sched: add notifier for cross-cpu migrations
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
391e43da 85#include "../workqueue_sched.h"
29d5e047 86#include "../smpboot.h"
6e0534f2 87
a8d154b0 88#define CREATE_TRACE_POINTS
ad8d75ff 89#include <trace/events/sched.h>
a8d154b0 90
029632fb 91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 92{
58088ad0
PT
93 unsigned long delta;
94 ktime_t soft, hard, now;
d0b27fa7 95
58088ad0
PT
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
d0b27fa7 102
58088ad0
PT
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109}
110
029632fb
PZ
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 113
fe44d621 114static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 115
029632fb 116void update_rq_clock(struct rq *rq)
3e51f33f 117{
fe44d621 118 s64 delta;
305e6835 119
61eadef6 120 if (rq->skip_clock_update > 0)
f26f9aff 121 return;
aa483808 122
fe44d621
PZ
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
3e51f33f
PZ
126}
127
bf5c91ba
IM
128/*
129 * Debugging: various feature bits
130 */
f00b45c1 131
f00b45c1
PZ
132#define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
bf5c91ba 135const_debug unsigned int sysctl_sched_features =
391e43da 136#include "features.h"
f00b45c1
PZ
137 0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled) \
143 #name ,
144
1292531f 145static const char * const sched_feat_names[] = {
391e43da 146#include "features.h"
f00b45c1
PZ
147};
148
149#undef SCHED_FEAT
150
34f3a814 151static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 152{
f00b45c1
PZ
153 int i;
154
f8b6d1cc 155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 159 }
34f3a814 160 seq_puts(m, "\n");
f00b45c1 161
34f3a814 162 return 0;
f00b45c1
PZ
163}
164
f8b6d1cc
PZ
165#ifdef HAVE_JUMP_LABEL
166
c5905afb
IM
167#define jump_label_key__true STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
169
170#define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
c5905afb 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
c5905afb
IM
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
183}
184
185static void sched_feat_enable(int i)
186{
c5905afb
IM
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
f00b45c1
PZ
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198{
199 char buf[64];
7740191c 200 char *cmp;
f00b45c1
PZ
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
7740191c 211 cmp = strstrip(buf);
f00b45c1 212
524429c3 213 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
214 neg = 1;
215 cmp += 3;
216 }
217
f8b6d1cc 218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 220 if (neg) {
f00b45c1 221 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
222 sched_feat_disable(i);
223 } else {
f00b45c1 224 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
225 sched_feat_enable(i);
226 }
f00b45c1
PZ
227 break;
228 }
229 }
230
f8b6d1cc 231 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
232 return -EINVAL;
233
42994724 234 *ppos += cnt;
f00b45c1
PZ
235
236 return cnt;
237}
238
34f3a814
LZ
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241 return single_open(filp, sched_feat_show, NULL);
242}
243
828c0950 244static const struct file_operations sched_feat_fops = {
34f3a814
LZ
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
f00b45c1
PZ
250};
251
252static __init int sched_init_debug(void)
253{
f00b45c1
PZ
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258}
259late_initcall(sched_init_debug);
f8b6d1cc 260#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 261
b82d9fdd
PZ
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
e9e9250b
PZ
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
fa85ae24 276/*
9f0c1e56 277 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
278 * default: 1s
279 */
9f0c1e56 280unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 281
029632fb 282__read_mostly int scheduler_running;
6892b75e 283
9f0c1e56
PZ
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
fa85ae24 289
fa85ae24 290
1da177e4 291
0970d299 292/*
0122ec5b 293 * __task_rq_lock - lock the rq @p resides on.
b29739f9 294 */
70b97a7f 295static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
296 __acquires(rq->lock)
297{
0970d299
PZ
298 struct rq *rq;
299
0122ec5b
PZ
300 lockdep_assert_held(&p->pi_lock);
301
3a5c359a 302 for (;;) {
0970d299 303 rq = task_rq(p);
05fa785c 304 raw_spin_lock(&rq->lock);
65cc8e48 305 if (likely(rq == task_rq(p)))
3a5c359a 306 return rq;
05fa785c 307 raw_spin_unlock(&rq->lock);
b29739f9 308 }
b29739f9
IM
309}
310
1da177e4 311/*
0122ec5b 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 313 */
70b97a7f 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 315 __acquires(p->pi_lock)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4 319
3a5c359a 320 for (;;) {
0122ec5b 321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 322 rq = task_rq(p);
05fa785c 323 raw_spin_lock(&rq->lock);
65cc8e48 324 if (likely(rq == task_rq(p)))
3a5c359a 325 return rq;
0122ec5b
PZ
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 328 }
1da177e4
LT
329}
330
a9957449 331static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
332 __releases(rq->lock)
333{
05fa785c 334 raw_spin_unlock(&rq->lock);
b29739f9
IM
335}
336
0122ec5b
PZ
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 339 __releases(rq->lock)
0122ec5b 340 __releases(p->pi_lock)
1da177e4 341{
0122ec5b
PZ
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
344}
345
1da177e4 346/*
cc2a73b5 347 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 348 */
a9957449 349static struct rq *this_rq_lock(void)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4
LT
353
354 local_irq_disable();
355 rq = this_rq();
05fa785c 356 raw_spin_lock(&rq->lock);
1da177e4
LT
357
358 return rq;
359}
360
8f4d37ec
PZ
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
31656519
PZ
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
b328ca18 402{
31656519 403 struct rq *rq = arg;
b328ca18 404
05fa785c 405 raw_spin_lock(&rq->lock);
31656519
PZ
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
05fa785c 408 raw_spin_unlock(&rq->lock);
b328ca18
PZ
409}
410
31656519
PZ
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
029632fb 416void hrtick_start(struct rq *rq, u64 delay)
b328ca18 417{
31656519
PZ
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 420
cc584b21 421 hrtimer_set_expires(timer, time);
31656519
PZ
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
6e275637 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
427 rq->hrtick_csd_pending = 1;
428 }
b328ca18
PZ
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
31656519 443 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448}
449
fa748203 450static __init void init_hrtick(void)
b328ca18
PZ
451{
452 hotcpu_notifier(hotplug_hrtick, 0);
453}
31656519
PZ
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
029632fb 460void hrtick_start(struct rq *rq, u64 delay)
31656519 461{
7f1e2ca9 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 463 HRTIMER_MODE_REL_PINNED, 0);
31656519 464}
b328ca18 465
006c75f1 466static inline void init_hrtick(void)
8f4d37ec 467{
8f4d37ec 468}
31656519 469#endif /* CONFIG_SMP */
8f4d37ec 470
31656519 471static void init_rq_hrtick(struct rq *rq)
8f4d37ec 472{
31656519
PZ
473#ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
8f4d37ec 475
31656519
PZ
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479#endif
8f4d37ec 480
31656519
PZ
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
8f4d37ec 483}
006c75f1 484#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
8f4d37ec
PZ
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
b328ca18
PZ
493static inline void init_hrtick(void)
494{
495}
006c75f1 496#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 497
c24d20db
IM
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
16a80163 508#define tsk_is_polling(t) 0
c24d20db
IM
509#endif
510
029632fb 511void resched_task(struct task_struct *p)
c24d20db
IM
512{
513 int cpu;
514
05fa785c 515 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 516
5ed0cec0 517 if (test_tsk_need_resched(p))
c24d20db
IM
518 return;
519
5ed0cec0 520 set_tsk_need_resched(p);
c24d20db
IM
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530}
531
029632fb 532void resched_cpu(int cpu)
c24d20db
IM
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
05fa785c 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
538 return;
539 resched_task(cpu_curr(cpu));
05fa785c 540 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 541}
06d8308c
TG
542
543#ifdef CONFIG_NO_HZ
83cd4fe2
VP
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
057f3fad 558 rcu_read_lock();
83cd4fe2 559 for_each_domain(cpu, sd) {
057f3fad
PZ
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
83cd4fe2 566 }
057f3fad
PZ
567unlock:
568 rcu_read_unlock();
83cd4fe2
VP
569 return cpu;
570}
06d8308c
TG
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
45bf76df 597
45bf76df 598 /*
06d8308c
TG
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
45bf76df 602 */
5ed0cec0 603 set_tsk_need_resched(rq->idle);
45bf76df 604
06d8308c
TG
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
45bf76df
IM
609}
610
ca38062e 611static inline bool got_nohz_idle_kick(void)
45bf76df 612{
1c792db7
SS
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
615}
616
ca38062e 617#else /* CONFIG_NO_HZ */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
6d6bc0ad 624#endif /* CONFIG_NO_HZ */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#else /* !CONFIG_SMP */
029632fb 643void resched_task(struct task_struct *p)
18d95a28 644{
05fa785c 645 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 646 set_tsk_need_resched(p);
18d95a28 647}
6d6bc0ad 648#endif /* CONFIG_SMP */
18d95a28 649
a790de99
PT
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 652/*
8277434e
PT
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 657 */
029632fb 658int walk_tg_tree_from(struct task_group *from,
8277434e 659 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
660{
661 struct task_group *parent, *child;
eb755805 662 int ret;
c09595f6 663
8277434e
PT
664 parent = from;
665
c09595f6 666down:
eb755805
PZ
667 ret = (*down)(parent, data);
668 if (ret)
8277434e 669 goto out;
c09595f6
PZ
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674up:
675 continue;
676 }
eb755805 677 ret = (*up)(parent, data);
8277434e
PT
678 if (ret || parent == from)
679 goto out;
c09595f6
PZ
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
8277434e 685out:
eb755805 686 return ret;
c09595f6
PZ
687}
688
029632fb 689int tg_nop(struct task_group *tg, void *data)
eb755805 690{
e2b245f8 691 return 0;
eb755805 692}
18d95a28
PZ
693#endif
694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
fe44d621 743static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 744{
095c0aa8
GC
745/*
746 * In theory, the compile should just see 0 here, and optimize out the call
747 * to sched_rt_avg_update. But I don't trust it...
748 */
749#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
750 s64 steal = 0, irq_delta = 0;
751#endif
752#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 753 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
754
755 /*
756 * Since irq_time is only updated on {soft,}irq_exit, we might run into
757 * this case when a previous update_rq_clock() happened inside a
758 * {soft,}irq region.
759 *
760 * When this happens, we stop ->clock_task and only update the
761 * prev_irq_time stamp to account for the part that fit, so that a next
762 * update will consume the rest. This ensures ->clock_task is
763 * monotonic.
764 *
765 * It does however cause some slight miss-attribution of {soft,}irq
766 * time, a more accurate solution would be to update the irq_time using
767 * the current rq->clock timestamp, except that would require using
768 * atomic ops.
769 */
770 if (irq_delta > delta)
771 irq_delta = delta;
772
773 rq->prev_irq_time += irq_delta;
774 delta -= irq_delta;
095c0aa8
GC
775#endif
776#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 777 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
778 u64 st;
779
780 steal = paravirt_steal_clock(cpu_of(rq));
781 steal -= rq->prev_steal_time_rq;
782
783 if (unlikely(steal > delta))
784 steal = delta;
785
786 st = steal_ticks(steal);
787 steal = st * TICK_NSEC;
788
789 rq->prev_steal_time_rq += steal;
790
791 delta -= steal;
792 }
793#endif
794
fe44d621
PZ
795 rq->clock_task += delta;
796
095c0aa8
GC
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
799 sched_rt_avg_update(rq, irq_delta + steal);
800#endif
aa483808
VP
801}
802
34f971f6
PZ
803void sched_set_stop_task(int cpu, struct task_struct *stop)
804{
805 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
806 struct task_struct *old_stop = cpu_rq(cpu)->stop;
807
808 if (stop) {
809 /*
810 * Make it appear like a SCHED_FIFO task, its something
811 * userspace knows about and won't get confused about.
812 *
813 * Also, it will make PI more or less work without too
814 * much confusion -- but then, stop work should not
815 * rely on PI working anyway.
816 */
817 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
818
819 stop->sched_class = &stop_sched_class;
820 }
821
822 cpu_rq(cpu)->stop = stop;
823
824 if (old_stop) {
825 /*
826 * Reset it back to a normal scheduling class so that
827 * it can die in pieces.
828 */
829 old_stop->sched_class = &rt_sched_class;
830 }
831}
832
14531189 833/*
dd41f596 834 * __normal_prio - return the priority that is based on the static prio
14531189 835 */
14531189
IM
836static inline int __normal_prio(struct task_struct *p)
837{
dd41f596 838 return p->static_prio;
14531189
IM
839}
840
b29739f9
IM
841/*
842 * Calculate the expected normal priority: i.e. priority
843 * without taking RT-inheritance into account. Might be
844 * boosted by interactivity modifiers. Changes upon fork,
845 * setprio syscalls, and whenever the interactivity
846 * estimator recalculates.
847 */
36c8b586 848static inline int normal_prio(struct task_struct *p)
b29739f9
IM
849{
850 int prio;
851
e05606d3 852 if (task_has_rt_policy(p))
b29739f9
IM
853 prio = MAX_RT_PRIO-1 - p->rt_priority;
854 else
855 prio = __normal_prio(p);
856 return prio;
857}
858
859/*
860 * Calculate the current priority, i.e. the priority
861 * taken into account by the scheduler. This value might
862 * be boosted by RT tasks, or might be boosted by
863 * interactivity modifiers. Will be RT if the task got
864 * RT-boosted. If not then it returns p->normal_prio.
865 */
36c8b586 866static int effective_prio(struct task_struct *p)
b29739f9
IM
867{
868 p->normal_prio = normal_prio(p);
869 /*
870 * If we are RT tasks or we were boosted to RT priority,
871 * keep the priority unchanged. Otherwise, update priority
872 * to the normal priority:
873 */
874 if (!rt_prio(p->prio))
875 return p->normal_prio;
876 return p->prio;
877}
878
1da177e4
LT
879/**
880 * task_curr - is this task currently executing on a CPU?
881 * @p: the task in question.
882 */
36c8b586 883inline int task_curr(const struct task_struct *p)
1da177e4
LT
884{
885 return cpu_curr(task_cpu(p)) == p;
886}
887
cb469845
SR
888static inline void check_class_changed(struct rq *rq, struct task_struct *p,
889 const struct sched_class *prev_class,
da7a735e 890 int oldprio)
cb469845
SR
891{
892 if (prev_class != p->sched_class) {
893 if (prev_class->switched_from)
da7a735e
PZ
894 prev_class->switched_from(rq, p);
895 p->sched_class->switched_to(rq, p);
896 } else if (oldprio != p->prio)
897 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
898}
899
029632fb 900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
901{
902 const struct sched_class *class;
903
904 if (p->sched_class == rq->curr->sched_class) {
905 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 } else {
907 for_each_class(class) {
908 if (class == rq->curr->sched_class)
909 break;
910 if (class == p->sched_class) {
911 resched_task(rq->curr);
912 break;
913 }
914 }
915 }
916
917 /*
918 * A queue event has occurred, and we're going to schedule. In
919 * this case, we can save a useless back to back clock update.
920 */
fd2f4419 921 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
922 rq->skip_clock_update = 1;
923}
924
582b336e
MT
925static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
926
927void register_task_migration_notifier(struct notifier_block *n)
928{
929 atomic_notifier_chain_register(&task_migration_notifier, n);
930}
931
1da177e4 932#ifdef CONFIG_SMP
dd41f596 933void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 934{
e2912009
PZ
935#ifdef CONFIG_SCHED_DEBUG
936 /*
937 * We should never call set_task_cpu() on a blocked task,
938 * ttwu() will sort out the placement.
939 */
077614ee
PZ
940 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
941 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
942
943#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
944 /*
945 * The caller should hold either p->pi_lock or rq->lock, when changing
946 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
947 *
948 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 949 * see task_group().
6c6c54e1
PZ
950 *
951 * Furthermore, all task_rq users should acquire both locks, see
952 * task_rq_lock().
953 */
0122ec5b
PZ
954 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
955 lockdep_is_held(&task_rq(p)->lock)));
956#endif
e2912009
PZ
957#endif
958
de1d7286 959 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 960
0c69774e 961 if (task_cpu(p) != new_cpu) {
582b336e
MT
962 struct task_migration_notifier tmn;
963
0c69774e 964 p->se.nr_migrations++;
a8b0ca17 965 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
966
967 tmn.task = p;
968 tmn.from_cpu = task_cpu(p);
969 tmn.to_cpu = new_cpu;
970
971 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 972 }
dd41f596
IM
973
974 __set_task_cpu(p, new_cpu);
c65cc870
IM
975}
976
969c7921 977struct migration_arg {
36c8b586 978 struct task_struct *task;
1da177e4 979 int dest_cpu;
70b97a7f 980};
1da177e4 981
969c7921
TH
982static int migration_cpu_stop(void *data);
983
1da177e4
LT
984/*
985 * wait_task_inactive - wait for a thread to unschedule.
986 *
85ba2d86
RM
987 * If @match_state is nonzero, it's the @p->state value just checked and
988 * not expected to change. If it changes, i.e. @p might have woken up,
989 * then return zero. When we succeed in waiting for @p to be off its CPU,
990 * we return a positive number (its total switch count). If a second call
991 * a short while later returns the same number, the caller can be sure that
992 * @p has remained unscheduled the whole time.
993 *
1da177e4
LT
994 * The caller must ensure that the task *will* unschedule sometime soon,
995 * else this function might spin for a *long* time. This function can't
996 * be called with interrupts off, or it may introduce deadlock with
997 * smp_call_function() if an IPI is sent by the same process we are
998 * waiting to become inactive.
999 */
85ba2d86 1000unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1001{
1002 unsigned long flags;
dd41f596 1003 int running, on_rq;
85ba2d86 1004 unsigned long ncsw;
70b97a7f 1005 struct rq *rq;
1da177e4 1006
3a5c359a
AK
1007 for (;;) {
1008 /*
1009 * We do the initial early heuristics without holding
1010 * any task-queue locks at all. We'll only try to get
1011 * the runqueue lock when things look like they will
1012 * work out!
1013 */
1014 rq = task_rq(p);
fa490cfd 1015
3a5c359a
AK
1016 /*
1017 * If the task is actively running on another CPU
1018 * still, just relax and busy-wait without holding
1019 * any locks.
1020 *
1021 * NOTE! Since we don't hold any locks, it's not
1022 * even sure that "rq" stays as the right runqueue!
1023 * But we don't care, since "task_running()" will
1024 * return false if the runqueue has changed and p
1025 * is actually now running somewhere else!
1026 */
85ba2d86
RM
1027 while (task_running(rq, p)) {
1028 if (match_state && unlikely(p->state != match_state))
1029 return 0;
3a5c359a 1030 cpu_relax();
85ba2d86 1031 }
fa490cfd 1032
3a5c359a
AK
1033 /*
1034 * Ok, time to look more closely! We need the rq
1035 * lock now, to be *sure*. If we're wrong, we'll
1036 * just go back and repeat.
1037 */
1038 rq = task_rq_lock(p, &flags);
27a9da65 1039 trace_sched_wait_task(p);
3a5c359a 1040 running = task_running(rq, p);
fd2f4419 1041 on_rq = p->on_rq;
85ba2d86 1042 ncsw = 0;
f31e11d8 1043 if (!match_state || p->state == match_state)
93dcf55f 1044 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1045 task_rq_unlock(rq, p, &flags);
fa490cfd 1046
85ba2d86
RM
1047 /*
1048 * If it changed from the expected state, bail out now.
1049 */
1050 if (unlikely(!ncsw))
1051 break;
1052
3a5c359a
AK
1053 /*
1054 * Was it really running after all now that we
1055 * checked with the proper locks actually held?
1056 *
1057 * Oops. Go back and try again..
1058 */
1059 if (unlikely(running)) {
1060 cpu_relax();
1061 continue;
1062 }
fa490cfd 1063
3a5c359a
AK
1064 /*
1065 * It's not enough that it's not actively running,
1066 * it must be off the runqueue _entirely_, and not
1067 * preempted!
1068 *
80dd99b3 1069 * So if it was still runnable (but just not actively
3a5c359a
AK
1070 * running right now), it's preempted, and we should
1071 * yield - it could be a while.
1072 */
1073 if (unlikely(on_rq)) {
8eb90c30
TG
1074 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1075
1076 set_current_state(TASK_UNINTERRUPTIBLE);
1077 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1078 continue;
1079 }
fa490cfd 1080
3a5c359a
AK
1081 /*
1082 * Ahh, all good. It wasn't running, and it wasn't
1083 * runnable, which means that it will never become
1084 * running in the future either. We're all done!
1085 */
1086 break;
1087 }
85ba2d86
RM
1088
1089 return ncsw;
1da177e4
LT
1090}
1091
1092/***
1093 * kick_process - kick a running thread to enter/exit the kernel
1094 * @p: the to-be-kicked thread
1095 *
1096 * Cause a process which is running on another CPU to enter
1097 * kernel-mode, without any delay. (to get signals handled.)
1098 *
25985edc 1099 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1100 * because all it wants to ensure is that the remote task enters
1101 * the kernel. If the IPI races and the task has been migrated
1102 * to another CPU then no harm is done and the purpose has been
1103 * achieved as well.
1104 */
36c8b586 1105void kick_process(struct task_struct *p)
1da177e4
LT
1106{
1107 int cpu;
1108
1109 preempt_disable();
1110 cpu = task_cpu(p);
1111 if ((cpu != smp_processor_id()) && task_curr(p))
1112 smp_send_reschedule(cpu);
1113 preempt_enable();
1114}
b43e3521 1115EXPORT_SYMBOL_GPL(kick_process);
476d139c 1116#endif /* CONFIG_SMP */
1da177e4 1117
970b13ba 1118#ifdef CONFIG_SMP
30da688e 1119/*
013fdb80 1120 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1121 */
5da9a0fb
PZ
1122static int select_fallback_rq(int cpu, struct task_struct *p)
1123{
5da9a0fb 1124 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1125 enum { cpuset, possible, fail } state = cpuset;
1126 int dest_cpu;
5da9a0fb
PZ
1127
1128 /* Look for allowed, online CPU in same node. */
e3831edd 1129 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1130 if (!cpu_online(dest_cpu))
1131 continue;
1132 if (!cpu_active(dest_cpu))
1133 continue;
fa17b507 1134 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1135 return dest_cpu;
2baab4e9 1136 }
5da9a0fb 1137
2baab4e9
PZ
1138 for (;;) {
1139 /* Any allowed, online CPU? */
e3831edd 1140 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1141 if (!cpu_online(dest_cpu))
1142 continue;
1143 if (!cpu_active(dest_cpu))
1144 continue;
1145 goto out;
1146 }
5da9a0fb 1147
2baab4e9
PZ
1148 switch (state) {
1149 case cpuset:
1150 /* No more Mr. Nice Guy. */
1151 cpuset_cpus_allowed_fallback(p);
1152 state = possible;
1153 break;
1154
1155 case possible:
1156 do_set_cpus_allowed(p, cpu_possible_mask);
1157 state = fail;
1158 break;
1159
1160 case fail:
1161 BUG();
1162 break;
1163 }
1164 }
1165
1166out:
1167 if (state != cpuset) {
1168 /*
1169 * Don't tell them about moving exiting tasks or
1170 * kernel threads (both mm NULL), since they never
1171 * leave kernel.
1172 */
1173 if (p->mm && printk_ratelimit()) {
1174 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1175 task_pid_nr(p), p->comm, cpu);
1176 }
5da9a0fb
PZ
1177 }
1178
1179 return dest_cpu;
1180}
1181
e2912009 1182/*
013fdb80 1183 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1184 */
970b13ba 1185static inline
7608dec2 1186int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1187{
7608dec2 1188 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1189
1190 /*
1191 * In order not to call set_task_cpu() on a blocking task we need
1192 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1193 * cpu.
1194 *
1195 * Since this is common to all placement strategies, this lives here.
1196 *
1197 * [ this allows ->select_task() to simply return task_cpu(p) and
1198 * not worry about this generic constraint ]
1199 */
fa17b507 1200 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1201 !cpu_online(cpu)))
5da9a0fb 1202 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1203
1204 return cpu;
970b13ba 1205}
09a40af5
MG
1206
1207static void update_avg(u64 *avg, u64 sample)
1208{
1209 s64 diff = sample - *avg;
1210 *avg += diff >> 3;
1211}
970b13ba
PZ
1212#endif
1213
d7c01d27 1214static void
b84cb5df 1215ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1216{
d7c01d27 1217#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1218 struct rq *rq = this_rq();
1219
d7c01d27
PZ
1220#ifdef CONFIG_SMP
1221 int this_cpu = smp_processor_id();
1222
1223 if (cpu == this_cpu) {
1224 schedstat_inc(rq, ttwu_local);
1225 schedstat_inc(p, se.statistics.nr_wakeups_local);
1226 } else {
1227 struct sched_domain *sd;
1228
1229 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1230 rcu_read_lock();
d7c01d27
PZ
1231 for_each_domain(this_cpu, sd) {
1232 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1233 schedstat_inc(sd, ttwu_wake_remote);
1234 break;
1235 }
1236 }
057f3fad 1237 rcu_read_unlock();
d7c01d27 1238 }
f339b9dc
PZ
1239
1240 if (wake_flags & WF_MIGRATED)
1241 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1242
d7c01d27
PZ
1243#endif /* CONFIG_SMP */
1244
1245 schedstat_inc(rq, ttwu_count);
9ed3811a 1246 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1247
1248 if (wake_flags & WF_SYNC)
9ed3811a 1249 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1250
d7c01d27
PZ
1251#endif /* CONFIG_SCHEDSTATS */
1252}
1253
1254static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1255{
9ed3811a 1256 activate_task(rq, p, en_flags);
fd2f4419 1257 p->on_rq = 1;
c2f7115e
PZ
1258
1259 /* if a worker is waking up, notify workqueue */
1260 if (p->flags & PF_WQ_WORKER)
1261 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1262}
1263
23f41eeb
PZ
1264/*
1265 * Mark the task runnable and perform wakeup-preemption.
1266 */
89363381 1267static void
23f41eeb 1268ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1269{
89363381 1270 trace_sched_wakeup(p, true);
9ed3811a
TH
1271 check_preempt_curr(rq, p, wake_flags);
1272
1273 p->state = TASK_RUNNING;
1274#ifdef CONFIG_SMP
1275 if (p->sched_class->task_woken)
1276 p->sched_class->task_woken(rq, p);
1277
e69c6341 1278 if (rq->idle_stamp) {
9ed3811a
TH
1279 u64 delta = rq->clock - rq->idle_stamp;
1280 u64 max = 2*sysctl_sched_migration_cost;
1281
1282 if (delta > max)
1283 rq->avg_idle = max;
1284 else
1285 update_avg(&rq->avg_idle, delta);
1286 rq->idle_stamp = 0;
1287 }
1288#endif
1289}
1290
c05fbafb
PZ
1291static void
1292ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1293{
1294#ifdef CONFIG_SMP
1295 if (p->sched_contributes_to_load)
1296 rq->nr_uninterruptible--;
1297#endif
1298
1299 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1300 ttwu_do_wakeup(rq, p, wake_flags);
1301}
1302
1303/*
1304 * Called in case the task @p isn't fully descheduled from its runqueue,
1305 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1306 * since all we need to do is flip p->state to TASK_RUNNING, since
1307 * the task is still ->on_rq.
1308 */
1309static int ttwu_remote(struct task_struct *p, int wake_flags)
1310{
1311 struct rq *rq;
1312 int ret = 0;
1313
1314 rq = __task_rq_lock(p);
1315 if (p->on_rq) {
1316 ttwu_do_wakeup(rq, p, wake_flags);
1317 ret = 1;
1318 }
1319 __task_rq_unlock(rq);
1320
1321 return ret;
1322}
1323
317f3941 1324#ifdef CONFIG_SMP
fa14ff4a 1325static void sched_ttwu_pending(void)
317f3941
PZ
1326{
1327 struct rq *rq = this_rq();
fa14ff4a
PZ
1328 struct llist_node *llist = llist_del_all(&rq->wake_list);
1329 struct task_struct *p;
317f3941
PZ
1330
1331 raw_spin_lock(&rq->lock);
1332
fa14ff4a
PZ
1333 while (llist) {
1334 p = llist_entry(llist, struct task_struct, wake_entry);
1335 llist = llist_next(llist);
317f3941
PZ
1336 ttwu_do_activate(rq, p, 0);
1337 }
1338
1339 raw_spin_unlock(&rq->lock);
1340}
1341
1342void scheduler_ipi(void)
1343{
ca38062e 1344 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1345 return;
1346
1347 /*
1348 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1349 * traditionally all their work was done from the interrupt return
1350 * path. Now that we actually do some work, we need to make sure
1351 * we do call them.
1352 *
1353 * Some archs already do call them, luckily irq_enter/exit nest
1354 * properly.
1355 *
1356 * Arguably we should visit all archs and update all handlers,
1357 * however a fair share of IPIs are still resched only so this would
1358 * somewhat pessimize the simple resched case.
1359 */
1360 irq_enter();
fa14ff4a 1361 sched_ttwu_pending();
ca38062e
SS
1362
1363 /*
1364 * Check if someone kicked us for doing the nohz idle load balance.
1365 */
6eb57e0d
SS
1366 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1367 this_rq()->idle_balance = 1;
ca38062e 1368 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1369 }
c5d753a5 1370 irq_exit();
317f3941
PZ
1371}
1372
1373static void ttwu_queue_remote(struct task_struct *p, int cpu)
1374{
fa14ff4a 1375 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1376 smp_send_reschedule(cpu);
1377}
d6aa8f85 1378
39be3501 1379bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1380{
1381 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1382}
d6aa8f85 1383#endif /* CONFIG_SMP */
317f3941 1384
c05fbafb
PZ
1385static void ttwu_queue(struct task_struct *p, int cpu)
1386{
1387 struct rq *rq = cpu_rq(cpu);
1388
17d9f311 1389#if defined(CONFIG_SMP)
39be3501 1390 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1391 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1392 ttwu_queue_remote(p, cpu);
1393 return;
1394 }
1395#endif
1396
c05fbafb
PZ
1397 raw_spin_lock(&rq->lock);
1398 ttwu_do_activate(rq, p, 0);
1399 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1400}
1401
1402/**
1da177e4 1403 * try_to_wake_up - wake up a thread
9ed3811a 1404 * @p: the thread to be awakened
1da177e4 1405 * @state: the mask of task states that can be woken
9ed3811a 1406 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1407 *
1408 * Put it on the run-queue if it's not already there. The "current"
1409 * thread is always on the run-queue (except when the actual
1410 * re-schedule is in progress), and as such you're allowed to do
1411 * the simpler "current->state = TASK_RUNNING" to mark yourself
1412 * runnable without the overhead of this.
