;
7172 }
d35be8ba 7173 return NOTIFY_OK;
3a101d05 7174}
e761b772 7175
0b2e918a
TH
7176static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7177 void *hcpu)
3a101d05 7178{
3c18d447
JL
7179 unsigned long flags;
7180 long cpu = (long)hcpu;
7181 struct dl_bw *dl_b;
533445c6
OS
7182 bool overflow;
7183 int cpus;
3c18d447 7184
533445c6 7185 switch (action) {
3a101d05 7186 case CPU_DOWN_PREPARE:
533445c6
OS
7187 rcu_read_lock_sched();
7188 dl_b = dl_bw_of(cpu);
3c18d447 7189
533445c6
OS
7190 raw_spin_lock_irqsave(&dl_b->lock, flags);
7191 cpus = dl_bw_cpus(cpu);
7192 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7193 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7194
533445c6 7195 rcu_read_unlock_sched();
3c18d447 7196
533445c6
OS
7197 if (overflow)
7198 return notifier_from_errno(-EBUSY);
7ddf96b0 7199 cpuset_update_active_cpus(false);
d35be8ba
SB
7200 break;
7201 case CPU_DOWN_PREPARE_FROZEN:
7202 num_cpus_frozen++;
7203 partition_sched_domains(1, NULL, NULL);
7204 break;
e761b772
MK
7205 default:
7206 return NOTIFY_DONE;
7207 }
d35be8ba 7208 return NOTIFY_OK;
e761b772 7209}
e761b772 7210
1da177e4
LT
7211void __init sched_init_smp(void)
7212{
dcc30a35
RR
7213 cpumask_var_t non_isolated_cpus;
7214
7215 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7216 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7217
cb83b629
PZ
7218 sched_init_numa();
7219
6acce3ef
PZ
7220 /*
7221 * There's no userspace yet to cause hotplug operations; hence all the
7222 * cpu masks are stable and all blatant races in the below code cannot
7223 * happen.
7224 */
712555ee 7225 mutex_lock(&sched_domains_mutex);
c4a8849a 7226 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7227 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7228 if (cpumask_empty(non_isolated_cpus))
7229 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7230 mutex_unlock(&sched_domains_mutex);
e761b772 7231
301a5cba 7232 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7233 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7234 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7235
b328ca18 7236 init_hrtick();
5c1e1767
NP
7237
7238 /* Move init over to a non-isolated CPU */
dcc30a35 7239 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7240 BUG();
19978ca6 7241 sched_init_granularity();
dcc30a35 7242 free_cpumask_var(non_isolated_cpus);
4212823f 7243
0e3900e6 7244 init_sched_rt_class();
1baca4ce 7245 init_sched_dl_class();
1da177e4
LT
7246}
7247#else
7248void __init sched_init_smp(void)
7249{
19978ca6 7250 sched_init_granularity();
1da177e4
LT
7251}
7252#endif /* CONFIG_SMP */
7253
7254int in_sched_functions(unsigned long addr)
7255{
1da177e4
LT
7256 return in_lock_functions(addr) ||
7257 (addr >= (unsigned long)__sched_text_start
7258 && addr < (unsigned long)__sched_text_end);
7259}
7260
029632fb 7261#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7262/*
7263 * Default task group.
7264 * Every task in system belongs to this group at bootup.
7265 */
029632fb 7266struct task_group root_task_group;
35cf4e50 7267LIST_HEAD(task_groups);
b0367629
WL
7268
7269/* Cacheline aligned slab cache for task_group */
7270static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7271#endif
6f505b16 7272
e6252c3e 7273DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7274
1da177e4
LT
7275void __init sched_init(void)
7276{
dd41f596 7277 int i, j;
434d53b0
MT
7278 unsigned long alloc_size = 0, ptr;
7279
7280#ifdef CONFIG_FAIR_GROUP_SCHED
7281 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7282#endif
7283#ifdef CONFIG_RT_GROUP_SCHED
7284 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7285#endif
434d53b0 7286 if (alloc_size) {
36b7b6d4 7287 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7288
7289#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7290 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7291 ptr += nr_cpu_ids * sizeof(void **);
7292
07e06b01 7293 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7294 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7295
6d6bc0ad 7296#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7297#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7298 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7299 ptr += nr_cpu_ids * sizeof(void **);
7300
07e06b01 7301 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7302 ptr += nr_cpu_ids * sizeof(void **);
7303
6d6bc0ad 7304#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7305 }
df7c8e84 7306#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7307 for_each_possible_cpu(i) {
7308 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7309 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7310 }
b74e6278 7311#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7312
332ac17e
DF
7313 init_rt_bandwidth(&def_rt_bandwidth,
7314 global_rt_period(), global_rt_runtime());
7315 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7316 global_rt_period(), global_rt_runtime());
332ac17e 7317
57d885fe
GH
7318#ifdef CONFIG_SMP
7319 init_defrootdomain();
7320#endif
7321
d0b27fa7 7322#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7323 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7324 global_rt_period(), global_rt_runtime());
6d6bc0ad 7325#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7326
7c941438 7327#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7328 task_group_cache = KMEM_CACHE(task_group, 0);
7329
07e06b01
YZ
7330 list_add(&root_task_group.list, &task_groups);
7331 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7332 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7333 autogroup_init(&init_task);
7c941438 7334#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7335
0a945022 7336 for_each_possible_cpu(i) {
70b97a7f 7337 struct rq *rq;
1da177e4
LT
7338
7339 rq = cpu_rq(i);
05fa785c 7340 raw_spin_lock_init(&rq->lock);
7897986b 7341 rq->nr_running = 0;
dce48a84
TG
7342 rq->calc_load_active = 0;
7343 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7344 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7345 init_rt_rq(&rq->rt);
7346 init_dl_rq(&rq->dl);
dd41f596 7347#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7348 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7349 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7350 /*
07e06b01 7351 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7352 *
7353 * In case of task-groups formed thr' the cgroup filesystem, it
7354 * gets 100% of the cpu resources in the system. This overall
7355 * system cpu resource is divided among the tasks of
07e06b01 7356 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7357 * based on each entity's (task or task-group's) weight
7358 * (se->load.weight).
