Restartable sequences system call (v7)
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
3e71a462
PZ
173/*
174 * __task_rq_lock - lock the rq @p resides on.
175 */
eb580751 176struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
177 __acquires(rq->lock)
178{
179 struct rq *rq;
180
181 lockdep_assert_held(&p->pi_lock);
182
183 for (;;) {
184 rq = task_rq(p);
185 raw_spin_lock(&rq->lock);
186 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 187 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
188 return rq;
189 }
190 raw_spin_unlock(&rq->lock);
191
192 while (unlikely(task_on_rq_migrating(p)))
193 cpu_relax();
194 }
195}
196
197/*
198 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
199 */
eb580751 200struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
201 __acquires(p->pi_lock)
202 __acquires(rq->lock)
203{
204 struct rq *rq;
205
206 for (;;) {
eb580751 207 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
208 rq = task_rq(p);
209 raw_spin_lock(&rq->lock);
210 /*
211 * move_queued_task() task_rq_lock()
212 *
213 * ACQUIRE (rq->lock)
214 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
215 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
216 * [S] ->cpu = new_cpu [L] task_rq()
217 * [L] ->on_rq
218 * RELEASE (rq->lock)
219 *
220 * If we observe the old cpu in task_rq_lock, the acquire of
221 * the old rq->lock will fully serialize against the stores.
222 *
223 * If we observe the new cpu in task_rq_lock, the acquire will
224 * pair with the WMB to ensure we must then also see migrating.
225 */
226 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 227 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
228 return rq;
229 }
230 raw_spin_unlock(&rq->lock);
eb580751 231 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
232
233 while (unlikely(task_on_rq_migrating(p)))
234 cpu_relax();
235 }
236}
237
8f4d37ec
PZ
238#ifdef CONFIG_SCHED_HRTICK
239/*
240 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 241 */
8f4d37ec 242
8f4d37ec
PZ
243static void hrtick_clear(struct rq *rq)
244{
245 if (hrtimer_active(&rq->hrtick_timer))
246 hrtimer_cancel(&rq->hrtick_timer);
247}
248
8f4d37ec
PZ
249/*
250 * High-resolution timer tick.
251 * Runs from hardirq context with interrupts disabled.
252 */
253static enum hrtimer_restart hrtick(struct hrtimer *timer)
254{
255 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
05fa785c 259 raw_spin_lock(&rq->lock);
3e51f33f 260 update_rq_clock(rq);
8f4d37ec 261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 262 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
263
264 return HRTIMER_NORESTART;
265}
266
95e904c7 267#ifdef CONFIG_SMP
971ee28c 268
4961b6e1 269static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
270{
271 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 272
4961b6e1 273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
274}
275
31656519
PZ
276/*
277 * called from hardirq (IPI) context
278 */
279static void __hrtick_start(void *arg)
b328ca18 280{
31656519 281 struct rq *rq = arg;
b328ca18 282
05fa785c 283 raw_spin_lock(&rq->lock);
971ee28c 284 __hrtick_restart(rq);
31656519 285 rq->hrtick_csd_pending = 0;
05fa785c 286 raw_spin_unlock(&rq->lock);
b328ca18
PZ
287}
288
31656519
PZ
289/*
290 * Called to set the hrtick timer state.
291 *
292 * called with rq->lock held and irqs disabled
293 */
029632fb 294void hrtick_start(struct rq *rq, u64 delay)
b328ca18 295{
31656519 296 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 297 ktime_t time;
298 s64 delta;
299
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense and can cause timer DoS.
303 */
304 delta = max_t(s64, delay, 10000LL);
305 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 306
cc584b21 307 hrtimer_set_expires(timer, time);
31656519
PZ
308
309 if (rq == this_rq()) {
971ee28c 310 __hrtick_restart(rq);
31656519 311 } else if (!rq->hrtick_csd_pending) {
c46fff2a 312 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
313 rq->hrtick_csd_pending = 1;
314 }
b328ca18
PZ
315}
316
31656519
PZ
317#else
318/*
319 * Called to set the hrtick timer state.
320 *
321 * called with rq->lock held and irqs disabled
322 */
029632fb 323void hrtick_start(struct rq *rq, u64 delay)
31656519 324{
86893335
WL
325 /*
326 * Don't schedule slices shorter than 10000ns, that just
327 * doesn't make sense. Rely on vruntime for fairness.
328 */
329 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
330 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
331 HRTIMER_MODE_REL_PINNED);
31656519 332}
31656519 333#endif /* CONFIG_SMP */
8f4d37ec 334
31656519 335static void init_rq_hrtick(struct rq *rq)
8f4d37ec 336{
31656519
PZ
337#ifdef CONFIG_SMP
338 rq->hrtick_csd_pending = 0;
8f4d37ec 339
31656519
PZ
340 rq->hrtick_csd.flags = 0;
341 rq->hrtick_csd.func = __hrtick_start;
342 rq->hrtick_csd.info = rq;
343#endif
8f4d37ec 344
31656519
PZ
345 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
346 rq->hrtick_timer.function = hrtick;
8f4d37ec 347}
006c75f1 348#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
349static inline void hrtick_clear(struct rq *rq)
350{
351}
352
8f4d37ec
PZ
353static inline void init_rq_hrtick(struct rq *rq)
354{
355}
006c75f1 356#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 357
5529578a
FW
358/*
359 * cmpxchg based fetch_or, macro so it works for different integer types
360 */
361#define fetch_or(ptr, mask) \
362 ({ \
363 typeof(ptr) _ptr = (ptr); \
364 typeof(mask) _mask = (mask); \
365 typeof(*_ptr) _old, _val = *_ptr; \
366 \
367 for (;;) { \
368 _old = cmpxchg(_ptr, _val, _val | _mask); \
369 if (_old == _val) \
370 break; \
371 _val = _old; \
372 } \
373 _old; \
374})
375
e3baac47 376#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
377/*
378 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
379 * this avoids any races wrt polling state changes and thereby avoids
380 * spurious IPIs.
381 */
382static bool set_nr_and_not_polling(struct task_struct *p)
383{
384 struct thread_info *ti = task_thread_info(p);
385 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
386}
e3baac47
PZ
387
388/*
389 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
390 *
391 * If this returns true, then the idle task promises to call
392 * sched_ttwu_pending() and reschedule soon.
393 */
394static bool set_nr_if_polling(struct task_struct *p)
395{
396 struct thread_info *ti = task_thread_info(p);
316c1608 397 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
398
399 for (;;) {
400 if (!(val & _TIF_POLLING_NRFLAG))
401 return false;
402 if (val & _TIF_NEED_RESCHED)
403 return true;
404 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
405 if (old == val)
406 break;
407 val = old;
408 }
409 return true;
410}
411
fd99f91a
PZ
412#else
413static bool set_nr_and_not_polling(struct task_struct *p)
414{
415 set_tsk_need_resched(p);
416 return true;
417}
e3baac47
PZ
418
419#ifdef CONFIG_SMP
420static bool set_nr_if_polling(struct task_struct *p)
421{
422 return false;
423}
424#endif
fd99f91a
PZ
425#endif
426
76751049
PZ
427void wake_q_add(struct wake_q_head *head, struct task_struct *task)
428{
429 struct wake_q_node *node = &task->wake_q;
430
431 /*
432 * Atomically grab the task, if ->wake_q is !nil already it means
433 * its already queued (either by us or someone else) and will get the
434 * wakeup due to that.
435 *
436 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 437 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
438 */
439 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
440 return;
441
442 get_task_struct(task);
443
444 /*
445 * The head is context local, there can be no concurrency.
446 */
447 *head->lastp = node;
448 head->lastp = &node->next;
449}
450
451void wake_up_q(struct wake_q_head *head)
452{
453 struct wake_q_node *node = head->first;
454
455 while (node != WAKE_Q_TAIL) {
456 struct task_struct *task;
457
458 task = container_of(node, struct task_struct, wake_q);
459 BUG_ON(!task);
460 /* task can safely be re-inserted now */
461 node = node->next;
462 task->wake_q.next = NULL;
463
464 /*
465 * wake_up_process() implies a wmb() to pair with the queueing
466 * in wake_q_add() so as not to miss wakeups.
467 */
468 wake_up_process(task);
469 put_task_struct(task);
470 }
471}
472
c24d20db 473/*
8875125e 474 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
475 *
476 * On UP this means the setting of the need_resched flag, on SMP it
477 * might also involve a cross-CPU call to trigger the scheduler on
478 * the target CPU.
479 */
8875125e 480void resched_curr(struct rq *rq)
c24d20db 481{
8875125e 482 struct task_struct *curr = rq->curr;
c24d20db
IM
483 int cpu;
484
8875125e 485 lockdep_assert_held(&rq->lock);
c24d20db 486
8875125e 487 if (test_tsk_need_resched(curr))
c24d20db
IM
488 return;
489
8875125e 490 cpu = cpu_of(rq);
fd99f91a 491
f27dde8d 492 if (cpu == smp_processor_id()) {
8875125e 493 set_tsk_need_resched(curr);
f27dde8d 494 set_preempt_need_resched();
c24d20db 495 return;
f27dde8d 496 }
c24d20db 497
8875125e 498 if (set_nr_and_not_polling(curr))
c24d20db 499 smp_send_reschedule(cpu);
dfc68f29
AL
500 else
501 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
502}
503
029632fb 504void resched_cpu(int cpu)
c24d20db
IM
505{
506 struct rq *rq = cpu_rq(cpu);
507 unsigned long flags;
508
05fa785c 509 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 510 return;
8875125e 511 resched_curr(rq);
05fa785c 512 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 513}
06d8308c 514
b021fe3e 515#ifdef CONFIG_SMP
3451d024 516#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
517/*
518 * In the semi idle case, use the nearest busy cpu for migrating timers
519 * from an idle cpu. This is good for power-savings.
520 *
521 * We don't do similar optimization for completely idle system, as
522 * selecting an idle cpu will add more delays to the timers than intended
523 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
524 */
bc7a34b8 525int get_nohz_timer_target(void)
83cd4fe2 526{
bc7a34b8 527 int i, cpu = smp_processor_id();
83cd4fe2
VP
528 struct sched_domain *sd;
529
9642d18e 530 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
531 return cpu;
532
057f3fad 533 rcu_read_lock();
83cd4fe2 534 for_each_domain(cpu, sd) {
057f3fad 535 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
536 if (cpu == i)
537 continue;
538
539 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
540 cpu = i;
541 goto unlock;
542 }
543 }
83cd4fe2 544 }
9642d18e
VH
545
546 if (!is_housekeeping_cpu(cpu))
547 cpu = housekeeping_any_cpu();
057f3fad
PZ
548unlock:
549 rcu_read_unlock();
83cd4fe2
VP
550 return cpu;
551}
06d8308c
TG
552/*
553 * When add_timer_on() enqueues a timer into the timer wheel of an
554 * idle CPU then this timer might expire before the next timer event
555 * which is scheduled to wake up that CPU. In case of a completely
556 * idle system the next event might even be infinite time into the
557 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
558 * leaves the inner idle loop so the newly added timer is taken into
559 * account when the CPU goes back to idle and evaluates the timer
560 * wheel for the next timer event.
561 */
1c20091e 562static void wake_up_idle_cpu(int cpu)
06d8308c
TG
563{
564 struct rq *rq = cpu_rq(cpu);
565
566 if (cpu == smp_processor_id())
567 return;
568
67b9ca70 569 if (set_nr_and_not_polling(rq->idle))
06d8308c 570 smp_send_reschedule(cpu);
dfc68f29
AL
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
573}
574
c5bfece2 575static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 576{
53c5fa16
FW
577 /*
578 * We just need the target to call irq_exit() and re-evaluate
579 * the next tick. The nohz full kick at least implies that.
580 * If needed we can still optimize that later with an
581 * empty IRQ.
582 */
c5bfece2 583 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
584 if (cpu != smp_processor_id() ||
585 tick_nohz_tick_stopped())
53c5fa16 586 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
587 return true;
588 }
589
590 return false;
591}
592
593void wake_up_nohz_cpu(int cpu)
594{
c5bfece2 595 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
596 wake_up_idle_cpu(cpu);
597}
598
ca38062e 599static inline bool got_nohz_idle_kick(void)
45bf76df 600{
1c792db7 601 int cpu = smp_processor_id();
873b4c65
VG
602
603 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
604 return false;
605
606 if (idle_cpu(cpu) && !need_resched())
607 return true;
608
609 /*
610 * We can't run Idle Load Balance on this CPU for this time so we
611 * cancel it and clear NOHZ_BALANCE_KICK
612 */
613 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 return false;
45bf76df
IM
615}
616
3451d024 617#else /* CONFIG_NO_HZ_COMMON */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
3451d024 624#endif /* CONFIG_NO_HZ_COMMON */
d842de87 625
ce831b38 626#ifdef CONFIG_NO_HZ_FULL
76d92ac3 627bool sched_can_stop_tick(struct rq *rq)
ce831b38 628{
76d92ac3
FW
629 int fifo_nr_running;
630
631 /* Deadline tasks, even if single, need the tick */
632 if (rq->dl.dl_nr_running)
633 return false;
634
1e78cdbd 635 /*
2548d546
PZ
636 * If there are more than one RR tasks, we need the tick to effect the
637 * actual RR behaviour.
1e78cdbd 638 */
76d92ac3
FW
639 if (rq->rt.rr_nr_running) {
640 if (rq->rt.rr_nr_running == 1)
641 return true;
642 else
643 return false;
1e78cdbd
RR
644 }
645
2548d546
PZ
646 /*
647 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
648 * forced preemption between FIFO tasks.
649 */
650 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
651 if (fifo_nr_running)
652 return true;
653
654 /*
655 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
656 * if there's more than one we need the tick for involuntary
657 * preemption.
658 */
659 if (rq->nr_running > 1)
541b8264 660 return false;
ce831b38 661
541b8264 662 return true;
ce831b38
FW
663}
664#endif /* CONFIG_NO_HZ_FULL */
d842de87 665
029632fb 666void sched_avg_update(struct rq *rq)
18d95a28 667{
e9e9250b
PZ
668 s64 period = sched_avg_period();
669
78becc27 670 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
671 /*
672 * Inline assembly required to prevent the compiler
673 * optimising this loop into a divmod call.
674 * See __iter_div_u64_rem() for another example of this.
675 */
676 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
677 rq->age_stamp += period;
678 rq->rt_avg /= 2;
679 }
18d95a28
PZ
680}
681
6d6bc0ad 682#endif /* CONFIG_SMP */
18d95a28 683
a790de99
PT
684#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
685 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 686/*
8277434e
PT
687 * Iterate task_group tree rooted at *from, calling @down when first entering a
688 * node and @up when leaving it for the final time.
689 *
690 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 691 */
029632fb 692int walk_tg_tree_from(struct task_group *from,
8277434e 693 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
694{
695 struct task_group *parent, *child;
eb755805 696 int ret;
c09595f6 697
8277434e
PT
698 parent = from;
699
c09595f6 700down:
eb755805
PZ
701 ret = (*down)(parent, data);
702 if (ret)
8277434e 703 goto out;
c09595f6
PZ
704 list_for_each_entry_rcu(child, &parent->children, siblings) {
705 parent = child;
706 goto down;
707
708up:
709 continue;
710 }
eb755805 711 ret = (*up)(parent, data);
8277434e
PT
712 if (ret || parent == from)
713 goto out;
c09595f6
PZ
714
715 child = parent;
716 parent = parent->parent;
717 if (parent)
718 goto up;
8277434e 719out:
eb755805 720 return ret;
c09595f6
PZ
721}
722
029632fb 723int tg_nop(struct task_group *tg, void *data)
eb755805 724{
e2b245f8 725 return 0;
eb755805 726}
18d95a28
PZ
727#endif
728
45bf76df
IM
729static void set_load_weight(struct task_struct *p)
730{
f05998d4
NR
731 int prio = p->static_prio - MAX_RT_PRIO;
732 struct load_weight *load = &p->se.load;
733
dd41f596
IM
734 /*
735 * SCHED_IDLE tasks get minimal weight:
736 */
20f9cd2a 737 if (idle_policy(p->policy)) {
c8b28116 738 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 739 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
740 return;
741 }
71f8bd46 742
ed82b8a1
AK
743 load->weight = scale_load(sched_prio_to_weight[prio]);
744 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
745}
746
1de64443 747static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 748{
a64692a3 749 update_rq_clock(rq);
1de64443
PZ
750 if (!(flags & ENQUEUE_RESTORE))
751 sched_info_queued(rq, p);
371fd7e7 752 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
753}
754
1de64443 755static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 756{
a64692a3 757 update_rq_clock(rq);
1de64443
PZ
758 if (!(flags & DEQUEUE_SAVE))
759 sched_info_dequeued(rq, p);
371fd7e7 760 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
761}
762
029632fb 763void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
764{
765 if (task_contributes_to_load(p))
766 rq->nr_uninterruptible--;
767
371fd7e7 768 enqueue_task(rq, p, flags);
1e3c88bd
PZ
769}
770
029632fb 771void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
772{
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible++;
775
371fd7e7 776 dequeue_task(rq, p, flags);
1e3c88bd
PZ
777}
778
fe44d621 779static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 780{
095c0aa8
GC
781/*
782 * In theory, the compile should just see 0 here, and optimize out the call
783 * to sched_rt_avg_update. But I don't trust it...
784 */
785#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
786 s64 steal = 0, irq_delta = 0;
787#endif
788#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 789 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
790
791 /*
792 * Since irq_time is only updated on {soft,}irq_exit, we might run into
793 * this case when a previous update_rq_clock() happened inside a
794 * {soft,}irq region.
795 *
796 * When this happens, we stop ->clock_task and only update the
797 * prev_irq_time stamp to account for the part that fit, so that a next
798 * update will consume the rest. This ensures ->clock_task is
799 * monotonic.
800 *
801 * It does however cause some slight miss-attribution of {soft,}irq
802 * time, a more accurate solution would be to update the irq_time using
803 * the current rq->clock timestamp, except that would require using
804 * atomic ops.
805 */
806 if (irq_delta > delta)
807 irq_delta = delta;
808
809 rq->prev_irq_time += irq_delta;
810 delta -= irq_delta;
095c0aa8
GC
811#endif
812#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 813 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
814 steal = paravirt_steal_clock(cpu_of(rq));
815 steal -= rq->prev_steal_time_rq;
816
817 if (unlikely(steal > delta))
818 steal = delta;
819
095c0aa8 820 rq->prev_steal_time_rq += steal;
095c0aa8
GC
821 delta -= steal;
822 }
823#endif
824
fe44d621
PZ
825 rq->clock_task += delta;
826
095c0aa8 827#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 828 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
829 sched_rt_avg_update(rq, irq_delta + steal);
830#endif
aa483808
VP
831}
832
34f971f6
PZ
833void sched_set_stop_task(int cpu, struct task_struct *stop)
834{
835 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
836 struct task_struct *old_stop = cpu_rq(cpu)->stop;
837
838 if (stop) {
839 /*
840 * Make it appear like a SCHED_FIFO task, its something
841 * userspace knows about and won't get confused about.
842 *
843 * Also, it will make PI more or less work without too
844 * much confusion -- but then, stop work should not
845 * rely on PI working anyway.
846 */
847 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
848
849 stop->sched_class = &stop_sched_class;
850 }
851
852 cpu_rq(cpu)->stop = stop;
853
854 if (old_stop) {
855 /*
856 * Reset it back to a normal scheduling class so that
857 * it can die in pieces.
858 */
859 old_stop->sched_class = &rt_sched_class;
860 }
861}
862
14531189 863/*
dd41f596 864 * __normal_prio - return the priority that is based on the static prio
14531189 865 */
14531189
IM
866static inline int __normal_prio(struct task_struct *p)
867{
dd41f596 868 return p->static_prio;
14531189
IM
869}
870
b29739f9
IM
871/*
872 * Calculate the expected normal priority: i.e. priority
873 * without taking RT-inheritance into account. Might be
874 * boosted by interactivity modifiers. Changes upon fork,
875 * setprio syscalls, and whenever the interactivity
876 * estimator recalculates.
877 */
36c8b586 878static inline int normal_prio(struct task_struct *p)
b29739f9
IM
879{
880 int prio;
881
aab03e05
DF
882 if (task_has_dl_policy(p))
883 prio = MAX_DL_PRIO-1;
884 else if (task_has_rt_policy(p))
b29739f9
IM
885 prio = MAX_RT_PRIO-1 - p->rt_priority;
886 else
887 prio = __normal_prio(p);
888 return prio;
889}
890
891/*
892 * Calculate the current priority, i.e. the priority
893 * taken into account by the scheduler. This value might
894 * be boosted by RT tasks, or might be boosted by
895 * interactivity modifiers. Will be RT if the task got
896 * RT-boosted. If not then it returns p->normal_prio.
897 */
36c8b586 898static int effective_prio(struct task_struct *p)
b29739f9
IM
899{
900 p->normal_prio = normal_prio(p);
901 /*
902 * If we are RT tasks or we were boosted to RT priority,
903 * keep the priority unchanged. Otherwise, update priority
904 * to the normal priority:
905 */
906 if (!rt_prio(p->prio))
907 return p->normal_prio;
908 return p->prio;
909}
910
1da177e4
LT
911/**
912 * task_curr - is this task currently executing on a CPU?
913 * @p: the task in question.
e69f6186
YB
914 *
915 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 916 */
36c8b586 917inline int task_curr(const struct task_struct *p)
1da177e4
LT
918{
919 return cpu_curr(task_cpu(p)) == p;
920}
921
67dfa1b7 922/*
4c9a4bc8
PZ
923 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
924 * use the balance_callback list if you want balancing.
925 *
926 * this means any call to check_class_changed() must be followed by a call to
927 * balance_callback().
67dfa1b7 928 */
cb469845
SR
929static inline void check_class_changed(struct rq *rq, struct task_struct *p,
930 const struct sched_class *prev_class,
da7a735e 931 int oldprio)
cb469845
SR
932{
933 if (prev_class != p->sched_class) {
934 if (prev_class->switched_from)
da7a735e 935 prev_class->switched_from(rq, p);
4c9a4bc8 936
da7a735e 937 p->sched_class->switched_to(rq, p);
2d3d891d 938 } else if (oldprio != p->prio || dl_task(p))
da7a735e 939 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
940}
941
029632fb 942void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
943{
944 const struct sched_class *class;
945
946 if (p->sched_class == rq->curr->sched_class) {
947 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
948 } else {
949 for_each_class(class) {
950 if (class == rq->curr->sched_class)
951 break;
952 if (class == p->sched_class) {
8875125e 953 resched_curr(rq);
1e5a7405
PZ
954 break;
955 }
956 }
957 }
958
959 /*
960 * A queue event has occurred, and we're going to schedule. In
961 * this case, we can save a useless back to back clock update.
962 */
da0c1e65 963 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 964 rq_clock_skip_update(rq, true);
1e5a7405
PZ
965}
966
1da177e4 967#ifdef CONFIG_SMP
5cc389bc
PZ
968/*
969 * This is how migration works:
970 *
971 * 1) we invoke migration_cpu_stop() on the target CPU using
972 * stop_one_cpu().
973 * 2) stopper starts to run (implicitly forcing the migrated thread
974 * off the CPU)
975 * 3) it checks whether the migrated task is still in the wrong runqueue.
976 * 4) if it's in the wrong runqueue then the migration thread removes
977 * it and puts it into the right queue.
978 * 5) stopper completes and stop_one_cpu() returns and the migration
979 * is done.
980 */
981
982/*
983 * move_queued_task - move a queued task to new rq.
984 *
985 * Returns (locked) new rq. Old rq's lock is released.
986 */
5e16bbc2 987static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 988{
5cc389bc
PZ
989 lockdep_assert_held(&rq->lock);
990
5cc389bc 991 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 992 dequeue_task(rq, p, 0);
5cc389bc
PZ
993 set_task_cpu(p, new_cpu);
994 raw_spin_unlock(&rq->lock);
995
996 rq = cpu_rq(new_cpu);
997
998 raw_spin_lock(&rq->lock);
999 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1000 enqueue_task(rq, p, 0);
3ea94de1 1001 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1002 check_preempt_curr(rq, p, 0);
1003
1004 return rq;
1005}
1006
1007struct migration_arg {
1008 struct task_struct *task;
1009 int dest_cpu;
1010};
1011
1012/*
1013 * Move (not current) task off this cpu, onto dest cpu. We're doing
1014 * this because either it can't run here any more (set_cpus_allowed()
1015 * away from this CPU, or CPU going down), or because we're
1016 * attempting to rebalance this task on exec (sched_exec).
1017 *
1018 * So we race with normal scheduler movements, but that's OK, as long
1019 * as the task is no longer on this CPU.
5cc389bc 1020 */
5e16bbc2 1021static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1022{
5cc389bc 1023 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1024 return rq;
5cc389bc
PZ
1025
1026 /* Affinity changed (again). */
1027 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1028 return rq;
5cc389bc 1029
5e16bbc2
PZ
1030 rq = move_queued_task(rq, p, dest_cpu);
1031
1032 return rq;
5cc389bc
PZ
1033}
1034
1035/*
1036 * migration_cpu_stop - this will be executed by a highprio stopper thread
1037 * and performs thread migration by bumping thread off CPU then
1038 * 'pushing' onto another runqueue.
