sched: Transform resched_task() into resched_curr()
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
febdbfe8
PZ
93#ifdef smp_mb__before_atomic
94void __smp_mb__before_atomic(void)
95{
96 smp_mb__before_atomic();
97}
98EXPORT_SYMBOL(__smp_mb__before_atomic);
99#endif
100
101#ifdef smp_mb__after_atomic
102void __smp_mb__after_atomic(void)
103{
104 smp_mb__after_atomic();
105}
106EXPORT_SYMBOL(__smp_mb__after_atomic);
107#endif
108
029632fb 109void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 110{
58088ad0
PT
111 unsigned long delta;
112 ktime_t soft, hard, now;
d0b27fa7 113
58088ad0
PT
114 for (;;) {
115 if (hrtimer_active(period_timer))
116 break;
117
118 now = hrtimer_cb_get_time(period_timer);
119 hrtimer_forward(period_timer, now, period);
d0b27fa7 120
58088ad0
PT
121 soft = hrtimer_get_softexpires(period_timer);
122 hard = hrtimer_get_expires(period_timer);
123 delta = ktime_to_ns(ktime_sub(hard, soft));
124 __hrtimer_start_range_ns(period_timer, soft, delta,
125 HRTIMER_MODE_ABS_PINNED, 0);
126 }
127}
128
029632fb
PZ
129DEFINE_MUTEX(sched_domains_mutex);
130DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 131
fe44d621 132static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 133
029632fb 134void update_rq_clock(struct rq *rq)
3e51f33f 135{
fe44d621 136 s64 delta;
305e6835 137
61eadef6 138 if (rq->skip_clock_update > 0)
f26f9aff 139 return;
aa483808 140
fe44d621 141 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
142 if (delta < 0)
143 return;
fe44d621
PZ
144 rq->clock += delta;
145 update_rq_clock_task(rq, delta);
3e51f33f
PZ
146}
147
bf5c91ba
IM
148/*
149 * Debugging: various feature bits
150 */
f00b45c1 151
f00b45c1
PZ
152#define SCHED_FEAT(name, enabled) \
153 (1UL << __SCHED_FEAT_##name) * enabled |
154
bf5c91ba 155const_debug unsigned int sysctl_sched_features =
391e43da 156#include "features.h"
f00b45c1
PZ
157 0;
158
159#undef SCHED_FEAT
160
161#ifdef CONFIG_SCHED_DEBUG
162#define SCHED_FEAT(name, enabled) \
163 #name ,
164
1292531f 165static const char * const sched_feat_names[] = {
391e43da 166#include "features.h"
f00b45c1
PZ
167};
168
169#undef SCHED_FEAT
170
34f3a814 171static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 172{
f00b45c1
PZ
173 int i;
174
f8b6d1cc 175 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
176 if (!(sysctl_sched_features & (1UL << i)))
177 seq_puts(m, "NO_");
178 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 179 }
34f3a814 180 seq_puts(m, "\n");
f00b45c1 181
34f3a814 182 return 0;
f00b45c1
PZ
183}
184
f8b6d1cc
PZ
185#ifdef HAVE_JUMP_LABEL
186
c5905afb
IM
187#define jump_label_key__true STATIC_KEY_INIT_TRUE
188#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
189
190#define SCHED_FEAT(name, enabled) \
191 jump_label_key__##enabled ,
192
c5905afb 193struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
194#include "features.h"
195};
196
197#undef SCHED_FEAT
198
199static void sched_feat_disable(int i)
200{
c5905afb
IM
201 if (static_key_enabled(&sched_feat_keys[i]))
202 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
203}
204
205static void sched_feat_enable(int i)
206{
c5905afb
IM
207 if (!static_key_enabled(&sched_feat_keys[i]))
208 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
209}
210#else
211static void sched_feat_disable(int i) { };
212static void sched_feat_enable(int i) { };
213#endif /* HAVE_JUMP_LABEL */
214
1a687c2e 215static int sched_feat_set(char *cmp)
f00b45c1 216{
f00b45c1 217 int i;
1a687c2e 218 int neg = 0;
f00b45c1 219
524429c3 220 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
221 neg = 1;
222 cmp += 3;
223 }
224
f8b6d1cc 225 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 226 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 227 if (neg) {
f00b45c1 228 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
229 sched_feat_disable(i);
230 } else {
f00b45c1 231 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
232 sched_feat_enable(i);
233 }
f00b45c1
PZ
234 break;
235 }
236 }
237
1a687c2e
MG
238 return i;
239}
240
241static ssize_t
242sched_feat_write(struct file *filp, const char __user *ubuf,
243 size_t cnt, loff_t *ppos)
244{
245 char buf[64];
246 char *cmp;
247 int i;
248
249 if (cnt > 63)
250 cnt = 63;
251
252 if (copy_from_user(&buf, ubuf, cnt))
253 return -EFAULT;
254
255 buf[cnt] = 0;
256 cmp = strstrip(buf);
257
258 i = sched_feat_set(cmp);
f8b6d1cc 259 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
260 return -EINVAL;
261
42994724 262 *ppos += cnt;
f00b45c1
PZ
263
264 return cnt;
265}
266
34f3a814
LZ
267static int sched_feat_open(struct inode *inode, struct file *filp)
268{
269 return single_open(filp, sched_feat_show, NULL);
270}
271
828c0950 272static const struct file_operations sched_feat_fops = {
34f3a814
LZ
273 .open = sched_feat_open,
274 .write = sched_feat_write,
275 .read = seq_read,
276 .llseek = seq_lseek,
277 .release = single_release,
f00b45c1
PZ
278};
279
280static __init int sched_init_debug(void)
281{
f00b45c1
PZ
282 debugfs_create_file("sched_features", 0644, NULL, NULL,
283 &sched_feat_fops);
284
285 return 0;
286}
287late_initcall(sched_init_debug);
f8b6d1cc 288#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 289
b82d9fdd
PZ
290/*
291 * Number of tasks to iterate in a single balance run.
292 * Limited because this is done with IRQs disabled.
293 */
294const_debug unsigned int sysctl_sched_nr_migrate = 32;
295
e9e9250b
PZ
296/*
297 * period over which we average the RT time consumption, measured
298 * in ms.
299 *
300 * default: 1s
301 */
302const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
303
fa85ae24 304/*
9f0c1e56 305 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
306 * default: 1s
307 */
9f0c1e56 308unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 309
029632fb 310__read_mostly int scheduler_running;
6892b75e 311
9f0c1e56
PZ
312/*
313 * part of the period that we allow rt tasks to run in us.
314 * default: 0.95s
315 */
316int sysctl_sched_rt_runtime = 950000;
fa85ae24 317
0970d299 318/*
0122ec5b 319 * __task_rq_lock - lock the rq @p resides on.
b29739f9 320 */
70b97a7f 321static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
322 __acquires(rq->lock)
323{
0970d299
PZ
324 struct rq *rq;
325
0122ec5b
PZ
326 lockdep_assert_held(&p->pi_lock);
327
3a5c359a 328 for (;;) {
0970d299 329 rq = task_rq(p);
05fa785c 330 raw_spin_lock(&rq->lock);
65cc8e48 331 if (likely(rq == task_rq(p)))
3a5c359a 332 return rq;
05fa785c 333 raw_spin_unlock(&rq->lock);
b29739f9 334 }
b29739f9
IM
335}
336
1da177e4 337/*
0122ec5b 338 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 339 */
70b97a7f 340static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 341 __acquires(p->pi_lock)
1da177e4
LT
342 __acquires(rq->lock)
343{
70b97a7f 344 struct rq *rq;
1da177e4 345
3a5c359a 346 for (;;) {
0122ec5b 347 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 348 rq = task_rq(p);
05fa785c 349 raw_spin_lock(&rq->lock);
65cc8e48 350 if (likely(rq == task_rq(p)))
3a5c359a 351 return rq;
0122ec5b
PZ
352 raw_spin_unlock(&rq->lock);
353 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 354 }
1da177e4
LT
355}
356
a9957449 357static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
358 __releases(rq->lock)
359{
05fa785c 360 raw_spin_unlock(&rq->lock);
b29739f9
IM
361}
362
0122ec5b
PZ
363static inline void
364task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 365 __releases(rq->lock)
0122ec5b 366 __releases(p->pi_lock)
1da177e4 367{
0122ec5b
PZ
368 raw_spin_unlock(&rq->lock);
369 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
370}
371
1da177e4 372/*
cc2a73b5 373 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 374 */
a9957449 375static struct rq *this_rq_lock(void)
1da177e4
LT
376 __acquires(rq->lock)
377{
70b97a7f 378 struct rq *rq;
1da177e4
LT
379
380 local_irq_disable();
381 rq = this_rq();
05fa785c 382 raw_spin_lock(&rq->lock);
1da177e4
LT
383
384 return rq;
385}
386
8f4d37ec
PZ
387#ifdef CONFIG_SCHED_HRTICK
388/*
389 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 390 */
8f4d37ec 391
8f4d37ec
PZ
392static void hrtick_clear(struct rq *rq)
393{
394 if (hrtimer_active(&rq->hrtick_timer))
395 hrtimer_cancel(&rq->hrtick_timer);
396}
397
8f4d37ec
PZ
398/*
399 * High-resolution timer tick.
400 * Runs from hardirq context with interrupts disabled.
401 */
402static enum hrtimer_restart hrtick(struct hrtimer *timer)
403{
404 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
405
406 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
407
05fa785c 408 raw_spin_lock(&rq->lock);
3e51f33f 409 update_rq_clock(rq);
8f4d37ec 410 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 411 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
412
413 return HRTIMER_NORESTART;
414}
415
95e904c7 416#ifdef CONFIG_SMP
971ee28c
PZ
417
418static int __hrtick_restart(struct rq *rq)
419{
420 struct hrtimer *timer = &rq->hrtick_timer;
421 ktime_t time = hrtimer_get_softexpires(timer);
422
423 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
424}
425
31656519
PZ
426/*
427 * called from hardirq (IPI) context
428 */
429static void __hrtick_start(void *arg)
b328ca18 430{
31656519 431 struct rq *rq = arg;
b328ca18 432
05fa785c 433 raw_spin_lock(&rq->lock);
971ee28c 434 __hrtick_restart(rq);
31656519 435 rq->hrtick_csd_pending = 0;
05fa785c 436 raw_spin_unlock(&rq->lock);
b328ca18
PZ
437}
438
31656519
PZ
439/*
440 * Called to set the hrtick timer state.
441 *
442 * called with rq->lock held and irqs disabled
443 */
029632fb 444void hrtick_start(struct rq *rq, u64 delay)
b328ca18 445{
31656519
PZ
446 struct hrtimer *timer = &rq->hrtick_timer;
447 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 448
cc584b21 449 hrtimer_set_expires(timer, time);
31656519
PZ
450
451 if (rq == this_rq()) {
971ee28c 452 __hrtick_restart(rq);
31656519 453 } else if (!rq->hrtick_csd_pending) {
c46fff2a 454 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
455 rq->hrtick_csd_pending = 1;
456 }
b328ca18
PZ
457}
458
459static int
460hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
461{
462 int cpu = (int)(long)hcpu;
463
464 switch (action) {
465 case CPU_UP_CANCELED:
466 case CPU_UP_CANCELED_FROZEN:
467 case CPU_DOWN_PREPARE:
468 case CPU_DOWN_PREPARE_FROZEN:
469 case CPU_DEAD:
470 case CPU_DEAD_FROZEN:
31656519 471 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
472 return NOTIFY_OK;
473 }
474
475 return NOTIFY_DONE;
476}
477
fa748203 478static __init void init_hrtick(void)
b328ca18
PZ
479{
480 hotcpu_notifier(hotplug_hrtick, 0);
481}
31656519
PZ
482#else
483/*
484 * Called to set the hrtick timer state.
485 *
486 * called with rq->lock held and irqs disabled
487 */
029632fb 488void hrtick_start(struct rq *rq, u64 delay)
31656519 489{
7f1e2ca9 490 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 491 HRTIMER_MODE_REL_PINNED, 0);
31656519 492}
b328ca18 493
006c75f1 494static inline void init_hrtick(void)
8f4d37ec 495{
8f4d37ec 496}
31656519 497#endif /* CONFIG_SMP */
8f4d37ec 498
31656519 499static void init_rq_hrtick(struct rq *rq)
8f4d37ec 500{
31656519
PZ
501#ifdef CONFIG_SMP
502 rq->hrtick_csd_pending = 0;
8f4d37ec 503
31656519
PZ
504 rq->hrtick_csd.flags = 0;
505 rq->hrtick_csd.func = __hrtick_start;
506 rq->hrtick_csd.info = rq;
507#endif
8f4d37ec 508
31656519
PZ
509 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
510 rq->hrtick_timer.function = hrtick;
8f4d37ec 511}
006c75f1 512#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
513static inline void hrtick_clear(struct rq *rq)
514{
515}
516
8f4d37ec
PZ
517static inline void init_rq_hrtick(struct rq *rq)
518{
519}
520
b328ca18
PZ
521static inline void init_hrtick(void)
522{
523}
006c75f1 524#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 525
fd99f91a
PZ
526/*
527 * cmpxchg based fetch_or, macro so it works for different integer types
528 */
529#define fetch_or(ptr, val) \
530({ typeof(*(ptr)) __old, __val = *(ptr); \
531 for (;;) { \
532 __old = cmpxchg((ptr), __val, __val | (val)); \
533 if (__old == __val) \
534 break; \
535 __val = __old; \
536 } \
537 __old; \
538})
539
e3baac47 540#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
541/*
542 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
543 * this avoids any races wrt polling state changes and thereby avoids
544 * spurious IPIs.
545 */
546static bool set_nr_and_not_polling(struct task_struct *p)
547{
548 struct thread_info *ti = task_thread_info(p);
549 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
550}
e3baac47
PZ
551
552/*
553 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
554 *
555 * If this returns true, then the idle task promises to call
556 * sched_ttwu_pending() and reschedule soon.
557 */
558static bool set_nr_if_polling(struct task_struct *p)
559{
560 struct thread_info *ti = task_thread_info(p);
561 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
562
563 for (;;) {
564 if (!(val & _TIF_POLLING_NRFLAG))
565 return false;
566 if (val & _TIF_NEED_RESCHED)
567 return true;
568 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
569 if (old == val)
570 break;
571 val = old;
572 }
573 return true;
574}
575
fd99f91a
PZ
576#else
577static bool set_nr_and_not_polling(struct task_struct *p)
578{
579 set_tsk_need_resched(p);
580 return true;
581}
e3baac47
PZ
582
583#ifdef CONFIG_SMP
584static bool set_nr_if_polling(struct task_struct *p)
585{
586 return false;
587}
588#endif
fd99f91a
PZ
589#endif
590
c24d20db 591/*
8875125e 592 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
593 *
594 * On UP this means the setting of the need_resched flag, on SMP it
595 * might also involve a cross-CPU call to trigger the scheduler on
596 * the target CPU.
597 */
8875125e 598void resched_curr(struct rq *rq)
c24d20db 599{
8875125e 600 struct task_struct *curr = rq->curr;
c24d20db
IM
601 int cpu;
602
8875125e 603 lockdep_assert_held(&rq->lock);
c24d20db 604
8875125e 605 if (test_tsk_need_resched(curr))
c24d20db
IM
606 return;
607
8875125e 608 cpu = cpu_of(rq);
fd99f91a 609
f27dde8d 610 if (cpu == smp_processor_id()) {
8875125e 611 set_tsk_need_resched(curr);
f27dde8d 612 set_preempt_need_resched();
c24d20db 613 return;
f27dde8d 614 }
c24d20db 615
8875125e 616 if (set_nr_and_not_polling(curr))
c24d20db 617 smp_send_reschedule(cpu);
dfc68f29
AL
618 else
619 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
620}
621
029632fb 622void resched_cpu(int cpu)
c24d20db
IM
623{
624 struct rq *rq = cpu_rq(cpu);
625 unsigned long flags;
626
05fa785c 627 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 628 return;
8875125e 629 resched_curr(rq);
05fa785c 630 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 631}
06d8308c 632
b021fe3e 633#ifdef CONFIG_SMP
3451d024 634#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
635/*
636 * In the semi idle case, use the nearest busy cpu for migrating timers
637 * from an idle cpu. This is good for power-savings.
638 *
639 * We don't do similar optimization for completely idle system, as
640 * selecting an idle cpu will add more delays to the timers than intended
641 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
642 */
6201b4d6 643int get_nohz_timer_target(int pinned)
83cd4fe2
VP
644{
645 int cpu = smp_processor_id();
646 int i;
647 struct sched_domain *sd;
648
6201b4d6
VK
649 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
650 return cpu;
651
057f3fad 652 rcu_read_lock();
83cd4fe2 653 for_each_domain(cpu, sd) {
057f3fad
PZ
654 for_each_cpu(i, sched_domain_span(sd)) {
655 if (!idle_cpu(i)) {
656 cpu = i;
657 goto unlock;
658 }
659 }
83cd4fe2 660 }
057f3fad
PZ
661unlock:
662 rcu_read_unlock();
83cd4fe2
VP
663 return cpu;
664}
06d8308c
TG
665/*
666 * When add_timer_on() enqueues a timer into the timer wheel of an
667 * idle CPU then this timer might expire before the next timer event
668 * which is scheduled to wake up that CPU. In case of a completely
669 * idle system the next event might even be infinite time into the
670 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
671 * leaves the inner idle loop so the newly added timer is taken into
672 * account when the CPU goes back to idle and evaluates the timer
673 * wheel for the next timer event.
674 */
1c20091e 675static void wake_up_idle_cpu(int cpu)
06d8308c
TG
676{
677 struct rq *rq = cpu_rq(cpu);
678
679 if (cpu == smp_processor_id())
680 return;
681
67b9ca70 682 if (set_nr_and_not_polling(rq->idle))
06d8308c 683 smp_send_reschedule(cpu);
dfc68f29
AL
684 else
685 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
686}
687
c5bfece2 688static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 689{
53c5fa16
FW
690 /*
691 * We just need the target to call irq_exit() and re-evaluate
692 * the next tick. The nohz full kick at least implies that.
693 * If needed we can still optimize that later with an
694 * empty IRQ.
695 */
c5bfece2 696 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
697 if (cpu != smp_processor_id() ||
698 tick_nohz_tick_stopped())
53c5fa16 699 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
700 return true;
701 }
702
703 return false;
704}
705
706void wake_up_nohz_cpu(int cpu)
707{
c5bfece2 708 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
709 wake_up_idle_cpu(cpu);
710}
711
ca38062e 712static inline bool got_nohz_idle_kick(void)
45bf76df 713{
1c792db7 714 int cpu = smp_processor_id();
873b4c65
VG
715
716 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
717 return false;
718
719 if (idle_cpu(cpu) && !need_resched())
720 return true;
721
722 /*
723 * We can't run Idle Load Balance on this CPU for this time so we
724 * cancel it and clear NOHZ_BALANCE_KICK
725 */
726 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
727 return false;
45bf76df
IM
728}
729
3451d024 730#else /* CONFIG_NO_HZ_COMMON */
45bf76df 731
ca38062e 732static inline bool got_nohz_idle_kick(void)
2069dd75 733{
ca38062e 734 return false;
2069dd75
PZ
735}
736
3451d024 737#endif /* CONFIG_NO_HZ_COMMON */
d842de87 738
ce831b38
FW
739#ifdef CONFIG_NO_HZ_FULL
740bool sched_can_stop_tick(void)
741{
3882ec64
FW
742 /*
743 * More than one running task need preemption.
744 * nr_running update is assumed to be visible
745 * after IPI is sent from wakers.
746 */
541b8264
VK
747 if (this_rq()->nr_running > 1)
748 return false;
ce831b38 749
541b8264 750 return true;
ce831b38
FW
751}
752#endif /* CONFIG_NO_HZ_FULL */
d842de87 753
029632fb 754void sched_avg_update(struct rq *rq)
18d95a28 755{
e9e9250b
PZ
756 s64 period = sched_avg_period();
757
78becc27 758 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
759 /*
760 * Inline assembly required to prevent the compiler
761 * optimising this loop into a divmod call.
762 * See __iter_div_u64_rem() for another example of this.
763 */
764 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
765 rq->age_stamp += period;
766 rq->rt_avg /= 2;
767 }
18d95a28
PZ
768}
769
6d6bc0ad 770#endif /* CONFIG_SMP */
18d95a28 771
a790de99
PT
772#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
773 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 774/*
8277434e
PT
775 * Iterate task_group tree rooted at *from, calling @down when first entering a
776 * node and @up when leaving it for the final time.
777 *
778 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 779 */
029632fb 780int walk_tg_tree_from(struct task_group *from,
8277434e 781 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
782{
783 struct task_group *parent, *child;
eb755805 784 int ret;
c09595f6 785
8277434e
PT
786 parent = from;
787
c09595f6 788down:
eb755805
PZ
789 ret = (*down)(parent, data);
790 if (ret)
8277434e 791 goto out;
c09595f6
PZ
792 list_for_each_entry_rcu(child, &parent->children, siblings) {
793 parent = child;
794 goto down;
795
796up:
797 continue;
798 }
eb755805 799 ret = (*up)(parent, data);
8277434e
PT
800 if (ret || parent == from)
801 goto out;
c09595f6
PZ
802
803 child = parent;
804 parent = parent->parent;
805 if (parent)
806 goto up;
8277434e 807out:
eb755805 808 return ret;
c09595f6
PZ
809}
810
029632fb 811int tg_nop(struct task_group *tg, void *data)
eb755805 812{
e2b245f8 813 return 0;
eb755805 814}
18d95a28
PZ
815#endif
816
45bf76df
IM
817static void set_load_weight(struct task_struct *p)
818{
f05998d4
NR
819 int prio = p->static_prio - MAX_RT_PRIO;
820 struct load_weight *load = &p->se.load;
821
dd41f596
IM
822 /*
823 * SCHED_IDLE tasks get minimal weight:
824 */
825 if (p->policy == SCHED_IDLE) {
c8b28116 826 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 827 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
828 return;
829 }
71f8bd46 830
c8b28116 831 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 832 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
833}
834
371fd7e7 835static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 836{
a64692a3 837 update_rq_clock(rq);
43148951 838 sched_info_queued(rq, p);
371fd7e7 839 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
840}
841
371fd7e7 842static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 843{
a64692a3 844 update_rq_clock(rq);
43148951 845 sched_info_dequeued(rq, p);
371fd7e7 846 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
847}
848
029632fb 849void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
850{
851 if (task_contributes_to_load(p))
852 rq->nr_uninterruptible--;
853
371fd7e7 854 enqueue_task(rq, p, flags);
1e3c88bd
PZ
855}
856
029632fb 857void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
858{
859 if (task_contributes_to_load(p))
860 rq->nr_uninterruptible++;
861
371fd7e7 862 dequeue_task(rq, p, flags);
1e3c88bd
PZ
863}
864
fe44d621 865static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 866{
095c0aa8
GC
867/*
868 * In theory, the compile should just see 0 here, and optimize out the call
869 * to sched_rt_avg_update. But I don't trust it...
870 */
871#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872 s64 steal = 0, irq_delta = 0;
873#endif
874#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 875 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
876
877 /*
878 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879 * this case when a previous update_rq_clock() happened inside a
880 * {soft,}irq region.
881 *
882 * When this happens, we stop ->clock_task and only update the
883 * prev_irq_time stamp to account for the part that fit, so that a next
884 * update will consume the rest. This ensures ->clock_task is
885 * monotonic.
886 *
887 * It does however cause some slight miss-attribution of {soft,}irq
888 * time, a more accurate solution would be to update the irq_time using
889 * the current rq->clock timestamp, except that would require using
890 * atomic ops.
891 */
892 if (irq_delta > delta)
893 irq_delta = delta;
894
895 rq->prev_irq_time += irq_delta;
896 delta -= irq_delta;
095c0aa8
GC
897#endif
898#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 899 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
095c0aa8 906 rq->prev_steal_time_rq += steal;
095c0aa8
GC
907 delta -= steal;
908 }
909#endif
910
fe44d621
PZ
911 rq->clock_task += delta;
912
095c0aa8 913#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 914 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
915 sched_rt_avg_update(rq, irq_delta + steal);
916#endif
aa483808
VP
917}
918
34f971f6
PZ
919void sched_set_stop_task(int cpu, struct task_struct *stop)
920{
921 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
922 struct task_struct *old_stop = cpu_rq(cpu)->stop;
923
924 if (stop) {
925 /*
926 * Make it appear like a SCHED_FIFO task, its something
927 * userspace knows about and won't get confused about.
928 *
929 * Also, it will make PI more or less work without too
930 * much confusion -- but then, stop work should not
931 * rely on PI working anyway.
932 */
933 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
934
935 stop->sched_class = &stop_sched_class;
936 }
937
938 cpu_rq(cpu)->stop = stop;
939
940 if (old_stop) {
941 /*
942 * Reset it back to a normal scheduling class so that
943 * it can die in pieces.
944 */
945 old_stop->sched_class = &rt_sched_class;
946 }
947}
948
14531189 949/*
dd41f596 950 * __normal_prio - return the priority that is based on the static prio
14531189 951 */
14531189
IM
952static inline int __normal_prio(struct task_struct *p)
953{
dd41f596 954 return p->static_prio;
14531189
IM
955}
956
b29739f9
IM
957/*
958 * Calculate the expected normal priority: i.e. priority
959 * without taking RT-inheritance into account. Might be
960 * boosted by interactivity modifiers. Changes upon fork,
961 * setprio syscalls, and whenever the interactivity
962 * estimator recalculates.
963 */
36c8b586 964static inline int normal_prio(struct task_struct *p)
b29739f9
IM
965{
966 int prio;
967
aab03e05
DF
968 if (task_has_dl_policy(p))
969 prio = MAX_DL_PRIO-1;
970 else if (task_has_rt_policy(p))
b29739f9
IM
971 prio = MAX_RT_PRIO-1 - p->rt_priority;
972 else
973 prio = __normal_prio(p);
974 return prio;
975}
976
977/*
978 * Calculate the current priority, i.e. the priority
979 * taken into account by the scheduler. This value might
980 * be boosted by RT tasks, or might be boosted by
981 * interactivity modifiers. Will be RT if the task got
982 * RT-boosted. If not then it returns p->normal_prio.
983 */
36c8b586 984static int effective_prio(struct task_struct *p)
b29739f9
IM
985{
986 p->normal_prio = normal_prio(p);
987 /*
988 * If we are RT tasks or we were boosted to RT priority,
989 * keep the priority unchanged. Otherwise, update priority
990 * to the normal priority:
991 */
992 if (!rt_prio(p->prio))
993 return p->normal_prio;
994 return p->prio;
995}
996
1da177e4
LT
997/**
998 * task_curr - is this task currently executing on a CPU?
999 * @p: the task in question.
e69f6186
YB
1000 *
1001 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 1002 */
36c8b586 1003inline int task_curr(const struct task_struct *p)
1da177e4
LT
1004{
1005 return cpu_curr(task_cpu(p)) == p;
1006}
1007
cb469845
SR
1008static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1009 const struct sched_class *prev_class,
da7a735e 1010 int oldprio)
cb469845
SR
1011{
1012 if (prev_class != p->sched_class) {
1013 if (prev_class->switched_from)
da7a735e
PZ
1014 prev_class->switched_from(rq, p);
1015 p->sched_class->switched_to(rq, p);
2d3d891d 1016 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1017 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1018}
1019
029632fb 1020void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1021{
1022 const struct sched_class *class;
1023
1024 if (p->sched_class == rq->curr->sched_class) {
1025 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1026 } else {
1027 for_each_class(class) {
1028 if (class == rq->curr->sched_class)
1029 break;
1030 if (class == p->sched_class) {
8875125e 1031 resched_curr(rq);
1e5a7405
PZ
1032 break;
1033 }
1034 }
1035 }
1036
1037 /*
1038 * A queue event has occurred, and we're going to schedule. In
1039 * this case, we can save a useless back to back clock update.
1040 */
fd2f4419 1041 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1042 rq->skip_clock_update = 1;
1043}
1044
1da177e4 1045#ifdef CONFIG_SMP
dd41f596 1046void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1047{
e2912009
PZ
1048#ifdef CONFIG_SCHED_DEBUG
1049 /*
1050 * We should never call set_task_cpu() on a blocked task,
1051 * ttwu() will sort out the placement.
1052 */
077614ee 1053 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 1054 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
1055
1056#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1057 /*
1058 * The caller should hold either p->pi_lock or rq->lock, when changing
1059 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1060 *
1061 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1062 * see task_group().
6c6c54e1
PZ
1063 *
1064 * Furthermore, all task_rq users should acquire both locks, see
1065 * task_rq_lock().
1066 */
0122ec5b
PZ
1067 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1068 lockdep_is_held(&task_rq(p)->lock)));
1069#endif
e2912009
PZ
1070#endif
1071
de1d7286 1072 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1073
0c69774e 1074 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1075 if (p->sched_class->migrate_task_rq)
1076 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1077 p->se.nr_migrations++;
a8b0ca17 1078 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1079 }
dd41f596
IM
1080
1081 __set_task_cpu(p, new_cpu);
c65cc870
IM
1082}
1083
ac66f547
PZ
1084static void __migrate_swap_task(struct task_struct *p, int cpu)
1085{
1086 if (p->on_rq) {
1087 struct rq *src_rq, *dst_rq;
1088
1089 src_rq = task_rq(p);
1090 dst_rq = cpu_rq(cpu);
1091
1092 deactivate_task(src_rq, p, 0);
1093 set_task_cpu(p, cpu);
1094 activate_task(dst_rq, p, 0);
1095 check_preempt_curr(dst_rq, p, 0);
1096 } else {
1097 /*
1098 * Task isn't running anymore; make it appear like we migrated
1099 * it before it went to sleep. This means on wakeup we make the
1100 * previous cpu our targer instead of where it really is.
1101 */
1102 p->wake_cpu = cpu;
1103 }
1104}
1105
1106struct migration_swap_arg {
1107 struct task_struct *src_task, *dst_task;
1108 int src_cpu, dst_cpu;
1109};
1110
1111static int migrate_swap_stop(void *data)
1112{
1113 struct migration_swap_arg *arg = data;
1114 struct rq *src_rq, *dst_rq;
1115 int ret = -EAGAIN;
1116
1117 src_rq = cpu_rq(arg->src_cpu);
1118 dst_rq = cpu_rq(arg->dst_cpu);
1119
74602315
PZ
1120 double_raw_lock(&arg->src_task->pi_lock,
1121 &arg->dst_task->pi_lock);
ac66f547
PZ
1122 double_rq_lock(src_rq, dst_rq);
1123 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1124 goto unlock;
1125
1126 if (task_cpu(arg->src_task) != arg->src_cpu)
1127 goto unlock;
1128
1129 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1130 goto unlock;
1131
1132 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1133 goto unlock;
1134
1135 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1136 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1137
1138 ret = 0;
1139
1140unlock:
1141 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1142 raw_spin_unlock(&arg->dst_task->pi_lock);
1143 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1144
1145 return ret;
1146}
1147
1148/*
1149 * Cross migrate two tasks
1150 */
1151int migrate_swap(struct task_struct *cur, struct task_struct *p)
1152{
1153 struct migration_swap_arg arg;
1154 int ret = -EINVAL;
1155
ac66f547
PZ
1156 arg = (struct migration_swap_arg){
1157 .src_task = cur,
1158 .src_cpu = task_cpu(cur),
1159 .dst_task = p,
1160 .dst_cpu = task_cpu(p),
1161 };
1162
1163 if (arg.src_cpu == arg.dst_cpu)
1164 goto out;
1165
6acce3ef
PZ
1166 /*
1167 * These three tests are all lockless; this is OK since all of them
1168 * will be re-checked with proper locks held further down the line.