7359 *
07e06b01 7360 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7361 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7362 * then A0's share of the cpu resource is:
7363 *
0d905bca 7364 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7365 *
07e06b01
YZ
7366 * We achieve this by letting root_task_group's tasks sit
7367 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7368 */
ab84d31e 7369 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7370 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7371#endif /* CONFIG_FAIR_GROUP_SCHED */
7372
7373 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7374#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7375 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7376#endif
1da177e4 7377
dd41f596
IM
7378 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7379 rq->cpu_load[j] = 0;
fdf3e95d
VP
7380
7381 rq->last_load_update_tick = jiffies;
7382
1da177e4 7383#ifdef CONFIG_SMP
41c7ce9a 7384 rq->sd = NULL;
57d885fe 7385 rq->rd = NULL;
ca6d75e6 7386 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7387 rq->balance_callback = NULL;
1da177e4 7388 rq->active_balance = 0;
dd41f596 7389 rq->next_balance = jiffies;
1da177e4 7390 rq->push_cpu = 0;
0a2966b4 7391 rq->cpu = i;
1f11eb6a 7392 rq->online = 0;
eae0c9df
MG
7393 rq->idle_stamp = 0;
7394 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7395 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7396
7397 INIT_LIST_HEAD(&rq->cfs_tasks);
7398
dc938520 7399 rq_attach_root(rq, &def_root_domain);
3451d024 7400#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7401 rq->nohz_flags = 0;
83cd4fe2 7402#endif
265f22a9
FW
7403#ifdef CONFIG_NO_HZ_FULL
7404 rq->last_sched_tick = 0;
7405#endif
1da177e4 7406#endif
8f4d37ec 7407 init_rq_hrtick(rq);
1da177e4 7408 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7409 }
7410
2dd73a4f 7411 set_load_weight(&init_task);
b50f60ce 7412
e107be36
AK
7413#ifdef CONFIG_PREEMPT_NOTIFIERS
7414 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7415#endif
7416
1da177e4
LT
7417 /*
7418 * The boot idle thread does lazy MMU switching as well:
7419 */
7420 atomic_inc(&init_mm.mm_count);
7421 enter_lazy_tlb(&init_mm, current);
7422
1b537c7d
YD
7423 /*
7424 * During early bootup we pretend to be a normal task:
7425 */
7426 current->sched_class = &fair_sched_class;
7427
1da177e4
LT
7428 /*
7429 * Make us the idle thread. Technically, schedule() should not be
7430 * called from this thread, however somewhere below it might be,
7431 * but because we are the idle thread, we just pick up running again
7432 * when this runqueue becomes "idle".
7433 */
7434 init_idle(current, smp_processor_id());
dce48a84
TG
7435
7436 calc_load_update = jiffies + LOAD_FREQ;
7437
bf4d83f6 7438#ifdef CONFIG_SMP
4cb98839 7439 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7440 /* May be allocated at isolcpus cmdline parse time */
7441 if (cpu_isolated_map == NULL)
7442 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7443 idle_thread_set_boot_cpu();
a803f026 7444 set_cpu_rq_start_time();
029632fb
PZ
7445#endif
7446 init_sched_fair_class();
6a7b3dc3 7447
6892b75e 7448 scheduler_running = 1;
1da177e4
LT
7449}
7450
d902db1e 7451#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7452static inline int preempt_count_equals(int preempt_offset)
7453{
da7142e2 7454 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7455
4ba8216c 7456 return (nested == preempt_offset);
e4aafea2
FW
7457}
7458
d894837f 7459void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7460{
8eb23b9f
PZ
7461 /*
7462 * Blocking primitives will set (and therefore destroy) current->state,
7463 * since we will exit with TASK_RUNNING make sure we enter with it,
7464 * otherwise we will destroy state.