1039 */
1040static int migration_cpu_stop(void *data)
1041{
1042 struct migration_arg *arg = data;
5e16bbc2
PZ
1043 struct task_struct *p = arg->task;
1044 struct rq *rq = this_rq();
5cc389bc
PZ
1045
1046 /*
1047 * The original target cpu might have gone down and we might
1048 * be on another cpu but it doesn't matter.
1049 */
1050 local_irq_disable();
1051 /*
1052 * We need to explicitly wake pending tasks before running
1053 * __migrate_task() such that we will not miss enforcing cpus_allowed
1054 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1055 */
1056 sched_ttwu_pending();
5e16bbc2
PZ
1057
1058 raw_spin_lock(&p->pi_lock);
1059 raw_spin_lock(&rq->lock);
1060 /*
1061 * If task_rq(p) != rq, it cannot be migrated here, because we're
1062 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1063 * we're holding p->pi_lock.
1064 */
1065 if (task_rq(p) == rq && task_on_rq_queued(p))
1066 rq = __migrate_task(rq, p, arg->dest_cpu);
1067 raw_spin_unlock(&rq->lock);
1068 raw_spin_unlock(&p->pi_lock);
1069
5cc389bc
PZ
1070 local_irq_enable();
1071 return 0;
1072}
1073
c5b28038
PZ
1074/*
1075 * sched_class::set_cpus_allowed must do the below, but is not required to
1076 * actually call this function.
1077 */
1078void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1079{
5cc389bc
PZ
1080 cpumask_copy(&p->cpus_allowed, new_mask);
1081 p->nr_cpus_allowed = cpumask_weight(new_mask);
1082}
1083
c5b28038
PZ
1084void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1085{
6c37067e
PZ
1086 struct rq *rq = task_rq(p);
1087 bool queued, running;
1088
c5b28038 1089 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1090
1091 queued = task_on_rq_queued(p);
1092 running = task_current(rq, p);
1093
1094 if (queued) {
1095 /*
1096 * Because __kthread_bind() calls this on blocked tasks without
1097 * holding rq->lock.
1098 */
1099 lockdep_assert_held(&rq->lock);
1de64443 1100 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1101 }
1102 if (running)
1103 put_prev_task(rq, p);
1104
c5b28038 1105 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1106
1107 if (running)
1108 p->sched_class->set_curr_task(rq);
1109 if (queued)
1de64443 1110 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1111}
1112
5cc389bc
PZ
1113/*
1114 * Change a given task's CPU affinity. Migrate the thread to a
1115 * proper CPU and schedule it away if the CPU it's executing on
1116 * is removed from the allowed bitmask.
1117 *
1118 * NOTE: the caller must have a valid reference to the task, the
1119 * task must not exit() & deallocate itself prematurely. The
1120 * call is not atomic; no spinlocks may be held.
1121 */
25834c73
PZ
1122static int __set_cpus_allowed_ptr(struct task_struct *p,
1123 const struct cpumask *new_mask, bool check)
5cc389bc 1124{
e9d867a6 1125 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1126 unsigned int dest_cpu;
eb580751
PZ
1127 struct rq_flags rf;
1128 struct rq *rq;
5cc389bc
PZ
1129 int ret = 0;
1130
eb580751 1131 rq = task_rq_lock(p, &rf);
5cc389bc 1132
e9d867a6
PZI
1133 if (p->flags & PF_KTHREAD) {
1134 /*
1135 * Kernel threads are allowed on online && !active CPUs
1136 */
1137 cpu_valid_mask = cpu_online_mask;
1138 }
1139
25834c73
PZ
1140 /*
1141 * Must re-check here, to close a race against __kthread_bind(),
1142 * sched_setaffinity() is not guaranteed to observe the flag.
1143 */
1144 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1145 ret = -EINVAL;
1146 goto out;
1147 }
1148
5cc389bc
PZ
1149 if (cpumask_equal(&p->cpus_allowed, new_mask))
1150 goto out;
1151
e9d867a6 1152 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1153 ret = -EINVAL;
1154 goto out;
1155 }
1156
1157 do_set_cpus_allowed(p, new_mask);
1158
e9d867a6
PZI
1159 if (p->flags & PF_KTHREAD) {
1160 /*
1161 * For kernel threads that do indeed end up on online &&
1162 * !active we want to ensure they are strict per-cpu threads.
1163 */
1164 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1165 !cpumask_intersects(new_mask, cpu_active_mask) &&
1166 p->nr_cpus_allowed != 1);
1167 }
1168
5cc389bc
PZ
1169 /* Can the task run on the task's current CPU? If so, we're done */
1170 if (cpumask_test_cpu(task_cpu(p), new_mask))
1171 goto out;
1172
e9d867a6 1173 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1174 if (task_running(rq, p) || p->state == TASK_WAKING) {
1175 struct migration_arg arg = { p, dest_cpu };
1176 /* Need help from migration thread: drop lock and wait. */
eb580751 1177 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1178 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1179 tlb_migrate_finish(p->mm);
1180 return 0;
cbce1a68
PZ
1181 } else if (task_on_rq_queued(p)) {
1182 /*
1183 * OK, since we're going to drop the lock immediately
1184 * afterwards anyway.
1185 */
e7904a28 1186 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1187 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1188 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1189 }
5cc389bc 1190out:
eb580751 1191 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1192
1193 return ret;
1194}
25834c73
PZ
1195
1196int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1197{
1198 return __set_cpus_allowed_ptr(p, new_mask, false);
1199}
5cc389bc
PZ
1200EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1201
dd41f596 1202void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1203{
e2912009
PZ
1204#ifdef CONFIG_SCHED_DEBUG
1205 /*
1206 * We should never call set_task_cpu() on a blocked task,
1207 * ttwu() will sort out the placement.
1208 */
077614ee 1209 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1210 !p->on_rq);
0122ec5b 1211
3ea94de1
JP
1212 /*
1213 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1214 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1215 * time relying on p->on_rq.
1216 */
1217 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1218 p->sched_class == &fair_sched_class &&
1219 (p->on_rq && !task_on_rq_migrating(p)));
1220
0122ec5b 1221#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1222 /*
1223 * The caller should hold either p->pi_lock or rq->lock, when changing
1224 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1225 *
1226 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1227 * see task_group().
6c6c54e1
PZ
1228 *
1229 * Furthermore, all task_rq users should acquire both locks, see
1230 * task_rq_lock().
1231 */
0122ec5b
PZ
1232 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1233 lockdep_is_held(&task_rq(p)->lock)));
1234#endif
e2912009
PZ
1235#endif
1236
de1d7286 1237 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1238
0c69774e 1239 if (task_cpu(p) != new_cpu) {
0a74bef8 1240 if (p->sched_class->migrate_task_rq)
5a4fd036 1241 p->sched_class->migrate_task_rq(p);
0c69774e 1242 p->se.nr_migrations++;
ff303e66 1243 perf_event_task_migrate(p);
0c69774e 1244 }
dd41f596
IM
1245
1246 __set_task_cpu(p, new_cpu);
c65cc870
IM
1247}
1248
ac66f547
PZ
1249static void __migrate_swap_task(struct task_struct *p, int cpu)
1250{
da0c1e65 1251 if (task_on_rq_queued(p)) {
ac66f547
PZ
1252 struct rq *src_rq, *dst_rq;
1253
1254 src_rq = task_rq(p);
1255 dst_rq = cpu_rq(cpu);
1256
3ea94de1 1257 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1258 deactivate_task(src_rq, p, 0);
1259 set_task_cpu(p, cpu);
1260 activate_task(dst_rq, p, 0);
3ea94de1 1261 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1262 check_preempt_curr(dst_rq, p, 0);
1263 } else {
1264 /*
1265 * Task isn't running anymore; make it appear like we migrated
1266 * it before it went to sleep. This means on wakeup we make the
1267 * previous cpu our targer instead of where it really is.
1268 */
1269 p->wake_cpu = cpu;
1270 }
1271}
1272
1273struct migration_swap_arg {
1274 struct task_struct *src_task, *dst_task;
1275 int src_cpu, dst_cpu;
1276};
1277
1278static int migrate_swap_stop(void *data)
1279{
1280 struct migration_swap_arg *arg = data;
1281 struct rq *src_rq, *dst_rq;
1282 int ret = -EAGAIN;
1283
62694cd5
PZ
1284 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1285 return -EAGAIN;
1286
ac66f547
PZ
1287 src_rq = cpu_rq(arg->src_cpu);
1288 dst_rq = cpu_rq(arg->dst_cpu);
1289
74602315
PZ
1290 double_raw_lock(&arg->src_task->pi_lock,
1291 &arg->dst_task->pi_lock);
ac66f547 1292 double_rq_lock(src_rq, dst_rq);
62694cd5 1293
ac66f547
PZ
1294 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1295 goto unlock;
1296
1297 if (task_cpu(arg->src_task) != arg->src_cpu)
1298 goto unlock;
1299
1300 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1301 goto unlock;
1302
1303 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1304 goto unlock;
1305
1306 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1307 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1308
1309 ret = 0;
1310
1311unlock:
1312 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1313 raw_spin_unlock(&arg->dst_task->pi_lock);
1314 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1315
1316 return ret;
1317}
1318
1319/*
1320 * Cross migrate two tasks
1321 */
1322int migrate_swap(struct task_struct *cur, struct task_struct *p)
1323{
1324 struct migration_swap_arg arg;
1325 int ret = -EINVAL;
1326
ac66f547
PZ
1327 arg = (struct migration_swap_arg){
1328 .src_task = cur,
1329 .src_cpu = task_cpu(cur),
1330 .dst_task = p,
1331 .dst_cpu = task_cpu(p),
1332 };
1333
1334 if (arg.src_cpu == arg.dst_cpu)
1335 goto out;
1336
6acce3ef
PZ
1337 /*
1338 * These three tests are all lockless; this is OK since all of them
1339 * will be re-checked with proper locks held further down the line.
1340 */
ac66f547
PZ
1341 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1342 goto out;
1343
1344 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1345 goto out;
1346
1347 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1348 goto out;
1349
286549dc 1350 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1351 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1352
1353out:
ac66f547
PZ
1354 return ret;
1355}
1356
1da177e4
LT
1357/*
1358 * wait_task_inactive - wait for a thread to unschedule.
1359 *
85ba2d86
RM
1360 * If @match_state is nonzero, it's the @p->state value just checked and
1361 * not expected to change. If it changes, i.e. @p might have woken up,
1362 * then return zero. When we succeed in waiting for @p to be off its CPU,
1363 * we return a positive number (its total switch count). If a second call
1364 * a short while later returns the same number, the caller can be sure that
1365 * @p has remained unscheduled the whole time.
1366 *
1da177e4
LT
1367 * The caller must ensure that the task *will* unschedule sometime soon,
1368 * else this function might spin for a *long* time. This function can't
1369 * be called with interrupts off, or it may introduce deadlock with
1370 * smp_call_function() if an IPI is sent by the same process we are
1371 * waiting to become inactive.
1372 */
85ba2d86 1373unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1374{
da0c1e65 1375 int running, queued;
eb580751 1376 struct rq_flags rf;
85ba2d86 1377 unsigned long ncsw;
70b97a7f 1378 struct rq *rq;
1da177e4 1379
3a5c359a
AK
1380 for (;;) {
1381 /*
1382 * We do the initial early heuristics without holding
1383 * any task-queue locks at all. We'll only try to get
1384 * the runqueue lock when things look like they will
1385 * work out!
1386 */
1387 rq = task_rq(p);
fa490cfd 1388
3a5c359a
AK
1389 /*
1390 * If the task is actively running on another CPU
1391 * still, just relax and busy-wait without holding
1392 * any locks.
1393 *
1394 * NOTE! Since we don't hold any locks, it's not
1395 * even sure that "rq" stays as the right runqueue!
1396 * But we don't care, since "task_running()" will
1397 * return false if the runqueue has changed and p
1398 * is actually now running somewhere else!
1399 */
85ba2d86
RM
1400 while (task_running(rq, p)) {
1401 if (match_state && unlikely(p->state != match_state))
1402 return 0;
3a5c359a 1403 cpu_relax();
85ba2d86 1404 }
fa490cfd 1405
3a5c359a
AK
1406 /*
1407 * Ok, time to look more closely! We need the rq
1408 * lock now, to be *sure*. If we're wrong, we'll
1409 * just go back and repeat.
1410 */
eb580751 1411 rq = task_rq_lock(p, &rf);
27a9da65 1412 trace_sched_wait_task(p);
3a5c359a 1413 running = task_running(rq, p);
da0c1e65 1414 queued = task_on_rq_queued(p);
85ba2d86 1415 ncsw = 0;
f31e11d8 1416 if (!match_state || p->state == match_state)
93dcf55f 1417 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1418 task_rq_unlock(rq, p, &rf);
fa490cfd 1419
85ba2d86
RM
1420 /*
1421 * If it changed from the expected state, bail out now.
1422 */
1423 if (unlikely(!ncsw))
1424 break;
1425
3a5c359a
AK
1426 /*
1427 * Was it really running after all now that we
1428 * checked with the proper locks actually held?
1429 *
1430 * Oops. Go back and try again..
1431 */
1432 if (unlikely(running)) {
1433 cpu_relax();
1434 continue;
1435 }
fa490cfd 1436
3a5c359a
AK
1437 /*
1438 * It's not enough that it's not actively running,
1439 * it must be off the runqueue _entirely_, and not
1440 * preempted!
1441 *
80dd99b3 1442 * So if it was still runnable (but just not actively
3a5c359a
AK
1443 * running right now), it's preempted, and we should
1444 * yield - it could be a while.
1445 */
da0c1e65 1446 if (unlikely(queued)) {
8eb90c30
TG
1447 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1448
1449 set_current_state(TASK_UNINTERRUPTIBLE);
1450 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1451 continue;
1452 }
fa490cfd 1453
3a5c359a
AK
1454 /*
1455 * Ahh, all good. It wasn't running, and it wasn't
1456 * runnable, which means that it will never become
1457 * running in the future either. We're all done!
1458 */
1459 break;
1460 }
85ba2d86
RM
1461
1462 return ncsw;
1da177e4
LT
1463}
1464
1465/***
1466 * kick_process - kick a running thread to enter/exit the kernel
1467 * @p: the to-be-kicked thread
1468 *
1469 * Cause a process which is running on another CPU to enter
1470 * kernel-mode, without any delay. (to get signals handled.)
1471 *
25985edc 1472 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1473 * because all it wants to ensure is that the remote task enters
1474 * the kernel. If the IPI races and the task has been migrated
1475 * to another CPU then no harm is done and the purpose has been
1476 * achieved as well.
1477 */
36c8b586 1478void kick_process(struct task_struct *p)
1da177e4
LT
1479{
1480 int cpu;
1481
1482 preempt_disable();
1483 cpu = task_cpu(p);
1484 if ((cpu != smp_processor_id()) && task_curr(p))
1485 smp_send_reschedule(cpu);
1486 preempt_enable();
1487}
b43e3521 1488EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1489
30da688e 1490/*
013fdb80 1491 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1492 *
1493 * A few notes on cpu_active vs cpu_online:
1494 *
1495 * - cpu_active must be a subset of cpu_online
1496 *
1497 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1498 * see __set_cpus_allowed_ptr(). At this point the newly online
1499 * cpu isn't yet part of the sched domains, and balancing will not
1500 * see it.
1501 *
1502 * - on cpu-down we clear cpu_active() to mask the sched domains and
1503 * avoid the load balancer to place new tasks on the to be removed
1504 * cpu. Existing tasks will remain running there and will be taken
1505 * off.
1506 *
1507 * This means that fallback selection must not select !active CPUs.
1508 * And can assume that any active CPU must be online. Conversely
1509 * select_task_rq() below may allow selection of !active CPUs in order
1510 * to satisfy the above rules.
30da688e 1511 */
5da9a0fb
PZ
1512static int select_fallback_rq(int cpu, struct task_struct *p)
1513{
aa00d89c
TC
1514 int nid = cpu_to_node(cpu);
1515 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1516 enum { cpuset, possible, fail } state = cpuset;
1517 int dest_cpu;
5da9a0fb 1518
aa00d89c
TC
1519 /*
1520 * If the node that the cpu is on has been offlined, cpu_to_node()
1521 * will return -1. There is no cpu on the node, and we should
1522 * select the cpu on the other node.
1523 */
1524 if (nid != -1) {
1525 nodemask = cpumask_of_node(nid);
1526
1527 /* Look for allowed, online CPU in same node. */
1528 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1529 if (!cpu_active(dest_cpu))
1530 continue;
1531 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1532 return dest_cpu;
1533 }
2baab4e9 1534 }
5da9a0fb 1535
2baab4e9
PZ
1536 for (;;) {
1537 /* Any allowed, online CPU? */
e3831edd 1538 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1539 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1540 continue;
1541 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1542 continue;
1543 goto out;
1544 }
5da9a0fb 1545
e73e85f0 1546 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1547 switch (state) {
1548 case cpuset:
e73e85f0
ON
1549 if (IS_ENABLED(CONFIG_CPUSETS)) {
1550 cpuset_cpus_allowed_fallback(p);
1551 state = possible;
1552 break;
1553 }
1554 /* fall-through */
2baab4e9
PZ
1555 case possible:
1556 do_set_cpus_allowed(p, cpu_possible_mask);
1557 state = fail;
1558 break;
1559
1560 case fail:
1561 BUG();
1562 break;
1563 }
1564 }
1565
1566out:
1567 if (state != cpuset) {
1568 /*
1569 * Don't tell them about moving exiting tasks or
1570 * kernel threads (both mm NULL), since they never
1571 * leave kernel.
1572 */
1573 if (p->mm && printk_ratelimit()) {
aac74dc4 1574 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1575 task_pid_nr(p), p->comm, cpu);
1576 }
5da9a0fb
PZ
1577 }
1578
1579 return dest_cpu;
1580}
1581
e2912009 1582/*
013fdb80 1583 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1584 */
970b13ba 1585static inline
ac66f547 1586int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1587{
cbce1a68
PZ
1588 lockdep_assert_held(&p->pi_lock);
1589
50605ffb 1590 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1591 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1592 else
1593 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1594
1595 /*
1596 * In order not to call set_task_cpu() on a blocking task we need
1597 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1598 * cpu.
1599 *
1600 * Since this is common to all placement strategies, this lives here.
1601 *
1602 * [ this allows ->select_task() to simply return task_cpu(p) and
1603 * not worry about this generic constraint ]
1604 */
fa17b507 1605 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1606 !cpu_online(cpu)))
5da9a0fb 1607 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1608
1609 return cpu;
970b13ba 1610}
09a40af5
MG
1611
1612static void update_avg(u64 *avg, u64 sample)
1613{
1614 s64 diff = sample - *avg;
1615 *avg += diff >> 3;
1616}
25834c73
PZ
1617
1618#else
1619
1620static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1621 const struct cpumask *new_mask, bool check)
1622{
1623 return set_cpus_allowed_ptr(p, new_mask);
1624}
1625
5cc389bc 1626#endif /* CONFIG_SMP */
970b13ba 1627
d7c01d27 1628static void
b84cb5df 1629ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1630{
d7c01d27 1631#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1632 struct rq *rq = this_rq();
1633
d7c01d27
PZ
1634#ifdef CONFIG_SMP
1635 int this_cpu = smp_processor_id();
1636
1637 if (cpu == this_cpu) {
1638 schedstat_inc(rq, ttwu_local);
1639 schedstat_inc(p, se.statistics.nr_wakeups_local);
1640 } else {
1641 struct sched_domain *sd;
1642
1643 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1644 rcu_read_lock();
d7c01d27
PZ
1645 for_each_domain(this_cpu, sd) {
1646 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1647 schedstat_inc(sd, ttwu_wake_remote);
1648 break;
1649 }
1650 }
057f3fad 1651 rcu_read_unlock();
d7c01d27 1652 }
f339b9dc
PZ
1653
1654 if (wake_flags & WF_MIGRATED)
1655 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1656
d7c01d27
PZ
1657#endif /* CONFIG_SMP */
1658
1659 schedstat_inc(rq, ttwu_count);
9ed3811a 1660 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1661
1662 if (wake_flags & WF_SYNC)
9ed3811a 1663 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1664
d7c01d27
PZ
1665#endif /* CONFIG_SCHEDSTATS */
1666}
1667
1de64443 1668static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1669{
9ed3811a 1670 activate_task(rq, p, en_flags);
da0c1e65 1671 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1672
1673 /* if a worker is waking up, notify workqueue */
1674 if (p->flags & PF_WQ_WORKER)
1675 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1676}
1677
23f41eeb
PZ
1678/*
1679 * Mark the task runnable and perform wakeup-preemption.
1680 */
e7904a28
PZ
1681static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1682 struct pin_cookie cookie)
9ed3811a 1683{
9ed3811a 1684 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1685 p->state = TASK_RUNNING;
fbd705a0
PZ
1686 trace_sched_wakeup(p);
1687
9ed3811a 1688#ifdef CONFIG_SMP
4c9a4bc8
PZ
1689 if (p->sched_class->task_woken) {
1690 /*
cbce1a68
PZ
1691 * Our task @p is fully woken up and running; so its safe to
1692 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1693 */
e7904a28 1694 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1695 p->sched_class->task_woken(rq, p);
e7904a28 1696 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1697 }
9ed3811a 1698
e69c6341 1699 if (rq->idle_stamp) {
78becc27 1700 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1701 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1702
abfafa54
JL
1703 update_avg(&rq->avg_idle, delta);
1704
1705 if (rq->avg_idle > max)
9ed3811a 1706 rq->avg_idle = max;
abfafa54 1707
9ed3811a
TH
1708 rq->idle_stamp = 0;
1709 }
1710#endif
1711}
1712
c05fbafb 1713static void
e7904a28
PZ
1714ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1715 struct pin_cookie cookie)
c05fbafb 1716{
b5179ac7
PZ
1717 int en_flags = ENQUEUE_WAKEUP;
1718
cbce1a68
PZ
1719 lockdep_assert_held(&rq->lock);
1720
c05fbafb
PZ
1721#ifdef CONFIG_SMP
1722 if (p->sched_contributes_to_load)
1723 rq->nr_uninterruptible--;
b5179ac7 1724
b5179ac7 1725 if (wake_flags & WF_MIGRATED)
59efa0ba 1726 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1727#endif
1728
b5179ac7 1729 ttwu_activate(rq, p, en_flags);
e7904a28 1730 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1731}
1732
1733/*
1734 * Called in case the task @p isn't fully descheduled from its runqueue,
1735 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1736 * since all we need to do is flip p->state to TASK_RUNNING, since
1737 * the task is still ->on_rq.
1738 */
1739static int ttwu_remote(struct task_struct *p, int wake_flags)
1740{
eb580751 1741 struct rq_flags rf;
c05fbafb
PZ
1742 struct rq *rq;
1743 int ret = 0;
1744
eb580751 1745 rq = __task_rq_lock(p, &rf);
da0c1e65 1746 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1747 /* check_preempt_curr() may use rq clock */
1748 update_rq_clock(rq);
e7904a28 1749 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1750 ret = 1;
1751 }
eb580751 1752 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1753
1754 return ret;
1755}
1756
317f3941 1757#ifdef CONFIG_SMP
e3baac47 1758void sched_ttwu_pending(void)
317f3941
PZ
1759{
1760 struct rq *rq = this_rq();
fa14ff4a 1761 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1762 struct pin_cookie cookie;
fa14ff4a 1763 struct task_struct *p;
e3baac47 1764 unsigned long flags;
317f3941 1765
e3baac47
PZ
1766 if (!llist)
1767 return;
1768
1769 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1770 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1771
fa14ff4a 1772 while (llist) {
b7e7ade3
PZ
1773 int wake_flags = 0;
1774
fa14ff4a
PZ
1775 p = llist_entry(llist, struct task_struct, wake_entry);
1776 llist = llist_next(llist);
b7e7ade3
PZ
1777
1778 if (p->sched_remote_wakeup)
1779 wake_flags = WF_MIGRATED;
1780
1781 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1782 }
1783
e7904a28 1784 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1785 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1786}
1787
1788void scheduler_ipi(void)
1789{
f27dde8d
PZ
1790 /*
1791 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1792 * TIF_NEED_RESCHED remotely (for the first time) will also send
1793 * this IPI.
1794 */
8cb75e0c 1795 preempt_fold_need_resched();
f27dde8d 1796
fd2ac4f4 1797 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1798 return;
1799
1800 /*
1801 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1802 * traditionally all their work was done from the interrupt return
1803 * path. Now that we actually do some work, we need to make sure
1804 * we do call them.
1805 *
1806 * Some archs already do call them, luckily irq_enter/exit nest
1807 * properly.
1808 *
1809 * Arguably we should visit all archs and update all handlers,
1810 * however a fair share of IPIs are still resched only so this would
1811 * somewhat pessimize the simple resched case.
1812 */
1813 irq_enter();
fa14ff4a 1814 sched_ttwu_pending();
ca38062e
SS
1815
1816 /*
1817 * Check if someone kicked us for doing the nohz idle load balance.