1169 */
ac66f547
PZ
1170 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1171 goto out;
1172
1173 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1174 goto out;
1175
1176 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1177 goto out;
1178
286549dc 1179 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1180 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1181
1182out:
ac66f547
PZ
1183 return ret;
1184}
1185
969c7921 1186struct migration_arg {
36c8b586 1187 struct task_struct *task;
1da177e4 1188 int dest_cpu;
70b97a7f 1189};
1da177e4 1190
969c7921
TH
1191static int migration_cpu_stop(void *data);
1192
1da177e4
LT
1193/*
1194 * wait_task_inactive - wait for a thread to unschedule.
1195 *
85ba2d86
RM
1196 * If @match_state is nonzero, it's the @p->state value just checked and
1197 * not expected to change. If it changes, i.e. @p might have woken up,
1198 * then return zero. When we succeed in waiting for @p to be off its CPU,
1199 * we return a positive number (its total switch count). If a second call
1200 * a short while later returns the same number, the caller can be sure that
1201 * @p has remained unscheduled the whole time.
1202 *
1da177e4
LT
1203 * The caller must ensure that the task *will* unschedule sometime soon,
1204 * else this function might spin for a *long* time. This function can't
1205 * be called with interrupts off, or it may introduce deadlock with
1206 * smp_call_function() if an IPI is sent by the same process we are
1207 * waiting to become inactive.
1208 */
85ba2d86 1209unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1210{
1211 unsigned long flags;
dd41f596 1212 int running, on_rq;
85ba2d86 1213 unsigned long ncsw;
70b97a7f 1214 struct rq *rq;
1da177e4 1215
3a5c359a
AK
1216 for (;;) {
1217 /*
1218 * We do the initial early heuristics without holding
1219 * any task-queue locks at all. We'll only try to get
1220 * the runqueue lock when things look like they will
1221 * work out!
1222 */
1223 rq = task_rq(p);
fa490cfd 1224
3a5c359a
AK
1225 /*
1226 * If the task is actively running on another CPU
1227 * still, just relax and busy-wait without holding
1228 * any locks.
1229 *
1230 * NOTE! Since we don't hold any locks, it's not
1231 * even sure that "rq" stays as the right runqueue!
1232 * But we don't care, since "task_running()" will
1233 * return false if the runqueue has changed and p
1234 * is actually now running somewhere else!
1235 */
85ba2d86
RM
1236 while (task_running(rq, p)) {
1237 if (match_state && unlikely(p->state != match_state))
1238 return 0;
3a5c359a 1239 cpu_relax();
85ba2d86 1240 }
fa490cfd 1241
3a5c359a
AK
1242 /*
1243 * Ok, time to look more closely! We need the rq
1244 * lock now, to be *sure*. If we're wrong, we'll
1245 * just go back and repeat.
1246 */
1247 rq = task_rq_lock(p, &flags);
27a9da65 1248 trace_sched_wait_task(p);
3a5c359a 1249 running = task_running(rq, p);
fd2f4419 1250 on_rq = p->on_rq;
85ba2d86 1251 ncsw = 0;
f31e11d8 1252 if (!match_state || p->state == match_state)
93dcf55f 1253 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1254 task_rq_unlock(rq, p, &flags);
fa490cfd 1255
85ba2d86
RM
1256 /*
1257 * If it changed from the expected state, bail out now.
1258 */
1259 if (unlikely(!ncsw))
1260 break;
1261
3a5c359a
AK
1262 /*
1263 * Was it really running after all now that we
1264 * checked with the proper locks actually held?
1265 *
1266 * Oops. Go back and try again..
1267 */
1268 if (unlikely(running)) {
1269 cpu_relax();
1270 continue;
1271 }
fa490cfd 1272
3a5c359a
AK
1273 /*
1274 * It's not enough that it's not actively running,
1275 * it must be off the runqueue _entirely_, and not
1276 * preempted!
1277 *
80dd99b3 1278 * So if it was still runnable (but just not actively
3a5c359a
AK
1279 * running right now), it's preempted, and we should
1280 * yield - it could be a while.
1281 */
1282 if (unlikely(on_rq)) {
8eb90c30
TG
1283 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1284
1285 set_current_state(TASK_UNINTERRUPTIBLE);
1286 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1287 continue;
1288 }
fa490cfd 1289
3a5c359a
AK
1290 /*
1291 * Ahh, all good. It wasn't running, and it wasn't
1292 * runnable, which means that it will never become
1293 * running in the future either. We're all done!
1294 */
1295 break;
1296 }
85ba2d86
RM
1297
1298 return ncsw;
1da177e4
LT
1299}
1300
1301/***
1302 * kick_process - kick a running thread to enter/exit the kernel
1303 * @p: the to-be-kicked thread
1304 *
1305 * Cause a process which is running on another CPU to enter
1306 * kernel-mode, without any delay. (to get signals handled.)
1307 *
25985edc 1308 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1309 * because all it wants to ensure is that the remote task enters
1310 * the kernel. If the IPI races and the task has been migrated
1311 * to another CPU then no harm is done and the purpose has been
1312 * achieved as well.
1313 */
36c8b586 1314void kick_process(struct task_struct *p)
1da177e4
LT
1315{
1316 int cpu;
1317
1318 preempt_disable();
1319 cpu = task_cpu(p);
1320 if ((cpu != smp_processor_id()) && task_curr(p))
1321 smp_send_reschedule(cpu);
1322 preempt_enable();
1323}
b43e3521 1324EXPORT_SYMBOL_GPL(kick_process);
476d139c 1325#endif /* CONFIG_SMP */
1da177e4 1326
970b13ba 1327#ifdef CONFIG_SMP
30da688e 1328/*
013fdb80 1329 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1330 */
5da9a0fb
PZ
1331static int select_fallback_rq(int cpu, struct task_struct *p)
1332{
aa00d89c
TC
1333 int nid = cpu_to_node(cpu);
1334 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1335 enum { cpuset, possible, fail } state = cpuset;
1336 int dest_cpu;
5da9a0fb 1337
aa00d89c
TC
1338 /*
1339 * If the node that the cpu is on has been offlined, cpu_to_node()
1340 * will return -1. There is no cpu on the node, and we should
1341 * select the cpu on the other node.
1342 */
1343 if (nid != -1) {
1344 nodemask = cpumask_of_node(nid);
1345
1346 /* Look for allowed, online CPU in same node. */
1347 for_each_cpu(dest_cpu, nodemask) {
1348 if (!cpu_online(dest_cpu))
1349 continue;
1350 if (!cpu_active(dest_cpu))
1351 continue;
1352 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1353 return dest_cpu;
1354 }
2baab4e9 1355 }
5da9a0fb 1356
2baab4e9
PZ
1357 for (;;) {
1358 /* Any allowed, online CPU? */
e3831edd 1359 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1360 if (!cpu_online(dest_cpu))
1361 continue;
1362 if (!cpu_active(dest_cpu))
1363 continue;
1364 goto out;
1365 }
5da9a0fb 1366
2baab4e9
PZ
1367 switch (state) {
1368 case cpuset:
1369 /* No more Mr. Nice Guy. */
1370 cpuset_cpus_allowed_fallback(p);
1371 state = possible;
1372 break;
1373
1374 case possible:
1375 do_set_cpus_allowed(p, cpu_possible_mask);
1376 state = fail;
1377 break;
1378
1379 case fail:
1380 BUG();
1381 break;
1382 }
1383 }
1384
1385out:
1386 if (state != cpuset) {
1387 /*
1388 * Don't tell them about moving exiting tasks or
1389 * kernel threads (both mm NULL), since they never
1390 * leave kernel.
1391 */
1392 if (p->mm && printk_ratelimit()) {
aac74dc4 1393 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1394 task_pid_nr(p), p->comm, cpu);
1395 }
5da9a0fb
PZ
1396 }
1397
1398 return dest_cpu;
1399}
1400
e2912009 1401/*
013fdb80 1402 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1403 */
970b13ba 1404static inline
ac66f547 1405int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1406{
ac66f547 1407 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1408
1409 /*
1410 * In order not to call set_task_cpu() on a blocking task we need
1411 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1412 * cpu.
1413 *
1414 * Since this is common to all placement strategies, this lives here.
1415 *
1416 * [ this allows ->select_task() to simply return task_cpu(p) and
1417 * not worry about this generic constraint ]
1418 */
fa17b507 1419 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1420 !cpu_online(cpu)))
5da9a0fb 1421 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1422
1423 return cpu;
970b13ba 1424}
09a40af5
MG
1425
1426static void update_avg(u64 *avg, u64 sample)
1427{
1428 s64 diff = sample - *avg;
1429 *avg += diff >> 3;
1430}
970b13ba
PZ
1431#endif
1432
d7c01d27 1433static void
b84cb5df 1434ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1435{
d7c01d27 1436#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1437 struct rq *rq = this_rq();
1438
d7c01d27
PZ
1439#ifdef CONFIG_SMP
1440 int this_cpu = smp_processor_id();
1441
1442 if (cpu == this_cpu) {
1443 schedstat_inc(rq, ttwu_local);
1444 schedstat_inc(p, se.statistics.nr_wakeups_local);
1445 } else {
1446 struct sched_domain *sd;
1447
1448 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1449 rcu_read_lock();
d7c01d27
PZ
1450 for_each_domain(this_cpu, sd) {
1451 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1452 schedstat_inc(sd, ttwu_wake_remote);
1453 break;
1454 }
1455 }
057f3fad 1456 rcu_read_unlock();
d7c01d27 1457 }
f339b9dc
PZ
1458
1459 if (wake_flags & WF_MIGRATED)
1460 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1461
d7c01d27
PZ
1462#endif /* CONFIG_SMP */
1463
1464 schedstat_inc(rq, ttwu_count);
9ed3811a 1465 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1466
1467 if (wake_flags & WF_SYNC)
9ed3811a 1468 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1469
d7c01d27
PZ
1470#endif /* CONFIG_SCHEDSTATS */
1471}
1472
1473static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1474{
9ed3811a 1475 activate_task(rq, p, en_flags);
fd2f4419 1476 p->on_rq = 1;
c2f7115e
PZ
1477
1478 /* if a worker is waking up, notify workqueue */
1479 if (p->flags & PF_WQ_WORKER)
1480 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1481}
1482
23f41eeb
PZ
1483/*
1484 * Mark the task runnable and perform wakeup-preemption.
1485 */
89363381 1486static void
23f41eeb 1487ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1488{
9ed3811a 1489 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1490 trace_sched_wakeup(p, true);
9ed3811a
TH
1491
1492 p->state = TASK_RUNNING;
1493#ifdef CONFIG_SMP
1494 if (p->sched_class->task_woken)
1495 p->sched_class->task_woken(rq, p);
1496
e69c6341 1497 if (rq->idle_stamp) {
78becc27 1498 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1499 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1500
abfafa54
JL
1501 update_avg(&rq->avg_idle, delta);
1502
1503 if (rq->avg_idle > max)
9ed3811a 1504 rq->avg_idle = max;
abfafa54 1505
9ed3811a
TH
1506 rq->idle_stamp = 0;
1507 }
1508#endif
1509}
1510
c05fbafb
PZ
1511static void
1512ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1513{
1514#ifdef CONFIG_SMP
1515 if (p->sched_contributes_to_load)
1516 rq->nr_uninterruptible--;
1517#endif
1518
1519 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1520 ttwu_do_wakeup(rq, p, wake_flags);
1521}
1522
1523/*
1524 * Called in case the task @p isn't fully descheduled from its runqueue,
1525 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1526 * since all we need to do is flip p->state to TASK_RUNNING, since
1527 * the task is still ->on_rq.
1528 */
1529static int ttwu_remote(struct task_struct *p, int wake_flags)
1530{
1531 struct rq *rq;
1532 int ret = 0;
1533
1534 rq = __task_rq_lock(p);
1535 if (p->on_rq) {
1ad4ec0d
FW
1536 /* check_preempt_curr() may use rq clock */
1537 update_rq_clock(rq);
c05fbafb
PZ
1538 ttwu_do_wakeup(rq, p, wake_flags);
1539 ret = 1;
1540 }
1541 __task_rq_unlock(rq);
1542
1543 return ret;
1544}
1545
317f3941 1546#ifdef CONFIG_SMP
e3baac47 1547void sched_ttwu_pending(void)
317f3941
PZ
1548{
1549 struct rq *rq = this_rq();
fa14ff4a
PZ
1550 struct llist_node *llist = llist_del_all(&rq->wake_list);
1551 struct task_struct *p;
e3baac47 1552 unsigned long flags;
317f3941 1553
e3baac47
PZ
1554 if (!llist)
1555 return;
1556
1557 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1558
fa14ff4a
PZ
1559 while (llist) {
1560 p = llist_entry(llist, struct task_struct, wake_entry);
1561 llist = llist_next(llist);
317f3941
PZ
1562 ttwu_do_activate(rq, p, 0);
1563 }
1564
e3baac47 1565 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1566}
1567
1568void scheduler_ipi(void)
1569{
f27dde8d
PZ
1570 /*
1571 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1572 * TIF_NEED_RESCHED remotely (for the first time) will also send
1573 * this IPI.
1574 */
8cb75e0c 1575 preempt_fold_need_resched();
f27dde8d 1576
fd2ac4f4 1577 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1578 return;
1579
1580 /*
1581 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1582 * traditionally all their work was done from the interrupt return
1583 * path. Now that we actually do some work, we need to make sure
1584 * we do call them.
1585 *
1586 * Some archs already do call them, luckily irq_enter/exit nest
1587 * properly.
1588 *
1589 * Arguably we should visit all archs and update all handlers,
1590 * however a fair share of IPIs are still resched only so this would
1591 * somewhat pessimize the simple resched case.
1592 */
1593 irq_enter();
fa14ff4a 1594 sched_ttwu_pending();
ca38062e
SS
1595
1596 /*
1597 * Check if someone kicked us for doing the nohz idle load balance.
1598 */
873b4c65 1599 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1600 this_rq()->idle_balance = 1;
ca38062e 1601 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1602 }
c5d753a5 1603 irq_exit();
317f3941
PZ
1604}
1605
1606static void ttwu_queue_remote(struct task_struct *p, int cpu)
1607{
e3baac47
PZ
1608 struct rq *rq = cpu_rq(cpu);
1609
1610 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1611 if (!set_nr_if_polling(rq->idle))
1612 smp_send_reschedule(cpu);
1613 else
1614 trace_sched_wake_idle_without_ipi(cpu);
1615 }
317f3941 1616}
d6aa8f85 1617
39be3501 1618bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1619{
1620 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1621}
d6aa8f85 1622#endif /* CONFIG_SMP */
317f3941 1623
c05fbafb
PZ
1624static void ttwu_queue(struct task_struct *p, int cpu)
1625{
1626 struct rq *rq = cpu_rq(cpu);
1627
17d9f311 1628#if defined(CONFIG_SMP)
39be3501 1629 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1630 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1631 ttwu_queue_remote(p, cpu);
1632 return;
1633 }
1634#endif
1635
c05fbafb
PZ
1636 raw_spin_lock(&rq->lock);
1637 ttwu_do_activate(rq, p, 0);
1638 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1639}
1640
1641/**
1da177e4 1642 * try_to_wake_up - wake up a thread
9ed3811a 1643 * @p: the thread to be awakened
1da177e4 1644 * @state: the mask of task states that can be woken
9ed3811a 1645 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1646 *
1647 * Put it on the run-queue if it's not already there. The "current"
1648 * thread is always on the run-queue (except when the actual
1649 * re-schedule is in progress), and as such you're allowed to do
1650 * the simpler "current->state = TASK_RUNNING" to mark yourself
1651 * runnable without the overhead of this.
1652 *
e69f6186 1653 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1654 * or @state didn't match @p's state.
1da177e4 1655 */
e4a52bcb
PZ
1656static int
1657try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1658{
1da177e4 1659 unsigned long flags;
c05fbafb 1660 int cpu, success = 0;
2398f2c6 1661
e0acd0a6
ON
1662 /*
1663 * If we are going to wake up a thread waiting for CONDITION we
1664 * need to ensure that CONDITION=1 done by the caller can not be
1665 * reordered with p->state check below. This pairs with mb() in
1666 * set_current_state() the waiting thread does.
1667 */
1668 smp_mb__before_spinlock();
013fdb80 1669 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1670 if (!(p->state & state))
1da177e4
LT
1671 goto out;
1672
c05fbafb 1673 success = 1; /* we're going to change ->state */
1da177e4 1674 cpu = task_cpu(p);
1da177e4 1675
c05fbafb
PZ
1676 if (p->on_rq && ttwu_remote(p, wake_flags))
1677 goto stat;
1da177e4 1678
1da177e4 1679#ifdef CONFIG_SMP
e9c84311 1680 /*
c05fbafb
PZ
1681 * If the owning (remote) cpu is still in the middle of schedule() with
1682 * this task as prev, wait until its done referencing the task.
e9c84311 1683 */
f3e94786 1684 while (p->on_cpu)
e4a52bcb 1685 cpu_relax();
0970d299 1686 /*
e4a52bcb 1687 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1688 */
e4a52bcb 1689 smp_rmb();
1da177e4 1690
a8e4f2ea 1691 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1692 p->state = TASK_WAKING;
e7693a36 1693
e4a52bcb 1694 if (p->sched_class->task_waking)
74f8e4b2 1695 p->sched_class->task_waking(p);
efbbd05a 1696
ac66f547 1697 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1698 if (task_cpu(p) != cpu) {
1699 wake_flags |= WF_MIGRATED;
e4a52bcb 1700 set_task_cpu(p, cpu);
f339b9dc 1701 }
1da177e4 1702#endif /* CONFIG_SMP */
1da177e4 1703
c05fbafb
PZ
1704 ttwu_queue(p, cpu);
1705stat:
b84cb5df 1706 ttwu_stat(p, cpu, wake_flags);
1da177e4 1707out:
013fdb80 1708 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1709
1710 return success;
1711}
1712
21aa9af0
TH
1713/**
1714 * try_to_wake_up_local - try to wake up a local task with rq lock held
1715 * @p: the thread to be awakened
1716 *
2acca55e 1717 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1718 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1719 * the current task.
21aa9af0
TH
1720 */
1721static void try_to_wake_up_local(struct task_struct *p)
1722{
1723 struct rq *rq = task_rq(p);
21aa9af0 1724
383efcd0
TH
1725 if (WARN_ON_ONCE(rq != this_rq()) ||
1726 WARN_ON_ONCE(p == current))
1727 return;
1728
21aa9af0
TH
1729 lockdep_assert_held(&rq->lock);
1730
2acca55e
PZ
1731 if (!raw_spin_trylock(&p->pi_lock)) {
1732 raw_spin_unlock(&rq->lock);
1733 raw_spin_lock(&p->pi_lock);
1734 raw_spin_lock(&rq->lock);
1735 }
1736
21aa9af0 1737 if (!(p->state & TASK_NORMAL))
2acca55e 1738 goto out;
21aa9af0 1739
fd2f4419 1740 if (!p->on_rq)
d7c01d27
PZ
1741 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1742
23f41eeb 1743 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1744 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1745out:
1746 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1747}
1748
50fa610a
DH
1749/**
1750 * wake_up_process - Wake up a specific process
1751 * @p: The process to be woken up.
1752 *
1753 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1754 * processes.
1755 *
1756 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1757 *
1758 * It may be assumed that this function implies a write memory barrier before
1759 * changing the task state if and only if any tasks are woken up.
1760 */
7ad5b3a5 1761int wake_up_process(struct task_struct *p)
1da177e4 1762{
9067ac85
ON
1763 WARN_ON(task_is_stopped_or_traced(p));
1764 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1765}
1da177e4
LT
1766EXPORT_SYMBOL(wake_up_process);
1767
7ad5b3a5 1768int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1769{
1770 return try_to_wake_up(p, state, 0);
1771}
1772
1da177e4
LT
1773/*
1774 * Perform scheduler related setup for a newly forked process p.
1775 * p is forked by current.
dd41f596
IM
1776 *
1777 * __sched_fork() is basic setup used by init_idle() too:
1778 */
5e1576ed 1779static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1780{
fd2f4419
PZ
1781 p->on_rq = 0;
1782
1783 p->se.on_rq = 0;
dd41f596
IM
1784 p->se.exec_start = 0;
1785 p->se.sum_exec_runtime = 0;
f6cf891c 1786 p->se.prev_sum_exec_runtime = 0;
6c594c21 1787 p->se.nr_migrations = 0;
da7a735e 1788 p->se.vruntime = 0;
fd2f4419 1789 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1790
1791#ifdef CONFIG_SCHEDSTATS
41acab88 1792 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1793#endif
476d139c 1794
aab03e05
DF
1795 RB_CLEAR_NODE(&p->dl.rb_node);
1796 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1797 p->dl.dl_runtime = p->dl.runtime = 0;
1798 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1799 p->dl.dl_period = 0;
aab03e05
DF
1800 p->dl.flags = 0;
1801
fa717060 1802 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1803
e107be36
AK
1804#ifdef CONFIG_PREEMPT_NOTIFIERS
1805 INIT_HLIST_HEAD(&p->preempt_notifiers);
1806#endif
cbee9f88
PZ
1807
1808#ifdef CONFIG_NUMA_BALANCING
1809 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1810 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1811 p->mm->numa_scan_seq = 0;
1812 }
1813
5e1576ed
RR
1814 if (clone_flags & CLONE_VM)
1815 p->numa_preferred_nid = current->numa_preferred_nid;
1816 else
1817 p->numa_preferred_nid = -1;
1818
cbee9f88
PZ
1819 p->node_stamp = 0ULL;
1820 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1821 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1822 p->numa_work.next = &p->numa_work;
ff1df896
RR
1823 p->numa_faults_memory = NULL;
1824 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1825 p->last_task_numa_placement = 0;
1826 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1827
1828 INIT_LIST_HEAD(&p->numa_entry);
1829 p->numa_group = NULL;
cbee9f88 1830#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1831}
1832
1a687c2e 1833#ifdef CONFIG_NUMA_BALANCING
3105b86a 1834#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1835void set_numabalancing_state(bool enabled)
1836{
1837 if (enabled)
1838 sched_feat_set("NUMA");
1839 else
1840 sched_feat_set("NO_NUMA");
1841}
3105b86a
MG
1842#else
1843__read_mostly bool numabalancing_enabled;
1844
1845void set_numabalancing_state(bool enabled)
1846{
1847 numabalancing_enabled = enabled;
dd41f596 1848}
3105b86a 1849#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1850
1851#ifdef CONFIG_PROC_SYSCTL
1852int sysctl_numa_balancing(struct ctl_table *table, int write,
1853 void __user *buffer, size_t *lenp, loff_t *ppos)
1854{
1855 struct ctl_table t;
1856 int err;
1857 int state = numabalancing_enabled;
1858
1859 if (write && !capable(CAP_SYS_ADMIN))
1860 return -EPERM;
1861
1862 t = *table;
1863 t.data = &state;
1864 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1865 if (err < 0)
1866 return err;
1867 if (write)
1868 set_numabalancing_state(state);
1869 return err;
1870}
1871#endif
1872#endif
dd41f596
IM
1873
1874/*
1875 * fork()/clone()-time setup:
1876 */
aab03e05 1877int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1878{
0122ec5b 1879 unsigned long flags;
dd41f596
IM
1880 int cpu = get_cpu();
1881
5e1576ed 1882 __sched_fork(clone_flags, p);
06b83b5f 1883 /*
0017d735 1884 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1885 * nobody will actually run it, and a signal or other external
1886 * event cannot wake it up and insert it on the runqueue either.
1887 */
0017d735 1888 p->state = TASK_RUNNING;
dd41f596 1889
c350a04e
MG
1890 /*
1891 * Make sure we do not leak PI boosting priority to the child.
1892 */
1893 p->prio = current->normal_prio;
1894
b9dc29e7
MG
1895 /*
1896 * Revert to default priority/policy on fork if requested.
1897 */
1898 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1899 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1900 p->policy = SCHED_NORMAL;
6c697bdf 1901 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1902 p->rt_priority = 0;
1903 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1904 p->static_prio = NICE_TO_PRIO(0);
1905
1906 p->prio = p->normal_prio = __normal_prio(p);
1907 set_load_weight(p);
6c697bdf 1908
b9dc29e7
MG
1909 /*
1910 * We don't need the reset flag anymore after the fork. It has
1911 * fulfilled its duty:
1912 */
1913 p->sched_reset_on_fork = 0;
1914 }
ca94c442 1915
aab03e05
DF
1916 if (dl_prio(p->prio)) {
1917 put_cpu();
1918 return -EAGAIN;
1919 } else if (rt_prio(p->prio)) {
1920 p->sched_class = &rt_sched_class;
1921 } else {
2ddbf952 1922 p->sched_class = &fair_sched_class;
aab03e05 1923 }
b29739f9 1924
cd29fe6f
PZ
1925 if (p->sched_class->task_fork)
1926 p->sched_class->task_fork(p);
1927
86951599
PZ
1928 /*
1929 * The child is not yet in the pid-hash so no cgroup attach races,
1930 * and the cgroup is pinned to this child due to cgroup_fork()
1931 * is ran before sched_fork().
1932 *
1933 * Silence PROVE_RCU.
1934 */
0122ec5b 1935 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1936 set_task_cpu(p, cpu);
0122ec5b 1937 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1938
52f17b6c 1939#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1940 if (likely(sched_info_on()))
52f17b6c 1941 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1942#endif
3ca7a440
PZ
1943#if defined(CONFIG_SMP)
1944 p->on_cpu = 0;
4866cde0 1945#endif
01028747 1946 init_task_preempt_count(p);
806c09a7 1947#ifdef CONFIG_SMP
917b627d 1948 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1949 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1950#endif
917b627d 1951
476d139c 1952 put_cpu();
aab03e05 1953 return 0;
1da177e4
LT
1954}
1955
332ac17e
DF
1956unsigned long to_ratio(u64 period, u64 runtime)
1957{
1958 if (runtime == RUNTIME_INF)
1959 return 1ULL << 20;
1960
1961 /*
1962 * Doing this here saves a lot of checks in all
1963 * the calling paths, and returning zero seems
1964 * safe for them anyway.
1965 */
1966 if (period == 0)
1967 return 0;
1968
1969 return div64_u64(runtime << 20, period);
1970}
1971
1972#ifdef CONFIG_SMP
1973inline struct dl_bw *dl_bw_of(int i)
1974{
1975 return &cpu_rq(i)->rd->dl_bw;
1976}
1977
de212f18 1978static inline int dl_bw_cpus(int i)
332ac17e 1979{
de212f18
PZ
1980 struct root_domain *rd = cpu_rq(i)->rd;
1981 int cpus = 0;
1982
1983 for_each_cpu_and(i, rd->span, cpu_active_mask)
1984 cpus++;
1985
1986 return cpus;
332ac17e
DF
1987}
1988#else
1989inline struct dl_bw *dl_bw_of(int i)
1990{
1991 return &cpu_rq(i)->dl.dl_bw;
1992}
1993
de212f18 1994static inline int dl_bw_cpus(int i)
332ac17e
DF
1995{
1996 return 1;
1997}
1998#endif
1999
2000static inline
2001void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
2002{
2003 dl_b->total_bw -= tsk_bw;
2004}
2005
2006static inline
2007void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
2008{
2009 dl_b->total_bw += tsk_bw;
2010}
2011
2012static inline
2013bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
2014{
2015 return dl_b->bw != -1 &&
2016 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
2017}
2018
2019/*
2020 * We must be sure that accepting a new task (or allowing changing the
2021 * parameters of an existing one) is consistent with the bandwidth
2022 * constraints. If yes, this function also accordingly updates the currently
2023 * allocated bandwidth to reflect the new situation.
2024 *
2025 * This function is called while holding p's rq->lock.
2026 */
2027static int dl_overflow(struct task_struct *p, int policy,
2028 const struct sched_attr *attr)
2029{
2030
2031 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2032 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2033 u64 runtime = attr->sched_runtime;
2034 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2035 int cpus, err = -1;
332ac17e
DF
2036
2037 if (new_bw == p->dl.dl_bw)
2038 return 0;
2039
2040 /*
2041 * Either if a task, enters, leave, or stays -deadline but changes
2042 * its parameters, we may need to update accordingly the total
2043 * allocated bandwidth of the container.
2044 */
2045 raw_spin_lock(&dl_b->lock);
de212f18 2046 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2047 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2048 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2049 __dl_add(dl_b, new_bw);
2050 err = 0;
2051 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2052 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2053 __dl_clear(dl_b, p->dl.dl_bw);
2054 __dl_add(dl_b, new_bw);
2055 err = 0;
2056 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2057 __dl_clear(dl_b, p->dl.dl_bw);
2058 err = 0;
2059 }
2060 raw_spin_unlock(&dl_b->lock);
2061
2062 return err;
2063}
2064
2065extern void init_dl_bw(struct dl_bw *dl_b);
2066
1da177e4
LT
2067/*
2068 * wake_up_new_task - wake up a newly created task for the first time.
2069 *
2070 * This function will do some initial scheduler statistics housekeeping
2071 * that must be done for every newly created context, then puts the task
2072 * on the runqueue and wakes it.
2073 */
3e51e3ed 2074void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2075{
2076 unsigned long flags;
dd41f596 2077 struct rq *rq;
fabf318e 2078
ab2515c4 2079 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2080#ifdef CONFIG_SMP
2081 /*
2082 * Fork balancing, do it here and not earlier because:
2083 * - cpus_allowed can change in the fork path
2084 * - any previously selected cpu might disappear through hotplug
fabf318e 2085 */
ac66f547 2086 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2087#endif
2088
a75cdaa9
AS
2089 /* Initialize new task's runnable average */
2090 init_task_runnable_average(p);
ab2515c4 2091 rq = __task_rq_lock(p);
cd29fe6f 2092 activate_task(rq, p, 0);
fd2f4419 2093 p->on_rq = 1;
89363381 2094 trace_sched_wakeup_new(p, true);
a7558e01 2095 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2096#ifdef CONFIG_SMP
efbbd05a
PZ
2097 if (p->sched_class->task_woken)
2098 p->sched_class->task_woken(rq, p);
9a897c5a 2099#endif
0122ec5b 2100 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2101}
2102
e107be36
AK
2103#ifdef CONFIG_PREEMPT_NOTIFIERS
2104
2105/**
80dd99b3 2106 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2107 * @notifier: notifier struct to register
e107be36
AK
2108 */
2109void preempt_notifier_register(struct preempt_notifier *notifier)
2110{
2111 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2112}
2113EXPORT_SYMBOL_GPL(preempt_notifier_register);
2114
2115/**
2116 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2117 * @notifier: notifier struct to unregister
e107be36
AK
2118 *
2119 * This is safe to call from within a preemption notifier.
2120 */
2121void preempt_notifier_unregister(struct preempt_notifier *notifier)
2122{
2123 hlist_del(&notifier->link);
2124}
2125EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2126
2127static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2128{
2129 struct preempt_notifier *notifier;
e107be36 2130
b67bfe0d 2131 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2132 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2133}
2134
2135static void
2136fire_sched_out_preempt_notifiers(struct task_struct *curr,
2137 struct task_struct *next)
2138{
2139 struct preempt_notifier *notifier;
e107be36 2140
b67bfe0d 2141 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2142 notifier->ops->sched_out(notifier, next);
2143}
2144
6d6bc0ad 2145#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2146
2147static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2148{
2149}
2150
2151static void
2152fire_sched_out_preempt_notifiers(struct task_struct *curr,
2153 struct task_struct *next)
2154{
2155}
2156
6d6bc0ad 2157#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2158
4866cde0
NP
2159/**
2160 * prepare_task_switch - prepare to switch tasks
2161 * @rq: the runqueue preparing to switch
421cee29 2162 * @prev: the current task that is being switched out
4866cde0
NP
2163 * @next: the task we are going to switch to.
