sched: Remove unnecessary iteration over sched domains to update nr_busy_cpus
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
e05606d3 902 if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
ac66f547
PZ
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
6acce3ef
PZ
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
ac66f547
PZ
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
1111 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1112
1113out:
ac66f547
PZ
1114 return ret;
1115}
1116
969c7921 1117struct migration_arg {
36c8b586 1118 struct task_struct *task;
1da177e4 1119 int dest_cpu;
70b97a7f 1120};
1da177e4 1121
969c7921
TH
1122static int migration_cpu_stop(void *data);
1123
1da177e4
LT
1124/*
1125 * wait_task_inactive - wait for a thread to unschedule.
1126 *
85ba2d86
RM
1127 * If @match_state is nonzero, it's the @p->state value just checked and
1128 * not expected to change. If it changes, i.e. @p might have woken up,
1129 * then return zero. When we succeed in waiting for @p to be off its CPU,
1130 * we return a positive number (its total switch count). If a second call
1131 * a short while later returns the same number, the caller can be sure that
1132 * @p has remained unscheduled the whole time.
1133 *
1da177e4
LT
1134 * The caller must ensure that the task *will* unschedule sometime soon,
1135 * else this function might spin for a *long* time. This function can't
1136 * be called with interrupts off, or it may introduce deadlock with
1137 * smp_call_function() if an IPI is sent by the same process we are
1138 * waiting to become inactive.
1139 */
85ba2d86 1140unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1141{
1142 unsigned long flags;
dd41f596 1143 int running, on_rq;
85ba2d86 1144 unsigned long ncsw;
70b97a7f 1145 struct rq *rq;
1da177e4 1146
3a5c359a
AK
1147 for (;;) {
1148 /*
1149 * We do the initial early heuristics without holding
1150 * any task-queue locks at all. We'll only try to get
1151 * the runqueue lock when things look like they will
1152 * work out!
1153 */
1154 rq = task_rq(p);
fa490cfd 1155
3a5c359a
AK
1156 /*
1157 * If the task is actively running on another CPU
1158 * still, just relax and busy-wait without holding
1159 * any locks.
1160 *
1161 * NOTE! Since we don't hold any locks, it's not
1162 * even sure that "rq" stays as the right runqueue!
1163 * But we don't care, since "task_running()" will
1164 * return false if the runqueue has changed and p
1165 * is actually now running somewhere else!
1166 */
85ba2d86
RM
1167 while (task_running(rq, p)) {
1168 if (match_state && unlikely(p->state != match_state))
1169 return 0;
3a5c359a 1170 cpu_relax();
85ba2d86 1171 }
fa490cfd 1172
3a5c359a
AK
1173 /*
1174 * Ok, time to look more closely! We need the rq
1175 * lock now, to be *sure*. If we're wrong, we'll
1176 * just go back and repeat.
1177 */
1178 rq = task_rq_lock(p, &flags);
27a9da65 1179 trace_sched_wait_task(p);
3a5c359a 1180 running = task_running(rq, p);
fd2f4419 1181 on_rq = p->on_rq;
85ba2d86 1182 ncsw = 0;
f31e11d8 1183 if (!match_state || p->state == match_state)
93dcf55f 1184 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1185 task_rq_unlock(rq, p, &flags);
fa490cfd 1186
85ba2d86
RM
1187 /*
1188 * If it changed from the expected state, bail out now.
1189 */
1190 if (unlikely(!ncsw))
1191 break;
1192
3a5c359a
AK
1193 /*
1194 * Was it really running after all now that we
1195 * checked with the proper locks actually held?
1196 *
1197 * Oops. Go back and try again..
1198 */
1199 if (unlikely(running)) {
1200 cpu_relax();
1201 continue;
1202 }
fa490cfd 1203
3a5c359a
AK
1204 /*
1205 * It's not enough that it's not actively running,
1206 * it must be off the runqueue _entirely_, and not
1207 * preempted!
1208 *
80dd99b3 1209 * So if it was still runnable (but just not actively
3a5c359a
AK
1210 * running right now), it's preempted, and we should
1211 * yield - it could be a while.
1212 */
1213 if (unlikely(on_rq)) {
8eb90c30
TG
1214 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1215
1216 set_current_state(TASK_UNINTERRUPTIBLE);
1217 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1218 continue;
1219 }
fa490cfd 1220
3a5c359a
AK
1221 /*
1222 * Ahh, all good. It wasn't running, and it wasn't
1223 * runnable, which means that it will never become
1224 * running in the future either. We're all done!
1225 */
1226 break;
1227 }
85ba2d86
RM
1228
1229 return ncsw;
1da177e4
LT
1230}
1231
1232/***
1233 * kick_process - kick a running thread to enter/exit the kernel
1234 * @p: the to-be-kicked thread
1235 *
1236 * Cause a process which is running on another CPU to enter
1237 * kernel-mode, without any delay. (to get signals handled.)
1238 *
25985edc 1239 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1240 * because all it wants to ensure is that the remote task enters
1241 * the kernel. If the IPI races and the task has been migrated
1242 * to another CPU then no harm is done and the purpose has been
1243 * achieved as well.
1244 */
36c8b586 1245void kick_process(struct task_struct *p)
1da177e4
LT
1246{
1247 int cpu;
1248
1249 preempt_disable();
1250 cpu = task_cpu(p);
1251 if ((cpu != smp_processor_id()) && task_curr(p))
1252 smp_send_reschedule(cpu);
1253 preempt_enable();
1254}
b43e3521 1255EXPORT_SYMBOL_GPL(kick_process);
476d139c 1256#endif /* CONFIG_SMP */
1da177e4 1257
970b13ba 1258#ifdef CONFIG_SMP
30da688e 1259/*
013fdb80 1260 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1261 */
5da9a0fb
PZ
1262static int select_fallback_rq(int cpu, struct task_struct *p)
1263{
aa00d89c
TC
1264 int nid = cpu_to_node(cpu);
1265 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1266 enum { cpuset, possible, fail } state = cpuset;
1267 int dest_cpu;
5da9a0fb 1268
aa00d89c
TC
1269 /*
1270 * If the node that the cpu is on has been offlined, cpu_to_node()
1271 * will return -1. There is no cpu on the node, and we should
1272 * select the cpu on the other node.
1273 */
1274 if (nid != -1) {
1275 nodemask = cpumask_of_node(nid);
1276
1277 /* Look for allowed, online CPU in same node. */
1278 for_each_cpu(dest_cpu, nodemask) {
1279 if (!cpu_online(dest_cpu))
1280 continue;
1281 if (!cpu_active(dest_cpu))
1282 continue;
1283 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1284 return dest_cpu;
1285 }
2baab4e9 1286 }
5da9a0fb 1287
2baab4e9
PZ
1288 for (;;) {
1289 /* Any allowed, online CPU? */
e3831edd 1290 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1291 if (!cpu_online(dest_cpu))
1292 continue;
1293 if (!cpu_active(dest_cpu))
1294 continue;
1295 goto out;
1296 }
5da9a0fb 1297
2baab4e9
PZ
1298 switch (state) {
1299 case cpuset:
1300 /* No more Mr. Nice Guy. */
1301 cpuset_cpus_allowed_fallback(p);
1302 state = possible;
1303 break;
1304
1305 case possible:
1306 do_set_cpus_allowed(p, cpu_possible_mask);
1307 state = fail;
1308 break;
1309
1310 case fail:
1311 BUG();
1312 break;
1313 }
1314 }
1315
1316out:
1317 if (state != cpuset) {
1318 /*
1319 * Don't tell them about moving exiting tasks or
1320 * kernel threads (both mm NULL), since they never
1321 * leave kernel.
1322 */
1323 if (p->mm && printk_ratelimit()) {
1324 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1325 task_pid_nr(p), p->comm, cpu);
1326 }
5da9a0fb
PZ
1327 }
1328
1329 return dest_cpu;
1330}
1331
e2912009 1332/*
013fdb80 1333 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1334 */
970b13ba 1335static inline
ac66f547 1336int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1337{
ac66f547 1338 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1339
1340 /*
1341 * In order not to call set_task_cpu() on a blocking task we need
1342 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1343 * cpu.
1344 *
1345 * Since this is common to all placement strategies, this lives here.
1346 *
1347 * [ this allows ->select_task() to simply return task_cpu(p) and
1348 * not worry about this generic constraint ]
1349 */
fa17b507 1350 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1351 !cpu_online(cpu)))
5da9a0fb 1352 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1353
1354 return cpu;
970b13ba 1355}
09a40af5
MG
1356
1357static void update_avg(u64 *avg, u64 sample)
1358{
1359 s64 diff = sample - *avg;
1360 *avg += diff >> 3;
1361}
970b13ba
PZ
1362#endif
1363
d7c01d27 1364static void
b84cb5df 1365ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1366{
d7c01d27 1367#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1368 struct rq *rq = this_rq();
1369
d7c01d27
PZ
1370#ifdef CONFIG_SMP
1371 int this_cpu = smp_processor_id();
1372
1373 if (cpu == this_cpu) {
1374 schedstat_inc(rq, ttwu_local);
1375 schedstat_inc(p, se.statistics.nr_wakeups_local);
1376 } else {
1377 struct sched_domain *sd;
1378
1379 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1380 rcu_read_lock();
d7c01d27
PZ
1381 for_each_domain(this_cpu, sd) {
1382 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1383 schedstat_inc(sd, ttwu_wake_remote);
1384 break;
1385 }
1386 }
057f3fad 1387 rcu_read_unlock();
d7c01d27 1388 }
f339b9dc
PZ
1389
1390 if (wake_flags & WF_MIGRATED)
1391 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1392
d7c01d27
PZ
1393#endif /* CONFIG_SMP */
1394
1395 schedstat_inc(rq, ttwu_count);
9ed3811a 1396 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1397
1398 if (wake_flags & WF_SYNC)
9ed3811a 1399 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1400
d7c01d27
PZ
1401#endif /* CONFIG_SCHEDSTATS */
1402}
1403
1404static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1405{
9ed3811a 1406 activate_task(rq, p, en_flags);
fd2f4419 1407 p->on_rq = 1;
c2f7115e
PZ
1408
1409 /* if a worker is waking up, notify workqueue */
1410 if (p->flags & PF_WQ_WORKER)
1411 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1412}
1413
23f41eeb
PZ
1414/*
1415 * Mark the task runnable and perform wakeup-preemption.
1416 */
89363381 1417static void
23f41eeb 1418ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1419{
9ed3811a 1420 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1421 trace_sched_wakeup(p, true);
9ed3811a
TH
1422
1423 p->state = TASK_RUNNING;
1424#ifdef CONFIG_SMP
1425 if (p->sched_class->task_woken)
1426 p->sched_class->task_woken(rq, p);
1427
e69c6341 1428 if (rq->idle_stamp) {
78becc27 1429 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1430 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1431
abfafa54
JL
1432 update_avg(&rq->avg_idle, delta);
1433
1434 if (rq->avg_idle > max)
9ed3811a 1435 rq->avg_idle = max;
abfafa54 1436
9ed3811a
TH
1437 rq->idle_stamp = 0;
1438 }
1439#endif
1440}
1441
c05fbafb
PZ
1442static void
1443ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1444{
1445#ifdef CONFIG_SMP
1446 if (p->sched_contributes_to_load)
1447 rq->nr_uninterruptible--;
1448#endif
1449
1450 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1451 ttwu_do_wakeup(rq, p, wake_flags);
1452}
1453
1454/*
1455 * Called in case the task @p isn't fully descheduled from its runqueue,
1456 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1457 * since all we need to do is flip p->state to TASK_RUNNING, since
1458 * the task is still ->on_rq.
1459 */
1460static int ttwu_remote(struct task_struct *p, int wake_flags)
1461{
1462 struct rq *rq;
1463 int ret = 0;
1464
1465 rq = __task_rq_lock(p);
1466 if (p->on_rq) {
1ad4ec0d
FW
1467 /* check_preempt_curr() may use rq clock */
1468 update_rq_clock(rq);
c05fbafb
PZ
1469 ttwu_do_wakeup(rq, p, wake_flags);
1470 ret = 1;
1471 }
1472 __task_rq_unlock(rq);
1473
1474 return ret;
1475}
1476
317f3941 1477#ifdef CONFIG_SMP
fa14ff4a 1478static void sched_ttwu_pending(void)
317f3941
PZ
1479{
1480 struct rq *rq = this_rq();
fa14ff4a
PZ
1481 struct llist_node *llist = llist_del_all(&rq->wake_list);
1482 struct task_struct *p;
317f3941
PZ
1483
1484 raw_spin_lock(&rq->lock);
1485
fa14ff4a
PZ
1486 while (llist) {
1487 p = llist_entry(llist, struct task_struct, wake_entry);
1488 llist = llist_next(llist);
317f3941
PZ
1489 ttwu_do_activate(rq, p, 0);
1490 }
1491
1492 raw_spin_unlock(&rq->lock);
1493}
1494
1495void scheduler_ipi(void)
1496{
f27dde8d
PZ
1497 /*
1498 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1499 * TIF_NEED_RESCHED remotely (for the first time) will also send
1500 * this IPI.
1501 */
1502 if (tif_need_resched())
1503 set_preempt_need_resched();
1504
873b4c65
VG
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
c5d753a5
PZ
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
ff442c51 1524 tick_nohz_full_check();
fa14ff4a 1525 sched_ttwu_pending();
ca38062e
SS
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
873b4c65 1530 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1531 this_rq()->idle_balance = 1;
ca38062e 1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1533 }
c5d753a5 1534 irq_exit();
317f3941
PZ
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
fa14ff4a 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1540 smp_send_reschedule(cpu);
1541}
d6aa8f85 1542
39be3501 1543bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1544{
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
d6aa8f85 1547#endif /* CONFIG_SMP */
317f3941 1548
c05fbafb
PZ
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552
17d9f311 1553#if defined(CONFIG_SMP)
39be3501 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559#endif
1560
c05fbafb
PZ
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1564}
1565
1566/**
1da177e4 1567 * try_to_wake_up - wake up a thread
9ed3811a 1568 * @p: the thread to be awakened
1da177e4 1569 * @state: the mask of task states that can be woken
9ed3811a 1570 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
e69f6186 1578 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1579 * or @state didn't match @p's state.
1da177e4 1580 */
e4a52bcb
PZ
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1583{
1da177e4 1584 unsigned long flags;
c05fbafb 1585 int cpu, success = 0;
2398f2c6 1586
e0acd0a6
ON
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
013fdb80 1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1595 if (!(p->state & state))
1da177e4
LT
1596 goto out;
1597
c05fbafb 1598 success = 1; /* we're going to change ->state */
1da177e4 1599 cpu = task_cpu(p);
1da177e4 1600
c05fbafb
PZ
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1da177e4 1603
1da177e4 1604#ifdef CONFIG_SMP
e9c84311 1605 /*
c05fbafb
PZ
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
e9c84311 1608 */
f3e94786 1609 while (p->on_cpu)
e4a52bcb 1610 cpu_relax();
0970d299 1611 /*
e4a52bcb 1612 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1613 */
e4a52bcb 1614 smp_rmb();
1da177e4 1615
a8e4f2ea 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1617 p->state = TASK_WAKING;
e7693a36 1618
e4a52bcb 1619 if (p->sched_class->task_waking)
74f8e4b2 1620 p->sched_class->task_waking(p);
efbbd05a 1621
ac66f547 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
e4a52bcb 1625 set_task_cpu(p, cpu);
f339b9dc 1626 }
1da177e4 1627#endif /* CONFIG_SMP */
1da177e4 1628
c05fbafb
PZ
1629 ttwu_queue(p, cpu);
1630stat:
b84cb5df 1631 ttwu_stat(p, cpu, wake_flags);
1da177e4 1632out:
013fdb80 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1634
1635 return success;
1636}
1637
21aa9af0
TH
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
2acca55e 1642 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1644 * the current task.
21aa9af0
TH
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648 struct rq *rq = task_rq(p);
21aa9af0 1649
383efcd0
TH
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
21aa9af0
TH
1654 lockdep_assert_held(&rq->lock);
1655
2acca55e
PZ
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
21aa9af0 1662 if (!(p->state & TASK_NORMAL))
2acca55e 1663 goto out;
21aa9af0 1664
fd2f4419 1665 if (!p->on_rq)
d7c01d27
PZ
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
23f41eeb 1668 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1669 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1670out:
1671 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1672}
1673
50fa610a
DH
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
7ad5b3a5 1686int wake_up_process(struct task_struct *p)
1da177e4 1687{
9067ac85
ON
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
5e1576ed 1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
fa717060 1720 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1721
e107be36
AK
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
cbee9f88
PZ
1725
1726#ifdef CONFIG_NUMA_BALANCING
1727 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1728 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1729 p->mm->numa_scan_seq = 0;
1730 }
1731
5e1576ed
RR
1732 if (clone_flags & CLONE_VM)
1733 p->numa_preferred_nid = current->numa_preferred_nid;
1734 else
1735 p->numa_preferred_nid = -1;
1736
cbee9f88
PZ
1737 p->node_stamp = 0ULL;
1738 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1739 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1740 p->numa_work.next = &p->numa_work;
f809ca9a 1741 p->numa_faults = NULL;
745d6147 1742 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1743
1744 INIT_LIST_HEAD(&p->numa_entry);
1745 p->numa_group = NULL;
cbee9f88 1746#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1747}
1748
1a687c2e 1749#ifdef CONFIG_NUMA_BALANCING
3105b86a 1750#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1751void set_numabalancing_state(bool enabled)
1752{
1753 if (enabled)
1754 sched_feat_set("NUMA");
1755 else
1756 sched_feat_set("NO_NUMA");
1757}
3105b86a
MG
1758#else
1759__read_mostly bool numabalancing_enabled;
1760
1761void set_numabalancing_state(bool enabled)
1762{
1763 numabalancing_enabled = enabled;
dd41f596 1764}
3105b86a 1765#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1766#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1767
1768/*
1769 * fork()/clone()-time setup:
1770 */
5e1576ed 1771void sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1772{
0122ec5b 1773 unsigned long flags;
dd41f596
IM
1774 int cpu = get_cpu();
1775
5e1576ed 1776 __sched_fork(clone_flags, p);
06b83b5f 1777 /*
0017d735 1778 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1779 * nobody will actually run it, and a signal or other external
1780 * event cannot wake it up and insert it on the runqueue either.
1781 */
0017d735 1782 p->state = TASK_RUNNING;
dd41f596 1783
c350a04e
MG
1784 /*
1785 * Make sure we do not leak PI boosting priority to the child.
1786 */
1787 p->prio = current->normal_prio;
1788
b9dc29e7
MG
1789 /*
1790 * Revert to default priority/policy on fork if requested.
1791 */
1792 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1793 if (task_has_rt_policy(p)) {
b9dc29e7 1794 p->policy = SCHED_NORMAL;
6c697bdf 1795 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1796 p->rt_priority = 0;
1797 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1798 p->static_prio = NICE_TO_PRIO(0);
1799
1800 p->prio = p->normal_prio = __normal_prio(p);
1801 set_load_weight(p);
6c697bdf 1802
b9dc29e7
MG
1803 /*
1804 * We don't need the reset flag anymore after the fork. It has
1805 * fulfilled its duty:
1806 */
1807 p->sched_reset_on_fork = 0;
1808 }
ca94c442 1809
2ddbf952
HS
1810 if (!rt_prio(p->prio))
1811 p->sched_class = &fair_sched_class;
b29739f9 1812
cd29fe6f
PZ
1813 if (p->sched_class->task_fork)
1814 p->sched_class->task_fork(p);
1815
86951599
PZ
1816 /*
1817 * The child is not yet in the pid-hash so no cgroup attach races,
1818 * and the cgroup is pinned to this child due to cgroup_fork()
1819 * is ran before sched_fork().
1820 *
1821 * Silence PROVE_RCU.
1822 */
0122ec5b 1823 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1824 set_task_cpu(p, cpu);
0122ec5b 1825 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1826
52f17b6c 1827#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1828 if (likely(sched_info_on()))
52f17b6c 1829 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1830#endif
3ca7a440
PZ
1831#if defined(CONFIG_SMP)
1832 p->on_cpu = 0;
4866cde0 1833#endif
01028747 1834 init_task_preempt_count(p);
806c09a7 1835#ifdef CONFIG_SMP
917b627d 1836 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1837#endif
917b627d 1838
476d139c 1839 put_cpu();
1da177e4
LT
1840}
1841
1842/*
1843 * wake_up_new_task - wake up a newly created task for the first time.
1844 *
1845 * This function will do some initial scheduler statistics housekeeping
1846 * that must be done for every newly created context, then puts the task
1847 * on the runqueue and wakes it.
1848 */
3e51e3ed 1849void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1850{
1851 unsigned long flags;
dd41f596 1852 struct rq *rq;
fabf318e 1853
ab2515c4 1854 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1855#ifdef CONFIG_SMP
1856 /*
1857 * Fork balancing, do it here and not earlier because:
1858 * - cpus_allowed can change in the fork path
1859 * - any previously selected cpu might disappear through hotplug
fabf318e 1860 */
ac66f547 1861 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1862#endif
1863
a75cdaa9
AS
1864 /* Initialize new task's runnable average */
1865 init_task_runnable_average(p);
ab2515c4 1866 rq = __task_rq_lock(p);
cd29fe6f 1867 activate_task(rq, p, 0);
fd2f4419 1868 p->on_rq = 1;
89363381 1869 trace_sched_wakeup_new(p, true);
a7558e01 1870 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1871#ifdef CONFIG_SMP
efbbd05a
PZ
1872 if (p->sched_class->task_woken)
1873 p->sched_class->task_woken(rq, p);
9a897c5a 1874#endif
0122ec5b 1875 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1876}
1877
e107be36
AK
1878#ifdef CONFIG_PREEMPT_NOTIFIERS
1879
1880/**
80dd99b3 1881 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1882 * @notifier: notifier struct to register
e107be36
AK
1883 */
1884void preempt_notifier_register(struct preempt_notifier *notifier)
1885{
1886 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1887}
1888EXPORT_SYMBOL_GPL(preempt_notifier_register);
1889
1890/**
1891 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1892 * @notifier: notifier struct to unregister
e107be36
AK
1893 *
1894 * This is safe to call from within a preemption notifier.
1895 */
1896void preempt_notifier_unregister(struct preempt_notifier *notifier)
1897{
1898 hlist_del(&notifier->link);
1899}
1900EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1901
1902static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1903{
1904 struct preempt_notifier *notifier;
e107be36 1905
b67bfe0d 1906 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1907 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1908}
1909
1910static void
1911fire_sched_out_preempt_notifiers(struct task_struct *curr,
1912 struct task_struct *next)
1913{
1914 struct preempt_notifier *notifier;
e107be36 1915
b67bfe0d 1916 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1917 notifier->ops->sched_out(notifier, next);
1918}
1919
6d6bc0ad 1920#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1921
1922static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1923{
1924}
1925
1926static void
1927fire_sched_out_preempt_notifiers(struct task_struct *curr,
1928 struct task_struct *next)
1929{
1930}
1931
6d6bc0ad 1932#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1933
4866cde0
NP
1934/**
1935 * prepare_task_switch - prepare to switch tasks
1936 * @rq: the runqueue preparing to switch
421cee29 1937 * @prev: the current task that is being switched out
4866cde0
NP
1938 * @next: the task we are going to switch to.
1939 *
1940 * This is called with the rq lock held and interrupts off. It must
1941 * be paired with a subsequent finish_task_switch after the context
1942 * switch.
1943 *
1944 * prepare_task_switch sets up locking and calls architecture specific
1945 * hooks.
1946 */
e107be36
AK
1947static inline void
1948prepare_task_switch(struct rq *rq, struct task_struct *prev,
1949 struct task_struct *next)
4866cde0 1950{
895dd92c 1951 trace_sched_switch(prev, next);
43148951 1952 sched_info_switch(rq, prev, next);
fe4b04fa 1953 perf_event_task_sched_out(prev, next);
e107be36 1954 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1955 prepare_lock_switch(rq, next);
1956 prepare_arch_switch(next);
1957}
1958
1da177e4
LT
1959/**
1960 * finish_task_switch - clean up after a task-switch
344babaa 1961 * @rq: runqueue associated with task-switch
1da177e4
LT
1962 * @prev: the thread we just switched away from.
1963 *
4866cde0
NP
1964 * finish_task_switch must be called after the context switch, paired
1965 * with a prepare_task_switch call before the context switch.