1818 */
873b4c65 1819 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1820 this_rq()->idle_balance = 1;
ca38062e 1821 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1822 }
c5d753a5 1823 irq_exit();
317f3941
PZ
1824}
1825
b7e7ade3 1826static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1827{
e3baac47
PZ
1828 struct rq *rq = cpu_rq(cpu);
1829
b7e7ade3
PZ
1830 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1831
e3baac47
PZ
1832 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1833 if (!set_nr_if_polling(rq->idle))
1834 smp_send_reschedule(cpu);
1835 else
1836 trace_sched_wake_idle_without_ipi(cpu);
1837 }
317f3941 1838}
d6aa8f85 1839
f6be8af1
CL
1840void wake_up_if_idle(int cpu)
1841{
1842 struct rq *rq = cpu_rq(cpu);
1843 unsigned long flags;
1844
fd7de1e8
AL
1845 rcu_read_lock();
1846
1847 if (!is_idle_task(rcu_dereference(rq->curr)))
1848 goto out;
f6be8af1
CL
1849
1850 if (set_nr_if_polling(rq->idle)) {
1851 trace_sched_wake_idle_without_ipi(cpu);
1852 } else {
1853 raw_spin_lock_irqsave(&rq->lock, flags);
1854 if (is_idle_task(rq->curr))
1855 smp_send_reschedule(cpu);
1856 /* Else cpu is not in idle, do nothing here */
1857 raw_spin_unlock_irqrestore(&rq->lock, flags);
1858 }
fd7de1e8
AL
1859
1860out:
1861 rcu_read_unlock();
f6be8af1
CL
1862}
1863
39be3501 1864bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1865{
1866 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1867}
d6aa8f85 1868#endif /* CONFIG_SMP */
317f3941 1869
b5179ac7 1870static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1871{
1872 struct rq *rq = cpu_rq(cpu);
e7904a28 1873 struct pin_cookie cookie;
c05fbafb 1874
17d9f311 1875#if defined(CONFIG_SMP)
39be3501 1876 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1877 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1878 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1879 return;
1880 }
1881#endif
1882
c05fbafb 1883 raw_spin_lock(&rq->lock);
e7904a28 1884 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1885 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1886 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1887 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1888}
1889
8643cda5
PZ
1890/*
1891 * Notes on Program-Order guarantees on SMP systems.
1892 *
1893 * MIGRATION
1894 *
1895 * The basic program-order guarantee on SMP systems is that when a task [t]
1896 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1897 * execution on its new cpu [c1].
1898 *
1899 * For migration (of runnable tasks) this is provided by the following means:
1900 *
1901 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1902 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1903 * rq(c1)->lock (if not at the same time, then in that order).
1904 * C) LOCK of the rq(c1)->lock scheduling in task
1905 *
1906 * Transitivity guarantees that B happens after A and C after B.
1907 * Note: we only require RCpc transitivity.
1908 * Note: the cpu doing B need not be c0 or c1
1909 *
1910 * Example:
1911 *
1912 * CPU0 CPU1 CPU2
1913 *
1914 * LOCK rq(0)->lock
1915 * sched-out X
1916 * sched-in Y
1917 * UNLOCK rq(0)->lock
1918 *
1919 * LOCK rq(0)->lock // orders against CPU0
1920 * dequeue X
1921 * UNLOCK rq(0)->lock
1922 *
1923 * LOCK rq(1)->lock
1924 * enqueue X
1925 * UNLOCK rq(1)->lock
1926 *
1927 * LOCK rq(1)->lock // orders against CPU2
1928 * sched-out Z
1929 * sched-in X
1930 * UNLOCK rq(1)->lock
1931 *
1932 *
1933 * BLOCKING -- aka. SLEEP + WAKEUP
1934 *
1935 * For blocking we (obviously) need to provide the same guarantee as for
1936 * migration. However the means are completely different as there is no lock
1937 * chain to provide order. Instead we do:
1938 *
1939 * 1) smp_store_release(X->on_cpu, 0)
1940 * 2) smp_cond_acquire(!X->on_cpu)
1941 *
1942 * Example:
1943 *
1944 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1945 *
1946 * LOCK rq(0)->lock LOCK X->pi_lock
1947 * dequeue X
1948 * sched-out X
1949 * smp_store_release(X->on_cpu, 0);
1950 *
1951 * smp_cond_acquire(!X->on_cpu);
1952 * X->state = WAKING
1953 * set_task_cpu(X,2)
1954 *
1955 * LOCK rq(2)->lock
1956 * enqueue X
1957 * X->state = RUNNING
1958 * UNLOCK rq(2)->lock
1959 *
1960 * LOCK rq(2)->lock // orders against CPU1
1961 * sched-out Z
1962 * sched-in X
1963 * UNLOCK rq(2)->lock
1964 *
1965 * UNLOCK X->pi_lock
1966 * UNLOCK rq(0)->lock
1967 *
1968 *
1969 * However; for wakeups there is a second guarantee we must provide, namely we
1970 * must observe the state that lead to our wakeup. That is, not only must our
1971 * task observe its own prior state, it must also observe the stores prior to
1972 * its wakeup.
1973 *
1974 * This means that any means of doing remote wakeups must order the CPU doing
1975 * the wakeup against the CPU the task is going to end up running on. This,
1976 * however, is already required for the regular Program-Order guarantee above,
1977 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1978 *
1979 */
1980
9ed3811a 1981/**
1da177e4 1982 * try_to_wake_up - wake up a thread
9ed3811a 1983 * @p: the thread to be awakened
1da177e4 1984 * @state: the mask of task states that can be woken
9ed3811a 1985 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1986 *
1987 * Put it on the run-queue if it's not already there. The "current"
1988 * thread is always on the run-queue (except when the actual
1989 * re-schedule is in progress), and as such you're allowed to do
1990 * the simpler "current->state = TASK_RUNNING" to mark yourself
1991 * runnable without the overhead of this.
1992 *
e69f6186 1993 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1994 * or @state didn't match @p's state.
1da177e4 1995 */
e4a52bcb
PZ
1996static int
1997try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1998{
1da177e4 1999 unsigned long flags;
c05fbafb 2000 int cpu, success = 0;
2398f2c6 2001
e0acd0a6
ON
2002 /*
2003 * If we are going to wake up a thread waiting for CONDITION we
2004 * need to ensure that CONDITION=1 done by the caller can not be
2005 * reordered with p->state check below. This pairs with mb() in
2006 * set_current_state() the waiting thread does.
2007 */
2008 smp_mb__before_spinlock();
013fdb80 2009 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2010 if (!(p->state & state))
1da177e4
LT
2011 goto out;
2012
fbd705a0
PZ
2013 trace_sched_waking(p);
2014
c05fbafb 2015 success = 1; /* we're going to change ->state */
1da177e4 2016 cpu = task_cpu(p);
1da177e4 2017
c05fbafb
PZ
2018 if (p->on_rq && ttwu_remote(p, wake_flags))
2019 goto stat;
1da177e4 2020
1da177e4 2021#ifdef CONFIG_SMP
ecf7d01c
PZ
2022 /*
2023 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2024 * possible to, falsely, observe p->on_cpu == 0.
2025 *
2026 * One must be running (->on_cpu == 1) in order to remove oneself
2027 * from the runqueue.
2028 *
2029 * [S] ->on_cpu = 1; [L] ->on_rq
2030 * UNLOCK rq->lock
2031 * RMB
2032 * LOCK rq->lock
2033 * [S] ->on_rq = 0; [L] ->on_cpu
2034 *
2035 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2036 * from the consecutive calls to schedule(); the first switching to our
2037 * task, the second putting it to sleep.
2038 */
2039 smp_rmb();
2040
e9c84311 2041 /*
c05fbafb
PZ
2042 * If the owning (remote) cpu is still in the middle of schedule() with
2043 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2044 *
2045 * Pairs with the smp_store_release() in finish_lock_switch().
2046 *
2047 * This ensures that tasks getting woken will be fully ordered against
2048 * their previous state and preserve Program Order.
0970d299 2049 */
b3e0b1b6 2050 smp_cond_acquire(!p->on_cpu);
1da177e4 2051
a8e4f2ea 2052 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2053 p->state = TASK_WAKING;
e7693a36 2054
ac66f547 2055 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2056 if (task_cpu(p) != cpu) {
2057 wake_flags |= WF_MIGRATED;
e4a52bcb 2058 set_task_cpu(p, cpu);
f339b9dc 2059 }
1da177e4 2060#endif /* CONFIG_SMP */
1da177e4 2061
b5179ac7 2062 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2063stat:
cb251765
MG
2064 if (schedstat_enabled())
2065 ttwu_stat(p, cpu, wake_flags);
1da177e4 2066out:
013fdb80 2067 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2068
2069 return success;
2070}
2071
21aa9af0
TH
2072/**
2073 * try_to_wake_up_local - try to wake up a local task with rq lock held
2074 * @p: the thread to be awakened
2075 *
2acca55e 2076 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2077 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2078 * the current task.
21aa9af0 2079 */
e7904a28 2080static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2081{
2082 struct rq *rq = task_rq(p);
21aa9af0 2083
383efcd0
TH
2084 if (WARN_ON_ONCE(rq != this_rq()) ||
2085 WARN_ON_ONCE(p == current))
2086 return;
2087
21aa9af0
TH
2088 lockdep_assert_held(&rq->lock);
2089
2acca55e 2090 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2091 /*
2092 * This is OK, because current is on_cpu, which avoids it being
2093 * picked for load-balance and preemption/IRQs are still
2094 * disabled avoiding further scheduler activity on it and we've
2095 * not yet picked a replacement task.
2096 */
e7904a28 2097 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2098 raw_spin_unlock(&rq->lock);
2099 raw_spin_lock(&p->pi_lock);
2100 raw_spin_lock(&rq->lock);
e7904a28 2101 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2102 }
2103
21aa9af0 2104 if (!(p->state & TASK_NORMAL))
2acca55e 2105 goto out;
21aa9af0 2106
fbd705a0
PZ
2107 trace_sched_waking(p);
2108
da0c1e65 2109 if (!task_on_rq_queued(p))
d7c01d27
PZ
2110 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2111
e7904a28 2112 ttwu_do_wakeup(rq, p, 0, cookie);
cb251765
MG
2113 if (schedstat_enabled())
2114 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2115out:
2116 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2117}
2118
50fa610a
DH
2119/**
2120 * wake_up_process - Wake up a specific process
2121 * @p: The process to be woken up.
2122 *
2123 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2124 * processes.
2125 *
2126 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2127 *
2128 * It may be assumed that this function implies a write memory barrier before
2129 * changing the task state if and only if any tasks are woken up.
2130 */
7ad5b3a5 2131int wake_up_process(struct task_struct *p)
1da177e4 2132{
9067ac85 2133 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2134}
1da177e4
LT
2135EXPORT_SYMBOL(wake_up_process);
2136
7ad5b3a5 2137int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2138{
2139 return try_to_wake_up(p, state, 0);
2140}
2141
a5e7be3b
JL
2142/*
2143 * This function clears the sched_dl_entity static params.
2144 */
2145void __dl_clear_params(struct task_struct *p)
2146{
2147 struct sched_dl_entity *dl_se = &p->dl;
2148
2149 dl_se->dl_runtime = 0;
2150 dl_se->dl_deadline = 0;
2151 dl_se->dl_period = 0;
2152 dl_se->flags = 0;
2153 dl_se->dl_bw = 0;
40767b0d
PZ
2154
2155 dl_se->dl_throttled = 0;
40767b0d 2156 dl_se->dl_yielded = 0;
a5e7be3b
JL
2157}
2158
1da177e4
LT
2159/*
2160 * Perform scheduler related setup for a newly forked process p.
2161 * p is forked by current.
dd41f596
IM
2162 *
2163 * __sched_fork() is basic setup used by init_idle() too:
2164 */
5e1576ed 2165static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2166{
fd2f4419
PZ
2167 p->on_rq = 0;
2168
2169 p->se.on_rq = 0;
dd41f596
IM
2170 p->se.exec_start = 0;
2171 p->se.sum_exec_runtime = 0;
f6cf891c 2172 p->se.prev_sum_exec_runtime = 0;
6c594c21 2173 p->se.nr_migrations = 0;
da7a735e 2174 p->se.vruntime = 0;
fd2f4419 2175 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2176
ad936d86
BP
2177#ifdef CONFIG_FAIR_GROUP_SCHED
2178 p->se.cfs_rq = NULL;
2179#endif
2180
6cfb0d5d 2181#ifdef CONFIG_SCHEDSTATS
cb251765 2182 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2183 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2184#endif
476d139c 2185
aab03e05 2186 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2187 init_dl_task_timer(&p->dl);
a5e7be3b 2188 __dl_clear_params(p);
aab03e05 2189
fa717060 2190 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2191 p->rt.timeout = 0;
2192 p->rt.time_slice = sched_rr_timeslice;
2193 p->rt.on_rq = 0;
2194 p->rt.on_list = 0;
476d139c 2195
e107be36
AK
2196#ifdef CONFIG_PREEMPT_NOTIFIERS
2197 INIT_HLIST_HEAD(&p->preempt_notifiers);
2198#endif
cbee9f88
PZ
2199
2200#ifdef CONFIG_NUMA_BALANCING
2201 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2202 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2203 p->mm->numa_scan_seq = 0;
2204 }
2205
5e1576ed
RR
2206 if (clone_flags & CLONE_VM)
2207 p->numa_preferred_nid = current->numa_preferred_nid;
2208 else
2209 p->numa_preferred_nid = -1;
2210
cbee9f88
PZ
2211 p->node_stamp = 0ULL;
2212 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2213 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2214 p->numa_work.next = &p->numa_work;
44dba3d5 2215 p->numa_faults = NULL;
7e2703e6
RR
2216 p->last_task_numa_placement = 0;
2217 p->last_sum_exec_runtime = 0;
8c8a743c 2218
8c8a743c 2219 p->numa_group = NULL;
cbee9f88 2220#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2221}
2222
2a595721
SD
2223DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2224
1a687c2e 2225#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2226
1a687c2e
MG
2227void set_numabalancing_state(bool enabled)
2228{
2229 if (enabled)
2a595721 2230 static_branch_enable(&sched_numa_balancing);
1a687c2e 2231 else
2a595721 2232 static_branch_disable(&sched_numa_balancing);
1a687c2e 2233}
54a43d54
AK
2234
2235#ifdef CONFIG_PROC_SYSCTL
2236int sysctl_numa_balancing(struct ctl_table *table, int write,
2237 void __user *buffer, size_t *lenp, loff_t *ppos)
2238{
2239 struct ctl_table t;
2240 int err;
2a595721 2241 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2242
2243 if (write && !capable(CAP_SYS_ADMIN))
2244 return -EPERM;
2245
2246 t = *table;
2247 t.data = &state;
2248 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2249 if (err < 0)
2250 return err;
2251 if (write)
2252 set_numabalancing_state(state);
2253 return err;
2254}
2255#endif
2256#endif
dd41f596 2257
4698f88c
JP
2258#ifdef CONFIG_SCHEDSTATS
2259
cb251765 2260DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2261static bool __initdata __sched_schedstats = false;
cb251765 2262
cb251765
MG
2263static void set_schedstats(bool enabled)
2264{
2265 if (enabled)
2266 static_branch_enable(&sched_schedstats);
2267 else
2268 static_branch_disable(&sched_schedstats);
2269}
2270
2271void force_schedstat_enabled(void)
2272{
2273 if (!schedstat_enabled()) {
2274 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2275 static_branch_enable(&sched_schedstats);
2276 }
2277}
2278
2279static int __init setup_schedstats(char *str)
2280{
2281 int ret = 0;
2282 if (!str)
2283 goto out;
2284
4698f88c
JP
2285 /*
2286 * This code is called before jump labels have been set up, so we can't
2287 * change the static branch directly just yet. Instead set a temporary
2288 * variable so init_schedstats() can do it later.
2289 */
cb251765 2290 if (!strcmp(str, "enable")) {
4698f88c 2291 __sched_schedstats = true;
cb251765
MG
2292 ret = 1;
2293 } else if (!strcmp(str, "disable")) {
4698f88c 2294 __sched_schedstats = false;
cb251765
MG
2295 ret = 1;
2296 }
2297out:
2298 if (!ret)
2299 pr_warn("Unable to parse schedstats=\n");
2300
2301 return ret;
2302}
2303__setup("schedstats=", setup_schedstats);
2304
4698f88c
JP
2305static void __init init_schedstats(void)
2306{
2307 set_schedstats(__sched_schedstats);
2308}
2309
cb251765
MG
2310#ifdef CONFIG_PROC_SYSCTL
2311int sysctl_schedstats(struct ctl_table *table, int write,
2312 void __user *buffer, size_t *lenp, loff_t *ppos)
2313{
2314 struct ctl_table t;
2315 int err;
2316 int state = static_branch_likely(&sched_schedstats);
2317
2318 if (write && !capable(CAP_SYS_ADMIN))
2319 return -EPERM;
2320
2321 t = *table;
2322 t.data = &state;
2323 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2324 if (err < 0)
2325 return err;
2326 if (write)
2327 set_schedstats(state);
2328 return err;
2329}
4698f88c
JP
2330#endif /* CONFIG_PROC_SYSCTL */
2331#else /* !CONFIG_SCHEDSTATS */
2332static inline void init_schedstats(void) {}
2333#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2334
2335/*
2336 * fork()/clone()-time setup:
2337 */
aab03e05 2338int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2339{
0122ec5b 2340 unsigned long flags;
dd41f596
IM
2341 int cpu = get_cpu();
2342
5e1576ed 2343 __sched_fork(clone_flags, p);
06b83b5f 2344 /*
0017d735 2345 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2346 * nobody will actually run it, and a signal or other external
2347 * event cannot wake it up and insert it on the runqueue either.
2348 */
0017d735 2349 p->state = TASK_RUNNING;
dd41f596 2350
c350a04e
MG
2351 /*
2352 * Make sure we do not leak PI boosting priority to the child.
2353 */
2354 p->prio = current->normal_prio;
2355
b9dc29e7
MG
2356 /*
2357 * Revert to default priority/policy on fork if requested.
2358 */
2359 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2360 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2361 p->policy = SCHED_NORMAL;
6c697bdf 2362 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2363 p->rt_priority = 0;
2364 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2365 p->static_prio = NICE_TO_PRIO(0);
2366
2367 p->prio = p->normal_prio = __normal_prio(p);
2368 set_load_weight(p);
6c697bdf 2369
b9dc29e7
MG
2370 /*
2371 * We don't need the reset flag anymore after the fork. It has
2372 * fulfilled its duty:
2373 */
2374 p->sched_reset_on_fork = 0;
2375 }
ca94c442 2376
aab03e05
DF
2377 if (dl_prio(p->prio)) {
2378 put_cpu();
2379 return -EAGAIN;
2380 } else if (rt_prio(p->prio)) {
2381 p->sched_class = &rt_sched_class;
2382 } else {
2ddbf952 2383 p->sched_class = &fair_sched_class;
aab03e05 2384 }
b29739f9 2385
cd29fe6f
PZ
2386 if (p->sched_class->task_fork)
2387 p->sched_class->task_fork(p);
2388
86951599
PZ
2389 /*
2390 * The child is not yet in the pid-hash so no cgroup attach races,
2391 * and the cgroup is pinned to this child due to cgroup_fork()
2392 * is ran before sched_fork().
2393 *
2394 * Silence PROVE_RCU.
2395 */
0122ec5b 2396 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2397 set_task_cpu(p, cpu);
0122ec5b 2398 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2399
f6db8347 2400#ifdef CONFIG_SCHED_INFO
dd41f596 2401 if (likely(sched_info_on()))
52f17b6c 2402 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2403#endif
3ca7a440
PZ
2404#if defined(CONFIG_SMP)
2405 p->on_cpu = 0;
4866cde0 2406#endif
01028747 2407 init_task_preempt_count(p);
806c09a7 2408#ifdef CONFIG_SMP
917b627d 2409 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2410 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2411#endif
917b627d 2412
476d139c 2413 put_cpu();
aab03e05 2414 return 0;
1da177e4
LT
2415}
2416
332ac17e
DF
2417unsigned long to_ratio(u64 period, u64 runtime)
2418{
2419 if (runtime == RUNTIME_INF)
2420 return 1ULL << 20;
2421
2422 /*
2423 * Doing this here saves a lot of checks in all
2424 * the calling paths, and returning zero seems
2425 * safe for them anyway.
2426 */
2427 if (period == 0)
2428 return 0;
2429
2430 return div64_u64(runtime << 20, period);
2431}
2432
2433#ifdef CONFIG_SMP
2434inline struct dl_bw *dl_bw_of(int i)
2435{
f78f5b90
PM
2436 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2437 "sched RCU must be held");
332ac17e
DF
2438 return &cpu_rq(i)->rd->dl_bw;
2439}
2440
de212f18 2441static inline int dl_bw_cpus(int i)
332ac17e 2442{
de212f18
PZ
2443 struct root_domain *rd = cpu_rq(i)->rd;
2444 int cpus = 0;
2445
f78f5b90
PM
2446 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2447 "sched RCU must be held");
de212f18
PZ
2448 for_each_cpu_and(i, rd->span, cpu_active_mask)
2449 cpus++;
2450
2451 return cpus;
332ac17e
DF
2452}
2453#else
2454inline struct dl_bw *dl_bw_of(int i)
2455{
2456 return &cpu_rq(i)->dl.dl_bw;
2457}
2458
de212f18 2459static inline int dl_bw_cpus(int i)
332ac17e
DF
2460{
2461 return 1;
2462}
2463#endif
2464
332ac17e
DF
2465/*
2466 * We must be sure that accepting a new task (or allowing changing the
2467 * parameters of an existing one) is consistent with the bandwidth
2468 * constraints. If yes, this function also accordingly updates the currently
2469 * allocated bandwidth to reflect the new situation.
2470 *
2471 * This function is called while holding p's rq->lock.
40767b0d
PZ
2472 *
2473 * XXX we should delay bw change until the task's 0-lag point, see
2474 * __setparam_dl().
332ac17e
DF
2475 */
2476static int dl_overflow(struct task_struct *p, int policy,
2477 const struct sched_attr *attr)
2478{
2479
2480 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2481 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2482 u64 runtime = attr->sched_runtime;
2483 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2484 int cpus, err = -1;
332ac17e 2485
fec148c0
XP
2486 /* !deadline task may carry old deadline bandwidth */
2487 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2488 return 0;
2489
2490 /*
2491 * Either if a task, enters, leave, or stays -deadline but changes
2492 * its parameters, we may need to update accordingly the total
2493 * allocated bandwidth of the container.
2494 */
2495 raw_spin_lock(&dl_b->lock);
de212f18 2496 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2497 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2498 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2499 __dl_add(dl_b, new_bw);
2500 err = 0;
2501 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2502 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2503 __dl_clear(dl_b, p->dl.dl_bw);
2504 __dl_add(dl_b, new_bw);
2505 err = 0;
2506 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2507 __dl_clear(dl_b, p->dl.dl_bw);
2508 err = 0;
2509 }
2510 raw_spin_unlock(&dl_b->lock);
2511
2512 return err;
2513}
2514
2515extern void init_dl_bw(struct dl_bw *dl_b);
2516
1da177e4
LT
2517/*
2518 * wake_up_new_task - wake up a newly created task for the first time.
2519 *
2520 * This function will do some initial scheduler statistics housekeeping
2521 * that must be done for every newly created context, then puts the task
2522 * on the runqueue and wakes it.
2523 */
3e51e3ed 2524void wake_up_new_task(struct task_struct *p)
1da177e4 2525{
eb580751 2526 struct rq_flags rf;
dd41f596 2527 struct rq *rq;
fabf318e 2528
98d8fd81
MR
2529 /* Initialize new task's runnable average */
2530 init_entity_runnable_average(&p->se);
eb580751 2531 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
fabf318e
PZ
2532#ifdef CONFIG_SMP
2533 /*
2534 * Fork balancing, do it here and not earlier because:
2535 * - cpus_allowed can change in the fork path
2536 * - any previously selected cpu might disappear through hotplug
fabf318e 2537 */
ac66f547 2538 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2539#endif
b7fa30c9 2540 rq = __task_rq_lock(p, &rf);
2b8c41da 2541 post_init_entity_util_avg(&p->se);
0017d735 2542
cd29fe6f 2543 activate_task(rq, p, 0);
da0c1e65 2544 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2545 trace_sched_wakeup_new(p);
a7558e01 2546 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2547#ifdef CONFIG_SMP
0aaafaab
PZ
2548 if (p->sched_class->task_woken) {
2549 /*
2550 * Nothing relies on rq->lock after this, so its fine to
2551 * drop it.