2164 *
2165 * This is called with the rq lock held and interrupts off. It must
2166 * be paired with a subsequent finish_task_switch after the context
2167 * switch.
2168 *
2169 * prepare_task_switch sets up locking and calls architecture specific
2170 * hooks.
2171 */
e107be36
AK
2172static inline void
2173prepare_task_switch(struct rq *rq, struct task_struct *prev,
2174 struct task_struct *next)
4866cde0 2175{
895dd92c 2176 trace_sched_switch(prev, next);
43148951 2177 sched_info_switch(rq, prev, next);
fe4b04fa 2178 perf_event_task_sched_out(prev, next);
e107be36 2179 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2180 prepare_lock_switch(rq, next);
2181 prepare_arch_switch(next);
2182}
2183
1da177e4
LT
2184/**
2185 * finish_task_switch - clean up after a task-switch
344babaa 2186 * @rq: runqueue associated with task-switch
1da177e4
LT
2187 * @prev: the thread we just switched away from.
2188 *
4866cde0
NP
2189 * finish_task_switch must be called after the context switch, paired
2190 * with a prepare_task_switch call before the context switch.
2191 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2192 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2193 *
2194 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2195 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2196 * with the lock held can cause deadlocks; see schedule() for
2197 * details.)
2198 */
a9957449 2199static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2200 __releases(rq->lock)
2201{
1da177e4 2202 struct mm_struct *mm = rq->prev_mm;
55a101f8 2203 long prev_state;
1da177e4
LT
2204
2205 rq->prev_mm = NULL;
2206
2207 /*
2208 * A task struct has one reference for the use as "current".
c394cc9f 2209 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2210 * schedule one last time. The schedule call will never return, and
2211 * the scheduled task must drop that reference.
c394cc9f 2212 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2213 * still held, otherwise prev could be scheduled on another cpu, die
2214 * there before we look at prev->state, and then the reference would
2215 * be dropped twice.
2216 * Manfred Spraul <manfred@colorfullife.com>
2217 */
55a101f8 2218 prev_state = prev->state;
bf9fae9f 2219 vtime_task_switch(prev);
4866cde0 2220 finish_arch_switch(prev);
a8d757ef 2221 perf_event_task_sched_in(prev, current);
4866cde0 2222 finish_lock_switch(rq, prev);
01f23e16 2223 finish_arch_post_lock_switch();
e8fa1362 2224
e107be36 2225 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2226 if (mm)
2227 mmdrop(mm);
c394cc9f 2228 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2229 if (prev->sched_class->task_dead)
2230 prev->sched_class->task_dead(prev);
2231
c6fd91f0 2232 /*
2233 * Remove function-return probe instances associated with this
2234 * task and put them back on the free list.
9761eea8 2235 */
c6fd91f0 2236 kprobe_flush_task(prev);
1da177e4 2237 put_task_struct(prev);
c6fd91f0 2238 }
99e5ada9
FW
2239
2240 tick_nohz_task_switch(current);
1da177e4
LT
2241}
2242
3f029d3c
GH
2243#ifdef CONFIG_SMP
2244
3f029d3c
GH
2245/* rq->lock is NOT held, but preemption is disabled */
2246static inline void post_schedule(struct rq *rq)
2247{
2248 if (rq->post_schedule) {
2249 unsigned long flags;
2250
05fa785c 2251 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2252 if (rq->curr->sched_class->post_schedule)
2253 rq->curr->sched_class->post_schedule(rq);
05fa785c 2254 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2255
2256 rq->post_schedule = 0;
2257 }
2258}
2259
2260#else
da19ab51 2261
3f029d3c
GH
2262static inline void post_schedule(struct rq *rq)
2263{
1da177e4
LT
2264}
2265
3f029d3c
GH
2266#endif
2267
1da177e4
LT
2268/**
2269 * schedule_tail - first thing a freshly forked thread must call.
2270 * @prev: the thread we just switched away from.
2271 */
722a9f92 2272asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2273 __releases(rq->lock)
2274{
70b97a7f
IM
2275 struct rq *rq = this_rq();
2276
4866cde0 2277 finish_task_switch(rq, prev);
da19ab51 2278
3f029d3c
GH
2279 /*
2280 * FIXME: do we need to worry about rq being invalidated by the
2281 * task_switch?
2282 */
2283 post_schedule(rq);
70b97a7f 2284
4866cde0
NP
2285#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2286 /* In this case, finish_task_switch does not reenable preemption */
2287 preempt_enable();
2288#endif
1da177e4 2289 if (current->set_child_tid)
b488893a 2290 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2291}
2292
2293/*
2294 * context_switch - switch to the new MM and the new
2295 * thread's register state.
2296 */
dd41f596 2297static inline void
70b97a7f 2298context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2299 struct task_struct *next)
1da177e4 2300{
dd41f596 2301 struct mm_struct *mm, *oldmm;
1da177e4 2302
e107be36 2303 prepare_task_switch(rq, prev, next);
fe4b04fa 2304
dd41f596
IM
2305 mm = next->mm;
2306 oldmm = prev->active_mm;
9226d125
ZA
2307 /*
2308 * For paravirt, this is coupled with an exit in switch_to to
2309 * combine the page table reload and the switch backend into
2310 * one hypercall.
2311 */
224101ed 2312 arch_start_context_switch(prev);
9226d125 2313
31915ab4 2314 if (!mm) {
1da177e4
LT
2315 next->active_mm = oldmm;
2316 atomic_inc(&oldmm->mm_count);
2317 enter_lazy_tlb(oldmm, next);
2318 } else
2319 switch_mm(oldmm, mm, next);
2320
31915ab4 2321 if (!prev->mm) {
1da177e4 2322 prev->active_mm = NULL;
1da177e4
LT
2323 rq->prev_mm = oldmm;
2324 }
3a5f5e48
IM
2325 /*
2326 * Since the runqueue lock will be released by the next
2327 * task (which is an invalid locking op but in the case
2328 * of the scheduler it's an obvious special-case), so we
2329 * do an early lockdep release here:
2330 */
2331#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2332 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2333#endif
1da177e4 2334
91d1aa43 2335 context_tracking_task_switch(prev, next);
1da177e4
LT
2336 /* Here we just switch the register state and the stack. */
2337 switch_to(prev, next, prev);
2338
dd41f596
IM
2339 barrier();
2340 /*
2341 * this_rq must be evaluated again because prev may have moved
2342 * CPUs since it called schedule(), thus the 'rq' on its stack
2343 * frame will be invalid.
2344 */
2345 finish_task_switch(this_rq(), prev);
1da177e4
LT
2346}
2347
2348/*
1c3e8264 2349 * nr_running and nr_context_switches:
1da177e4
LT
2350 *
2351 * externally visible scheduler statistics: current number of runnable
1c3e8264 2352 * threads, total number of context switches performed since bootup.
1da177e4
LT
2353 */
2354unsigned long nr_running(void)
2355{
2356 unsigned long i, sum = 0;
2357
2358 for_each_online_cpu(i)
2359 sum += cpu_rq(i)->nr_running;
2360
2361 return sum;
f711f609 2362}
1da177e4 2363
1da177e4 2364unsigned long long nr_context_switches(void)
46cb4b7c 2365{
cc94abfc
SR
2366 int i;
2367 unsigned long long sum = 0;
46cb4b7c 2368
0a945022 2369 for_each_possible_cpu(i)
1da177e4 2370 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2371
1da177e4
LT
2372 return sum;
2373}
483b4ee6 2374
1da177e4
LT
2375unsigned long nr_iowait(void)
2376{
2377 unsigned long i, sum = 0;
483b4ee6 2378
0a945022 2379 for_each_possible_cpu(i)
1da177e4 2380 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2381
1da177e4
LT
2382 return sum;
2383}
483b4ee6 2384
8c215bd3 2385unsigned long nr_iowait_cpu(int cpu)
69d25870 2386{
8c215bd3 2387 struct rq *this = cpu_rq(cpu);
69d25870
AV
2388 return atomic_read(&this->nr_iowait);
2389}
46cb4b7c 2390
dd41f596 2391#ifdef CONFIG_SMP
8a0be9ef 2392
46cb4b7c 2393/*
38022906
PZ
2394 * sched_exec - execve() is a valuable balancing opportunity, because at
2395 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2396 */
38022906 2397void sched_exec(void)
46cb4b7c 2398{
38022906 2399 struct task_struct *p = current;
1da177e4 2400 unsigned long flags;
0017d735 2401 int dest_cpu;
46cb4b7c 2402
8f42ced9 2403 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2404 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2405 if (dest_cpu == smp_processor_id())
2406 goto unlock;
38022906 2407
8f42ced9 2408 if (likely(cpu_active(dest_cpu))) {
969c7921 2409 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2410
8f42ced9
PZ
2411 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2412 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2413 return;
2414 }
0017d735 2415unlock:
8f42ced9 2416 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2417}
dd41f596 2418
1da177e4
LT
2419#endif
2420
1da177e4 2421DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2422DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2423
2424EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2425EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2426
2427/*
c5f8d995 2428 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2429 * @p in case that task is currently running.
c5f8d995
HS
2430 *
2431 * Called with task_rq_lock() held on @rq.
1da177e4 2432 */
c5f8d995
HS
2433static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2434{
2435 u64 ns = 0;
2436
4036ac15
MG
2437 /*
2438 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2439 * project cycles that may never be accounted to this
2440 * thread, breaking clock_gettime().
2441 */
2442 if (task_current(rq, p) && p->on_rq) {
c5f8d995 2443 update_rq_clock(rq);
78becc27 2444 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2445 if ((s64)ns < 0)
2446 ns = 0;
2447 }
2448
2449 return ns;
2450}
2451
bb34d92f 2452unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2453{
1da177e4 2454 unsigned long flags;
41b86e9c 2455 struct rq *rq;
bb34d92f 2456 u64 ns = 0;
48f24c4d 2457
41b86e9c 2458 rq = task_rq_lock(p, &flags);
c5f8d995 2459 ns = do_task_delta_exec(p, rq);
0122ec5b 2460 task_rq_unlock(rq, p, &flags);
1508487e 2461
c5f8d995
HS
2462 return ns;
2463}
f06febc9 2464
c5f8d995
HS
2465/*
2466 * Return accounted runtime for the task.
2467 * In case the task is currently running, return the runtime plus current's
2468 * pending runtime that have not been accounted yet.
2469 */
2470unsigned long long task_sched_runtime(struct task_struct *p)
2471{
2472 unsigned long flags;
2473 struct rq *rq;
2474 u64 ns = 0;
2475
911b2898
PZ
2476#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2477 /*
2478 * 64-bit doesn't need locks to atomically read a 64bit value.
2479 * So we have a optimization chance when the task's delta_exec is 0.
2480 * Reading ->on_cpu is racy, but this is ok.
2481 *
2482 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2483 * If we race with it entering cpu, unaccounted time is 0. This is
2484 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2485 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2486 * been accounted, so we're correct here as well.
911b2898 2487 */
4036ac15 2488 if (!p->on_cpu || !p->on_rq)
911b2898
PZ
2489 return p->se.sum_exec_runtime;
2490#endif
2491
c5f8d995
HS
2492 rq = task_rq_lock(p, &flags);
2493 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2494 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2495
2496 return ns;
2497}
48f24c4d 2498
7835b98b
CL
2499/*
2500 * This function gets called by the timer code, with HZ frequency.
2501 * We call it with interrupts disabled.
7835b98b
CL
2502 */
2503void scheduler_tick(void)
2504{
7835b98b
CL
2505 int cpu = smp_processor_id();
2506 struct rq *rq = cpu_rq(cpu);
dd41f596 2507 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2508
2509 sched_clock_tick();
dd41f596 2510
05fa785c 2511 raw_spin_lock(&rq->lock);
3e51f33f 2512 update_rq_clock(rq);
fa85ae24 2513 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2514 update_cpu_load_active(rq);
05fa785c 2515 raw_spin_unlock(&rq->lock);
7835b98b 2516
e9d2b064 2517 perf_event_task_tick();
e220d2dc 2518
e418e1c2 2519#ifdef CONFIG_SMP
6eb57e0d 2520 rq->idle_balance = idle_cpu(cpu);
7caff66f 2521 trigger_load_balance(rq);
e418e1c2 2522#endif
265f22a9 2523 rq_last_tick_reset(rq);
1da177e4
LT
2524}
2525
265f22a9
FW
2526#ifdef CONFIG_NO_HZ_FULL
2527/**
2528 * scheduler_tick_max_deferment
2529 *
2530 * Keep at least one tick per second when a single
2531 * active task is running because the scheduler doesn't
2532 * yet completely support full dynticks environment.
2533 *
2534 * This makes sure that uptime, CFS vruntime, load
2535 * balancing, etc... continue to move forward, even
2536 * with a very low granularity.
e69f6186
YB
2537 *
2538 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2539 */
2540u64 scheduler_tick_max_deferment(void)
2541{
2542 struct rq *rq = this_rq();
2543 unsigned long next, now = ACCESS_ONCE(jiffies);
2544
2545 next = rq->last_sched_tick + HZ;
2546
2547 if (time_before_eq(next, now))
2548 return 0;
2549
8fe8ff09 2550 return jiffies_to_nsecs(next - now);
1da177e4 2551}
265f22a9 2552#endif
1da177e4 2553
132380a0 2554notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2555{
2556 if (in_lock_functions(addr)) {
2557 addr = CALLER_ADDR2;
2558 if (in_lock_functions(addr))
2559 addr = CALLER_ADDR3;
2560 }
2561 return addr;
2562}
1da177e4 2563
7e49fcce
SR
2564#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2565 defined(CONFIG_PREEMPT_TRACER))
2566
edafe3a5 2567void preempt_count_add(int val)
1da177e4 2568{
6cd8a4bb 2569#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2570 /*
2571 * Underflow?
2572 */
9a11b49a
IM
2573 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2574 return;
6cd8a4bb 2575#endif
bdb43806 2576 __preempt_count_add(val);
6cd8a4bb 2577#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2578 /*
2579 * Spinlock count overflowing soon?
2580 */
33859f7f
MOS
2581 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2582 PREEMPT_MASK - 10);
6cd8a4bb 2583#endif
8f47b187
TG
2584 if (preempt_count() == val) {
2585 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2586#ifdef CONFIG_DEBUG_PREEMPT
2587 current->preempt_disable_ip = ip;
2588#endif
2589 trace_preempt_off(CALLER_ADDR0, ip);
2590 }
1da177e4 2591}
bdb43806 2592EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2593NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2594
edafe3a5 2595void preempt_count_sub(int val)
1da177e4 2596{
6cd8a4bb 2597#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2598 /*
2599 * Underflow?
2600 */
01e3eb82 2601 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2602 return;
1da177e4
LT
2603 /*
2604 * Is the spinlock portion underflowing?
2605 */
9a11b49a
IM
2606 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2607 !(preempt_count() & PREEMPT_MASK)))
2608 return;
6cd8a4bb 2609#endif
9a11b49a 2610
6cd8a4bb
SR
2611 if (preempt_count() == val)
2612 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2613 __preempt_count_sub(val);
1da177e4 2614}
bdb43806 2615EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2616NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2617
2618#endif
2619
2620/*
dd41f596 2621 * Print scheduling while atomic bug:
1da177e4 2622 */
dd41f596 2623static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2624{
664dfa65
DJ
2625 if (oops_in_progress)
2626 return;
2627
3df0fc5b
PZ
2628 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2629 prev->comm, prev->pid, preempt_count());
838225b4 2630
dd41f596 2631 debug_show_held_locks(prev);
e21f5b15 2632 print_modules();
dd41f596
IM
2633 if (irqs_disabled())
2634 print_irqtrace_events(prev);
8f47b187
TG
2635#ifdef CONFIG_DEBUG_PREEMPT
2636 if (in_atomic_preempt_off()) {
2637 pr_err("Preemption disabled at:");
2638 print_ip_sym(current->preempt_disable_ip);
2639 pr_cont("\n");
2640 }
2641#endif
6135fc1e 2642 dump_stack();
373d4d09 2643 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2644}
1da177e4 2645
dd41f596
IM
2646/*
2647 * Various schedule()-time debugging checks and statistics:
2648 */
2649static inline void schedule_debug(struct task_struct *prev)
2650{
1da177e4 2651 /*
41a2d6cf 2652 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2653 * schedule() atomically, we ignore that path. Otherwise whine
2654 * if we are scheduling when we should not.
1da177e4 2655 */
192301e7 2656 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2657 __schedule_bug(prev);
b3fbab05 2658 rcu_sleep_check();
dd41f596 2659
1da177e4
LT
2660 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2661
2d72376b 2662 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2663}
2664
2665/*
2666 * Pick up the highest-prio task:
2667 */
2668static inline struct task_struct *
606dba2e 2669pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2670{
37e117c0 2671 const struct sched_class *class = &fair_sched_class;
dd41f596 2672 struct task_struct *p;
1da177e4
LT
2673
2674 /*
dd41f596
IM
2675 * Optimization: we know that if all tasks are in
2676 * the fair class we can call that function directly:
1da177e4 2677 */
37e117c0 2678 if (likely(prev->sched_class == class &&
38033c37 2679 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2680 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2681 if (unlikely(p == RETRY_TASK))
2682 goto again;
2683
2684 /* assumes fair_sched_class->next == idle_sched_class */
2685 if (unlikely(!p))
2686 p = idle_sched_class.pick_next_task(rq, prev);
2687
2688 return p;
1da177e4
LT
2689 }
2690
37e117c0 2691again:
34f971f6 2692 for_each_class(class) {
606dba2e 2693 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2694 if (p) {
2695 if (unlikely(p == RETRY_TASK))
2696 goto again;
dd41f596 2697 return p;
37e117c0 2698 }
dd41f596 2699 }
34f971f6
PZ
2700
2701 BUG(); /* the idle class will always have a runnable task */
dd41f596 2702}
1da177e4 2703
dd41f596 2704/*
c259e01a 2705 * __schedule() is the main scheduler function.
edde96ea
PE
2706 *
2707 * The main means of driving the scheduler and thus entering this function are:
2708 *
2709 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2710 *
2711 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2712 * paths. For example, see arch/x86/entry_64.S.
2713 *
2714 * To drive preemption between tasks, the scheduler sets the flag in timer
2715 * interrupt handler scheduler_tick().
2716 *
2717 * 3. Wakeups don't really cause entry into schedule(). They add a
2718 * task to the run-queue and that's it.
2719 *
2720 * Now, if the new task added to the run-queue preempts the current
2721 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2722 * called on the nearest possible occasion:
2723 *
2724 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2725 *
2726 * - in syscall or exception context, at the next outmost
2727 * preempt_enable(). (this might be as soon as the wake_up()'s
2728 * spin_unlock()!)
2729 *
2730 * - in IRQ context, return from interrupt-handler to
2731 * preemptible context
2732 *
2733 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2734 * then at the next:
2735 *
2736 * - cond_resched() call
2737 * - explicit schedule() call
2738 * - return from syscall or exception to user-space
2739 * - return from interrupt-handler to user-space
dd41f596 2740 */
c259e01a 2741static void __sched __schedule(void)
dd41f596
IM
2742{
2743 struct task_struct *prev, *next;
67ca7bde 2744 unsigned long *switch_count;
dd41f596 2745 struct rq *rq;
31656519 2746 int cpu;
dd41f596 2747
ff743345
PZ
2748need_resched:
2749 preempt_disable();
dd41f596
IM
2750 cpu = smp_processor_id();
2751 rq = cpu_rq(cpu);
25502a6c 2752 rcu_note_context_switch(cpu);
dd41f596 2753 prev = rq->curr;
dd41f596 2754
dd41f596 2755 schedule_debug(prev);
1da177e4 2756
31656519 2757 if (sched_feat(HRTICK))
f333fdc9 2758 hrtick_clear(rq);
8f4d37ec 2759
e0acd0a6
ON
2760 /*
2761 * Make sure that signal_pending_state()->signal_pending() below
2762 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2763 * done by the caller to avoid the race with signal_wake_up().
2764 */
2765 smp_mb__before_spinlock();
05fa785c 2766 raw_spin_lock_irq(&rq->lock);
1da177e4 2767
246d86b5 2768 switch_count = &prev->nivcsw;
1da177e4 2769 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2770 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2771 prev->state = TASK_RUNNING;
21aa9af0 2772 } else {
2acca55e
PZ
2773 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2774 prev->on_rq = 0;
2775
21aa9af0 2776 /*
2acca55e
PZ
2777 * If a worker went to sleep, notify and ask workqueue
2778 * whether it wants to wake up a task to maintain
2779 * concurrency.
21aa9af0
TH
2780 */
2781 if (prev->flags & PF_WQ_WORKER) {
2782 struct task_struct *to_wakeup;
2783
2784 to_wakeup = wq_worker_sleeping(prev, cpu);
2785 if (to_wakeup)
2786 try_to_wake_up_local(to_wakeup);
2787 }
21aa9af0 2788 }
dd41f596 2789 switch_count = &prev->nvcsw;
1da177e4
LT
2790 }
2791
606dba2e
PZ
2792 if (prev->on_rq || rq->skip_clock_update < 0)
2793 update_rq_clock(rq);
2794
2795 next = pick_next_task(rq, prev);
f26f9aff 2796 clear_tsk_need_resched(prev);
f27dde8d 2797 clear_preempt_need_resched();
f26f9aff 2798 rq->skip_clock_update = 0;
1da177e4 2799
1da177e4 2800 if (likely(prev != next)) {
1da177e4
LT
2801 rq->nr_switches++;
2802 rq->curr = next;
2803 ++*switch_count;
2804
dd41f596 2805 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2806 /*
246d86b5
ON
2807 * The context switch have flipped the stack from under us
2808 * and restored the local variables which were saved when
2809 * this task called schedule() in the past. prev == current
2810 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2811 */
2812 cpu = smp_processor_id();
2813 rq = cpu_rq(cpu);
1da177e4 2814 } else
05fa785c 2815 raw_spin_unlock_irq(&rq->lock);
1da177e4 2816
3f029d3c 2817 post_schedule(rq);
1da177e4 2818
ba74c144 2819 sched_preempt_enable_no_resched();
ff743345 2820 if (need_resched())
1da177e4
LT
2821 goto need_resched;
2822}
c259e01a 2823
9c40cef2
TG
2824static inline void sched_submit_work(struct task_struct *tsk)
2825{
3c7d5184 2826 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2827 return;
2828 /*
2829 * If we are going to sleep and we have plugged IO queued,
2830 * make sure to submit it to avoid deadlocks.
2831 */
2832 if (blk_needs_flush_plug(tsk))
2833 blk_schedule_flush_plug(tsk);
2834}
2835
722a9f92 2836asmlinkage __visible void __sched schedule(void)
c259e01a 2837{
9c40cef2
TG
2838 struct task_struct *tsk = current;
2839
2840 sched_submit_work(tsk);
c259e01a
TG
2841 __schedule();
2842}
1da177e4
LT
2843EXPORT_SYMBOL(schedule);
2844
91d1aa43 2845#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2846asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2847{
2848 /*
2849 * If we come here after a random call to set_need_resched(),
2850 * or we have been woken up remotely but the IPI has not yet arrived,
2851 * we haven't yet exited the RCU idle mode. Do it here manually until
2852 * we find a better solution.
2853 */
91d1aa43 2854 user_exit();
20ab65e3 2855 schedule();
91d1aa43 2856 user_enter();
20ab65e3
FW
2857}
2858#endif
2859
c5491ea7
TG
2860/**
2861 * schedule_preempt_disabled - called with preemption disabled
2862 *
2863 * Returns with preemption disabled. Note: preempt_count must be 1
2864 */
2865void __sched schedule_preempt_disabled(void)
2866{
ba74c144 2867 sched_preempt_enable_no_resched();
c5491ea7
TG
2868 schedule();
2869 preempt_disable();
2870}
2871
1da177e4
LT
2872#ifdef CONFIG_PREEMPT
2873/*
2ed6e34f 2874 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2875 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2876 * occur there and call schedule directly.
2877 */
722a9f92 2878asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2879{
1da177e4
LT
2880 /*
2881 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2882 * we do not want to preempt the current task. Just return..
1da177e4 2883 */
fbb00b56 2884 if (likely(!preemptible()))
1da177e4
LT
2885 return;
2886
3a5c359a 2887 do {
bdb43806 2888 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2889 __schedule();
bdb43806 2890 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2891
3a5c359a
AK
2892 /*
2893 * Check again in case we missed a preemption opportunity
2894 * between schedule and now.
2895 */
2896 barrier();
5ed0cec0 2897 } while (need_resched());
1da177e4 2898}
376e2424 2899NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2900EXPORT_SYMBOL(preempt_schedule);
32e475d7 2901#endif /* CONFIG_PREEMPT */
1da177e4
LT
2902
2903/*
2ed6e34f 2904 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2905 * off of irq context.
2906 * Note, that this is called and return with irqs disabled. This will
2907 * protect us against recursive calling from irq.
2908 */
722a9f92 2909asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2910{
b22366cd 2911 enum ctx_state prev_state;
6478d880 2912
2ed6e34f 2913 /* Catch callers which need to be fixed */
f27dde8d 2914 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2915
b22366cd
FW
2916 prev_state = exception_enter();
2917
3a5c359a 2918 do {
bdb43806 2919 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2920 local_irq_enable();
c259e01a 2921 __schedule();
3a5c359a 2922 local_irq_disable();
bdb43806 2923 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2924
3a5c359a
AK
2925 /*
2926 * Check again in case we missed a preemption opportunity
2927 * between schedule and now.
2928 */
2929 barrier();
5ed0cec0 2930 } while (need_resched());
b22366cd
FW
2931
2932 exception_exit(prev_state);
1da177e4
LT
2933}
2934
63859d4f 2935int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2936 void *key)
1da177e4 2937{
63859d4f 2938 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2939}
1da177e4
LT
2940EXPORT_SYMBOL(default_wake_function);
2941
b29739f9
IM
2942#ifdef CONFIG_RT_MUTEXES
2943
2944/*
2945 * rt_mutex_setprio - set the current priority of a task
2946 * @p: task
2947 * @prio: prio value (kernel-internal form)
2948 *
2949 * This function changes the 'effective' priority of a task. It does
2950 * not touch ->normal_prio like __setscheduler().
2951 *
c365c292
TG
2952 * Used by the rt_mutex code to implement priority inheritance
2953 * logic. Call site only calls if the priority of the task changed.
b29739f9 2954 */
36c8b586 2955void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2956{
2d3d891d 2957 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2958 struct rq *rq;
83ab0aa0 2959 const struct sched_class *prev_class;
b29739f9 2960
aab03e05 2961 BUG_ON(prio > MAX_PRIO);
b29739f9 2962
0122ec5b 2963 rq = __task_rq_lock(p);
b29739f9 2964
1c4dd99b
TG
2965 /*
2966 * Idle task boosting is a nono in general. There is one
2967 * exception, when PREEMPT_RT and NOHZ is active:
2968 *
2969 * The idle task calls get_next_timer_interrupt() and holds
2970 * the timer wheel base->lock on the CPU and another CPU wants
2971 * to access the timer (probably to cancel it). We can safely
2972 * ignore the boosting request, as the idle CPU runs this code
2973 * with interrupts disabled and will complete the lock
2974 * protected section without being interrupted. So there is no
2975 * real need to boost.
2976 */
2977 if (unlikely(p == rq->idle)) {
2978 WARN_ON(p != rq->curr);
2979 WARN_ON(p->pi_blocked_on);
2980 goto out_unlock;
2981 }
2982
a8027073 2983 trace_sched_pi_setprio(p, prio);
d5f9f942 2984 oldprio = p->prio;
83ab0aa0 2985 prev_class = p->sched_class;
fd2f4419 2986 on_rq = p->on_rq;
051a1d1a 2987 running = task_current(rq, p);
0e1f3483 2988 if (on_rq)
69be72c1 2989 dequeue_task(rq, p, 0);
0e1f3483
HS
2990 if (running)
2991 p->sched_class->put_prev_task(rq, p);
dd41f596 2992
2d3d891d
DF
2993 /*
2994 * Boosting condition are:
2995 * 1. -rt task is running and holds mutex A
2996 * --> -dl task blocks on mutex A
2997 *
2998 * 2. -dl task is running and holds mutex A
2999 * --> -dl task blocks on mutex A and could preempt the
3000 * running task
3001 */
3002 if (dl_prio(prio)) {
466af29b
ON
3003 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3004 if (!dl_prio(p->normal_prio) ||
3005 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3006 p->dl.dl_boosted = 1;
3007 p->dl.dl_throttled = 0;
3008 enqueue_flag = ENQUEUE_REPLENISH;
3009 } else
3010 p->dl.dl_boosted = 0;
aab03e05 3011 p->sched_class = &dl_sched_class;
2d3d891d
DF
3012 } else if (rt_prio(prio)) {
3013 if (dl_prio(oldprio))
3014 p->dl.dl_boosted = 0;
3015 if (oldprio < prio)
3016 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3017 p->sched_class = &rt_sched_class;
2d3d891d
DF
3018 } else {
3019 if (dl_prio(oldprio))
3020 p->dl.dl_boosted = 0;
dd41f596 3021 p->sched_class = &fair_sched_class;
2d3d891d 3022 }
dd41f596 3023
b29739f9
IM
3024 p->prio = prio;
3025
0e1f3483
HS
3026 if (running)
3027 p->sched_class->set_curr_task(rq);
da7a735e 3028 if (on_rq)
2d3d891d 3029 enqueue_task(rq, p, enqueue_flag);
cb469845 3030
da7a735e 3031 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3032out_unlock:
0122ec5b 3033 __task_rq_unlock(rq);
b29739f9 3034}
b29739f9 3035#endif
d50dde5a 3036
36c8b586 3037void set_user_nice(struct task_struct *p, long nice)
1da177e4 3038{
dd41f596 3039 int old_prio, delta, on_rq;
1da177e4 3040 unsigned long flags;
70b97a7f 3041 struct rq *rq;
1da177e4 3042
75e45d51 3043 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3044 return;
3045 /*
3046 * We have to be careful, if called from sys_setpriority(),
3047 * the task might be in the middle of scheduling on another CPU.