1966 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1967 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1968 *
1969 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1970 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1971 * with the lock held can cause deadlocks; see schedule() for
1972 * details.)
1973 */
a9957449 1974static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1975 __releases(rq->lock)
1976{
1da177e4 1977 struct mm_struct *mm = rq->prev_mm;
55a101f8 1978 long prev_state;
1da177e4
LT
1979
1980 rq->prev_mm = NULL;
1981
1982 /*
1983 * A task struct has one reference for the use as "current".
c394cc9f 1984 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1985 * schedule one last time. The schedule call will never return, and
1986 * the scheduled task must drop that reference.
c394cc9f 1987 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1988 * still held, otherwise prev could be scheduled on another cpu, die
1989 * there before we look at prev->state, and then the reference would
1990 * be dropped twice.
1991 * Manfred Spraul <manfred@colorfullife.com>
1992 */
55a101f8 1993 prev_state = prev->state;
bf9fae9f 1994 vtime_task_switch(prev);
4866cde0 1995 finish_arch_switch(prev);
a8d757ef 1996 perf_event_task_sched_in(prev, current);
4866cde0 1997 finish_lock_switch(rq, prev);
01f23e16 1998 finish_arch_post_lock_switch();
e8fa1362 1999
e107be36 2000 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2001 if (mm)
2002 mmdrop(mm);
c394cc9f 2003 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2004 task_numa_free(prev);
2005
c6fd91f0 2006 /*
2007 * Remove function-return probe instances associated with this
2008 * task and put them back on the free list.
9761eea8 2009 */
c6fd91f0 2010 kprobe_flush_task(prev);
1da177e4 2011 put_task_struct(prev);
c6fd91f0 2012 }
99e5ada9
FW
2013
2014 tick_nohz_task_switch(current);
1da177e4
LT
2015}
2016
3f029d3c
GH
2017#ifdef CONFIG_SMP
2018
2019/* assumes rq->lock is held */
2020static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2021{
2022 if (prev->sched_class->pre_schedule)
2023 prev->sched_class->pre_schedule(rq, prev);
2024}
2025
2026/* rq->lock is NOT held, but preemption is disabled */
2027static inline void post_schedule(struct rq *rq)
2028{
2029 if (rq->post_schedule) {
2030 unsigned long flags;
2031
05fa785c 2032 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2033 if (rq->curr->sched_class->post_schedule)
2034 rq->curr->sched_class->post_schedule(rq);
05fa785c 2035 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2036
2037 rq->post_schedule = 0;
2038 }
2039}
2040
2041#else
da19ab51 2042
3f029d3c
GH
2043static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2044{
2045}
2046
2047static inline void post_schedule(struct rq *rq)
2048{
1da177e4
LT
2049}
2050
3f029d3c
GH
2051#endif
2052
1da177e4
LT
2053/**
2054 * schedule_tail - first thing a freshly forked thread must call.
2055 * @prev: the thread we just switched away from.
2056 */
36c8b586 2057asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2058 __releases(rq->lock)
2059{
70b97a7f
IM
2060 struct rq *rq = this_rq();
2061
4866cde0 2062 finish_task_switch(rq, prev);
da19ab51 2063
3f029d3c
GH
2064 /*
2065 * FIXME: do we need to worry about rq being invalidated by the
2066 * task_switch?
2067 */
2068 post_schedule(rq);
70b97a7f 2069
4866cde0
NP
2070#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2071 /* In this case, finish_task_switch does not reenable preemption */
2072 preempt_enable();
2073#endif
1da177e4 2074 if (current->set_child_tid)
b488893a 2075 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2076}
2077
2078/*
2079 * context_switch - switch to the new MM and the new
2080 * thread's register state.
2081 */
dd41f596 2082static inline void
70b97a7f 2083context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2084 struct task_struct *next)
1da177e4 2085{
dd41f596 2086 struct mm_struct *mm, *oldmm;
1da177e4 2087
e107be36 2088 prepare_task_switch(rq, prev, next);
fe4b04fa 2089
dd41f596
IM
2090 mm = next->mm;
2091 oldmm = prev->active_mm;
9226d125
ZA
2092 /*
2093 * For paravirt, this is coupled with an exit in switch_to to
2094 * combine the page table reload and the switch backend into
2095 * one hypercall.
2096 */
224101ed 2097 arch_start_context_switch(prev);
9226d125 2098
31915ab4 2099 if (!mm) {
1da177e4
LT
2100 next->active_mm = oldmm;
2101 atomic_inc(&oldmm->mm_count);
2102 enter_lazy_tlb(oldmm, next);
2103 } else
2104 switch_mm(oldmm, mm, next);
2105
31915ab4 2106 if (!prev->mm) {
1da177e4 2107 prev->active_mm = NULL;
1da177e4
LT
2108 rq->prev_mm = oldmm;
2109 }
3a5f5e48
IM
2110 /*
2111 * Since the runqueue lock will be released by the next
2112 * task (which is an invalid locking op but in the case
2113 * of the scheduler it's an obvious special-case), so we
2114 * do an early lockdep release here:
2115 */
2116#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2117 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2118#endif
1da177e4 2119
91d1aa43 2120 context_tracking_task_switch(prev, next);
1da177e4
LT
2121 /* Here we just switch the register state and the stack. */
2122 switch_to(prev, next, prev);
2123
dd41f596
IM
2124 barrier();
2125 /*
2126 * this_rq must be evaluated again because prev may have moved
2127 * CPUs since it called schedule(), thus the 'rq' on its stack
2128 * frame will be invalid.
2129 */
2130 finish_task_switch(this_rq(), prev);
1da177e4
LT
2131}
2132
2133/*
1c3e8264 2134 * nr_running and nr_context_switches:
1da177e4
LT
2135 *
2136 * externally visible scheduler statistics: current number of runnable
1c3e8264 2137 * threads, total number of context switches performed since bootup.
1da177e4
LT
2138 */
2139unsigned long nr_running(void)
2140{
2141 unsigned long i, sum = 0;
2142
2143 for_each_online_cpu(i)
2144 sum += cpu_rq(i)->nr_running;
2145
2146 return sum;
f711f609 2147}
1da177e4 2148
1da177e4 2149unsigned long long nr_context_switches(void)
46cb4b7c 2150{
cc94abfc
SR
2151 int i;
2152 unsigned long long sum = 0;
46cb4b7c 2153
0a945022 2154 for_each_possible_cpu(i)
1da177e4 2155 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2156
1da177e4
LT
2157 return sum;
2158}
483b4ee6 2159
1da177e4
LT
2160unsigned long nr_iowait(void)
2161{
2162 unsigned long i, sum = 0;
483b4ee6 2163
0a945022 2164 for_each_possible_cpu(i)
1da177e4 2165 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2166
1da177e4
LT
2167 return sum;
2168}
483b4ee6 2169
8c215bd3 2170unsigned long nr_iowait_cpu(int cpu)
69d25870 2171{
8c215bd3 2172 struct rq *this = cpu_rq(cpu);
69d25870
AV
2173 return atomic_read(&this->nr_iowait);
2174}
46cb4b7c 2175
dd41f596 2176#ifdef CONFIG_SMP
8a0be9ef 2177
46cb4b7c 2178/*
38022906
PZ
2179 * sched_exec - execve() is a valuable balancing opportunity, because at
2180 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2181 */
38022906 2182void sched_exec(void)
46cb4b7c 2183{
38022906 2184 struct task_struct *p = current;
1da177e4 2185 unsigned long flags;
0017d735 2186 int dest_cpu;
46cb4b7c 2187
8f42ced9 2188 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2189 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2190 if (dest_cpu == smp_processor_id())
2191 goto unlock;
38022906 2192
8f42ced9 2193 if (likely(cpu_active(dest_cpu))) {
969c7921 2194 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2195
8f42ced9
PZ
2196 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2197 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2198 return;
2199 }
0017d735 2200unlock:
8f42ced9 2201 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2202}
dd41f596 2203
1da177e4
LT
2204#endif
2205
1da177e4 2206DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2207DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2208
2209EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2210EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2211
2212/*
c5f8d995 2213 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2214 * @p in case that task is currently running.
c5f8d995
HS
2215 *
2216 * Called with task_rq_lock() held on @rq.
1da177e4 2217 */
c5f8d995
HS
2218static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2219{
2220 u64 ns = 0;
2221
2222 if (task_current(rq, p)) {
2223 update_rq_clock(rq);
78becc27 2224 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2225 if ((s64)ns < 0)
2226 ns = 0;
2227 }
2228
2229 return ns;
2230}
2231
bb34d92f 2232unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2233{
1da177e4 2234 unsigned long flags;
41b86e9c 2235 struct rq *rq;
bb34d92f 2236 u64 ns = 0;
48f24c4d 2237
41b86e9c 2238 rq = task_rq_lock(p, &flags);
c5f8d995 2239 ns = do_task_delta_exec(p, rq);
0122ec5b 2240 task_rq_unlock(rq, p, &flags);
1508487e 2241
c5f8d995
HS
2242 return ns;
2243}
f06febc9 2244
c5f8d995
HS
2245/*
2246 * Return accounted runtime for the task.
2247 * In case the task is currently running, return the runtime plus current's
2248 * pending runtime that have not been accounted yet.
2249 */
2250unsigned long long task_sched_runtime(struct task_struct *p)
2251{
2252 unsigned long flags;
2253 struct rq *rq;
2254 u64 ns = 0;
2255
2256 rq = task_rq_lock(p, &flags);
2257 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2258 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2259
2260 return ns;
2261}
48f24c4d 2262
7835b98b
CL
2263/*
2264 * This function gets called by the timer code, with HZ frequency.
2265 * We call it with interrupts disabled.
7835b98b
CL
2266 */
2267void scheduler_tick(void)
2268{
7835b98b
CL
2269 int cpu = smp_processor_id();
2270 struct rq *rq = cpu_rq(cpu);
dd41f596 2271 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2272
2273 sched_clock_tick();
dd41f596 2274
05fa785c 2275 raw_spin_lock(&rq->lock);
3e51f33f 2276 update_rq_clock(rq);
fa85ae24 2277 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2278 update_cpu_load_active(rq);
05fa785c 2279 raw_spin_unlock(&rq->lock);
7835b98b 2280
e9d2b064 2281 perf_event_task_tick();
e220d2dc 2282
e418e1c2 2283#ifdef CONFIG_SMP
6eb57e0d 2284 rq->idle_balance = idle_cpu(cpu);
dd41f596 2285 trigger_load_balance(rq, cpu);
e418e1c2 2286#endif
265f22a9 2287 rq_last_tick_reset(rq);
1da177e4
LT
2288}
2289
265f22a9
FW
2290#ifdef CONFIG_NO_HZ_FULL
2291/**
2292 * scheduler_tick_max_deferment
2293 *
2294 * Keep at least one tick per second when a single
2295 * active task is running because the scheduler doesn't
2296 * yet completely support full dynticks environment.
2297 *
2298 * This makes sure that uptime, CFS vruntime, load
2299 * balancing, etc... continue to move forward, even
2300 * with a very low granularity.
e69f6186
YB
2301 *
2302 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2303 */
2304u64 scheduler_tick_max_deferment(void)
2305{
2306 struct rq *rq = this_rq();
2307 unsigned long next, now = ACCESS_ONCE(jiffies);
2308
2309 next = rq->last_sched_tick + HZ;
2310
2311 if (time_before_eq(next, now))
2312 return 0;
2313
2314 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2315}
265f22a9 2316#endif
1da177e4 2317
132380a0 2318notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2319{
2320 if (in_lock_functions(addr)) {
2321 addr = CALLER_ADDR2;
2322 if (in_lock_functions(addr))
2323 addr = CALLER_ADDR3;
2324 }
2325 return addr;
2326}
1da177e4 2327
7e49fcce
SR
2328#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2329 defined(CONFIG_PREEMPT_TRACER))
2330
bdb43806 2331void __kprobes preempt_count_add(int val)
1da177e4 2332{
6cd8a4bb 2333#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2334 /*
2335 * Underflow?
2336 */
9a11b49a
IM
2337 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2338 return;
6cd8a4bb 2339#endif
bdb43806 2340 __preempt_count_add(val);
6cd8a4bb 2341#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2342 /*
2343 * Spinlock count overflowing soon?
2344 */
33859f7f
MOS
2345 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2346 PREEMPT_MASK - 10);
6cd8a4bb
SR
2347#endif
2348 if (preempt_count() == val)
2349 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2350}
bdb43806 2351EXPORT_SYMBOL(preempt_count_add);
1da177e4 2352
bdb43806 2353void __kprobes preempt_count_sub(int val)
1da177e4 2354{
6cd8a4bb 2355#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2356 /*
2357 * Underflow?
2358 */
01e3eb82 2359 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2360 return;
1da177e4
LT
2361 /*
2362 * Is the spinlock portion underflowing?
2363 */
9a11b49a
IM
2364 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2365 !(preempt_count() & PREEMPT_MASK)))
2366 return;
6cd8a4bb 2367#endif
9a11b49a 2368
6cd8a4bb
SR
2369 if (preempt_count() == val)
2370 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2371 __preempt_count_sub(val);
1da177e4 2372}
bdb43806 2373EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2374
2375#endif
2376
2377/*
dd41f596 2378 * Print scheduling while atomic bug:
1da177e4 2379 */
dd41f596 2380static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2381{
664dfa65
DJ
2382 if (oops_in_progress)
2383 return;
2384
3df0fc5b
PZ
2385 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2386 prev->comm, prev->pid, preempt_count());
838225b4 2387
dd41f596 2388 debug_show_held_locks(prev);
e21f5b15 2389 print_modules();
dd41f596
IM
2390 if (irqs_disabled())
2391 print_irqtrace_events(prev);
6135fc1e 2392 dump_stack();
373d4d09 2393 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2394}
1da177e4 2395
dd41f596
IM
2396/*
2397 * Various schedule()-time debugging checks and statistics:
2398 */
2399static inline void schedule_debug(struct task_struct *prev)
2400{
1da177e4 2401 /*
41a2d6cf 2402 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2403 * schedule() atomically, we ignore that path for now.
2404 * Otherwise, whine if we are scheduling when we should not be.
2405 */
3f33a7ce 2406 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2407 __schedule_bug(prev);
b3fbab05 2408 rcu_sleep_check();
dd41f596 2409
1da177e4
LT
2410 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2411
2d72376b 2412 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2413}
2414
6cecd084 2415static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2416{
61eadef6 2417 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2418 update_rq_clock(rq);
6cecd084 2419 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2420}
2421
dd41f596
IM
2422/*
2423 * Pick up the highest-prio task:
2424 */
2425static inline struct task_struct *
b67802ea 2426pick_next_task(struct rq *rq)
dd41f596 2427{
5522d5d5 2428 const struct sched_class *class;
dd41f596 2429 struct task_struct *p;
1da177e4
LT
2430
2431 /*
dd41f596
IM
2432 * Optimization: we know that if all tasks are in
2433 * the fair class we can call that function directly:
1da177e4 2434 */
953bfcd1 2435 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2436 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2437 if (likely(p))
2438 return p;
1da177e4
LT
2439 }
2440
34f971f6 2441 for_each_class(class) {
fb8d4724 2442 p = class->pick_next_task(rq);
dd41f596
IM
2443 if (p)
2444 return p;
dd41f596 2445 }
34f971f6
PZ
2446
2447 BUG(); /* the idle class will always have a runnable task */
dd41f596 2448}
1da177e4 2449
dd41f596 2450/*
c259e01a 2451 * __schedule() is the main scheduler function.
edde96ea
PE
2452 *
2453 * The main means of driving the scheduler and thus entering this function are:
2454 *
2455 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2456 *
2457 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2458 * paths. For example, see arch/x86/entry_64.S.
2459 *
2460 * To drive preemption between tasks, the scheduler sets the flag in timer
2461 * interrupt handler scheduler_tick().
2462 *
2463 * 3. Wakeups don't really cause entry into schedule(). They add a
2464 * task to the run-queue and that's it.
2465 *
2466 * Now, if the new task added to the run-queue preempts the current
2467 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2468 * called on the nearest possible occasion:
2469 *
2470 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2471 *
2472 * - in syscall or exception context, at the next outmost
2473 * preempt_enable(). (this might be as soon as the wake_up()'s
2474 * spin_unlock()!)
2475 *
2476 * - in IRQ context, return from interrupt-handler to
2477 * preemptible context
2478 *
2479 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2480 * then at the next:
2481 *
2482 * - cond_resched() call
2483 * - explicit schedule() call
2484 * - return from syscall or exception to user-space
2485 * - return from interrupt-handler to user-space
dd41f596 2486 */
c259e01a 2487static void __sched __schedule(void)
dd41f596
IM
2488{
2489 struct task_struct *prev, *next;
67ca7bde 2490 unsigned long *switch_count;
dd41f596 2491 struct rq *rq;
31656519 2492 int cpu;
dd41f596 2493
ff743345
PZ
2494need_resched:
2495 preempt_disable();
dd41f596
IM
2496 cpu = smp_processor_id();
2497 rq = cpu_rq(cpu);
25502a6c 2498 rcu_note_context_switch(cpu);
dd41f596 2499 prev = rq->curr;
dd41f596 2500
dd41f596 2501 schedule_debug(prev);
1da177e4 2502
31656519 2503 if (sched_feat(HRTICK))
f333fdc9 2504 hrtick_clear(rq);
8f4d37ec 2505
e0acd0a6
ON
2506 /*
2507 * Make sure that signal_pending_state()->signal_pending() below
2508 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2509 * done by the caller to avoid the race with signal_wake_up().
2510 */
2511 smp_mb__before_spinlock();
05fa785c 2512 raw_spin_lock_irq(&rq->lock);
1da177e4 2513
246d86b5 2514 switch_count = &prev->nivcsw;
1da177e4 2515 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2516 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2517 prev->state = TASK_RUNNING;
21aa9af0 2518 } else {
2acca55e
PZ
2519 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2520 prev->on_rq = 0;
2521
21aa9af0 2522 /*
2acca55e
PZ
2523 * If a worker went to sleep, notify and ask workqueue
2524 * whether it wants to wake up a task to maintain
2525 * concurrency.
21aa9af0
TH
2526 */
2527 if (prev->flags & PF_WQ_WORKER) {
2528 struct task_struct *to_wakeup;
2529
2530 to_wakeup = wq_worker_sleeping(prev, cpu);
2531 if (to_wakeup)
2532 try_to_wake_up_local(to_wakeup);
2533 }
21aa9af0 2534 }
dd41f596 2535 switch_count = &prev->nvcsw;
1da177e4
LT
2536 }
2537
3f029d3c 2538 pre_schedule(rq, prev);
f65eda4f 2539
dd41f596 2540 if (unlikely(!rq->nr_running))
1da177e4 2541 idle_balance(cpu, rq);
1da177e4 2542
df1c99d4 2543 put_prev_task(rq, prev);
b67802ea 2544 next = pick_next_task(rq);
f26f9aff 2545 clear_tsk_need_resched(prev);
f27dde8d 2546 clear_preempt_need_resched();
f26f9aff 2547 rq->skip_clock_update = 0;
1da177e4 2548
1da177e4 2549 if (likely(prev != next)) {
1da177e4
LT
2550 rq->nr_switches++;
2551 rq->curr = next;
2552 ++*switch_count;
2553
dd41f596 2554 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2555 /*
246d86b5
ON
2556 * The context switch have flipped the stack from under us
2557 * and restored the local variables which were saved when
2558 * this task called schedule() in the past. prev == current
2559 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2560 */
2561 cpu = smp_processor_id();
2562 rq = cpu_rq(cpu);
1da177e4 2563 } else
05fa785c 2564 raw_spin_unlock_irq(&rq->lock);
1da177e4 2565
3f029d3c 2566 post_schedule(rq);
1da177e4 2567
ba74c144 2568 sched_preempt_enable_no_resched();
ff743345 2569 if (need_resched())
1da177e4
LT
2570 goto need_resched;
2571}
c259e01a 2572
9c40cef2
TG
2573static inline void sched_submit_work(struct task_struct *tsk)
2574{
3c7d5184 2575 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2576 return;
2577 /*
2578 * If we are going to sleep and we have plugged IO queued,
2579 * make sure to submit it to avoid deadlocks.
2580 */
2581 if (blk_needs_flush_plug(tsk))
2582 blk_schedule_flush_plug(tsk);
2583}
2584
6ebbe7a0 2585asmlinkage void __sched schedule(void)
c259e01a 2586{
9c40cef2
TG
2587 struct task_struct *tsk = current;
2588
2589 sched_submit_work(tsk);
c259e01a
TG
2590 __schedule();
2591}
1da177e4
LT
2592EXPORT_SYMBOL(schedule);
2593
91d1aa43 2594#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2595asmlinkage void __sched schedule_user(void)
2596{
2597 /*
2598 * If we come here after a random call to set_need_resched(),
2599 * or we have been woken up remotely but the IPI has not yet arrived,
2600 * we haven't yet exited the RCU idle mode. Do it here manually until
2601 * we find a better solution.
2602 */
91d1aa43 2603 user_exit();
20ab65e3 2604 schedule();
91d1aa43 2605 user_enter();
20ab65e3
FW
2606}
2607#endif
2608
c5491ea7
TG
2609/**
2610 * schedule_preempt_disabled - called with preemption disabled
2611 *
2612 * Returns with preemption disabled. Note: preempt_count must be 1
2613 */
2614void __sched schedule_preempt_disabled(void)
2615{
ba74c144 2616 sched_preempt_enable_no_resched();
c5491ea7
TG
2617 schedule();
2618 preempt_disable();
2619}
2620
1da177e4
LT
2621#ifdef CONFIG_PREEMPT
2622/*
2ed6e34f 2623 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2624 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2625 * occur there and call schedule directly.
2626 */
d1f74e20 2627asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2628{
1da177e4
LT
2629 /*
2630 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2631 * we do not want to preempt the current task. Just return..
1da177e4 2632 */
fbb00b56 2633 if (likely(!preemptible()))
1da177e4
LT
2634 return;
2635
3a5c359a 2636 do {
bdb43806 2637 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2638 __schedule();
bdb43806 2639 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2640
3a5c359a
AK
2641 /*
2642 * Check again in case we missed a preemption opportunity
2643 * between schedule and now.
2644 */
2645 barrier();
5ed0cec0 2646 } while (need_resched());
1da177e4 2647}
1da177e4
LT
2648EXPORT_SYMBOL(preempt_schedule);
2649
2650/*
2ed6e34f 2651 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2652 * off of irq context.
2653 * Note, that this is called and return with irqs disabled. This will
2654 * protect us against recursive calling from irq.
2655 */
2656asmlinkage void __sched preempt_schedule_irq(void)
2657{
b22366cd 2658 enum ctx_state prev_state;
6478d880 2659
2ed6e34f 2660 /* Catch callers which need to be fixed */
f27dde8d 2661 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2662
b22366cd
FW
2663 prev_state = exception_enter();
2664
3a5c359a 2665 do {
bdb43806 2666 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2667 local_irq_enable();
c259e01a 2668 __schedule();
3a5c359a 2669 local_irq_disable();
bdb43806 2670 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2671
3a5c359a
AK
2672 /*
2673 * Check again in case we missed a preemption opportunity
2674 * between schedule and now.
2675 */
2676 barrier();
5ed0cec0 2677 } while (need_resched());
b22366cd
FW
2678
2679 exception_exit(prev_state);
1da177e4
LT
2680}
2681
2682#endif /* CONFIG_PREEMPT */
2683
63859d4f 2684int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2685 void *key)
1da177e4 2686{
63859d4f 2687 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2688}
1da177e4
LT
2689EXPORT_SYMBOL(default_wake_function);
2690
8cbbe86d
AK
2691static long __sched
2692sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2693{
0fec171c
IM
2694 unsigned long flags;
2695 wait_queue_t wait;
2696
2697 init_waitqueue_entry(&wait, current);
1da177e4 2698
8cbbe86d 2699 __set_current_state(state);
1da177e4 2700
8cbbe86d
AK
2701 spin_lock_irqsave(&q->lock, flags);
2702 __add_wait_queue(q, &wait);
2703 spin_unlock(&q->lock);
2704 timeout = schedule_timeout(timeout);
2705 spin_lock_irq(&q->lock);
2706 __remove_wait_queue(q, &wait);
2707 spin_unlock_irqrestore(&q->lock, flags);
2708
2709 return timeout;
2710}
2711
2712void __sched interruptible_sleep_on(wait_queue_head_t *q)
2713{
2714 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2715}
1da177e4
LT
2716EXPORT_SYMBOL(interruptible_sleep_on);
2717
0fec171c 2718long __sched
95cdf3b7 2719interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2720{
8cbbe86d 2721 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2722}
1da177e4
LT
2723EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2724
0fec171c 2725void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2726{
8cbbe86d 2727 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2728}
1da177e4
LT
2729EXPORT_SYMBOL(sleep_on);
2730
0fec171c 2731long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2732{
8cbbe86d 2733 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2734}
1da177e4
LT
2735EXPORT_SYMBOL(sleep_on_timeout);
2736
b29739f9
IM
2737#ifdef CONFIG_RT_MUTEXES
2738
2739/*
2740 * rt_mutex_setprio - set the current priority of a task
2741 * @p: task
2742 * @prio: prio value (kernel-internal form)
2743 *
2744 * This function changes the 'effective' priority of a task. It does
2745 * not touch ->normal_prio like __setscheduler().