7465 */
00845eb9 7466 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7467 "do not call blocking ops when !TASK_RUNNING; "
7468 "state=%lx set at [<%p>] %pS\n",
7469 current->state,
7470 (void *)current->task_state_change,
00845eb9 7471 (void *)current->task_state_change);
8eb23b9f 7472
3427445a
PZ
7473 ___might_sleep(file, line, preempt_offset);
7474}
7475EXPORT_SYMBOL(__might_sleep);
7476
7477void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7478{
1da177e4
LT
7479 static unsigned long prev_jiffy; /* ratelimiting */
7480
b3fbab05 7481 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7482 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7483 !is_idle_task(current)) ||
e4aafea2 7484 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7485 return;
7486 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7487 return;
7488 prev_jiffy = jiffies;
7489
3df0fc5b
PZ
7490 printk(KERN_ERR
7491 "BUG: sleeping function called from invalid context at %s:%d\n",
7492 file, line);
7493 printk(KERN_ERR
7494 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7495 in_atomic(), irqs_disabled(),
7496 current->pid, current->comm);
aef745fc 7497
a8b686b3
ES
7498 if (task_stack_end_corrupted(current))
7499 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7500
aef745fc
IM
7501 debug_show_held_locks(current);
7502 if (irqs_disabled())
7503 print_irqtrace_events(current);
8f47b187
TG
7504#ifdef CONFIG_DEBUG_PREEMPT
7505 if (!preempt_count_equals(preempt_offset)) {
7506 pr_err("Preemption disabled at:");
7507 print_ip_sym(current->preempt_disable_ip);
7508 pr_cont("\n");
7509 }
7510#endif
aef745fc 7511 dump_stack();
1da177e4 7512}
3427445a 7513EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7514#endif
7515
7516#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7517void normalize_rt_tasks(void)
3a5e4dc1 7518{
dbc7f069 7519 struct task_struct *g, *p;
d50dde5a
DF
7520 struct sched_attr attr = {
7521 .sched_policy = SCHED_NORMAL,
7522 };
1da177e4 7523
3472eaa1 7524 read_lock(&tasklist_lock);
5d07f420 7525 for_each_process_thread(g, p) {
178be793
IM
7526 /*
7527 * Only normalize user tasks:
7528 */
3472eaa1 7529 if (p->flags & PF_KTHREAD)
178be793
IM
7530 continue;
7531
6cfb0d5d 7532 p->se.exec_start = 0;
6cfb0d5d 7533#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7534 p->se.statistics.wait_start = 0;
7535 p->se.statistics.sleep_start = 0;
7536 p->se.statistics.block_start = 0;
6cfb0d5d 7537#endif
dd41f596 7538
aab03e05 7539 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7540 /*
7541 * Renice negative nice level userspace
7542 * tasks back to 0:
7543 */
3472eaa1 7544 if (task_nice(p) < 0)
dd41f596 7545 set_user_nice(p, 0);
1da177e4 7546 continue;
dd41f596 7547 }
1da177e4 7548
dbc7f069 7549 __sched_setscheduler(p, &attr, false, false);
5d07f420 7550 }
3472eaa1 7551 read_unlock(&tasklist_lock);
1da177e4
LT
7552}
7553
7554#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7555
67fc4e0c 7556#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7557/*
67fc4e0c 7558 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7559 *
7560 * They can only be called when the whole system has been
7561 * stopped - every CPU needs to be quiescent, and no scheduling
7562 * activity can take place. Using them for anything else would
7563 * be a serious bug, and as a result, they aren't even visible
7564 * under any other configuration.
7565 */
7566
7567/**
7568 * curr_task - return the current task for a given cpu.
7569 * @cpu: the processor in question.
7570 *
7571 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7572 *
7573 * Return: The current task for @cpu.
1df5c10a 7574 */
36c8b586 7575struct task_struct *curr_task(int cpu)
1df5c10a
LT
7576{
7577 return cpu_curr(cpu);
7578}
7579
67fc4e0c
JW
7580#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7581
7582#ifdef CONFIG_IA64
1df5c10a
LT
7583/**
7584 * set_curr_task - set the current task for a given cpu.
7585 * @cpu: the processor in question.
7586 * @p: the task pointer to set.
7587 *
7588 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7589 * are serviced on a separate stack. It allows the architecture to switch the
7590 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7591 * must be called with all CPU's synchronized, and interrupts disabled, the
7592 * and caller must save the original value of the current task (see
7593 * curr_task() above) and restore that value before reenabling interrupts and
7594 * re-starting the system.
7595 *
7596 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7597 */
36c8b586 7598void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7599{
7600 cpu_curr(cpu) = p;
7601}
7602
7603#endif
29f59db3 7604
7c941438 7605#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7606/* task_group_lock serializes the addition/removal of task groups */
7607static DEFINE_SPINLOCK(task_group_lock);
7608
2f5177f0 7609static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7610{
7611 free_fair_sched_group(tg);
7612 free_rt_sched_group(tg);
e9aa1dd1 7613 autogroup_free(tg);
b0367629 7614 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7615}
7616
7617/* allocate runqueue etc for a new task group */
ec7dc8ac 7618struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7619{
7620 struct task_group *tg;
bccbe08a 7621
b0367629 7622 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7623 if (!tg)
7624 return ERR_PTR(-ENOMEM);
7625
ec7dc8ac 7626 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7627 goto err;
7628
ec7dc8ac 7629 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7630 goto err;
7631
ace783b9
LZ
7632 return tg;
7633
7634err:
2f5177f0 7635 sched_free_group(tg);
ace783b9
LZ
7636 return ERR_PTR(-ENOMEM);
7637}
7638
7639void sched_online_group(struct task_group *tg, struct task_group *parent)
7640{
7641 unsigned long flags;
7642
8ed36996 7643 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7644 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7645
7646 WARN_ON(!parent); /* root should already exist */
7647
7648 tg->parent = parent;
f473aa5e 7649 INIT_LIST_HEAD(&tg->children);
09f2724a 7650 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7651 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7652}
7653
9b5b7751 7654/* rcu callback to free various structures associated with a task group */
2f5177f0 7655static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7656{
29f59db3 7657 /* now it should be safe to free those cfs_rqs */
2f5177f0 7658 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7659}
7660
4cf86d77 7661void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7662{
7663 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7664 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7665}
7666
7667void sched_offline_group(struct task_group *tg)
29f59db3 7668{
8ed36996 7669 unsigned long flags;
29f59db3 7670
3d4b47b4 7671 /* end participation in shares distribution */
6fe1f348 7672 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7673
7674 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7675 list_del_rcu(&tg->list);
f473aa5e 7676 list_del_rcu(&tg->siblings);
8ed36996 7677 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7678}
7679
9b5b7751 7680/* change task's runqueue when it moves between groups.