3048 */
3049 rq = task_rq_lock(p, &flags);
3050 /*
3051 * The RT priorities are set via sched_setscheduler(), but we still
3052 * allow the 'normal' nice value to be set - but as expected
3053 * it wont have any effect on scheduling until the task is
aab03e05 3054 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3055 */
aab03e05 3056 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3057 p->static_prio = NICE_TO_PRIO(nice);
3058 goto out_unlock;
3059 }
fd2f4419 3060 on_rq = p->on_rq;
c09595f6 3061 if (on_rq)
69be72c1 3062 dequeue_task(rq, p, 0);
1da177e4 3063
1da177e4 3064 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3065 set_load_weight(p);
b29739f9
IM
3066 old_prio = p->prio;
3067 p->prio = effective_prio(p);
3068 delta = p->prio - old_prio;
1da177e4 3069
dd41f596 3070 if (on_rq) {
371fd7e7 3071 enqueue_task(rq, p, 0);
1da177e4 3072 /*
d5f9f942
AM
3073 * If the task increased its priority or is running and
3074 * lowered its priority, then reschedule its CPU:
1da177e4 3075 */
d5f9f942 3076 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3077 resched_curr(rq);
1da177e4
LT
3078 }
3079out_unlock:
0122ec5b 3080 task_rq_unlock(rq, p, &flags);
1da177e4 3081}
1da177e4
LT
3082EXPORT_SYMBOL(set_user_nice);
3083
e43379f1
MM
3084/*
3085 * can_nice - check if a task can reduce its nice value
3086 * @p: task
3087 * @nice: nice value
3088 */
36c8b586 3089int can_nice(const struct task_struct *p, const int nice)
e43379f1 3090{
024f4747 3091 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3092 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3093
78d7d407 3094 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3095 capable(CAP_SYS_NICE));
3096}
3097
1da177e4
LT
3098#ifdef __ARCH_WANT_SYS_NICE
3099
3100/*
3101 * sys_nice - change the priority of the current process.
3102 * @increment: priority increment
3103 *
3104 * sys_setpriority is a more generic, but much slower function that
3105 * does similar things.
3106 */
5add95d4 3107SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3108{
48f24c4d 3109 long nice, retval;
1da177e4
LT
3110
3111 /*
3112 * Setpriority might change our priority at the same moment.
3113 * We don't have to worry. Conceptually one call occurs first
3114 * and we have a single winner.
3115 */
a9467fa3 3116 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3117 nice = task_nice(current) + increment;
1da177e4 3118
a9467fa3 3119 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3120 if (increment < 0 && !can_nice(current, nice))
3121 return -EPERM;
3122
1da177e4
LT
3123 retval = security_task_setnice(current, nice);
3124 if (retval)
3125 return retval;
3126
3127 set_user_nice(current, nice);
3128 return 0;
3129}
3130
3131#endif
3132
3133/**
3134 * task_prio - return the priority value of a given task.
3135 * @p: the task in question.
3136 *
e69f6186 3137 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3138 * RT tasks are offset by -200. Normal tasks are centered
3139 * around 0, value goes from -16 to +15.
3140 */
36c8b586 3141int task_prio(const struct task_struct *p)
1da177e4
LT
3142{
3143 return p->prio - MAX_RT_PRIO;
3144}
3145
1da177e4
LT
3146/**
3147 * idle_cpu - is a given cpu idle currently?
3148 * @cpu: the processor in question.
e69f6186
YB
3149 *
3150 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3151 */
3152int idle_cpu(int cpu)
3153{
908a3283
TG
3154 struct rq *rq = cpu_rq(cpu);
3155
3156 if (rq->curr != rq->idle)
3157 return 0;
3158
3159 if (rq->nr_running)
3160 return 0;
3161
3162#ifdef CONFIG_SMP
3163 if (!llist_empty(&rq->wake_list))
3164 return 0;
3165#endif
3166
3167 return 1;
1da177e4
LT
3168}
3169
1da177e4
LT
3170/**
3171 * idle_task - return the idle task for a given cpu.
3172 * @cpu: the processor in question.
e69f6186
YB
3173 *
3174 * Return: The idle task for the cpu @cpu.
1da177e4 3175 */
36c8b586 3176struct task_struct *idle_task(int cpu)
1da177e4
LT
3177{
3178 return cpu_rq(cpu)->idle;
3179}
3180
3181/**
3182 * find_process_by_pid - find a process with a matching PID value.
3183 * @pid: the pid in question.
e69f6186
YB
3184 *
3185 * The task of @pid, if found. %NULL otherwise.
1da177e4 3186 */
a9957449 3187static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3188{
228ebcbe 3189 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3190}
3191
aab03e05
DF
3192/*
3193 * This function initializes the sched_dl_entity of a newly becoming
3194 * SCHED_DEADLINE task.
3195 *
3196 * Only the static values are considered here, the actual runtime and the
3197 * absolute deadline will be properly calculated when the task is enqueued
3198 * for the first time with its new policy.
3199 */
3200static void
3201__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3202{
3203 struct sched_dl_entity *dl_se = &p->dl;
3204
3205 init_dl_task_timer(dl_se);
3206 dl_se->dl_runtime = attr->sched_runtime;
3207 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3208 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3209 dl_se->flags = attr->sched_flags;
332ac17e 3210 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3211 dl_se->dl_throttled = 0;
3212 dl_se->dl_new = 1;
5bfd126e 3213 dl_se->dl_yielded = 0;
aab03e05
DF
3214}
3215
c365c292
TG
3216static void __setscheduler_params(struct task_struct *p,
3217 const struct sched_attr *attr)
1da177e4 3218{
d50dde5a
DF
3219 int policy = attr->sched_policy;
3220
39fd8fd2
PZ
3221 if (policy == -1) /* setparam */
3222 policy = p->policy;
3223
1da177e4 3224 p->policy = policy;
d50dde5a 3225
aab03e05
DF
3226 if (dl_policy(policy))
3227 __setparam_dl(p, attr);
39fd8fd2 3228 else if (fair_policy(policy))
d50dde5a
DF
3229 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3230
39fd8fd2
PZ
3231 /*
3232 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3233 * !rt_policy. Always setting this ensures that things like
3234 * getparam()/getattr() don't report silly values for !rt tasks.
3235 */
3236 p->rt_priority = attr->sched_priority;
383afd09 3237 p->normal_prio = normal_prio(p);
c365c292
TG
3238 set_load_weight(p);
3239}
39fd8fd2 3240
c365c292
TG
3241/* Actually do priority change: must hold pi & rq lock. */
3242static void __setscheduler(struct rq *rq, struct task_struct *p,
3243 const struct sched_attr *attr)
3244{
3245 __setscheduler_params(p, attr);
d50dde5a 3246
383afd09
SR
3247 /*
3248 * If we get here, there was no pi waiters boosting the
3249 * task. It is safe to use the normal prio.
3250 */
3251 p->prio = normal_prio(p);
3252
aab03e05
DF
3253 if (dl_prio(p->prio))
3254 p->sched_class = &dl_sched_class;
3255 else if (rt_prio(p->prio))
ffd44db5
PZ
3256 p->sched_class = &rt_sched_class;
3257 else
3258 p->sched_class = &fair_sched_class;
1da177e4 3259}
aab03e05
DF
3260
3261static void
3262__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3263{
3264 struct sched_dl_entity *dl_se = &p->dl;
3265
3266 attr->sched_priority = p->rt_priority;
3267 attr->sched_runtime = dl_se->dl_runtime;
3268 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3269 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3270 attr->sched_flags = dl_se->flags;
3271}
3272
3273/*
3274 * This function validates the new parameters of a -deadline task.
3275 * We ask for the deadline not being zero, and greater or equal
755378a4 3276 * than the runtime, as well as the period of being zero or
332ac17e 3277 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3278 * user parameters are above the internal resolution of 1us (we
3279 * check sched_runtime only since it is always the smaller one) and
3280 * below 2^63 ns (we have to check both sched_deadline and
3281 * sched_period, as the latter can be zero).
aab03e05
DF
3282 */
3283static bool
3284__checkparam_dl(const struct sched_attr *attr)
3285{
b0827819
JL
3286 /* deadline != 0 */
3287 if (attr->sched_deadline == 0)
3288 return false;
3289
3290 /*
3291 * Since we truncate DL_SCALE bits, make sure we're at least
3292 * that big.
3293 */
3294 if (attr->sched_runtime < (1ULL << DL_SCALE))
3295 return false;
3296
3297 /*
3298 * Since we use the MSB for wrap-around and sign issues, make
3299 * sure it's not set (mind that period can be equal to zero).
3300 */
3301 if (attr->sched_deadline & (1ULL << 63) ||
3302 attr->sched_period & (1ULL << 63))
3303 return false;
3304
3305 /* runtime <= deadline <= period (if period != 0) */
3306 if ((attr->sched_period != 0 &&
3307 attr->sched_period < attr->sched_deadline) ||
3308 attr->sched_deadline < attr->sched_runtime)
3309 return false;
3310
3311 return true;
aab03e05
DF
3312}
3313
c69e8d9c
DH
3314/*
3315 * check the target process has a UID that matches the current process's
3316 */
3317static bool check_same_owner(struct task_struct *p)
3318{
3319 const struct cred *cred = current_cred(), *pcred;
3320 bool match;
3321
3322 rcu_read_lock();
3323 pcred = __task_cred(p);
9c806aa0
EB
3324 match = (uid_eq(cred->euid, pcred->euid) ||
3325 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3326 rcu_read_unlock();
3327 return match;
3328}
3329
d50dde5a
DF
3330static int __sched_setscheduler(struct task_struct *p,
3331 const struct sched_attr *attr,
3332 bool user)
1da177e4 3333{
383afd09
SR
3334 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3335 MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3336 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3337 int policy = attr->sched_policy;
1da177e4 3338 unsigned long flags;
83ab0aa0 3339 const struct sched_class *prev_class;
70b97a7f 3340 struct rq *rq;
ca94c442 3341 int reset_on_fork;
1da177e4 3342
66e5393a
SR
3343 /* may grab non-irq protected spin_locks */
3344 BUG_ON(in_interrupt());
1da177e4
LT
3345recheck:
3346 /* double check policy once rq lock held */
ca94c442
LP
3347 if (policy < 0) {
3348 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3349 policy = oldpolicy = p->policy;
ca94c442 3350 } else {
7479f3c9 3351 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3352
aab03e05
DF
3353 if (policy != SCHED_DEADLINE &&
3354 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3355 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3356 policy != SCHED_IDLE)
3357 return -EINVAL;
3358 }
3359
7479f3c9
PZ
3360 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3361 return -EINVAL;
3362
1da177e4
LT
3363 /*
3364 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3365 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3366 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3367 */
0bb040a4 3368 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3369 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3370 return -EINVAL;
aab03e05
DF
3371 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3372 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3373 return -EINVAL;
3374
37e4ab3f
OC
3375 /*
3376 * Allow unprivileged RT tasks to decrease priority:
3377 */
961ccddd 3378 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3379 if (fair_policy(policy)) {
d0ea0268 3380 if (attr->sched_nice < task_nice(p) &&
eaad4513 3381 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3382 return -EPERM;
3383 }
3384
e05606d3 3385 if (rt_policy(policy)) {
a44702e8
ON
3386 unsigned long rlim_rtprio =
3387 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3388
3389 /* can't set/change the rt policy */
3390 if (policy != p->policy && !rlim_rtprio)
3391 return -EPERM;
3392
3393 /* can't increase priority */
d50dde5a
DF
3394 if (attr->sched_priority > p->rt_priority &&
3395 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3396 return -EPERM;
3397 }
c02aa73b 3398
d44753b8
JL
3399 /*
3400 * Can't set/change SCHED_DEADLINE policy at all for now
3401 * (safest behavior); in the future we would like to allow
3402 * unprivileged DL tasks to increase their relative deadline
3403 * or reduce their runtime (both ways reducing utilization)
3404 */
3405 if (dl_policy(policy))
3406 return -EPERM;
3407
dd41f596 3408 /*
c02aa73b
DH
3409 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3410 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3411 */
c02aa73b 3412 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3413 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3414 return -EPERM;
3415 }
5fe1d75f 3416
37e4ab3f 3417 /* can't change other user's priorities */
c69e8d9c 3418 if (!check_same_owner(p))
37e4ab3f 3419 return -EPERM;
ca94c442
LP
3420
3421 /* Normal users shall not reset the sched_reset_on_fork flag */
3422 if (p->sched_reset_on_fork && !reset_on_fork)
3423 return -EPERM;
37e4ab3f 3424 }
1da177e4 3425
725aad24 3426 if (user) {
b0ae1981 3427 retval = security_task_setscheduler(p);
725aad24
JF
3428 if (retval)
3429 return retval;
3430 }
3431
b29739f9
IM
3432 /*
3433 * make sure no PI-waiters arrive (or leave) while we are
3434 * changing the priority of the task:
0122ec5b 3435 *
25985edc 3436 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3437 * runqueue lock must be held.
3438 */
0122ec5b 3439 rq = task_rq_lock(p, &flags);
dc61b1d6 3440
34f971f6
PZ
3441 /*
3442 * Changing the policy of the stop threads its a very bad idea
3443 */
3444 if (p == rq->stop) {
0122ec5b 3445 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3446 return -EINVAL;
3447 }
3448
a51e9198 3449 /*
d6b1e911
TG
3450 * If not changing anything there's no need to proceed further,
3451 * but store a possible modification of reset_on_fork.
a51e9198 3452 */
d50dde5a 3453 if (unlikely(policy == p->policy)) {
d0ea0268 3454 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3455 goto change;
3456 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3457 goto change;
aab03e05
DF
3458 if (dl_policy(policy))
3459 goto change;
d50dde5a 3460
d6b1e911 3461 p->sched_reset_on_fork = reset_on_fork;
45afb173 3462 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3463 return 0;
3464 }
d50dde5a 3465change:
a51e9198 3466
dc61b1d6 3467 if (user) {
332ac17e 3468#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3469 /*
3470 * Do not allow realtime tasks into groups that have no runtime
3471 * assigned.
3472 */
3473 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3474 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3475 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3476 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3477 return -EPERM;
3478 }
dc61b1d6 3479#endif
332ac17e
DF
3480#ifdef CONFIG_SMP
3481 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3482 cpumask_t *span = rq->rd->span;
332ac17e
DF
3483
3484 /*
3485 * Don't allow tasks with an affinity mask smaller than
3486 * the entire root_domain to become SCHED_DEADLINE. We
3487 * will also fail if there's no bandwidth available.
3488 */
e4099a5e
PZ
3489 if (!cpumask_subset(span, &p->cpus_allowed) ||
3490 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3491 task_rq_unlock(rq, p, &flags);
3492 return -EPERM;
3493 }
3494 }
3495#endif
3496 }
dc61b1d6 3497
1da177e4
LT
3498 /* recheck policy now with rq lock held */
3499 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3500 policy = oldpolicy = -1;
0122ec5b 3501 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3502 goto recheck;
3503 }
332ac17e
DF
3504
3505 /*
3506 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3507 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3508 * is available.
3509 */
e4099a5e 3510 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3511 task_rq_unlock(rq, p, &flags);
3512 return -EBUSY;
3513 }
3514
c365c292
TG
3515 p->sched_reset_on_fork = reset_on_fork;
3516 oldprio = p->prio;
3517
3518 /*
3519 * Special case for priority boosted tasks.
3520 *
3521 * If the new priority is lower or equal (user space view)
3522 * than the current (boosted) priority, we just store the new
3523 * normal parameters and do not touch the scheduler class and
3524 * the runqueue. This will be done when the task deboost
3525 * itself.
3526 */
3527 if (rt_mutex_check_prio(p, newprio)) {
3528 __setscheduler_params(p, attr);
3529 task_rq_unlock(rq, p, &flags);
3530 return 0;
3531 }
3532
fd2f4419 3533 on_rq = p->on_rq;
051a1d1a 3534 running = task_current(rq, p);
0e1f3483 3535 if (on_rq)
4ca9b72b 3536 dequeue_task(rq, p, 0);
0e1f3483
HS
3537 if (running)
3538 p->sched_class->put_prev_task(rq, p);
f6b53205 3539
83ab0aa0 3540 prev_class = p->sched_class;
d50dde5a 3541 __setscheduler(rq, p, attr);
f6b53205 3542
0e1f3483
HS
3543 if (running)
3544 p->sched_class->set_curr_task(rq);
81a44c54
TG
3545 if (on_rq) {
3546 /*
3547 * We enqueue to tail when the priority of a task is
3548 * increased (user space view).
3549 */
3550 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3551 }
cb469845 3552
da7a735e 3553 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3554 task_rq_unlock(rq, p, &flags);
b29739f9 3555
95e02ca9
TG
3556 rt_mutex_adjust_pi(p);
3557
1da177e4
LT
3558 return 0;
3559}
961ccddd 3560
7479f3c9
PZ
3561static int _sched_setscheduler(struct task_struct *p, int policy,
3562 const struct sched_param *param, bool check)
3563{
3564 struct sched_attr attr = {
3565 .sched_policy = policy,
3566 .sched_priority = param->sched_priority,
3567 .sched_nice = PRIO_TO_NICE(p->static_prio),
3568 };
3569
3570 /*
3571 * Fixup the legacy SCHED_RESET_ON_FORK hack
3572 */
3573 if (policy & SCHED_RESET_ON_FORK) {
3574 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3575 policy &= ~SCHED_RESET_ON_FORK;
3576 attr.sched_policy = policy;
3577 }
3578
3579 return __sched_setscheduler(p, &attr, check);
3580}
961ccddd
RR
3581/**
3582 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3583 * @p: the task in question.
3584 * @policy: new policy.
3585 * @param: structure containing the new RT priority.
3586 *
e69f6186
YB
3587 * Return: 0 on success. An error code otherwise.
3588 *
961ccddd
RR
3589 * NOTE that the task may be already dead.
3590 */
3591int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3592 const struct sched_param *param)
961ccddd 3593{
7479f3c9 3594 return _sched_setscheduler(p, policy, param, true);
961ccddd 3595}
1da177e4
LT
3596EXPORT_SYMBOL_GPL(sched_setscheduler);
3597
d50dde5a
DF
3598int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3599{
3600 return __sched_setscheduler(p, attr, true);
3601}
3602EXPORT_SYMBOL_GPL(sched_setattr);
3603
961ccddd
RR
3604/**
3605 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3606 * @p: the task in question.
3607 * @policy: new policy.
3608 * @param: structure containing the new RT priority.
3609 *
3610 * Just like sched_setscheduler, only don't bother checking if the
3611 * current context has permission. For example, this is needed in
3612 * stop_machine(): we create temporary high priority worker threads,
3613 * but our caller might not have that capability.
e69f6186
YB
3614 *
3615 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3616 */
3617int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3618 const struct sched_param *param)
961ccddd 3619{
7479f3c9 3620 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3621}
3622
95cdf3b7
IM
3623static int
3624do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3625{
1da177e4
LT
3626 struct sched_param lparam;
3627 struct task_struct *p;
36c8b586 3628 int retval;
1da177e4
LT
3629
3630 if (!param || pid < 0)
3631 return -EINVAL;
3632 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3633 return -EFAULT;
5fe1d75f
ON
3634
3635 rcu_read_lock();
3636 retval = -ESRCH;
1da177e4 3637 p = find_process_by_pid(pid);
5fe1d75f
ON
3638 if (p != NULL)
3639 retval = sched_setscheduler(p, policy, &lparam);
3640 rcu_read_unlock();
36c8b586 3641
1da177e4
LT
3642 return retval;
3643}
3644
d50dde5a
DF
3645/*
3646 * Mimics kernel/events/core.c perf_copy_attr().
3647 */
3648static int sched_copy_attr(struct sched_attr __user *uattr,
3649 struct sched_attr *attr)
3650{
3651 u32 size;
3652 int ret;
3653
3654 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3655 return -EFAULT;
3656
3657 /*
3658 * zero the full structure, so that a short copy will be nice.
3659 */
3660 memset(attr, 0, sizeof(*attr));
3661
3662 ret = get_user(size, &uattr->size);
3663 if (ret)
3664 return ret;
3665
3666 if (size > PAGE_SIZE) /* silly large */
3667 goto err_size;
3668
3669 if (!size) /* abi compat */
3670 size = SCHED_ATTR_SIZE_VER0;
3671
3672 if (size < SCHED_ATTR_SIZE_VER0)
3673 goto err_size;
3674
3675 /*
3676 * If we're handed a bigger struct than we know of,
3677 * ensure all the unknown bits are 0 - i.e. new
3678 * user-space does not rely on any kernel feature
3679 * extensions we dont know about yet.
3680 */
3681 if (size > sizeof(*attr)) {
3682 unsigned char __user *addr;
3683 unsigned char __user *end;
3684 unsigned char val;
3685
3686 addr = (void __user *)uattr + sizeof(*attr);
3687 end = (void __user *)uattr + size;
3688
3689 for (; addr < end; addr++) {
3690 ret = get_user(val, addr);
3691 if (ret)
3692 return ret;
3693 if (val)
3694 goto err_size;
3695 }
3696 size = sizeof(*attr);
3697 }
3698
3699 ret = copy_from_user(attr, uattr, size);
3700 if (ret)
3701 return -EFAULT;
3702
3703 /*
3704 * XXX: do we want to be lenient like existing syscalls; or do we want
3705 * to be strict and return an error on out-of-bounds values?
3706 */
75e45d51 3707 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3708
e78c7bca 3709 return 0;
d50dde5a
DF
3710
3711err_size:
3712 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3713 return -E2BIG;
d50dde5a
DF
3714}
3715
1da177e4
LT
3716/**
3717 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3718 * @pid: the pid in question.
3719 * @policy: new policy.
3720 * @param: structure containing the new RT priority.
e69f6186
YB
3721 *
3722 * Return: 0 on success. An error code otherwise.
1da177e4 3723 */
5add95d4
HC
3724SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3725 struct sched_param __user *, param)
1da177e4 3726{
c21761f1
JB
3727 /* negative values for policy are not valid */
3728 if (policy < 0)
3729 return -EINVAL;
3730
1da177e4
LT
3731 return do_sched_setscheduler(pid, policy, param);
3732}
3733
3734/**
3735 * sys_sched_setparam - set/change the RT priority of a thread
3736 * @pid: the pid in question.
3737 * @param: structure containing the new RT priority.
e69f6186
YB
3738 *
3739 * Return: 0 on success. An error code otherwise.
1da177e4 3740 */
5add95d4 3741SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3742{
3743 return do_sched_setscheduler(pid, -1, param);
3744}
3745
d50dde5a
DF
3746/**
3747 * sys_sched_setattr - same as above, but with extended sched_attr
3748 * @pid: the pid in question.
5778fccf 3749 * @uattr: structure containing the extended parameters.
db66d756 3750 * @flags: for future extension.
d50dde5a 3751 */
6d35ab48
PZ
3752SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3753 unsigned int, flags)
d50dde5a
DF
3754{
3755 struct sched_attr attr;
3756 struct task_struct *p;
3757 int retval;
3758
6d35ab48 3759 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3760 return -EINVAL;
3761
143cf23d
MK
3762 retval = sched_copy_attr(uattr, &attr);
3763 if (retval)
3764 return retval;
d50dde5a 3765
b14ed2c2 3766 if ((int)attr.sched_policy < 0)
dbdb2275 3767 return -EINVAL;
d50dde5a
DF
3768
3769 rcu_read_lock();
3770 retval = -ESRCH;
3771 p = find_process_by_pid(pid);
3772 if (p != NULL)
3773 retval = sched_setattr(p, &attr);
3774 rcu_read_unlock();
3775
3776 return retval;
3777}
3778
1da177e4
LT
3779/**
3780 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3781 * @pid: the pid in question.
e69f6186
YB
3782 *
3783 * Return: On success, the policy of the thread. Otherwise, a negative error
3784 * code.
1da177e4 3785 */
5add95d4 3786SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3787{
36c8b586 3788 struct task_struct *p;
3a5c359a 3789 int retval;
1da177e4
LT
3790
3791 if (pid < 0)
3a5c359a 3792 return -EINVAL;
1da177e4
LT
3793
3794 retval = -ESRCH;
5fe85be0 3795 rcu_read_lock();
1da177e4
LT
3796 p = find_process_by_pid(pid);
3797 if (p) {
3798 retval = security_task_getscheduler(p);
3799 if (!retval)
ca94c442
LP
3800 retval = p->policy
3801 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3802 }
5fe85be0 3803 rcu_read_unlock();
1da177e4
LT
3804 return retval;
3805}
3806
3807/**
ca94c442 3808 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3809 * @pid: the pid in question.
3810 * @param: structure containing the RT priority.
e69f6186
YB
3811 *
3812 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3813 * code.
1da177e4 3814 */
5add95d4 3815SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3816{
ce5f7f82 3817 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3818 struct task_struct *p;
3a5c359a 3819 int retval;
1da177e4
LT
3820
3821 if (!param || pid < 0)
3a5c359a 3822 return -EINVAL;
1da177e4 3823
5fe85be0 3824 rcu_read_lock();
1da177e4
LT
3825 p = find_process_by_pid(pid);
3826 retval = -ESRCH;
3827 if (!p)
3828 goto out_unlock;
3829
3830 retval = security_task_getscheduler(p);
3831 if (retval)
3832 goto out_unlock;
3833
ce5f7f82
PZ
3834 if (task_has_rt_policy(p))
3835 lp.sched_priority = p->rt_priority;
5fe85be0 3836 rcu_read_unlock();
1da177e4
LT
3837
3838 /*
3839 * This one might sleep, we cannot do it with a spinlock held ...
3840 */
3841 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3842
1da177e4
LT
3843 return retval;
3844
3845out_unlock:
5fe85be0 3846 rcu_read_unlock();
1da177e4
LT
3847 return retval;
3848}
3849
d50dde5a
DF
3850static int sched_read_attr(struct sched_attr __user *uattr,
3851 struct sched_attr *attr,
3852 unsigned int usize)
3853{
3854 int ret;
3855
3856 if (!access_ok(VERIFY_WRITE, uattr, usize))
3857 return -EFAULT;
3858
3859 /*
3860 * If we're handed a smaller struct than we know of,
3861 * ensure all the unknown bits are 0 - i.e. old
3862 * user-space does not get uncomplete information.
3863 */
3864 if (usize < sizeof(*attr)) {
3865 unsigned char *addr;
3866 unsigned char *end;
3867
3868 addr = (void *)attr + usize;
3869 end = (void *)attr + sizeof(*attr);
3870
3871 for (; addr < end; addr++) {
3872 if (*addr)
22400674 3873 return -EFBIG;
d50dde5a
DF
3874 }
3875
3876 attr->size = usize;
3877 }
3878
4efbc454 3879 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3880 if (ret)
3881 return -EFAULT;
3882
22400674 3883 return 0;
d50dde5a
DF
3884}
3885
3886/**
aab03e05 3887 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3888 * @pid: the pid in question.
5778fccf 3889 * @uattr: structure containing the extended parameters.
d50dde5a 3890 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3891 * @flags: for future extension.
d50dde5a 3892 */
6d35ab48
PZ
3893SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3894 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3895{
3896 struct sched_attr attr = {
3897 .size = sizeof(struct sched_attr),
3898 };
3899 struct task_struct *p;
3900 int retval;
3901
3902 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3903 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3904 return -EINVAL;
3905
3906 rcu_read_lock();
3907 p = find_process_by_pid(pid);
3908 retval = -ESRCH;
3909 if (!p)
3910 goto out_unlock;
3911
3912 retval = security_task_getscheduler(p);
3913 if (retval)
3914 goto out_unlock;
3915
3916 attr.sched_policy = p->policy;
7479f3c9
PZ
3917 if (p->sched_reset_on_fork)
3918 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3919 if (task_has_dl_policy(p))
3920 __getparam_dl(p, &attr);
3921 else if (task_has_rt_policy(p))
d50dde5a
DF
3922 attr.sched_priority = p->rt_priority;
3923 else
d0ea0268 3924 attr.sched_nice = task_nice(p);
d50dde5a
DF
3925
3926 rcu_read_unlock();
3927
3928 retval = sched_read_attr(uattr, &attr, size);
3929 return retval;
3930
3931out_unlock:
3932 rcu_read_unlock();
3933 return retval;
3934}
3935
96f874e2 3936long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3937{
5a16f3d3 3938 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3939 struct task_struct *p;
3940 int retval;
1da177e4 3941
23f5d142 3942 rcu_read_lock();
1da177e4
LT
3943
3944 p = find_process_by_pid(pid);
3945 if (!p) {
23f5d142 3946 rcu_read_unlock();
1da177e4
LT
3947 return -ESRCH;
3948 }
3949
23f5d142 3950 /* Prevent p going away */
1da177e4 3951 get_task_struct(p);
23f5d142 3952 rcu_read_unlock();
1da177e4 3953
14a40ffc
TH
3954 if (p->flags & PF_NO_SETAFFINITY) {
3955 retval = -EINVAL;
3956 goto out_put_task;
3957 }
5a16f3d3
RR
3958 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3959 retval = -ENOMEM;
3960 goto out_put_task;
3961 }
3962 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3963 retval = -ENOMEM;
3964 goto out_free_cpus_allowed;
3965 }
1da177e4 3966 retval = -EPERM;
4c44aaaf
EB
3967 if (!check_same_owner(p)) {
3968 rcu_read_lock();
3969 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3970 rcu_read_unlock();
3971 goto out_unlock;
3972 }
3973 rcu_read_unlock();
3974 }
1da177e4 3975
b0ae1981 3976 retval = security_task_setscheduler(p);
e7834f8f
DQ
3977 if (retval)
3978 goto out_unlock;
3979
e4099a5e
PZ
3980
3981 cpuset_cpus_allowed(p, cpus_allowed);
3982 cpumask_and(new_mask, in_mask, cpus_allowed);
3983
332ac17e
DF
3984 /*
3985 * Since bandwidth control happens on root_domain basis,
3986 * if admission test is enabled, we only admit -deadline
3987 * tasks allowed to run on all the CPUs in the task's
3988 * root_domain.
3989 */
3990#ifdef CONFIG_SMP
3991 if (task_has_dl_policy(p)) {
3992 const struct cpumask *span = task_rq(p)->rd->span;
3993
e4099a5e 3994 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3995 retval = -EBUSY;
3996 goto out_unlock;
3997 }
3998 }
3999#endif
49246274 4000again:
5a16f3d3 4001 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4002
8707d8b8 4003 if (!retval) {
5a16f3d3
RR
4004 cpuset_cpus_allowed(p, cpus_allowed);
4005 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4006 /*
4007 * We must have raced with a concurrent cpuset
4008 * update. Just reset the cpus_allowed to the
4009 * cpuset's cpus_allowed
4010 */
5a16f3d3 4011 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4012 goto again;
4013 }
4014 }
1da177e4 4015out_unlock:
5a16f3d3
RR
4016 free_cpumask_var(new_mask);
4017out_free_cpus_allowed:
4018 free_cpumask_var(cpus_allowed);
4019out_put_task:
1da177e4 4020 put_task_struct(p);
1da177e4
LT
4021 return retval;
4022}
4023
4024static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4025 struct cpumask *new_mask)
1da177e4 4026{
96f874e2
RR
4027 if (len < cpumask_size())
4028 cpumask_clear(new_mask);
4029 else if (len > cpumask_size())
4030 len = cpumask_size();
4031
1da177e4
LT
4032 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4033}
4034
4035/**
4036 * sys_sched_setaffinity - set the cpu affinity of a process
4037 * @pid: pid of the process
4038 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4039 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4040 *
4041 * Return: 0 on success. An error code otherwise.
1da177e4 4042 */
5add95d4
HC
4043SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4044 unsigned long __user *, user_mask_ptr)
1da177e4 4045{
5a16f3d3 4046 cpumask_var_t new_mask;
1da177e4
LT
4047 int retval;
4048
5a16f3d3
RR
4049 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4050 return -ENOMEM;
1da177e4 4051
5a16f3d3
RR
4052 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4053 if (retval == 0)
4054 retval = sched_setaffinity(pid, new_mask);
4055 free_cpumask_var(new_mask);
4056 return retval;
1da177e4
LT
4057}
4058
96f874e2 4059long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4060{
36c8b586 4061 struct task_struct *p;
31605683 4062 unsigned long flags;
1da177e4 4063 int retval;
1da177e4 4064
23f5d142 4065 rcu_read_lock();
1da177e4
LT
4066
4067 retval = -ESRCH;
4068 p = find_process_by_pid(pid);
4069 if (!p)
4070 goto out_unlock;
4071
e7834f8f
DQ
4072 retval = security_task_getscheduler(p);
4073 if (retval)
4074 goto out_unlock;
4075
013fdb80 4076 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4077 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4078 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4079
4080out_unlock:
23f5d142 4081 rcu_read_unlock();
1da177e4 4082
9531b62f 4083 return retval;
1da177e4
LT
4084}
4085
4086/**
4087 * sys_sched_getaffinity - get the cpu affinity of a process
4088 * @pid: pid of the process
4089 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4090 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4091 *
4092 * Return: 0 on success. An error code otherwise.