2746 *
2747 * Used by the rt_mutex code to implement priority inheritance logic.
2748 */
36c8b586 2749void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2750{
83b699ed 2751 int oldprio, on_rq, running;
70b97a7f 2752 struct rq *rq;
83ab0aa0 2753 const struct sched_class *prev_class;
b29739f9
IM
2754
2755 BUG_ON(prio < 0 || prio > MAX_PRIO);
2756
0122ec5b 2757 rq = __task_rq_lock(p);
b29739f9 2758
1c4dd99b
TG
2759 /*
2760 * Idle task boosting is a nono in general. There is one
2761 * exception, when PREEMPT_RT and NOHZ is active:
2762 *
2763 * The idle task calls get_next_timer_interrupt() and holds
2764 * the timer wheel base->lock on the CPU and another CPU wants
2765 * to access the timer (probably to cancel it). We can safely
2766 * ignore the boosting request, as the idle CPU runs this code
2767 * with interrupts disabled and will complete the lock
2768 * protected section without being interrupted. So there is no
2769 * real need to boost.
2770 */
2771 if (unlikely(p == rq->idle)) {
2772 WARN_ON(p != rq->curr);
2773 WARN_ON(p->pi_blocked_on);
2774 goto out_unlock;
2775 }
2776
a8027073 2777 trace_sched_pi_setprio(p, prio);
d5f9f942 2778 oldprio = p->prio;
83ab0aa0 2779 prev_class = p->sched_class;
fd2f4419 2780 on_rq = p->on_rq;
051a1d1a 2781 running = task_current(rq, p);
0e1f3483 2782 if (on_rq)
69be72c1 2783 dequeue_task(rq, p, 0);
0e1f3483
HS
2784 if (running)
2785 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
2786
2787 if (rt_prio(prio))
2788 p->sched_class = &rt_sched_class;
2789 else
2790 p->sched_class = &fair_sched_class;
2791
b29739f9
IM
2792 p->prio = prio;
2793
0e1f3483
HS
2794 if (running)
2795 p->sched_class->set_curr_task(rq);
da7a735e 2796 if (on_rq)
371fd7e7 2797 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 2798
da7a735e 2799 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2800out_unlock:
0122ec5b 2801 __task_rq_unlock(rq);
b29739f9 2802}
b29739f9 2803#endif
36c8b586 2804void set_user_nice(struct task_struct *p, long nice)
1da177e4 2805{
dd41f596 2806 int old_prio, delta, on_rq;
1da177e4 2807 unsigned long flags;
70b97a7f 2808 struct rq *rq;
1da177e4
LT
2809
2810 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2811 return;
2812 /*
2813 * We have to be careful, if called from sys_setpriority(),
2814 * the task might be in the middle of scheduling on another CPU.
2815 */
2816 rq = task_rq_lock(p, &flags);
2817 /*
2818 * The RT priorities are set via sched_setscheduler(), but we still
2819 * allow the 'normal' nice value to be set - but as expected
2820 * it wont have any effect on scheduling until the task is
dd41f596 2821 * SCHED_FIFO/SCHED_RR:
1da177e4 2822 */
e05606d3 2823 if (task_has_rt_policy(p)) {
1da177e4
LT
2824 p->static_prio = NICE_TO_PRIO(nice);
2825 goto out_unlock;
2826 }
fd2f4419 2827 on_rq = p->on_rq;
c09595f6 2828 if (on_rq)
69be72c1 2829 dequeue_task(rq, p, 0);
1da177e4 2830
1da177e4 2831 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 2832 set_load_weight(p);
b29739f9
IM
2833 old_prio = p->prio;
2834 p->prio = effective_prio(p);
2835 delta = p->prio - old_prio;
1da177e4 2836
dd41f596 2837 if (on_rq) {
371fd7e7 2838 enqueue_task(rq, p, 0);
1da177e4 2839 /*
d5f9f942
AM
2840 * If the task increased its priority or is running and
2841 * lowered its priority, then reschedule its CPU:
1da177e4 2842 */
d5f9f942 2843 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
2844 resched_task(rq->curr);
2845 }
2846out_unlock:
0122ec5b 2847 task_rq_unlock(rq, p, &flags);
1da177e4 2848}
1da177e4
LT
2849EXPORT_SYMBOL(set_user_nice);
2850
e43379f1
MM
2851/*
2852 * can_nice - check if a task can reduce its nice value
2853 * @p: task
2854 * @nice: nice value
2855 */
36c8b586 2856int can_nice(const struct task_struct *p, const int nice)
e43379f1 2857{
024f4747
MM
2858 /* convert nice value [19,-20] to rlimit style value [1,40] */
2859 int nice_rlim = 20 - nice;
48f24c4d 2860
78d7d407 2861 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
2862 capable(CAP_SYS_NICE));
2863}
2864
1da177e4
LT
2865#ifdef __ARCH_WANT_SYS_NICE
2866
2867/*
2868 * sys_nice - change the priority of the current process.
2869 * @increment: priority increment
2870 *
2871 * sys_setpriority is a more generic, but much slower function that
2872 * does similar things.
2873 */
5add95d4 2874SYSCALL_DEFINE1(nice, int, increment)
1da177e4 2875{
48f24c4d 2876 long nice, retval;
1da177e4
LT
2877
2878 /*
2879 * Setpriority might change our priority at the same moment.
2880 * We don't have to worry. Conceptually one call occurs first
2881 * and we have a single winner.
2882 */
e43379f1
MM
2883 if (increment < -40)
2884 increment = -40;
1da177e4
LT
2885 if (increment > 40)
2886 increment = 40;
2887
2b8f836f 2888 nice = TASK_NICE(current) + increment;
1da177e4
LT
2889 if (nice < -20)
2890 nice = -20;
2891 if (nice > 19)
2892 nice = 19;
2893
e43379f1
MM
2894 if (increment < 0 && !can_nice(current, nice))
2895 return -EPERM;
2896
1da177e4
LT
2897 retval = security_task_setnice(current, nice);
2898 if (retval)
2899 return retval;
2900
2901 set_user_nice(current, nice);
2902 return 0;
2903}
2904
2905#endif
2906
2907/**
2908 * task_prio - return the priority value of a given task.
2909 * @p: the task in question.
2910 *
e69f6186 2911 * Return: The priority value as seen by users in /proc.
1da177e4
LT
2912 * RT tasks are offset by -200. Normal tasks are centered
2913 * around 0, value goes from -16 to +15.
2914 */
36c8b586 2915int task_prio(const struct task_struct *p)
1da177e4
LT
2916{
2917 return p->prio - MAX_RT_PRIO;
2918}
2919
2920/**
2921 * task_nice - return the nice value of a given task.
2922 * @p: the task in question.
e69f6186
YB
2923 *
2924 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 2925 */
36c8b586 2926int task_nice(const struct task_struct *p)
1da177e4
LT
2927{
2928 return TASK_NICE(p);
2929}
150d8bed 2930EXPORT_SYMBOL(task_nice);
1da177e4
LT
2931
2932/**
2933 * idle_cpu - is a given cpu idle currently?
2934 * @cpu: the processor in question.
e69f6186
YB
2935 *
2936 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
2937 */
2938int idle_cpu(int cpu)
2939{
908a3283
TG
2940 struct rq *rq = cpu_rq(cpu);
2941
2942 if (rq->curr != rq->idle)
2943 return 0;
2944
2945 if (rq->nr_running)
2946 return 0;
2947
2948#ifdef CONFIG_SMP
2949 if (!llist_empty(&rq->wake_list))
2950 return 0;
2951#endif
2952
2953 return 1;
1da177e4
LT
2954}
2955
1da177e4
LT
2956/**
2957 * idle_task - return the idle task for a given cpu.
2958 * @cpu: the processor in question.
e69f6186
YB
2959 *
2960 * Return: The idle task for the cpu @cpu.
1da177e4 2961 */
36c8b586 2962struct task_struct *idle_task(int cpu)
1da177e4
LT
2963{
2964 return cpu_rq(cpu)->idle;
2965}
2966
2967/**
2968 * find_process_by_pid - find a process with a matching PID value.
2969 * @pid: the pid in question.
e69f6186
YB
2970 *
2971 * The task of @pid, if found. %NULL otherwise.
1da177e4 2972 */
a9957449 2973static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 2974{
228ebcbe 2975 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
2976}
2977
2978/* Actually do priority change: must hold rq lock. */
dd41f596
IM
2979static void
2980__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 2981{
1da177e4
LT
2982 p->policy = policy;
2983 p->rt_priority = prio;
b29739f9
IM
2984 p->normal_prio = normal_prio(p);
2985 /* we are holding p->pi_lock already */
2986 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
2987 if (rt_prio(p->prio))
2988 p->sched_class = &rt_sched_class;
2989 else
2990 p->sched_class = &fair_sched_class;
2dd73a4f 2991 set_load_weight(p);
1da177e4
LT
2992}
2993
c69e8d9c
DH
2994/*
2995 * check the target process has a UID that matches the current process's
2996 */
2997static bool check_same_owner(struct task_struct *p)
2998{
2999 const struct cred *cred = current_cred(), *pcred;
3000 bool match;
3001
3002 rcu_read_lock();
3003 pcred = __task_cred(p);
9c806aa0
EB
3004 match = (uid_eq(cred->euid, pcred->euid) ||
3005 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3006 rcu_read_unlock();
3007 return match;
3008}
3009
961ccddd 3010static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3011 const struct sched_param *param, bool user)
1da177e4 3012{
83b699ed 3013 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3014 unsigned long flags;
83ab0aa0 3015 const struct sched_class *prev_class;
70b97a7f 3016 struct rq *rq;
ca94c442 3017 int reset_on_fork;
1da177e4 3018
66e5393a
SR
3019 /* may grab non-irq protected spin_locks */
3020 BUG_ON(in_interrupt());
1da177e4
LT
3021recheck:
3022 /* double check policy once rq lock held */
ca94c442
LP
3023 if (policy < 0) {
3024 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3025 policy = oldpolicy = p->policy;
ca94c442
LP
3026 } else {
3027 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3028 policy &= ~SCHED_RESET_ON_FORK;
3029
3030 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3031 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3032 policy != SCHED_IDLE)
3033 return -EINVAL;
3034 }
3035
1da177e4
LT
3036 /*
3037 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3038 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3039 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3040 */
3041 if (param->sched_priority < 0 ||
95cdf3b7 3042 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3043 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3044 return -EINVAL;
e05606d3 3045 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3046 return -EINVAL;
3047
37e4ab3f
OC
3048 /*
3049 * Allow unprivileged RT tasks to decrease priority:
3050 */
961ccddd 3051 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3052 if (rt_policy(policy)) {
a44702e8
ON
3053 unsigned long rlim_rtprio =
3054 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3055
3056 /* can't set/change the rt policy */
3057 if (policy != p->policy && !rlim_rtprio)
3058 return -EPERM;
3059
3060 /* can't increase priority */
3061 if (param->sched_priority > p->rt_priority &&
3062 param->sched_priority > rlim_rtprio)
3063 return -EPERM;
3064 }
c02aa73b 3065
dd41f596 3066 /*
c02aa73b
DH
3067 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3068 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3069 */
c02aa73b
DH
3070 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3071 if (!can_nice(p, TASK_NICE(p)))
3072 return -EPERM;
3073 }
5fe1d75f 3074
37e4ab3f 3075 /* can't change other user's priorities */
c69e8d9c 3076 if (!check_same_owner(p))
37e4ab3f 3077 return -EPERM;
ca94c442
LP
3078
3079 /* Normal users shall not reset the sched_reset_on_fork flag */
3080 if (p->sched_reset_on_fork && !reset_on_fork)
3081 return -EPERM;
37e4ab3f 3082 }
1da177e4 3083
725aad24 3084 if (user) {
b0ae1981 3085 retval = security_task_setscheduler(p);
725aad24
JF
3086 if (retval)
3087 return retval;
3088 }
3089
b29739f9
IM
3090 /*
3091 * make sure no PI-waiters arrive (or leave) while we are
3092 * changing the priority of the task:
0122ec5b 3093 *
25985edc 3094 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3095 * runqueue lock must be held.
3096 */
0122ec5b 3097 rq = task_rq_lock(p, &flags);
dc61b1d6 3098
34f971f6
PZ
3099 /*
3100 * Changing the policy of the stop threads its a very bad idea
3101 */
3102 if (p == rq->stop) {
0122ec5b 3103 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3104 return -EINVAL;
3105 }
3106
a51e9198
DF
3107 /*
3108 * If not changing anything there's no need to proceed further:
3109 */
3110 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3111 param->sched_priority == p->rt_priority))) {
45afb173 3112 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3113 return 0;
3114 }
3115
dc61b1d6
PZ
3116#ifdef CONFIG_RT_GROUP_SCHED
3117 if (user) {
3118 /*
3119 * Do not allow realtime tasks into groups that have no runtime
3120 * assigned.
3121 */
3122 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3123 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3124 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3125 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3126 return -EPERM;
3127 }
3128 }
3129#endif
3130
1da177e4
LT
3131 /* recheck policy now with rq lock held */
3132 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3133 policy = oldpolicy = -1;
0122ec5b 3134 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3135 goto recheck;
3136 }
fd2f4419 3137 on_rq = p->on_rq;
051a1d1a 3138 running = task_current(rq, p);
0e1f3483 3139 if (on_rq)
4ca9b72b 3140 dequeue_task(rq, p, 0);
0e1f3483
HS
3141 if (running)
3142 p->sched_class->put_prev_task(rq, p);
f6b53205 3143
ca94c442
LP
3144 p->sched_reset_on_fork = reset_on_fork;
3145
1da177e4 3146 oldprio = p->prio;
83ab0aa0 3147 prev_class = p->sched_class;
dd41f596 3148 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3149
0e1f3483
HS
3150 if (running)
3151 p->sched_class->set_curr_task(rq);
da7a735e 3152 if (on_rq)
4ca9b72b 3153 enqueue_task(rq, p, 0);
cb469845 3154
da7a735e 3155 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3156 task_rq_unlock(rq, p, &flags);
b29739f9 3157
95e02ca9
TG
3158 rt_mutex_adjust_pi(p);
3159
1da177e4
LT
3160 return 0;
3161}
961ccddd
RR
3162
3163/**
3164 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3165 * @p: the task in question.
3166 * @policy: new policy.
3167 * @param: structure containing the new RT priority.
3168 *
e69f6186
YB
3169 * Return: 0 on success. An error code otherwise.
3170 *
961ccddd
RR
3171 * NOTE that the task may be already dead.
3172 */
3173int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3174 const struct sched_param *param)
961ccddd
RR
3175{
3176 return __sched_setscheduler(p, policy, param, true);
3177}
1da177e4
LT
3178EXPORT_SYMBOL_GPL(sched_setscheduler);
3179
961ccddd
RR
3180/**
3181 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3182 * @p: the task in question.
3183 * @policy: new policy.
3184 * @param: structure containing the new RT priority.
3185 *
3186 * Just like sched_setscheduler, only don't bother checking if the
3187 * current context has permission. For example, this is needed in
3188 * stop_machine(): we create temporary high priority worker threads,
3189 * but our caller might not have that capability.
e69f6186
YB
3190 *
3191 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3192 */
3193int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3194 const struct sched_param *param)
961ccddd
RR
3195{
3196 return __sched_setscheduler(p, policy, param, false);
3197}
3198
95cdf3b7
IM
3199static int
3200do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3201{
1da177e4
LT
3202 struct sched_param lparam;
3203 struct task_struct *p;
36c8b586 3204 int retval;
1da177e4
LT
3205
3206 if (!param || pid < 0)
3207 return -EINVAL;
3208 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3209 return -EFAULT;
5fe1d75f
ON
3210
3211 rcu_read_lock();
3212 retval = -ESRCH;
1da177e4 3213 p = find_process_by_pid(pid);
5fe1d75f
ON
3214 if (p != NULL)
3215 retval = sched_setscheduler(p, policy, &lparam);
3216 rcu_read_unlock();
36c8b586 3217
1da177e4
LT
3218 return retval;
3219}
3220
3221/**
3222 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3223 * @pid: the pid in question.
3224 * @policy: new policy.
3225 * @param: structure containing the new RT priority.
e69f6186
YB
3226 *
3227 * Return: 0 on success. An error code otherwise.
1da177e4 3228 */
5add95d4
HC
3229SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3230 struct sched_param __user *, param)
1da177e4 3231{
c21761f1
JB
3232 /* negative values for policy are not valid */
3233 if (policy < 0)
3234 return -EINVAL;
3235
1da177e4
LT
3236 return do_sched_setscheduler(pid, policy, param);
3237}
3238
3239/**
3240 * sys_sched_setparam - set/change the RT priority of a thread
3241 * @pid: the pid in question.
3242 * @param: structure containing the new RT priority.
e69f6186
YB
3243 *
3244 * Return: 0 on success. An error code otherwise.
1da177e4 3245 */
5add95d4 3246SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3247{
3248 return do_sched_setscheduler(pid, -1, param);
3249}
3250
3251/**
3252 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3253 * @pid: the pid in question.
e69f6186
YB
3254 *
3255 * Return: On success, the policy of the thread. Otherwise, a negative error
3256 * code.
1da177e4 3257 */
5add95d4 3258SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3259{
36c8b586 3260 struct task_struct *p;
3a5c359a 3261 int retval;
1da177e4
LT
3262
3263 if (pid < 0)
3a5c359a 3264 return -EINVAL;
1da177e4
LT
3265
3266 retval = -ESRCH;
5fe85be0 3267 rcu_read_lock();
1da177e4
LT
3268 p = find_process_by_pid(pid);
3269 if (p) {
3270 retval = security_task_getscheduler(p);
3271 if (!retval)
ca94c442
LP
3272 retval = p->policy
3273 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3274 }
5fe85be0 3275 rcu_read_unlock();
1da177e4
LT
3276 return retval;
3277}
3278
3279/**
ca94c442 3280 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3281 * @pid: the pid in question.
3282 * @param: structure containing the RT priority.
e69f6186
YB
3283 *
3284 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3285 * code.
1da177e4 3286 */
5add95d4 3287SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3288{
3289 struct sched_param lp;
36c8b586 3290 struct task_struct *p;
3a5c359a 3291 int retval;
1da177e4
LT
3292
3293 if (!param || pid < 0)
3a5c359a 3294 return -EINVAL;
1da177e4 3295
5fe85be0 3296 rcu_read_lock();
1da177e4
LT
3297 p = find_process_by_pid(pid);
3298 retval = -ESRCH;
3299 if (!p)
3300 goto out_unlock;
3301
3302 retval = security_task_getscheduler(p);
3303 if (retval)
3304 goto out_unlock;
3305
3306 lp.sched_priority = p->rt_priority;
5fe85be0 3307 rcu_read_unlock();
1da177e4
LT
3308
3309 /*
3310 * This one might sleep, we cannot do it with a spinlock held ...
3311 */
3312 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3313
1da177e4
LT
3314 return retval;
3315
3316out_unlock:
5fe85be0 3317 rcu_read_unlock();
1da177e4
LT
3318 return retval;
3319}
3320
96f874e2 3321long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3322{
5a16f3d3 3323 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3324 struct task_struct *p;
3325 int retval;
1da177e4 3326
23f5d142 3327 rcu_read_lock();
1da177e4
LT
3328
3329 p = find_process_by_pid(pid);
3330 if (!p) {
23f5d142 3331 rcu_read_unlock();
1da177e4
LT
3332 return -ESRCH;
3333 }
3334
23f5d142 3335 /* Prevent p going away */
1da177e4 3336 get_task_struct(p);
23f5d142 3337 rcu_read_unlock();
1da177e4 3338
14a40ffc
TH
3339 if (p->flags & PF_NO_SETAFFINITY) {
3340 retval = -EINVAL;
3341 goto out_put_task;
3342 }
5a16f3d3
RR
3343 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3344 retval = -ENOMEM;
3345 goto out_put_task;
3346 }
3347 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3348 retval = -ENOMEM;
3349 goto out_free_cpus_allowed;
3350 }
1da177e4 3351 retval = -EPERM;
4c44aaaf
EB
3352 if (!check_same_owner(p)) {
3353 rcu_read_lock();
3354 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3355 rcu_read_unlock();
3356 goto out_unlock;
3357 }
3358 rcu_read_unlock();
3359 }
1da177e4 3360
b0ae1981 3361 retval = security_task_setscheduler(p);
e7834f8f
DQ
3362 if (retval)
3363 goto out_unlock;
3364
5a16f3d3
RR
3365 cpuset_cpus_allowed(p, cpus_allowed);
3366 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3367again:
5a16f3d3 3368 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3369
8707d8b8 3370 if (!retval) {
5a16f3d3
RR
3371 cpuset_cpus_allowed(p, cpus_allowed);
3372 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3373 /*
3374 * We must have raced with a concurrent cpuset
3375 * update. Just reset the cpus_allowed to the
3376 * cpuset's cpus_allowed
3377 */
5a16f3d3 3378 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3379 goto again;
3380 }
3381 }
1da177e4 3382out_unlock:
5a16f3d3
RR
3383 free_cpumask_var(new_mask);
3384out_free_cpus_allowed:
3385 free_cpumask_var(cpus_allowed);
3386out_put_task:
1da177e4 3387 put_task_struct(p);
1da177e4
LT
3388 return retval;
3389}
3390
3391static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3392 struct cpumask *new_mask)
1da177e4 3393{
96f874e2
RR
3394 if (len < cpumask_size())
3395 cpumask_clear(new_mask);
3396 else if (len > cpumask_size())
3397 len = cpumask_size();
3398
1da177e4
LT
3399 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3400}
3401
3402/**
3403 * sys_sched_setaffinity - set the cpu affinity of a process
3404 * @pid: pid of the process
3405 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3406 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3407 *
3408 * Return: 0 on success. An error code otherwise.
1da177e4 3409 */
5add95d4
HC
3410SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3411 unsigned long __user *, user_mask_ptr)
1da177e4 3412{
5a16f3d3 3413 cpumask_var_t new_mask;
1da177e4
LT
3414 int retval;
3415
5a16f3d3
RR
3416 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3417 return -ENOMEM;
1da177e4 3418
5a16f3d3
RR
3419 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3420 if (retval == 0)
3421 retval = sched_setaffinity(pid, new_mask);
3422 free_cpumask_var(new_mask);
3423 return retval;
1da177e4
LT
3424}
3425
96f874e2 3426long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3427{
36c8b586 3428 struct task_struct *p;
31605683 3429 unsigned long flags;
1da177e4 3430 int retval;
1da177e4 3431
23f5d142 3432 rcu_read_lock();
1da177e4
LT
3433
3434 retval = -ESRCH;
3435 p = find_process_by_pid(pid);
3436 if (!p)
3437 goto out_unlock;
3438
e7834f8f
DQ
3439 retval = security_task_getscheduler(p);
3440 if (retval)
3441 goto out_unlock;
3442
013fdb80 3443 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3444 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3445 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3446
3447out_unlock:
23f5d142 3448 rcu_read_unlock();
1da177e4 3449
9531b62f 3450 return retval;
1da177e4
LT
3451}
3452
3453/**
3454 * sys_sched_getaffinity - get the cpu affinity of a process
3455 * @pid: pid of the process
3456 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3457 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3458 *
3459 * Return: 0 on success. An error code otherwise.
