sched/numa: Initialise numa_next_scan properly
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
e05606d3 902 if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
969c7921 1016struct migration_arg {
36c8b586 1017 struct task_struct *task;
1da177e4 1018 int dest_cpu;
70b97a7f 1019};
1da177e4 1020
969c7921
TH
1021static int migration_cpu_stop(void *data);
1022
1da177e4
LT
1023/*
1024 * wait_task_inactive - wait for a thread to unschedule.
1025 *
85ba2d86
RM
1026 * If @match_state is nonzero, it's the @p->state value just checked and
1027 * not expected to change. If it changes, i.e. @p might have woken up,
1028 * then return zero. When we succeed in waiting for @p to be off its CPU,
1029 * we return a positive number (its total switch count). If a second call
1030 * a short while later returns the same number, the caller can be sure that
1031 * @p has remained unscheduled the whole time.
1032 *
1da177e4
LT
1033 * The caller must ensure that the task *will* unschedule sometime soon,
1034 * else this function might spin for a *long* time. This function can't
1035 * be called with interrupts off, or it may introduce deadlock with
1036 * smp_call_function() if an IPI is sent by the same process we are
1037 * waiting to become inactive.
1038 */
85ba2d86 1039unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1040{
1041 unsigned long flags;
dd41f596 1042 int running, on_rq;
85ba2d86 1043 unsigned long ncsw;
70b97a7f 1044 struct rq *rq;
1da177e4 1045
3a5c359a
AK
1046 for (;;) {
1047 /*
1048 * We do the initial early heuristics without holding
1049 * any task-queue locks at all. We'll only try to get
1050 * the runqueue lock when things look like they will
1051 * work out!
1052 */
1053 rq = task_rq(p);
fa490cfd 1054
3a5c359a
AK
1055 /*
1056 * If the task is actively running on another CPU
1057 * still, just relax and busy-wait without holding
1058 * any locks.
1059 *
1060 * NOTE! Since we don't hold any locks, it's not
1061 * even sure that "rq" stays as the right runqueue!
1062 * But we don't care, since "task_running()" will
1063 * return false if the runqueue has changed and p
1064 * is actually now running somewhere else!
1065 */
85ba2d86
RM
1066 while (task_running(rq, p)) {
1067 if (match_state && unlikely(p->state != match_state))
1068 return 0;
3a5c359a 1069 cpu_relax();
85ba2d86 1070 }
fa490cfd 1071
3a5c359a
AK
1072 /*
1073 * Ok, time to look more closely! We need the rq
1074 * lock now, to be *sure*. If we're wrong, we'll
1075 * just go back and repeat.
1076 */
1077 rq = task_rq_lock(p, &flags);
27a9da65 1078 trace_sched_wait_task(p);
3a5c359a 1079 running = task_running(rq, p);
fd2f4419 1080 on_rq = p->on_rq;
85ba2d86 1081 ncsw = 0;
f31e11d8 1082 if (!match_state || p->state == match_state)
93dcf55f 1083 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1084 task_rq_unlock(rq, p, &flags);
fa490cfd 1085
85ba2d86
RM
1086 /*
1087 * If it changed from the expected state, bail out now.
1088 */
1089 if (unlikely(!ncsw))
1090 break;
1091
3a5c359a
AK
1092 /*
1093 * Was it really running after all now that we
1094 * checked with the proper locks actually held?
1095 *
1096 * Oops. Go back and try again..
1097 */
1098 if (unlikely(running)) {
1099 cpu_relax();
1100 continue;
1101 }
fa490cfd 1102
3a5c359a
AK
1103 /*
1104 * It's not enough that it's not actively running,
1105 * it must be off the runqueue _entirely_, and not
1106 * preempted!
1107 *
80dd99b3 1108 * So if it was still runnable (but just not actively
3a5c359a
AK
1109 * running right now), it's preempted, and we should
1110 * yield - it could be a while.
1111 */
1112 if (unlikely(on_rq)) {
8eb90c30
TG
1113 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1114
1115 set_current_state(TASK_UNINTERRUPTIBLE);
1116 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1117 continue;
1118 }
fa490cfd 1119
3a5c359a
AK
1120 /*
1121 * Ahh, all good. It wasn't running, and it wasn't
1122 * runnable, which means that it will never become
1123 * running in the future either. We're all done!
1124 */
1125 break;
1126 }
85ba2d86
RM
1127
1128 return ncsw;
1da177e4
LT
1129}
1130
1131/***
1132 * kick_process - kick a running thread to enter/exit the kernel
1133 * @p: the to-be-kicked thread
1134 *
1135 * Cause a process which is running on another CPU to enter
1136 * kernel-mode, without any delay. (to get signals handled.)
1137 *
25985edc 1138 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1139 * because all it wants to ensure is that the remote task enters
1140 * the kernel. If the IPI races and the task has been migrated
1141 * to another CPU then no harm is done and the purpose has been
1142 * achieved as well.
1143 */
36c8b586 1144void kick_process(struct task_struct *p)
1da177e4
LT
1145{
1146 int cpu;
1147
1148 preempt_disable();
1149 cpu = task_cpu(p);
1150 if ((cpu != smp_processor_id()) && task_curr(p))
1151 smp_send_reschedule(cpu);
1152 preempt_enable();
1153}
b43e3521 1154EXPORT_SYMBOL_GPL(kick_process);
476d139c 1155#endif /* CONFIG_SMP */
1da177e4 1156
970b13ba 1157#ifdef CONFIG_SMP
30da688e 1158/*
013fdb80 1159 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1160 */
5da9a0fb
PZ
1161static int select_fallback_rq(int cpu, struct task_struct *p)
1162{
aa00d89c
TC
1163 int nid = cpu_to_node(cpu);
1164 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1165 enum { cpuset, possible, fail } state = cpuset;
1166 int dest_cpu;
5da9a0fb 1167
aa00d89c
TC
1168 /*
1169 * If the node that the cpu is on has been offlined, cpu_to_node()
1170 * will return -1. There is no cpu on the node, and we should
1171 * select the cpu on the other node.
1172 */
1173 if (nid != -1) {
1174 nodemask = cpumask_of_node(nid);
1175
1176 /* Look for allowed, online CPU in same node. */
1177 for_each_cpu(dest_cpu, nodemask) {
1178 if (!cpu_online(dest_cpu))
1179 continue;
1180 if (!cpu_active(dest_cpu))
1181 continue;
1182 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1183 return dest_cpu;
1184 }
2baab4e9 1185 }
5da9a0fb 1186
2baab4e9
PZ
1187 for (;;) {
1188 /* Any allowed, online CPU? */
e3831edd 1189 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1190 if (!cpu_online(dest_cpu))
1191 continue;
1192 if (!cpu_active(dest_cpu))
1193 continue;
1194 goto out;
1195 }
5da9a0fb 1196
2baab4e9
PZ
1197 switch (state) {
1198 case cpuset:
1199 /* No more Mr. Nice Guy. */
1200 cpuset_cpus_allowed_fallback(p);
1201 state = possible;
1202 break;
1203
1204 case possible:
1205 do_set_cpus_allowed(p, cpu_possible_mask);
1206 state = fail;
1207 break;
1208
1209 case fail:
1210 BUG();
1211 break;
1212 }
1213 }
1214
1215out:
1216 if (state != cpuset) {
1217 /*
1218 * Don't tell them about moving exiting tasks or
1219 * kernel threads (both mm NULL), since they never
1220 * leave kernel.
1221 */
1222 if (p->mm && printk_ratelimit()) {
1223 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1224 task_pid_nr(p), p->comm, cpu);
1225 }
5da9a0fb
PZ
1226 }
1227
1228 return dest_cpu;
1229}
1230
e2912009 1231/*
013fdb80 1232 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1233 */
970b13ba 1234static inline
7608dec2 1235int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1236{
7608dec2 1237 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1238
1239 /*
1240 * In order not to call set_task_cpu() on a blocking task we need
1241 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1242 * cpu.
1243 *
1244 * Since this is common to all placement strategies, this lives here.
1245 *
1246 * [ this allows ->select_task() to simply return task_cpu(p) and
1247 * not worry about this generic constraint ]
1248 */
fa17b507 1249 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1250 !cpu_online(cpu)))
5da9a0fb 1251 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1252
1253 return cpu;
970b13ba 1254}
09a40af5
MG
1255
1256static void update_avg(u64 *avg, u64 sample)
1257{
1258 s64 diff = sample - *avg;
1259 *avg += diff >> 3;
1260}
970b13ba
PZ
1261#endif
1262
d7c01d27 1263static void
b84cb5df 1264ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1265{
d7c01d27 1266#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1267 struct rq *rq = this_rq();
1268
d7c01d27
PZ
1269#ifdef CONFIG_SMP
1270 int this_cpu = smp_processor_id();
1271
1272 if (cpu == this_cpu) {
1273 schedstat_inc(rq, ttwu_local);
1274 schedstat_inc(p, se.statistics.nr_wakeups_local);
1275 } else {
1276 struct sched_domain *sd;
1277
1278 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1279 rcu_read_lock();
d7c01d27
PZ
1280 for_each_domain(this_cpu, sd) {
1281 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1282 schedstat_inc(sd, ttwu_wake_remote);
1283 break;
1284 }
1285 }
057f3fad 1286 rcu_read_unlock();
d7c01d27 1287 }
f339b9dc
PZ
1288
1289 if (wake_flags & WF_MIGRATED)
1290 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1291
d7c01d27
PZ
1292#endif /* CONFIG_SMP */
1293
1294 schedstat_inc(rq, ttwu_count);
9ed3811a 1295 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1296
1297 if (wake_flags & WF_SYNC)
9ed3811a 1298 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1299
d7c01d27
PZ
1300#endif /* CONFIG_SCHEDSTATS */
1301}
1302
1303static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1304{
9ed3811a 1305 activate_task(rq, p, en_flags);
fd2f4419 1306 p->on_rq = 1;
c2f7115e
PZ
1307
1308 /* if a worker is waking up, notify workqueue */
1309 if (p->flags & PF_WQ_WORKER)
1310 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1311}
1312
23f41eeb
PZ
1313/*
1314 * Mark the task runnable and perform wakeup-preemption.
1315 */
89363381 1316static void
23f41eeb 1317ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1318{
9ed3811a 1319 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1320 trace_sched_wakeup(p, true);
9ed3811a
TH
1321
1322 p->state = TASK_RUNNING;
1323#ifdef CONFIG_SMP
1324 if (p->sched_class->task_woken)
1325 p->sched_class->task_woken(rq, p);
1326
e69c6341 1327 if (rq->idle_stamp) {
78becc27 1328 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1329 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1330
abfafa54
JL
1331 update_avg(&rq->avg_idle, delta);
1332
1333 if (rq->avg_idle > max)
9ed3811a 1334 rq->avg_idle = max;
abfafa54 1335
9ed3811a
TH
1336 rq->idle_stamp = 0;
1337 }
1338#endif
1339}
1340
c05fbafb
PZ
1341static void
1342ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1343{
1344#ifdef CONFIG_SMP
1345 if (p->sched_contributes_to_load)
1346 rq->nr_uninterruptible--;
1347#endif
1348
1349 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1350 ttwu_do_wakeup(rq, p, wake_flags);
1351}
1352
1353/*
1354 * Called in case the task @p isn't fully descheduled from its runqueue,
1355 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1356 * since all we need to do is flip p->state to TASK_RUNNING, since
1357 * the task is still ->on_rq.
1358 */
1359static int ttwu_remote(struct task_struct *p, int wake_flags)
1360{
1361 struct rq *rq;
1362 int ret = 0;
1363
1364 rq = __task_rq_lock(p);
1365 if (p->on_rq) {
1ad4ec0d
FW
1366 /* check_preempt_curr() may use rq clock */
1367 update_rq_clock(rq);
c05fbafb
PZ
1368 ttwu_do_wakeup(rq, p, wake_flags);
1369 ret = 1;
1370 }
1371 __task_rq_unlock(rq);
1372
1373 return ret;
1374}
1375
317f3941 1376#ifdef CONFIG_SMP
fa14ff4a 1377static void sched_ttwu_pending(void)
317f3941
PZ
1378{
1379 struct rq *rq = this_rq();
fa14ff4a
PZ
1380 struct llist_node *llist = llist_del_all(&rq->wake_list);
1381 struct task_struct *p;
317f3941
PZ
1382
1383 raw_spin_lock(&rq->lock);
1384
fa14ff4a
PZ
1385 while (llist) {
1386 p = llist_entry(llist, struct task_struct, wake_entry);
1387 llist = llist_next(llist);
317f3941
PZ
1388 ttwu_do_activate(rq, p, 0);
1389 }
1390
1391 raw_spin_unlock(&rq->lock);
1392}
1393
1394void scheduler_ipi(void)
1395{
f27dde8d
PZ
1396 /*
1397 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1398 * TIF_NEED_RESCHED remotely (for the first time) will also send
1399 * this IPI.
1400 */
1401 if (tif_need_resched())
1402 set_preempt_need_resched();
1403
873b4c65
VG
1404 if (llist_empty(&this_rq()->wake_list)
1405 && !tick_nohz_full_cpu(smp_processor_id())
1406 && !got_nohz_idle_kick())
c5d753a5
PZ
1407 return;
1408
1409 /*
1410 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1411 * traditionally all their work was done from the interrupt return
1412 * path. Now that we actually do some work, we need to make sure
1413 * we do call them.
1414 *
1415 * Some archs already do call them, luckily irq_enter/exit nest
1416 * properly.
1417 *
1418 * Arguably we should visit all archs and update all handlers,
1419 * however a fair share of IPIs are still resched only so this would
1420 * somewhat pessimize the simple resched case.
1421 */
1422 irq_enter();
ff442c51 1423 tick_nohz_full_check();
fa14ff4a 1424 sched_ttwu_pending();
ca38062e
SS
1425
1426 /*
1427 * Check if someone kicked us for doing the nohz idle load balance.
1428 */
873b4c65 1429 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1430 this_rq()->idle_balance = 1;
ca38062e 1431 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1432 }
c5d753a5 1433 irq_exit();
317f3941
PZ
1434}
1435
1436static void ttwu_queue_remote(struct task_struct *p, int cpu)
1437{
fa14ff4a 1438 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1439 smp_send_reschedule(cpu);
1440}
d6aa8f85 1441
39be3501 1442bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1443{
1444 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1445}
d6aa8f85 1446#endif /* CONFIG_SMP */
317f3941 1447
c05fbafb
PZ
1448static void ttwu_queue(struct task_struct *p, int cpu)
1449{
1450 struct rq *rq = cpu_rq(cpu);
1451
17d9f311 1452#if defined(CONFIG_SMP)
39be3501 1453 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1454 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1455 ttwu_queue_remote(p, cpu);
1456 return;
1457 }
1458#endif
1459
c05fbafb
PZ
1460 raw_spin_lock(&rq->lock);
1461 ttwu_do_activate(rq, p, 0);
1462 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1463}
1464
1465/**
1da177e4 1466 * try_to_wake_up - wake up a thread
9ed3811a 1467 * @p: the thread to be awakened
1da177e4 1468 * @state: the mask of task states that can be woken
9ed3811a 1469 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1470 *
1471 * Put it on the run-queue if it's not already there. The "current"
1472 * thread is always on the run-queue (except when the actual
1473 * re-schedule is in progress), and as such you're allowed to do
1474 * the simpler "current->state = TASK_RUNNING" to mark yourself
1475 * runnable without the overhead of this.
1476 *
e69f6186 1477 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1478 * or @state didn't match @p's state.
1da177e4 1479 */
e4a52bcb
PZ
1480static int
1481try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1482{
1da177e4 1483 unsigned long flags;
c05fbafb 1484 int cpu, success = 0;
2398f2c6 1485
e0acd0a6
ON
1486 /*
1487 * If we are going to wake up a thread waiting for CONDITION we
1488 * need to ensure that CONDITION=1 done by the caller can not be
1489 * reordered with p->state check below. This pairs with mb() in
1490 * set_current_state() the waiting thread does.
1491 */
1492 smp_mb__before_spinlock();
013fdb80 1493 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1494 if (!(p->state & state))
1da177e4
LT
1495 goto out;
1496
c05fbafb 1497 success = 1; /* we're going to change ->state */
1da177e4 1498 cpu = task_cpu(p);
1da177e4 1499
c05fbafb
PZ
1500 if (p->on_rq && ttwu_remote(p, wake_flags))
1501 goto stat;
1da177e4 1502
1da177e4 1503#ifdef CONFIG_SMP
e9c84311 1504 /*
c05fbafb
PZ
1505 * If the owning (remote) cpu is still in the middle of schedule() with
1506 * this task as prev, wait until its done referencing the task.
e9c84311 1507 */
f3e94786 1508 while (p->on_cpu)
e4a52bcb 1509 cpu_relax();
0970d299 1510 /*
e4a52bcb 1511 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1512 */
e4a52bcb 1513 smp_rmb();
1da177e4 1514
a8e4f2ea 1515 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1516 p->state = TASK_WAKING;
e7693a36 1517
e4a52bcb 1518 if (p->sched_class->task_waking)
74f8e4b2 1519 p->sched_class->task_waking(p);
efbbd05a 1520
7608dec2 1521 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1522 if (task_cpu(p) != cpu) {
1523 wake_flags |= WF_MIGRATED;
e4a52bcb 1524 set_task_cpu(p, cpu);
f339b9dc 1525 }
1da177e4 1526#endif /* CONFIG_SMP */
1da177e4 1527
c05fbafb
PZ
1528 ttwu_queue(p, cpu);
1529stat:
b84cb5df 1530 ttwu_stat(p, cpu, wake_flags);
1da177e4 1531out:
013fdb80 1532 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1533
1534 return success;
1535}
1536
21aa9af0
TH
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
2acca55e 1541 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1543 * the current task.
21aa9af0
TH
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547 struct rq *rq = task_rq(p);
21aa9af0 1548
383efcd0
TH
1549 if (WARN_ON_ONCE(rq != this_rq()) ||
1550 WARN_ON_ONCE(p == current))
1551 return;
1552
21aa9af0
TH
1553 lockdep_assert_held(&rq->lock);
1554
2acca55e
PZ
1555 if (!raw_spin_trylock(&p->pi_lock)) {
1556 raw_spin_unlock(&rq->lock);
1557 raw_spin_lock(&p->pi_lock);
1558 raw_spin_lock(&rq->lock);
1559 }
1560
21aa9af0 1561 if (!(p->state & TASK_NORMAL))
2acca55e 1562 goto out;
21aa9af0 1563
fd2f4419 1564 if (!p->on_rq)
d7c01d27
PZ
1565 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
23f41eeb 1567 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1568 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1569out:
1570 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1571}
1572
50fa610a
DH
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1578 * processes.
1579 *
1580 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1581 *
1582 * It may be assumed that this function implies a write memory barrier before
1583 * changing the task state if and only if any tasks are woken up.
1584 */
7ad5b3a5 1585int wake_up_process(struct task_struct *p)
1da177e4 1586{
9067ac85
ON
1587 WARN_ON(task_is_stopped_or_traced(p));
1588 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1589}
1da177e4
LT
1590EXPORT_SYMBOL(wake_up_process);
1591
7ad5b3a5 1592int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1593{
1594 return try_to_wake_up(p, state, 0);
1595}
1596
1da177e4
LT
1597/*
1598 * Perform scheduler related setup for a newly forked process p.
1599 * p is forked by current.
dd41f596
IM
1600 *
1601 * __sched_fork() is basic setup used by init_idle() too:
1602 */
1603static void __sched_fork(struct task_struct *p)
1604{
fd2f4419
PZ
1605 p->on_rq = 0;
1606
1607 p->se.on_rq = 0;
dd41f596
IM
1608 p->se.exec_start = 0;
1609 p->se.sum_exec_runtime = 0;
f6cf891c 1610 p->se.prev_sum_exec_runtime = 0;
6c594c21 1611 p->se.nr_migrations = 0;
da7a735e 1612 p->se.vruntime = 0;
fd2f4419 1613 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1614
1615#ifdef CONFIG_SCHEDSTATS
41acab88 1616 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1617#endif
476d139c 1618
fa717060 1619 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1620
e107be36
AK
1621#ifdef CONFIG_PREEMPT_NOTIFIERS
1622 INIT_HLIST_HEAD(&p->preempt_notifiers);
1623#endif
cbee9f88
PZ
1624
1625#ifdef CONFIG_NUMA_BALANCING
1626 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6
MG
1627 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1628 p->mm->numa_next_reset = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
cbee9f88
PZ
1629 p->mm->numa_scan_seq = 0;
1630 }
1631
1632 p->node_stamp = 0ULL;
1633 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1634 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1635 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1636 p->numa_work.next = &p->numa_work;
1637#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1638}
1639
1a687c2e 1640#ifdef CONFIG_NUMA_BALANCING
3105b86a 1641#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1642void set_numabalancing_state(bool enabled)
1643{
1644 if (enabled)
1645 sched_feat_set("NUMA");
1646 else
1647 sched_feat_set("NO_NUMA");
1648}
3105b86a
MG
1649#else
1650__read_mostly bool numabalancing_enabled;
1651
1652void set_numabalancing_state(bool enabled)
1653{
1654 numabalancing_enabled = enabled;
dd41f596 1655}
3105b86a 1656#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1657#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1658
1659/*
1660 * fork()/clone()-time setup:
1661 */
3e51e3ed 1662void sched_fork(struct task_struct *p)
dd41f596 1663{
0122ec5b 1664 unsigned long flags;
dd41f596
IM
1665 int cpu = get_cpu();
1666
1667 __sched_fork(p);
06b83b5f 1668 /*
0017d735 1669 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1670 * nobody will actually run it, and a signal or other external
1671 * event cannot wake it up and insert it on the runqueue either.
1672 */
0017d735 1673 p->state = TASK_RUNNING;
dd41f596 1674
c350a04e
MG
1675 /*
1676 * Make sure we do not leak PI boosting priority to the child.
1677 */
1678 p->prio = current->normal_prio;
1679
b9dc29e7
MG
1680 /*
1681 * Revert to default priority/policy on fork if requested.
1682 */
1683 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1684 if (task_has_rt_policy(p)) {
b9dc29e7 1685 p->policy = SCHED_NORMAL;
6c697bdf 1686 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1687 p->rt_priority = 0;
1688 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1689 p->static_prio = NICE_TO_PRIO(0);
1690
1691 p->prio = p->normal_prio = __normal_prio(p);
1692 set_load_weight(p);
6c697bdf 1693
b9dc29e7
MG
1694 /*
1695 * We don't need the reset flag anymore after the fork. It has
1696 * fulfilled its duty:
1697 */
1698 p->sched_reset_on_fork = 0;
1699 }
ca94c442 1700
2ddbf952
HS
1701 if (!rt_prio(p->prio))
1702 p->sched_class = &fair_sched_class;
b29739f9 1703
cd29fe6f
PZ
1704 if (p->sched_class->task_fork)
1705 p->sched_class->task_fork(p);
1706
86951599
PZ
1707 /*
1708 * The child is not yet in the pid-hash so no cgroup attach races,
1709 * and the cgroup is pinned to this child due to cgroup_fork()
1710 * is ran before sched_fork().
1711 *
1712 * Silence PROVE_RCU.
1713 */
0122ec5b 1714 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1715 set_task_cpu(p, cpu);
0122ec5b 1716 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1717
52f17b6c 1718#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1719 if (likely(sched_info_on()))
52f17b6c 1720 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1721#endif
3ca7a440
PZ
1722#if defined(CONFIG_SMP)
1723 p->on_cpu = 0;
4866cde0 1724#endif
01028747 1725 init_task_preempt_count(p);
806c09a7 1726#ifdef CONFIG_SMP
917b627d 1727 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1728#endif
917b627d 1729
476d139c 1730 put_cpu();
1da177e4
LT
1731}
1732
1733/*
1734 * wake_up_new_task - wake up a newly created task for the first time.
1735 *
1736 * This function will do some initial scheduler statistics housekeeping
1737 * that must be done for every newly created context, then puts the task
1738 * on the runqueue and wakes it.
1739 */
3e51e3ed 1740void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1741{
1742 unsigned long flags;
dd41f596 1743 struct rq *rq;
fabf318e 1744
ab2515c4 1745 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1746#ifdef CONFIG_SMP
1747 /*
1748 * Fork balancing, do it here and not earlier because:
1749 * - cpus_allowed can change in the fork path
1750 * - any previously selected cpu might disappear through hotplug
fabf318e 1751 */
ab2515c4 1752 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1753#endif
1754
a75cdaa9
AS
1755 /* Initialize new task's runnable average */
1756 init_task_runnable_average(p);
ab2515c4 1757 rq = __task_rq_lock(p);
cd29fe6f 1758 activate_task(rq, p, 0);
fd2f4419 1759 p->on_rq = 1;
89363381 1760 trace_sched_wakeup_new(p, true);
a7558e01 1761 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1762#ifdef CONFIG_SMP
efbbd05a
PZ
1763 if (p->sched_class->task_woken)
1764 p->sched_class->task_woken(rq, p);
9a897c5a 1765#endif
0122ec5b 1766 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1767}
1768
e107be36
AK
1769#ifdef CONFIG_PREEMPT_NOTIFIERS
1770
1771/**
80dd99b3 1772 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1773 * @notifier: notifier struct to register
e107be36
AK
1774 */
1775void preempt_notifier_register(struct preempt_notifier *notifier)
1776{
1777 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1778}
1779EXPORT_SYMBOL_GPL(preempt_notifier_register);
1780
1781/**
1782 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1783 * @notifier: notifier struct to unregister
e107be36
AK
1784 *
1785 * This is safe to call from within a preemption notifier.