1413 *
9ed3811a
TH
1414 * Returns %true if @p was woken up, %false if it was already running
1415 * or @state didn't match @p's state.
1da177e4 1416 */
e4a52bcb
PZ
1417static int
1418try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1419{
1da177e4 1420 unsigned long flags;
c05fbafb 1421 int cpu, success = 0;
2398f2c6 1422
04e2f174 1423 smp_wmb();
013fdb80 1424 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1425 if (!(p->state & state))
1da177e4
LT
1426 goto out;
1427
c05fbafb 1428 success = 1; /* we're going to change ->state */
1da177e4 1429 cpu = task_cpu(p);
1da177e4 1430
c05fbafb
PZ
1431 if (p->on_rq && ttwu_remote(p, wake_flags))
1432 goto stat;
1da177e4 1433
1da177e4 1434#ifdef CONFIG_SMP
e9c84311 1435 /*
c05fbafb
PZ
1436 * If the owning (remote) cpu is still in the middle of schedule() with
1437 * this task as prev, wait until its done referencing the task.
e9c84311 1438 */
f3e94786 1439 while (p->on_cpu)
e4a52bcb 1440 cpu_relax();
0970d299 1441 /*
e4a52bcb 1442 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1443 */
e4a52bcb 1444 smp_rmb();
1da177e4 1445
a8e4f2ea 1446 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1447 p->state = TASK_WAKING;
e7693a36 1448
e4a52bcb 1449 if (p->sched_class->task_waking)
74f8e4b2 1450 p->sched_class->task_waking(p);
efbbd05a 1451
7608dec2 1452 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1453 if (task_cpu(p) != cpu) {
1454 wake_flags |= WF_MIGRATED;
e4a52bcb 1455 set_task_cpu(p, cpu);
f339b9dc 1456 }
1da177e4 1457#endif /* CONFIG_SMP */
1da177e4 1458
c05fbafb
PZ
1459 ttwu_queue(p, cpu);
1460stat:
b84cb5df 1461 ttwu_stat(p, cpu, wake_flags);
1da177e4 1462out:
013fdb80 1463 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1464
1465 return success;
1466}
1467
21aa9af0
TH
1468/**
1469 * try_to_wake_up_local - try to wake up a local task with rq lock held
1470 * @p: the thread to be awakened
1471 *
2acca55e 1472 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1473 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1474 * the current task.
21aa9af0
TH
1475 */
1476static void try_to_wake_up_local(struct task_struct *p)
1477{
1478 struct rq *rq = task_rq(p);
21aa9af0
TH
1479
1480 BUG_ON(rq != this_rq());
1481 BUG_ON(p == current);
1482 lockdep_assert_held(&rq->lock);
1483
2acca55e
PZ
1484 if (!raw_spin_trylock(&p->pi_lock)) {
1485 raw_spin_unlock(&rq->lock);
1486 raw_spin_lock(&p->pi_lock);
1487 raw_spin_lock(&rq->lock);
1488 }
1489
21aa9af0 1490 if (!(p->state & TASK_NORMAL))
2acca55e 1491 goto out;
21aa9af0 1492
fd2f4419 1493 if (!p->on_rq)
d7c01d27
PZ
1494 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1495
23f41eeb 1496 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1497 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1498out:
1499 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1500}
1501
50fa610a
DH
1502/**
1503 * wake_up_process - Wake up a specific process
1504 * @p: The process to be woken up.
1505 *
1506 * Attempt to wake up the nominated process and move it to the set of runnable
1507 * processes. Returns 1 if the process was woken up, 0 if it was already
1508 * running.
1509 *
1510 * It may be assumed that this function implies a write memory barrier before
1511 * changing the task state if and only if any tasks are woken up.
1512 */
7ad5b3a5 1513int wake_up_process(struct task_struct *p)
1da177e4 1514{
d9514f6c 1515 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1516}
1da177e4
LT
1517EXPORT_SYMBOL(wake_up_process);
1518
7ad5b3a5 1519int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1520{
1521 return try_to_wake_up(p, state, 0);
1522}
1523
1da177e4
LT
1524/*
1525 * Perform scheduler related setup for a newly forked process p.
1526 * p is forked by current.
dd41f596
IM
1527 *
1528 * __sched_fork() is basic setup used by init_idle() too:
1529 */
1530static void __sched_fork(struct task_struct *p)
1531{
fd2f4419
PZ
1532 p->on_rq = 0;
1533
1534 p->se.on_rq = 0;
dd41f596
IM
1535 p->se.exec_start = 0;
1536 p->se.sum_exec_runtime = 0;
f6cf891c 1537 p->se.prev_sum_exec_runtime = 0;
6c594c21 1538 p->se.nr_migrations = 0;
da7a735e 1539 p->se.vruntime = 0;
fd2f4419 1540 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1541
1542#ifdef CONFIG_SCHEDSTATS
41acab88 1543 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1544#endif
476d139c 1545
fa717060 1546 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1547
e107be36
AK
1548#ifdef CONFIG_PREEMPT_NOTIFIERS
1549 INIT_HLIST_HEAD(&p->preempt_notifiers);
1550#endif
dd41f596
IM
1551}
1552
1553/*
1554 * fork()/clone()-time setup:
1555 */
3e51e3ed 1556void sched_fork(struct task_struct *p)
dd41f596 1557{
0122ec5b 1558 unsigned long flags;
dd41f596
IM
1559 int cpu = get_cpu();
1560
1561 __sched_fork(p);
06b83b5f 1562 /*
0017d735 1563 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1564 * nobody will actually run it, and a signal or other external
1565 * event cannot wake it up and insert it on the runqueue either.
1566 */
0017d735 1567 p->state = TASK_RUNNING;
dd41f596 1568
c350a04e
MG
1569 /*
1570 * Make sure we do not leak PI boosting priority to the child.
1571 */
1572 p->prio = current->normal_prio;
1573
b9dc29e7
MG
1574 /*
1575 * Revert to default priority/policy on fork if requested.
1576 */
1577 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1578 if (task_has_rt_policy(p)) {
b9dc29e7 1579 p->policy = SCHED_NORMAL;
6c697bdf 1580 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1581 p->rt_priority = 0;
1582 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1583 p->static_prio = NICE_TO_PRIO(0);
1584
1585 p->prio = p->normal_prio = __normal_prio(p);
1586 set_load_weight(p);
6c697bdf 1587
b9dc29e7
MG
1588 /*
1589 * We don't need the reset flag anymore after the fork. It has
1590 * fulfilled its duty:
1591 */
1592 p->sched_reset_on_fork = 0;
1593 }
ca94c442 1594
2ddbf952
HS
1595 if (!rt_prio(p->prio))
1596 p->sched_class = &fair_sched_class;
b29739f9 1597
cd29fe6f
PZ
1598 if (p->sched_class->task_fork)
1599 p->sched_class->task_fork(p);
1600
86951599
PZ
1601 /*
1602 * The child is not yet in the pid-hash so no cgroup attach races,
1603 * and the cgroup is pinned to this child due to cgroup_fork()
1604 * is ran before sched_fork().
1605 *
1606 * Silence PROVE_RCU.
1607 */
0122ec5b 1608 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1609 set_task_cpu(p, cpu);
0122ec5b 1610 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1611
52f17b6c 1612#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1613 if (likely(sched_info_on()))
52f17b6c 1614 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1615#endif
3ca7a440
PZ
1616#if defined(CONFIG_SMP)
1617 p->on_cpu = 0;
4866cde0 1618#endif
bdd4e85d 1619#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1620 /* Want to start with kernel preemption disabled. */
a1261f54 1621 task_thread_info(p)->preempt_count = 1;
1da177e4 1622#endif
806c09a7 1623#ifdef CONFIG_SMP
917b627d 1624 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1625#endif
917b627d 1626
476d139c 1627 put_cpu();
1da177e4
LT
1628}
1629
1630/*
1631 * wake_up_new_task - wake up a newly created task for the first time.
1632 *
1633 * This function will do some initial scheduler statistics housekeeping
1634 * that must be done for every newly created context, then puts the task
1635 * on the runqueue and wakes it.
1636 */
3e51e3ed 1637void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1638{
1639 unsigned long flags;
dd41f596 1640 struct rq *rq;
fabf318e 1641
ab2515c4 1642 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1643#ifdef CONFIG_SMP
1644 /*
1645 * Fork balancing, do it here and not earlier because:
1646 * - cpus_allowed can change in the fork path
1647 * - any previously selected cpu might disappear through hotplug
fabf318e 1648 */
ab2515c4 1649 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1650#endif
1651
ab2515c4 1652 rq = __task_rq_lock(p);
cd29fe6f 1653 activate_task(rq, p, 0);
fd2f4419 1654 p->on_rq = 1;
89363381 1655 trace_sched_wakeup_new(p, true);
a7558e01 1656 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1657#ifdef CONFIG_SMP
efbbd05a
PZ
1658 if (p->sched_class->task_woken)
1659 p->sched_class->task_woken(rq, p);
9a897c5a 1660#endif
0122ec5b 1661 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1662}
1663
e107be36
AK
1664#ifdef CONFIG_PREEMPT_NOTIFIERS
1665
1666/**
80dd99b3 1667 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1668 * @notifier: notifier struct to register
e107be36
AK
1669 */
1670void preempt_notifier_register(struct preempt_notifier *notifier)
1671{
1672 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1673}
1674EXPORT_SYMBOL_GPL(preempt_notifier_register);
1675
1676/**
1677 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1678 * @notifier: notifier struct to unregister
e107be36
AK
1679 *
1680 * This is safe to call from within a preemption notifier.
1681 */
1682void preempt_notifier_unregister(struct preempt_notifier *notifier)
1683{
1684 hlist_del(&notifier->link);
1685}
1686EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1687
1688static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1689{
1690 struct preempt_notifier *notifier;
1691 struct hlist_node *node;
1692
1693 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1694 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1695}
1696
1697static void
1698fire_sched_out_preempt_notifiers(struct task_struct *curr,
1699 struct task_struct *next)
1700{
1701 struct preempt_notifier *notifier;
1702 struct hlist_node *node;
1703
1704 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1705 notifier->ops->sched_out(notifier, next);
1706}
1707
6d6bc0ad 1708#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1709
1710static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1711{
1712}
1713
1714static void
1715fire_sched_out_preempt_notifiers(struct task_struct *curr,
1716 struct task_struct *next)
1717{
1718}
1719
6d6bc0ad 1720#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1721
4866cde0
NP
1722/**
1723 * prepare_task_switch - prepare to switch tasks
1724 * @rq: the runqueue preparing to switch
421cee29 1725 * @prev: the current task that is being switched out
4866cde0
NP
1726 * @next: the task we are going to switch to.
1727 *
1728 * This is called with the rq lock held and interrupts off. It must
1729 * be paired with a subsequent finish_task_switch after the context
1730 * switch.
1731 *
1732 * prepare_task_switch sets up locking and calls architecture specific
1733 * hooks.
1734 */
e107be36
AK
1735static inline void
1736prepare_task_switch(struct rq *rq, struct task_struct *prev,
1737 struct task_struct *next)
4866cde0 1738{
895dd92c 1739 trace_sched_switch(prev, next);
fe4b04fa
PZ
1740 sched_info_switch(prev, next);
1741 perf_event_task_sched_out(prev, next);
e107be36 1742 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1743 prepare_lock_switch(rq, next);
1744 prepare_arch_switch(next);
1745}
1746
1da177e4
LT
1747/**
1748 * finish_task_switch - clean up after a task-switch
344babaa 1749 * @rq: runqueue associated with task-switch
1da177e4
LT
1750 * @prev: the thread we just switched away from.
1751 *
4866cde0
NP
1752 * finish_task_switch must be called after the context switch, paired
1753 * with a prepare_task_switch call before the context switch.
1754 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1755 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1756 *
1757 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1758 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1759 * with the lock held can cause deadlocks; see schedule() for
1760 * details.)
1761 */
a9957449 1762static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1763 __releases(rq->lock)
1764{
1da177e4 1765 struct mm_struct *mm = rq->prev_mm;
55a101f8 1766 long prev_state;
1da177e4
LT
1767
1768 rq->prev_mm = NULL;
1769
1770 /*
1771 * A task struct has one reference for the use as "current".
c394cc9f 1772 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1773 * schedule one last time. The schedule call will never return, and
1774 * the scheduled task must drop that reference.
c394cc9f 1775 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1776 * still held, otherwise prev could be scheduled on another cpu, die
1777 * there before we look at prev->state, and then the reference would
1778 * be dropped twice.
1779 * Manfred Spraul <manfred@colorfullife.com>
1780 */
55a101f8 1781 prev_state = prev->state;
bf9fae9f 1782 vtime_task_switch(prev);
4866cde0 1783 finish_arch_switch(prev);
a8d757ef 1784 perf_event_task_sched_in(prev, current);
4866cde0 1785 finish_lock_switch(rq, prev);
01f23e16 1786 finish_arch_post_lock_switch();
e8fa1362 1787
e107be36 1788 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1789 if (mm)
1790 mmdrop(mm);
c394cc9f 1791 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1792 /*
1793 * Remove function-return probe instances associated with this
1794 * task and put them back on the free list.
9761eea8 1795 */
c6fd91f0 1796 kprobe_flush_task(prev);
1da177e4 1797 put_task_struct(prev);
c6fd91f0 1798 }
1da177e4
LT
1799}
1800
3f029d3c
GH
1801#ifdef CONFIG_SMP
1802
1803/* assumes rq->lock is held */
1804static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1805{
1806 if (prev->sched_class->pre_schedule)
1807 prev->sched_class->pre_schedule(rq, prev);
1808}
1809
1810/* rq->lock is NOT held, but preemption is disabled */
1811static inline void post_schedule(struct rq *rq)
1812{
1813 if (rq->post_schedule) {
1814 unsigned long flags;
1815
05fa785c 1816 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1817 if (rq->curr->sched_class->post_schedule)
1818 rq->curr->sched_class->post_schedule(rq);
05fa785c 1819 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1820
1821 rq->post_schedule = 0;
1822 }
1823}
1824
1825#else
da19ab51 1826
3f029d3c
GH
1827static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1828{
1829}
1830
1831static inline void post_schedule(struct rq *rq)
1832{
1da177e4
LT
1833}
1834
3f029d3c
GH
1835#endif
1836
1da177e4
LT
1837/**
1838 * schedule_tail - first thing a freshly forked thread must call.
1839 * @prev: the thread we just switched away from.
1840 */
36c8b586 1841asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1842 __releases(rq->lock)
1843{
70b97a7f
IM
1844 struct rq *rq = this_rq();
1845
4866cde0 1846 finish_task_switch(rq, prev);
da19ab51 1847
3f029d3c
GH
1848 /*
1849 * FIXME: do we need to worry about rq being invalidated by the
1850 * task_switch?
1851 */
1852 post_schedule(rq);
70b97a7f 1853
4866cde0
NP
1854#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1855 /* In this case, finish_task_switch does not reenable preemption */
1856 preempt_enable();
1857#endif
1da177e4 1858 if (current->set_child_tid)
b488893a 1859 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1860}
1861
1862/*
1863 * context_switch - switch to the new MM and the new
1864 * thread's register state.
1865 */
dd41f596 1866static inline void
70b97a7f 1867context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1868 struct task_struct *next)
1da177e4 1869{
dd41f596 1870 struct mm_struct *mm, *oldmm;
1da177e4 1871
e107be36 1872 prepare_task_switch(rq, prev, next);
fe4b04fa 1873
dd41f596
IM
1874 mm = next->mm;
1875 oldmm = prev->active_mm;
9226d125
ZA
1876 /*
1877 * For paravirt, this is coupled with an exit in switch_to to
1878 * combine the page table reload and the switch backend into
1879 * one hypercall.
1880 */
224101ed 1881 arch_start_context_switch(prev);
9226d125 1882
31915ab4 1883 if (!mm) {
1da177e4
LT
1884 next->active_mm = oldmm;
1885 atomic_inc(&oldmm->mm_count);
1886 enter_lazy_tlb(oldmm, next);
1887 } else
1888 switch_mm(oldmm, mm, next);
1889
31915ab4 1890 if (!prev->mm) {
1da177e4 1891 prev->active_mm = NULL;
1da177e4
LT
1892 rq->prev_mm = oldmm;
1893 }
3a5f5e48
IM
1894 /*
1895 * Since the runqueue lock will be released by the next
1896 * task (which is an invalid locking op but in the case
1897 * of the scheduler it's an obvious special-case), so we
1898 * do an early lockdep release here:
1899 */
1900#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1901 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1902#endif
1da177e4
LT
1903
1904 /* Here we just switch the register state and the stack. */
04e7e951 1905 rcu_switch(prev, next);
1da177e4
LT
1906 switch_to(prev, next, prev);
1907
dd41f596
IM
1908 barrier();
1909 /*
1910 * this_rq must be evaluated again because prev may have moved
1911 * CPUs since it called schedule(), thus the 'rq' on its stack
1912 * frame will be invalid.
1913 */
1914 finish_task_switch(this_rq(), prev);
1da177e4
LT
1915}
1916
1917/*
1918 * nr_running, nr_uninterruptible and nr_context_switches:
1919 *
1920 * externally visible scheduler statistics: current number of runnable
1921 * threads, current number of uninterruptible-sleeping threads, total
1922 * number of context switches performed since bootup.
1923 */
1924unsigned long nr_running(void)
1925{
1926 unsigned long i, sum = 0;
1927
1928 for_each_online_cpu(i)
1929 sum += cpu_rq(i)->nr_running;
1930
1931 return sum;
f711f609 1932}
1da177e4
LT
1933
1934unsigned long nr_uninterruptible(void)
f711f609 1935{
1da177e4 1936 unsigned long i, sum = 0;
f711f609 1937
0a945022 1938 for_each_possible_cpu(i)
1da177e4 1939 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
1940
1941 /*
1da177e4
LT
1942 * Since we read the counters lockless, it might be slightly
1943 * inaccurate. Do not allow it to go below zero though:
f711f609 1944 */
1da177e4
LT
1945 if (unlikely((long)sum < 0))
1946 sum = 0;
f711f609 1947
1da177e4 1948 return sum;
f711f609 1949}
f711f609 1950
1da177e4 1951unsigned long long nr_context_switches(void)
46cb4b7c 1952{
cc94abfc
SR
1953 int i;
1954 unsigned long long sum = 0;
46cb4b7c 1955
0a945022 1956 for_each_possible_cpu(i)
1da177e4 1957 sum += cpu_rq(i)->nr_switches;
46cb4b7c 1958
1da177e4
LT
1959 return sum;
1960}
483b4ee6 1961
1da177e4
LT
1962unsigned long nr_iowait(void)
1963{
1964 unsigned long i, sum = 0;
483b4ee6 1965
0a945022 1966 for_each_possible_cpu(i)
1da177e4 1967 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 1968
1da177e4
LT
1969 return sum;
1970}
483b4ee6 1971
8c215bd3 1972unsigned long nr_iowait_cpu(int cpu)
69d25870 1973{
8c215bd3 1974 struct rq *this = cpu_rq(cpu);
69d25870
AV
1975 return atomic_read(&this->nr_iowait);
1976}
46cb4b7c 1977
69d25870
AV
1978unsigned long this_cpu_load(void)
1979{
1980 struct rq *this = this_rq();
1981 return this->cpu_load[0];
1982}
e790fb0b 1983
46cb4b7c 1984
5167e8d5
PZ
1985/*
1986 * Global load-average calculations
1987 *
1988 * We take a distributed and async approach to calculating the global load-avg
1989 * in order to minimize overhead.
1990 *
1991 * The global load average is an exponentially decaying average of nr_running +
1992 * nr_uninterruptible.
1993 *
1994 * Once every LOAD_FREQ:
1995 *
1996 * nr_active = 0;
1997 * for_each_possible_cpu(cpu)
1998 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
1999 *
2000 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2001 *
2002 * Due to a number of reasons the above turns in the mess below:
2003 *
2004 * - for_each_possible_cpu() is prohibitively expensive on machines with
2005 * serious number of cpus, therefore we need to take a distributed approach
2006 * to calculating nr_active.
2007 *
2008 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2009 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2010 *
2011 * So assuming nr_active := 0 when we start out -- true per definition, we
2012 * can simply take per-cpu deltas and fold those into a global accumulate
2013 * to obtain the same result. See calc_load_fold_active().
2014 *
2015 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2016 * across the machine, we assume 10 ticks is sufficient time for every
2017 * cpu to have completed this task.
2018 *
2019 * This places an upper-bound on the IRQ-off latency of the machine. Then
2020 * again, being late doesn't loose the delta, just wrecks the sample.
2021 *
2022 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2023 * this would add another cross-cpu cacheline miss and atomic operation
2024 * to the wakeup path. Instead we increment on whatever cpu the task ran
2025 * when it went into uninterruptible state and decrement on whatever cpu
2026 * did the wakeup. This means that only the sum of nr_uninterruptible over
2027 * all cpus yields the correct result.
2028 *
2029 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2030 */
2031
dce48a84
TG
2032/* Variables and functions for calc_load */
2033static atomic_long_t calc_load_tasks;
2034static unsigned long calc_load_update;
2035unsigned long avenrun[3];
5167e8d5
PZ
2036EXPORT_SYMBOL(avenrun); /* should be removed */
2037
2038/**
2039 * get_avenrun - get the load average array
2040 * @loads: pointer to dest load array
2041 * @offset: offset to add
2042 * @shift: shift count to shift the result left
2043 *
2044 * These values are estimates at best, so no need for locking.
2045 */
2046void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2047{
2048 loads[0] = (avenrun[0] + offset) << shift;
2049 loads[1] = (avenrun[1] + offset) << shift;
2050 loads[2] = (avenrun[2] + offset) << shift;
2051}
46cb4b7c 2052
74f5187a
PZ
2053static long calc_load_fold_active(struct rq *this_rq)
2054{
2055 long nr_active, delta = 0;
2056
2057 nr_active = this_rq->nr_running;
2058 nr_active += (long) this_rq->nr_uninterruptible;
2059
2060 if (nr_active != this_rq->calc_load_active) {
2061 delta = nr_active - this_rq->calc_load_active;
2062 this_rq->calc_load_active = nr_active;
2063 }
2064
2065 return delta;
2066}
2067
5167e8d5
PZ
2068/*
2069 * a1 = a0 * e + a * (1 - e)
2070 */
0f004f5a
PZ
2071static unsigned long
2072calc_load(unsigned long load, unsigned long exp, unsigned long active)
2073{
2074 load *= exp;
2075 load += active * (FIXED_1 - exp);
2076 load += 1UL << (FSHIFT - 1);
2077 return load >> FSHIFT;
2078}
2079
74f5187a
PZ
2080#ifdef CONFIG_NO_HZ
2081/*
5167e8d5
PZ
2082 * Handle NO_HZ for the global load-average.
2083 *
2084 * Since the above described distributed algorithm to compute the global
2085 * load-average relies on per-cpu sampling from the tick, it is affected by
2086 * NO_HZ.
2087 *
2088 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2089 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2090 * when we read the global state.
2091 *
2092 * Obviously reality has to ruin such a delightfully simple scheme:
2093 *
2094 * - When we go NO_HZ idle during the window, we can negate our sample
2095 * contribution, causing under-accounting.
2096 *
2097 * We avoid this by keeping two idle-delta counters and flipping them
2098 * when the window starts, thus separating old and new NO_HZ load.
2099 *
2100 * The only trick is the slight shift in index flip for read vs write.
2101 *
2102 * 0s 5s 10s 15s
2103 * +10 +10 +10 +10
2104 * |-|-----------|-|-----------|-|-----------|-|
2105 * r:0 0 1 1 0 0 1 1 0
2106 * w:0 1 1 0 0 1 1 0 0
2107 *
2108 * This ensures we'll fold the old idle contribution in this window while
2109 * accumlating the new one.
2110 *
2111 * - When we wake up from NO_HZ idle during the window, we push up our
2112 * contribution, since we effectively move our sample point to a known
2113 * busy state.
2114 *
2115 * This is solved by pushing the window forward, and thus skipping the
2116 * sample, for this cpu (effectively using the idle-delta for this cpu which
2117 * was in effect at the time the window opened). This also solves the issue
2118 * of having to deal with a cpu having been in NOHZ idle for multiple
2119 * LOAD_FREQ intervals.
74f5187a
PZ
2120 *
2121 * When making the ILB scale, we should try to pull this in as well.
2122 */
5167e8d5
PZ
2123static atomic_long_t calc_load_idle[2];
2124static int calc_load_idx;
74f5187a 2125
5167e8d5 2126static inline int calc_load_write_idx(void)
74f5187a 2127{
5167e8d5
PZ
2128 int idx = calc_load_idx;
2129
2130 /*
2131 * See calc_global_nohz(), if we observe the new index, we also
2132 * need to observe the new update time.
2133 */
2134 smp_rmb();
2135
2136 /*
2137 * If the folding window started, make sure we start writing in the
2138 * next idle-delta.
2139 */
2140 if (!time_before(jiffies, calc_load_update))
2141 idx++;
2142
2143 return idx & 1;
2144}
2145
2146static inline int calc_load_read_idx(void)
2147{
2148 return calc_load_idx & 1;
2149}
2150
2151void calc_load_enter_idle(void)
2152{
2153 struct rq *this_rq = this_rq();
74f5187a
PZ
2154 long delta;
2155
5167e8d5
PZ
2156 /*
2157 * We're going into NOHZ mode, if there's any pending delta, fold it
2158 * into the pending idle delta.
2159 */
74f5187a 2160 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2161 if (delta) {
2162 int idx = calc_load_write_idx();
2163 atomic_long_add(delta, &calc_load_idle[idx]);
2164 }
74f5187a
PZ
2165}
2166
5167e8d5 2167void calc_load_exit_idle(void)
74f5187a 2168{
5167e8d5
PZ
2169 struct rq *this_rq = this_rq();
2170
2171 /*
2172 * If we're still before the sample window, we're done.
2173 */
2174 if (time_before(jiffies, this_rq->calc_load_update))
2175 return;
74f5187a
PZ
2176
2177 /*
5167e8d5
PZ
2178 * We woke inside or after the sample window, this means we're already
2179 * accounted through the nohz accounting, so skip the entire deal and
2180 * sync up for the next window.
74f5187a 2181 */
5167e8d5
PZ
2182 this_rq->calc_load_update = calc_load_update;
2183 if (time_before(jiffies, this_rq->calc_load_update + 10))
2184 this_rq->calc_load_update += LOAD_FREQ;
2185}
2186
2187static long calc_load_fold_idle(void)
2188{
2189 int idx = calc_load_read_idx();
2190 long delta = 0;
2191
2192 if (atomic_long_read(&calc_load_idle[idx]))
2193 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2194
2195 return delta;
2196}
0f004f5a
PZ
2197
2198/**
2199 * fixed_power_int - compute: x^n, in O(log n) time
2200 *
2201 * @x: base of the power
2202 * @frac_bits: fractional bits of @x
2203 * @n: power to raise @x to.
2204 *
2205 * By exploiting the relation between the definition of the natural power
2206 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2207 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2208 * (where: n_i \elem {0, 1}, the binary vector representing n),
2209 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2210 * of course trivially computable in O(log_2 n), the length of our binary
2211 * vector.
2212 */
2213static unsigned long
2214fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2215{
2216 unsigned long result = 1UL << frac_bits;
2217
2218 if (n) for (;;) {
2219 if (n & 1) {
2220 result *= x;
2221 result += 1UL << (frac_bits - 1);
2222 result >>= frac_bits;
2223 }
2224 n >>= 1;
2225 if (!n)
2226 break;
2227 x *= x;
2228 x += 1UL << (frac_bits - 1);
2229 x >>= frac_bits;
2230 }
2231
2232 return result;
2233}
2234
2235/*
2236 * a1 = a0 * e + a * (1 - e)
2237 *
2238 * a2 = a1 * e + a * (1 - e)
2239 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2240 * = a0 * e^2 + a * (1 - e) * (1 + e)
2241 *
2242 * a3 = a2 * e + a * (1 - e)
2243 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2244 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2245 *
2246 * ...
2247 *
2248 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2249 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2250 * = a0 * e^n + a * (1 - e^n)
2251 *
2252 * [1] application of the geometric series:
2253 *
2254 * n 1 - x^(n+1)
2255 * S_n := \Sum x^i = -------------
2256 * i=0 1 - x
2257 */
2258static unsigned long
2259calc_load_n(unsigned long load, unsigned long exp,
2260 unsigned long active, unsigned int n)
2261{
2262
2263 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2264}
2265
2266/*
2267 * NO_HZ can leave us missing all per-cpu ticks calling
2268 * calc_load_account_active(), but since an idle CPU folds its delta into
2269 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2270 * in the pending idle delta if our idle period crossed a load cycle boundary.
2271 *
2272 * Once we've updated the global active value, we need to apply the exponential
2273 * weights adjusted to the number of cycles missed.