1da177e4 3460 */
5add95d4
HC
3461SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3462 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3463{
3464 int ret;
f17c8607 3465 cpumask_var_t mask;
1da177e4 3466
84fba5ec 3467 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3468 return -EINVAL;
3469 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3470 return -EINVAL;
3471
f17c8607
RR
3472 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3473 return -ENOMEM;
1da177e4 3474
f17c8607
RR
3475 ret = sched_getaffinity(pid, mask);
3476 if (ret == 0) {
8bc037fb 3477 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3478
3479 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3480 ret = -EFAULT;
3481 else
cd3d8031 3482 ret = retlen;
f17c8607
RR
3483 }
3484 free_cpumask_var(mask);
1da177e4 3485
f17c8607 3486 return ret;
1da177e4
LT
3487}
3488
3489/**
3490 * sys_sched_yield - yield the current processor to other threads.
3491 *
dd41f596
IM
3492 * This function yields the current CPU to other tasks. If there are no
3493 * other threads running on this CPU then this function will return.
e69f6186
YB
3494 *
3495 * Return: 0.
1da177e4 3496 */
5add95d4 3497SYSCALL_DEFINE0(sched_yield)
1da177e4 3498{
70b97a7f 3499 struct rq *rq = this_rq_lock();
1da177e4 3500
2d72376b 3501 schedstat_inc(rq, yld_count);
4530d7ab 3502 current->sched_class->yield_task(rq);
1da177e4
LT
3503
3504 /*
3505 * Since we are going to call schedule() anyway, there's
3506 * no need to preempt or enable interrupts:
3507 */
3508 __release(rq->lock);
8a25d5de 3509 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3510 do_raw_spin_unlock(&rq->lock);
ba74c144 3511 sched_preempt_enable_no_resched();
1da177e4
LT
3512
3513 schedule();
3514
3515 return 0;
3516}
3517
e7b38404 3518static void __cond_resched(void)
1da177e4 3519{
bdb43806 3520 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 3521 __schedule();
bdb43806 3522 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
3523}
3524
02b67cc3 3525int __sched _cond_resched(void)
1da177e4 3526{
d86ee480 3527 if (should_resched()) {
1da177e4
LT
3528 __cond_resched();
3529 return 1;
3530 }
3531 return 0;
3532}
02b67cc3 3533EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3534
3535/*
613afbf8 3536 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3537 * call schedule, and on return reacquire the lock.
3538 *
41a2d6cf 3539 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3540 * operations here to prevent schedule() from being called twice (once via
3541 * spin_unlock(), once by hand).
3542 */
613afbf8 3543int __cond_resched_lock(spinlock_t *lock)
1da177e4 3544{
d86ee480 3545 int resched = should_resched();
6df3cecb
JK
3546 int ret = 0;
3547
f607c668
PZ
3548 lockdep_assert_held(lock);
3549
95c354fe 3550 if (spin_needbreak(lock) || resched) {
1da177e4 3551 spin_unlock(lock);
d86ee480 3552 if (resched)
95c354fe
NP
3553 __cond_resched();
3554 else
3555 cpu_relax();
6df3cecb 3556 ret = 1;
1da177e4 3557 spin_lock(lock);
1da177e4 3558 }
6df3cecb 3559 return ret;
1da177e4 3560}
613afbf8 3561EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3562
613afbf8 3563int __sched __cond_resched_softirq(void)
1da177e4
LT
3564{
3565 BUG_ON(!in_softirq());
3566
d86ee480 3567 if (should_resched()) {
98d82567 3568 local_bh_enable();
1da177e4
LT
3569 __cond_resched();
3570 local_bh_disable();
3571 return 1;
3572 }
3573 return 0;
3574}
613afbf8 3575EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3576
1da177e4
LT
3577/**
3578 * yield - yield the current processor to other threads.
3579 *
8e3fabfd
PZ
3580 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3581 *
3582 * The scheduler is at all times free to pick the calling task as the most
3583 * eligible task to run, if removing the yield() call from your code breaks
3584 * it, its already broken.
3585 *
3586 * Typical broken usage is:
3587 *
3588 * while (!event)
3589 * yield();
3590 *
3591 * where one assumes that yield() will let 'the other' process run that will
3592 * make event true. If the current task is a SCHED_FIFO task that will never
3593 * happen. Never use yield() as a progress guarantee!!
3594 *
3595 * If you want to use yield() to wait for something, use wait_event().
3596 * If you want to use yield() to be 'nice' for others, use cond_resched().
3597 * If you still want to use yield(), do not!
1da177e4
LT
3598 */
3599void __sched yield(void)
3600{
3601 set_current_state(TASK_RUNNING);
3602 sys_sched_yield();
3603}
1da177e4
LT
3604EXPORT_SYMBOL(yield);
3605
d95f4122
MG
3606/**
3607 * yield_to - yield the current processor to another thread in
3608 * your thread group, or accelerate that thread toward the
3609 * processor it's on.
16addf95
RD
3610 * @p: target task
3611 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3612 *
3613 * It's the caller's job to ensure that the target task struct
3614 * can't go away on us before we can do any checks.
3615 *
e69f6186 3616 * Return:
7b270f60
PZ
3617 * true (>0) if we indeed boosted the target task.
3618 * false (0) if we failed to boost the target.
3619 * -ESRCH if there's no task to yield to.
d95f4122
MG
3620 */
3621bool __sched yield_to(struct task_struct *p, bool preempt)
3622{
3623 struct task_struct *curr = current;
3624 struct rq *rq, *p_rq;
3625 unsigned long flags;
c3c18640 3626 int yielded = 0;
d95f4122
MG
3627
3628 local_irq_save(flags);
3629 rq = this_rq();
3630
3631again:
3632 p_rq = task_rq(p);
7b270f60
PZ
3633 /*
3634 * If we're the only runnable task on the rq and target rq also
3635 * has only one task, there's absolutely no point in yielding.
3636 */
3637 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3638 yielded = -ESRCH;
3639 goto out_irq;
3640 }
3641
d95f4122
MG
3642 double_rq_lock(rq, p_rq);
3643 while (task_rq(p) != p_rq) {
3644 double_rq_unlock(rq, p_rq);
3645 goto again;
3646 }
3647
3648 if (!curr->sched_class->yield_to_task)
7b270f60 3649 goto out_unlock;
d95f4122
MG
3650
3651 if (curr->sched_class != p->sched_class)
7b270f60 3652 goto out_unlock;
d95f4122
MG
3653
3654 if (task_running(p_rq, p) || p->state)
7b270f60 3655 goto out_unlock;
d95f4122
MG
3656
3657 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3658 if (yielded) {
d95f4122 3659 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3660 /*
3661 * Make p's CPU reschedule; pick_next_entity takes care of
3662 * fairness.
3663 */
3664 if (preempt && rq != p_rq)
3665 resched_task(p_rq->curr);
3666 }
d95f4122 3667
7b270f60 3668out_unlock:
d95f4122 3669 double_rq_unlock(rq, p_rq);
7b270f60 3670out_irq:
d95f4122
MG
3671 local_irq_restore(flags);
3672
7b270f60 3673 if (yielded > 0)
d95f4122
MG
3674 schedule();
3675
3676 return yielded;
3677}
3678EXPORT_SYMBOL_GPL(yield_to);
3679
1da177e4 3680/*
41a2d6cf 3681 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3682 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3683 */
3684void __sched io_schedule(void)
3685{
54d35f29 3686 struct rq *rq = raw_rq();
1da177e4 3687
0ff92245 3688 delayacct_blkio_start();
1da177e4 3689 atomic_inc(&rq->nr_iowait);
73c10101 3690 blk_flush_plug(current);
8f0dfc34 3691 current->in_iowait = 1;
1da177e4 3692 schedule();
8f0dfc34 3693 current->in_iowait = 0;
1da177e4 3694 atomic_dec(&rq->nr_iowait);
0ff92245 3695 delayacct_blkio_end();
1da177e4 3696}
1da177e4
LT
3697EXPORT_SYMBOL(io_schedule);
3698
3699long __sched io_schedule_timeout(long timeout)
3700{
54d35f29 3701 struct rq *rq = raw_rq();
1da177e4
LT
3702 long ret;
3703
0ff92245 3704 delayacct_blkio_start();
1da177e4 3705 atomic_inc(&rq->nr_iowait);
73c10101 3706 blk_flush_plug(current);
8f0dfc34 3707 current->in_iowait = 1;
1da177e4 3708 ret = schedule_timeout(timeout);
8f0dfc34 3709 current->in_iowait = 0;
1da177e4 3710 atomic_dec(&rq->nr_iowait);
0ff92245 3711 delayacct_blkio_end();
1da177e4
LT
3712 return ret;
3713}
3714
3715/**
3716 * sys_sched_get_priority_max - return maximum RT priority.
3717 * @policy: scheduling class.
3718 *
e69f6186
YB
3719 * Return: On success, this syscall returns the maximum
3720 * rt_priority that can be used by a given scheduling class.
3721 * On failure, a negative error code is returned.
1da177e4 3722 */
5add95d4 3723SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
3724{
3725 int ret = -EINVAL;
3726
3727 switch (policy) {
3728 case SCHED_FIFO:
3729 case SCHED_RR:
3730 ret = MAX_USER_RT_PRIO-1;
3731 break;
3732 case SCHED_NORMAL:
b0a9499c 3733 case SCHED_BATCH:
dd41f596 3734 case SCHED_IDLE:
1da177e4
LT
3735 ret = 0;
3736 break;
3737 }
3738 return ret;
3739}
3740
3741/**
3742 * sys_sched_get_priority_min - return minimum RT priority.
3743 * @policy: scheduling class.
3744 *
e69f6186
YB
3745 * Return: On success, this syscall returns the minimum
3746 * rt_priority that can be used by a given scheduling class.
3747 * On failure, a negative error code is returned.
1da177e4 3748 */
5add95d4 3749SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
3750{
3751 int ret = -EINVAL;
3752
3753 switch (policy) {
3754 case SCHED_FIFO:
3755 case SCHED_RR:
3756 ret = 1;
3757 break;
3758 case SCHED_NORMAL:
b0a9499c 3759 case SCHED_BATCH:
dd41f596 3760 case SCHED_IDLE:
1da177e4
LT
3761 ret = 0;
3762 }
3763 return ret;
3764}
3765
3766/**
3767 * sys_sched_rr_get_interval - return the default timeslice of a process.
3768 * @pid: pid of the process.
3769 * @interval: userspace pointer to the timeslice value.
3770 *
3771 * this syscall writes the default timeslice value of a given process
3772 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
3773 *
3774 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
3775 * an error code.
1da177e4 3776 */
17da2bd9 3777SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 3778 struct timespec __user *, interval)
1da177e4 3779{
36c8b586 3780 struct task_struct *p;
a4ec24b4 3781 unsigned int time_slice;
dba091b9
TG
3782 unsigned long flags;
3783 struct rq *rq;
3a5c359a 3784 int retval;
1da177e4 3785 struct timespec t;
1da177e4
LT
3786
3787 if (pid < 0)
3a5c359a 3788 return -EINVAL;
1da177e4
LT
3789
3790 retval = -ESRCH;
1a551ae7 3791 rcu_read_lock();
1da177e4
LT
3792 p = find_process_by_pid(pid);
3793 if (!p)
3794 goto out_unlock;
3795
3796 retval = security_task_getscheduler(p);
3797 if (retval)
3798 goto out_unlock;
3799
dba091b9
TG
3800 rq = task_rq_lock(p, &flags);
3801 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 3802 task_rq_unlock(rq, p, &flags);
a4ec24b4 3803
1a551ae7 3804 rcu_read_unlock();
a4ec24b4 3805 jiffies_to_timespec(time_slice, &t);
1da177e4 3806 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 3807 return retval;
3a5c359a 3808
1da177e4 3809out_unlock:
1a551ae7 3810 rcu_read_unlock();
1da177e4
LT
3811 return retval;
3812}
3813
7c731e0a 3814static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 3815
82a1fcb9 3816void sched_show_task(struct task_struct *p)
1da177e4 3817{
1da177e4 3818 unsigned long free = 0;
4e79752c 3819 int ppid;
36c8b586 3820 unsigned state;
1da177e4 3821
1da177e4 3822 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 3823 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 3824 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 3825#if BITS_PER_LONG == 32
1da177e4 3826 if (state == TASK_RUNNING)
3df0fc5b 3827 printk(KERN_CONT " running ");
1da177e4 3828 else
3df0fc5b 3829 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
3830#else
3831 if (state == TASK_RUNNING)
3df0fc5b 3832 printk(KERN_CONT " running task ");
1da177e4 3833 else
3df0fc5b 3834 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
3835#endif
3836#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 3837 free = stack_not_used(p);
1da177e4 3838#endif
4e79752c
PM
3839 rcu_read_lock();
3840 ppid = task_pid_nr(rcu_dereference(p->real_parent));
3841 rcu_read_unlock();
3df0fc5b 3842 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 3843 task_pid_nr(p), ppid,
aa47b7e0 3844 (unsigned long)task_thread_info(p)->flags);
1da177e4 3845
3d1cb205 3846 print_worker_info(KERN_INFO, p);
5fb5e6de 3847 show_stack(p, NULL);
1da177e4
LT
3848}
3849
e59e2ae2 3850void show_state_filter(unsigned long state_filter)
1da177e4 3851{
36c8b586 3852 struct task_struct *g, *p;
1da177e4 3853
4bd77321 3854#if BITS_PER_LONG == 32
3df0fc5b
PZ
3855 printk(KERN_INFO
3856 " task PC stack pid father\n");
1da177e4 3857#else
3df0fc5b
PZ
3858 printk(KERN_INFO
3859 " task PC stack pid father\n");
1da177e4 3860#endif
510f5acc 3861 rcu_read_lock();
1da177e4
LT
3862 do_each_thread(g, p) {
3863 /*
3864 * reset the NMI-timeout, listing all files on a slow
25985edc 3865 * console might take a lot of time:
1da177e4
LT
3866 */
3867 touch_nmi_watchdog();
39bc89fd 3868 if (!state_filter || (p->state & state_filter))
82a1fcb9 3869 sched_show_task(p);
1da177e4
LT
3870 } while_each_thread(g, p);
3871
04c9167f
JF
3872 touch_all_softlockup_watchdogs();
3873
dd41f596
IM
3874#ifdef CONFIG_SCHED_DEBUG
3875 sysrq_sched_debug_show();
3876#endif
510f5acc 3877 rcu_read_unlock();
e59e2ae2
IM
3878 /*
3879 * Only show locks if all tasks are dumped:
3880 */
93335a21 3881 if (!state_filter)
e59e2ae2 3882 debug_show_all_locks();
1da177e4
LT
3883}
3884
0db0628d 3885void init_idle_bootup_task(struct task_struct *idle)
1df21055 3886{
dd41f596 3887 idle->sched_class = &idle_sched_class;
1df21055
IM
3888}
3889
f340c0d1
IM
3890/**
3891 * init_idle - set up an idle thread for a given CPU
3892 * @idle: task in question
3893 * @cpu: cpu the idle task belongs to
3894 *
3895 * NOTE: this function does not set the idle thread's NEED_RESCHED
3896 * flag, to make booting more robust.
3897 */
0db0628d 3898void init_idle(struct task_struct *idle, int cpu)
1da177e4 3899{
70b97a7f 3900 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
3901 unsigned long flags;
3902
05fa785c 3903 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 3904
5e1576ed 3905 __sched_fork(0, idle);
06b83b5f 3906 idle->state = TASK_RUNNING;
dd41f596
IM
3907 idle->se.exec_start = sched_clock();
3908
1e1b6c51 3909 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
3910 /*
3911 * We're having a chicken and egg problem, even though we are
3912 * holding rq->lock, the cpu isn't yet set to this cpu so the
3913 * lockdep check in task_group() will fail.
3914 *
3915 * Similar case to sched_fork(). / Alternatively we could
3916 * use task_rq_lock() here and obtain the other rq->lock.
3917 *
3918 * Silence PROVE_RCU
3919 */
3920 rcu_read_lock();
dd41f596 3921 __set_task_cpu(idle, cpu);
6506cf6c 3922 rcu_read_unlock();
1da177e4 3923
1da177e4 3924 rq->curr = rq->idle = idle;
3ca7a440
PZ
3925#if defined(CONFIG_SMP)
3926 idle->on_cpu = 1;
4866cde0 3927#endif
05fa785c 3928 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
3929
3930 /* Set the preempt count _outside_ the spinlocks! */
01028747 3931 init_idle_preempt_count(idle, cpu);
55cd5340 3932
dd41f596
IM
3933 /*
3934 * The idle tasks have their own, simple scheduling class:
3935 */
3936 idle->sched_class = &idle_sched_class;
868baf07 3937 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 3938 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
3939#if defined(CONFIG_SMP)
3940 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
3941#endif
19978ca6
IM
3942}
3943
1da177e4 3944#ifdef CONFIG_SMP
1e1b6c51
KM
3945void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
3946{
3947 if (p->sched_class && p->sched_class->set_cpus_allowed)
3948 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
3949
3950 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 3951 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
3952}
3953
1da177e4
LT
3954/*
3955 * This is how migration works:
3956 *
969c7921
TH
3957 * 1) we invoke migration_cpu_stop() on the target CPU using
3958 * stop_one_cpu().
3959 * 2) stopper starts to run (implicitly forcing the migrated thread
3960 * off the CPU)
3961 * 3) it checks whether the migrated task is still in the wrong runqueue.
3962 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 3963 * it and puts it into the right queue.
969c7921
TH
3964 * 5) stopper completes and stop_one_cpu() returns and the migration
3965 * is done.
1da177e4
LT
3966 */
3967
3968/*
3969 * Change a given task's CPU affinity. Migrate the thread to a
3970 * proper CPU and schedule it away if the CPU it's executing on
3971 * is removed from the allowed bitmask.
3972 *
3973 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 3974 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
3975 * call is not atomic; no spinlocks may be held.
3976 */
96f874e2 3977int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
3978{
3979 unsigned long flags;
70b97a7f 3980 struct rq *rq;
969c7921 3981 unsigned int dest_cpu;
48f24c4d 3982 int ret = 0;
1da177e4
LT
3983
3984 rq = task_rq_lock(p, &flags);
e2912009 3985
db44fc01
YZ
3986 if (cpumask_equal(&p->cpus_allowed, new_mask))
3987 goto out;
3988
6ad4c188 3989 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
3990 ret = -EINVAL;
3991 goto out;
3992 }
3993
1e1b6c51 3994 do_set_cpus_allowed(p, new_mask);
73fe6aae 3995
1da177e4 3996 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 3997 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
3998 goto out;
3999
969c7921 4000 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4001 if (p->on_rq) {
969c7921 4002 struct migration_arg arg = { p, dest_cpu };
1da177e4 4003 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4004 task_rq_unlock(rq, p, &flags);
969c7921 4005 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4006 tlb_migrate_finish(p->mm);
4007 return 0;
4008 }
4009out:
0122ec5b 4010 task_rq_unlock(rq, p, &flags);
48f24c4d 4011
1da177e4
LT
4012 return ret;
4013}
cd8ba7cd 4014EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4015
4016/*
41a2d6cf 4017 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4018 * this because either it can't run here any more (set_cpus_allowed()
4019 * away from this CPU, or CPU going down), or because we're
4020 * attempting to rebalance this task on exec (sched_exec).
4021 *
4022 * So we race with normal scheduler movements, but that's OK, as long
4023 * as the task is no longer on this CPU.
efc30814
KK
4024 *
4025 * Returns non-zero if task was successfully migrated.
1da177e4 4026 */
efc30814 4027static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4028{
70b97a7f 4029 struct rq *rq_dest, *rq_src;
e2912009 4030 int ret = 0;
1da177e4 4031
e761b772 4032 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4033 return ret;
1da177e4
LT
4034
4035 rq_src = cpu_rq(src_cpu);
4036 rq_dest = cpu_rq(dest_cpu);
4037
0122ec5b 4038 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4039 double_rq_lock(rq_src, rq_dest);
4040 /* Already moved. */
4041 if (task_cpu(p) != src_cpu)
b1e38734 4042 goto done;
1da177e4 4043 /* Affinity changed (again). */
fa17b507 4044 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4045 goto fail;
1da177e4 4046
e2912009
PZ
4047 /*
4048 * If we're not on a rq, the next wake-up will ensure we're
4049 * placed properly.
4050 */
fd2f4419 4051 if (p->on_rq) {
4ca9b72b 4052 dequeue_task(rq_src, p, 0);
e2912009 4053 set_task_cpu(p, dest_cpu);
4ca9b72b 4054 enqueue_task(rq_dest, p, 0);
15afe09b 4055 check_preempt_curr(rq_dest, p, 0);
1da177e4 4056 }
b1e38734 4057done:
efc30814 4058 ret = 1;
b1e38734 4059fail:
1da177e4 4060 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4061 raw_spin_unlock(&p->pi_lock);
efc30814 4062 return ret;
1da177e4
LT
4063}
4064
e6628d5b
MG
4065#ifdef CONFIG_NUMA_BALANCING
4066/* Migrate current task p to target_cpu */
4067int migrate_task_to(struct task_struct *p, int target_cpu)
4068{
4069 struct migration_arg arg = { p, target_cpu };
4070 int curr_cpu = task_cpu(p);
4071
4072 if (curr_cpu == target_cpu)
4073 return 0;
4074
4075 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4076 return -EINVAL;
4077
4078 /* TODO: This is not properly updating schedstats */
4079
4080 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4081}
0ec8aa00
PZ
4082
4083/*
4084 * Requeue a task on a given node and accurately track the number of NUMA
4085 * tasks on the runqueues
4086 */
4087void sched_setnuma(struct task_struct *p, int nid)
4088{
4089 struct rq *rq;
4090 unsigned long flags;
4091 bool on_rq, running;
4092
4093 rq = task_rq_lock(p, &flags);
4094 on_rq = p->on_rq;
4095 running = task_current(rq, p);
4096
4097 if (on_rq)
4098 dequeue_task(rq, p, 0);
4099 if (running)
4100 p->sched_class->put_prev_task(rq, p);
4101
4102 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4103
4104 if (running)
4105 p->sched_class->set_curr_task(rq);
4106 if (on_rq)
4107 enqueue_task(rq, p, 0);
4108 task_rq_unlock(rq, p, &flags);
4109}
e6628d5b
MG
4110#endif
4111
1da177e4 4112/*
969c7921
TH
4113 * migration_cpu_stop - this will be executed by a highprio stopper thread
4114 * and performs thread migration by bumping thread off CPU then
4115 * 'pushing' onto another runqueue.
1da177e4 4116 */
969c7921 4117static int migration_cpu_stop(void *data)
1da177e4 4118{
969c7921 4119 struct migration_arg *arg = data;
f7b4cddc 4120
969c7921
TH
4121 /*
4122 * The original target cpu might have gone down and we might
4123 * be on another cpu but it doesn't matter.
4124 */
f7b4cddc 4125 local_irq_disable();
969c7921 4126 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4127 local_irq_enable();
1da177e4 4128 return 0;
f7b4cddc
ON
4129}
4130
1da177e4 4131#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4132
054b9108 4133/*
48c5ccae
PZ
4134 * Ensures that the idle task is using init_mm right before its cpu goes
4135 * offline.
054b9108 4136 */
48c5ccae 4137void idle_task_exit(void)
1da177e4 4138{
48c5ccae 4139 struct mm_struct *mm = current->active_mm;
e76bd8d9 4140
48c5ccae 4141 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4142
48c5ccae
PZ
4143 if (mm != &init_mm)
4144 switch_mm(mm, &init_mm, current);
4145 mmdrop(mm);
1da177e4
LT
4146}
4147
4148/*
5d180232
PZ
4149 * Since this CPU is going 'away' for a while, fold any nr_active delta
4150 * we might have. Assumes we're called after migrate_tasks() so that the
4151 * nr_active count is stable.
4152 *
4153 * Also see the comment "Global load-average calculations".
1da177e4 4154 */
5d180232 4155static void calc_load_migrate(struct rq *rq)
1da177e4 4156{
5d180232
PZ
4157 long delta = calc_load_fold_active(rq);
4158 if (delta)
4159 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4160}
4161
48f24c4d 4162/*
48c5ccae
PZ
4163 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4164 * try_to_wake_up()->select_task_rq().
4165 *
4166 * Called with rq->lock held even though we'er in stop_machine() and
4167 * there's no concurrency possible, we hold the required locks anyway
4168 * because of lock validation efforts.