1786 */
1787void preempt_notifier_unregister(struct preempt_notifier *notifier)
1788{
1789 hlist_del(&notifier->link);
1790}
1791EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1792
1793static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1794{
1795 struct preempt_notifier *notifier;
e107be36 1796
b67bfe0d 1797 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1798 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1799}
1800
1801static void
1802fire_sched_out_preempt_notifiers(struct task_struct *curr,
1803 struct task_struct *next)
1804{
1805 struct preempt_notifier *notifier;
e107be36 1806
b67bfe0d 1807 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1808 notifier->ops->sched_out(notifier, next);
1809}
1810
6d6bc0ad 1811#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1812
1813static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1814{
1815}
1816
1817static void
1818fire_sched_out_preempt_notifiers(struct task_struct *curr,
1819 struct task_struct *next)
1820{
1821}
1822
6d6bc0ad 1823#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1824
4866cde0
NP
1825/**
1826 * prepare_task_switch - prepare to switch tasks
1827 * @rq: the runqueue preparing to switch
421cee29 1828 * @prev: the current task that is being switched out
4866cde0
NP
1829 * @next: the task we are going to switch to.
1830 *
1831 * This is called with the rq lock held and interrupts off. It must
1832 * be paired with a subsequent finish_task_switch after the context
1833 * switch.
1834 *
1835 * prepare_task_switch sets up locking and calls architecture specific
1836 * hooks.
1837 */
e107be36
AK
1838static inline void
1839prepare_task_switch(struct rq *rq, struct task_struct *prev,
1840 struct task_struct *next)
4866cde0 1841{
895dd92c 1842 trace_sched_switch(prev, next);
43148951 1843 sched_info_switch(rq, prev, next);
fe4b04fa 1844 perf_event_task_sched_out(prev, next);
e107be36 1845 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1846 prepare_lock_switch(rq, next);
1847 prepare_arch_switch(next);
1848}
1849
1da177e4
LT
1850/**
1851 * finish_task_switch - clean up after a task-switch
344babaa 1852 * @rq: runqueue associated with task-switch
1da177e4
LT
1853 * @prev: the thread we just switched away from.
1854 *
4866cde0
NP
1855 * finish_task_switch must be called after the context switch, paired
1856 * with a prepare_task_switch call before the context switch.
1857 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1858 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1859 *
1860 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1861 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1862 * with the lock held can cause deadlocks; see schedule() for
1863 * details.)
1864 */
a9957449 1865static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1866 __releases(rq->lock)
1867{
1da177e4 1868 struct mm_struct *mm = rq->prev_mm;
55a101f8 1869 long prev_state;
1da177e4
LT
1870
1871 rq->prev_mm = NULL;
1872
1873 /*
1874 * A task struct has one reference for the use as "current".
c394cc9f 1875 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1876 * schedule one last time. The schedule call will never return, and
1877 * the scheduled task must drop that reference.
c394cc9f 1878 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1879 * still held, otherwise prev could be scheduled on another cpu, die
1880 * there before we look at prev->state, and then the reference would
1881 * be dropped twice.
1882 * Manfred Spraul <manfred@colorfullife.com>
1883 */
55a101f8 1884 prev_state = prev->state;
bf9fae9f 1885 vtime_task_switch(prev);
4866cde0 1886 finish_arch_switch(prev);
a8d757ef 1887 perf_event_task_sched_in(prev, current);
4866cde0 1888 finish_lock_switch(rq, prev);
01f23e16 1889 finish_arch_post_lock_switch();
e8fa1362 1890
e107be36 1891 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1892 if (mm)
1893 mmdrop(mm);
c394cc9f 1894 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1895 /*
1896 * Remove function-return probe instances associated with this
1897 * task and put them back on the free list.
9761eea8 1898 */
c6fd91f0 1899 kprobe_flush_task(prev);
1da177e4 1900 put_task_struct(prev);
c6fd91f0 1901 }
99e5ada9
FW
1902
1903 tick_nohz_task_switch(current);
1da177e4
LT
1904}
1905
3f029d3c
GH
1906#ifdef CONFIG_SMP
1907
1908/* assumes rq->lock is held */
1909static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1910{
1911 if (prev->sched_class->pre_schedule)
1912 prev->sched_class->pre_schedule(rq, prev);
1913}
1914
1915/* rq->lock is NOT held, but preemption is disabled */
1916static inline void post_schedule(struct rq *rq)
1917{
1918 if (rq->post_schedule) {
1919 unsigned long flags;
1920
05fa785c 1921 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1922 if (rq->curr->sched_class->post_schedule)
1923 rq->curr->sched_class->post_schedule(rq);
05fa785c 1924 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1925
1926 rq->post_schedule = 0;
1927 }
1928}
1929
1930#else
da19ab51 1931
3f029d3c
GH
1932static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1933{
1934}
1935
1936static inline void post_schedule(struct rq *rq)
1937{
1da177e4
LT
1938}
1939
3f029d3c
GH
1940#endif
1941
1da177e4
LT
1942/**
1943 * schedule_tail - first thing a freshly forked thread must call.
1944 * @prev: the thread we just switched away from.
1945 */
36c8b586 1946asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1947 __releases(rq->lock)
1948{
70b97a7f
IM
1949 struct rq *rq = this_rq();
1950
4866cde0 1951 finish_task_switch(rq, prev);
da19ab51 1952
3f029d3c
GH
1953 /*
1954 * FIXME: do we need to worry about rq being invalidated by the
1955 * task_switch?
1956 */
1957 post_schedule(rq);
70b97a7f 1958
4866cde0
NP
1959#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1960 /* In this case, finish_task_switch does not reenable preemption */
1961 preempt_enable();
1962#endif
1da177e4 1963 if (current->set_child_tid)
b488893a 1964 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1965}
1966
1967/*
1968 * context_switch - switch to the new MM and the new
1969 * thread's register state.
1970 */
dd41f596 1971static inline void
70b97a7f 1972context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1973 struct task_struct *next)
1da177e4 1974{
dd41f596 1975 struct mm_struct *mm, *oldmm;
1da177e4 1976
e107be36 1977 prepare_task_switch(rq, prev, next);
fe4b04fa 1978
dd41f596
IM
1979 mm = next->mm;
1980 oldmm = prev->active_mm;
9226d125
ZA
1981 /*
1982 * For paravirt, this is coupled with an exit in switch_to to
1983 * combine the page table reload and the switch backend into
1984 * one hypercall.
1985 */
224101ed 1986 arch_start_context_switch(prev);
9226d125 1987
31915ab4 1988 if (!mm) {
1da177e4
LT
1989 next->active_mm = oldmm;
1990 atomic_inc(&oldmm->mm_count);
1991 enter_lazy_tlb(oldmm, next);
1992 } else
1993 switch_mm(oldmm, mm, next);
1994
31915ab4 1995 if (!prev->mm) {
1da177e4 1996 prev->active_mm = NULL;
1da177e4
LT
1997 rq->prev_mm = oldmm;
1998 }
3a5f5e48
IM
1999 /*
2000 * Since the runqueue lock will be released by the next
2001 * task (which is an invalid locking op but in the case
2002 * of the scheduler it's an obvious special-case), so we
2003 * do an early lockdep release here:
2004 */
2005#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2006 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2007#endif
1da177e4 2008
91d1aa43 2009 context_tracking_task_switch(prev, next);
1da177e4
LT
2010 /* Here we just switch the register state and the stack. */
2011 switch_to(prev, next, prev);
2012
dd41f596
IM
2013 barrier();
2014 /*
2015 * this_rq must be evaluated again because prev may have moved
2016 * CPUs since it called schedule(), thus the 'rq' on its stack
2017 * frame will be invalid.
2018 */
2019 finish_task_switch(this_rq(), prev);
1da177e4
LT
2020}
2021
2022/*
1c3e8264 2023 * nr_running and nr_context_switches:
1da177e4
LT
2024 *
2025 * externally visible scheduler statistics: current number of runnable
1c3e8264 2026 * threads, total number of context switches performed since bootup.
1da177e4
LT
2027 */
2028unsigned long nr_running(void)
2029{
2030 unsigned long i, sum = 0;
2031
2032 for_each_online_cpu(i)
2033 sum += cpu_rq(i)->nr_running;
2034
2035 return sum;
f711f609 2036}
1da177e4 2037
1da177e4 2038unsigned long long nr_context_switches(void)
46cb4b7c 2039{
cc94abfc
SR
2040 int i;
2041 unsigned long long sum = 0;
46cb4b7c 2042
0a945022 2043 for_each_possible_cpu(i)
1da177e4 2044 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2045
1da177e4
LT
2046 return sum;
2047}
483b4ee6 2048
1da177e4
LT
2049unsigned long nr_iowait(void)
2050{
2051 unsigned long i, sum = 0;
483b4ee6 2052
0a945022 2053 for_each_possible_cpu(i)
1da177e4 2054 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2055
1da177e4
LT
2056 return sum;
2057}
483b4ee6 2058
8c215bd3 2059unsigned long nr_iowait_cpu(int cpu)
69d25870 2060{
8c215bd3 2061 struct rq *this = cpu_rq(cpu);
69d25870
AV
2062 return atomic_read(&this->nr_iowait);
2063}
46cb4b7c 2064
dd41f596 2065#ifdef CONFIG_SMP
8a0be9ef 2066
46cb4b7c 2067/*
38022906
PZ
2068 * sched_exec - execve() is a valuable balancing opportunity, because at
2069 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2070 */
38022906 2071void sched_exec(void)
46cb4b7c 2072{
38022906 2073 struct task_struct *p = current;
1da177e4 2074 unsigned long flags;
0017d735 2075 int dest_cpu;
46cb4b7c 2076
8f42ced9 2077 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2078 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2079 if (dest_cpu == smp_processor_id())
2080 goto unlock;
38022906 2081
8f42ced9 2082 if (likely(cpu_active(dest_cpu))) {
969c7921 2083 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2084
8f42ced9
PZ
2085 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2086 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2087 return;
2088 }
0017d735 2089unlock:
8f42ced9 2090 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2091}
dd41f596 2092
1da177e4
LT
2093#endif
2094
1da177e4 2095DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2096DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2097
2098EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2099EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2100
2101/*
c5f8d995 2102 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2103 * @p in case that task is currently running.
c5f8d995
HS
2104 *
2105 * Called with task_rq_lock() held on @rq.
1da177e4 2106 */
c5f8d995
HS
2107static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2108{
2109 u64 ns = 0;
2110
2111 if (task_current(rq, p)) {
2112 update_rq_clock(rq);
78becc27 2113 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2114 if ((s64)ns < 0)
2115 ns = 0;
2116 }
2117
2118 return ns;
2119}
2120
bb34d92f 2121unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2122{
1da177e4 2123 unsigned long flags;
41b86e9c 2124 struct rq *rq;
bb34d92f 2125 u64 ns = 0;
48f24c4d 2126
41b86e9c 2127 rq = task_rq_lock(p, &flags);
c5f8d995 2128 ns = do_task_delta_exec(p, rq);
0122ec5b 2129 task_rq_unlock(rq, p, &flags);
1508487e 2130
c5f8d995
HS
2131 return ns;
2132}
f06febc9 2133
c5f8d995
HS
2134/*
2135 * Return accounted runtime for the task.
2136 * In case the task is currently running, return the runtime plus current's
2137 * pending runtime that have not been accounted yet.
2138 */
2139unsigned long long task_sched_runtime(struct task_struct *p)
2140{
2141 unsigned long flags;
2142 struct rq *rq;
2143 u64 ns = 0;
2144
2145 rq = task_rq_lock(p, &flags);
2146 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2147 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2148
2149 return ns;
2150}
48f24c4d 2151
7835b98b
CL
2152/*
2153 * This function gets called by the timer code, with HZ frequency.
2154 * We call it with interrupts disabled.
7835b98b
CL
2155 */
2156void scheduler_tick(void)
2157{
7835b98b
CL
2158 int cpu = smp_processor_id();
2159 struct rq *rq = cpu_rq(cpu);
dd41f596 2160 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2161
2162 sched_clock_tick();
dd41f596 2163
05fa785c 2164 raw_spin_lock(&rq->lock);
3e51f33f 2165 update_rq_clock(rq);
fa85ae24 2166 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2167 update_cpu_load_active(rq);
05fa785c 2168 raw_spin_unlock(&rq->lock);
7835b98b 2169
e9d2b064 2170 perf_event_task_tick();
e220d2dc 2171
e418e1c2 2172#ifdef CONFIG_SMP
6eb57e0d 2173 rq->idle_balance = idle_cpu(cpu);
dd41f596 2174 trigger_load_balance(rq, cpu);
e418e1c2 2175#endif
265f22a9 2176 rq_last_tick_reset(rq);
1da177e4
LT
2177}
2178
265f22a9
FW
2179#ifdef CONFIG_NO_HZ_FULL
2180/**
2181 * scheduler_tick_max_deferment
2182 *
2183 * Keep at least one tick per second when a single
2184 * active task is running because the scheduler doesn't
2185 * yet completely support full dynticks environment.
2186 *
2187 * This makes sure that uptime, CFS vruntime, load
2188 * balancing, etc... continue to move forward, even
2189 * with a very low granularity.
e69f6186
YB
2190 *
2191 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2192 */
2193u64 scheduler_tick_max_deferment(void)
2194{
2195 struct rq *rq = this_rq();
2196 unsigned long next, now = ACCESS_ONCE(jiffies);
2197
2198 next = rq->last_sched_tick + HZ;
2199
2200 if (time_before_eq(next, now))
2201 return 0;
2202
2203 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2204}
265f22a9 2205#endif
1da177e4 2206
132380a0 2207notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2208{
2209 if (in_lock_functions(addr)) {
2210 addr = CALLER_ADDR2;
2211 if (in_lock_functions(addr))
2212 addr = CALLER_ADDR3;
2213 }
2214 return addr;
2215}
1da177e4 2216
7e49fcce
SR
2217#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2218 defined(CONFIG_PREEMPT_TRACER))
2219
bdb43806 2220void __kprobes preempt_count_add(int val)
1da177e4 2221{
6cd8a4bb 2222#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2223 /*
2224 * Underflow?
2225 */
9a11b49a
IM
2226 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2227 return;
6cd8a4bb 2228#endif
bdb43806 2229 __preempt_count_add(val);
6cd8a4bb 2230#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2231 /*
2232 * Spinlock count overflowing soon?
2233 */
33859f7f
MOS
2234 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2235 PREEMPT_MASK - 10);
6cd8a4bb
SR
2236#endif
2237 if (preempt_count() == val)
2238 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2239}
bdb43806 2240EXPORT_SYMBOL(preempt_count_add);
1da177e4 2241
bdb43806 2242void __kprobes preempt_count_sub(int val)
1da177e4 2243{
6cd8a4bb 2244#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2245 /*
2246 * Underflow?
2247 */
01e3eb82 2248 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2249 return;
1da177e4
LT
2250 /*
2251 * Is the spinlock portion underflowing?
2252 */
9a11b49a
IM
2253 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2254 !(preempt_count() & PREEMPT_MASK)))
2255 return;
6cd8a4bb 2256#endif
9a11b49a 2257
6cd8a4bb
SR
2258 if (preempt_count() == val)
2259 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2260 __preempt_count_sub(val);
1da177e4 2261}
bdb43806 2262EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2263
2264#endif
2265
2266/*
dd41f596 2267 * Print scheduling while atomic bug:
1da177e4 2268 */
dd41f596 2269static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2270{
664dfa65
DJ
2271 if (oops_in_progress)
2272 return;
2273
3df0fc5b
PZ
2274 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2275 prev->comm, prev->pid, preempt_count());
838225b4 2276
dd41f596 2277 debug_show_held_locks(prev);
e21f5b15 2278 print_modules();
dd41f596
IM
2279 if (irqs_disabled())
2280 print_irqtrace_events(prev);
6135fc1e 2281 dump_stack();
373d4d09 2282 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2283}
1da177e4 2284
dd41f596
IM
2285/*
2286 * Various schedule()-time debugging checks and statistics:
2287 */
2288static inline void schedule_debug(struct task_struct *prev)
2289{
1da177e4 2290 /*
41a2d6cf 2291 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2292 * schedule() atomically, we ignore that path for now.
2293 * Otherwise, whine if we are scheduling when we should not be.
2294 */
3f33a7ce 2295 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2296 __schedule_bug(prev);
b3fbab05 2297 rcu_sleep_check();
dd41f596 2298
1da177e4
LT
2299 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2300
2d72376b 2301 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2302}
2303
6cecd084 2304static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2305{
61eadef6 2306 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2307 update_rq_clock(rq);
6cecd084 2308 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2309}
2310
dd41f596
IM
2311/*
2312 * Pick up the highest-prio task:
2313 */
2314static inline struct task_struct *
b67802ea 2315pick_next_task(struct rq *rq)
dd41f596 2316{
5522d5d5 2317 const struct sched_class *class;
dd41f596 2318 struct task_struct *p;
1da177e4
LT
2319
2320 /*
dd41f596
IM
2321 * Optimization: we know that if all tasks are in
2322 * the fair class we can call that function directly:
1da177e4 2323 */
953bfcd1 2324 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2325 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2326 if (likely(p))
2327 return p;
1da177e4
LT
2328 }
2329
34f971f6 2330 for_each_class(class) {
fb8d4724 2331 p = class->pick_next_task(rq);
dd41f596
IM
2332 if (p)
2333 return p;
dd41f596 2334 }
34f971f6
PZ
2335
2336 BUG(); /* the idle class will always have a runnable task */
dd41f596 2337}
1da177e4 2338
dd41f596 2339/*
c259e01a 2340 * __schedule() is the main scheduler function.
edde96ea
PE
2341 *
2342 * The main means of driving the scheduler and thus entering this function are:
2343 *
2344 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2345 *
2346 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2347 * paths. For example, see arch/x86/entry_64.S.
2348 *
2349 * To drive preemption between tasks, the scheduler sets the flag in timer
2350 * interrupt handler scheduler_tick().
2351 *
2352 * 3. Wakeups don't really cause entry into schedule(). They add a
2353 * task to the run-queue and that's it.
2354 *
2355 * Now, if the new task added to the run-queue preempts the current
2356 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2357 * called on the nearest possible occasion:
2358 *
2359 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2360 *
2361 * - in syscall or exception context, at the next outmost
2362 * preempt_enable(). (this might be as soon as the wake_up()'s
2363 * spin_unlock()!)
2364 *
2365 * - in IRQ context, return from interrupt-handler to
2366 * preemptible context
2367 *
2368 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2369 * then at the next:
2370 *
2371 * - cond_resched() call
2372 * - explicit schedule() call
2373 * - return from syscall or exception to user-space
2374 * - return from interrupt-handler to user-space
dd41f596 2375 */
c259e01a 2376static void __sched __schedule(void)
dd41f596
IM
2377{
2378 struct task_struct *prev, *next;
67ca7bde 2379 unsigned long *switch_count;
dd41f596 2380 struct rq *rq;
31656519 2381 int cpu;
dd41f596 2382
ff743345
PZ
2383need_resched:
2384 preempt_disable();
dd41f596
IM
2385 cpu = smp_processor_id();
2386 rq = cpu_rq(cpu);
25502a6c 2387 rcu_note_context_switch(cpu);
dd41f596 2388 prev = rq->curr;
dd41f596 2389
dd41f596 2390 schedule_debug(prev);
1da177e4 2391
31656519 2392 if (sched_feat(HRTICK))
f333fdc9 2393 hrtick_clear(rq);
8f4d37ec 2394
e0acd0a6
ON
2395 /*
2396 * Make sure that signal_pending_state()->signal_pending() below
2397 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2398 * done by the caller to avoid the race with signal_wake_up().
2399 */
2400 smp_mb__before_spinlock();
05fa785c 2401 raw_spin_lock_irq(&rq->lock);
1da177e4 2402
246d86b5 2403 switch_count = &prev->nivcsw;
1da177e4 2404 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2405 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2406 prev->state = TASK_RUNNING;
21aa9af0 2407 } else {
2acca55e
PZ
2408 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2409 prev->on_rq = 0;
2410
21aa9af0 2411 /*
2acca55e
PZ
2412 * If a worker went to sleep, notify and ask workqueue
2413 * whether it wants to wake up a task to maintain
2414 * concurrency.
21aa9af0
TH
2415 */
2416 if (prev->flags & PF_WQ_WORKER) {
2417 struct task_struct *to_wakeup;
2418
2419 to_wakeup = wq_worker_sleeping(prev, cpu);
2420 if (to_wakeup)
2421 try_to_wake_up_local(to_wakeup);
2422 }
21aa9af0 2423 }
dd41f596 2424 switch_count = &prev->nvcsw;
1da177e4
LT
2425 }
2426
3f029d3c 2427 pre_schedule(rq, prev);
f65eda4f 2428
dd41f596 2429 if (unlikely(!rq->nr_running))
1da177e4 2430 idle_balance(cpu, rq);
1da177e4 2431
df1c99d4 2432 put_prev_task(rq, prev);
b67802ea 2433 next = pick_next_task(rq);
f26f9aff 2434 clear_tsk_need_resched(prev);
f27dde8d 2435 clear_preempt_need_resched();
f26f9aff 2436 rq->skip_clock_update = 0;
1da177e4 2437
1da177e4 2438 if (likely(prev != next)) {
1da177e4
LT
2439 rq->nr_switches++;
2440 rq->curr = next;
2441 ++*switch_count;
2442
dd41f596 2443 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2444 /*
246d86b5
ON
2445 * The context switch have flipped the stack from under us
2446 * and restored the local variables which were saved when
2447 * this task called schedule() in the past. prev == current
2448 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2449 */
2450 cpu = smp_processor_id();
2451 rq = cpu_rq(cpu);
1da177e4 2452 } else
05fa785c 2453 raw_spin_unlock_irq(&rq->lock);
1da177e4 2454
3f029d3c 2455 post_schedule(rq);
1da177e4 2456
ba74c144 2457 sched_preempt_enable_no_resched();
ff743345 2458 if (need_resched())
1da177e4
LT
2459 goto need_resched;
2460}
c259e01a 2461
9c40cef2
TG
2462static inline void sched_submit_work(struct task_struct *tsk)
2463{
3c7d5184 2464 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2465 return;
2466 /*
2467 * If we are going to sleep and we have plugged IO queued,
2468 * make sure to submit it to avoid deadlocks.
2469 */
2470 if (blk_needs_flush_plug(tsk))
2471 blk_schedule_flush_plug(tsk);
2472}
2473
6ebbe7a0 2474asmlinkage void __sched schedule(void)
c259e01a 2475{
9c40cef2
TG
2476 struct task_struct *tsk = current;
2477
2478 sched_submit_work(tsk);
c259e01a
TG
2479 __schedule();
2480}
1da177e4
LT
2481EXPORT_SYMBOL(schedule);
2482
91d1aa43 2483#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2484asmlinkage void __sched schedule_user(void)
2485{
2486 /*
2487 * If we come here after a random call to set_need_resched(),
2488 * or we have been woken up remotely but the IPI has not yet arrived,
2489 * we haven't yet exited the RCU idle mode. Do it here manually until
2490 * we find a better solution.
2491 */
91d1aa43 2492 user_exit();
20ab65e3 2493 schedule();
91d1aa43 2494 user_enter();
20ab65e3
FW
2495}
2496#endif
2497
c5491ea7
TG
2498/**
2499 * schedule_preempt_disabled - called with preemption disabled
2500 *
2501 * Returns with preemption disabled. Note: preempt_count must be 1
2502 */
2503void __sched schedule_preempt_disabled(void)
2504{
ba74c144 2505 sched_preempt_enable_no_resched();
c5491ea7
TG
2506 schedule();
2507 preempt_disable();
2508}
2509
1da177e4
LT
2510#ifdef CONFIG_PREEMPT
2511/*
2ed6e34f 2512 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2513 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2514 * occur there and call schedule directly.
2515 */
d1f74e20 2516asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2517{
1da177e4
LT
2518 /*
2519 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2520 * we do not want to preempt the current task. Just return..
1da177e4 2521 */
fbb00b56 2522 if (likely(!preemptible()))
1da177e4
LT
2523 return;
2524
3a5c359a 2525 do {
bdb43806 2526 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2527 __schedule();
bdb43806 2528 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2529
3a5c359a
AK
2530 /*
2531 * Check again in case we missed a preemption opportunity
2532 * between schedule and now.
2533 */
2534 barrier();
5ed0cec0 2535 } while (need_resched());
1da177e4 2536}
1da177e4
LT
2537EXPORT_SYMBOL(preempt_schedule);
2538
2539/*
2ed6e34f 2540 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2541 * off of irq context.
2542 * Note, that this is called and return with irqs disabled. This will
2543 * protect us against recursive calling from irq.
2544 */
2545asmlinkage void __sched preempt_schedule_irq(void)
2546{
b22366cd 2547 enum ctx_state prev_state;
6478d880 2548
2ed6e34f 2549 /* Catch callers which need to be fixed */
f27dde8d 2550 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2551
b22366cd
FW
2552 prev_state = exception_enter();
2553
3a5c359a 2554 do {
bdb43806 2555 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2556 local_irq_enable();
c259e01a 2557 __schedule();
3a5c359a 2558 local_irq_disable();
bdb43806 2559 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2560
3a5c359a
AK
2561 /*
2562 * Check again in case we missed a preemption opportunity
2563 * between schedule and now.
2564 */
2565 barrier();
5ed0cec0 2566 } while (need_resched());
b22366cd
FW
2567
2568 exception_exit(prev_state);
1da177e4
LT
2569}
2570
2571#endif /* CONFIG_PREEMPT */
2572
63859d4f 2573int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2574 void *key)
1da177e4 2575{
63859d4f 2576 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2577}
1da177e4
LT
2578EXPORT_SYMBOL(default_wake_function);
2579
2580/*
41a2d6cf
IM
2581 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2582 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2583 * number) then we wake all the non-exclusive tasks and one exclusive task.