2274 */
c308b56b 2275static void calc_global_nohz(void)
0f004f5a
PZ
2276{
2277 long delta, active, n;
2278
5167e8d5
PZ
2279 if (!time_before(jiffies, calc_load_update + 10)) {
2280 /*
2281 * Catch-up, fold however many we are behind still
2282 */
2283 delta = jiffies - calc_load_update - 10;
2284 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2285
5167e8d5
PZ
2286 active = atomic_long_read(&calc_load_tasks);
2287 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2288
5167e8d5
PZ
2289 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2290 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2291 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2292
5167e8d5
PZ
2293 calc_load_update += n * LOAD_FREQ;
2294 }
74f5187a 2295
5167e8d5
PZ
2296 /*
2297 * Flip the idle index...
2298 *
2299 * Make sure we first write the new time then flip the index, so that
2300 * calc_load_write_idx() will see the new time when it reads the new
2301 * index, this avoids a double flip messing things up.
2302 */
2303 smp_wmb();
2304 calc_load_idx++;
74f5187a 2305}
5167e8d5 2306#else /* !CONFIG_NO_HZ */
0f004f5a 2307
5167e8d5
PZ
2308static inline long calc_load_fold_idle(void) { return 0; }
2309static inline void calc_global_nohz(void) { }
74f5187a 2310
5167e8d5 2311#endif /* CONFIG_NO_HZ */
46cb4b7c 2312
46cb4b7c 2313/*
dce48a84
TG
2314 * calc_load - update the avenrun load estimates 10 ticks after the
2315 * CPUs have updated calc_load_tasks.
7835b98b 2316 */
0f004f5a 2317void calc_global_load(unsigned long ticks)
7835b98b 2318{
5167e8d5 2319 long active, delta;
1da177e4 2320
0f004f5a 2321 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2322 return;
1da177e4 2323
5167e8d5
PZ
2324 /*
2325 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2326 */
2327 delta = calc_load_fold_idle();
2328 if (delta)
2329 atomic_long_add(delta, &calc_load_tasks);
2330
dce48a84
TG
2331 active = atomic_long_read(&calc_load_tasks);
2332 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2333
dce48a84
TG
2334 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2335 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2336 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2337
dce48a84 2338 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2339
2340 /*
5167e8d5 2341 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2342 */
2343 calc_global_nohz();
dce48a84 2344}
1da177e4 2345
dce48a84 2346/*
74f5187a
PZ
2347 * Called from update_cpu_load() to periodically update this CPU's
2348 * active count.
dce48a84
TG
2349 */
2350static void calc_load_account_active(struct rq *this_rq)
2351{
74f5187a 2352 long delta;
08c183f3 2353
74f5187a
PZ
2354 if (time_before(jiffies, this_rq->calc_load_update))
2355 return;
783609c6 2356
74f5187a 2357 delta = calc_load_fold_active(this_rq);
74f5187a 2358 if (delta)
dce48a84 2359 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2360
2361 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2362}
2363
5167e8d5
PZ
2364/*
2365 * End of global load-average stuff
2366 */
2367
fdf3e95d
VP
2368/*
2369 * The exact cpuload at various idx values, calculated at every tick would be
2370 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2371 *
2372 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2373 * on nth tick when cpu may be busy, then we have:
2374 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2375 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2376 *
2377 * decay_load_missed() below does efficient calculation of
2378 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2379 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2380 *
2381 * The calculation is approximated on a 128 point scale.
2382 * degrade_zero_ticks is the number of ticks after which load at any
2383 * particular idx is approximated to be zero.
2384 * degrade_factor is a precomputed table, a row for each load idx.
2385 * Each column corresponds to degradation factor for a power of two ticks,
2386 * based on 128 point scale.
2387 * Example:
2388 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2389 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2390 *
2391 * With this power of 2 load factors, we can degrade the load n times
2392 * by looking at 1 bits in n and doing as many mult/shift instead of
2393 * n mult/shifts needed by the exact degradation.
2394 */
2395#define DEGRADE_SHIFT 7
2396static const unsigned char
2397 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2398static const unsigned char
2399 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2400 {0, 0, 0, 0, 0, 0, 0, 0},
2401 {64, 32, 8, 0, 0, 0, 0, 0},
2402 {96, 72, 40, 12, 1, 0, 0},
2403 {112, 98, 75, 43, 15, 1, 0},
2404 {120, 112, 98, 76, 45, 16, 2} };
2405
2406/*
2407 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2408 * would be when CPU is idle and so we just decay the old load without
2409 * adding any new load.
2410 */
2411static unsigned long
2412decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2413{
2414 int j = 0;
2415
2416 if (!missed_updates)
2417 return load;
2418
2419 if (missed_updates >= degrade_zero_ticks[idx])
2420 return 0;
2421
2422 if (idx == 1)
2423 return load >> missed_updates;
2424
2425 while (missed_updates) {
2426 if (missed_updates % 2)
2427 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2428
2429 missed_updates >>= 1;
2430 j++;
2431 }
2432 return load;
2433}
2434
46cb4b7c 2435/*
dd41f596 2436 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2437 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2438 * every tick. We fix it up based on jiffies.
46cb4b7c 2439 */
556061b0
PZ
2440static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2441 unsigned long pending_updates)
46cb4b7c 2442{
dd41f596 2443 int i, scale;
46cb4b7c 2444
dd41f596 2445 this_rq->nr_load_updates++;
46cb4b7c 2446
dd41f596 2447 /* Update our load: */
fdf3e95d
VP
2448 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2449 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2450 unsigned long old_load, new_load;
7d1e6a9b 2451
dd41f596 2452 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2453
dd41f596 2454 old_load = this_rq->cpu_load[i];
fdf3e95d 2455 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2456 new_load = this_load;
a25707f3
IM
2457 /*
2458 * Round up the averaging division if load is increasing. This
2459 * prevents us from getting stuck on 9 if the load is 10, for
2460 * example.
2461 */
2462 if (new_load > old_load)
fdf3e95d
VP
2463 new_load += scale - 1;
2464
2465 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2466 }
da2b71ed
SS
2467
2468 sched_avg_update(this_rq);
fdf3e95d
VP
2469}
2470
5aaa0b7a
PZ
2471#ifdef CONFIG_NO_HZ
2472/*
2473 * There is no sane way to deal with nohz on smp when using jiffies because the
2474 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2475 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2476 *
2477 * Therefore we cannot use the delta approach from the regular tick since that
2478 * would seriously skew the load calculation. However we'll make do for those
2479 * updates happening while idle (nohz_idle_balance) or coming out of idle
2480 * (tick_nohz_idle_exit).
2481 *
2482 * This means we might still be one tick off for nohz periods.
2483 */
2484
556061b0
PZ
2485/*
2486 * Called from nohz_idle_balance() to update the load ratings before doing the
2487 * idle balance.
2488 */
2489void update_idle_cpu_load(struct rq *this_rq)
2490{
5aaa0b7a 2491 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2492 unsigned long load = this_rq->load.weight;
2493 unsigned long pending_updates;
2494
2495 /*
5aaa0b7a 2496 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2497 */
2498 if (load || curr_jiffies == this_rq->last_load_update_tick)
2499 return;
2500
2501 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2502 this_rq->last_load_update_tick = curr_jiffies;
2503
2504 __update_cpu_load(this_rq, load, pending_updates);
2505}
2506
5aaa0b7a
PZ
2507/*
2508 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2509 */
2510void update_cpu_load_nohz(void)
2511{
2512 struct rq *this_rq = this_rq();
2513 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2514 unsigned long pending_updates;
2515
2516 if (curr_jiffies == this_rq->last_load_update_tick)
2517 return;
2518
2519 raw_spin_lock(&this_rq->lock);
2520 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2521 if (pending_updates) {
2522 this_rq->last_load_update_tick = curr_jiffies;
2523 /*
2524 * We were idle, this means load 0, the current load might be
2525 * !0 due to remote wakeups and the sort.
2526 */
2527 __update_cpu_load(this_rq, 0, pending_updates);
2528 }
2529 raw_spin_unlock(&this_rq->lock);
2530}
2531#endif /* CONFIG_NO_HZ */
2532
556061b0
PZ
2533/*
2534 * Called from scheduler_tick()
2535 */
fdf3e95d
VP
2536static void update_cpu_load_active(struct rq *this_rq)
2537{
556061b0 2538 /*
5aaa0b7a 2539 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2540 */
2541 this_rq->last_load_update_tick = jiffies;
2542 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2543
74f5187a 2544 calc_load_account_active(this_rq);
46cb4b7c
SS
2545}
2546
dd41f596 2547#ifdef CONFIG_SMP
8a0be9ef 2548
46cb4b7c 2549/*
38022906
PZ
2550 * sched_exec - execve() is a valuable balancing opportunity, because at
2551 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2552 */
38022906 2553void sched_exec(void)
46cb4b7c 2554{
38022906 2555 struct task_struct *p = current;
1da177e4 2556 unsigned long flags;
0017d735 2557 int dest_cpu;
46cb4b7c 2558
8f42ced9 2559 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2560 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2561 if (dest_cpu == smp_processor_id())
2562 goto unlock;
38022906 2563
8f42ced9 2564 if (likely(cpu_active(dest_cpu))) {
969c7921 2565 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2566
8f42ced9
PZ
2567 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2568 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2569 return;
2570 }
0017d735 2571unlock:
8f42ced9 2572 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2573}
dd41f596 2574
1da177e4
LT
2575#endif
2576
1da177e4 2577DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2578DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2579
2580EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2581EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2582
2583/*
c5f8d995 2584 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2585 * @p in case that task is currently running.
c5f8d995
HS
2586 *
2587 * Called with task_rq_lock() held on @rq.
1da177e4 2588 */
c5f8d995
HS
2589static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2590{
2591 u64 ns = 0;
2592
2593 if (task_current(rq, p)) {
2594 update_rq_clock(rq);
305e6835 2595 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2596 if ((s64)ns < 0)
2597 ns = 0;
2598 }
2599
2600 return ns;
2601}
2602
bb34d92f 2603unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2604{
1da177e4 2605 unsigned long flags;
41b86e9c 2606 struct rq *rq;
bb34d92f 2607 u64 ns = 0;
48f24c4d 2608
41b86e9c 2609 rq = task_rq_lock(p, &flags);
c5f8d995 2610 ns = do_task_delta_exec(p, rq);
0122ec5b 2611 task_rq_unlock(rq, p, &flags);
1508487e 2612
c5f8d995
HS
2613 return ns;
2614}
f06febc9 2615
c5f8d995
HS
2616/*
2617 * Return accounted runtime for the task.
2618 * In case the task is currently running, return the runtime plus current's
2619 * pending runtime that have not been accounted yet.
2620 */
2621unsigned long long task_sched_runtime(struct task_struct *p)
2622{
2623 unsigned long flags;
2624 struct rq *rq;
2625 u64 ns = 0;
2626
2627 rq = task_rq_lock(p, &flags);
2628 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2629 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2630
2631 return ns;
2632}
48f24c4d 2633
7835b98b
CL
2634/*
2635 * This function gets called by the timer code, with HZ frequency.
2636 * We call it with interrupts disabled.
7835b98b
CL
2637 */
2638void scheduler_tick(void)
2639{
7835b98b
CL
2640 int cpu = smp_processor_id();
2641 struct rq *rq = cpu_rq(cpu);
dd41f596 2642 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2643
2644 sched_clock_tick();
dd41f596 2645
05fa785c 2646 raw_spin_lock(&rq->lock);
3e51f33f 2647 update_rq_clock(rq);
fdf3e95d 2648 update_cpu_load_active(rq);
fa85ae24 2649 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2650 raw_spin_unlock(&rq->lock);
7835b98b 2651
e9d2b064 2652 perf_event_task_tick();
e220d2dc 2653
e418e1c2 2654#ifdef CONFIG_SMP
6eb57e0d 2655 rq->idle_balance = idle_cpu(cpu);
dd41f596 2656 trigger_load_balance(rq, cpu);
e418e1c2 2657#endif
1da177e4
LT
2658}
2659
132380a0 2660notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2661{
2662 if (in_lock_functions(addr)) {
2663 addr = CALLER_ADDR2;
2664 if (in_lock_functions(addr))
2665 addr = CALLER_ADDR3;
2666 }
2667 return addr;
2668}
1da177e4 2669
7e49fcce
SR
2670#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2671 defined(CONFIG_PREEMPT_TRACER))
2672
43627582 2673void __kprobes add_preempt_count(int val)
1da177e4 2674{
6cd8a4bb 2675#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2676 /*
2677 * Underflow?
2678 */
9a11b49a
IM
2679 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2680 return;
6cd8a4bb 2681#endif
1da177e4 2682 preempt_count() += val;
6cd8a4bb 2683#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2684 /*
2685 * Spinlock count overflowing soon?
2686 */
33859f7f
MOS
2687 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2688 PREEMPT_MASK - 10);
6cd8a4bb
SR
2689#endif
2690 if (preempt_count() == val)
2691 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2692}
2693EXPORT_SYMBOL(add_preempt_count);
2694
43627582 2695void __kprobes sub_preempt_count(int val)
1da177e4 2696{
6cd8a4bb 2697#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2698 /*
2699 * Underflow?
2700 */
01e3eb82 2701 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2702 return;
1da177e4
LT
2703 /*
2704 * Is the spinlock portion underflowing?
2705 */
9a11b49a
IM
2706 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2707 !(preempt_count() & PREEMPT_MASK)))
2708 return;
6cd8a4bb 2709#endif
9a11b49a 2710
6cd8a4bb
SR
2711 if (preempt_count() == val)
2712 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2713 preempt_count() -= val;
2714}
2715EXPORT_SYMBOL(sub_preempt_count);
2716
2717#endif
2718
2719/*
dd41f596 2720 * Print scheduling while atomic bug:
1da177e4 2721 */
dd41f596 2722static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2723{
664dfa65
DJ
2724 if (oops_in_progress)
2725 return;
2726
3df0fc5b
PZ
2727 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2728 prev->comm, prev->pid, preempt_count());
838225b4 2729
dd41f596 2730 debug_show_held_locks(prev);
e21f5b15 2731 print_modules();
dd41f596
IM
2732 if (irqs_disabled())
2733 print_irqtrace_events(prev);
6135fc1e 2734 dump_stack();
1c2927f1 2735 add_taint(TAINT_WARN);
dd41f596 2736}
1da177e4 2737
dd41f596
IM
2738/*
2739 * Various schedule()-time debugging checks and statistics:
2740 */
2741static inline void schedule_debug(struct task_struct *prev)
2742{
1da177e4 2743 /*
41a2d6cf 2744 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2745 * schedule() atomically, we ignore that path for now.
2746 * Otherwise, whine if we are scheduling when we should not be.
2747 */
3f33a7ce 2748 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2749 __schedule_bug(prev);
b3fbab05 2750 rcu_sleep_check();
dd41f596 2751
1da177e4
LT
2752 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2753
2d72376b 2754 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2755}
2756
6cecd084 2757static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2758{
61eadef6 2759 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2760 update_rq_clock(rq);
6cecd084 2761 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2762}
2763
dd41f596
IM
2764/*
2765 * Pick up the highest-prio task:
2766 */
2767static inline struct task_struct *
b67802ea 2768pick_next_task(struct rq *rq)
dd41f596 2769{
5522d5d5 2770 const struct sched_class *class;
dd41f596 2771 struct task_struct *p;
1da177e4
LT
2772
2773 /*
dd41f596
IM
2774 * Optimization: we know that if all tasks are in
2775 * the fair class we can call that function directly:
1da177e4 2776 */
953bfcd1 2777 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2778 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2779 if (likely(p))
2780 return p;
1da177e4
LT
2781 }
2782
34f971f6 2783 for_each_class(class) {
fb8d4724 2784 p = class->pick_next_task(rq);
dd41f596
IM
2785 if (p)
2786 return p;
dd41f596 2787 }
34f971f6
PZ
2788
2789 BUG(); /* the idle class will always have a runnable task */
dd41f596 2790}
1da177e4 2791
dd41f596 2792/*
c259e01a 2793 * __schedule() is the main scheduler function.
edde96ea
PE
2794 *
2795 * The main means of driving the scheduler and thus entering this function are:
2796 *
2797 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2798 *
2799 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2800 * paths. For example, see arch/x86/entry_64.S.
2801 *
2802 * To drive preemption between tasks, the scheduler sets the flag in timer
2803 * interrupt handler scheduler_tick().
2804 *
2805 * 3. Wakeups don't really cause entry into schedule(). They add a
2806 * task to the run-queue and that's it.
2807 *
2808 * Now, if the new task added to the run-queue preempts the current
2809 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2810 * called on the nearest possible occasion:
2811 *
2812 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2813 *
2814 * - in syscall or exception context, at the next outmost
2815 * preempt_enable(). (this might be as soon as the wake_up()'s
2816 * spin_unlock()!)
2817 *
2818 * - in IRQ context, return from interrupt-handler to
2819 * preemptible context
2820 *
2821 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2822 * then at the next:
2823 *
2824 * - cond_resched() call
2825 * - explicit schedule() call
2826 * - return from syscall or exception to user-space
2827 * - return from interrupt-handler to user-space
dd41f596 2828 */
c259e01a 2829static void __sched __schedule(void)
dd41f596
IM
2830{
2831 struct task_struct *prev, *next;
67ca7bde 2832 unsigned long *switch_count;
dd41f596 2833 struct rq *rq;
31656519 2834 int cpu;
dd41f596 2835
ff743345
PZ
2836need_resched:
2837 preempt_disable();
dd41f596
IM
2838 cpu = smp_processor_id();
2839 rq = cpu_rq(cpu);
25502a6c 2840 rcu_note_context_switch(cpu);
dd41f596 2841 prev = rq->curr;
dd41f596 2842
dd41f596 2843 schedule_debug(prev);
1da177e4 2844
31656519 2845 if (sched_feat(HRTICK))
f333fdc9 2846 hrtick_clear(rq);
8f4d37ec 2847
05fa785c 2848 raw_spin_lock_irq(&rq->lock);
1da177e4 2849
246d86b5 2850 switch_count = &prev->nivcsw;
1da177e4 2851 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2852 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2853 prev->state = TASK_RUNNING;
21aa9af0 2854 } else {
2acca55e
PZ
2855 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2856 prev->on_rq = 0;
2857
21aa9af0 2858 /*
2acca55e
PZ
2859 * If a worker went to sleep, notify and ask workqueue
2860 * whether it wants to wake up a task to maintain
2861 * concurrency.
21aa9af0
TH
2862 */
2863 if (prev->flags & PF_WQ_WORKER) {
2864 struct task_struct *to_wakeup;
2865
2866 to_wakeup = wq_worker_sleeping(prev, cpu);
2867 if (to_wakeup)
2868 try_to_wake_up_local(to_wakeup);
2869 }
21aa9af0 2870 }
dd41f596 2871 switch_count = &prev->nvcsw;
1da177e4
LT
2872 }
2873
3f029d3c 2874 pre_schedule(rq, prev);
f65eda4f 2875
dd41f596 2876 if (unlikely(!rq->nr_running))
1da177e4 2877 idle_balance(cpu, rq);
1da177e4 2878
df1c99d4 2879 put_prev_task(rq, prev);
b67802ea 2880 next = pick_next_task(rq);
f26f9aff
MG
2881 clear_tsk_need_resched(prev);
2882 rq->skip_clock_update = 0;
1da177e4 2883
1da177e4 2884 if (likely(prev != next)) {
1da177e4
LT
2885 rq->nr_switches++;
2886 rq->curr = next;
2887 ++*switch_count;
2888
dd41f596 2889 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2890 /*
246d86b5
ON
2891 * The context switch have flipped the stack from under us
2892 * and restored the local variables which were saved when
2893 * this task called schedule() in the past. prev == current
2894 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2895 */
2896 cpu = smp_processor_id();
2897 rq = cpu_rq(cpu);
1da177e4 2898 } else
05fa785c 2899 raw_spin_unlock_irq(&rq->lock);
1da177e4 2900
3f029d3c 2901 post_schedule(rq);
1da177e4 2902
ba74c144 2903 sched_preempt_enable_no_resched();
ff743345 2904 if (need_resched())
1da177e4
LT
2905 goto need_resched;
2906}
c259e01a 2907
9c40cef2
TG
2908static inline void sched_submit_work(struct task_struct *tsk)
2909{
3c7d5184 2910 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2911 return;
2912 /*
2913 * If we are going to sleep and we have plugged IO queued,
2914 * make sure to submit it to avoid deadlocks.
2915 */
2916 if (blk_needs_flush_plug(tsk))
2917 blk_schedule_flush_plug(tsk);
2918}
2919
6ebbe7a0 2920asmlinkage void __sched schedule(void)
c259e01a 2921{
9c40cef2
TG
2922 struct task_struct *tsk = current;
2923
2924 sched_submit_work(tsk);
c259e01a
TG
2925 __schedule();
2926}
1da177e4
LT
2927EXPORT_SYMBOL(schedule);
2928
20ab65e3
FW
2929#ifdef CONFIG_RCU_USER_QS
2930asmlinkage void __sched schedule_user(void)
2931{
2932 /*
2933 * If we come here after a random call to set_need_resched(),
2934 * or we have been woken up remotely but the IPI has not yet arrived,
2935 * we haven't yet exited the RCU idle mode. Do it here manually until
2936 * we find a better solution.
2937 */
2938 rcu_user_exit();
2939 schedule();
2940 rcu_user_enter();
2941}
2942#endif
2943
c5491ea7
TG
2944/**
2945 * schedule_preempt_disabled - called with preemption disabled
2946 *
2947 * Returns with preemption disabled. Note: preempt_count must be 1
2948 */
2949void __sched schedule_preempt_disabled(void)
2950{
ba74c144 2951 sched_preempt_enable_no_resched();
c5491ea7
TG
2952 schedule();
2953 preempt_disable();
2954}
2955
c08f7829 2956#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 2957
c6eb3dda
PZ
2958static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2959{
c6eb3dda 2960 if (lock->owner != owner)
307bf980 2961 return false;
0d66bf6d
PZ
2962
2963 /*
c6eb3dda
PZ
2964 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2965 * lock->owner still matches owner, if that fails, owner might
2966 * point to free()d memory, if it still matches, the rcu_read_lock()
2967 * ensures the memory stays valid.
0d66bf6d 2968 */
c6eb3dda 2969 barrier();
0d66bf6d 2970
307bf980 2971 return owner->on_cpu;
c6eb3dda 2972}
0d66bf6d 2973
c6eb3dda
PZ
2974/*
2975 * Look out! "owner" is an entirely speculative pointer
2976 * access and not reliable.
2977 */
2978int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2979{
2980 if (!sched_feat(OWNER_SPIN))
2981 return 0;
0d66bf6d 2982
307bf980 2983 rcu_read_lock();
c6eb3dda
PZ
2984 while (owner_running(lock, owner)) {
2985 if (need_resched())
307bf980 2986 break;
0d66bf6d 2987
335d7afb 2988 arch_mutex_cpu_relax();
0d66bf6d 2989 }
307bf980 2990 rcu_read_unlock();
4b402210 2991
c6eb3dda 2992 /*
307bf980
TG
2993 * We break out the loop above on need_resched() and when the
2994 * owner changed, which is a sign for heavy contention. Return
2995 * success only when lock->owner is NULL.
c6eb3dda 2996 */
307bf980 2997 return lock->owner == NULL;
0d66bf6d
PZ
2998}
2999#endif
3000
1da177e4
LT
3001#ifdef CONFIG_PREEMPT
3002/*
2ed6e34f 3003 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3004 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3005 * occur there and call schedule directly.
3006 */
d1f74e20 3007asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3008{
3009 struct thread_info *ti = current_thread_info();
6478d880 3010
1da177e4
LT
3011 /*
3012 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3013 * we do not want to preempt the current task. Just return..
1da177e4 3014 */
beed33a8 3015 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3016 return;
3017
3a5c359a 3018 do {
d1f74e20 3019 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3020 __schedule();
d1f74e20 3021 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3022
3a5c359a
AK
3023 /*
3024 * Check again in case we missed a preemption opportunity
3025 * between schedule and now.
3026 */
3027 barrier();
5ed0cec0 3028 } while (need_resched());
1da177e4 3029}
1da177e4
LT
3030EXPORT_SYMBOL(preempt_schedule);
3031
3032/*
2ed6e34f 3033 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3034 * off of irq context.
3035 * Note, that this is called and return with irqs disabled. This will
3036 * protect us against recursive calling from irq.
3037 */
3038asmlinkage void __sched preempt_schedule_irq(void)
3039{
3040 struct thread_info *ti = current_thread_info();
6478d880 3041
2ed6e34f 3042 /* Catch callers which need to be fixed */
1da177e4
LT
3043 BUG_ON(ti->preempt_count || !irqs_disabled());
3044
90a340ed 3045 rcu_user_exit();
3a5c359a
AK
3046 do {
3047 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3048 local_irq_enable();
c259e01a 3049 __schedule();
3a5c359a 3050 local_irq_disable();
3a5c359a 3051 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3052
3a5c359a
AK
3053 /*
3054 * Check again in case we missed a preemption opportunity
3055 * between schedule and now.
3056 */
3057 barrier();
5ed0cec0 3058 } while (need_resched());
1da177e4
LT
3059}
3060
3061#endif /* CONFIG_PREEMPT */
3062
63859d4f 3063int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3064 void *key)
1da177e4 3065{
63859d4f 3066 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3067}
1da177e4
LT
3068EXPORT_SYMBOL(default_wake_function);
3069
3070/*
41a2d6cf
IM
3071 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3072 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3073 * number) then we wake all the non-exclusive tasks and one exclusive task.
3074 *
3075 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3076 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3077 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3078 */
78ddb08f 3079static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3080 int nr_exclusive, int wake_flags, void *key)
1da177e4 3081{
2e45874c 3082 wait_queue_t *curr, *next;
1da177e4 3083
2e45874c 3084 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3085 unsigned flags = curr->flags;
3086
63859d4f 3087 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3088 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3089 break;
3090 }
3091}
3092
3093/**
3094 * __wake_up - wake up threads blocked on a waitqueue.
3095 * @q: the waitqueue
3096 * @mode: which threads
3097 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3098 * @key: is directly passed to the wakeup function
50fa610a
DH
3099 *
3100 * It may be assumed that this function implies a write memory barrier before
3101 * changing the task state if and only if any tasks are woken up.
1da177e4 3102 */
7ad5b3a5 3103void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3104 int nr_exclusive, void *key)
1da177e4
LT
3105{
3106 unsigned long flags;
3107
3108 spin_lock_irqsave(&q->lock, flags);
3109 __wake_up_common(q, mode, nr_exclusive, 0, key);
3110 spin_unlock_irqrestore(&q->lock, flags);
3111}
1da177e4
LT
3112EXPORT_SYMBOL(__wake_up);
3113
3114/*
3115 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3116 */
63b20011 3117void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3118{
63b20011 3119 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3120}
22c43c81 3121EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3122
4ede816a
DL
3123void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3124{
3125 __wake_up_common(q, mode, 1, 0, key);
3126}
bf294b41 3127EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3128
1da177e4 3129/**
4ede816a 3130 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3131 * @q: the waitqueue
3132 * @mode: which threads
3133 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3134 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3135 *
3136 * The sync wakeup differs that the waker knows that it will schedule
3137 * away soon, so while the target thread will be woken up, it will not
3138 * be migrated to another CPU - ie. the two threads are 'synchronized'
3139 * with each other. This can prevent needless bouncing between CPUs.
3140 *
3141 * On UP it can prevent extra preemption.
50fa610a
DH
3142 *
3143 * It may be assumed that this function implies a write memory barrier before
3144 * changing the task state if and only if any tasks are woken up.
1da177e4 3145 */
4ede816a
DL
3146void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3147 int nr_exclusive, void *key)
1da177e4
LT
3148{
3149 unsigned long flags;
7d478721 3150 int wake_flags = WF_SYNC;
1da177e4
LT
3151
3152 if (unlikely(!q))
3153 return;
3154
3155 if (unlikely(!nr_exclusive))
7d478721 3156 wake_flags = 0;
1da177e4
LT
3157
3158 spin_lock_irqsave(&q->lock, flags);
7d478721 3159 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3160 spin_unlock_irqrestore(&q->lock, flags);
3161}
4ede816a
DL
3162EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3163
3164/*
3165 * __wake_up_sync - see __wake_up_sync_key()
3166 */
3167void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3168{
3169 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3170}
1da177e4
LT
3171EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3172
65eb3dc6
KD
3173/**
3174 * complete: - signals a single thread waiting on this completion
3175 * @x: holds the state of this particular completion
3176 *
3177 * This will wake up a single thread waiting on this completion. Threads will be
3178 * awakened in the same order in which they were queued.
3179 *
3180 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3181 *
3182 * It may be assumed that this function implies a write memory barrier before
3183 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3184 */
b15136e9 3185void complete(struct completion *x)
1da177e4
LT
3186{
3187 unsigned long flags;
3188
3189 spin_lock_irqsave(&x->wait.lock, flags);
3190 x->done++;
d9514f6c 3191 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3192 spin_unlock_irqrestore(&x->wait.lock, flags);
3193}
3194EXPORT_SYMBOL(complete);
3195
65eb3dc6
KD
3196/**
3197 * complete_all: - signals all threads waiting on this completion
3198 * @x: holds the state of this particular completion
3199 *
3200 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3201 *
3202 * It may be assumed that this function implies a write memory barrier before
3203 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3204 */
b15136e9 3205void complete_all(struct completion *x)
1da177e4
LT
3206{
3207 unsigned long flags;
3208
3209 spin_lock_irqsave(&x->wait.lock, flags);
3210 x->done += UINT_MAX/2;
d9514f6c 3211 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3212 spin_unlock_irqrestore(&x->wait.lock, flags);
3213}
3214EXPORT_SYMBOL(complete_all);
3215
8cbbe86d
AK
3216static inline long __sched
3217do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3218{
1da177e4
LT
3219 if (!x->done) {
3220 DECLARE_WAITQUEUE(wait, current);
3221
a93d2f17 3222 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3223 do {
94d3d824 3224 if (signal_pending_state(state, current)) {
ea71a546
ON
3225 timeout = -ERESTARTSYS;
3226 break;
8cbbe86d
AK
3227 }
3228 __set_current_state(state);
1da177e4
LT
3229 spin_unlock_irq(&x->wait.lock);
3230 timeout = schedule_timeout(timeout);
3231 spin_lock_irq(&x->wait.lock);
ea71a546 3232 } while (!x->done && timeout);
1da177e4 3233 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3234 if (!x->done)
3235 return timeout;
1da177e4
LT
3236 }
3237 x->done--;
ea71a546 3238 return timeout ?: 1;
1da177e4 3239}
1da177e4 3240
8cbbe86d
AK
3241static long __sched
3242wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3243{
1da177e4
LT
3244 might_sleep();
3245
3246 spin_lock_irq(&x->wait.lock);
8cbbe86d 3247 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3248 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3249 return timeout;
3250}
1da177e4 3251
65eb3dc6
KD
3252/**
3253 * wait_for_completion: - waits for completion of a task
3254 * @x: holds the state of this particular completion
3255 *
3256 * This waits to be signaled for completion of a specific task. It is NOT
3257 * interruptible and there is no timeout.