1da177e4 4169 */
48c5ccae 4170static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4171{
70b97a7f 4172 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4173 struct task_struct *next, *stop = rq->stop;
4174 int dest_cpu;
1da177e4
LT
4175
4176 /*
48c5ccae
PZ
4177 * Fudge the rq selection such that the below task selection loop
4178 * doesn't get stuck on the currently eligible stop task.
4179 *
4180 * We're currently inside stop_machine() and the rq is either stuck
4181 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4182 * either way we should never end up calling schedule() until we're
4183 * done here.
1da177e4 4184 */
48c5ccae 4185 rq->stop = NULL;
48f24c4d 4186
77bd3970
FW
4187 /*
4188 * put_prev_task() and pick_next_task() sched
4189 * class method both need to have an up-to-date
4190 * value of rq->clock[_task]
4191 */
4192 update_rq_clock(rq);
4193
dd41f596 4194 for ( ; ; ) {
48c5ccae
PZ
4195 /*
4196 * There's this thread running, bail when that's the only
4197 * remaining thread.
4198 */
4199 if (rq->nr_running == 1)
dd41f596 4200 break;
48c5ccae 4201
b67802ea 4202 next = pick_next_task(rq);
48c5ccae 4203 BUG_ON(!next);
79c53799 4204 next->sched_class->put_prev_task(rq, next);
e692ab53 4205
48c5ccae
PZ
4206 /* Find suitable destination for @next, with force if needed. */
4207 dest_cpu = select_fallback_rq(dead_cpu, next);
4208 raw_spin_unlock(&rq->lock);
4209
4210 __migrate_task(next, dead_cpu, dest_cpu);
4211
4212 raw_spin_lock(&rq->lock);
1da177e4 4213 }
dce48a84 4214
48c5ccae 4215 rq->stop = stop;
dce48a84 4216}
48c5ccae 4217
1da177e4
LT
4218#endif /* CONFIG_HOTPLUG_CPU */
4219
e692ab53
NP
4220#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4221
4222static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4223 {
4224 .procname = "sched_domain",
c57baf1e 4225 .mode = 0555,
e0361851 4226 },
56992309 4227 {}
e692ab53
NP
4228};
4229
4230static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4231 {
4232 .procname = "kernel",
c57baf1e 4233 .mode = 0555,
e0361851
AD
4234 .child = sd_ctl_dir,
4235 },
56992309 4236 {}
e692ab53
NP
4237};
4238
4239static struct ctl_table *sd_alloc_ctl_entry(int n)
4240{
4241 struct ctl_table *entry =
5cf9f062 4242 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4243
e692ab53
NP
4244 return entry;
4245}
4246
6382bc90
MM
4247static void sd_free_ctl_entry(struct ctl_table **tablep)
4248{
cd790076 4249 struct ctl_table *entry;
6382bc90 4250
cd790076
MM
4251 /*
4252 * In the intermediate directories, both the child directory and
4253 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4254 * will always be set. In the lowest directory the names are
cd790076
MM
4255 * static strings and all have proc handlers.
4256 */
4257 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4258 if (entry->child)
4259 sd_free_ctl_entry(&entry->child);
cd790076
MM
4260 if (entry->proc_handler == NULL)
4261 kfree(entry->procname);
4262 }
6382bc90
MM
4263
4264 kfree(*tablep);
4265 *tablep = NULL;
4266}
4267
201c373e 4268static int min_load_idx = 0;
fd9b86d3 4269static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4270
e692ab53 4271static void
e0361851 4272set_table_entry(struct ctl_table *entry,
e692ab53 4273 const char *procname, void *data, int maxlen,
201c373e
NK
4274 umode_t mode, proc_handler *proc_handler,
4275 bool load_idx)
e692ab53 4276{
e692ab53
NP
4277 entry->procname = procname;
4278 entry->data = data;
4279 entry->maxlen = maxlen;
4280 entry->mode = mode;
4281 entry->proc_handler = proc_handler;
201c373e
NK
4282
4283 if (load_idx) {
4284 entry->extra1 = &min_load_idx;
4285 entry->extra2 = &max_load_idx;
4286 }
e692ab53
NP
4287}
4288
4289static struct ctl_table *
4290sd_alloc_ctl_domain_table(struct sched_domain *sd)
4291{
a5d8c348 4292 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4293
ad1cdc1d
MM
4294 if (table == NULL)
4295 return NULL;
4296
e0361851 4297 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4298 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4299 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4300 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4301 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4302 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4303 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4304 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4305 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4306 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4307 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4308 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4309 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4310 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4311 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4312 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4313 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4314 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4315 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4316 &sd->cache_nice_tries,
201c373e 4317 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4318 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4319 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4320 set_table_entry(&table[11], "name", sd->name,
201c373e 4321 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4322 /* &table[12] is terminator */
e692ab53
NP
4323
4324 return table;
4325}
4326
be7002e6 4327static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4328{
4329 struct ctl_table *entry, *table;
4330 struct sched_domain *sd;
4331 int domain_num = 0, i;
4332 char buf[32];
4333
4334 for_each_domain(cpu, sd)
4335 domain_num++;
4336 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4337 if (table == NULL)
4338 return NULL;
e692ab53
NP
4339
4340 i = 0;
4341 for_each_domain(cpu, sd) {
4342 snprintf(buf, 32, "domain%d", i);
e692ab53 4343 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4344 entry->mode = 0555;
e692ab53
NP
4345 entry->child = sd_alloc_ctl_domain_table(sd);
4346 entry++;
4347 i++;
4348 }
4349 return table;
4350}
4351
4352static struct ctl_table_header *sd_sysctl_header;
6382bc90 4353static void register_sched_domain_sysctl(void)
e692ab53 4354{
6ad4c188 4355 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4356 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4357 char buf[32];
4358
7378547f
MM
4359 WARN_ON(sd_ctl_dir[0].child);
4360 sd_ctl_dir[0].child = entry;
4361
ad1cdc1d
MM
4362 if (entry == NULL)
4363 return;
4364
6ad4c188 4365 for_each_possible_cpu(i) {
e692ab53 4366 snprintf(buf, 32, "cpu%d", i);
e692ab53 4367 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4368 entry->mode = 0555;
e692ab53 4369 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4370 entry++;
e692ab53 4371 }
7378547f
MM
4372
4373 WARN_ON(sd_sysctl_header);
e692ab53
NP
4374 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4375}
6382bc90 4376
7378547f 4377/* may be called multiple times per register */
6382bc90
MM
4378static void unregister_sched_domain_sysctl(void)
4379{
7378547f
MM
4380 if (sd_sysctl_header)
4381 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4382 sd_sysctl_header = NULL;
7378547f
MM
4383 if (sd_ctl_dir[0].child)
4384 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4385}
e692ab53 4386#else
6382bc90
MM
4387static void register_sched_domain_sysctl(void)
4388{
4389}
4390static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4391{
4392}
4393#endif
4394
1f11eb6a
GH
4395static void set_rq_online(struct rq *rq)
4396{
4397 if (!rq->online) {
4398 const struct sched_class *class;
4399
c6c4927b 4400 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4401 rq->online = 1;
4402
4403 for_each_class(class) {
4404 if (class->rq_online)
4405 class->rq_online(rq);
4406 }
4407 }
4408}
4409
4410static void set_rq_offline(struct rq *rq)
4411{
4412 if (rq->online) {
4413 const struct sched_class *class;
4414
4415 for_each_class(class) {
4416 if (class->rq_offline)
4417 class->rq_offline(rq);
4418 }
4419
c6c4927b 4420 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4421 rq->online = 0;
4422 }
4423}
4424
1da177e4
LT
4425/*
4426 * migration_call - callback that gets triggered when a CPU is added.
4427 * Here we can start up the necessary migration thread for the new CPU.
4428 */
0db0628d 4429static int
48f24c4d 4430migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4431{
48f24c4d 4432 int cpu = (long)hcpu;
1da177e4 4433 unsigned long flags;
969c7921 4434 struct rq *rq = cpu_rq(cpu);
1da177e4 4435
48c5ccae 4436 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4437
1da177e4 4438 case CPU_UP_PREPARE:
a468d389 4439 rq->calc_load_update = calc_load_update;
1da177e4 4440 break;
48f24c4d 4441
1da177e4 4442 case CPU_ONLINE:
1f94ef59 4443 /* Update our root-domain */
05fa785c 4444 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4445 if (rq->rd) {
c6c4927b 4446 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4447
4448 set_rq_online(rq);
1f94ef59 4449 }
05fa785c 4450 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4451 break;
48f24c4d 4452
1da177e4 4453#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4454 case CPU_DYING:
317f3941 4455 sched_ttwu_pending();
57d885fe 4456 /* Update our root-domain */
05fa785c 4457 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4458 if (rq->rd) {
c6c4927b 4459 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4460 set_rq_offline(rq);
57d885fe 4461 }
48c5ccae
PZ
4462 migrate_tasks(cpu);
4463 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4464 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4465 break;
48c5ccae 4466
5d180232 4467 case CPU_DEAD:
f319da0c 4468 calc_load_migrate(rq);
57d885fe 4469 break;
1da177e4
LT
4470#endif
4471 }
49c022e6
PZ
4472
4473 update_max_interval();
4474
1da177e4
LT
4475 return NOTIFY_OK;
4476}
4477
f38b0820
PM
4478/*
4479 * Register at high priority so that task migration (migrate_all_tasks)
4480 * happens before everything else. This has to be lower priority than
cdd6c482 4481 * the notifier in the perf_event subsystem, though.
1da177e4 4482 */
0db0628d 4483static struct notifier_block migration_notifier = {
1da177e4 4484 .notifier_call = migration_call,
50a323b7 4485 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4486};
4487
0db0628d 4488static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4489 unsigned long action, void *hcpu)
4490{
4491 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4492 case CPU_STARTING:
3a101d05
TH
4493 case CPU_DOWN_FAILED:
4494 set_cpu_active((long)hcpu, true);
4495 return NOTIFY_OK;
4496 default:
4497 return NOTIFY_DONE;
4498 }
4499}
4500
0db0628d 4501static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4502 unsigned long action, void *hcpu)
4503{
4504 switch (action & ~CPU_TASKS_FROZEN) {
4505 case CPU_DOWN_PREPARE:
4506 set_cpu_active((long)hcpu, false);
4507 return NOTIFY_OK;
4508 default:
4509 return NOTIFY_DONE;
4510 }
4511}
4512
7babe8db 4513static int __init migration_init(void)
1da177e4
LT
4514{
4515 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4516 int err;
48f24c4d 4517
3a101d05 4518 /* Initialize migration for the boot CPU */
07dccf33
AM
4519 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4520 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4521 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4522 register_cpu_notifier(&migration_notifier);
7babe8db 4523
3a101d05
TH
4524 /* Register cpu active notifiers */
4525 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4526 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4527
a004cd42 4528 return 0;
1da177e4 4529}
7babe8db 4530early_initcall(migration_init);
1da177e4
LT
4531#endif
4532
4533#ifdef CONFIG_SMP
476f3534 4534
4cb98839
PZ
4535static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4536
3e9830dc 4537#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4538
d039ac60 4539static __read_mostly int sched_debug_enabled;
f6630114 4540
d039ac60 4541static int __init sched_debug_setup(char *str)
f6630114 4542{
d039ac60 4543 sched_debug_enabled = 1;
f6630114
MT
4544
4545 return 0;
4546}
d039ac60
PZ
4547early_param("sched_debug", sched_debug_setup);
4548
4549static inline bool sched_debug(void)
4550{
4551 return sched_debug_enabled;
4552}
f6630114 4553
7c16ec58 4554static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4555 struct cpumask *groupmask)
1da177e4 4556{
4dcf6aff 4557 struct sched_group *group = sd->groups;
434d53b0 4558 char str[256];
1da177e4 4559
968ea6d8 4560 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4561 cpumask_clear(groupmask);
4dcf6aff
IM
4562
4563 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4564
4565 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4566 printk("does not load-balance\n");
4dcf6aff 4567 if (sd->parent)
3df0fc5b
PZ
4568 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4569 " has parent");
4dcf6aff 4570 return -1;
41c7ce9a
NP
4571 }
4572
3df0fc5b 4573 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4574
758b2cdc 4575 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4576 printk(KERN_ERR "ERROR: domain->span does not contain "
4577 "CPU%d\n", cpu);
4dcf6aff 4578 }
758b2cdc 4579 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4580 printk(KERN_ERR "ERROR: domain->groups does not contain"
4581 " CPU%d\n", cpu);
4dcf6aff 4582 }
1da177e4 4583
4dcf6aff 4584 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4585 do {
4dcf6aff 4586 if (!group) {
3df0fc5b
PZ
4587 printk("\n");
4588 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4589 break;
4590 }
4591
c3decf0d
PZ
4592 /*
4593 * Even though we initialize ->power to something semi-sane,
4594 * we leave power_orig unset. This allows us to detect if
4595 * domain iteration is still funny without causing /0 traps.
4596 */
4597 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4598 printk(KERN_CONT "\n");
4599 printk(KERN_ERR "ERROR: domain->cpu_power not "
4600 "set\n");
4dcf6aff
IM
4601 break;
4602 }
1da177e4 4603
758b2cdc 4604 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4605 printk(KERN_CONT "\n");
4606 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4607 break;
4608 }
1da177e4 4609
cb83b629
PZ
4610 if (!(sd->flags & SD_OVERLAP) &&
4611 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4612 printk(KERN_CONT "\n");
4613 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4614 break;
4615 }
1da177e4 4616
758b2cdc 4617 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4618
968ea6d8 4619 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4620
3df0fc5b 4621 printk(KERN_CONT " %s", str);
9c3f75cb 4622 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4623 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4624 group->sgp->power);
381512cf 4625 }
1da177e4 4626
4dcf6aff
IM
4627 group = group->next;
4628 } while (group != sd->groups);
3df0fc5b 4629 printk(KERN_CONT "\n");
1da177e4 4630
758b2cdc 4631 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4632 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4633
758b2cdc
RR
4634 if (sd->parent &&
4635 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4636 printk(KERN_ERR "ERROR: parent span is not a superset "
4637 "of domain->span\n");
4dcf6aff
IM
4638 return 0;
4639}
1da177e4 4640
4dcf6aff
IM
4641static void sched_domain_debug(struct sched_domain *sd, int cpu)
4642{
4643 int level = 0;
1da177e4 4644
d039ac60 4645 if (!sched_debug_enabled)
f6630114
MT
4646 return;
4647
4dcf6aff
IM
4648 if (!sd) {
4649 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4650 return;
4651 }
1da177e4 4652
4dcf6aff
IM
4653 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4654
4655 for (;;) {
4cb98839 4656 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4657 break;
1da177e4
LT
4658 level++;
4659 sd = sd->parent;
33859f7f 4660 if (!sd)
4dcf6aff
IM
4661 break;
4662 }
1da177e4 4663}
6d6bc0ad 4664#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4665# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4666static inline bool sched_debug(void)
4667{
4668 return false;
4669}
6d6bc0ad 4670#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4671
1a20ff27 4672static int sd_degenerate(struct sched_domain *sd)
245af2c7 4673{
758b2cdc 4674 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4675 return 1;
4676
4677 /* Following flags need at least 2 groups */
4678 if (sd->flags & (SD_LOAD_BALANCE |
4679 SD_BALANCE_NEWIDLE |
4680 SD_BALANCE_FORK |
89c4710e
SS
4681 SD_BALANCE_EXEC |
4682 SD_SHARE_CPUPOWER |
4683 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4684 if (sd->groups != sd->groups->next)
4685 return 0;
4686 }
4687
4688 /* Following flags don't use groups */
c88d5910 4689 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4690 return 0;
4691
4692 return 1;
4693}
4694
48f24c4d
IM
4695static int
4696sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4697{
4698 unsigned long cflags = sd->flags, pflags = parent->flags;
4699
4700 if (sd_degenerate(parent))
4701 return 1;
4702
758b2cdc 4703 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4704 return 0;
4705
245af2c7
SS
4706 /* Flags needing groups don't count if only 1 group in parent */
4707 if (parent->groups == parent->groups->next) {
4708 pflags &= ~(SD_LOAD_BALANCE |
4709 SD_BALANCE_NEWIDLE |
4710 SD_BALANCE_FORK |
89c4710e
SS
4711 SD_BALANCE_EXEC |
4712 SD_SHARE_CPUPOWER |
10866e62
PZ
4713 SD_SHARE_PKG_RESOURCES |
4714 SD_PREFER_SIBLING);
5436499e
KC
4715 if (nr_node_ids == 1)
4716 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4717 }
4718 if (~cflags & pflags)
4719 return 0;
4720
4721 return 1;
4722}
4723
dce840a0 4724static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4725{
dce840a0 4726 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4727
68e74568 4728 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4729 free_cpumask_var(rd->rto_mask);
4730 free_cpumask_var(rd->online);
4731 free_cpumask_var(rd->span);
4732 kfree(rd);
4733}
4734
57d885fe
GH
4735static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4736{
a0490fa3 4737 struct root_domain *old_rd = NULL;
57d885fe 4738 unsigned long flags;
57d885fe 4739
05fa785c 4740 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4741
4742 if (rq->rd) {
a0490fa3 4743 old_rd = rq->rd;
57d885fe 4744
c6c4927b 4745 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4746 set_rq_offline(rq);
57d885fe 4747
c6c4927b 4748 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4749
a0490fa3
IM
4750 /*
4751 * If we dont want to free the old_rt yet then
4752 * set old_rd to NULL to skip the freeing later
4753 * in this function:
4754 */
4755 if (!atomic_dec_and_test(&old_rd->refcount))
4756 old_rd = NULL;
57d885fe
GH
4757 }
4758
4759 atomic_inc(&rd->refcount);
4760 rq->rd = rd;
4761
c6c4927b 4762 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 4763 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 4764 set_rq_online(rq);
57d885fe 4765
05fa785c 4766 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
4767
4768 if (old_rd)
dce840a0 4769 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
4770}
4771
68c38fc3 4772static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
4773{
4774 memset(rd, 0, sizeof(*rd));
4775
68c38fc3 4776 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 4777 goto out;
68c38fc3 4778 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 4779 goto free_span;
68c38fc3 4780 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 4781 goto free_online;
6e0534f2 4782
68c38fc3 4783 if (cpupri_init(&rd->cpupri) != 0)
68e74568 4784 goto free_rto_mask;
c6c4927b 4785 return 0;
6e0534f2 4786
68e74568
RR
4787free_rto_mask:
4788 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
4789free_online:
4790 free_cpumask_var(rd->online);
4791free_span:
4792 free_cpumask_var(rd->span);
0c910d28 4793out:
c6c4927b 4794 return -ENOMEM;
57d885fe
GH
4795}
4796
029632fb
PZ
4797/*
4798 * By default the system creates a single root-domain with all cpus as
4799 * members (mimicking the global state we have today).
4800 */
4801struct root_domain def_root_domain;
4802
57d885fe
GH
4803static void init_defrootdomain(void)
4804{
68c38fc3 4805 init_rootdomain(&def_root_domain);
c6c4927b 4806
57d885fe
GH
4807 atomic_set(&def_root_domain.refcount, 1);
4808}
4809
dc938520 4810static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
4811{
4812 struct root_domain *rd;
4813
4814 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
4815 if (!rd)
4816 return NULL;
4817
68c38fc3 4818 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
4819 kfree(rd);
4820 return NULL;
4821 }
57d885fe
GH
4822
4823 return rd;
4824}
4825
e3589f6c
PZ
4826static void free_sched_groups(struct sched_group *sg, int free_sgp)
4827{
4828 struct sched_group *tmp, *first;
4829
4830 if (!sg)
4831 return;
4832
4833 first = sg;
4834 do {
4835 tmp = sg->next;
4836
4837 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
4838 kfree(sg->sgp);
4839
4840 kfree(sg);
4841 sg = tmp;
4842 } while (sg != first);
4843}
4844
dce840a0
PZ
4845static void free_sched_domain(struct rcu_head *rcu)
4846{
4847 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
4848
4849 /*
4850 * If its an overlapping domain it has private groups, iterate and
4851 * nuke them all.
4852 */
4853 if (sd->flags & SD_OVERLAP) {
4854 free_sched_groups(sd->groups, 1);
4855 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 4856 kfree(sd->groups->sgp);
dce840a0 4857 kfree(sd->groups);
9c3f75cb 4858 }
dce840a0
PZ
4859 kfree(sd);
4860}
4861
4862static void destroy_sched_domain(struct sched_domain *sd, int cpu)
4863{
4864 call_rcu(&sd->rcu, free_sched_domain);
4865}
4866
4867static void destroy_sched_domains(struct sched_domain *sd, int cpu)
4868{
4869 for (; sd; sd = sd->parent)
4870 destroy_sched_domain(sd, cpu);
4871}
4872
518cd623
PZ
4873/*
4874 * Keep a special pointer to the highest sched_domain that has
4875 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
4876 * allows us to avoid some pointer chasing select_idle_sibling().
4877 *
4878 * Also keep a unique ID per domain (we use the first cpu number in
4879 * the cpumask of the domain), this allows us to quickly tell if
39be3501 4880 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
4881 */
4882DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 4883DEFINE_PER_CPU(int, sd_llc_size);
518cd623 4884DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 4885DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
4886DEFINE_PER_CPU(struct sched_domain *, sd_busy);
4887DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
4888
4889static void update_top_cache_domain(int cpu)
4890{
4891 struct sched_domain *sd;
4892 int id = cpu;
7d9ffa89 4893 int size = 1;
518cd623
PZ
4894
4895 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 4896 if (sd) {
518cd623 4897 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 4898 size = cpumask_weight(sched_domain_span(sd));
37dc6b50 4899 rcu_assign_pointer(per_cpu(sd_busy, cpu), sd->parent);
7d9ffa89 4900 }
518cd623
PZ
4901
4902 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 4903 per_cpu(sd_llc_size, cpu) = size;
518cd623 4904 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
4905
4906 sd = lowest_flag_domain(cpu, SD_NUMA);
4907 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
4908
4909 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
4910 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
4911}
4912
1da177e4 4913/*
0eab9146 4914 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
4915 * hold the hotplug lock.
4916 */
0eab9146
IM
4917static void
4918cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 4919{
70b97a7f 4920 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
4921 struct sched_domain *tmp;
4922
4923 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 4924 for (tmp = sd; tmp; ) {
245af2c7
SS
4925 struct sched_domain *parent = tmp->parent;
4926 if (!parent)
4927 break;
f29c9b1c 4928
1a848870 4929 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 4930 tmp->parent = parent->parent;
1a848870
SS
4931 if (parent->parent)
4932 parent->parent->child = tmp;
10866e62
PZ
4933 /*
4934 * Transfer SD_PREFER_SIBLING down in case of a
4935 * degenerate parent; the spans match for this
4936 * so the property transfers.
4937 */
4938 if (parent->flags & SD_PREFER_SIBLING)
4939 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 4940 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
4941 } else
4942 tmp = tmp->parent;
245af2c7
SS
4943 }
4944
1a848870 4945 if (sd && sd_degenerate(sd)) {
dce840a0 4946 tmp = sd;
245af2c7 4947 sd = sd->parent;
dce840a0 4948 destroy_sched_domain(tmp, cpu);
1a848870
SS
4949 if (sd)
4950 sd->child = NULL;
4951 }
1da177e4 4952
4cb98839 4953 sched_domain_debug(sd, cpu);
1da177e4 4954
57d885fe 4955 rq_attach_root(rq, rd);
dce840a0 4956 tmp = rq->sd;
674311d5 4957 rcu_assign_pointer(rq->sd, sd);
dce840a0 4958 destroy_sched_domains(tmp, cpu);
518cd623
PZ
4959
4960 update_top_cache_domain(cpu);
1da177e4
LT
4961}
4962
4963/* cpus with isolated domains */
dcc30a35 4964static cpumask_var_t cpu_isolated_map;
1da177e4
LT
4965
4966/* Setup the mask of cpus configured for isolated domains */
4967static int __init isolated_cpu_setup(char *str)
4968{
bdddd296 4969 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 4970 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
4971 return 1;
4972}
4973
8927f494 4974__setup("isolcpus=", isolated_cpu_setup);
1da177e4 4975
d3081f52
PZ
4976static const struct cpumask *cpu_cpu_mask(int cpu)
4977{
4978 return cpumask_of_node(cpu_to_node(cpu));
4979}
4980
dce840a0
PZ
4981struct sd_data {
4982 struct sched_domain **__percpu sd;
4983 struct sched_group **__percpu sg;
9c3f75cb 4984 struct sched_group_power **__percpu sgp;
dce840a0
PZ
4985};
4986
49a02c51 4987struct s_data {
21d42ccf 4988 struct sched_domain ** __percpu sd;
49a02c51
AH
4989 struct root_domain *rd;
4990};
4991
2109b99e 4992enum s_alloc {
2109b99e 4993 sa_rootdomain,
21d42ccf 4994 sa_sd,
dce840a0 4995 sa_sd_storage,
2109b99e
AH
4996 sa_none,
4997};
4998
54ab4ff4
PZ
4999struct sched_domain_topology_level;
5000
5001typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5002typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5003
e3589f6c
PZ
5004#define SDTL_OVERLAP 0x01
5005
eb7a74e6 5006struct sched_domain_topology_level {
2c402dc3
PZ
5007 sched_domain_init_f init;
5008 sched_domain_mask_f mask;
e3589f6c 5009 int flags;
cb83b629 5010 int numa_level;
54ab4ff4 5011 struct sd_data data;
eb7a74e6
PZ
5012};
5013
c1174876
PZ
5014/*
5015 * Build an iteration mask that can exclude certain CPUs from the upwards
5016 * domain traversal.