1da177e4 4093 */
5add95d4
HC
4094SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4095 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4096{
4097 int ret;
f17c8607 4098 cpumask_var_t mask;
1da177e4 4099
84fba5ec 4100 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4101 return -EINVAL;
4102 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4103 return -EINVAL;
4104
f17c8607
RR
4105 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4106 return -ENOMEM;
1da177e4 4107
f17c8607
RR
4108 ret = sched_getaffinity(pid, mask);
4109 if (ret == 0) {
8bc037fb 4110 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4111
4112 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4113 ret = -EFAULT;
4114 else
cd3d8031 4115 ret = retlen;
f17c8607
RR
4116 }
4117 free_cpumask_var(mask);
1da177e4 4118
f17c8607 4119 return ret;
1da177e4
LT
4120}
4121
4122/**
4123 * sys_sched_yield - yield the current processor to other threads.
4124 *
dd41f596
IM
4125 * This function yields the current CPU to other tasks. If there are no
4126 * other threads running on this CPU then this function will return.
e69f6186
YB
4127 *
4128 * Return: 0.
1da177e4 4129 */
5add95d4 4130SYSCALL_DEFINE0(sched_yield)
1da177e4 4131{
70b97a7f 4132 struct rq *rq = this_rq_lock();
1da177e4 4133
2d72376b 4134 schedstat_inc(rq, yld_count);
4530d7ab 4135 current->sched_class->yield_task(rq);
1da177e4
LT
4136
4137 /*
4138 * Since we are going to call schedule() anyway, there's
4139 * no need to preempt or enable interrupts:
4140 */
4141 __release(rq->lock);
8a25d5de 4142 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4143 do_raw_spin_unlock(&rq->lock);
ba74c144 4144 sched_preempt_enable_no_resched();
1da177e4
LT
4145
4146 schedule();
4147
4148 return 0;
4149}
4150
e7b38404 4151static void __cond_resched(void)
1da177e4 4152{
bdb43806 4153 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4154 __schedule();
bdb43806 4155 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4156}
4157
02b67cc3 4158int __sched _cond_resched(void)
1da177e4 4159{
ac1bea85 4160 rcu_cond_resched();
d86ee480 4161 if (should_resched()) {
1da177e4
LT
4162 __cond_resched();
4163 return 1;
4164 }
4165 return 0;
4166}
02b67cc3 4167EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4168
4169/*
613afbf8 4170 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4171 * call schedule, and on return reacquire the lock.
4172 *
41a2d6cf 4173 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4174 * operations here to prevent schedule() from being called twice (once via
4175 * spin_unlock(), once by hand).
4176 */
613afbf8 4177int __cond_resched_lock(spinlock_t *lock)
1da177e4 4178{
ac1bea85 4179 bool need_rcu_resched = rcu_should_resched();
d86ee480 4180 int resched = should_resched();
6df3cecb
JK
4181 int ret = 0;
4182
f607c668
PZ
4183 lockdep_assert_held(lock);
4184
ac1bea85 4185 if (spin_needbreak(lock) || resched || need_rcu_resched) {
1da177e4 4186 spin_unlock(lock);
d86ee480 4187 if (resched)
95c354fe 4188 __cond_resched();
ac1bea85
PM
4189 else if (unlikely(need_rcu_resched))
4190 rcu_resched();
95c354fe
NP
4191 else
4192 cpu_relax();
6df3cecb 4193 ret = 1;
1da177e4 4194 spin_lock(lock);
1da177e4 4195 }
6df3cecb 4196 return ret;
1da177e4 4197}
613afbf8 4198EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4199
613afbf8 4200int __sched __cond_resched_softirq(void)
1da177e4
LT
4201{
4202 BUG_ON(!in_softirq());
4203
ac1bea85 4204 rcu_cond_resched(); /* BH disabled OK, just recording QSes. */
d86ee480 4205 if (should_resched()) {
98d82567 4206 local_bh_enable();
1da177e4
LT
4207 __cond_resched();
4208 local_bh_disable();
4209 return 1;
4210 }
4211 return 0;
4212}
613afbf8 4213EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4214
1da177e4
LT
4215/**
4216 * yield - yield the current processor to other threads.
4217 *
8e3fabfd
PZ
4218 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4219 *
4220 * The scheduler is at all times free to pick the calling task as the most
4221 * eligible task to run, if removing the yield() call from your code breaks
4222 * it, its already broken.
4223 *
4224 * Typical broken usage is:
4225 *
4226 * while (!event)
4227 * yield();
4228 *
4229 * where one assumes that yield() will let 'the other' process run that will
4230 * make event true. If the current task is a SCHED_FIFO task that will never
4231 * happen. Never use yield() as a progress guarantee!!
4232 *
4233 * If you want to use yield() to wait for something, use wait_event().
4234 * If you want to use yield() to be 'nice' for others, use cond_resched().
4235 * If you still want to use yield(), do not!
1da177e4
LT
4236 */
4237void __sched yield(void)
4238{
4239 set_current_state(TASK_RUNNING);
4240 sys_sched_yield();
4241}
1da177e4
LT
4242EXPORT_SYMBOL(yield);
4243
d95f4122
MG
4244/**
4245 * yield_to - yield the current processor to another thread in
4246 * your thread group, or accelerate that thread toward the
4247 * processor it's on.
16addf95
RD
4248 * @p: target task
4249 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4250 *
4251 * It's the caller's job to ensure that the target task struct
4252 * can't go away on us before we can do any checks.
4253 *
e69f6186 4254 * Return:
7b270f60
PZ
4255 * true (>0) if we indeed boosted the target task.
4256 * false (0) if we failed to boost the target.
4257 * -ESRCH if there's no task to yield to.
d95f4122 4258 */
fa93384f 4259int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4260{
4261 struct task_struct *curr = current;
4262 struct rq *rq, *p_rq;
4263 unsigned long flags;
c3c18640 4264 int yielded = 0;
d95f4122
MG
4265
4266 local_irq_save(flags);
4267 rq = this_rq();
4268
4269again:
4270 p_rq = task_rq(p);
7b270f60
PZ
4271 /*
4272 * If we're the only runnable task on the rq and target rq also
4273 * has only one task, there's absolutely no point in yielding.
4274 */
4275 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4276 yielded = -ESRCH;
4277 goto out_irq;
4278 }
4279
d95f4122 4280 double_rq_lock(rq, p_rq);
39e24d8f 4281 if (task_rq(p) != p_rq) {
d95f4122
MG
4282 double_rq_unlock(rq, p_rq);
4283 goto again;
4284 }
4285
4286 if (!curr->sched_class->yield_to_task)
7b270f60 4287 goto out_unlock;
d95f4122
MG
4288
4289 if (curr->sched_class != p->sched_class)
7b270f60 4290 goto out_unlock;
d95f4122
MG
4291
4292 if (task_running(p_rq, p) || p->state)
7b270f60 4293 goto out_unlock;
d95f4122
MG
4294
4295 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4296 if (yielded) {
d95f4122 4297 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4298 /*
4299 * Make p's CPU reschedule; pick_next_entity takes care of
4300 * fairness.
4301 */
4302 if (preempt && rq != p_rq)
8875125e 4303 resched_curr(p_rq);
6d1cafd8 4304 }
d95f4122 4305
7b270f60 4306out_unlock:
d95f4122 4307 double_rq_unlock(rq, p_rq);
7b270f60 4308out_irq:
d95f4122
MG
4309 local_irq_restore(flags);
4310
7b270f60 4311 if (yielded > 0)
d95f4122
MG
4312 schedule();
4313
4314 return yielded;
4315}
4316EXPORT_SYMBOL_GPL(yield_to);
4317
1da177e4 4318/*
41a2d6cf 4319 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4320 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4321 */
4322void __sched io_schedule(void)
4323{
54d35f29 4324 struct rq *rq = raw_rq();
1da177e4 4325
0ff92245 4326 delayacct_blkio_start();
1da177e4 4327 atomic_inc(&rq->nr_iowait);
73c10101 4328 blk_flush_plug(current);
8f0dfc34 4329 current->in_iowait = 1;
1da177e4 4330 schedule();
8f0dfc34 4331 current->in_iowait = 0;
1da177e4 4332 atomic_dec(&rq->nr_iowait);
0ff92245 4333 delayacct_blkio_end();
1da177e4 4334}
1da177e4
LT
4335EXPORT_SYMBOL(io_schedule);
4336
4337long __sched io_schedule_timeout(long timeout)
4338{
54d35f29 4339 struct rq *rq = raw_rq();
1da177e4
LT
4340 long ret;
4341
0ff92245 4342 delayacct_blkio_start();
1da177e4 4343 atomic_inc(&rq->nr_iowait);
73c10101 4344 blk_flush_plug(current);
8f0dfc34 4345 current->in_iowait = 1;
1da177e4 4346 ret = schedule_timeout(timeout);
8f0dfc34 4347 current->in_iowait = 0;
1da177e4 4348 atomic_dec(&rq->nr_iowait);
0ff92245 4349 delayacct_blkio_end();
1da177e4
LT
4350 return ret;
4351}
4352
4353/**
4354 * sys_sched_get_priority_max - return maximum RT priority.
4355 * @policy: scheduling class.
4356 *
e69f6186
YB
4357 * Return: On success, this syscall returns the maximum
4358 * rt_priority that can be used by a given scheduling class.
4359 * On failure, a negative error code is returned.
1da177e4 4360 */
5add95d4 4361SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4362{
4363 int ret = -EINVAL;
4364
4365 switch (policy) {
4366 case SCHED_FIFO:
4367 case SCHED_RR:
4368 ret = MAX_USER_RT_PRIO-1;
4369 break;
aab03e05 4370 case SCHED_DEADLINE:
1da177e4 4371 case SCHED_NORMAL:
b0a9499c 4372 case SCHED_BATCH:
dd41f596 4373 case SCHED_IDLE:
1da177e4
LT
4374 ret = 0;
4375 break;
4376 }
4377 return ret;
4378}
4379
4380/**
4381 * sys_sched_get_priority_min - return minimum RT priority.
4382 * @policy: scheduling class.
4383 *
e69f6186
YB
4384 * Return: On success, this syscall returns the minimum
4385 * rt_priority that can be used by a given scheduling class.
4386 * On failure, a negative error code is returned.
1da177e4 4387 */
5add95d4 4388SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4389{
4390 int ret = -EINVAL;
4391
4392 switch (policy) {
4393 case SCHED_FIFO:
4394 case SCHED_RR:
4395 ret = 1;
4396 break;
aab03e05 4397 case SCHED_DEADLINE:
1da177e4 4398 case SCHED_NORMAL:
b0a9499c 4399 case SCHED_BATCH:
dd41f596 4400 case SCHED_IDLE:
1da177e4
LT
4401 ret = 0;
4402 }
4403 return ret;
4404}
4405
4406/**
4407 * sys_sched_rr_get_interval - return the default timeslice of a process.
4408 * @pid: pid of the process.
4409 * @interval: userspace pointer to the timeslice value.
4410 *
4411 * this syscall writes the default timeslice value of a given process
4412 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4413 *
4414 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4415 * an error code.
1da177e4 4416 */
17da2bd9 4417SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4418 struct timespec __user *, interval)
1da177e4 4419{
36c8b586 4420 struct task_struct *p;
a4ec24b4 4421 unsigned int time_slice;
dba091b9
TG
4422 unsigned long flags;
4423 struct rq *rq;
3a5c359a 4424 int retval;
1da177e4 4425 struct timespec t;
1da177e4
LT
4426
4427 if (pid < 0)
3a5c359a 4428 return -EINVAL;
1da177e4
LT
4429
4430 retval = -ESRCH;
1a551ae7 4431 rcu_read_lock();
1da177e4
LT
4432 p = find_process_by_pid(pid);
4433 if (!p)
4434 goto out_unlock;
4435
4436 retval = security_task_getscheduler(p);
4437 if (retval)
4438 goto out_unlock;
4439
dba091b9 4440 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4441 time_slice = 0;
4442 if (p->sched_class->get_rr_interval)
4443 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4444 task_rq_unlock(rq, p, &flags);
a4ec24b4 4445
1a551ae7 4446 rcu_read_unlock();
a4ec24b4 4447 jiffies_to_timespec(time_slice, &t);
1da177e4 4448 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4449 return retval;
3a5c359a 4450
1da177e4 4451out_unlock:
1a551ae7 4452 rcu_read_unlock();
1da177e4
LT
4453 return retval;
4454}
4455
7c731e0a 4456static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4457
82a1fcb9 4458void sched_show_task(struct task_struct *p)
1da177e4 4459{
1da177e4 4460 unsigned long free = 0;
4e79752c 4461 int ppid;
36c8b586 4462 unsigned state;
1da177e4 4463
1da177e4 4464 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4465 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4466 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4467#if BITS_PER_LONG == 32
1da177e4 4468 if (state == TASK_RUNNING)
3df0fc5b 4469 printk(KERN_CONT " running ");
1da177e4 4470 else
3df0fc5b 4471 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4472#else
4473 if (state == TASK_RUNNING)
3df0fc5b 4474 printk(KERN_CONT " running task ");
1da177e4 4475 else
3df0fc5b 4476 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4477#endif
4478#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4479 free = stack_not_used(p);
1da177e4 4480#endif
4e79752c
PM
4481 rcu_read_lock();
4482 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4483 rcu_read_unlock();
3df0fc5b 4484 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4485 task_pid_nr(p), ppid,
aa47b7e0 4486 (unsigned long)task_thread_info(p)->flags);
1da177e4 4487
3d1cb205 4488 print_worker_info(KERN_INFO, p);
5fb5e6de 4489 show_stack(p, NULL);
1da177e4
LT
4490}
4491
e59e2ae2 4492void show_state_filter(unsigned long state_filter)
1da177e4 4493{
36c8b586 4494 struct task_struct *g, *p;
1da177e4 4495
4bd77321 4496#if BITS_PER_LONG == 32
3df0fc5b
PZ
4497 printk(KERN_INFO
4498 " task PC stack pid father\n");
1da177e4 4499#else
3df0fc5b
PZ
4500 printk(KERN_INFO
4501 " task PC stack pid father\n");
1da177e4 4502#endif
510f5acc 4503 rcu_read_lock();
1da177e4
LT
4504 do_each_thread(g, p) {
4505 /*
4506 * reset the NMI-timeout, listing all files on a slow
25985edc 4507 * console might take a lot of time:
1da177e4
LT
4508 */
4509 touch_nmi_watchdog();
39bc89fd 4510 if (!state_filter || (p->state & state_filter))
82a1fcb9 4511 sched_show_task(p);
1da177e4
LT
4512 } while_each_thread(g, p);
4513
04c9167f
JF
4514 touch_all_softlockup_watchdogs();
4515
dd41f596
IM
4516#ifdef CONFIG_SCHED_DEBUG
4517 sysrq_sched_debug_show();
4518#endif
510f5acc 4519 rcu_read_unlock();
e59e2ae2
IM
4520 /*
4521 * Only show locks if all tasks are dumped:
4522 */
93335a21 4523 if (!state_filter)
e59e2ae2 4524 debug_show_all_locks();
1da177e4
LT
4525}
4526
0db0628d 4527void init_idle_bootup_task(struct task_struct *idle)
1df21055 4528{
dd41f596 4529 idle->sched_class = &idle_sched_class;
1df21055
IM
4530}
4531
f340c0d1
IM
4532/**
4533 * init_idle - set up an idle thread for a given CPU
4534 * @idle: task in question
4535 * @cpu: cpu the idle task belongs to
4536 *
4537 * NOTE: this function does not set the idle thread's NEED_RESCHED
4538 * flag, to make booting more robust.
4539 */
0db0628d 4540void init_idle(struct task_struct *idle, int cpu)
1da177e4 4541{
70b97a7f 4542 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4543 unsigned long flags;
4544
05fa785c 4545 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4546
5e1576ed 4547 __sched_fork(0, idle);
06b83b5f 4548 idle->state = TASK_RUNNING;
dd41f596
IM
4549 idle->se.exec_start = sched_clock();
4550
1e1b6c51 4551 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4552 /*
4553 * We're having a chicken and egg problem, even though we are
4554 * holding rq->lock, the cpu isn't yet set to this cpu so the
4555 * lockdep check in task_group() will fail.
4556 *
4557 * Similar case to sched_fork(). / Alternatively we could
4558 * use task_rq_lock() here and obtain the other rq->lock.
4559 *
4560 * Silence PROVE_RCU
4561 */
4562 rcu_read_lock();
dd41f596 4563 __set_task_cpu(idle, cpu);
6506cf6c 4564 rcu_read_unlock();
1da177e4 4565
1da177e4 4566 rq->curr = rq->idle = idle;
77177856 4567 idle->on_rq = 1;
3ca7a440
PZ
4568#if defined(CONFIG_SMP)
4569 idle->on_cpu = 1;
4866cde0 4570#endif
05fa785c 4571 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4572
4573 /* Set the preempt count _outside_ the spinlocks! */
01028747 4574 init_idle_preempt_count(idle, cpu);
55cd5340 4575
dd41f596
IM
4576 /*
4577 * The idle tasks have their own, simple scheduling class:
4578 */
4579 idle->sched_class = &idle_sched_class;
868baf07 4580 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4581 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4582#if defined(CONFIG_SMP)
4583 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4584#endif
19978ca6
IM
4585}
4586
1da177e4 4587#ifdef CONFIG_SMP
1e1b6c51
KM
4588void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4589{
4590 if (p->sched_class && p->sched_class->set_cpus_allowed)
4591 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4592
4593 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4594 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4595}
4596
1da177e4
LT
4597/*
4598 * This is how migration works:
4599 *
969c7921
TH
4600 * 1) we invoke migration_cpu_stop() on the target CPU using
4601 * stop_one_cpu().
4602 * 2) stopper starts to run (implicitly forcing the migrated thread
4603 * off the CPU)
4604 * 3) it checks whether the migrated task is still in the wrong runqueue.
4605 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4606 * it and puts it into the right queue.
969c7921
TH
4607 * 5) stopper completes and stop_one_cpu() returns and the migration
4608 * is done.
1da177e4
LT
4609 */
4610
4611/*
4612 * Change a given task's CPU affinity. Migrate the thread to a
4613 * proper CPU and schedule it away if the CPU it's executing on
4614 * is removed from the allowed bitmask.
4615 *
4616 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4617 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4618 * call is not atomic; no spinlocks may be held.
4619 */
96f874e2 4620int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4621{
4622 unsigned long flags;
70b97a7f 4623 struct rq *rq;
969c7921 4624 unsigned int dest_cpu;
48f24c4d 4625 int ret = 0;
1da177e4
LT
4626
4627 rq = task_rq_lock(p, &flags);
e2912009 4628
db44fc01
YZ
4629 if (cpumask_equal(&p->cpus_allowed, new_mask))
4630 goto out;
4631
6ad4c188 4632 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4633 ret = -EINVAL;
4634 goto out;
4635 }
4636
1e1b6c51 4637 do_set_cpus_allowed(p, new_mask);
73fe6aae 4638
1da177e4 4639 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4640 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4641 goto out;
4642
969c7921 4643 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4644 if (p->on_rq) {
969c7921 4645 struct migration_arg arg = { p, dest_cpu };
1da177e4 4646 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4647 task_rq_unlock(rq, p, &flags);
969c7921 4648 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4649 tlb_migrate_finish(p->mm);
4650 return 0;
4651 }
4652out:
0122ec5b 4653 task_rq_unlock(rq, p, &flags);
48f24c4d 4654
1da177e4
LT
4655 return ret;
4656}
cd8ba7cd 4657EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4658
4659/*
41a2d6cf 4660 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4661 * this because either it can't run here any more (set_cpus_allowed()
4662 * away from this CPU, or CPU going down), or because we're
4663 * attempting to rebalance this task on exec (sched_exec).
4664 *
4665 * So we race with normal scheduler movements, but that's OK, as long
4666 * as the task is no longer on this CPU.
efc30814
KK
4667 *
4668 * Returns non-zero if task was successfully migrated.
1da177e4 4669 */
efc30814 4670static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4671{
70b97a7f 4672 struct rq *rq_dest, *rq_src;
e2912009 4673 int ret = 0;
1da177e4 4674
e761b772 4675 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4676 return ret;
1da177e4
LT
4677
4678 rq_src = cpu_rq(src_cpu);
4679 rq_dest = cpu_rq(dest_cpu);
4680
0122ec5b 4681 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4682 double_rq_lock(rq_src, rq_dest);
4683 /* Already moved. */
4684 if (task_cpu(p) != src_cpu)
b1e38734 4685 goto done;
1da177e4 4686 /* Affinity changed (again). */
fa17b507 4687 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4688 goto fail;
1da177e4 4689
e2912009
PZ
4690 /*
4691 * If we're not on a rq, the next wake-up will ensure we're
4692 * placed properly.
4693 */
fd2f4419 4694 if (p->on_rq) {
4ca9b72b 4695 dequeue_task(rq_src, p, 0);
e2912009 4696 set_task_cpu(p, dest_cpu);
4ca9b72b 4697 enqueue_task(rq_dest, p, 0);
15afe09b 4698 check_preempt_curr(rq_dest, p, 0);
1da177e4 4699 }
b1e38734 4700done:
efc30814 4701 ret = 1;
b1e38734 4702fail:
1da177e4 4703 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4704 raw_spin_unlock(&p->pi_lock);
efc30814 4705 return ret;
1da177e4
LT
4706}
4707
e6628d5b
MG
4708#ifdef CONFIG_NUMA_BALANCING
4709/* Migrate current task p to target_cpu */
4710int migrate_task_to(struct task_struct *p, int target_cpu)
4711{
4712 struct migration_arg arg = { p, target_cpu };
4713 int curr_cpu = task_cpu(p);
4714
4715 if (curr_cpu == target_cpu)
4716 return 0;
4717
4718 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4719 return -EINVAL;
4720
4721 /* TODO: This is not properly updating schedstats */
4722
286549dc 4723 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4724 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4725}
0ec8aa00
PZ
4726
4727/*
4728 * Requeue a task on a given node and accurately track the number of NUMA
4729 * tasks on the runqueues
4730 */
4731void sched_setnuma(struct task_struct *p, int nid)
4732{
4733 struct rq *rq;
4734 unsigned long flags;
4735 bool on_rq, running;
4736
4737 rq = task_rq_lock(p, &flags);
4738 on_rq = p->on_rq;
4739 running = task_current(rq, p);
4740
4741 if (on_rq)
4742 dequeue_task(rq, p, 0);
4743 if (running)
4744 p->sched_class->put_prev_task(rq, p);
4745
4746 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4747
4748 if (running)
4749 p->sched_class->set_curr_task(rq);
4750 if (on_rq)
4751 enqueue_task(rq, p, 0);
4752 task_rq_unlock(rq, p, &flags);
4753}
e6628d5b
MG
4754#endif
4755
1da177e4 4756/*
969c7921
TH
4757 * migration_cpu_stop - this will be executed by a highprio stopper thread
4758 * and performs thread migration by bumping thread off CPU then
4759 * 'pushing' onto another runqueue.
1da177e4 4760 */
969c7921 4761static int migration_cpu_stop(void *data)
1da177e4 4762{
969c7921 4763 struct migration_arg *arg = data;
f7b4cddc 4764
969c7921
TH
4765 /*
4766 * The original target cpu might have gone down and we might
4767 * be on another cpu but it doesn't matter.
4768 */
f7b4cddc 4769 local_irq_disable();
969c7921 4770 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4771 local_irq_enable();
1da177e4 4772 return 0;
f7b4cddc
ON
4773}
4774
1da177e4 4775#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4776
054b9108 4777/*
48c5ccae
PZ
4778 * Ensures that the idle task is using init_mm right before its cpu goes
4779 * offline.
054b9108 4780 */
48c5ccae 4781void idle_task_exit(void)
1da177e4 4782{
48c5ccae 4783 struct mm_struct *mm = current->active_mm;
e76bd8d9 4784
48c5ccae 4785 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4786
a53efe5f 4787 if (mm != &init_mm) {
48c5ccae 4788 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4789 finish_arch_post_lock_switch();
4790 }
48c5ccae 4791 mmdrop(mm);
1da177e4
LT
4792}
4793
4794/*
5d180232
PZ
4795 * Since this CPU is going 'away' for a while, fold any nr_active delta
4796 * we might have. Assumes we're called after migrate_tasks() so that the
4797 * nr_active count is stable.
4798 *
4799 * Also see the comment "Global load-average calculations".
1da177e4 4800 */
5d180232 4801static void calc_load_migrate(struct rq *rq)
1da177e4 4802{
5d180232
PZ
4803 long delta = calc_load_fold_active(rq);
4804 if (delta)
4805 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4806}
4807
3f1d2a31
PZ
4808static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4809{
4810}
4811
4812static const struct sched_class fake_sched_class = {
4813 .put_prev_task = put_prev_task_fake,
4814};
4815
4816static struct task_struct fake_task = {
4817 /*
4818 * Avoid pull_{rt,dl}_task()
4819 */
4820 .prio = MAX_PRIO + 1,
4821 .sched_class = &fake_sched_class,
4822};
4823
48f24c4d 4824/*
48c5ccae
PZ
4825 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4826 * try_to_wake_up()->select_task_rq().
4827 *
4828 * Called with rq->lock held even though we'er in stop_machine() and
4829 * there's no concurrency possible, we hold the required locks anyway
4830 * because of lock validation efforts.
1da177e4 4831 */
48c5ccae 4832static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4833{
70b97a7f 4834 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4835 struct task_struct *next, *stop = rq->stop;
4836 int dest_cpu;
1da177e4
LT
4837
4838 /*
48c5ccae
PZ
4839 * Fudge the rq selection such that the below task selection loop
4840 * doesn't get stuck on the currently eligible stop task.
4841 *
4842 * We're currently inside stop_machine() and the rq is either stuck
4843 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4844 * either way we should never end up calling schedule() until we're
4845 * done here.
1da177e4 4846 */
48c5ccae 4847 rq->stop = NULL;
48f24c4d 4848
77bd3970
FW
4849 /*
4850 * put_prev_task() and pick_next_task() sched
4851 * class method both need to have an up-to-date
4852 * value of rq->clock[_task]
4853 */
4854 update_rq_clock(rq);
4855
dd41f596 4856 for ( ; ; ) {
48c5ccae
PZ
4857 /*
4858 * There's this thread running, bail when that's the only
4859 * remaining thread.
4860 */
4861 if (rq->nr_running == 1)
dd41f596 4862 break;
48c5ccae 4863
3f1d2a31 4864 next = pick_next_task(rq, &fake_task);
48c5ccae 4865 BUG_ON(!next);
79c53799 4866 next->sched_class->put_prev_task(rq, next);
e692ab53 4867
48c5ccae
PZ
4868 /* Find suitable destination for @next, with force if needed. */
4869 dest_cpu = select_fallback_rq(dead_cpu, next);
4870 raw_spin_unlock(&rq->lock);
4871
4872 __migrate_task(next, dead_cpu, dest_cpu);
4873
4874 raw_spin_lock(&rq->lock);
1da177e4 4875 }
dce48a84 4876
48c5ccae 4877 rq->stop = stop;
dce48a84 4878}
48c5ccae 4879
1da177e4
LT
4880#endif /* CONFIG_HOTPLUG_CPU */
4881
e692ab53
NP
4882#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4883
4884static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4885 {
4886 .procname = "sched_domain",
c57baf1e 4887 .mode = 0555,
e0361851 4888 },
56992309 4889 {}
e692ab53
NP
4890};
4891
4892static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4893 {
4894 .procname = "kernel",
c57baf1e 4895 .mode = 0555,
e0361851
AD
4896 .child = sd_ctl_dir,
4897 },
56992309 4898 {}
e692ab53
NP
4899};
4900
4901static struct ctl_table *sd_alloc_ctl_entry(int n)
4902{
4903 struct ctl_table *entry =
5cf9f062 4904 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4905
e692ab53
NP
4906 return entry;
4907}
4908
6382bc90
MM
4909static void sd_free_ctl_entry(struct ctl_table **tablep)
4910{
cd790076 4911 struct ctl_table *entry;
6382bc90 4912
cd790076
MM
4913 /*
4914 * In the intermediate directories, both the child directory and
4915 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4916 * will always be set. In the lowest directory the names are
cd790076
MM
4917 * static strings and all have proc handlers.
4918 */
4919 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4920 if (entry->child)
4921 sd_free_ctl_entry(&entry->child);
cd790076
MM
4922 if (entry->proc_handler == NULL)
4923 kfree(entry->procname);
4924 }
6382bc90
MM
4925
4926 kfree(*tablep);
4927 *tablep = NULL;
4928}
4929
201c373e 4930static int min_load_idx = 0;
fd9b86d3 4931static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4932
e692ab53 4933static void
e0361851 4934set_table_entry(struct ctl_table *entry,
e692ab53 4935 const char *procname, void *data, int maxlen,
201c373e
NK
4936 umode_t mode, proc_handler *proc_handler,
4937 bool load_idx)
e692ab53 4938{
e692ab53
NP
4939 entry->procname = procname;
4940 entry->data = data;
4941 entry->maxlen = maxlen;
4942 entry->mode = mode;
4943 entry->proc_handler = proc_handler;
201c373e
NK
4944
4945 if (load_idx) {
4946 entry->extra1 = &min_load_idx;
4947 entry->extra2 = &max_load_idx;
4948 }
e692ab53
NP
4949}
4950
4951static struct ctl_table *
4952sd_alloc_ctl_domain_table(struct sched_domain *sd)
4953{
37e6bae8 4954 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4955
ad1cdc1d
MM
4956 if (table == NULL)
4957 return NULL;
4958
e0361851 4959 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4960 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4961 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4962 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4963 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4964 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4965 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4966 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4967 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4968 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4969 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4970 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4971 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4972 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4973 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4974 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4975 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4976 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4977 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4978 &sd->cache_nice_tries,
201c373e 4979 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4980 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4981 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4982 set_table_entry(&table[11], "max_newidle_lb_cost",
4983 &sd->max_newidle_lb_cost,
4984 sizeof(long), 0644, proc_doulongvec_minmax, false);
4985 set_table_entry(&table[12], "name", sd->name,
201c373e 4986 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4987 /* &table[13] is terminator */
e692ab53
NP
4988
4989 return table;
4990}
4991
be7002e6 4992static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4993{
4994 struct ctl_table *entry, *table;
4995 struct sched_domain *sd;
4996 int domain_num = 0, i;
4997 char buf[32];
4998
4999 for_each_domain(cpu, sd)
5000 domain_num++;
5001 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5002 if (table == NULL)
5003 return NULL;
e692ab53
NP
5004
5005 i = 0;
5006 for_each_domain(cpu, sd) {
5007 snprintf(buf, 32, "domain%d", i);
e692ab53 5008 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5009 entry->mode = 0555;
e692ab53
NP
5010 entry->child = sd_alloc_ctl_domain_table(sd);
5011 entry++;
5012 i++;
5013 }
5014 return table;
5015}
5016
5017static struct ctl_table_header *sd_sysctl_header;
6382bc90 5018static void register_sched_domain_sysctl(void)
e692ab53 5019{
6ad4c188 5020 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5021 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5022 char buf[32];
5023
7378547f
MM
5024 WARN_ON(sd_ctl_dir[0].child);
5025 sd_ctl_dir[0].child = entry;
5026
ad1cdc1d
MM
5027 if (entry == NULL)
5028 return;
5029
6ad4c188 5030 for_each_possible_cpu(i) {
e692ab53 5031 snprintf(buf, 32, "cpu%d", i);
e692ab53 5032 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5033 entry->mode = 0555;
e692ab53 5034 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5035 entry++;
e692ab53 5036 }
7378547f
MM
5037
5038 WARN_ON(sd_sysctl_header);
e692ab53
NP
5039 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5040}
6382bc90 5041
7378547f 5042/* may be called multiple times per register */
6382bc90
MM
5043static void unregister_sched_domain_sysctl(void)
5044{
7378547f
MM
5045 if (sd_sysctl_header)
5046 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5047 sd_sysctl_header = NULL;
7378547f
MM
5048 if (sd_ctl_dir[0].child)
5049 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5050}
e692ab53 5051#else
6382bc90
MM
5052static void register_sched_domain_sysctl(void)
5053{
5054}
5055static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5056{
5057}
5058#endif
5059
1f11eb6a
GH
5060static void set_rq_online(struct rq *rq)
5061{
5062 if (!rq->online) {
5063 const struct sched_class *class;
5064
c6c4927b 5065 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5066 rq->online = 1;
5067
5068 for_each_class(class) {
5069 if (class->rq_online)
5070 class->rq_online(rq);
5071 }
5072 }
5073}
5074
5075static void set_rq_offline(struct rq *rq)
5076{
5077 if (rq->online) {
5078 const struct sched_class *class;
5079
5080 for_each_class(class) {
5081 if (class->rq_offline)
5082 class->rq_offline(rq);
5083 }
5084
c6c4927b 5085 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5086 rq->online = 0;
5087 }
5088}
5089
1da177e4
LT
5090/*
5091 * migration_call - callback that gets triggered when a CPU is added.
