Merge tag 'vfio-v3.9-rc1' of git://github.com/awilliam/linux-vfio
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
515
516#ifndef tsk_is_polling
16a80163 517#define tsk_is_polling(t) 0
c24d20db
IM
518#endif
519
029632fb 520void resched_task(struct task_struct *p)
c24d20db
IM
521{
522 int cpu;
523
05fa785c 524 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 525
5ed0cec0 526 if (test_tsk_need_resched(p))
c24d20db
IM
527 return;
528
5ed0cec0 529 set_tsk_need_resched(p);
c24d20db
IM
530
531 cpu = task_cpu(p);
532 if (cpu == smp_processor_id())
533 return;
534
535 /* NEED_RESCHED must be visible before we test polling */
536 smp_mb();
537 if (!tsk_is_polling(p))
538 smp_send_reschedule(cpu);
539}
540
029632fb 541void resched_cpu(int cpu)
c24d20db
IM
542{
543 struct rq *rq = cpu_rq(cpu);
544 unsigned long flags;
545
05fa785c 546 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
547 return;
548 resched_task(cpu_curr(cpu));
05fa785c 549 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 550}
06d8308c
TG
551
552#ifdef CONFIG_NO_HZ
83cd4fe2
VP
553/*
554 * In the semi idle case, use the nearest busy cpu for migrating timers
555 * from an idle cpu. This is good for power-savings.
556 *
557 * We don't do similar optimization for completely idle system, as
558 * selecting an idle cpu will add more delays to the timers than intended
559 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
560 */
561int get_nohz_timer_target(void)
562{
563 int cpu = smp_processor_id();
564 int i;
565 struct sched_domain *sd;
566
057f3fad 567 rcu_read_lock();
83cd4fe2 568 for_each_domain(cpu, sd) {
057f3fad
PZ
569 for_each_cpu(i, sched_domain_span(sd)) {
570 if (!idle_cpu(i)) {
571 cpu = i;
572 goto unlock;
573 }
574 }
83cd4fe2 575 }
057f3fad
PZ
576unlock:
577 rcu_read_unlock();
83cd4fe2
VP
578 return cpu;
579}
06d8308c
TG
580/*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
590void wake_up_idle_cpu(int cpu)
591{
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 /*
598 * This is safe, as this function is called with the timer
599 * wheel base lock of (cpu) held. When the CPU is on the way
600 * to idle and has not yet set rq->curr to idle then it will
601 * be serialized on the timer wheel base lock and take the new
602 * timer into account automatically.
603 */
604 if (rq->curr != rq->idle)
605 return;
45bf76df 606
45bf76df 607 /*
06d8308c
TG
608 * We can set TIF_RESCHED on the idle task of the other CPU
609 * lockless. The worst case is that the other CPU runs the
610 * idle task through an additional NOOP schedule()
45bf76df 611 */
5ed0cec0 612 set_tsk_need_resched(rq->idle);
45bf76df 613
06d8308c
TG
614 /* NEED_RESCHED must be visible before we test polling */
615 smp_mb();
616 if (!tsk_is_polling(rq->idle))
617 smp_send_reschedule(cpu);
45bf76df
IM
618}
619
ca38062e 620static inline bool got_nohz_idle_kick(void)
45bf76df 621{
1c792db7
SS
622 int cpu = smp_processor_id();
623 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
624}
625
ca38062e 626#else /* CONFIG_NO_HZ */
45bf76df 627
ca38062e 628static inline bool got_nohz_idle_kick(void)
2069dd75 629{
ca38062e 630 return false;
2069dd75
PZ
631}
632
6d6bc0ad 633#endif /* CONFIG_NO_HZ */
d842de87 634
029632fb 635void sched_avg_update(struct rq *rq)
18d95a28 636{
e9e9250b
PZ
637 s64 period = sched_avg_period();
638
639 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
640 /*
641 * Inline assembly required to prevent the compiler
642 * optimising this loop into a divmod call.
643 * See __iter_div_u64_rem() for another example of this.
644 */
645 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
646 rq->age_stamp += period;
647 rq->rt_avg /= 2;
648 }
18d95a28
PZ
649}
650
6d6bc0ad 651#else /* !CONFIG_SMP */
029632fb 652void resched_task(struct task_struct *p)
18d95a28 653{
05fa785c 654 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 655 set_tsk_need_resched(p);
18d95a28 656}
6d6bc0ad 657#endif /* CONFIG_SMP */
18d95a28 658
a790de99
PT
659#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
660 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 661/*
8277434e
PT
662 * Iterate task_group tree rooted at *from, calling @down when first entering a
663 * node and @up when leaving it for the final time.
664 *
665 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 666 */
029632fb 667int walk_tg_tree_from(struct task_group *from,
8277434e 668 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
669{
670 struct task_group *parent, *child;
eb755805 671 int ret;
c09595f6 672
8277434e
PT
673 parent = from;
674
c09595f6 675down:
eb755805
PZ
676 ret = (*down)(parent, data);
677 if (ret)
8277434e 678 goto out;
c09595f6
PZ
679 list_for_each_entry_rcu(child, &parent->children, siblings) {
680 parent = child;
681 goto down;
682
683up:
684 continue;
685 }
eb755805 686 ret = (*up)(parent, data);
8277434e
PT
687 if (ret || parent == from)
688 goto out;
c09595f6
PZ
689
690 child = parent;
691 parent = parent->parent;
692 if (parent)
693 goto up;
8277434e 694out:
eb755805 695 return ret;
c09595f6
PZ
696}
697
029632fb 698int tg_nop(struct task_group *tg, void *data)
eb755805 699{
e2b245f8 700 return 0;
eb755805 701}
18d95a28
PZ
702#endif
703
45bf76df
IM
704static void set_load_weight(struct task_struct *p)
705{
f05998d4
NR
706 int prio = p->static_prio - MAX_RT_PRIO;
707 struct load_weight *load = &p->se.load;
708
dd41f596
IM
709 /*
710 * SCHED_IDLE tasks get minimal weight:
711 */
712 if (p->policy == SCHED_IDLE) {
c8b28116 713 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 714 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
715 return;
716 }
71f8bd46 717
c8b28116 718 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 719 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
720}
721
371fd7e7 722static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 723{
a64692a3 724 update_rq_clock(rq);
dd41f596 725 sched_info_queued(p);
371fd7e7 726 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
727}
728
371fd7e7 729static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 730{
a64692a3 731 update_rq_clock(rq);
46ac22ba 732 sched_info_dequeued(p);
371fd7e7 733 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
734}
735
029632fb 736void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
737{
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible--;
740
371fd7e7 741 enqueue_task(rq, p, flags);
1e3c88bd
PZ
742}
743
029632fb 744void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
745{
746 if (task_contributes_to_load(p))
747 rq->nr_uninterruptible++;
748
371fd7e7 749 dequeue_task(rq, p, flags);
1e3c88bd
PZ
750}
751
fe44d621 752static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 753{
095c0aa8
GC
754/*
755 * In theory, the compile should just see 0 here, and optimize out the call
756 * to sched_rt_avg_update. But I don't trust it...
757 */
758#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
759 s64 steal = 0, irq_delta = 0;
760#endif
761#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 762 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
763
764 /*
765 * Since irq_time is only updated on {soft,}irq_exit, we might run into
766 * this case when a previous update_rq_clock() happened inside a
767 * {soft,}irq region.
768 *
769 * When this happens, we stop ->clock_task and only update the
770 * prev_irq_time stamp to account for the part that fit, so that a next
771 * update will consume the rest. This ensures ->clock_task is
772 * monotonic.
773 *
774 * It does however cause some slight miss-attribution of {soft,}irq
775 * time, a more accurate solution would be to update the irq_time using
776 * the current rq->clock timestamp, except that would require using
777 * atomic ops.
778 */
779 if (irq_delta > delta)
780 irq_delta = delta;
781
782 rq->prev_irq_time += irq_delta;
783 delta -= irq_delta;
095c0aa8
GC
784#endif
785#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 786 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
787 u64 st;
788
789 steal = paravirt_steal_clock(cpu_of(rq));
790 steal -= rq->prev_steal_time_rq;
791
792 if (unlikely(steal > delta))
793 steal = delta;
794
795 st = steal_ticks(steal);
796 steal = st * TICK_NSEC;
797
798 rq->prev_steal_time_rq += steal;
799
800 delta -= steal;
801 }
802#endif
803
fe44d621
PZ
804 rq->clock_task += delta;
805
095c0aa8
GC
806#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
807 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
808 sched_rt_avg_update(rq, irq_delta + steal);
809#endif
aa483808
VP
810}
811
34f971f6
PZ
812void sched_set_stop_task(int cpu, struct task_struct *stop)
813{
814 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
815 struct task_struct *old_stop = cpu_rq(cpu)->stop;
816
817 if (stop) {
818 /*
819 * Make it appear like a SCHED_FIFO task, its something
820 * userspace knows about and won't get confused about.
821 *
822 * Also, it will make PI more or less work without too
823 * much confusion -- but then, stop work should not
824 * rely on PI working anyway.
825 */
826 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
827
828 stop->sched_class = &stop_sched_class;
829 }
830
831 cpu_rq(cpu)->stop = stop;
832
833 if (old_stop) {
834 /*
835 * Reset it back to a normal scheduling class so that
836 * it can die in pieces.
837 */
838 old_stop->sched_class = &rt_sched_class;
839 }
840}
841
14531189 842/*
dd41f596 843 * __normal_prio - return the priority that is based on the static prio
14531189 844 */
14531189
IM
845static inline int __normal_prio(struct task_struct *p)
846{
dd41f596 847 return p->static_prio;
14531189
IM
848}
849
b29739f9
IM
850/*
851 * Calculate the expected normal priority: i.e. priority
852 * without taking RT-inheritance into account. Might be
853 * boosted by interactivity modifiers. Changes upon fork,
854 * setprio syscalls, and whenever the interactivity
855 * estimator recalculates.
856 */
36c8b586 857static inline int normal_prio(struct task_struct *p)
b29739f9
IM
858{
859 int prio;
860
e05606d3 861 if (task_has_rt_policy(p))
b29739f9
IM
862 prio = MAX_RT_PRIO-1 - p->rt_priority;
863 else
864 prio = __normal_prio(p);
865 return prio;
866}
867
868/*
869 * Calculate the current priority, i.e. the priority
870 * taken into account by the scheduler. This value might
871 * be boosted by RT tasks, or might be boosted by
872 * interactivity modifiers. Will be RT if the task got
873 * RT-boosted. If not then it returns p->normal_prio.
874 */
36c8b586 875static int effective_prio(struct task_struct *p)
b29739f9
IM
876{
877 p->normal_prio = normal_prio(p);
878 /*
879 * If we are RT tasks or we were boosted to RT priority,
880 * keep the priority unchanged. Otherwise, update priority
881 * to the normal priority:
882 */
883 if (!rt_prio(p->prio))
884 return p->normal_prio;
885 return p->prio;
886}
887
1da177e4
LT
888/**
889 * task_curr - is this task currently executing on a CPU?
890 * @p: the task in question.
891 */
36c8b586 892inline int task_curr(const struct task_struct *p)
1da177e4
LT
893{
894 return cpu_curr(task_cpu(p)) == p;
895}
896
cb469845
SR
897static inline void check_class_changed(struct rq *rq, struct task_struct *p,
898 const struct sched_class *prev_class,
da7a735e 899 int oldprio)
cb469845
SR
900{
901 if (prev_class != p->sched_class) {
902 if (prev_class->switched_from)
da7a735e
PZ
903 prev_class->switched_from(rq, p);
904 p->sched_class->switched_to(rq, p);
905 } else if (oldprio != p->prio)
906 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
907}
908
029632fb 909void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
910{
911 const struct sched_class *class;
912
913 if (p->sched_class == rq->curr->sched_class) {
914 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
915 } else {
916 for_each_class(class) {
917 if (class == rq->curr->sched_class)
918 break;
919 if (class == p->sched_class) {
920 resched_task(rq->curr);
921 break;
922 }
923 }
924 }
925
926 /*
927 * A queue event has occurred, and we're going to schedule. In
928 * this case, we can save a useless back to back clock update.
929 */
fd2f4419 930 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
931 rq->skip_clock_update = 1;
932}
933
582b336e
MT
934static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
935
936void register_task_migration_notifier(struct notifier_block *n)
937{
938 atomic_notifier_chain_register(&task_migration_notifier, n);
939}
940
1da177e4 941#ifdef CONFIG_SMP
dd41f596 942void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 943{
e2912009
PZ
944#ifdef CONFIG_SCHED_DEBUG
945 /*
946 * We should never call set_task_cpu() on a blocked task,
947 * ttwu() will sort out the placement.
948 */
077614ee
PZ
949 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
950 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
951
952#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
953 /*
954 * The caller should hold either p->pi_lock or rq->lock, when changing
955 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
956 *
957 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 958 * see task_group().
6c6c54e1
PZ
959 *
960 * Furthermore, all task_rq users should acquire both locks, see
961 * task_rq_lock().
962 */
0122ec5b
PZ
963 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
964 lockdep_is_held(&task_rq(p)->lock)));
965#endif
e2912009
PZ
966#endif
967
de1d7286 968 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 969
0c69774e 970 if (task_cpu(p) != new_cpu) {
582b336e
MT
971 struct task_migration_notifier tmn;
972
0a74bef8
PT
973 if (p->sched_class->migrate_task_rq)
974 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 975 p->se.nr_migrations++;
a8b0ca17 976 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
977
978 tmn.task = p;
979 tmn.from_cpu = task_cpu(p);
980 tmn.to_cpu = new_cpu;
981
982 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 983 }
dd41f596
IM
984
985 __set_task_cpu(p, new_cpu);
c65cc870
IM
986}
987
969c7921 988struct migration_arg {
36c8b586 989 struct task_struct *task;
1da177e4 990 int dest_cpu;
70b97a7f 991};
1da177e4 992
969c7921
TH
993static int migration_cpu_stop(void *data);
994
1da177e4
LT
995/*
996 * wait_task_inactive - wait for a thread to unschedule.
997 *
85ba2d86
RM
998 * If @match_state is nonzero, it's the @p->state value just checked and
999 * not expected to change. If it changes, i.e. @p might have woken up,
1000 * then return zero. When we succeed in waiting for @p to be off its CPU,
1001 * we return a positive number (its total switch count). If a second call
1002 * a short while later returns the same number, the caller can be sure that
1003 * @p has remained unscheduled the whole time.
1004 *
1da177e4
LT
1005 * The caller must ensure that the task *will* unschedule sometime soon,
1006 * else this function might spin for a *long* time. This function can't
1007 * be called with interrupts off, or it may introduce deadlock with
1008 * smp_call_function() if an IPI is sent by the same process we are
1009 * waiting to become inactive.
1010 */
85ba2d86 1011unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1012{
1013 unsigned long flags;
dd41f596 1014 int running, on_rq;
85ba2d86 1015 unsigned long ncsw;
70b97a7f 1016 struct rq *rq;
1da177e4 1017
3a5c359a
AK
1018 for (;;) {
1019 /*
1020 * We do the initial early heuristics without holding
1021 * any task-queue locks at all. We'll only try to get
1022 * the runqueue lock when things look like they will
1023 * work out!
1024 */
1025 rq = task_rq(p);
fa490cfd 1026
3a5c359a
AK
1027 /*
1028 * If the task is actively running on another CPU
1029 * still, just relax and busy-wait without holding
1030 * any locks.
1031 *
1032 * NOTE! Since we don't hold any locks, it's not
1033 * even sure that "rq" stays as the right runqueue!
1034 * But we don't care, since "task_running()" will
1035 * return false if the runqueue has changed and p
1036 * is actually now running somewhere else!
1037 */
85ba2d86
RM
1038 while (task_running(rq, p)) {
1039 if (match_state && unlikely(p->state != match_state))
1040 return 0;
3a5c359a 1041 cpu_relax();
85ba2d86 1042 }
fa490cfd 1043
3a5c359a
AK
1044 /*
1045 * Ok, time to look more closely! We need the rq
1046 * lock now, to be *sure*. If we're wrong, we'll
1047 * just go back and repeat.
1048 */
1049 rq = task_rq_lock(p, &flags);
27a9da65 1050 trace_sched_wait_task(p);
3a5c359a 1051 running = task_running(rq, p);
fd2f4419 1052 on_rq = p->on_rq;
85ba2d86 1053 ncsw = 0;
f31e11d8 1054 if (!match_state || p->state == match_state)
93dcf55f 1055 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1056 task_rq_unlock(rq, p, &flags);
fa490cfd 1057
85ba2d86
RM
1058 /*
1059 * If it changed from the expected state, bail out now.
1060 */
1061 if (unlikely(!ncsw))
1062 break;
1063
3a5c359a
AK
1064 /*
1065 * Was it really running after all now that we
1066 * checked with the proper locks actually held?
1067 *
1068 * Oops. Go back and try again..
1069 */
1070 if (unlikely(running)) {
1071 cpu_relax();
1072 continue;
1073 }
fa490cfd 1074
3a5c359a
AK
1075 /*
1076 * It's not enough that it's not actively running,
1077 * it must be off the runqueue _entirely_, and not
1078 * preempted!
1079 *
80dd99b3 1080 * So if it was still runnable (but just not actively
3a5c359a
AK
1081 * running right now), it's preempted, and we should
1082 * yield - it could be a while.
1083 */
1084 if (unlikely(on_rq)) {
8eb90c30
TG
1085 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1086
1087 set_current_state(TASK_UNINTERRUPTIBLE);
1088 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1089 continue;
1090 }
fa490cfd 1091
3a5c359a
AK
1092 /*
1093 * Ahh, all good. It wasn't running, and it wasn't
1094 * runnable, which means that it will never become
1095 * running in the future either. We're all done!
1096 */
1097 break;
1098 }
85ba2d86
RM
1099
1100 return ncsw;
1da177e4
LT
1101}
1102
1103/***
1104 * kick_process - kick a running thread to enter/exit the kernel
1105 * @p: the to-be-kicked thread
1106 *
1107 * Cause a process which is running on another CPU to enter
1108 * kernel-mode, without any delay. (to get signals handled.)
1109 *
25985edc 1110 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1111 * because all it wants to ensure is that the remote task enters
1112 * the kernel. If the IPI races and the task has been migrated
1113 * to another CPU then no harm is done and the purpose has been
1114 * achieved as well.
1115 */
36c8b586 1116void kick_process(struct task_struct *p)
1da177e4
LT
1117{
1118 int cpu;
1119
1120 preempt_disable();
1121 cpu = task_cpu(p);
1122 if ((cpu != smp_processor_id()) && task_curr(p))
1123 smp_send_reschedule(cpu);
1124 preempt_enable();
1125}
b43e3521 1126EXPORT_SYMBOL_GPL(kick_process);
476d139c 1127#endif /* CONFIG_SMP */
1da177e4 1128
970b13ba 1129#ifdef CONFIG_SMP
30da688e 1130/*
013fdb80 1131 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1132 */
5da9a0fb
PZ
1133static int select_fallback_rq(int cpu, struct task_struct *p)
1134{
aa00d89c
TC
1135 int nid = cpu_to_node(cpu);
1136 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1137 enum { cpuset, possible, fail } state = cpuset;
1138 int dest_cpu;
5da9a0fb 1139
aa00d89c
TC
1140 /*
1141 * If the node that the cpu is on has been offlined, cpu_to_node()
1142 * will return -1. There is no cpu on the node, and we should
1143 * select the cpu on the other node.
1144 */
1145 if (nid != -1) {
1146 nodemask = cpumask_of_node(nid);
1147
1148 /* Look for allowed, online CPU in same node. */
1149 for_each_cpu(dest_cpu, nodemask) {
1150 if (!cpu_online(dest_cpu))
1151 continue;
1152 if (!cpu_active(dest_cpu))
1153 continue;
1154 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1155 return dest_cpu;
1156 }
2baab4e9 1157 }
5da9a0fb 1158
2baab4e9
PZ
1159 for (;;) {
1160 /* Any allowed, online CPU? */
e3831edd 1161 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1162 if (!cpu_online(dest_cpu))
1163 continue;
1164 if (!cpu_active(dest_cpu))
1165 continue;
1166 goto out;
1167 }
5da9a0fb 1168
2baab4e9
PZ
1169 switch (state) {
1170 case cpuset:
1171 /* No more Mr. Nice Guy. */
1172 cpuset_cpus_allowed_fallback(p);
1173 state = possible;
1174 break;
1175
1176 case possible:
1177 do_set_cpus_allowed(p, cpu_possible_mask);
1178 state = fail;
1179 break;
1180
1181 case fail:
1182 BUG();
1183 break;
1184 }
1185 }
1186
1187out:
1188 if (state != cpuset) {
1189 /*
1190 * Don't tell them about moving exiting tasks or
1191 * kernel threads (both mm NULL), since they never
1192 * leave kernel.
1193 */
1194 if (p->mm && printk_ratelimit()) {
1195 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1196 task_pid_nr(p), p->comm, cpu);
1197 }
5da9a0fb
PZ
1198 }
1199
1200 return dest_cpu;
1201}
1202
e2912009 1203/*
013fdb80 1204 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1205 */
970b13ba 1206static inline
7608dec2 1207int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1208{
7608dec2 1209 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1210
1211 /*
1212 * In order not to call set_task_cpu() on a blocking task we need
1213 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1214 * cpu.
1215 *
1216 * Since this is common to all placement strategies, this lives here.
1217 *
1218 * [ this allows ->select_task() to simply return task_cpu(p) and
1219 * not worry about this generic constraint ]
1220 */
fa17b507 1221 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1222 !cpu_online(cpu)))
5da9a0fb 1223 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1224
1225 return cpu;
970b13ba 1226}
09a40af5
MG
1227
1228static void update_avg(u64 *avg, u64 sample)
1229{
1230 s64 diff = sample - *avg;
1231 *avg += diff >> 3;
1232}
970b13ba
PZ
1233#endif
1234
d7c01d27 1235static void
b84cb5df 1236ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1237{
d7c01d27 1238#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1239 struct rq *rq = this_rq();
1240
d7c01d27
PZ
1241#ifdef CONFIG_SMP
1242 int this_cpu = smp_processor_id();
1243
1244 if (cpu == this_cpu) {
1245 schedstat_inc(rq, ttwu_local);
1246 schedstat_inc(p, se.statistics.nr_wakeups_local);
1247 } else {
1248 struct sched_domain *sd;
1249
1250 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1251 rcu_read_lock();
d7c01d27
PZ
1252 for_each_domain(this_cpu, sd) {
1253 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1254 schedstat_inc(sd, ttwu_wake_remote);
1255 break;
1256 }
1257 }
057f3fad 1258 rcu_read_unlock();
d7c01d27 1259 }
f339b9dc
PZ
1260
1261 if (wake_flags & WF_MIGRATED)
1262 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1263
d7c01d27
PZ
1264#endif /* CONFIG_SMP */
1265
1266 schedstat_inc(rq, ttwu_count);
9ed3811a 1267 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1268
1269 if (wake_flags & WF_SYNC)
9ed3811a 1270 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1271
d7c01d27
PZ
1272#endif /* CONFIG_SCHEDSTATS */
1273}
1274
1275static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1276{
9ed3811a 1277 activate_task(rq, p, en_flags);
fd2f4419 1278 p->on_rq = 1;
c2f7115e
PZ
1279
1280 /* if a worker is waking up, notify workqueue */
1281 if (p->flags & PF_WQ_WORKER)
1282 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1283}
1284
23f41eeb
PZ
1285/*
1286 * Mark the task runnable and perform wakeup-preemption.
1287 */
89363381 1288static void
23f41eeb 1289ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1290{
89363381 1291 trace_sched_wakeup(p, true);
9ed3811a
TH
1292 check_preempt_curr(rq, p, wake_flags);
1293
1294 p->state = TASK_RUNNING;
1295#ifdef CONFIG_SMP
1296 if (p->sched_class->task_woken)
1297 p->sched_class->task_woken(rq, p);
1298
e69c6341 1299 if (rq->idle_stamp) {
9ed3811a
TH
1300 u64 delta = rq->clock - rq->idle_stamp;
1301 u64 max = 2*sysctl_sched_migration_cost;
1302
1303 if (delta > max)
1304 rq->avg_idle = max;
1305 else
1306 update_avg(&rq->avg_idle, delta);
1307 rq->idle_stamp = 0;
1308 }
1309#endif
1310}
1311
c05fbafb
PZ
1312static void
1313ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1314{
1315#ifdef CONFIG_SMP
1316 if (p->sched_contributes_to_load)
1317 rq->nr_uninterruptible--;
1318#endif
1319
1320 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1321 ttwu_do_wakeup(rq, p, wake_flags);
1322}
1323
1324/*
1325 * Called in case the task @p isn't fully descheduled from its runqueue,
1326 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1327 * since all we need to do is flip p->state to TASK_RUNNING, since
1328 * the task is still ->on_rq.
1329 */
1330static int ttwu_remote(struct task_struct *p, int wake_flags)
1331{
1332 struct rq *rq;
1333 int ret = 0;
1334
1335 rq = __task_rq_lock(p);
1336 if (p->on_rq) {
1337 ttwu_do_wakeup(rq, p, wake_flags);
1338 ret = 1;
1339 }
1340 __task_rq_unlock(rq);
1341
1342 return ret;
1343}
1344
317f3941 1345#ifdef CONFIG_SMP
fa14ff4a 1346static void sched_ttwu_pending(void)
317f3941
PZ
1347{
1348 struct rq *rq = this_rq();
fa14ff4a
PZ
1349 struct llist_node *llist = llist_del_all(&rq->wake_list);
1350 struct task_struct *p;
317f3941
PZ
1351
1352 raw_spin_lock(&rq->lock);
1353
fa14ff4a
PZ
1354 while (llist) {
1355 p = llist_entry(llist, struct task_struct, wake_entry);
1356 llist = llist_next(llist);
317f3941
PZ
1357 ttwu_do_activate(rq, p, 0);
1358 }
1359
1360 raw_spin_unlock(&rq->lock);
1361}
1362
1363void scheduler_ipi(void)
1364{
ca38062e 1365 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1366 return;
1367
1368 /*
1369 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1370 * traditionally all their work was done from the interrupt return
1371 * path. Now that we actually do some work, we need to make sure
1372 * we do call them.
1373 *
1374 * Some archs already do call them, luckily irq_enter/exit nest
1375 * properly.
1376 *
1377 * Arguably we should visit all archs and update all handlers,
1378 * however a fair share of IPIs are still resched only so this would
1379 * somewhat pessimize the simple resched case.
1380 */
1381 irq_enter();
fa14ff4a 1382 sched_ttwu_pending();
ca38062e
SS
1383
1384 /*
1385 * Check if someone kicked us for doing the nohz idle load balance.
1386 */
6eb57e0d
SS
1387 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1388 this_rq()->idle_balance = 1;
ca38062e 1389 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1390 }
c5d753a5 1391 irq_exit();
317f3941
PZ
1392}
1393
1394static void ttwu_queue_remote(struct task_struct *p, int cpu)
1395{
fa14ff4a 1396 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1397 smp_send_reschedule(cpu);
1398}
d6aa8f85 1399
39be3501 1400bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1401{
1402 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1403}
d6aa8f85 1404#endif /* CONFIG_SMP */
317f3941 1405
c05fbafb
PZ
1406static void ttwu_queue(struct task_struct *p, int cpu)
1407{
1408 struct rq *rq = cpu_rq(cpu);
1409
17d9f311 1410#if defined(CONFIG_SMP)
39be3501 1411 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1412 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1413 ttwu_queue_remote(p, cpu);
1414 return;
1415 }
1416#endif
1417
c05fbafb
PZ
1418 raw_spin_lock(&rq->lock);
1419 ttwu_do_activate(rq, p, 0);
1420 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1421}
1422
1423/**
1da177e4 1424 * try_to_wake_up - wake up a thread
9ed3811a 1425 * @p: the thread to be awakened
1da177e4 1426 * @state: the mask of task states that can be woken
9ed3811a 1427 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1428 *
1429 * Put it on the run-queue if it's not already there. The "current"
1430 * thread is always on the run-queue (except when the actual
1431 * re-schedule is in progress), and as such you're allowed to do
1432 * the simpler "current->state = TASK_RUNNING" to mark yourself
1433 * runnable without the overhead of this.
1434 *
9ed3811a
TH
1435 * Returns %true if @p was woken up, %false if it was already running
1436 * or @state didn't match @p's state.
1da177e4 1437 */
e4a52bcb
PZ
1438static int
1439try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1440{
1da177e4 1441 unsigned long flags;
c05fbafb 1442 int cpu, success = 0;
2398f2c6 1443
04e2f174 1444 smp_wmb();
013fdb80 1445 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1446 if (!(p->state & state))
1da177e4
LT
1447 goto out;
1448
c05fbafb 1449 success = 1; /* we're going to change ->state */
1da177e4 1450 cpu = task_cpu(p);
1da177e4 1451
c05fbafb
PZ
1452 if (p->on_rq && ttwu_remote(p, wake_flags))
1453 goto stat;
1da177e4 1454
1da177e4 1455#ifdef CONFIG_SMP
e9c84311 1456 /*
c05fbafb
PZ
1457 * If the owning (remote) cpu is still in the middle of schedule() with
1458 * this task as prev, wait until its done referencing the task.
e9c84311 1459 */
f3e94786 1460 while (p->on_cpu)
e4a52bcb 1461 cpu_relax();
0970d299 1462 /*
e4a52bcb 1463 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1464 */
e4a52bcb 1465 smp_rmb();
1da177e4 1466
a8e4f2ea 1467 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1468 p->state = TASK_WAKING;
e7693a36 1469
e4a52bcb 1470 if (p->sched_class->task_waking)
74f8e4b2 1471 p->sched_class->task_waking(p);
efbbd05a 1472
7608dec2 1473 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1474 if (task_cpu(p) != cpu) {
1475 wake_flags |= WF_MIGRATED;
e4a52bcb 1476 set_task_cpu(p, cpu);
f339b9dc 1477 }
1da177e4 1478#endif /* CONFIG_SMP */
1da177e4 1479
c05fbafb
PZ
1480 ttwu_queue(p, cpu);
1481stat:
b84cb5df 1482 ttwu_stat(p, cpu, wake_flags);
1da177e4 1483out:
013fdb80 1484 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1485
1486 return success;
1487}
1488
21aa9af0
TH
1489/**
1490 * try_to_wake_up_local - try to wake up a local task with rq lock held
1491 * @p: the thread to be awakened
1492 *
2acca55e 1493 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1494 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1495 * the current task.