3258 *
3259 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3260 * and interrupt capability. Also see complete().
3261 */
b15136e9 3262void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3263{
3264 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3265}
8cbbe86d 3266EXPORT_SYMBOL(wait_for_completion);
1da177e4 3267
65eb3dc6
KD
3268/**
3269 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3270 * @x: holds the state of this particular completion
3271 * @timeout: timeout value in jiffies
3272 *
3273 * This waits for either a completion of a specific task to be signaled or for a
3274 * specified timeout to expire. The timeout is in jiffies. It is not
3275 * interruptible.
c6dc7f05
BF
3276 *
3277 * The return value is 0 if timed out, and positive (at least 1, or number of
3278 * jiffies left till timeout) if completed.
65eb3dc6 3279 */
b15136e9 3280unsigned long __sched
8cbbe86d 3281wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3282{
8cbbe86d 3283 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3284}
8cbbe86d 3285EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3286
65eb3dc6
KD
3287/**
3288 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3289 * @x: holds the state of this particular completion
3290 *
3291 * This waits for completion of a specific task to be signaled. It is
3292 * interruptible.
c6dc7f05
BF
3293 *
3294 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3295 */
8cbbe86d 3296int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3297{
51e97990
AK
3298 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3299 if (t == -ERESTARTSYS)
3300 return t;
3301 return 0;
0fec171c 3302}
8cbbe86d 3303EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3304
65eb3dc6
KD
3305/**
3306 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3307 * @x: holds the state of this particular completion
3308 * @timeout: timeout value in jiffies
3309 *
3310 * This waits for either a completion of a specific task to be signaled or for a
3311 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3312 *
3313 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3314 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3315 */
6bf41237 3316long __sched
8cbbe86d
AK
3317wait_for_completion_interruptible_timeout(struct completion *x,
3318 unsigned long timeout)
0fec171c 3319{
8cbbe86d 3320 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3321}
8cbbe86d 3322EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3323
65eb3dc6
KD
3324/**
3325 * wait_for_completion_killable: - waits for completion of a task (killable)
3326 * @x: holds the state of this particular completion
3327 *
3328 * This waits to be signaled for completion of a specific task. It can be
3329 * interrupted by a kill signal.
c6dc7f05
BF
3330 *
3331 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3332 */
009e577e
MW
3333int __sched wait_for_completion_killable(struct completion *x)
3334{
3335 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3336 if (t == -ERESTARTSYS)
3337 return t;
3338 return 0;
3339}
3340EXPORT_SYMBOL(wait_for_completion_killable);
3341
0aa12fb4
SW
3342/**
3343 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3344 * @x: holds the state of this particular completion
3345 * @timeout: timeout value in jiffies
3346 *
3347 * This waits for either a completion of a specific task to be
3348 * signaled or for a specified timeout to expire. It can be
3349 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3350 *
3351 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3352 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3353 */
6bf41237 3354long __sched
0aa12fb4
SW
3355wait_for_completion_killable_timeout(struct completion *x,
3356 unsigned long timeout)
3357{
3358 return wait_for_common(x, timeout, TASK_KILLABLE);
3359}
3360EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3361
be4de352
DC
3362/**
3363 * try_wait_for_completion - try to decrement a completion without blocking
3364 * @x: completion structure
3365 *
3366 * Returns: 0 if a decrement cannot be done without blocking
3367 * 1 if a decrement succeeded.
3368 *
3369 * If a completion is being used as a counting completion,
3370 * attempt to decrement the counter without blocking. This
3371 * enables us to avoid waiting if the resource the completion
3372 * is protecting is not available.
3373 */
3374bool try_wait_for_completion(struct completion *x)
3375{
7539a3b3 3376 unsigned long flags;
be4de352
DC
3377 int ret = 1;
3378
7539a3b3 3379 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3380 if (!x->done)
3381 ret = 0;
3382 else
3383 x->done--;
7539a3b3 3384 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3385 return ret;
3386}
3387EXPORT_SYMBOL(try_wait_for_completion);
3388
3389/**
3390 * completion_done - Test to see if a completion has any waiters
3391 * @x: completion structure
3392 *
3393 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3394 * 1 if there are no waiters.
3395 *
3396 */
3397bool completion_done(struct completion *x)
3398{
7539a3b3 3399 unsigned long flags;
be4de352
DC
3400 int ret = 1;
3401
7539a3b3 3402 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3403 if (!x->done)
3404 ret = 0;
7539a3b3 3405 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3406 return ret;
3407}
3408EXPORT_SYMBOL(completion_done);
3409
8cbbe86d
AK
3410static long __sched
3411sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3412{
0fec171c
IM
3413 unsigned long flags;
3414 wait_queue_t wait;
3415
3416 init_waitqueue_entry(&wait, current);
1da177e4 3417
8cbbe86d 3418 __set_current_state(state);
1da177e4 3419
8cbbe86d
AK
3420 spin_lock_irqsave(&q->lock, flags);
3421 __add_wait_queue(q, &wait);
3422 spin_unlock(&q->lock);
3423 timeout = schedule_timeout(timeout);
3424 spin_lock_irq(&q->lock);
3425 __remove_wait_queue(q, &wait);
3426 spin_unlock_irqrestore(&q->lock, flags);
3427
3428 return timeout;
3429}
3430
3431void __sched interruptible_sleep_on(wait_queue_head_t *q)
3432{
3433 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3434}
1da177e4
LT
3435EXPORT_SYMBOL(interruptible_sleep_on);
3436
0fec171c 3437long __sched
95cdf3b7 3438interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3439{
8cbbe86d 3440 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3441}
1da177e4
LT
3442EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3443
0fec171c 3444void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3445{
8cbbe86d 3446 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3447}
1da177e4
LT
3448EXPORT_SYMBOL(sleep_on);
3449
0fec171c 3450long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3451{
8cbbe86d 3452 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3453}
1da177e4
LT
3454EXPORT_SYMBOL(sleep_on_timeout);
3455
b29739f9
IM
3456#ifdef CONFIG_RT_MUTEXES
3457
3458/*
3459 * rt_mutex_setprio - set the current priority of a task
3460 * @p: task
3461 * @prio: prio value (kernel-internal form)
3462 *
3463 * This function changes the 'effective' priority of a task. It does
3464 * not touch ->normal_prio like __setscheduler().
3465 *
3466 * Used by the rt_mutex code to implement priority inheritance logic.
3467 */
36c8b586 3468void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3469{
83b699ed 3470 int oldprio, on_rq, running;
70b97a7f 3471 struct rq *rq;
83ab0aa0 3472 const struct sched_class *prev_class;
b29739f9
IM
3473
3474 BUG_ON(prio < 0 || prio > MAX_PRIO);
3475
0122ec5b 3476 rq = __task_rq_lock(p);
b29739f9 3477
1c4dd99b
TG
3478 /*
3479 * Idle task boosting is a nono in general. There is one
3480 * exception, when PREEMPT_RT and NOHZ is active:
3481 *
3482 * The idle task calls get_next_timer_interrupt() and holds
3483 * the timer wheel base->lock on the CPU and another CPU wants
3484 * to access the timer (probably to cancel it). We can safely
3485 * ignore the boosting request, as the idle CPU runs this code
3486 * with interrupts disabled and will complete the lock
3487 * protected section without being interrupted. So there is no
3488 * real need to boost.
3489 */
3490 if (unlikely(p == rq->idle)) {
3491 WARN_ON(p != rq->curr);
3492 WARN_ON(p->pi_blocked_on);
3493 goto out_unlock;
3494 }
3495
a8027073 3496 trace_sched_pi_setprio(p, prio);
d5f9f942 3497 oldprio = p->prio;
83ab0aa0 3498 prev_class = p->sched_class;
fd2f4419 3499 on_rq = p->on_rq;
051a1d1a 3500 running = task_current(rq, p);
0e1f3483 3501 if (on_rq)
69be72c1 3502 dequeue_task(rq, p, 0);
0e1f3483
HS
3503 if (running)
3504 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3505
3506 if (rt_prio(prio))
3507 p->sched_class = &rt_sched_class;
3508 else
3509 p->sched_class = &fair_sched_class;
3510
b29739f9
IM
3511 p->prio = prio;
3512
0e1f3483
HS
3513 if (running)
3514 p->sched_class->set_curr_task(rq);
da7a735e 3515 if (on_rq)
371fd7e7 3516 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3517
da7a735e 3518 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3519out_unlock:
0122ec5b 3520 __task_rq_unlock(rq);
b29739f9 3521}
b29739f9 3522#endif
36c8b586 3523void set_user_nice(struct task_struct *p, long nice)
1da177e4 3524{
dd41f596 3525 int old_prio, delta, on_rq;
1da177e4 3526 unsigned long flags;
70b97a7f 3527 struct rq *rq;
1da177e4
LT
3528
3529 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3530 return;
3531 /*
3532 * We have to be careful, if called from sys_setpriority(),
3533 * the task might be in the middle of scheduling on another CPU.
3534 */
3535 rq = task_rq_lock(p, &flags);
3536 /*
3537 * The RT priorities are set via sched_setscheduler(), but we still
3538 * allow the 'normal' nice value to be set - but as expected
3539 * it wont have any effect on scheduling until the task is
dd41f596 3540 * SCHED_FIFO/SCHED_RR:
1da177e4 3541 */
e05606d3 3542 if (task_has_rt_policy(p)) {
1da177e4
LT
3543 p->static_prio = NICE_TO_PRIO(nice);
3544 goto out_unlock;
3545 }
fd2f4419 3546 on_rq = p->on_rq;
c09595f6 3547 if (on_rq)
69be72c1 3548 dequeue_task(rq, p, 0);
1da177e4 3549
1da177e4 3550 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3551 set_load_weight(p);
b29739f9
IM
3552 old_prio = p->prio;
3553 p->prio = effective_prio(p);
3554 delta = p->prio - old_prio;
1da177e4 3555
dd41f596 3556 if (on_rq) {
371fd7e7 3557 enqueue_task(rq, p, 0);
1da177e4 3558 /*
d5f9f942
AM
3559 * If the task increased its priority or is running and
3560 * lowered its priority, then reschedule its CPU:
1da177e4 3561 */
d5f9f942 3562 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3563 resched_task(rq->curr);
3564 }
3565out_unlock:
0122ec5b 3566 task_rq_unlock(rq, p, &flags);
1da177e4 3567}
1da177e4
LT
3568EXPORT_SYMBOL(set_user_nice);
3569
e43379f1
MM
3570/*
3571 * can_nice - check if a task can reduce its nice value
3572 * @p: task
3573 * @nice: nice value
3574 */
36c8b586 3575int can_nice(const struct task_struct *p, const int nice)
e43379f1 3576{
024f4747
MM
3577 /* convert nice value [19,-20] to rlimit style value [1,40] */
3578 int nice_rlim = 20 - nice;
48f24c4d 3579
78d7d407 3580 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3581 capable(CAP_SYS_NICE));
3582}
3583
1da177e4
LT
3584#ifdef __ARCH_WANT_SYS_NICE
3585
3586/*
3587 * sys_nice - change the priority of the current process.
3588 * @increment: priority increment
3589 *
3590 * sys_setpriority is a more generic, but much slower function that
3591 * does similar things.
3592 */
5add95d4 3593SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3594{
48f24c4d 3595 long nice, retval;
1da177e4
LT
3596
3597 /*
3598 * Setpriority might change our priority at the same moment.
3599 * We don't have to worry. Conceptually one call occurs first
3600 * and we have a single winner.
3601 */
e43379f1
MM
3602 if (increment < -40)
3603 increment = -40;
1da177e4
LT
3604 if (increment > 40)
3605 increment = 40;
3606
2b8f836f 3607 nice = TASK_NICE(current) + increment;
1da177e4
LT
3608 if (nice < -20)
3609 nice = -20;
3610 if (nice > 19)
3611 nice = 19;
3612
e43379f1
MM
3613 if (increment < 0 && !can_nice(current, nice))
3614 return -EPERM;
3615
1da177e4
LT
3616 retval = security_task_setnice(current, nice);
3617 if (retval)
3618 return retval;
3619
3620 set_user_nice(current, nice);
3621 return 0;
3622}
3623
3624#endif
3625
3626/**
3627 * task_prio - return the priority value of a given task.
3628 * @p: the task in question.
3629 *
3630 * This is the priority value as seen by users in /proc.
3631 * RT tasks are offset by -200. Normal tasks are centered
3632 * around 0, value goes from -16 to +15.
3633 */
36c8b586 3634int task_prio(const struct task_struct *p)
1da177e4
LT
3635{
3636 return p->prio - MAX_RT_PRIO;
3637}
3638
3639/**
3640 * task_nice - return the nice value of a given task.
3641 * @p: the task in question.
3642 */
36c8b586 3643int task_nice(const struct task_struct *p)
1da177e4
LT
3644{
3645 return TASK_NICE(p);
3646}
150d8bed 3647EXPORT_SYMBOL(task_nice);
1da177e4
LT
3648
3649/**
3650 * idle_cpu - is a given cpu idle currently?
3651 * @cpu: the processor in question.
3652 */
3653int idle_cpu(int cpu)
3654{
908a3283
TG
3655 struct rq *rq = cpu_rq(cpu);
3656
3657 if (rq->curr != rq->idle)
3658 return 0;
3659
3660 if (rq->nr_running)
3661 return 0;
3662
3663#ifdef CONFIG_SMP
3664 if (!llist_empty(&rq->wake_list))
3665 return 0;
3666#endif
3667
3668 return 1;
1da177e4
LT
3669}
3670
1da177e4
LT
3671/**
3672 * idle_task - return the idle task for a given cpu.
3673 * @cpu: the processor in question.
3674 */
36c8b586 3675struct task_struct *idle_task(int cpu)
1da177e4
LT
3676{
3677 return cpu_rq(cpu)->idle;
3678}
3679
3680/**
3681 * find_process_by_pid - find a process with a matching PID value.
3682 * @pid: the pid in question.
3683 */
a9957449 3684static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3685{
228ebcbe 3686 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3687}
3688
3689/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3690static void
3691__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3692{
1da177e4
LT
3693 p->policy = policy;
3694 p->rt_priority = prio;
b29739f9
IM
3695 p->normal_prio = normal_prio(p);
3696 /* we are holding p->pi_lock already */
3697 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3698 if (rt_prio(p->prio))
3699 p->sched_class = &rt_sched_class;
3700 else
3701 p->sched_class = &fair_sched_class;
2dd73a4f 3702 set_load_weight(p);
1da177e4
LT
3703}
3704
c69e8d9c
DH
3705/*
3706 * check the target process has a UID that matches the current process's
3707 */
3708static bool check_same_owner(struct task_struct *p)
3709{
3710 const struct cred *cred = current_cred(), *pcred;
3711 bool match;
3712
3713 rcu_read_lock();
3714 pcred = __task_cred(p);
9c806aa0
EB
3715 match = (uid_eq(cred->euid, pcred->euid) ||
3716 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3717 rcu_read_unlock();
3718 return match;
3719}
3720
961ccddd 3721static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3722 const struct sched_param *param, bool user)
1da177e4 3723{
83b699ed 3724 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3725 unsigned long flags;
83ab0aa0 3726 const struct sched_class *prev_class;
70b97a7f 3727 struct rq *rq;
ca94c442 3728 int reset_on_fork;
1da177e4 3729
66e5393a
SR
3730 /* may grab non-irq protected spin_locks */
3731 BUG_ON(in_interrupt());
1da177e4
LT
3732recheck:
3733 /* double check policy once rq lock held */
ca94c442
LP
3734 if (policy < 0) {
3735 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3736 policy = oldpolicy = p->policy;
ca94c442
LP
3737 } else {
3738 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3739 policy &= ~SCHED_RESET_ON_FORK;
3740
3741 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3742 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3743 policy != SCHED_IDLE)
3744 return -EINVAL;
3745 }
3746
1da177e4
LT
3747 /*
3748 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3749 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3750 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3751 */
3752 if (param->sched_priority < 0 ||
95cdf3b7 3753 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3754 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3755 return -EINVAL;
e05606d3 3756 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3757 return -EINVAL;
3758
37e4ab3f
OC
3759 /*
3760 * Allow unprivileged RT tasks to decrease priority:
3761 */
961ccddd 3762 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3763 if (rt_policy(policy)) {
a44702e8
ON
3764 unsigned long rlim_rtprio =
3765 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3766
3767 /* can't set/change the rt policy */
3768 if (policy != p->policy && !rlim_rtprio)
3769 return -EPERM;
3770
3771 /* can't increase priority */
3772 if (param->sched_priority > p->rt_priority &&
3773 param->sched_priority > rlim_rtprio)
3774 return -EPERM;
3775 }
c02aa73b 3776
dd41f596 3777 /*
c02aa73b
DH
3778 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3779 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3780 */
c02aa73b
DH
3781 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3782 if (!can_nice(p, TASK_NICE(p)))
3783 return -EPERM;
3784 }
5fe1d75f 3785
37e4ab3f 3786 /* can't change other user's priorities */
c69e8d9c 3787 if (!check_same_owner(p))
37e4ab3f 3788 return -EPERM;
ca94c442
LP
3789
3790 /* Normal users shall not reset the sched_reset_on_fork flag */
3791 if (p->sched_reset_on_fork && !reset_on_fork)
3792 return -EPERM;
37e4ab3f 3793 }
1da177e4 3794
725aad24 3795 if (user) {
b0ae1981 3796 retval = security_task_setscheduler(p);
725aad24
JF
3797 if (retval)
3798 return retval;
3799 }
3800
b29739f9
IM
3801 /*
3802 * make sure no PI-waiters arrive (or leave) while we are
3803 * changing the priority of the task:
0122ec5b 3804 *
25985edc 3805 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3806 * runqueue lock must be held.
3807 */
0122ec5b 3808 rq = task_rq_lock(p, &flags);
dc61b1d6 3809
34f971f6
PZ
3810 /*
3811 * Changing the policy of the stop threads its a very bad idea
3812 */
3813 if (p == rq->stop) {
0122ec5b 3814 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3815 return -EINVAL;
3816 }
3817
a51e9198
DF
3818 /*
3819 * If not changing anything there's no need to proceed further:
3820 */
3821 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3822 param->sched_priority == p->rt_priority))) {
45afb173 3823 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3824 return 0;
3825 }
3826
dc61b1d6
PZ
3827#ifdef CONFIG_RT_GROUP_SCHED
3828 if (user) {
3829 /*
3830 * Do not allow realtime tasks into groups that have no runtime
3831 * assigned.
3832 */
3833 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3834 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3835 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3836 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3837 return -EPERM;
3838 }
3839 }
3840#endif
3841
1da177e4
LT
3842 /* recheck policy now with rq lock held */
3843 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3844 policy = oldpolicy = -1;
0122ec5b 3845 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3846 goto recheck;
3847 }
fd2f4419 3848 on_rq = p->on_rq;
051a1d1a 3849 running = task_current(rq, p);
0e1f3483 3850 if (on_rq)
4ca9b72b 3851 dequeue_task(rq, p, 0);
0e1f3483
HS
3852 if (running)
3853 p->sched_class->put_prev_task(rq, p);
f6b53205 3854
ca94c442
LP
3855 p->sched_reset_on_fork = reset_on_fork;
3856
1da177e4 3857 oldprio = p->prio;
83ab0aa0 3858 prev_class = p->sched_class;
dd41f596 3859 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3860
0e1f3483
HS
3861 if (running)
3862 p->sched_class->set_curr_task(rq);
da7a735e 3863 if (on_rq)
4ca9b72b 3864 enqueue_task(rq, p, 0);
cb469845 3865
da7a735e 3866 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3867 task_rq_unlock(rq, p, &flags);
b29739f9 3868
95e02ca9
TG
3869 rt_mutex_adjust_pi(p);
3870
1da177e4
LT
3871 return 0;
3872}
961ccddd
RR
3873
3874/**
3875 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3876 * @p: the task in question.
3877 * @policy: new policy.
3878 * @param: structure containing the new RT priority.
3879 *
3880 * NOTE that the task may be already dead.
3881 */
3882int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3883 const struct sched_param *param)
961ccddd
RR
3884{
3885 return __sched_setscheduler(p, policy, param, true);
3886}
1da177e4
LT
3887EXPORT_SYMBOL_GPL(sched_setscheduler);
3888
961ccddd
RR
3889/**
3890 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3891 * @p: the task in question.
3892 * @policy: new policy.
3893 * @param: structure containing the new RT priority.
3894 *
3895 * Just like sched_setscheduler, only don't bother checking if the
3896 * current context has permission. For example, this is needed in
3897 * stop_machine(): we create temporary high priority worker threads,
3898 * but our caller might not have that capability.
3899 */
3900int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3901 const struct sched_param *param)
961ccddd
RR
3902{
3903 return __sched_setscheduler(p, policy, param, false);
3904}
3905
95cdf3b7
IM
3906static int
3907do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3908{
1da177e4
LT
3909 struct sched_param lparam;
3910 struct task_struct *p;
36c8b586 3911 int retval;
1da177e4
LT
3912
3913 if (!param || pid < 0)
3914 return -EINVAL;
3915 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3916 return -EFAULT;
5fe1d75f
ON
3917
3918 rcu_read_lock();
3919 retval = -ESRCH;
1da177e4 3920 p = find_process_by_pid(pid);
5fe1d75f
ON
3921 if (p != NULL)
3922 retval = sched_setscheduler(p, policy, &lparam);
3923 rcu_read_unlock();
36c8b586 3924
1da177e4
LT
3925 return retval;
3926}
3927
3928/**
3929 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3930 * @pid: the pid in question.
3931 * @policy: new policy.
3932 * @param: structure containing the new RT priority.
3933 */
5add95d4
HC
3934SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3935 struct sched_param __user *, param)
1da177e4 3936{
c21761f1
JB
3937 /* negative values for policy are not valid */
3938 if (policy < 0)
3939 return -EINVAL;
3940
1da177e4
LT
3941 return do_sched_setscheduler(pid, policy, param);
3942}
3943
3944/**
3945 * sys_sched_setparam - set/change the RT priority of a thread
3946 * @pid: the pid in question.
3947 * @param: structure containing the new RT priority.
3948 */
5add95d4 3949SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3950{
3951 return do_sched_setscheduler(pid, -1, param);
3952}
3953
3954/**
3955 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3956 * @pid: the pid in question.
3957 */
5add95d4 3958SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3959{
36c8b586 3960 struct task_struct *p;
3a5c359a 3961 int retval;
1da177e4
LT
3962
3963 if (pid < 0)
3a5c359a 3964 return -EINVAL;
1da177e4
LT
3965
3966 retval = -ESRCH;
5fe85be0 3967 rcu_read_lock();
1da177e4
LT
3968 p = find_process_by_pid(pid);
3969 if (p) {
3970 retval = security_task_getscheduler(p);
3971 if (!retval)
ca94c442
LP
3972 retval = p->policy
3973 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3974 }
5fe85be0 3975 rcu_read_unlock();
1da177e4
LT
3976 return retval;
3977}
3978
3979/**
ca94c442 3980 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3981 * @pid: the pid in question.
3982 * @param: structure containing the RT priority.
3983 */
5add95d4 3984SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3985{
3986 struct sched_param lp;
36c8b586 3987 struct task_struct *p;
3a5c359a 3988 int retval;
1da177e4
LT
3989
3990 if (!param || pid < 0)
3a5c359a 3991 return -EINVAL;
1da177e4 3992
5fe85be0 3993 rcu_read_lock();
1da177e4
LT
3994 p = find_process_by_pid(pid);
3995 retval = -ESRCH;
3996 if (!p)
3997 goto out_unlock;
3998
3999 retval = security_task_getscheduler(p);
4000 if (retval)
4001 goto out_unlock;
4002
4003 lp.sched_priority = p->rt_priority;
5fe85be0 4004 rcu_read_unlock();
1da177e4
LT
4005
4006 /*
4007 * This one might sleep, we cannot do it with a spinlock held ...
4008 */
4009 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4010
1da177e4
LT
4011 return retval;
4012
4013out_unlock:
5fe85be0 4014 rcu_read_unlock();
1da177e4
LT
4015 return retval;
4016}
4017
96f874e2 4018long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4019{
5a16f3d3 4020 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4021 struct task_struct *p;
4022 int retval;
1da177e4 4023
95402b38 4024 get_online_cpus();
23f5d142 4025 rcu_read_lock();
1da177e4
LT
4026
4027 p = find_process_by_pid(pid);
4028 if (!p) {
23f5d142 4029 rcu_read_unlock();
95402b38 4030 put_online_cpus();
1da177e4
LT
4031 return -ESRCH;
4032 }
4033
23f5d142 4034 /* Prevent p going away */
1da177e4 4035 get_task_struct(p);
23f5d142 4036 rcu_read_unlock();
1da177e4 4037
5a16f3d3
RR
4038 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4039 retval = -ENOMEM;
4040 goto out_put_task;
4041 }
4042 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4043 retval = -ENOMEM;
4044 goto out_free_cpus_allowed;
4045 }
1da177e4 4046 retval = -EPERM;
f1c84dae 4047 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4048 goto out_unlock;
4049
b0ae1981 4050 retval = security_task_setscheduler(p);
e7834f8f
DQ
4051 if (retval)
4052 goto out_unlock;
4053
5a16f3d3
RR
4054 cpuset_cpus_allowed(p, cpus_allowed);
4055 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4056again:
5a16f3d3 4057 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4058
8707d8b8 4059 if (!retval) {
5a16f3d3
RR
4060 cpuset_cpus_allowed(p, cpus_allowed);
4061 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4062 /*
4063 * We must have raced with a concurrent cpuset
4064 * update. Just reset the cpus_allowed to the
4065 * cpuset's cpus_allowed
4066 */
5a16f3d3 4067 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4068 goto again;
4069 }
4070 }
1da177e4 4071out_unlock:
5a16f3d3
RR
4072 free_cpumask_var(new_mask);
4073out_free_cpus_allowed:
4074 free_cpumask_var(cpus_allowed);
4075out_put_task:
1da177e4 4076 put_task_struct(p);
95402b38 4077 put_online_cpus();
1da177e4
LT
4078 return retval;
4079}
4080
4081static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4082 struct cpumask *new_mask)
1da177e4 4083{
96f874e2
RR
4084 if (len < cpumask_size())
4085 cpumask_clear(new_mask);
4086 else if (len > cpumask_size())
4087 len = cpumask_size();
4088
1da177e4
LT
4089 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4090}
4091
4092/**
4093 * sys_sched_setaffinity - set the cpu affinity of a process
4094 * @pid: pid of the process
4095 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4096 * @user_mask_ptr: user-space pointer to the new cpu mask
4097 */
5add95d4
HC
4098SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4099 unsigned long __user *, user_mask_ptr)
1da177e4 4100{
5a16f3d3 4101 cpumask_var_t new_mask;
1da177e4
LT
4102 int retval;
4103
5a16f3d3
RR
4104 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4105 return -ENOMEM;
1da177e4 4106
5a16f3d3
RR
4107 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4108 if (retval == 0)
4109 retval = sched_setaffinity(pid, new_mask);
4110 free_cpumask_var(new_mask);
4111 return retval;
1da177e4
LT
4112}
4113
96f874e2 4114long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4115{
36c8b586 4116 struct task_struct *p;
31605683 4117 unsigned long flags;
1da177e4 4118 int retval;
1da177e4 4119
95402b38 4120 get_online_cpus();
23f5d142 4121 rcu_read_lock();
1da177e4
LT
4122
4123 retval = -ESRCH;
4124 p = find_process_by_pid(pid);
4125 if (!p)
4126 goto out_unlock;
4127
e7834f8f
DQ
4128 retval = security_task_getscheduler(p);
4129 if (retval)
4130 goto out_unlock;
4131
013fdb80 4132 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4133 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4134 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4135
4136out_unlock:
23f5d142 4137 rcu_read_unlock();
95402b38 4138 put_online_cpus();
1da177e4 4139
9531b62f 4140 return retval;
1da177e4
LT
4141}
4142
4143/**
4144 * sys_sched_getaffinity - get the cpu affinity of a process
4145 * @pid: pid of the process
4146 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4147 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4148 */
5add95d4
HC
4149SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4150 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4151{
4152 int ret;
f17c8607 4153 cpumask_var_t mask;
1da177e4 4154
84fba5ec 4155 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4156 return -EINVAL;
4157 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4158 return -EINVAL;
4159
f17c8607
RR
4160 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4161 return -ENOMEM;
1da177e4 4162
f17c8607
RR
4163 ret = sched_getaffinity(pid, mask);
4164 if (ret == 0) {
8bc037fb 4165 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4166
4167 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4168 ret = -EFAULT;
4169 else
cd3d8031 4170 ret = retlen;
f17c8607
RR
4171 }
4172 free_cpumask_var(mask);
1da177e4 4173
f17c8607 4174 return ret;
1da177e4
LT
4175}
4176
4177/**
4178 * sys_sched_yield - yield the current processor to other threads.