2552 */
e7904a28 2553 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2554 p->sched_class->task_woken(rq, p);
e7904a28 2555 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2556 }
9a897c5a 2557#endif
eb580751 2558 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2559}
2560
e107be36
AK
2561#ifdef CONFIG_PREEMPT_NOTIFIERS
2562
1cde2930
PZ
2563static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2564
2ecd9d29
PZ
2565void preempt_notifier_inc(void)
2566{
2567 static_key_slow_inc(&preempt_notifier_key);
2568}
2569EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2570
2571void preempt_notifier_dec(void)
2572{
2573 static_key_slow_dec(&preempt_notifier_key);
2574}
2575EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2576
e107be36 2577/**
80dd99b3 2578 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2579 * @notifier: notifier struct to register
e107be36
AK
2580 */
2581void preempt_notifier_register(struct preempt_notifier *notifier)
2582{
2ecd9d29
PZ
2583 if (!static_key_false(&preempt_notifier_key))
2584 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2585
e107be36
AK
2586 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2587}
2588EXPORT_SYMBOL_GPL(preempt_notifier_register);
2589
2590/**
2591 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2592 * @notifier: notifier struct to unregister
e107be36 2593 *
d84525a8 2594 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2595 */
2596void preempt_notifier_unregister(struct preempt_notifier *notifier)
2597{
2598 hlist_del(&notifier->link);
2599}
2600EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2601
1cde2930 2602static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2603{
2604 struct preempt_notifier *notifier;
e107be36 2605
b67bfe0d 2606 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2607 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2608}
2609
1cde2930
PZ
2610static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2611{
2612 if (static_key_false(&preempt_notifier_key))
2613 __fire_sched_in_preempt_notifiers(curr);
2614}
2615
e107be36 2616static void
1cde2930
PZ
2617__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2618 struct task_struct *next)
e107be36
AK
2619{
2620 struct preempt_notifier *notifier;
e107be36 2621
b67bfe0d 2622 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2623 notifier->ops->sched_out(notifier, next);
2624}
2625
1cde2930
PZ
2626static __always_inline void
2627fire_sched_out_preempt_notifiers(struct task_struct *curr,
2628 struct task_struct *next)
2629{
2630 if (static_key_false(&preempt_notifier_key))
2631 __fire_sched_out_preempt_notifiers(curr, next);
2632}
2633
6d6bc0ad 2634#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2635
1cde2930 2636static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2637{
2638}
2639
1cde2930 2640static inline void
e107be36
AK
2641fire_sched_out_preempt_notifiers(struct task_struct *curr,
2642 struct task_struct *next)
2643{
2644}
2645
6d6bc0ad 2646#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2647
4866cde0
NP
2648/**
2649 * prepare_task_switch - prepare to switch tasks
2650 * @rq: the runqueue preparing to switch
421cee29 2651 * @prev: the current task that is being switched out
4866cde0
NP
2652 * @next: the task we are going to switch to.
2653 *
2654 * This is called with the rq lock held and interrupts off. It must
2655 * be paired with a subsequent finish_task_switch after the context
2656 * switch.
2657 *
2658 * prepare_task_switch sets up locking and calls architecture specific
2659 * hooks.
2660 */
e107be36
AK
2661static inline void
2662prepare_task_switch(struct rq *rq, struct task_struct *prev,
2663 struct task_struct *next)
4866cde0 2664{
43148951 2665 sched_info_switch(rq, prev, next);
fe4b04fa 2666 perf_event_task_sched_out(prev, next);
a4949d83 2667 rseq_sched_out(prev);
e107be36 2668 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2669 prepare_lock_switch(rq, next);
2670 prepare_arch_switch(next);
2671}
2672
1da177e4
LT
2673/**
2674 * finish_task_switch - clean up after a task-switch
2675 * @prev: the thread we just switched away from.
2676 *
4866cde0
NP
2677 * finish_task_switch must be called after the context switch, paired
2678 * with a prepare_task_switch call before the context switch.
2679 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2680 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2681 *
2682 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2683 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2684 * with the lock held can cause deadlocks; see schedule() for
2685 * details.)
dfa50b60
ON
2686 *
2687 * The context switch have flipped the stack from under us and restored the
2688 * local variables which were saved when this task called schedule() in the
2689 * past. prev == current is still correct but we need to recalculate this_rq
2690 * because prev may have moved to another CPU.
1da177e4 2691 */
dfa50b60 2692static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2693 __releases(rq->lock)
2694{
dfa50b60 2695 struct rq *rq = this_rq();
1da177e4 2696 struct mm_struct *mm = rq->prev_mm;
55a101f8 2697 long prev_state;
1da177e4 2698
609ca066
PZ
2699 /*
2700 * The previous task will have left us with a preempt_count of 2
2701 * because it left us after:
2702 *
2703 * schedule()
2704 * preempt_disable(); // 1
2705 * __schedule()
2706 * raw_spin_lock_irq(&rq->lock) // 2
2707 *
2708 * Also, see FORK_PREEMPT_COUNT.
2709 */
e2bf1c4b
PZ
2710 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2711 "corrupted preempt_count: %s/%d/0x%x\n",
2712 current->comm, current->pid, preempt_count()))
2713 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2714
1da177e4
LT
2715 rq->prev_mm = NULL;
2716
2717 /*
2718 * A task struct has one reference for the use as "current".
c394cc9f 2719 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2720 * schedule one last time. The schedule call will never return, and
2721 * the scheduled task must drop that reference.
95913d97
PZ
2722 *
2723 * We must observe prev->state before clearing prev->on_cpu (in
2724 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2725 * running on another CPU and we could rave with its RUNNING -> DEAD
2726 * transition, resulting in a double drop.
1da177e4 2727 */
55a101f8 2728 prev_state = prev->state;
bf9fae9f 2729 vtime_task_switch(prev);
a8d757ef 2730 perf_event_task_sched_in(prev, current);
4866cde0 2731 finish_lock_switch(rq, prev);
01f23e16 2732 finish_arch_post_lock_switch();
e8fa1362 2733
e107be36 2734 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2735 if (mm)
2736 mmdrop(mm);
c394cc9f 2737 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2738 if (prev->sched_class->task_dead)
2739 prev->sched_class->task_dead(prev);
2740
c6fd91f0 2741 /*
2742 * Remove function-return probe instances associated with this
2743 * task and put them back on the free list.
9761eea8 2744 */
c6fd91f0 2745 kprobe_flush_task(prev);
1da177e4 2746 put_task_struct(prev);
c6fd91f0 2747 }
99e5ada9 2748
de734f89 2749 tick_nohz_task_switch();
dfa50b60 2750 return rq;
1da177e4
LT
2751}
2752
3f029d3c
GH
2753#ifdef CONFIG_SMP
2754
3f029d3c 2755/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2756static void __balance_callback(struct rq *rq)
3f029d3c 2757{
e3fca9e7
PZ
2758 struct callback_head *head, *next;
2759 void (*func)(struct rq *rq);
2760 unsigned long flags;
3f029d3c 2761
e3fca9e7
PZ
2762 raw_spin_lock_irqsave(&rq->lock, flags);
2763 head = rq->balance_callback;
2764 rq->balance_callback = NULL;
2765 while (head) {
2766 func = (void (*)(struct rq *))head->func;
2767 next = head->next;
2768 head->next = NULL;
2769 head = next;
3f029d3c 2770
e3fca9e7 2771 func(rq);
3f029d3c 2772 }
e3fca9e7
PZ
2773 raw_spin_unlock_irqrestore(&rq->lock, flags);
2774}
2775
2776static inline void balance_callback(struct rq *rq)
2777{
2778 if (unlikely(rq->balance_callback))
2779 __balance_callback(rq);
3f029d3c
GH
2780}
2781
2782#else
da19ab51 2783
e3fca9e7 2784static inline void balance_callback(struct rq *rq)
3f029d3c 2785{
1da177e4
LT
2786}
2787
3f029d3c
GH
2788#endif
2789
1da177e4
LT
2790/**
2791 * schedule_tail - first thing a freshly forked thread must call.
2792 * @prev: the thread we just switched away from.
2793 */
722a9f92 2794asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2795 __releases(rq->lock)
2796{
1a43a14a 2797 struct rq *rq;
da19ab51 2798
609ca066
PZ
2799 /*
2800 * New tasks start with FORK_PREEMPT_COUNT, see there and
2801 * finish_task_switch() for details.
2802 *
2803 * finish_task_switch() will drop rq->lock() and lower preempt_count
2804 * and the preempt_enable() will end up enabling preemption (on
2805 * PREEMPT_COUNT kernels).
2806 */
2807
dfa50b60 2808 rq = finish_task_switch(prev);
e3fca9e7 2809 balance_callback(rq);
1a43a14a 2810 preempt_enable();
70b97a7f 2811
1da177e4 2812 if (current->set_child_tid)
b488893a 2813 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2814}
2815
2816/*
dfa50b60 2817 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2818 */
04936948 2819static __always_inline struct rq *
70b97a7f 2820context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2821 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2822{
dd41f596 2823 struct mm_struct *mm, *oldmm;
1da177e4 2824
e107be36 2825 prepare_task_switch(rq, prev, next);
fe4b04fa 2826
dd41f596
IM
2827 mm = next->mm;
2828 oldmm = prev->active_mm;
9226d125
ZA
2829 /*
2830 * For paravirt, this is coupled with an exit in switch_to to
2831 * combine the page table reload and the switch backend into
2832 * one hypercall.
2833 */
224101ed 2834 arch_start_context_switch(prev);
9226d125 2835
31915ab4 2836 if (!mm) {
1da177e4
LT
2837 next->active_mm = oldmm;
2838 atomic_inc(&oldmm->mm_count);
2839 enter_lazy_tlb(oldmm, next);
2840 } else
f98db601 2841 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2842
31915ab4 2843 if (!prev->mm) {
1da177e4 2844 prev->active_mm = NULL;
1da177e4
LT
2845 rq->prev_mm = oldmm;
2846 }
3a5f5e48
IM
2847 /*
2848 * Since the runqueue lock will be released by the next
2849 * task (which is an invalid locking op but in the case
2850 * of the scheduler it's an obvious special-case), so we
2851 * do an early lockdep release here:
2852 */
e7904a28 2853 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2854 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2855
2856 /* Here we just switch the register state and the stack. */
2857 switch_to(prev, next, prev);
dd41f596 2858 barrier();
dfa50b60
ON
2859
2860 return finish_task_switch(prev);
1da177e4
LT
2861}
2862
2863/*
1c3e8264 2864 * nr_running and nr_context_switches:
1da177e4
LT
2865 *
2866 * externally visible scheduler statistics: current number of runnable
1c3e8264 2867 * threads, total number of context switches performed since bootup.
1da177e4
LT
2868 */
2869unsigned long nr_running(void)
2870{
2871 unsigned long i, sum = 0;
2872
2873 for_each_online_cpu(i)
2874 sum += cpu_rq(i)->nr_running;
2875
2876 return sum;
f711f609 2877}
1da177e4 2878
2ee507c4
TC
2879/*
2880 * Check if only the current task is running on the cpu.
00cc1633
DD
2881 *
2882 * Caution: this function does not check that the caller has disabled
2883 * preemption, thus the result might have a time-of-check-to-time-of-use
2884 * race. The caller is responsible to use it correctly, for example:
2885 *
2886 * - from a non-preemptable section (of course)
2887 *
2888 * - from a thread that is bound to a single CPU
2889 *
2890 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2891 */
2892bool single_task_running(void)
2893{
00cc1633 2894 return raw_rq()->nr_running == 1;
2ee507c4
TC
2895}
2896EXPORT_SYMBOL(single_task_running);
2897
1da177e4 2898unsigned long long nr_context_switches(void)
46cb4b7c 2899{
cc94abfc
SR
2900 int i;
2901 unsigned long long sum = 0;
46cb4b7c 2902
0a945022 2903 for_each_possible_cpu(i)
1da177e4 2904 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2905
1da177e4
LT
2906 return sum;
2907}
483b4ee6 2908
1da177e4
LT
2909unsigned long nr_iowait(void)
2910{
2911 unsigned long i, sum = 0;
483b4ee6 2912
0a945022 2913 for_each_possible_cpu(i)
1da177e4 2914 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2915
1da177e4
LT
2916 return sum;
2917}
483b4ee6 2918
8c215bd3 2919unsigned long nr_iowait_cpu(int cpu)
69d25870 2920{
8c215bd3 2921 struct rq *this = cpu_rq(cpu);
69d25870
AV
2922 return atomic_read(&this->nr_iowait);
2923}
46cb4b7c 2924
372ba8cb
MG
2925void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2926{
3289bdb4
PZ
2927 struct rq *rq = this_rq();
2928 *nr_waiters = atomic_read(&rq->nr_iowait);
2929 *load = rq->load.weight;
372ba8cb
MG
2930}
2931
dd41f596 2932#ifdef CONFIG_SMP
8a0be9ef 2933
46cb4b7c 2934/*
38022906
PZ
2935 * sched_exec - execve() is a valuable balancing opportunity, because at
2936 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2937 */
38022906 2938void sched_exec(void)
46cb4b7c 2939{
38022906 2940 struct task_struct *p = current;
1da177e4 2941 unsigned long flags;
0017d735 2942 int dest_cpu;
46cb4b7c 2943
8f42ced9 2944 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2945 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2946 if (dest_cpu == smp_processor_id())
2947 goto unlock;
38022906 2948
8f42ced9 2949 if (likely(cpu_active(dest_cpu))) {
969c7921 2950 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2951
8f42ced9
PZ
2952 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2953 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2954 return;
2955 }
0017d735 2956unlock:
8f42ced9 2957 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2958}
dd41f596 2959
1da177e4
LT
2960#endif
2961
1da177e4 2962DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2963DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2964
2965EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2966EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2967
c5f8d995
HS
2968/*
2969 * Return accounted runtime for the task.
2970 * In case the task is currently running, return the runtime plus current's
2971 * pending runtime that have not been accounted yet.
2972 */
2973unsigned long long task_sched_runtime(struct task_struct *p)
2974{
eb580751 2975 struct rq_flags rf;
c5f8d995 2976 struct rq *rq;
6e998916 2977 u64 ns;
c5f8d995 2978
911b2898
PZ
2979#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2980 /*
2981 * 64-bit doesn't need locks to atomically read a 64bit value.
2982 * So we have a optimization chance when the task's delta_exec is 0.
2983 * Reading ->on_cpu is racy, but this is ok.
2984 *
2985 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2986 * If we race with it entering cpu, unaccounted time is 0. This is
2987 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2988 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2989 * been accounted, so we're correct here as well.
911b2898 2990 */
da0c1e65 2991 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2992 return p->se.sum_exec_runtime;
2993#endif
2994
eb580751 2995 rq = task_rq_lock(p, &rf);
6e998916
SG
2996 /*
2997 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2998 * project cycles that may never be accounted to this
2999 * thread, breaking clock_gettime().
3000 */
3001 if (task_current(rq, p) && task_on_rq_queued(p)) {
3002 update_rq_clock(rq);
3003 p->sched_class->update_curr(rq);
3004 }
3005 ns = p->se.sum_exec_runtime;
eb580751 3006 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3007
3008 return ns;
3009}
48f24c4d 3010
7835b98b
CL
3011/*
3012 * This function gets called by the timer code, with HZ frequency.
3013 * We call it with interrupts disabled.
7835b98b
CL
3014 */
3015void scheduler_tick(void)
3016{
7835b98b
CL
3017 int cpu = smp_processor_id();
3018 struct rq *rq = cpu_rq(cpu);
dd41f596 3019 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3020
3021 sched_clock_tick();
dd41f596 3022
05fa785c 3023 raw_spin_lock(&rq->lock);
3e51f33f 3024 update_rq_clock(rq);
fa85ae24 3025 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3026 cpu_load_update_active(rq);
3289bdb4 3027 calc_global_load_tick(rq);
05fa785c 3028 raw_spin_unlock(&rq->lock);
7835b98b 3029
e9d2b064 3030 perf_event_task_tick();
e220d2dc 3031
e418e1c2 3032#ifdef CONFIG_SMP
6eb57e0d 3033 rq->idle_balance = idle_cpu(cpu);
7caff66f 3034 trigger_load_balance(rq);
e418e1c2 3035#endif
265f22a9 3036 rq_last_tick_reset(rq);
1da177e4
LT
3037}
3038
265f22a9
FW
3039#ifdef CONFIG_NO_HZ_FULL
3040/**
3041 * scheduler_tick_max_deferment
3042 *
3043 * Keep at least one tick per second when a single
3044 * active task is running because the scheduler doesn't
3045 * yet completely support full dynticks environment.
3046 *
3047 * This makes sure that uptime, CFS vruntime, load
3048 * balancing, etc... continue to move forward, even
3049 * with a very low granularity.
e69f6186
YB
3050 *
3051 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3052 */
3053u64 scheduler_tick_max_deferment(void)
3054{
3055 struct rq *rq = this_rq();
316c1608 3056 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3057
3058 next = rq->last_sched_tick + HZ;
3059
3060 if (time_before_eq(next, now))
3061 return 0;
3062
8fe8ff09 3063 return jiffies_to_nsecs(next - now);
1da177e4 3064}
265f22a9 3065#endif
1da177e4 3066
7e49fcce
SR
3067#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3068 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3069/*
3070 * If the value passed in is equal to the current preempt count
3071 * then we just disabled preemption. Start timing the latency.
3072 */
3073static inline void preempt_latency_start(int val)
3074{
3075 if (preempt_count() == val) {
3076 unsigned long ip = get_lock_parent_ip();
3077#ifdef CONFIG_DEBUG_PREEMPT
3078 current->preempt_disable_ip = ip;
3079#endif
3080 trace_preempt_off(CALLER_ADDR0, ip);
3081 }
3082}
7e49fcce 3083
edafe3a5 3084void preempt_count_add(int val)
1da177e4 3085{
6cd8a4bb 3086#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3087 /*
3088 * Underflow?
3089 */
9a11b49a
IM
3090 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3091 return;
6cd8a4bb 3092#endif
bdb43806 3093 __preempt_count_add(val);
6cd8a4bb 3094#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3095 /*
3096 * Spinlock count overflowing soon?
3097 */
33859f7f
MOS
3098 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3099 PREEMPT_MASK - 10);
6cd8a4bb 3100#endif
47252cfb 3101 preempt_latency_start(val);
1da177e4 3102}
bdb43806 3103EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3104NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3105
47252cfb
SR
3106/*
3107 * If the value passed in equals to the current preempt count
3108 * then we just enabled preemption. Stop timing the latency.
3109 */
3110static inline void preempt_latency_stop(int val)
3111{
3112 if (preempt_count() == val)
3113 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3114}
3115
edafe3a5 3116void preempt_count_sub(int val)
1da177e4 3117{
6cd8a4bb 3118#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3119 /*
3120 * Underflow?
3121 */
01e3eb82 3122 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3123 return;
1da177e4
LT
3124 /*
3125 * Is the spinlock portion underflowing?
3126 */
9a11b49a
IM
3127 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3128 !(preempt_count() & PREEMPT_MASK)))
3129 return;
6cd8a4bb 3130#endif
9a11b49a 3131
47252cfb 3132 preempt_latency_stop(val);
bdb43806 3133 __preempt_count_sub(val);
1da177e4 3134}
bdb43806 3135EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3136NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3137
47252cfb
SR
3138#else
3139static inline void preempt_latency_start(int val) { }
3140static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3141#endif
3142
3143/*
dd41f596 3144 * Print scheduling while atomic bug:
1da177e4 3145 */
dd41f596 3146static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3147{
664dfa65
DJ
3148 if (oops_in_progress)
3149 return;
3150
3df0fc5b
PZ
3151 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3152 prev->comm, prev->pid, preempt_count());
838225b4 3153
dd41f596 3154 debug_show_held_locks(prev);
e21f5b15 3155 print_modules();
dd41f596
IM
3156 if (irqs_disabled())
3157 print_irqtrace_events(prev);
8f47b187
TG
3158#ifdef CONFIG_DEBUG_PREEMPT
3159 if (in_atomic_preempt_off()) {
3160 pr_err("Preemption disabled at:");
3161 print_ip_sym(current->preempt_disable_ip);
3162 pr_cont("\n");
3163 }
3164#endif
6135fc1e 3165 dump_stack();
373d4d09 3166 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3167}
1da177e4 3168
dd41f596
IM
3169/*
3170 * Various schedule()-time debugging checks and statistics:
3171 */
3172static inline void schedule_debug(struct task_struct *prev)
3173{
0d9e2632 3174#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3175 if (task_stack_end_corrupted(prev))
3176 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3177#endif
b99def8b 3178
1dc0fffc 3179 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3180 __schedule_bug(prev);
1dc0fffc
PZ
3181 preempt_count_set(PREEMPT_DISABLED);
3182 }
b3fbab05 3183 rcu_sleep_check();
dd41f596 3184
1da177e4
LT
3185 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3186
2d72376b 3187 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3188}
3189
3190/*
3191 * Pick up the highest-prio task:
3192 */
3193static inline struct task_struct *
e7904a28 3194pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3195{
37e117c0 3196 const struct sched_class *class = &fair_sched_class;
dd41f596 3197 struct task_struct *p;
1da177e4
LT
3198
3199 /*
dd41f596
IM
3200 * Optimization: we know that if all tasks are in
3201 * the fair class we can call that function directly:
1da177e4 3202 */
37e117c0 3203 if (likely(prev->sched_class == class &&
38033c37 3204 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3205 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3206 if (unlikely(p == RETRY_TASK))
3207 goto again;
3208
3209 /* assumes fair_sched_class->next == idle_sched_class */
3210 if (unlikely(!p))
e7904a28 3211 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3212
3213 return p;
1da177e4
LT
3214 }
3215
37e117c0 3216again:
34f971f6 3217 for_each_class(class) {
e7904a28 3218 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3219 if (p) {
3220 if (unlikely(p == RETRY_TASK))
3221 goto again;
dd41f596 3222 return p;
37e117c0 3223 }
dd41f596 3224 }
34f971f6
PZ
3225
3226 BUG(); /* the idle class will always have a runnable task */
dd41f596 3227}
1da177e4 3228
dd41f596 3229/*
c259e01a 3230 * __schedule() is the main scheduler function.
edde96ea
PE
3231 *
3232 * The main means of driving the scheduler and thus entering this function are:
3233 *
3234 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3235 *
3236 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3237 * paths. For example, see arch/x86/entry_64.S.
3238 *
3239 * To drive preemption between tasks, the scheduler sets the flag in timer
3240 * interrupt handler scheduler_tick().
3241 *
3242 * 3. Wakeups don't really cause entry into schedule(). They add a
3243 * task to the run-queue and that's it.
3244 *
3245 * Now, if the new task added to the run-queue preempts the current
3246 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3247 * called on the nearest possible occasion:
3248 *
3249 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3250 *
3251 * - in syscall or exception context, at the next outmost
3252 * preempt_enable(). (this might be as soon as the wake_up()'s
3253 * spin_unlock()!)
3254 *
3255 * - in IRQ context, return from interrupt-handler to
3256 * preemptible context
3257 *
3258 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3259 * then at the next:
3260 *
3261 * - cond_resched() call
3262 * - explicit schedule() call
3263 * - return from syscall or exception to user-space
3264 * - return from interrupt-handler to user-space
bfd9b2b5 3265 *
b30f0e3f 3266 * WARNING: must be called with preemption disabled!
dd41f596 3267 */
499d7955 3268static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3269{
3270 struct task_struct *prev, *next;
67ca7bde 3271 unsigned long *switch_count;
e7904a28 3272 struct pin_cookie cookie;
dd41f596 3273 struct rq *rq;
31656519 3274 int cpu;
dd41f596 3275
dd41f596
IM
3276 cpu = smp_processor_id();
3277 rq = cpu_rq(cpu);
dd41f596 3278 prev = rq->curr;
dd41f596 3279
b99def8b
PZ
3280 /*
3281 * do_exit() calls schedule() with preemption disabled as an exception;
3282 * however we must fix that up, otherwise the next task will see an
3283 * inconsistent (higher) preempt count.
3284 *
3285 * It also avoids the below schedule_debug() test from complaining
3286 * about this.
3287 */
3288 if (unlikely(prev->state == TASK_DEAD))
3289 preempt_enable_no_resched_notrace();
3290
dd41f596 3291 schedule_debug(prev);
1da177e4 3292
31656519 3293 if (sched_feat(HRTICK))
f333fdc9 3294 hrtick_clear(rq);
8f4d37ec 3295
46a5d164
PM
3296 local_irq_disable();
3297 rcu_note_context_switch();
3298
e0acd0a6
ON
3299 /*
3300 * Make sure that signal_pending_state()->signal_pending() below
3301 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3302 * done by the caller to avoid the race with signal_wake_up().
3303 */
3304 smp_mb__before_spinlock();
46a5d164 3305 raw_spin_lock(&rq->lock);
e7904a28 3306 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3307
9edfbfed
PZ
3308 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3309
246d86b5 3310 switch_count = &prev->nivcsw;
fc13aeba 3311 if (!preempt && prev->state) {
21aa9af0 3312 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3313 prev->state = TASK_RUNNING;
21aa9af0 3314 } else {
2acca55e
PZ
3315 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3316 prev->on_rq = 0;
3317
21aa9af0 3318 /*
2acca55e
PZ
3319 * If a worker went to sleep, notify and ask workqueue
3320 * whether it wants to wake up a task to maintain
3321 * concurrency.
21aa9af0
TH
3322 */
3323 if (prev->flags & PF_WQ_WORKER) {
3324 struct task_struct *to_wakeup;
3325
9b7f6597 3326 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3327 if (to_wakeup)
e7904a28 3328 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3329 }
21aa9af0 3330 }
dd41f596 3331 switch_count = &prev->nvcsw;
1da177e4
LT
3332 }
3333
9edfbfed 3334 if (task_on_rq_queued(prev))
606dba2e
PZ
3335 update_rq_clock(rq);
3336
e7904a28 3337 next = pick_next_task(rq, prev, cookie);
f26f9aff 3338 clear_tsk_need_resched(prev);
f27dde8d 3339 clear_preempt_need_resched();
9edfbfed 3340 rq->clock_skip_update = 0;
1da177e4 3341
1da177e4 3342 if (likely(prev != next)) {
1da177e4
LT
3343 rq->nr_switches++;
3344 rq->curr = next;
3345 ++*switch_count;
3346
c73464b1 3347 trace_sched_switch(preempt, prev, next);
e7904a28 3348 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3349 } else {
e7904a28 3350 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3351 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3352 }
1da177e4 3353
e3fca9e7 3354 balance_callback(rq);
1da177e4 3355}
8e05e96a 3356STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3357
9c40cef2
TG
3358static inline void sched_submit_work(struct task_struct *tsk)
3359{
3c7d5184 3360 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3361 return;
3362 /*
3363 * If we are going to sleep and we have plugged IO queued,
3364 * make sure to submit it to avoid deadlocks.