21aa9af0
TH
1496 */
1497static void try_to_wake_up_local(struct task_struct *p)
1498{
1499 struct rq *rq = task_rq(p);
21aa9af0
TH
1500
1501 BUG_ON(rq != this_rq());
1502 BUG_ON(p == current);
1503 lockdep_assert_held(&rq->lock);
1504
2acca55e
PZ
1505 if (!raw_spin_trylock(&p->pi_lock)) {
1506 raw_spin_unlock(&rq->lock);
1507 raw_spin_lock(&p->pi_lock);
1508 raw_spin_lock(&rq->lock);
1509 }
1510
21aa9af0 1511 if (!(p->state & TASK_NORMAL))
2acca55e 1512 goto out;
21aa9af0 1513
fd2f4419 1514 if (!p->on_rq)
d7c01d27
PZ
1515 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1516
23f41eeb 1517 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1518 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1519out:
1520 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1521}
1522
50fa610a
DH
1523/**
1524 * wake_up_process - Wake up a specific process
1525 * @p: The process to be woken up.
1526 *
1527 * Attempt to wake up the nominated process and move it to the set of runnable
1528 * processes. Returns 1 if the process was woken up, 0 if it was already
1529 * running.
1530 *
1531 * It may be assumed that this function implies a write memory barrier before
1532 * changing the task state if and only if any tasks are woken up.
1533 */
7ad5b3a5 1534int wake_up_process(struct task_struct *p)
1da177e4 1535{
9067ac85
ON
1536 WARN_ON(task_is_stopped_or_traced(p));
1537 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1538}
1da177e4
LT
1539EXPORT_SYMBOL(wake_up_process);
1540
7ad5b3a5 1541int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1542{
1543 return try_to_wake_up(p, state, 0);
1544}
1545
1da177e4
LT
1546/*
1547 * Perform scheduler related setup for a newly forked process p.
1548 * p is forked by current.
dd41f596
IM
1549 *
1550 * __sched_fork() is basic setup used by init_idle() too:
1551 */
1552static void __sched_fork(struct task_struct *p)
1553{
fd2f4419
PZ
1554 p->on_rq = 0;
1555
1556 p->se.on_rq = 0;
dd41f596
IM
1557 p->se.exec_start = 0;
1558 p->se.sum_exec_runtime = 0;
f6cf891c 1559 p->se.prev_sum_exec_runtime = 0;
6c594c21 1560 p->se.nr_migrations = 0;
da7a735e 1561 p->se.vruntime = 0;
fd2f4419 1562 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 1563
f4e26b12
PT
1564/*
1565 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1566 * removed when useful for applications beyond shares distribution (e.g.
1567 * load-balance).
1568 */
1569#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
9d85f21c
PT
1570 p->se.avg.runnable_avg_period = 0;
1571 p->se.avg.runnable_avg_sum = 0;
1572#endif
6cfb0d5d 1573#ifdef CONFIG_SCHEDSTATS
41acab88 1574 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1575#endif
476d139c 1576
fa717060 1577 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1578
e107be36
AK
1579#ifdef CONFIG_PREEMPT_NOTIFIERS
1580 INIT_HLIST_HEAD(&p->preempt_notifiers);
1581#endif
cbee9f88
PZ
1582
1583#ifdef CONFIG_NUMA_BALANCING
1584 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1585 p->mm->numa_next_scan = jiffies;
b8593bfd 1586 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1587 p->mm->numa_scan_seq = 0;
1588 }
1589
1590 p->node_stamp = 0ULL;
1591 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1592 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1593 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1594 p->numa_work.next = &p->numa_work;
1595#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1596}
1597
1a687c2e 1598#ifdef CONFIG_NUMA_BALANCING
3105b86a 1599#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1600void set_numabalancing_state(bool enabled)
1601{
1602 if (enabled)
1603 sched_feat_set("NUMA");
1604 else
1605 sched_feat_set("NO_NUMA");
1606}
3105b86a
MG
1607#else
1608__read_mostly bool numabalancing_enabled;
1609
1610void set_numabalancing_state(bool enabled)
1611{
1612 numabalancing_enabled = enabled;
dd41f596 1613}
3105b86a 1614#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1615#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1616
1617/*
1618 * fork()/clone()-time setup:
1619 */
3e51e3ed 1620void sched_fork(struct task_struct *p)
dd41f596 1621{
0122ec5b 1622 unsigned long flags;
dd41f596
IM
1623 int cpu = get_cpu();
1624
1625 __sched_fork(p);
06b83b5f 1626 /*
0017d735 1627 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1628 * nobody will actually run it, and a signal or other external
1629 * event cannot wake it up and insert it on the runqueue either.
1630 */
0017d735 1631 p->state = TASK_RUNNING;
dd41f596 1632
c350a04e
MG
1633 /*
1634 * Make sure we do not leak PI boosting priority to the child.
1635 */
1636 p->prio = current->normal_prio;
1637
b9dc29e7
MG
1638 /*
1639 * Revert to default priority/policy on fork if requested.
1640 */
1641 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1642 if (task_has_rt_policy(p)) {
b9dc29e7 1643 p->policy = SCHED_NORMAL;
6c697bdf 1644 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1645 p->rt_priority = 0;
1646 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1647 p->static_prio = NICE_TO_PRIO(0);
1648
1649 p->prio = p->normal_prio = __normal_prio(p);
1650 set_load_weight(p);
6c697bdf 1651
b9dc29e7
MG
1652 /*
1653 * We don't need the reset flag anymore after the fork. It has
1654 * fulfilled its duty:
1655 */
1656 p->sched_reset_on_fork = 0;
1657 }
ca94c442 1658
2ddbf952
HS
1659 if (!rt_prio(p->prio))
1660 p->sched_class = &fair_sched_class;
b29739f9 1661
cd29fe6f
PZ
1662 if (p->sched_class->task_fork)
1663 p->sched_class->task_fork(p);
1664
86951599
PZ
1665 /*
1666 * The child is not yet in the pid-hash so no cgroup attach races,
1667 * and the cgroup is pinned to this child due to cgroup_fork()
1668 * is ran before sched_fork().
1669 *
1670 * Silence PROVE_RCU.
1671 */
0122ec5b 1672 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1673 set_task_cpu(p, cpu);
0122ec5b 1674 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1675
52f17b6c 1676#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1677 if (likely(sched_info_on()))
52f17b6c 1678 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1679#endif
3ca7a440
PZ
1680#if defined(CONFIG_SMP)
1681 p->on_cpu = 0;
4866cde0 1682#endif
bdd4e85d 1683#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1684 /* Want to start with kernel preemption disabled. */
a1261f54 1685 task_thread_info(p)->preempt_count = 1;
1da177e4 1686#endif
806c09a7 1687#ifdef CONFIG_SMP
917b627d 1688 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1689#endif
917b627d 1690
476d139c 1691 put_cpu();
1da177e4
LT
1692}
1693
1694/*
1695 * wake_up_new_task - wake up a newly created task for the first time.
1696 *
1697 * This function will do some initial scheduler statistics housekeeping
1698 * that must be done for every newly created context, then puts the task
1699 * on the runqueue and wakes it.
1700 */
3e51e3ed 1701void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1702{
1703 unsigned long flags;
dd41f596 1704 struct rq *rq;
fabf318e 1705
ab2515c4 1706 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1707#ifdef CONFIG_SMP
1708 /*
1709 * Fork balancing, do it here and not earlier because:
1710 * - cpus_allowed can change in the fork path
1711 * - any previously selected cpu might disappear through hotplug
fabf318e 1712 */
ab2515c4 1713 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1714#endif
1715
ab2515c4 1716 rq = __task_rq_lock(p);
cd29fe6f 1717 activate_task(rq, p, 0);
fd2f4419 1718 p->on_rq = 1;
89363381 1719 trace_sched_wakeup_new(p, true);
a7558e01 1720 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1721#ifdef CONFIG_SMP
efbbd05a
PZ
1722 if (p->sched_class->task_woken)
1723 p->sched_class->task_woken(rq, p);
9a897c5a 1724#endif
0122ec5b 1725 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1726}
1727
e107be36
AK
1728#ifdef CONFIG_PREEMPT_NOTIFIERS
1729
1730/**
80dd99b3 1731 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1732 * @notifier: notifier struct to register
e107be36
AK
1733 */
1734void preempt_notifier_register(struct preempt_notifier *notifier)
1735{
1736 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1737}
1738EXPORT_SYMBOL_GPL(preempt_notifier_register);
1739
1740/**
1741 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1742 * @notifier: notifier struct to unregister
e107be36
AK
1743 *
1744 * This is safe to call from within a preemption notifier.
1745 */
1746void preempt_notifier_unregister(struct preempt_notifier *notifier)
1747{
1748 hlist_del(&notifier->link);
1749}
1750EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1751
1752static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1753{
1754 struct preempt_notifier *notifier;
1755 struct hlist_node *node;
1756
1757 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1758 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1759}
1760
1761static void
1762fire_sched_out_preempt_notifiers(struct task_struct *curr,
1763 struct task_struct *next)
1764{
1765 struct preempt_notifier *notifier;
1766 struct hlist_node *node;
1767
1768 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1769 notifier->ops->sched_out(notifier, next);
1770}
1771
6d6bc0ad 1772#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1773
1774static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1775{
1776}
1777
1778static void
1779fire_sched_out_preempt_notifiers(struct task_struct *curr,
1780 struct task_struct *next)
1781{
1782}
1783
6d6bc0ad 1784#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1785
4866cde0
NP
1786/**
1787 * prepare_task_switch - prepare to switch tasks
1788 * @rq: the runqueue preparing to switch
421cee29 1789 * @prev: the current task that is being switched out
4866cde0
NP
1790 * @next: the task we are going to switch to.
1791 *
1792 * This is called with the rq lock held and interrupts off. It must
1793 * be paired with a subsequent finish_task_switch after the context
1794 * switch.
1795 *
1796 * prepare_task_switch sets up locking and calls architecture specific
1797 * hooks.
1798 */
e107be36
AK
1799static inline void
1800prepare_task_switch(struct rq *rq, struct task_struct *prev,
1801 struct task_struct *next)
4866cde0 1802{
895dd92c 1803 trace_sched_switch(prev, next);
fe4b04fa
PZ
1804 sched_info_switch(prev, next);
1805 perf_event_task_sched_out(prev, next);
e107be36 1806 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1807 prepare_lock_switch(rq, next);
1808 prepare_arch_switch(next);
1809}
1810
1da177e4
LT
1811/**
1812 * finish_task_switch - clean up after a task-switch
344babaa 1813 * @rq: runqueue associated with task-switch
1da177e4
LT
1814 * @prev: the thread we just switched away from.
1815 *
4866cde0
NP
1816 * finish_task_switch must be called after the context switch, paired
1817 * with a prepare_task_switch call before the context switch.
1818 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1819 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1820 *
1821 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1822 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1823 * with the lock held can cause deadlocks; see schedule() for
1824 * details.)
1825 */
a9957449 1826static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1827 __releases(rq->lock)
1828{
1da177e4 1829 struct mm_struct *mm = rq->prev_mm;
55a101f8 1830 long prev_state;
1da177e4
LT
1831
1832 rq->prev_mm = NULL;
1833
1834 /*
1835 * A task struct has one reference for the use as "current".
c394cc9f 1836 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1837 * schedule one last time. The schedule call will never return, and
1838 * the scheduled task must drop that reference.
c394cc9f 1839 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1840 * still held, otherwise prev could be scheduled on another cpu, die
1841 * there before we look at prev->state, and then the reference would
1842 * be dropped twice.
1843 * Manfred Spraul <manfred@colorfullife.com>
1844 */
55a101f8 1845 prev_state = prev->state;
bf9fae9f 1846 vtime_task_switch(prev);
4866cde0 1847 finish_arch_switch(prev);
a8d757ef 1848 perf_event_task_sched_in(prev, current);
4866cde0 1849 finish_lock_switch(rq, prev);
01f23e16 1850 finish_arch_post_lock_switch();
e8fa1362 1851
e107be36 1852 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1853 if (mm)
1854 mmdrop(mm);
c394cc9f 1855 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1856 /*
1857 * Remove function-return probe instances associated with this
1858 * task and put them back on the free list.
9761eea8 1859 */
c6fd91f0 1860 kprobe_flush_task(prev);
1da177e4 1861 put_task_struct(prev);
c6fd91f0 1862 }
1da177e4
LT
1863}
1864
3f029d3c
GH
1865#ifdef CONFIG_SMP
1866
1867/* assumes rq->lock is held */
1868static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1869{
1870 if (prev->sched_class->pre_schedule)
1871 prev->sched_class->pre_schedule(rq, prev);
1872}
1873
1874/* rq->lock is NOT held, but preemption is disabled */
1875static inline void post_schedule(struct rq *rq)
1876{
1877 if (rq->post_schedule) {
1878 unsigned long flags;
1879
05fa785c 1880 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1881 if (rq->curr->sched_class->post_schedule)
1882 rq->curr->sched_class->post_schedule(rq);
05fa785c 1883 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1884
1885 rq->post_schedule = 0;
1886 }
1887}
1888
1889#else
da19ab51 1890
3f029d3c
GH
1891static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1892{
1893}
1894
1895static inline void post_schedule(struct rq *rq)
1896{
1da177e4
LT
1897}
1898
3f029d3c
GH
1899#endif
1900
1da177e4
LT
1901/**
1902 * schedule_tail - first thing a freshly forked thread must call.
1903 * @prev: the thread we just switched away from.
1904 */
36c8b586 1905asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1906 __releases(rq->lock)
1907{
70b97a7f
IM
1908 struct rq *rq = this_rq();
1909
4866cde0 1910 finish_task_switch(rq, prev);
da19ab51 1911
3f029d3c
GH
1912 /*
1913 * FIXME: do we need to worry about rq being invalidated by the
1914 * task_switch?
1915 */
1916 post_schedule(rq);
70b97a7f 1917
4866cde0
NP
1918#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1919 /* In this case, finish_task_switch does not reenable preemption */
1920 preempt_enable();
1921#endif
1da177e4 1922 if (current->set_child_tid)
b488893a 1923 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1924}
1925
1926/*
1927 * context_switch - switch to the new MM and the new
1928 * thread's register state.
1929 */
dd41f596 1930static inline void
70b97a7f 1931context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1932 struct task_struct *next)
1da177e4 1933{
dd41f596 1934 struct mm_struct *mm, *oldmm;
1da177e4 1935
e107be36 1936 prepare_task_switch(rq, prev, next);
fe4b04fa 1937
dd41f596
IM
1938 mm = next->mm;
1939 oldmm = prev->active_mm;
9226d125
ZA
1940 /*
1941 * For paravirt, this is coupled with an exit in switch_to to
1942 * combine the page table reload and the switch backend into
1943 * one hypercall.
1944 */
224101ed 1945 arch_start_context_switch(prev);
9226d125 1946
31915ab4 1947 if (!mm) {
1da177e4
LT
1948 next->active_mm = oldmm;
1949 atomic_inc(&oldmm->mm_count);
1950 enter_lazy_tlb(oldmm, next);
1951 } else
1952 switch_mm(oldmm, mm, next);
1953
31915ab4 1954 if (!prev->mm) {
1da177e4 1955 prev->active_mm = NULL;
1da177e4
LT
1956 rq->prev_mm = oldmm;
1957 }
3a5f5e48
IM
1958 /*
1959 * Since the runqueue lock will be released by the next
1960 * task (which is an invalid locking op but in the case
1961 * of the scheduler it's an obvious special-case), so we
1962 * do an early lockdep release here:
1963 */
1964#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1965 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1966#endif
1da177e4 1967
91d1aa43 1968 context_tracking_task_switch(prev, next);
1da177e4
LT
1969 /* Here we just switch the register state and the stack. */
1970 switch_to(prev, next, prev);
1971
dd41f596
IM
1972 barrier();
1973 /*
1974 * this_rq must be evaluated again because prev may have moved
1975 * CPUs since it called schedule(), thus the 'rq' on its stack
1976 * frame will be invalid.
1977 */
1978 finish_task_switch(this_rq(), prev);
1da177e4
LT
1979}
1980
1981/*
1982 * nr_running, nr_uninterruptible and nr_context_switches:
1983 *
1984 * externally visible scheduler statistics: current number of runnable
1985 * threads, current number of uninterruptible-sleeping threads, total
1986 * number of context switches performed since bootup.
1987 */
1988unsigned long nr_running(void)
1989{
1990 unsigned long i, sum = 0;
1991
1992 for_each_online_cpu(i)
1993 sum += cpu_rq(i)->nr_running;
1994
1995 return sum;
f711f609 1996}
1da177e4
LT
1997
1998unsigned long nr_uninterruptible(void)
f711f609 1999{
1da177e4 2000 unsigned long i, sum = 0;
f711f609 2001
0a945022 2002 for_each_possible_cpu(i)
1da177e4 2003 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2004
2005 /*
1da177e4
LT
2006 * Since we read the counters lockless, it might be slightly
2007 * inaccurate. Do not allow it to go below zero though:
f711f609 2008 */
1da177e4
LT
2009 if (unlikely((long)sum < 0))
2010 sum = 0;
f711f609 2011
1da177e4 2012 return sum;
f711f609 2013}
f711f609 2014
1da177e4 2015unsigned long long nr_context_switches(void)
46cb4b7c 2016{
cc94abfc
SR
2017 int i;
2018 unsigned long long sum = 0;
46cb4b7c 2019
0a945022 2020 for_each_possible_cpu(i)
1da177e4 2021 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2022
1da177e4
LT
2023 return sum;
2024}
483b4ee6 2025
1da177e4
LT
2026unsigned long nr_iowait(void)
2027{
2028 unsigned long i, sum = 0;
483b4ee6 2029
0a945022 2030 for_each_possible_cpu(i)
1da177e4 2031 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2032
1da177e4
LT
2033 return sum;
2034}
483b4ee6 2035
8c215bd3 2036unsigned long nr_iowait_cpu(int cpu)
69d25870 2037{
8c215bd3 2038 struct rq *this = cpu_rq(cpu);
69d25870
AV
2039 return atomic_read(&this->nr_iowait);
2040}
46cb4b7c 2041
69d25870
AV
2042unsigned long this_cpu_load(void)
2043{
2044 struct rq *this = this_rq();
2045 return this->cpu_load[0];
2046}
e790fb0b 2047
46cb4b7c 2048
5167e8d5
PZ
2049/*
2050 * Global load-average calculations
2051 *
2052 * We take a distributed and async approach to calculating the global load-avg
2053 * in order to minimize overhead.
2054 *
2055 * The global load average is an exponentially decaying average of nr_running +
2056 * nr_uninterruptible.
2057 *
2058 * Once every LOAD_FREQ:
2059 *
2060 * nr_active = 0;
2061 * for_each_possible_cpu(cpu)
2062 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2063 *
2064 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2065 *
2066 * Due to a number of reasons the above turns in the mess below:
2067 *
2068 * - for_each_possible_cpu() is prohibitively expensive on machines with
2069 * serious number of cpus, therefore we need to take a distributed approach
2070 * to calculating nr_active.
2071 *
2072 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2073 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2074 *
2075 * So assuming nr_active := 0 when we start out -- true per definition, we
2076 * can simply take per-cpu deltas and fold those into a global accumulate
2077 * to obtain the same result. See calc_load_fold_active().
2078 *
2079 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2080 * across the machine, we assume 10 ticks is sufficient time for every
2081 * cpu to have completed this task.
2082 *
2083 * This places an upper-bound on the IRQ-off latency of the machine. Then
2084 * again, being late doesn't loose the delta, just wrecks the sample.
2085 *
2086 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2087 * this would add another cross-cpu cacheline miss and atomic operation
2088 * to the wakeup path. Instead we increment on whatever cpu the task ran
2089 * when it went into uninterruptible state and decrement on whatever cpu
2090 * did the wakeup. This means that only the sum of nr_uninterruptible over
2091 * all cpus yields the correct result.
2092 *
2093 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2094 */
2095
dce48a84
TG
2096/* Variables and functions for calc_load */
2097static atomic_long_t calc_load_tasks;
2098static unsigned long calc_load_update;
2099unsigned long avenrun[3];
5167e8d5
PZ
2100EXPORT_SYMBOL(avenrun); /* should be removed */
2101
2102/**
2103 * get_avenrun - get the load average array
2104 * @loads: pointer to dest load array
2105 * @offset: offset to add
2106 * @shift: shift count to shift the result left
2107 *
2108 * These values are estimates at best, so no need for locking.
2109 */
2110void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2111{
2112 loads[0] = (avenrun[0] + offset) << shift;
2113 loads[1] = (avenrun[1] + offset) << shift;
2114 loads[2] = (avenrun[2] + offset) << shift;
2115}
46cb4b7c 2116
74f5187a
PZ
2117static long calc_load_fold_active(struct rq *this_rq)
2118{
2119 long nr_active, delta = 0;
2120
2121 nr_active = this_rq->nr_running;
2122 nr_active += (long) this_rq->nr_uninterruptible;
2123
2124 if (nr_active != this_rq->calc_load_active) {
2125 delta = nr_active - this_rq->calc_load_active;
2126 this_rq->calc_load_active = nr_active;
2127 }
2128
2129 return delta;
2130}
2131
5167e8d5
PZ
2132/*
2133 * a1 = a0 * e + a * (1 - e)
2134 */
0f004f5a
PZ
2135static unsigned long
2136calc_load(unsigned long load, unsigned long exp, unsigned long active)
2137{
2138 load *= exp;
2139 load += active * (FIXED_1 - exp);
2140 load += 1UL << (FSHIFT - 1);
2141 return load >> FSHIFT;
2142}
2143
74f5187a
PZ
2144#ifdef CONFIG_NO_HZ
2145/*
5167e8d5
PZ
2146 * Handle NO_HZ for the global load-average.
2147 *
2148 * Since the above described distributed algorithm to compute the global
2149 * load-average relies on per-cpu sampling from the tick, it is affected by
2150 * NO_HZ.
2151 *
2152 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2153 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2154 * when we read the global state.
2155 *
2156 * Obviously reality has to ruin such a delightfully simple scheme:
2157 *
2158 * - When we go NO_HZ idle during the window, we can negate our sample
2159 * contribution, causing under-accounting.
2160 *
2161 * We avoid this by keeping two idle-delta counters and flipping them
2162 * when the window starts, thus separating old and new NO_HZ load.
2163 *
2164 * The only trick is the slight shift in index flip for read vs write.
2165 *
2166 * 0s 5s 10s 15s
2167 * +10 +10 +10 +10
2168 * |-|-----------|-|-----------|-|-----------|-|
2169 * r:0 0 1 1 0 0 1 1 0
2170 * w:0 1 1 0 0 1 1 0 0
2171 *
2172 * This ensures we'll fold the old idle contribution in this window while
2173 * accumlating the new one.
2174 *
2175 * - When we wake up from NO_HZ idle during the window, we push up our
2176 * contribution, since we effectively move our sample point to a known
2177 * busy state.
2178 *
2179 * This is solved by pushing the window forward, and thus skipping the
2180 * sample, for this cpu (effectively using the idle-delta for this cpu which
2181 * was in effect at the time the window opened). This also solves the issue
2182 * of having to deal with a cpu having been in NOHZ idle for multiple
2183 * LOAD_FREQ intervals.
74f5187a
PZ
2184 *
2185 * When making the ILB scale, we should try to pull this in as well.
2186 */
5167e8d5
PZ
2187static atomic_long_t calc_load_idle[2];
2188static int calc_load_idx;
74f5187a 2189
5167e8d5 2190static inline int calc_load_write_idx(void)
74f5187a 2191{
5167e8d5
PZ
2192 int idx = calc_load_idx;
2193
2194 /*
2195 * See calc_global_nohz(), if we observe the new index, we also
2196 * need to observe the new update time.
2197 */
2198 smp_rmb();
2199
2200 /*
2201 * If the folding window started, make sure we start writing in the
2202 * next idle-delta.
2203 */
2204 if (!time_before(jiffies, calc_load_update))
2205 idx++;
2206
2207 return idx & 1;
2208}
2209
2210static inline int calc_load_read_idx(void)
2211{
2212 return calc_load_idx & 1;
2213}
2214
2215void calc_load_enter_idle(void)
2216{
2217 struct rq *this_rq = this_rq();
74f5187a
PZ
2218 long delta;
2219
5167e8d5
PZ
2220 /*
2221 * We're going into NOHZ mode, if there's any pending delta, fold it
2222 * into the pending idle delta.
2223 */
74f5187a 2224 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2225 if (delta) {
2226 int idx = calc_load_write_idx();
2227 atomic_long_add(delta, &calc_load_idle[idx]);
2228 }
74f5187a
PZ
2229}
2230
5167e8d5 2231void calc_load_exit_idle(void)
74f5187a 2232{
5167e8d5
PZ
2233 struct rq *this_rq = this_rq();
2234
2235 /*
2236 * If we're still before the sample window, we're done.
2237 */
2238 if (time_before(jiffies, this_rq->calc_load_update))
2239 return;
74f5187a
PZ
2240
2241 /*
5167e8d5
PZ
2242 * We woke inside or after the sample window, this means we're already
2243 * accounted through the nohz accounting, so skip the entire deal and
2244 * sync up for the next window.
74f5187a 2245 */
5167e8d5
PZ
2246 this_rq->calc_load_update = calc_load_update;
2247 if (time_before(jiffies, this_rq->calc_load_update + 10))
2248 this_rq->calc_load_update += LOAD_FREQ;
2249}
2250
2251static long calc_load_fold_idle(void)
2252{
2253 int idx = calc_load_read_idx();
2254 long delta = 0;
2255
2256 if (atomic_long_read(&calc_load_idle[idx]))
2257 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2258
2259 return delta;
2260}
0f004f5a
PZ
2261
2262/**
2263 * fixed_power_int - compute: x^n, in O(log n) time
2264 *
2265 * @x: base of the power
2266 * @frac_bits: fractional bits of @x
2267 * @n: power to raise @x to.
2268 *
2269 * By exploiting the relation between the definition of the natural power
2270 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2271 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2272 * (where: n_i \elem {0, 1}, the binary vector representing n),
2273 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2274 * of course trivially computable in O(log_2 n), the length of our binary
2275 * vector.
2276 */
2277static unsigned long
2278fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2279{
2280 unsigned long result = 1UL << frac_bits;
2281
2282 if (n) for (;;) {
2283 if (n & 1) {
2284 result *= x;
2285 result += 1UL << (frac_bits - 1);
2286 result >>= frac_bits;
2287 }
2288 n >>= 1;
2289 if (!n)
2290 break;
2291 x *= x;
2292 x += 1UL << (frac_bits - 1);
2293 x >>= frac_bits;
2294 }
2295
2296 return result;
2297}
2298
2299/*
2300 * a1 = a0 * e + a * (1 - e)
2301 *
2302 * a2 = a1 * e + a * (1 - e)
2303 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2304 * = a0 * e^2 + a * (1 - e) * (1 + e)
2305 *
2306 * a3 = a2 * e + a * (1 - e)
2307 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2308 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2309 *
2310 * ...
2311 *
2312 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2313 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2314 * = a0 * e^n + a * (1 - e^n)
2315 *
2316 * [1] application of the geometric series:
2317 *
2318 * n 1 - x^(n+1)
2319 * S_n := \Sum x^i = -------------
2320 * i=0 1 - x
2321 */
2322static unsigned long
2323calc_load_n(unsigned long load, unsigned long exp,
2324 unsigned long active, unsigned int n)
2325{
2326
2327 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2328}
2329
2330/*
2331 * NO_HZ can leave us missing all per-cpu ticks calling
2332 * calc_load_account_active(), but since an idle CPU folds its delta into
2333 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2334 * in the pending idle delta if our idle period crossed a load cycle boundary.
2335 *
2336 * Once we've updated the global active value, we need to apply the exponential
2337 * weights adjusted to the number of cycles missed.
2338 */
c308b56b 2339static void calc_global_nohz(void)
0f004f5a
PZ
2340{
2341 long delta, active, n;
2342
5167e8d5
PZ
2343 if (!time_before(jiffies, calc_load_update + 10)) {
2344 /*
2345 * Catch-up, fold however many we are behind still
2346 */
2347 delta = jiffies - calc_load_update - 10;
2348 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2349
5167e8d5
PZ
2350 active = atomic_long_read(&calc_load_tasks);
2351 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2352
5167e8d5
PZ
2353 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2354 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2355 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2356
5167e8d5
PZ
2357 calc_load_update += n * LOAD_FREQ;
2358 }
74f5187a 2359
5167e8d5
PZ
2360 /*
2361 * Flip the idle index...
2362 *
2363 * Make sure we first write the new time then flip the index, so that
2364 * calc_load_write_idx() will see the new time when it reads the new
2365 * index, this avoids a double flip messing things up.
2366 */
2367 smp_wmb();
2368 calc_load_idx++;
74f5187a 2369}
5167e8d5 2370#else /* !CONFIG_NO_HZ */
0f004f5a 2371
5167e8d5
PZ
2372static inline long calc_load_fold_idle(void) { return 0; }
2373static inline void calc_global_nohz(void) { }
74f5187a 2374
5167e8d5 2375#endif /* CONFIG_NO_HZ */
46cb4b7c 2376
46cb4b7c 2377/*
dce48a84
TG
2378 * calc_load - update the avenrun load estimates 10 ticks after the
2379 * CPUs have updated calc_load_tasks.