4179 *
dd41f596
IM
4180 * This function yields the current CPU to other tasks. If there are no
4181 * other threads running on this CPU then this function will return.
1da177e4 4182 */
5add95d4 4183SYSCALL_DEFINE0(sched_yield)
1da177e4 4184{
70b97a7f 4185 struct rq *rq = this_rq_lock();
1da177e4 4186
2d72376b 4187 schedstat_inc(rq, yld_count);
4530d7ab 4188 current->sched_class->yield_task(rq);
1da177e4
LT
4189
4190 /*
4191 * Since we are going to call schedule() anyway, there's
4192 * no need to preempt or enable interrupts:
4193 */
4194 __release(rq->lock);
8a25d5de 4195 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4196 do_raw_spin_unlock(&rq->lock);
ba74c144 4197 sched_preempt_enable_no_resched();
1da177e4
LT
4198
4199 schedule();
4200
4201 return 0;
4202}
4203
d86ee480
PZ
4204static inline int should_resched(void)
4205{
4206 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4207}
4208
e7b38404 4209static void __cond_resched(void)
1da177e4 4210{
e7aaaa69 4211 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4212 __schedule();
e7aaaa69 4213 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4214}
4215
02b67cc3 4216int __sched _cond_resched(void)
1da177e4 4217{
d86ee480 4218 if (should_resched()) {
1da177e4
LT
4219 __cond_resched();
4220 return 1;
4221 }
4222 return 0;
4223}
02b67cc3 4224EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4225
4226/*
613afbf8 4227 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4228 * call schedule, and on return reacquire the lock.
4229 *
41a2d6cf 4230 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4231 * operations here to prevent schedule() from being called twice (once via
4232 * spin_unlock(), once by hand).
4233 */
613afbf8 4234int __cond_resched_lock(spinlock_t *lock)
1da177e4 4235{
d86ee480 4236 int resched = should_resched();
6df3cecb
JK
4237 int ret = 0;
4238
f607c668
PZ
4239 lockdep_assert_held(lock);
4240
95c354fe 4241 if (spin_needbreak(lock) || resched) {
1da177e4 4242 spin_unlock(lock);
d86ee480 4243 if (resched)
95c354fe
NP
4244 __cond_resched();
4245 else
4246 cpu_relax();
6df3cecb 4247 ret = 1;
1da177e4 4248 spin_lock(lock);
1da177e4 4249 }
6df3cecb 4250 return ret;
1da177e4 4251}
613afbf8 4252EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4253
613afbf8 4254int __sched __cond_resched_softirq(void)
1da177e4
LT
4255{
4256 BUG_ON(!in_softirq());
4257
d86ee480 4258 if (should_resched()) {
98d82567 4259 local_bh_enable();
1da177e4
LT
4260 __cond_resched();
4261 local_bh_disable();
4262 return 1;
4263 }
4264 return 0;
4265}
613afbf8 4266EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4267
1da177e4
LT
4268/**
4269 * yield - yield the current processor to other threads.
4270 *
8e3fabfd
PZ
4271 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4272 *
4273 * The scheduler is at all times free to pick the calling task as the most
4274 * eligible task to run, if removing the yield() call from your code breaks
4275 * it, its already broken.
4276 *
4277 * Typical broken usage is:
4278 *
4279 * while (!event)
4280 * yield();
4281 *
4282 * where one assumes that yield() will let 'the other' process run that will
4283 * make event true. If the current task is a SCHED_FIFO task that will never
4284 * happen. Never use yield() as a progress guarantee!!
4285 *
4286 * If you want to use yield() to wait for something, use wait_event().
4287 * If you want to use yield() to be 'nice' for others, use cond_resched().
4288 * If you still want to use yield(), do not!
1da177e4
LT
4289 */
4290void __sched yield(void)
4291{
4292 set_current_state(TASK_RUNNING);
4293 sys_sched_yield();
4294}
1da177e4
LT
4295EXPORT_SYMBOL(yield);
4296
d95f4122
MG
4297/**
4298 * yield_to - yield the current processor to another thread in
4299 * your thread group, or accelerate that thread toward the
4300 * processor it's on.
16addf95
RD
4301 * @p: target task
4302 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4303 *
4304 * It's the caller's job to ensure that the target task struct
4305 * can't go away on us before we can do any checks.
4306 *
4307 * Returns true if we indeed boosted the target task.
4308 */
4309bool __sched yield_to(struct task_struct *p, bool preempt)
4310{
4311 struct task_struct *curr = current;
4312 struct rq *rq, *p_rq;
4313 unsigned long flags;
4314 bool yielded = 0;
4315
4316 local_irq_save(flags);
4317 rq = this_rq();
4318
4319again:
4320 p_rq = task_rq(p);
4321 double_rq_lock(rq, p_rq);
4322 while (task_rq(p) != p_rq) {
4323 double_rq_unlock(rq, p_rq);
4324 goto again;
4325 }
4326
4327 if (!curr->sched_class->yield_to_task)
4328 goto out;
4329
4330 if (curr->sched_class != p->sched_class)
4331 goto out;
4332
4333 if (task_running(p_rq, p) || p->state)
4334 goto out;
4335
4336 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4337 if (yielded) {
d95f4122 4338 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4339 /*
4340 * Make p's CPU reschedule; pick_next_entity takes care of
4341 * fairness.
4342 */
4343 if (preempt && rq != p_rq)
4344 resched_task(p_rq->curr);
4345 }
d95f4122
MG
4346
4347out:
4348 double_rq_unlock(rq, p_rq);
4349 local_irq_restore(flags);
4350
4351 if (yielded)
4352 schedule();
4353
4354 return yielded;
4355}
4356EXPORT_SYMBOL_GPL(yield_to);
4357
1da177e4 4358/*
41a2d6cf 4359 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4360 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4361 */
4362void __sched io_schedule(void)
4363{
54d35f29 4364 struct rq *rq = raw_rq();
1da177e4 4365
0ff92245 4366 delayacct_blkio_start();
1da177e4 4367 atomic_inc(&rq->nr_iowait);
73c10101 4368 blk_flush_plug(current);
8f0dfc34 4369 current->in_iowait = 1;
1da177e4 4370 schedule();
8f0dfc34 4371 current->in_iowait = 0;
1da177e4 4372 atomic_dec(&rq->nr_iowait);
0ff92245 4373 delayacct_blkio_end();
1da177e4 4374}
1da177e4
LT
4375EXPORT_SYMBOL(io_schedule);
4376
4377long __sched io_schedule_timeout(long timeout)
4378{
54d35f29 4379 struct rq *rq = raw_rq();
1da177e4
LT
4380 long ret;
4381
0ff92245 4382 delayacct_blkio_start();
1da177e4 4383 atomic_inc(&rq->nr_iowait);
73c10101 4384 blk_flush_plug(current);
8f0dfc34 4385 current->in_iowait = 1;
1da177e4 4386 ret = schedule_timeout(timeout);
8f0dfc34 4387 current->in_iowait = 0;
1da177e4 4388 atomic_dec(&rq->nr_iowait);
0ff92245 4389 delayacct_blkio_end();
1da177e4
LT
4390 return ret;
4391}
4392
4393/**
4394 * sys_sched_get_priority_max - return maximum RT priority.
4395 * @policy: scheduling class.
4396 *
4397 * this syscall returns the maximum rt_priority that can be used
4398 * by a given scheduling class.
4399 */
5add95d4 4400SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4401{
4402 int ret = -EINVAL;
4403
4404 switch (policy) {
4405 case SCHED_FIFO:
4406 case SCHED_RR:
4407 ret = MAX_USER_RT_PRIO-1;
4408 break;
4409 case SCHED_NORMAL:
b0a9499c 4410 case SCHED_BATCH:
dd41f596 4411 case SCHED_IDLE:
1da177e4
LT
4412 ret = 0;
4413 break;
4414 }
4415 return ret;
4416}
4417
4418/**
4419 * sys_sched_get_priority_min - return minimum RT priority.
4420 * @policy: scheduling class.
4421 *
4422 * this syscall returns the minimum rt_priority that can be used
4423 * by a given scheduling class.
4424 */
5add95d4 4425SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4426{
4427 int ret = -EINVAL;
4428
4429 switch (policy) {
4430 case SCHED_FIFO:
4431 case SCHED_RR:
4432 ret = 1;
4433 break;
4434 case SCHED_NORMAL:
b0a9499c 4435 case SCHED_BATCH:
dd41f596 4436 case SCHED_IDLE:
1da177e4
LT
4437 ret = 0;
4438 }
4439 return ret;
4440}
4441
4442/**
4443 * sys_sched_rr_get_interval - return the default timeslice of a process.
4444 * @pid: pid of the process.
4445 * @interval: userspace pointer to the timeslice value.
4446 *
4447 * this syscall writes the default timeslice value of a given process
4448 * into the user-space timespec buffer. A value of '0' means infinity.
4449 */
17da2bd9 4450SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4451 struct timespec __user *, interval)
1da177e4 4452{
36c8b586 4453 struct task_struct *p;
a4ec24b4 4454 unsigned int time_slice;
dba091b9
TG
4455 unsigned long flags;
4456 struct rq *rq;
3a5c359a 4457 int retval;
1da177e4 4458 struct timespec t;
1da177e4
LT
4459
4460 if (pid < 0)
3a5c359a 4461 return -EINVAL;
1da177e4
LT
4462
4463 retval = -ESRCH;
1a551ae7 4464 rcu_read_lock();
1da177e4
LT
4465 p = find_process_by_pid(pid);
4466 if (!p)
4467 goto out_unlock;
4468
4469 retval = security_task_getscheduler(p);
4470 if (retval)
4471 goto out_unlock;
4472
dba091b9
TG
4473 rq = task_rq_lock(p, &flags);
4474 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4475 task_rq_unlock(rq, p, &flags);
a4ec24b4 4476
1a551ae7 4477 rcu_read_unlock();
a4ec24b4 4478 jiffies_to_timespec(time_slice, &t);
1da177e4 4479 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4480 return retval;
3a5c359a 4481
1da177e4 4482out_unlock:
1a551ae7 4483 rcu_read_unlock();
1da177e4
LT
4484 return retval;
4485}
4486
7c731e0a 4487static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4488
82a1fcb9 4489void sched_show_task(struct task_struct *p)
1da177e4 4490{
1da177e4 4491 unsigned long free = 0;
36c8b586 4492 unsigned state;
1da177e4 4493
1da177e4 4494 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4495 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4496 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4497#if BITS_PER_LONG == 32
1da177e4 4498 if (state == TASK_RUNNING)
3df0fc5b 4499 printk(KERN_CONT " running ");
1da177e4 4500 else
3df0fc5b 4501 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4502#else
4503 if (state == TASK_RUNNING)
3df0fc5b 4504 printk(KERN_CONT " running task ");
1da177e4 4505 else
3df0fc5b 4506 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4507#endif
4508#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4509 free = stack_not_used(p);
1da177e4 4510#endif
3df0fc5b 4511 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4512 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4513 (unsigned long)task_thread_info(p)->flags);
1da177e4 4514
5fb5e6de 4515 show_stack(p, NULL);
1da177e4
LT
4516}
4517
e59e2ae2 4518void show_state_filter(unsigned long state_filter)
1da177e4 4519{
36c8b586 4520 struct task_struct *g, *p;
1da177e4 4521
4bd77321 4522#if BITS_PER_LONG == 32
3df0fc5b
PZ
4523 printk(KERN_INFO
4524 " task PC stack pid father\n");
1da177e4 4525#else
3df0fc5b
PZ
4526 printk(KERN_INFO
4527 " task PC stack pid father\n");
1da177e4 4528#endif
510f5acc 4529 rcu_read_lock();
1da177e4
LT
4530 do_each_thread(g, p) {
4531 /*
4532 * reset the NMI-timeout, listing all files on a slow
25985edc 4533 * console might take a lot of time:
1da177e4
LT
4534 */
4535 touch_nmi_watchdog();
39bc89fd 4536 if (!state_filter || (p->state & state_filter))
82a1fcb9 4537 sched_show_task(p);
1da177e4
LT
4538 } while_each_thread(g, p);
4539
04c9167f
JF
4540 touch_all_softlockup_watchdogs();
4541
dd41f596
IM
4542#ifdef CONFIG_SCHED_DEBUG
4543 sysrq_sched_debug_show();
4544#endif
510f5acc 4545 rcu_read_unlock();
e59e2ae2
IM
4546 /*
4547 * Only show locks if all tasks are dumped:
4548 */
93335a21 4549 if (!state_filter)
e59e2ae2 4550 debug_show_all_locks();
1da177e4
LT
4551}
4552
1df21055
IM
4553void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4554{
dd41f596 4555 idle->sched_class = &idle_sched_class;
1df21055
IM
4556}
4557
f340c0d1
IM
4558/**
4559 * init_idle - set up an idle thread for a given CPU
4560 * @idle: task in question
4561 * @cpu: cpu the idle task belongs to
4562 *
4563 * NOTE: this function does not set the idle thread's NEED_RESCHED
4564 * flag, to make booting more robust.
4565 */
5c1e1767 4566void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4567{
70b97a7f 4568 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4569 unsigned long flags;
4570
05fa785c 4571 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4572
dd41f596 4573 __sched_fork(idle);
06b83b5f 4574 idle->state = TASK_RUNNING;
dd41f596
IM
4575 idle->se.exec_start = sched_clock();
4576
1e1b6c51 4577 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4578 /*
4579 * We're having a chicken and egg problem, even though we are
4580 * holding rq->lock, the cpu isn't yet set to this cpu so the
4581 * lockdep check in task_group() will fail.
4582 *
4583 * Similar case to sched_fork(). / Alternatively we could
4584 * use task_rq_lock() here and obtain the other rq->lock.
4585 *
4586 * Silence PROVE_RCU
4587 */
4588 rcu_read_lock();
dd41f596 4589 __set_task_cpu(idle, cpu);
6506cf6c 4590 rcu_read_unlock();
1da177e4 4591
1da177e4 4592 rq->curr = rq->idle = idle;
3ca7a440
PZ
4593#if defined(CONFIG_SMP)
4594 idle->on_cpu = 1;
4866cde0 4595#endif
05fa785c 4596 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4597
4598 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4599 task_thread_info(idle)->preempt_count = 0;
55cd5340 4600
dd41f596
IM
4601 /*
4602 * The idle tasks have their own, simple scheduling class:
4603 */
4604 idle->sched_class = &idle_sched_class;
868baf07 4605 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4606#if defined(CONFIG_SMP)
4607 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4608#endif
19978ca6
IM
4609}
4610
1da177e4 4611#ifdef CONFIG_SMP
1e1b6c51
KM
4612void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4613{
4614 if (p->sched_class && p->sched_class->set_cpus_allowed)
4615 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4616
4617 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4618 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4619}
4620
1da177e4
LT
4621/*
4622 * This is how migration works:
4623 *
969c7921
TH
4624 * 1) we invoke migration_cpu_stop() on the target CPU using
4625 * stop_one_cpu().
4626 * 2) stopper starts to run (implicitly forcing the migrated thread
4627 * off the CPU)
4628 * 3) it checks whether the migrated task is still in the wrong runqueue.
4629 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4630 * it and puts it into the right queue.
969c7921
TH
4631 * 5) stopper completes and stop_one_cpu() returns and the migration
4632 * is done.
1da177e4
LT
4633 */
4634
4635/*
4636 * Change a given task's CPU affinity. Migrate the thread to a
4637 * proper CPU and schedule it away if the CPU it's executing on
4638 * is removed from the allowed bitmask.
4639 *
4640 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4641 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4642 * call is not atomic; no spinlocks may be held.
4643 */
96f874e2 4644int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4645{
4646 unsigned long flags;
70b97a7f 4647 struct rq *rq;
969c7921 4648 unsigned int dest_cpu;
48f24c4d 4649 int ret = 0;
1da177e4
LT
4650
4651 rq = task_rq_lock(p, &flags);
e2912009 4652
db44fc01
YZ
4653 if (cpumask_equal(&p->cpus_allowed, new_mask))
4654 goto out;
4655
6ad4c188 4656 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4657 ret = -EINVAL;
4658 goto out;
4659 }
4660
db44fc01 4661 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4662 ret = -EINVAL;
4663 goto out;
4664 }
4665
1e1b6c51 4666 do_set_cpus_allowed(p, new_mask);
73fe6aae 4667
1da177e4 4668 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4669 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4670 goto out;
4671
969c7921 4672 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4673 if (p->on_rq) {
969c7921 4674 struct migration_arg arg = { p, dest_cpu };
1da177e4 4675 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4676 task_rq_unlock(rq, p, &flags);
969c7921 4677 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4678 tlb_migrate_finish(p->mm);
4679 return 0;
4680 }
4681out:
0122ec5b 4682 task_rq_unlock(rq, p, &flags);
48f24c4d 4683
1da177e4
LT
4684 return ret;
4685}
cd8ba7cd 4686EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4687
4688/*
41a2d6cf 4689 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4690 * this because either it can't run here any more (set_cpus_allowed()
4691 * away from this CPU, or CPU going down), or because we're
4692 * attempting to rebalance this task on exec (sched_exec).
4693 *
4694 * So we race with normal scheduler movements, but that's OK, as long
4695 * as the task is no longer on this CPU.
efc30814
KK
4696 *
4697 * Returns non-zero if task was successfully migrated.
1da177e4 4698 */
efc30814 4699static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4700{
70b97a7f 4701 struct rq *rq_dest, *rq_src;
e2912009 4702 int ret = 0;
1da177e4 4703
e761b772 4704 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4705 return ret;
1da177e4
LT
4706
4707 rq_src = cpu_rq(src_cpu);
4708 rq_dest = cpu_rq(dest_cpu);
4709
0122ec5b 4710 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4711 double_rq_lock(rq_src, rq_dest);
4712 /* Already moved. */
4713 if (task_cpu(p) != src_cpu)
b1e38734 4714 goto done;
1da177e4 4715 /* Affinity changed (again). */
fa17b507 4716 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4717 goto fail;
1da177e4 4718
e2912009
PZ
4719 /*
4720 * If we're not on a rq, the next wake-up will ensure we're
4721 * placed properly.
4722 */
fd2f4419 4723 if (p->on_rq) {
4ca9b72b 4724 dequeue_task(rq_src, p, 0);
e2912009 4725 set_task_cpu(p, dest_cpu);
4ca9b72b 4726 enqueue_task(rq_dest, p, 0);
15afe09b 4727 check_preempt_curr(rq_dest, p, 0);
1da177e4 4728 }
b1e38734 4729done:
efc30814 4730 ret = 1;
b1e38734 4731fail:
1da177e4 4732 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4733 raw_spin_unlock(&p->pi_lock);
efc30814 4734 return ret;
1da177e4
LT
4735}
4736
4737/*
969c7921
TH
4738 * migration_cpu_stop - this will be executed by a highprio stopper thread
4739 * and performs thread migration by bumping thread off CPU then
4740 * 'pushing' onto another runqueue.
1da177e4 4741 */
969c7921 4742static int migration_cpu_stop(void *data)
1da177e4 4743{
969c7921 4744 struct migration_arg *arg = data;
f7b4cddc 4745
969c7921
TH
4746 /*
4747 * The original target cpu might have gone down and we might
4748 * be on another cpu but it doesn't matter.
4749 */
f7b4cddc 4750 local_irq_disable();
969c7921 4751 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4752 local_irq_enable();
1da177e4 4753 return 0;
f7b4cddc
ON
4754}
4755
1da177e4 4756#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4757
054b9108 4758/*
48c5ccae
PZ
4759 * Ensures that the idle task is using init_mm right before its cpu goes
4760 * offline.
054b9108 4761 */
48c5ccae 4762void idle_task_exit(void)
1da177e4 4763{
48c5ccae 4764 struct mm_struct *mm = current->active_mm;
e76bd8d9 4765
48c5ccae 4766 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4767
48c5ccae
PZ
4768 if (mm != &init_mm)
4769 switch_mm(mm, &init_mm, current);
4770 mmdrop(mm);
1da177e4
LT
4771}
4772
4773/*
5d180232
PZ
4774 * Since this CPU is going 'away' for a while, fold any nr_active delta
4775 * we might have. Assumes we're called after migrate_tasks() so that the
4776 * nr_active count is stable.
4777 *
4778 * Also see the comment "Global load-average calculations".
1da177e4 4779 */
5d180232 4780static void calc_load_migrate(struct rq *rq)
1da177e4 4781{
5d180232
PZ
4782 long delta = calc_load_fold_active(rq);
4783 if (delta)
4784 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4785}
4786
48f24c4d 4787/*
48c5ccae
PZ
4788 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4789 * try_to_wake_up()->select_task_rq().
4790 *
4791 * Called with rq->lock held even though we'er in stop_machine() and
4792 * there's no concurrency possible, we hold the required locks anyway
4793 * because of lock validation efforts.
1da177e4 4794 */
48c5ccae 4795static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4796{
70b97a7f 4797 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4798 struct task_struct *next, *stop = rq->stop;
4799 int dest_cpu;
1da177e4
LT
4800
4801 /*
48c5ccae
PZ
4802 * Fudge the rq selection such that the below task selection loop
4803 * doesn't get stuck on the currently eligible stop task.
4804 *
4805 * We're currently inside stop_machine() and the rq is either stuck
4806 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4807 * either way we should never end up calling schedule() until we're
4808 * done here.
1da177e4 4809 */
48c5ccae 4810 rq->stop = NULL;
48f24c4d 4811
dd41f596 4812 for ( ; ; ) {
48c5ccae
PZ
4813 /*
4814 * There's this thread running, bail when that's the only
4815 * remaining thread.
4816 */
4817 if (rq->nr_running == 1)
dd41f596 4818 break;
48c5ccae 4819
b67802ea 4820 next = pick_next_task(rq);
48c5ccae 4821 BUG_ON(!next);
79c53799 4822 next->sched_class->put_prev_task(rq, next);
e692ab53 4823
48c5ccae
PZ
4824 /* Find suitable destination for @next, with force if needed. */
4825 dest_cpu = select_fallback_rq(dead_cpu, next);
4826 raw_spin_unlock(&rq->lock);
4827
4828 __migrate_task(next, dead_cpu, dest_cpu);
4829
4830 raw_spin_lock(&rq->lock);
1da177e4 4831 }
dce48a84 4832
48c5ccae 4833 rq->stop = stop;
dce48a84 4834}
48c5ccae 4835
1da177e4
LT
4836#endif /* CONFIG_HOTPLUG_CPU */
4837
e692ab53
NP
4838#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4839
4840static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4841 {
4842 .procname = "sched_domain",
c57baf1e 4843 .mode = 0555,
e0361851 4844 },
56992309 4845 {}
e692ab53
NP
4846};
4847
4848static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4849 {
4850 .procname = "kernel",
c57baf1e 4851 .mode = 0555,
e0361851
AD
4852 .child = sd_ctl_dir,
4853 },
56992309 4854 {}
e692ab53
NP
4855};
4856
4857static struct ctl_table *sd_alloc_ctl_entry(int n)
4858{
4859 struct ctl_table *entry =
5cf9f062 4860 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4861
e692ab53
NP
4862 return entry;
4863}
4864
6382bc90
MM
4865static void sd_free_ctl_entry(struct ctl_table **tablep)
4866{
cd790076 4867 struct ctl_table *entry;
6382bc90 4868
cd790076
MM
4869 /*
4870 * In the intermediate directories, both the child directory and
4871 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4872 * will always be set. In the lowest directory the names are
cd790076
MM
4873 * static strings and all have proc handlers.
4874 */
4875 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4876 if (entry->child)
4877 sd_free_ctl_entry(&entry->child);
cd790076
MM
4878 if (entry->proc_handler == NULL)
4879 kfree(entry->procname);
4880 }
6382bc90
MM
4881
4882 kfree(*tablep);
4883 *tablep = NULL;
4884}
4885
201c373e
NK
4886static int min_load_idx = 0;
4887static int max_load_idx = CPU_LOAD_IDX_MAX;
4888
e692ab53 4889static void
e0361851 4890set_table_entry(struct ctl_table *entry,
e692ab53 4891 const char *procname, void *data, int maxlen,
201c373e
NK
4892 umode_t mode, proc_handler *proc_handler,
4893 bool load_idx)
e692ab53 4894{
e692ab53
NP
4895 entry->procname = procname;
4896 entry->data = data;
4897 entry->maxlen = maxlen;
4898 entry->mode = mode;
4899 entry->proc_handler = proc_handler;
201c373e
NK
4900
4901 if (load_idx) {
4902 entry->extra1 = &min_load_idx;
4903 entry->extra2 = &max_load_idx;
4904 }
e692ab53
NP
4905}
4906
4907static struct ctl_table *
4908sd_alloc_ctl_domain_table(struct sched_domain *sd)
4909{
a5d8c348 4910 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4911
ad1cdc1d
MM
4912 if (table == NULL)
4913 return NULL;
4914
e0361851 4915 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4916 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4917 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4918 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4919 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4920 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4921 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4922 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4923 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4924 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4925 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4926 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4927 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4928 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4929 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4930 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4931 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4932 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4933 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4934 &sd->cache_nice_tries,
201c373e 4935 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4936 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4937 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4938 set_table_entry(&table[11], "name", sd->name,
201c373e 4939 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4940 /* &table[12] is terminator */
e692ab53
NP
4941
4942 return table;
4943}
4944
9a4e7159 4945static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4946{
4947 struct ctl_table *entry, *table;
4948 struct sched_domain *sd;
4949 int domain_num = 0, i;
4950 char buf[32];
4951
4952 for_each_domain(cpu, sd)
4953 domain_num++;
4954 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4955 if (table == NULL)
4956 return NULL;
e692ab53
NP
4957
4958 i = 0;
4959 for_each_domain(cpu, sd) {
4960 snprintf(buf, 32, "domain%d", i);
e692ab53 4961 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4962 entry->mode = 0555;
e692ab53
NP
4963 entry->child = sd_alloc_ctl_domain_table(sd);
4964 entry++;
4965 i++;
4966 }
4967 return table;
4968}
4969
4970static struct ctl_table_header *sd_sysctl_header;
6382bc90 4971static void register_sched_domain_sysctl(void)
e692ab53 4972{
6ad4c188 4973 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4974 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4975 char buf[32];
4976
7378547f
MM
4977 WARN_ON(sd_ctl_dir[0].child);
4978 sd_ctl_dir[0].child = entry;
4979
ad1cdc1d
MM
4980 if (entry == NULL)
4981 return;
4982
6ad4c188 4983 for_each_possible_cpu(i) {
e692ab53 4984 snprintf(buf, 32, "cpu%d", i);
e692ab53 4985 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4986 entry->mode = 0555;
e692ab53 4987 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4988 entry++;
e692ab53 4989 }
7378547f
MM
4990
4991 WARN_ON(sd_sysctl_header);
e692ab53
NP
4992 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4993}
6382bc90 4994
7378547f 4995/* may be called multiple times per register */
6382bc90
MM
4996static void unregister_sched_domain_sysctl(void)
4997{
7378547f
MM
4998 if (sd_sysctl_header)
4999 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5000 sd_sysctl_header = NULL;
7378547f
MM
5001 if (sd_ctl_dir[0].child)
5002 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5003}
e692ab53 5004#else
6382bc90
MM
5005static void register_sched_domain_sysctl(void)
5006{
5007}
5008static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5009{
5010}
5011#endif
5012
1f11eb6a
GH
5013static void set_rq_online(struct rq *rq)
5014{
5015 if (!rq->online) {
5016 const struct sched_class *class;
5017
c6c4927b 5018 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5019 rq->online = 1;
5020
5021 for_each_class(class) {
5022 if (class->rq_online)
5023 class->rq_online(rq);
5024 }
5025 }
5026}
5027
5028static void set_rq_offline(struct rq *rq)
5029{
5030 if (rq->online) {
5031 const struct sched_class *class;
5032
5033 for_each_class(class) {
5034 if (class->rq_offline)
5035 class->rq_offline(rq);
5036 }
5037
c6c4927b 5038 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5039 rq->online = 0;
5040 }
5041}
5042
1da177e4
LT
5043/*
5044 * migration_call - callback that gets triggered when a CPU is added.
5045 * Here we can start up the necessary migration thread for the new CPU.
5046 */
48f24c4d
IM
5047static int __cpuinit
5048migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5049{
48f24c4d 5050 int cpu = (long)hcpu;
1da177e4 5051 unsigned long flags;
969c7921 5052 struct rq *rq = cpu_rq(cpu);
1da177e4 5053
48c5ccae 5054 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5055
1da177e4 5056 case CPU_UP_PREPARE:
a468d389 5057 rq->calc_load_update = calc_load_update;
1da177e4 5058 break;
48f24c4d 5059
1da177e4 5060 case CPU_ONLINE:
1f94ef59 5061 /* Update our root-domain */
05fa785c 5062 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5063 if (rq->rd) {
c6c4927b 5064 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5065
5066 set_rq_online(rq);
1f94ef59 5067 }
05fa785c 5068 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5069 break;
48f24c4d 5070
1da177e4 5071#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5072 case CPU_DYING:
317f3941 5073 sched_ttwu_pending();
57d885fe 5074 /* Update our root-domain */
05fa785c 5075 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5076 if (rq->rd) {
c6c4927b 5077 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5078 set_rq_offline(rq);
57d885fe 5079 }
48c5ccae
PZ
5080 migrate_tasks(cpu);
5081 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5082 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5083 break;
48c5ccae 5084
5d180232 5085 case CPU_DEAD:
f319da0c 5086 calc_load_migrate(rq);
57d885fe 5087 break;
1da177e4
LT
5088#endif
5089 }
49c022e6
PZ
5090
5091 update_max_interval();
5092
1da177e4
LT
5093 return NOTIFY_OK;
5094}
5095
f38b0820
PM
5096/*
5097 * Register at high priority so that task migration (migrate_all_tasks)
5098 * happens before everything else. This has to be lower priority than
cdd6c482 5099 * the notifier in the perf_event subsystem, though.