5017 *
5018 * Asymmetric node setups can result in situations where the domain tree is of
5019 * unequal depth, make sure to skip domains that already cover the entire
5020 * range.
5021 *
5022 * In that case build_sched_domains() will have terminated the iteration early
5023 * and our sibling sd spans will be empty. Domains should always include the
5024 * cpu they're built on, so check that.
5025 *
5026 */
5027static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5028{
5029 const struct cpumask *span = sched_domain_span(sd);
5030 struct sd_data *sdd = sd->private;
5031 struct sched_domain *sibling;
5032 int i;
5033
5034 for_each_cpu(i, span) {
5035 sibling = *per_cpu_ptr(sdd->sd, i);
5036 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5037 continue;
5038
5039 cpumask_set_cpu(i, sched_group_mask(sg));
5040 }
5041}
5042
5043/*
5044 * Return the canonical balance cpu for this group, this is the first cpu
5045 * of this group that's also in the iteration mask.
5046 */
5047int group_balance_cpu(struct sched_group *sg)
5048{
5049 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5050}
5051
e3589f6c
PZ
5052static int
5053build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5054{
5055 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5056 const struct cpumask *span = sched_domain_span(sd);
5057 struct cpumask *covered = sched_domains_tmpmask;
5058 struct sd_data *sdd = sd->private;
5059 struct sched_domain *child;
5060 int i;
5061
5062 cpumask_clear(covered);
5063
5064 for_each_cpu(i, span) {
5065 struct cpumask *sg_span;
5066
5067 if (cpumask_test_cpu(i, covered))
5068 continue;
5069
c1174876
PZ
5070 child = *per_cpu_ptr(sdd->sd, i);
5071
5072 /* See the comment near build_group_mask(). */
5073 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5074 continue;
5075
e3589f6c 5076 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5077 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5078
5079 if (!sg)
5080 goto fail;
5081
5082 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5083 if (child->child) {
5084 child = child->child;
5085 cpumask_copy(sg_span, sched_domain_span(child));
5086 } else
5087 cpumask_set_cpu(i, sg_span);
5088
5089 cpumask_or(covered, covered, sg_span);
5090
74a5ce20 5091 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5092 if (atomic_inc_return(&sg->sgp->ref) == 1)
5093 build_group_mask(sd, sg);
5094
c3decf0d
PZ
5095 /*
5096 * Initialize sgp->power such that even if we mess up the
5097 * domains and no possible iteration will get us here, we won't
5098 * die on a /0 trap.
5099 */
5100 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5101
c1174876
PZ
5102 /*
5103 * Make sure the first group of this domain contains the
5104 * canonical balance cpu. Otherwise the sched_domain iteration
5105 * breaks. See update_sg_lb_stats().
5106 */
74a5ce20 5107 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5108 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5109 groups = sg;
5110
5111 if (!first)
5112 first = sg;
5113 if (last)
5114 last->next = sg;
5115 last = sg;
5116 last->next = first;
5117 }
5118 sd->groups = groups;
5119
5120 return 0;
5121
5122fail:
5123 free_sched_groups(first, 0);
5124
5125 return -ENOMEM;
5126}
5127
dce840a0 5128static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5129{
dce840a0
PZ
5130 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5131 struct sched_domain *child = sd->child;
1da177e4 5132
dce840a0
PZ
5133 if (child)
5134 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5135
9c3f75cb 5136 if (sg) {
dce840a0 5137 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5138 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5139 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5140 }
dce840a0
PZ
5141
5142 return cpu;
1e9f28fa 5143}
1e9f28fa 5144
01a08546 5145/*
dce840a0
PZ
5146 * build_sched_groups will build a circular linked list of the groups
5147 * covered by the given span, and will set each group's ->cpumask correctly,
5148 * and ->cpu_power to 0.
e3589f6c
PZ
5149 *
5150 * Assumes the sched_domain tree is fully constructed
01a08546 5151 */
e3589f6c
PZ
5152static int
5153build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5154{
dce840a0
PZ
5155 struct sched_group *first = NULL, *last = NULL;
5156 struct sd_data *sdd = sd->private;
5157 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5158 struct cpumask *covered;
dce840a0 5159 int i;
9c1cfda2 5160
e3589f6c
PZ
5161 get_group(cpu, sdd, &sd->groups);
5162 atomic_inc(&sd->groups->ref);
5163
0936629f 5164 if (cpu != cpumask_first(span))
e3589f6c
PZ
5165 return 0;
5166
f96225fd
PZ
5167 lockdep_assert_held(&sched_domains_mutex);
5168 covered = sched_domains_tmpmask;
5169
dce840a0 5170 cpumask_clear(covered);
6711cab4 5171
dce840a0
PZ
5172 for_each_cpu(i, span) {
5173 struct sched_group *sg;
cd08e923 5174 int group, j;
6711cab4 5175
dce840a0
PZ
5176 if (cpumask_test_cpu(i, covered))
5177 continue;
6711cab4 5178
cd08e923 5179 group = get_group(i, sdd, &sg);
dce840a0 5180 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5181 sg->sgp->power = 0;
c1174876 5182 cpumask_setall(sched_group_mask(sg));
0601a88d 5183
dce840a0
PZ
5184 for_each_cpu(j, span) {
5185 if (get_group(j, sdd, NULL) != group)
5186 continue;
0601a88d 5187
dce840a0
PZ
5188 cpumask_set_cpu(j, covered);
5189 cpumask_set_cpu(j, sched_group_cpus(sg));
5190 }
0601a88d 5191
dce840a0
PZ
5192 if (!first)
5193 first = sg;
5194 if (last)
5195 last->next = sg;
5196 last = sg;
5197 }
5198 last->next = first;
e3589f6c
PZ
5199
5200 return 0;
0601a88d 5201}
51888ca2 5202
89c4710e
SS
5203/*
5204 * Initialize sched groups cpu_power.
5205 *
5206 * cpu_power indicates the capacity of sched group, which is used while
5207 * distributing the load between different sched groups in a sched domain.
5208 * Typically cpu_power for all the groups in a sched domain will be same unless
5209 * there are asymmetries in the topology. If there are asymmetries, group
5210 * having more cpu_power will pickup more load compared to the group having
5211 * less cpu_power.
89c4710e
SS
5212 */
5213static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5214{
e3589f6c 5215 struct sched_group *sg = sd->groups;
89c4710e 5216
94c95ba6 5217 WARN_ON(!sg);
e3589f6c
PZ
5218
5219 do {
5220 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5221 sg = sg->next;
5222 } while (sg != sd->groups);
89c4710e 5223
c1174876 5224 if (cpu != group_balance_cpu(sg))
e3589f6c 5225 return;
aae6d3dd 5226
d274cb30 5227 update_group_power(sd, cpu);
69e1e811 5228 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5229}
5230
029632fb
PZ
5231int __weak arch_sd_sibling_asym_packing(void)
5232{
5233 return 0*SD_ASYM_PACKING;
89c4710e
SS
5234}
5235
7c16ec58
MT
5236/*
5237 * Initializers for schedule domains
5238 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5239 */
5240
a5d8c348
IM
5241#ifdef CONFIG_SCHED_DEBUG
5242# define SD_INIT_NAME(sd, type) sd->name = #type
5243#else
5244# define SD_INIT_NAME(sd, type) do { } while (0)
5245#endif
5246
54ab4ff4
PZ
5247#define SD_INIT_FUNC(type) \
5248static noinline struct sched_domain * \
5249sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5250{ \
5251 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5252 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5253 SD_INIT_NAME(sd, type); \
5254 sd->private = &tl->data; \
5255 return sd; \
7c16ec58
MT
5256}
5257
5258SD_INIT_FUNC(CPU)
7c16ec58
MT
5259#ifdef CONFIG_SCHED_SMT
5260 SD_INIT_FUNC(SIBLING)
5261#endif
5262#ifdef CONFIG_SCHED_MC
5263 SD_INIT_FUNC(MC)
5264#endif
01a08546
HC
5265#ifdef CONFIG_SCHED_BOOK
5266 SD_INIT_FUNC(BOOK)
5267#endif
7c16ec58 5268
1d3504fc 5269static int default_relax_domain_level = -1;
60495e77 5270int sched_domain_level_max;
1d3504fc
HS
5271
5272static int __init setup_relax_domain_level(char *str)
5273{
a841f8ce
DS
5274 if (kstrtoint(str, 0, &default_relax_domain_level))
5275 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5276
1d3504fc
HS
5277 return 1;
5278}
5279__setup("relax_domain_level=", setup_relax_domain_level);
5280
5281static void set_domain_attribute(struct sched_domain *sd,
5282 struct sched_domain_attr *attr)
5283{
5284 int request;
5285
5286 if (!attr || attr->relax_domain_level < 0) {
5287 if (default_relax_domain_level < 0)
5288 return;
5289 else
5290 request = default_relax_domain_level;
5291 } else
5292 request = attr->relax_domain_level;
5293 if (request < sd->level) {
5294 /* turn off idle balance on this domain */
c88d5910 5295 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5296 } else {
5297 /* turn on idle balance on this domain */
c88d5910 5298 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5299 }
5300}
5301
54ab4ff4
PZ
5302static void __sdt_free(const struct cpumask *cpu_map);
5303static int __sdt_alloc(const struct cpumask *cpu_map);
5304
2109b99e
AH
5305static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5306 const struct cpumask *cpu_map)
5307{
5308 switch (what) {
2109b99e 5309 case sa_rootdomain:
822ff793
PZ
5310 if (!atomic_read(&d->rd->refcount))
5311 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5312 case sa_sd:
5313 free_percpu(d->sd); /* fall through */
dce840a0 5314 case sa_sd_storage:
54ab4ff4 5315 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5316 case sa_none:
5317 break;
5318 }
5319}
3404c8d9 5320
2109b99e
AH
5321static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5322 const struct cpumask *cpu_map)
5323{
dce840a0
PZ
5324 memset(d, 0, sizeof(*d));
5325
54ab4ff4
PZ
5326 if (__sdt_alloc(cpu_map))
5327 return sa_sd_storage;
dce840a0
PZ
5328 d->sd = alloc_percpu(struct sched_domain *);
5329 if (!d->sd)
5330 return sa_sd_storage;
2109b99e 5331 d->rd = alloc_rootdomain();
dce840a0 5332 if (!d->rd)
21d42ccf 5333 return sa_sd;
2109b99e
AH
5334 return sa_rootdomain;
5335}
57d885fe 5336
dce840a0
PZ
5337/*
5338 * NULL the sd_data elements we've used to build the sched_domain and
5339 * sched_group structure so that the subsequent __free_domain_allocs()
5340 * will not free the data we're using.
5341 */
5342static void claim_allocations(int cpu, struct sched_domain *sd)
5343{
5344 struct sd_data *sdd = sd->private;
dce840a0
PZ
5345
5346 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5347 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5348
e3589f6c 5349 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5350 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5351
5352 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5353 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5354}
5355
2c402dc3
PZ
5356#ifdef CONFIG_SCHED_SMT
5357static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5358{
2c402dc3 5359 return topology_thread_cpumask(cpu);
3bd65a80 5360}
2c402dc3 5361#endif
7f4588f3 5362
d069b916
PZ
5363/*
5364 * Topology list, bottom-up.
5365 */
2c402dc3 5366static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5367#ifdef CONFIG_SCHED_SMT
5368 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5369#endif
1e9f28fa 5370#ifdef CONFIG_SCHED_MC
2c402dc3 5371 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5372#endif
d069b916
PZ
5373#ifdef CONFIG_SCHED_BOOK
5374 { sd_init_BOOK, cpu_book_mask, },
5375#endif
5376 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5377 { NULL, },
5378};
5379
5380static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5381
27723a68
VK
5382#define for_each_sd_topology(tl) \
5383 for (tl = sched_domain_topology; tl->init; tl++)
5384
cb83b629
PZ
5385#ifdef CONFIG_NUMA
5386
5387static int sched_domains_numa_levels;
cb83b629
PZ
5388static int *sched_domains_numa_distance;
5389static struct cpumask ***sched_domains_numa_masks;
5390static int sched_domains_curr_level;
5391
cb83b629
PZ
5392static inline int sd_local_flags(int level)
5393{
10717dcd 5394 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5395 return 0;
5396
5397 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5398}
5399
5400static struct sched_domain *
5401sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5402{
5403 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5404 int level = tl->numa_level;
5405 int sd_weight = cpumask_weight(
5406 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5407
5408 *sd = (struct sched_domain){
5409 .min_interval = sd_weight,
5410 .max_interval = 2*sd_weight,
5411 .busy_factor = 32,
870a0bb5 5412 .imbalance_pct = 125,
cb83b629
PZ
5413 .cache_nice_tries = 2,
5414 .busy_idx = 3,
5415 .idle_idx = 2,
5416 .newidle_idx = 0,
5417 .wake_idx = 0,
5418 .forkexec_idx = 0,
5419
5420 .flags = 1*SD_LOAD_BALANCE
5421 | 1*SD_BALANCE_NEWIDLE
5422 | 0*SD_BALANCE_EXEC
5423 | 0*SD_BALANCE_FORK
5424 | 0*SD_BALANCE_WAKE
5425 | 0*SD_WAKE_AFFINE
cb83b629 5426 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5427 | 0*SD_SHARE_PKG_RESOURCES
5428 | 1*SD_SERIALIZE
5429 | 0*SD_PREFER_SIBLING
3a7053b3 5430 | 1*SD_NUMA
cb83b629
PZ
5431 | sd_local_flags(level)
5432 ,
5433 .last_balance = jiffies,
5434 .balance_interval = sd_weight,
5435 };
5436 SD_INIT_NAME(sd, NUMA);
5437 sd->private = &tl->data;
5438
5439 /*
5440 * Ugly hack to pass state to sd_numa_mask()...
5441 */
5442 sched_domains_curr_level = tl->numa_level;
5443
5444 return sd;
5445}
5446
5447static const struct cpumask *sd_numa_mask(int cpu)
5448{
5449 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5450}
5451
d039ac60
PZ
5452static void sched_numa_warn(const char *str)
5453{
5454 static int done = false;
5455 int i,j;
5456
5457 if (done)
5458 return;
5459
5460 done = true;
5461
5462 printk(KERN_WARNING "ERROR: %s\n\n", str);
5463
5464 for (i = 0; i < nr_node_ids; i++) {
5465 printk(KERN_WARNING " ");
5466 for (j = 0; j < nr_node_ids; j++)
5467 printk(KERN_CONT "%02d ", node_distance(i,j));
5468 printk(KERN_CONT "\n");
5469 }
5470 printk(KERN_WARNING "\n");
5471}
5472
5473static bool find_numa_distance(int distance)
5474{
5475 int i;
5476
5477 if (distance == node_distance(0, 0))
5478 return true;
5479
5480 for (i = 0; i < sched_domains_numa_levels; i++) {
5481 if (sched_domains_numa_distance[i] == distance)
5482 return true;
5483 }
5484
5485 return false;
5486}
5487
cb83b629
PZ
5488static void sched_init_numa(void)
5489{
5490 int next_distance, curr_distance = node_distance(0, 0);
5491 struct sched_domain_topology_level *tl;
5492 int level = 0;
5493 int i, j, k;
5494
cb83b629
PZ
5495 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5496 if (!sched_domains_numa_distance)
5497 return;
5498
5499 /*
5500 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5501 * unique distances in the node_distance() table.
5502 *
5503 * Assumes node_distance(0,j) includes all distances in
5504 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5505 */
5506 next_distance = curr_distance;
5507 for (i = 0; i < nr_node_ids; i++) {
5508 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5509 for (k = 0; k < nr_node_ids; k++) {
5510 int distance = node_distance(i, k);
5511
5512 if (distance > curr_distance &&
5513 (distance < next_distance ||
5514 next_distance == curr_distance))
5515 next_distance = distance;
5516
5517 /*
5518 * While not a strong assumption it would be nice to know
5519 * about cases where if node A is connected to B, B is not
5520 * equally connected to A.
5521 */
5522 if (sched_debug() && node_distance(k, i) != distance)
5523 sched_numa_warn("Node-distance not symmetric");
5524
5525 if (sched_debug() && i && !find_numa_distance(distance))
5526 sched_numa_warn("Node-0 not representative");
5527 }
5528 if (next_distance != curr_distance) {
5529 sched_domains_numa_distance[level++] = next_distance;
5530 sched_domains_numa_levels = level;
5531 curr_distance = next_distance;
5532 } else break;
cb83b629 5533 }
d039ac60
PZ
5534
5535 /*
5536 * In case of sched_debug() we verify the above assumption.
5537 */
5538 if (!sched_debug())
5539 break;
cb83b629
PZ
5540 }
5541 /*
5542 * 'level' contains the number of unique distances, excluding the
5543 * identity distance node_distance(i,i).
5544 *
28b4a521 5545 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5546 * numbers.
5547 */
5548
5f7865f3
TC
5549 /*
5550 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5551 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5552 * the array will contain less then 'level' members. This could be
5553 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5554 * in other functions.
5555 *
5556 * We reset it to 'level' at the end of this function.
5557 */
5558 sched_domains_numa_levels = 0;
5559
cb83b629
PZ
5560 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5561 if (!sched_domains_numa_masks)
5562 return;
5563
5564 /*
5565 * Now for each level, construct a mask per node which contains all
5566 * cpus of nodes that are that many hops away from us.
5567 */
5568 for (i = 0; i < level; i++) {
5569 sched_domains_numa_masks[i] =
5570 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5571 if (!sched_domains_numa_masks[i])
5572 return;
5573
5574 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5575 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5576 if (!mask)
5577 return;
5578
5579 sched_domains_numa_masks[i][j] = mask;
5580
5581 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5582 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5583 continue;
5584
5585 cpumask_or(mask, mask, cpumask_of_node(k));
5586 }
5587 }
5588 }
5589
5590 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5591 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5592 if (!tl)
5593 return;
5594
5595 /*
5596 * Copy the default topology bits..
5597 */
5598 for (i = 0; default_topology[i].init; i++)
5599 tl[i] = default_topology[i];
5600
5601 /*
5602 * .. and append 'j' levels of NUMA goodness.
5603 */
5604 for (j = 0; j < level; i++, j++) {
5605 tl[i] = (struct sched_domain_topology_level){
5606 .init = sd_numa_init,
5607 .mask = sd_numa_mask,
5608 .flags = SDTL_OVERLAP,
5609 .numa_level = j,
5610 };
5611 }
5612
5613 sched_domain_topology = tl;
5f7865f3
TC
5614
5615 sched_domains_numa_levels = level;
cb83b629 5616}
301a5cba
TC
5617
5618static void sched_domains_numa_masks_set(int cpu)
5619{
5620 int i, j;
5621 int node = cpu_to_node(cpu);
5622
5623 for (i = 0; i < sched_domains_numa_levels; i++) {
5624 for (j = 0; j < nr_node_ids; j++) {
5625 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5626 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5627 }
5628 }
5629}
5630
5631static void sched_domains_numa_masks_clear(int cpu)
5632{
5633 int i, j;
5634 for (i = 0; i < sched_domains_numa_levels; i++) {
5635 for (j = 0; j < nr_node_ids; j++)
5636 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5637 }
5638}
5639
5640/*
5641 * Update sched_domains_numa_masks[level][node] array when new cpus
5642 * are onlined.
5643 */
5644static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5645 unsigned long action,
5646 void *hcpu)
5647{
5648 int cpu = (long)hcpu;
5649
5650 switch (action & ~CPU_TASKS_FROZEN) {
5651 case CPU_ONLINE:
5652 sched_domains_numa_masks_set(cpu);
5653 break;
5654
5655 case CPU_DEAD:
5656 sched_domains_numa_masks_clear(cpu);
5657 break;
5658
5659 default:
5660 return NOTIFY_DONE;
5661 }
5662
5663 return NOTIFY_OK;
cb83b629
PZ
5664}
5665#else
5666static inline void sched_init_numa(void)
5667{
5668}
301a5cba
TC
5669
5670static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5671 unsigned long action,
5672 void *hcpu)
5673{
5674 return 0;
5675}
cb83b629
PZ
5676#endif /* CONFIG_NUMA */
5677
54ab4ff4
PZ
5678static int __sdt_alloc(const struct cpumask *cpu_map)
5679{
5680 struct sched_domain_topology_level *tl;
5681 int j;
5682
27723a68 5683 for_each_sd_topology(tl) {
54ab4ff4
PZ
5684 struct sd_data *sdd = &tl->data;
5685
5686 sdd->sd = alloc_percpu(struct sched_domain *);
5687 if (!sdd->sd)
5688 return -ENOMEM;
5689
5690 sdd->sg = alloc_percpu(struct sched_group *);
5691 if (!sdd->sg)
5692 return -ENOMEM;
5693
9c3f75cb
PZ
5694 sdd->sgp = alloc_percpu(struct sched_group_power *);
5695 if (!sdd->sgp)
5696 return -ENOMEM;
5697
54ab4ff4
PZ
5698 for_each_cpu(j, cpu_map) {
5699 struct sched_domain *sd;
5700 struct sched_group *sg;
9c3f75cb 5701 struct sched_group_power *sgp;
54ab4ff4
PZ
5702
5703 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5704 GFP_KERNEL, cpu_to_node(j));
5705 if (!sd)
5706 return -ENOMEM;
5707
5708 *per_cpu_ptr(sdd->sd, j) = sd;
5709
5710 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5711 GFP_KERNEL, cpu_to_node(j));
5712 if (!sg)
5713 return -ENOMEM;
5714
30b4e9eb
IM
5715 sg->next = sg;
5716
54ab4ff4 5717 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5718
c1174876 5719 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5720 GFP_KERNEL, cpu_to_node(j));
5721 if (!sgp)
5722 return -ENOMEM;
5723
5724 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5725 }
5726 }
5727
5728 return 0;
5729}
5730
5731static void __sdt_free(const struct cpumask *cpu_map)
5732{
5733 struct sched_domain_topology_level *tl;
5734 int j;
5735
27723a68 5736 for_each_sd_topology(tl) {
54ab4ff4
PZ
5737 struct sd_data *sdd = &tl->data;
5738
5739 for_each_cpu(j, cpu_map) {
fb2cf2c6 5740 struct sched_domain *sd;
5741
5742 if (sdd->sd) {
5743 sd = *per_cpu_ptr(sdd->sd, j);
5744 if (sd && (sd->flags & SD_OVERLAP))
5745 free_sched_groups(sd->groups, 0);
5746 kfree(*per_cpu_ptr(sdd->sd, j));
5747 }
5748
5749 if (sdd->sg)
5750 kfree(*per_cpu_ptr(sdd->sg, j));
5751 if (sdd->sgp)
5752 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5753 }
5754 free_percpu(sdd->sd);
fb2cf2c6 5755 sdd->sd = NULL;
54ab4ff4 5756 free_percpu(sdd->sg);
fb2cf2c6 5757 sdd->sg = NULL;
9c3f75cb 5758 free_percpu(sdd->sgp);
fb2cf2c6 5759 sdd->sgp = NULL;
54ab4ff4
PZ
5760 }
5761}
5762
2c402dc3 5763struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
5764 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5765 struct sched_domain *child, int cpu)
2c402dc3 5766{
54ab4ff4 5767 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 5768 if (!sd)
d069b916 5769 return child;
2c402dc3 5770
2c402dc3 5771 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
5772 if (child) {
5773 sd->level = child->level + 1;
5774 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 5775 child->parent = sd;
c75e0128 5776 sd->child = child;
60495e77 5777 }
a841f8ce 5778 set_domain_attribute(sd, attr);
2c402dc3
PZ
5779
5780 return sd;
5781}
5782
2109b99e
AH
5783/*
5784 * Build sched domains for a given set of cpus and attach the sched domains
5785 * to the individual cpus
5786 */
dce840a0
PZ
5787static int build_sched_domains(const struct cpumask *cpu_map,
5788 struct sched_domain_attr *attr)
2109b99e 5789{
1c632169 5790 enum s_alloc alloc_state;
dce840a0 5791 struct sched_domain *sd;
2109b99e 5792 struct s_data d;
822ff793 5793 int i, ret = -ENOMEM;
9c1cfda2 5794
2109b99e
AH
5795 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5796 if (alloc_state != sa_rootdomain)
5797 goto error;
9c1cfda2 5798
dce840a0 5799 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 5800 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
5801 struct sched_domain_topology_level *tl;
5802
3bd65a80 5803 sd = NULL;
27723a68 5804 for_each_sd_topology(tl) {
4a850cbe 5805 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
5806 if (tl == sched_domain_topology)
5807 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
5808 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5809 sd->flags |= SD_OVERLAP;
d110235d
PZ
5810 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5811 break;
e3589f6c 5812 }
dce840a0
PZ
5813 }
5814
5815 /* Build the groups for the domains */
5816 for_each_cpu(i, cpu_map) {
5817 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5818 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
5819 if (sd->flags & SD_OVERLAP) {
5820 if (build_overlap_sched_groups(sd, i))
5821 goto error;
5822 } else {
5823 if (build_sched_groups(sd, i))
5824 goto error;
5825 }
1cf51902 5826 }
a06dadbe 5827 }
9c1cfda2 5828
1da177e4 5829 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
5830 for (i = nr_cpumask_bits-1; i >= 0; i--) {
5831 if (!cpumask_test_cpu(i, cpu_map))
5832 continue;
9c1cfda2 5833
dce840a0
PZ
5834 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5835 claim_allocations(i, sd);
cd4ea6ae 5836 init_sched_groups_power(i, sd);
dce840a0 5837 }
f712c0c7 5838 }
9c1cfda2 5839
1da177e4 5840 /* Attach the domains */
dce840a0 5841 rcu_read_lock();
abcd083a 5842 for_each_cpu(i, cpu_map) {
21d42ccf 5843 sd = *per_cpu_ptr(d.sd, i);
49a02c51 5844 cpu_attach_domain(sd, d.rd, i);
1da177e4 5845 }
dce840a0 5846 rcu_read_unlock();
51888ca2 5847
822ff793 5848 ret = 0;
51888ca2 5849error:
2109b99e 5850 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 5851 return ret;
1da177e4 5852}
029190c5 5853
acc3f5d7 5854static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 5855static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
5856static struct sched_domain_attr *dattr_cur;
5857 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
5858
5859/*
5860 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
5861 * cpumask) fails, then fallback to a single sched domain,
5862 * as determined by the single cpumask fallback_doms.