7835b98b 2380 */
0f004f5a 2381void calc_global_load(unsigned long ticks)
7835b98b 2382{
5167e8d5 2383 long active, delta;
1da177e4 2384
0f004f5a 2385 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2386 return;
1da177e4 2387
5167e8d5
PZ
2388 /*
2389 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2390 */
2391 delta = calc_load_fold_idle();
2392 if (delta)
2393 atomic_long_add(delta, &calc_load_tasks);
2394
dce48a84
TG
2395 active = atomic_long_read(&calc_load_tasks);
2396 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2397
dce48a84
TG
2398 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2399 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2400 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2401
dce48a84 2402 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2403
2404 /*
5167e8d5 2405 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2406 */
2407 calc_global_nohz();
dce48a84 2408}
1da177e4 2409
dce48a84 2410/*
74f5187a
PZ
2411 * Called from update_cpu_load() to periodically update this CPU's
2412 * active count.
dce48a84
TG
2413 */
2414static void calc_load_account_active(struct rq *this_rq)
2415{
74f5187a 2416 long delta;
08c183f3 2417
74f5187a
PZ
2418 if (time_before(jiffies, this_rq->calc_load_update))
2419 return;
783609c6 2420
74f5187a 2421 delta = calc_load_fold_active(this_rq);
74f5187a 2422 if (delta)
dce48a84 2423 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2424
2425 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2426}
2427
5167e8d5
PZ
2428/*
2429 * End of global load-average stuff
2430 */
2431
fdf3e95d
VP
2432/*
2433 * The exact cpuload at various idx values, calculated at every tick would be
2434 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2435 *
2436 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2437 * on nth tick when cpu may be busy, then we have:
2438 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2439 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2440 *
2441 * decay_load_missed() below does efficient calculation of
2442 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2443 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2444 *
2445 * The calculation is approximated on a 128 point scale.
2446 * degrade_zero_ticks is the number of ticks after which load at any
2447 * particular idx is approximated to be zero.
2448 * degrade_factor is a precomputed table, a row for each load idx.
2449 * Each column corresponds to degradation factor for a power of two ticks,
2450 * based on 128 point scale.
2451 * Example:
2452 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2453 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2454 *
2455 * With this power of 2 load factors, we can degrade the load n times
2456 * by looking at 1 bits in n and doing as many mult/shift instead of
2457 * n mult/shifts needed by the exact degradation.
2458 */
2459#define DEGRADE_SHIFT 7
2460static const unsigned char
2461 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2462static const unsigned char
2463 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2464 {0, 0, 0, 0, 0, 0, 0, 0},
2465 {64, 32, 8, 0, 0, 0, 0, 0},
2466 {96, 72, 40, 12, 1, 0, 0},
2467 {112, 98, 75, 43, 15, 1, 0},
2468 {120, 112, 98, 76, 45, 16, 2} };
2469
2470/*
2471 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2472 * would be when CPU is idle and so we just decay the old load without
2473 * adding any new load.
2474 */
2475static unsigned long
2476decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2477{
2478 int j = 0;
2479
2480 if (!missed_updates)
2481 return load;
2482
2483 if (missed_updates >= degrade_zero_ticks[idx])
2484 return 0;
2485
2486 if (idx == 1)
2487 return load >> missed_updates;
2488
2489 while (missed_updates) {
2490 if (missed_updates % 2)
2491 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2492
2493 missed_updates >>= 1;
2494 j++;
2495 }
2496 return load;
2497}
2498
46cb4b7c 2499/*
dd41f596 2500 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2501 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2502 * every tick. We fix it up based on jiffies.
46cb4b7c 2503 */
556061b0
PZ
2504static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2505 unsigned long pending_updates)
46cb4b7c 2506{
dd41f596 2507 int i, scale;
46cb4b7c 2508
dd41f596 2509 this_rq->nr_load_updates++;
46cb4b7c 2510
dd41f596 2511 /* Update our load: */
fdf3e95d
VP
2512 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2513 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2514 unsigned long old_load, new_load;
7d1e6a9b 2515
dd41f596 2516 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2517
dd41f596 2518 old_load = this_rq->cpu_load[i];
fdf3e95d 2519 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2520 new_load = this_load;
a25707f3
IM
2521 /*
2522 * Round up the averaging division if load is increasing. This
2523 * prevents us from getting stuck on 9 if the load is 10, for
2524 * example.
2525 */
2526 if (new_load > old_load)
fdf3e95d
VP
2527 new_load += scale - 1;
2528
2529 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2530 }
da2b71ed
SS
2531
2532 sched_avg_update(this_rq);
fdf3e95d
VP
2533}
2534
5aaa0b7a
PZ
2535#ifdef CONFIG_NO_HZ
2536/*
2537 * There is no sane way to deal with nohz on smp when using jiffies because the
2538 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2539 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2540 *
2541 * Therefore we cannot use the delta approach from the regular tick since that
2542 * would seriously skew the load calculation. However we'll make do for those
2543 * updates happening while idle (nohz_idle_balance) or coming out of idle
2544 * (tick_nohz_idle_exit).
2545 *
2546 * This means we might still be one tick off for nohz periods.
2547 */
2548
556061b0
PZ
2549/*
2550 * Called from nohz_idle_balance() to update the load ratings before doing the
2551 * idle balance.
2552 */
2553void update_idle_cpu_load(struct rq *this_rq)
2554{
5aaa0b7a 2555 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2556 unsigned long load = this_rq->load.weight;
2557 unsigned long pending_updates;
2558
2559 /*
5aaa0b7a 2560 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2561 */
2562 if (load || curr_jiffies == this_rq->last_load_update_tick)
2563 return;
2564
2565 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2566 this_rq->last_load_update_tick = curr_jiffies;
2567
2568 __update_cpu_load(this_rq, load, pending_updates);
2569}
2570
5aaa0b7a
PZ
2571/*
2572 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2573 */
2574void update_cpu_load_nohz(void)
2575{
2576 struct rq *this_rq = this_rq();
2577 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2578 unsigned long pending_updates;
2579
2580 if (curr_jiffies == this_rq->last_load_update_tick)
2581 return;
2582
2583 raw_spin_lock(&this_rq->lock);
2584 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2585 if (pending_updates) {
2586 this_rq->last_load_update_tick = curr_jiffies;
2587 /*
2588 * We were idle, this means load 0, the current load might be
2589 * !0 due to remote wakeups and the sort.
2590 */
2591 __update_cpu_load(this_rq, 0, pending_updates);
2592 }
2593 raw_spin_unlock(&this_rq->lock);
2594}
2595#endif /* CONFIG_NO_HZ */
2596
556061b0
PZ
2597/*
2598 * Called from scheduler_tick()
2599 */
fdf3e95d
VP
2600static void update_cpu_load_active(struct rq *this_rq)
2601{
556061b0 2602 /*
5aaa0b7a 2603 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2604 */
2605 this_rq->last_load_update_tick = jiffies;
2606 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2607
74f5187a 2608 calc_load_account_active(this_rq);
46cb4b7c
SS
2609}
2610
dd41f596 2611#ifdef CONFIG_SMP
8a0be9ef 2612
46cb4b7c 2613/*
38022906
PZ
2614 * sched_exec - execve() is a valuable balancing opportunity, because at
2615 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2616 */
38022906 2617void sched_exec(void)
46cb4b7c 2618{
38022906 2619 struct task_struct *p = current;
1da177e4 2620 unsigned long flags;
0017d735 2621 int dest_cpu;
46cb4b7c 2622
8f42ced9 2623 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2624 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2625 if (dest_cpu == smp_processor_id())
2626 goto unlock;
38022906 2627
8f42ced9 2628 if (likely(cpu_active(dest_cpu))) {
969c7921 2629 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2630
8f42ced9
PZ
2631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2632 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2633 return;
2634 }
0017d735 2635unlock:
8f42ced9 2636 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2637}
dd41f596 2638
1da177e4
LT
2639#endif
2640
1da177e4 2641DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2642DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2643
2644EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2645EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2646
2647/*
c5f8d995 2648 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2649 * @p in case that task is currently running.
c5f8d995
HS
2650 *
2651 * Called with task_rq_lock() held on @rq.
1da177e4 2652 */
c5f8d995
HS
2653static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2654{
2655 u64 ns = 0;
2656
2657 if (task_current(rq, p)) {
2658 update_rq_clock(rq);
305e6835 2659 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2660 if ((s64)ns < 0)
2661 ns = 0;
2662 }
2663
2664 return ns;
2665}
2666
bb34d92f 2667unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2668{
1da177e4 2669 unsigned long flags;
41b86e9c 2670 struct rq *rq;
bb34d92f 2671 u64 ns = 0;
48f24c4d 2672
41b86e9c 2673 rq = task_rq_lock(p, &flags);
c5f8d995 2674 ns = do_task_delta_exec(p, rq);
0122ec5b 2675 task_rq_unlock(rq, p, &flags);
1508487e 2676
c5f8d995
HS
2677 return ns;
2678}
f06febc9 2679
c5f8d995
HS
2680/*
2681 * Return accounted runtime for the task.
2682 * In case the task is currently running, return the runtime plus current's
2683 * pending runtime that have not been accounted yet.
2684 */
2685unsigned long long task_sched_runtime(struct task_struct *p)
2686{
2687 unsigned long flags;
2688 struct rq *rq;
2689 u64 ns = 0;
2690
2691 rq = task_rq_lock(p, &flags);
2692 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2693 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2694
2695 return ns;
2696}
48f24c4d 2697
7835b98b
CL
2698/*
2699 * This function gets called by the timer code, with HZ frequency.
2700 * We call it with interrupts disabled.
7835b98b
CL
2701 */
2702void scheduler_tick(void)
2703{
7835b98b
CL
2704 int cpu = smp_processor_id();
2705 struct rq *rq = cpu_rq(cpu);
dd41f596 2706 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2707
2708 sched_clock_tick();
dd41f596 2709
05fa785c 2710 raw_spin_lock(&rq->lock);
3e51f33f 2711 update_rq_clock(rq);
fdf3e95d 2712 update_cpu_load_active(rq);
fa85ae24 2713 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2714 raw_spin_unlock(&rq->lock);
7835b98b 2715
e9d2b064 2716 perf_event_task_tick();
e220d2dc 2717
e418e1c2 2718#ifdef CONFIG_SMP
6eb57e0d 2719 rq->idle_balance = idle_cpu(cpu);
dd41f596 2720 trigger_load_balance(rq, cpu);
e418e1c2 2721#endif
1da177e4
LT
2722}
2723
132380a0 2724notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2725{
2726 if (in_lock_functions(addr)) {
2727 addr = CALLER_ADDR2;
2728 if (in_lock_functions(addr))
2729 addr = CALLER_ADDR3;
2730 }
2731 return addr;
2732}
1da177e4 2733
7e49fcce
SR
2734#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2735 defined(CONFIG_PREEMPT_TRACER))
2736
43627582 2737void __kprobes add_preempt_count(int val)
1da177e4 2738{
6cd8a4bb 2739#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2740 /*
2741 * Underflow?
2742 */
9a11b49a
IM
2743 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2744 return;
6cd8a4bb 2745#endif
1da177e4 2746 preempt_count() += val;
6cd8a4bb 2747#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2748 /*
2749 * Spinlock count overflowing soon?
2750 */
33859f7f
MOS
2751 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2752 PREEMPT_MASK - 10);
6cd8a4bb
SR
2753#endif
2754 if (preempt_count() == val)
2755 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2756}
2757EXPORT_SYMBOL(add_preempt_count);
2758
43627582 2759void __kprobes sub_preempt_count(int val)
1da177e4 2760{
6cd8a4bb 2761#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2762 /*
2763 * Underflow?
2764 */
01e3eb82 2765 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2766 return;
1da177e4
LT
2767 /*
2768 * Is the spinlock portion underflowing?
2769 */
9a11b49a
IM
2770 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2771 !(preempt_count() & PREEMPT_MASK)))
2772 return;
6cd8a4bb 2773#endif
9a11b49a 2774
6cd8a4bb
SR
2775 if (preempt_count() == val)
2776 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2777 preempt_count() -= val;
2778}
2779EXPORT_SYMBOL(sub_preempt_count);
2780
2781#endif
2782
2783/*
dd41f596 2784 * Print scheduling while atomic bug:
1da177e4 2785 */
dd41f596 2786static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2787{
664dfa65
DJ
2788 if (oops_in_progress)
2789 return;
2790
3df0fc5b
PZ
2791 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2792 prev->comm, prev->pid, preempt_count());
838225b4 2793
dd41f596 2794 debug_show_held_locks(prev);
e21f5b15 2795 print_modules();
dd41f596
IM
2796 if (irqs_disabled())
2797 print_irqtrace_events(prev);
6135fc1e 2798 dump_stack();
373d4d09 2799 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2800}
1da177e4 2801
dd41f596
IM
2802/*
2803 * Various schedule()-time debugging checks and statistics:
2804 */
2805static inline void schedule_debug(struct task_struct *prev)
2806{
1da177e4 2807 /*
41a2d6cf 2808 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2809 * schedule() atomically, we ignore that path for now.
2810 * Otherwise, whine if we are scheduling when we should not be.
2811 */
3f33a7ce 2812 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2813 __schedule_bug(prev);
b3fbab05 2814 rcu_sleep_check();
dd41f596 2815
1da177e4
LT
2816 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2817
2d72376b 2818 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2819}
2820
6cecd084 2821static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2822{
61eadef6 2823 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2824 update_rq_clock(rq);
6cecd084 2825 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2826}
2827
dd41f596
IM
2828/*
2829 * Pick up the highest-prio task:
2830 */
2831static inline struct task_struct *
b67802ea 2832pick_next_task(struct rq *rq)
dd41f596 2833{
5522d5d5 2834 const struct sched_class *class;
dd41f596 2835 struct task_struct *p;
1da177e4
LT
2836
2837 /*
dd41f596
IM
2838 * Optimization: we know that if all tasks are in
2839 * the fair class we can call that function directly:
1da177e4 2840 */
953bfcd1 2841 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2842 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2843 if (likely(p))
2844 return p;
1da177e4
LT
2845 }
2846
34f971f6 2847 for_each_class(class) {
fb8d4724 2848 p = class->pick_next_task(rq);
dd41f596
IM
2849 if (p)
2850 return p;
dd41f596 2851 }
34f971f6
PZ
2852
2853 BUG(); /* the idle class will always have a runnable task */
dd41f596 2854}
1da177e4 2855
dd41f596 2856/*
c259e01a 2857 * __schedule() is the main scheduler function.
edde96ea
PE
2858 *
2859 * The main means of driving the scheduler and thus entering this function are:
2860 *
2861 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2862 *
2863 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2864 * paths. For example, see arch/x86/entry_64.S.
2865 *
2866 * To drive preemption between tasks, the scheduler sets the flag in timer
2867 * interrupt handler scheduler_tick().
2868 *
2869 * 3. Wakeups don't really cause entry into schedule(). They add a
2870 * task to the run-queue and that's it.
2871 *
2872 * Now, if the new task added to the run-queue preempts the current
2873 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2874 * called on the nearest possible occasion:
2875 *
2876 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2877 *
2878 * - in syscall or exception context, at the next outmost
2879 * preempt_enable(). (this might be as soon as the wake_up()'s
2880 * spin_unlock()!)
2881 *
2882 * - in IRQ context, return from interrupt-handler to
2883 * preemptible context
2884 *
2885 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2886 * then at the next:
2887 *
2888 * - cond_resched() call
2889 * - explicit schedule() call
2890 * - return from syscall or exception to user-space
2891 * - return from interrupt-handler to user-space
dd41f596 2892 */
c259e01a 2893static void __sched __schedule(void)
dd41f596
IM
2894{
2895 struct task_struct *prev, *next;
67ca7bde 2896 unsigned long *switch_count;
dd41f596 2897 struct rq *rq;
31656519 2898 int cpu;
dd41f596 2899
ff743345
PZ
2900need_resched:
2901 preempt_disable();
dd41f596
IM
2902 cpu = smp_processor_id();
2903 rq = cpu_rq(cpu);
25502a6c 2904 rcu_note_context_switch(cpu);
dd41f596 2905 prev = rq->curr;
dd41f596 2906
dd41f596 2907 schedule_debug(prev);
1da177e4 2908
31656519 2909 if (sched_feat(HRTICK))
f333fdc9 2910 hrtick_clear(rq);
8f4d37ec 2911
05fa785c 2912 raw_spin_lock_irq(&rq->lock);
1da177e4 2913
246d86b5 2914 switch_count = &prev->nivcsw;
1da177e4 2915 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2916 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2917 prev->state = TASK_RUNNING;
21aa9af0 2918 } else {
2acca55e
PZ
2919 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2920 prev->on_rq = 0;
2921
21aa9af0 2922 /*
2acca55e
PZ
2923 * If a worker went to sleep, notify and ask workqueue
2924 * whether it wants to wake up a task to maintain
2925 * concurrency.
21aa9af0
TH
2926 */
2927 if (prev->flags & PF_WQ_WORKER) {
2928 struct task_struct *to_wakeup;
2929
2930 to_wakeup = wq_worker_sleeping(prev, cpu);
2931 if (to_wakeup)
2932 try_to_wake_up_local(to_wakeup);
2933 }
21aa9af0 2934 }
dd41f596 2935 switch_count = &prev->nvcsw;
1da177e4
LT
2936 }
2937
3f029d3c 2938 pre_schedule(rq, prev);
f65eda4f 2939
dd41f596 2940 if (unlikely(!rq->nr_running))
1da177e4 2941 idle_balance(cpu, rq);
1da177e4 2942
df1c99d4 2943 put_prev_task(rq, prev);
b67802ea 2944 next = pick_next_task(rq);
f26f9aff
MG
2945 clear_tsk_need_resched(prev);
2946 rq->skip_clock_update = 0;
1da177e4 2947
1da177e4 2948 if (likely(prev != next)) {
1da177e4
LT
2949 rq->nr_switches++;
2950 rq->curr = next;
2951 ++*switch_count;
2952
dd41f596 2953 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2954 /*
246d86b5
ON
2955 * The context switch have flipped the stack from under us
2956 * and restored the local variables which were saved when
2957 * this task called schedule() in the past. prev == current
2958 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2959 */
2960 cpu = smp_processor_id();
2961 rq = cpu_rq(cpu);
1da177e4 2962 } else
05fa785c 2963 raw_spin_unlock_irq(&rq->lock);
1da177e4 2964
3f029d3c 2965 post_schedule(rq);
1da177e4 2966
ba74c144 2967 sched_preempt_enable_no_resched();
ff743345 2968 if (need_resched())
1da177e4
LT
2969 goto need_resched;
2970}
c259e01a 2971
9c40cef2
TG
2972static inline void sched_submit_work(struct task_struct *tsk)
2973{
3c7d5184 2974 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2975 return;
2976 /*
2977 * If we are going to sleep and we have plugged IO queued,
2978 * make sure to submit it to avoid deadlocks.
2979 */
2980 if (blk_needs_flush_plug(tsk))
2981 blk_schedule_flush_plug(tsk);
2982}
2983
6ebbe7a0 2984asmlinkage void __sched schedule(void)
c259e01a 2985{
9c40cef2
TG
2986 struct task_struct *tsk = current;
2987
2988 sched_submit_work(tsk);
c259e01a
TG
2989 __schedule();
2990}
1da177e4
LT
2991EXPORT_SYMBOL(schedule);
2992
91d1aa43 2993#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2994asmlinkage void __sched schedule_user(void)
2995{
2996 /*
2997 * If we come here after a random call to set_need_resched(),
2998 * or we have been woken up remotely but the IPI has not yet arrived,
2999 * we haven't yet exited the RCU idle mode. Do it here manually until
3000 * we find a better solution.
3001 */
91d1aa43 3002 user_exit();
20ab65e3 3003 schedule();
91d1aa43 3004 user_enter();
20ab65e3
FW
3005}
3006#endif
3007
c5491ea7
TG
3008/**
3009 * schedule_preempt_disabled - called with preemption disabled
3010 *
3011 * Returns with preemption disabled. Note: preempt_count must be 1
3012 */
3013void __sched schedule_preempt_disabled(void)
3014{
ba74c144 3015 sched_preempt_enable_no_resched();
c5491ea7
TG
3016 schedule();
3017 preempt_disable();
3018}
3019
c08f7829 3020#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3021
c6eb3dda
PZ
3022static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3023{
c6eb3dda 3024 if (lock->owner != owner)
307bf980 3025 return false;
0d66bf6d
PZ
3026
3027 /*
c6eb3dda
PZ
3028 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3029 * lock->owner still matches owner, if that fails, owner might
3030 * point to free()d memory, if it still matches, the rcu_read_lock()
3031 * ensures the memory stays valid.
0d66bf6d 3032 */
c6eb3dda 3033 barrier();
0d66bf6d 3034
307bf980 3035 return owner->on_cpu;
c6eb3dda 3036}
0d66bf6d 3037
c6eb3dda
PZ
3038/*
3039 * Look out! "owner" is an entirely speculative pointer
3040 * access and not reliable.
3041 */
3042int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3043{
3044 if (!sched_feat(OWNER_SPIN))
3045 return 0;
0d66bf6d 3046
307bf980 3047 rcu_read_lock();
c6eb3dda
PZ
3048 while (owner_running(lock, owner)) {
3049 if (need_resched())
307bf980 3050 break;
0d66bf6d 3051
335d7afb 3052 arch_mutex_cpu_relax();
0d66bf6d 3053 }
307bf980 3054 rcu_read_unlock();
4b402210 3055
c6eb3dda 3056 /*
307bf980
TG
3057 * We break out the loop above on need_resched() and when the
3058 * owner changed, which is a sign for heavy contention. Return
3059 * success only when lock->owner is NULL.
c6eb3dda 3060 */
307bf980 3061 return lock->owner == NULL;
0d66bf6d
PZ
3062}
3063#endif
3064
1da177e4
LT
3065#ifdef CONFIG_PREEMPT
3066/*
2ed6e34f 3067 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3068 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3069 * occur there and call schedule directly.
3070 */
d1f74e20 3071asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3072{
3073 struct thread_info *ti = current_thread_info();
6478d880 3074
1da177e4
LT
3075 /*
3076 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3077 * we do not want to preempt the current task. Just return..
1da177e4 3078 */
beed33a8 3079 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3080 return;
3081
3a5c359a 3082 do {
d1f74e20 3083 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3084 __schedule();
d1f74e20 3085 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3086
3a5c359a
AK
3087 /*
3088 * Check again in case we missed a preemption opportunity
3089 * between schedule and now.
3090 */
3091 barrier();
5ed0cec0 3092 } while (need_resched());
1da177e4 3093}
1da177e4
LT
3094EXPORT_SYMBOL(preempt_schedule);
3095
3096/*
2ed6e34f 3097 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3098 * off of irq context.
3099 * Note, that this is called and return with irqs disabled. This will
3100 * protect us against recursive calling from irq.
3101 */
3102asmlinkage void __sched preempt_schedule_irq(void)
3103{
3104 struct thread_info *ti = current_thread_info();
6478d880 3105
2ed6e34f 3106 /* Catch callers which need to be fixed */
1da177e4
LT
3107 BUG_ON(ti->preempt_count || !irqs_disabled());
3108
91d1aa43 3109 user_exit();
3a5c359a
AK
3110 do {
3111 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3112 local_irq_enable();
c259e01a 3113 __schedule();
3a5c359a 3114 local_irq_disable();
3a5c359a 3115 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3116
3a5c359a
AK
3117 /*
3118 * Check again in case we missed a preemption opportunity
3119 * between schedule and now.
3120 */
3121 barrier();
5ed0cec0 3122 } while (need_resched());
1da177e4
LT
3123}
3124
3125#endif /* CONFIG_PREEMPT */
3126
63859d4f 3127int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3128 void *key)
1da177e4 3129{
63859d4f 3130 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3131}
1da177e4
LT
3132EXPORT_SYMBOL(default_wake_function);
3133
3134/*
41a2d6cf
IM
3135 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3136 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3137 * number) then we wake all the non-exclusive tasks and one exclusive task.
3138 *
3139 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3140 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3141 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3142 */
78ddb08f 3143static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3144 int nr_exclusive, int wake_flags, void *key)
1da177e4 3145{
2e45874c 3146 wait_queue_t *curr, *next;
1da177e4 3147
2e45874c 3148 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3149 unsigned flags = curr->flags;
3150
63859d4f 3151 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3152 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3153 break;
3154 }
3155}
3156
3157/**
3158 * __wake_up - wake up threads blocked on a waitqueue.
3159 * @q: the waitqueue
3160 * @mode: which threads
3161 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3162 * @key: is directly passed to the wakeup function
50fa610a
DH
3163 *
3164 * It may be assumed that this function implies a write memory barrier before
3165 * changing the task state if and only if any tasks are woken up.
1da177e4 3166 */
7ad5b3a5 3167void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3168 int nr_exclusive, void *key)
1da177e4
LT
3169{
3170 unsigned long flags;
3171
3172 spin_lock_irqsave(&q->lock, flags);
3173 __wake_up_common(q, mode, nr_exclusive, 0, key);
3174 spin_unlock_irqrestore(&q->lock, flags);
3175}
1da177e4
LT
3176EXPORT_SYMBOL(__wake_up);
3177
3178/*
3179 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3180 */
63b20011 3181void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3182{
63b20011 3183 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3184}
22c43c81 3185EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3186
4ede816a
DL
3187void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3188{
3189 __wake_up_common(q, mode, 1, 0, key);
3190}
bf294b41 3191EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3192
1da177e4 3193/**
4ede816a 3194 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3195 * @q: the waitqueue
3196 * @mode: which threads
3197 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3198 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3199 *
3200 * The sync wakeup differs that the waker knows that it will schedule
3201 * away soon, so while the target thread will be woken up, it will not
3202 * be migrated to another CPU - ie. the two threads are 'synchronized'
3203 * with each other. This can prevent needless bouncing between CPUs.
3204 *
3205 * On UP it can prevent extra preemption.
50fa610a
DH
3206 *
3207 * It may be assumed that this function implies a write memory barrier before
3208 * changing the task state if and only if any tasks are woken up.
1da177e4 3209 */
4ede816a
DL
3210void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3211 int nr_exclusive, void *key)
1da177e4
LT
3212{
3213 unsigned long flags;
7d478721 3214 int wake_flags = WF_SYNC;
1da177e4
LT
3215
3216 if (unlikely(!q))
3217 return;
3218
3219 if (unlikely(!nr_exclusive))
7d478721 3220 wake_flags = 0;
1da177e4
LT
3221
3222 spin_lock_irqsave(&q->lock, flags);
7d478721 3223 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3224 spin_unlock_irqrestore(&q->lock, flags);
3225}
4ede816a
DL
3226EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3227
3228/*
3229 * __wake_up_sync - see __wake_up_sync_key()
3230 */
3231void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3232{
3233 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3234}
1da177e4
LT
3235EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3236
65eb3dc6
KD
3237/**
3238 * complete: - signals a single thread waiting on this completion
3239 * @x: holds the state of this particular completion
3240 *
3241 * This will wake up a single thread waiting on this completion. Threads will be
3242 * awakened in the same order in which they were queued.
3243 *
3244 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3245 *
3246 * It may be assumed that this function implies a write memory barrier before
3247 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3248 */
b15136e9 3249void complete(struct completion *x)
1da177e4
LT
3250{
3251 unsigned long flags;
3252
3253 spin_lock_irqsave(&x->wait.lock, flags);
3254 x->done++;
d9514f6c 3255 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3256 spin_unlock_irqrestore(&x->wait.lock, flags);
3257}
3258EXPORT_SYMBOL(complete);
3259
65eb3dc6
KD
3260/**
3261 * complete_all: - signals all threads waiting on this completion
3262 * @x: holds the state of this particular completion
3263 *
3264 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3265 *
3266 * It may be assumed that this function implies a write memory barrier before
3267 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3268 */
b15136e9 3269void complete_all(struct completion *x)
1da177e4
LT
3270{
3271 unsigned long flags;
3272
3273 spin_lock_irqsave(&x->wait.lock, flags);
3274 x->done += UINT_MAX/2;
d9514f6c 3275 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3276 spin_unlock_irqrestore(&x->wait.lock, flags);
3277}
3278EXPORT_SYMBOL(complete_all);
3279
8cbbe86d
AK
3280static inline long __sched
3281do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3282{
1da177e4
LT
3283 if (!x->done) {
3284 DECLARE_WAITQUEUE(wait, current);
3285
a93d2f17 3286 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3287 do {
94d3d824 3288 if (signal_pending_state(state, current)) {
ea71a546
ON
3289 timeout = -ERESTARTSYS;
3290 break;
8cbbe86d
AK
3291 }
3292 __set_current_state(state);
1da177e4
LT
3293 spin_unlock_irq(&x->wait.lock);
3294 timeout = schedule_timeout(timeout);
3295 spin_lock_irq(&x->wait.lock);
ea71a546 3296 } while (!x->done && timeout);
1da177e4 3297 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3298 if (!x->done)
3299 return timeout;
1da177e4
LT
3300 }
3301 x->done--;
ea71a546 3302 return timeout ?: 1;
1da177e4 3303}
1da177e4 3304
8cbbe86d
AK
3305static long __sched
3306wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3307{
1da177e4
LT
3308 might_sleep();
3309
3310 spin_lock_irq(&x->wait.lock);
8cbbe86d 3311 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3312 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3313 return timeout;
3314}
1da177e4 3315
65eb3dc6
KD
3316/**
3317 * wait_for_completion: - waits for completion of a task
3318 * @x: holds the state of this particular completion
3319 *
3320 * This waits to be signaled for completion of a specific task. It is NOT
3321 * interruptible and there is no timeout.
3322 *
3323 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3324 * and interrupt capability. Also see complete().
3325 */
b15136e9 3326void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3327{
3328 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3329}
8cbbe86d 3330EXPORT_SYMBOL(wait_for_completion);
1da177e4 3331
65eb3dc6
KD
3332/**
3333 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3334 * @x: holds the state of this particular completion
3335 * @timeout: timeout value in jiffies
3336 *
3337 * This waits for either a completion of a specific task to be signaled or for a
3338 * specified timeout to expire. The timeout is in jiffies. It is not
3339 * interruptible.
c6dc7f05
BF
3340 *
3341 * The return value is 0 if timed out, and positive (at least 1, or number of
3342 * jiffies left till timeout) if completed.