3365 */
3366 if (blk_needs_flush_plug(tsk))
3367 blk_schedule_flush_plug(tsk);
3368}
3369
722a9f92 3370asmlinkage __visible void __sched schedule(void)
c259e01a 3371{
9c40cef2
TG
3372 struct task_struct *tsk = current;
3373
3374 sched_submit_work(tsk);
bfd9b2b5 3375 do {
b30f0e3f 3376 preempt_disable();
fc13aeba 3377 __schedule(false);
b30f0e3f 3378 sched_preempt_enable_no_resched();
bfd9b2b5 3379 } while (need_resched());
c259e01a 3380}
1da177e4
LT
3381EXPORT_SYMBOL(schedule);
3382
91d1aa43 3383#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3384asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3385{
3386 /*
3387 * If we come here after a random call to set_need_resched(),
3388 * or we have been woken up remotely but the IPI has not yet arrived,
3389 * we haven't yet exited the RCU idle mode. Do it here manually until
3390 * we find a better solution.
7cc78f8f
AL
3391 *
3392 * NB: There are buggy callers of this function. Ideally we
c467ea76 3393 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3394 * too frequently to make sense yet.
20ab65e3 3395 */
7cc78f8f 3396 enum ctx_state prev_state = exception_enter();
20ab65e3 3397 schedule();
7cc78f8f 3398 exception_exit(prev_state);
20ab65e3
FW
3399}
3400#endif
3401
c5491ea7
TG
3402/**
3403 * schedule_preempt_disabled - called with preemption disabled
3404 *
3405 * Returns with preemption disabled. Note: preempt_count must be 1
3406 */
3407void __sched schedule_preempt_disabled(void)
3408{
ba74c144 3409 sched_preempt_enable_no_resched();
c5491ea7
TG
3410 schedule();
3411 preempt_disable();
3412}
3413
06b1f808 3414static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3415{
3416 do {
47252cfb
SR
3417 /*
3418 * Because the function tracer can trace preempt_count_sub()
3419 * and it also uses preempt_enable/disable_notrace(), if
3420 * NEED_RESCHED is set, the preempt_enable_notrace() called
3421 * by the function tracer will call this function again and
3422 * cause infinite recursion.
3423 *
3424 * Preemption must be disabled here before the function
3425 * tracer can trace. Break up preempt_disable() into two
3426 * calls. One to disable preemption without fear of being
3427 * traced. The other to still record the preemption latency,
3428 * which can also be traced by the function tracer.
3429 */
499d7955 3430 preempt_disable_notrace();
47252cfb 3431 preempt_latency_start(1);
fc13aeba 3432 __schedule(true);
47252cfb 3433 preempt_latency_stop(1);
499d7955 3434 preempt_enable_no_resched_notrace();
a18b5d01
FW
3435
3436 /*
3437 * Check again in case we missed a preemption opportunity
3438 * between schedule and now.
3439 */
a18b5d01
FW
3440 } while (need_resched());
3441}
3442
1da177e4
LT
3443#ifdef CONFIG_PREEMPT
3444/*
2ed6e34f 3445 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3446 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3447 * occur there and call schedule directly.
3448 */
722a9f92 3449asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3450{
1da177e4
LT
3451 /*
3452 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3453 * we do not want to preempt the current task. Just return..
1da177e4 3454 */
fbb00b56 3455 if (likely(!preemptible()))
1da177e4
LT
3456 return;
3457
a18b5d01 3458 preempt_schedule_common();
1da177e4 3459}
376e2424 3460NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3461EXPORT_SYMBOL(preempt_schedule);
009f60e2 3462
009f60e2 3463/**
4eaca0a8 3464 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3465 *
3466 * The tracing infrastructure uses preempt_enable_notrace to prevent
3467 * recursion and tracing preempt enabling caused by the tracing
3468 * infrastructure itself. But as tracing can happen in areas coming
3469 * from userspace or just about to enter userspace, a preempt enable
3470 * can occur before user_exit() is called. This will cause the scheduler
3471 * to be called when the system is still in usermode.
3472 *
3473 * To prevent this, the preempt_enable_notrace will use this function
3474 * instead of preempt_schedule() to exit user context if needed before
3475 * calling the scheduler.
3476 */
4eaca0a8 3477asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3478{
3479 enum ctx_state prev_ctx;
3480
3481 if (likely(!preemptible()))
3482 return;
3483
3484 do {
47252cfb
SR
3485 /*
3486 * Because the function tracer can trace preempt_count_sub()
3487 * and it also uses preempt_enable/disable_notrace(), if
3488 * NEED_RESCHED is set, the preempt_enable_notrace() called
3489 * by the function tracer will call this function again and
3490 * cause infinite recursion.
3491 *
3492 * Preemption must be disabled here before the function
3493 * tracer can trace. Break up preempt_disable() into two
3494 * calls. One to disable preemption without fear of being
3495 * traced. The other to still record the preemption latency,
3496 * which can also be traced by the function tracer.
3497 */
3d8f74dd 3498 preempt_disable_notrace();
47252cfb 3499 preempt_latency_start(1);
009f60e2
ON
3500 /*
3501 * Needs preempt disabled in case user_exit() is traced
3502 * and the tracer calls preempt_enable_notrace() causing
3503 * an infinite recursion.
3504 */
3505 prev_ctx = exception_enter();
fc13aeba 3506 __schedule(true);
009f60e2
ON
3507 exception_exit(prev_ctx);
3508
47252cfb 3509 preempt_latency_stop(1);
3d8f74dd 3510 preempt_enable_no_resched_notrace();
009f60e2
ON
3511 } while (need_resched());
3512}
4eaca0a8 3513EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3514
32e475d7 3515#endif /* CONFIG_PREEMPT */
1da177e4
LT
3516
3517/*
2ed6e34f 3518 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3519 * off of irq context.
3520 * Note, that this is called and return with irqs disabled. This will
3521 * protect us against recursive calling from irq.
3522 */
722a9f92 3523asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3524{
b22366cd 3525 enum ctx_state prev_state;
6478d880 3526
2ed6e34f 3527 /* Catch callers which need to be fixed */
f27dde8d 3528 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3529
b22366cd
FW
3530 prev_state = exception_enter();
3531
3a5c359a 3532 do {
3d8f74dd 3533 preempt_disable();
3a5c359a 3534 local_irq_enable();
fc13aeba 3535 __schedule(true);
3a5c359a 3536 local_irq_disable();
3d8f74dd 3537 sched_preempt_enable_no_resched();
5ed0cec0 3538 } while (need_resched());
b22366cd
FW
3539
3540 exception_exit(prev_state);
1da177e4
LT
3541}
3542
63859d4f 3543int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3544 void *key)
1da177e4 3545{
63859d4f 3546 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3547}
1da177e4
LT
3548EXPORT_SYMBOL(default_wake_function);
3549
b29739f9
IM
3550#ifdef CONFIG_RT_MUTEXES
3551
3552/*
3553 * rt_mutex_setprio - set the current priority of a task
3554 * @p: task
3555 * @prio: prio value (kernel-internal form)
3556 *
3557 * This function changes the 'effective' priority of a task. It does
3558 * not touch ->normal_prio like __setscheduler().
3559 *
c365c292
TG
3560 * Used by the rt_mutex code to implement priority inheritance
3561 * logic. Call site only calls if the priority of the task changed.
b29739f9 3562 */
36c8b586 3563void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3564{
ff77e468 3565 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3566 const struct sched_class *prev_class;
eb580751
PZ
3567 struct rq_flags rf;
3568 struct rq *rq;
b29739f9 3569
aab03e05 3570 BUG_ON(prio > MAX_PRIO);
b29739f9 3571
eb580751 3572 rq = __task_rq_lock(p, &rf);
b29739f9 3573
1c4dd99b
TG
3574 /*
3575 * Idle task boosting is a nono in general. There is one
3576 * exception, when PREEMPT_RT and NOHZ is active:
3577 *
3578 * The idle task calls get_next_timer_interrupt() and holds
3579 * the timer wheel base->lock on the CPU and another CPU wants
3580 * to access the timer (probably to cancel it). We can safely
3581 * ignore the boosting request, as the idle CPU runs this code
3582 * with interrupts disabled and will complete the lock
3583 * protected section without being interrupted. So there is no
3584 * real need to boost.
3585 */
3586 if (unlikely(p == rq->idle)) {
3587 WARN_ON(p != rq->curr);
3588 WARN_ON(p->pi_blocked_on);
3589 goto out_unlock;
3590 }
3591
a8027073 3592 trace_sched_pi_setprio(p, prio);
d5f9f942 3593 oldprio = p->prio;
ff77e468
PZ
3594
3595 if (oldprio == prio)
3596 queue_flag &= ~DEQUEUE_MOVE;
3597
83ab0aa0 3598 prev_class = p->sched_class;
da0c1e65 3599 queued = task_on_rq_queued(p);
051a1d1a 3600 running = task_current(rq, p);
da0c1e65 3601 if (queued)
ff77e468 3602 dequeue_task(rq, p, queue_flag);
0e1f3483 3603 if (running)
f3cd1c4e 3604 put_prev_task(rq, p);
dd41f596 3605
2d3d891d
DF
3606 /*
3607 * Boosting condition are:
3608 * 1. -rt task is running and holds mutex A
3609 * --> -dl task blocks on mutex A
3610 *
3611 * 2. -dl task is running and holds mutex A
3612 * --> -dl task blocks on mutex A and could preempt the
3613 * running task
3614 */
3615 if (dl_prio(prio)) {
466af29b
ON
3616 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3617 if (!dl_prio(p->normal_prio) ||
3618 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3619 p->dl.dl_boosted = 1;
ff77e468 3620 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3621 } else
3622 p->dl.dl_boosted = 0;
aab03e05 3623 p->sched_class = &dl_sched_class;
2d3d891d
DF
3624 } else if (rt_prio(prio)) {
3625 if (dl_prio(oldprio))
3626 p->dl.dl_boosted = 0;
3627 if (oldprio < prio)
ff77e468 3628 queue_flag |= ENQUEUE_HEAD;
dd41f596 3629 p->sched_class = &rt_sched_class;
2d3d891d
DF
3630 } else {
3631 if (dl_prio(oldprio))
3632 p->dl.dl_boosted = 0;
746db944
BS
3633 if (rt_prio(oldprio))
3634 p->rt.timeout = 0;
dd41f596 3635 p->sched_class = &fair_sched_class;
2d3d891d 3636 }
dd41f596 3637
b29739f9
IM
3638 p->prio = prio;
3639
0e1f3483
HS
3640 if (running)
3641 p->sched_class->set_curr_task(rq);
da0c1e65 3642 if (queued)
ff77e468 3643 enqueue_task(rq, p, queue_flag);
cb469845 3644
da7a735e 3645 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3646out_unlock:
4c9a4bc8 3647 preempt_disable(); /* avoid rq from going away on us */
eb580751 3648 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3649
3650 balance_callback(rq);
3651 preempt_enable();
b29739f9 3652}
b29739f9 3653#endif
d50dde5a 3654
36c8b586 3655void set_user_nice(struct task_struct *p, long nice)
1da177e4 3656{
da0c1e65 3657 int old_prio, delta, queued;
eb580751 3658 struct rq_flags rf;
70b97a7f 3659 struct rq *rq;
1da177e4 3660
75e45d51 3661 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3662 return;
3663 /*
3664 * We have to be careful, if called from sys_setpriority(),
3665 * the task might be in the middle of scheduling on another CPU.
3666 */
eb580751 3667 rq = task_rq_lock(p, &rf);
1da177e4
LT
3668 /*
3669 * The RT priorities are set via sched_setscheduler(), but we still
3670 * allow the 'normal' nice value to be set - but as expected
3671 * it wont have any effect on scheduling until the task is
aab03e05 3672 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3673 */
aab03e05 3674 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3675 p->static_prio = NICE_TO_PRIO(nice);
3676 goto out_unlock;
3677 }
da0c1e65
KT
3678 queued = task_on_rq_queued(p);
3679 if (queued)
1de64443 3680 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3681
1da177e4 3682 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3683 set_load_weight(p);
b29739f9
IM
3684 old_prio = p->prio;
3685 p->prio = effective_prio(p);
3686 delta = p->prio - old_prio;
1da177e4 3687
da0c1e65 3688 if (queued) {
1de64443 3689 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3690 /*
d5f9f942
AM
3691 * If the task increased its priority or is running and
3692 * lowered its priority, then reschedule its CPU:
1da177e4 3693 */
d5f9f942 3694 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3695 resched_curr(rq);
1da177e4
LT
3696 }
3697out_unlock:
eb580751 3698 task_rq_unlock(rq, p, &rf);
1da177e4 3699}
1da177e4
LT
3700EXPORT_SYMBOL(set_user_nice);
3701
e43379f1
MM
3702/*
3703 * can_nice - check if a task can reduce its nice value
3704 * @p: task
3705 * @nice: nice value
3706 */
36c8b586 3707int can_nice(const struct task_struct *p, const int nice)
e43379f1 3708{
024f4747 3709 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3710 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3711
78d7d407 3712 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3713 capable(CAP_SYS_NICE));
3714}
3715
1da177e4
LT
3716#ifdef __ARCH_WANT_SYS_NICE
3717
3718/*
3719 * sys_nice - change the priority of the current process.
3720 * @increment: priority increment
3721 *
3722 * sys_setpriority is a more generic, but much slower function that
3723 * does similar things.
3724 */
5add95d4 3725SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3726{
48f24c4d 3727 long nice, retval;
1da177e4
LT
3728
3729 /*
3730 * Setpriority might change our priority at the same moment.
3731 * We don't have to worry. Conceptually one call occurs first
3732 * and we have a single winner.
3733 */
a9467fa3 3734 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3735 nice = task_nice(current) + increment;
1da177e4 3736
a9467fa3 3737 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3738 if (increment < 0 && !can_nice(current, nice))
3739 return -EPERM;
3740
1da177e4
LT
3741 retval = security_task_setnice(current, nice);
3742 if (retval)
3743 return retval;
3744
3745 set_user_nice(current, nice);
3746 return 0;
3747}
3748
3749#endif
3750
3751/**
3752 * task_prio - return the priority value of a given task.
3753 * @p: the task in question.
3754 *
e69f6186 3755 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3756 * RT tasks are offset by -200. Normal tasks are centered
3757 * around 0, value goes from -16 to +15.
3758 */
36c8b586 3759int task_prio(const struct task_struct *p)
1da177e4
LT
3760{
3761 return p->prio - MAX_RT_PRIO;
3762}
3763
1da177e4
LT
3764/**
3765 * idle_cpu - is a given cpu idle currently?
3766 * @cpu: the processor in question.
e69f6186
YB
3767 *
3768 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3769 */
3770int idle_cpu(int cpu)
3771{
908a3283
TG
3772 struct rq *rq = cpu_rq(cpu);
3773
3774 if (rq->curr != rq->idle)
3775 return 0;
3776
3777 if (rq->nr_running)
3778 return 0;
3779
3780#ifdef CONFIG_SMP
3781 if (!llist_empty(&rq->wake_list))
3782 return 0;
3783#endif
3784
3785 return 1;
1da177e4
LT
3786}
3787
1da177e4
LT
3788/**
3789 * idle_task - return the idle task for a given cpu.
3790 * @cpu: the processor in question.
e69f6186
YB
3791 *
3792 * Return: The idle task for the cpu @cpu.
1da177e4 3793 */
36c8b586 3794struct task_struct *idle_task(int cpu)
1da177e4
LT
3795{
3796 return cpu_rq(cpu)->idle;
3797}
3798
3799/**
3800 * find_process_by_pid - find a process with a matching PID value.
3801 * @pid: the pid in question.
e69f6186
YB
3802 *
3803 * The task of @pid, if found. %NULL otherwise.
1da177e4 3804 */
a9957449 3805static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3806{
228ebcbe 3807 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3808}
3809
aab03e05
DF
3810/*
3811 * This function initializes the sched_dl_entity of a newly becoming
3812 * SCHED_DEADLINE task.
3813 *
3814 * Only the static values are considered here, the actual runtime and the
3815 * absolute deadline will be properly calculated when the task is enqueued
3816 * for the first time with its new policy.
3817 */
3818static void
3819__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3820{
3821 struct sched_dl_entity *dl_se = &p->dl;
3822
aab03e05
DF
3823 dl_se->dl_runtime = attr->sched_runtime;
3824 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3825 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3826 dl_se->flags = attr->sched_flags;
332ac17e 3827 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3828
3829 /*
3830 * Changing the parameters of a task is 'tricky' and we're not doing
3831 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3832 *
3833 * What we SHOULD do is delay the bandwidth release until the 0-lag
3834 * point. This would include retaining the task_struct until that time
3835 * and change dl_overflow() to not immediately decrement the current
3836 * amount.
3837 *
3838 * Instead we retain the current runtime/deadline and let the new
3839 * parameters take effect after the current reservation period lapses.
3840 * This is safe (albeit pessimistic) because the 0-lag point is always
3841 * before the current scheduling deadline.
3842 *
3843 * We can still have temporary overloads because we do not delay the
3844 * change in bandwidth until that time; so admission control is
3845 * not on the safe side. It does however guarantee tasks will never
3846 * consume more than promised.
3847 */
aab03e05
DF
3848}
3849
c13db6b1
SR
3850/*
3851 * sched_setparam() passes in -1 for its policy, to let the functions
3852 * it calls know not to change it.
3853 */
3854#define SETPARAM_POLICY -1
3855
c365c292
TG
3856static void __setscheduler_params(struct task_struct *p,
3857 const struct sched_attr *attr)
1da177e4 3858{
d50dde5a
DF
3859 int policy = attr->sched_policy;
3860
c13db6b1 3861 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3862 policy = p->policy;
3863
1da177e4 3864 p->policy = policy;
d50dde5a 3865
aab03e05
DF
3866 if (dl_policy(policy))
3867 __setparam_dl(p, attr);
39fd8fd2 3868 else if (fair_policy(policy))
d50dde5a
DF
3869 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3870
39fd8fd2
PZ
3871 /*
3872 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3873 * !rt_policy. Always setting this ensures that things like
3874 * getparam()/getattr() don't report silly values for !rt tasks.
3875 */
3876 p->rt_priority = attr->sched_priority;
383afd09 3877 p->normal_prio = normal_prio(p);
c365c292
TG
3878 set_load_weight(p);
3879}
39fd8fd2 3880
c365c292
TG
3881/* Actually do priority change: must hold pi & rq lock. */
3882static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3883 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3884{
3885 __setscheduler_params(p, attr);
d50dde5a 3886
383afd09 3887 /*
0782e63b
TG
3888 * Keep a potential priority boosting if called from
3889 * sched_setscheduler().
383afd09 3890 */
0782e63b
TG
3891 if (keep_boost)
3892 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3893 else
3894 p->prio = normal_prio(p);
383afd09 3895
aab03e05
DF
3896 if (dl_prio(p->prio))
3897 p->sched_class = &dl_sched_class;
3898 else if (rt_prio(p->prio))
ffd44db5
PZ
3899 p->sched_class = &rt_sched_class;
3900 else
3901 p->sched_class = &fair_sched_class;
1da177e4 3902}
aab03e05
DF
3903
3904static void
3905__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3906{
3907 struct sched_dl_entity *dl_se = &p->dl;
3908
3909 attr->sched_priority = p->rt_priority;
3910 attr->sched_runtime = dl_se->dl_runtime;
3911 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3912 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3913 attr->sched_flags = dl_se->flags;
3914}
3915
3916/*
3917 * This function validates the new parameters of a -deadline task.
3918 * We ask for the deadline not being zero, and greater or equal
755378a4 3919 * than the runtime, as well as the period of being zero or
332ac17e 3920 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3921 * user parameters are above the internal resolution of 1us (we
3922 * check sched_runtime only since it is always the smaller one) and
3923 * below 2^63 ns (we have to check both sched_deadline and
3924 * sched_period, as the latter can be zero).
aab03e05
DF
3925 */
3926static bool
3927__checkparam_dl(const struct sched_attr *attr)
3928{
b0827819
JL
3929 /* deadline != 0 */
3930 if (attr->sched_deadline == 0)
3931 return false;
3932
3933 /*
3934 * Since we truncate DL_SCALE bits, make sure we're at least
3935 * that big.
3936 */
3937 if (attr->sched_runtime < (1ULL << DL_SCALE))
3938 return false;
3939
3940 /*
3941 * Since we use the MSB for wrap-around and sign issues, make
3942 * sure it's not set (mind that period can be equal to zero).
3943 */
3944 if (attr->sched_deadline & (1ULL << 63) ||
3945 attr->sched_period & (1ULL << 63))
3946 return false;
3947
3948 /* runtime <= deadline <= period (if period != 0) */
3949 if ((attr->sched_period != 0 &&
3950 attr->sched_period < attr->sched_deadline) ||
3951 attr->sched_deadline < attr->sched_runtime)
3952 return false;
3953
3954 return true;
aab03e05
DF
3955}
3956
c69e8d9c
DH
3957/*
3958 * check the target process has a UID that matches the current process's
3959 */
3960static bool check_same_owner(struct task_struct *p)
3961{
3962 const struct cred *cred = current_cred(), *pcred;
3963 bool match;
3964
3965 rcu_read_lock();
3966 pcred = __task_cred(p);
9c806aa0
EB
3967 match = (uid_eq(cred->euid, pcred->euid) ||
3968 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3969 rcu_read_unlock();
3970 return match;
3971}
3972
75381608
WL
3973static bool dl_param_changed(struct task_struct *p,
3974 const struct sched_attr *attr)
3975{
3976 struct sched_dl_entity *dl_se = &p->dl;
3977
3978 if (dl_se->dl_runtime != attr->sched_runtime ||
3979 dl_se->dl_deadline != attr->sched_deadline ||
3980 dl_se->dl_period != attr->sched_period ||
3981 dl_se->flags != attr->sched_flags)
3982 return true;
3983
3984 return false;
3985}
3986
d50dde5a
DF
3987static int __sched_setscheduler(struct task_struct *p,
3988 const struct sched_attr *attr,
dbc7f069 3989 bool user, bool pi)
1da177e4 3990{
383afd09
SR
3991 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3992 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3993 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3994 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 3995 const struct sched_class *prev_class;
eb580751 3996 struct rq_flags rf;
ca94c442 3997 int reset_on_fork;
ff77e468 3998 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 3999 struct rq *rq;
1da177e4 4000
66e5393a
SR
4001 /* may grab non-irq protected spin_locks */
4002 BUG_ON(in_interrupt());
1da177e4
LT
4003recheck:
4004 /* double check policy once rq lock held */
ca94c442
LP
4005 if (policy < 0) {
4006 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4007 policy = oldpolicy = p->policy;
ca94c442 4008 } else {
7479f3c9 4009 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4010
20f9cd2a 4011 if (!valid_policy(policy))
ca94c442
LP
4012 return -EINVAL;
4013 }
4014
7479f3c9
PZ
4015 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4016 return -EINVAL;
4017
1da177e4
LT
4018 /*
4019 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4020 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4021 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4022 */
0bb040a4 4023 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4024 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4025 return -EINVAL;
aab03e05
DF
4026 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4027 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4028 return -EINVAL;
4029
37e4ab3f
OC
4030 /*
4031 * Allow unprivileged RT tasks to decrease priority:
4032 */
961ccddd 4033 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4034 if (fair_policy(policy)) {
d0ea0268 4035 if (attr->sched_nice < task_nice(p) &&
eaad4513 4036 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4037 return -EPERM;
4038 }
4039
e05606d3 4040 if (rt_policy(policy)) {
a44702e8
ON
4041 unsigned long rlim_rtprio =
4042 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4043
4044 /* can't set/change the rt policy */
4045 if (policy != p->policy && !rlim_rtprio)
4046 return -EPERM;
4047
4048 /* can't increase priority */
d50dde5a
DF
4049 if (attr->sched_priority > p->rt_priority &&
4050 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4051 return -EPERM;
4052 }
c02aa73b 4053
d44753b8
JL
4054 /*
4055 * Can't set/change SCHED_DEADLINE policy at all for now
4056 * (safest behavior); in the future we would like to allow
4057 * unprivileged DL tasks to increase their relative deadline
4058 * or reduce their runtime (both ways reducing utilization)
4059 */
4060 if (dl_policy(policy))
4061 return -EPERM;
4062
dd41f596 4063 /*
c02aa73b
DH
4064 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4065 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4066 */
20f9cd2a 4067 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4068 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4069 return -EPERM;
4070 }
5fe1d75f 4071
37e4ab3f 4072 /* can't change other user's priorities */
c69e8d9c 4073 if (!check_same_owner(p))
37e4ab3f 4074 return -EPERM;
ca94c442
LP
4075
4076 /* Normal users shall not reset the sched_reset_on_fork flag */
4077 if (p->sched_reset_on_fork && !reset_on_fork)
4078 return -EPERM;
37e4ab3f 4079 }
1da177e4 4080
725aad24 4081 if (user) {
b0ae1981 4082 retval = security_task_setscheduler(p);
725aad24
JF
4083 if (retval)
4084 return retval;
4085 }
4086
b29739f9
IM
4087 /*
4088 * make sure no PI-waiters arrive (or leave) while we are
4089 * changing the priority of the task:
0122ec5b 4090 *
25985edc 4091 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4092 * runqueue lock must be held.