2584 *
2585 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2586 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2587 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2588 */
78ddb08f 2589static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2590 int nr_exclusive, int wake_flags, void *key)
1da177e4 2591{
2e45874c 2592 wait_queue_t *curr, *next;
1da177e4 2593
2e45874c 2594 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2595 unsigned flags = curr->flags;
2596
63859d4f 2597 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2598 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2599 break;
2600 }
2601}
2602
2603/**
2604 * __wake_up - wake up threads blocked on a waitqueue.
2605 * @q: the waitqueue
2606 * @mode: which threads
2607 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2608 * @key: is directly passed to the wakeup function
50fa610a
DH
2609 *
2610 * It may be assumed that this function implies a write memory barrier before
2611 * changing the task state if and only if any tasks are woken up.
1da177e4 2612 */
7ad5b3a5 2613void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2614 int nr_exclusive, void *key)
1da177e4
LT
2615{
2616 unsigned long flags;
2617
2618 spin_lock_irqsave(&q->lock, flags);
2619 __wake_up_common(q, mode, nr_exclusive, 0, key);
2620 spin_unlock_irqrestore(&q->lock, flags);
2621}
1da177e4
LT
2622EXPORT_SYMBOL(__wake_up);
2623
2624/*
2625 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2626 */
63b20011 2627void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2628{
63b20011 2629 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2630}
22c43c81 2631EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2632
4ede816a
DL
2633void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2634{
2635 __wake_up_common(q, mode, 1, 0, key);
2636}
bf294b41 2637EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2638
1da177e4 2639/**
4ede816a 2640 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2641 * @q: the waitqueue
2642 * @mode: which threads
2643 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2644 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2645 *
2646 * The sync wakeup differs that the waker knows that it will schedule
2647 * away soon, so while the target thread will be woken up, it will not
2648 * be migrated to another CPU - ie. the two threads are 'synchronized'
2649 * with each other. This can prevent needless bouncing between CPUs.
2650 *
2651 * On UP it can prevent extra preemption.
50fa610a
DH
2652 *
2653 * It may be assumed that this function implies a write memory barrier before
2654 * changing the task state if and only if any tasks are woken up.
1da177e4 2655 */
4ede816a
DL
2656void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2657 int nr_exclusive, void *key)
1da177e4
LT
2658{
2659 unsigned long flags;
7d478721 2660 int wake_flags = WF_SYNC;
1da177e4
LT
2661
2662 if (unlikely(!q))
2663 return;
2664
cedce3e7 2665 if (unlikely(nr_exclusive != 1))
7d478721 2666 wake_flags = 0;
1da177e4
LT
2667
2668 spin_lock_irqsave(&q->lock, flags);
7d478721 2669 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2670 spin_unlock_irqrestore(&q->lock, flags);
2671}
4ede816a
DL
2672EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2673
2674/*
2675 * __wake_up_sync - see __wake_up_sync_key()
2676 */
2677void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2678{
2679 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2680}
1da177e4
LT
2681EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2682
65eb3dc6
KD
2683/**
2684 * complete: - signals a single thread waiting on this completion
2685 * @x: holds the state of this particular completion
2686 *
2687 * This will wake up a single thread waiting on this completion. Threads will be
2688 * awakened in the same order in which they were queued.
2689 *
2690 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2691 *
2692 * It may be assumed that this function implies a write memory barrier before
2693 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2694 */
b15136e9 2695void complete(struct completion *x)
1da177e4
LT
2696{
2697 unsigned long flags;
2698
2699 spin_lock_irqsave(&x->wait.lock, flags);
2700 x->done++;
d9514f6c 2701 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2702 spin_unlock_irqrestore(&x->wait.lock, flags);
2703}
2704EXPORT_SYMBOL(complete);
2705
65eb3dc6
KD
2706/**
2707 * complete_all: - signals all threads waiting on this completion
2708 * @x: holds the state of this particular completion
2709 *
2710 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2711 *
2712 * It may be assumed that this function implies a write memory barrier before
2713 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2714 */
b15136e9 2715void complete_all(struct completion *x)
1da177e4
LT
2716{
2717 unsigned long flags;
2718
2719 spin_lock_irqsave(&x->wait.lock, flags);
2720 x->done += UINT_MAX/2;
d9514f6c 2721 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2722 spin_unlock_irqrestore(&x->wait.lock, flags);
2723}
2724EXPORT_SYMBOL(complete_all);
2725
8cbbe86d 2726static inline long __sched
686855f5
VD
2727do_wait_for_common(struct completion *x,
2728 long (*action)(long), long timeout, int state)
1da177e4 2729{
1da177e4
LT
2730 if (!x->done) {
2731 DECLARE_WAITQUEUE(wait, current);
2732
a93d2f17 2733 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2734 do {
94d3d824 2735 if (signal_pending_state(state, current)) {
ea71a546
ON
2736 timeout = -ERESTARTSYS;
2737 break;
8cbbe86d
AK
2738 }
2739 __set_current_state(state);
1da177e4 2740 spin_unlock_irq(&x->wait.lock);
686855f5 2741 timeout = action(timeout);
1da177e4 2742 spin_lock_irq(&x->wait.lock);
ea71a546 2743 } while (!x->done && timeout);
1da177e4 2744 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2745 if (!x->done)
2746 return timeout;
1da177e4
LT
2747 }
2748 x->done--;
ea71a546 2749 return timeout ?: 1;
1da177e4 2750}
1da177e4 2751
686855f5
VD
2752static inline long __sched
2753__wait_for_common(struct completion *x,
2754 long (*action)(long), long timeout, int state)
1da177e4 2755{
1da177e4
LT
2756 might_sleep();
2757
2758 spin_lock_irq(&x->wait.lock);
686855f5 2759 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2760 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2761 return timeout;
2762}
1da177e4 2763
686855f5
VD
2764static long __sched
2765wait_for_common(struct completion *x, long timeout, int state)
2766{
2767 return __wait_for_common(x, schedule_timeout, timeout, state);
2768}
2769
2770static long __sched
2771wait_for_common_io(struct completion *x, long timeout, int state)
2772{
2773 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2774}
2775
65eb3dc6
KD
2776/**
2777 * wait_for_completion: - waits for completion of a task
2778 * @x: holds the state of this particular completion
2779 *
2780 * This waits to be signaled for completion of a specific task. It is NOT
2781 * interruptible and there is no timeout.
2782 *
2783 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2784 * and interrupt capability. Also see complete().
2785 */
b15136e9 2786void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2787{
2788 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2789}
8cbbe86d 2790EXPORT_SYMBOL(wait_for_completion);
1da177e4 2791
65eb3dc6
KD
2792/**
2793 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2794 * @x: holds the state of this particular completion
2795 * @timeout: timeout value in jiffies
2796 *
2797 * This waits for either a completion of a specific task to be signaled or for a
2798 * specified timeout to expire. The timeout is in jiffies. It is not
2799 * interruptible.
c6dc7f05 2800 *
e69f6186
YB
2801 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2802 * till timeout) if completed.
65eb3dc6 2803 */
b15136e9 2804unsigned long __sched
8cbbe86d 2805wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2806{
8cbbe86d 2807 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2808}
8cbbe86d 2809EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2810
686855f5
VD
2811/**
2812 * wait_for_completion_io: - waits for completion of a task
2813 * @x: holds the state of this particular completion
2814 *
2815 * This waits to be signaled for completion of a specific task. It is NOT
2816 * interruptible and there is no timeout. The caller is accounted as waiting
2817 * for IO.
2818 */
2819void __sched wait_for_completion_io(struct completion *x)
2820{
2821 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2822}
2823EXPORT_SYMBOL(wait_for_completion_io);
2824
2825/**
2826 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2827 * @x: holds the state of this particular completion
2828 * @timeout: timeout value in jiffies
2829 *
2830 * This waits for either a completion of a specific task to be signaled or for a
2831 * specified timeout to expire. The timeout is in jiffies. It is not
2832 * interruptible. The caller is accounted as waiting for IO.
2833 *
e69f6186
YB
2834 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2835 * till timeout) if completed.
686855f5
VD
2836 */
2837unsigned long __sched
2838wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2839{
2840 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2841}
2842EXPORT_SYMBOL(wait_for_completion_io_timeout);
2843
65eb3dc6
KD
2844/**
2845 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2846 * @x: holds the state of this particular completion
2847 *
2848 * This waits for completion of a specific task to be signaled. It is
2849 * interruptible.
c6dc7f05 2850 *
e69f6186 2851 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2852 */
8cbbe86d 2853int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2854{
51e97990
AK
2855 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2856 if (t == -ERESTARTSYS)
2857 return t;
2858 return 0;
0fec171c 2859}
8cbbe86d 2860EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2861
65eb3dc6
KD
2862/**
2863 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2864 * @x: holds the state of this particular completion
2865 * @timeout: timeout value in jiffies
2866 *
2867 * This waits for either a completion of a specific task to be signaled or for a
2868 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05 2869 *
e69f6186
YB
2870 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2871 * or number of jiffies left till timeout) if completed.
65eb3dc6 2872 */
6bf41237 2873long __sched
8cbbe86d
AK
2874wait_for_completion_interruptible_timeout(struct completion *x,
2875 unsigned long timeout)
0fec171c 2876{
8cbbe86d 2877 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2878}
8cbbe86d 2879EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2880
65eb3dc6
KD
2881/**
2882 * wait_for_completion_killable: - waits for completion of a task (killable)
2883 * @x: holds the state of this particular completion
2884 *
2885 * This waits to be signaled for completion of a specific task. It can be
2886 * interrupted by a kill signal.
c6dc7f05 2887 *
e69f6186 2888 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2889 */
009e577e
MW
2890int __sched wait_for_completion_killable(struct completion *x)
2891{
2892 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2893 if (t == -ERESTARTSYS)
2894 return t;
2895 return 0;
2896}
2897EXPORT_SYMBOL(wait_for_completion_killable);
2898
0aa12fb4
SW
2899/**
2900 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2901 * @x: holds the state of this particular completion
2902 * @timeout: timeout value in jiffies
2903 *
2904 * This waits for either a completion of a specific task to be
2905 * signaled or for a specified timeout to expire. It can be
2906 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05 2907 *
e69f6186
YB
2908 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2909 * or number of jiffies left till timeout) if completed.
0aa12fb4 2910 */
6bf41237 2911long __sched
0aa12fb4
SW
2912wait_for_completion_killable_timeout(struct completion *x,
2913 unsigned long timeout)
2914{
2915 return wait_for_common(x, timeout, TASK_KILLABLE);
2916}
2917EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2918
be4de352
DC
2919/**
2920 * try_wait_for_completion - try to decrement a completion without blocking
2921 * @x: completion structure
2922 *
e69f6186 2923 * Return: 0 if a decrement cannot be done without blocking
be4de352
DC
2924 * 1 if a decrement succeeded.
2925 *
2926 * If a completion is being used as a counting completion,
2927 * attempt to decrement the counter without blocking. This
2928 * enables us to avoid waiting if the resource the completion
2929 * is protecting is not available.
2930 */
2931bool try_wait_for_completion(struct completion *x)
2932{
7539a3b3 2933 unsigned long flags;
be4de352
DC
2934 int ret = 1;
2935
7539a3b3 2936 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2937 if (!x->done)
2938 ret = 0;
2939 else
2940 x->done--;
7539a3b3 2941 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2942 return ret;
2943}
2944EXPORT_SYMBOL(try_wait_for_completion);
2945
2946/**
2947 * completion_done - Test to see if a completion has any waiters
2948 * @x: completion structure
2949 *
e69f6186 2950 * Return: 0 if there are waiters (wait_for_completion() in progress)
be4de352
DC
2951 * 1 if there are no waiters.
2952 *
2953 */
2954bool completion_done(struct completion *x)
2955{
7539a3b3 2956 unsigned long flags;
be4de352
DC
2957 int ret = 1;
2958
7539a3b3 2959 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2960 if (!x->done)
2961 ret = 0;
7539a3b3 2962 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2963 return ret;
2964}
2965EXPORT_SYMBOL(completion_done);
2966
8cbbe86d
AK
2967static long __sched
2968sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2969{
0fec171c
IM
2970 unsigned long flags;
2971 wait_queue_t wait;
2972
2973 init_waitqueue_entry(&wait, current);
1da177e4 2974
8cbbe86d 2975 __set_current_state(state);
1da177e4 2976
8cbbe86d
AK
2977 spin_lock_irqsave(&q->lock, flags);
2978 __add_wait_queue(q, &wait);
2979 spin_unlock(&q->lock);
2980 timeout = schedule_timeout(timeout);
2981 spin_lock_irq(&q->lock);
2982 __remove_wait_queue(q, &wait);
2983 spin_unlock_irqrestore(&q->lock, flags);
2984
2985 return timeout;
2986}
2987
2988void __sched interruptible_sleep_on(wait_queue_head_t *q)
2989{
2990 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2991}
1da177e4
LT
2992EXPORT_SYMBOL(interruptible_sleep_on);
2993
0fec171c 2994long __sched
95cdf3b7 2995interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2996{
8cbbe86d 2997 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2998}
1da177e4
LT
2999EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3000
0fec171c 3001void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3002{
8cbbe86d 3003 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3004}
1da177e4
LT
3005EXPORT_SYMBOL(sleep_on);
3006
0fec171c 3007long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3008{
8cbbe86d 3009 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3010}
1da177e4
LT
3011EXPORT_SYMBOL(sleep_on_timeout);
3012
b29739f9
IM
3013#ifdef CONFIG_RT_MUTEXES
3014
3015/*
3016 * rt_mutex_setprio - set the current priority of a task
3017 * @p: task
3018 * @prio: prio value (kernel-internal form)
3019 *
3020 * This function changes the 'effective' priority of a task. It does
3021 * not touch ->normal_prio like __setscheduler().
3022 *
3023 * Used by the rt_mutex code to implement priority inheritance logic.
3024 */
36c8b586 3025void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3026{
83b699ed 3027 int oldprio, on_rq, running;
70b97a7f 3028 struct rq *rq;
83ab0aa0 3029 const struct sched_class *prev_class;
b29739f9
IM
3030
3031 BUG_ON(prio < 0 || prio > MAX_PRIO);
3032
0122ec5b 3033 rq = __task_rq_lock(p);
b29739f9 3034
1c4dd99b
TG
3035 /*
3036 * Idle task boosting is a nono in general. There is one
3037 * exception, when PREEMPT_RT and NOHZ is active:
3038 *
3039 * The idle task calls get_next_timer_interrupt() and holds
3040 * the timer wheel base->lock on the CPU and another CPU wants
3041 * to access the timer (probably to cancel it). We can safely
3042 * ignore the boosting request, as the idle CPU runs this code
3043 * with interrupts disabled and will complete the lock
3044 * protected section without being interrupted. So there is no
3045 * real need to boost.
3046 */
3047 if (unlikely(p == rq->idle)) {
3048 WARN_ON(p != rq->curr);
3049 WARN_ON(p->pi_blocked_on);
3050 goto out_unlock;
3051 }
3052
a8027073 3053 trace_sched_pi_setprio(p, prio);
d5f9f942 3054 oldprio = p->prio;
83ab0aa0 3055 prev_class = p->sched_class;
fd2f4419 3056 on_rq = p->on_rq;
051a1d1a 3057 running = task_current(rq, p);
0e1f3483 3058 if (on_rq)
69be72c1 3059 dequeue_task(rq, p, 0);
0e1f3483
HS
3060 if (running)
3061 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3062
3063 if (rt_prio(prio))
3064 p->sched_class = &rt_sched_class;
3065 else
3066 p->sched_class = &fair_sched_class;
3067
b29739f9
IM
3068 p->prio = prio;
3069
0e1f3483
HS
3070 if (running)
3071 p->sched_class->set_curr_task(rq);
da7a735e 3072 if (on_rq)
371fd7e7 3073 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3074
da7a735e 3075 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3076out_unlock:
0122ec5b 3077 __task_rq_unlock(rq);
b29739f9 3078}
b29739f9 3079#endif
36c8b586 3080void set_user_nice(struct task_struct *p, long nice)
1da177e4 3081{
dd41f596 3082 int old_prio, delta, on_rq;
1da177e4 3083 unsigned long flags;
70b97a7f 3084 struct rq *rq;
1da177e4
LT
3085
3086 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3087 return;
3088 /*
3089 * We have to be careful, if called from sys_setpriority(),
3090 * the task might be in the middle of scheduling on another CPU.
3091 */
3092 rq = task_rq_lock(p, &flags);
3093 /*
3094 * The RT priorities are set via sched_setscheduler(), but we still
3095 * allow the 'normal' nice value to be set - but as expected
3096 * it wont have any effect on scheduling until the task is
dd41f596 3097 * SCHED_FIFO/SCHED_RR:
1da177e4 3098 */
e05606d3 3099 if (task_has_rt_policy(p)) {
1da177e4
LT
3100 p->static_prio = NICE_TO_PRIO(nice);
3101 goto out_unlock;
3102 }
fd2f4419 3103 on_rq = p->on_rq;
c09595f6 3104 if (on_rq)
69be72c1 3105 dequeue_task(rq, p, 0);
1da177e4 3106
1da177e4 3107 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3108 set_load_weight(p);
b29739f9
IM
3109 old_prio = p->prio;
3110 p->prio = effective_prio(p);
3111 delta = p->prio - old_prio;
1da177e4 3112
dd41f596 3113 if (on_rq) {
371fd7e7 3114 enqueue_task(rq, p, 0);
1da177e4 3115 /*
d5f9f942
AM
3116 * If the task increased its priority or is running and
3117 * lowered its priority, then reschedule its CPU:
1da177e4 3118 */
d5f9f942 3119 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3120 resched_task(rq->curr);
3121 }
3122out_unlock:
0122ec5b 3123 task_rq_unlock(rq, p, &flags);
1da177e4 3124}
1da177e4
LT
3125EXPORT_SYMBOL(set_user_nice);
3126
e43379f1
MM
3127/*
3128 * can_nice - check if a task can reduce its nice value
3129 * @p: task
3130 * @nice: nice value
3131 */
36c8b586 3132int can_nice(const struct task_struct *p, const int nice)
e43379f1 3133{
024f4747
MM
3134 /* convert nice value [19,-20] to rlimit style value [1,40] */
3135 int nice_rlim = 20 - nice;
48f24c4d 3136
78d7d407 3137 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3138 capable(CAP_SYS_NICE));
3139}
3140
1da177e4
LT
3141#ifdef __ARCH_WANT_SYS_NICE
3142
3143/*
3144 * sys_nice - change the priority of the current process.
3145 * @increment: priority increment
3146 *
3147 * sys_setpriority is a more generic, but much slower function that
3148 * does similar things.
3149 */
5add95d4 3150SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3151{
48f24c4d 3152 long nice, retval;
1da177e4
LT
3153
3154 /*
3155 * Setpriority might change our priority at the same moment.
3156 * We don't have to worry. Conceptually one call occurs first
3157 * and we have a single winner.
3158 */
e43379f1
MM
3159 if (increment < -40)
3160 increment = -40;
1da177e4
LT
3161 if (increment > 40)
3162 increment = 40;
3163
2b8f836f 3164 nice = TASK_NICE(current) + increment;
1da177e4
LT
3165 if (nice < -20)
3166 nice = -20;
3167 if (nice > 19)
3168 nice = 19;
3169
e43379f1
MM
3170 if (increment < 0 && !can_nice(current, nice))
3171 return -EPERM;
3172
1da177e4
LT
3173 retval = security_task_setnice(current, nice);
3174 if (retval)
3175 return retval;
3176
3177 set_user_nice(current, nice);
3178 return 0;
3179}
3180
3181#endif
3182
3183/**
3184 * task_prio - return the priority value of a given task.
3185 * @p: the task in question.
3186 *
e69f6186 3187 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3188 * RT tasks are offset by -200. Normal tasks are centered
3189 * around 0, value goes from -16 to +15.
3190 */
36c8b586 3191int task_prio(const struct task_struct *p)
1da177e4
LT
3192{
3193 return p->prio - MAX_RT_PRIO;
3194}
3195
3196/**
3197 * task_nice - return the nice value of a given task.
3198 * @p: the task in question.
e69f6186
YB
3199 *
3200 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3201 */
36c8b586 3202int task_nice(const struct task_struct *p)
1da177e4
LT
3203{
3204 return TASK_NICE(p);
3205}
150d8bed 3206EXPORT_SYMBOL(task_nice);
1da177e4
LT
3207
3208/**
3209 * idle_cpu - is a given cpu idle currently?
3210 * @cpu: the processor in question.
e69f6186
YB
3211 *
3212 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3213 */
3214int idle_cpu(int cpu)
3215{
908a3283
TG
3216 struct rq *rq = cpu_rq(cpu);
3217
3218 if (rq->curr != rq->idle)
3219 return 0;
3220
3221 if (rq->nr_running)
3222 return 0;
3223
3224#ifdef CONFIG_SMP
3225 if (!llist_empty(&rq->wake_list))
3226 return 0;
3227#endif
3228
3229 return 1;
1da177e4
LT
3230}
3231
1da177e4
LT
3232/**
3233 * idle_task - return the idle task for a given cpu.
3234 * @cpu: the processor in question.
e69f6186
YB
3235 *
3236 * Return: The idle task for the cpu @cpu.
1da177e4 3237 */
36c8b586 3238struct task_struct *idle_task(int cpu)
1da177e4
LT
3239{
3240 return cpu_rq(cpu)->idle;
3241}
3242
3243/**
3244 * find_process_by_pid - find a process with a matching PID value.
3245 * @pid: the pid in question.
e69f6186
YB
3246 *
3247 * The task of @pid, if found. %NULL otherwise.
1da177e4 3248 */
a9957449 3249static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3250{
228ebcbe 3251 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3252}
3253
3254/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3255static void
3256__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3257{
1da177e4
LT
3258 p->policy = policy;
3259 p->rt_priority = prio;
b29739f9
IM
3260 p->normal_prio = normal_prio(p);
3261 /* we are holding p->pi_lock already */
3262 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3263 if (rt_prio(p->prio))
3264 p->sched_class = &rt_sched_class;
3265 else
3266 p->sched_class = &fair_sched_class;
2dd73a4f 3267 set_load_weight(p);
1da177e4
LT
3268}
3269
c69e8d9c
DH
3270/*
3271 * check the target process has a UID that matches the current process's
3272 */
3273static bool check_same_owner(struct task_struct *p)
3274{
3275 const struct cred *cred = current_cred(), *pcred;
3276 bool match;
3277
3278 rcu_read_lock();
3279 pcred = __task_cred(p);
9c806aa0
EB
3280 match = (uid_eq(cred->euid, pcred->euid) ||
3281 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3282 rcu_read_unlock();
3283 return match;
3284}
3285
961ccddd 3286static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3287 const struct sched_param *param, bool user)
1da177e4 3288{
83b699ed 3289 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3290 unsigned long flags;
83ab0aa0 3291 const struct sched_class *prev_class;
70b97a7f 3292 struct rq *rq;
ca94c442 3293 int reset_on_fork;
1da177e4 3294
66e5393a
SR
3295 /* may grab non-irq protected spin_locks */
3296 BUG_ON(in_interrupt());
1da177e4
LT
3297recheck:
3298 /* double check policy once rq lock held */
ca94c442
LP
3299 if (policy < 0) {
3300 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3301 policy = oldpolicy = p->policy;
ca94c442
LP
3302 } else {
3303 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3304 policy &= ~SCHED_RESET_ON_FORK;
3305
3306 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3307 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3308 policy != SCHED_IDLE)
3309 return -EINVAL;
3310 }
3311
1da177e4
LT
3312 /*
3313 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3314 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3315 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3316 */
3317 if (param->sched_priority < 0 ||
95cdf3b7 3318 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3319 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3320 return -EINVAL;
e05606d3 3321 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3322 return -EINVAL;
3323
37e4ab3f
OC
3324 /*
3325 * Allow unprivileged RT tasks to decrease priority:
3326 */
961ccddd 3327 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3328 if (rt_policy(policy)) {
a44702e8
ON
3329 unsigned long rlim_rtprio =
3330 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3331
3332 /* can't set/change the rt policy */
3333 if (policy != p->policy && !rlim_rtprio)
3334 return -EPERM;
3335
3336 /* can't increase priority */
3337 if (param->sched_priority > p->rt_priority &&
3338 param->sched_priority > rlim_rtprio)
3339 return -EPERM;
3340 }
c02aa73b 3341
dd41f596 3342 /*
c02aa73b
DH
3343 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3344 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3345 */
c02aa73b
DH
3346 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3347 if (!can_nice(p, TASK_NICE(p)))
3348 return -EPERM;
3349 }
5fe1d75f 3350
37e4ab3f 3351 /* can't change other user's priorities */
c69e8d9c 3352 if (!check_same_owner(p))
37e4ab3f 3353 return -EPERM;
ca94c442
LP
3354
3355 /* Normal users shall not reset the sched_reset_on_fork flag */
3356 if (p->sched_reset_on_fork && !reset_on_fork)
3357 return -EPERM;
37e4ab3f 3358 }
1da177e4 3359
725aad24 3360 if (user) {
b0ae1981 3361 retval = security_task_setscheduler(p);
725aad24
JF
3362 if (retval)
3363 return retval;
3364 }
3365
b29739f9
IM
3366 /*
3367 * make sure no PI-waiters arrive (or leave) while we are
3368 * changing the priority of the task:
0122ec5b 3369 *
25985edc 3370 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3371 * runqueue lock must be held.
3372 */
0122ec5b 3373 rq = task_rq_lock(p, &flags);
dc61b1d6 3374
34f971f6
PZ
3375 /*
3376 * Changing the policy of the stop threads its a very bad idea
3377 */
3378 if (p == rq->stop) {
0122ec5b 3379 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3380 return -EINVAL;
3381 }
3382
a51e9198
DF
3383 /*
3384 * If not changing anything there's no need to proceed further:
3385 */
3386 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3387 param->sched_priority == p->rt_priority))) {
45afb173 3388 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3389 return 0;
3390 }
3391
dc61b1d6
PZ
3392#ifdef CONFIG_RT_GROUP_SCHED
3393 if (user) {
3394 /*
3395 * Do not allow realtime tasks into groups that have no runtime
3396 * assigned.