65eb3dc6 3343 */
b15136e9 3344unsigned long __sched
8cbbe86d 3345wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3346{
8cbbe86d 3347 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3348}
8cbbe86d 3349EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3350
65eb3dc6
KD
3351/**
3352 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3353 * @x: holds the state of this particular completion
3354 *
3355 * This waits for completion of a specific task to be signaled. It is
3356 * interruptible.
c6dc7f05
BF
3357 *
3358 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3359 */
8cbbe86d 3360int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3361{
51e97990
AK
3362 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3363 if (t == -ERESTARTSYS)
3364 return t;
3365 return 0;
0fec171c 3366}
8cbbe86d 3367EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3368
65eb3dc6
KD
3369/**
3370 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3371 * @x: holds the state of this particular completion
3372 * @timeout: timeout value in jiffies
3373 *
3374 * This waits for either a completion of a specific task to be signaled or for a
3375 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3376 *
3377 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3378 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3379 */
6bf41237 3380long __sched
8cbbe86d
AK
3381wait_for_completion_interruptible_timeout(struct completion *x,
3382 unsigned long timeout)
0fec171c 3383{
8cbbe86d 3384 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3385}
8cbbe86d 3386EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3387
65eb3dc6
KD
3388/**
3389 * wait_for_completion_killable: - waits for completion of a task (killable)
3390 * @x: holds the state of this particular completion
3391 *
3392 * This waits to be signaled for completion of a specific task. It can be
3393 * interrupted by a kill signal.
c6dc7f05
BF
3394 *
3395 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3396 */
009e577e
MW
3397int __sched wait_for_completion_killable(struct completion *x)
3398{
3399 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3400 if (t == -ERESTARTSYS)
3401 return t;
3402 return 0;
3403}
3404EXPORT_SYMBOL(wait_for_completion_killable);
3405
0aa12fb4
SW
3406/**
3407 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3408 * @x: holds the state of this particular completion
3409 * @timeout: timeout value in jiffies
3410 *
3411 * This waits for either a completion of a specific task to be
3412 * signaled or for a specified timeout to expire. It can be
3413 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3414 *
3415 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3416 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3417 */
6bf41237 3418long __sched
0aa12fb4
SW
3419wait_for_completion_killable_timeout(struct completion *x,
3420 unsigned long timeout)
3421{
3422 return wait_for_common(x, timeout, TASK_KILLABLE);
3423}
3424EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3425
be4de352
DC
3426/**
3427 * try_wait_for_completion - try to decrement a completion without blocking
3428 * @x: completion structure
3429 *
3430 * Returns: 0 if a decrement cannot be done without blocking
3431 * 1 if a decrement succeeded.
3432 *
3433 * If a completion is being used as a counting completion,
3434 * attempt to decrement the counter without blocking. This
3435 * enables us to avoid waiting if the resource the completion
3436 * is protecting is not available.
3437 */
3438bool try_wait_for_completion(struct completion *x)
3439{
7539a3b3 3440 unsigned long flags;
be4de352
DC
3441 int ret = 1;
3442
7539a3b3 3443 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3444 if (!x->done)
3445 ret = 0;
3446 else
3447 x->done--;
7539a3b3 3448 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3449 return ret;
3450}
3451EXPORT_SYMBOL(try_wait_for_completion);
3452
3453/**
3454 * completion_done - Test to see if a completion has any waiters
3455 * @x: completion structure
3456 *
3457 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3458 * 1 if there are no waiters.
3459 *
3460 */
3461bool completion_done(struct completion *x)
3462{
7539a3b3 3463 unsigned long flags;
be4de352
DC
3464 int ret = 1;
3465
7539a3b3 3466 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3467 if (!x->done)
3468 ret = 0;
7539a3b3 3469 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3470 return ret;
3471}
3472EXPORT_SYMBOL(completion_done);
3473
8cbbe86d
AK
3474static long __sched
3475sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3476{
0fec171c
IM
3477 unsigned long flags;
3478 wait_queue_t wait;
3479
3480 init_waitqueue_entry(&wait, current);
1da177e4 3481
8cbbe86d 3482 __set_current_state(state);
1da177e4 3483
8cbbe86d
AK
3484 spin_lock_irqsave(&q->lock, flags);
3485 __add_wait_queue(q, &wait);
3486 spin_unlock(&q->lock);
3487 timeout = schedule_timeout(timeout);
3488 spin_lock_irq(&q->lock);
3489 __remove_wait_queue(q, &wait);
3490 spin_unlock_irqrestore(&q->lock, flags);
3491
3492 return timeout;
3493}
3494
3495void __sched interruptible_sleep_on(wait_queue_head_t *q)
3496{
3497 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3498}
1da177e4
LT
3499EXPORT_SYMBOL(interruptible_sleep_on);
3500
0fec171c 3501long __sched
95cdf3b7 3502interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3503{
8cbbe86d 3504 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3505}
1da177e4
LT
3506EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3507
0fec171c 3508void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3509{
8cbbe86d 3510 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3511}
1da177e4
LT
3512EXPORT_SYMBOL(sleep_on);
3513
0fec171c 3514long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3515{
8cbbe86d 3516 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3517}
1da177e4
LT
3518EXPORT_SYMBOL(sleep_on_timeout);
3519
b29739f9
IM
3520#ifdef CONFIG_RT_MUTEXES
3521
3522/*
3523 * rt_mutex_setprio - set the current priority of a task
3524 * @p: task
3525 * @prio: prio value (kernel-internal form)
3526 *
3527 * This function changes the 'effective' priority of a task. It does
3528 * not touch ->normal_prio like __setscheduler().
3529 *
3530 * Used by the rt_mutex code to implement priority inheritance logic.
3531 */
36c8b586 3532void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3533{
83b699ed 3534 int oldprio, on_rq, running;
70b97a7f 3535 struct rq *rq;
83ab0aa0 3536 const struct sched_class *prev_class;
b29739f9
IM
3537
3538 BUG_ON(prio < 0 || prio > MAX_PRIO);
3539
0122ec5b 3540 rq = __task_rq_lock(p);
b29739f9 3541
1c4dd99b
TG
3542 /*
3543 * Idle task boosting is a nono in general. There is one
3544 * exception, when PREEMPT_RT and NOHZ is active:
3545 *
3546 * The idle task calls get_next_timer_interrupt() and holds
3547 * the timer wheel base->lock on the CPU and another CPU wants
3548 * to access the timer (probably to cancel it). We can safely
3549 * ignore the boosting request, as the idle CPU runs this code
3550 * with interrupts disabled and will complete the lock
3551 * protected section without being interrupted. So there is no
3552 * real need to boost.
3553 */
3554 if (unlikely(p == rq->idle)) {
3555 WARN_ON(p != rq->curr);
3556 WARN_ON(p->pi_blocked_on);
3557 goto out_unlock;
3558 }
3559
a8027073 3560 trace_sched_pi_setprio(p, prio);
d5f9f942 3561 oldprio = p->prio;
83ab0aa0 3562 prev_class = p->sched_class;
fd2f4419 3563 on_rq = p->on_rq;
051a1d1a 3564 running = task_current(rq, p);
0e1f3483 3565 if (on_rq)
69be72c1 3566 dequeue_task(rq, p, 0);
0e1f3483
HS
3567 if (running)
3568 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3569
3570 if (rt_prio(prio))
3571 p->sched_class = &rt_sched_class;
3572 else
3573 p->sched_class = &fair_sched_class;
3574
b29739f9
IM
3575 p->prio = prio;
3576
0e1f3483
HS
3577 if (running)
3578 p->sched_class->set_curr_task(rq);
da7a735e 3579 if (on_rq)
371fd7e7 3580 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3581
da7a735e 3582 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3583out_unlock:
0122ec5b 3584 __task_rq_unlock(rq);
b29739f9 3585}
b29739f9 3586#endif
36c8b586 3587void set_user_nice(struct task_struct *p, long nice)
1da177e4 3588{
dd41f596 3589 int old_prio, delta, on_rq;
1da177e4 3590 unsigned long flags;
70b97a7f 3591 struct rq *rq;
1da177e4
LT
3592
3593 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3594 return;
3595 /*
3596 * We have to be careful, if called from sys_setpriority(),
3597 * the task might be in the middle of scheduling on another CPU.
3598 */
3599 rq = task_rq_lock(p, &flags);
3600 /*
3601 * The RT priorities are set via sched_setscheduler(), but we still
3602 * allow the 'normal' nice value to be set - but as expected
3603 * it wont have any effect on scheduling until the task is
dd41f596 3604 * SCHED_FIFO/SCHED_RR:
1da177e4 3605 */
e05606d3 3606 if (task_has_rt_policy(p)) {
1da177e4
LT
3607 p->static_prio = NICE_TO_PRIO(nice);
3608 goto out_unlock;
3609 }
fd2f4419 3610 on_rq = p->on_rq;
c09595f6 3611 if (on_rq)
69be72c1 3612 dequeue_task(rq, p, 0);
1da177e4 3613
1da177e4 3614 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3615 set_load_weight(p);
b29739f9
IM
3616 old_prio = p->prio;
3617 p->prio = effective_prio(p);
3618 delta = p->prio - old_prio;
1da177e4 3619
dd41f596 3620 if (on_rq) {
371fd7e7 3621 enqueue_task(rq, p, 0);
1da177e4 3622 /*
d5f9f942
AM
3623 * If the task increased its priority or is running and
3624 * lowered its priority, then reschedule its CPU:
1da177e4 3625 */
d5f9f942 3626 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3627 resched_task(rq->curr);
3628 }
3629out_unlock:
0122ec5b 3630 task_rq_unlock(rq, p, &flags);
1da177e4 3631}
1da177e4
LT
3632EXPORT_SYMBOL(set_user_nice);
3633
e43379f1
MM
3634/*
3635 * can_nice - check if a task can reduce its nice value
3636 * @p: task
3637 * @nice: nice value
3638 */
36c8b586 3639int can_nice(const struct task_struct *p, const int nice)
e43379f1 3640{
024f4747
MM
3641 /* convert nice value [19,-20] to rlimit style value [1,40] */
3642 int nice_rlim = 20 - nice;
48f24c4d 3643
78d7d407 3644 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3645 capable(CAP_SYS_NICE));
3646}
3647
1da177e4
LT
3648#ifdef __ARCH_WANT_SYS_NICE
3649
3650/*
3651 * sys_nice - change the priority of the current process.
3652 * @increment: priority increment
3653 *
3654 * sys_setpriority is a more generic, but much slower function that
3655 * does similar things.
3656 */
5add95d4 3657SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3658{
48f24c4d 3659 long nice, retval;
1da177e4
LT
3660
3661 /*
3662 * Setpriority might change our priority at the same moment.
3663 * We don't have to worry. Conceptually one call occurs first
3664 * and we have a single winner.
3665 */
e43379f1
MM
3666 if (increment < -40)
3667 increment = -40;
1da177e4
LT
3668 if (increment > 40)
3669 increment = 40;
3670
2b8f836f 3671 nice = TASK_NICE(current) + increment;
1da177e4
LT
3672 if (nice < -20)
3673 nice = -20;
3674 if (nice > 19)
3675 nice = 19;
3676
e43379f1
MM
3677 if (increment < 0 && !can_nice(current, nice))
3678 return -EPERM;
3679
1da177e4
LT
3680 retval = security_task_setnice(current, nice);
3681 if (retval)
3682 return retval;
3683
3684 set_user_nice(current, nice);
3685 return 0;
3686}
3687
3688#endif
3689
3690/**
3691 * task_prio - return the priority value of a given task.
3692 * @p: the task in question.
3693 *
3694 * This is the priority value as seen by users in /proc.
3695 * RT tasks are offset by -200. Normal tasks are centered
3696 * around 0, value goes from -16 to +15.
3697 */
36c8b586 3698int task_prio(const struct task_struct *p)
1da177e4
LT
3699{
3700 return p->prio - MAX_RT_PRIO;
3701}
3702
3703/**
3704 * task_nice - return the nice value of a given task.
3705 * @p: the task in question.
3706 */
36c8b586 3707int task_nice(const struct task_struct *p)
1da177e4
LT
3708{
3709 return TASK_NICE(p);
3710}
150d8bed 3711EXPORT_SYMBOL(task_nice);
1da177e4
LT
3712
3713/**
3714 * idle_cpu - is a given cpu idle currently?
3715 * @cpu: the processor in question.
3716 */
3717int idle_cpu(int cpu)
3718{
908a3283
TG
3719 struct rq *rq = cpu_rq(cpu);
3720
3721 if (rq->curr != rq->idle)
3722 return 0;
3723
3724 if (rq->nr_running)
3725 return 0;
3726
3727#ifdef CONFIG_SMP
3728 if (!llist_empty(&rq->wake_list))
3729 return 0;
3730#endif
3731
3732 return 1;
1da177e4
LT
3733}
3734
1da177e4
LT
3735/**
3736 * idle_task - return the idle task for a given cpu.
3737 * @cpu: the processor in question.
3738 */
36c8b586 3739struct task_struct *idle_task(int cpu)
1da177e4
LT
3740{
3741 return cpu_rq(cpu)->idle;
3742}
3743
3744/**
3745 * find_process_by_pid - find a process with a matching PID value.
3746 * @pid: the pid in question.
3747 */
a9957449 3748static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3749{
228ebcbe 3750 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3751}
3752
3753/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3754static void
3755__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3756{
1da177e4
LT
3757 p->policy = policy;
3758 p->rt_priority = prio;
b29739f9
IM
3759 p->normal_prio = normal_prio(p);
3760 /* we are holding p->pi_lock already */
3761 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3762 if (rt_prio(p->prio))
3763 p->sched_class = &rt_sched_class;
3764 else
3765 p->sched_class = &fair_sched_class;
2dd73a4f 3766 set_load_weight(p);
1da177e4
LT
3767}
3768
c69e8d9c
DH
3769/*
3770 * check the target process has a UID that matches the current process's
3771 */
3772static bool check_same_owner(struct task_struct *p)
3773{
3774 const struct cred *cred = current_cred(), *pcred;
3775 bool match;
3776
3777 rcu_read_lock();
3778 pcred = __task_cred(p);
9c806aa0
EB
3779 match = (uid_eq(cred->euid, pcred->euid) ||
3780 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3781 rcu_read_unlock();
3782 return match;
3783}
3784
961ccddd 3785static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3786 const struct sched_param *param, bool user)
1da177e4 3787{
83b699ed 3788 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3789 unsigned long flags;
83ab0aa0 3790 const struct sched_class *prev_class;
70b97a7f 3791 struct rq *rq;
ca94c442 3792 int reset_on_fork;
1da177e4 3793
66e5393a
SR
3794 /* may grab non-irq protected spin_locks */
3795 BUG_ON(in_interrupt());
1da177e4
LT
3796recheck:
3797 /* double check policy once rq lock held */
ca94c442
LP
3798 if (policy < 0) {
3799 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3800 policy = oldpolicy = p->policy;
ca94c442
LP
3801 } else {
3802 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3803 policy &= ~SCHED_RESET_ON_FORK;
3804
3805 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3806 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3807 policy != SCHED_IDLE)
3808 return -EINVAL;
3809 }
3810
1da177e4
LT
3811 /*
3812 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3813 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3814 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3815 */
3816 if (param->sched_priority < 0 ||
95cdf3b7 3817 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3818 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3819 return -EINVAL;
e05606d3 3820 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3821 return -EINVAL;
3822
37e4ab3f
OC
3823 /*
3824 * Allow unprivileged RT tasks to decrease priority:
3825 */
961ccddd 3826 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3827 if (rt_policy(policy)) {
a44702e8
ON
3828 unsigned long rlim_rtprio =
3829 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3830
3831 /* can't set/change the rt policy */
3832 if (policy != p->policy && !rlim_rtprio)
3833 return -EPERM;
3834
3835 /* can't increase priority */
3836 if (param->sched_priority > p->rt_priority &&
3837 param->sched_priority > rlim_rtprio)
3838 return -EPERM;
3839 }
c02aa73b 3840
dd41f596 3841 /*
c02aa73b
DH
3842 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3843 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3844 */
c02aa73b
DH
3845 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3846 if (!can_nice(p, TASK_NICE(p)))
3847 return -EPERM;
3848 }
5fe1d75f 3849
37e4ab3f 3850 /* can't change other user's priorities */
c69e8d9c 3851 if (!check_same_owner(p))
37e4ab3f 3852 return -EPERM;
ca94c442
LP
3853
3854 /* Normal users shall not reset the sched_reset_on_fork flag */
3855 if (p->sched_reset_on_fork && !reset_on_fork)
3856 return -EPERM;
37e4ab3f 3857 }
1da177e4 3858
725aad24 3859 if (user) {
b0ae1981 3860 retval = security_task_setscheduler(p);
725aad24
JF
3861 if (retval)
3862 return retval;
3863 }
3864
b29739f9
IM
3865 /*
3866 * make sure no PI-waiters arrive (or leave) while we are
3867 * changing the priority of the task:
0122ec5b 3868 *
25985edc 3869 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3870 * runqueue lock must be held.
3871 */
0122ec5b 3872 rq = task_rq_lock(p, &flags);
dc61b1d6 3873
34f971f6
PZ
3874 /*
3875 * Changing the policy of the stop threads its a very bad idea
3876 */
3877 if (p == rq->stop) {
0122ec5b 3878 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3879 return -EINVAL;
3880 }
3881
a51e9198
DF
3882 /*
3883 * If not changing anything there's no need to proceed further:
3884 */
3885 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3886 param->sched_priority == p->rt_priority))) {
45afb173 3887 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3888 return 0;
3889 }
3890
dc61b1d6
PZ
3891#ifdef CONFIG_RT_GROUP_SCHED
3892 if (user) {
3893 /*
3894 * Do not allow realtime tasks into groups that have no runtime
3895 * assigned.
3896 */
3897 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3898 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3899 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3900 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3901 return -EPERM;
3902 }
3903 }
3904#endif
3905
1da177e4
LT
3906 /* recheck policy now with rq lock held */
3907 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3908 policy = oldpolicy = -1;
0122ec5b 3909 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3910 goto recheck;
3911 }
fd2f4419 3912 on_rq = p->on_rq;
051a1d1a 3913 running = task_current(rq, p);
0e1f3483 3914 if (on_rq)
4ca9b72b 3915 dequeue_task(rq, p, 0);
0e1f3483
HS
3916 if (running)
3917 p->sched_class->put_prev_task(rq, p);
f6b53205 3918
ca94c442
LP
3919 p->sched_reset_on_fork = reset_on_fork;
3920
1da177e4 3921 oldprio = p->prio;
83ab0aa0 3922 prev_class = p->sched_class;
dd41f596 3923 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3924
0e1f3483
HS
3925 if (running)
3926 p->sched_class->set_curr_task(rq);
da7a735e 3927 if (on_rq)
4ca9b72b 3928 enqueue_task(rq, p, 0);
cb469845 3929
da7a735e 3930 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3931 task_rq_unlock(rq, p, &flags);
b29739f9 3932
95e02ca9
TG
3933 rt_mutex_adjust_pi(p);
3934
1da177e4
LT
3935 return 0;
3936}
961ccddd
RR
3937
3938/**
3939 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3940 * @p: the task in question.
3941 * @policy: new policy.
3942 * @param: structure containing the new RT priority.
3943 *
3944 * NOTE that the task may be already dead.
3945 */
3946int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3947 const struct sched_param *param)
961ccddd
RR
3948{
3949 return __sched_setscheduler(p, policy, param, true);
3950}
1da177e4
LT
3951EXPORT_SYMBOL_GPL(sched_setscheduler);
3952
961ccddd
RR
3953/**
3954 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3955 * @p: the task in question.
3956 * @policy: new policy.
3957 * @param: structure containing the new RT priority.
3958 *
3959 * Just like sched_setscheduler, only don't bother checking if the
3960 * current context has permission. For example, this is needed in
3961 * stop_machine(): we create temporary high priority worker threads,
3962 * but our caller might not have that capability.
3963 */
3964int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3965 const struct sched_param *param)
961ccddd
RR
3966{
3967 return __sched_setscheduler(p, policy, param, false);
3968}
3969
95cdf3b7
IM
3970static int
3971do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3972{
1da177e4
LT
3973 struct sched_param lparam;
3974 struct task_struct *p;
36c8b586 3975 int retval;
1da177e4
LT
3976
3977 if (!param || pid < 0)
3978 return -EINVAL;
3979 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3980 return -EFAULT;
5fe1d75f
ON
3981
3982 rcu_read_lock();
3983 retval = -ESRCH;
1da177e4 3984 p = find_process_by_pid(pid);
5fe1d75f
ON
3985 if (p != NULL)
3986 retval = sched_setscheduler(p, policy, &lparam);
3987 rcu_read_unlock();
36c8b586 3988
1da177e4
LT
3989 return retval;
3990}
3991
3992/**
3993 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3994 * @pid: the pid in question.
3995 * @policy: new policy.
3996 * @param: structure containing the new RT priority.
3997 */
5add95d4
HC
3998SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3999 struct sched_param __user *, param)
1da177e4 4000{
c21761f1
JB
4001 /* negative values for policy are not valid */
4002 if (policy < 0)
4003 return -EINVAL;
4004
1da177e4
LT
4005 return do_sched_setscheduler(pid, policy, param);
4006}
4007
4008/**
4009 * sys_sched_setparam - set/change the RT priority of a thread
4010 * @pid: the pid in question.
4011 * @param: structure containing the new RT priority.
4012 */
5add95d4 4013SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4014{
4015 return do_sched_setscheduler(pid, -1, param);
4016}
4017
4018/**
4019 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4020 * @pid: the pid in question.
4021 */
5add95d4 4022SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4023{
36c8b586 4024 struct task_struct *p;
3a5c359a 4025 int retval;
1da177e4
LT
4026
4027 if (pid < 0)
3a5c359a 4028 return -EINVAL;
1da177e4
LT
4029
4030 retval = -ESRCH;
5fe85be0 4031 rcu_read_lock();
1da177e4
LT
4032 p = find_process_by_pid(pid);
4033 if (p) {
4034 retval = security_task_getscheduler(p);
4035 if (!retval)
ca94c442
LP
4036 retval = p->policy
4037 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4038 }
5fe85be0 4039 rcu_read_unlock();
1da177e4
LT
4040 return retval;
4041}
4042
4043/**
ca94c442 4044 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4045 * @pid: the pid in question.
4046 * @param: structure containing the RT priority.
4047 */
5add95d4 4048SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4049{
4050 struct sched_param lp;
36c8b586 4051 struct task_struct *p;
3a5c359a 4052 int retval;
1da177e4
LT
4053
4054 if (!param || pid < 0)
3a5c359a 4055 return -EINVAL;
1da177e4 4056
5fe85be0 4057 rcu_read_lock();
1da177e4
LT
4058 p = find_process_by_pid(pid);
4059 retval = -ESRCH;
4060 if (!p)
4061 goto out_unlock;
4062
4063 retval = security_task_getscheduler(p);
4064 if (retval)
4065 goto out_unlock;
4066
4067 lp.sched_priority = p->rt_priority;
5fe85be0 4068 rcu_read_unlock();
1da177e4
LT
4069
4070 /*
4071 * This one might sleep, we cannot do it with a spinlock held ...
4072 */
4073 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4074
1da177e4
LT
4075 return retval;
4076
4077out_unlock:
5fe85be0 4078 rcu_read_unlock();
1da177e4
LT
4079 return retval;
4080}
4081
96f874e2 4082long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4083{
5a16f3d3 4084 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4085 struct task_struct *p;
4086 int retval;
1da177e4 4087
95402b38 4088 get_online_cpus();
23f5d142 4089 rcu_read_lock();
1da177e4
LT
4090
4091 p = find_process_by_pid(pid);
4092 if (!p) {
23f5d142 4093 rcu_read_unlock();
95402b38 4094 put_online_cpus();
1da177e4
LT
4095 return -ESRCH;
4096 }
4097
23f5d142 4098 /* Prevent p going away */
1da177e4 4099 get_task_struct(p);
23f5d142 4100 rcu_read_unlock();
1da177e4 4101
5a16f3d3
RR
4102 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4103 retval = -ENOMEM;
4104 goto out_put_task;
4105 }
4106 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4107 retval = -ENOMEM;
4108 goto out_free_cpus_allowed;
4109 }
1da177e4 4110 retval = -EPERM;
4c44aaaf
EB
4111 if (!check_same_owner(p)) {
4112 rcu_read_lock();
4113 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4114 rcu_read_unlock();
4115 goto out_unlock;
4116 }
4117 rcu_read_unlock();
4118 }
1da177e4 4119
b0ae1981 4120 retval = security_task_setscheduler(p);
e7834f8f
DQ
4121 if (retval)
4122 goto out_unlock;
4123
5a16f3d3
RR
4124 cpuset_cpus_allowed(p, cpus_allowed);
4125 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4126again:
5a16f3d3 4127 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4128
8707d8b8 4129 if (!retval) {
5a16f3d3
RR
4130 cpuset_cpus_allowed(p, cpus_allowed);
4131 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4132 /*
4133 * We must have raced with a concurrent cpuset
4134 * update. Just reset the cpus_allowed to the
4135 * cpuset's cpus_allowed
4136 */
5a16f3d3 4137 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4138 goto again;
4139 }
4140 }
1da177e4 4141out_unlock:
5a16f3d3
RR
4142 free_cpumask_var(new_mask);
4143out_free_cpus_allowed:
4144 free_cpumask_var(cpus_allowed);
4145out_put_task:
1da177e4 4146 put_task_struct(p);
95402b38 4147 put_online_cpus();
1da177e4
LT
4148 return retval;
4149}
4150
4151static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4152 struct cpumask *new_mask)
1da177e4 4153{
96f874e2
RR
4154 if (len < cpumask_size())
4155 cpumask_clear(new_mask);
4156 else if (len > cpumask_size())
4157 len = cpumask_size();
4158
1da177e4
LT
4159 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4160}
4161
4162/**
4163 * sys_sched_setaffinity - set the cpu affinity of a process
4164 * @pid: pid of the process
4165 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4166 * @user_mask_ptr: user-space pointer to the new cpu mask
4167 */
5add95d4
HC
4168SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4169 unsigned long __user *, user_mask_ptr)
1da177e4 4170{
5a16f3d3 4171 cpumask_var_t new_mask;
1da177e4
LT
4172 int retval;
4173
5a16f3d3
RR
4174 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4175 return -ENOMEM;
1da177e4 4176
5a16f3d3
RR
4177 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4178 if (retval == 0)
4179 retval = sched_setaffinity(pid, new_mask);
4180 free_cpumask_var(new_mask);
4181 return retval;
1da177e4
LT
4182}
4183
96f874e2 4184long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4185{
36c8b586 4186 struct task_struct *p;
31605683 4187 unsigned long flags;
1da177e4 4188 int retval;
1da177e4 4189
95402b38 4190 get_online_cpus();
23f5d142 4191 rcu_read_lock();
1da177e4
LT
4192
4193 retval = -ESRCH;
4194 p = find_process_by_pid(pid);
4195 if (!p)
4196 goto out_unlock;
4197
e7834f8f
DQ
4198 retval = security_task_getscheduler(p);
4199 if (retval)
4200 goto out_unlock;
4201
013fdb80 4202 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4203 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4204 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4205
4206out_unlock:
23f5d142 4207 rcu_read_unlock();
95402b38 4208 put_online_cpus();
1da177e4 4209
9531b62f 4210 return retval;
1da177e4
LT
4211}
4212
4213/**
4214 * sys_sched_getaffinity - get the cpu affinity of a process
4215 * @pid: pid of the process
4216 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4217 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4218 */
5add95d4
HC
4219SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4220 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4221{
4222 int ret;
f17c8607 4223 cpumask_var_t mask;
1da177e4 4224
84fba5ec 4225 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4226 return -EINVAL;
4227 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4228 return -EINVAL;
4229
f17c8607
RR
4230 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4231 return -ENOMEM;
1da177e4 4232
f17c8607
RR
4233 ret = sched_getaffinity(pid, mask);
4234 if (ret == 0) {
8bc037fb 4235 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4236
4237 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4238 ret = -EFAULT;
4239 else
cd3d8031 4240 ret = retlen;
f17c8607
RR
4241 }
4242 free_cpumask_var(mask);
1da177e4 4243
f17c8607 4244 return ret;
1da177e4
LT
4245}
4246
4247/**
4248 * sys_sched_yield - yield the current processor to other threads.
4249 *
dd41f596
IM
4250 * This function yields the current CPU to other tasks. If there are no
4251 * other threads running on this CPU then this function will return.
1da177e4 4252 */
5add95d4 4253SYSCALL_DEFINE0(sched_yield)
1da177e4 4254{
70b97a7f 4255 struct rq *rq = this_rq_lock();
1da177e4 4256
2d72376b 4257 schedstat_inc(rq, yld_count);
4530d7ab 4258 current->sched_class->yield_task(rq);
1da177e4
LT
4259
4260 /*
4261 * Since we are going to call schedule() anyway, there's
4262 * no need to preempt or enable interrupts:
4263 */
4264 __release(rq->lock);
8a25d5de 4265 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4266 do_raw_spin_unlock(&rq->lock);
ba74c144 4267 sched_preempt_enable_no_resched();
1da177e4
LT
4268
4269 schedule();
4270
4271 return 0;
4272}
4273
d86ee480
PZ
4274static inline int should_resched(void)
4275{
4276 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4277}
4278
e7b38404 4279static void __cond_resched(void)
1da177e4 4280{
e7aaaa69 4281 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4282 __schedule();
e7aaaa69 4283 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4284}
4285
02b67cc3 4286int __sched _cond_resched(void)
1da177e4 4287{
d86ee480 4288 if (should_resched()) {
1da177e4
LT
4289 __cond_resched();
4290 return 1;
4291 }
4292 return 0;
4293}
02b67cc3 4294EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4295
4296/*
613afbf8 4297 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4298 * call schedule, and on return reacquire the lock.
4299 *
41a2d6cf 4300 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4301 * operations here to prevent schedule() from being called twice (once via
4302 * spin_unlock(), once by hand).