1da177e4 5100 */
26c2143b 5101static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5102 .notifier_call = migration_call,
50a323b7 5103 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5104};
5105
3a101d05
TH
5106static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5107 unsigned long action, void *hcpu)
5108{
5109 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5110 case CPU_STARTING:
3a101d05
TH
5111 case CPU_DOWN_FAILED:
5112 set_cpu_active((long)hcpu, true);
5113 return NOTIFY_OK;
5114 default:
5115 return NOTIFY_DONE;
5116 }
5117}
5118
5119static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5120 unsigned long action, void *hcpu)
5121{
5122 switch (action & ~CPU_TASKS_FROZEN) {
5123 case CPU_DOWN_PREPARE:
5124 set_cpu_active((long)hcpu, false);
5125 return NOTIFY_OK;
5126 default:
5127 return NOTIFY_DONE;
5128 }
5129}
5130
7babe8db 5131static int __init migration_init(void)
1da177e4
LT
5132{
5133 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5134 int err;
48f24c4d 5135
3a101d05 5136 /* Initialize migration for the boot CPU */
07dccf33
AM
5137 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5138 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5139 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5140 register_cpu_notifier(&migration_notifier);
7babe8db 5141
3a101d05
TH
5142 /* Register cpu active notifiers */
5143 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5144 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5145
a004cd42 5146 return 0;
1da177e4 5147}
7babe8db 5148early_initcall(migration_init);
1da177e4
LT
5149#endif
5150
5151#ifdef CONFIG_SMP
476f3534 5152
4cb98839
PZ
5153static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5154
3e9830dc 5155#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5156
d039ac60 5157static __read_mostly int sched_debug_enabled;
f6630114 5158
d039ac60 5159static int __init sched_debug_setup(char *str)
f6630114 5160{
d039ac60 5161 sched_debug_enabled = 1;
f6630114
MT
5162
5163 return 0;
5164}
d039ac60
PZ
5165early_param("sched_debug", sched_debug_setup);
5166
5167static inline bool sched_debug(void)
5168{
5169 return sched_debug_enabled;
5170}
f6630114 5171
7c16ec58 5172static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5173 struct cpumask *groupmask)
1da177e4 5174{
4dcf6aff 5175 struct sched_group *group = sd->groups;
434d53b0 5176 char str[256];
1da177e4 5177
968ea6d8 5178 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5179 cpumask_clear(groupmask);
4dcf6aff
IM
5180
5181 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5182
5183 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5184 printk("does not load-balance\n");
4dcf6aff 5185 if (sd->parent)
3df0fc5b
PZ
5186 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5187 " has parent");
4dcf6aff 5188 return -1;
41c7ce9a
NP
5189 }
5190
3df0fc5b 5191 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5192
758b2cdc 5193 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5194 printk(KERN_ERR "ERROR: domain->span does not contain "
5195 "CPU%d\n", cpu);
4dcf6aff 5196 }
758b2cdc 5197 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5198 printk(KERN_ERR "ERROR: domain->groups does not contain"
5199 " CPU%d\n", cpu);
4dcf6aff 5200 }
1da177e4 5201
4dcf6aff 5202 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5203 do {
4dcf6aff 5204 if (!group) {
3df0fc5b
PZ
5205 printk("\n");
5206 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5207 break;
5208 }
5209
c3decf0d
PZ
5210 /*
5211 * Even though we initialize ->power to something semi-sane,
5212 * we leave power_orig unset. This allows us to detect if
5213 * domain iteration is still funny without causing /0 traps.
5214 */
5215 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5216 printk(KERN_CONT "\n");
5217 printk(KERN_ERR "ERROR: domain->cpu_power not "
5218 "set\n");
4dcf6aff
IM
5219 break;
5220 }
1da177e4 5221
758b2cdc 5222 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5223 printk(KERN_CONT "\n");
5224 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5225 break;
5226 }
1da177e4 5227
cb83b629
PZ
5228 if (!(sd->flags & SD_OVERLAP) &&
5229 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5230 printk(KERN_CONT "\n");
5231 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5232 break;
5233 }
1da177e4 5234
758b2cdc 5235 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5236
968ea6d8 5237 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5238
3df0fc5b 5239 printk(KERN_CONT " %s", str);
9c3f75cb 5240 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5241 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5242 group->sgp->power);
381512cf 5243 }
1da177e4 5244
4dcf6aff
IM
5245 group = group->next;
5246 } while (group != sd->groups);
3df0fc5b 5247 printk(KERN_CONT "\n");
1da177e4 5248
758b2cdc 5249 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5250 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5251
758b2cdc
RR
5252 if (sd->parent &&
5253 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5254 printk(KERN_ERR "ERROR: parent span is not a superset "
5255 "of domain->span\n");
4dcf6aff
IM
5256 return 0;
5257}
1da177e4 5258
4dcf6aff
IM
5259static void sched_domain_debug(struct sched_domain *sd, int cpu)
5260{
5261 int level = 0;
1da177e4 5262
d039ac60 5263 if (!sched_debug_enabled)
f6630114
MT
5264 return;
5265
4dcf6aff
IM
5266 if (!sd) {
5267 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5268 return;
5269 }
1da177e4 5270
4dcf6aff
IM
5271 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5272
5273 for (;;) {
4cb98839 5274 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5275 break;
1da177e4
LT
5276 level++;
5277 sd = sd->parent;
33859f7f 5278 if (!sd)
4dcf6aff
IM
5279 break;
5280 }
1da177e4 5281}
6d6bc0ad 5282#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5283# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5284static inline bool sched_debug(void)
5285{
5286 return false;
5287}
6d6bc0ad 5288#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5289
1a20ff27 5290static int sd_degenerate(struct sched_domain *sd)
245af2c7 5291{
758b2cdc 5292 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5293 return 1;
5294
5295 /* Following flags need at least 2 groups */
5296 if (sd->flags & (SD_LOAD_BALANCE |
5297 SD_BALANCE_NEWIDLE |
5298 SD_BALANCE_FORK |
89c4710e
SS
5299 SD_BALANCE_EXEC |
5300 SD_SHARE_CPUPOWER |
5301 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5302 if (sd->groups != sd->groups->next)
5303 return 0;
5304 }
5305
5306 /* Following flags don't use groups */
c88d5910 5307 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5308 return 0;
5309
5310 return 1;
5311}
5312
48f24c4d
IM
5313static int
5314sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5315{
5316 unsigned long cflags = sd->flags, pflags = parent->flags;
5317
5318 if (sd_degenerate(parent))
5319 return 1;
5320
758b2cdc 5321 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5322 return 0;
5323
245af2c7
SS
5324 /* Flags needing groups don't count if only 1 group in parent */
5325 if (parent->groups == parent->groups->next) {
5326 pflags &= ~(SD_LOAD_BALANCE |
5327 SD_BALANCE_NEWIDLE |
5328 SD_BALANCE_FORK |
89c4710e
SS
5329 SD_BALANCE_EXEC |
5330 SD_SHARE_CPUPOWER |
5331 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5332 if (nr_node_ids == 1)
5333 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5334 }
5335 if (~cflags & pflags)
5336 return 0;
5337
5338 return 1;
5339}
5340
dce840a0 5341static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5342{
dce840a0 5343 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5344
68e74568 5345 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5346 free_cpumask_var(rd->rto_mask);
5347 free_cpumask_var(rd->online);
5348 free_cpumask_var(rd->span);
5349 kfree(rd);
5350}
5351
57d885fe
GH
5352static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5353{
a0490fa3 5354 struct root_domain *old_rd = NULL;
57d885fe 5355 unsigned long flags;
57d885fe 5356
05fa785c 5357 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5358
5359 if (rq->rd) {
a0490fa3 5360 old_rd = rq->rd;
57d885fe 5361
c6c4927b 5362 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5363 set_rq_offline(rq);
57d885fe 5364
c6c4927b 5365 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5366
a0490fa3
IM
5367 /*
5368 * If we dont want to free the old_rt yet then
5369 * set old_rd to NULL to skip the freeing later
5370 * in this function:
5371 */
5372 if (!atomic_dec_and_test(&old_rd->refcount))
5373 old_rd = NULL;
57d885fe
GH
5374 }
5375
5376 atomic_inc(&rd->refcount);
5377 rq->rd = rd;
5378
c6c4927b 5379 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5380 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5381 set_rq_online(rq);
57d885fe 5382
05fa785c 5383 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5384
5385 if (old_rd)
dce840a0 5386 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5387}
5388
68c38fc3 5389static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5390{
5391 memset(rd, 0, sizeof(*rd));
5392
68c38fc3 5393 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5394 goto out;
68c38fc3 5395 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5396 goto free_span;
68c38fc3 5397 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5398 goto free_online;
6e0534f2 5399
68c38fc3 5400 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5401 goto free_rto_mask;
c6c4927b 5402 return 0;
6e0534f2 5403
68e74568
RR
5404free_rto_mask:
5405 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5406free_online:
5407 free_cpumask_var(rd->online);
5408free_span:
5409 free_cpumask_var(rd->span);
0c910d28 5410out:
c6c4927b 5411 return -ENOMEM;
57d885fe
GH
5412}
5413
029632fb
PZ
5414/*
5415 * By default the system creates a single root-domain with all cpus as
5416 * members (mimicking the global state we have today).
5417 */
5418struct root_domain def_root_domain;
5419
57d885fe
GH
5420static void init_defrootdomain(void)
5421{
68c38fc3 5422 init_rootdomain(&def_root_domain);
c6c4927b 5423
57d885fe
GH
5424 atomic_set(&def_root_domain.refcount, 1);
5425}
5426
dc938520 5427static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5428{
5429 struct root_domain *rd;
5430
5431 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5432 if (!rd)
5433 return NULL;
5434
68c38fc3 5435 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5436 kfree(rd);
5437 return NULL;
5438 }
57d885fe
GH
5439
5440 return rd;
5441}
5442
e3589f6c
PZ
5443static void free_sched_groups(struct sched_group *sg, int free_sgp)
5444{
5445 struct sched_group *tmp, *first;
5446
5447 if (!sg)
5448 return;
5449
5450 first = sg;
5451 do {
5452 tmp = sg->next;
5453
5454 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5455 kfree(sg->sgp);
5456
5457 kfree(sg);
5458 sg = tmp;
5459 } while (sg != first);
5460}
5461
dce840a0
PZ
5462static void free_sched_domain(struct rcu_head *rcu)
5463{
5464 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5465
5466 /*
5467 * If its an overlapping domain it has private groups, iterate and
5468 * nuke them all.
5469 */
5470 if (sd->flags & SD_OVERLAP) {
5471 free_sched_groups(sd->groups, 1);
5472 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5473 kfree(sd->groups->sgp);
dce840a0 5474 kfree(sd->groups);
9c3f75cb 5475 }
dce840a0
PZ
5476 kfree(sd);
5477}
5478
5479static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5480{
5481 call_rcu(&sd->rcu, free_sched_domain);
5482}
5483
5484static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5485{
5486 for (; sd; sd = sd->parent)
5487 destroy_sched_domain(sd, cpu);
5488}
5489
518cd623
PZ
5490/*
5491 * Keep a special pointer to the highest sched_domain that has
5492 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5493 * allows us to avoid some pointer chasing select_idle_sibling().
5494 *
5495 * Also keep a unique ID per domain (we use the first cpu number in
5496 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5497 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5498 */
5499DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5500DEFINE_PER_CPU(int, sd_llc_id);
5501
5502static void update_top_cache_domain(int cpu)
5503{
5504 struct sched_domain *sd;
5505 int id = cpu;
5506
5507 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5508 if (sd)
518cd623
PZ
5509 id = cpumask_first(sched_domain_span(sd));
5510
5511 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5512 per_cpu(sd_llc_id, cpu) = id;
5513}
5514
1da177e4 5515/*
0eab9146 5516 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5517 * hold the hotplug lock.
5518 */
0eab9146
IM
5519static void
5520cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5521{
70b97a7f 5522 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5523 struct sched_domain *tmp;
5524
5525 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5526 for (tmp = sd; tmp; ) {
245af2c7
SS
5527 struct sched_domain *parent = tmp->parent;
5528 if (!parent)
5529 break;
f29c9b1c 5530
1a848870 5531 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5532 tmp->parent = parent->parent;
1a848870
SS
5533 if (parent->parent)
5534 parent->parent->child = tmp;
dce840a0 5535 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5536 } else
5537 tmp = tmp->parent;
245af2c7
SS
5538 }
5539
1a848870 5540 if (sd && sd_degenerate(sd)) {
dce840a0 5541 tmp = sd;
245af2c7 5542 sd = sd->parent;
dce840a0 5543 destroy_sched_domain(tmp, cpu);
1a848870
SS
5544 if (sd)
5545 sd->child = NULL;
5546 }
1da177e4 5547
4cb98839 5548 sched_domain_debug(sd, cpu);
1da177e4 5549
57d885fe 5550 rq_attach_root(rq, rd);
dce840a0 5551 tmp = rq->sd;
674311d5 5552 rcu_assign_pointer(rq->sd, sd);
dce840a0 5553 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5554
5555 update_top_cache_domain(cpu);
1da177e4
LT
5556}
5557
5558/* cpus with isolated domains */
dcc30a35 5559static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5560
5561/* Setup the mask of cpus configured for isolated domains */
5562static int __init isolated_cpu_setup(char *str)
5563{
bdddd296 5564 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5565 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5566 return 1;
5567}
5568
8927f494 5569__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5570
d3081f52
PZ
5571static const struct cpumask *cpu_cpu_mask(int cpu)
5572{
5573 return cpumask_of_node(cpu_to_node(cpu));
5574}
5575
dce840a0
PZ
5576struct sd_data {
5577 struct sched_domain **__percpu sd;
5578 struct sched_group **__percpu sg;
9c3f75cb 5579 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5580};
5581
49a02c51 5582struct s_data {
21d42ccf 5583 struct sched_domain ** __percpu sd;
49a02c51
AH
5584 struct root_domain *rd;
5585};
5586
2109b99e 5587enum s_alloc {
2109b99e 5588 sa_rootdomain,
21d42ccf 5589 sa_sd,
dce840a0 5590 sa_sd_storage,
2109b99e
AH
5591 sa_none,
5592};
5593
54ab4ff4
PZ
5594struct sched_domain_topology_level;
5595
5596typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5597typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5598
e3589f6c
PZ
5599#define SDTL_OVERLAP 0x01
5600
eb7a74e6 5601struct sched_domain_topology_level {
2c402dc3
PZ
5602 sched_domain_init_f init;
5603 sched_domain_mask_f mask;
e3589f6c 5604 int flags;
cb83b629 5605 int numa_level;
54ab4ff4 5606 struct sd_data data;
eb7a74e6
PZ
5607};
5608
c1174876
PZ
5609/*
5610 * Build an iteration mask that can exclude certain CPUs from the upwards
5611 * domain traversal.
5612 *
5613 * Asymmetric node setups can result in situations where the domain tree is of
5614 * unequal depth, make sure to skip domains that already cover the entire
5615 * range.
5616 *
5617 * In that case build_sched_domains() will have terminated the iteration early
5618 * and our sibling sd spans will be empty. Domains should always include the
5619 * cpu they're built on, so check that.
5620 *
5621 */
5622static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5623{
5624 const struct cpumask *span = sched_domain_span(sd);
5625 struct sd_data *sdd = sd->private;
5626 struct sched_domain *sibling;
5627 int i;
5628
5629 for_each_cpu(i, span) {
5630 sibling = *per_cpu_ptr(sdd->sd, i);
5631 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5632 continue;
5633
5634 cpumask_set_cpu(i, sched_group_mask(sg));
5635 }
5636}
5637
5638/*
5639 * Return the canonical balance cpu for this group, this is the first cpu
5640 * of this group that's also in the iteration mask.
5641 */
5642int group_balance_cpu(struct sched_group *sg)
5643{
5644 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5645}
5646
e3589f6c
PZ
5647static int
5648build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5649{
5650 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5651 const struct cpumask *span = sched_domain_span(sd);
5652 struct cpumask *covered = sched_domains_tmpmask;
5653 struct sd_data *sdd = sd->private;
5654 struct sched_domain *child;
5655 int i;
5656
5657 cpumask_clear(covered);
5658
5659 for_each_cpu(i, span) {
5660 struct cpumask *sg_span;
5661
5662 if (cpumask_test_cpu(i, covered))
5663 continue;
5664
c1174876
PZ
5665 child = *per_cpu_ptr(sdd->sd, i);
5666
5667 /* See the comment near build_group_mask(). */
5668 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5669 continue;
5670
e3589f6c 5671 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5672 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5673
5674 if (!sg)
5675 goto fail;
5676
5677 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5678 if (child->child) {
5679 child = child->child;
5680 cpumask_copy(sg_span, sched_domain_span(child));
5681 } else
5682 cpumask_set_cpu(i, sg_span);
5683
5684 cpumask_or(covered, covered, sg_span);
5685
74a5ce20 5686 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5687 if (atomic_inc_return(&sg->sgp->ref) == 1)
5688 build_group_mask(sd, sg);
5689
c3decf0d
PZ
5690 /*
5691 * Initialize sgp->power such that even if we mess up the
5692 * domains and no possible iteration will get us here, we won't
5693 * die on a /0 trap.
5694 */
5695 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5696
c1174876
PZ
5697 /*
5698 * Make sure the first group of this domain contains the
5699 * canonical balance cpu. Otherwise the sched_domain iteration
5700 * breaks. See update_sg_lb_stats().
5701 */
74a5ce20 5702 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5703 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5704 groups = sg;
5705
5706 if (!first)
5707 first = sg;
5708 if (last)
5709 last->next = sg;
5710 last = sg;
5711 last->next = first;
5712 }
5713 sd->groups = groups;
5714
5715 return 0;
5716
5717fail:
5718 free_sched_groups(first, 0);
5719
5720 return -ENOMEM;
5721}
5722
dce840a0 5723static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5724{
dce840a0
PZ
5725 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5726 struct sched_domain *child = sd->child;
1da177e4 5727
dce840a0
PZ
5728 if (child)
5729 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5730
9c3f75cb 5731 if (sg) {
dce840a0 5732 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5733 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5734 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5735 }
dce840a0
PZ
5736
5737 return cpu;
1e9f28fa 5738}
1e9f28fa 5739
01a08546 5740/*
dce840a0
PZ
5741 * build_sched_groups will build a circular linked list of the groups
5742 * covered by the given span, and will set each group's ->cpumask correctly,
5743 * and ->cpu_power to 0.
e3589f6c
PZ
5744 *
5745 * Assumes the sched_domain tree is fully constructed
01a08546 5746 */
e3589f6c
PZ
5747static int
5748build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5749{
dce840a0
PZ
5750 struct sched_group *first = NULL, *last = NULL;
5751 struct sd_data *sdd = sd->private;
5752 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5753 struct cpumask *covered;
dce840a0 5754 int i;
9c1cfda2 5755
e3589f6c
PZ
5756 get_group(cpu, sdd, &sd->groups);
5757 atomic_inc(&sd->groups->ref);
5758
5759 if (cpu != cpumask_first(sched_domain_span(sd)))
5760 return 0;
5761
f96225fd
PZ
5762 lockdep_assert_held(&sched_domains_mutex);
5763 covered = sched_domains_tmpmask;
5764
dce840a0 5765 cpumask_clear(covered);
6711cab4 5766
dce840a0
PZ
5767 for_each_cpu(i, span) {
5768 struct sched_group *sg;
5769 int group = get_group(i, sdd, &sg);
5770 int j;
6711cab4 5771
dce840a0
PZ
5772 if (cpumask_test_cpu(i, covered))
5773 continue;
6711cab4 5774
dce840a0 5775 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5776 sg->sgp->power = 0;
c1174876 5777 cpumask_setall(sched_group_mask(sg));
0601a88d 5778
dce840a0
PZ
5779 for_each_cpu(j, span) {
5780 if (get_group(j, sdd, NULL) != group)
5781 continue;
0601a88d 5782
dce840a0
PZ
5783 cpumask_set_cpu(j, covered);
5784 cpumask_set_cpu(j, sched_group_cpus(sg));
5785 }
0601a88d 5786
dce840a0
PZ
5787 if (!first)
5788 first = sg;
5789 if (last)
5790 last->next = sg;
5791 last = sg;
5792 }
5793 last->next = first;
e3589f6c
PZ
5794
5795 return 0;
0601a88d 5796}
51888ca2 5797
89c4710e
SS
5798/*
5799 * Initialize sched groups cpu_power.
5800 *
5801 * cpu_power indicates the capacity of sched group, which is used while
5802 * distributing the load between different sched groups in a sched domain.
5803 * Typically cpu_power for all the groups in a sched domain will be same unless
5804 * there are asymmetries in the topology. If there are asymmetries, group
5805 * having more cpu_power will pickup more load compared to the group having
5806 * less cpu_power.
89c4710e
SS
5807 */
5808static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5809{
e3589f6c 5810 struct sched_group *sg = sd->groups;
89c4710e 5811
e3589f6c
PZ
5812 WARN_ON(!sd || !sg);
5813
5814 do {
5815 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5816 sg = sg->next;
5817 } while (sg != sd->groups);
89c4710e 5818
c1174876 5819 if (cpu != group_balance_cpu(sg))
e3589f6c 5820 return;
aae6d3dd 5821
d274cb30 5822 update_group_power(sd, cpu);
69e1e811 5823 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5824}
5825
029632fb
PZ
5826int __weak arch_sd_sibling_asym_packing(void)
5827{
5828 return 0*SD_ASYM_PACKING;
89c4710e
SS
5829}
5830
7c16ec58
MT
5831/*
5832 * Initializers for schedule domains
5833 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5834 */
5835
a5d8c348
IM
5836#ifdef CONFIG_SCHED_DEBUG
5837# define SD_INIT_NAME(sd, type) sd->name = #type
5838#else
5839# define SD_INIT_NAME(sd, type) do { } while (0)
5840#endif
5841
54ab4ff4
PZ
5842#define SD_INIT_FUNC(type) \
5843static noinline struct sched_domain * \
5844sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5845{ \
5846 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5847 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5848 SD_INIT_NAME(sd, type); \
5849 sd->private = &tl->data; \
5850 return sd; \
7c16ec58
MT
5851}
5852
5853SD_INIT_FUNC(CPU)
7c16ec58
MT
5854#ifdef CONFIG_SCHED_SMT
5855 SD_INIT_FUNC(SIBLING)
5856#endif
5857#ifdef CONFIG_SCHED_MC
5858 SD_INIT_FUNC(MC)
5859#endif
01a08546
HC
5860#ifdef CONFIG_SCHED_BOOK
5861 SD_INIT_FUNC(BOOK)
5862#endif
7c16ec58 5863
1d3504fc 5864static int default_relax_domain_level = -1;
60495e77 5865int sched_domain_level_max;
1d3504fc
HS
5866
5867static int __init setup_relax_domain_level(char *str)
5868{
a841f8ce
DS
5869 if (kstrtoint(str, 0, &default_relax_domain_level))
5870 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5871
1d3504fc
HS
5872 return 1;
5873}
5874__setup("relax_domain_level=", setup_relax_domain_level);
5875
5876static void set_domain_attribute(struct sched_domain *sd,
5877 struct sched_domain_attr *attr)
5878{
5879 int request;
5880
5881 if (!attr || attr->relax_domain_level < 0) {
5882 if (default_relax_domain_level < 0)
5883 return;
5884 else
5885 request = default_relax_domain_level;
5886 } else
5887 request = attr->relax_domain_level;
5888 if (request < sd->level) {
5889 /* turn off idle balance on this domain */
c88d5910 5890 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5891 } else {
5892 /* turn on idle balance on this domain */
c88d5910 5893 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5894 }
5895}
5896
54ab4ff4
PZ
5897static void __sdt_free(const struct cpumask *cpu_map);
5898static int __sdt_alloc(const struct cpumask *cpu_map);
5899
2109b99e
AH
5900static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5901 const struct cpumask *cpu_map)
5902{
5903 switch (what) {
2109b99e 5904 case sa_rootdomain:
822ff793
PZ
5905 if (!atomic_read(&d->rd->refcount))
5906 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5907 case sa_sd:
5908 free_percpu(d->sd); /* fall through */
dce840a0 5909 case sa_sd_storage:
54ab4ff4 5910 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5911 case sa_none:
5912 break;
5913 }
5914}
3404c8d9 5915
2109b99e
AH
5916static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5917 const struct cpumask *cpu_map)
5918{
dce840a0
PZ
5919 memset(d, 0, sizeof(*d));
5920
54ab4ff4
PZ
5921 if (__sdt_alloc(cpu_map))
5922 return sa_sd_storage;
dce840a0
PZ
5923 d->sd = alloc_percpu(struct sched_domain *);
5924 if (!d->sd)
5925 return sa_sd_storage;
2109b99e 5926 d->rd = alloc_rootdomain();
dce840a0 5927 if (!d->rd)
21d42ccf 5928 return sa_sd;
2109b99e
AH
5929 return sa_rootdomain;
5930}
57d885fe 5931
dce840a0
PZ
5932/*
5933 * NULL the sd_data elements we've used to build the sched_domain and
5934 * sched_group structure so that the subsequent __free_domain_allocs()
5935 * will not free the data we're using.
5936 */
5937static void claim_allocations(int cpu, struct sched_domain *sd)
5938{
5939 struct sd_data *sdd = sd->private;
dce840a0
PZ
5940
5941 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5942 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5943
e3589f6c 5944 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5945 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5946
5947 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5948 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5949}
5950
2c402dc3
PZ
5951#ifdef CONFIG_SCHED_SMT
5952static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5953{
2c402dc3 5954 return topology_thread_cpumask(cpu);
3bd65a80 5955}
2c402dc3 5956#endif
7f4588f3 5957
d069b916
PZ
5958/*
5959 * Topology list, bottom-up.
5960 */
2c402dc3 5961static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5962#ifdef CONFIG_SCHED_SMT
5963 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5964#endif
1e9f28fa 5965#ifdef CONFIG_SCHED_MC
2c402dc3 5966 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5967#endif
d069b916
PZ
5968#ifdef CONFIG_SCHED_BOOK
5969 { sd_init_BOOK, cpu_book_mask, },
5970#endif
5971 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5972 { NULL, },
5973};
5974
5975static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5976
cb83b629
PZ
5977#ifdef CONFIG_NUMA
5978
5979static int sched_domains_numa_levels;
cb83b629
PZ
5980static int *sched_domains_numa_distance;
5981static struct cpumask ***sched_domains_numa_masks;
5982static int sched_domains_curr_level;
5983
cb83b629
PZ
5984static inline int sd_local_flags(int level)
5985{
10717dcd 5986 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5987 return 0;
5988
5989 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5990}
5991
5992static struct sched_domain *
5993sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5994{
5995 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5996 int level = tl->numa_level;
5997 int sd_weight = cpumask_weight(
5998 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5999
6000 *sd = (struct sched_domain){
6001 .min_interval = sd_weight,
6002 .max_interval = 2*sd_weight,
6003 .busy_factor = 32,
870a0bb5 6004 .imbalance_pct = 125,
cb83b629
PZ
6005 .cache_nice_tries = 2,
6006 .busy_idx = 3,
6007 .idle_idx = 2,
6008 .newidle_idx = 0,
6009 .wake_idx = 0,
6010 .forkexec_idx = 0,
6011
6012 .flags = 1*SD_LOAD_BALANCE
6013 | 1*SD_BALANCE_NEWIDLE
6014 | 0*SD_BALANCE_EXEC
6015 | 0*SD_BALANCE_FORK
6016 | 0*SD_BALANCE_WAKE
6017 | 0*SD_WAKE_AFFINE
cb83b629 6018 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6019 | 0*SD_SHARE_PKG_RESOURCES
6020 | 1*SD_SERIALIZE
6021 | 0*SD_PREFER_SIBLING
6022 | sd_local_flags(level)
6023 ,
6024 .last_balance = jiffies,
6025 .balance_interval = sd_weight,
6026 };
6027 SD_INIT_NAME(sd, NUMA);
6028 sd->private = &tl->data;
6029
6030 /*
6031 * Ugly hack to pass state to sd_numa_mask()...
6032 */
6033 sched_domains_curr_level = tl->numa_level;
6034
6035 return sd;
6036}
6037
6038static const struct cpumask *sd_numa_mask(int cpu)
6039{
6040 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6041}
6042
d039ac60
PZ
6043static void sched_numa_warn(const char *str)
6044{
6045 static int done = false;
6046 int i,j;
6047
6048 if (done)
6049 return;
6050
6051 done = true;
6052
6053 printk(KERN_WARNING "ERROR: %s\n\n", str);
6054
6055 for (i = 0; i < nr_node_ids; i++) {
6056 printk(KERN_WARNING " ");
6057 for (j = 0; j < nr_node_ids; j++)
6058 printk(KERN_CONT "%02d ", node_distance(i,j));
6059 printk(KERN_CONT "\n");
6060 }
6061 printk(KERN_WARNING "\n");
6062}
6063
6064static bool find_numa_distance(int distance)
6065{
6066 int i;
6067
6068 if (distance == node_distance(0, 0))
6069 return true;
6070
6071 for (i = 0; i < sched_domains_numa_levels; i++) {
6072 if (sched_domains_numa_distance[i] == distance)
6073 return true;
6074 }
6075
6076 return false;
6077}
6078
cb83b629
PZ
6079static void sched_init_numa(void)
6080{
6081 int next_distance, curr_distance = node_distance(0, 0);
6082 struct sched_domain_topology_level *tl;
6083 int level = 0;
6084 int i, j, k;
6085
cb83b629
PZ
6086 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6087 if (!sched_domains_numa_distance)
6088 return;
6089
6090 /*
6091 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6092 * unique distances in the node_distance() table.