3397 */
3398 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3399 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3400 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3401 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3402 return -EPERM;
3403 }
3404 }
3405#endif
3406
1da177e4
LT
3407 /* recheck policy now with rq lock held */
3408 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3409 policy = oldpolicy = -1;
0122ec5b 3410 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3411 goto recheck;
3412 }
fd2f4419 3413 on_rq = p->on_rq;
051a1d1a 3414 running = task_current(rq, p);
0e1f3483 3415 if (on_rq)
4ca9b72b 3416 dequeue_task(rq, p, 0);
0e1f3483
HS
3417 if (running)
3418 p->sched_class->put_prev_task(rq, p);
f6b53205 3419
ca94c442
LP
3420 p->sched_reset_on_fork = reset_on_fork;
3421
1da177e4 3422 oldprio = p->prio;
83ab0aa0 3423 prev_class = p->sched_class;
dd41f596 3424 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3425
0e1f3483
HS
3426 if (running)
3427 p->sched_class->set_curr_task(rq);
da7a735e 3428 if (on_rq)
4ca9b72b 3429 enqueue_task(rq, p, 0);
cb469845 3430
da7a735e 3431 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3432 task_rq_unlock(rq, p, &flags);
b29739f9 3433
95e02ca9
TG
3434 rt_mutex_adjust_pi(p);
3435
1da177e4
LT
3436 return 0;
3437}
961ccddd
RR
3438
3439/**
3440 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3441 * @p: the task in question.
3442 * @policy: new policy.
3443 * @param: structure containing the new RT priority.
3444 *
e69f6186
YB
3445 * Return: 0 on success. An error code otherwise.
3446 *
961ccddd
RR
3447 * NOTE that the task may be already dead.
3448 */
3449int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3450 const struct sched_param *param)
961ccddd
RR
3451{
3452 return __sched_setscheduler(p, policy, param, true);
3453}
1da177e4
LT
3454EXPORT_SYMBOL_GPL(sched_setscheduler);
3455
961ccddd
RR
3456/**
3457 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3458 * @p: the task in question.
3459 * @policy: new policy.
3460 * @param: structure containing the new RT priority.
3461 *
3462 * Just like sched_setscheduler, only don't bother checking if the
3463 * current context has permission. For example, this is needed in
3464 * stop_machine(): we create temporary high priority worker threads,
3465 * but our caller might not have that capability.
e69f6186
YB
3466 *
3467 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3468 */
3469int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3470 const struct sched_param *param)
961ccddd
RR
3471{
3472 return __sched_setscheduler(p, policy, param, false);
3473}
3474
95cdf3b7
IM
3475static int
3476do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3477{
1da177e4
LT
3478 struct sched_param lparam;
3479 struct task_struct *p;
36c8b586 3480 int retval;
1da177e4
LT
3481
3482 if (!param || pid < 0)
3483 return -EINVAL;
3484 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3485 return -EFAULT;
5fe1d75f
ON
3486
3487 rcu_read_lock();
3488 retval = -ESRCH;
1da177e4 3489 p = find_process_by_pid(pid);
5fe1d75f
ON
3490 if (p != NULL)
3491 retval = sched_setscheduler(p, policy, &lparam);
3492 rcu_read_unlock();
36c8b586 3493
1da177e4
LT
3494 return retval;
3495}
3496
3497/**
3498 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3499 * @pid: the pid in question.
3500 * @policy: new policy.
3501 * @param: structure containing the new RT priority.
e69f6186
YB
3502 *
3503 * Return: 0 on success. An error code otherwise.
1da177e4 3504 */
5add95d4
HC
3505SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3506 struct sched_param __user *, param)
1da177e4 3507{
c21761f1
JB
3508 /* negative values for policy are not valid */
3509 if (policy < 0)
3510 return -EINVAL;
3511
1da177e4
LT
3512 return do_sched_setscheduler(pid, policy, param);
3513}
3514
3515/**
3516 * sys_sched_setparam - set/change the RT priority of a thread
3517 * @pid: the pid in question.
3518 * @param: structure containing the new RT priority.
e69f6186
YB
3519 *
3520 * Return: 0 on success. An error code otherwise.
1da177e4 3521 */
5add95d4 3522SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3523{
3524 return do_sched_setscheduler(pid, -1, param);
3525}
3526
3527/**
3528 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3529 * @pid: the pid in question.
e69f6186
YB
3530 *
3531 * Return: On success, the policy of the thread. Otherwise, a negative error
3532 * code.
1da177e4 3533 */
5add95d4 3534SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3535{
36c8b586 3536 struct task_struct *p;
3a5c359a 3537 int retval;
1da177e4
LT
3538
3539 if (pid < 0)
3a5c359a 3540 return -EINVAL;
1da177e4
LT
3541
3542 retval = -ESRCH;
5fe85be0 3543 rcu_read_lock();
1da177e4
LT
3544 p = find_process_by_pid(pid);
3545 if (p) {
3546 retval = security_task_getscheduler(p);
3547 if (!retval)
ca94c442
LP
3548 retval = p->policy
3549 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3550 }
5fe85be0 3551 rcu_read_unlock();
1da177e4
LT
3552 return retval;
3553}
3554
3555/**
ca94c442 3556 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3557 * @pid: the pid in question.
3558 * @param: structure containing the RT priority.
e69f6186
YB
3559 *
3560 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3561 * code.
1da177e4 3562 */
5add95d4 3563SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3564{
3565 struct sched_param lp;
36c8b586 3566 struct task_struct *p;
3a5c359a 3567 int retval;
1da177e4
LT
3568
3569 if (!param || pid < 0)
3a5c359a 3570 return -EINVAL;
1da177e4 3571
5fe85be0 3572 rcu_read_lock();
1da177e4
LT
3573 p = find_process_by_pid(pid);
3574 retval = -ESRCH;
3575 if (!p)
3576 goto out_unlock;
3577
3578 retval = security_task_getscheduler(p);
3579 if (retval)
3580 goto out_unlock;
3581
3582 lp.sched_priority = p->rt_priority;
5fe85be0 3583 rcu_read_unlock();
1da177e4
LT
3584
3585 /*
3586 * This one might sleep, we cannot do it with a spinlock held ...
3587 */
3588 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3589
1da177e4
LT
3590 return retval;
3591
3592out_unlock:
5fe85be0 3593 rcu_read_unlock();
1da177e4
LT
3594 return retval;
3595}
3596
96f874e2 3597long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3598{
5a16f3d3 3599 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3600 struct task_struct *p;
3601 int retval;
1da177e4 3602
95402b38 3603 get_online_cpus();
23f5d142 3604 rcu_read_lock();
1da177e4
LT
3605
3606 p = find_process_by_pid(pid);
3607 if (!p) {
23f5d142 3608 rcu_read_unlock();
95402b38 3609 put_online_cpus();
1da177e4
LT
3610 return -ESRCH;
3611 }
3612
23f5d142 3613 /* Prevent p going away */
1da177e4 3614 get_task_struct(p);
23f5d142 3615 rcu_read_unlock();
1da177e4 3616
14a40ffc
TH
3617 if (p->flags & PF_NO_SETAFFINITY) {
3618 retval = -EINVAL;
3619 goto out_put_task;
3620 }
5a16f3d3
RR
3621 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3622 retval = -ENOMEM;
3623 goto out_put_task;
3624 }
3625 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3626 retval = -ENOMEM;
3627 goto out_free_cpus_allowed;
3628 }
1da177e4 3629 retval = -EPERM;
4c44aaaf
EB
3630 if (!check_same_owner(p)) {
3631 rcu_read_lock();
3632 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3633 rcu_read_unlock();
3634 goto out_unlock;
3635 }
3636 rcu_read_unlock();
3637 }
1da177e4 3638
b0ae1981 3639 retval = security_task_setscheduler(p);
e7834f8f
DQ
3640 if (retval)
3641 goto out_unlock;
3642
5a16f3d3
RR
3643 cpuset_cpus_allowed(p, cpus_allowed);
3644 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3645again:
5a16f3d3 3646 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3647
8707d8b8 3648 if (!retval) {
5a16f3d3
RR
3649 cpuset_cpus_allowed(p, cpus_allowed);
3650 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3651 /*
3652 * We must have raced with a concurrent cpuset
3653 * update. Just reset the cpus_allowed to the
3654 * cpuset's cpus_allowed
3655 */
5a16f3d3 3656 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3657 goto again;
3658 }
3659 }
1da177e4 3660out_unlock:
5a16f3d3
RR
3661 free_cpumask_var(new_mask);
3662out_free_cpus_allowed:
3663 free_cpumask_var(cpus_allowed);
3664out_put_task:
1da177e4 3665 put_task_struct(p);
95402b38 3666 put_online_cpus();
1da177e4
LT
3667 return retval;
3668}
3669
3670static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3671 struct cpumask *new_mask)
1da177e4 3672{
96f874e2
RR
3673 if (len < cpumask_size())
3674 cpumask_clear(new_mask);
3675 else if (len > cpumask_size())
3676 len = cpumask_size();
3677
1da177e4
LT
3678 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3679}
3680
3681/**
3682 * sys_sched_setaffinity - set the cpu affinity of a process
3683 * @pid: pid of the process
3684 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3685 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3686 *
3687 * Return: 0 on success. An error code otherwise.
1da177e4 3688 */
5add95d4
HC
3689SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3690 unsigned long __user *, user_mask_ptr)
1da177e4 3691{
5a16f3d3 3692 cpumask_var_t new_mask;
1da177e4
LT
3693 int retval;
3694
5a16f3d3
RR
3695 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3696 return -ENOMEM;
1da177e4 3697
5a16f3d3
RR
3698 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3699 if (retval == 0)
3700 retval = sched_setaffinity(pid, new_mask);
3701 free_cpumask_var(new_mask);
3702 return retval;
1da177e4
LT
3703}
3704
96f874e2 3705long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3706{
36c8b586 3707 struct task_struct *p;
31605683 3708 unsigned long flags;
1da177e4 3709 int retval;
1da177e4 3710
95402b38 3711 get_online_cpus();
23f5d142 3712 rcu_read_lock();
1da177e4
LT
3713
3714 retval = -ESRCH;
3715 p = find_process_by_pid(pid);
3716 if (!p)
3717 goto out_unlock;
3718
e7834f8f
DQ
3719 retval = security_task_getscheduler(p);
3720 if (retval)
3721 goto out_unlock;
3722
013fdb80 3723 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3724 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3725 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3726
3727out_unlock:
23f5d142 3728 rcu_read_unlock();
95402b38 3729 put_online_cpus();
1da177e4 3730
9531b62f 3731 return retval;
1da177e4
LT
3732}
3733
3734/**
3735 * sys_sched_getaffinity - get the cpu affinity of a process
3736 * @pid: pid of the process
3737 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3738 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3739 *
3740 * Return: 0 on success. An error code otherwise.
1da177e4 3741 */
5add95d4
HC
3742SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3743 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3744{
3745 int ret;
f17c8607 3746 cpumask_var_t mask;
1da177e4 3747
84fba5ec 3748 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3749 return -EINVAL;
3750 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3751 return -EINVAL;
3752
f17c8607
RR
3753 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3754 return -ENOMEM;
1da177e4 3755
f17c8607
RR
3756 ret = sched_getaffinity(pid, mask);
3757 if (ret == 0) {
8bc037fb 3758 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3759
3760 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3761 ret = -EFAULT;
3762 else
cd3d8031 3763 ret = retlen;
f17c8607
RR
3764 }
3765 free_cpumask_var(mask);
1da177e4 3766
f17c8607 3767 return ret;
1da177e4
LT
3768}
3769
3770/**
3771 * sys_sched_yield - yield the current processor to other threads.
3772 *
dd41f596
IM
3773 * This function yields the current CPU to other tasks. If there are no
3774 * other threads running on this CPU then this function will return.
e69f6186
YB
3775 *
3776 * Return: 0.
1da177e4 3777 */
5add95d4 3778SYSCALL_DEFINE0(sched_yield)
1da177e4 3779{
70b97a7f 3780 struct rq *rq = this_rq_lock();
1da177e4 3781
2d72376b 3782 schedstat_inc(rq, yld_count);
4530d7ab 3783 current->sched_class->yield_task(rq);
1da177e4
LT
3784
3785 /*
3786 * Since we are going to call schedule() anyway, there's
3787 * no need to preempt or enable interrupts:
3788 */
3789 __release(rq->lock);
8a25d5de 3790 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3791 do_raw_spin_unlock(&rq->lock);
ba74c144 3792 sched_preempt_enable_no_resched();
1da177e4
LT
3793
3794 schedule();
3795
3796 return 0;
3797}
3798
e7b38404 3799static void __cond_resched(void)
1da177e4 3800{
bdb43806 3801 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 3802 __schedule();
bdb43806 3803 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
3804}
3805
02b67cc3 3806int __sched _cond_resched(void)
1da177e4 3807{
d86ee480 3808 if (should_resched()) {
1da177e4
LT
3809 __cond_resched();
3810 return 1;
3811 }
3812 return 0;
3813}
02b67cc3 3814EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3815
3816/*
613afbf8 3817 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3818 * call schedule, and on return reacquire the lock.
3819 *
41a2d6cf 3820 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3821 * operations here to prevent schedule() from being called twice (once via
3822 * spin_unlock(), once by hand).
3823 */
613afbf8 3824int __cond_resched_lock(spinlock_t *lock)
1da177e4 3825{
d86ee480 3826 int resched = should_resched();
6df3cecb
JK
3827 int ret = 0;
3828
f607c668
PZ
3829 lockdep_assert_held(lock);
3830
95c354fe 3831 if (spin_needbreak(lock) || resched) {
1da177e4 3832 spin_unlock(lock);
d86ee480 3833 if (resched)
95c354fe
NP
3834 __cond_resched();
3835 else
3836 cpu_relax();
6df3cecb 3837 ret = 1;
1da177e4 3838 spin_lock(lock);
1da177e4 3839 }
6df3cecb 3840 return ret;
1da177e4 3841}
613afbf8 3842EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3843
613afbf8 3844int __sched __cond_resched_softirq(void)
1da177e4
LT
3845{
3846 BUG_ON(!in_softirq());
3847
d86ee480 3848 if (should_resched()) {
98d82567 3849 local_bh_enable();
1da177e4
LT
3850 __cond_resched();
3851 local_bh_disable();
3852 return 1;
3853 }
3854 return 0;
3855}
613afbf8 3856EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3857
1da177e4
LT
3858/**
3859 * yield - yield the current processor to other threads.
3860 *
8e3fabfd
PZ
3861 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3862 *
3863 * The scheduler is at all times free to pick the calling task as the most
3864 * eligible task to run, if removing the yield() call from your code breaks
3865 * it, its already broken.
3866 *
3867 * Typical broken usage is:
3868 *
3869 * while (!event)
3870 * yield();
3871 *
3872 * where one assumes that yield() will let 'the other' process run that will
3873 * make event true. If the current task is a SCHED_FIFO task that will never
3874 * happen. Never use yield() as a progress guarantee!!
3875 *
3876 * If you want to use yield() to wait for something, use wait_event().
3877 * If you want to use yield() to be 'nice' for others, use cond_resched().
3878 * If you still want to use yield(), do not!
1da177e4
LT
3879 */
3880void __sched yield(void)
3881{
3882 set_current_state(TASK_RUNNING);
3883 sys_sched_yield();
3884}
1da177e4
LT
3885EXPORT_SYMBOL(yield);
3886
d95f4122
MG
3887/**
3888 * yield_to - yield the current processor to another thread in
3889 * your thread group, or accelerate that thread toward the
3890 * processor it's on.
16addf95
RD
3891 * @p: target task
3892 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3893 *
3894 * It's the caller's job to ensure that the target task struct
3895 * can't go away on us before we can do any checks.
3896 *
e69f6186 3897 * Return:
7b270f60
PZ
3898 * true (>0) if we indeed boosted the target task.
3899 * false (0) if we failed to boost the target.
3900 * -ESRCH if there's no task to yield to.
d95f4122
MG
3901 */
3902bool __sched yield_to(struct task_struct *p, bool preempt)
3903{
3904 struct task_struct *curr = current;
3905 struct rq *rq, *p_rq;
3906 unsigned long flags;
c3c18640 3907 int yielded = 0;
d95f4122
MG
3908
3909 local_irq_save(flags);
3910 rq = this_rq();
3911
3912again:
3913 p_rq = task_rq(p);
7b270f60
PZ
3914 /*
3915 * If we're the only runnable task on the rq and target rq also
3916 * has only one task, there's absolutely no point in yielding.
3917 */
3918 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3919 yielded = -ESRCH;
3920 goto out_irq;
3921 }
3922
d95f4122
MG
3923 double_rq_lock(rq, p_rq);
3924 while (task_rq(p) != p_rq) {
3925 double_rq_unlock(rq, p_rq);
3926 goto again;
3927 }
3928
3929 if (!curr->sched_class->yield_to_task)
7b270f60 3930 goto out_unlock;
d95f4122
MG
3931
3932 if (curr->sched_class != p->sched_class)
7b270f60 3933 goto out_unlock;
d95f4122
MG
3934
3935 if (task_running(p_rq, p) || p->state)
7b270f60 3936 goto out_unlock;
d95f4122
MG
3937
3938 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3939 if (yielded) {
d95f4122 3940 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3941 /*
3942 * Make p's CPU reschedule; pick_next_entity takes care of
3943 * fairness.
3944 */
3945 if (preempt && rq != p_rq)
3946 resched_task(p_rq->curr);
3947 }
d95f4122 3948
7b270f60 3949out_unlock:
d95f4122 3950 double_rq_unlock(rq, p_rq);
7b270f60 3951out_irq:
d95f4122
MG
3952 local_irq_restore(flags);
3953
7b270f60 3954 if (yielded > 0)
d95f4122
MG
3955 schedule();
3956
3957 return yielded;
3958}
3959EXPORT_SYMBOL_GPL(yield_to);
3960
1da177e4 3961/*
41a2d6cf 3962 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3963 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3964 */
3965void __sched io_schedule(void)
3966{
54d35f29 3967 struct rq *rq = raw_rq();
1da177e4 3968
0ff92245 3969 delayacct_blkio_start();
1da177e4 3970 atomic_inc(&rq->nr_iowait);
73c10101 3971 blk_flush_plug(current);
8f0dfc34 3972 current->in_iowait = 1;
1da177e4 3973 schedule();
8f0dfc34 3974 current->in_iowait = 0;
1da177e4 3975 atomic_dec(&rq->nr_iowait);
0ff92245 3976 delayacct_blkio_end();
1da177e4 3977}
1da177e4
LT
3978EXPORT_SYMBOL(io_schedule);
3979
3980long __sched io_schedule_timeout(long timeout)
3981{
54d35f29 3982 struct rq *rq = raw_rq();
1da177e4
LT
3983 long ret;
3984
0ff92245 3985 delayacct_blkio_start();
1da177e4 3986 atomic_inc(&rq->nr_iowait);
73c10101 3987 blk_flush_plug(current);
8f0dfc34 3988 current->in_iowait = 1;
1da177e4 3989 ret = schedule_timeout(timeout);
8f0dfc34 3990 current->in_iowait = 0;
1da177e4 3991 atomic_dec(&rq->nr_iowait);
0ff92245 3992 delayacct_blkio_end();
1da177e4
LT
3993 return ret;
3994}
3995
3996/**
3997 * sys_sched_get_priority_max - return maximum RT priority.
3998 * @policy: scheduling class.
3999 *
e69f6186
YB
4000 * Return: On success, this syscall returns the maximum
4001 * rt_priority that can be used by a given scheduling class.
4002 * On failure, a negative error code is returned.
1da177e4 4003 */
5add95d4 4004SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4005{
4006 int ret = -EINVAL;
4007
4008 switch (policy) {
4009 case SCHED_FIFO:
4010 case SCHED_RR:
4011 ret = MAX_USER_RT_PRIO-1;
4012 break;
4013 case SCHED_NORMAL:
b0a9499c 4014 case SCHED_BATCH:
dd41f596 4015 case SCHED_IDLE:
1da177e4
LT
4016 ret = 0;
4017 break;
4018 }
4019 return ret;
4020}
4021
4022/**
4023 * sys_sched_get_priority_min - return minimum RT priority.
4024 * @policy: scheduling class.
4025 *
e69f6186
YB
4026 * Return: On success, this syscall returns the minimum
4027 * rt_priority that can be used by a given scheduling class.
4028 * On failure, a negative error code is returned.
1da177e4 4029 */
5add95d4 4030SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4031{
4032 int ret = -EINVAL;
4033
4034 switch (policy) {
4035 case SCHED_FIFO:
4036 case SCHED_RR:
4037 ret = 1;
4038 break;
4039 case SCHED_NORMAL:
b0a9499c 4040 case SCHED_BATCH:
dd41f596 4041 case SCHED_IDLE:
1da177e4
LT
4042 ret = 0;
4043 }
4044 return ret;
4045}
4046
4047/**
4048 * sys_sched_rr_get_interval - return the default timeslice of a process.
4049 * @pid: pid of the process.
4050 * @interval: userspace pointer to the timeslice value.
4051 *
4052 * this syscall writes the default timeslice value of a given process
4053 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4054 *
4055 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4056 * an error code.
1da177e4 4057 */
17da2bd9 4058SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4059 struct timespec __user *, interval)
1da177e4 4060{
36c8b586 4061 struct task_struct *p;
a4ec24b4 4062 unsigned int time_slice;
dba091b9
TG
4063 unsigned long flags;
4064 struct rq *rq;
3a5c359a 4065 int retval;
1da177e4 4066 struct timespec t;
1da177e4
LT
4067
4068 if (pid < 0)
3a5c359a 4069 return -EINVAL;
1da177e4
LT
4070
4071 retval = -ESRCH;
1a551ae7 4072 rcu_read_lock();
1da177e4
LT
4073 p = find_process_by_pid(pid);
4074 if (!p)
4075 goto out_unlock;
4076
4077 retval = security_task_getscheduler(p);
4078 if (retval)
4079 goto out_unlock;
4080
dba091b9
TG
4081 rq = task_rq_lock(p, &flags);
4082 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4083 task_rq_unlock(rq, p, &flags);
a4ec24b4 4084
1a551ae7 4085 rcu_read_unlock();
a4ec24b4 4086 jiffies_to_timespec(time_slice, &t);
1da177e4 4087 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4088 return retval;
3a5c359a 4089
1da177e4 4090out_unlock:
1a551ae7 4091 rcu_read_unlock();
1da177e4
LT
4092 return retval;
4093}
4094
7c731e0a 4095static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4096
82a1fcb9 4097void sched_show_task(struct task_struct *p)
1da177e4 4098{
1da177e4 4099 unsigned long free = 0;
4e79752c 4100 int ppid;
36c8b586 4101 unsigned state;
1da177e4 4102
1da177e4 4103 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4104 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4105 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4106#if BITS_PER_LONG == 32
1da177e4 4107 if (state == TASK_RUNNING)
3df0fc5b 4108 printk(KERN_CONT " running ");
1da177e4 4109 else
3df0fc5b 4110 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4111#else
4112 if (state == TASK_RUNNING)
3df0fc5b 4113 printk(KERN_CONT " running task ");
1da177e4 4114 else
3df0fc5b 4115 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4116#endif
4117#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4118 free = stack_not_used(p);
1da177e4 4119#endif
4e79752c
PM
4120 rcu_read_lock();
4121 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4122 rcu_read_unlock();
3df0fc5b 4123 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4124 task_pid_nr(p), ppid,
aa47b7e0 4125 (unsigned long)task_thread_info(p)->flags);
1da177e4 4126
3d1cb205 4127 print_worker_info(KERN_INFO, p);
5fb5e6de 4128 show_stack(p, NULL);
1da177e4
LT
4129}
4130
e59e2ae2 4131void show_state_filter(unsigned long state_filter)
1da177e4 4132{
36c8b586 4133 struct task_struct *g, *p;
1da177e4 4134
4bd77321 4135#if BITS_PER_LONG == 32
3df0fc5b
PZ
4136 printk(KERN_INFO
4137 " task PC stack pid father\n");
1da177e4 4138#else
3df0fc5b
PZ
4139 printk(KERN_INFO
4140 " task PC stack pid father\n");
1da177e4 4141#endif
510f5acc 4142 rcu_read_lock();
1da177e4
LT
4143 do_each_thread(g, p) {
4144 /*
4145 * reset the NMI-timeout, listing all files on a slow
25985edc 4146 * console might take a lot of time:
1da177e4
LT
4147 */
4148 touch_nmi_watchdog();
39bc89fd 4149 if (!state_filter || (p->state & state_filter))
82a1fcb9 4150 sched_show_task(p);
1da177e4
LT
4151 } while_each_thread(g, p);
4152
04c9167f
JF
4153 touch_all_softlockup_watchdogs();
4154
dd41f596
IM
4155#ifdef CONFIG_SCHED_DEBUG
4156 sysrq_sched_debug_show();
4157#endif
510f5acc 4158 rcu_read_unlock();
e59e2ae2
IM
4159 /*
4160 * Only show locks if all tasks are dumped:
4161 */
93335a21 4162 if (!state_filter)
e59e2ae2 4163 debug_show_all_locks();
1da177e4
LT
4164}
4165
0db0628d 4166void init_idle_bootup_task(struct task_struct *idle)
1df21055 4167{
dd41f596 4168 idle->sched_class = &idle_sched_class;
1df21055
IM
4169}
4170
f340c0d1
IM
4171/**
4172 * init_idle - set up an idle thread for a given CPU
4173 * @idle: task in question
4174 * @cpu: cpu the idle task belongs to
4175 *
4176 * NOTE: this function does not set the idle thread's NEED_RESCHED
4177 * flag, to make booting more robust.