4303 */
613afbf8 4304int __cond_resched_lock(spinlock_t *lock)
1da177e4 4305{
d86ee480 4306 int resched = should_resched();
6df3cecb
JK
4307 int ret = 0;
4308
f607c668
PZ
4309 lockdep_assert_held(lock);
4310
95c354fe 4311 if (spin_needbreak(lock) || resched) {
1da177e4 4312 spin_unlock(lock);
d86ee480 4313 if (resched)
95c354fe
NP
4314 __cond_resched();
4315 else
4316 cpu_relax();
6df3cecb 4317 ret = 1;
1da177e4 4318 spin_lock(lock);
1da177e4 4319 }
6df3cecb 4320 return ret;
1da177e4 4321}
613afbf8 4322EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4323
613afbf8 4324int __sched __cond_resched_softirq(void)
1da177e4
LT
4325{
4326 BUG_ON(!in_softirq());
4327
d86ee480 4328 if (should_resched()) {
98d82567 4329 local_bh_enable();
1da177e4
LT
4330 __cond_resched();
4331 local_bh_disable();
4332 return 1;
4333 }
4334 return 0;
4335}
613afbf8 4336EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4337
1da177e4
LT
4338/**
4339 * yield - yield the current processor to other threads.
4340 *
8e3fabfd
PZ
4341 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4342 *
4343 * The scheduler is at all times free to pick the calling task as the most
4344 * eligible task to run, if removing the yield() call from your code breaks
4345 * it, its already broken.
4346 *
4347 * Typical broken usage is:
4348 *
4349 * while (!event)
4350 * yield();
4351 *
4352 * where one assumes that yield() will let 'the other' process run that will
4353 * make event true. If the current task is a SCHED_FIFO task that will never
4354 * happen. Never use yield() as a progress guarantee!!
4355 *
4356 * If you want to use yield() to wait for something, use wait_event().
4357 * If you want to use yield() to be 'nice' for others, use cond_resched().
4358 * If you still want to use yield(), do not!
1da177e4
LT
4359 */
4360void __sched yield(void)
4361{
4362 set_current_state(TASK_RUNNING);
4363 sys_sched_yield();
4364}
1da177e4
LT
4365EXPORT_SYMBOL(yield);
4366
d95f4122
MG
4367/**
4368 * yield_to - yield the current processor to another thread in
4369 * your thread group, or accelerate that thread toward the
4370 * processor it's on.
16addf95
RD
4371 * @p: target task
4372 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4373 *
4374 * It's the caller's job to ensure that the target task struct
4375 * can't go away on us before we can do any checks.
4376 *
7b270f60
PZ
4377 * Returns:
4378 * true (>0) if we indeed boosted the target task.
4379 * false (0) if we failed to boost the target.
4380 * -ESRCH if there's no task to yield to.
d95f4122
MG
4381 */
4382bool __sched yield_to(struct task_struct *p, bool preempt)
4383{
4384 struct task_struct *curr = current;
4385 struct rq *rq, *p_rq;
4386 unsigned long flags;
c3c18640 4387 int yielded = 0;
d95f4122
MG
4388
4389 local_irq_save(flags);
4390 rq = this_rq();
4391
4392again:
4393 p_rq = task_rq(p);
7b270f60
PZ
4394 /*
4395 * If we're the only runnable task on the rq and target rq also
4396 * has only one task, there's absolutely no point in yielding.
4397 */
4398 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4399 yielded = -ESRCH;
4400 goto out_irq;
4401 }
4402
d95f4122
MG
4403 double_rq_lock(rq, p_rq);
4404 while (task_rq(p) != p_rq) {
4405 double_rq_unlock(rq, p_rq);
4406 goto again;
4407 }
4408
4409 if (!curr->sched_class->yield_to_task)
7b270f60 4410 goto out_unlock;
d95f4122
MG
4411
4412 if (curr->sched_class != p->sched_class)
7b270f60 4413 goto out_unlock;
d95f4122
MG
4414
4415 if (task_running(p_rq, p) || p->state)
7b270f60 4416 goto out_unlock;
d95f4122
MG
4417
4418 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4419 if (yielded) {
d95f4122 4420 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4421 /*
4422 * Make p's CPU reschedule; pick_next_entity takes care of
4423 * fairness.
4424 */
4425 if (preempt && rq != p_rq)
4426 resched_task(p_rq->curr);
4427 }
d95f4122 4428
7b270f60 4429out_unlock:
d95f4122 4430 double_rq_unlock(rq, p_rq);
7b270f60 4431out_irq:
d95f4122
MG
4432 local_irq_restore(flags);
4433
7b270f60 4434 if (yielded > 0)
d95f4122
MG
4435 schedule();
4436
4437 return yielded;
4438}
4439EXPORT_SYMBOL_GPL(yield_to);
4440
1da177e4 4441/*
41a2d6cf 4442 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4443 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4444 */
4445void __sched io_schedule(void)
4446{
54d35f29 4447 struct rq *rq = raw_rq();
1da177e4 4448
0ff92245 4449 delayacct_blkio_start();
1da177e4 4450 atomic_inc(&rq->nr_iowait);
73c10101 4451 blk_flush_plug(current);
8f0dfc34 4452 current->in_iowait = 1;
1da177e4 4453 schedule();
8f0dfc34 4454 current->in_iowait = 0;
1da177e4 4455 atomic_dec(&rq->nr_iowait);
0ff92245 4456 delayacct_blkio_end();
1da177e4 4457}
1da177e4
LT
4458EXPORT_SYMBOL(io_schedule);
4459
4460long __sched io_schedule_timeout(long timeout)
4461{
54d35f29 4462 struct rq *rq = raw_rq();
1da177e4
LT
4463 long ret;
4464
0ff92245 4465 delayacct_blkio_start();
1da177e4 4466 atomic_inc(&rq->nr_iowait);
73c10101 4467 blk_flush_plug(current);
8f0dfc34 4468 current->in_iowait = 1;
1da177e4 4469 ret = schedule_timeout(timeout);
8f0dfc34 4470 current->in_iowait = 0;
1da177e4 4471 atomic_dec(&rq->nr_iowait);
0ff92245 4472 delayacct_blkio_end();
1da177e4
LT
4473 return ret;
4474}
4475
4476/**
4477 * sys_sched_get_priority_max - return maximum RT priority.
4478 * @policy: scheduling class.
4479 *
4480 * this syscall returns the maximum rt_priority that can be used
4481 * by a given scheduling class.
4482 */
5add95d4 4483SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4484{
4485 int ret = -EINVAL;
4486
4487 switch (policy) {
4488 case SCHED_FIFO:
4489 case SCHED_RR:
4490 ret = MAX_USER_RT_PRIO-1;
4491 break;
4492 case SCHED_NORMAL:
b0a9499c 4493 case SCHED_BATCH:
dd41f596 4494 case SCHED_IDLE:
1da177e4
LT
4495 ret = 0;
4496 break;
4497 }
4498 return ret;
4499}
4500
4501/**
4502 * sys_sched_get_priority_min - return minimum RT priority.
4503 * @policy: scheduling class.
4504 *
4505 * this syscall returns the minimum rt_priority that can be used
4506 * by a given scheduling class.
4507 */
5add95d4 4508SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4509{
4510 int ret = -EINVAL;
4511
4512 switch (policy) {
4513 case SCHED_FIFO:
4514 case SCHED_RR:
4515 ret = 1;
4516 break;
4517 case SCHED_NORMAL:
b0a9499c 4518 case SCHED_BATCH:
dd41f596 4519 case SCHED_IDLE:
1da177e4
LT
4520 ret = 0;
4521 }
4522 return ret;
4523}
4524
4525/**
4526 * sys_sched_rr_get_interval - return the default timeslice of a process.
4527 * @pid: pid of the process.
4528 * @interval: userspace pointer to the timeslice value.
4529 *
4530 * this syscall writes the default timeslice value of a given process
4531 * into the user-space timespec buffer. A value of '0' means infinity.
4532 */
17da2bd9 4533SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4534 struct timespec __user *, interval)
1da177e4 4535{
36c8b586 4536 struct task_struct *p;
a4ec24b4 4537 unsigned int time_slice;
dba091b9
TG
4538 unsigned long flags;
4539 struct rq *rq;
3a5c359a 4540 int retval;
1da177e4 4541 struct timespec t;
1da177e4
LT
4542
4543 if (pid < 0)
3a5c359a 4544 return -EINVAL;
1da177e4
LT
4545
4546 retval = -ESRCH;
1a551ae7 4547 rcu_read_lock();
1da177e4
LT
4548 p = find_process_by_pid(pid);
4549 if (!p)
4550 goto out_unlock;
4551
4552 retval = security_task_getscheduler(p);
4553 if (retval)
4554 goto out_unlock;
4555
dba091b9
TG
4556 rq = task_rq_lock(p, &flags);
4557 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4558 task_rq_unlock(rq, p, &flags);
a4ec24b4 4559
1a551ae7 4560 rcu_read_unlock();
a4ec24b4 4561 jiffies_to_timespec(time_slice, &t);
1da177e4 4562 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4563 return retval;
3a5c359a 4564
1da177e4 4565out_unlock:
1a551ae7 4566 rcu_read_unlock();
1da177e4
LT
4567 return retval;
4568}
4569
7c731e0a 4570static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4571
82a1fcb9 4572void sched_show_task(struct task_struct *p)
1da177e4 4573{
1da177e4 4574 unsigned long free = 0;
4e79752c 4575 int ppid;
36c8b586 4576 unsigned state;
1da177e4 4577
1da177e4 4578 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4579 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4580 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4581#if BITS_PER_LONG == 32
1da177e4 4582 if (state == TASK_RUNNING)
3df0fc5b 4583 printk(KERN_CONT " running ");
1da177e4 4584 else
3df0fc5b 4585 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4586#else
4587 if (state == TASK_RUNNING)
3df0fc5b 4588 printk(KERN_CONT " running task ");
1da177e4 4589 else
3df0fc5b 4590 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4591#endif
4592#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4593 free = stack_not_used(p);
1da177e4 4594#endif
4e79752c
PM
4595 rcu_read_lock();
4596 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4597 rcu_read_unlock();
3df0fc5b 4598 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4599 task_pid_nr(p), ppid,
aa47b7e0 4600 (unsigned long)task_thread_info(p)->flags);
1da177e4 4601
5fb5e6de 4602 show_stack(p, NULL);
1da177e4
LT
4603}
4604
e59e2ae2 4605void show_state_filter(unsigned long state_filter)
1da177e4 4606{
36c8b586 4607 struct task_struct *g, *p;
1da177e4 4608
4bd77321 4609#if BITS_PER_LONG == 32
3df0fc5b
PZ
4610 printk(KERN_INFO
4611 " task PC stack pid father\n");
1da177e4 4612#else
3df0fc5b
PZ
4613 printk(KERN_INFO
4614 " task PC stack pid father\n");
1da177e4 4615#endif
510f5acc 4616 rcu_read_lock();
1da177e4
LT
4617 do_each_thread(g, p) {
4618 /*
4619 * reset the NMI-timeout, listing all files on a slow
25985edc 4620 * console might take a lot of time:
1da177e4
LT
4621 */
4622 touch_nmi_watchdog();
39bc89fd 4623 if (!state_filter || (p->state & state_filter))
82a1fcb9 4624 sched_show_task(p);
1da177e4
LT
4625 } while_each_thread(g, p);
4626
04c9167f
JF
4627 touch_all_softlockup_watchdogs();
4628
dd41f596
IM
4629#ifdef CONFIG_SCHED_DEBUG
4630 sysrq_sched_debug_show();
4631#endif
510f5acc 4632 rcu_read_unlock();
e59e2ae2
IM
4633 /*
4634 * Only show locks if all tasks are dumped:
4635 */
93335a21 4636 if (!state_filter)
e59e2ae2 4637 debug_show_all_locks();
1da177e4
LT
4638}
4639
1df21055
IM
4640void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4641{
dd41f596 4642 idle->sched_class = &idle_sched_class;
1df21055
IM
4643}
4644
f340c0d1
IM
4645/**
4646 * init_idle - set up an idle thread for a given CPU
4647 * @idle: task in question
4648 * @cpu: cpu the idle task belongs to
4649 *
4650 * NOTE: this function does not set the idle thread's NEED_RESCHED
4651 * flag, to make booting more robust.
4652 */
5c1e1767 4653void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4654{
70b97a7f 4655 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4656 unsigned long flags;
4657
05fa785c 4658 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4659
dd41f596 4660 __sched_fork(idle);
06b83b5f 4661 idle->state = TASK_RUNNING;
dd41f596
IM
4662 idle->se.exec_start = sched_clock();
4663
1e1b6c51 4664 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4665 /*
4666 * We're having a chicken and egg problem, even though we are
4667 * holding rq->lock, the cpu isn't yet set to this cpu so the
4668 * lockdep check in task_group() will fail.
4669 *
4670 * Similar case to sched_fork(). / Alternatively we could
4671 * use task_rq_lock() here and obtain the other rq->lock.
4672 *
4673 * Silence PROVE_RCU
4674 */
4675 rcu_read_lock();
dd41f596 4676 __set_task_cpu(idle, cpu);
6506cf6c 4677 rcu_read_unlock();
1da177e4 4678
1da177e4 4679 rq->curr = rq->idle = idle;
3ca7a440
PZ
4680#if defined(CONFIG_SMP)
4681 idle->on_cpu = 1;
4866cde0 4682#endif
05fa785c 4683 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4684
4685 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4686 task_thread_info(idle)->preempt_count = 0;
55cd5340 4687
dd41f596
IM
4688 /*
4689 * The idle tasks have their own, simple scheduling class:
4690 */
4691 idle->sched_class = &idle_sched_class;
868baf07 4692 ftrace_graph_init_idle_task(idle, cpu);
6a61671b 4693 vtime_init_idle(idle);
f1c6f1a7
CE
4694#if defined(CONFIG_SMP)
4695 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4696#endif
19978ca6
IM
4697}
4698
1da177e4 4699#ifdef CONFIG_SMP
1e1b6c51
KM
4700void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4701{
4702 if (p->sched_class && p->sched_class->set_cpus_allowed)
4703 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4704
4705 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4706 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4707}
4708
1da177e4
LT
4709/*
4710 * This is how migration works:
4711 *
969c7921
TH
4712 * 1) we invoke migration_cpu_stop() on the target CPU using
4713 * stop_one_cpu().
4714 * 2) stopper starts to run (implicitly forcing the migrated thread
4715 * off the CPU)
4716 * 3) it checks whether the migrated task is still in the wrong runqueue.
4717 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4718 * it and puts it into the right queue.
969c7921
TH
4719 * 5) stopper completes and stop_one_cpu() returns and the migration
4720 * is done.
1da177e4
LT
4721 */
4722
4723/*
4724 * Change a given task's CPU affinity. Migrate the thread to a
4725 * proper CPU and schedule it away if the CPU it's executing on
4726 * is removed from the allowed bitmask.
4727 *
4728 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4729 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4730 * call is not atomic; no spinlocks may be held.
4731 */
96f874e2 4732int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4733{
4734 unsigned long flags;
70b97a7f 4735 struct rq *rq;
969c7921 4736 unsigned int dest_cpu;
48f24c4d 4737 int ret = 0;
1da177e4
LT
4738
4739 rq = task_rq_lock(p, &flags);
e2912009 4740
db44fc01
YZ
4741 if (cpumask_equal(&p->cpus_allowed, new_mask))
4742 goto out;
4743
6ad4c188 4744 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4745 ret = -EINVAL;
4746 goto out;
4747 }
4748
db44fc01 4749 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4750 ret = -EINVAL;
4751 goto out;
4752 }
4753
1e1b6c51 4754 do_set_cpus_allowed(p, new_mask);
73fe6aae 4755
1da177e4 4756 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4757 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4758 goto out;
4759
969c7921 4760 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4761 if (p->on_rq) {
969c7921 4762 struct migration_arg arg = { p, dest_cpu };
1da177e4 4763 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4764 task_rq_unlock(rq, p, &flags);
969c7921 4765 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4766 tlb_migrate_finish(p->mm);
4767 return 0;
4768 }
4769out:
0122ec5b 4770 task_rq_unlock(rq, p, &flags);
48f24c4d 4771
1da177e4
LT
4772 return ret;
4773}
cd8ba7cd 4774EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4775
4776/*
41a2d6cf 4777 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4778 * this because either it can't run here any more (set_cpus_allowed()
4779 * away from this CPU, or CPU going down), or because we're
4780 * attempting to rebalance this task on exec (sched_exec).
4781 *
4782 * So we race with normal scheduler movements, but that's OK, as long
4783 * as the task is no longer on this CPU.
efc30814
KK
4784 *
4785 * Returns non-zero if task was successfully migrated.
1da177e4 4786 */
efc30814 4787static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4788{
70b97a7f 4789 struct rq *rq_dest, *rq_src;
e2912009 4790 int ret = 0;
1da177e4 4791
e761b772 4792 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4793 return ret;
1da177e4
LT
4794
4795 rq_src = cpu_rq(src_cpu);
4796 rq_dest = cpu_rq(dest_cpu);
4797
0122ec5b 4798 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4799 double_rq_lock(rq_src, rq_dest);
4800 /* Already moved. */
4801 if (task_cpu(p) != src_cpu)
b1e38734 4802 goto done;
1da177e4 4803 /* Affinity changed (again). */
fa17b507 4804 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4805 goto fail;
1da177e4 4806
e2912009
PZ
4807 /*
4808 * If we're not on a rq, the next wake-up will ensure we're
4809 * placed properly.
4810 */
fd2f4419 4811 if (p->on_rq) {
4ca9b72b 4812 dequeue_task(rq_src, p, 0);
e2912009 4813 set_task_cpu(p, dest_cpu);
4ca9b72b 4814 enqueue_task(rq_dest, p, 0);
15afe09b 4815 check_preempt_curr(rq_dest, p, 0);
1da177e4 4816 }
b1e38734 4817done:
efc30814 4818 ret = 1;
b1e38734 4819fail:
1da177e4 4820 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4821 raw_spin_unlock(&p->pi_lock);
efc30814 4822 return ret;
1da177e4
LT
4823}
4824
4825/*
969c7921
TH
4826 * migration_cpu_stop - this will be executed by a highprio stopper thread
4827 * and performs thread migration by bumping thread off CPU then
4828 * 'pushing' onto another runqueue.
1da177e4 4829 */
969c7921 4830static int migration_cpu_stop(void *data)
1da177e4 4831{
969c7921 4832 struct migration_arg *arg = data;
f7b4cddc 4833
969c7921
TH
4834 /*
4835 * The original target cpu might have gone down and we might
4836 * be on another cpu but it doesn't matter.
4837 */
f7b4cddc 4838 local_irq_disable();
969c7921 4839 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4840 local_irq_enable();
1da177e4 4841 return 0;
f7b4cddc
ON
4842}
4843
1da177e4 4844#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4845
054b9108 4846/*
48c5ccae
PZ
4847 * Ensures that the idle task is using init_mm right before its cpu goes
4848 * offline.
054b9108 4849 */
48c5ccae 4850void idle_task_exit(void)
1da177e4 4851{
48c5ccae 4852 struct mm_struct *mm = current->active_mm;
e76bd8d9 4853
48c5ccae 4854 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4855
48c5ccae
PZ
4856 if (mm != &init_mm)
4857 switch_mm(mm, &init_mm, current);
4858 mmdrop(mm);
1da177e4
LT
4859}
4860
4861/*
5d180232
PZ
4862 * Since this CPU is going 'away' for a while, fold any nr_active delta
4863 * we might have. Assumes we're called after migrate_tasks() so that the
4864 * nr_active count is stable.
4865 *
4866 * Also see the comment "Global load-average calculations".
1da177e4 4867 */
5d180232 4868static void calc_load_migrate(struct rq *rq)
1da177e4 4869{
5d180232
PZ
4870 long delta = calc_load_fold_active(rq);
4871 if (delta)
4872 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4873}
4874
48f24c4d 4875/*
48c5ccae
PZ
4876 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4877 * try_to_wake_up()->select_task_rq().
4878 *
4879 * Called with rq->lock held even though we'er in stop_machine() and
4880 * there's no concurrency possible, we hold the required locks anyway
4881 * because of lock validation efforts.
1da177e4 4882 */
48c5ccae 4883static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4884{
70b97a7f 4885 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4886 struct task_struct *next, *stop = rq->stop;
4887 int dest_cpu;
1da177e4
LT
4888
4889 /*
48c5ccae
PZ
4890 * Fudge the rq selection such that the below task selection loop
4891 * doesn't get stuck on the currently eligible stop task.
4892 *
4893 * We're currently inside stop_machine() and the rq is either stuck
4894 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4895 * either way we should never end up calling schedule() until we're
4896 * done here.
1da177e4 4897 */
48c5ccae 4898 rq->stop = NULL;
48f24c4d 4899
dd41f596 4900 for ( ; ; ) {
48c5ccae
PZ
4901 /*
4902 * There's this thread running, bail when that's the only
4903 * remaining thread.
4904 */
4905 if (rq->nr_running == 1)
dd41f596 4906 break;
48c5ccae 4907
b67802ea 4908 next = pick_next_task(rq);
48c5ccae 4909 BUG_ON(!next);
79c53799 4910 next->sched_class->put_prev_task(rq, next);
e692ab53 4911
48c5ccae
PZ
4912 /* Find suitable destination for @next, with force if needed. */
4913 dest_cpu = select_fallback_rq(dead_cpu, next);
4914 raw_spin_unlock(&rq->lock);
4915
4916 __migrate_task(next, dead_cpu, dest_cpu);
4917
4918 raw_spin_lock(&rq->lock);
1da177e4 4919 }
dce48a84 4920
48c5ccae 4921 rq->stop = stop;
dce48a84 4922}
48c5ccae 4923
1da177e4
LT
4924#endif /* CONFIG_HOTPLUG_CPU */
4925
e692ab53
NP
4926#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4927
4928static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4929 {
4930 .procname = "sched_domain",
c57baf1e 4931 .mode = 0555,
e0361851 4932 },
56992309 4933 {}
e692ab53
NP
4934};
4935
4936static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4937 {
4938 .procname = "kernel",
c57baf1e 4939 .mode = 0555,
e0361851
AD
4940 .child = sd_ctl_dir,
4941 },
56992309 4942 {}
e692ab53
NP
4943};
4944
4945static struct ctl_table *sd_alloc_ctl_entry(int n)
4946{
4947 struct ctl_table *entry =
5cf9f062 4948 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4949
e692ab53
NP
4950 return entry;
4951}
4952
6382bc90
MM
4953static void sd_free_ctl_entry(struct ctl_table **tablep)
4954{
cd790076 4955 struct ctl_table *entry;
6382bc90 4956
cd790076
MM
4957 /*
4958 * In the intermediate directories, both the child directory and
4959 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4960 * will always be set. In the lowest directory the names are
cd790076
MM
4961 * static strings and all have proc handlers.
4962 */
4963 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4964 if (entry->child)
4965 sd_free_ctl_entry(&entry->child);
cd790076
MM
4966 if (entry->proc_handler == NULL)
4967 kfree(entry->procname);
4968 }
6382bc90
MM
4969
4970 kfree(*tablep);
4971 *tablep = NULL;
4972}
4973
201c373e
NK
4974static int min_load_idx = 0;
4975static int max_load_idx = CPU_LOAD_IDX_MAX;
4976
e692ab53 4977static void
e0361851 4978set_table_entry(struct ctl_table *entry,
e692ab53 4979 const char *procname, void *data, int maxlen,
201c373e
NK
4980 umode_t mode, proc_handler *proc_handler,
4981 bool load_idx)
e692ab53 4982{
e692ab53
NP
4983 entry->procname = procname;
4984 entry->data = data;
4985 entry->maxlen = maxlen;
4986 entry->mode = mode;
4987 entry->proc_handler = proc_handler;
201c373e
NK
4988
4989 if (load_idx) {
4990 entry->extra1 = &min_load_idx;
4991 entry->extra2 = &max_load_idx;
4992 }
e692ab53
NP
4993}
4994
4995static struct ctl_table *
4996sd_alloc_ctl_domain_table(struct sched_domain *sd)
4997{
a5d8c348 4998 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4999
ad1cdc1d
MM
5000 if (table == NULL)
5001 return NULL;
5002
e0361851 5003 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5004 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5005 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5006 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5007 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5008 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5009 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5010 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5011 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5012 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5013 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5014 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5015 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5016 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5017 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5018 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5019 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5020 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5021 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5022 &sd->cache_nice_tries,
201c373e 5023 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5024 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5025 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 5026 set_table_entry(&table[11], "name", sd->name,
201c373e 5027 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 5028 /* &table[12] is terminator */
e692ab53
NP
5029
5030 return table;
5031}
5032
9a4e7159 5033static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5034{
5035 struct ctl_table *entry, *table;
5036 struct sched_domain *sd;
5037 int domain_num = 0, i;
5038 char buf[32];
5039
5040 for_each_domain(cpu, sd)
5041 domain_num++;
5042 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5043 if (table == NULL)
5044 return NULL;
e692ab53
NP
5045
5046 i = 0;
5047 for_each_domain(cpu, sd) {
5048 snprintf(buf, 32, "domain%d", i);
e692ab53 5049 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5050 entry->mode = 0555;
e692ab53
NP
5051 entry->child = sd_alloc_ctl_domain_table(sd);
5052 entry++;
5053 i++;
5054 }
5055 return table;
5056}
5057
5058static struct ctl_table_header *sd_sysctl_header;
6382bc90 5059static void register_sched_domain_sysctl(void)
e692ab53 5060{
6ad4c188 5061 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5062 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5063 char buf[32];
5064
7378547f
MM
5065 WARN_ON(sd_ctl_dir[0].child);
5066 sd_ctl_dir[0].child = entry;
5067
ad1cdc1d
MM
5068 if (entry == NULL)
5069 return;
5070
6ad4c188 5071 for_each_possible_cpu(i) {
e692ab53 5072 snprintf(buf, 32, "cpu%d", i);
e692ab53 5073 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5074 entry->mode = 0555;
e692ab53 5075 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5076 entry++;
e692ab53 5077 }
7378547f
MM
5078
5079 WARN_ON(sd_sysctl_header);
e692ab53
NP
5080 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5081}
6382bc90 5082
7378547f 5083/* may be called multiple times per register */
6382bc90
MM
5084static void unregister_sched_domain_sysctl(void)
5085{
7378547f
MM
5086 if (sd_sysctl_header)
5087 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5088 sd_sysctl_header = NULL;
7378547f
MM
5089 if (sd_ctl_dir[0].child)
5090 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5091}
e692ab53 5092#else
6382bc90
MM
5093static void register_sched_domain_sysctl(void)
5094{
5095}
5096static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5097{
5098}
5099#endif
5100
1f11eb6a
GH
5101static void set_rq_online(struct rq *rq)
5102{
5103 if (!rq->online) {
5104 const struct sched_class *class;
5105
c6c4927b 5106 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5107 rq->online = 1;
5108
5109 for_each_class(class) {
5110 if (class->rq_online)
5111 class->rq_online(rq);
5112 }
5113 }
5114}
5115
5116static void set_rq_offline(struct rq *rq)
5117{
5118 if (rq->online) {
5119 const struct sched_class *class;
5120
5121 for_each_class(class) {
5122 if (class->rq_offline)
5123 class->rq_offline(rq);
5124 }
5125
c6c4927b 5126 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5127 rq->online = 0;
5128 }
5129}
5130
1da177e4
LT
5131/*
5132 * migration_call - callback that gets triggered when a CPU is added.
5133 * Here we can start up the necessary migration thread for the new CPU.
5134 */
48f24c4d
IM
5135static int __cpuinit
5136migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5137{
48f24c4d 5138 int cpu = (long)hcpu;
1da177e4 5139 unsigned long flags;
969c7921 5140 struct rq *rq = cpu_rq(cpu);
1da177e4 5141
48c5ccae 5142 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5143
1da177e4 5144 case CPU_UP_PREPARE:
a468d389 5145 rq->calc_load_update = calc_load_update;
1da177e4 5146 break;
48f24c4d 5147
1da177e4 5148 case CPU_ONLINE:
1f94ef59 5149 /* Update our root-domain */
05fa785c 5150 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5151 if (rq->rd) {
c6c4927b 5152 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5153
5154 set_rq_online(rq);
1f94ef59 5155 }
05fa785c 5156 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5157 break;
48f24c4d 5158
1da177e4 5159#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5160 case CPU_DYING:
317f3941 5161 sched_ttwu_pending();
57d885fe 5162 /* Update our root-domain */
05fa785c 5163 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5164 if (rq->rd) {
c6c4927b 5165 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5166 set_rq_offline(rq);
57d885fe 5167 }
48c5ccae
PZ
5168 migrate_tasks(cpu);
5169 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5170 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5171 break;
48c5ccae 5172
5d180232 5173 case CPU_DEAD:
f319da0c 5174 calc_load_migrate(rq);
57d885fe 5175 break;
1da177e4
LT
5176#endif
5177 }
49c022e6
PZ
5178
5179 update_max_interval();
5180
1da177e4
LT
5181 return NOTIFY_OK;
5182}
5183
f38b0820
PM
5184/*
5185 * Register at high priority so that task migration (migrate_all_tasks)
5186 * happens before everything else. This has to be lower priority than
cdd6c482 5187 * the notifier in the perf_event subsystem, though.