4093 */
eb580751 4094 rq = task_rq_lock(p, &rf);
dc61b1d6 4095
34f971f6
PZ
4096 /*
4097 * Changing the policy of the stop threads its a very bad idea
4098 */
4099 if (p == rq->stop) {
eb580751 4100 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4101 return -EINVAL;
4102 }
4103
a51e9198 4104 /*
d6b1e911
TG
4105 * If not changing anything there's no need to proceed further,
4106 * but store a possible modification of reset_on_fork.
a51e9198 4107 */
d50dde5a 4108 if (unlikely(policy == p->policy)) {
d0ea0268 4109 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4110 goto change;
4111 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4112 goto change;
75381608 4113 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4114 goto change;
d50dde5a 4115
d6b1e911 4116 p->sched_reset_on_fork = reset_on_fork;
eb580751 4117 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4118 return 0;
4119 }
d50dde5a 4120change:
a51e9198 4121
dc61b1d6 4122 if (user) {
332ac17e 4123#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4124 /*
4125 * Do not allow realtime tasks into groups that have no runtime
4126 * assigned.
4127 */
4128 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4129 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4130 !task_group_is_autogroup(task_group(p))) {
eb580751 4131 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4132 return -EPERM;
4133 }
dc61b1d6 4134#endif
332ac17e
DF
4135#ifdef CONFIG_SMP
4136 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4137 cpumask_t *span = rq->rd->span;
332ac17e
DF
4138
4139 /*
4140 * Don't allow tasks with an affinity mask smaller than
4141 * the entire root_domain to become SCHED_DEADLINE. We
4142 * will also fail if there's no bandwidth available.
4143 */
e4099a5e
PZ
4144 if (!cpumask_subset(span, &p->cpus_allowed) ||
4145 rq->rd->dl_bw.bw == 0) {
eb580751 4146 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4147 return -EPERM;
4148 }
4149 }
4150#endif
4151 }
dc61b1d6 4152
1da177e4
LT
4153 /* recheck policy now with rq lock held */
4154 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4155 policy = oldpolicy = -1;
eb580751 4156 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4157 goto recheck;
4158 }
332ac17e
DF
4159
4160 /*
4161 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4162 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4163 * is available.
4164 */
e4099a5e 4165 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4166 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4167 return -EBUSY;
4168 }
4169
c365c292
TG
4170 p->sched_reset_on_fork = reset_on_fork;
4171 oldprio = p->prio;
4172
dbc7f069
PZ
4173 if (pi) {
4174 /*
4175 * Take priority boosted tasks into account. If the new
4176 * effective priority is unchanged, we just store the new
4177 * normal parameters and do not touch the scheduler class and
4178 * the runqueue. This will be done when the task deboost
4179 * itself.
4180 */
4181 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4182 if (new_effective_prio == oldprio)
4183 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4184 }
4185
da0c1e65 4186 queued = task_on_rq_queued(p);
051a1d1a 4187 running = task_current(rq, p);
da0c1e65 4188 if (queued)
ff77e468 4189 dequeue_task(rq, p, queue_flags);
0e1f3483 4190 if (running)
f3cd1c4e 4191 put_prev_task(rq, p);
f6b53205 4192
83ab0aa0 4193 prev_class = p->sched_class;
dbc7f069 4194 __setscheduler(rq, p, attr, pi);
f6b53205 4195
0e1f3483
HS
4196 if (running)
4197 p->sched_class->set_curr_task(rq);
da0c1e65 4198 if (queued) {
81a44c54
TG
4199 /*
4200 * We enqueue to tail when the priority of a task is
4201 * increased (user space view).
4202 */
ff77e468
PZ
4203 if (oldprio < p->prio)
4204 queue_flags |= ENQUEUE_HEAD;
1de64443 4205
ff77e468 4206 enqueue_task(rq, p, queue_flags);
81a44c54 4207 }
cb469845 4208
da7a735e 4209 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4210 preempt_disable(); /* avoid rq from going away on us */
eb580751 4211 task_rq_unlock(rq, p, &rf);
b29739f9 4212
dbc7f069
PZ
4213 if (pi)
4214 rt_mutex_adjust_pi(p);
95e02ca9 4215
4c9a4bc8
PZ
4216 /*
4217 * Run balance callbacks after we've adjusted the PI chain.
4218 */
4219 balance_callback(rq);
4220 preempt_enable();
95e02ca9 4221
1da177e4
LT
4222 return 0;
4223}
961ccddd 4224
7479f3c9
PZ
4225static int _sched_setscheduler(struct task_struct *p, int policy,
4226 const struct sched_param *param, bool check)
4227{
4228 struct sched_attr attr = {
4229 .sched_policy = policy,
4230 .sched_priority = param->sched_priority,
4231 .sched_nice = PRIO_TO_NICE(p->static_prio),
4232 };
4233
c13db6b1
SR
4234 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4235 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4236 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4237 policy &= ~SCHED_RESET_ON_FORK;
4238 attr.sched_policy = policy;
4239 }
4240
dbc7f069 4241 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4242}
961ccddd
RR
4243/**
4244 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4245 * @p: the task in question.
4246 * @policy: new policy.
4247 * @param: structure containing the new RT priority.
4248 *
e69f6186
YB
4249 * Return: 0 on success. An error code otherwise.
4250 *
961ccddd
RR
4251 * NOTE that the task may be already dead.
4252 */
4253int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4254 const struct sched_param *param)
961ccddd 4255{
7479f3c9 4256 return _sched_setscheduler(p, policy, param, true);
961ccddd 4257}
1da177e4
LT
4258EXPORT_SYMBOL_GPL(sched_setscheduler);
4259
d50dde5a
DF
4260int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4261{
dbc7f069 4262 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4263}
4264EXPORT_SYMBOL_GPL(sched_setattr);
4265
961ccddd
RR
4266/**
4267 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4268 * @p: the task in question.
4269 * @policy: new policy.
4270 * @param: structure containing the new RT priority.
4271 *
4272 * Just like sched_setscheduler, only don't bother checking if the
4273 * current context has permission. For example, this is needed in
4274 * stop_machine(): we create temporary high priority worker threads,
4275 * but our caller might not have that capability.
e69f6186
YB
4276 *
4277 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4278 */
4279int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4280 const struct sched_param *param)
961ccddd 4281{
7479f3c9 4282 return _sched_setscheduler(p, policy, param, false);
961ccddd 4283}
84778472 4284EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4285
95cdf3b7
IM
4286static int
4287do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4288{
1da177e4
LT
4289 struct sched_param lparam;
4290 struct task_struct *p;
36c8b586 4291 int retval;
1da177e4
LT
4292
4293 if (!param || pid < 0)
4294 return -EINVAL;
4295 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4296 return -EFAULT;
5fe1d75f
ON
4297
4298 rcu_read_lock();
4299 retval = -ESRCH;
1da177e4 4300 p = find_process_by_pid(pid);
5fe1d75f
ON
4301 if (p != NULL)
4302 retval = sched_setscheduler(p, policy, &lparam);
4303 rcu_read_unlock();
36c8b586 4304
1da177e4
LT
4305 return retval;
4306}
4307
d50dde5a
DF
4308/*
4309 * Mimics kernel/events/core.c perf_copy_attr().
4310 */
4311static int sched_copy_attr(struct sched_attr __user *uattr,
4312 struct sched_attr *attr)
4313{
4314 u32 size;
4315 int ret;
4316
4317 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4318 return -EFAULT;
4319
4320 /*
4321 * zero the full structure, so that a short copy will be nice.
4322 */
4323 memset(attr, 0, sizeof(*attr));
4324
4325 ret = get_user(size, &uattr->size);
4326 if (ret)
4327 return ret;
4328
4329 if (size > PAGE_SIZE) /* silly large */
4330 goto err_size;
4331
4332 if (!size) /* abi compat */
4333 size = SCHED_ATTR_SIZE_VER0;
4334
4335 if (size < SCHED_ATTR_SIZE_VER0)
4336 goto err_size;
4337
4338 /*
4339 * If we're handed a bigger struct than we know of,
4340 * ensure all the unknown bits are 0 - i.e. new
4341 * user-space does not rely on any kernel feature
4342 * extensions we dont know about yet.
4343 */
4344 if (size > sizeof(*attr)) {
4345 unsigned char __user *addr;
4346 unsigned char __user *end;
4347 unsigned char val;
4348
4349 addr = (void __user *)uattr + sizeof(*attr);
4350 end = (void __user *)uattr + size;
4351
4352 for (; addr < end; addr++) {
4353 ret = get_user(val, addr);
4354 if (ret)
4355 return ret;
4356 if (val)
4357 goto err_size;
4358 }
4359 size = sizeof(*attr);
4360 }
4361
4362 ret = copy_from_user(attr, uattr, size);
4363 if (ret)
4364 return -EFAULT;
4365
4366 /*
4367 * XXX: do we want to be lenient like existing syscalls; or do we want
4368 * to be strict and return an error on out-of-bounds values?
4369 */
75e45d51 4370 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4371
e78c7bca 4372 return 0;
d50dde5a
DF
4373
4374err_size:
4375 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4376 return -E2BIG;
d50dde5a
DF
4377}
4378
1da177e4
LT
4379/**
4380 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4381 * @pid: the pid in question.
4382 * @policy: new policy.
4383 * @param: structure containing the new RT priority.
e69f6186
YB
4384 *
4385 * Return: 0 on success. An error code otherwise.
1da177e4 4386 */
5add95d4
HC
4387SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4388 struct sched_param __user *, param)
1da177e4 4389{
c21761f1
JB
4390 /* negative values for policy are not valid */
4391 if (policy < 0)
4392 return -EINVAL;
4393
1da177e4
LT
4394 return do_sched_setscheduler(pid, policy, param);
4395}
4396
4397/**
4398 * sys_sched_setparam - set/change the RT priority of a thread
4399 * @pid: the pid in question.
4400 * @param: structure containing the new RT priority.
e69f6186
YB
4401 *
4402 * Return: 0 on success. An error code otherwise.
1da177e4 4403 */
5add95d4 4404SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4405{
c13db6b1 4406 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4407}
4408
d50dde5a
DF
4409/**
4410 * sys_sched_setattr - same as above, but with extended sched_attr
4411 * @pid: the pid in question.
5778fccf 4412 * @uattr: structure containing the extended parameters.
db66d756 4413 * @flags: for future extension.
d50dde5a 4414 */
6d35ab48
PZ
4415SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4416 unsigned int, flags)
d50dde5a
DF
4417{
4418 struct sched_attr attr;
4419 struct task_struct *p;
4420 int retval;
4421
6d35ab48 4422 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4423 return -EINVAL;
4424
143cf23d
MK
4425 retval = sched_copy_attr(uattr, &attr);
4426 if (retval)
4427 return retval;
d50dde5a 4428
b14ed2c2 4429 if ((int)attr.sched_policy < 0)
dbdb2275 4430 return -EINVAL;
d50dde5a
DF
4431
4432 rcu_read_lock();
4433 retval = -ESRCH;
4434 p = find_process_by_pid(pid);
4435 if (p != NULL)
4436 retval = sched_setattr(p, &attr);
4437 rcu_read_unlock();
4438
4439 return retval;
4440}
4441
1da177e4
LT
4442/**
4443 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4444 * @pid: the pid in question.
e69f6186
YB
4445 *
4446 * Return: On success, the policy of the thread. Otherwise, a negative error
4447 * code.
1da177e4 4448 */
5add95d4 4449SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4450{
36c8b586 4451 struct task_struct *p;
3a5c359a 4452 int retval;
1da177e4
LT
4453
4454 if (pid < 0)
3a5c359a 4455 return -EINVAL;
1da177e4
LT
4456
4457 retval = -ESRCH;
5fe85be0 4458 rcu_read_lock();
1da177e4
LT
4459 p = find_process_by_pid(pid);
4460 if (p) {
4461 retval = security_task_getscheduler(p);
4462 if (!retval)
ca94c442
LP
4463 retval = p->policy
4464 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4465 }
5fe85be0 4466 rcu_read_unlock();
1da177e4
LT
4467 return retval;
4468}
4469
4470/**
ca94c442 4471 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4472 * @pid: the pid in question.
4473 * @param: structure containing the RT priority.
e69f6186
YB
4474 *
4475 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4476 * code.
1da177e4 4477 */
5add95d4 4478SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4479{
ce5f7f82 4480 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4481 struct task_struct *p;
3a5c359a 4482 int retval;
1da177e4
LT
4483
4484 if (!param || pid < 0)
3a5c359a 4485 return -EINVAL;
1da177e4 4486
5fe85be0 4487 rcu_read_lock();
1da177e4
LT
4488 p = find_process_by_pid(pid);
4489 retval = -ESRCH;
4490 if (!p)
4491 goto out_unlock;
4492
4493 retval = security_task_getscheduler(p);
4494 if (retval)
4495 goto out_unlock;
4496
ce5f7f82
PZ
4497 if (task_has_rt_policy(p))
4498 lp.sched_priority = p->rt_priority;
5fe85be0 4499 rcu_read_unlock();
1da177e4
LT
4500
4501 /*
4502 * This one might sleep, we cannot do it with a spinlock held ...
4503 */
4504 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4505
1da177e4
LT
4506 return retval;
4507
4508out_unlock:
5fe85be0 4509 rcu_read_unlock();
1da177e4
LT
4510 return retval;
4511}
4512
d50dde5a
DF
4513static int sched_read_attr(struct sched_attr __user *uattr,
4514 struct sched_attr *attr,
4515 unsigned int usize)
4516{
4517 int ret;
4518
4519 if (!access_ok(VERIFY_WRITE, uattr, usize))
4520 return -EFAULT;
4521
4522 /*
4523 * If we're handed a smaller struct than we know of,
4524 * ensure all the unknown bits are 0 - i.e. old
4525 * user-space does not get uncomplete information.
4526 */
4527 if (usize < sizeof(*attr)) {
4528 unsigned char *addr;
4529 unsigned char *end;
4530
4531 addr = (void *)attr + usize;
4532 end = (void *)attr + sizeof(*attr);
4533
4534 for (; addr < end; addr++) {
4535 if (*addr)
22400674 4536 return -EFBIG;
d50dde5a
DF
4537 }
4538
4539 attr->size = usize;
4540 }
4541
4efbc454 4542 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4543 if (ret)
4544 return -EFAULT;
4545
22400674 4546 return 0;
d50dde5a
DF
4547}
4548
4549/**
aab03e05 4550 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4551 * @pid: the pid in question.
5778fccf 4552 * @uattr: structure containing the extended parameters.
d50dde5a 4553 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4554 * @flags: for future extension.
d50dde5a 4555 */
6d35ab48
PZ
4556SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4557 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4558{
4559 struct sched_attr attr = {
4560 .size = sizeof(struct sched_attr),
4561 };
4562 struct task_struct *p;
4563 int retval;
4564
4565 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4566 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4567 return -EINVAL;
4568
4569 rcu_read_lock();
4570 p = find_process_by_pid(pid);
4571 retval = -ESRCH;
4572 if (!p)
4573 goto out_unlock;
4574
4575 retval = security_task_getscheduler(p);
4576 if (retval)
4577 goto out_unlock;
4578
4579 attr.sched_policy = p->policy;
7479f3c9
PZ
4580 if (p->sched_reset_on_fork)
4581 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4582 if (task_has_dl_policy(p))
4583 __getparam_dl(p, &attr);
4584 else if (task_has_rt_policy(p))
d50dde5a
DF
4585 attr.sched_priority = p->rt_priority;
4586 else
d0ea0268 4587 attr.sched_nice = task_nice(p);
d50dde5a
DF
4588
4589 rcu_read_unlock();
4590
4591 retval = sched_read_attr(uattr, &attr, size);
4592 return retval;
4593
4594out_unlock:
4595 rcu_read_unlock();
4596 return retval;
4597}
4598
96f874e2 4599long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4600{
5a16f3d3 4601 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4602 struct task_struct *p;
4603 int retval;
1da177e4 4604
23f5d142 4605 rcu_read_lock();
1da177e4
LT
4606
4607 p = find_process_by_pid(pid);
4608 if (!p) {
23f5d142 4609 rcu_read_unlock();
1da177e4
LT
4610 return -ESRCH;
4611 }
4612
23f5d142 4613 /* Prevent p going away */
1da177e4 4614 get_task_struct(p);
23f5d142 4615 rcu_read_unlock();
1da177e4 4616
14a40ffc
TH
4617 if (p->flags & PF_NO_SETAFFINITY) {
4618 retval = -EINVAL;
4619 goto out_put_task;
4620 }
5a16f3d3
RR
4621 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4622 retval = -ENOMEM;
4623 goto out_put_task;
4624 }
4625 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4626 retval = -ENOMEM;
4627 goto out_free_cpus_allowed;
4628 }
1da177e4 4629 retval = -EPERM;
4c44aaaf
EB
4630 if (!check_same_owner(p)) {
4631 rcu_read_lock();
4632 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4633 rcu_read_unlock();
16303ab2 4634 goto out_free_new_mask;
4c44aaaf
EB
4635 }
4636 rcu_read_unlock();
4637 }
1da177e4 4638
b0ae1981 4639 retval = security_task_setscheduler(p);
e7834f8f 4640 if (retval)
16303ab2 4641 goto out_free_new_mask;
e7834f8f 4642
e4099a5e
PZ
4643
4644 cpuset_cpus_allowed(p, cpus_allowed);
4645 cpumask_and(new_mask, in_mask, cpus_allowed);
4646
332ac17e
DF
4647 /*
4648 * Since bandwidth control happens on root_domain basis,
4649 * if admission test is enabled, we only admit -deadline
4650 * tasks allowed to run on all the CPUs in the task's
4651 * root_domain.
4652 */
4653#ifdef CONFIG_SMP
f1e3a093
KT
4654 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4655 rcu_read_lock();
4656 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4657 retval = -EBUSY;
f1e3a093 4658 rcu_read_unlock();
16303ab2 4659 goto out_free_new_mask;
332ac17e 4660 }
f1e3a093 4661 rcu_read_unlock();
332ac17e
DF
4662 }
4663#endif
49246274 4664again:
25834c73 4665 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4666
8707d8b8 4667 if (!retval) {
5a16f3d3
RR
4668 cpuset_cpus_allowed(p, cpus_allowed);
4669 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4670 /*
4671 * We must have raced with a concurrent cpuset
4672 * update. Just reset the cpus_allowed to the
4673 * cpuset's cpus_allowed
4674 */
5a16f3d3 4675 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4676 goto again;
4677 }
4678 }
16303ab2 4679out_free_new_mask:
5a16f3d3
RR
4680 free_cpumask_var(new_mask);
4681out_free_cpus_allowed:
4682 free_cpumask_var(cpus_allowed);
4683out_put_task:
1da177e4 4684 put_task_struct(p);
1da177e4
LT
4685 return retval;
4686}
4687
4688static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4689 struct cpumask *new_mask)
1da177e4 4690{
96f874e2
RR
4691 if (len < cpumask_size())
4692 cpumask_clear(new_mask);
4693 else if (len > cpumask_size())
4694 len = cpumask_size();
4695
1da177e4
LT
4696 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4697}
4698
4699/**
4700 * sys_sched_setaffinity - set the cpu affinity of a process
4701 * @pid: pid of the process
4702 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4703 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4704 *
4705 * Return: 0 on success. An error code otherwise.
1da177e4 4706 */
5add95d4
HC
4707SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4708 unsigned long __user *, user_mask_ptr)
1da177e4 4709{
5a16f3d3 4710 cpumask_var_t new_mask;
1da177e4
LT
4711 int retval;
4712
5a16f3d3
RR
4713 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4714 return -ENOMEM;
1da177e4 4715
5a16f3d3
RR
4716 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4717 if (retval == 0)
4718 retval = sched_setaffinity(pid, new_mask);
4719 free_cpumask_var(new_mask);
4720 return retval;
1da177e4
LT
4721}
4722
96f874e2 4723long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4724{
36c8b586 4725 struct task_struct *p;
31605683 4726 unsigned long flags;
1da177e4 4727 int retval;
1da177e4 4728
23f5d142 4729 rcu_read_lock();
1da177e4
LT
4730
4731 retval = -ESRCH;
4732 p = find_process_by_pid(pid);
4733 if (!p)
4734 goto out_unlock;
4735
e7834f8f
DQ
4736 retval = security_task_getscheduler(p);
4737 if (retval)
4738 goto out_unlock;
4739
013fdb80 4740 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4741 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4742 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4743
4744out_unlock:
23f5d142 4745 rcu_read_unlock();
1da177e4 4746
9531b62f 4747 return retval;
1da177e4
LT
4748}
4749
4750/**
4751 * sys_sched_getaffinity - get the cpu affinity of a process
4752 * @pid: pid of the process
4753 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4754 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4755 *
4756 * Return: 0 on success. An error code otherwise.
1da177e4 4757 */
5add95d4
HC
4758SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4759 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4760{
4761 int ret;
f17c8607 4762 cpumask_var_t mask;
1da177e4 4763
84fba5ec 4764 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4765 return -EINVAL;
4766 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4767 return -EINVAL;
4768
f17c8607
RR
4769 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4770 return -ENOMEM;
1da177e4 4771
f17c8607
RR
4772 ret = sched_getaffinity(pid, mask);
4773 if (ret == 0) {
8bc037fb 4774 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4775
4776 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4777 ret = -EFAULT;
4778 else
cd3d8031 4779 ret = retlen;
f17c8607
RR
4780 }
4781 free_cpumask_var(mask);
1da177e4 4782
f17c8607 4783 return ret;
1da177e4
LT
4784}
4785
4786/**
4787 * sys_sched_yield - yield the current processor to other threads.
4788 *
dd41f596
IM
4789 * This function yields the current CPU to other tasks. If there are no
4790 * other threads running on this CPU then this function will return.
e69f6186
YB
4791 *
4792 * Return: 0.
1da177e4 4793 */
5add95d4 4794SYSCALL_DEFINE0(sched_yield)
1da177e4 4795{
70b97a7f 4796 struct rq *rq = this_rq_lock();
1da177e4 4797
2d72376b 4798 schedstat_inc(rq, yld_count);
4530d7ab 4799 current->sched_class->yield_task(rq);
1da177e4
LT
4800
4801 /*
4802 * Since we are going to call schedule() anyway, there's
4803 * no need to preempt or enable interrupts:
4804 */
4805 __release(rq->lock);
8a25d5de 4806 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4807 do_raw_spin_unlock(&rq->lock);
ba74c144 4808 sched_preempt_enable_no_resched();
1da177e4
LT
4809
4810 schedule();
4811
4812 return 0;
4813}
4814
02b67cc3 4815int __sched _cond_resched(void)
1da177e4 4816{
fe32d3cd 4817 if (should_resched(0)) {
a18b5d01 4818 preempt_schedule_common();
1da177e4
LT
4819 return 1;
4820 }
4821 return 0;
4822}
02b67cc3 4823EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4824
4825/*
613afbf8 4826 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4827 * call schedule, and on return reacquire the lock.
4828 *
41a2d6cf 4829 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4830 * operations here to prevent schedule() from being called twice (once via
4831 * spin_unlock(), once by hand).
4832 */
613afbf8 4833int __cond_resched_lock(spinlock_t *lock)
1da177e4 4834{
fe32d3cd 4835 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4836 int ret = 0;
4837
f607c668
PZ
4838 lockdep_assert_held(lock);
4839
4a81e832 4840 if (spin_needbreak(lock) || resched) {
1da177e4 4841 spin_unlock(lock);
d86ee480 4842 if (resched)
a18b5d01 4843 preempt_schedule_common();
95c354fe
NP
4844 else
4845 cpu_relax();
6df3cecb 4846 ret = 1;
1da177e4 4847 spin_lock(lock);
1da177e4 4848 }
6df3cecb 4849 return ret;
1da177e4 4850}
613afbf8 4851EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4852
613afbf8 4853int __sched __cond_resched_softirq(void)
1da177e4
LT
4854{
4855 BUG_ON(!in_softirq());
4856
fe32d3cd 4857 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4858 local_bh_enable();
a18b5d01 4859 preempt_schedule_common();
1da177e4
LT
4860 local_bh_disable();
4861 return 1;
4862 }
4863 return 0;
4864}
613afbf8 4865EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4866
1da177e4
LT
4867/**
4868 * yield - yield the current processor to other threads.
4869 *
8e3fabfd
PZ
4870 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4871 *
4872 * The scheduler is at all times free to pick the calling task as the most
4873 * eligible task to run, if removing the yield() call from your code breaks
4874 * it, its already broken.
4875 *
4876 * Typical broken usage is:
4877 *
4878 * while (!event)
4879 * yield();
4880 *
4881 * where one assumes that yield() will let 'the other' process run that will
4882 * make event true. If the current task is a SCHED_FIFO task that will never
4883 * happen. Never use yield() as a progress guarantee!!
4884 *
4885 * If you want to use yield() to wait for something, use wait_event().
4886 * If you want to use yield() to be 'nice' for others, use cond_resched().
4887 * If you still want to use yield(), do not!