5092 * Here we can start up the necessary migration thread for the new CPU.
5093 */
0db0628d 5094static int
48f24c4d 5095migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5096{
48f24c4d 5097 int cpu = (long)hcpu;
1da177e4 5098 unsigned long flags;
969c7921 5099 struct rq *rq = cpu_rq(cpu);
1da177e4 5100
48c5ccae 5101 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5102
1da177e4 5103 case CPU_UP_PREPARE:
a468d389 5104 rq->calc_load_update = calc_load_update;
1da177e4 5105 break;
48f24c4d 5106
1da177e4 5107 case CPU_ONLINE:
1f94ef59 5108 /* Update our root-domain */
05fa785c 5109 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5110 if (rq->rd) {
c6c4927b 5111 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5112
5113 set_rq_online(rq);
1f94ef59 5114 }
05fa785c 5115 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5116 break;
48f24c4d 5117
1da177e4 5118#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5119 case CPU_DYING:
317f3941 5120 sched_ttwu_pending();
57d885fe 5121 /* Update our root-domain */
05fa785c 5122 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5123 if (rq->rd) {
c6c4927b 5124 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5125 set_rq_offline(rq);
57d885fe 5126 }
48c5ccae
PZ
5127 migrate_tasks(cpu);
5128 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5129 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5130 break;
48c5ccae 5131
5d180232 5132 case CPU_DEAD:
f319da0c 5133 calc_load_migrate(rq);
57d885fe 5134 break;
1da177e4
LT
5135#endif
5136 }
49c022e6
PZ
5137
5138 update_max_interval();
5139
1da177e4
LT
5140 return NOTIFY_OK;
5141}
5142
f38b0820
PM
5143/*
5144 * Register at high priority so that task migration (migrate_all_tasks)
5145 * happens before everything else. This has to be lower priority than
cdd6c482 5146 * the notifier in the perf_event subsystem, though.
1da177e4 5147 */
0db0628d 5148static struct notifier_block migration_notifier = {
1da177e4 5149 .notifier_call = migration_call,
50a323b7 5150 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5151};
5152
a803f026
CM
5153static void __cpuinit set_cpu_rq_start_time(void)
5154{
5155 int cpu = smp_processor_id();
5156 struct rq *rq = cpu_rq(cpu);
5157 rq->age_stamp = sched_clock_cpu(cpu);
5158}
5159
0db0628d 5160static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5161 unsigned long action, void *hcpu)
5162{
5163 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5164 case CPU_STARTING:
5165 set_cpu_rq_start_time();
5166 return NOTIFY_OK;
3a101d05
TH
5167 case CPU_DOWN_FAILED:
5168 set_cpu_active((long)hcpu, true);
5169 return NOTIFY_OK;
5170 default:
5171 return NOTIFY_DONE;
5172 }
5173}
5174
0db0628d 5175static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5176 unsigned long action, void *hcpu)
5177{
de212f18
PZ
5178 unsigned long flags;
5179 long cpu = (long)hcpu;
5180
3a101d05
TH
5181 switch (action & ~CPU_TASKS_FROZEN) {
5182 case CPU_DOWN_PREPARE:
de212f18
PZ
5183 set_cpu_active(cpu, false);
5184
5185 /* explicitly allow suspend */
5186 if (!(action & CPU_TASKS_FROZEN)) {
5187 struct dl_bw *dl_b = dl_bw_of(cpu);
5188 bool overflow;
5189 int cpus;
5190
5191 raw_spin_lock_irqsave(&dl_b->lock, flags);
5192 cpus = dl_bw_cpus(cpu);
5193 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5194 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5195
5196 if (overflow)
5197 return notifier_from_errno(-EBUSY);
5198 }
3a101d05 5199 return NOTIFY_OK;
3a101d05 5200 }
de212f18
PZ
5201
5202 return NOTIFY_DONE;
3a101d05
TH
5203}
5204
7babe8db 5205static int __init migration_init(void)
1da177e4
LT
5206{
5207 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5208 int err;
48f24c4d 5209
3a101d05 5210 /* Initialize migration for the boot CPU */
07dccf33
AM
5211 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5212 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5213 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5214 register_cpu_notifier(&migration_notifier);
7babe8db 5215
3a101d05
TH
5216 /* Register cpu active notifiers */
5217 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5218 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5219
a004cd42 5220 return 0;
1da177e4 5221}
7babe8db 5222early_initcall(migration_init);
1da177e4
LT
5223#endif
5224
5225#ifdef CONFIG_SMP
476f3534 5226
4cb98839
PZ
5227static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5228
3e9830dc 5229#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5230
d039ac60 5231static __read_mostly int sched_debug_enabled;
f6630114 5232
d039ac60 5233static int __init sched_debug_setup(char *str)
f6630114 5234{
d039ac60 5235 sched_debug_enabled = 1;
f6630114
MT
5236
5237 return 0;
5238}
d039ac60
PZ
5239early_param("sched_debug", sched_debug_setup);
5240
5241static inline bool sched_debug(void)
5242{
5243 return sched_debug_enabled;
5244}
f6630114 5245
7c16ec58 5246static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5247 struct cpumask *groupmask)
1da177e4 5248{
4dcf6aff 5249 struct sched_group *group = sd->groups;
434d53b0 5250 char str[256];
1da177e4 5251
968ea6d8 5252 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5253 cpumask_clear(groupmask);
4dcf6aff
IM
5254
5255 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5256
5257 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5258 printk("does not load-balance\n");
4dcf6aff 5259 if (sd->parent)
3df0fc5b
PZ
5260 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5261 " has parent");
4dcf6aff 5262 return -1;
41c7ce9a
NP
5263 }
5264
3df0fc5b 5265 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5266
758b2cdc 5267 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5268 printk(KERN_ERR "ERROR: domain->span does not contain "
5269 "CPU%d\n", cpu);
4dcf6aff 5270 }
758b2cdc 5271 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5272 printk(KERN_ERR "ERROR: domain->groups does not contain"
5273 " CPU%d\n", cpu);
4dcf6aff 5274 }
1da177e4 5275
4dcf6aff 5276 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5277 do {
4dcf6aff 5278 if (!group) {
3df0fc5b
PZ
5279 printk("\n");
5280 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5281 break;
5282 }
5283
c3decf0d 5284 /*
63b2ca30
NP
5285 * Even though we initialize ->capacity to something semi-sane,
5286 * we leave capacity_orig unset. This allows us to detect if
c3decf0d
PZ
5287 * domain iteration is still funny without causing /0 traps.
5288 */
63b2ca30 5289 if (!group->sgc->capacity_orig) {
3df0fc5b 5290 printk(KERN_CONT "\n");
63b2ca30 5291 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
4dcf6aff
IM
5292 break;
5293 }
1da177e4 5294
758b2cdc 5295 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5296 printk(KERN_CONT "\n");
5297 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5298 break;
5299 }
1da177e4 5300
cb83b629
PZ
5301 if (!(sd->flags & SD_OVERLAP) &&
5302 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5303 printk(KERN_CONT "\n");
5304 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5305 break;
5306 }
1da177e4 5307
758b2cdc 5308 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5309
968ea6d8 5310 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5311
3df0fc5b 5312 printk(KERN_CONT " %s", str);
ca8ce3d0 5313 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5314 printk(KERN_CONT " (cpu_capacity = %d)",
5315 group->sgc->capacity);
381512cf 5316 }
1da177e4 5317
4dcf6aff
IM
5318 group = group->next;
5319 } while (group != sd->groups);
3df0fc5b 5320 printk(KERN_CONT "\n");
1da177e4 5321
758b2cdc 5322 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5323 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5324
758b2cdc
RR
5325 if (sd->parent &&
5326 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5327 printk(KERN_ERR "ERROR: parent span is not a superset "
5328 "of domain->span\n");
4dcf6aff
IM
5329 return 0;
5330}
1da177e4 5331
4dcf6aff
IM
5332static void sched_domain_debug(struct sched_domain *sd, int cpu)
5333{
5334 int level = 0;
1da177e4 5335
d039ac60 5336 if (!sched_debug_enabled)
f6630114
MT
5337 return;
5338
4dcf6aff
IM
5339 if (!sd) {
5340 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5341 return;
5342 }
1da177e4 5343
4dcf6aff
IM
5344 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5345
5346 for (;;) {
4cb98839 5347 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5348 break;
1da177e4
LT
5349 level++;
5350 sd = sd->parent;
33859f7f 5351 if (!sd)
4dcf6aff
IM
5352 break;
5353 }
1da177e4 5354}
6d6bc0ad 5355#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5356# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5357static inline bool sched_debug(void)
5358{
5359 return false;
5360}
6d6bc0ad 5361#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5362
1a20ff27 5363static int sd_degenerate(struct sched_domain *sd)
245af2c7 5364{
758b2cdc 5365 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5366 return 1;
5367
5368 /* Following flags need at least 2 groups */
5369 if (sd->flags & (SD_LOAD_BALANCE |
5370 SD_BALANCE_NEWIDLE |
5371 SD_BALANCE_FORK |
89c4710e 5372 SD_BALANCE_EXEC |
5d4dfddd 5373 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5374 SD_SHARE_PKG_RESOURCES |
5375 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5376 if (sd->groups != sd->groups->next)
5377 return 0;
5378 }
5379
5380 /* Following flags don't use groups */
c88d5910 5381 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5382 return 0;
5383
5384 return 1;
5385}
5386
48f24c4d
IM
5387static int
5388sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5389{
5390 unsigned long cflags = sd->flags, pflags = parent->flags;
5391
5392 if (sd_degenerate(parent))
5393 return 1;
5394
758b2cdc 5395 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5396 return 0;
5397
245af2c7
SS
5398 /* Flags needing groups don't count if only 1 group in parent */
5399 if (parent->groups == parent->groups->next) {
5400 pflags &= ~(SD_LOAD_BALANCE |
5401 SD_BALANCE_NEWIDLE |
5402 SD_BALANCE_FORK |
89c4710e 5403 SD_BALANCE_EXEC |
5d4dfddd 5404 SD_SHARE_CPUCAPACITY |
10866e62 5405 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5406 SD_PREFER_SIBLING |
5407 SD_SHARE_POWERDOMAIN);
5436499e
KC
5408 if (nr_node_ids == 1)
5409 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5410 }
5411 if (~cflags & pflags)
5412 return 0;
5413
5414 return 1;
5415}
5416
dce840a0 5417static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5418{
dce840a0 5419 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5420
68e74568 5421 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5422 cpudl_cleanup(&rd->cpudl);
1baca4ce 5423 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5424 free_cpumask_var(rd->rto_mask);
5425 free_cpumask_var(rd->online);
5426 free_cpumask_var(rd->span);
5427 kfree(rd);
5428}
5429
57d885fe
GH
5430static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5431{
a0490fa3 5432 struct root_domain *old_rd = NULL;
57d885fe 5433 unsigned long flags;
57d885fe 5434
05fa785c 5435 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5436
5437 if (rq->rd) {
a0490fa3 5438 old_rd = rq->rd;
57d885fe 5439
c6c4927b 5440 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5441 set_rq_offline(rq);
57d885fe 5442
c6c4927b 5443 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5444
a0490fa3 5445 /*
0515973f 5446 * If we dont want to free the old_rd yet then
a0490fa3
IM
5447 * set old_rd to NULL to skip the freeing later
5448 * in this function:
5449 */
5450 if (!atomic_dec_and_test(&old_rd->refcount))
5451 old_rd = NULL;
57d885fe
GH
5452 }
5453
5454 atomic_inc(&rd->refcount);
5455 rq->rd = rd;
5456
c6c4927b 5457 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5458 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5459 set_rq_online(rq);
57d885fe 5460
05fa785c 5461 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5462
5463 if (old_rd)
dce840a0 5464 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5465}
5466
68c38fc3 5467static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5468{
5469 memset(rd, 0, sizeof(*rd));
5470
68c38fc3 5471 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5472 goto out;
68c38fc3 5473 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5474 goto free_span;
1baca4ce 5475 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5476 goto free_online;
1baca4ce
JL
5477 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5478 goto free_dlo_mask;
6e0534f2 5479
332ac17e 5480 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5481 if (cpudl_init(&rd->cpudl) != 0)
5482 goto free_dlo_mask;
332ac17e 5483
68c38fc3 5484 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5485 goto free_rto_mask;
c6c4927b 5486 return 0;
6e0534f2 5487
68e74568
RR
5488free_rto_mask:
5489 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5490free_dlo_mask:
5491 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5492free_online:
5493 free_cpumask_var(rd->online);
5494free_span:
5495 free_cpumask_var(rd->span);
0c910d28 5496out:
c6c4927b 5497 return -ENOMEM;
57d885fe
GH
5498}
5499
029632fb
PZ
5500/*
5501 * By default the system creates a single root-domain with all cpus as
5502 * members (mimicking the global state we have today).
5503 */
5504struct root_domain def_root_domain;
5505
57d885fe
GH
5506static void init_defrootdomain(void)
5507{
68c38fc3 5508 init_rootdomain(&def_root_domain);
c6c4927b 5509
57d885fe
GH
5510 atomic_set(&def_root_domain.refcount, 1);
5511}
5512
dc938520 5513static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5514{
5515 struct root_domain *rd;
5516
5517 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5518 if (!rd)
5519 return NULL;
5520
68c38fc3 5521 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5522 kfree(rd);
5523 return NULL;
5524 }
57d885fe
GH
5525
5526 return rd;
5527}
5528
63b2ca30 5529static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5530{
5531 struct sched_group *tmp, *first;
5532
5533 if (!sg)
5534 return;
5535
5536 first = sg;
5537 do {
5538 tmp = sg->next;
5539
63b2ca30
NP
5540 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5541 kfree(sg->sgc);
e3589f6c
PZ
5542
5543 kfree(sg);
5544 sg = tmp;
5545 } while (sg != first);
5546}
5547
dce840a0
PZ
5548static void free_sched_domain(struct rcu_head *rcu)
5549{
5550 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5551
5552 /*
5553 * If its an overlapping domain it has private groups, iterate and
5554 * nuke them all.
5555 */
5556 if (sd->flags & SD_OVERLAP) {
5557 free_sched_groups(sd->groups, 1);
5558 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5559 kfree(sd->groups->sgc);
dce840a0 5560 kfree(sd->groups);
9c3f75cb 5561 }
dce840a0
PZ
5562 kfree(sd);
5563}
5564
5565static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5566{
5567 call_rcu(&sd->rcu, free_sched_domain);
5568}
5569
5570static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5571{
5572 for (; sd; sd = sd->parent)
5573 destroy_sched_domain(sd, cpu);
5574}
5575
518cd623
PZ
5576/*
5577 * Keep a special pointer to the highest sched_domain that has
5578 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5579 * allows us to avoid some pointer chasing select_idle_sibling().
5580 *
5581 * Also keep a unique ID per domain (we use the first cpu number in
5582 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5583 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5584 */
5585DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5586DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5587DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5588DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5589DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5590DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5591
5592static void update_top_cache_domain(int cpu)
5593{
5594 struct sched_domain *sd;
5d4cf996 5595 struct sched_domain *busy_sd = NULL;
518cd623 5596 int id = cpu;
7d9ffa89 5597 int size = 1;
518cd623
PZ
5598
5599 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5600 if (sd) {
518cd623 5601 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5602 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5603 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5604 }
5d4cf996 5605 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5606
5607 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5608 per_cpu(sd_llc_size, cpu) = size;
518cd623 5609 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5610
5611 sd = lowest_flag_domain(cpu, SD_NUMA);
5612 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5613
5614 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5615 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5616}
5617
1da177e4 5618/*
0eab9146 5619 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5620 * hold the hotplug lock.
5621 */
0eab9146
IM
5622static void
5623cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5624{
70b97a7f 5625 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5626 struct sched_domain *tmp;
5627
5628 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5629 for (tmp = sd; tmp; ) {
245af2c7
SS
5630 struct sched_domain *parent = tmp->parent;
5631 if (!parent)
5632 break;
f29c9b1c 5633
1a848870 5634 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5635 tmp->parent = parent->parent;
1a848870
SS
5636 if (parent->parent)
5637 parent->parent->child = tmp;
10866e62
PZ
5638 /*
5639 * Transfer SD_PREFER_SIBLING down in case of a
5640 * degenerate parent; the spans match for this
5641 * so the property transfers.
5642 */
5643 if (parent->flags & SD_PREFER_SIBLING)
5644 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5645 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5646 } else
5647 tmp = tmp->parent;
245af2c7
SS
5648 }
5649
1a848870 5650 if (sd && sd_degenerate(sd)) {
dce840a0 5651 tmp = sd;
245af2c7 5652 sd = sd->parent;
dce840a0 5653 destroy_sched_domain(tmp, cpu);
1a848870
SS
5654 if (sd)
5655 sd->child = NULL;
5656 }
1da177e4 5657
4cb98839 5658 sched_domain_debug(sd, cpu);
1da177e4 5659
57d885fe 5660 rq_attach_root(rq, rd);
dce840a0 5661 tmp = rq->sd;
674311d5 5662 rcu_assign_pointer(rq->sd, sd);
dce840a0 5663 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5664
5665 update_top_cache_domain(cpu);
1da177e4
LT
5666}
5667
5668/* cpus with isolated domains */
dcc30a35 5669static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5670
5671/* Setup the mask of cpus configured for isolated domains */
5672static int __init isolated_cpu_setup(char *str)
5673{
bdddd296 5674 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5675 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5676 return 1;
5677}
5678
8927f494 5679__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5680
49a02c51 5681struct s_data {
21d42ccf 5682 struct sched_domain ** __percpu sd;
49a02c51
AH
5683 struct root_domain *rd;
5684};
5685
2109b99e 5686enum s_alloc {
2109b99e 5687 sa_rootdomain,
21d42ccf 5688 sa_sd,
dce840a0 5689 sa_sd_storage,
2109b99e
AH
5690 sa_none,
5691};
5692
c1174876
PZ
5693/*
5694 * Build an iteration mask that can exclude certain CPUs from the upwards
5695 * domain traversal.
5696 *
5697 * Asymmetric node setups can result in situations where the domain tree is of
5698 * unequal depth, make sure to skip domains that already cover the entire
5699 * range.
5700 *
5701 * In that case build_sched_domains() will have terminated the iteration early
5702 * and our sibling sd spans will be empty. Domains should always include the
5703 * cpu they're built on, so check that.
5704 *
5705 */
5706static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5707{
5708 const struct cpumask *span = sched_domain_span(sd);
5709 struct sd_data *sdd = sd->private;
5710 struct sched_domain *sibling;
5711 int i;
5712
5713 for_each_cpu(i, span) {
5714 sibling = *per_cpu_ptr(sdd->sd, i);
5715 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5716 continue;
5717
5718 cpumask_set_cpu(i, sched_group_mask(sg));
5719 }
5720}
5721
5722/*
5723 * Return the canonical balance cpu for this group, this is the first cpu
5724 * of this group that's also in the iteration mask.
5725 */
5726int group_balance_cpu(struct sched_group *sg)
5727{
5728 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5729}
5730
e3589f6c
PZ
5731static int
5732build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5733{
5734 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5735 const struct cpumask *span = sched_domain_span(sd);
5736 struct cpumask *covered = sched_domains_tmpmask;
5737 struct sd_data *sdd = sd->private;
5738 struct sched_domain *child;
5739 int i;
5740
5741 cpumask_clear(covered);
5742
5743 for_each_cpu(i, span) {
5744 struct cpumask *sg_span;
5745
5746 if (cpumask_test_cpu(i, covered))
5747 continue;
5748
c1174876
PZ
5749 child = *per_cpu_ptr(sdd->sd, i);
5750
5751 /* See the comment near build_group_mask(). */
5752 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5753 continue;
5754
e3589f6c 5755 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5756 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5757
5758 if (!sg)
5759 goto fail;
5760
5761 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5762 if (child->child) {
5763 child = child->child;
5764 cpumask_copy(sg_span, sched_domain_span(child));
5765 } else
5766 cpumask_set_cpu(i, sg_span);
5767
5768 cpumask_or(covered, covered, sg_span);
5769
63b2ca30
NP
5770 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5771 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5772 build_group_mask(sd, sg);
5773
c3decf0d 5774 /*
63b2ca30 5775 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5776 * domains and no possible iteration will get us here, we won't
5777 * die on a /0 trap.
5778 */
ca8ce3d0 5779 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
63b2ca30 5780 sg->sgc->capacity_orig = sg->sgc->capacity;
e3589f6c 5781
c1174876
PZ
5782 /*
5783 * Make sure the first group of this domain contains the
5784 * canonical balance cpu. Otherwise the sched_domain iteration
5785 * breaks. See update_sg_lb_stats().
5786 */
74a5ce20 5787 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5788 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5789 groups = sg;
5790
5791 if (!first)
5792 first = sg;
5793 if (last)
5794 last->next = sg;
5795 last = sg;
5796 last->next = first;
5797 }
5798 sd->groups = groups;
5799
5800 return 0;
5801
5802fail:
5803 free_sched_groups(first, 0);
5804
5805 return -ENOMEM;
5806}
5807
dce840a0 5808static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5809{
dce840a0
PZ
5810 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5811 struct sched_domain *child = sd->child;
1da177e4 5812
dce840a0
PZ
5813 if (child)
5814 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5815
9c3f75cb 5816 if (sg) {
dce840a0 5817 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5818 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5819 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5820 }
dce840a0
PZ
5821
5822 return cpu;
1e9f28fa 5823}
1e9f28fa 5824
01a08546 5825/*
dce840a0
PZ
5826 * build_sched_groups will build a circular linked list of the groups
5827 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5828 * and ->cpu_capacity to 0.
e3589f6c
PZ
5829 *
5830 * Assumes the sched_domain tree is fully constructed
01a08546 5831 */
e3589f6c
PZ
5832static int
5833build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5834{
dce840a0
PZ
5835 struct sched_group *first = NULL, *last = NULL;
5836 struct sd_data *sdd = sd->private;
5837 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5838 struct cpumask *covered;
dce840a0 5839 int i;
9c1cfda2 5840
e3589f6c
PZ
5841 get_group(cpu, sdd, &sd->groups);
5842 atomic_inc(&sd->groups->ref);
5843
0936629f 5844 if (cpu != cpumask_first(span))
e3589f6c
PZ
5845 return 0;
5846
f96225fd
PZ
5847 lockdep_assert_held(&sched_domains_mutex);
5848 covered = sched_domains_tmpmask;
5849
dce840a0 5850 cpumask_clear(covered);
6711cab4 5851
dce840a0
PZ
5852 for_each_cpu(i, span) {
5853 struct sched_group *sg;
cd08e923 5854 int group, j;
6711cab4 5855
dce840a0
PZ
5856 if (cpumask_test_cpu(i, covered))
5857 continue;
6711cab4 5858
cd08e923 5859 group = get_group(i, sdd, &sg);
c1174876 5860 cpumask_setall(sched_group_mask(sg));
0601a88d 5861
dce840a0
PZ
5862 for_each_cpu(j, span) {
5863 if (get_group(j, sdd, NULL) != group)
5864 continue;
0601a88d 5865
dce840a0
PZ
5866 cpumask_set_cpu(j, covered);
5867 cpumask_set_cpu(j, sched_group_cpus(sg));
5868 }
0601a88d 5869
dce840a0
PZ
5870 if (!first)
5871 first = sg;
5872 if (last)
5873 last->next = sg;
5874 last = sg;
5875 }
5876 last->next = first;
e3589f6c
PZ
5877
5878 return 0;
0601a88d 5879}
51888ca2 5880
89c4710e 5881/*
63b2ca30 5882 * Initialize sched groups cpu_capacity.
89c4710e 5883 *
63b2ca30 5884 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5885 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5886 * Typically cpu_capacity for all the groups in a sched domain will be same
5887 * unless there are asymmetries in the topology. If there are asymmetries,
5888 * group having more cpu_capacity will pickup more load compared to the
5889 * group having less cpu_capacity.
89c4710e 5890 */
63b2ca30 5891static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 5892{
e3589f6c 5893 struct sched_group *sg = sd->groups;
89c4710e 5894
94c95ba6 5895 WARN_ON(!sg);
e3589f6c
PZ
5896
5897 do {
5898 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5899 sg = sg->next;
5900 } while (sg != sd->groups);
89c4710e 5901
c1174876 5902 if (cpu != group_balance_cpu(sg))
e3589f6c 5903 return;
aae6d3dd 5904
63b2ca30
NP
5905 update_group_capacity(sd, cpu);
5906 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5907}
5908
7c16ec58
MT
5909/*
5910 * Initializers for schedule domains
5911 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5912 */
5913
1d3504fc 5914static int default_relax_domain_level = -1;
60495e77 5915int sched_domain_level_max;
1d3504fc
HS
5916
5917static int __init setup_relax_domain_level(char *str)
5918{
a841f8ce
DS
5919 if (kstrtoint(str, 0, &default_relax_domain_level))
5920 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5921
1d3504fc
HS
5922 return 1;
5923}
5924__setup("relax_domain_level=", setup_relax_domain_level);
5925
5926static void set_domain_attribute(struct sched_domain *sd,
5927 struct sched_domain_attr *attr)
5928{
5929 int request;
5930
5931 if (!attr || attr->relax_domain_level < 0) {
5932 if (default_relax_domain_level < 0)
5933 return;
5934 else
5935 request = default_relax_domain_level;
5936 } else
5937 request = attr->relax_domain_level;
5938 if (request < sd->level) {
5939 /* turn off idle balance on this domain */
c88d5910 5940 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5941 } else {
5942 /* turn on idle balance on this domain */
c88d5910 5943 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5944 }
5945}
5946
54ab4ff4
PZ
5947static void __sdt_free(const struct cpumask *cpu_map);
5948static int __sdt_alloc(const struct cpumask *cpu_map);
5949
2109b99e
AH
5950static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5951 const struct cpumask *cpu_map)
5952{
5953 switch (what) {
2109b99e 5954 case sa_rootdomain:
822ff793
PZ
5955 if (!atomic_read(&d->rd->refcount))
5956 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5957 case sa_sd:
5958 free_percpu(d->sd); /* fall through */
dce840a0 5959 case sa_sd_storage:
54ab4ff4 5960 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5961 case sa_none:
5962 break;
5963 }
5964}
3404c8d9 5965
2109b99e
AH
5966static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5967 const struct cpumask *cpu_map)
5968{
dce840a0
PZ
5969 memset(d, 0, sizeof(*d));
5970
54ab4ff4
PZ
5971 if (__sdt_alloc(cpu_map))
5972 return sa_sd_storage;
dce840a0
PZ
5973 d->sd = alloc_percpu(struct sched_domain *);
5974 if (!d->sd)
5975 return sa_sd_storage;
2109b99e 5976 d->rd = alloc_rootdomain();
dce840a0 5977 if (!d->rd)
21d42ccf 5978 return sa_sd;
2109b99e
AH
5979 return sa_rootdomain;
5980}
57d885fe 5981
dce840a0
PZ
5982/*
5983 * NULL the sd_data elements we've used to build the sched_domain and
5984 * sched_group structure so that the subsequent __free_domain_allocs()
5985 * will not free the data we're using.
5986 */
5987static void claim_allocations(int cpu, struct sched_domain *sd)
5988{
5989 struct sd_data *sdd = sd->private;
dce840a0
PZ
5990
5991 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5992 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5993
e3589f6c 5994 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5995 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 5996
63b2ca30
NP
5997 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5998 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
5999}
6000
cb83b629 6001#ifdef CONFIG_NUMA
cb83b629 6002static int sched_domains_numa_levels;
cb83b629
PZ
6003static int *sched_domains_numa_distance;
6004static struct cpumask ***sched_domains_numa_masks;
6005static int sched_domains_curr_level;
143e1e28 6006#endif
cb83b629 6007
143e1e28
VG
6008/*
6009 * SD_flags allowed in topology descriptions.
6010 *
5d4dfddd 6011 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6012 * SD_SHARE_PKG_RESOURCES - describes shared caches
6013 * SD_NUMA - describes NUMA topologies
d77b3ed5 6014 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6015 *
6016 * Odd one out:
6017 * SD_ASYM_PACKING - describes SMT quirks
6018 */
6019#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6020 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6021 SD_SHARE_PKG_RESOURCES | \
6022 SD_NUMA | \
d77b3ed5
VG
6023 SD_ASYM_PACKING | \
6024 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6025
6026static struct sched_domain *
143e1e28 6027sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6028{
6029 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6030 int sd_weight, sd_flags = 0;
6031
6032#ifdef CONFIG_NUMA
6033 /*
6034 * Ugly hack to pass state to sd_numa_mask()...