1da177e4 5188 */
26c2143b 5189static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5190 .notifier_call = migration_call,
50a323b7 5191 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5192};
5193
3a101d05
TH
5194static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5195 unsigned long action, void *hcpu)
5196{
5197 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5198 case CPU_STARTING:
3a101d05
TH
5199 case CPU_DOWN_FAILED:
5200 set_cpu_active((long)hcpu, true);
5201 return NOTIFY_OK;
5202 default:
5203 return NOTIFY_DONE;
5204 }
5205}
5206
5207static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5208 unsigned long action, void *hcpu)
5209{
5210 switch (action & ~CPU_TASKS_FROZEN) {
5211 case CPU_DOWN_PREPARE:
5212 set_cpu_active((long)hcpu, false);
5213 return NOTIFY_OK;
5214 default:
5215 return NOTIFY_DONE;
5216 }
5217}
5218
7babe8db 5219static int __init migration_init(void)
1da177e4
LT
5220{
5221 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5222 int err;
48f24c4d 5223
3a101d05 5224 /* Initialize migration for the boot CPU */
07dccf33
AM
5225 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5226 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5227 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5228 register_cpu_notifier(&migration_notifier);
7babe8db 5229
3a101d05
TH
5230 /* Register cpu active notifiers */
5231 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5232 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5233
a004cd42 5234 return 0;
1da177e4 5235}
7babe8db 5236early_initcall(migration_init);
1da177e4
LT
5237#endif
5238
5239#ifdef CONFIG_SMP
476f3534 5240
4cb98839
PZ
5241static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5242
3e9830dc 5243#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5244
d039ac60 5245static __read_mostly int sched_debug_enabled;
f6630114 5246
d039ac60 5247static int __init sched_debug_setup(char *str)
f6630114 5248{
d039ac60 5249 sched_debug_enabled = 1;
f6630114
MT
5250
5251 return 0;
5252}
d039ac60
PZ
5253early_param("sched_debug", sched_debug_setup);
5254
5255static inline bool sched_debug(void)
5256{
5257 return sched_debug_enabled;
5258}
f6630114 5259
7c16ec58 5260static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5261 struct cpumask *groupmask)
1da177e4 5262{
4dcf6aff 5263 struct sched_group *group = sd->groups;
434d53b0 5264 char str[256];
1da177e4 5265
968ea6d8 5266 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5267 cpumask_clear(groupmask);
4dcf6aff
IM
5268
5269 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5270
5271 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5272 printk("does not load-balance\n");
4dcf6aff 5273 if (sd->parent)
3df0fc5b
PZ
5274 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5275 " has parent");
4dcf6aff 5276 return -1;
41c7ce9a
NP
5277 }
5278
3df0fc5b 5279 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5280
758b2cdc 5281 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5282 printk(KERN_ERR "ERROR: domain->span does not contain "
5283 "CPU%d\n", cpu);
4dcf6aff 5284 }
758b2cdc 5285 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5286 printk(KERN_ERR "ERROR: domain->groups does not contain"
5287 " CPU%d\n", cpu);
4dcf6aff 5288 }
1da177e4 5289
4dcf6aff 5290 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5291 do {
4dcf6aff 5292 if (!group) {
3df0fc5b
PZ
5293 printk("\n");
5294 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5295 break;
5296 }
5297
c3decf0d
PZ
5298 /*
5299 * Even though we initialize ->power to something semi-sane,
5300 * we leave power_orig unset. This allows us to detect if
5301 * domain iteration is still funny without causing /0 traps.
5302 */
5303 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5304 printk(KERN_CONT "\n");
5305 printk(KERN_ERR "ERROR: domain->cpu_power not "
5306 "set\n");
4dcf6aff
IM
5307 break;
5308 }
1da177e4 5309
758b2cdc 5310 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5311 printk(KERN_CONT "\n");
5312 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5313 break;
5314 }
1da177e4 5315
cb83b629
PZ
5316 if (!(sd->flags & SD_OVERLAP) &&
5317 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5318 printk(KERN_CONT "\n");
5319 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5320 break;
5321 }
1da177e4 5322
758b2cdc 5323 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5324
968ea6d8 5325 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5326
3df0fc5b 5327 printk(KERN_CONT " %s", str);
9c3f75cb 5328 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5329 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5330 group->sgp->power);
381512cf 5331 }
1da177e4 5332
4dcf6aff
IM
5333 group = group->next;
5334 } while (group != sd->groups);
3df0fc5b 5335 printk(KERN_CONT "\n");
1da177e4 5336
758b2cdc 5337 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5338 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5339
758b2cdc
RR
5340 if (sd->parent &&
5341 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5342 printk(KERN_ERR "ERROR: parent span is not a superset "
5343 "of domain->span\n");
4dcf6aff
IM
5344 return 0;
5345}
1da177e4 5346
4dcf6aff
IM
5347static void sched_domain_debug(struct sched_domain *sd, int cpu)
5348{
5349 int level = 0;
1da177e4 5350
d039ac60 5351 if (!sched_debug_enabled)
f6630114
MT
5352 return;
5353
4dcf6aff
IM
5354 if (!sd) {
5355 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5356 return;
5357 }
1da177e4 5358
4dcf6aff
IM
5359 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5360
5361 for (;;) {
4cb98839 5362 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5363 break;
1da177e4
LT
5364 level++;
5365 sd = sd->parent;
33859f7f 5366 if (!sd)
4dcf6aff
IM
5367 break;
5368 }
1da177e4 5369}
6d6bc0ad 5370#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5371# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5372static inline bool sched_debug(void)
5373{
5374 return false;
5375}
6d6bc0ad 5376#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5377
1a20ff27 5378static int sd_degenerate(struct sched_domain *sd)
245af2c7 5379{
758b2cdc 5380 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5381 return 1;
5382
5383 /* Following flags need at least 2 groups */
5384 if (sd->flags & (SD_LOAD_BALANCE |
5385 SD_BALANCE_NEWIDLE |
5386 SD_BALANCE_FORK |
89c4710e
SS
5387 SD_BALANCE_EXEC |
5388 SD_SHARE_CPUPOWER |
5389 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5390 if (sd->groups != sd->groups->next)
5391 return 0;
5392 }
5393
5394 /* Following flags don't use groups */
c88d5910 5395 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5396 return 0;
5397
5398 return 1;
5399}
5400
48f24c4d
IM
5401static int
5402sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5403{
5404 unsigned long cflags = sd->flags, pflags = parent->flags;
5405
5406 if (sd_degenerate(parent))
5407 return 1;
5408
758b2cdc 5409 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5410 return 0;
5411
245af2c7
SS
5412 /* Flags needing groups don't count if only 1 group in parent */
5413 if (parent->groups == parent->groups->next) {
5414 pflags &= ~(SD_LOAD_BALANCE |
5415 SD_BALANCE_NEWIDLE |
5416 SD_BALANCE_FORK |
89c4710e
SS
5417 SD_BALANCE_EXEC |
5418 SD_SHARE_CPUPOWER |
5419 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5420 if (nr_node_ids == 1)
5421 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5422 }
5423 if (~cflags & pflags)
5424 return 0;
5425
5426 return 1;
5427}
5428
dce840a0 5429static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5430{
dce840a0 5431 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5432
68e74568 5433 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5434 free_cpumask_var(rd->rto_mask);
5435 free_cpumask_var(rd->online);
5436 free_cpumask_var(rd->span);
5437 kfree(rd);
5438}
5439
57d885fe
GH
5440static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5441{
a0490fa3 5442 struct root_domain *old_rd = NULL;
57d885fe 5443 unsigned long flags;
57d885fe 5444
05fa785c 5445 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5446
5447 if (rq->rd) {
a0490fa3 5448 old_rd = rq->rd;
57d885fe 5449
c6c4927b 5450 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5451 set_rq_offline(rq);
57d885fe 5452
c6c4927b 5453 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5454
a0490fa3
IM
5455 /*
5456 * If we dont want to free the old_rt yet then
5457 * set old_rd to NULL to skip the freeing later
5458 * in this function:
5459 */
5460 if (!atomic_dec_and_test(&old_rd->refcount))
5461 old_rd = NULL;
57d885fe
GH
5462 }
5463
5464 atomic_inc(&rd->refcount);
5465 rq->rd = rd;
5466
c6c4927b 5467 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5468 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5469 set_rq_online(rq);
57d885fe 5470
05fa785c 5471 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5472
5473 if (old_rd)
dce840a0 5474 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5475}
5476
68c38fc3 5477static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5478{
5479 memset(rd, 0, sizeof(*rd));
5480
68c38fc3 5481 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5482 goto out;
68c38fc3 5483 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5484 goto free_span;
68c38fc3 5485 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5486 goto free_online;
6e0534f2 5487
68c38fc3 5488 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5489 goto free_rto_mask;
c6c4927b 5490 return 0;
6e0534f2 5491
68e74568
RR
5492free_rto_mask:
5493 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5494free_online:
5495 free_cpumask_var(rd->online);
5496free_span:
5497 free_cpumask_var(rd->span);
0c910d28 5498out:
c6c4927b 5499 return -ENOMEM;
57d885fe
GH
5500}
5501
029632fb
PZ
5502/*
5503 * By default the system creates a single root-domain with all cpus as
5504 * members (mimicking the global state we have today).
5505 */
5506struct root_domain def_root_domain;
5507
57d885fe
GH
5508static void init_defrootdomain(void)
5509{
68c38fc3 5510 init_rootdomain(&def_root_domain);
c6c4927b 5511
57d885fe
GH
5512 atomic_set(&def_root_domain.refcount, 1);
5513}
5514
dc938520 5515static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5516{
5517 struct root_domain *rd;
5518
5519 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5520 if (!rd)
5521 return NULL;
5522
68c38fc3 5523 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5524 kfree(rd);
5525 return NULL;
5526 }
57d885fe
GH
5527
5528 return rd;
5529}
5530
e3589f6c
PZ
5531static void free_sched_groups(struct sched_group *sg, int free_sgp)
5532{
5533 struct sched_group *tmp, *first;
5534
5535 if (!sg)
5536 return;
5537
5538 first = sg;
5539 do {
5540 tmp = sg->next;
5541
5542 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5543 kfree(sg->sgp);
5544
5545 kfree(sg);
5546 sg = tmp;
5547 } while (sg != first);
5548}
5549
dce840a0
PZ
5550static void free_sched_domain(struct rcu_head *rcu)
5551{
5552 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5553
5554 /*
5555 * If its an overlapping domain it has private groups, iterate and
5556 * nuke them all.
5557 */
5558 if (sd->flags & SD_OVERLAP) {
5559 free_sched_groups(sd->groups, 1);
5560 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5561 kfree(sd->groups->sgp);
dce840a0 5562 kfree(sd->groups);
9c3f75cb 5563 }
dce840a0
PZ
5564 kfree(sd);
5565}
5566
5567static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5568{
5569 call_rcu(&sd->rcu, free_sched_domain);
5570}
5571
5572static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5573{
5574 for (; sd; sd = sd->parent)
5575 destroy_sched_domain(sd, cpu);
5576}
5577
518cd623
PZ
5578/*
5579 * Keep a special pointer to the highest sched_domain that has
5580 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5581 * allows us to avoid some pointer chasing select_idle_sibling().
5582 *
5583 * Also keep a unique ID per domain (we use the first cpu number in
5584 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5585 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5586 */
5587DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5588DEFINE_PER_CPU(int, sd_llc_id);
5589
5590static void update_top_cache_domain(int cpu)
5591{
5592 struct sched_domain *sd;
5593 int id = cpu;
5594
5595 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5596 if (sd)
518cd623
PZ
5597 id = cpumask_first(sched_domain_span(sd));
5598
5599 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5600 per_cpu(sd_llc_id, cpu) = id;
5601}
5602
1da177e4 5603/*
0eab9146 5604 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5605 * hold the hotplug lock.
5606 */
0eab9146
IM
5607static void
5608cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5609{
70b97a7f 5610 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5611 struct sched_domain *tmp;
5612
5613 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5614 for (tmp = sd; tmp; ) {
245af2c7
SS
5615 struct sched_domain *parent = tmp->parent;
5616 if (!parent)
5617 break;
f29c9b1c 5618
1a848870 5619 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5620 tmp->parent = parent->parent;
1a848870
SS
5621 if (parent->parent)
5622 parent->parent->child = tmp;
dce840a0 5623 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5624 } else
5625 tmp = tmp->parent;
245af2c7
SS
5626 }
5627
1a848870 5628 if (sd && sd_degenerate(sd)) {
dce840a0 5629 tmp = sd;
245af2c7 5630 sd = sd->parent;
dce840a0 5631 destroy_sched_domain(tmp, cpu);
1a848870
SS
5632 if (sd)
5633 sd->child = NULL;
5634 }
1da177e4 5635
4cb98839 5636 sched_domain_debug(sd, cpu);
1da177e4 5637
57d885fe 5638 rq_attach_root(rq, rd);
dce840a0 5639 tmp = rq->sd;
674311d5 5640 rcu_assign_pointer(rq->sd, sd);
dce840a0 5641 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5642
5643 update_top_cache_domain(cpu);
1da177e4
LT
5644}
5645
5646/* cpus with isolated domains */
dcc30a35 5647static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5648
5649/* Setup the mask of cpus configured for isolated domains */
5650static int __init isolated_cpu_setup(char *str)
5651{
bdddd296 5652 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5653 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5654 return 1;
5655}
5656
8927f494 5657__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5658
d3081f52
PZ
5659static const struct cpumask *cpu_cpu_mask(int cpu)
5660{
5661 return cpumask_of_node(cpu_to_node(cpu));
5662}
5663
dce840a0
PZ
5664struct sd_data {
5665 struct sched_domain **__percpu sd;
5666 struct sched_group **__percpu sg;
9c3f75cb 5667 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5668};
5669
49a02c51 5670struct s_data {
21d42ccf 5671 struct sched_domain ** __percpu sd;
49a02c51
AH
5672 struct root_domain *rd;
5673};
5674
2109b99e 5675enum s_alloc {
2109b99e 5676 sa_rootdomain,
21d42ccf 5677 sa_sd,
dce840a0 5678 sa_sd_storage,
2109b99e
AH
5679 sa_none,
5680};
5681
54ab4ff4
PZ
5682struct sched_domain_topology_level;
5683
5684typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5685typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5686
e3589f6c
PZ
5687#define SDTL_OVERLAP 0x01
5688
eb7a74e6 5689struct sched_domain_topology_level {
2c402dc3
PZ
5690 sched_domain_init_f init;
5691 sched_domain_mask_f mask;
e3589f6c 5692 int flags;
cb83b629 5693 int numa_level;
54ab4ff4 5694 struct sd_data data;
eb7a74e6
PZ
5695};
5696
c1174876
PZ
5697/*
5698 * Build an iteration mask that can exclude certain CPUs from the upwards
5699 * domain traversal.
5700 *
5701 * Asymmetric node setups can result in situations where the domain tree is of
5702 * unequal depth, make sure to skip domains that already cover the entire
5703 * range.
5704 *
5705 * In that case build_sched_domains() will have terminated the iteration early
5706 * and our sibling sd spans will be empty. Domains should always include the
5707 * cpu they're built on, so check that.
5708 *
5709 */
5710static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5711{
5712 const struct cpumask *span = sched_domain_span(sd);
5713 struct sd_data *sdd = sd->private;
5714 struct sched_domain *sibling;
5715 int i;
5716
5717 for_each_cpu(i, span) {
5718 sibling = *per_cpu_ptr(sdd->sd, i);
5719 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5720 continue;
5721
5722 cpumask_set_cpu(i, sched_group_mask(sg));
5723 }
5724}
5725
5726/*
5727 * Return the canonical balance cpu for this group, this is the first cpu
5728 * of this group that's also in the iteration mask.
5729 */
5730int group_balance_cpu(struct sched_group *sg)
5731{
5732 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5733}
5734
e3589f6c
PZ
5735static int
5736build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5737{
5738 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5739 const struct cpumask *span = sched_domain_span(sd);
5740 struct cpumask *covered = sched_domains_tmpmask;
5741 struct sd_data *sdd = sd->private;
5742 struct sched_domain *child;
5743 int i;
5744
5745 cpumask_clear(covered);
5746
5747 for_each_cpu(i, span) {
5748 struct cpumask *sg_span;
5749
5750 if (cpumask_test_cpu(i, covered))
5751 continue;
5752
c1174876
PZ
5753 child = *per_cpu_ptr(sdd->sd, i);
5754
5755 /* See the comment near build_group_mask(). */
5756 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5757 continue;
5758
e3589f6c 5759 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5760 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5761
5762 if (!sg)
5763 goto fail;
5764
5765 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5766 if (child->child) {
5767 child = child->child;
5768 cpumask_copy(sg_span, sched_domain_span(child));
5769 } else
5770 cpumask_set_cpu(i, sg_span);
5771
5772 cpumask_or(covered, covered, sg_span);
5773
74a5ce20 5774 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5775 if (atomic_inc_return(&sg->sgp->ref) == 1)
5776 build_group_mask(sd, sg);
5777
c3decf0d
PZ
5778 /*
5779 * Initialize sgp->power such that even if we mess up the
5780 * domains and no possible iteration will get us here, we won't
5781 * die on a /0 trap.
5782 */
5783 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5784
c1174876
PZ
5785 /*
5786 * Make sure the first group of this domain contains the
5787 * canonical balance cpu. Otherwise the sched_domain iteration
5788 * breaks. See update_sg_lb_stats().
5789 */
74a5ce20 5790 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5791 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5792 groups = sg;
5793
5794 if (!first)
5795 first = sg;
5796 if (last)
5797 last->next = sg;
5798 last = sg;
5799 last->next = first;
5800 }
5801 sd->groups = groups;
5802
5803 return 0;
5804
5805fail:
5806 free_sched_groups(first, 0);
5807
5808 return -ENOMEM;
5809}
5810
dce840a0 5811static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5812{
dce840a0
PZ
5813 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5814 struct sched_domain *child = sd->child;
1da177e4 5815
dce840a0
PZ
5816 if (child)
5817 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5818
9c3f75cb 5819 if (sg) {
dce840a0 5820 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5821 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5822 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5823 }
dce840a0
PZ
5824
5825 return cpu;
1e9f28fa 5826}
1e9f28fa 5827
01a08546 5828/*
dce840a0
PZ
5829 * build_sched_groups will build a circular linked list of the groups
5830 * covered by the given span, and will set each group's ->cpumask correctly,
5831 * and ->cpu_power to 0.
e3589f6c
PZ
5832 *
5833 * Assumes the sched_domain tree is fully constructed
01a08546 5834 */
e3589f6c
PZ
5835static int
5836build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5837{
dce840a0
PZ
5838 struct sched_group *first = NULL, *last = NULL;
5839 struct sd_data *sdd = sd->private;
5840 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5841 struct cpumask *covered;
dce840a0 5842 int i;
9c1cfda2 5843
e3589f6c
PZ
5844 get_group(cpu, sdd, &sd->groups);
5845 atomic_inc(&sd->groups->ref);
5846
5847 if (cpu != cpumask_first(sched_domain_span(sd)))
5848 return 0;
5849
f96225fd
PZ
5850 lockdep_assert_held(&sched_domains_mutex);
5851 covered = sched_domains_tmpmask;
5852
dce840a0 5853 cpumask_clear(covered);
6711cab4 5854
dce840a0
PZ
5855 for_each_cpu(i, span) {
5856 struct sched_group *sg;
5857 int group = get_group(i, sdd, &sg);
5858 int j;
6711cab4 5859
dce840a0
PZ
5860 if (cpumask_test_cpu(i, covered))
5861 continue;
6711cab4 5862
dce840a0 5863 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5864 sg->sgp->power = 0;
c1174876 5865 cpumask_setall(sched_group_mask(sg));
0601a88d 5866
dce840a0
PZ
5867 for_each_cpu(j, span) {
5868 if (get_group(j, sdd, NULL) != group)
5869 continue;
0601a88d 5870
dce840a0
PZ
5871 cpumask_set_cpu(j, covered);
5872 cpumask_set_cpu(j, sched_group_cpus(sg));
5873 }
0601a88d 5874
dce840a0
PZ
5875 if (!first)
5876 first = sg;
5877 if (last)
5878 last->next = sg;
5879 last = sg;
5880 }
5881 last->next = first;
e3589f6c
PZ
5882
5883 return 0;
0601a88d 5884}
51888ca2 5885
89c4710e
SS
5886/*
5887 * Initialize sched groups cpu_power.
5888 *
5889 * cpu_power indicates the capacity of sched group, which is used while
5890 * distributing the load between different sched groups in a sched domain.
5891 * Typically cpu_power for all the groups in a sched domain will be same unless
5892 * there are asymmetries in the topology. If there are asymmetries, group
5893 * having more cpu_power will pickup more load compared to the group having
5894 * less cpu_power.
89c4710e
SS
5895 */
5896static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5897{
e3589f6c 5898 struct sched_group *sg = sd->groups;
89c4710e 5899
e3589f6c
PZ
5900 WARN_ON(!sd || !sg);
5901
5902 do {
5903 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5904 sg = sg->next;
5905 } while (sg != sd->groups);
89c4710e 5906
c1174876 5907 if (cpu != group_balance_cpu(sg))
e3589f6c 5908 return;
aae6d3dd 5909
d274cb30 5910 update_group_power(sd, cpu);
69e1e811 5911 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5912}
5913
029632fb
PZ
5914int __weak arch_sd_sibling_asym_packing(void)
5915{
5916 return 0*SD_ASYM_PACKING;
89c4710e
SS
5917}
5918
7c16ec58
MT
5919/*
5920 * Initializers for schedule domains
5921 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5922 */
5923
a5d8c348
IM
5924#ifdef CONFIG_SCHED_DEBUG
5925# define SD_INIT_NAME(sd, type) sd->name = #type
5926#else
5927# define SD_INIT_NAME(sd, type) do { } while (0)
5928#endif
5929
54ab4ff4
PZ
5930#define SD_INIT_FUNC(type) \
5931static noinline struct sched_domain * \
5932sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5933{ \
5934 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5935 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5936 SD_INIT_NAME(sd, type); \
5937 sd->private = &tl->data; \
5938 return sd; \
7c16ec58
MT
5939}
5940
5941SD_INIT_FUNC(CPU)
7c16ec58
MT
5942#ifdef CONFIG_SCHED_SMT
5943 SD_INIT_FUNC(SIBLING)
5944#endif
5945#ifdef CONFIG_SCHED_MC
5946 SD_INIT_FUNC(MC)
5947#endif
01a08546
HC
5948#ifdef CONFIG_SCHED_BOOK
5949 SD_INIT_FUNC(BOOK)
5950#endif
7c16ec58 5951
1d3504fc 5952static int default_relax_domain_level = -1;
60495e77 5953int sched_domain_level_max;
1d3504fc
HS
5954
5955static int __init setup_relax_domain_level(char *str)
5956{
a841f8ce
DS
5957 if (kstrtoint(str, 0, &default_relax_domain_level))
5958 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5959
1d3504fc
HS
5960 return 1;
5961}
5962__setup("relax_domain_level=", setup_relax_domain_level);
5963
5964static void set_domain_attribute(struct sched_domain *sd,
5965 struct sched_domain_attr *attr)
5966{
5967 int request;
5968
5969 if (!attr || attr->relax_domain_level < 0) {
5970 if (default_relax_domain_level < 0)
5971 return;
5972 else
5973 request = default_relax_domain_level;
5974 } else
5975 request = attr->relax_domain_level;
5976 if (request < sd->level) {
5977 /* turn off idle balance on this domain */
c88d5910 5978 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5979 } else {
5980 /* turn on idle balance on this domain */
c88d5910 5981 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5982 }
5983}
5984
54ab4ff4
PZ
5985static void __sdt_free(const struct cpumask *cpu_map);
5986static int __sdt_alloc(const struct cpumask *cpu_map);
5987
2109b99e
AH
5988static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5989 const struct cpumask *cpu_map)
5990{
5991 switch (what) {
2109b99e 5992 case sa_rootdomain:
822ff793
PZ
5993 if (!atomic_read(&d->rd->refcount))
5994 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5995 case sa_sd:
5996 free_percpu(d->sd); /* fall through */
dce840a0 5997 case sa_sd_storage:
54ab4ff4 5998 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5999 case sa_none:
6000 break;
6001 }
6002}
3404c8d9 6003
2109b99e
AH
6004static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6005 const struct cpumask *cpu_map)
6006{
dce840a0
PZ
6007 memset(d, 0, sizeof(*d));
6008
54ab4ff4
PZ
6009 if (__sdt_alloc(cpu_map))
6010 return sa_sd_storage;
dce840a0
PZ
6011 d->sd = alloc_percpu(struct sched_domain *);
6012 if (!d->sd)
6013 return sa_sd_storage;
2109b99e 6014 d->rd = alloc_rootdomain();
dce840a0 6015 if (!d->rd)
21d42ccf 6016 return sa_sd;
2109b99e
AH
6017 return sa_rootdomain;
6018}
57d885fe 6019
dce840a0
PZ
6020/*
6021 * NULL the sd_data elements we've used to build the sched_domain and
6022 * sched_group structure so that the subsequent __free_domain_allocs()
6023 * will not free the data we're using.
6024 */
6025static void claim_allocations(int cpu, struct sched_domain *sd)
6026{
6027 struct sd_data *sdd = sd->private;
dce840a0
PZ
6028
6029 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6030 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6031
e3589f6c 6032 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6033 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6034
6035 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6036 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6037}
6038
2c402dc3
PZ
6039#ifdef CONFIG_SCHED_SMT
6040static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6041{
2c402dc3 6042 return topology_thread_cpumask(cpu);
3bd65a80 6043}
2c402dc3 6044#endif
7f4588f3 6045
d069b916
PZ
6046/*
6047 * Topology list, bottom-up.
6048 */
2c402dc3 6049static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6050#ifdef CONFIG_SCHED_SMT
6051 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6052#endif
1e9f28fa 6053#ifdef CONFIG_SCHED_MC
2c402dc3 6054 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6055#endif
d069b916
PZ
6056#ifdef CONFIG_SCHED_BOOK
6057 { sd_init_BOOK, cpu_book_mask, },
6058#endif
6059 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6060 { NULL, },
6061};
6062
6063static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6064
cb83b629
PZ
6065#ifdef CONFIG_NUMA
6066
6067static int sched_domains_numa_levels;
cb83b629
PZ
6068static int *sched_domains_numa_distance;
6069static struct cpumask ***sched_domains_numa_masks;
6070static int sched_domains_curr_level;
6071
cb83b629
PZ
6072static inline int sd_local_flags(int level)
6073{
10717dcd 6074 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6075 return 0;
6076
6077 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6078}
6079
6080static struct sched_domain *
6081sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6082{
6083 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6084 int level = tl->numa_level;
6085 int sd_weight = cpumask_weight(
6086 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6087
6088 *sd = (struct sched_domain){
6089 .min_interval = sd_weight,
6090 .max_interval = 2*sd_weight,
6091 .busy_factor = 32,
870a0bb5 6092 .imbalance_pct = 125,
cb83b629
PZ
6093 .cache_nice_tries = 2,
6094 .busy_idx = 3,
6095 .idle_idx = 2,
6096 .newidle_idx = 0,
6097 .wake_idx = 0,
6098 .forkexec_idx = 0,
6099
6100 .flags = 1*SD_LOAD_BALANCE
6101 | 1*SD_BALANCE_NEWIDLE
6102 | 0*SD_BALANCE_EXEC
6103 | 0*SD_BALANCE_FORK
6104 | 0*SD_BALANCE_WAKE
6105 | 0*SD_WAKE_AFFINE
cb83b629 6106 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6107 | 0*SD_SHARE_PKG_RESOURCES
6108 | 1*SD_SERIALIZE
6109 | 0*SD_PREFER_SIBLING
6110 | sd_local_flags(level)
6111 ,
6112 .last_balance = jiffies,
6113 .balance_interval = sd_weight,
6114 };
6115 SD_INIT_NAME(sd, NUMA);
6116 sd->private = &tl->data;
6117
6118 /*
6119 * Ugly hack to pass state to sd_numa_mask()...
6120 */
6121 sched_domains_curr_level = tl->numa_level;
6122
6123 return sd;
6124}
6125
6126static const struct cpumask *sd_numa_mask(int cpu)
6127{
6128 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6129}
6130
d039ac60
PZ
6131static void sched_numa_warn(const char *str)
6132{
6133 static int done = false;
6134 int i,j;
6135
6136 if (done)
6137 return;
6138
6139 done = true;
6140
6141 printk(KERN_WARNING "ERROR: %s\n\n", str);
6142
6143 for (i = 0; i < nr_node_ids; i++) {
6144 printk(KERN_WARNING " ");
6145 for (j = 0; j < nr_node_ids; j++)
6146 printk(KERN_CONT "%02d ", node_distance(i,j));
6147 printk(KERN_CONT "\n");
6148 }
6149 printk(KERN_WARNING "\n");
6150}
6151
6152static bool find_numa_distance(int distance)
6153{
6154 int i;
6155
6156 if (distance == node_distance(0, 0))
6157 return true;
6158
6159 for (i = 0; i < sched_domains_numa_levels; i++) {
6160 if (sched_domains_numa_distance[i] == distance)
6161 return true;
6162 }
6163
6164 return false;
6165}
6166
cb83b629
PZ
6167static void sched_init_numa(void)
6168{
6169 int next_distance, curr_distance = node_distance(0, 0);
6170 struct sched_domain_topology_level *tl;
6171 int level = 0;
6172 int i, j, k;
6173
cb83b629
PZ
6174 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6175 if (!sched_domains_numa_distance)
6176 return;
6177
6178 /*
6179 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6180 * unique distances in the node_distance() table.
6181 *
6182 * Assumes node_distance(0,j) includes all distances in
6183 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6184 */
6185 next_distance = curr_distance;
6186 for (i = 0; i < nr_node_ids; i++) {
6187 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6188 for (k = 0; k < nr_node_ids; k++) {
6189 int distance = node_distance(i, k);
6190
6191 if (distance > curr_distance &&
6192 (distance < next_distance ||
6193 next_distance == curr_distance))
6194 next_distance = distance;
6195
6196 /*
6197 * While not a strong assumption it would be nice to know
6198 * about cases where if node A is connected to B, B is not
6199 * equally connected to A.
6200 */
6201 if (sched_debug() && node_distance(k, i) != distance)
6202 sched_numa_warn("Node-distance not symmetric");
6203
6204 if (sched_debug() && i && !find_numa_distance(distance))
6205 sched_numa_warn("Node-0 not representative");
6206 }
6207 if (next_distance != curr_distance) {
6208 sched_domains_numa_distance[level++] = next_distance;
6209 sched_domains_numa_levels = level;
6210 curr_distance = next_distance;
6211 } else break;
cb83b629 6212 }
d039ac60
PZ
6213
6214 /*
6215 * In case of sched_debug() we verify the above assumption.