6093 *
6094 * Assumes node_distance(0,j) includes all distances in
6095 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6096 */
6097 next_distance = curr_distance;
6098 for (i = 0; i < nr_node_ids; i++) {
6099 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6100 for (k = 0; k < nr_node_ids; k++) {
6101 int distance = node_distance(i, k);
6102
6103 if (distance > curr_distance &&
6104 (distance < next_distance ||
6105 next_distance == curr_distance))
6106 next_distance = distance;
6107
6108 /*
6109 * While not a strong assumption it would be nice to know
6110 * about cases where if node A is connected to B, B is not
6111 * equally connected to A.
6112 */
6113 if (sched_debug() && node_distance(k, i) != distance)
6114 sched_numa_warn("Node-distance not symmetric");
6115
6116 if (sched_debug() && i && !find_numa_distance(distance))
6117 sched_numa_warn("Node-0 not representative");
6118 }
6119 if (next_distance != curr_distance) {
6120 sched_domains_numa_distance[level++] = next_distance;
6121 sched_domains_numa_levels = level;
6122 curr_distance = next_distance;
6123 } else break;
cb83b629 6124 }
d039ac60
PZ
6125
6126 /*
6127 * In case of sched_debug() we verify the above assumption.
6128 */
6129 if (!sched_debug())
6130 break;
cb83b629
PZ
6131 }
6132 /*
6133 * 'level' contains the number of unique distances, excluding the
6134 * identity distance node_distance(i,i).
6135 *
6136 * The sched_domains_nume_distance[] array includes the actual distance
6137 * numbers.
6138 */
6139
5f7865f3
TC
6140 /*
6141 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6142 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6143 * the array will contain less then 'level' members. This could be
6144 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6145 * in other functions.
6146 *
6147 * We reset it to 'level' at the end of this function.
6148 */
6149 sched_domains_numa_levels = 0;
6150
cb83b629
PZ
6151 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6152 if (!sched_domains_numa_masks)
6153 return;
6154
6155 /*
6156 * Now for each level, construct a mask per node which contains all
6157 * cpus of nodes that are that many hops away from us.
6158 */
6159 for (i = 0; i < level; i++) {
6160 sched_domains_numa_masks[i] =
6161 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6162 if (!sched_domains_numa_masks[i])
6163 return;
6164
6165 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6166 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6167 if (!mask)
6168 return;
6169
6170 sched_domains_numa_masks[i][j] = mask;
6171
6172 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6173 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6174 continue;
6175
6176 cpumask_or(mask, mask, cpumask_of_node(k));
6177 }
6178 }
6179 }
6180
6181 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6182 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6183 if (!tl)
6184 return;
6185
6186 /*
6187 * Copy the default topology bits..
6188 */
6189 for (i = 0; default_topology[i].init; i++)
6190 tl[i] = default_topology[i];
6191
6192 /*
6193 * .. and append 'j' levels of NUMA goodness.
6194 */
6195 for (j = 0; j < level; i++, j++) {
6196 tl[i] = (struct sched_domain_topology_level){
6197 .init = sd_numa_init,
6198 .mask = sd_numa_mask,
6199 .flags = SDTL_OVERLAP,
6200 .numa_level = j,
6201 };
6202 }
6203
6204 sched_domain_topology = tl;
5f7865f3
TC
6205
6206 sched_domains_numa_levels = level;
cb83b629 6207}
301a5cba
TC
6208
6209static void sched_domains_numa_masks_set(int cpu)
6210{
6211 int i, j;
6212 int node = cpu_to_node(cpu);
6213
6214 for (i = 0; i < sched_domains_numa_levels; i++) {
6215 for (j = 0; j < nr_node_ids; j++) {
6216 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6217 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6218 }
6219 }
6220}
6221
6222static void sched_domains_numa_masks_clear(int cpu)
6223{
6224 int i, j;
6225 for (i = 0; i < sched_domains_numa_levels; i++) {
6226 for (j = 0; j < nr_node_ids; j++)
6227 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6228 }
6229}
6230
6231/*
6232 * Update sched_domains_numa_masks[level][node] array when new cpus
6233 * are onlined.
6234 */
6235static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6236 unsigned long action,
6237 void *hcpu)
6238{
6239 int cpu = (long)hcpu;
6240
6241 switch (action & ~CPU_TASKS_FROZEN) {
6242 case CPU_ONLINE:
6243 sched_domains_numa_masks_set(cpu);
6244 break;
6245
6246 case CPU_DEAD:
6247 sched_domains_numa_masks_clear(cpu);
6248 break;
6249
6250 default:
6251 return NOTIFY_DONE;
6252 }
6253
6254 return NOTIFY_OK;
cb83b629
PZ
6255}
6256#else
6257static inline void sched_init_numa(void)
6258{
6259}
301a5cba
TC
6260
6261static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6262 unsigned long action,
6263 void *hcpu)
6264{
6265 return 0;
6266}
cb83b629
PZ
6267#endif /* CONFIG_NUMA */
6268
54ab4ff4
PZ
6269static int __sdt_alloc(const struct cpumask *cpu_map)
6270{
6271 struct sched_domain_topology_level *tl;
6272 int j;
6273
6274 for (tl = sched_domain_topology; tl->init; tl++) {
6275 struct sd_data *sdd = &tl->data;
6276
6277 sdd->sd = alloc_percpu(struct sched_domain *);
6278 if (!sdd->sd)
6279 return -ENOMEM;
6280
6281 sdd->sg = alloc_percpu(struct sched_group *);
6282 if (!sdd->sg)
6283 return -ENOMEM;
6284
9c3f75cb
PZ
6285 sdd->sgp = alloc_percpu(struct sched_group_power *);
6286 if (!sdd->sgp)
6287 return -ENOMEM;
6288
54ab4ff4
PZ
6289 for_each_cpu(j, cpu_map) {
6290 struct sched_domain *sd;
6291 struct sched_group *sg;
9c3f75cb 6292 struct sched_group_power *sgp;
54ab4ff4
PZ
6293
6294 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6295 GFP_KERNEL, cpu_to_node(j));
6296 if (!sd)
6297 return -ENOMEM;
6298
6299 *per_cpu_ptr(sdd->sd, j) = sd;
6300
6301 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6302 GFP_KERNEL, cpu_to_node(j));
6303 if (!sg)
6304 return -ENOMEM;
6305
30b4e9eb
IM
6306 sg->next = sg;
6307
54ab4ff4 6308 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6309
c1174876 6310 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6311 GFP_KERNEL, cpu_to_node(j));
6312 if (!sgp)
6313 return -ENOMEM;
6314
6315 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6316 }
6317 }
6318
6319 return 0;
6320}
6321
6322static void __sdt_free(const struct cpumask *cpu_map)
6323{
6324 struct sched_domain_topology_level *tl;
6325 int j;
6326
6327 for (tl = sched_domain_topology; tl->init; tl++) {
6328 struct sd_data *sdd = &tl->data;
6329
6330 for_each_cpu(j, cpu_map) {
fb2cf2c6 6331 struct sched_domain *sd;
6332
6333 if (sdd->sd) {
6334 sd = *per_cpu_ptr(sdd->sd, j);
6335 if (sd && (sd->flags & SD_OVERLAP))
6336 free_sched_groups(sd->groups, 0);
6337 kfree(*per_cpu_ptr(sdd->sd, j));
6338 }
6339
6340 if (sdd->sg)
6341 kfree(*per_cpu_ptr(sdd->sg, j));
6342 if (sdd->sgp)
6343 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6344 }
6345 free_percpu(sdd->sd);
fb2cf2c6 6346 sdd->sd = NULL;
54ab4ff4 6347 free_percpu(sdd->sg);
fb2cf2c6 6348 sdd->sg = NULL;
9c3f75cb 6349 free_percpu(sdd->sgp);
fb2cf2c6 6350 sdd->sgp = NULL;
54ab4ff4
PZ
6351 }
6352}
6353
2c402dc3
PZ
6354struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6355 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6356 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6357 int cpu)
6358{
54ab4ff4 6359 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6360 if (!sd)
d069b916 6361 return child;
2c402dc3 6362
2c402dc3 6363 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6364 if (child) {
6365 sd->level = child->level + 1;
6366 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6367 child->parent = sd;
60495e77 6368 }
d069b916 6369 sd->child = child;
a841f8ce 6370 set_domain_attribute(sd, attr);
2c402dc3
PZ
6371
6372 return sd;
6373}
6374
2109b99e
AH
6375/*
6376 * Build sched domains for a given set of cpus and attach the sched domains
6377 * to the individual cpus
6378 */
dce840a0
PZ
6379static int build_sched_domains(const struct cpumask *cpu_map,
6380 struct sched_domain_attr *attr)
2109b99e
AH
6381{
6382 enum s_alloc alloc_state = sa_none;
dce840a0 6383 struct sched_domain *sd;
2109b99e 6384 struct s_data d;
822ff793 6385 int i, ret = -ENOMEM;
9c1cfda2 6386
2109b99e
AH
6387 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6388 if (alloc_state != sa_rootdomain)
6389 goto error;
9c1cfda2 6390
dce840a0 6391 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6392 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6393 struct sched_domain_topology_level *tl;
6394
3bd65a80 6395 sd = NULL;
e3589f6c 6396 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6397 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6398 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6399 sd->flags |= SD_OVERLAP;
d110235d
PZ
6400 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6401 break;
e3589f6c 6402 }
d274cb30 6403
d069b916
PZ
6404 while (sd->child)
6405 sd = sd->child;
6406
21d42ccf 6407 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6408 }
6409
6410 /* Build the groups for the domains */
6411 for_each_cpu(i, cpu_map) {
6412 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6413 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6414 if (sd->flags & SD_OVERLAP) {
6415 if (build_overlap_sched_groups(sd, i))
6416 goto error;
6417 } else {
6418 if (build_sched_groups(sd, i))
6419 goto error;
6420 }
1cf51902 6421 }
a06dadbe 6422 }
9c1cfda2 6423
1da177e4 6424 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6425 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6426 if (!cpumask_test_cpu(i, cpu_map))
6427 continue;
9c1cfda2 6428
dce840a0
PZ
6429 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6430 claim_allocations(i, sd);
cd4ea6ae 6431 init_sched_groups_power(i, sd);
dce840a0 6432 }
f712c0c7 6433 }
9c1cfda2 6434
1da177e4 6435 /* Attach the domains */
dce840a0 6436 rcu_read_lock();
abcd083a 6437 for_each_cpu(i, cpu_map) {
21d42ccf 6438 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6439 cpu_attach_domain(sd, d.rd, i);
1da177e4 6440 }
dce840a0 6441 rcu_read_unlock();
51888ca2 6442
822ff793 6443 ret = 0;
51888ca2 6444error:
2109b99e 6445 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6446 return ret;
1da177e4 6447}
029190c5 6448
acc3f5d7 6449static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6450static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6451static struct sched_domain_attr *dattr_cur;
6452 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6453
6454/*
6455 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6456 * cpumask) fails, then fallback to a single sched domain,
6457 * as determined by the single cpumask fallback_doms.
029190c5 6458 */
4212823f 6459static cpumask_var_t fallback_doms;
029190c5 6460
ee79d1bd
HC
6461/*
6462 * arch_update_cpu_topology lets virtualized architectures update the
6463 * cpu core maps. It is supposed to return 1 if the topology changed
6464 * or 0 if it stayed the same.
6465 */
6466int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6467{
ee79d1bd 6468 return 0;
22e52b07
HC
6469}
6470
acc3f5d7
RR
6471cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6472{
6473 int i;
6474 cpumask_var_t *doms;
6475
6476 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6477 if (!doms)
6478 return NULL;
6479 for (i = 0; i < ndoms; i++) {
6480 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6481 free_sched_domains(doms, i);
6482 return NULL;
6483 }
6484 }
6485 return doms;
6486}
6487
6488void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6489{
6490 unsigned int i;
6491 for (i = 0; i < ndoms; i++)
6492 free_cpumask_var(doms[i]);
6493 kfree(doms);
6494}
6495
1a20ff27 6496/*
41a2d6cf 6497 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6498 * For now this just excludes isolated cpus, but could be used to
6499 * exclude other special cases in the future.
1a20ff27 6500 */
c4a8849a 6501static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6502{
7378547f
MM
6503 int err;
6504
22e52b07 6505 arch_update_cpu_topology();
029190c5 6506 ndoms_cur = 1;
acc3f5d7 6507 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6508 if (!doms_cur)
acc3f5d7
RR
6509 doms_cur = &fallback_doms;
6510 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6511 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6512 register_sched_domain_sysctl();
7378547f
MM
6513
6514 return err;
1a20ff27
DG
6515}
6516
1a20ff27
DG
6517/*
6518 * Detach sched domains from a group of cpus specified in cpu_map
6519 * These cpus will now be attached to the NULL domain
6520 */
96f874e2 6521static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6522{
6523 int i;
6524
dce840a0 6525 rcu_read_lock();
abcd083a 6526 for_each_cpu(i, cpu_map)
57d885fe 6527 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6528 rcu_read_unlock();
1a20ff27
DG
6529}
6530
1d3504fc
HS
6531/* handle null as "default" */
6532static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6533 struct sched_domain_attr *new, int idx_new)
6534{
6535 struct sched_domain_attr tmp;
6536
6537 /* fast path */
6538 if (!new && !cur)
6539 return 1;
6540
6541 tmp = SD_ATTR_INIT;
6542 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6543 new ? (new + idx_new) : &tmp,
6544 sizeof(struct sched_domain_attr));
6545}
6546
029190c5
PJ
6547/*
6548 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6549 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6550 * doms_new[] to the current sched domain partitioning, doms_cur[].
6551 * It destroys each deleted domain and builds each new domain.
6552 *
acc3f5d7 6553 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6554 * The masks don't intersect (don't overlap.) We should setup one
6555 * sched domain for each mask. CPUs not in any of the cpumasks will
6556 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6557 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6558 * it as it is.
6559 *
acc3f5d7
RR
6560 * The passed in 'doms_new' should be allocated using
6561 * alloc_sched_domains. This routine takes ownership of it and will
6562 * free_sched_domains it when done with it. If the caller failed the
6563 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6564 * and partition_sched_domains() will fallback to the single partition
6565 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6566 *
96f874e2 6567 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6568 * ndoms_new == 0 is a special case for destroying existing domains,
6569 * and it will not create the default domain.
dfb512ec 6570 *
029190c5
PJ
6571 * Call with hotplug lock held
6572 */
acc3f5d7 6573void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6574 struct sched_domain_attr *dattr_new)
029190c5 6575{
dfb512ec 6576 int i, j, n;
d65bd5ec 6577 int new_topology;
029190c5 6578
712555ee 6579 mutex_lock(&sched_domains_mutex);
a1835615 6580
7378547f
MM
6581 /* always unregister in case we don't destroy any domains */
6582 unregister_sched_domain_sysctl();
6583
d65bd5ec
HC
6584 /* Let architecture update cpu core mappings. */
6585 new_topology = arch_update_cpu_topology();
6586
dfb512ec 6587 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6588
6589 /* Destroy deleted domains */
6590 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6591 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6592 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6593 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6594 goto match1;
6595 }
6596 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6597 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6598match1:
6599 ;
6600 }
6601
e761b772
MK
6602 if (doms_new == NULL) {
6603 ndoms_cur = 0;
acc3f5d7 6604 doms_new = &fallback_doms;
6ad4c188 6605 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6606 WARN_ON_ONCE(dattr_new);
e761b772
MK
6607 }
6608
029190c5
PJ
6609 /* Build new domains */
6610 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6611 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6612 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6613 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6614 goto match2;
6615 }
6616 /* no match - add a new doms_new */
dce840a0 6617 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6618match2:
6619 ;
6620 }
6621
6622 /* Remember the new sched domains */
acc3f5d7
RR
6623 if (doms_cur != &fallback_doms)
6624 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6625 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6626 doms_cur = doms_new;
1d3504fc 6627 dattr_cur = dattr_new;
029190c5 6628 ndoms_cur = ndoms_new;
7378547f
MM
6629
6630 register_sched_domain_sysctl();
a1835615 6631
712555ee 6632 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6633}
6634
d35be8ba
SB
6635static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6636
1da177e4 6637/*
3a101d05
TH
6638 * Update cpusets according to cpu_active mask. If cpusets are
6639 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6640 * around partition_sched_domains().
d35be8ba
SB
6641 *
6642 * If we come here as part of a suspend/resume, don't touch cpusets because we
6643 * want to restore it back to its original state upon resume anyway.
1da177e4 6644 */
0b2e918a
TH
6645static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6646 void *hcpu)
e761b772 6647{
d35be8ba
SB
6648 switch (action) {
6649 case CPU_ONLINE_FROZEN:
6650 case CPU_DOWN_FAILED_FROZEN:
6651
6652 /*
6653 * num_cpus_frozen tracks how many CPUs are involved in suspend
6654 * resume sequence. As long as this is not the last online
6655 * operation in the resume sequence, just build a single sched
6656 * domain, ignoring cpusets.
6657 */
6658 num_cpus_frozen--;
6659 if (likely(num_cpus_frozen)) {
6660 partition_sched_domains(1, NULL, NULL);
6661 break;
6662 }
6663
6664 /*
6665 * This is the last CPU online operation. So fall through and
6666 * restore the original sched domains by considering the
6667 * cpuset configurations.
6668 */
6669
e761b772 6670 case CPU_ONLINE:
6ad4c188 6671 case CPU_DOWN_FAILED:
7ddf96b0 6672 cpuset_update_active_cpus(true);
d35be8ba 6673 break;
3a101d05
TH
6674 default:
6675 return NOTIFY_DONE;
6676 }
d35be8ba 6677 return NOTIFY_OK;
3a101d05 6678}
e761b772 6679
0b2e918a
TH
6680static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6681 void *hcpu)
3a101d05 6682{
d35be8ba 6683 switch (action) {
3a101d05 6684 case CPU_DOWN_PREPARE:
7ddf96b0 6685 cpuset_update_active_cpus(false);
d35be8ba
SB
6686 break;
6687 case CPU_DOWN_PREPARE_FROZEN:
6688 num_cpus_frozen++;
6689 partition_sched_domains(1, NULL, NULL);
6690 break;
e761b772
MK
6691 default:
6692 return NOTIFY_DONE;
6693 }
d35be8ba 6694 return NOTIFY_OK;
e761b772 6695}
e761b772 6696
1da177e4
LT
6697void __init sched_init_smp(void)
6698{
dcc30a35
RR
6699 cpumask_var_t non_isolated_cpus;
6700
6701 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6702 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6703
cb83b629
PZ
6704 sched_init_numa();
6705
95402b38 6706 get_online_cpus();
712555ee 6707 mutex_lock(&sched_domains_mutex);
c4a8849a 6708 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6709 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6710 if (cpumask_empty(non_isolated_cpus))
6711 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6712 mutex_unlock(&sched_domains_mutex);
95402b38 6713 put_online_cpus();
e761b772 6714
301a5cba 6715 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6716 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6717 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6718
6719 /* RT runtime code needs to handle some hotplug events */
6720 hotcpu_notifier(update_runtime, 0);
6721
b328ca18 6722 init_hrtick();
5c1e1767
NP
6723
6724 /* Move init over to a non-isolated CPU */
dcc30a35 6725 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6726 BUG();
19978ca6 6727 sched_init_granularity();
dcc30a35 6728 free_cpumask_var(non_isolated_cpus);
4212823f 6729
0e3900e6 6730 init_sched_rt_class();
1da177e4
LT
6731}
6732#else
6733void __init sched_init_smp(void)
6734{
19978ca6 6735 sched_init_granularity();
1da177e4
LT
6736}
6737#endif /* CONFIG_SMP */
6738
cd1bb94b
AB
6739const_debug unsigned int sysctl_timer_migration = 1;
6740
1da177e4
LT
6741int in_sched_functions(unsigned long addr)
6742{
1da177e4
LT
6743 return in_lock_functions(addr) ||
6744 (addr >= (unsigned long)__sched_text_start
6745 && addr < (unsigned long)__sched_text_end);
6746}
6747
029632fb
PZ
6748#ifdef CONFIG_CGROUP_SCHED
6749struct task_group root_task_group;
35cf4e50 6750LIST_HEAD(task_groups);
052f1dc7 6751#endif
6f505b16 6752
029632fb 6753DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6754
1da177e4
LT
6755void __init sched_init(void)
6756{
dd41f596 6757 int i, j;
434d53b0
MT
6758 unsigned long alloc_size = 0, ptr;
6759
6760#ifdef CONFIG_FAIR_GROUP_SCHED
6761 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6762#endif
6763#ifdef CONFIG_RT_GROUP_SCHED
6764 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6765#endif
df7c8e84 6766#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6767 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6768#endif
434d53b0 6769 if (alloc_size) {
36b7b6d4 6770 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6771
6772#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6773 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6774 ptr += nr_cpu_ids * sizeof(void **);
6775
07e06b01 6776 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6777 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6778
6d6bc0ad 6779#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6780#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6781 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6782 ptr += nr_cpu_ids * sizeof(void **);
6783
07e06b01 6784 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6785 ptr += nr_cpu_ids * sizeof(void **);
6786
6d6bc0ad 6787#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6788#ifdef CONFIG_CPUMASK_OFFSTACK
6789 for_each_possible_cpu(i) {
6790 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6791 ptr += cpumask_size();
6792 }
6793#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6794 }
dd41f596 6795
57d885fe
GH
6796#ifdef CONFIG_SMP
6797 init_defrootdomain();
6798#endif
6799
d0b27fa7
PZ
6800 init_rt_bandwidth(&def_rt_bandwidth,
6801 global_rt_period(), global_rt_runtime());
6802
6803#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6804 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6805 global_rt_period(), global_rt_runtime());
6d6bc0ad 6806#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6807
7c941438 6808#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6809 list_add(&root_task_group.list, &task_groups);
6810 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6811 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6812 autogroup_init(&init_task);
54c707e9 6813
7c941438 6814#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6815
54c707e9
GC
6816#ifdef CONFIG_CGROUP_CPUACCT
6817 root_cpuacct.cpustat = &kernel_cpustat;
6818 root_cpuacct.cpuusage = alloc_percpu(u64);
6819 /* Too early, not expected to fail */
6820 BUG_ON(!root_cpuacct.cpuusage);
6821#endif
0a945022 6822 for_each_possible_cpu(i) {
70b97a7f 6823 struct rq *rq;
1da177e4
LT
6824
6825 rq = cpu_rq(i);
05fa785c 6826 raw_spin_lock_init(&rq->lock);
7897986b 6827 rq->nr_running = 0;
dce48a84
TG
6828 rq->calc_load_active = 0;
6829 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6830 init_cfs_rq(&rq->cfs);
6f505b16 6831 init_rt_rq(&rq->rt, rq);
dd41f596 6832#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6833 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6834 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6835 /*
07e06b01 6836 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6837 *
6838 * In case of task-groups formed thr' the cgroup filesystem, it
6839 * gets 100% of the cpu resources in the system. This overall
6840 * system cpu resource is divided among the tasks of
07e06b01 6841 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6842 * based on each entity's (task or task-group's) weight
6843 * (se->load.weight).
6844 *
07e06b01 6845 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6846 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6847 * then A0's share of the cpu resource is:
6848 *
0d905bca 6849 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6850 *
07e06b01
YZ
6851 * We achieve this by letting root_task_group's tasks sit
6852 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6853 */
ab84d31e 6854 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6855 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6856#endif /* CONFIG_FAIR_GROUP_SCHED */
6857
6858 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6859#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6860 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6861 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6862#endif
1da177e4 6863
dd41f596
IM
6864 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6865 rq->cpu_load[j] = 0;
fdf3e95d
VP
6866
6867 rq->last_load_update_tick = jiffies;
6868
1da177e4 6869#ifdef CONFIG_SMP
41c7ce9a 6870 rq->sd = NULL;
57d885fe 6871 rq->rd = NULL;
1399fa78 6872 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6873 rq->post_schedule = 0;
1da177e4 6874 rq->active_balance = 0;
dd41f596 6875 rq->next_balance = jiffies;
1da177e4 6876 rq->push_cpu = 0;
0a2966b4 6877 rq->cpu = i;
1f11eb6a 6878 rq->online = 0;
eae0c9df
MG
6879 rq->idle_stamp = 0;
6880 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6881
6882 INIT_LIST_HEAD(&rq->cfs_tasks);
6883
dc938520 6884 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6885#ifdef CONFIG_NO_HZ
1c792db7 6886 rq->nohz_flags = 0;
83cd4fe2 6887#endif
1da177e4 6888#endif
8f4d37ec 6889 init_rq_hrtick(rq);
1da177e4 6890 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6891 }
6892
2dd73a4f 6893 set_load_weight(&init_task);
b50f60ce 6894
e107be36
AK
6895#ifdef CONFIG_PREEMPT_NOTIFIERS
6896 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6897#endif
6898
b50f60ce 6899#ifdef CONFIG_RT_MUTEXES
732375c6 6900 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6901#endif
6902
1da177e4
LT
6903 /*
6904 * The boot idle thread does lazy MMU switching as well:
6905 */
6906 atomic_inc(&init_mm.mm_count);
6907 enter_lazy_tlb(&init_mm, current);
6908
6909 /*
6910 * Make us the idle thread. Technically, schedule() should not be
6911 * called from this thread, however somewhere below it might be,
6912 * but because we are the idle thread, we just pick up running again
6913 * when this runqueue becomes "idle".
6914 */
6915 init_idle(current, smp_processor_id());
dce48a84
TG
6916
6917 calc_load_update = jiffies + LOAD_FREQ;
6918
dd41f596
IM
6919 /*
6920 * During early bootup we pretend to be a normal task:
6921 */
6922 current->sched_class = &fair_sched_class;
6892b75e 6923
bf4d83f6 6924#ifdef CONFIG_SMP
4cb98839 6925 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6926 /* May be allocated at isolcpus cmdline parse time */
6927 if (cpu_isolated_map == NULL)
6928 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6929 idle_thread_set_boot_cpu();
029632fb
PZ
6930#endif
6931 init_sched_fair_class();
6a7b3dc3 6932
6892b75e 6933 scheduler_running = 1;
1da177e4
LT
6934}
6935
d902db1e 6936#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6937static inline int preempt_count_equals(int preempt_offset)
6938{
234da7bc 6939 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6940
4ba8216c 6941 return (nested == preempt_offset);
e4aafea2
FW
6942}
6943
d894837f 6944void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6945{
1da177e4
LT
6946 static unsigned long prev_jiffy; /* ratelimiting */
6947
b3fbab05 6948 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6949 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6950 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6951 return;
6952 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6953 return;
6954 prev_jiffy = jiffies;
6955
3df0fc5b
PZ
6956 printk(KERN_ERR
6957 "BUG: sleeping function called from invalid context at %s:%d\n",
6958 file, line);
6959 printk(KERN_ERR
6960 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6961 in_atomic(), irqs_disabled(),
6962 current->pid, current->comm);
aef745fc
IM
6963
6964 debug_show_held_locks(current);
6965 if (irqs_disabled())
6966 print_irqtrace_events(current);
6967 dump_stack();
1da177e4
LT
6968}
6969EXPORT_SYMBOL(__might_sleep);
6970#endif
6971
6972#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6973static void normalize_task(struct rq *rq, struct task_struct *p)
6974{
da7a735e
PZ
6975 const struct sched_class *prev_class = p->sched_class;
6976 int old_prio = p->prio;
3a5e4dc1 6977 int on_rq;
3e51f33f 6978
fd2f4419 6979 on_rq = p->on_rq;
3a5e4dc1 6980 if (on_rq)
4ca9b72b 6981 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6982 __setscheduler(rq, p, SCHED_NORMAL, 0);
6983 if (on_rq) {
4ca9b72b 6984 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6985 resched_task(rq->curr);
6986 }
da7a735e
PZ
6987
6988 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6989}
6990
1da177e4
LT
6991void normalize_rt_tasks(void)
6992{
a0f98a1c 6993 struct task_struct *g, *p;
1da177e4 6994 unsigned long flags;
70b97a7f 6995 struct rq *rq;
1da177e4 6996
4cf5d77a 6997 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6998 do_each_thread(g, p) {
178be793
IM
6999 /*
7000 * Only normalize user tasks:
7001 */
7002 if (!p->mm)
7003 continue;
7004
6cfb0d5d 7005 p->se.exec_start = 0;
6cfb0d5d 7006#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7007 p->se.statistics.wait_start = 0;
7008 p->se.statistics.sleep_start = 0;
7009 p->se.statistics.block_start = 0;
6cfb0d5d 7010#endif
dd41f596
IM
7011
7012 if (!rt_task(p)) {
7013 /*
7014 * Renice negative nice level userspace
7015 * tasks back to 0:
7016 */
7017 if (TASK_NICE(p) < 0 && p->mm)
7018 set_user_nice(p, 0);
1da177e4 7019 continue;
dd41f596 7020 }
1da177e4 7021
1d615482 7022 raw_spin_lock(&p->pi_lock);
b29739f9 7023 rq = __task_rq_lock(p);
1da177e4 7024
178be793 7025 normalize_task(rq, p);
3a5e4dc1 7026
b29739f9 7027 __task_rq_unlock(rq);
1d615482 7028 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7029 } while_each_thread(g, p);
7030
4cf5d77a 7031 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7032}
7033
7034#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7035
67fc4e0c 7036#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7037/*
67fc4e0c 7038 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7039 *
7040 * They can only be called when the whole system has been
7041 * stopped - every CPU needs to be quiescent, and no scheduling
7042 * activity can take place. Using them for anything else would
7043 * be a serious bug, and as a result, they aren't even visible
7044 * under any other configuration.
7045 */
7046
7047/**
7048 * curr_task - return the current task for a given cpu.
7049 * @cpu: the processor in question.