6035 */
6036 sched_domains_curr_level = tl->numa_level;
6037#endif
6038
6039 sd_weight = cpumask_weight(tl->mask(cpu));
6040
6041 if (tl->sd_flags)
6042 sd_flags = (*tl->sd_flags)();
6043 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6044 "wrong sd_flags in topology description\n"))
6045 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6046
6047 *sd = (struct sched_domain){
6048 .min_interval = sd_weight,
6049 .max_interval = 2*sd_weight,
6050 .busy_factor = 32,
870a0bb5 6051 .imbalance_pct = 125,
143e1e28
VG
6052
6053 .cache_nice_tries = 0,
6054 .busy_idx = 0,
6055 .idle_idx = 0,
cb83b629
PZ
6056 .newidle_idx = 0,
6057 .wake_idx = 0,
6058 .forkexec_idx = 0,
6059
6060 .flags = 1*SD_LOAD_BALANCE
6061 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6062 | 1*SD_BALANCE_EXEC
6063 | 1*SD_BALANCE_FORK
cb83b629 6064 | 0*SD_BALANCE_WAKE
143e1e28 6065 | 1*SD_WAKE_AFFINE
5d4dfddd 6066 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6067 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6068 | 0*SD_SERIALIZE
cb83b629 6069 | 0*SD_PREFER_SIBLING
143e1e28
VG
6070 | 0*SD_NUMA
6071 | sd_flags
cb83b629 6072 ,
143e1e28 6073
cb83b629
PZ
6074 .last_balance = jiffies,
6075 .balance_interval = sd_weight,
143e1e28 6076 .smt_gain = 0,
2b4cfe64
JL
6077 .max_newidle_lb_cost = 0,
6078 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6079#ifdef CONFIG_SCHED_DEBUG
6080 .name = tl->name,
6081#endif
cb83b629 6082 };
cb83b629
PZ
6083
6084 /*
143e1e28 6085 * Convert topological properties into behaviour.
cb83b629 6086 */
143e1e28 6087
5d4dfddd 6088 if (sd->flags & SD_SHARE_CPUCAPACITY) {
143e1e28
VG
6089 sd->imbalance_pct = 110;
6090 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6091
6092 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6093 sd->imbalance_pct = 117;
6094 sd->cache_nice_tries = 1;
6095 sd->busy_idx = 2;
6096
6097#ifdef CONFIG_NUMA
6098 } else if (sd->flags & SD_NUMA) {
6099 sd->cache_nice_tries = 2;
6100 sd->busy_idx = 3;
6101 sd->idle_idx = 2;
6102
6103 sd->flags |= SD_SERIALIZE;
6104 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6105 sd->flags &= ~(SD_BALANCE_EXEC |
6106 SD_BALANCE_FORK |
6107 SD_WAKE_AFFINE);
6108 }
6109
6110#endif
6111 } else {
6112 sd->flags |= SD_PREFER_SIBLING;
6113 sd->cache_nice_tries = 1;
6114 sd->busy_idx = 2;
6115 sd->idle_idx = 1;
6116 }
6117
6118 sd->private = &tl->data;
cb83b629
PZ
6119
6120 return sd;
6121}
6122
143e1e28
VG
6123/*
6124 * Topology list, bottom-up.
6125 */
6126static struct sched_domain_topology_level default_topology[] = {
6127#ifdef CONFIG_SCHED_SMT
6128 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6129#endif
6130#ifdef CONFIG_SCHED_MC
6131 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6132#endif
6133 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6134 { NULL, },
6135};
6136
6137struct sched_domain_topology_level *sched_domain_topology = default_topology;
6138
6139#define for_each_sd_topology(tl) \
6140 for (tl = sched_domain_topology; tl->mask; tl++)
6141
6142void set_sched_topology(struct sched_domain_topology_level *tl)
6143{
6144 sched_domain_topology = tl;
6145}
6146
6147#ifdef CONFIG_NUMA
6148
cb83b629
PZ
6149static const struct cpumask *sd_numa_mask(int cpu)
6150{
6151 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6152}
6153
d039ac60
PZ
6154static void sched_numa_warn(const char *str)
6155{
6156 static int done = false;
6157 int i,j;
6158
6159 if (done)
6160 return;
6161
6162 done = true;
6163
6164 printk(KERN_WARNING "ERROR: %s\n\n", str);
6165
6166 for (i = 0; i < nr_node_ids; i++) {
6167 printk(KERN_WARNING " ");
6168 for (j = 0; j < nr_node_ids; j++)
6169 printk(KERN_CONT "%02d ", node_distance(i,j));
6170 printk(KERN_CONT "\n");
6171 }
6172 printk(KERN_WARNING "\n");
6173}
6174
6175static bool find_numa_distance(int distance)
6176{
6177 int i;
6178
6179 if (distance == node_distance(0, 0))
6180 return true;
6181
6182 for (i = 0; i < sched_domains_numa_levels; i++) {
6183 if (sched_domains_numa_distance[i] == distance)
6184 return true;
6185 }
6186
6187 return false;
6188}
6189
cb83b629
PZ
6190static void sched_init_numa(void)
6191{
6192 int next_distance, curr_distance = node_distance(0, 0);
6193 struct sched_domain_topology_level *tl;
6194 int level = 0;
6195 int i, j, k;
6196
cb83b629
PZ
6197 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6198 if (!sched_domains_numa_distance)
6199 return;
6200
6201 /*
6202 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6203 * unique distances in the node_distance() table.
6204 *
6205 * Assumes node_distance(0,j) includes all distances in
6206 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6207 */
6208 next_distance = curr_distance;
6209 for (i = 0; i < nr_node_ids; i++) {
6210 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6211 for (k = 0; k < nr_node_ids; k++) {
6212 int distance = node_distance(i, k);
6213
6214 if (distance > curr_distance &&
6215 (distance < next_distance ||
6216 next_distance == curr_distance))
6217 next_distance = distance;
6218
6219 /*
6220 * While not a strong assumption it would be nice to know
6221 * about cases where if node A is connected to B, B is not
6222 * equally connected to A.
6223 */
6224 if (sched_debug() && node_distance(k, i) != distance)
6225 sched_numa_warn("Node-distance not symmetric");
6226
6227 if (sched_debug() && i && !find_numa_distance(distance))
6228 sched_numa_warn("Node-0 not representative");
6229 }
6230 if (next_distance != curr_distance) {
6231 sched_domains_numa_distance[level++] = next_distance;
6232 sched_domains_numa_levels = level;
6233 curr_distance = next_distance;
6234 } else break;
cb83b629 6235 }
d039ac60
PZ
6236
6237 /*
6238 * In case of sched_debug() we verify the above assumption.
6239 */
6240 if (!sched_debug())
6241 break;
cb83b629
PZ
6242 }
6243 /*
6244 * 'level' contains the number of unique distances, excluding the
6245 * identity distance node_distance(i,i).
6246 *
28b4a521 6247 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6248 * numbers.
6249 */
6250
5f7865f3
TC
6251 /*
6252 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6253 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6254 * the array will contain less then 'level' members. This could be
6255 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6256 * in other functions.
6257 *
6258 * We reset it to 'level' at the end of this function.
6259 */
6260 sched_domains_numa_levels = 0;
6261
cb83b629
PZ
6262 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6263 if (!sched_domains_numa_masks)
6264 return;
6265
6266 /*
6267 * Now for each level, construct a mask per node which contains all
6268 * cpus of nodes that are that many hops away from us.
6269 */
6270 for (i = 0; i < level; i++) {
6271 sched_domains_numa_masks[i] =
6272 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6273 if (!sched_domains_numa_masks[i])
6274 return;
6275
6276 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6277 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6278 if (!mask)
6279 return;
6280
6281 sched_domains_numa_masks[i][j] = mask;
6282
6283 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6284 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6285 continue;
6286
6287 cpumask_or(mask, mask, cpumask_of_node(k));
6288 }
6289 }
6290 }
6291
143e1e28
VG
6292 /* Compute default topology size */
6293 for (i = 0; sched_domain_topology[i].mask; i++);
6294
c515db8c 6295 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6296 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6297 if (!tl)
6298 return;
6299
6300 /*
6301 * Copy the default topology bits..
6302 */
143e1e28
VG
6303 for (i = 0; sched_domain_topology[i].mask; i++)
6304 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6305
6306 /*
6307 * .. and append 'j' levels of NUMA goodness.
6308 */
6309 for (j = 0; j < level; i++, j++) {
6310 tl[i] = (struct sched_domain_topology_level){
cb83b629 6311 .mask = sd_numa_mask,
143e1e28 6312 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6313 .flags = SDTL_OVERLAP,
6314 .numa_level = j,
143e1e28 6315 SD_INIT_NAME(NUMA)
cb83b629
PZ
6316 };
6317 }
6318
6319 sched_domain_topology = tl;
5f7865f3
TC
6320
6321 sched_domains_numa_levels = level;
cb83b629 6322}
301a5cba
TC
6323
6324static void sched_domains_numa_masks_set(int cpu)
6325{
6326 int i, j;
6327 int node = cpu_to_node(cpu);
6328
6329 for (i = 0; i < sched_domains_numa_levels; i++) {
6330 for (j = 0; j < nr_node_ids; j++) {
6331 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6332 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6333 }
6334 }
6335}
6336
6337static void sched_domains_numa_masks_clear(int cpu)
6338{
6339 int i, j;
6340 for (i = 0; i < sched_domains_numa_levels; i++) {
6341 for (j = 0; j < nr_node_ids; j++)
6342 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6343 }
6344}
6345
6346/*
6347 * Update sched_domains_numa_masks[level][node] array when new cpus
6348 * are onlined.
6349 */
6350static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6351 unsigned long action,
6352 void *hcpu)
6353{
6354 int cpu = (long)hcpu;
6355
6356 switch (action & ~CPU_TASKS_FROZEN) {
6357 case CPU_ONLINE:
6358 sched_domains_numa_masks_set(cpu);
6359 break;
6360
6361 case CPU_DEAD:
6362 sched_domains_numa_masks_clear(cpu);
6363 break;
6364
6365 default:
6366 return NOTIFY_DONE;
6367 }
6368
6369 return NOTIFY_OK;
cb83b629
PZ
6370}
6371#else
6372static inline void sched_init_numa(void)
6373{
6374}
301a5cba
TC
6375
6376static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6377 unsigned long action,
6378 void *hcpu)
6379{
6380 return 0;
6381}
cb83b629
PZ
6382#endif /* CONFIG_NUMA */
6383
54ab4ff4
PZ
6384static int __sdt_alloc(const struct cpumask *cpu_map)
6385{
6386 struct sched_domain_topology_level *tl;
6387 int j;
6388
27723a68 6389 for_each_sd_topology(tl) {
54ab4ff4
PZ
6390 struct sd_data *sdd = &tl->data;
6391
6392 sdd->sd = alloc_percpu(struct sched_domain *);
6393 if (!sdd->sd)
6394 return -ENOMEM;
6395
6396 sdd->sg = alloc_percpu(struct sched_group *);
6397 if (!sdd->sg)
6398 return -ENOMEM;
6399
63b2ca30
NP
6400 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6401 if (!sdd->sgc)
9c3f75cb
PZ
6402 return -ENOMEM;
6403
54ab4ff4
PZ
6404 for_each_cpu(j, cpu_map) {
6405 struct sched_domain *sd;
6406 struct sched_group *sg;
63b2ca30 6407 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6408
6409 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6410 GFP_KERNEL, cpu_to_node(j));
6411 if (!sd)
6412 return -ENOMEM;
6413
6414 *per_cpu_ptr(sdd->sd, j) = sd;
6415
6416 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6417 GFP_KERNEL, cpu_to_node(j));
6418 if (!sg)
6419 return -ENOMEM;
6420
30b4e9eb
IM
6421 sg->next = sg;
6422
54ab4ff4 6423 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6424
63b2ca30 6425 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6426 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6427 if (!sgc)
9c3f75cb
PZ
6428 return -ENOMEM;
6429
63b2ca30 6430 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6431 }
6432 }
6433
6434 return 0;
6435}
6436
6437static void __sdt_free(const struct cpumask *cpu_map)
6438{
6439 struct sched_domain_topology_level *tl;
6440 int j;
6441
27723a68 6442 for_each_sd_topology(tl) {
54ab4ff4
PZ
6443 struct sd_data *sdd = &tl->data;
6444
6445 for_each_cpu(j, cpu_map) {
fb2cf2c6 6446 struct sched_domain *sd;
6447
6448 if (sdd->sd) {
6449 sd = *per_cpu_ptr(sdd->sd, j);
6450 if (sd && (sd->flags & SD_OVERLAP))
6451 free_sched_groups(sd->groups, 0);
6452 kfree(*per_cpu_ptr(sdd->sd, j));
6453 }
6454
6455 if (sdd->sg)
6456 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6457 if (sdd->sgc)
6458 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6459 }
6460 free_percpu(sdd->sd);
fb2cf2c6 6461 sdd->sd = NULL;
54ab4ff4 6462 free_percpu(sdd->sg);
fb2cf2c6 6463 sdd->sg = NULL;
63b2ca30
NP
6464 free_percpu(sdd->sgc);
6465 sdd->sgc = NULL;
54ab4ff4
PZ
6466 }
6467}
6468
2c402dc3 6469struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6470 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6471 struct sched_domain *child, int cpu)
2c402dc3 6472{
143e1e28 6473 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6474 if (!sd)
d069b916 6475 return child;
2c402dc3 6476
2c402dc3 6477 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6478 if (child) {
6479 sd->level = child->level + 1;
6480 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6481 child->parent = sd;
c75e0128 6482 sd->child = child;
60495e77 6483 }
a841f8ce 6484 set_domain_attribute(sd, attr);
2c402dc3
PZ
6485
6486 return sd;
6487}
6488
2109b99e
AH
6489/*
6490 * Build sched domains for a given set of cpus and attach the sched domains
6491 * to the individual cpus
6492 */
dce840a0
PZ
6493static int build_sched_domains(const struct cpumask *cpu_map,
6494 struct sched_domain_attr *attr)
2109b99e 6495{
1c632169 6496 enum s_alloc alloc_state;
dce840a0 6497 struct sched_domain *sd;
2109b99e 6498 struct s_data d;
822ff793 6499 int i, ret = -ENOMEM;
9c1cfda2 6500
2109b99e
AH
6501 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6502 if (alloc_state != sa_rootdomain)
6503 goto error;
9c1cfda2 6504
dce840a0 6505 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6506 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6507 struct sched_domain_topology_level *tl;
6508
3bd65a80 6509 sd = NULL;
27723a68 6510 for_each_sd_topology(tl) {
4a850cbe 6511 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6512 if (tl == sched_domain_topology)
6513 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6514 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6515 sd->flags |= SD_OVERLAP;
d110235d
PZ
6516 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6517 break;
e3589f6c 6518 }
dce840a0
PZ
6519 }
6520
6521 /* Build the groups for the domains */
6522 for_each_cpu(i, cpu_map) {
6523 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6524 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6525 if (sd->flags & SD_OVERLAP) {
6526 if (build_overlap_sched_groups(sd, i))
6527 goto error;
6528 } else {
6529 if (build_sched_groups(sd, i))
6530 goto error;
6531 }
1cf51902 6532 }
a06dadbe 6533 }
9c1cfda2 6534
ced549fa 6535 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6536 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6537 if (!cpumask_test_cpu(i, cpu_map))
6538 continue;
9c1cfda2 6539
dce840a0
PZ
6540 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6541 claim_allocations(i, sd);
63b2ca30 6542 init_sched_groups_capacity(i, sd);
dce840a0 6543 }
f712c0c7 6544 }
9c1cfda2 6545
1da177e4 6546 /* Attach the domains */
dce840a0 6547 rcu_read_lock();
abcd083a 6548 for_each_cpu(i, cpu_map) {
21d42ccf 6549 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6550 cpu_attach_domain(sd, d.rd, i);
1da177e4 6551 }
dce840a0 6552 rcu_read_unlock();
51888ca2 6553
822ff793 6554 ret = 0;
51888ca2 6555error:
2109b99e 6556 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6557 return ret;
1da177e4 6558}
029190c5 6559
acc3f5d7 6560static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6561static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6562static struct sched_domain_attr *dattr_cur;
6563 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6564
6565/*
6566 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6567 * cpumask) fails, then fallback to a single sched domain,
6568 * as determined by the single cpumask fallback_doms.
029190c5 6569 */
4212823f 6570static cpumask_var_t fallback_doms;
029190c5 6571
ee79d1bd
HC
6572/*
6573 * arch_update_cpu_topology lets virtualized architectures update the
6574 * cpu core maps. It is supposed to return 1 if the topology changed
6575 * or 0 if it stayed the same.
6576 */
52f5684c 6577int __weak arch_update_cpu_topology(void)
22e52b07 6578{
ee79d1bd 6579 return 0;
22e52b07
HC
6580}
6581
acc3f5d7
RR
6582cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6583{
6584 int i;
6585 cpumask_var_t *doms;
6586
6587 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6588 if (!doms)
6589 return NULL;
6590 for (i = 0; i < ndoms; i++) {
6591 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6592 free_sched_domains(doms, i);
6593 return NULL;
6594 }
6595 }
6596 return doms;
6597}
6598
6599void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6600{
6601 unsigned int i;
6602 for (i = 0; i < ndoms; i++)
6603 free_cpumask_var(doms[i]);
6604 kfree(doms);
6605}
6606
1a20ff27 6607/*
41a2d6cf 6608 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6609 * For now this just excludes isolated cpus, but could be used to
6610 * exclude other special cases in the future.
1a20ff27 6611 */
c4a8849a 6612static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6613{
7378547f
MM
6614 int err;
6615
22e52b07 6616 arch_update_cpu_topology();
029190c5 6617 ndoms_cur = 1;
acc3f5d7 6618 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6619 if (!doms_cur)
acc3f5d7
RR
6620 doms_cur = &fallback_doms;
6621 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6622 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6623 register_sched_domain_sysctl();
7378547f
MM
6624
6625 return err;
1a20ff27
DG
6626}
6627
1a20ff27
DG
6628/*
6629 * Detach sched domains from a group of cpus specified in cpu_map
6630 * These cpus will now be attached to the NULL domain
6631 */
96f874e2 6632static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6633{
6634 int i;
6635
dce840a0 6636 rcu_read_lock();
abcd083a 6637 for_each_cpu(i, cpu_map)
57d885fe 6638 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6639 rcu_read_unlock();
1a20ff27
DG
6640}
6641
1d3504fc
HS
6642/* handle null as "default" */
6643static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6644 struct sched_domain_attr *new, int idx_new)
6645{
6646 struct sched_domain_attr tmp;
6647
6648 /* fast path */
6649 if (!new && !cur)
6650 return 1;
6651
6652 tmp = SD_ATTR_INIT;
6653 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6654 new ? (new + idx_new) : &tmp,
6655 sizeof(struct sched_domain_attr));
6656}
6657
029190c5
PJ
6658/*
6659 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6660 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6661 * doms_new[] to the current sched domain partitioning, doms_cur[].
6662 * It destroys each deleted domain and builds each new domain.
6663 *
acc3f5d7 6664 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6665 * The masks don't intersect (don't overlap.) We should setup one
6666 * sched domain for each mask. CPUs not in any of the cpumasks will
6667 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6668 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6669 * it as it is.
6670 *
acc3f5d7
RR
6671 * The passed in 'doms_new' should be allocated using
6672 * alloc_sched_domains. This routine takes ownership of it and will
6673 * free_sched_domains it when done with it. If the caller failed the
6674 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6675 * and partition_sched_domains() will fallback to the single partition
6676 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6677 *
96f874e2 6678 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6679 * ndoms_new == 0 is a special case for destroying existing domains,
6680 * and it will not create the default domain.
dfb512ec 6681 *
029190c5
PJ
6682 * Call with hotplug lock held
6683 */
acc3f5d7 6684void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6685 struct sched_domain_attr *dattr_new)
029190c5 6686{
dfb512ec 6687 int i, j, n;
d65bd5ec 6688 int new_topology;
029190c5 6689
712555ee 6690 mutex_lock(&sched_domains_mutex);
a1835615 6691
7378547f
MM
6692 /* always unregister in case we don't destroy any domains */
6693 unregister_sched_domain_sysctl();
6694
d65bd5ec
HC
6695 /* Let architecture update cpu core mappings. */
6696 new_topology = arch_update_cpu_topology();
6697
dfb512ec 6698 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6699
6700 /* Destroy deleted domains */
6701 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6702 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6703 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6704 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6705 goto match1;
6706 }
6707 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6708 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6709match1:
6710 ;
6711 }
6712
c8d2d47a 6713 n = ndoms_cur;
e761b772 6714 if (doms_new == NULL) {
c8d2d47a 6715 n = 0;
acc3f5d7 6716 doms_new = &fallback_doms;
6ad4c188 6717 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6718 WARN_ON_ONCE(dattr_new);
e761b772
MK
6719 }
6720
029190c5
PJ
6721 /* Build new domains */
6722 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6723 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6724 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6725 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6726 goto match2;
6727 }
6728 /* no match - add a new doms_new */
dce840a0 6729 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6730match2:
6731 ;
6732 }
6733
6734 /* Remember the new sched domains */
acc3f5d7
RR
6735 if (doms_cur != &fallback_doms)
6736 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6737 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6738 doms_cur = doms_new;
1d3504fc 6739 dattr_cur = dattr_new;
029190c5 6740 ndoms_cur = ndoms_new;
7378547f
MM
6741
6742 register_sched_domain_sysctl();
a1835615 6743
712555ee 6744 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6745}
6746
d35be8ba
SB
6747static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6748
1da177e4 6749/*
3a101d05
TH
6750 * Update cpusets according to cpu_active mask. If cpusets are
6751 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6752 * around partition_sched_domains().
d35be8ba
SB
6753 *
6754 * If we come here as part of a suspend/resume, don't touch cpusets because we
6755 * want to restore it back to its original state upon resume anyway.
1da177e4 6756 */
0b2e918a
TH
6757static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6758 void *hcpu)
e761b772 6759{
d35be8ba
SB
6760 switch (action) {
6761 case CPU_ONLINE_FROZEN:
6762 case CPU_DOWN_FAILED_FROZEN:
6763
6764 /*
6765 * num_cpus_frozen tracks how many CPUs are involved in suspend
6766 * resume sequence. As long as this is not the last online
6767 * operation in the resume sequence, just build a single sched
6768 * domain, ignoring cpusets.
6769 */
6770 num_cpus_frozen--;
6771 if (likely(num_cpus_frozen)) {
6772 partition_sched_domains(1, NULL, NULL);
6773 break;
6774 }
6775
6776 /*
6777 * This is the last CPU online operation. So fall through and
6778 * restore the original sched domains by considering the
6779 * cpuset configurations.
6780 */
6781
e761b772 6782 case CPU_ONLINE:
6ad4c188 6783 case CPU_DOWN_FAILED:
7ddf96b0 6784 cpuset_update_active_cpus(true);
d35be8ba 6785 break;
3a101d05
TH
6786 default:
6787 return NOTIFY_DONE;
6788 }
d35be8ba 6789 return NOTIFY_OK;
3a101d05 6790}
e761b772 6791
0b2e918a
TH
6792static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6793 void *hcpu)
3a101d05 6794{
d35be8ba 6795 switch (action) {
3a101d05 6796 case CPU_DOWN_PREPARE:
7ddf96b0 6797 cpuset_update_active_cpus(false);
d35be8ba
SB
6798 break;
6799 case CPU_DOWN_PREPARE_FROZEN:
6800 num_cpus_frozen++;
6801 partition_sched_domains(1, NULL, NULL);
6802 break;
e761b772
MK
6803 default:
6804 return NOTIFY_DONE;
6805 }
d35be8ba 6806 return NOTIFY_OK;
e761b772 6807}
e761b772 6808
1da177e4
LT
6809void __init sched_init_smp(void)
6810{
dcc30a35
RR
6811 cpumask_var_t non_isolated_cpus;
6812
6813 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6814 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6815
cb83b629
PZ
6816 sched_init_numa();
6817
6acce3ef
PZ
6818 /*
6819 * There's no userspace yet to cause hotplug operations; hence all the
6820 * cpu masks are stable and all blatant races in the below code cannot
6821 * happen.
6822 */
712555ee 6823 mutex_lock(&sched_domains_mutex);
c4a8849a 6824 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6825 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6826 if (cpumask_empty(non_isolated_cpus))
6827 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6828 mutex_unlock(&sched_domains_mutex);
e761b772 6829
301a5cba 6830 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6831 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6832 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6833
b328ca18 6834 init_hrtick();
5c1e1767
NP
6835
6836 /* Move init over to a non-isolated CPU */
dcc30a35 6837 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6838 BUG();
19978ca6 6839 sched_init_granularity();
dcc30a35 6840 free_cpumask_var(non_isolated_cpus);
4212823f 6841
0e3900e6 6842 init_sched_rt_class();
1baca4ce 6843 init_sched_dl_class();
1da177e4
LT
6844}
6845#else
6846void __init sched_init_smp(void)
6847{
19978ca6 6848 sched_init_granularity();
1da177e4
LT
6849}
6850#endif /* CONFIG_SMP */
6851
cd1bb94b
AB
6852const_debug unsigned int sysctl_timer_migration = 1;
6853
1da177e4
LT
6854int in_sched_functions(unsigned long addr)
6855{
1da177e4
LT
6856 return in_lock_functions(addr) ||
6857 (addr >= (unsigned long)__sched_text_start
6858 && addr < (unsigned long)__sched_text_end);
6859}
6860
029632fb 6861#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6862/*
6863 * Default task group.
6864 * Every task in system belongs to this group at bootup.
6865 */
029632fb 6866struct task_group root_task_group;
35cf4e50 6867LIST_HEAD(task_groups);
052f1dc7 6868#endif
6f505b16 6869
e6252c3e 6870DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6871
1da177e4
LT
6872void __init sched_init(void)
6873{
dd41f596 6874 int i, j;
434d53b0
MT
6875 unsigned long alloc_size = 0, ptr;
6876
6877#ifdef CONFIG_FAIR_GROUP_SCHED
6878 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6879#endif
6880#ifdef CONFIG_RT_GROUP_SCHED
6881 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6882#endif
df7c8e84 6883#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6884 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6885#endif
434d53b0 6886 if (alloc_size) {
36b7b6d4 6887 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6888
6889#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6890 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6891 ptr += nr_cpu_ids * sizeof(void **);
6892
07e06b01 6893 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6894 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6895
6d6bc0ad 6896#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6897#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6898 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6899 ptr += nr_cpu_ids * sizeof(void **);
6900
07e06b01 6901 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6902 ptr += nr_cpu_ids * sizeof(void **);
6903
6d6bc0ad 6904#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6905#ifdef CONFIG_CPUMASK_OFFSTACK
6906 for_each_possible_cpu(i) {
e6252c3e 6907 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6908 ptr += cpumask_size();
6909 }
6910#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6911 }
dd41f596 6912
332ac17e
DF
6913 init_rt_bandwidth(&def_rt_bandwidth,
6914 global_rt_period(), global_rt_runtime());
6915 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6916 global_rt_period(), global_rt_runtime());
332ac17e 6917
57d885fe
GH
6918#ifdef CONFIG_SMP
6919 init_defrootdomain();
6920#endif
6921
d0b27fa7 6922#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6923 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6924 global_rt_period(), global_rt_runtime());
6d6bc0ad 6925#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6926
7c941438 6927#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6928 list_add(&root_task_group.list, &task_groups);
6929 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6930 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6931 autogroup_init(&init_task);
54c707e9 6932
7c941438 6933#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6934
0a945022 6935 for_each_possible_cpu(i) {
70b97a7f 6936 struct rq *rq;
1da177e4
LT
6937
6938 rq = cpu_rq(i);
05fa785c 6939 raw_spin_lock_init(&rq->lock);
7897986b 6940 rq->nr_running = 0;
dce48a84
TG
6941 rq->calc_load_active = 0;
6942 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6943 init_cfs_rq(&rq->cfs);
6f505b16 6944 init_rt_rq(&rq->rt, rq);
aab03e05 6945 init_dl_rq(&rq->dl, rq);
dd41f596 6946#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6947 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6948 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6949 /*
07e06b01 6950 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6951 *
6952 * In case of task-groups formed thr' the cgroup filesystem, it
6953 * gets 100% of the cpu resources in the system. This overall
6954 * system cpu resource is divided among the tasks of
07e06b01 6955 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6956 * based on each entity's (task or task-group's) weight
6957 * (se->load.weight).
6958 *
07e06b01 6959 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6960 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6961 * then A0's share of the cpu resource is:
6962 *
0d905bca 6963 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6964 *
07e06b01
YZ
6965 * We achieve this by letting root_task_group's tasks sit
6966 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6967 */
ab84d31e 6968 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6969 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6970#endif /* CONFIG_FAIR_GROUP_SCHED */
6971
6972 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6973#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6974 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6975#endif
1da177e4 6976
dd41f596
IM
6977 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6978 rq->cpu_load[j] = 0;
fdf3e95d
VP
6979
6980 rq->last_load_update_tick = jiffies;
6981
1da177e4 6982#ifdef CONFIG_SMP
41c7ce9a 6983 rq->sd = NULL;
57d885fe 6984 rq->rd = NULL;
ca8ce3d0 6985 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
3f029d3c 6986 rq->post_schedule = 0;
1da177e4 6987 rq->active_balance = 0;
dd41f596 6988 rq->next_balance = jiffies;
1da177e4 6989 rq->push_cpu = 0;
0a2966b4 6990 rq->cpu = i;
1f11eb6a 6991 rq->online = 0;
eae0c9df
MG
6992 rq->idle_stamp = 0;
6993 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6994 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6995
6996 INIT_LIST_HEAD(&rq->cfs_tasks);
6997
dc938520 6998 rq_attach_root(rq, &def_root_domain);
3451d024 6999#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7000 rq->nohz_flags = 0;
83cd4fe2 7001#endif
265f22a9
FW
7002#ifdef CONFIG_NO_HZ_FULL
7003 rq->last_sched_tick = 0;
7004#endif
1da177e4 7005#endif
8f4d37ec 7006 init_rq_hrtick(rq);
1da177e4 7007 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7008 }
7009
2dd73a4f 7010 set_load_weight(&init_task);
b50f60ce 7011
e107be36
AK
7012#ifdef CONFIG_PREEMPT_NOTIFIERS
7013 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7014#endif
7015
1da177e4
LT
7016 /*
7017 * The boot idle thread does lazy MMU switching as well:
7018 */
7019 atomic_inc(&init_mm.mm_count);
7020 enter_lazy_tlb(&init_mm, current);
7021
7022 /*
7023 * Make us the idle thread. Technically, schedule() should not be
7024 * called from this thread, however somewhere below it might be,
7025 * but because we are the idle thread, we just pick up running again
7026 * when this runqueue becomes "idle".