6216 */
6217 if (!sched_debug())
6218 break;
cb83b629
PZ
6219 }
6220 /*
6221 * 'level' contains the number of unique distances, excluding the
6222 * identity distance node_distance(i,i).
6223 *
6224 * The sched_domains_nume_distance[] array includes the actual distance
6225 * numbers.
6226 */
6227
5f7865f3
TC
6228 /*
6229 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6230 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6231 * the array will contain less then 'level' members. This could be
6232 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6233 * in other functions.
6234 *
6235 * We reset it to 'level' at the end of this function.
6236 */
6237 sched_domains_numa_levels = 0;
6238
cb83b629
PZ
6239 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6240 if (!sched_domains_numa_masks)
6241 return;
6242
6243 /*
6244 * Now for each level, construct a mask per node which contains all
6245 * cpus of nodes that are that many hops away from us.
6246 */
6247 for (i = 0; i < level; i++) {
6248 sched_domains_numa_masks[i] =
6249 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6250 if (!sched_domains_numa_masks[i])
6251 return;
6252
6253 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6254 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6255 if (!mask)
6256 return;
6257
6258 sched_domains_numa_masks[i][j] = mask;
6259
6260 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6261 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6262 continue;
6263
6264 cpumask_or(mask, mask, cpumask_of_node(k));
6265 }
6266 }
6267 }
6268
6269 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6270 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6271 if (!tl)
6272 return;
6273
6274 /*
6275 * Copy the default topology bits..
6276 */
6277 for (i = 0; default_topology[i].init; i++)
6278 tl[i] = default_topology[i];
6279
6280 /*
6281 * .. and append 'j' levels of NUMA goodness.
6282 */
6283 for (j = 0; j < level; i++, j++) {
6284 tl[i] = (struct sched_domain_topology_level){
6285 .init = sd_numa_init,
6286 .mask = sd_numa_mask,
6287 .flags = SDTL_OVERLAP,
6288 .numa_level = j,
6289 };
6290 }
6291
6292 sched_domain_topology = tl;
5f7865f3
TC
6293
6294 sched_domains_numa_levels = level;
cb83b629 6295}
301a5cba
TC
6296
6297static void sched_domains_numa_masks_set(int cpu)
6298{
6299 int i, j;
6300 int node = cpu_to_node(cpu);
6301
6302 for (i = 0; i < sched_domains_numa_levels; i++) {
6303 for (j = 0; j < nr_node_ids; j++) {
6304 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6305 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6306 }
6307 }
6308}
6309
6310static void sched_domains_numa_masks_clear(int cpu)
6311{
6312 int i, j;
6313 for (i = 0; i < sched_domains_numa_levels; i++) {
6314 for (j = 0; j < nr_node_ids; j++)
6315 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6316 }
6317}
6318
6319/*
6320 * Update sched_domains_numa_masks[level][node] array when new cpus
6321 * are onlined.
6322 */
6323static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6324 unsigned long action,
6325 void *hcpu)
6326{
6327 int cpu = (long)hcpu;
6328
6329 switch (action & ~CPU_TASKS_FROZEN) {
6330 case CPU_ONLINE:
6331 sched_domains_numa_masks_set(cpu);
6332 break;
6333
6334 case CPU_DEAD:
6335 sched_domains_numa_masks_clear(cpu);
6336 break;
6337
6338 default:
6339 return NOTIFY_DONE;
6340 }
6341
6342 return NOTIFY_OK;
cb83b629
PZ
6343}
6344#else
6345static inline void sched_init_numa(void)
6346{
6347}
301a5cba
TC
6348
6349static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6350 unsigned long action,
6351 void *hcpu)
6352{
6353 return 0;
6354}
cb83b629
PZ
6355#endif /* CONFIG_NUMA */
6356
54ab4ff4
PZ
6357static int __sdt_alloc(const struct cpumask *cpu_map)
6358{
6359 struct sched_domain_topology_level *tl;
6360 int j;
6361
6362 for (tl = sched_domain_topology; tl->init; tl++) {
6363 struct sd_data *sdd = &tl->data;
6364
6365 sdd->sd = alloc_percpu(struct sched_domain *);
6366 if (!sdd->sd)
6367 return -ENOMEM;
6368
6369 sdd->sg = alloc_percpu(struct sched_group *);
6370 if (!sdd->sg)
6371 return -ENOMEM;
6372
9c3f75cb
PZ
6373 sdd->sgp = alloc_percpu(struct sched_group_power *);
6374 if (!sdd->sgp)
6375 return -ENOMEM;
6376
54ab4ff4
PZ
6377 for_each_cpu(j, cpu_map) {
6378 struct sched_domain *sd;
6379 struct sched_group *sg;
9c3f75cb 6380 struct sched_group_power *sgp;
54ab4ff4
PZ
6381
6382 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6383 GFP_KERNEL, cpu_to_node(j));
6384 if (!sd)
6385 return -ENOMEM;
6386
6387 *per_cpu_ptr(sdd->sd, j) = sd;
6388
6389 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6390 GFP_KERNEL, cpu_to_node(j));
6391 if (!sg)
6392 return -ENOMEM;
6393
30b4e9eb
IM
6394 sg->next = sg;
6395
54ab4ff4 6396 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6397
c1174876 6398 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6399 GFP_KERNEL, cpu_to_node(j));
6400 if (!sgp)
6401 return -ENOMEM;
6402
6403 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6404 }
6405 }
6406
6407 return 0;
6408}
6409
6410static void __sdt_free(const struct cpumask *cpu_map)
6411{
6412 struct sched_domain_topology_level *tl;
6413 int j;
6414
6415 for (tl = sched_domain_topology; tl->init; tl++) {
6416 struct sd_data *sdd = &tl->data;
6417
6418 for_each_cpu(j, cpu_map) {
fb2cf2c6 6419 struct sched_domain *sd;
6420
6421 if (sdd->sd) {
6422 sd = *per_cpu_ptr(sdd->sd, j);
6423 if (sd && (sd->flags & SD_OVERLAP))
6424 free_sched_groups(sd->groups, 0);
6425 kfree(*per_cpu_ptr(sdd->sd, j));
6426 }
6427
6428 if (sdd->sg)
6429 kfree(*per_cpu_ptr(sdd->sg, j));
6430 if (sdd->sgp)
6431 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6432 }
6433 free_percpu(sdd->sd);
fb2cf2c6 6434 sdd->sd = NULL;
54ab4ff4 6435 free_percpu(sdd->sg);
fb2cf2c6 6436 sdd->sg = NULL;
9c3f75cb 6437 free_percpu(sdd->sgp);
fb2cf2c6 6438 sdd->sgp = NULL;
54ab4ff4
PZ
6439 }
6440}
6441
2c402dc3
PZ
6442struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6443 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6444 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6445 int cpu)
6446{
54ab4ff4 6447 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6448 if (!sd)
d069b916 6449 return child;
2c402dc3 6450
2c402dc3 6451 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6452 if (child) {
6453 sd->level = child->level + 1;
6454 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6455 child->parent = sd;
60495e77 6456 }
d069b916 6457 sd->child = child;
a841f8ce 6458 set_domain_attribute(sd, attr);
2c402dc3
PZ
6459
6460 return sd;
6461}
6462
2109b99e
AH
6463/*
6464 * Build sched domains for a given set of cpus and attach the sched domains
6465 * to the individual cpus
6466 */
dce840a0
PZ
6467static int build_sched_domains(const struct cpumask *cpu_map,
6468 struct sched_domain_attr *attr)
2109b99e
AH
6469{
6470 enum s_alloc alloc_state = sa_none;
dce840a0 6471 struct sched_domain *sd;
2109b99e 6472 struct s_data d;
822ff793 6473 int i, ret = -ENOMEM;
9c1cfda2 6474
2109b99e
AH
6475 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6476 if (alloc_state != sa_rootdomain)
6477 goto error;
9c1cfda2 6478
dce840a0 6479 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6480 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6481 struct sched_domain_topology_level *tl;
6482
3bd65a80 6483 sd = NULL;
e3589f6c 6484 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6485 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6486 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6487 sd->flags |= SD_OVERLAP;
d110235d
PZ
6488 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6489 break;
e3589f6c 6490 }
d274cb30 6491
d069b916
PZ
6492 while (sd->child)
6493 sd = sd->child;
6494
21d42ccf 6495 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6496 }
6497
6498 /* Build the groups for the domains */
6499 for_each_cpu(i, cpu_map) {
6500 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6501 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6502 if (sd->flags & SD_OVERLAP) {
6503 if (build_overlap_sched_groups(sd, i))
6504 goto error;
6505 } else {
6506 if (build_sched_groups(sd, i))
6507 goto error;
6508 }
1cf51902 6509 }
a06dadbe 6510 }
9c1cfda2 6511
1da177e4 6512 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6513 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6514 if (!cpumask_test_cpu(i, cpu_map))
6515 continue;
9c1cfda2 6516
dce840a0
PZ
6517 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6518 claim_allocations(i, sd);
cd4ea6ae 6519 init_sched_groups_power(i, sd);
dce840a0 6520 }
f712c0c7 6521 }
9c1cfda2 6522
1da177e4 6523 /* Attach the domains */
dce840a0 6524 rcu_read_lock();
abcd083a 6525 for_each_cpu(i, cpu_map) {
21d42ccf 6526 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6527 cpu_attach_domain(sd, d.rd, i);
1da177e4 6528 }
dce840a0 6529 rcu_read_unlock();
51888ca2 6530
822ff793 6531 ret = 0;
51888ca2 6532error:
2109b99e 6533 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6534 return ret;
1da177e4 6535}
029190c5 6536
acc3f5d7 6537static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6538static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6539static struct sched_domain_attr *dattr_cur;
6540 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6541
6542/*
6543 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6544 * cpumask) fails, then fallback to a single sched domain,
6545 * as determined by the single cpumask fallback_doms.
029190c5 6546 */
4212823f 6547static cpumask_var_t fallback_doms;
029190c5 6548
ee79d1bd
HC
6549/*
6550 * arch_update_cpu_topology lets virtualized architectures update the
6551 * cpu core maps. It is supposed to return 1 if the topology changed
6552 * or 0 if it stayed the same.
6553 */
6554int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6555{
ee79d1bd 6556 return 0;
22e52b07
HC
6557}
6558
acc3f5d7
RR
6559cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6560{
6561 int i;
6562 cpumask_var_t *doms;
6563
6564 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6565 if (!doms)
6566 return NULL;
6567 for (i = 0; i < ndoms; i++) {
6568 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6569 free_sched_domains(doms, i);
6570 return NULL;
6571 }
6572 }
6573 return doms;
6574}
6575
6576void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6577{
6578 unsigned int i;
6579 for (i = 0; i < ndoms; i++)
6580 free_cpumask_var(doms[i]);
6581 kfree(doms);
6582}
6583
1a20ff27 6584/*
41a2d6cf 6585 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6586 * For now this just excludes isolated cpus, but could be used to
6587 * exclude other special cases in the future.
1a20ff27 6588 */
c4a8849a 6589static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6590{
7378547f
MM
6591 int err;
6592
22e52b07 6593 arch_update_cpu_topology();
029190c5 6594 ndoms_cur = 1;
acc3f5d7 6595 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6596 if (!doms_cur)
acc3f5d7
RR
6597 doms_cur = &fallback_doms;
6598 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6599 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6600 register_sched_domain_sysctl();
7378547f
MM
6601
6602 return err;
1a20ff27
DG
6603}
6604
1a20ff27
DG
6605/*
6606 * Detach sched domains from a group of cpus specified in cpu_map
6607 * These cpus will now be attached to the NULL domain
6608 */
96f874e2 6609static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6610{
6611 int i;
6612
dce840a0 6613 rcu_read_lock();
abcd083a 6614 for_each_cpu(i, cpu_map)
57d885fe 6615 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6616 rcu_read_unlock();
1a20ff27
DG
6617}
6618
1d3504fc
HS
6619/* handle null as "default" */
6620static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6621 struct sched_domain_attr *new, int idx_new)
6622{
6623 struct sched_domain_attr tmp;
6624
6625 /* fast path */
6626 if (!new && !cur)
6627 return 1;
6628
6629 tmp = SD_ATTR_INIT;
6630 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6631 new ? (new + idx_new) : &tmp,
6632 sizeof(struct sched_domain_attr));
6633}
6634
029190c5
PJ
6635/*
6636 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6637 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6638 * doms_new[] to the current sched domain partitioning, doms_cur[].
6639 * It destroys each deleted domain and builds each new domain.
6640 *
acc3f5d7 6641 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6642 * The masks don't intersect (don't overlap.) We should setup one
6643 * sched domain for each mask. CPUs not in any of the cpumasks will
6644 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6645 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6646 * it as it is.
6647 *
acc3f5d7
RR
6648 * The passed in 'doms_new' should be allocated using
6649 * alloc_sched_domains. This routine takes ownership of it and will
6650 * free_sched_domains it when done with it. If the caller failed the
6651 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6652 * and partition_sched_domains() will fallback to the single partition
6653 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6654 *
96f874e2 6655 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6656 * ndoms_new == 0 is a special case for destroying existing domains,
6657 * and it will not create the default domain.
dfb512ec 6658 *
029190c5
PJ
6659 * Call with hotplug lock held
6660 */
acc3f5d7 6661void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6662 struct sched_domain_attr *dattr_new)
029190c5 6663{
dfb512ec 6664 int i, j, n;
d65bd5ec 6665 int new_topology;
029190c5 6666
712555ee 6667 mutex_lock(&sched_domains_mutex);
a1835615 6668
7378547f
MM
6669 /* always unregister in case we don't destroy any domains */
6670 unregister_sched_domain_sysctl();
6671
d65bd5ec
HC
6672 /* Let architecture update cpu core mappings. */
6673 new_topology = arch_update_cpu_topology();
6674
dfb512ec 6675 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6676
6677 /* Destroy deleted domains */
6678 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6679 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6680 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6681 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6682 goto match1;
6683 }
6684 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6685 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6686match1:
6687 ;
6688 }
6689
e761b772
MK
6690 if (doms_new == NULL) {
6691 ndoms_cur = 0;
acc3f5d7 6692 doms_new = &fallback_doms;
6ad4c188 6693 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6694 WARN_ON_ONCE(dattr_new);
e761b772
MK
6695 }
6696
029190c5
PJ
6697 /* Build new domains */
6698 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6699 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6700 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6701 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6702 goto match2;
6703 }
6704 /* no match - add a new doms_new */
dce840a0 6705 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6706match2:
6707 ;
6708 }
6709
6710 /* Remember the new sched domains */
acc3f5d7
RR
6711 if (doms_cur != &fallback_doms)
6712 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6713 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6714 doms_cur = doms_new;
1d3504fc 6715 dattr_cur = dattr_new;
029190c5 6716 ndoms_cur = ndoms_new;
7378547f
MM
6717
6718 register_sched_domain_sysctl();
a1835615 6719
712555ee 6720 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6721}
6722
d35be8ba
SB
6723static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6724
1da177e4 6725/*
3a101d05
TH
6726 * Update cpusets according to cpu_active mask. If cpusets are
6727 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6728 * around partition_sched_domains().
d35be8ba
SB
6729 *
6730 * If we come here as part of a suspend/resume, don't touch cpusets because we
6731 * want to restore it back to its original state upon resume anyway.
1da177e4 6732 */
0b2e918a
TH
6733static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6734 void *hcpu)
e761b772 6735{
d35be8ba
SB
6736 switch (action) {
6737 case CPU_ONLINE_FROZEN:
6738 case CPU_DOWN_FAILED_FROZEN:
6739
6740 /*
6741 * num_cpus_frozen tracks how many CPUs are involved in suspend
6742 * resume sequence. As long as this is not the last online
6743 * operation in the resume sequence, just build a single sched
6744 * domain, ignoring cpusets.
6745 */
6746 num_cpus_frozen--;
6747 if (likely(num_cpus_frozen)) {
6748 partition_sched_domains(1, NULL, NULL);
6749 break;
6750 }
6751
6752 /*
6753 * This is the last CPU online operation. So fall through and
6754 * restore the original sched domains by considering the
6755 * cpuset configurations.
6756 */
6757
e761b772 6758 case CPU_ONLINE:
6ad4c188 6759 case CPU_DOWN_FAILED:
7ddf96b0 6760 cpuset_update_active_cpus(true);
d35be8ba 6761 break;
3a101d05
TH
6762 default:
6763 return NOTIFY_DONE;
6764 }
d35be8ba 6765 return NOTIFY_OK;
3a101d05 6766}
e761b772 6767
0b2e918a
TH
6768static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6769 void *hcpu)
3a101d05 6770{
d35be8ba 6771 switch (action) {
3a101d05 6772 case CPU_DOWN_PREPARE:
7ddf96b0 6773 cpuset_update_active_cpus(false);
d35be8ba
SB
6774 break;
6775 case CPU_DOWN_PREPARE_FROZEN:
6776 num_cpus_frozen++;
6777 partition_sched_domains(1, NULL, NULL);
6778 break;
e761b772
MK
6779 default:
6780 return NOTIFY_DONE;
6781 }
d35be8ba 6782 return NOTIFY_OK;
e761b772 6783}
e761b772 6784
1da177e4
LT
6785void __init sched_init_smp(void)
6786{
dcc30a35
RR
6787 cpumask_var_t non_isolated_cpus;
6788
6789 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6790 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6791
cb83b629
PZ
6792 sched_init_numa();
6793
95402b38 6794 get_online_cpus();
712555ee 6795 mutex_lock(&sched_domains_mutex);
c4a8849a 6796 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6797 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6798 if (cpumask_empty(non_isolated_cpus))
6799 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6800 mutex_unlock(&sched_domains_mutex);
95402b38 6801 put_online_cpus();
e761b772 6802
301a5cba 6803 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6804 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6805 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6806
6807 /* RT runtime code needs to handle some hotplug events */
6808 hotcpu_notifier(update_runtime, 0);
6809
b328ca18 6810 init_hrtick();
5c1e1767
NP
6811
6812 /* Move init over to a non-isolated CPU */
dcc30a35 6813 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6814 BUG();
19978ca6 6815 sched_init_granularity();
dcc30a35 6816 free_cpumask_var(non_isolated_cpus);
4212823f 6817
0e3900e6 6818 init_sched_rt_class();
1da177e4
LT
6819}
6820#else
6821void __init sched_init_smp(void)
6822{
19978ca6 6823 sched_init_granularity();
1da177e4
LT
6824}
6825#endif /* CONFIG_SMP */
6826
cd1bb94b
AB
6827const_debug unsigned int sysctl_timer_migration = 1;
6828
1da177e4
LT
6829int in_sched_functions(unsigned long addr)
6830{
1da177e4
LT
6831 return in_lock_functions(addr) ||
6832 (addr >= (unsigned long)__sched_text_start
6833 && addr < (unsigned long)__sched_text_end);
6834}
6835
029632fb
PZ
6836#ifdef CONFIG_CGROUP_SCHED
6837struct task_group root_task_group;
35cf4e50 6838LIST_HEAD(task_groups);
052f1dc7 6839#endif
6f505b16 6840
029632fb 6841DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6842
1da177e4
LT
6843void __init sched_init(void)
6844{
dd41f596 6845 int i, j;
434d53b0
MT
6846 unsigned long alloc_size = 0, ptr;
6847
6848#ifdef CONFIG_FAIR_GROUP_SCHED
6849 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6850#endif
6851#ifdef CONFIG_RT_GROUP_SCHED
6852 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6853#endif
df7c8e84 6854#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6855 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6856#endif
434d53b0 6857 if (alloc_size) {
36b7b6d4 6858 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6859
6860#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6861 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6862 ptr += nr_cpu_ids * sizeof(void **);
6863
07e06b01 6864 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6865 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6866
6d6bc0ad 6867#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6868#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6869 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6870 ptr += nr_cpu_ids * sizeof(void **);
6871
07e06b01 6872 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6873 ptr += nr_cpu_ids * sizeof(void **);
6874
6d6bc0ad 6875#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6876#ifdef CONFIG_CPUMASK_OFFSTACK
6877 for_each_possible_cpu(i) {
6878 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6879 ptr += cpumask_size();
6880 }
6881#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6882 }
dd41f596 6883
57d885fe
GH
6884#ifdef CONFIG_SMP
6885 init_defrootdomain();
6886#endif
6887
d0b27fa7
PZ
6888 init_rt_bandwidth(&def_rt_bandwidth,
6889 global_rt_period(), global_rt_runtime());
6890
6891#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6892 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6893 global_rt_period(), global_rt_runtime());
6d6bc0ad 6894#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6895
7c941438 6896#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6897 list_add(&root_task_group.list, &task_groups);
6898 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6899 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6900 autogroup_init(&init_task);
54c707e9 6901
7c941438 6902#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6903
54c707e9
GC
6904#ifdef CONFIG_CGROUP_CPUACCT
6905 root_cpuacct.cpustat = &kernel_cpustat;
6906 root_cpuacct.cpuusage = alloc_percpu(u64);
6907 /* Too early, not expected to fail */
6908 BUG_ON(!root_cpuacct.cpuusage);
6909#endif
0a945022 6910 for_each_possible_cpu(i) {
70b97a7f 6911 struct rq *rq;
1da177e4
LT
6912
6913 rq = cpu_rq(i);
05fa785c 6914 raw_spin_lock_init(&rq->lock);
7897986b 6915 rq->nr_running = 0;
dce48a84
TG
6916 rq->calc_load_active = 0;
6917 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6918 init_cfs_rq(&rq->cfs);
6f505b16 6919 init_rt_rq(&rq->rt, rq);
dd41f596 6920#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6921 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6922 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6923 /*
07e06b01 6924 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6925 *
6926 * In case of task-groups formed thr' the cgroup filesystem, it
6927 * gets 100% of the cpu resources in the system. This overall
6928 * system cpu resource is divided among the tasks of
07e06b01 6929 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6930 * based on each entity's (task or task-group's) weight
6931 * (se->load.weight).
6932 *
07e06b01 6933 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6934 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6935 * then A0's share of the cpu resource is:
6936 *
0d905bca 6937 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6938 *
07e06b01
YZ
6939 * We achieve this by letting root_task_group's tasks sit
6940 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6941 */
ab84d31e 6942 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6943 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6944#endif /* CONFIG_FAIR_GROUP_SCHED */
6945
6946 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6947#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6948 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6949 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6950#endif
1da177e4 6951
dd41f596
IM
6952 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6953 rq->cpu_load[j] = 0;
fdf3e95d
VP
6954
6955 rq->last_load_update_tick = jiffies;
6956
1da177e4 6957#ifdef CONFIG_SMP
41c7ce9a 6958 rq->sd = NULL;
57d885fe 6959 rq->rd = NULL;
1399fa78 6960 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6961 rq->post_schedule = 0;
1da177e4 6962 rq->active_balance = 0;
dd41f596 6963 rq->next_balance = jiffies;
1da177e4 6964 rq->push_cpu = 0;
0a2966b4 6965 rq->cpu = i;
1f11eb6a 6966 rq->online = 0;
eae0c9df
MG
6967 rq->idle_stamp = 0;
6968 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6969
6970 INIT_LIST_HEAD(&rq->cfs_tasks);
6971
dc938520 6972 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6973#ifdef CONFIG_NO_HZ
1c792db7 6974 rq->nohz_flags = 0;
83cd4fe2 6975#endif
1da177e4 6976#endif
8f4d37ec 6977 init_rq_hrtick(rq);
1da177e4 6978 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6979 }
6980
2dd73a4f 6981 set_load_weight(&init_task);
b50f60ce 6982
e107be36
AK
6983#ifdef CONFIG_PREEMPT_NOTIFIERS
6984 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6985#endif
6986
b50f60ce 6987#ifdef CONFIG_RT_MUTEXES
732375c6 6988 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6989#endif
6990
1da177e4
LT
6991 /*
6992 * The boot idle thread does lazy MMU switching as well:
6993 */
6994 atomic_inc(&init_mm.mm_count);
6995 enter_lazy_tlb(&init_mm, current);
6996
6997 /*
6998 * Make us the idle thread. Technically, schedule() should not be
6999 * called from this thread, however somewhere below it might be,
7000 * but because we are the idle thread, we just pick up running again
7001 * when this runqueue becomes "idle".
7002 */
7003 init_idle(current, smp_processor_id());
dce48a84
TG
7004
7005 calc_load_update = jiffies + LOAD_FREQ;
7006
dd41f596
IM
7007 /*
7008 * During early bootup we pretend to be a normal task:
7009 */
7010 current->sched_class = &fair_sched_class;
6892b75e 7011
bf4d83f6 7012#ifdef CONFIG_SMP
4cb98839 7013 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7014 /* May be allocated at isolcpus cmdline parse time */
7015 if (cpu_isolated_map == NULL)
7016 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7017 idle_thread_set_boot_cpu();
029632fb
PZ
7018#endif
7019 init_sched_fair_class();
6a7b3dc3 7020
6892b75e 7021 scheduler_running = 1;
1da177e4
LT
7022}
7023
d902db1e 7024#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7025static inline int preempt_count_equals(int preempt_offset)
7026{
234da7bc 7027 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7028
4ba8216c 7029 return (nested == preempt_offset);
e4aafea2
FW
7030}
7031
d894837f 7032void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7033{
1da177e4
LT
7034 static unsigned long prev_jiffy; /* ratelimiting */
7035
b3fbab05 7036 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7037 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7038 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7039 return;
7040 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7041 return;
7042 prev_jiffy = jiffies;
7043
3df0fc5b
PZ
7044 printk(KERN_ERR
7045 "BUG: sleeping function called from invalid context at %s:%d\n",
7046 file, line);
7047 printk(KERN_ERR
7048 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7049 in_atomic(), irqs_disabled(),
7050 current->pid, current->comm);
aef745fc
IM
7051
7052 debug_show_held_locks(current);
7053 if (irqs_disabled())
7054 print_irqtrace_events(current);
7055 dump_stack();
1da177e4
LT
7056}
7057EXPORT_SYMBOL(__might_sleep);
7058#endif
7059
7060#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7061static void normalize_task(struct rq *rq, struct task_struct *p)
7062{
da7a735e
PZ
7063 const struct sched_class *prev_class = p->sched_class;
7064 int old_prio = p->prio;
3a5e4dc1 7065 int on_rq;
3e51f33f 7066
fd2f4419 7067 on_rq = p->on_rq;
3a5e4dc1 7068 if (on_rq)
4ca9b72b 7069 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7070 __setscheduler(rq, p, SCHED_NORMAL, 0);
7071 if (on_rq) {
4ca9b72b 7072 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7073 resched_task(rq->curr);
7074 }
da7a735e
PZ
7075
7076 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7077}
7078
1da177e4
LT
7079void normalize_rt_tasks(void)
7080{
a0f98a1c 7081 struct task_struct *g, *p;
1da177e4 7082 unsigned long flags;
70b97a7f 7083 struct rq *rq;
1da177e4 7084
4cf5d77a 7085 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7086 do_each_thread(g, p) {
178be793
IM
7087 /*
7088 * Only normalize user tasks:
7089 */
7090 if (!p->mm)
7091 continue;
7092
6cfb0d5d 7093 p->se.exec_start = 0;
6cfb0d5d 7094#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7095 p->se.statistics.wait_start = 0;
7096 p->se.statistics.sleep_start = 0;
7097 p->se.statistics.block_start = 0;
6cfb0d5d 7098#endif
dd41f596
IM
7099
7100 if (!rt_task(p)) {
7101 /*
7102 * Renice negative nice level userspace
7103 * tasks back to 0:
7104 */
7105 if (TASK_NICE(p) < 0 && p->mm)
7106 set_user_nice(p, 0);
1da177e4 7107 continue;
dd41f596 7108 }
1da177e4 7109
1d615482 7110 raw_spin_lock(&p->pi_lock);
b29739f9 7111 rq = __task_rq_lock(p);
1da177e4 7112
178be793 7113 normalize_task(rq, p);
3a5e4dc1 7114
b29739f9 7115 __task_rq_unlock(rq);
1d615482 7116 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7117 } while_each_thread(g, p);
7118
4cf5d77a 7119 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7120}
7121
7122#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7123
67fc4e0c 7124#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7125/*
67fc4e0c 7126 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7127 *
7128 * They can only be called when the whole system has been
7129 * stopped - every CPU needs to be quiescent, and no scheduling
7130 * activity can take place. Using them for anything else would
7131 * be a serious bug, and as a result, they aren't even visible
7132 * under any other configuration.
7133 */
7134
7135/**
7136 * curr_task - return the current task for a given cpu.
7137 * @cpu: the processor in question.
7138 *
7139 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7140 */
36c8b586 7141struct task_struct *curr_task(int cpu)
1df5c10a
LT
7142{
7143 return cpu_curr(cpu);
7144}
7145
67fc4e0c
JW
7146#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7147
7148#ifdef CONFIG_IA64
1df5c10a
LT
7149/**
7150 * set_curr_task - set the current task for a given cpu.
7151 * @cpu: the processor in question.
7152 * @p: the task pointer to set.
7153 *
7154 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7155 * are serviced on a separate stack. It allows the architecture to switch the
7156 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7157 * must be called with all CPU's synchronized, and interrupts disabled, the
7158 * and caller must save the original value of the current task (see
7159 * curr_task() above) and restore that value before reenabling interrupts and
7160 * re-starting the system.