029190c5 5863 */
4212823f 5864static cpumask_var_t fallback_doms;
029190c5 5865
ee79d1bd
HC
5866/*
5867 * arch_update_cpu_topology lets virtualized architectures update the
5868 * cpu core maps. It is supposed to return 1 if the topology changed
5869 * or 0 if it stayed the same.
5870 */
5871int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 5872{
ee79d1bd 5873 return 0;
22e52b07
HC
5874}
5875
acc3f5d7
RR
5876cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
5877{
5878 int i;
5879 cpumask_var_t *doms;
5880
5881 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
5882 if (!doms)
5883 return NULL;
5884 for (i = 0; i < ndoms; i++) {
5885 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
5886 free_sched_domains(doms, i);
5887 return NULL;
5888 }
5889 }
5890 return doms;
5891}
5892
5893void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
5894{
5895 unsigned int i;
5896 for (i = 0; i < ndoms; i++)
5897 free_cpumask_var(doms[i]);
5898 kfree(doms);
5899}
5900
1a20ff27 5901/*
41a2d6cf 5902 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
5903 * For now this just excludes isolated cpus, but could be used to
5904 * exclude other special cases in the future.
1a20ff27 5905 */
c4a8849a 5906static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 5907{
7378547f
MM
5908 int err;
5909
22e52b07 5910 arch_update_cpu_topology();
029190c5 5911 ndoms_cur = 1;
acc3f5d7 5912 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 5913 if (!doms_cur)
acc3f5d7
RR
5914 doms_cur = &fallback_doms;
5915 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 5916 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 5917 register_sched_domain_sysctl();
7378547f
MM
5918
5919 return err;
1a20ff27
DG
5920}
5921
1a20ff27
DG
5922/*
5923 * Detach sched domains from a group of cpus specified in cpu_map
5924 * These cpus will now be attached to the NULL domain
5925 */
96f874e2 5926static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
5927{
5928 int i;
5929
dce840a0 5930 rcu_read_lock();
abcd083a 5931 for_each_cpu(i, cpu_map)
57d885fe 5932 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 5933 rcu_read_unlock();
1a20ff27
DG
5934}
5935
1d3504fc
HS
5936/* handle null as "default" */
5937static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
5938 struct sched_domain_attr *new, int idx_new)
5939{
5940 struct sched_domain_attr tmp;
5941
5942 /* fast path */
5943 if (!new && !cur)
5944 return 1;
5945
5946 tmp = SD_ATTR_INIT;
5947 return !memcmp(cur ? (cur + idx_cur) : &tmp,
5948 new ? (new + idx_new) : &tmp,
5949 sizeof(struct sched_domain_attr));
5950}
5951
029190c5
PJ
5952/*
5953 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 5954 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
5955 * doms_new[] to the current sched domain partitioning, doms_cur[].
5956 * It destroys each deleted domain and builds each new domain.
5957 *
acc3f5d7 5958 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
5959 * The masks don't intersect (don't overlap.) We should setup one
5960 * sched domain for each mask. CPUs not in any of the cpumasks will
5961 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
5962 * current 'doms_cur' domains and in the new 'doms_new', we can leave
5963 * it as it is.
5964 *
acc3f5d7
RR
5965 * The passed in 'doms_new' should be allocated using
5966 * alloc_sched_domains. This routine takes ownership of it and will
5967 * free_sched_domains it when done with it. If the caller failed the
5968 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
5969 * and partition_sched_domains() will fallback to the single partition
5970 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 5971 *
96f874e2 5972 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
5973 * ndoms_new == 0 is a special case for destroying existing domains,
5974 * and it will not create the default domain.
dfb512ec 5975 *
029190c5
PJ
5976 * Call with hotplug lock held
5977 */
acc3f5d7 5978void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 5979 struct sched_domain_attr *dattr_new)
029190c5 5980{
dfb512ec 5981 int i, j, n;
d65bd5ec 5982 int new_topology;
029190c5 5983
712555ee 5984 mutex_lock(&sched_domains_mutex);
a1835615 5985
7378547f
MM
5986 /* always unregister in case we don't destroy any domains */
5987 unregister_sched_domain_sysctl();
5988
d65bd5ec
HC
5989 /* Let architecture update cpu core mappings. */
5990 new_topology = arch_update_cpu_topology();
5991
dfb512ec 5992 n = doms_new ? ndoms_new : 0;
029190c5
PJ
5993
5994 /* Destroy deleted domains */
5995 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 5996 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 5997 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 5998 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
5999 goto match1;
6000 }
6001 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6002 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6003match1:
6004 ;
6005 }
6006
c8d2d47a 6007 n = ndoms_cur;
e761b772 6008 if (doms_new == NULL) {
c8d2d47a 6009 n = 0;
acc3f5d7 6010 doms_new = &fallback_doms;
6ad4c188 6011 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6012 WARN_ON_ONCE(dattr_new);
e761b772
MK
6013 }
6014
029190c5
PJ
6015 /* Build new domains */
6016 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6017 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6018 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6019 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6020 goto match2;
6021 }
6022 /* no match - add a new doms_new */
dce840a0 6023 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6024match2:
6025 ;
6026 }
6027
6028 /* Remember the new sched domains */
acc3f5d7
RR
6029 if (doms_cur != &fallback_doms)
6030 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6031 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6032 doms_cur = doms_new;
1d3504fc 6033 dattr_cur = dattr_new;
029190c5 6034 ndoms_cur = ndoms_new;
7378547f
MM
6035
6036 register_sched_domain_sysctl();
a1835615 6037
712555ee 6038 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6039}
6040
d35be8ba
SB
6041static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6042
1da177e4 6043/*
3a101d05
TH
6044 * Update cpusets according to cpu_active mask. If cpusets are
6045 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6046 * around partition_sched_domains().
d35be8ba
SB
6047 *
6048 * If we come here as part of a suspend/resume, don't touch cpusets because we
6049 * want to restore it back to its original state upon resume anyway.
1da177e4 6050 */
0b2e918a
TH
6051static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6052 void *hcpu)
e761b772 6053{
d35be8ba
SB
6054 switch (action) {
6055 case CPU_ONLINE_FROZEN:
6056 case CPU_DOWN_FAILED_FROZEN:
6057
6058 /*
6059 * num_cpus_frozen tracks how many CPUs are involved in suspend
6060 * resume sequence. As long as this is not the last online
6061 * operation in the resume sequence, just build a single sched
6062 * domain, ignoring cpusets.
6063 */
6064 num_cpus_frozen--;
6065 if (likely(num_cpus_frozen)) {
6066 partition_sched_domains(1, NULL, NULL);
6067 break;
6068 }
6069
6070 /*
6071 * This is the last CPU online operation. So fall through and
6072 * restore the original sched domains by considering the
6073 * cpuset configurations.
6074 */
6075
e761b772 6076 case CPU_ONLINE:
6ad4c188 6077 case CPU_DOWN_FAILED:
7ddf96b0 6078 cpuset_update_active_cpus(true);
d35be8ba 6079 break;
3a101d05
TH
6080 default:
6081 return NOTIFY_DONE;
6082 }
d35be8ba 6083 return NOTIFY_OK;
3a101d05 6084}
e761b772 6085
0b2e918a
TH
6086static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6087 void *hcpu)
3a101d05 6088{
d35be8ba 6089 switch (action) {
3a101d05 6090 case CPU_DOWN_PREPARE:
7ddf96b0 6091 cpuset_update_active_cpus(false);
d35be8ba
SB
6092 break;
6093 case CPU_DOWN_PREPARE_FROZEN:
6094 num_cpus_frozen++;
6095 partition_sched_domains(1, NULL, NULL);
6096 break;
e761b772
MK
6097 default:
6098 return NOTIFY_DONE;
6099 }
d35be8ba 6100 return NOTIFY_OK;
e761b772 6101}
e761b772 6102
1da177e4
LT
6103void __init sched_init_smp(void)
6104{
dcc30a35
RR
6105 cpumask_var_t non_isolated_cpus;
6106
6107 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6108 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6109
cb83b629
PZ
6110 sched_init_numa();
6111
6acce3ef
PZ
6112 /*
6113 * There's no userspace yet to cause hotplug operations; hence all the
6114 * cpu masks are stable and all blatant races in the below code cannot
6115 * happen.
6116 */
712555ee 6117 mutex_lock(&sched_domains_mutex);
c4a8849a 6118 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6119 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6120 if (cpumask_empty(non_isolated_cpus))
6121 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6122 mutex_unlock(&sched_domains_mutex);
e761b772 6123
301a5cba 6124 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6125 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6126 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6127
b328ca18 6128 init_hrtick();
5c1e1767
NP
6129
6130 /* Move init over to a non-isolated CPU */
dcc30a35 6131 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6132 BUG();
19978ca6 6133 sched_init_granularity();
dcc30a35 6134 free_cpumask_var(non_isolated_cpus);
4212823f 6135
0e3900e6 6136 init_sched_rt_class();
1da177e4
LT
6137}
6138#else
6139void __init sched_init_smp(void)
6140{
19978ca6 6141 sched_init_granularity();
1da177e4
LT
6142}
6143#endif /* CONFIG_SMP */
6144
cd1bb94b
AB
6145const_debug unsigned int sysctl_timer_migration = 1;
6146
1da177e4
LT
6147int in_sched_functions(unsigned long addr)
6148{
1da177e4
LT
6149 return in_lock_functions(addr) ||
6150 (addr >= (unsigned long)__sched_text_start
6151 && addr < (unsigned long)__sched_text_end);
6152}
6153
029632fb 6154#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6155/*
6156 * Default task group.
6157 * Every task in system belongs to this group at bootup.
6158 */
029632fb 6159struct task_group root_task_group;
35cf4e50 6160LIST_HEAD(task_groups);
052f1dc7 6161#endif
6f505b16 6162
e6252c3e 6163DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6164
1da177e4
LT
6165void __init sched_init(void)
6166{
dd41f596 6167 int i, j;
434d53b0
MT
6168 unsigned long alloc_size = 0, ptr;
6169
6170#ifdef CONFIG_FAIR_GROUP_SCHED
6171 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6172#endif
6173#ifdef CONFIG_RT_GROUP_SCHED
6174 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6175#endif
df7c8e84 6176#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6177 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6178#endif
434d53b0 6179 if (alloc_size) {
36b7b6d4 6180 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6181
6182#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6183 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6184 ptr += nr_cpu_ids * sizeof(void **);
6185
07e06b01 6186 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6187 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6188
6d6bc0ad 6189#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6190#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6191 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6192 ptr += nr_cpu_ids * sizeof(void **);
6193
07e06b01 6194 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6195 ptr += nr_cpu_ids * sizeof(void **);
6196
6d6bc0ad 6197#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6198#ifdef CONFIG_CPUMASK_OFFSTACK
6199 for_each_possible_cpu(i) {
e6252c3e 6200 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6201 ptr += cpumask_size();
6202 }
6203#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6204 }
dd41f596 6205
57d885fe
GH
6206#ifdef CONFIG_SMP
6207 init_defrootdomain();
6208#endif
6209
d0b27fa7
PZ
6210 init_rt_bandwidth(&def_rt_bandwidth,
6211 global_rt_period(), global_rt_runtime());
6212
6213#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6214 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6215 global_rt_period(), global_rt_runtime());
6d6bc0ad 6216#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6217
7c941438 6218#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6219 list_add(&root_task_group.list, &task_groups);
6220 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6221 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6222 autogroup_init(&init_task);
54c707e9 6223
7c941438 6224#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6225
0a945022 6226 for_each_possible_cpu(i) {
70b97a7f 6227 struct rq *rq;
1da177e4
LT
6228
6229 rq = cpu_rq(i);
05fa785c 6230 raw_spin_lock_init(&rq->lock);
7897986b 6231 rq->nr_running = 0;
dce48a84
TG
6232 rq->calc_load_active = 0;
6233 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6234 init_cfs_rq(&rq->cfs);
6f505b16 6235 init_rt_rq(&rq->rt, rq);
dd41f596 6236#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6237 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6238 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6239 /*
07e06b01 6240 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6241 *
6242 * In case of task-groups formed thr' the cgroup filesystem, it
6243 * gets 100% of the cpu resources in the system. This overall
6244 * system cpu resource is divided among the tasks of
07e06b01 6245 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6246 * based on each entity's (task or task-group's) weight
6247 * (se->load.weight).
6248 *
07e06b01 6249 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6250 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6251 * then A0's share of the cpu resource is:
6252 *
0d905bca 6253 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6254 *
07e06b01
YZ
6255 * We achieve this by letting root_task_group's tasks sit
6256 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6257 */
ab84d31e 6258 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6259 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6260#endif /* CONFIG_FAIR_GROUP_SCHED */
6261
6262 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6263#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6264 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6265 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6266#endif
1da177e4 6267
dd41f596
IM
6268 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6269 rq->cpu_load[j] = 0;
fdf3e95d
VP
6270
6271 rq->last_load_update_tick = jiffies;
6272
1da177e4 6273#ifdef CONFIG_SMP
41c7ce9a 6274 rq->sd = NULL;
57d885fe 6275 rq->rd = NULL;
1399fa78 6276 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6277 rq->post_schedule = 0;
1da177e4 6278 rq->active_balance = 0;
dd41f596 6279 rq->next_balance = jiffies;
1da177e4 6280 rq->push_cpu = 0;
0a2966b4 6281 rq->cpu = i;
1f11eb6a 6282 rq->online = 0;
eae0c9df
MG
6283 rq->idle_stamp = 0;
6284 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6285 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6286
6287 INIT_LIST_HEAD(&rq->cfs_tasks);
6288
dc938520 6289 rq_attach_root(rq, &def_root_domain);
3451d024 6290#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6291 rq->nohz_flags = 0;
83cd4fe2 6292#endif
265f22a9
FW
6293#ifdef CONFIG_NO_HZ_FULL
6294 rq->last_sched_tick = 0;
6295#endif
1da177e4 6296#endif
8f4d37ec 6297 init_rq_hrtick(rq);
1da177e4 6298 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6299 }
6300
2dd73a4f 6301 set_load_weight(&init_task);
b50f60ce 6302
e107be36
AK
6303#ifdef CONFIG_PREEMPT_NOTIFIERS
6304 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6305#endif
6306
b50f60ce 6307#ifdef CONFIG_RT_MUTEXES
732375c6 6308 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6309#endif
6310
1da177e4
LT
6311 /*
6312 * The boot idle thread does lazy MMU switching as well:
6313 */
6314 atomic_inc(&init_mm.mm_count);
6315 enter_lazy_tlb(&init_mm, current);
6316
6317 /*
6318 * Make us the idle thread. Technically, schedule() should not be
6319 * called from this thread, however somewhere below it might be,
6320 * but because we are the idle thread, we just pick up running again
6321 * when this runqueue becomes "idle".
6322 */
6323 init_idle(current, smp_processor_id());
dce48a84
TG
6324
6325 calc_load_update = jiffies + LOAD_FREQ;
6326
dd41f596
IM
6327 /*
6328 * During early bootup we pretend to be a normal task:
6329 */
6330 current->sched_class = &fair_sched_class;
6892b75e 6331
bf4d83f6 6332#ifdef CONFIG_SMP
4cb98839 6333 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6334 /* May be allocated at isolcpus cmdline parse time */
6335 if (cpu_isolated_map == NULL)
6336 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6337 idle_thread_set_boot_cpu();
029632fb
PZ
6338#endif
6339 init_sched_fair_class();
6a7b3dc3 6340
6892b75e 6341 scheduler_running = 1;
1da177e4
LT
6342}
6343
d902db1e 6344#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6345static inline int preempt_count_equals(int preempt_offset)
6346{
234da7bc 6347 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6348
4ba8216c 6349 return (nested == preempt_offset);
e4aafea2
FW
6350}
6351
d894837f 6352void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6353{
1da177e4
LT
6354 static unsigned long prev_jiffy; /* ratelimiting */
6355
b3fbab05 6356 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6357 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6358 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6359 return;
6360 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6361 return;
6362 prev_jiffy = jiffies;
6363
3df0fc5b
PZ
6364 printk(KERN_ERR
6365 "BUG: sleeping function called from invalid context at %s:%d\n",
6366 file, line);
6367 printk(KERN_ERR
6368 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6369 in_atomic(), irqs_disabled(),
6370 current->pid, current->comm);
aef745fc
IM
6371
6372 debug_show_held_locks(current);
6373 if (irqs_disabled())
6374 print_irqtrace_events(current);
6375 dump_stack();
1da177e4
LT
6376}
6377EXPORT_SYMBOL(__might_sleep);
6378#endif
6379
6380#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6381static void normalize_task(struct rq *rq, struct task_struct *p)
6382{
da7a735e
PZ
6383 const struct sched_class *prev_class = p->sched_class;
6384 int old_prio = p->prio;
3a5e4dc1 6385 int on_rq;
3e51f33f 6386
fd2f4419 6387 on_rq = p->on_rq;
3a5e4dc1 6388 if (on_rq)
4ca9b72b 6389 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6390 __setscheduler(rq, p, SCHED_NORMAL, 0);
6391 if (on_rq) {
4ca9b72b 6392 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6393 resched_task(rq->curr);
6394 }
da7a735e
PZ
6395
6396 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6397}
6398
1da177e4
LT
6399void normalize_rt_tasks(void)
6400{
a0f98a1c 6401 struct task_struct *g, *p;
1da177e4 6402 unsigned long flags;
70b97a7f 6403 struct rq *rq;
1da177e4 6404
4cf5d77a 6405 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6406 do_each_thread(g, p) {
178be793
IM
6407 /*
6408 * Only normalize user tasks:
6409 */
6410 if (!p->mm)
6411 continue;
6412
6cfb0d5d 6413 p->se.exec_start = 0;
6cfb0d5d 6414#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6415 p->se.statistics.wait_start = 0;
6416 p->se.statistics.sleep_start = 0;
6417 p->se.statistics.block_start = 0;
6cfb0d5d 6418#endif
dd41f596
IM
6419
6420 if (!rt_task(p)) {
6421 /*
6422 * Renice negative nice level userspace
6423 * tasks back to 0:
6424 */
6425 if (TASK_NICE(p) < 0 && p->mm)
6426 set_user_nice(p, 0);
1da177e4 6427 continue;
dd41f596 6428 }
1da177e4 6429
1d615482 6430 raw_spin_lock(&p->pi_lock);
b29739f9 6431 rq = __task_rq_lock(p);
1da177e4 6432
178be793 6433 normalize_task(rq, p);
3a5e4dc1 6434
b29739f9 6435 __task_rq_unlock(rq);
1d615482 6436 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6437 } while_each_thread(g, p);
6438
4cf5d77a 6439 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6440}
6441
6442#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6443
67fc4e0c 6444#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6445/*
67fc4e0c 6446 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6447 *
6448 * They can only be called when the whole system has been
6449 * stopped - every CPU needs to be quiescent, and no scheduling
6450 * activity can take place. Using them for anything else would
6451 * be a serious bug, and as a result, they aren't even visible
6452 * under any other configuration.
6453 */
6454
6455/**
6456 * curr_task - return the current task for a given cpu.
6457 * @cpu: the processor in question.
6458 *
6459 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6460 *
6461 * Return: The current task for @cpu.
1df5c10a 6462 */
36c8b586 6463struct task_struct *curr_task(int cpu)
1df5c10a
LT
6464{
6465 return cpu_curr(cpu);
6466}
6467
67fc4e0c
JW
6468#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6469
6470#ifdef CONFIG_IA64
1df5c10a
LT
6471/**
6472 * set_curr_task - set the current task for a given cpu.
6473 * @cpu: the processor in question.
6474 * @p: the task pointer to set.
6475 *
6476 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6477 * are serviced on a separate stack. It allows the architecture to switch the
6478 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6479 * must be called with all CPU's synchronized, and interrupts disabled, the
6480 * and caller must save the original value of the current task (see
6481 * curr_task() above) and restore that value before reenabling interrupts and
6482 * re-starting the system.