7050 *
7051 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7052 */
36c8b586 7053struct task_struct *curr_task(int cpu)
1df5c10a
LT
7054{
7055 return cpu_curr(cpu);
7056}
7057
67fc4e0c
JW
7058#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7059
7060#ifdef CONFIG_IA64
1df5c10a
LT
7061/**
7062 * set_curr_task - set the current task for a given cpu.
7063 * @cpu: the processor in question.
7064 * @p: the task pointer to set.
7065 *
7066 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7067 * are serviced on a separate stack. It allows the architecture to switch the
7068 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7069 * must be called with all CPU's synchronized, and interrupts disabled, the
7070 * and caller must save the original value of the current task (see
7071 * curr_task() above) and restore that value before reenabling interrupts and
7072 * re-starting the system.
7073 *
7074 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7075 */
36c8b586 7076void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7077{
7078 cpu_curr(cpu) = p;
7079}
7080
7081#endif
29f59db3 7082
7c941438 7083#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7084/* task_group_lock serializes the addition/removal of task groups */
7085static DEFINE_SPINLOCK(task_group_lock);
7086
bccbe08a
PZ
7087static void free_sched_group(struct task_group *tg)
7088{
7089 free_fair_sched_group(tg);
7090 free_rt_sched_group(tg);
e9aa1dd1 7091 autogroup_free(tg);
bccbe08a
PZ
7092 kfree(tg);
7093}
7094
7095/* allocate runqueue etc for a new task group */
ec7dc8ac 7096struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7097{
7098 struct task_group *tg;
7099 unsigned long flags;
bccbe08a
PZ
7100
7101 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7102 if (!tg)
7103 return ERR_PTR(-ENOMEM);
7104
ec7dc8ac 7105 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7106 goto err;
7107
ec7dc8ac 7108 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7109 goto err;
7110
8ed36996 7111 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7112 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7113
7114 WARN_ON(!parent); /* root should already exist */
7115
7116 tg->parent = parent;
f473aa5e 7117 INIT_LIST_HEAD(&tg->children);
09f2724a 7118 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7119 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7120
9b5b7751 7121 return tg;
29f59db3
SV
7122
7123err:
6f505b16 7124 free_sched_group(tg);
29f59db3
SV
7125 return ERR_PTR(-ENOMEM);
7126}
7127
9b5b7751 7128/* rcu callback to free various structures associated with a task group */
6f505b16 7129static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7130{
29f59db3 7131 /* now it should be safe to free those cfs_rqs */
6f505b16 7132 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7133}
7134
9b5b7751 7135/* Destroy runqueue etc associated with a task group */
4cf86d77 7136void sched_destroy_group(struct task_group *tg)
29f59db3 7137{
8ed36996 7138 unsigned long flags;
9b5b7751 7139 int i;
29f59db3 7140
3d4b47b4
PZ
7141 /* end participation in shares distribution */
7142 for_each_possible_cpu(i)
bccbe08a 7143 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7144
7145 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7146 list_del_rcu(&tg->list);
f473aa5e 7147 list_del_rcu(&tg->siblings);
8ed36996 7148 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7149
9b5b7751 7150 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7151 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7152}
7153
9b5b7751 7154/* change task's runqueue when it moves between groups.
3a252015
IM
7155 * The caller of this function should have put the task in its new group
7156 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7157 * reflect its new group.
9b5b7751
SV
7158 */
7159void sched_move_task(struct task_struct *tsk)
29f59db3 7160{
8323f26c 7161 struct task_group *tg;
29f59db3
SV
7162 int on_rq, running;
7163 unsigned long flags;
7164 struct rq *rq;
7165
7166 rq = task_rq_lock(tsk, &flags);
7167
051a1d1a 7168 running = task_current(rq, tsk);
fd2f4419 7169 on_rq = tsk->on_rq;
29f59db3 7170
0e1f3483 7171 if (on_rq)
29f59db3 7172 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7173 if (unlikely(running))
7174 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7175
8323f26c
PZ
7176 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7177 lockdep_is_held(&tsk->sighand->siglock)),
7178 struct task_group, css);
7179 tg = autogroup_task_group(tsk, tg);
7180 tsk->sched_task_group = tg;
7181
810b3817 7182#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7183 if (tsk->sched_class->task_move_group)
7184 tsk->sched_class->task_move_group(tsk, on_rq);
7185 else
810b3817 7186#endif
b2b5ce02 7187 set_task_rq(tsk, task_cpu(tsk));
810b3817 7188
0e1f3483
HS
7189 if (unlikely(running))
7190 tsk->sched_class->set_curr_task(rq);
7191 if (on_rq)
371fd7e7 7192 enqueue_task(rq, tsk, 0);
29f59db3 7193
0122ec5b 7194 task_rq_unlock(rq, tsk, &flags);
29f59db3 7195}
7c941438 7196#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7197
a790de99 7198#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7199static unsigned long to_ratio(u64 period, u64 runtime)
7200{
7201 if (runtime == RUNTIME_INF)
9a7e0b18 7202 return 1ULL << 20;
9f0c1e56 7203
9a7e0b18 7204 return div64_u64(runtime << 20, period);
9f0c1e56 7205}
a790de99
PT
7206#endif
7207
7208#ifdef CONFIG_RT_GROUP_SCHED
7209/*
7210 * Ensure that the real time constraints are schedulable.
7211 */
7212static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7213
9a7e0b18
PZ
7214/* Must be called with tasklist_lock held */
7215static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7216{
9a7e0b18 7217 struct task_struct *g, *p;
b40b2e8e 7218
9a7e0b18 7219 do_each_thread(g, p) {
029632fb 7220 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7221 return 1;
7222 } while_each_thread(g, p);
b40b2e8e 7223
9a7e0b18
PZ
7224 return 0;
7225}
b40b2e8e 7226
9a7e0b18
PZ
7227struct rt_schedulable_data {
7228 struct task_group *tg;
7229 u64 rt_period;
7230 u64 rt_runtime;
7231};
b40b2e8e 7232
a790de99 7233static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7234{
7235 struct rt_schedulable_data *d = data;
7236 struct task_group *child;
7237 unsigned long total, sum = 0;
7238 u64 period, runtime;
b40b2e8e 7239
9a7e0b18
PZ
7240 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7241 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7242
9a7e0b18
PZ
7243 if (tg == d->tg) {
7244 period = d->rt_period;
7245 runtime = d->rt_runtime;
b40b2e8e 7246 }
b40b2e8e 7247
4653f803
PZ
7248 /*
7249 * Cannot have more runtime than the period.
7250 */
7251 if (runtime > period && runtime != RUNTIME_INF)
7252 return -EINVAL;
6f505b16 7253
4653f803
PZ
7254 /*
7255 * Ensure we don't starve existing RT tasks.
7256 */
9a7e0b18
PZ
7257 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7258 return -EBUSY;
6f505b16 7259
9a7e0b18 7260 total = to_ratio(period, runtime);
6f505b16 7261
4653f803
PZ
7262 /*
7263 * Nobody can have more than the global setting allows.
7264 */
7265 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7266 return -EINVAL;
6f505b16 7267
4653f803
PZ
7268 /*
7269 * The sum of our children's runtime should not exceed our own.
7270 */
9a7e0b18
PZ
7271 list_for_each_entry_rcu(child, &tg->children, siblings) {
7272 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7273 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7274
9a7e0b18
PZ
7275 if (child == d->tg) {
7276 period = d->rt_period;
7277 runtime = d->rt_runtime;
7278 }
6f505b16 7279
9a7e0b18 7280 sum += to_ratio(period, runtime);
9f0c1e56 7281 }
6f505b16 7282
9a7e0b18
PZ
7283 if (sum > total)
7284 return -EINVAL;
7285
7286 return 0;
6f505b16
PZ
7287}
7288
9a7e0b18 7289static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7290{
8277434e
PT
7291 int ret;
7292
9a7e0b18
PZ
7293 struct rt_schedulable_data data = {
7294 .tg = tg,
7295 .rt_period = period,
7296 .rt_runtime = runtime,
7297 };
7298
8277434e
PT
7299 rcu_read_lock();
7300 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7301 rcu_read_unlock();
7302
7303 return ret;
521f1a24
DG
7304}
7305
ab84d31e 7306static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7307 u64 rt_period, u64 rt_runtime)
6f505b16 7308{
ac086bc2 7309 int i, err = 0;
9f0c1e56 7310
9f0c1e56 7311 mutex_lock(&rt_constraints_mutex);
521f1a24 7312 read_lock(&tasklist_lock);
9a7e0b18
PZ
7313 err = __rt_schedulable(tg, rt_period, rt_runtime);
7314 if (err)
9f0c1e56 7315 goto unlock;
ac086bc2 7316
0986b11b 7317 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7318 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7319 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7320
7321 for_each_possible_cpu(i) {
7322 struct rt_rq *rt_rq = tg->rt_rq[i];
7323
0986b11b 7324 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7325 rt_rq->rt_runtime = rt_runtime;
0986b11b 7326 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7327 }
0986b11b 7328 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7329unlock:
521f1a24 7330 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7331 mutex_unlock(&rt_constraints_mutex);
7332
7333 return err;
6f505b16
PZ
7334}
7335
d0b27fa7
PZ
7336int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7337{
7338 u64 rt_runtime, rt_period;
7339
7340 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7341 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7342 if (rt_runtime_us < 0)
7343 rt_runtime = RUNTIME_INF;
7344
ab84d31e 7345 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7346}
7347
9f0c1e56
PZ
7348long sched_group_rt_runtime(struct task_group *tg)
7349{
7350 u64 rt_runtime_us;
7351
d0b27fa7 7352 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7353 return -1;
7354
d0b27fa7 7355 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7356 do_div(rt_runtime_us, NSEC_PER_USEC);
7357 return rt_runtime_us;
7358}
d0b27fa7
PZ
7359
7360int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7361{
7362 u64 rt_runtime, rt_period;
7363
7364 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7365 rt_runtime = tg->rt_bandwidth.rt_runtime;
7366
619b0488
R
7367 if (rt_period == 0)
7368 return -EINVAL;
7369
ab84d31e 7370 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7371}
7372
7373long sched_group_rt_period(struct task_group *tg)
7374{
7375 u64 rt_period_us;
7376
7377 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7378 do_div(rt_period_us, NSEC_PER_USEC);
7379 return rt_period_us;
7380}
7381
7382static int sched_rt_global_constraints(void)
7383{
4653f803 7384 u64 runtime, period;
d0b27fa7
PZ
7385 int ret = 0;
7386
ec5d4989
HS
7387 if (sysctl_sched_rt_period <= 0)
7388 return -EINVAL;
7389
4653f803
PZ
7390 runtime = global_rt_runtime();
7391 period = global_rt_period();
7392
7393 /*
7394 * Sanity check on the sysctl variables.
7395 */
7396 if (runtime > period && runtime != RUNTIME_INF)
7397 return -EINVAL;
10b612f4 7398
d0b27fa7 7399 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7400 read_lock(&tasklist_lock);
4653f803 7401 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7402 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7403 mutex_unlock(&rt_constraints_mutex);
7404
7405 return ret;
7406}
54e99124
DG
7407
7408int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7409{
7410 /* Don't accept realtime tasks when there is no way for them to run */
7411 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7412 return 0;
7413
7414 return 1;
7415}
7416
6d6bc0ad 7417#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7418static int sched_rt_global_constraints(void)
7419{
ac086bc2
PZ
7420 unsigned long flags;
7421 int i;
7422
ec5d4989
HS
7423 if (sysctl_sched_rt_period <= 0)
7424 return -EINVAL;
7425
60aa605d
PZ
7426 /*
7427 * There's always some RT tasks in the root group
7428 * -- migration, kstopmachine etc..
7429 */
7430 if (sysctl_sched_rt_runtime == 0)
7431 return -EBUSY;
7432
0986b11b 7433 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7434 for_each_possible_cpu(i) {
7435 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7436
0986b11b 7437 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7438 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7439 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7440 }
0986b11b 7441 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7442
d0b27fa7
PZ
7443 return 0;
7444}
6d6bc0ad 7445#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7446
7447int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7448 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7449 loff_t *ppos)
7450{
7451 int ret;
7452 int old_period, old_runtime;
7453 static DEFINE_MUTEX(mutex);
7454
7455 mutex_lock(&mutex);
7456 old_period = sysctl_sched_rt_period;
7457 old_runtime = sysctl_sched_rt_runtime;
7458
8d65af78 7459 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7460
7461 if (!ret && write) {
7462 ret = sched_rt_global_constraints();
7463 if (ret) {
7464 sysctl_sched_rt_period = old_period;
7465 sysctl_sched_rt_runtime = old_runtime;
7466 } else {
7467 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7468 def_rt_bandwidth.rt_period =
7469 ns_to_ktime(global_rt_period());
7470 }
7471 }
7472 mutex_unlock(&mutex);
7473
7474 return ret;
7475}
68318b8e 7476
052f1dc7 7477#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7478
7479/* return corresponding task_group object of a cgroup */
2b01dfe3 7480static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7481{
2b01dfe3
PM
7482 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7483 struct task_group, css);
68318b8e
SV
7484}
7485
761b3ef5 7486static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
68318b8e 7487{
ec7dc8ac 7488 struct task_group *tg, *parent;
68318b8e 7489
2b01dfe3 7490 if (!cgrp->parent) {
68318b8e 7491 /* This is early initialization for the top cgroup */
07e06b01 7492 return &root_task_group.css;
68318b8e
SV
7493 }
7494
ec7dc8ac
DG
7495 parent = cgroup_tg(cgrp->parent);
7496 tg = sched_create_group(parent);
68318b8e
SV
7497 if (IS_ERR(tg))
7498 return ERR_PTR(-ENOMEM);
7499
68318b8e
SV
7500 return &tg->css;
7501}
7502
761b3ef5 7503static void cpu_cgroup_destroy(struct cgroup *cgrp)
68318b8e 7504{
2b01dfe3 7505 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7506
7507 sched_destroy_group(tg);
7508}
7509
761b3ef5 7510static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7511 struct cgroup_taskset *tset)
68318b8e 7512{
bb9d97b6
TH
7513 struct task_struct *task;
7514
7515 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7516#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7517 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7518 return -EINVAL;
b68aa230 7519#else
bb9d97b6
TH
7520 /* We don't support RT-tasks being in separate groups */
7521 if (task->sched_class != &fair_sched_class)
7522 return -EINVAL;
b68aa230 7523#endif
bb9d97b6 7524 }
be367d09
BB
7525 return 0;
7526}
68318b8e 7527
761b3ef5 7528static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7529 struct cgroup_taskset *tset)
68318b8e 7530{
bb9d97b6
TH
7531 struct task_struct *task;
7532
7533 cgroup_taskset_for_each(task, cgrp, tset)
7534 sched_move_task(task);
68318b8e
SV
7535}
7536
068c5cc5 7537static void
761b3ef5
LZ
7538cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7539 struct task_struct *task)
068c5cc5
PZ
7540{
7541 /*
7542 * cgroup_exit() is called in the copy_process() failure path.
7543 * Ignore this case since the task hasn't ran yet, this avoids
7544 * trying to poke a half freed task state from generic code.
7545 */
7546 if (!(task->flags & PF_EXITING))
7547 return;
7548
7549 sched_move_task(task);
7550}
7551
052f1dc7 7552#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7553static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7554 u64 shareval)
68318b8e 7555{
c8b28116 7556 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7557}
7558
f4c753b7 7559static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7560{
2b01dfe3 7561 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7562
c8b28116 7563 return (u64) scale_load_down(tg->shares);
68318b8e 7564}
ab84d31e
PT
7565
7566#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7567static DEFINE_MUTEX(cfs_constraints_mutex);
7568
ab84d31e
PT
7569const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7570const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7571
a790de99
PT
7572static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7573
ab84d31e
PT
7574static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7575{
56f570e5 7576 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7577 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7578
7579 if (tg == &root_task_group)
7580 return -EINVAL;
7581
7582 /*
7583 * Ensure we have at some amount of bandwidth every period. This is
7584 * to prevent reaching a state of large arrears when throttled via
7585 * entity_tick() resulting in prolonged exit starvation.
7586 */
7587 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7588 return -EINVAL;
7589
7590 /*
7591 * Likewise, bound things on the otherside by preventing insane quota
7592 * periods. This also allows us to normalize in computing quota
7593 * feasibility.
7594 */
7595 if (period > max_cfs_quota_period)
7596 return -EINVAL;
7597
a790de99
PT
7598 mutex_lock(&cfs_constraints_mutex);
7599 ret = __cfs_schedulable(tg, period, quota);
7600 if (ret)
7601 goto out_unlock;
7602
58088ad0 7603 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7604 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7605 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7606 raw_spin_lock_irq(&cfs_b->lock);
7607 cfs_b->period = ns_to_ktime(period);
7608 cfs_b->quota = quota;
58088ad0 7609
a9cf55b2 7610 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7611 /* restart the period timer (if active) to handle new period expiry */
7612 if (runtime_enabled && cfs_b->timer_active) {
7613 /* force a reprogram */
7614 cfs_b->timer_active = 0;
7615 __start_cfs_bandwidth(cfs_b);
7616 }
ab84d31e
PT
7617 raw_spin_unlock_irq(&cfs_b->lock);
7618
7619 for_each_possible_cpu(i) {
7620 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7621 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7622
7623 raw_spin_lock_irq(&rq->lock);
58088ad0 7624 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7625 cfs_rq->runtime_remaining = 0;
671fd9da 7626
029632fb 7627 if (cfs_rq->throttled)
671fd9da 7628 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7629 raw_spin_unlock_irq(&rq->lock);
7630 }
a790de99
PT
7631out_unlock:
7632 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7633
a790de99 7634 return ret;
ab84d31e
PT
7635}
7636
7637int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7638{
7639 u64 quota, period;
7640
029632fb 7641 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7642 if (cfs_quota_us < 0)
7643 quota = RUNTIME_INF;
7644 else
7645 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7646
7647 return tg_set_cfs_bandwidth(tg, period, quota);
7648}
7649
7650long tg_get_cfs_quota(struct task_group *tg)
7651{
7652 u64 quota_us;
7653
029632fb 7654 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7655 return -1;
7656
029632fb 7657 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7658 do_div(quota_us, NSEC_PER_USEC);
7659
7660 return quota_us;
7661}
7662
7663int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7664{
7665 u64 quota, period;
7666
7667 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7668 quota = tg->cfs_bandwidth.quota;
ab84d31e 7669
ab84d31e
PT
7670 return tg_set_cfs_bandwidth(tg, period, quota);
7671}
7672
7673long tg_get_cfs_period(struct task_group *tg)
7674{
7675 u64 cfs_period_us;
7676
029632fb 7677 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7678 do_div(cfs_period_us, NSEC_PER_USEC);
7679
7680 return cfs_period_us;
7681}
7682
7683static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7684{
7685 return tg_get_cfs_quota(cgroup_tg(cgrp));
7686}
7687
7688static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7689 s64 cfs_quota_us)
7690{
7691 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7692}
7693
7694static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7695{
7696 return tg_get_cfs_period(cgroup_tg(cgrp));
7697}
7698
7699static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7700 u64 cfs_period_us)
7701{
7702 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7703}
7704
a790de99
PT
7705struct cfs_schedulable_data {
7706 struct task_group *tg;
7707 u64 period, quota;
7708};
7709
7710/*
7711 * normalize group quota/period to be quota/max_period
7712 * note: units are usecs
7713 */
7714static u64 normalize_cfs_quota(struct task_group *tg,
7715 struct cfs_schedulable_data *d)
7716{
7717 u64 quota, period;
7718
7719 if (tg == d->tg) {
7720 period = d->period;
7721 quota = d->quota;
7722 } else {
7723 period = tg_get_cfs_period(tg);
7724 quota = tg_get_cfs_quota(tg);
7725 }
7726
7727 /* note: these should typically be equivalent */
7728 if (quota == RUNTIME_INF || quota == -1)
7729 return RUNTIME_INF;
7730
7731 return to_ratio(period, quota);
7732}
7733
7734static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7735{
7736 struct cfs_schedulable_data *d = data;
029632fb 7737 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7738 s64 quota = 0, parent_quota = -1;
7739
7740 if (!tg->parent) {
7741 quota = RUNTIME_INF;
7742 } else {
029632fb 7743 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7744
7745 quota = normalize_cfs_quota(tg, d);
7746 parent_quota = parent_b->hierarchal_quota;
7747
7748 /*
7749 * ensure max(child_quota) <= parent_quota, inherit when no
7750 * limit is set
7751 */
7752 if (quota == RUNTIME_INF)
7753 quota = parent_quota;
7754 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7755 return -EINVAL;
7756 }
7757 cfs_b->hierarchal_quota = quota;
7758
7759 return 0;
7760}
7761
7762static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7763{
8277434e 7764 int ret;
a790de99
PT
7765 struct cfs_schedulable_data data = {
7766 .tg = tg,
7767 .period = period,
7768 .quota = quota,
7769 };
7770
7771 if (quota != RUNTIME_INF) {
7772 do_div(data.period, NSEC_PER_USEC);
7773 do_div(data.quota, NSEC_PER_USEC);
7774 }
7775
8277434e
PT
7776 rcu_read_lock();
7777 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7778 rcu_read_unlock();
7779
7780 return ret;
a790de99 7781}
e8da1b18
NR
7782
7783static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7784 struct cgroup_map_cb *cb)
7785{
7786 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7787 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7788
7789 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7790 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7791 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7792
7793 return 0;
7794}
ab84d31e 7795#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7796#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7797
052f1dc7 7798#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7799static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7800 s64 val)
6f505b16 7801{
06ecb27c 7802 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7803}
7804
06ecb27c 7805static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7806{
06ecb27c 7807 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7808}
d0b27fa7
PZ
7809
7810static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7811 u64 rt_period_us)
7812{
7813 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7814}
7815
7816static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7817{
7818 return sched_group_rt_period(cgroup_tg(cgrp));
7819}
6d6bc0ad 7820#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7821
fe5c7cc2 7822static struct cftype cpu_files[] = {
052f1dc7 7823#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7824 {
7825 .name = "shares",
f4c753b7
PM
7826 .read_u64 = cpu_shares_read_u64,
7827 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7828 },
052f1dc7 7829#endif
ab84d31e
PT
7830#ifdef CONFIG_CFS_BANDWIDTH
7831 {
7832 .name = "cfs_quota_us",
7833 .read_s64 = cpu_cfs_quota_read_s64,
7834 .write_s64 = cpu_cfs_quota_write_s64,
7835 },
7836 {
7837 .name = "cfs_period_us",
7838 .read_u64 = cpu_cfs_period_read_u64,
7839 .write_u64 = cpu_cfs_period_write_u64,
7840 },
e8da1b18
NR
7841 {
7842 .name = "stat",
7843 .read_map = cpu_stats_show,
7844 },
ab84d31e 7845#endif
052f1dc7 7846#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7847 {
9f0c1e56 7848 .name = "rt_runtime_us",
06ecb27c
PM
7849 .read_s64 = cpu_rt_runtime_read,
7850 .write_s64 = cpu_rt_runtime_write,
6f505b16 7851 },
d0b27fa7
PZ
7852 {
7853 .name = "rt_period_us",
f4c753b7
PM
7854 .read_u64 = cpu_rt_period_read_uint,
7855 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7856 },
052f1dc7 7857#endif
4baf6e33 7858 { } /* terminate */
68318b8e
SV
7859};
7860
68318b8e 7861struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7862 .name = "cpu",
7863 .create = cpu_cgroup_create,
7864 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7865 .can_attach = cpu_cgroup_can_attach,
7866 .attach = cpu_cgroup_attach,
068c5cc5 7867 .exit = cpu_cgroup_exit,
38605cae 7868 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7869 .base_cftypes = cpu_files,
68318b8e
SV
7870 .early_init = 1,
7871};
7872
052f1dc7 7873#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7874
7875#ifdef CONFIG_CGROUP_CPUACCT
7876
7877/*
7878 * CPU accounting code for task groups.
7879 *
7880 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7881 * (balbir@in.ibm.com).
7882 */
7883
73fbec60
FW
7884struct cpuacct root_cpuacct;
7885
d842de87 7886/* create a new cpu accounting group */
761b3ef5 7887static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
d842de87 7888{
54c707e9 7889 struct cpuacct *ca;
d842de87 7890
54c707e9
GC
7891 if (!cgrp->parent)
7892 return &root_cpuacct.css;
7893
7894 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7895 if (!ca)
ef12fefa 7896 goto out;
d842de87
SV
7897
7898 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7899 if (!ca->cpuusage)
7900 goto out_free_ca;
7901
54c707e9
GC
7902 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7903 if (!ca->cpustat)
7904 goto out_free_cpuusage;
934352f2 7905
d842de87 7906 return &ca->css;
ef12fefa 7907
54c707e9 7908out_free_cpuusage:
ef12fefa
BR
7909 free_percpu(ca->cpuusage);
7910out_free_ca:
7911 kfree(ca);
7912out:
7913 return ERR_PTR(-ENOMEM);
d842de87
SV
7914}
7915
7916/* destroy an existing cpu accounting group */
761b3ef5 7917static void cpuacct_destroy(struct cgroup *cgrp)
d842de87 7918{
32cd756a 7919 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7920
54c707e9 7921 free_percpu(ca->cpustat);
d842de87
SV
7922 free_percpu(ca->cpuusage);
7923 kfree(ca);
7924}
7925
720f5498
KC
7926static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7927{
b36128c8 7928 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7929 u64 data;
7930
7931#ifndef CONFIG_64BIT
7932 /*
7933 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7934 */
05fa785c 7935 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7936 data = *cpuusage;
05fa785c 7937 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7938#else
7939 data = *cpuusage;
7940#endif
7941
7942 return data;
7943}
7944
7945static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7946{
b36128c8 7947 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7948
7949#ifndef CONFIG_64BIT
7950 /*
7951 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7952 */
05fa785c 7953 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7954 *cpuusage = val;
05fa785c 7955 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7956#else
7957 *cpuusage = val;
7958#endif
7959}
7960
d842de87 7961/* return total cpu usage (in nanoseconds) of a group */
32cd756a 7962static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 7963{
32cd756a 7964 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
7965 u64 totalcpuusage = 0;
7966 int i;
7967
720f5498
KC
7968 for_each_present_cpu(i)
7969 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
7970
7971 return totalcpuusage;
7972}
7973
0297b803
DG
7974static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7975 u64 reset)
7976{
7977 struct cpuacct *ca = cgroup_ca(cgrp);
7978 int err = 0;
7979 int i;
7980
7981 if (reset) {
7982 err = -EINVAL;
7983 goto out;
7984 }
7985
720f5498
KC
7986 for_each_present_cpu(i)
7987 cpuacct_cpuusage_write(ca, i, 0);
0297b803 7988
0297b803
DG
7989out:
7990 return err;
7991}
7992
e9515c3c
KC
7993static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7994 struct seq_file *m)
7995{
7996 struct cpuacct *ca = cgroup_ca(cgroup);
7997 u64 percpu;
7998 int i;
7999
8000 for_each_present_cpu(i) {
8001 percpu = cpuacct_cpuusage_read(ca, i);
8002 seq_printf(m, "%llu ", (unsigned long long) percpu);
8003 }
8004 seq_printf(m, "\n");
8005 return 0;
8006}
8007
ef12fefa
BR
8008static const char *cpuacct_stat_desc[] = {
8009 [CPUACCT_STAT_USER] = "user",
8010 [CPUACCT_STAT_SYSTEM] = "system",
8011};
8012
8013static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8014 struct cgroup_map_cb *cb)
ef12fefa
BR
8015{
8016 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8017 int cpu;
8018 s64 val = 0;
ef12fefa 8019
54c707e9
GC
8020 for_each_online_cpu(cpu) {
8021 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8022 val += kcpustat->cpustat[CPUTIME_USER];
8023 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8024 }
54c707e9
GC
8025 val = cputime64_to_clock_t(val);
8026 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8027
54c707e9
GC
8028 val = 0;
8029 for_each_online_cpu(cpu) {
8030 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8031 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8032 val += kcpustat->cpustat[CPUTIME_IRQ];
8033 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8034 }
54c707e9
GC
8035
8036 val = cputime64_to_clock_t(val);
8037 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8038
ef12fefa
BR
8039 return 0;
8040}
8041
d842de87
SV
8042static struct cftype files[] = {
8043 {
8044 .name = "usage",
f4c753b7
PM
8045 .read_u64 = cpuusage_read,
8046 .write_u64 = cpuusage_write,
d842de87 8047 },
e9515c3c
KC
8048 {
8049 .name = "usage_percpu",
8050 .read_seq_string = cpuacct_percpu_seq_read,
8051 },
ef12fefa
BR
8052 {
8053 .name = "stat",
8054 .read_map = cpuacct_stats_show,
8055 },
4baf6e33 8056 { } /* terminate */
d842de87
SV
8057};
8058
d842de87
SV
8059/*
8060 * charge this task's execution time to its accounting group.
8061 *
8062 * called with rq->lock held.
8063 */
029632fb 8064void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8065{
8066 struct cpuacct *ca;
934352f2 8067 int cpu;
d842de87 8068
c40c6f85 8069 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8070 return;
8071
934352f2 8072 cpu = task_cpu(tsk);
a18b83b7
BR
8073
8074 rcu_read_lock();
8075
d842de87 8076 ca = task_ca(tsk);
d842de87 8077
44252e42 8078 for (; ca; ca = parent_ca(ca)) {
b36128c8 8079 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8080 *cpuusage += cputime;
8081 }
a18b83b7
BR
8082
8083 rcu_read_unlock();
d842de87
SV
8084}
8085
8086struct cgroup_subsys cpuacct_subsys = {
8087 .name = "cpuacct",
8088 .create = cpuacct_create,
8089 .destroy = cpuacct_destroy,
d842de87 8090 .subsys_id = cpuacct_subsys_id,
4baf6e33 8091 .base_cftypes = files,
d842de87
SV
8092};
8093#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.464377 seconds and 5 git commands to generate.