4178 */
0db0628d 4179void init_idle(struct task_struct *idle, int cpu)
1da177e4 4180{
70b97a7f 4181 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4182 unsigned long flags;
4183
05fa785c 4184 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4185
dd41f596 4186 __sched_fork(idle);
06b83b5f 4187 idle->state = TASK_RUNNING;
dd41f596
IM
4188 idle->se.exec_start = sched_clock();
4189
1e1b6c51 4190 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4191 /*
4192 * We're having a chicken and egg problem, even though we are
4193 * holding rq->lock, the cpu isn't yet set to this cpu so the
4194 * lockdep check in task_group() will fail.
4195 *
4196 * Similar case to sched_fork(). / Alternatively we could
4197 * use task_rq_lock() here and obtain the other rq->lock.
4198 *
4199 * Silence PROVE_RCU
4200 */
4201 rcu_read_lock();
dd41f596 4202 __set_task_cpu(idle, cpu);
6506cf6c 4203 rcu_read_unlock();
1da177e4 4204
1da177e4 4205 rq->curr = rq->idle = idle;
3ca7a440
PZ
4206#if defined(CONFIG_SMP)
4207 idle->on_cpu = 1;
4866cde0 4208#endif
05fa785c 4209 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4210
4211 /* Set the preempt count _outside_ the spinlocks! */
01028747 4212 init_idle_preempt_count(idle, cpu);
55cd5340 4213
dd41f596
IM
4214 /*
4215 * The idle tasks have their own, simple scheduling class:
4216 */
4217 idle->sched_class = &idle_sched_class;
868baf07 4218 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4219 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4220#if defined(CONFIG_SMP)
4221 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4222#endif
19978ca6
IM
4223}
4224
1da177e4 4225#ifdef CONFIG_SMP
1e1b6c51
KM
4226void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4227{
4228 if (p->sched_class && p->sched_class->set_cpus_allowed)
4229 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4230
4231 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4232 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4233}
4234
1da177e4
LT
4235/*
4236 * This is how migration works:
4237 *
969c7921
TH
4238 * 1) we invoke migration_cpu_stop() on the target CPU using
4239 * stop_one_cpu().
4240 * 2) stopper starts to run (implicitly forcing the migrated thread
4241 * off the CPU)
4242 * 3) it checks whether the migrated task is still in the wrong runqueue.
4243 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4244 * it and puts it into the right queue.
969c7921
TH
4245 * 5) stopper completes and stop_one_cpu() returns and the migration
4246 * is done.
1da177e4
LT
4247 */
4248
4249/*
4250 * Change a given task's CPU affinity. Migrate the thread to a
4251 * proper CPU and schedule it away if the CPU it's executing on
4252 * is removed from the allowed bitmask.
4253 *
4254 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4255 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4256 * call is not atomic; no spinlocks may be held.
4257 */
96f874e2 4258int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4259{
4260 unsigned long flags;
70b97a7f 4261 struct rq *rq;
969c7921 4262 unsigned int dest_cpu;
48f24c4d 4263 int ret = 0;
1da177e4
LT
4264
4265 rq = task_rq_lock(p, &flags);
e2912009 4266
db44fc01
YZ
4267 if (cpumask_equal(&p->cpus_allowed, new_mask))
4268 goto out;
4269
6ad4c188 4270 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4271 ret = -EINVAL;
4272 goto out;
4273 }
4274
1e1b6c51 4275 do_set_cpus_allowed(p, new_mask);
73fe6aae 4276
1da177e4 4277 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4278 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4279 goto out;
4280
969c7921 4281 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4282 if (p->on_rq) {
969c7921 4283 struct migration_arg arg = { p, dest_cpu };
1da177e4 4284 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4285 task_rq_unlock(rq, p, &flags);
969c7921 4286 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4287 tlb_migrate_finish(p->mm);
4288 return 0;
4289 }
4290out:
0122ec5b 4291 task_rq_unlock(rq, p, &flags);
48f24c4d 4292
1da177e4
LT
4293 return ret;
4294}
cd8ba7cd 4295EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4296
4297/*
41a2d6cf 4298 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4299 * this because either it can't run here any more (set_cpus_allowed()
4300 * away from this CPU, or CPU going down), or because we're
4301 * attempting to rebalance this task on exec (sched_exec).
4302 *
4303 * So we race with normal scheduler movements, but that's OK, as long
4304 * as the task is no longer on this CPU.
efc30814
KK
4305 *
4306 * Returns non-zero if task was successfully migrated.
1da177e4 4307 */
efc30814 4308static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4309{
70b97a7f 4310 struct rq *rq_dest, *rq_src;
e2912009 4311 int ret = 0;
1da177e4 4312
e761b772 4313 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4314 return ret;
1da177e4
LT
4315
4316 rq_src = cpu_rq(src_cpu);
4317 rq_dest = cpu_rq(dest_cpu);
4318
0122ec5b 4319 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4320 double_rq_lock(rq_src, rq_dest);
4321 /* Already moved. */
4322 if (task_cpu(p) != src_cpu)
b1e38734 4323 goto done;
1da177e4 4324 /* Affinity changed (again). */
fa17b507 4325 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4326 goto fail;
1da177e4 4327
e2912009
PZ
4328 /*
4329 * If we're not on a rq, the next wake-up will ensure we're
4330 * placed properly.
4331 */
fd2f4419 4332 if (p->on_rq) {
4ca9b72b 4333 dequeue_task(rq_src, p, 0);
e2912009 4334 set_task_cpu(p, dest_cpu);
4ca9b72b 4335 enqueue_task(rq_dest, p, 0);
15afe09b 4336 check_preempt_curr(rq_dest, p, 0);
1da177e4 4337 }
b1e38734 4338done:
efc30814 4339 ret = 1;
b1e38734 4340fail:
1da177e4 4341 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4342 raw_spin_unlock(&p->pi_lock);
efc30814 4343 return ret;
1da177e4
LT
4344}
4345
4346/*
969c7921
TH
4347 * migration_cpu_stop - this will be executed by a highprio stopper thread
4348 * and performs thread migration by bumping thread off CPU then
4349 * 'pushing' onto another runqueue.
1da177e4 4350 */
969c7921 4351static int migration_cpu_stop(void *data)
1da177e4 4352{
969c7921 4353 struct migration_arg *arg = data;
f7b4cddc 4354
969c7921
TH
4355 /*
4356 * The original target cpu might have gone down and we might
4357 * be on another cpu but it doesn't matter.
4358 */
f7b4cddc 4359 local_irq_disable();
969c7921 4360 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4361 local_irq_enable();
1da177e4 4362 return 0;
f7b4cddc
ON
4363}
4364
1da177e4 4365#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4366
054b9108 4367/*
48c5ccae
PZ
4368 * Ensures that the idle task is using init_mm right before its cpu goes
4369 * offline.
054b9108 4370 */
48c5ccae 4371void idle_task_exit(void)
1da177e4 4372{
48c5ccae 4373 struct mm_struct *mm = current->active_mm;
e76bd8d9 4374
48c5ccae 4375 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4376
48c5ccae
PZ
4377 if (mm != &init_mm)
4378 switch_mm(mm, &init_mm, current);
4379 mmdrop(mm);
1da177e4
LT
4380}
4381
4382/*
5d180232
PZ
4383 * Since this CPU is going 'away' for a while, fold any nr_active delta
4384 * we might have. Assumes we're called after migrate_tasks() so that the
4385 * nr_active count is stable.
4386 *
4387 * Also see the comment "Global load-average calculations".
1da177e4 4388 */
5d180232 4389static void calc_load_migrate(struct rq *rq)
1da177e4 4390{
5d180232
PZ
4391 long delta = calc_load_fold_active(rq);
4392 if (delta)
4393 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4394}
4395
48f24c4d 4396/*
48c5ccae
PZ
4397 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4398 * try_to_wake_up()->select_task_rq().
4399 *
4400 * Called with rq->lock held even though we'er in stop_machine() and
4401 * there's no concurrency possible, we hold the required locks anyway
4402 * because of lock validation efforts.
1da177e4 4403 */
48c5ccae 4404static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4405{
70b97a7f 4406 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4407 struct task_struct *next, *stop = rq->stop;
4408 int dest_cpu;
1da177e4
LT
4409
4410 /*
48c5ccae
PZ
4411 * Fudge the rq selection such that the below task selection loop
4412 * doesn't get stuck on the currently eligible stop task.
4413 *
4414 * We're currently inside stop_machine() and the rq is either stuck
4415 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4416 * either way we should never end up calling schedule() until we're
4417 * done here.
1da177e4 4418 */
48c5ccae 4419 rq->stop = NULL;
48f24c4d 4420
77bd3970
FW
4421 /*
4422 * put_prev_task() and pick_next_task() sched
4423 * class method both need to have an up-to-date
4424 * value of rq->clock[_task]
4425 */
4426 update_rq_clock(rq);
4427
dd41f596 4428 for ( ; ; ) {
48c5ccae
PZ
4429 /*
4430 * There's this thread running, bail when that's the only
4431 * remaining thread.
4432 */
4433 if (rq->nr_running == 1)
dd41f596 4434 break;
48c5ccae 4435
b67802ea 4436 next = pick_next_task(rq);
48c5ccae 4437 BUG_ON(!next);
79c53799 4438 next->sched_class->put_prev_task(rq, next);
e692ab53 4439
48c5ccae
PZ
4440 /* Find suitable destination for @next, with force if needed. */
4441 dest_cpu = select_fallback_rq(dead_cpu, next);
4442 raw_spin_unlock(&rq->lock);
4443
4444 __migrate_task(next, dead_cpu, dest_cpu);
4445
4446 raw_spin_lock(&rq->lock);
1da177e4 4447 }
dce48a84 4448
48c5ccae 4449 rq->stop = stop;
dce48a84 4450}
48c5ccae 4451
1da177e4
LT
4452#endif /* CONFIG_HOTPLUG_CPU */
4453
e692ab53
NP
4454#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4455
4456static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4457 {
4458 .procname = "sched_domain",
c57baf1e 4459 .mode = 0555,
e0361851 4460 },
56992309 4461 {}
e692ab53
NP
4462};
4463
4464static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4465 {
4466 .procname = "kernel",
c57baf1e 4467 .mode = 0555,
e0361851
AD
4468 .child = sd_ctl_dir,
4469 },
56992309 4470 {}
e692ab53
NP
4471};
4472
4473static struct ctl_table *sd_alloc_ctl_entry(int n)
4474{
4475 struct ctl_table *entry =
5cf9f062 4476 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4477
e692ab53
NP
4478 return entry;
4479}
4480
6382bc90
MM
4481static void sd_free_ctl_entry(struct ctl_table **tablep)
4482{
cd790076 4483 struct ctl_table *entry;
6382bc90 4484
cd790076
MM
4485 /*
4486 * In the intermediate directories, both the child directory and
4487 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4488 * will always be set. In the lowest directory the names are
cd790076
MM
4489 * static strings and all have proc handlers.
4490 */
4491 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4492 if (entry->child)
4493 sd_free_ctl_entry(&entry->child);
cd790076
MM
4494 if (entry->proc_handler == NULL)
4495 kfree(entry->procname);
4496 }
6382bc90
MM
4497
4498 kfree(*tablep);
4499 *tablep = NULL;
4500}
4501
201c373e 4502static int min_load_idx = 0;
fd9b86d3 4503static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4504
e692ab53 4505static void
e0361851 4506set_table_entry(struct ctl_table *entry,
e692ab53 4507 const char *procname, void *data, int maxlen,
201c373e
NK
4508 umode_t mode, proc_handler *proc_handler,
4509 bool load_idx)
e692ab53 4510{
e692ab53
NP
4511 entry->procname = procname;
4512 entry->data = data;
4513 entry->maxlen = maxlen;
4514 entry->mode = mode;
4515 entry->proc_handler = proc_handler;
201c373e
NK
4516
4517 if (load_idx) {
4518 entry->extra1 = &min_load_idx;
4519 entry->extra2 = &max_load_idx;
4520 }
e692ab53
NP
4521}
4522
4523static struct ctl_table *
4524sd_alloc_ctl_domain_table(struct sched_domain *sd)
4525{
a5d8c348 4526 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4527
ad1cdc1d
MM
4528 if (table == NULL)
4529 return NULL;
4530
e0361851 4531 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4532 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4533 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4534 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4535 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4536 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4537 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4538 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4539 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4540 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4541 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4542 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4543 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4544 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4545 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4546 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4547 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4548 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4549 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4550 &sd->cache_nice_tries,
201c373e 4551 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4552 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4553 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4554 set_table_entry(&table[11], "name", sd->name,
201c373e 4555 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4556 /* &table[12] is terminator */
e692ab53
NP
4557
4558 return table;
4559}
4560
be7002e6 4561static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4562{
4563 struct ctl_table *entry, *table;
4564 struct sched_domain *sd;
4565 int domain_num = 0, i;
4566 char buf[32];
4567
4568 for_each_domain(cpu, sd)
4569 domain_num++;
4570 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4571 if (table == NULL)
4572 return NULL;
e692ab53
NP
4573
4574 i = 0;
4575 for_each_domain(cpu, sd) {
4576 snprintf(buf, 32, "domain%d", i);
e692ab53 4577 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4578 entry->mode = 0555;
e692ab53
NP
4579 entry->child = sd_alloc_ctl_domain_table(sd);
4580 entry++;
4581 i++;
4582 }
4583 return table;
4584}
4585
4586static struct ctl_table_header *sd_sysctl_header;
6382bc90 4587static void register_sched_domain_sysctl(void)
e692ab53 4588{
6ad4c188 4589 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4590 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4591 char buf[32];
4592
7378547f
MM
4593 WARN_ON(sd_ctl_dir[0].child);
4594 sd_ctl_dir[0].child = entry;
4595
ad1cdc1d
MM
4596 if (entry == NULL)
4597 return;
4598
6ad4c188 4599 for_each_possible_cpu(i) {
e692ab53 4600 snprintf(buf, 32, "cpu%d", i);
e692ab53 4601 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4602 entry->mode = 0555;
e692ab53 4603 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4604 entry++;
e692ab53 4605 }
7378547f
MM
4606
4607 WARN_ON(sd_sysctl_header);
e692ab53
NP
4608 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4609}
6382bc90 4610
7378547f 4611/* may be called multiple times per register */
6382bc90
MM
4612static void unregister_sched_domain_sysctl(void)
4613{
7378547f
MM
4614 if (sd_sysctl_header)
4615 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4616 sd_sysctl_header = NULL;
7378547f
MM
4617 if (sd_ctl_dir[0].child)
4618 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4619}
e692ab53 4620#else
6382bc90
MM
4621static void register_sched_domain_sysctl(void)
4622{
4623}
4624static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4625{
4626}
4627#endif
4628
1f11eb6a
GH
4629static void set_rq_online(struct rq *rq)
4630{
4631 if (!rq->online) {
4632 const struct sched_class *class;
4633
c6c4927b 4634 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4635 rq->online = 1;
4636
4637 for_each_class(class) {
4638 if (class->rq_online)
4639 class->rq_online(rq);
4640 }
4641 }
4642}
4643
4644static void set_rq_offline(struct rq *rq)
4645{
4646 if (rq->online) {
4647 const struct sched_class *class;
4648
4649 for_each_class(class) {
4650 if (class->rq_offline)
4651 class->rq_offline(rq);
4652 }
4653
c6c4927b 4654 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4655 rq->online = 0;
4656 }
4657}
4658
1da177e4
LT
4659/*
4660 * migration_call - callback that gets triggered when a CPU is added.
4661 * Here we can start up the necessary migration thread for the new CPU.
4662 */
0db0628d 4663static int
48f24c4d 4664migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4665{
48f24c4d 4666 int cpu = (long)hcpu;
1da177e4 4667 unsigned long flags;
969c7921 4668 struct rq *rq = cpu_rq(cpu);
1da177e4 4669
48c5ccae 4670 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4671
1da177e4 4672 case CPU_UP_PREPARE:
a468d389 4673 rq->calc_load_update = calc_load_update;
1da177e4 4674 break;
48f24c4d 4675
1da177e4 4676 case CPU_ONLINE:
1f94ef59 4677 /* Update our root-domain */
05fa785c 4678 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4679 if (rq->rd) {
c6c4927b 4680 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4681
4682 set_rq_online(rq);
1f94ef59 4683 }
05fa785c 4684 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4685 break;
48f24c4d 4686
1da177e4 4687#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4688 case CPU_DYING:
317f3941 4689 sched_ttwu_pending();
57d885fe 4690 /* Update our root-domain */
05fa785c 4691 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4692 if (rq->rd) {
c6c4927b 4693 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4694 set_rq_offline(rq);
57d885fe 4695 }
48c5ccae
PZ
4696 migrate_tasks(cpu);
4697 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4698 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4699 break;
48c5ccae 4700
5d180232 4701 case CPU_DEAD:
f319da0c 4702 calc_load_migrate(rq);
57d885fe 4703 break;
1da177e4
LT
4704#endif
4705 }
49c022e6
PZ
4706
4707 update_max_interval();
4708
1da177e4
LT
4709 return NOTIFY_OK;
4710}
4711
f38b0820
PM
4712/*
4713 * Register at high priority so that task migration (migrate_all_tasks)
4714 * happens before everything else. This has to be lower priority than
cdd6c482 4715 * the notifier in the perf_event subsystem, though.
1da177e4 4716 */
0db0628d 4717static struct notifier_block migration_notifier = {
1da177e4 4718 .notifier_call = migration_call,
50a323b7 4719 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4720};
4721
0db0628d 4722static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4723 unsigned long action, void *hcpu)
4724{
4725 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4726 case CPU_STARTING:
3a101d05
TH
4727 case CPU_DOWN_FAILED:
4728 set_cpu_active((long)hcpu, true);
4729 return NOTIFY_OK;
4730 default:
4731 return NOTIFY_DONE;
4732 }
4733}
4734
0db0628d 4735static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4736 unsigned long action, void *hcpu)
4737{
4738 switch (action & ~CPU_TASKS_FROZEN) {
4739 case CPU_DOWN_PREPARE:
4740 set_cpu_active((long)hcpu, false);
4741 return NOTIFY_OK;
4742 default:
4743 return NOTIFY_DONE;
4744 }
4745}
4746
7babe8db 4747static int __init migration_init(void)
1da177e4
LT
4748{
4749 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4750 int err;
48f24c4d 4751
3a101d05 4752 /* Initialize migration for the boot CPU */
07dccf33
AM
4753 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4754 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4755 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4756 register_cpu_notifier(&migration_notifier);
7babe8db 4757
3a101d05
TH
4758 /* Register cpu active notifiers */
4759 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4760 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4761
a004cd42 4762 return 0;
1da177e4 4763}
7babe8db 4764early_initcall(migration_init);
1da177e4
LT
4765#endif
4766
4767#ifdef CONFIG_SMP
476f3534 4768
4cb98839
PZ
4769static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4770
3e9830dc 4771#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4772
d039ac60 4773static __read_mostly int sched_debug_enabled;
f6630114 4774
d039ac60 4775static int __init sched_debug_setup(char *str)
f6630114 4776{
d039ac60 4777 sched_debug_enabled = 1;
f6630114
MT
4778
4779 return 0;
4780}
d039ac60
PZ
4781early_param("sched_debug", sched_debug_setup);
4782
4783static inline bool sched_debug(void)
4784{
4785 return sched_debug_enabled;
4786}
f6630114 4787
7c16ec58 4788static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4789 struct cpumask *groupmask)
1da177e4 4790{
4dcf6aff 4791 struct sched_group *group = sd->groups;
434d53b0 4792 char str[256];
1da177e4 4793
968ea6d8 4794 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4795 cpumask_clear(groupmask);
4dcf6aff
IM
4796
4797 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4798
4799 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4800 printk("does not load-balance\n");
4dcf6aff 4801 if (sd->parent)
3df0fc5b
PZ
4802 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4803 " has parent");
4dcf6aff 4804 return -1;
41c7ce9a
NP
4805 }
4806
3df0fc5b 4807 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4808
758b2cdc 4809 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4810 printk(KERN_ERR "ERROR: domain->span does not contain "
4811 "CPU%d\n", cpu);
4dcf6aff 4812 }
758b2cdc 4813 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4814 printk(KERN_ERR "ERROR: domain->groups does not contain"
4815 " CPU%d\n", cpu);
4dcf6aff 4816 }
1da177e4 4817
4dcf6aff 4818 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4819 do {
4dcf6aff 4820 if (!group) {
3df0fc5b
PZ
4821 printk("\n");
4822 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4823 break;
4824 }
4825
c3decf0d
PZ
4826 /*
4827 * Even though we initialize ->power to something semi-sane,
4828 * we leave power_orig unset. This allows us to detect if
4829 * domain iteration is still funny without causing /0 traps.
4830 */
4831 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4832 printk(KERN_CONT "\n");
4833 printk(KERN_ERR "ERROR: domain->cpu_power not "
4834 "set\n");
4dcf6aff
IM
4835 break;
4836 }
1da177e4 4837
758b2cdc 4838 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4839 printk(KERN_CONT "\n");
4840 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4841 break;
4842 }
1da177e4 4843
cb83b629
PZ
4844 if (!(sd->flags & SD_OVERLAP) &&
4845 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4846 printk(KERN_CONT "\n");
4847 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4848 break;
4849 }
1da177e4 4850
758b2cdc 4851 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4852
968ea6d8 4853 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4854
3df0fc5b 4855 printk(KERN_CONT " %s", str);
9c3f75cb 4856 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4857 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4858 group->sgp->power);
381512cf 4859 }
1da177e4 4860
4dcf6aff
IM
4861 group = group->next;
4862 } while (group != sd->groups);
3df0fc5b 4863 printk(KERN_CONT "\n");
1da177e4 4864
758b2cdc 4865 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4866 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4867
758b2cdc
RR
4868 if (sd->parent &&
4869 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4870 printk(KERN_ERR "ERROR: parent span is not a superset "
4871 "of domain->span\n");
4dcf6aff
IM
4872 return 0;
4873}
1da177e4 4874
4dcf6aff
IM
4875static void sched_domain_debug(struct sched_domain *sd, int cpu)
4876{
4877 int level = 0;
1da177e4 4878
d039ac60 4879 if (!sched_debug_enabled)
f6630114
MT
4880 return;
4881
4dcf6aff
IM
4882 if (!sd) {
4883 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4884 return;
4885 }
1da177e4 4886
4dcf6aff
IM
4887 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4888
4889 for (;;) {
4cb98839 4890 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4891 break;
1da177e4
LT
4892 level++;
4893 sd = sd->parent;
33859f7f 4894 if (!sd)
4dcf6aff
IM
4895 break;
4896 }
1da177e4 4897}
6d6bc0ad 4898#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4899# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4900static inline bool sched_debug(void)
4901{
4902 return false;
4903}
6d6bc0ad 4904#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4905
1a20ff27 4906static int sd_degenerate(struct sched_domain *sd)
245af2c7 4907{
758b2cdc 4908 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4909 return 1;
4910
4911 /* Following flags need at least 2 groups */
4912 if (sd->flags & (SD_LOAD_BALANCE |
4913 SD_BALANCE_NEWIDLE |
4914 SD_BALANCE_FORK |
89c4710e
SS
4915 SD_BALANCE_EXEC |
4916 SD_SHARE_CPUPOWER |
4917 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4918 if (sd->groups != sd->groups->next)
4919 return 0;
4920 }
4921
4922 /* Following flags don't use groups */
c88d5910 4923 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4924 return 0;
4925
4926 return 1;
4927}
4928
48f24c4d
IM
4929static int
4930sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4931{
4932 unsigned long cflags = sd->flags, pflags = parent->flags;
4933
4934 if (sd_degenerate(parent))
4935 return 1;
4936
758b2cdc 4937 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4938 return 0;
4939
245af2c7
SS
4940 /* Flags needing groups don't count if only 1 group in parent */
4941 if (parent->groups == parent->groups->next) {
4942 pflags &= ~(SD_LOAD_BALANCE |
4943 SD_BALANCE_NEWIDLE |
4944 SD_BALANCE_FORK |
89c4710e
SS
4945 SD_BALANCE_EXEC |
4946 SD_SHARE_CPUPOWER |
10866e62
PZ
4947 SD_SHARE_PKG_RESOURCES |
4948 SD_PREFER_SIBLING);
5436499e
KC
4949 if (nr_node_ids == 1)
4950 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4951 }
4952 if (~cflags & pflags)
4953 return 0;
4954
4955 return 1;
4956}
4957
dce840a0 4958static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4959{
dce840a0 4960 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4961
68e74568 4962 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4963 free_cpumask_var(rd->rto_mask);
4964 free_cpumask_var(rd->online);
4965 free_cpumask_var(rd->span);
4966 kfree(rd);
4967}
4968
57d885fe
GH
4969static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4970{
a0490fa3 4971 struct root_domain *old_rd = NULL;
57d885fe 4972 unsigned long flags;
57d885fe 4973
05fa785c 4974 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4975
4976 if (rq->rd) {
a0490fa3 4977 old_rd = rq->rd;
57d885fe 4978
c6c4927b 4979 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4980 set_rq_offline(rq);
57d885fe 4981
c6c4927b 4982 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4983
a0490fa3
IM
4984 /*
4985 * If we dont want to free the old_rt yet then
4986 * set old_rd to NULL to skip the freeing later
4987 * in this function:
4988 */
4989 if (!atomic_dec_and_test(&old_rd->refcount))
4990 old_rd = NULL;
57d885fe
GH
4991 }
4992
4993 atomic_inc(&rd->refcount);
4994 rq->rd = rd;
4995
c6c4927b 4996 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 4997 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 4998 set_rq_online(rq);
57d885fe 4999
05fa785c 5000 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5001
5002 if (old_rd)
dce840a0 5003 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5004}
5005
68c38fc3 5006static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5007{
5008 memset(rd, 0, sizeof(*rd));
5009
68c38fc3 5010 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5011 goto out;
68c38fc3 5012 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5013 goto free_span;
68c38fc3 5014 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5015 goto free_online;
6e0534f2 5016
68c38fc3 5017 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5018 goto free_rto_mask;
c6c4927b 5019 return 0;
6e0534f2 5020
68e74568
RR
5021free_rto_mask:
5022 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5023free_online:
5024 free_cpumask_var(rd->online);
5025free_span:
5026 free_cpumask_var(rd->span);
0c910d28 5027out:
c6c4927b 5028 return -ENOMEM;
57d885fe
GH
5029}
5030
029632fb
PZ
5031/*
5032 * By default the system creates a single root-domain with all cpus as
5033 * members (mimicking the global state we have today).