6483 *
6484 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6485 */
36c8b586 6486void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6487{
6488 cpu_curr(cpu) = p;
6489}
6490
6491#endif
29f59db3 6492
7c941438 6493#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6494/* task_group_lock serializes the addition/removal of task groups */
6495static DEFINE_SPINLOCK(task_group_lock);
6496
bccbe08a
PZ
6497static void free_sched_group(struct task_group *tg)
6498{
6499 free_fair_sched_group(tg);
6500 free_rt_sched_group(tg);
e9aa1dd1 6501 autogroup_free(tg);
bccbe08a
PZ
6502 kfree(tg);
6503}
6504
6505/* allocate runqueue etc for a new task group */
ec7dc8ac 6506struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6507{
6508 struct task_group *tg;
bccbe08a
PZ
6509
6510 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6511 if (!tg)
6512 return ERR_PTR(-ENOMEM);
6513
ec7dc8ac 6514 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6515 goto err;
6516
ec7dc8ac 6517 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6518 goto err;
6519
ace783b9
LZ
6520 return tg;
6521
6522err:
6523 free_sched_group(tg);
6524 return ERR_PTR(-ENOMEM);
6525}
6526
6527void sched_online_group(struct task_group *tg, struct task_group *parent)
6528{
6529 unsigned long flags;
6530
8ed36996 6531 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6532 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6533
6534 WARN_ON(!parent); /* root should already exist */
6535
6536 tg->parent = parent;
f473aa5e 6537 INIT_LIST_HEAD(&tg->children);
09f2724a 6538 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6539 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6540}
6541
9b5b7751 6542/* rcu callback to free various structures associated with a task group */
6f505b16 6543static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6544{
29f59db3 6545 /* now it should be safe to free those cfs_rqs */
6f505b16 6546 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6547}
6548
9b5b7751 6549/* Destroy runqueue etc associated with a task group */
4cf86d77 6550void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6551{
6552 /* wait for possible concurrent references to cfs_rqs complete */
6553 call_rcu(&tg->rcu, free_sched_group_rcu);
6554}
6555
6556void sched_offline_group(struct task_group *tg)
29f59db3 6557{
8ed36996 6558 unsigned long flags;
9b5b7751 6559 int i;
29f59db3 6560
3d4b47b4
PZ
6561 /* end participation in shares distribution */
6562 for_each_possible_cpu(i)
bccbe08a 6563 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6564
6565 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6566 list_del_rcu(&tg->list);
f473aa5e 6567 list_del_rcu(&tg->siblings);
8ed36996 6568 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6569}
6570
9b5b7751 6571/* change task's runqueue when it moves between groups.
3a252015
IM
6572 * The caller of this function should have put the task in its new group
6573 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6574 * reflect its new group.
9b5b7751
SV
6575 */
6576void sched_move_task(struct task_struct *tsk)
29f59db3 6577{
8323f26c 6578 struct task_group *tg;
29f59db3
SV
6579 int on_rq, running;
6580 unsigned long flags;
6581 struct rq *rq;
6582
6583 rq = task_rq_lock(tsk, &flags);
6584
051a1d1a 6585 running = task_current(rq, tsk);
fd2f4419 6586 on_rq = tsk->on_rq;
29f59db3 6587
0e1f3483 6588 if (on_rq)
29f59db3 6589 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6590 if (unlikely(running))
6591 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6592
8af01f56 6593 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6594 lockdep_is_held(&tsk->sighand->siglock)),
6595 struct task_group, css);
6596 tg = autogroup_task_group(tsk, tg);
6597 tsk->sched_task_group = tg;
6598
810b3817 6599#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6600 if (tsk->sched_class->task_move_group)
6601 tsk->sched_class->task_move_group(tsk, on_rq);
6602 else
810b3817 6603#endif
b2b5ce02 6604 set_task_rq(tsk, task_cpu(tsk));
810b3817 6605
0e1f3483
HS
6606 if (unlikely(running))
6607 tsk->sched_class->set_curr_task(rq);
6608 if (on_rq)
371fd7e7 6609 enqueue_task(rq, tsk, 0);
29f59db3 6610
0122ec5b 6611 task_rq_unlock(rq, tsk, &flags);
29f59db3 6612}
7c941438 6613#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6614
a790de99 6615#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6616static unsigned long to_ratio(u64 period, u64 runtime)
6617{
6618 if (runtime == RUNTIME_INF)
9a7e0b18 6619 return 1ULL << 20;
9f0c1e56 6620
9a7e0b18 6621 return div64_u64(runtime << 20, period);
9f0c1e56 6622}
a790de99
PT
6623#endif
6624
6625#ifdef CONFIG_RT_GROUP_SCHED
6626/*
6627 * Ensure that the real time constraints are schedulable.
6628 */
6629static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6630
9a7e0b18
PZ
6631/* Must be called with tasklist_lock held */
6632static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6633{
9a7e0b18 6634 struct task_struct *g, *p;
b40b2e8e 6635
9a7e0b18 6636 do_each_thread(g, p) {
029632fb 6637 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6638 return 1;
6639 } while_each_thread(g, p);
b40b2e8e 6640
9a7e0b18
PZ
6641 return 0;
6642}
b40b2e8e 6643
9a7e0b18
PZ
6644struct rt_schedulable_data {
6645 struct task_group *tg;
6646 u64 rt_period;
6647 u64 rt_runtime;
6648};
b40b2e8e 6649
a790de99 6650static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6651{
6652 struct rt_schedulable_data *d = data;
6653 struct task_group *child;
6654 unsigned long total, sum = 0;
6655 u64 period, runtime;
b40b2e8e 6656
9a7e0b18
PZ
6657 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6658 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6659
9a7e0b18
PZ
6660 if (tg == d->tg) {
6661 period = d->rt_period;
6662 runtime = d->rt_runtime;
b40b2e8e 6663 }
b40b2e8e 6664
4653f803
PZ
6665 /*
6666 * Cannot have more runtime than the period.
6667 */
6668 if (runtime > period && runtime != RUNTIME_INF)
6669 return -EINVAL;
6f505b16 6670
4653f803
PZ
6671 /*
6672 * Ensure we don't starve existing RT tasks.
6673 */
9a7e0b18
PZ
6674 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6675 return -EBUSY;
6f505b16 6676
9a7e0b18 6677 total = to_ratio(period, runtime);
6f505b16 6678
4653f803
PZ
6679 /*
6680 * Nobody can have more than the global setting allows.
6681 */
6682 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6683 return -EINVAL;
6f505b16 6684
4653f803
PZ
6685 /*
6686 * The sum of our children's runtime should not exceed our own.
6687 */
9a7e0b18
PZ
6688 list_for_each_entry_rcu(child, &tg->children, siblings) {
6689 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6690 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6691
9a7e0b18
PZ
6692 if (child == d->tg) {
6693 period = d->rt_period;
6694 runtime = d->rt_runtime;
6695 }
6f505b16 6696
9a7e0b18 6697 sum += to_ratio(period, runtime);
9f0c1e56 6698 }
6f505b16 6699
9a7e0b18
PZ
6700 if (sum > total)
6701 return -EINVAL;
6702
6703 return 0;
6f505b16
PZ
6704}
6705
9a7e0b18 6706static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6707{
8277434e
PT
6708 int ret;
6709
9a7e0b18
PZ
6710 struct rt_schedulable_data data = {
6711 .tg = tg,
6712 .rt_period = period,
6713 .rt_runtime = runtime,
6714 };
6715
8277434e
PT
6716 rcu_read_lock();
6717 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6718 rcu_read_unlock();
6719
6720 return ret;
521f1a24
DG
6721}
6722
ab84d31e 6723static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6724 u64 rt_period, u64 rt_runtime)
6f505b16 6725{
ac086bc2 6726 int i, err = 0;
9f0c1e56 6727
9f0c1e56 6728 mutex_lock(&rt_constraints_mutex);
521f1a24 6729 read_lock(&tasklist_lock);
9a7e0b18
PZ
6730 err = __rt_schedulable(tg, rt_period, rt_runtime);
6731 if (err)
9f0c1e56 6732 goto unlock;
ac086bc2 6733
0986b11b 6734 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6735 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6736 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6737
6738 for_each_possible_cpu(i) {
6739 struct rt_rq *rt_rq = tg->rt_rq[i];
6740
0986b11b 6741 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6742 rt_rq->rt_runtime = rt_runtime;
0986b11b 6743 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6744 }
0986b11b 6745 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6746unlock:
521f1a24 6747 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6748 mutex_unlock(&rt_constraints_mutex);
6749
6750 return err;
6f505b16
PZ
6751}
6752
25cc7da7 6753static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6754{
6755 u64 rt_runtime, rt_period;
6756
6757 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6758 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6759 if (rt_runtime_us < 0)
6760 rt_runtime = RUNTIME_INF;
6761
ab84d31e 6762 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6763}
6764
25cc7da7 6765static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6766{
6767 u64 rt_runtime_us;
6768
d0b27fa7 6769 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6770 return -1;
6771
d0b27fa7 6772 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6773 do_div(rt_runtime_us, NSEC_PER_USEC);
6774 return rt_runtime_us;
6775}
d0b27fa7 6776
25cc7da7 6777static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
6778{
6779 u64 rt_runtime, rt_period;
6780
6781 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6782 rt_runtime = tg->rt_bandwidth.rt_runtime;
6783
619b0488
R
6784 if (rt_period == 0)
6785 return -EINVAL;
6786
ab84d31e 6787 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6788}
6789
25cc7da7 6790static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6791{
6792 u64 rt_period_us;
6793
6794 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6795 do_div(rt_period_us, NSEC_PER_USEC);
6796 return rt_period_us;
6797}
6798
6799static int sched_rt_global_constraints(void)
6800{
4653f803 6801 u64 runtime, period;
d0b27fa7
PZ
6802 int ret = 0;
6803
ec5d4989
HS
6804 if (sysctl_sched_rt_period <= 0)
6805 return -EINVAL;
6806
4653f803
PZ
6807 runtime = global_rt_runtime();
6808 period = global_rt_period();
6809
6810 /*
6811 * Sanity check on the sysctl variables.
6812 */
6813 if (runtime > period && runtime != RUNTIME_INF)
6814 return -EINVAL;
10b612f4 6815
d0b27fa7 6816 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6817 read_lock(&tasklist_lock);
4653f803 6818 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6819 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6820 mutex_unlock(&rt_constraints_mutex);
6821
6822 return ret;
6823}
54e99124 6824
25cc7da7 6825static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6826{
6827 /* Don't accept realtime tasks when there is no way for them to run */
6828 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6829 return 0;
6830
6831 return 1;
6832}
6833
6d6bc0ad 6834#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
6835static int sched_rt_global_constraints(void)
6836{
ac086bc2
PZ
6837 unsigned long flags;
6838 int i;
6839
ec5d4989
HS
6840 if (sysctl_sched_rt_period <= 0)
6841 return -EINVAL;
6842
60aa605d
PZ
6843 /*
6844 * There's always some RT tasks in the root group
6845 * -- migration, kstopmachine etc..
6846 */
6847 if (sysctl_sched_rt_runtime == 0)
6848 return -EBUSY;
6849
0986b11b 6850 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
6851 for_each_possible_cpu(i) {
6852 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6853
0986b11b 6854 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6855 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 6856 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6857 }
0986b11b 6858 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 6859
d0b27fa7
PZ
6860 return 0;
6861}
6d6bc0ad 6862#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6863
ce0dbbbb
CW
6864int sched_rr_handler(struct ctl_table *table, int write,
6865 void __user *buffer, size_t *lenp,
6866 loff_t *ppos)
6867{
6868 int ret;
6869 static DEFINE_MUTEX(mutex);
6870
6871 mutex_lock(&mutex);
6872 ret = proc_dointvec(table, write, buffer, lenp, ppos);
6873 /* make sure that internally we keep jiffies */
6874 /* also, writing zero resets timeslice to default */
6875 if (!ret && write) {
6876 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
6877 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
6878 }
6879 mutex_unlock(&mutex);
6880 return ret;
6881}
6882
d0b27fa7 6883int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 6884 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
6885 loff_t *ppos)
6886{
6887 int ret;
6888 int old_period, old_runtime;
6889 static DEFINE_MUTEX(mutex);
6890
6891 mutex_lock(&mutex);
6892 old_period = sysctl_sched_rt_period;
6893 old_runtime = sysctl_sched_rt_runtime;
6894
8d65af78 6895 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
6896
6897 if (!ret && write) {
6898 ret = sched_rt_global_constraints();
6899 if (ret) {
6900 sysctl_sched_rt_period = old_period;
6901 sysctl_sched_rt_runtime = old_runtime;
6902 } else {
6903 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6904 def_rt_bandwidth.rt_period =
6905 ns_to_ktime(global_rt_period());
6906 }
6907 }
6908 mutex_unlock(&mutex);
6909
6910 return ret;
6911}
68318b8e 6912
052f1dc7 6913#ifdef CONFIG_CGROUP_SCHED
68318b8e 6914
a7c6d554 6915static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6916{
a7c6d554 6917 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6918}
6919
eb95419b
TH
6920static struct cgroup_subsys_state *
6921cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6922{
eb95419b
TH
6923 struct task_group *parent = css_tg(parent_css);
6924 struct task_group *tg;
68318b8e 6925
eb95419b 6926 if (!parent) {
68318b8e 6927 /* This is early initialization for the top cgroup */
07e06b01 6928 return &root_task_group.css;
68318b8e
SV
6929 }
6930
ec7dc8ac 6931 tg = sched_create_group(parent);
68318b8e
SV
6932 if (IS_ERR(tg))
6933 return ERR_PTR(-ENOMEM);
6934
68318b8e
SV
6935 return &tg->css;
6936}
6937
eb95419b 6938static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 6939{
eb95419b
TH
6940 struct task_group *tg = css_tg(css);
6941 struct task_group *parent = css_tg(css_parent(css));
ace783b9 6942
63876986
TH
6943 if (parent)
6944 sched_online_group(tg, parent);
ace783b9
LZ
6945 return 0;
6946}
6947
eb95419b 6948static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6949{
eb95419b 6950 struct task_group *tg = css_tg(css);
68318b8e
SV
6951
6952 sched_destroy_group(tg);
6953}
6954
eb95419b 6955static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 6956{
eb95419b 6957 struct task_group *tg = css_tg(css);
ace783b9
LZ
6958
6959 sched_offline_group(tg);
6960}
6961
eb95419b 6962static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 6963 struct cgroup_taskset *tset)
68318b8e 6964{
bb9d97b6
TH
6965 struct task_struct *task;
6966
d99c8727 6967 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6968#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6969 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6970 return -EINVAL;
b68aa230 6971#else
bb9d97b6
TH
6972 /* We don't support RT-tasks being in separate groups */
6973 if (task->sched_class != &fair_sched_class)
6974 return -EINVAL;
b68aa230 6975#endif
bb9d97b6 6976 }
be367d09
BB
6977 return 0;
6978}
68318b8e 6979
eb95419b 6980static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 6981 struct cgroup_taskset *tset)
68318b8e 6982{
bb9d97b6
TH
6983 struct task_struct *task;
6984
d99c8727 6985 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 6986 sched_move_task(task);
68318b8e
SV
6987}
6988
eb95419b
TH
6989static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
6990 struct cgroup_subsys_state *old_css,
6991 struct task_struct *task)
068c5cc5
PZ
6992{
6993 /*
6994 * cgroup_exit() is called in the copy_process() failure path.
6995 * Ignore this case since the task hasn't ran yet, this avoids
6996 * trying to poke a half freed task state from generic code.
6997 */
6998 if (!(task->flags & PF_EXITING))
6999 return;
7000
7001 sched_move_task(task);
7002}
7003
052f1dc7 7004#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7005static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7006 struct cftype *cftype, u64 shareval)
68318b8e 7007{
182446d0 7008 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7009}
7010
182446d0
TH
7011static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7012 struct cftype *cft)
68318b8e 7013{
182446d0 7014 struct task_group *tg = css_tg(css);
68318b8e 7015
c8b28116 7016 return (u64) scale_load_down(tg->shares);
68318b8e 7017}
ab84d31e
PT
7018
7019#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7020static DEFINE_MUTEX(cfs_constraints_mutex);
7021
ab84d31e
PT
7022const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7023const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7024
a790de99
PT
7025static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7026
ab84d31e
PT
7027static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7028{
56f570e5 7029 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7030 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7031
7032 if (tg == &root_task_group)
7033 return -EINVAL;
7034
7035 /*
7036 * Ensure we have at some amount of bandwidth every period. This is
7037 * to prevent reaching a state of large arrears when throttled via
7038 * entity_tick() resulting in prolonged exit starvation.
7039 */
7040 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7041 return -EINVAL;
7042
7043 /*
7044 * Likewise, bound things on the otherside by preventing insane quota
7045 * periods. This also allows us to normalize in computing quota
7046 * feasibility.
7047 */
7048 if (period > max_cfs_quota_period)
7049 return -EINVAL;
7050
a790de99
PT
7051 mutex_lock(&cfs_constraints_mutex);
7052 ret = __cfs_schedulable(tg, period, quota);
7053 if (ret)
7054 goto out_unlock;
7055
58088ad0 7056 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7057 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7058 /*
7059 * If we need to toggle cfs_bandwidth_used, off->on must occur
7060 * before making related changes, and on->off must occur afterwards
7061 */
7062 if (runtime_enabled && !runtime_was_enabled)
7063 cfs_bandwidth_usage_inc();
ab84d31e
PT
7064 raw_spin_lock_irq(&cfs_b->lock);
7065 cfs_b->period = ns_to_ktime(period);
7066 cfs_b->quota = quota;
58088ad0 7067
a9cf55b2 7068 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7069 /* restart the period timer (if active) to handle new period expiry */
7070 if (runtime_enabled && cfs_b->timer_active) {
7071 /* force a reprogram */
7072 cfs_b->timer_active = 0;
7073 __start_cfs_bandwidth(cfs_b);
7074 }
ab84d31e
PT
7075 raw_spin_unlock_irq(&cfs_b->lock);
7076
7077 for_each_possible_cpu(i) {
7078 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7079 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7080
7081 raw_spin_lock_irq(&rq->lock);
58088ad0 7082 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7083 cfs_rq->runtime_remaining = 0;
671fd9da 7084
029632fb 7085 if (cfs_rq->throttled)
671fd9da 7086 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7087 raw_spin_unlock_irq(&rq->lock);
7088 }
1ee14e6c
BS
7089 if (runtime_was_enabled && !runtime_enabled)
7090 cfs_bandwidth_usage_dec();
a790de99
PT
7091out_unlock:
7092 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7093
a790de99 7094 return ret;
ab84d31e
PT
7095}
7096
7097int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7098{
7099 u64 quota, period;
7100
029632fb 7101 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7102 if (cfs_quota_us < 0)
7103 quota = RUNTIME_INF;
7104 else
7105 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7106
7107 return tg_set_cfs_bandwidth(tg, period, quota);
7108}
7109
7110long tg_get_cfs_quota(struct task_group *tg)
7111{
7112 u64 quota_us;
7113
029632fb 7114 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7115 return -1;
7116
029632fb 7117 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7118 do_div(quota_us, NSEC_PER_USEC);
7119
7120 return quota_us;
7121}
7122
7123int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7124{
7125 u64 quota, period;
7126
7127 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7128 quota = tg->cfs_bandwidth.quota;
ab84d31e 7129
ab84d31e
PT
7130 return tg_set_cfs_bandwidth(tg, period, quota);
7131}
7132
7133long tg_get_cfs_period(struct task_group *tg)
7134{
7135 u64 cfs_period_us;
7136
029632fb 7137 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7138 do_div(cfs_period_us, NSEC_PER_USEC);
7139
7140 return cfs_period_us;
7141}
7142
182446d0
TH
7143static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7144 struct cftype *cft)
ab84d31e 7145{
182446d0 7146 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7147}
7148
182446d0
TH
7149static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7150 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7151{
182446d0 7152 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7153}
7154
182446d0
TH
7155static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7156 struct cftype *cft)
ab84d31e 7157{
182446d0 7158 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7159}
7160
182446d0
TH
7161static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7162 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7163{
182446d0 7164 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7165}
7166
a790de99
PT
7167struct cfs_schedulable_data {
7168 struct task_group *tg;
7169 u64 period, quota;
7170};
7171
7172/*
7173 * normalize group quota/period to be quota/max_period
7174 * note: units are usecs
7175 */
7176static u64 normalize_cfs_quota(struct task_group *tg,
7177 struct cfs_schedulable_data *d)
7178{
7179 u64 quota, period;
7180
7181 if (tg == d->tg) {
7182 period = d->period;
7183 quota = d->quota;
7184 } else {
7185 period = tg_get_cfs_period(tg);
7186 quota = tg_get_cfs_quota(tg);
7187 }
7188
7189 /* note: these should typically be equivalent */
7190 if (quota == RUNTIME_INF || quota == -1)
7191 return RUNTIME_INF;
7192
7193 return to_ratio(period, quota);
7194}
7195
7196static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7197{
7198 struct cfs_schedulable_data *d = data;
029632fb 7199 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7200 s64 quota = 0, parent_quota = -1;
7201
7202 if (!tg->parent) {
7203 quota = RUNTIME_INF;
7204 } else {
029632fb 7205 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7206
7207 quota = normalize_cfs_quota(tg, d);
7208 parent_quota = parent_b->hierarchal_quota;
7209
7210 /*
7211 * ensure max(child_quota) <= parent_quota, inherit when no
7212 * limit is set
7213 */
7214 if (quota == RUNTIME_INF)
7215 quota = parent_quota;
7216 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7217 return -EINVAL;
7218 }
7219 cfs_b->hierarchal_quota = quota;
7220
7221 return 0;
7222}
7223
7224static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7225{
8277434e 7226 int ret;
a790de99
PT
7227 struct cfs_schedulable_data data = {
7228 .tg = tg,
7229 .period = period,
7230 .quota = quota,
7231 };
7232
7233 if (quota != RUNTIME_INF) {
7234 do_div(data.period, NSEC_PER_USEC);
7235 do_div(data.quota, NSEC_PER_USEC);
7236 }
7237
8277434e
PT
7238 rcu_read_lock();
7239 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7240 rcu_read_unlock();
7241
7242 return ret;
a790de99 7243}
e8da1b18 7244
182446d0 7245static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7246 struct cgroup_map_cb *cb)
7247{
182446d0 7248 struct task_group *tg = css_tg(css);
029632fb 7249 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7250
7251 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7252 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7253 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7254
7255 return 0;
7256}
ab84d31e 7257#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7258#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7259
052f1dc7 7260#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7261static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7262 struct cftype *cft, s64 val)
6f505b16 7263{
182446d0 7264 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7265}
7266
182446d0
TH
7267static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7268 struct cftype *cft)
6f505b16 7269{
182446d0 7270 return sched_group_rt_runtime(css_tg(css));
6f505b16 7271}
d0b27fa7 7272
182446d0
TH
7273static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7274 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7275{
182446d0 7276 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7277}
7278
182446d0
TH
7279static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7280 struct cftype *cft)
d0b27fa7 7281{
182446d0 7282 return sched_group_rt_period(css_tg(css));
d0b27fa7 7283}
6d6bc0ad 7284#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7285
fe5c7cc2 7286static struct cftype cpu_files[] = {
052f1dc7 7287#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7288 {
7289 .name = "shares",
f4c753b7
PM
7290 .read_u64 = cpu_shares_read_u64,
7291 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7292 },
052f1dc7 7293#endif
ab84d31e
PT
7294#ifdef CONFIG_CFS_BANDWIDTH
7295 {
7296 .name = "cfs_quota_us",
7297 .read_s64 = cpu_cfs_quota_read_s64,
7298 .write_s64 = cpu_cfs_quota_write_s64,
7299 },
7300 {
7301 .name = "cfs_period_us",
7302 .read_u64 = cpu_cfs_period_read_u64,
7303 .write_u64 = cpu_cfs_period_write_u64,
7304 },
e8da1b18
NR
7305 {
7306 .name = "stat",
7307 .read_map = cpu_stats_show,
7308 },
ab84d31e 7309#endif
052f1dc7 7310#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7311 {
9f0c1e56 7312 .name = "rt_runtime_us",
06ecb27c
PM
7313 .read_s64 = cpu_rt_runtime_read,
7314 .write_s64 = cpu_rt_runtime_write,
6f505b16 7315 },
d0b27fa7
PZ
7316 {
7317 .name = "rt_period_us",
f4c753b7
PM
7318 .read_u64 = cpu_rt_period_read_uint,
7319 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7320 },
052f1dc7 7321#endif
4baf6e33 7322 { } /* terminate */
68318b8e
SV
7323};
7324
68318b8e 7325struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7326 .name = "cpu",
92fb9748
TH
7327 .css_alloc = cpu_cgroup_css_alloc,
7328 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7329 .css_online = cpu_cgroup_css_online,
7330 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7331 .can_attach = cpu_cgroup_can_attach,
7332 .attach = cpu_cgroup_attach,
068c5cc5 7333 .exit = cpu_cgroup_exit,
38605cae 7334 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7335 .base_cftypes = cpu_files,
68318b8e
SV
7336 .early_init = 1,
7337};
7338
052f1dc7 7339#endif /* CONFIG_CGROUP_SCHED */
d842de87 7340
b637a328
PM
7341void dump_cpu_task(int cpu)
7342{
7343 pr_info("Task dump for CPU %d:\n", cpu);
7344 sched_show_task(cpu_curr(cpu));
7345}
This page took 2.393559 seconds and 5 git commands to generate.