3a252015
IM
7681 * The caller of this function should have put the task in its new group
7682 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7683 * reflect its new group.
9b5b7751
SV
7684 */
7685void sched_move_task(struct task_struct *tsk)
29f59db3 7686{
8323f26c 7687 struct task_group *tg;
da0c1e65 7688 int queued, running;
29f59db3
SV
7689 unsigned long flags;
7690 struct rq *rq;
7691
7692 rq = task_rq_lock(tsk, &flags);
7693
051a1d1a 7694 running = task_current(rq, tsk);
da0c1e65 7695 queued = task_on_rq_queued(tsk);
29f59db3 7696
da0c1e65 7697 if (queued)
ff77e468 7698 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7699 if (unlikely(running))
f3cd1c4e 7700 put_prev_task(rq, tsk);
29f59db3 7701
f7b8a47d
KT
7702 /*
7703 * All callers are synchronized by task_rq_lock(); we do not use RCU
7704 * which is pointless here. Thus, we pass "true" to task_css_check()
7705 * to prevent lockdep warnings.
7706 */
7707 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7708 struct task_group, css);
7709 tg = autogroup_task_group(tsk, tg);
7710 tsk->sched_task_group = tg;
7711
810b3817 7712#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7713 if (tsk->sched_class->task_move_group)
bc54da21 7714 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7715 else
810b3817 7716#endif
b2b5ce02 7717 set_task_rq(tsk, task_cpu(tsk));
810b3817 7718
0e1f3483
HS
7719 if (unlikely(running))
7720 tsk->sched_class->set_curr_task(rq);
da0c1e65 7721 if (queued)
ff77e468 7722 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7723
0122ec5b 7724 task_rq_unlock(rq, tsk, &flags);
29f59db3 7725}
7c941438 7726#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7727
a790de99
PT
7728#ifdef CONFIG_RT_GROUP_SCHED
7729/*
7730 * Ensure that the real time constraints are schedulable.
7731 */
7732static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7733
9a7e0b18
PZ
7734/* Must be called with tasklist_lock held */
7735static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7736{
9a7e0b18 7737 struct task_struct *g, *p;
b40b2e8e 7738
1fe89e1b
PZ
7739 /*
7740 * Autogroups do not have RT tasks; see autogroup_create().
7741 */
7742 if (task_group_is_autogroup(tg))
7743 return 0;
7744
5d07f420 7745 for_each_process_thread(g, p) {
8651c658 7746 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7747 return 1;
5d07f420 7748 }
b40b2e8e 7749
9a7e0b18
PZ
7750 return 0;
7751}
b40b2e8e 7752
9a7e0b18
PZ
7753struct rt_schedulable_data {
7754 struct task_group *tg;
7755 u64 rt_period;
7756 u64 rt_runtime;
7757};
b40b2e8e 7758
a790de99 7759static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7760{
7761 struct rt_schedulable_data *d = data;
7762 struct task_group *child;
7763 unsigned long total, sum = 0;
7764 u64 period, runtime;
b40b2e8e 7765
9a7e0b18
PZ
7766 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7767 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7768
9a7e0b18
PZ
7769 if (tg == d->tg) {
7770 period = d->rt_period;
7771 runtime = d->rt_runtime;
b40b2e8e 7772 }
b40b2e8e 7773
4653f803
PZ
7774 /*
7775 * Cannot have more runtime than the period.
7776 */
7777 if (runtime > period && runtime != RUNTIME_INF)
7778 return -EINVAL;
6f505b16 7779
4653f803
PZ
7780 /*
7781 * Ensure we don't starve existing RT tasks.
7782 */
9a7e0b18
PZ
7783 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7784 return -EBUSY;
6f505b16 7785
9a7e0b18 7786 total = to_ratio(period, runtime);
6f505b16 7787
4653f803
PZ
7788 /*
7789 * Nobody can have more than the global setting allows.
7790 */
7791 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7792 return -EINVAL;
6f505b16 7793
4653f803
PZ
7794 /*
7795 * The sum of our children's runtime should not exceed our own.
7796 */
9a7e0b18
PZ
7797 list_for_each_entry_rcu(child, &tg->children, siblings) {
7798 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7799 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7800
9a7e0b18
PZ
7801 if (child == d->tg) {
7802 period = d->rt_period;
7803 runtime = d->rt_runtime;
7804 }
6f505b16 7805
9a7e0b18 7806 sum += to_ratio(period, runtime);
9f0c1e56 7807 }
6f505b16 7808
9a7e0b18
PZ
7809 if (sum > total)
7810 return -EINVAL;
7811
7812 return 0;
6f505b16
PZ
7813}
7814
9a7e0b18 7815static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7816{
8277434e
PT
7817 int ret;
7818
9a7e0b18
PZ
7819 struct rt_schedulable_data data = {
7820 .tg = tg,
7821 .rt_period = period,
7822 .rt_runtime = runtime,
7823 };
7824
8277434e
PT
7825 rcu_read_lock();
7826 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7827 rcu_read_unlock();
7828
7829 return ret;
521f1a24
DG
7830}
7831
ab84d31e 7832static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7833 u64 rt_period, u64 rt_runtime)
6f505b16 7834{
ac086bc2 7835 int i, err = 0;
9f0c1e56 7836
2636ed5f
PZ
7837 /*
7838 * Disallowing the root group RT runtime is BAD, it would disallow the
7839 * kernel creating (and or operating) RT threads.