1da177e4
LT
4888 */
4889void __sched yield(void)
4890{
4891 set_current_state(TASK_RUNNING);
4892 sys_sched_yield();
4893}
1da177e4
LT
4894EXPORT_SYMBOL(yield);
4895
d95f4122
MG
4896/**
4897 * yield_to - yield the current processor to another thread in
4898 * your thread group, or accelerate that thread toward the
4899 * processor it's on.
16addf95
RD
4900 * @p: target task
4901 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4902 *
4903 * It's the caller's job to ensure that the target task struct
4904 * can't go away on us before we can do any checks.
4905 *
e69f6186 4906 * Return:
7b270f60
PZ
4907 * true (>0) if we indeed boosted the target task.
4908 * false (0) if we failed to boost the target.
4909 * -ESRCH if there's no task to yield to.
d95f4122 4910 */
fa93384f 4911int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4912{
4913 struct task_struct *curr = current;
4914 struct rq *rq, *p_rq;
4915 unsigned long flags;
c3c18640 4916 int yielded = 0;
d95f4122
MG
4917
4918 local_irq_save(flags);
4919 rq = this_rq();
4920
4921again:
4922 p_rq = task_rq(p);
7b270f60
PZ
4923 /*
4924 * If we're the only runnable task on the rq and target rq also
4925 * has only one task, there's absolutely no point in yielding.
4926 */
4927 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4928 yielded = -ESRCH;
4929 goto out_irq;
4930 }
4931
d95f4122 4932 double_rq_lock(rq, p_rq);
39e24d8f 4933 if (task_rq(p) != p_rq) {
d95f4122
MG
4934 double_rq_unlock(rq, p_rq);
4935 goto again;
4936 }
4937
4938 if (!curr->sched_class->yield_to_task)
7b270f60 4939 goto out_unlock;
d95f4122
MG
4940
4941 if (curr->sched_class != p->sched_class)
7b270f60 4942 goto out_unlock;
d95f4122
MG
4943
4944 if (task_running(p_rq, p) || p->state)
7b270f60 4945 goto out_unlock;
d95f4122
MG
4946
4947 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4948 if (yielded) {
d95f4122 4949 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4950 /*
4951 * Make p's CPU reschedule; pick_next_entity takes care of
4952 * fairness.
4953 */
4954 if (preempt && rq != p_rq)
8875125e 4955 resched_curr(p_rq);
6d1cafd8 4956 }
d95f4122 4957
7b270f60 4958out_unlock:
d95f4122 4959 double_rq_unlock(rq, p_rq);
7b270f60 4960out_irq:
d95f4122
MG
4961 local_irq_restore(flags);
4962
7b270f60 4963 if (yielded > 0)
d95f4122
MG
4964 schedule();
4965
4966 return yielded;
4967}
4968EXPORT_SYMBOL_GPL(yield_to);
4969
1da177e4 4970/*
41a2d6cf 4971 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4972 * that process accounting knows that this is a task in IO wait state.
1da177e4 4973 */
1da177e4
LT
4974long __sched io_schedule_timeout(long timeout)
4975{
9cff8ade
N
4976 int old_iowait = current->in_iowait;
4977 struct rq *rq;
1da177e4
LT
4978 long ret;
4979
9cff8ade 4980 current->in_iowait = 1;
10d784ea 4981 blk_schedule_flush_plug(current);
9cff8ade 4982
0ff92245 4983 delayacct_blkio_start();
9cff8ade 4984 rq = raw_rq();
1da177e4
LT
4985 atomic_inc(&rq->nr_iowait);
4986 ret = schedule_timeout(timeout);
9cff8ade 4987 current->in_iowait = old_iowait;
1da177e4 4988 atomic_dec(&rq->nr_iowait);
0ff92245 4989 delayacct_blkio_end();
9cff8ade 4990
1da177e4
LT
4991 return ret;
4992}
9cff8ade 4993EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4994
4995/**
4996 * sys_sched_get_priority_max - return maximum RT priority.
4997 * @policy: scheduling class.
4998 *
e69f6186
YB
4999 * Return: On success, this syscall returns the maximum
5000 * rt_priority that can be used by a given scheduling class.
5001 * On failure, a negative error code is returned.
1da177e4 5002 */
5add95d4 5003SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5004{
5005 int ret = -EINVAL;
5006
5007 switch (policy) {
5008 case SCHED_FIFO:
5009 case SCHED_RR:
5010 ret = MAX_USER_RT_PRIO-1;
5011 break;
aab03e05 5012 case SCHED_DEADLINE:
1da177e4 5013 case SCHED_NORMAL:
b0a9499c 5014 case SCHED_BATCH:
dd41f596 5015 case SCHED_IDLE:
1da177e4
LT
5016 ret = 0;
5017 break;
5018 }
5019 return ret;
5020}
5021
5022/**
5023 * sys_sched_get_priority_min - return minimum RT priority.
5024 * @policy: scheduling class.
5025 *
e69f6186
YB
5026 * Return: On success, this syscall returns the minimum
5027 * rt_priority that can be used by a given scheduling class.
5028 * On failure, a negative error code is returned.
1da177e4 5029 */
5add95d4 5030SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5031{
5032 int ret = -EINVAL;
5033
5034 switch (policy) {
5035 case SCHED_FIFO:
5036 case SCHED_RR:
5037 ret = 1;
5038 break;
aab03e05 5039 case SCHED_DEADLINE:
1da177e4 5040 case SCHED_NORMAL:
b0a9499c 5041 case SCHED_BATCH:
dd41f596 5042 case SCHED_IDLE:
1da177e4
LT
5043 ret = 0;
5044 }
5045 return ret;
5046}
5047
5048/**
5049 * sys_sched_rr_get_interval - return the default timeslice of a process.
5050 * @pid: pid of the process.
5051 * @interval: userspace pointer to the timeslice value.
5052 *
5053 * this syscall writes the default timeslice value of a given process
5054 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5055 *
5056 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5057 * an error code.
1da177e4 5058 */
17da2bd9 5059SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5060 struct timespec __user *, interval)
1da177e4 5061{
36c8b586 5062 struct task_struct *p;
a4ec24b4 5063 unsigned int time_slice;
eb580751
PZ
5064 struct rq_flags rf;
5065 struct timespec t;
dba091b9 5066 struct rq *rq;
3a5c359a 5067 int retval;
1da177e4
LT
5068
5069 if (pid < 0)
3a5c359a 5070 return -EINVAL;
1da177e4
LT
5071
5072 retval = -ESRCH;
1a551ae7 5073 rcu_read_lock();
1da177e4
LT
5074 p = find_process_by_pid(pid);
5075 if (!p)
5076 goto out_unlock;
5077
5078 retval = security_task_getscheduler(p);
5079 if (retval)
5080 goto out_unlock;
5081
eb580751 5082 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5083 time_slice = 0;
5084 if (p->sched_class->get_rr_interval)
5085 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5086 task_rq_unlock(rq, p, &rf);
a4ec24b4 5087
1a551ae7 5088 rcu_read_unlock();
a4ec24b4 5089 jiffies_to_timespec(time_slice, &t);
1da177e4 5090 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5091 return retval;
3a5c359a 5092
1da177e4 5093out_unlock:
1a551ae7 5094 rcu_read_unlock();
1da177e4
LT
5095 return retval;
5096}
5097
7c731e0a 5098static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5099
82a1fcb9 5100void sched_show_task(struct task_struct *p)
1da177e4 5101{
1da177e4 5102 unsigned long free = 0;
4e79752c 5103 int ppid;
1f8a7633 5104 unsigned long state = p->state;
1da177e4 5105
1f8a7633
TH
5106 if (state)
5107 state = __ffs(state) + 1;
28d0686c 5108 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5109 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5110#if BITS_PER_LONG == 32
1da177e4 5111 if (state == TASK_RUNNING)
3df0fc5b 5112 printk(KERN_CONT " running ");
1da177e4 5113 else
3df0fc5b 5114 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5115#else
5116 if (state == TASK_RUNNING)
3df0fc5b 5117 printk(KERN_CONT " running task ");
1da177e4 5118 else
3df0fc5b 5119 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5120#endif
5121#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5122 free = stack_not_used(p);
1da177e4 5123#endif
a90e984c 5124 ppid = 0;
4e79752c 5125 rcu_read_lock();
a90e984c
ON
5126 if (pid_alive(p))
5127 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5128 rcu_read_unlock();
3df0fc5b 5129 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5130 task_pid_nr(p), ppid,
aa47b7e0 5131 (unsigned long)task_thread_info(p)->flags);
1da177e4 5132
3d1cb205 5133 print_worker_info(KERN_INFO, p);
5fb5e6de 5134 show_stack(p, NULL);
1da177e4
LT
5135}
5136
e59e2ae2 5137void show_state_filter(unsigned long state_filter)
1da177e4 5138{
36c8b586 5139 struct task_struct *g, *p;
1da177e4 5140
4bd77321 5141#if BITS_PER_LONG == 32
3df0fc5b
PZ
5142 printk(KERN_INFO
5143 " task PC stack pid father\n");
1da177e4 5144#else
3df0fc5b
PZ
5145 printk(KERN_INFO
5146 " task PC stack pid father\n");
1da177e4 5147#endif
510f5acc 5148 rcu_read_lock();
5d07f420 5149 for_each_process_thread(g, p) {
1da177e4
LT
5150 /*
5151 * reset the NMI-timeout, listing all files on a slow
25985edc 5152 * console might take a lot of time:
57675cb9
AR
5153 * Also, reset softlockup watchdogs on all CPUs, because
5154 * another CPU might be blocked waiting for us to process
5155 * an IPI.
1da177e4
LT
5156 */
5157 touch_nmi_watchdog();
57675cb9 5158 touch_all_softlockup_watchdogs();
39bc89fd 5159 if (!state_filter || (p->state & state_filter))
82a1fcb9 5160 sched_show_task(p);
5d07f420 5161 }
1da177e4 5162
dd41f596 5163#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5164 if (!state_filter)
5165 sysrq_sched_debug_show();
dd41f596 5166#endif
510f5acc 5167 rcu_read_unlock();
e59e2ae2
IM
5168 /*
5169 * Only show locks if all tasks are dumped:
5170 */
93335a21 5171 if (!state_filter)
e59e2ae2 5172 debug_show_all_locks();
1da177e4
LT
5173}
5174
0db0628d 5175void init_idle_bootup_task(struct task_struct *idle)
1df21055 5176{
dd41f596 5177 idle->sched_class = &idle_sched_class;
1df21055
IM
5178}
5179
f340c0d1
IM
5180/**
5181 * init_idle - set up an idle thread for a given CPU
5182 * @idle: task in question
5183 * @cpu: cpu the idle task belongs to
5184 *
5185 * NOTE: this function does not set the idle thread's NEED_RESCHED
5186 * flag, to make booting more robust.
5187 */
0db0628d 5188void init_idle(struct task_struct *idle, int cpu)
1da177e4 5189{
70b97a7f 5190 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5191 unsigned long flags;
5192
25834c73
PZ
5193 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5194 raw_spin_lock(&rq->lock);
5cbd54ef 5195
5e1576ed 5196 __sched_fork(0, idle);
06b83b5f 5197 idle->state = TASK_RUNNING;
dd41f596
IM
5198 idle->se.exec_start = sched_clock();
5199
e1b77c92
MR
5200 kasan_unpoison_task_stack(idle);
5201
de9b8f5d
PZ
5202#ifdef CONFIG_SMP
5203 /*
5204 * Its possible that init_idle() gets called multiple times on a task,
5205 * in that case do_set_cpus_allowed() will not do the right thing.
5206 *
5207 * And since this is boot we can forgo the serialization.
5208 */
5209 set_cpus_allowed_common(idle, cpumask_of(cpu));
5210#endif
6506cf6c
PZ
5211 /*
5212 * We're having a chicken and egg problem, even though we are
5213 * holding rq->lock, the cpu isn't yet set to this cpu so the
5214 * lockdep check in task_group() will fail.
5215 *
5216 * Similar case to sched_fork(). / Alternatively we could
5217 * use task_rq_lock() here and obtain the other rq->lock.
5218 *
5219 * Silence PROVE_RCU
5220 */
5221 rcu_read_lock();
dd41f596 5222 __set_task_cpu(idle, cpu);
6506cf6c 5223 rcu_read_unlock();
1da177e4 5224
1da177e4 5225 rq->curr = rq->idle = idle;
da0c1e65 5226 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5227#ifdef CONFIG_SMP
3ca7a440 5228 idle->on_cpu = 1;
4866cde0 5229#endif
25834c73
PZ
5230 raw_spin_unlock(&rq->lock);
5231 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5232
5233 /* Set the preempt count _outside_ the spinlocks! */
01028747 5234 init_idle_preempt_count(idle, cpu);
55cd5340 5235
dd41f596
IM
5236 /*
5237 * The idle tasks have their own, simple scheduling class:
5238 */
5239 idle->sched_class = &idle_sched_class;
868baf07 5240 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5241 vtime_init_idle(idle, cpu);
de9b8f5d 5242#ifdef CONFIG_SMP
f1c6f1a7
CE
5243 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5244#endif
19978ca6
IM
5245}
5246
f82f8042
JL
5247int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5248 const struct cpumask *trial)
5249{
5250 int ret = 1, trial_cpus;
5251 struct dl_bw *cur_dl_b;
5252 unsigned long flags;
5253
bb2bc55a
MG
5254 if (!cpumask_weight(cur))
5255 return ret;
5256
75e23e49 5257 rcu_read_lock_sched();
f82f8042
JL
5258 cur_dl_b = dl_bw_of(cpumask_any(cur));
5259 trial_cpus = cpumask_weight(trial);
5260
5261 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5262 if (cur_dl_b->bw != -1 &&
5263 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5264 ret = 0;
5265 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5266 rcu_read_unlock_sched();
f82f8042
JL
5267
5268 return ret;
5269}
5270
7f51412a
JL
5271int task_can_attach(struct task_struct *p,
5272 const struct cpumask *cs_cpus_allowed)
5273{
5274 int ret = 0;
5275
5276 /*
5277 * Kthreads which disallow setaffinity shouldn't be moved
5278 * to a new cpuset; we don't want to change their cpu
5279 * affinity and isolating such threads by their set of
5280 * allowed nodes is unnecessary. Thus, cpusets are not
5281 * applicable for such threads. This prevents checking for
5282 * success of set_cpus_allowed_ptr() on all attached tasks
5283 * before cpus_allowed may be changed.
5284 */
5285 if (p->flags & PF_NO_SETAFFINITY) {
5286 ret = -EINVAL;
5287 goto out;
5288 }
5289
5290#ifdef CONFIG_SMP
5291 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5292 cs_cpus_allowed)) {
5293 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5294 cs_cpus_allowed);
75e23e49 5295 struct dl_bw *dl_b;
7f51412a
JL
5296 bool overflow;
5297 int cpus;
5298 unsigned long flags;
5299
75e23e49
JL
5300 rcu_read_lock_sched();
5301 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5302 raw_spin_lock_irqsave(&dl_b->lock, flags);
5303 cpus = dl_bw_cpus(dest_cpu);
5304 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5305 if (overflow)
5306 ret = -EBUSY;
5307 else {
5308 /*
5309 * We reserve space for this task in the destination
5310 * root_domain, as we can't fail after this point.
5311 * We will free resources in the source root_domain
5312 * later on (see set_cpus_allowed_dl()).
5313 */
5314 __dl_add(dl_b, p->dl.dl_bw);
5315 }
5316 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5317 rcu_read_unlock_sched();
7f51412a
JL
5318
5319 }
5320#endif
5321out:
5322 return ret;
5323}
5324
1da177e4 5325#ifdef CONFIG_SMP
1da177e4 5326
e26fbffd
TG
5327static bool sched_smp_initialized __read_mostly;
5328
e6628d5b
MG
5329#ifdef CONFIG_NUMA_BALANCING
5330/* Migrate current task p to target_cpu */
5331int migrate_task_to(struct task_struct *p, int target_cpu)
5332{
5333 struct migration_arg arg = { p, target_cpu };
5334 int curr_cpu = task_cpu(p);
5335
5336 if (curr_cpu == target_cpu)
5337 return 0;
5338
5339 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5340 return -EINVAL;
5341
5342 /* TODO: This is not properly updating schedstats */
5343
286549dc 5344 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5345 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5346}
0ec8aa00
PZ
5347
5348/*
5349 * Requeue a task on a given node and accurately track the number of NUMA
5350 * tasks on the runqueues
5351 */
5352void sched_setnuma(struct task_struct *p, int nid)
5353{
da0c1e65 5354 bool queued, running;
eb580751
PZ
5355 struct rq_flags rf;
5356 struct rq *rq;
0ec8aa00 5357
eb580751 5358 rq = task_rq_lock(p, &rf);
da0c1e65 5359 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5360 running = task_current(rq, p);
5361
da0c1e65 5362 if (queued)
1de64443 5363 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5364 if (running)
f3cd1c4e 5365 put_prev_task(rq, p);
0ec8aa00
PZ
5366
5367 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5368
5369 if (running)
5370 p->sched_class->set_curr_task(rq);
da0c1e65 5371 if (queued)
1de64443 5372 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5373 task_rq_unlock(rq, p, &rf);
0ec8aa00 5374}
5cc389bc 5375#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5376
1da177e4 5377#ifdef CONFIG_HOTPLUG_CPU
054b9108 5378/*
48c5ccae
PZ
5379 * Ensures that the idle task is using init_mm right before its cpu goes
5380 * offline.
054b9108 5381 */
48c5ccae 5382void idle_task_exit(void)
1da177e4 5383{
48c5ccae 5384 struct mm_struct *mm = current->active_mm;
e76bd8d9 5385
48c5ccae 5386 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5387
a53efe5f 5388 if (mm != &init_mm) {
f98db601 5389 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5390 finish_arch_post_lock_switch();
5391 }
48c5ccae 5392 mmdrop(mm);
1da177e4
LT
5393}
5394
5395/*
5d180232
PZ
5396 * Since this CPU is going 'away' for a while, fold any nr_active delta
5397 * we might have. Assumes we're called after migrate_tasks() so that the
5398 * nr_active count is stable.
5399 *
5400 * Also see the comment "Global load-average calculations".
1da177e4 5401 */
5d180232 5402static void calc_load_migrate(struct rq *rq)
1da177e4 5403{
5d180232
PZ
5404 long delta = calc_load_fold_active(rq);
5405 if (delta)
5406 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5407}
5408
3f1d2a31
PZ
5409static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5410{
5411}
5412
5413static const struct sched_class fake_sched_class = {
5414 .put_prev_task = put_prev_task_fake,
5415};
5416
5417static struct task_struct fake_task = {
5418 /*
5419 * Avoid pull_{rt,dl}_task()
5420 */
5421 .prio = MAX_PRIO + 1,
5422 .sched_class = &fake_sched_class,
5423};
5424
48f24c4d 5425/*
48c5ccae
PZ
5426 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5427 * try_to_wake_up()->select_task_rq().
5428 *
5429 * Called with rq->lock held even though we'er in stop_machine() and
5430 * there's no concurrency possible, we hold the required locks anyway
5431 * because of lock validation efforts.
1da177e4 5432 */
5e16bbc2 5433static void migrate_tasks(struct rq *dead_rq)
1da177e4 5434{
5e16bbc2 5435 struct rq *rq = dead_rq;
48c5ccae 5436 struct task_struct *next, *stop = rq->stop;
e7904a28 5437 struct pin_cookie cookie;
48c5ccae 5438 int dest_cpu;
1da177e4
LT
5439
5440 /*
48c5ccae
PZ
5441 * Fudge the rq selection such that the below task selection loop
5442 * doesn't get stuck on the currently eligible stop task.
5443 *
5444 * We're currently inside stop_machine() and the rq is either stuck
5445 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5446 * either way we should never end up calling schedule() until we're
5447 * done here.
1da177e4 5448 */
48c5ccae 5449 rq->stop = NULL;
48f24c4d 5450
77bd3970
FW
5451 /*
5452 * put_prev_task() and pick_next_task() sched
5453 * class method both need to have an up-to-date
5454 * value of rq->clock[_task]
5455 */
5456 update_rq_clock(rq);
5457
5e16bbc2 5458 for (;;) {
48c5ccae
PZ
5459 /*
5460 * There's this thread running, bail when that's the only
5461 * remaining thread.
5462 */
5463 if (rq->nr_running == 1)
dd41f596 5464 break;
48c5ccae 5465
cbce1a68 5466 /*
5473e0cc 5467 * pick_next_task assumes pinned rq->lock.
cbce1a68 5468 */
e7904a28
PZ
5469 cookie = lockdep_pin_lock(&rq->lock);
5470 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5471 BUG_ON(!next);
79c53799 5472 next->sched_class->put_prev_task(rq, next);
e692ab53 5473
5473e0cc
WL
5474 /*
5475 * Rules for changing task_struct::cpus_allowed are holding
5476 * both pi_lock and rq->lock, such that holding either
5477 * stabilizes the mask.
5478 *
5479 * Drop rq->lock is not quite as disastrous as it usually is
5480 * because !cpu_active at this point, which means load-balance
5481 * will not interfere. Also, stop-machine.
5482 */
e7904a28 5483 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5484 raw_spin_unlock(&rq->lock);
5485 raw_spin_lock(&next->pi_lock);
5486 raw_spin_lock(&rq->lock);
5487
5488 /*
5489 * Since we're inside stop-machine, _nothing_ should have
5490 * changed the task, WARN if weird stuff happened, because in
5491 * that case the above rq->lock drop is a fail too.