5034 */
5035struct root_domain def_root_domain;
5036
57d885fe
GH
5037static void init_defrootdomain(void)
5038{
68c38fc3 5039 init_rootdomain(&def_root_domain);
c6c4927b 5040
57d885fe
GH
5041 atomic_set(&def_root_domain.refcount, 1);
5042}
5043
dc938520 5044static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5045{
5046 struct root_domain *rd;
5047
5048 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5049 if (!rd)
5050 return NULL;
5051
68c38fc3 5052 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5053 kfree(rd);
5054 return NULL;
5055 }
57d885fe
GH
5056
5057 return rd;
5058}
5059
e3589f6c
PZ
5060static void free_sched_groups(struct sched_group *sg, int free_sgp)
5061{
5062 struct sched_group *tmp, *first;
5063
5064 if (!sg)
5065 return;
5066
5067 first = sg;
5068 do {
5069 tmp = sg->next;
5070
5071 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5072 kfree(sg->sgp);
5073
5074 kfree(sg);
5075 sg = tmp;
5076 } while (sg != first);
5077}
5078
dce840a0
PZ
5079static void free_sched_domain(struct rcu_head *rcu)
5080{
5081 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5082
5083 /*
5084 * If its an overlapping domain it has private groups, iterate and
5085 * nuke them all.
5086 */
5087 if (sd->flags & SD_OVERLAP) {
5088 free_sched_groups(sd->groups, 1);
5089 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5090 kfree(sd->groups->sgp);
dce840a0 5091 kfree(sd->groups);
9c3f75cb 5092 }
dce840a0
PZ
5093 kfree(sd);
5094}
5095
5096static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5097{
5098 call_rcu(&sd->rcu, free_sched_domain);
5099}
5100
5101static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5102{
5103 for (; sd; sd = sd->parent)
5104 destroy_sched_domain(sd, cpu);
5105}
5106
518cd623
PZ
5107/*
5108 * Keep a special pointer to the highest sched_domain that has
5109 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5110 * allows us to avoid some pointer chasing select_idle_sibling().
5111 *
5112 * Also keep a unique ID per domain (we use the first cpu number in
5113 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5114 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5115 */
5116DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5117DEFINE_PER_CPU(int, sd_llc_size);
518cd623
PZ
5118DEFINE_PER_CPU(int, sd_llc_id);
5119
5120static void update_top_cache_domain(int cpu)
5121{
5122 struct sched_domain *sd;
5123 int id = cpu;
7d9ffa89 5124 int size = 1;
518cd623
PZ
5125
5126 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5127 if (sd) {
518cd623 5128 id = cpumask_first(sched_domain_span(sd));
7d9ffa89
PZ
5129 size = cpumask_weight(sched_domain_span(sd));
5130 }
518cd623
PZ
5131
5132 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5133 per_cpu(sd_llc_size, cpu) = size;
518cd623
PZ
5134 per_cpu(sd_llc_id, cpu) = id;
5135}
5136
1da177e4 5137/*
0eab9146 5138 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5139 * hold the hotplug lock.
5140 */
0eab9146
IM
5141static void
5142cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5143{
70b97a7f 5144 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5145 struct sched_domain *tmp;
5146
5147 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5148 for (tmp = sd; tmp; ) {
245af2c7
SS
5149 struct sched_domain *parent = tmp->parent;
5150 if (!parent)
5151 break;
f29c9b1c 5152
1a848870 5153 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5154 tmp->parent = parent->parent;
1a848870
SS
5155 if (parent->parent)
5156 parent->parent->child = tmp;
10866e62
PZ
5157 /*
5158 * Transfer SD_PREFER_SIBLING down in case of a
5159 * degenerate parent; the spans match for this
5160 * so the property transfers.
5161 */
5162 if (parent->flags & SD_PREFER_SIBLING)
5163 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5164 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5165 } else
5166 tmp = tmp->parent;
245af2c7
SS
5167 }
5168
1a848870 5169 if (sd && sd_degenerate(sd)) {
dce840a0 5170 tmp = sd;
245af2c7 5171 sd = sd->parent;
dce840a0 5172 destroy_sched_domain(tmp, cpu);
1a848870
SS
5173 if (sd)
5174 sd->child = NULL;
5175 }
1da177e4 5176
4cb98839 5177 sched_domain_debug(sd, cpu);
1da177e4 5178
57d885fe 5179 rq_attach_root(rq, rd);
dce840a0 5180 tmp = rq->sd;
674311d5 5181 rcu_assign_pointer(rq->sd, sd);
dce840a0 5182 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5183
5184 update_top_cache_domain(cpu);
1da177e4
LT
5185}
5186
5187/* cpus with isolated domains */
dcc30a35 5188static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5189
5190/* Setup the mask of cpus configured for isolated domains */
5191static int __init isolated_cpu_setup(char *str)
5192{
bdddd296 5193 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5194 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5195 return 1;
5196}
5197
8927f494 5198__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5199
d3081f52
PZ
5200static const struct cpumask *cpu_cpu_mask(int cpu)
5201{
5202 return cpumask_of_node(cpu_to_node(cpu));
5203}
5204
dce840a0
PZ
5205struct sd_data {
5206 struct sched_domain **__percpu sd;
5207 struct sched_group **__percpu sg;
9c3f75cb 5208 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5209};
5210
49a02c51 5211struct s_data {
21d42ccf 5212 struct sched_domain ** __percpu sd;
49a02c51
AH
5213 struct root_domain *rd;
5214};
5215
2109b99e 5216enum s_alloc {
2109b99e 5217 sa_rootdomain,
21d42ccf 5218 sa_sd,
dce840a0 5219 sa_sd_storage,
2109b99e
AH
5220 sa_none,
5221};
5222
54ab4ff4
PZ
5223struct sched_domain_topology_level;
5224
5225typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5226typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5227
e3589f6c
PZ
5228#define SDTL_OVERLAP 0x01
5229
eb7a74e6 5230struct sched_domain_topology_level {
2c402dc3
PZ
5231 sched_domain_init_f init;
5232 sched_domain_mask_f mask;
e3589f6c 5233 int flags;
cb83b629 5234 int numa_level;
54ab4ff4 5235 struct sd_data data;
eb7a74e6
PZ
5236};
5237
c1174876
PZ
5238/*
5239 * Build an iteration mask that can exclude certain CPUs from the upwards
5240 * domain traversal.
5241 *
5242 * Asymmetric node setups can result in situations where the domain tree is of
5243 * unequal depth, make sure to skip domains that already cover the entire
5244 * range.
5245 *
5246 * In that case build_sched_domains() will have terminated the iteration early
5247 * and our sibling sd spans will be empty. Domains should always include the
5248 * cpu they're built on, so check that.
5249 *
5250 */
5251static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5252{
5253 const struct cpumask *span = sched_domain_span(sd);
5254 struct sd_data *sdd = sd->private;
5255 struct sched_domain *sibling;
5256 int i;
5257
5258 for_each_cpu(i, span) {
5259 sibling = *per_cpu_ptr(sdd->sd, i);
5260 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5261 continue;
5262
5263 cpumask_set_cpu(i, sched_group_mask(sg));
5264 }
5265}
5266
5267/*
5268 * Return the canonical balance cpu for this group, this is the first cpu
5269 * of this group that's also in the iteration mask.
5270 */
5271int group_balance_cpu(struct sched_group *sg)
5272{
5273 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5274}
5275
e3589f6c
PZ
5276static int
5277build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5278{
5279 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5280 const struct cpumask *span = sched_domain_span(sd);
5281 struct cpumask *covered = sched_domains_tmpmask;
5282 struct sd_data *sdd = sd->private;
5283 struct sched_domain *child;
5284 int i;
5285
5286 cpumask_clear(covered);
5287
5288 for_each_cpu(i, span) {
5289 struct cpumask *sg_span;
5290
5291 if (cpumask_test_cpu(i, covered))
5292 continue;
5293
c1174876
PZ
5294 child = *per_cpu_ptr(sdd->sd, i);
5295
5296 /* See the comment near build_group_mask(). */
5297 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5298 continue;
5299
e3589f6c 5300 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5301 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5302
5303 if (!sg)
5304 goto fail;
5305
5306 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5307 if (child->child) {
5308 child = child->child;
5309 cpumask_copy(sg_span, sched_domain_span(child));
5310 } else
5311 cpumask_set_cpu(i, sg_span);
5312
5313 cpumask_or(covered, covered, sg_span);
5314
74a5ce20 5315 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5316 if (atomic_inc_return(&sg->sgp->ref) == 1)
5317 build_group_mask(sd, sg);
5318
c3decf0d
PZ
5319 /*
5320 * Initialize sgp->power such that even if we mess up the
5321 * domains and no possible iteration will get us here, we won't
5322 * die on a /0 trap.
5323 */
5324 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5325
c1174876
PZ
5326 /*
5327 * Make sure the first group of this domain contains the
5328 * canonical balance cpu. Otherwise the sched_domain iteration
5329 * breaks. See update_sg_lb_stats().
5330 */
74a5ce20 5331 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5332 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5333 groups = sg;
5334
5335 if (!first)
5336 first = sg;
5337 if (last)
5338 last->next = sg;
5339 last = sg;
5340 last->next = first;
5341 }
5342 sd->groups = groups;
5343
5344 return 0;
5345
5346fail:
5347 free_sched_groups(first, 0);
5348
5349 return -ENOMEM;
5350}
5351
dce840a0 5352static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5353{
dce840a0
PZ
5354 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5355 struct sched_domain *child = sd->child;
1da177e4 5356
dce840a0
PZ
5357 if (child)
5358 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5359
9c3f75cb 5360 if (sg) {
dce840a0 5361 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5362 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5363 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5364 }
dce840a0
PZ
5365
5366 return cpu;
1e9f28fa 5367}
1e9f28fa 5368
01a08546 5369/*
dce840a0
PZ
5370 * build_sched_groups will build a circular linked list of the groups
5371 * covered by the given span, and will set each group's ->cpumask correctly,
5372 * and ->cpu_power to 0.
e3589f6c
PZ
5373 *
5374 * Assumes the sched_domain tree is fully constructed
01a08546 5375 */
e3589f6c
PZ
5376static int
5377build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5378{
dce840a0
PZ
5379 struct sched_group *first = NULL, *last = NULL;
5380 struct sd_data *sdd = sd->private;
5381 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5382 struct cpumask *covered;
dce840a0 5383 int i;
9c1cfda2 5384
e3589f6c
PZ
5385 get_group(cpu, sdd, &sd->groups);
5386 atomic_inc(&sd->groups->ref);
5387
0936629f 5388 if (cpu != cpumask_first(span))
e3589f6c
PZ
5389 return 0;
5390
f96225fd
PZ
5391 lockdep_assert_held(&sched_domains_mutex);
5392 covered = sched_domains_tmpmask;
5393
dce840a0 5394 cpumask_clear(covered);
6711cab4 5395
dce840a0
PZ
5396 for_each_cpu(i, span) {
5397 struct sched_group *sg;
cd08e923 5398 int group, j;
6711cab4 5399
dce840a0
PZ
5400 if (cpumask_test_cpu(i, covered))
5401 continue;
6711cab4 5402
cd08e923 5403 group = get_group(i, sdd, &sg);
dce840a0 5404 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5405 sg->sgp->power = 0;
c1174876 5406 cpumask_setall(sched_group_mask(sg));
0601a88d 5407
dce840a0
PZ
5408 for_each_cpu(j, span) {
5409 if (get_group(j, sdd, NULL) != group)
5410 continue;
0601a88d 5411
dce840a0
PZ
5412 cpumask_set_cpu(j, covered);
5413 cpumask_set_cpu(j, sched_group_cpus(sg));
5414 }
0601a88d 5415
dce840a0
PZ
5416 if (!first)
5417 first = sg;
5418 if (last)
5419 last->next = sg;
5420 last = sg;
5421 }
5422 last->next = first;
e3589f6c
PZ
5423
5424 return 0;
0601a88d 5425}
51888ca2 5426
89c4710e
SS
5427/*
5428 * Initialize sched groups cpu_power.
5429 *
5430 * cpu_power indicates the capacity of sched group, which is used while
5431 * distributing the load between different sched groups in a sched domain.
5432 * Typically cpu_power for all the groups in a sched domain will be same unless
5433 * there are asymmetries in the topology. If there are asymmetries, group
5434 * having more cpu_power will pickup more load compared to the group having
5435 * less cpu_power.
89c4710e
SS
5436 */
5437static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5438{
e3589f6c 5439 struct sched_group *sg = sd->groups;
89c4710e 5440
94c95ba6 5441 WARN_ON(!sg);
e3589f6c
PZ
5442
5443 do {
5444 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5445 sg = sg->next;
5446 } while (sg != sd->groups);
89c4710e 5447
c1174876 5448 if (cpu != group_balance_cpu(sg))
e3589f6c 5449 return;
aae6d3dd 5450
d274cb30 5451 update_group_power(sd, cpu);
69e1e811 5452 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5453}
5454
029632fb
PZ
5455int __weak arch_sd_sibling_asym_packing(void)
5456{
5457 return 0*SD_ASYM_PACKING;
89c4710e
SS
5458}
5459
7c16ec58
MT
5460/*
5461 * Initializers for schedule domains
5462 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5463 */
5464
a5d8c348
IM
5465#ifdef CONFIG_SCHED_DEBUG
5466# define SD_INIT_NAME(sd, type) sd->name = #type
5467#else
5468# define SD_INIT_NAME(sd, type) do { } while (0)
5469#endif
5470
54ab4ff4
PZ
5471#define SD_INIT_FUNC(type) \
5472static noinline struct sched_domain * \
5473sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5474{ \
5475 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5476 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5477 SD_INIT_NAME(sd, type); \
5478 sd->private = &tl->data; \
5479 return sd; \
7c16ec58
MT
5480}
5481
5482SD_INIT_FUNC(CPU)
7c16ec58
MT
5483#ifdef CONFIG_SCHED_SMT
5484 SD_INIT_FUNC(SIBLING)
5485#endif
5486#ifdef CONFIG_SCHED_MC
5487 SD_INIT_FUNC(MC)
5488#endif
01a08546
HC
5489#ifdef CONFIG_SCHED_BOOK
5490 SD_INIT_FUNC(BOOK)
5491#endif
7c16ec58 5492
1d3504fc 5493static int default_relax_domain_level = -1;
60495e77 5494int sched_domain_level_max;
1d3504fc
HS
5495
5496static int __init setup_relax_domain_level(char *str)
5497{
a841f8ce
DS
5498 if (kstrtoint(str, 0, &default_relax_domain_level))
5499 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5500
1d3504fc
HS
5501 return 1;
5502}
5503__setup("relax_domain_level=", setup_relax_domain_level);
5504
5505static void set_domain_attribute(struct sched_domain *sd,
5506 struct sched_domain_attr *attr)
5507{
5508 int request;
5509
5510 if (!attr || attr->relax_domain_level < 0) {
5511 if (default_relax_domain_level < 0)
5512 return;
5513 else
5514 request = default_relax_domain_level;
5515 } else
5516 request = attr->relax_domain_level;
5517 if (request < sd->level) {
5518 /* turn off idle balance on this domain */
c88d5910 5519 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5520 } else {
5521 /* turn on idle balance on this domain */
c88d5910 5522 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5523 }
5524}
5525
54ab4ff4
PZ
5526static void __sdt_free(const struct cpumask *cpu_map);
5527static int __sdt_alloc(const struct cpumask *cpu_map);
5528
2109b99e
AH
5529static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5530 const struct cpumask *cpu_map)
5531{
5532 switch (what) {
2109b99e 5533 case sa_rootdomain:
822ff793
PZ
5534 if (!atomic_read(&d->rd->refcount))
5535 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5536 case sa_sd:
5537 free_percpu(d->sd); /* fall through */
dce840a0 5538 case sa_sd_storage:
54ab4ff4 5539 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5540 case sa_none:
5541 break;
5542 }
5543}
3404c8d9 5544
2109b99e
AH
5545static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5546 const struct cpumask *cpu_map)
5547{
dce840a0
PZ
5548 memset(d, 0, sizeof(*d));
5549
54ab4ff4
PZ
5550 if (__sdt_alloc(cpu_map))
5551 return sa_sd_storage;
dce840a0
PZ
5552 d->sd = alloc_percpu(struct sched_domain *);
5553 if (!d->sd)
5554 return sa_sd_storage;
2109b99e 5555 d->rd = alloc_rootdomain();
dce840a0 5556 if (!d->rd)
21d42ccf 5557 return sa_sd;
2109b99e
AH
5558 return sa_rootdomain;
5559}
57d885fe 5560
dce840a0
PZ
5561/*
5562 * NULL the sd_data elements we've used to build the sched_domain and
5563 * sched_group structure so that the subsequent __free_domain_allocs()
5564 * will not free the data we're using.
5565 */
5566static void claim_allocations(int cpu, struct sched_domain *sd)
5567{
5568 struct sd_data *sdd = sd->private;
dce840a0
PZ
5569
5570 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5571 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5572
e3589f6c 5573 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5574 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5575
5576 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5577 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5578}
5579
2c402dc3
PZ
5580#ifdef CONFIG_SCHED_SMT
5581static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5582{
2c402dc3 5583 return topology_thread_cpumask(cpu);
3bd65a80 5584}
2c402dc3 5585#endif
7f4588f3 5586
d069b916
PZ
5587/*
5588 * Topology list, bottom-up.
5589 */
2c402dc3 5590static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5591#ifdef CONFIG_SCHED_SMT
5592 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5593#endif
1e9f28fa 5594#ifdef CONFIG_SCHED_MC
2c402dc3 5595 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5596#endif
d069b916
PZ
5597#ifdef CONFIG_SCHED_BOOK
5598 { sd_init_BOOK, cpu_book_mask, },
5599#endif
5600 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5601 { NULL, },
5602};
5603
5604static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5605
27723a68
VK
5606#define for_each_sd_topology(tl) \
5607 for (tl = sched_domain_topology; tl->init; tl++)
5608
cb83b629
PZ
5609#ifdef CONFIG_NUMA
5610
5611static int sched_domains_numa_levels;
cb83b629
PZ
5612static int *sched_domains_numa_distance;
5613static struct cpumask ***sched_domains_numa_masks;
5614static int sched_domains_curr_level;
5615
cb83b629
PZ
5616static inline int sd_local_flags(int level)
5617{
10717dcd 5618 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5619 return 0;
5620
5621 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5622}
5623
5624static struct sched_domain *
5625sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5626{
5627 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5628 int level = tl->numa_level;
5629 int sd_weight = cpumask_weight(
5630 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5631
5632 *sd = (struct sched_domain){
5633 .min_interval = sd_weight,
5634 .max_interval = 2*sd_weight,
5635 .busy_factor = 32,
870a0bb5 5636 .imbalance_pct = 125,
cb83b629
PZ
5637 .cache_nice_tries = 2,
5638 .busy_idx = 3,
5639 .idle_idx = 2,
5640 .newidle_idx = 0,
5641 .wake_idx = 0,
5642 .forkexec_idx = 0,
5643
5644 .flags = 1*SD_LOAD_BALANCE
5645 | 1*SD_BALANCE_NEWIDLE
5646 | 0*SD_BALANCE_EXEC
5647 | 0*SD_BALANCE_FORK
5648 | 0*SD_BALANCE_WAKE
5649 | 0*SD_WAKE_AFFINE
cb83b629 5650 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5651 | 0*SD_SHARE_PKG_RESOURCES
5652 | 1*SD_SERIALIZE
5653 | 0*SD_PREFER_SIBLING
5654 | sd_local_flags(level)
5655 ,
5656 .last_balance = jiffies,
5657 .balance_interval = sd_weight,
5658 };
5659 SD_INIT_NAME(sd, NUMA);
5660 sd->private = &tl->data;
5661
5662 /*
5663 * Ugly hack to pass state to sd_numa_mask()...
5664 */
5665 sched_domains_curr_level = tl->numa_level;
5666
5667 return sd;
5668}
5669
5670static const struct cpumask *sd_numa_mask(int cpu)
5671{
5672 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5673}
5674
d039ac60
PZ
5675static void sched_numa_warn(const char *str)
5676{
5677 static int done = false;
5678 int i,j;
5679
5680 if (done)
5681 return;
5682
5683 done = true;
5684
5685 printk(KERN_WARNING "ERROR: %s\n\n", str);
5686
5687 for (i = 0; i < nr_node_ids; i++) {
5688 printk(KERN_WARNING " ");
5689 for (j = 0; j < nr_node_ids; j++)
5690 printk(KERN_CONT "%02d ", node_distance(i,j));
5691 printk(KERN_CONT "\n");
5692 }
5693 printk(KERN_WARNING "\n");
5694}
5695
5696static bool find_numa_distance(int distance)
5697{
5698 int i;
5699
5700 if (distance == node_distance(0, 0))
5701 return true;
5702
5703 for (i = 0; i < sched_domains_numa_levels; i++) {
5704 if (sched_domains_numa_distance[i] == distance)
5705 return true;
5706 }
5707
5708 return false;
5709}
5710
cb83b629
PZ
5711static void sched_init_numa(void)
5712{
5713 int next_distance, curr_distance = node_distance(0, 0);
5714 struct sched_domain_topology_level *tl;
5715 int level = 0;
5716 int i, j, k;
5717
cb83b629
PZ
5718 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5719 if (!sched_domains_numa_distance)
5720 return;
5721
5722 /*
5723 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5724 * unique distances in the node_distance() table.
5725 *
5726 * Assumes node_distance(0,j) includes all distances in
5727 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5728 */
5729 next_distance = curr_distance;
5730 for (i = 0; i < nr_node_ids; i++) {
5731 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5732 for (k = 0; k < nr_node_ids; k++) {
5733 int distance = node_distance(i, k);
5734
5735 if (distance > curr_distance &&
5736 (distance < next_distance ||
5737 next_distance == curr_distance))
5738 next_distance = distance;
5739
5740 /*
5741 * While not a strong assumption it would be nice to know
5742 * about cases where if node A is connected to B, B is not
5743 * equally connected to A.
5744 */
5745 if (sched_debug() && node_distance(k, i) != distance)
5746 sched_numa_warn("Node-distance not symmetric");
5747
5748 if (sched_debug() && i && !find_numa_distance(distance))
5749 sched_numa_warn("Node-0 not representative");
5750 }
5751 if (next_distance != curr_distance) {
5752 sched_domains_numa_distance[level++] = next_distance;
5753 sched_domains_numa_levels = level;
5754 curr_distance = next_distance;
5755 } else break;
cb83b629 5756 }
d039ac60
PZ
5757
5758 /*
5759 * In case of sched_debug() we verify the above assumption.
5760 */
5761 if (!sched_debug())
5762 break;
cb83b629
PZ
5763 }
5764 /*
5765 * 'level' contains the number of unique distances, excluding the
5766 * identity distance node_distance(i,i).
5767 *
28b4a521 5768 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5769 * numbers.
5770 */
5771
5f7865f3
TC
5772 /*
5773 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5774 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5775 * the array will contain less then 'level' members. This could be
5776 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5777 * in other functions.
5778 *
5779 * We reset it to 'level' at the end of this function.
5780 */
5781 sched_domains_numa_levels = 0;
5782
cb83b629
PZ
5783 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5784 if (!sched_domains_numa_masks)
5785 return;
5786
5787 /*
5788 * Now for each level, construct a mask per node which contains all
5789 * cpus of nodes that are that many hops away from us.
5790 */
5791 for (i = 0; i < level; i++) {
5792 sched_domains_numa_masks[i] =
5793 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5794 if (!sched_domains_numa_masks[i])
5795 return;
5796
5797 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5798 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5799 if (!mask)
5800 return;
5801
5802 sched_domains_numa_masks[i][j] = mask;
5803
5804 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5805 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5806 continue;
5807
5808 cpumask_or(mask, mask, cpumask_of_node(k));
5809 }
5810 }
5811 }
5812
5813 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5814 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5815 if (!tl)
5816 return;
5817
5818 /*
5819 * Copy the default topology bits..
5820 */
5821 for (i = 0; default_topology[i].init; i++)
5822 tl[i] = default_topology[i];
5823
5824 /*
5825 * .. and append 'j' levels of NUMA goodness.
5826 */
5827 for (j = 0; j < level; i++, j++) {
5828 tl[i] = (struct sched_domain_topology_level){
5829 .init = sd_numa_init,
5830 .mask = sd_numa_mask,
5831 .flags = SDTL_OVERLAP,
5832 .numa_level = j,
5833 };
5834 }
5835
5836 sched_domain_topology = tl;
5f7865f3
TC
5837
5838 sched_domains_numa_levels = level;
cb83b629 5839}
301a5cba
TC
5840
5841static void sched_domains_numa_masks_set(int cpu)
5842{
5843 int i, j;
5844 int node = cpu_to_node(cpu);
5845
5846 for (i = 0; i < sched_domains_numa_levels; i++) {
5847 for (j = 0; j < nr_node_ids; j++) {
5848 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5849 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5850 }
5851 }
5852}
5853
5854static void sched_domains_numa_masks_clear(int cpu)
5855{
5856 int i, j;
5857 for (i = 0; i < sched_domains_numa_levels; i++) {
5858 for (j = 0; j < nr_node_ids; j++)
5859 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5860 }
5861}
5862
5863/*
5864 * Update sched_domains_numa_masks[level][node] array when new cpus
5865 * are onlined.