7840 */
7841 if (tg == &root_task_group && rt_runtime == 0)
7842 return -EINVAL;
7843
7844 /* No period doesn't make any sense. */
7845 if (rt_period == 0)
7846 return -EINVAL;
7847
9f0c1e56 7848 mutex_lock(&rt_constraints_mutex);
521f1a24 7849 read_lock(&tasklist_lock);
9a7e0b18
PZ
7850 err = __rt_schedulable(tg, rt_period, rt_runtime);
7851 if (err)
9f0c1e56 7852 goto unlock;
ac086bc2 7853
0986b11b 7854 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7855 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7856 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7857
7858 for_each_possible_cpu(i) {
7859 struct rt_rq *rt_rq = tg->rt_rq[i];
7860
0986b11b 7861 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7862 rt_rq->rt_runtime = rt_runtime;
0986b11b 7863 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7864 }
0986b11b 7865 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7866unlock:
521f1a24 7867 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7868 mutex_unlock(&rt_constraints_mutex);
7869
7870 return err;
6f505b16
PZ
7871}
7872
25cc7da7 7873static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7874{
7875 u64 rt_runtime, rt_period;
7876
7877 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7878 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7879 if (rt_runtime_us < 0)
7880 rt_runtime = RUNTIME_INF;
7881
ab84d31e 7882 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7883}
7884
25cc7da7 7885static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7886{
7887 u64 rt_runtime_us;
7888
d0b27fa7 7889 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7890 return -1;
7891
d0b27fa7 7892 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7893 do_div(rt_runtime_us, NSEC_PER_USEC);
7894 return rt_runtime_us;
7895}
d0b27fa7 7896
ce2f5fe4 7897static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7898{
7899 u64 rt_runtime, rt_period;
7900
ce2f5fe4 7901 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7902 rt_runtime = tg->rt_bandwidth.rt_runtime;
7903
ab84d31e 7904 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7905}
7906
25cc7da7 7907static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7908{
7909 u64 rt_period_us;
7910
7911 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7912 do_div(rt_period_us, NSEC_PER_USEC);
7913 return rt_period_us;
7914}
332ac17e 7915#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7916
332ac17e 7917#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7918static int sched_rt_global_constraints(void)
7919{
7920 int ret = 0;
7921
7922 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7923 read_lock(&tasklist_lock);
4653f803 7924 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7925 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7926 mutex_unlock(&rt_constraints_mutex);
7927
7928 return ret;
7929}
54e99124 7930
25cc7da7 7931static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7932{
7933 /* Don't accept realtime tasks when there is no way for them to run */
7934 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7935 return 0;
7936
7937 return 1;
7938}
7939
6d6bc0ad 7940#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7941static int sched_rt_global_constraints(void)
7942{
ac086bc2 7943 unsigned long flags;
332ac17e 7944 int i, ret = 0;
ec5d4989 7945
0986b11b 7946 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7947 for_each_possible_cpu(i) {
7948 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7949
0986b11b 7950 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7951 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7952 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7953 }
0986b11b 7954 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7955
332ac17e 7956 return ret;
d0b27fa7 7957}
6d6bc0ad 7958#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7959
a1963b81 7960static int sched_dl_global_validate(void)
332ac17e 7961{
1724813d
PZ
7962 u64 runtime = global_rt_runtime();
7963 u64 period = global_rt_period();
332ac17e 7964 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7965 struct dl_bw *dl_b;
1724813d 7966 int cpu, ret = 0;
49516342 7967 unsigned long flags;
332ac17e
DF
7968
7969 /*
7970 * Here we want to check the bandwidth not being set to some
7971 * value smaller than the currently allocated bandwidth in
7972 * any of the root_domains.
7973 *
7974 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7975 * cycling on root_domains... Discussion on different/better
7976 * solutions is welcome!
7977 */
1724813d 7978 for_each_possible_cpu(cpu) {
f10e00f4
KT
7979 rcu_read_lock_sched();
7980 dl_b = dl_bw_of(cpu);
332ac17e 7981
49516342 7982 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7983 if (new_bw < dl_b->total_bw)
7984 ret = -EBUSY;
49516342 7985 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7986
f10e00f4
KT
7987 rcu_read_unlock_sched();
7988
1724813d
PZ
7989 if (ret)
7990 break;
332ac17e
DF
7991 }
7992
1724813d 7993 return ret;
332ac17e
DF
7994}
7995
1724813d 7996static void sched_dl_do_global(void)
ce0dbbbb 7997{
1724813d 7998 u64 new_bw = -1;
f10e00f4 7999 struct dl_bw *dl_b;
1724813d 8000 int cpu;
49516342 8001 unsigned long flags;
ce0dbbbb 8002
1724813d
PZ
8003 def_dl_bandwidth.dl_period = global_rt_period();
8004 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8005
8006 if (global_rt_runtime() != RUNTIME_INF)
8007 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8008
8009 /*
8010 * FIXME: As above...