7161 *
7162 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7163 */
36c8b586 7164void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7165{
7166 cpu_curr(cpu) = p;
7167}
7168
7169#endif
29f59db3 7170
7c941438 7171#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7172/* task_group_lock serializes the addition/removal of task groups */
7173static DEFINE_SPINLOCK(task_group_lock);
7174
bccbe08a
PZ
7175static void free_sched_group(struct task_group *tg)
7176{
7177 free_fair_sched_group(tg);
7178 free_rt_sched_group(tg);
e9aa1dd1 7179 autogroup_free(tg);
bccbe08a
PZ
7180 kfree(tg);
7181}
7182
7183/* allocate runqueue etc for a new task group */
ec7dc8ac 7184struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7185{
7186 struct task_group *tg;
bccbe08a
PZ
7187
7188 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7189 if (!tg)
7190 return ERR_PTR(-ENOMEM);
7191
ec7dc8ac 7192 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7193 goto err;
7194
ec7dc8ac 7195 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7196 goto err;
7197
ace783b9
LZ
7198 return tg;
7199
7200err:
7201 free_sched_group(tg);
7202 return ERR_PTR(-ENOMEM);
7203}
7204
7205void sched_online_group(struct task_group *tg, struct task_group *parent)
7206{
7207 unsigned long flags;
7208
8ed36996 7209 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7210 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7211
7212 WARN_ON(!parent); /* root should already exist */
7213
7214 tg->parent = parent;
f473aa5e 7215 INIT_LIST_HEAD(&tg->children);
09f2724a 7216 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7217 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7218}
7219
9b5b7751 7220/* rcu callback to free various structures associated with a task group */
6f505b16 7221static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7222{
29f59db3 7223 /* now it should be safe to free those cfs_rqs */
6f505b16 7224 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7225}
7226
9b5b7751 7227/* Destroy runqueue etc associated with a task group */
4cf86d77 7228void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7229{
7230 /* wait for possible concurrent references to cfs_rqs complete */
7231 call_rcu(&tg->rcu, free_sched_group_rcu);
7232}
7233
7234void sched_offline_group(struct task_group *tg)
29f59db3 7235{
8ed36996 7236 unsigned long flags;
9b5b7751 7237 int i;
29f59db3 7238
3d4b47b4
PZ
7239 /* end participation in shares distribution */
7240 for_each_possible_cpu(i)
bccbe08a 7241 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7242
7243 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7244 list_del_rcu(&tg->list);
f473aa5e 7245 list_del_rcu(&tg->siblings);
8ed36996 7246 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7247}
7248
9b5b7751 7249/* change task's runqueue when it moves between groups.
3a252015
IM
7250 * The caller of this function should have put the task in its new group
7251 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7252 * reflect its new group.
9b5b7751
SV
7253 */
7254void sched_move_task(struct task_struct *tsk)
29f59db3 7255{
8323f26c 7256 struct task_group *tg;
29f59db3
SV
7257 int on_rq, running;
7258 unsigned long flags;
7259 struct rq *rq;
7260
7261 rq = task_rq_lock(tsk, &flags);
7262
051a1d1a 7263 running = task_current(rq, tsk);
fd2f4419 7264 on_rq = tsk->on_rq;
29f59db3 7265
0e1f3483 7266 if (on_rq)
29f59db3 7267 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7268 if (unlikely(running))
7269 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7270
8323f26c
PZ
7271 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7272 lockdep_is_held(&tsk->sighand->siglock)),
7273 struct task_group, css);
7274 tg = autogroup_task_group(tsk, tg);
7275 tsk->sched_task_group = tg;
7276
810b3817 7277#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7278 if (tsk->sched_class->task_move_group)
7279 tsk->sched_class->task_move_group(tsk, on_rq);
7280 else
810b3817 7281#endif
b2b5ce02 7282 set_task_rq(tsk, task_cpu(tsk));
810b3817 7283
0e1f3483
HS
7284 if (unlikely(running))
7285 tsk->sched_class->set_curr_task(rq);
7286 if (on_rq)
371fd7e7 7287 enqueue_task(rq, tsk, 0);
29f59db3 7288
0122ec5b 7289 task_rq_unlock(rq, tsk, &flags);
29f59db3 7290}
7c941438 7291#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7292
a790de99 7293#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7294static unsigned long to_ratio(u64 period, u64 runtime)
7295{
7296 if (runtime == RUNTIME_INF)
9a7e0b18 7297 return 1ULL << 20;
9f0c1e56 7298
9a7e0b18 7299 return div64_u64(runtime << 20, period);
9f0c1e56 7300}
a790de99
PT
7301#endif
7302
7303#ifdef CONFIG_RT_GROUP_SCHED
7304/*
7305 * Ensure that the real time constraints are schedulable.
7306 */
7307static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7308
9a7e0b18
PZ
7309/* Must be called with tasklist_lock held */
7310static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7311{
9a7e0b18 7312 struct task_struct *g, *p;
b40b2e8e 7313
9a7e0b18 7314 do_each_thread(g, p) {
029632fb 7315 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7316 return 1;
7317 } while_each_thread(g, p);
b40b2e8e 7318
9a7e0b18
PZ
7319 return 0;
7320}
b40b2e8e 7321
9a7e0b18
PZ
7322struct rt_schedulable_data {
7323 struct task_group *tg;
7324 u64 rt_period;
7325 u64 rt_runtime;
7326};
b40b2e8e 7327
a790de99 7328static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7329{
7330 struct rt_schedulable_data *d = data;
7331 struct task_group *child;
7332 unsigned long total, sum = 0;
7333 u64 period, runtime;
b40b2e8e 7334
9a7e0b18
PZ
7335 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7336 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7337
9a7e0b18
PZ
7338 if (tg == d->tg) {
7339 period = d->rt_period;
7340 runtime = d->rt_runtime;
b40b2e8e 7341 }
b40b2e8e 7342
4653f803
PZ
7343 /*
7344 * Cannot have more runtime than the period.
7345 */
7346 if (runtime > period && runtime != RUNTIME_INF)
7347 return -EINVAL;
6f505b16 7348
4653f803
PZ
7349 /*
7350 * Ensure we don't starve existing RT tasks.
7351 */
9a7e0b18
PZ
7352 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7353 return -EBUSY;
6f505b16 7354
9a7e0b18 7355 total = to_ratio(period, runtime);
6f505b16 7356
4653f803
PZ
7357 /*
7358 * Nobody can have more than the global setting allows.
7359 */
7360 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7361 return -EINVAL;
6f505b16 7362
4653f803
PZ
7363 /*
7364 * The sum of our children's runtime should not exceed our own.
7365 */
9a7e0b18
PZ
7366 list_for_each_entry_rcu(child, &tg->children, siblings) {
7367 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7368 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7369
9a7e0b18
PZ
7370 if (child == d->tg) {
7371 period = d->rt_period;
7372 runtime = d->rt_runtime;
7373 }
6f505b16 7374
9a7e0b18 7375 sum += to_ratio(period, runtime);
9f0c1e56 7376 }
6f505b16 7377
9a7e0b18
PZ
7378 if (sum > total)
7379 return -EINVAL;
7380
7381 return 0;
6f505b16
PZ
7382}
7383
9a7e0b18 7384static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7385{
8277434e
PT
7386 int ret;
7387
9a7e0b18
PZ
7388 struct rt_schedulable_data data = {
7389 .tg = tg,
7390 .rt_period = period,
7391 .rt_runtime = runtime,
7392 };
7393
8277434e
PT
7394 rcu_read_lock();
7395 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7396 rcu_read_unlock();
7397
7398 return ret;
521f1a24
DG
7399}
7400
ab84d31e 7401static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7402 u64 rt_period, u64 rt_runtime)
6f505b16 7403{
ac086bc2 7404 int i, err = 0;
9f0c1e56 7405
9f0c1e56 7406 mutex_lock(&rt_constraints_mutex);
521f1a24 7407 read_lock(&tasklist_lock);
9a7e0b18
PZ
7408 err = __rt_schedulable(tg, rt_period, rt_runtime);
7409 if (err)
9f0c1e56 7410 goto unlock;
ac086bc2 7411
0986b11b 7412 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7413 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7414 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7415
7416 for_each_possible_cpu(i) {
7417 struct rt_rq *rt_rq = tg->rt_rq[i];
7418
0986b11b 7419 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7420 rt_rq->rt_runtime = rt_runtime;
0986b11b 7421 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7422 }
0986b11b 7423 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7424unlock:
521f1a24 7425 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7426 mutex_unlock(&rt_constraints_mutex);
7427
7428 return err;
6f505b16
PZ
7429}
7430
d0b27fa7
PZ
7431int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7432{
7433 u64 rt_runtime, rt_period;
7434
7435 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7436 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7437 if (rt_runtime_us < 0)
7438 rt_runtime = RUNTIME_INF;
7439
ab84d31e 7440 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7441}
7442
9f0c1e56
PZ
7443long sched_group_rt_runtime(struct task_group *tg)
7444{
7445 u64 rt_runtime_us;
7446
d0b27fa7 7447 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7448 return -1;
7449
d0b27fa7 7450 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7451 do_div(rt_runtime_us, NSEC_PER_USEC);
7452 return rt_runtime_us;
7453}
d0b27fa7
PZ
7454
7455int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7456{
7457 u64 rt_runtime, rt_period;
7458
7459 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7460 rt_runtime = tg->rt_bandwidth.rt_runtime;
7461
619b0488
R
7462 if (rt_period == 0)
7463 return -EINVAL;
7464
ab84d31e 7465 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7466}
7467
7468long sched_group_rt_period(struct task_group *tg)
7469{
7470 u64 rt_period_us;
7471
7472 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7473 do_div(rt_period_us, NSEC_PER_USEC);
7474 return rt_period_us;
7475}
7476
7477static int sched_rt_global_constraints(void)
7478{
4653f803 7479 u64 runtime, period;
d0b27fa7
PZ
7480 int ret = 0;
7481
ec5d4989
HS
7482 if (sysctl_sched_rt_period <= 0)
7483 return -EINVAL;
7484
4653f803
PZ
7485 runtime = global_rt_runtime();
7486 period = global_rt_period();
7487
7488 /*
7489 * Sanity check on the sysctl variables.
7490 */
7491 if (runtime > period && runtime != RUNTIME_INF)
7492 return -EINVAL;
10b612f4 7493
d0b27fa7 7494 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7495 read_lock(&tasklist_lock);
4653f803 7496 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7497 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7498 mutex_unlock(&rt_constraints_mutex);
7499
7500 return ret;
7501}
54e99124
DG
7502
7503int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7504{
7505 /* Don't accept realtime tasks when there is no way for them to run */
7506 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7507 return 0;
7508
7509 return 1;
7510}
7511
6d6bc0ad 7512#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7513static int sched_rt_global_constraints(void)
7514{
ac086bc2
PZ
7515 unsigned long flags;
7516 int i;
7517
ec5d4989
HS
7518 if (sysctl_sched_rt_period <= 0)
7519 return -EINVAL;
7520
60aa605d
PZ
7521 /*
7522 * There's always some RT tasks in the root group
7523 * -- migration, kstopmachine etc..
7524 */
7525 if (sysctl_sched_rt_runtime == 0)
7526 return -EBUSY;
7527
0986b11b 7528 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7529 for_each_possible_cpu(i) {
7530 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7531
0986b11b 7532 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7533 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7534 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7535 }
0986b11b 7536 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7537
d0b27fa7
PZ
7538 return 0;
7539}
6d6bc0ad 7540#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7541
ce0dbbbb
CW
7542int sched_rr_handler(struct ctl_table *table, int write,
7543 void __user *buffer, size_t *lenp,
7544 loff_t *ppos)
7545{
7546 int ret;
7547 static DEFINE_MUTEX(mutex);
7548
7549 mutex_lock(&mutex);
7550 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7551 /* make sure that internally we keep jiffies */
7552 /* also, writing zero resets timeslice to default */
7553 if (!ret && write) {
7554 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7555 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7556 }
7557 mutex_unlock(&mutex);
7558 return ret;
7559}
7560
d0b27fa7 7561int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7562 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7563 loff_t *ppos)
7564{
7565 int ret;
7566 int old_period, old_runtime;
7567 static DEFINE_MUTEX(mutex);
7568
7569 mutex_lock(&mutex);
7570 old_period = sysctl_sched_rt_period;
7571 old_runtime = sysctl_sched_rt_runtime;
7572
8d65af78 7573 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7574
7575 if (!ret && write) {
7576 ret = sched_rt_global_constraints();
7577 if (ret) {
7578 sysctl_sched_rt_period = old_period;
7579 sysctl_sched_rt_runtime = old_runtime;
7580 } else {
7581 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7582 def_rt_bandwidth.rt_period =
7583 ns_to_ktime(global_rt_period());
7584 }
7585 }
7586 mutex_unlock(&mutex);
7587
7588 return ret;
7589}
68318b8e 7590
052f1dc7 7591#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7592
7593/* return corresponding task_group object of a cgroup */
2b01dfe3 7594static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7595{
2b01dfe3
PM
7596 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7597 struct task_group, css);
68318b8e
SV
7598}
7599
92fb9748 7600static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7601{
ec7dc8ac 7602 struct task_group *tg, *parent;
68318b8e 7603
2b01dfe3 7604 if (!cgrp->parent) {
68318b8e 7605 /* This is early initialization for the top cgroup */
07e06b01 7606 return &root_task_group.css;
68318b8e
SV
7607 }
7608
ec7dc8ac
DG
7609 parent = cgroup_tg(cgrp->parent);
7610 tg = sched_create_group(parent);
68318b8e
SV
7611 if (IS_ERR(tg))
7612 return ERR_PTR(-ENOMEM);
7613
68318b8e
SV
7614 return &tg->css;
7615}
7616
ace783b9
LZ
7617static int cpu_cgroup_css_online(struct cgroup *cgrp)
7618{
7619 struct task_group *tg = cgroup_tg(cgrp);
7620 struct task_group *parent;
7621
7622 if (!cgrp->parent)
7623 return 0;
7624
7625 parent = cgroup_tg(cgrp->parent);
7626 sched_online_group(tg, parent);
7627 return 0;
7628}
7629
92fb9748 7630static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7631{
2b01dfe3 7632 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7633
7634 sched_destroy_group(tg);
7635}
7636
ace783b9
LZ
7637static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7638{
7639 struct task_group *tg = cgroup_tg(cgrp);
7640
7641 sched_offline_group(tg);
7642}
7643
761b3ef5 7644static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7645 struct cgroup_taskset *tset)
68318b8e 7646{
bb9d97b6
TH
7647 struct task_struct *task;
7648
7649 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7650#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7651 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7652 return -EINVAL;
b68aa230 7653#else
bb9d97b6
TH
7654 /* We don't support RT-tasks being in separate groups */
7655 if (task->sched_class != &fair_sched_class)
7656 return -EINVAL;
b68aa230 7657#endif
bb9d97b6 7658 }
be367d09
BB
7659 return 0;
7660}
68318b8e 7661
761b3ef5 7662static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7663 struct cgroup_taskset *tset)
68318b8e 7664{
bb9d97b6
TH
7665 struct task_struct *task;
7666
7667 cgroup_taskset_for_each(task, cgrp, tset)
7668 sched_move_task(task);
68318b8e
SV
7669}
7670
068c5cc5 7671static void
761b3ef5
LZ
7672cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7673 struct task_struct *task)
068c5cc5
PZ
7674{
7675 /*
7676 * cgroup_exit() is called in the copy_process() failure path.
7677 * Ignore this case since the task hasn't ran yet, this avoids
7678 * trying to poke a half freed task state from generic code.
7679 */
7680 if (!(task->flags & PF_EXITING))
7681 return;
7682
7683 sched_move_task(task);
7684}
7685
052f1dc7 7686#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7687static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7688 u64 shareval)
68318b8e 7689{
c8b28116 7690 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7691}
7692
f4c753b7 7693static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7694{
2b01dfe3 7695 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7696
c8b28116 7697 return (u64) scale_load_down(tg->shares);
68318b8e 7698}
ab84d31e
PT
7699
7700#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7701static DEFINE_MUTEX(cfs_constraints_mutex);
7702
ab84d31e
PT
7703const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7704const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7705
a790de99
PT
7706static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7707
ab84d31e
PT
7708static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7709{
56f570e5 7710 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7711 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7712
7713 if (tg == &root_task_group)
7714 return -EINVAL;
7715
7716 /*
7717 * Ensure we have at some amount of bandwidth every period. This is
7718 * to prevent reaching a state of large arrears when throttled via
7719 * entity_tick() resulting in prolonged exit starvation.
7720 */
7721 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7722 return -EINVAL;
7723
7724 /*
7725 * Likewise, bound things on the otherside by preventing insane quota
7726 * periods. This also allows us to normalize in computing quota
7727 * feasibility.
7728 */
7729 if (period > max_cfs_quota_period)
7730 return -EINVAL;
7731
a790de99
PT
7732 mutex_lock(&cfs_constraints_mutex);
7733 ret = __cfs_schedulable(tg, period, quota);
7734 if (ret)
7735 goto out_unlock;
7736
58088ad0 7737 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7738 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7739 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7740 raw_spin_lock_irq(&cfs_b->lock);
7741 cfs_b->period = ns_to_ktime(period);
7742 cfs_b->quota = quota;
58088ad0 7743
a9cf55b2 7744 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7745 /* restart the period timer (if active) to handle new period expiry */
7746 if (runtime_enabled && cfs_b->timer_active) {
7747 /* force a reprogram */
7748 cfs_b->timer_active = 0;
7749 __start_cfs_bandwidth(cfs_b);
7750 }
ab84d31e
PT
7751 raw_spin_unlock_irq(&cfs_b->lock);
7752
7753 for_each_possible_cpu(i) {
7754 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7755 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7756
7757 raw_spin_lock_irq(&rq->lock);
58088ad0 7758 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7759 cfs_rq->runtime_remaining = 0;
671fd9da 7760
029632fb 7761 if (cfs_rq->throttled)
671fd9da 7762 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7763 raw_spin_unlock_irq(&rq->lock);
7764 }
a790de99
PT
7765out_unlock:
7766 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7767
a790de99 7768 return ret;
ab84d31e
PT
7769}
7770
7771int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7772{
7773 u64 quota, period;
7774
029632fb 7775 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7776 if (cfs_quota_us < 0)
7777 quota = RUNTIME_INF;
7778 else
7779 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7780
7781 return tg_set_cfs_bandwidth(tg, period, quota);
7782}
7783
7784long tg_get_cfs_quota(struct task_group *tg)
7785{
7786 u64 quota_us;
7787
029632fb 7788 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7789 return -1;
7790
029632fb 7791 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7792 do_div(quota_us, NSEC_PER_USEC);
7793
7794 return quota_us;
7795}
7796
7797int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7798{
7799 u64 quota, period;
7800
7801 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7802 quota = tg->cfs_bandwidth.quota;
ab84d31e 7803
ab84d31e
PT
7804 return tg_set_cfs_bandwidth(tg, period, quota);
7805}
7806
7807long tg_get_cfs_period(struct task_group *tg)
7808{
7809 u64 cfs_period_us;
7810
029632fb 7811 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7812 do_div(cfs_period_us, NSEC_PER_USEC);
7813
7814 return cfs_period_us;
7815}
7816
7817static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7818{
7819 return tg_get_cfs_quota(cgroup_tg(cgrp));
7820}
7821
7822static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7823 s64 cfs_quota_us)
7824{
7825 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7826}
7827
7828static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7829{
7830 return tg_get_cfs_period(cgroup_tg(cgrp));
7831}
7832
7833static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7834 u64 cfs_period_us)
7835{
7836 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7837}
7838
a790de99
PT
7839struct cfs_schedulable_data {
7840 struct task_group *tg;
7841 u64 period, quota;
7842};
7843
7844/*
7845 * normalize group quota/period to be quota/max_period
7846 * note: units are usecs
7847 */
7848static u64 normalize_cfs_quota(struct task_group *tg,
7849 struct cfs_schedulable_data *d)
7850{
7851 u64 quota, period;
7852
7853 if (tg == d->tg) {
7854 period = d->period;
7855 quota = d->quota;
7856 } else {
7857 period = tg_get_cfs_period(tg);
7858 quota = tg_get_cfs_quota(tg);
7859 }
7860
7861 /* note: these should typically be equivalent */
7862 if (quota == RUNTIME_INF || quota == -1)
7863 return RUNTIME_INF;
7864
7865 return to_ratio(period, quota);
7866}
7867
7868static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7869{
7870 struct cfs_schedulable_data *d = data;
029632fb 7871 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7872 s64 quota = 0, parent_quota = -1;
7873
7874 if (!tg->parent) {
7875 quota = RUNTIME_INF;
7876 } else {
029632fb 7877 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7878
7879 quota = normalize_cfs_quota(tg, d);
7880 parent_quota = parent_b->hierarchal_quota;
7881
7882 /*
7883 * ensure max(child_quota) <= parent_quota, inherit when no
7884 * limit is set
7885 */
7886 if (quota == RUNTIME_INF)
7887 quota = parent_quota;
7888 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7889 return -EINVAL;
7890 }
7891 cfs_b->hierarchal_quota = quota;
7892
7893 return 0;
7894}
7895
7896static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7897{
8277434e 7898 int ret;
a790de99
PT
7899 struct cfs_schedulable_data data = {
7900 .tg = tg,
7901 .period = period,
7902 .quota = quota,
7903 };
7904
7905 if (quota != RUNTIME_INF) {
7906 do_div(data.period, NSEC_PER_USEC);
7907 do_div(data.quota, NSEC_PER_USEC);
7908 }
7909
8277434e
PT
7910 rcu_read_lock();
7911 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7912 rcu_read_unlock();
7913
7914 return ret;
a790de99 7915}
e8da1b18
NR
7916
7917static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7918 struct cgroup_map_cb *cb)
7919{
7920 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7921 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7922
7923 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7924 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7925 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7926
7927 return 0;
7928}
ab84d31e 7929#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7930#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7931
052f1dc7 7932#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7933static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7934 s64 val)
6f505b16 7935{
06ecb27c 7936 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7937}
7938
06ecb27c 7939static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7940{
06ecb27c 7941 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7942}
d0b27fa7
PZ
7943
7944static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7945 u64 rt_period_us)
7946{
7947 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7948}
7949
7950static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7951{
7952 return sched_group_rt_period(cgroup_tg(cgrp));
7953}
6d6bc0ad 7954#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7955
fe5c7cc2 7956static struct cftype cpu_files[] = {
052f1dc7 7957#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7958 {
7959 .name = "shares",
f4c753b7
PM
7960 .read_u64 = cpu_shares_read_u64,
7961 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7962 },
052f1dc7 7963#endif
ab84d31e
PT
7964#ifdef CONFIG_CFS_BANDWIDTH
7965 {
7966 .name = "cfs_quota_us",
7967 .read_s64 = cpu_cfs_quota_read_s64,
7968 .write_s64 = cpu_cfs_quota_write_s64,
7969 },
7970 {
7971 .name = "cfs_period_us",
7972 .read_u64 = cpu_cfs_period_read_u64,
7973 .write_u64 = cpu_cfs_period_write_u64,
7974 },
e8da1b18
NR
7975 {
7976 .name = "stat",
7977 .read_map = cpu_stats_show,
7978 },
ab84d31e 7979#endif
052f1dc7 7980#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7981 {
9f0c1e56 7982 .name = "rt_runtime_us",
06ecb27c
PM
7983 .read_s64 = cpu_rt_runtime_read,
7984 .write_s64 = cpu_rt_runtime_write,
6f505b16 7985 },
d0b27fa7
PZ
7986 {
7987 .name = "rt_period_us",
f4c753b7
PM
7988 .read_u64 = cpu_rt_period_read_uint,
7989 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7990 },
052f1dc7 7991#endif
4baf6e33 7992 { } /* terminate */
68318b8e
SV
7993};
7994
68318b8e 7995struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7996 .name = "cpu",
92fb9748
TH
7997 .css_alloc = cpu_cgroup_css_alloc,
7998 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7999 .css_online = cpu_cgroup_css_online,
8000 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8001 .can_attach = cpu_cgroup_can_attach,
8002 .attach = cpu_cgroup_attach,
068c5cc5 8003 .exit = cpu_cgroup_exit,
38605cae 8004 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 8005 .base_cftypes = cpu_files,
68318b8e
SV
8006 .early_init = 1,
8007};
8008
052f1dc7 8009#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8010
8011#ifdef CONFIG_CGROUP_CPUACCT
8012
8013/*
8014 * CPU accounting code for task groups.
8015 *
8016 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8017 * (balbir@in.ibm.com).
8018 */
8019
73fbec60
FW
8020struct cpuacct root_cpuacct;
8021
d842de87 8022/* create a new cpu accounting group */
92fb9748 8023static struct cgroup_subsys_state *cpuacct_css_alloc(struct cgroup *cgrp)
d842de87 8024{
54c707e9 8025 struct cpuacct *ca;
d842de87 8026
54c707e9
GC
8027 if (!cgrp->parent)
8028 return &root_cpuacct.css;
8029
8030 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8031 if (!ca)
ef12fefa 8032 goto out;
d842de87
SV
8033
8034 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8035 if (!ca->cpuusage)
8036 goto out_free_ca;
8037
54c707e9
GC
8038 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8039 if (!ca->cpustat)
8040 goto out_free_cpuusage;
934352f2 8041
d842de87 8042 return &ca->css;
ef12fefa 8043
54c707e9 8044out_free_cpuusage:
ef12fefa
BR
8045 free_percpu(ca->cpuusage);
8046out_free_ca:
8047 kfree(ca);
8048out:
8049 return ERR_PTR(-ENOMEM);
d842de87
SV
8050}
8051
8052/* destroy an existing cpu accounting group */
92fb9748 8053static void cpuacct_css_free(struct cgroup *cgrp)
d842de87 8054{
32cd756a 8055 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8056
54c707e9 8057 free_percpu(ca->cpustat);
d842de87
SV
8058 free_percpu(ca->cpuusage);
8059 kfree(ca);
8060}
8061
720f5498
KC
8062static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8063{
b36128c8 8064 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8065 u64 data;
8066
8067#ifndef CONFIG_64BIT
8068 /*
8069 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8070 */
05fa785c 8071 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8072 data = *cpuusage;
05fa785c 8073 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8074#else
8075 data = *cpuusage;
8076#endif
8077
8078 return data;
8079}
8080
8081static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8082{
b36128c8 8083 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8084
8085#ifndef CONFIG_64BIT
8086 /*
8087 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8088 */
05fa785c 8089 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8090 *cpuusage = val;
05fa785c 8091 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8092#else
8093 *cpuusage = val;
8094#endif
8095}
8096
d842de87 8097/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8098static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8099{
32cd756a 8100 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8101 u64 totalcpuusage = 0;
8102 int i;
8103
720f5498
KC
8104 for_each_present_cpu(i)
8105 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8106
8107 return totalcpuusage;
8108}
8109
0297b803
DG
8110static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8111 u64 reset)
8112{
8113 struct cpuacct *ca = cgroup_ca(cgrp);
8114 int err = 0;
8115 int i;
8116
8117 if (reset) {
8118 err = -EINVAL;
8119 goto out;
8120 }
8121
720f5498
KC
8122 for_each_present_cpu(i)
8123 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8124
0297b803
DG
8125out:
8126 return err;
8127}
8128
e9515c3c
KC
8129static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8130 struct seq_file *m)
8131{
8132 struct cpuacct *ca = cgroup_ca(cgroup);
8133 u64 percpu;
8134 int i;
8135
8136 for_each_present_cpu(i) {
8137 percpu = cpuacct_cpuusage_read(ca, i);
8138 seq_printf(m, "%llu ", (unsigned long long) percpu);
8139 }
8140 seq_printf(m, "\n");
8141 return 0;
8142}
8143
ef12fefa
BR
8144static const char *cpuacct_stat_desc[] = {
8145 [CPUACCT_STAT_USER] = "user",
8146 [CPUACCT_STAT_SYSTEM] = "system",
8147};
8148
8149static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8150 struct cgroup_map_cb *cb)
ef12fefa
BR
8151{
8152 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8153 int cpu;
8154 s64 val = 0;
ef12fefa 8155
54c707e9
GC
8156 for_each_online_cpu(cpu) {
8157 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8158 val += kcpustat->cpustat[CPUTIME_USER];
8159 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8160 }
54c707e9
GC
8161 val = cputime64_to_clock_t(val);
8162 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8163
54c707e9
GC
8164 val = 0;
8165 for_each_online_cpu(cpu) {
8166 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8167 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8168 val += kcpustat->cpustat[CPUTIME_IRQ];
8169 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8170 }
54c707e9
GC
8171
8172 val = cputime64_to_clock_t(val);
8173 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8174
ef12fefa
BR
8175 return 0;
8176}
8177
d842de87
SV
8178static struct cftype files[] = {
8179 {
8180 .name = "usage",
f4c753b7
PM
8181 .read_u64 = cpuusage_read,
8182 .write_u64 = cpuusage_write,
d842de87 8183 },
e9515c3c
KC
8184 {
8185 .name = "usage_percpu",
8186 .read_seq_string = cpuacct_percpu_seq_read,
8187 },
ef12fefa
BR
8188 {
8189 .name = "stat",
8190 .read_map = cpuacct_stats_show,
8191 },
4baf6e33 8192 { } /* terminate */
d842de87
SV
8193};
8194
d842de87
SV
8195/*
8196 * charge this task's execution time to its accounting group.
8197 *
8198 * called with rq->lock held.
8199 */
029632fb 8200void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8201{
8202 struct cpuacct *ca;
934352f2 8203 int cpu;
d842de87 8204
c40c6f85 8205 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8206 return;
8207
934352f2 8208 cpu = task_cpu(tsk);
a18b83b7
BR
8209
8210 rcu_read_lock();
8211
d842de87 8212 ca = task_ca(tsk);
d842de87 8213
44252e42 8214 for (; ca; ca = parent_ca(ca)) {
b36128c8 8215 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8216 *cpuusage += cputime;
8217 }
a18b83b7
BR
8218
8219 rcu_read_unlock();
d842de87
SV
8220}
8221
8222struct cgroup_subsys cpuacct_subsys = {
8223 .name = "cpuacct",
92fb9748
TH
8224 .css_alloc = cpuacct_css_alloc,
8225 .css_free = cpuacct_css_free,
d842de87 8226 .subsys_id = cpuacct_subsys_id,
4baf6e33 8227 .base_cftypes = files,
d842de87
SV
8228};
8229#endif /* CONFIG_CGROUP_CPUACCT */
b637a328
PM
8230
8231void dump_cpu_task(int cpu)
8232{
8233 pr_info("Task dump for CPU %d:\n", cpu);
8234 sched_show_task(cpu_curr(cpu));
8235}
This page took 2.756527 seconds and 5 git commands to generate.