5866 */
5867static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5868 unsigned long action,
5869 void *hcpu)
5870{
5871 int cpu = (long)hcpu;
5872
5873 switch (action & ~CPU_TASKS_FROZEN) {
5874 case CPU_ONLINE:
5875 sched_domains_numa_masks_set(cpu);
5876 break;
5877
5878 case CPU_DEAD:
5879 sched_domains_numa_masks_clear(cpu);
5880 break;
5881
5882 default:
5883 return NOTIFY_DONE;
5884 }
5885
5886 return NOTIFY_OK;
cb83b629
PZ
5887}
5888#else
5889static inline void sched_init_numa(void)
5890{
5891}
301a5cba
TC
5892
5893static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5894 unsigned long action,
5895 void *hcpu)
5896{
5897 return 0;
5898}
cb83b629
PZ
5899#endif /* CONFIG_NUMA */
5900
54ab4ff4
PZ
5901static int __sdt_alloc(const struct cpumask *cpu_map)
5902{
5903 struct sched_domain_topology_level *tl;
5904 int j;
5905
27723a68 5906 for_each_sd_topology(tl) {
54ab4ff4
PZ
5907 struct sd_data *sdd = &tl->data;
5908
5909 sdd->sd = alloc_percpu(struct sched_domain *);
5910 if (!sdd->sd)
5911 return -ENOMEM;
5912
5913 sdd->sg = alloc_percpu(struct sched_group *);
5914 if (!sdd->sg)
5915 return -ENOMEM;
5916
9c3f75cb
PZ
5917 sdd->sgp = alloc_percpu(struct sched_group_power *);
5918 if (!sdd->sgp)
5919 return -ENOMEM;
5920
54ab4ff4
PZ
5921 for_each_cpu(j, cpu_map) {
5922 struct sched_domain *sd;
5923 struct sched_group *sg;
9c3f75cb 5924 struct sched_group_power *sgp;
54ab4ff4
PZ
5925
5926 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5927 GFP_KERNEL, cpu_to_node(j));
5928 if (!sd)
5929 return -ENOMEM;
5930
5931 *per_cpu_ptr(sdd->sd, j) = sd;
5932
5933 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5934 GFP_KERNEL, cpu_to_node(j));
5935 if (!sg)
5936 return -ENOMEM;
5937
30b4e9eb
IM
5938 sg->next = sg;
5939
54ab4ff4 5940 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5941
c1174876 5942 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5943 GFP_KERNEL, cpu_to_node(j));
5944 if (!sgp)
5945 return -ENOMEM;
5946
5947 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5948 }
5949 }
5950
5951 return 0;
5952}
5953
5954static void __sdt_free(const struct cpumask *cpu_map)
5955{
5956 struct sched_domain_topology_level *tl;
5957 int j;
5958
27723a68 5959 for_each_sd_topology(tl) {
54ab4ff4
PZ
5960 struct sd_data *sdd = &tl->data;
5961
5962 for_each_cpu(j, cpu_map) {
fb2cf2c6 5963 struct sched_domain *sd;
5964
5965 if (sdd->sd) {
5966 sd = *per_cpu_ptr(sdd->sd, j);
5967 if (sd && (sd->flags & SD_OVERLAP))
5968 free_sched_groups(sd->groups, 0);
5969 kfree(*per_cpu_ptr(sdd->sd, j));
5970 }
5971
5972 if (sdd->sg)
5973 kfree(*per_cpu_ptr(sdd->sg, j));
5974 if (sdd->sgp)
5975 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5976 }
5977 free_percpu(sdd->sd);
fb2cf2c6 5978 sdd->sd = NULL;
54ab4ff4 5979 free_percpu(sdd->sg);
fb2cf2c6 5980 sdd->sg = NULL;
9c3f75cb 5981 free_percpu(sdd->sgp);
fb2cf2c6 5982 sdd->sgp = NULL;
54ab4ff4
PZ
5983 }
5984}
5985
2c402dc3 5986struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
5987 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5988 struct sched_domain *child, int cpu)
2c402dc3 5989{
54ab4ff4 5990 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 5991 if (!sd)
d069b916 5992 return child;
2c402dc3 5993
2c402dc3 5994 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
5995 if (child) {
5996 sd->level = child->level + 1;
5997 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 5998 child->parent = sd;
c75e0128 5999 sd->child = child;
60495e77 6000 }
a841f8ce 6001 set_domain_attribute(sd, attr);
2c402dc3
PZ
6002
6003 return sd;
6004}
6005
2109b99e
AH
6006/*
6007 * Build sched domains for a given set of cpus and attach the sched domains
6008 * to the individual cpus
6009 */
dce840a0
PZ
6010static int build_sched_domains(const struct cpumask *cpu_map,
6011 struct sched_domain_attr *attr)
2109b99e 6012{
1c632169 6013 enum s_alloc alloc_state;
dce840a0 6014 struct sched_domain *sd;
2109b99e 6015 struct s_data d;
822ff793 6016 int i, ret = -ENOMEM;
9c1cfda2 6017
2109b99e
AH
6018 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6019 if (alloc_state != sa_rootdomain)
6020 goto error;
9c1cfda2 6021
dce840a0 6022 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6023 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6024 struct sched_domain_topology_level *tl;
6025
3bd65a80 6026 sd = NULL;
27723a68 6027 for_each_sd_topology(tl) {
4a850cbe 6028 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6029 if (tl == sched_domain_topology)
6030 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6031 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6032 sd->flags |= SD_OVERLAP;
d110235d
PZ
6033 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6034 break;
e3589f6c 6035 }
dce840a0
PZ
6036 }
6037
6038 /* Build the groups for the domains */
6039 for_each_cpu(i, cpu_map) {
6040 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6041 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6042 if (sd->flags & SD_OVERLAP) {
6043 if (build_overlap_sched_groups(sd, i))
6044 goto error;
6045 } else {
6046 if (build_sched_groups(sd, i))
6047 goto error;
6048 }
1cf51902 6049 }
a06dadbe 6050 }
9c1cfda2 6051
1da177e4 6052 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6053 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6054 if (!cpumask_test_cpu(i, cpu_map))
6055 continue;
9c1cfda2 6056
dce840a0
PZ
6057 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6058 claim_allocations(i, sd);
cd4ea6ae 6059 init_sched_groups_power(i, sd);
dce840a0 6060 }
f712c0c7 6061 }
9c1cfda2 6062
1da177e4 6063 /* Attach the domains */
dce840a0 6064 rcu_read_lock();
abcd083a 6065 for_each_cpu(i, cpu_map) {
21d42ccf 6066 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6067 cpu_attach_domain(sd, d.rd, i);
1da177e4 6068 }
dce840a0 6069 rcu_read_unlock();
51888ca2 6070
822ff793 6071 ret = 0;
51888ca2 6072error:
2109b99e 6073 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6074 return ret;
1da177e4 6075}
029190c5 6076
acc3f5d7 6077static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6078static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6079static struct sched_domain_attr *dattr_cur;
6080 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6081
6082/*
6083 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6084 * cpumask) fails, then fallback to a single sched domain,
6085 * as determined by the single cpumask fallback_doms.
029190c5 6086 */
4212823f 6087static cpumask_var_t fallback_doms;
029190c5 6088
ee79d1bd
HC
6089/*
6090 * arch_update_cpu_topology lets virtualized architectures update the
6091 * cpu core maps. It is supposed to return 1 if the topology changed
6092 * or 0 if it stayed the same.
6093 */
6094int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6095{
ee79d1bd 6096 return 0;
22e52b07
HC
6097}
6098
acc3f5d7
RR
6099cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6100{
6101 int i;
6102 cpumask_var_t *doms;
6103
6104 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6105 if (!doms)
6106 return NULL;
6107 for (i = 0; i < ndoms; i++) {
6108 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6109 free_sched_domains(doms, i);
6110 return NULL;
6111 }
6112 }
6113 return doms;
6114}
6115
6116void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6117{
6118 unsigned int i;
6119 for (i = 0; i < ndoms; i++)
6120 free_cpumask_var(doms[i]);
6121 kfree(doms);
6122}
6123
1a20ff27 6124/*
41a2d6cf 6125 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6126 * For now this just excludes isolated cpus, but could be used to
6127 * exclude other special cases in the future.
1a20ff27 6128 */
c4a8849a 6129static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6130{
7378547f
MM
6131 int err;
6132
22e52b07 6133 arch_update_cpu_topology();
029190c5 6134 ndoms_cur = 1;
acc3f5d7 6135 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6136 if (!doms_cur)
acc3f5d7
RR
6137 doms_cur = &fallback_doms;
6138 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6139 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6140 register_sched_domain_sysctl();
7378547f
MM
6141
6142 return err;
1a20ff27
DG
6143}
6144
1a20ff27
DG
6145/*
6146 * Detach sched domains from a group of cpus specified in cpu_map
6147 * These cpus will now be attached to the NULL domain
6148 */
96f874e2 6149static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6150{
6151 int i;
6152
dce840a0 6153 rcu_read_lock();
abcd083a 6154 for_each_cpu(i, cpu_map)
57d885fe 6155 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6156 rcu_read_unlock();
1a20ff27
DG
6157}
6158
1d3504fc
HS
6159/* handle null as "default" */
6160static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6161 struct sched_domain_attr *new, int idx_new)
6162{
6163 struct sched_domain_attr tmp;
6164
6165 /* fast path */
6166 if (!new && !cur)
6167 return 1;
6168
6169 tmp = SD_ATTR_INIT;
6170 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6171 new ? (new + idx_new) : &tmp,
6172 sizeof(struct sched_domain_attr));
6173}
6174
029190c5
PJ
6175/*
6176 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6177 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6178 * doms_new[] to the current sched domain partitioning, doms_cur[].
6179 * It destroys each deleted domain and builds each new domain.
6180 *
acc3f5d7 6181 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6182 * The masks don't intersect (don't overlap.) We should setup one
6183 * sched domain for each mask. CPUs not in any of the cpumasks will
6184 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6185 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6186 * it as it is.
6187 *
acc3f5d7
RR
6188 * The passed in 'doms_new' should be allocated using
6189 * alloc_sched_domains. This routine takes ownership of it and will
6190 * free_sched_domains it when done with it. If the caller failed the
6191 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6192 * and partition_sched_domains() will fallback to the single partition
6193 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6194 *
96f874e2 6195 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6196 * ndoms_new == 0 is a special case for destroying existing domains,
6197 * and it will not create the default domain.
dfb512ec 6198 *
029190c5
PJ
6199 * Call with hotplug lock held
6200 */
acc3f5d7 6201void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6202 struct sched_domain_attr *dattr_new)
029190c5 6203{
dfb512ec 6204 int i, j, n;
d65bd5ec 6205 int new_topology;
029190c5 6206
712555ee 6207 mutex_lock(&sched_domains_mutex);
a1835615 6208
7378547f
MM
6209 /* always unregister in case we don't destroy any domains */
6210 unregister_sched_domain_sysctl();
6211
d65bd5ec
HC
6212 /* Let architecture update cpu core mappings. */
6213 new_topology = arch_update_cpu_topology();
6214
dfb512ec 6215 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6216
6217 /* Destroy deleted domains */
6218 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6219 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6220 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6221 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6222 goto match1;
6223 }
6224 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6225 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6226match1:
6227 ;
6228 }
6229
c8d2d47a 6230 n = ndoms_cur;
e761b772 6231 if (doms_new == NULL) {
c8d2d47a 6232 n = 0;
acc3f5d7 6233 doms_new = &fallback_doms;
6ad4c188 6234 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6235 WARN_ON_ONCE(dattr_new);
e761b772
MK
6236 }
6237
029190c5
PJ
6238 /* Build new domains */
6239 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6240 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6241 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6242 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6243 goto match2;
6244 }
6245 /* no match - add a new doms_new */
dce840a0 6246 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6247match2:
6248 ;
6249 }
6250
6251 /* Remember the new sched domains */
acc3f5d7
RR
6252 if (doms_cur != &fallback_doms)
6253 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6254 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6255 doms_cur = doms_new;
1d3504fc 6256 dattr_cur = dattr_new;
029190c5 6257 ndoms_cur = ndoms_new;
7378547f
MM
6258
6259 register_sched_domain_sysctl();
a1835615 6260
712555ee 6261 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6262}
6263
d35be8ba
SB
6264static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6265
1da177e4 6266/*
3a101d05
TH
6267 * Update cpusets according to cpu_active mask. If cpusets are
6268 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6269 * around partition_sched_domains().
d35be8ba
SB
6270 *
6271 * If we come here as part of a suspend/resume, don't touch cpusets because we
6272 * want to restore it back to its original state upon resume anyway.
1da177e4 6273 */
0b2e918a
TH
6274static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6275 void *hcpu)
e761b772 6276{
d35be8ba
SB
6277 switch (action) {
6278 case CPU_ONLINE_FROZEN:
6279 case CPU_DOWN_FAILED_FROZEN:
6280
6281 /*
6282 * num_cpus_frozen tracks how many CPUs are involved in suspend
6283 * resume sequence. As long as this is not the last online
6284 * operation in the resume sequence, just build a single sched
6285 * domain, ignoring cpusets.
6286 */
6287 num_cpus_frozen--;
6288 if (likely(num_cpus_frozen)) {
6289 partition_sched_domains(1, NULL, NULL);
6290 break;
6291 }
6292
6293 /*
6294 * This is the last CPU online operation. So fall through and
6295 * restore the original sched domains by considering the
6296 * cpuset configurations.
6297 */
6298
e761b772 6299 case CPU_ONLINE:
6ad4c188 6300 case CPU_DOWN_FAILED:
7ddf96b0 6301 cpuset_update_active_cpus(true);
d35be8ba 6302 break;
3a101d05
TH
6303 default:
6304 return NOTIFY_DONE;
6305 }
d35be8ba 6306 return NOTIFY_OK;
3a101d05 6307}
e761b772 6308
0b2e918a
TH
6309static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6310 void *hcpu)
3a101d05 6311{
d35be8ba 6312 switch (action) {
3a101d05 6313 case CPU_DOWN_PREPARE:
7ddf96b0 6314 cpuset_update_active_cpus(false);
d35be8ba
SB
6315 break;
6316 case CPU_DOWN_PREPARE_FROZEN:
6317 num_cpus_frozen++;
6318 partition_sched_domains(1, NULL, NULL);
6319 break;
e761b772
MK
6320 default:
6321 return NOTIFY_DONE;
6322 }
d35be8ba 6323 return NOTIFY_OK;
e761b772 6324}
e761b772 6325
1da177e4
LT
6326void __init sched_init_smp(void)
6327{
dcc30a35
RR
6328 cpumask_var_t non_isolated_cpus;
6329
6330 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6331 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6332
cb83b629
PZ
6333 sched_init_numa();
6334
95402b38 6335 get_online_cpus();
712555ee 6336 mutex_lock(&sched_domains_mutex);
c4a8849a 6337 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6338 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6339 if (cpumask_empty(non_isolated_cpus))
6340 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6341 mutex_unlock(&sched_domains_mutex);
95402b38 6342 put_online_cpus();
e761b772 6343
301a5cba 6344 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6345 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6346 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6347
b328ca18 6348 init_hrtick();
5c1e1767
NP
6349
6350 /* Move init over to a non-isolated CPU */
dcc30a35 6351 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6352 BUG();
19978ca6 6353 sched_init_granularity();
dcc30a35 6354 free_cpumask_var(non_isolated_cpus);
4212823f 6355
0e3900e6 6356 init_sched_rt_class();
1da177e4
LT
6357}
6358#else
6359void __init sched_init_smp(void)
6360{
19978ca6 6361 sched_init_granularity();
1da177e4
LT
6362}
6363#endif /* CONFIG_SMP */
6364
cd1bb94b
AB
6365const_debug unsigned int sysctl_timer_migration = 1;
6366
1da177e4
LT
6367int in_sched_functions(unsigned long addr)
6368{
1da177e4
LT
6369 return in_lock_functions(addr) ||
6370 (addr >= (unsigned long)__sched_text_start
6371 && addr < (unsigned long)__sched_text_end);
6372}
6373
029632fb 6374#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6375/*
6376 * Default task group.
6377 * Every task in system belongs to this group at bootup.
6378 */
029632fb 6379struct task_group root_task_group;
35cf4e50 6380LIST_HEAD(task_groups);
052f1dc7 6381#endif
6f505b16 6382
e6252c3e 6383DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6384
1da177e4
LT
6385void __init sched_init(void)
6386{
dd41f596 6387 int i, j;
434d53b0
MT
6388 unsigned long alloc_size = 0, ptr;
6389
6390#ifdef CONFIG_FAIR_GROUP_SCHED
6391 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6392#endif
6393#ifdef CONFIG_RT_GROUP_SCHED
6394 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6395#endif
df7c8e84 6396#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6397 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6398#endif
434d53b0 6399 if (alloc_size) {
36b7b6d4 6400 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6401
6402#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6403 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6404 ptr += nr_cpu_ids * sizeof(void **);
6405
07e06b01 6406 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6407 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6408
6d6bc0ad 6409#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6410#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6411 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6412 ptr += nr_cpu_ids * sizeof(void **);
6413
07e06b01 6414 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6415 ptr += nr_cpu_ids * sizeof(void **);
6416
6d6bc0ad 6417#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6418#ifdef CONFIG_CPUMASK_OFFSTACK
6419 for_each_possible_cpu(i) {
e6252c3e 6420 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6421 ptr += cpumask_size();
6422 }
6423#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6424 }
dd41f596 6425
57d885fe
GH
6426#ifdef CONFIG_SMP
6427 init_defrootdomain();
6428#endif
6429
d0b27fa7
PZ
6430 init_rt_bandwidth(&def_rt_bandwidth,
6431 global_rt_period(), global_rt_runtime());
6432
6433#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6434 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6435 global_rt_period(), global_rt_runtime());
6d6bc0ad 6436#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6437
7c941438 6438#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6439 list_add(&root_task_group.list, &task_groups);
6440 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6441 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6442 autogroup_init(&init_task);
54c707e9 6443
7c941438 6444#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6445
0a945022 6446 for_each_possible_cpu(i) {
70b97a7f 6447 struct rq *rq;
1da177e4
LT
6448
6449 rq = cpu_rq(i);
05fa785c 6450 raw_spin_lock_init(&rq->lock);
7897986b 6451 rq->nr_running = 0;
dce48a84
TG
6452 rq->calc_load_active = 0;
6453 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6454 init_cfs_rq(&rq->cfs);
6f505b16 6455 init_rt_rq(&rq->rt, rq);
dd41f596 6456#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6457 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6458 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6459 /*
07e06b01 6460 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6461 *
6462 * In case of task-groups formed thr' the cgroup filesystem, it
6463 * gets 100% of the cpu resources in the system. This overall
6464 * system cpu resource is divided among the tasks of
07e06b01 6465 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6466 * based on each entity's (task or task-group's) weight
6467 * (se->load.weight).
6468 *
07e06b01 6469 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6470 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6471 * then A0's share of the cpu resource is:
6472 *
0d905bca 6473 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6474 *
07e06b01
YZ
6475 * We achieve this by letting root_task_group's tasks sit
6476 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6477 */
ab84d31e 6478 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6479 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6480#endif /* CONFIG_FAIR_GROUP_SCHED */
6481
6482 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6483#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6484 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6485 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6486#endif
1da177e4 6487
dd41f596
IM
6488 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6489 rq->cpu_load[j] = 0;
fdf3e95d
VP
6490
6491 rq->last_load_update_tick = jiffies;
6492
1da177e4 6493#ifdef CONFIG_SMP
41c7ce9a 6494 rq->sd = NULL;
57d885fe 6495 rq->rd = NULL;
1399fa78 6496 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6497 rq->post_schedule = 0;
1da177e4 6498 rq->active_balance = 0;
dd41f596 6499 rq->next_balance = jiffies;
1da177e4 6500 rq->push_cpu = 0;
0a2966b4 6501 rq->cpu = i;
1f11eb6a 6502 rq->online = 0;
eae0c9df
MG
6503 rq->idle_stamp = 0;
6504 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6505 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6506
6507 INIT_LIST_HEAD(&rq->cfs_tasks);
6508
dc938520 6509 rq_attach_root(rq, &def_root_domain);
3451d024 6510#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6511 rq->nohz_flags = 0;
83cd4fe2 6512#endif
265f22a9
FW
6513#ifdef CONFIG_NO_HZ_FULL
6514 rq->last_sched_tick = 0;
6515#endif
1da177e4 6516#endif
8f4d37ec 6517 init_rq_hrtick(rq);
1da177e4 6518 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6519 }
6520
2dd73a4f 6521 set_load_weight(&init_task);
b50f60ce 6522
e107be36
AK
6523#ifdef CONFIG_PREEMPT_NOTIFIERS
6524 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6525#endif
6526
b50f60ce 6527#ifdef CONFIG_RT_MUTEXES
732375c6 6528 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6529#endif
6530
1da177e4
LT
6531 /*
6532 * The boot idle thread does lazy MMU switching as well:
6533 */
6534 atomic_inc(&init_mm.mm_count);
6535 enter_lazy_tlb(&init_mm, current);
6536
6537 /*
6538 * Make us the idle thread. Technically, schedule() should not be
6539 * called from this thread, however somewhere below it might be,
6540 * but because we are the idle thread, we just pick up running again
6541 * when this runqueue becomes "idle".
6542 */
6543 init_idle(current, smp_processor_id());
dce48a84
TG
6544
6545 calc_load_update = jiffies + LOAD_FREQ;
6546
dd41f596
IM
6547 /*
6548 * During early bootup we pretend to be a normal task:
6549 */
6550 current->sched_class = &fair_sched_class;
6892b75e 6551
bf4d83f6 6552#ifdef CONFIG_SMP
4cb98839 6553 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6554 /* May be allocated at isolcpus cmdline parse time */
6555 if (cpu_isolated_map == NULL)
6556 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6557 idle_thread_set_boot_cpu();
029632fb
PZ
6558#endif
6559 init_sched_fair_class();
6a7b3dc3 6560
6892b75e 6561 scheduler_running = 1;
1da177e4
LT
6562}
6563
d902db1e 6564#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6565static inline int preempt_count_equals(int preempt_offset)
6566{
234da7bc 6567 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6568
4ba8216c 6569 return (nested == preempt_offset);
e4aafea2
FW
6570}
6571
d894837f 6572void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6573{
1da177e4
LT
6574 static unsigned long prev_jiffy; /* ratelimiting */
6575
b3fbab05 6576 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6577 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6578 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6579 return;
6580 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6581 return;
6582 prev_jiffy = jiffies;
6583
3df0fc5b
PZ
6584 printk(KERN_ERR
6585 "BUG: sleeping function called from invalid context at %s:%d\n",
6586 file, line);
6587 printk(KERN_ERR
6588 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6589 in_atomic(), irqs_disabled(),
6590 current->pid, current->comm);
aef745fc
IM
6591
6592 debug_show_held_locks(current);
6593 if (irqs_disabled())
6594 print_irqtrace_events(current);
6595 dump_stack();
1da177e4
LT
6596}
6597EXPORT_SYMBOL(__might_sleep);
6598#endif
6599
6600#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6601static void normalize_task(struct rq *rq, struct task_struct *p)
6602{
da7a735e
PZ
6603 const struct sched_class *prev_class = p->sched_class;
6604 int old_prio = p->prio;
3a5e4dc1 6605 int on_rq;
3e51f33f 6606
fd2f4419 6607 on_rq = p->on_rq;
3a5e4dc1 6608 if (on_rq)
4ca9b72b 6609 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6610 __setscheduler(rq, p, SCHED_NORMAL, 0);
6611 if (on_rq) {
4ca9b72b 6612 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6613 resched_task(rq->curr);
6614 }
da7a735e
PZ
6615
6616 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6617}
6618
1da177e4
LT
6619void normalize_rt_tasks(void)
6620{
a0f98a1c 6621 struct task_struct *g, *p;
1da177e4 6622 unsigned long flags;
70b97a7f 6623 struct rq *rq;
1da177e4 6624
4cf5d77a 6625 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6626 do_each_thread(g, p) {
178be793
IM
6627 /*
6628 * Only normalize user tasks:
6629 */
6630 if (!p->mm)
6631 continue;
6632
6cfb0d5d 6633 p->se.exec_start = 0;
6cfb0d5d 6634#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6635 p->se.statistics.wait_start = 0;
6636 p->se.statistics.sleep_start = 0;
6637 p->se.statistics.block_start = 0;
6cfb0d5d 6638#endif
dd41f596
IM
6639
6640 if (!rt_task(p)) {
6641 /*
6642 * Renice negative nice level userspace
6643 * tasks back to 0:
6644 */
6645 if (TASK_NICE(p) < 0 && p->mm)
6646 set_user_nice(p, 0);
1da177e4 6647 continue;
dd41f596 6648 }
1da177e4 6649
1d615482 6650 raw_spin_lock(&p->pi_lock);
b29739f9 6651 rq = __task_rq_lock(p);
1da177e4 6652
178be793 6653 normalize_task(rq, p);
3a5e4dc1 6654
b29739f9 6655 __task_rq_unlock(rq);
1d615482 6656 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6657 } while_each_thread(g, p);
6658
4cf5d77a 6659 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6660}
6661
6662#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6663
67fc4e0c 6664#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6665/*
67fc4e0c 6666 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6667 *
6668 * They can only be called when the whole system has been
6669 * stopped - every CPU needs to be quiescent, and no scheduling
6670 * activity can take place. Using them for anything else would
6671 * be a serious bug, and as a result, they aren't even visible
6672 * under any other configuration.