8011 */
8012 for_each_possible_cpu(cpu) {
f10e00f4
KT
8013 rcu_read_lock_sched();
8014 dl_b = dl_bw_of(cpu);
1724813d 8015
49516342 8016 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8017 dl_b->bw = new_bw;
49516342 8018 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8019
8020 rcu_read_unlock_sched();
ce0dbbbb 8021 }
1724813d
PZ
8022}
8023
8024static int sched_rt_global_validate(void)
8025{
8026 if (sysctl_sched_rt_period <= 0)
8027 return -EINVAL;
8028
e9e7cb38
JL
8029 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8030 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8031 return -EINVAL;
8032
8033 return 0;
8034}
8035
8036static void sched_rt_do_global(void)
8037{
8038 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8039 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8040}
8041
d0b27fa7 8042int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8043 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8044 loff_t *ppos)
8045{
d0b27fa7
PZ
8046 int old_period, old_runtime;
8047 static DEFINE_MUTEX(mutex);
1724813d 8048 int ret;
d0b27fa7
PZ
8049
8050 mutex_lock(&mutex);
8051 old_period = sysctl_sched_rt_period;
8052 old_runtime = sysctl_sched_rt_runtime;
8053
8d65af78 8054 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8055
8056 if (!ret && write) {
1724813d
PZ
8057 ret = sched_rt_global_validate();
8058 if (ret)
8059 goto undo;
8060
a1963b81 8061 ret = sched_dl_global_validate();
1724813d
PZ
8062 if (ret)
8063 goto undo;
8064
a1963b81 8065 ret = sched_rt_global_constraints();
1724813d
PZ
8066 if (ret)
8067 goto undo;
8068
8069 sched_rt_do_global();
8070 sched_dl_do_global();
8071 }
8072 if (0) {
8073undo:
8074 sysctl_sched_rt_period = old_period;
8075 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8076 }
8077 mutex_unlock(&mutex);
8078
8079 return ret;
8080}
68318b8e 8081
1724813d 8082int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8083 void __user *buffer, size_t *lenp,
8084 loff_t *ppos)
8085{
8086 int ret;
332ac17e 8087 static DEFINE_MUTEX(mutex);
332ac17e
DF
8088
8089 mutex_lock(&mutex);
332ac17e 8090 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8091 /* make sure that internally we keep jiffies */
8092 /* also, writing zero resets timeslice to default */
332ac17e 8093 if (!ret && write) {
1724813d
PZ
8094 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8095 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8096 }
8097 mutex_unlock(&mutex);
332ac17e
DF
8098 return ret;
8099}
8100
052f1dc7 8101#ifdef CONFIG_CGROUP_SCHED
68318b8e 8102
a7c6d554 8103static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8104{
a7c6d554 8105 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8106}
8107
eb95419b
TH
8108static struct cgroup_subsys_state *
8109cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8110{
eb95419b
TH
8111 struct task_group *parent = css_tg(parent_css);
8112 struct task_group *tg;
68318b8e 8113
eb95419b 8114 if (!parent) {
68318b8e 8115 /* This is early initialization for the top cgroup */
07e06b01 8116 return &root_task_group.css;
68318b8e
SV
8117 }
8118
ec7dc8ac 8119 tg = sched_create_group(parent);
68318b8e
SV
8120 if (IS_ERR(tg))
8121 return ERR_PTR(-ENOMEM);
8122
2f5177f0
PZ
8123 sched_online_group(tg, parent);
8124
68318b8e
SV
8125 return &tg->css;
8126}
8127
2f5177f0 8128static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8129{
eb95419b 8130 struct task_group *tg = css_tg(css);
ace783b9 8131
2f5177f0 8132 sched_offline_group(tg);
ace783b9
LZ
8133}
8134
eb95419b 8135static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8136{
eb95419b 8137 struct task_group *tg = css_tg(css);
68318b8e 8138
2f5177f0
PZ
8139 /*
8140 * Relies on the RCU grace period between css_released() and this.
8141 */
8142 sched_free_group(tg);
ace783b9
LZ
8143}
8144
b53202e6 8145static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8146{
8147 sched_move_task(task);
8148}
8149
1f7dd3e5 8150static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8151{
bb9d97b6 8152 struct task_struct *task;
1f7dd3e5 8153 struct cgroup_subsys_state *css;
bb9d97b6 8154
1f7dd3e5 8155 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8156#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8157 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8158 return -EINVAL;
b68aa230 8159#else
bb9d97b6
TH
8160 /* We don't support RT-tasks being in separate groups */
8161 if (task->sched_class != &fair_sched_class)
8162 return -EINVAL;
b68aa230 8163#endif
bb9d97b6 8164 }
be367d09
BB
8165 return 0;
8166}
68318b8e 8167
1f7dd3e5 8168static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8169{
bb9d97b6 8170 struct task_struct *task;
1f7dd3e5 8171 struct cgroup_subsys_state *css;
bb9d97b6 8172
1f7dd3e5 8173 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8174 sched_move_task(task);
68318b8e
SV
8175}
8176
052f1dc7 8177#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8178static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8179 struct cftype *cftype, u64 shareval)
68318b8e 8180{
182446d0 8181 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8182}
8183
182446d0
TH
8184static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8185 struct cftype *cft)
68318b8e 8186{
182446d0 8187 struct task_group *tg = css_tg(css);
68318b8e 8188
c8b28116 8189 return (u64) scale_load_down(tg->shares);
68318b8e 8190}
ab84d31e
PT
8191
8192#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8193static DEFINE_MUTEX(cfs_constraints_mutex);
8194
ab84d31e
PT
8195const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8196const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8197
a790de99
PT
8198static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8199
ab84d31e
PT
8200static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8201{
56f570e5 8202 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8203 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8204
8205 if (tg == &root_task_group)
8206 return -EINVAL;
8207
8208 /*
8209 * Ensure we have at some amount of bandwidth every period. This is
8210 * to prevent reaching a state of large arrears when throttled via
8211 * entity_tick() resulting in prolonged exit starvation.