7027 */
7028 init_idle(current, smp_processor_id());
dce48a84
TG
7029
7030 calc_load_update = jiffies + LOAD_FREQ;
7031
dd41f596
IM
7032 /*
7033 * During early bootup we pretend to be a normal task:
7034 */
7035 current->sched_class = &fair_sched_class;
6892b75e 7036
bf4d83f6 7037#ifdef CONFIG_SMP
4cb98839 7038 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7039 /* May be allocated at isolcpus cmdline parse time */
7040 if (cpu_isolated_map == NULL)
7041 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7042 idle_thread_set_boot_cpu();
a803f026 7043 set_cpu_rq_start_time();
029632fb
PZ
7044#endif
7045 init_sched_fair_class();
6a7b3dc3 7046
6892b75e 7047 scheduler_running = 1;
1da177e4
LT
7048}
7049
d902db1e 7050#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7051static inline int preempt_count_equals(int preempt_offset)
7052{
234da7bc 7053 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7054
4ba8216c 7055 return (nested == preempt_offset);
e4aafea2
FW
7056}
7057
d894837f 7058void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7059{
1da177e4
LT
7060 static unsigned long prev_jiffy; /* ratelimiting */
7061
b3fbab05 7062 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7063 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7064 !is_idle_task(current)) ||
e4aafea2 7065 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7066 return;
7067 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7068 return;
7069 prev_jiffy = jiffies;
7070
3df0fc5b
PZ
7071 printk(KERN_ERR
7072 "BUG: sleeping function called from invalid context at %s:%d\n",
7073 file, line);
7074 printk(KERN_ERR
7075 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7076 in_atomic(), irqs_disabled(),
7077 current->pid, current->comm);
aef745fc
IM
7078
7079 debug_show_held_locks(current);
7080 if (irqs_disabled())
7081 print_irqtrace_events(current);
8f47b187
TG
7082#ifdef CONFIG_DEBUG_PREEMPT
7083 if (!preempt_count_equals(preempt_offset)) {
7084 pr_err("Preemption disabled at:");
7085 print_ip_sym(current->preempt_disable_ip);
7086 pr_cont("\n");
7087 }
7088#endif
aef745fc 7089 dump_stack();
1da177e4
LT
7090}
7091EXPORT_SYMBOL(__might_sleep);
7092#endif
7093
7094#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7095static void normalize_task(struct rq *rq, struct task_struct *p)
7096{
da7a735e 7097 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7098 struct sched_attr attr = {
7099 .sched_policy = SCHED_NORMAL,
7100 };
da7a735e 7101 int old_prio = p->prio;
3a5e4dc1 7102 int on_rq;
3e51f33f 7103
fd2f4419 7104 on_rq = p->on_rq;
3a5e4dc1 7105 if (on_rq)
4ca9b72b 7106 dequeue_task(rq, p, 0);
d50dde5a 7107 __setscheduler(rq, p, &attr);
3a5e4dc1 7108 if (on_rq) {
4ca9b72b 7109 enqueue_task(rq, p, 0);
8875125e 7110 resched_curr(rq);
3a5e4dc1 7111 }
da7a735e
PZ
7112
7113 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7114}
7115
1da177e4
LT
7116void normalize_rt_tasks(void)
7117{
a0f98a1c 7118 struct task_struct *g, *p;
1da177e4 7119 unsigned long flags;
70b97a7f 7120 struct rq *rq;
1da177e4 7121
4cf5d77a 7122 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7123 do_each_thread(g, p) {
178be793
IM
7124 /*
7125 * Only normalize user tasks:
7126 */
7127 if (!p->mm)
7128 continue;
7129
6cfb0d5d 7130 p->se.exec_start = 0;
6cfb0d5d 7131#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7132 p->se.statistics.wait_start = 0;
7133 p->se.statistics.sleep_start = 0;
7134 p->se.statistics.block_start = 0;
6cfb0d5d 7135#endif
dd41f596 7136
aab03e05 7137 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7138 /*
7139 * Renice negative nice level userspace
7140 * tasks back to 0:
7141 */
d0ea0268 7142 if (task_nice(p) < 0 && p->mm)
dd41f596 7143 set_user_nice(p, 0);
1da177e4 7144 continue;
dd41f596 7145 }
1da177e4 7146
1d615482 7147 raw_spin_lock(&p->pi_lock);
b29739f9 7148 rq = __task_rq_lock(p);
1da177e4 7149
178be793 7150 normalize_task(rq, p);
3a5e4dc1 7151
b29739f9 7152 __task_rq_unlock(rq);
1d615482 7153 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7154 } while_each_thread(g, p);
7155
4cf5d77a 7156 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7157}
7158
7159#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7160
67fc4e0c 7161#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7162/*
67fc4e0c 7163 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7164 *
7165 * They can only be called when the whole system has been
7166 * stopped - every CPU needs to be quiescent, and no scheduling
7167 * activity can take place. Using them for anything else would
7168 * be a serious bug, and as a result, they aren't even visible
7169 * under any other configuration.
7170 */
7171
7172/**
7173 * curr_task - return the current task for a given cpu.
7174 * @cpu: the processor in question.
7175 *
7176 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7177 *
7178 * Return: The current task for @cpu.
1df5c10a 7179 */
36c8b586 7180struct task_struct *curr_task(int cpu)
1df5c10a
LT
7181{
7182 return cpu_curr(cpu);
7183}
7184
67fc4e0c
JW
7185#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7186
7187#ifdef CONFIG_IA64
1df5c10a
LT
7188/**
7189 * set_curr_task - set the current task for a given cpu.
7190 * @cpu: the processor in question.
7191 * @p: the task pointer to set.
7192 *
7193 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7194 * are serviced on a separate stack. It allows the architecture to switch the
7195 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7196 * must be called with all CPU's synchronized, and interrupts disabled, the
7197 * and caller must save the original value of the current task (see
7198 * curr_task() above) and restore that value before reenabling interrupts and
7199 * re-starting the system.
7200 *
7201 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7202 */
36c8b586 7203void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7204{
7205 cpu_curr(cpu) = p;
7206}
7207
7208#endif
29f59db3 7209
7c941438 7210#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7211/* task_group_lock serializes the addition/removal of task groups */
7212static DEFINE_SPINLOCK(task_group_lock);
7213
bccbe08a
PZ
7214static void free_sched_group(struct task_group *tg)
7215{
7216 free_fair_sched_group(tg);
7217 free_rt_sched_group(tg);
e9aa1dd1 7218 autogroup_free(tg);
bccbe08a
PZ
7219 kfree(tg);
7220}
7221
7222/* allocate runqueue etc for a new task group */
ec7dc8ac 7223struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7224{
7225 struct task_group *tg;
bccbe08a
PZ
7226
7227 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7228 if (!tg)
7229 return ERR_PTR(-ENOMEM);
7230
ec7dc8ac 7231 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7232 goto err;
7233
ec7dc8ac 7234 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7235 goto err;
7236
ace783b9
LZ
7237 return tg;
7238
7239err:
7240 free_sched_group(tg);
7241 return ERR_PTR(-ENOMEM);
7242}
7243
7244void sched_online_group(struct task_group *tg, struct task_group *parent)
7245{
7246 unsigned long flags;
7247
8ed36996 7248 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7249 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7250
7251 WARN_ON(!parent); /* root should already exist */
7252
7253 tg->parent = parent;
f473aa5e 7254 INIT_LIST_HEAD(&tg->children);
09f2724a 7255 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7256 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7257}
7258
9b5b7751 7259/* rcu callback to free various structures associated with a task group */
6f505b16 7260static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7261{
29f59db3 7262 /* now it should be safe to free those cfs_rqs */
6f505b16 7263 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7264}
7265
9b5b7751 7266/* Destroy runqueue etc associated with a task group */
4cf86d77 7267void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7268{
7269 /* wait for possible concurrent references to cfs_rqs complete */
7270 call_rcu(&tg->rcu, free_sched_group_rcu);
7271}
7272
7273void sched_offline_group(struct task_group *tg)
29f59db3 7274{
8ed36996 7275 unsigned long flags;
9b5b7751 7276 int i;
29f59db3 7277
3d4b47b4
PZ
7278 /* end participation in shares distribution */
7279 for_each_possible_cpu(i)
bccbe08a 7280 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7281
7282 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7283 list_del_rcu(&tg->list);
f473aa5e 7284 list_del_rcu(&tg->siblings);
8ed36996 7285 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7286}
7287
9b5b7751 7288/* change task's runqueue when it moves between groups.
3a252015
IM
7289 * The caller of this function should have put the task in its new group
7290 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7291 * reflect its new group.
9b5b7751
SV
7292 */
7293void sched_move_task(struct task_struct *tsk)
29f59db3 7294{
8323f26c 7295 struct task_group *tg;
29f59db3
SV
7296 int on_rq, running;
7297 unsigned long flags;
7298 struct rq *rq;
7299
7300 rq = task_rq_lock(tsk, &flags);
7301
051a1d1a 7302 running = task_current(rq, tsk);
fd2f4419 7303 on_rq = tsk->on_rq;
29f59db3 7304
0e1f3483 7305 if (on_rq)
29f59db3 7306 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7307 if (unlikely(running))
7308 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7309
073219e9 7310 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
8323f26c
PZ
7311 lockdep_is_held(&tsk->sighand->siglock)),
7312 struct task_group, css);
7313 tg = autogroup_task_group(tsk, tg);
7314 tsk->sched_task_group = tg;
7315
810b3817 7316#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7317 if (tsk->sched_class->task_move_group)
7318 tsk->sched_class->task_move_group(tsk, on_rq);
7319 else
810b3817 7320#endif
b2b5ce02 7321 set_task_rq(tsk, task_cpu(tsk));
810b3817 7322
0e1f3483
HS
7323 if (unlikely(running))
7324 tsk->sched_class->set_curr_task(rq);
7325 if (on_rq)
371fd7e7 7326 enqueue_task(rq, tsk, 0);
29f59db3 7327
0122ec5b 7328 task_rq_unlock(rq, tsk, &flags);
29f59db3 7329}
7c941438 7330#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7331
a790de99
PT
7332#ifdef CONFIG_RT_GROUP_SCHED
7333/*
7334 * Ensure that the real time constraints are schedulable.
7335 */
7336static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7337
9a7e0b18
PZ
7338/* Must be called with tasklist_lock held */
7339static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7340{
9a7e0b18 7341 struct task_struct *g, *p;
b40b2e8e 7342
9a7e0b18 7343 do_each_thread(g, p) {
029632fb 7344 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7345 return 1;
7346 } while_each_thread(g, p);
b40b2e8e 7347
9a7e0b18
PZ
7348 return 0;
7349}
b40b2e8e 7350
9a7e0b18
PZ
7351struct rt_schedulable_data {
7352 struct task_group *tg;
7353 u64 rt_period;
7354 u64 rt_runtime;
7355};
b40b2e8e 7356
a790de99 7357static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7358{
7359 struct rt_schedulable_data *d = data;
7360 struct task_group *child;
7361 unsigned long total, sum = 0;
7362 u64 period, runtime;
b40b2e8e 7363
9a7e0b18
PZ
7364 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7365 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7366
9a7e0b18
PZ
7367 if (tg == d->tg) {
7368 period = d->rt_period;
7369 runtime = d->rt_runtime;
b40b2e8e 7370 }
b40b2e8e 7371
4653f803
PZ
7372 /*
7373 * Cannot have more runtime than the period.
7374 */
7375 if (runtime > period && runtime != RUNTIME_INF)
7376 return -EINVAL;
6f505b16 7377
4653f803
PZ
7378 /*
7379 * Ensure we don't starve existing RT tasks.
7380 */
9a7e0b18
PZ
7381 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7382 return -EBUSY;
6f505b16 7383
9a7e0b18 7384 total = to_ratio(period, runtime);
6f505b16 7385
4653f803
PZ
7386 /*
7387 * Nobody can have more than the global setting allows.
7388 */
7389 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7390 return -EINVAL;
6f505b16 7391
4653f803
PZ
7392 /*
7393 * The sum of our children's runtime should not exceed our own.
7394 */
9a7e0b18
PZ
7395 list_for_each_entry_rcu(child, &tg->children, siblings) {
7396 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7397 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7398
9a7e0b18
PZ
7399 if (child == d->tg) {
7400 period = d->rt_period;
7401 runtime = d->rt_runtime;
7402 }
6f505b16 7403
9a7e0b18 7404 sum += to_ratio(period, runtime);
9f0c1e56 7405 }
6f505b16 7406
9a7e0b18
PZ
7407 if (sum > total)
7408 return -EINVAL;
7409
7410 return 0;
6f505b16
PZ
7411}
7412
9a7e0b18 7413static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7414{
8277434e
PT
7415 int ret;
7416
9a7e0b18
PZ
7417 struct rt_schedulable_data data = {
7418 .tg = tg,
7419 .rt_period = period,
7420 .rt_runtime = runtime,
7421 };
7422
8277434e
PT
7423 rcu_read_lock();
7424 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7425 rcu_read_unlock();
7426
7427 return ret;
521f1a24
DG
7428}
7429
ab84d31e 7430static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7431 u64 rt_period, u64 rt_runtime)
6f505b16 7432{
ac086bc2 7433 int i, err = 0;
9f0c1e56 7434
9f0c1e56 7435 mutex_lock(&rt_constraints_mutex);
521f1a24 7436 read_lock(&tasklist_lock);
9a7e0b18
PZ
7437 err = __rt_schedulable(tg, rt_period, rt_runtime);
7438 if (err)
9f0c1e56 7439 goto unlock;
ac086bc2 7440
0986b11b 7441 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7442 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7443 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7444
7445 for_each_possible_cpu(i) {
7446 struct rt_rq *rt_rq = tg->rt_rq[i];
7447
0986b11b 7448 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7449 rt_rq->rt_runtime = rt_runtime;
0986b11b 7450 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7451 }
0986b11b 7452 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7453unlock:
521f1a24 7454 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7455 mutex_unlock(&rt_constraints_mutex);
7456
7457 return err;
6f505b16
PZ
7458}
7459
25cc7da7 7460static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7461{
7462 u64 rt_runtime, rt_period;
7463
7464 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7465 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7466 if (rt_runtime_us < 0)
7467 rt_runtime = RUNTIME_INF;
7468
ab84d31e 7469 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7470}
7471
25cc7da7 7472static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7473{
7474 u64 rt_runtime_us;
7475
d0b27fa7 7476 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7477 return -1;
7478
d0b27fa7 7479 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7480 do_div(rt_runtime_us, NSEC_PER_USEC);
7481 return rt_runtime_us;
7482}
d0b27fa7 7483
25cc7da7 7484static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7485{
7486 u64 rt_runtime, rt_period;
7487
7488 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7489 rt_runtime = tg->rt_bandwidth.rt_runtime;
7490
619b0488
R
7491 if (rt_period == 0)
7492 return -EINVAL;
7493
ab84d31e 7494 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7495}
7496
25cc7da7 7497static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7498{
7499 u64 rt_period_us;
7500
7501 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7502 do_div(rt_period_us, NSEC_PER_USEC);
7503 return rt_period_us;
7504}
332ac17e 7505#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7506
332ac17e 7507#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7508static int sched_rt_global_constraints(void)
7509{
7510 int ret = 0;
7511
7512 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7513 read_lock(&tasklist_lock);
4653f803 7514 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7515 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7516 mutex_unlock(&rt_constraints_mutex);
7517
7518 return ret;
7519}
54e99124 7520
25cc7da7 7521static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7522{
7523 /* Don't accept realtime tasks when there is no way for them to run */
7524 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7525 return 0;
7526
7527 return 1;
7528}
7529
6d6bc0ad 7530#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7531static int sched_rt_global_constraints(void)
7532{
ac086bc2 7533 unsigned long flags;
332ac17e 7534 int i, ret = 0;
ec5d4989 7535
0986b11b 7536 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7537 for_each_possible_cpu(i) {
7538 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7539
0986b11b 7540 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7541 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7542 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7543 }
0986b11b 7544 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7545
332ac17e 7546 return ret;
d0b27fa7 7547}
6d6bc0ad 7548#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7549
332ac17e
DF
7550static int sched_dl_global_constraints(void)
7551{
1724813d
PZ
7552 u64 runtime = global_rt_runtime();
7553 u64 period = global_rt_period();
332ac17e 7554 u64 new_bw = to_ratio(period, runtime);
1724813d 7555 int cpu, ret = 0;
49516342 7556 unsigned long flags;
332ac17e
DF
7557
7558 /*
7559 * Here we want to check the bandwidth not being set to some
7560 * value smaller than the currently allocated bandwidth in
7561 * any of the root_domains.
7562 *
7563 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7564 * cycling on root_domains... Discussion on different/better
7565 * solutions is welcome!
7566 */
1724813d
PZ
7567 for_each_possible_cpu(cpu) {
7568 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e 7569
49516342 7570 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7571 if (new_bw < dl_b->total_bw)
7572 ret = -EBUSY;
49516342 7573 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d
PZ
7574
7575 if (ret)
7576 break;
332ac17e
DF
7577 }
7578
1724813d 7579 return ret;
332ac17e
DF
7580}
7581
1724813d 7582static void sched_dl_do_global(void)
ce0dbbbb 7583{
1724813d
PZ
7584 u64 new_bw = -1;
7585 int cpu;
49516342 7586 unsigned long flags;
ce0dbbbb 7587
1724813d
PZ
7588 def_dl_bandwidth.dl_period = global_rt_period();
7589 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7590
7591 if (global_rt_runtime() != RUNTIME_INF)
7592 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7593
7594 /*
7595 * FIXME: As above...
7596 */
7597 for_each_possible_cpu(cpu) {
7598 struct dl_bw *dl_b = dl_bw_of(cpu);
7599
49516342 7600 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7601 dl_b->bw = new_bw;
49516342 7602 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
ce0dbbbb 7603 }
1724813d
PZ
7604}
7605
7606static int sched_rt_global_validate(void)
7607{
7608 if (sysctl_sched_rt_period <= 0)
7609 return -EINVAL;
7610
e9e7cb38
JL
7611 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7612 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7613 return -EINVAL;
7614
7615 return 0;
7616}
7617
7618static void sched_rt_do_global(void)
7619{
7620 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7621 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7622}
7623
d0b27fa7 7624int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7625 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7626 loff_t *ppos)
7627{
d0b27fa7
PZ
7628 int old_period, old_runtime;
7629 static DEFINE_MUTEX(mutex);
1724813d 7630 int ret;
d0b27fa7
PZ
7631
7632 mutex_lock(&mutex);
7633 old_period = sysctl_sched_rt_period;
7634 old_runtime = sysctl_sched_rt_runtime;
7635
8d65af78 7636 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7637
7638 if (!ret && write) {
1724813d
PZ
7639 ret = sched_rt_global_validate();
7640 if (ret)
7641 goto undo;
7642
d0b27fa7 7643 ret = sched_rt_global_constraints();
1724813d
PZ
7644 if (ret)
7645 goto undo;
7646
7647 ret = sched_dl_global_constraints();
7648 if (ret)
7649 goto undo;
7650
7651 sched_rt_do_global();
7652 sched_dl_do_global();
7653 }
7654 if (0) {
7655undo:
7656 sysctl_sched_rt_period = old_period;
7657 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7658 }
7659 mutex_unlock(&mutex);
7660
7661 return ret;
7662}
68318b8e 7663
1724813d 7664int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7665 void __user *buffer, size_t *lenp,
7666 loff_t *ppos)
7667{
7668 int ret;
332ac17e 7669 static DEFINE_MUTEX(mutex);
332ac17e
DF
7670
7671 mutex_lock(&mutex);
332ac17e 7672 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7673 /* make sure that internally we keep jiffies */
7674 /* also, writing zero resets timeslice to default */
332ac17e 7675 if (!ret && write) {
1724813d
PZ
7676 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7677 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7678 }
7679 mutex_unlock(&mutex);
332ac17e
DF
7680 return ret;
7681}
7682
052f1dc7 7683#ifdef CONFIG_CGROUP_SCHED
68318b8e 7684
a7c6d554 7685static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7686{
a7c6d554 7687 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7688}
7689
eb95419b
TH
7690static struct cgroup_subsys_state *
7691cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7692{
eb95419b
TH
7693 struct task_group *parent = css_tg(parent_css);
7694 struct task_group *tg;
68318b8e 7695
eb95419b 7696 if (!parent) {
68318b8e 7697 /* This is early initialization for the top cgroup */
07e06b01 7698 return &root_task_group.css;
68318b8e
SV
7699 }
7700
ec7dc8ac 7701 tg = sched_create_group(parent);
68318b8e
SV
7702 if (IS_ERR(tg))
7703 return ERR_PTR(-ENOMEM);
7704
68318b8e
SV
7705 return &tg->css;
7706}
7707
eb95419b 7708static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7709{
eb95419b 7710 struct task_group *tg = css_tg(css);
5c9d535b 7711 struct task_group *parent = css_tg(css->parent);
ace783b9 7712
63876986
TH
7713 if (parent)
7714 sched_online_group(tg, parent);
ace783b9
LZ
7715 return 0;
7716}
7717
eb95419b 7718static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7719{
eb95419b 7720 struct task_group *tg = css_tg(css);
68318b8e
SV
7721
7722 sched_destroy_group(tg);
7723}
7724
eb95419b 7725static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7726{
eb95419b 7727 struct task_group *tg = css_tg(css);
ace783b9
LZ
7728
7729 sched_offline_group(tg);
7730}
7731
eb95419b 7732static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7733 struct cgroup_taskset *tset)
68318b8e 7734{
bb9d97b6
TH
7735 struct task_struct *task;
7736
924f0d9a 7737 cgroup_taskset_for_each(task, tset) {
b68aa230 7738#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7739 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7740 return -EINVAL;
b68aa230 7741#else
bb9d97b6
TH
7742 /* We don't support RT-tasks being in separate groups */
7743 if (task->sched_class != &fair_sched_class)
7744 return -EINVAL;
b68aa230 7745#endif
bb9d97b6 7746 }
be367d09
BB
7747 return 0;
7748}
68318b8e 7749
eb95419b 7750static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7751 struct cgroup_taskset *tset)
68318b8e 7752{
bb9d97b6
TH
7753 struct task_struct *task;
7754
924f0d9a 7755 cgroup_taskset_for_each(task, tset)
bb9d97b6 7756 sched_move_task(task);
68318b8e
SV
7757}
7758
eb95419b
TH
7759static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7760 struct cgroup_subsys_state *old_css,
7761 struct task_struct *task)
068c5cc5
PZ
7762{
7763 /*
7764 * cgroup_exit() is called in the copy_process() failure path.
7765 * Ignore this case since the task hasn't ran yet, this avoids
7766 * trying to poke a half freed task state from generic code.
7767 */
7768 if (!(task->flags & PF_EXITING))
7769 return;
7770
7771 sched_move_task(task);
7772}
7773
052f1dc7 7774#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7775static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7776 struct cftype *cftype, u64 shareval)
68318b8e 7777{
182446d0 7778 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7779}
7780
182446d0
TH
7781static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7782 struct cftype *cft)
68318b8e 7783{
182446d0 7784 struct task_group *tg = css_tg(css);
68318b8e 7785
c8b28116 7786 return (u64) scale_load_down(tg->shares);
68318b8e 7787}
ab84d31e
PT
7788
7789#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7790static DEFINE_MUTEX(cfs_constraints_mutex);
7791
ab84d31e
PT
7792const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7793const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7794
a790de99
PT
7795static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7796
ab84d31e
PT
7797static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7798{
56f570e5 7799 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7800 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7801
7802 if (tg == &root_task_group)
7803 return -EINVAL;
7804
7805 /*
7806 * Ensure we have at some amount of bandwidth every period. This is
7807 * to prevent reaching a state of large arrears when throttled via
7808 * entity_tick() resulting in prolonged exit starvation.
7809 */
7810 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7811 return -EINVAL;
7812
7813 /*
7814 * Likewise, bound things on the otherside by preventing insane quota
7815 * periods. This also allows us to normalize in computing quota
7816 * feasibility.
7817 */
7818 if (period > max_cfs_quota_period)
7819 return -EINVAL;
7820
0e59bdae
KT
7821 /*
7822 * Prevent race between setting of cfs_rq->runtime_enabled and
7823 * unthrottle_offline_cfs_rqs().
7824 */
7825 get_online_cpus();
a790de99
PT
7826 mutex_lock(&cfs_constraints_mutex);
7827 ret = __cfs_schedulable(tg, period, quota);
7828 if (ret)
7829 goto out_unlock;
7830
58088ad0 7831 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7832 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7833 /*
7834 * If we need to toggle cfs_bandwidth_used, off->on must occur
7835 * before making related changes, and on->off must occur afterwards
7836 */
7837 if (runtime_enabled && !runtime_was_enabled)
7838 cfs_bandwidth_usage_inc();
ab84d31e
PT
7839 raw_spin_lock_irq(&cfs_b->lock);
7840 cfs_b->period = ns_to_ktime(period);
7841 cfs_b->quota = quota;
58088ad0 7842
a9cf55b2 7843 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7844 /* restart the period timer (if active) to handle new period expiry */
7845 if (runtime_enabled && cfs_b->timer_active) {
7846 /* force a reprogram */
09dc4ab0 7847 __start_cfs_bandwidth(cfs_b, true);
58088ad0 7848 }
ab84d31e
PT
7849 raw_spin_unlock_irq(&cfs_b->lock);
7850
0e59bdae 7851 for_each_online_cpu(i) {
ab84d31e 7852 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7853 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7854
7855 raw_spin_lock_irq(&rq->lock);
58088ad0 7856 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7857 cfs_rq->runtime_remaining = 0;
671fd9da 7858
029632fb 7859 if (cfs_rq->throttled)
671fd9da 7860 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7861 raw_spin_unlock_irq(&rq->lock);
7862 }
1ee14e6c
BS
7863 if (runtime_was_enabled && !runtime_enabled)
7864 cfs_bandwidth_usage_dec();
a790de99
PT
7865out_unlock:
7866 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 7867 put_online_cpus();
ab84d31e 7868
a790de99 7869 return ret;
ab84d31e
PT
7870}
7871
7872int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7873{
7874 u64 quota, period;
7875
029632fb 7876 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7877 if (cfs_quota_us < 0)
7878 quota = RUNTIME_INF;
7879 else
7880 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7881
7882 return tg_set_cfs_bandwidth(tg, period, quota);
7883}
7884
7885long tg_get_cfs_quota(struct task_group *tg)
7886{
7887 u64 quota_us;
7888
029632fb 7889 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7890 return -1;
7891
029632fb 7892 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7893 do_div(quota_us, NSEC_PER_USEC);
7894
7895 return quota_us;
7896}
7897
7898int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7899{
7900 u64 quota, period;
7901
7902 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7903 quota = tg->cfs_bandwidth.quota;
ab84d31e 7904
ab84d31e
PT
7905 return tg_set_cfs_bandwidth(tg, period, quota);
7906}
7907
7908long tg_get_cfs_period(struct task_group *tg)
7909{
7910 u64 cfs_period_us;
7911
029632fb 7912 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7913 do_div(cfs_period_us, NSEC_PER_USEC);
7914
7915 return cfs_period_us;
7916}
7917
182446d0
TH
7918static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7919 struct cftype *cft)
ab84d31e 7920{
182446d0 7921 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7922}
7923
182446d0
TH
7924static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7925 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7926{
182446d0 7927 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7928}
7929
182446d0
TH
7930static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7931 struct cftype *cft)
ab84d31e 7932{
182446d0 7933 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7934}
7935
182446d0
TH
7936static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7937 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7938{
182446d0 7939 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7940}
7941
a790de99
PT
7942struct cfs_schedulable_data {
7943 struct task_group *tg;
7944 u64 period, quota;
7945};
7946
7947/*
7948 * normalize group quota/period to be quota/max_period
7949 * note: units are usecs
7950 */
7951static u64 normalize_cfs_quota(struct task_group *tg,
7952 struct cfs_schedulable_data *d)
7953{
7954 u64 quota, period;
7955
7956 if (tg == d->tg) {
7957 period = d->period;
7958 quota = d->quota;
7959 } else {
7960 period = tg_get_cfs_period(tg);
7961 quota = tg_get_cfs_quota(tg);
7962 }
7963
7964 /* note: these should typically be equivalent */
7965 if (quota == RUNTIME_INF || quota == -1)
7966 return RUNTIME_INF;
7967
7968 return to_ratio(period, quota);
7969}
7970
7971static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7972{
7973 struct cfs_schedulable_data *d = data;
029632fb 7974 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7975 s64 quota = 0, parent_quota = -1;
7976
7977 if (!tg->parent) {
7978 quota = RUNTIME_INF;
7979 } else {
029632fb 7980 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7981
7982 quota = normalize_cfs_quota(tg, d);
7983 parent_quota = parent_b->hierarchal_quota;
7984
7985 /*
7986 * ensure max(child_quota) <= parent_quota, inherit when no
7987 * limit is set
7988 */
7989 if (quota == RUNTIME_INF)
7990 quota = parent_quota;
7991 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7992 return -EINVAL;
7993 }
7994 cfs_b->hierarchal_quota = quota;
7995
7996 return 0;
7997}
7998
7999static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8000{
8277434e 8001 int ret;
a790de99
PT
8002 struct cfs_schedulable_data data = {
8003 .tg = tg,
8004 .period = period,
8005 .quota = quota,
8006 };
8007
8008 if (quota != RUNTIME_INF) {
8009 do_div(data.period, NSEC_PER_USEC);
8010 do_div(data.quota, NSEC_PER_USEC);
8011 }
8012
8277434e
PT
8013 rcu_read_lock();
8014 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8015 rcu_read_unlock();
8016
8017 return ret;
a790de99 8018}
e8da1b18 8019
2da8ca82 8020static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8021{
2da8ca82 8022 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8023 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8024
44ffc75b
TH
8025 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8026 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8027 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8028
8029 return 0;
8030}
ab84d31e 8031#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8032#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8033
052f1dc7 8034#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8035static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8036 struct cftype *cft, s64 val)
6f505b16 8037{
182446d0 8038 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8039}
8040
182446d0
TH
8041static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8042 struct cftype *cft)
6f505b16 8043{
182446d0 8044 return sched_group_rt_runtime(css_tg(css));
6f505b16 8045}
d0b27fa7 8046
182446d0
TH
8047static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8048 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8049{
182446d0 8050 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8051}
8052
182446d0
TH
8053static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8054 struct cftype *cft)
d0b27fa7 8055{
182446d0 8056 return sched_group_rt_period(css_tg(css));
d0b27fa7 8057}
6d6bc0ad 8058#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8059
fe5c7cc2 8060static struct cftype cpu_files[] = {
052f1dc7 8061#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8062 {
8063 .name = "shares",
f4c753b7
PM
8064 .read_u64 = cpu_shares_read_u64,
8065 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8066 },
052f1dc7 8067#endif
ab84d31e
PT
8068#ifdef CONFIG_CFS_BANDWIDTH
8069 {
8070 .name = "cfs_quota_us",
8071 .read_s64 = cpu_cfs_quota_read_s64,
8072 .write_s64 = cpu_cfs_quota_write_s64,
8073 },
8074 {
8075 .name = "cfs_period_us",
8076 .read_u64 = cpu_cfs_period_read_u64,
8077 .write_u64 = cpu_cfs_period_write_u64,
8078 },
e8da1b18
NR
8079 {
8080 .name = "stat",
2da8ca82 8081 .seq_show = cpu_stats_show,
e8da1b18 8082 },
ab84d31e 8083#endif
052f1dc7 8084#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8085 {
9f0c1e56 8086 .name = "rt_runtime_us",
06ecb27c
PM
8087 .read_s64 = cpu_rt_runtime_read,
8088 .write_s64 = cpu_rt_runtime_write,
6f505b16 8089 },
d0b27fa7
PZ
8090 {
8091 .name = "rt_period_us",
f4c753b7
PM
8092 .read_u64 = cpu_rt_period_read_uint,
8093 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8094 },
052f1dc7 8095#endif
4baf6e33 8096 { } /* terminate */
68318b8e
SV
8097};
8098
073219e9 8099struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8100 .css_alloc = cpu_cgroup_css_alloc,
8101 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8102 .css_online = cpu_cgroup_css_online,
8103 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8104 .can_attach = cpu_cgroup_can_attach,
8105 .attach = cpu_cgroup_attach,
068c5cc5 8106 .exit = cpu_cgroup_exit,
4baf6e33 8107 .base_cftypes = cpu_files,
68318b8e
SV
8108 .early_init = 1,
8109};
8110
052f1dc7 8111#endif /* CONFIG_CGROUP_SCHED */
d842de87 8112
b637a328
PM
8113void dump_cpu_task(int cpu)
8114{
8115 pr_info("Task dump for CPU %d:\n", cpu);
8116 sched_show_task(cpu_curr(cpu));
8117}
This page took 4.062452 seconds and 5 git commands to generate.