6673 */
6674
6675/**
6676 * curr_task - return the current task for a given cpu.
6677 * @cpu: the processor in question.
6678 *
6679 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6680 *
6681 * Return: The current task for @cpu.
1df5c10a 6682 */
36c8b586 6683struct task_struct *curr_task(int cpu)
1df5c10a
LT
6684{
6685 return cpu_curr(cpu);
6686}
6687
67fc4e0c
JW
6688#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6689
6690#ifdef CONFIG_IA64
1df5c10a
LT
6691/**
6692 * set_curr_task - set the current task for a given cpu.
6693 * @cpu: the processor in question.
6694 * @p: the task pointer to set.
6695 *
6696 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6697 * are serviced on a separate stack. It allows the architecture to switch the
6698 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6699 * must be called with all CPU's synchronized, and interrupts disabled, the
6700 * and caller must save the original value of the current task (see
6701 * curr_task() above) and restore that value before reenabling interrupts and
6702 * re-starting the system.
6703 *
6704 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6705 */
36c8b586 6706void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6707{
6708 cpu_curr(cpu) = p;
6709}
6710
6711#endif
29f59db3 6712
7c941438 6713#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6714/* task_group_lock serializes the addition/removal of task groups */
6715static DEFINE_SPINLOCK(task_group_lock);
6716
bccbe08a
PZ
6717static void free_sched_group(struct task_group *tg)
6718{
6719 free_fair_sched_group(tg);
6720 free_rt_sched_group(tg);
e9aa1dd1 6721 autogroup_free(tg);
bccbe08a
PZ
6722 kfree(tg);
6723}
6724
6725/* allocate runqueue etc for a new task group */
ec7dc8ac 6726struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6727{
6728 struct task_group *tg;
bccbe08a
PZ
6729
6730 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6731 if (!tg)
6732 return ERR_PTR(-ENOMEM);
6733
ec7dc8ac 6734 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6735 goto err;
6736
ec7dc8ac 6737 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6738 goto err;
6739
ace783b9
LZ
6740 return tg;
6741
6742err:
6743 free_sched_group(tg);
6744 return ERR_PTR(-ENOMEM);
6745}
6746
6747void sched_online_group(struct task_group *tg, struct task_group *parent)
6748{
6749 unsigned long flags;
6750
8ed36996 6751 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6752 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6753
6754 WARN_ON(!parent); /* root should already exist */
6755
6756 tg->parent = parent;
f473aa5e 6757 INIT_LIST_HEAD(&tg->children);
09f2724a 6758 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6759 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6760}
6761
9b5b7751 6762/* rcu callback to free various structures associated with a task group */
6f505b16 6763static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6764{
29f59db3 6765 /* now it should be safe to free those cfs_rqs */
6f505b16 6766 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6767}
6768
9b5b7751 6769/* Destroy runqueue etc associated with a task group */
4cf86d77 6770void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6771{
6772 /* wait for possible concurrent references to cfs_rqs complete */
6773 call_rcu(&tg->rcu, free_sched_group_rcu);
6774}
6775
6776void sched_offline_group(struct task_group *tg)
29f59db3 6777{
8ed36996 6778 unsigned long flags;
9b5b7751 6779 int i;
29f59db3 6780
3d4b47b4
PZ
6781 /* end participation in shares distribution */
6782 for_each_possible_cpu(i)
bccbe08a 6783 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6784
6785 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6786 list_del_rcu(&tg->list);
f473aa5e 6787 list_del_rcu(&tg->siblings);
8ed36996 6788 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6789}
6790
9b5b7751 6791/* change task's runqueue when it moves between groups.
3a252015
IM
6792 * The caller of this function should have put the task in its new group
6793 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6794 * reflect its new group.
9b5b7751
SV
6795 */
6796void sched_move_task(struct task_struct *tsk)
29f59db3 6797{
8323f26c 6798 struct task_group *tg;
29f59db3
SV
6799 int on_rq, running;
6800 unsigned long flags;
6801 struct rq *rq;
6802
6803 rq = task_rq_lock(tsk, &flags);
6804
051a1d1a 6805 running = task_current(rq, tsk);
fd2f4419 6806 on_rq = tsk->on_rq;
29f59db3 6807
0e1f3483 6808 if (on_rq)
29f59db3 6809 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6810 if (unlikely(running))
6811 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6812
8af01f56 6813 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6814 lockdep_is_held(&tsk->sighand->siglock)),
6815 struct task_group, css);
6816 tg = autogroup_task_group(tsk, tg);
6817 tsk->sched_task_group = tg;
6818
810b3817 6819#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6820 if (tsk->sched_class->task_move_group)
6821 tsk->sched_class->task_move_group(tsk, on_rq);
6822 else
810b3817 6823#endif
b2b5ce02 6824 set_task_rq(tsk, task_cpu(tsk));
810b3817 6825
0e1f3483
HS
6826 if (unlikely(running))
6827 tsk->sched_class->set_curr_task(rq);
6828 if (on_rq)
371fd7e7 6829 enqueue_task(rq, tsk, 0);
29f59db3 6830
0122ec5b 6831 task_rq_unlock(rq, tsk, &flags);
29f59db3 6832}
7c941438 6833#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6834
a790de99 6835#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6836static unsigned long to_ratio(u64 period, u64 runtime)
6837{
6838 if (runtime == RUNTIME_INF)
9a7e0b18 6839 return 1ULL << 20;
9f0c1e56 6840
9a7e0b18 6841 return div64_u64(runtime << 20, period);
9f0c1e56 6842}
a790de99
PT
6843#endif
6844
6845#ifdef CONFIG_RT_GROUP_SCHED
6846/*
6847 * Ensure that the real time constraints are schedulable.
6848 */
6849static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6850
9a7e0b18
PZ
6851/* Must be called with tasklist_lock held */
6852static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6853{
9a7e0b18 6854 struct task_struct *g, *p;
b40b2e8e 6855
9a7e0b18 6856 do_each_thread(g, p) {
029632fb 6857 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6858 return 1;
6859 } while_each_thread(g, p);
b40b2e8e 6860
9a7e0b18
PZ
6861 return 0;
6862}
b40b2e8e 6863
9a7e0b18
PZ
6864struct rt_schedulable_data {
6865 struct task_group *tg;
6866 u64 rt_period;
6867 u64 rt_runtime;
6868};
b40b2e8e 6869
a790de99 6870static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6871{
6872 struct rt_schedulable_data *d = data;
6873 struct task_group *child;
6874 unsigned long total, sum = 0;
6875 u64 period, runtime;
b40b2e8e 6876
9a7e0b18
PZ
6877 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6878 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6879
9a7e0b18
PZ
6880 if (tg == d->tg) {
6881 period = d->rt_period;
6882 runtime = d->rt_runtime;
b40b2e8e 6883 }
b40b2e8e 6884
4653f803
PZ
6885 /*
6886 * Cannot have more runtime than the period.
6887 */
6888 if (runtime > period && runtime != RUNTIME_INF)
6889 return -EINVAL;
6f505b16 6890
4653f803
PZ
6891 /*
6892 * Ensure we don't starve existing RT tasks.
6893 */
9a7e0b18
PZ
6894 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6895 return -EBUSY;
6f505b16 6896
9a7e0b18 6897 total = to_ratio(period, runtime);
6f505b16 6898
4653f803
PZ
6899 /*
6900 * Nobody can have more than the global setting allows.
6901 */
6902 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6903 return -EINVAL;
6f505b16 6904
4653f803
PZ
6905 /*
6906 * The sum of our children's runtime should not exceed our own.
6907 */
9a7e0b18
PZ
6908 list_for_each_entry_rcu(child, &tg->children, siblings) {
6909 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6910 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6911
9a7e0b18
PZ
6912 if (child == d->tg) {
6913 period = d->rt_period;
6914 runtime = d->rt_runtime;
6915 }
6f505b16 6916
9a7e0b18 6917 sum += to_ratio(period, runtime);
9f0c1e56 6918 }
6f505b16 6919
9a7e0b18
PZ
6920 if (sum > total)
6921 return -EINVAL;
6922
6923 return 0;
6f505b16
PZ
6924}
6925
9a7e0b18 6926static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6927{
8277434e
PT
6928 int ret;
6929
9a7e0b18
PZ
6930 struct rt_schedulable_data data = {
6931 .tg = tg,
6932 .rt_period = period,
6933 .rt_runtime = runtime,
6934 };
6935
8277434e
PT
6936 rcu_read_lock();
6937 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6938 rcu_read_unlock();
6939
6940 return ret;
521f1a24
DG
6941}
6942
ab84d31e 6943static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6944 u64 rt_period, u64 rt_runtime)
6f505b16 6945{
ac086bc2 6946 int i, err = 0;
9f0c1e56 6947
9f0c1e56 6948 mutex_lock(&rt_constraints_mutex);
521f1a24 6949 read_lock(&tasklist_lock);
9a7e0b18
PZ
6950 err = __rt_schedulable(tg, rt_period, rt_runtime);
6951 if (err)
9f0c1e56 6952 goto unlock;
ac086bc2 6953
0986b11b 6954 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6955 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6956 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6957
6958 for_each_possible_cpu(i) {
6959 struct rt_rq *rt_rq = tg->rt_rq[i];
6960
0986b11b 6961 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6962 rt_rq->rt_runtime = rt_runtime;
0986b11b 6963 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6964 }
0986b11b 6965 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6966unlock:
521f1a24 6967 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6968 mutex_unlock(&rt_constraints_mutex);
6969
6970 return err;
6f505b16
PZ
6971}
6972
25cc7da7 6973static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6974{
6975 u64 rt_runtime, rt_period;
6976
6977 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6978 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6979 if (rt_runtime_us < 0)
6980 rt_runtime = RUNTIME_INF;
6981
ab84d31e 6982 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6983}
6984
25cc7da7 6985static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6986{
6987 u64 rt_runtime_us;
6988
d0b27fa7 6989 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6990 return -1;
6991
d0b27fa7 6992 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6993 do_div(rt_runtime_us, NSEC_PER_USEC);
6994 return rt_runtime_us;
6995}
d0b27fa7 6996
25cc7da7 6997static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
6998{
6999 u64 rt_runtime, rt_period;
7000
7001 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7002 rt_runtime = tg->rt_bandwidth.rt_runtime;
7003
619b0488
R
7004 if (rt_period == 0)
7005 return -EINVAL;
7006
ab84d31e 7007 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7008}
7009
25cc7da7 7010static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7011{
7012 u64 rt_period_us;
7013
7014 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7015 do_div(rt_period_us, NSEC_PER_USEC);
7016 return rt_period_us;
7017}
7018
7019static int sched_rt_global_constraints(void)
7020{
4653f803 7021 u64 runtime, period;
d0b27fa7
PZ
7022 int ret = 0;
7023
ec5d4989
HS
7024 if (sysctl_sched_rt_period <= 0)
7025 return -EINVAL;
7026
4653f803
PZ
7027 runtime = global_rt_runtime();
7028 period = global_rt_period();
7029
7030 /*
7031 * Sanity check on the sysctl variables.
7032 */
7033 if (runtime > period && runtime != RUNTIME_INF)
7034 return -EINVAL;
10b612f4 7035
d0b27fa7 7036 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7037 read_lock(&tasklist_lock);
4653f803 7038 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7039 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7040 mutex_unlock(&rt_constraints_mutex);
7041
7042 return ret;
7043}
54e99124 7044
25cc7da7 7045static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7046{
7047 /* Don't accept realtime tasks when there is no way for them to run */
7048 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7049 return 0;
7050
7051 return 1;
7052}
7053
6d6bc0ad 7054#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7055static int sched_rt_global_constraints(void)
7056{
ac086bc2
PZ
7057 unsigned long flags;
7058 int i;
7059
ec5d4989
HS
7060 if (sysctl_sched_rt_period <= 0)
7061 return -EINVAL;
7062
60aa605d
PZ
7063 /*
7064 * There's always some RT tasks in the root group
7065 * -- migration, kstopmachine etc..
7066 */
7067 if (sysctl_sched_rt_runtime == 0)
7068 return -EBUSY;
7069
0986b11b 7070 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7071 for_each_possible_cpu(i) {
7072 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7073
0986b11b 7074 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7075 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7076 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7077 }
0986b11b 7078 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7079
d0b27fa7
PZ
7080 return 0;
7081}
6d6bc0ad 7082#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7083
ce0dbbbb
CW
7084int sched_rr_handler(struct ctl_table *table, int write,
7085 void __user *buffer, size_t *lenp,
7086 loff_t *ppos)
7087{
7088 int ret;
7089 static DEFINE_MUTEX(mutex);
7090
7091 mutex_lock(&mutex);
7092 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7093 /* make sure that internally we keep jiffies */
7094 /* also, writing zero resets timeslice to default */
7095 if (!ret && write) {
7096 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7097 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7098 }
7099 mutex_unlock(&mutex);
7100 return ret;
7101}
7102
d0b27fa7 7103int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7104 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7105 loff_t *ppos)
7106{
7107 int ret;
7108 int old_period, old_runtime;
7109 static DEFINE_MUTEX(mutex);
7110
7111 mutex_lock(&mutex);
7112 old_period = sysctl_sched_rt_period;
7113 old_runtime = sysctl_sched_rt_runtime;
7114
8d65af78 7115 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7116
7117 if (!ret && write) {
7118 ret = sched_rt_global_constraints();
7119 if (ret) {
7120 sysctl_sched_rt_period = old_period;
7121 sysctl_sched_rt_runtime = old_runtime;
7122 } else {
7123 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7124 def_rt_bandwidth.rt_period =
7125 ns_to_ktime(global_rt_period());
7126 }
7127 }
7128 mutex_unlock(&mutex);
7129
7130 return ret;
7131}
68318b8e 7132
052f1dc7 7133#ifdef CONFIG_CGROUP_SCHED
68318b8e 7134
a7c6d554 7135static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7136{
a7c6d554 7137 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7138}
7139
eb95419b
TH
7140static struct cgroup_subsys_state *
7141cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7142{
eb95419b
TH
7143 struct task_group *parent = css_tg(parent_css);
7144 struct task_group *tg;
68318b8e 7145
eb95419b 7146 if (!parent) {
68318b8e 7147 /* This is early initialization for the top cgroup */
07e06b01 7148 return &root_task_group.css;
68318b8e
SV
7149 }
7150
ec7dc8ac 7151 tg = sched_create_group(parent);
68318b8e
SV
7152 if (IS_ERR(tg))
7153 return ERR_PTR(-ENOMEM);
7154
68318b8e
SV
7155 return &tg->css;
7156}
7157
eb95419b 7158static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7159{
eb95419b
TH
7160 struct task_group *tg = css_tg(css);
7161 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7162
63876986
TH
7163 if (parent)
7164 sched_online_group(tg, parent);
ace783b9
LZ
7165 return 0;
7166}
7167
eb95419b 7168static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7169{
eb95419b 7170 struct task_group *tg = css_tg(css);
68318b8e
SV
7171
7172 sched_destroy_group(tg);
7173}
7174
eb95419b 7175static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7176{
eb95419b 7177 struct task_group *tg = css_tg(css);
ace783b9
LZ
7178
7179 sched_offline_group(tg);
7180}
7181
eb95419b 7182static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7183 struct cgroup_taskset *tset)
68318b8e 7184{
bb9d97b6
TH
7185 struct task_struct *task;
7186
d99c8727 7187 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7188#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7189 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7190 return -EINVAL;
b68aa230 7191#else
bb9d97b6
TH
7192 /* We don't support RT-tasks being in separate groups */
7193 if (task->sched_class != &fair_sched_class)
7194 return -EINVAL;
b68aa230 7195#endif
bb9d97b6 7196 }
be367d09
BB
7197 return 0;
7198}
68318b8e 7199
eb95419b 7200static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7201 struct cgroup_taskset *tset)
68318b8e 7202{
bb9d97b6
TH
7203 struct task_struct *task;
7204
d99c8727 7205 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7206 sched_move_task(task);
68318b8e
SV
7207}
7208
eb95419b
TH
7209static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7210 struct cgroup_subsys_state *old_css,
7211 struct task_struct *task)
068c5cc5
PZ
7212{
7213 /*
7214 * cgroup_exit() is called in the copy_process() failure path.
7215 * Ignore this case since the task hasn't ran yet, this avoids
7216 * trying to poke a half freed task state from generic code.
7217 */
7218 if (!(task->flags & PF_EXITING))
7219 return;
7220
7221 sched_move_task(task);
7222}
7223
052f1dc7 7224#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7225static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7226 struct cftype *cftype, u64 shareval)
68318b8e 7227{
182446d0 7228 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7229}
7230
182446d0
TH
7231static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7232 struct cftype *cft)
68318b8e 7233{
182446d0 7234 struct task_group *tg = css_tg(css);
68318b8e 7235
c8b28116 7236 return (u64) scale_load_down(tg->shares);
68318b8e 7237}
ab84d31e
PT
7238
7239#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7240static DEFINE_MUTEX(cfs_constraints_mutex);
7241
ab84d31e
PT
7242const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7243const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7244
a790de99
PT
7245static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7246
ab84d31e
PT
7247static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7248{
56f570e5 7249 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7250 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7251
7252 if (tg == &root_task_group)
7253 return -EINVAL;
7254
7255 /*
7256 * Ensure we have at some amount of bandwidth every period. This is
7257 * to prevent reaching a state of large arrears when throttled via
7258 * entity_tick() resulting in prolonged exit starvation.
7259 */
7260 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7261 return -EINVAL;
7262
7263 /*
7264 * Likewise, bound things on the otherside by preventing insane quota
7265 * periods. This also allows us to normalize in computing quota
7266 * feasibility.
7267 */
7268 if (period > max_cfs_quota_period)
7269 return -EINVAL;
7270
a790de99
PT
7271 mutex_lock(&cfs_constraints_mutex);
7272 ret = __cfs_schedulable(tg, period, quota);
7273 if (ret)
7274 goto out_unlock;
7275
58088ad0 7276 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7277 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7278 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7279 raw_spin_lock_irq(&cfs_b->lock);
7280 cfs_b->period = ns_to_ktime(period);
7281 cfs_b->quota = quota;
58088ad0 7282
a9cf55b2 7283 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7284 /* restart the period timer (if active) to handle new period expiry */
7285 if (runtime_enabled && cfs_b->timer_active) {
7286 /* force a reprogram */
7287 cfs_b->timer_active = 0;
7288 __start_cfs_bandwidth(cfs_b);
7289 }
ab84d31e
PT
7290 raw_spin_unlock_irq(&cfs_b->lock);
7291
7292 for_each_possible_cpu(i) {
7293 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7294 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7295
7296 raw_spin_lock_irq(&rq->lock);
58088ad0 7297 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7298 cfs_rq->runtime_remaining = 0;
671fd9da 7299
029632fb 7300 if (cfs_rq->throttled)
671fd9da 7301 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7302 raw_spin_unlock_irq(&rq->lock);
7303 }
a790de99
PT
7304out_unlock:
7305 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7306
a790de99 7307 return ret;
ab84d31e
PT
7308}
7309
7310int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7311{
7312 u64 quota, period;
7313
029632fb 7314 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7315 if (cfs_quota_us < 0)
7316 quota = RUNTIME_INF;
7317 else
7318 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7319
7320 return tg_set_cfs_bandwidth(tg, period, quota);
7321}
7322
7323long tg_get_cfs_quota(struct task_group *tg)
7324{
7325 u64 quota_us;
7326
029632fb 7327 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7328 return -1;
7329
029632fb 7330 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7331 do_div(quota_us, NSEC_PER_USEC);
7332
7333 return quota_us;
7334}
7335
7336int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7337{
7338 u64 quota, period;
7339
7340 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7341 quota = tg->cfs_bandwidth.quota;
ab84d31e 7342
ab84d31e
PT
7343 return tg_set_cfs_bandwidth(tg, period, quota);
7344}
7345
7346long tg_get_cfs_period(struct task_group *tg)
7347{
7348 u64 cfs_period_us;
7349
029632fb 7350 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7351 do_div(cfs_period_us, NSEC_PER_USEC);
7352
7353 return cfs_period_us;
7354}
7355
182446d0
TH
7356static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7357 struct cftype *cft)
ab84d31e 7358{
182446d0 7359 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7360}
7361
182446d0
TH
7362static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7363 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7364{
182446d0 7365 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7366}
7367
182446d0
TH
7368static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7369 struct cftype *cft)
ab84d31e 7370{
182446d0 7371 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7372}
7373
182446d0
TH
7374static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7375 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7376{
182446d0 7377 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7378}
7379
a790de99
PT
7380struct cfs_schedulable_data {
7381 struct task_group *tg;
7382 u64 period, quota;
7383};
7384
7385/*
7386 * normalize group quota/period to be quota/max_period
7387 * note: units are usecs
7388 */
7389static u64 normalize_cfs_quota(struct task_group *tg,
7390 struct cfs_schedulable_data *d)
7391{
7392 u64 quota, period;
7393
7394 if (tg == d->tg) {
7395 period = d->period;
7396 quota = d->quota;
7397 } else {
7398 period = tg_get_cfs_period(tg);
7399 quota = tg_get_cfs_quota(tg);
7400 }
7401
7402 /* note: these should typically be equivalent */
7403 if (quota == RUNTIME_INF || quota == -1)
7404 return RUNTIME_INF;
7405
7406 return to_ratio(period, quota);
7407}
7408
7409static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7410{
7411 struct cfs_schedulable_data *d = data;
029632fb 7412 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7413 s64 quota = 0, parent_quota = -1;
7414
7415 if (!tg->parent) {
7416 quota = RUNTIME_INF;
7417 } else {
029632fb 7418 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7419
7420 quota = normalize_cfs_quota(tg, d);
7421 parent_quota = parent_b->hierarchal_quota;
7422
7423 /*
7424 * ensure max(child_quota) <= parent_quota, inherit when no
7425 * limit is set
7426 */
7427 if (quota == RUNTIME_INF)
7428 quota = parent_quota;
7429 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7430 return -EINVAL;
7431 }
7432 cfs_b->hierarchal_quota = quota;
7433
7434 return 0;
7435}
7436
7437static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7438{
8277434e 7439 int ret;
a790de99
PT
7440 struct cfs_schedulable_data data = {
7441 .tg = tg,
7442 .period = period,
7443 .quota = quota,
7444 };
7445
7446 if (quota != RUNTIME_INF) {
7447 do_div(data.period, NSEC_PER_USEC);
7448 do_div(data.quota, NSEC_PER_USEC);
7449 }
7450
8277434e
PT
7451 rcu_read_lock();
7452 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7453 rcu_read_unlock();
7454
7455 return ret;
a790de99 7456}
e8da1b18 7457
182446d0 7458static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7459 struct cgroup_map_cb *cb)
7460{
182446d0 7461 struct task_group *tg = css_tg(css);
029632fb 7462 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7463
7464 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7465 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7466 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7467
7468 return 0;
7469}
ab84d31e 7470#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7471#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7472
052f1dc7 7473#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7474static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7475 struct cftype *cft, s64 val)
6f505b16 7476{
182446d0 7477 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7478}
7479
182446d0
TH
7480static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7481 struct cftype *cft)
6f505b16 7482{
182446d0 7483 return sched_group_rt_runtime(css_tg(css));
6f505b16 7484}
d0b27fa7 7485
182446d0
TH
7486static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7487 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7488{
182446d0 7489 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7490}
7491
182446d0
TH
7492static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7493 struct cftype *cft)
d0b27fa7 7494{
182446d0 7495 return sched_group_rt_period(css_tg(css));
d0b27fa7 7496}
6d6bc0ad 7497#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7498
fe5c7cc2 7499static struct cftype cpu_files[] = {
052f1dc7 7500#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7501 {
7502 .name = "shares",
f4c753b7
PM
7503 .read_u64 = cpu_shares_read_u64,
7504 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7505 },
052f1dc7 7506#endif
ab84d31e
PT
7507#ifdef CONFIG_CFS_BANDWIDTH
7508 {
7509 .name = "cfs_quota_us",
7510 .read_s64 = cpu_cfs_quota_read_s64,
7511 .write_s64 = cpu_cfs_quota_write_s64,
7512 },
7513 {
7514 .name = "cfs_period_us",
7515 .read_u64 = cpu_cfs_period_read_u64,
7516 .write_u64 = cpu_cfs_period_write_u64,
7517 },
e8da1b18
NR
7518 {
7519 .name = "stat",
7520 .read_map = cpu_stats_show,
7521 },
ab84d31e 7522#endif
052f1dc7 7523#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7524 {
9f0c1e56 7525 .name = "rt_runtime_us",
06ecb27c
PM
7526 .read_s64 = cpu_rt_runtime_read,
7527 .write_s64 = cpu_rt_runtime_write,
6f505b16 7528 },
d0b27fa7
PZ
7529 {
7530 .name = "rt_period_us",
f4c753b7
PM
7531 .read_u64 = cpu_rt_period_read_uint,
7532 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7533 },
052f1dc7 7534#endif
4baf6e33 7535 { } /* terminate */
68318b8e
SV
7536};
7537
68318b8e 7538struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7539 .name = "cpu",
92fb9748
TH
7540 .css_alloc = cpu_cgroup_css_alloc,
7541 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7542 .css_online = cpu_cgroup_css_online,
7543 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7544 .can_attach = cpu_cgroup_can_attach,
7545 .attach = cpu_cgroup_attach,
068c5cc5 7546 .exit = cpu_cgroup_exit,
38605cae 7547 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7548 .base_cftypes = cpu_files,
68318b8e
SV
7549 .early_init = 1,
7550};
7551
052f1dc7 7552#endif /* CONFIG_CGROUP_SCHED */
d842de87 7553
b637a328
PM
7554void dump_cpu_task(int cpu)
7555{
7556 pr_info("Task dump for CPU %d:\n", cpu);
7557 sched_show_task(cpu_curr(cpu));
7558}
This page took 2.646313 seconds and 5 git commands to generate.