8212 */
8213 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8214 return -EINVAL;
8215
8216 /*
8217 * Likewise, bound things on the otherside by preventing insane quota
8218 * periods. This also allows us to normalize in computing quota
8219 * feasibility.
8220 */
8221 if (period > max_cfs_quota_period)
8222 return -EINVAL;
8223
0e59bdae
KT
8224 /*
8225 * Prevent race between setting of cfs_rq->runtime_enabled and
8226 * unthrottle_offline_cfs_rqs().
8227 */
8228 get_online_cpus();
a790de99
PT
8229 mutex_lock(&cfs_constraints_mutex);
8230 ret = __cfs_schedulable(tg, period, quota);
8231 if (ret)
8232 goto out_unlock;
8233
58088ad0 8234 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8235 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8236 /*
8237 * If we need to toggle cfs_bandwidth_used, off->on must occur
8238 * before making related changes, and on->off must occur afterwards
8239 */
8240 if (runtime_enabled && !runtime_was_enabled)
8241 cfs_bandwidth_usage_inc();
ab84d31e
PT
8242 raw_spin_lock_irq(&cfs_b->lock);
8243 cfs_b->period = ns_to_ktime(period);
8244 cfs_b->quota = quota;
58088ad0 8245
a9cf55b2 8246 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8247 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8248 if (runtime_enabled)
8249 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8250 raw_spin_unlock_irq(&cfs_b->lock);
8251
0e59bdae 8252 for_each_online_cpu(i) {
ab84d31e 8253 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8254 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8255
8256 raw_spin_lock_irq(&rq->lock);
58088ad0 8257 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8258 cfs_rq->runtime_remaining = 0;
671fd9da 8259
029632fb 8260 if (cfs_rq->throttled)
671fd9da 8261 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8262 raw_spin_unlock_irq(&rq->lock);
8263 }
1ee14e6c
BS
8264 if (runtime_was_enabled && !runtime_enabled)
8265 cfs_bandwidth_usage_dec();
a790de99
PT
8266out_unlock:
8267 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8268 put_online_cpus();
ab84d31e 8269
a790de99 8270 return ret;
ab84d31e
PT
8271}
8272
8273int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8274{
8275 u64 quota, period;
8276
029632fb 8277 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8278 if (cfs_quota_us < 0)
8279 quota = RUNTIME_INF;
8280 else
8281 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8282
8283 return tg_set_cfs_bandwidth(tg, period, quota);
8284}
8285
8286long tg_get_cfs_quota(struct task_group *tg)
8287{
8288 u64 quota_us;
8289
029632fb 8290 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8291 return -1;
8292
029632fb 8293 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8294 do_div(quota_us, NSEC_PER_USEC);
8295
8296 return quota_us;
8297}
8298
8299int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8300{
8301 u64 quota, period;
8302
8303 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8304 quota = tg->cfs_bandwidth.quota;
ab84d31e 8305
ab84d31e
PT
8306 return tg_set_cfs_bandwidth(tg, period, quota);
8307}
8308
8309long tg_get_cfs_period(struct task_group *tg)
8310{
8311 u64 cfs_period_us;
8312
029632fb 8313 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8314 do_div(cfs_period_us, NSEC_PER_USEC);
8315
8316 return cfs_period_us;
8317}
8318
182446d0
TH
8319static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8320 struct cftype *cft)
ab84d31e 8321{
182446d0 8322 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8323}
8324
182446d0
TH
8325static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8326 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8327{
182446d0 8328 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8329}
8330
182446d0
TH
8331static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8332 struct cftype *cft)
ab84d31e 8333{
182446d0 8334 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8335}
8336
182446d0
TH
8337static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8338 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8339{
182446d0 8340 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8341}
8342
a790de99
PT
8343struct cfs_schedulable_data {
8344 struct task_group *tg;
8345 u64 period, quota;
8346};
8347
8348/*
8349 * normalize group quota/period to be quota/max_period
8350 * note: units are usecs
8351 */
8352static u64 normalize_cfs_quota(struct task_group *tg,
8353 struct cfs_schedulable_data *d)
8354{
8355 u64 quota, period;
8356
8357 if (tg == d->tg) {
8358 period = d->period;
8359 quota = d->quota;
8360 } else {
8361 period = tg_get_cfs_period(tg);
8362 quota = tg_get_cfs_quota(tg);
8363 }
8364
8365 /* note: these should typically be equivalent */
8366 if (quota == RUNTIME_INF || quota == -1)
8367 return RUNTIME_INF;
8368
8369 return to_ratio(period, quota);
8370}
8371
8372static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8373{
8374 struct cfs_schedulable_data *d = data;
029632fb 8375 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8376 s64 quota = 0, parent_quota = -1;
8377
8378 if (!tg->parent) {
8379 quota = RUNTIME_INF;
8380 } else {
029632fb 8381 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8382
8383 quota = normalize_cfs_quota(tg, d);
9c58c79a 8384 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8385
8386 /*
8387 * ensure max(child_quota) <= parent_quota, inherit when no
8388 * limit is set
8389 */
8390 if (quota == RUNTIME_INF)
8391 quota = parent_quota;
8392 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8393 return -EINVAL;
8394 }
9c58c79a 8395 cfs_b->hierarchical_quota = quota;
a790de99
PT
8396
8397 return 0;
8398}
8399
8400static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8401{
8277434e 8402 int ret;
a790de99
PT
8403 struct cfs_schedulable_data data = {
8404 .tg = tg,
8405 .period = period,
8406 .quota = quota,
8407 };
8408
8409 if (quota != RUNTIME_INF) {
8410 do_div(data.period, NSEC_PER_USEC);
8411 do_div(data.quota, NSEC_PER_USEC);
8412 }
8413
8277434e
PT
8414 rcu_read_lock();
8415 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8416 rcu_read_unlock();
8417
8418 return ret;
a790de99 8419}
e8da1b18 8420
2da8ca82 8421static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8422{
2da8ca82 8423 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8424 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8425
44ffc75b
TH
8426 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8427 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8428 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8429
8430 return 0;
8431}
ab84d31e 8432#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8433#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8434
052f1dc7 8435#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8436static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8437 struct cftype *cft, s64 val)
6f505b16 8438{
182446d0 8439 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8440}
8441
182446d0
TH
8442static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8443 struct cftype *cft)
6f505b16 8444{
182446d0 8445 return sched_group_rt_runtime(css_tg(css));
6f505b16 8446}
d0b27fa7 8447
182446d0
TH
8448static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8449 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8450{
182446d0 8451 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8452}
8453
182446d0
TH
8454static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8455 struct cftype *cft)
d0b27fa7 8456{
182446d0 8457 return sched_group_rt_period(css_tg(css));
d0b27fa7 8458}
6d6bc0ad 8459#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8460
fe5c7cc2 8461static struct cftype cpu_files[] = {
052f1dc7 8462#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8463 {
8464 .name = "shares",
f4c753b7
PM
8465 .read_u64 = cpu_shares_read_u64,
8466 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8467 },
052f1dc7 8468#endif
ab84d31e
PT
8469#ifdef CONFIG_CFS_BANDWIDTH
8470 {
8471 .name = "cfs_quota_us",
8472 .read_s64 = cpu_cfs_quota_read_s64,
8473 .write_s64 = cpu_cfs_quota_write_s64,
8474 },
8475 {
8476 .name = "cfs_period_us",
8477 .read_u64 = cpu_cfs_period_read_u64,
8478 .write_u64 = cpu_cfs_period_write_u64,
8479 },
e8da1b18
NR
8480 {
8481 .name = "stat",
2da8ca82 8482 .seq_show = cpu_stats_show,
e8da1b18 8483 },
ab84d31e 8484#endif
052f1dc7 8485#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8486 {
9f0c1e56 8487 .name = "rt_runtime_us",
06ecb27c
PM
8488 .read_s64 = cpu_rt_runtime_read,
8489 .write_s64 = cpu_rt_runtime_write,
6f505b16 8490 },
d0b27fa7
PZ
8491 {
8492 .name = "rt_period_us",
f4c753b7
PM
8493 .read_u64 = cpu_rt_period_read_uint,
8494 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8495 },
052f1dc7 8496#endif
4baf6e33 8497 { } /* terminate */
68318b8e
SV
8498};
8499
073219e9 8500struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8501 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8502 .css_released = cpu_cgroup_css_released,
92fb9748 8503 .css_free = cpu_cgroup_css_free,
eeb61e53 8504 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8505 .can_attach = cpu_cgroup_can_attach,
8506 .attach = cpu_cgroup_attach,
5577964e 8507 .legacy_cftypes = cpu_files,
b38e42e9 8508 .early_init = true,
68318b8e
SV
8509};
8510
052f1dc7 8511#endif /* CONFIG_CGROUP_SCHED */
d842de87 8512
b637a328
PM
8513void dump_cpu_task(int cpu)
8514{
8515 pr_info("Task dump for CPU %d:\n", cpu);
8516 sched_show_task(cpu_curr(cpu));
8517}
ed82b8a1
AK
8518
8519/*
8520 * Nice levels are multiplicative, with a gentle 10% change for every
8521 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8522 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8523 * that remained on nice 0.
8524 *
8525 * The "10% effect" is relative and cumulative: from _any_ nice level,
8526 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8527 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8528 * If a task goes up by ~10% and another task goes down by ~10% then
8529 * the relative distance between them is ~25%.)
8530 */
8531const int sched_prio_to_weight[40] = {
8532 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8533 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8534 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8535 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8536 /* 0 */ 1024, 820, 655, 526, 423,
8537 /* 5 */ 335, 272, 215, 172, 137,
8538 /* 10 */ 110, 87, 70, 56, 45,
8539 /* 15 */ 36, 29, 23, 18, 15,
8540};
8541
8542/*
8543 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8544 *
8545 * In cases where the weight does not change often, we can use the
8546 * precalculated inverse to speed up arithmetics by turning divisions
8547 * into multiplications:
8548 */
8549const u32 sched_prio_to_wmult[40] = {
8550 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8551 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8552 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8553 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8554 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8555 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8556 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8557 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8558};
This page took 4.457462 seconds and 5 git commands to generate.