5492 */
5493 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5494 raw_spin_unlock(&next->pi_lock);
5495 continue;
5496 }
5497
48c5ccae 5498 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5499 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5500
5e16bbc2
PZ
5501 rq = __migrate_task(rq, next, dest_cpu);
5502 if (rq != dead_rq) {
5503 raw_spin_unlock(&rq->lock);
5504 rq = dead_rq;
5505 raw_spin_lock(&rq->lock);
5506 }
5473e0cc 5507 raw_spin_unlock(&next->pi_lock);
1da177e4 5508 }
dce48a84 5509
48c5ccae 5510 rq->stop = stop;
dce48a84 5511}
1da177e4
LT
5512#endif /* CONFIG_HOTPLUG_CPU */
5513
1f11eb6a
GH
5514static void set_rq_online(struct rq *rq)
5515{
5516 if (!rq->online) {
5517 const struct sched_class *class;
5518
c6c4927b 5519 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5520 rq->online = 1;
5521
5522 for_each_class(class) {
5523 if (class->rq_online)
5524 class->rq_online(rq);
5525 }
5526 }
5527}
5528
5529static void set_rq_offline(struct rq *rq)
5530{
5531 if (rq->online) {
5532 const struct sched_class *class;
5533
5534 for_each_class(class) {
5535 if (class->rq_offline)
5536 class->rq_offline(rq);
5537 }
5538
c6c4927b 5539 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5540 rq->online = 0;
5541 }
5542}
5543
9cf7243d 5544static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5545{
969c7921 5546 struct rq *rq = cpu_rq(cpu);
1da177e4 5547
a803f026
CM
5548 rq->age_stamp = sched_clock_cpu(cpu);
5549}
5550
4cb98839
PZ
5551static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5552
3e9830dc 5553#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5554
d039ac60 5555static __read_mostly int sched_debug_enabled;
f6630114 5556
d039ac60 5557static int __init sched_debug_setup(char *str)
f6630114 5558{
d039ac60 5559 sched_debug_enabled = 1;
f6630114
MT
5560
5561 return 0;
5562}
d039ac60
PZ
5563early_param("sched_debug", sched_debug_setup);
5564
5565static inline bool sched_debug(void)
5566{
5567 return sched_debug_enabled;
5568}
f6630114 5569
7c16ec58 5570static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5571 struct cpumask *groupmask)
1da177e4 5572{
4dcf6aff 5573 struct sched_group *group = sd->groups;
1da177e4 5574
96f874e2 5575 cpumask_clear(groupmask);
4dcf6aff
IM
5576
5577 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5578
5579 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5580 printk("does not load-balance\n");
4dcf6aff 5581 if (sd->parent)
3df0fc5b
PZ
5582 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5583 " has parent");
4dcf6aff 5584 return -1;
41c7ce9a
NP
5585 }
5586
333470ee
TH
5587 printk(KERN_CONT "span %*pbl level %s\n",
5588 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5589
758b2cdc 5590 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5591 printk(KERN_ERR "ERROR: domain->span does not contain "
5592 "CPU%d\n", cpu);
4dcf6aff 5593 }
758b2cdc 5594 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5595 printk(KERN_ERR "ERROR: domain->groups does not contain"
5596 " CPU%d\n", cpu);
4dcf6aff 5597 }
1da177e4 5598
4dcf6aff 5599 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5600 do {
4dcf6aff 5601 if (!group) {
3df0fc5b
PZ
5602 printk("\n");
5603 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5604 break;
5605 }
5606
758b2cdc 5607 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5608 printk(KERN_CONT "\n");
5609 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5610 break;
5611 }
1da177e4 5612
cb83b629
PZ
5613 if (!(sd->flags & SD_OVERLAP) &&
5614 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5615 printk(KERN_CONT "\n");
5616 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5617 break;
5618 }
1da177e4 5619
758b2cdc 5620 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5621
333470ee
TH
5622 printk(KERN_CONT " %*pbl",
5623 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5624 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5625 printk(KERN_CONT " (cpu_capacity = %d)",
5626 group->sgc->capacity);
381512cf 5627 }
1da177e4 5628
4dcf6aff
IM
5629 group = group->next;
5630 } while (group != sd->groups);
3df0fc5b 5631 printk(KERN_CONT "\n");
1da177e4 5632
758b2cdc 5633 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5634 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5635
758b2cdc
RR
5636 if (sd->parent &&
5637 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5638 printk(KERN_ERR "ERROR: parent span is not a superset "
5639 "of domain->span\n");
4dcf6aff
IM
5640 return 0;
5641}
1da177e4 5642
4dcf6aff
IM
5643static void sched_domain_debug(struct sched_domain *sd, int cpu)
5644{
5645 int level = 0;
1da177e4 5646
d039ac60 5647 if (!sched_debug_enabled)
f6630114
MT
5648 return;
5649
4dcf6aff
IM
5650 if (!sd) {
5651 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5652 return;
5653 }
1da177e4 5654
4dcf6aff
IM
5655 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5656
5657 for (;;) {
4cb98839 5658 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5659 break;
1da177e4
LT
5660 level++;
5661 sd = sd->parent;
33859f7f 5662 if (!sd)
4dcf6aff
IM
5663 break;
5664 }
1da177e4 5665}
6d6bc0ad 5666#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5667# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5668static inline bool sched_debug(void)
5669{
5670 return false;
5671}
6d6bc0ad 5672#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5673
1a20ff27 5674static int sd_degenerate(struct sched_domain *sd)
245af2c7 5675{
758b2cdc 5676 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5677 return 1;
5678
5679 /* Following flags need at least 2 groups */
5680 if (sd->flags & (SD_LOAD_BALANCE |
5681 SD_BALANCE_NEWIDLE |
5682 SD_BALANCE_FORK |
89c4710e 5683 SD_BALANCE_EXEC |
5d4dfddd 5684 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5685 SD_SHARE_PKG_RESOURCES |
5686 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5687 if (sd->groups != sd->groups->next)
5688 return 0;
5689 }
5690
5691 /* Following flags don't use groups */
c88d5910 5692 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5693 return 0;
5694
5695 return 1;
5696}
5697
48f24c4d
IM
5698static int
5699sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5700{
5701 unsigned long cflags = sd->flags, pflags = parent->flags;
5702
5703 if (sd_degenerate(parent))
5704 return 1;
5705
758b2cdc 5706 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5707 return 0;
5708
245af2c7
SS
5709 /* Flags needing groups don't count if only 1 group in parent */
5710 if (parent->groups == parent->groups->next) {
5711 pflags &= ~(SD_LOAD_BALANCE |
5712 SD_BALANCE_NEWIDLE |
5713 SD_BALANCE_FORK |
89c4710e 5714 SD_BALANCE_EXEC |
5d4dfddd 5715 SD_SHARE_CPUCAPACITY |
10866e62 5716 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5717 SD_PREFER_SIBLING |
5718 SD_SHARE_POWERDOMAIN);
5436499e
KC
5719 if (nr_node_ids == 1)
5720 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5721 }
5722 if (~cflags & pflags)
5723 return 0;
5724
5725 return 1;
5726}
5727
dce840a0 5728static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5729{
dce840a0 5730 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5731
68e74568 5732 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5733 cpudl_cleanup(&rd->cpudl);
1baca4ce 5734 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5735 free_cpumask_var(rd->rto_mask);
5736 free_cpumask_var(rd->online);
5737 free_cpumask_var(rd->span);
5738 kfree(rd);
5739}
5740
57d885fe
GH
5741static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5742{
a0490fa3 5743 struct root_domain *old_rd = NULL;
57d885fe 5744 unsigned long flags;
57d885fe 5745
05fa785c 5746 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5747
5748 if (rq->rd) {
a0490fa3 5749 old_rd = rq->rd;
57d885fe 5750
c6c4927b 5751 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5752 set_rq_offline(rq);
57d885fe 5753
c6c4927b 5754 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5755
a0490fa3 5756 /*
0515973f 5757 * If we dont want to free the old_rd yet then
a0490fa3
IM
5758 * set old_rd to NULL to skip the freeing later
5759 * in this function:
5760 */
5761 if (!atomic_dec_and_test(&old_rd->refcount))
5762 old_rd = NULL;
57d885fe
GH
5763 }
5764
5765 atomic_inc(&rd->refcount);
5766 rq->rd = rd;
5767
c6c4927b 5768 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5769 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5770 set_rq_online(rq);
57d885fe 5771
05fa785c 5772 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5773
5774 if (old_rd)
dce840a0 5775 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5776}
5777
68c38fc3 5778static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5779{
5780 memset(rd, 0, sizeof(*rd));
5781
8295c699 5782 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5783 goto out;
8295c699 5784 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5785 goto free_span;
8295c699 5786 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5787 goto free_online;
8295c699 5788 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5789 goto free_dlo_mask;
6e0534f2 5790
332ac17e 5791 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5792 if (cpudl_init(&rd->cpudl) != 0)
5793 goto free_dlo_mask;
332ac17e 5794
68c38fc3 5795 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5796 goto free_rto_mask;
c6c4927b 5797 return 0;
6e0534f2 5798
68e74568
RR
5799free_rto_mask:
5800 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5801free_dlo_mask:
5802 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5803free_online:
5804 free_cpumask_var(rd->online);
5805free_span:
5806 free_cpumask_var(rd->span);
0c910d28 5807out:
c6c4927b 5808 return -ENOMEM;
57d885fe
GH
5809}
5810
029632fb
PZ
5811/*
5812 * By default the system creates a single root-domain with all cpus as
5813 * members (mimicking the global state we have today).
5814 */
5815struct root_domain def_root_domain;
5816
57d885fe
GH
5817static void init_defrootdomain(void)
5818{
68c38fc3 5819 init_rootdomain(&def_root_domain);
c6c4927b 5820
57d885fe
GH
5821 atomic_set(&def_root_domain.refcount, 1);
5822}
5823
dc938520 5824static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5825{
5826 struct root_domain *rd;
5827
5828 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5829 if (!rd)
5830 return NULL;
5831
68c38fc3 5832 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5833 kfree(rd);
5834 return NULL;
5835 }
57d885fe
GH
5836
5837 return rd;
5838}
5839
63b2ca30 5840static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5841{
5842 struct sched_group *tmp, *first;
5843
5844 if (!sg)
5845 return;
5846
5847 first = sg;
5848 do {
5849 tmp = sg->next;
5850
63b2ca30
NP
5851 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5852 kfree(sg->sgc);
e3589f6c
PZ
5853
5854 kfree(sg);
5855 sg = tmp;
5856 } while (sg != first);
5857}
5858
dce840a0
PZ
5859static void free_sched_domain(struct rcu_head *rcu)
5860{
5861 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5862
5863 /*
5864 * If its an overlapping domain it has private groups, iterate and
5865 * nuke them all.
5866 */
5867 if (sd->flags & SD_OVERLAP) {
5868 free_sched_groups(sd->groups, 1);
5869 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5870 kfree(sd->groups->sgc);
dce840a0 5871 kfree(sd->groups);
9c3f75cb 5872 }
dce840a0
PZ
5873 kfree(sd);
5874}
5875
5876static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5877{
5878 call_rcu(&sd->rcu, free_sched_domain);
5879}
5880
5881static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5882{
5883 for (; sd; sd = sd->parent)
5884 destroy_sched_domain(sd, cpu);
5885}
5886
518cd623
PZ
5887/*
5888 * Keep a special pointer to the highest sched_domain that has
5889 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5890 * allows us to avoid some pointer chasing select_idle_sibling().
5891 *
5892 * Also keep a unique ID per domain (we use the first cpu number in
5893 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5894 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5895 */
5896DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5897DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5898DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5899DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5900DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5901DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5902
5903static void update_top_cache_domain(int cpu)
5904{
5905 struct sched_domain *sd;
5d4cf996 5906 struct sched_domain *busy_sd = NULL;
518cd623 5907 int id = cpu;
7d9ffa89 5908 int size = 1;
518cd623
PZ
5909
5910 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5911 if (sd) {
518cd623 5912 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5913 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5914 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5915 }
5d4cf996 5916 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5917
5918 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5919 per_cpu(sd_llc_size, cpu) = size;
518cd623 5920 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5921
5922 sd = lowest_flag_domain(cpu, SD_NUMA);
5923 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5924
5925 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5926 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5927}
5928
1da177e4 5929/*
0eab9146 5930 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5931 * hold the hotplug lock.
5932 */
0eab9146
IM
5933static void
5934cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5935{
70b97a7f 5936 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5937 struct sched_domain *tmp;
5938
5939 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5940 for (tmp = sd; tmp; ) {
245af2c7
SS
5941 struct sched_domain *parent = tmp->parent;
5942 if (!parent)
5943 break;
f29c9b1c 5944
1a848870 5945 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5946 tmp->parent = parent->parent;
1a848870
SS
5947 if (parent->parent)
5948 parent->parent->child = tmp;
10866e62
PZ
5949 /*
5950 * Transfer SD_PREFER_SIBLING down in case of a
5951 * degenerate parent; the spans match for this
5952 * so the property transfers.
5953 */
5954 if (parent->flags & SD_PREFER_SIBLING)
5955 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5956 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5957 } else
5958 tmp = tmp->parent;
245af2c7
SS
5959 }
5960
1a848870 5961 if (sd && sd_degenerate(sd)) {
dce840a0 5962 tmp = sd;
245af2c7 5963 sd = sd->parent;
dce840a0 5964 destroy_sched_domain(tmp, cpu);
1a848870
SS
5965 if (sd)
5966 sd->child = NULL;
5967 }
1da177e4 5968
4cb98839 5969 sched_domain_debug(sd, cpu);
1da177e4 5970
57d885fe 5971 rq_attach_root(rq, rd);
dce840a0 5972 tmp = rq->sd;
674311d5 5973 rcu_assign_pointer(rq->sd, sd);
dce840a0 5974 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5975
5976 update_top_cache_domain(cpu);
1da177e4
LT
5977}
5978
1da177e4
LT
5979/* Setup the mask of cpus configured for isolated domains */
5980static int __init isolated_cpu_setup(char *str)
5981{
a6e4491c
PB
5982 int ret;
5983
bdddd296 5984 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5985 ret = cpulist_parse(str, cpu_isolated_map);
5986 if (ret) {
5987 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5988 return 0;
5989 }
1da177e4
LT
5990 return 1;
5991}
8927f494 5992__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5993
49a02c51 5994struct s_data {
21d42ccf 5995 struct sched_domain ** __percpu sd;
49a02c51
AH
5996 struct root_domain *rd;
5997};
5998
2109b99e 5999enum s_alloc {
2109b99e 6000 sa_rootdomain,
21d42ccf 6001 sa_sd,
dce840a0 6002 sa_sd_storage,
2109b99e
AH
6003 sa_none,
6004};
6005
c1174876
PZ
6006/*
6007 * Build an iteration mask that can exclude certain CPUs from the upwards
6008 * domain traversal.
6009 *
6010 * Asymmetric node setups can result in situations where the domain tree is of
6011 * unequal depth, make sure to skip domains that already cover the entire
6012 * range.
6013 *
6014 * In that case build_sched_domains() will have terminated the iteration early
6015 * and our sibling sd spans will be empty. Domains should always include the
6016 * cpu they're built on, so check that.
6017 *
6018 */
6019static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6020{
6021 const struct cpumask *span = sched_domain_span(sd);
6022 struct sd_data *sdd = sd->private;
6023 struct sched_domain *sibling;
6024 int i;
6025
6026 for_each_cpu(i, span) {
6027 sibling = *per_cpu_ptr(sdd->sd, i);
6028 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6029 continue;
6030
6031 cpumask_set_cpu(i, sched_group_mask(sg));
6032 }
6033}
6034
6035/*
6036 * Return the canonical balance cpu for this group, this is the first cpu
6037 * of this group that's also in the iteration mask.
6038 */
6039int group_balance_cpu(struct sched_group *sg)
6040{
6041 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6042}
6043
e3589f6c
PZ
6044static int
6045build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6046{
6047 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6048 const struct cpumask *span = sched_domain_span(sd);
6049 struct cpumask *covered = sched_domains_tmpmask;
6050 struct sd_data *sdd = sd->private;
aaecac4a 6051 struct sched_domain *sibling;
e3589f6c
PZ
6052 int i;
6053
6054 cpumask_clear(covered);
6055
6056 for_each_cpu(i, span) {
6057 struct cpumask *sg_span;
6058
6059 if (cpumask_test_cpu(i, covered))
6060 continue;
6061
aaecac4a 6062 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6063
6064 /* See the comment near build_group_mask(). */
aaecac4a 6065 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6066 continue;
6067
e3589f6c 6068 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6069 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6070
6071 if (!sg)
6072 goto fail;
6073
6074 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6075 if (sibling->child)
6076 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6077 else
e3589f6c
PZ
6078 cpumask_set_cpu(i, sg_span);
6079
6080 cpumask_or(covered, covered, sg_span);
6081
63b2ca30
NP
6082 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6083 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6084 build_group_mask(sd, sg);
6085
c3decf0d 6086 /*
63b2ca30 6087 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6088 * domains and no possible iteration will get us here, we won't
6089 * die on a /0 trap.
6090 */
ca8ce3d0 6091 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6092
c1174876
PZ
6093 /*
6094 * Make sure the first group of this domain contains the
6095 * canonical balance cpu. Otherwise the sched_domain iteration
6096 * breaks. See update_sg_lb_stats().
6097 */
74a5ce20 6098 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6099 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6100 groups = sg;
6101
6102 if (!first)
6103 first = sg;
6104 if (last)
6105 last->next = sg;
6106 last = sg;
6107 last->next = first;
6108 }
6109 sd->groups = groups;
6110
6111 return 0;
6112
6113fail:
6114 free_sched_groups(first, 0);
6115
6116 return -ENOMEM;
6117}
6118
dce840a0 6119static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6120{
dce840a0
PZ
6121 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6122 struct sched_domain *child = sd->child;
1da177e4 6123
dce840a0
PZ
6124 if (child)
6125 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6126
9c3f75cb 6127 if (sg) {
dce840a0 6128 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6129 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6130 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6131 }
dce840a0
PZ
6132
6133 return cpu;
1e9f28fa 6134}
1e9f28fa 6135
01a08546 6136/*
dce840a0
PZ
6137 * build_sched_groups will build a circular linked list of the groups
6138 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6139 * and ->cpu_capacity to 0.
e3589f6c
PZ
6140 *
6141 * Assumes the sched_domain tree is fully constructed
01a08546 6142 */
e3589f6c
PZ
6143static int
6144build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6145{
dce840a0
PZ
6146 struct sched_group *first = NULL, *last = NULL;
6147 struct sd_data *sdd = sd->private;
6148 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6149 struct cpumask *covered;
dce840a0 6150 int i;
9c1cfda2 6151
e3589f6c
PZ
6152 get_group(cpu, sdd, &sd->groups);
6153 atomic_inc(&sd->groups->ref);
6154
0936629f 6155 if (cpu != cpumask_first(span))
e3589f6c
PZ
6156 return 0;
6157
f96225fd
PZ
6158 lockdep_assert_held(&sched_domains_mutex);
6159 covered = sched_domains_tmpmask;
6160
dce840a0 6161 cpumask_clear(covered);
6711cab4 6162
dce840a0
PZ
6163 for_each_cpu(i, span) {
6164 struct sched_group *sg;
cd08e923 6165 int group, j;
6711cab4 6166
dce840a0
PZ
6167 if (cpumask_test_cpu(i, covered))
6168 continue;
6711cab4 6169
cd08e923 6170 group = get_group(i, sdd, &sg);
c1174876 6171 cpumask_setall(sched_group_mask(sg));
0601a88d 6172
dce840a0
PZ
6173 for_each_cpu(j, span) {
6174 if (get_group(j, sdd, NULL) != group)
6175 continue;
0601a88d 6176
dce840a0
PZ
6177 cpumask_set_cpu(j, covered);
6178 cpumask_set_cpu(j, sched_group_cpus(sg));
6179 }
0601a88d 6180
dce840a0
PZ
6181 if (!first)
6182 first = sg;
6183 if (last)
6184 last->next = sg;
6185 last = sg;
6186 }
6187 last->next = first;
e3589f6c
PZ
6188
6189 return 0;
0601a88d 6190}
51888ca2 6191
89c4710e 6192/*
63b2ca30 6193 * Initialize sched groups cpu_capacity.
89c4710e 6194 *
63b2ca30 6195 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6196 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6197 * Typically cpu_capacity for all the groups in a sched domain will be same
6198 * unless there are asymmetries in the topology. If there are asymmetries,
6199 * group having more cpu_capacity will pickup more load compared to the
6200 * group having less cpu_capacity.
89c4710e 6201 */
63b2ca30 6202static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6203{
e3589f6c 6204 struct sched_group *sg = sd->groups;
89c4710e 6205
94c95ba6 6206 WARN_ON(!sg);
e3589f6c
PZ
6207
6208 do {
6209 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6210 sg = sg->next;
6211 } while (sg != sd->groups);
89c4710e 6212
c1174876 6213 if (cpu != group_balance_cpu(sg))
e3589f6c 6214 return;
aae6d3dd 6215
63b2ca30
NP
6216 update_group_capacity(sd, cpu);
6217 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6218}
6219
7c16ec58
MT
6220/*
6221 * Initializers for schedule domains
6222 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6223 */
6224
1d3504fc 6225static int default_relax_domain_level = -1;
60495e77 6226int sched_domain_level_max;
1d3504fc
HS
6227
6228static int __init setup_relax_domain_level(char *str)
6229{
a841f8ce
DS
6230 if (kstrtoint(str, 0, &default_relax_domain_level))
6231 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6232
1d3504fc
HS
6233 return 1;
6234}
6235__setup("relax_domain_level=", setup_relax_domain_level);
6236
6237static void set_domain_attribute(struct sched_domain *sd,
6238 struct sched_domain_attr *attr)
6239{
6240 int request;
6241
6242 if (!attr || attr->relax_domain_level < 0) {
6243 if (default_relax_domain_level < 0)
6244 return;
6245 else
6246 request = default_relax_domain_level;
6247 } else
6248 request = attr->relax_domain_level;
6249 if (request < sd->level) {
6250 /* turn off idle balance on this domain */
c88d5910 6251 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6252 } else {
6253 /* turn on idle balance on this domain */
c88d5910 6254 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6255 }
6256}
6257
54ab4ff4
PZ
6258static void __sdt_free(const struct cpumask *cpu_map);
6259static int __sdt_alloc(const struct cpumask *cpu_map);
6260
2109b99e
AH
6261static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6262 const struct cpumask *cpu_map)
6263{
6264 switch (what) {
2109b99e 6265 case sa_rootdomain:
822ff793
PZ
6266 if (!atomic_read(&d->rd->refcount))
6267 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6268 case sa_sd:
6269 free_percpu(d->sd); /* fall through */
dce840a0 6270 case sa_sd_storage:
54ab4ff4 6271 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6272 case sa_none:
6273 break;
6274 }
6275}
3404c8d9 6276
2109b99e
AH
6277static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6278 const struct cpumask *cpu_map)
6279{
dce840a0
PZ
6280 memset(d, 0, sizeof(*d));
6281
54ab4ff4
PZ
6282 if (__sdt_alloc(cpu_map))
6283 return sa_sd_storage;
dce840a0
PZ
6284 d->sd = alloc_percpu(struct sched_domain *);
6285 if (!d->sd)
6286 return sa_sd_storage;
2109b99e 6287 d->rd = alloc_rootdomain();
dce840a0 6288 if (!d->rd)
21d42ccf 6289 return sa_sd;
2109b99e
AH
6290 return sa_rootdomain;
6291}
57d885fe 6292
dce840a0
PZ
6293/*
6294 * NULL the sd_data elements we've used to build the sched_domain and
6295 * sched_group structure so that the subsequent __free_domain_allocs()
6296 * will not free the data we're using.
6297 */
6298static void claim_allocations(int cpu, struct sched_domain *sd)
6299{
6300 struct sd_data *sdd = sd->private;
dce840a0
PZ
6301
6302 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6303 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6304
e3589f6c 6305 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6306 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6307
63b2ca30
NP
6308 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6309 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6310}
6311
cb83b629 6312#ifdef CONFIG_NUMA
cb83b629 6313static int sched_domains_numa_levels;
e3fe70b1 6314enum numa_topology_type sched_numa_topology_type;
cb83b629 6315static int *sched_domains_numa_distance;
9942f79b 6316int sched_max_numa_distance;
cb83b629
PZ
6317static struct cpumask ***sched_domains_numa_masks;
6318static int sched_domains_curr_level;
143e1e28 6319#endif
cb83b629 6320
143e1e28
VG
6321/*
6322 * SD_flags allowed in topology descriptions.
6323 *
5d4dfddd 6324 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6325 * SD_SHARE_PKG_RESOURCES - describes shared caches
6326 * SD_NUMA - describes NUMA topologies
d77b3ed5 6327 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6328 *
6329 * Odd one out:
6330 * SD_ASYM_PACKING - describes SMT quirks
6331 */
6332#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6333 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6334 SD_SHARE_PKG_RESOURCES | \
6335 SD_NUMA | \
d77b3ed5
VG
6336 SD_ASYM_PACKING | \
6337 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6338
6339static struct sched_domain *
143e1e28 6340sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6341{
6342 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6343 int sd_weight, sd_flags = 0;
6344
6345#ifdef CONFIG_NUMA
6346 /*
6347 * Ugly hack to pass state to sd_numa_mask()...
6348 */
6349 sched_domains_curr_level = tl->numa_level;
6350#endif
6351
6352 sd_weight = cpumask_weight(tl->mask(cpu));
6353
6354 if (tl->sd_flags)
6355 sd_flags = (*tl->sd_flags)();
6356 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6357 "wrong sd_flags in topology description\n"))
6358 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6359
6360 *sd = (struct sched_domain){
6361 .min_interval = sd_weight,
6362 .max_interval = 2*sd_weight,
6363 .busy_factor = 32,
870a0bb5 6364 .imbalance_pct = 125,
143e1e28
VG
6365
6366 .cache_nice_tries = 0,
6367 .busy_idx = 0,
6368 .idle_idx = 0,
cb83b629
PZ
6369 .newidle_idx = 0,
6370 .wake_idx = 0,
6371 .forkexec_idx = 0,
6372
6373 .flags = 1*SD_LOAD_BALANCE
6374 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6375 | 1*SD_BALANCE_EXEC
6376 | 1*SD_BALANCE_FORK
cb83b629 6377 | 0*SD_BALANCE_WAKE
143e1e28 6378 | 1*SD_WAKE_AFFINE
5d4dfddd 6379 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6380 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6381 | 0*SD_SERIALIZE
cb83b629 6382 | 0*SD_PREFER_SIBLING
143e1e28
VG
6383 | 0*SD_NUMA
6384 | sd_flags
cb83b629 6385 ,
143e1e28 6386
cb83b629
PZ
6387 .last_balance = jiffies,
6388 .balance_interval = sd_weight,
143e1e28 6389 .smt_gain = 0,
2b4cfe64
JL
6390 .max_newidle_lb_cost = 0,
6391 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6392#ifdef CONFIG_SCHED_DEBUG
6393 .name = tl->name,
6394#endif
cb83b629 6395 };
cb83b629
PZ
6396
6397 /*
143e1e28 6398 * Convert topological properties into behaviour.
cb83b629 6399 */
143e1e28 6400
5d4dfddd 6401 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6402 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6403 sd->imbalance_pct = 110;
6404 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6405
6406 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6407 sd->imbalance_pct = 117;
6408 sd->cache_nice_tries = 1;
6409 sd->busy_idx = 2;
6410
6411#ifdef CONFIG_NUMA
6412 } else if (sd->flags & SD_NUMA) {
6413 sd->cache_nice_tries = 2;
6414 sd->busy_idx = 3;
6415 sd->idle_idx = 2;
6416
6417 sd->flags |= SD_SERIALIZE;
6418 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6419 sd->flags &= ~(SD_BALANCE_EXEC |
6420 SD_BALANCE_FORK |
6421 SD_WAKE_AFFINE);
6422 }
6423
6424#endif
6425 } else {
6426 sd->flags |= SD_PREFER_SIBLING;
6427 sd->cache_nice_tries = 1;
6428 sd->busy_idx = 2;
6429 sd->idle_idx = 1;
6430 }
6431
6432 sd->private = &tl->data;
cb83b629
PZ
6433
6434 return sd;
6435}
6436
143e1e28
VG
6437/*
6438 * Topology list, bottom-up.
6439 */
6440static struct sched_domain_topology_level default_topology[] = {
6441#ifdef CONFIG_SCHED_SMT
6442 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6443#endif
6444#ifdef CONFIG_SCHED_MC
6445 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6446#endif
6447 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6448 { NULL, },
6449};
6450
c6e1e7b5
JG
6451static struct sched_domain_topology_level *sched_domain_topology =
6452 default_topology;
143e1e28
VG
6453
6454#define for_each_sd_topology(tl) \
6455 for (tl = sched_domain_topology; tl->mask; tl++)
6456
6457void set_sched_topology(struct sched_domain_topology_level *tl)
6458{
6459 sched_domain_topology = tl;
6460}
6461
6462#ifdef CONFIG_NUMA
6463
cb83b629
PZ
6464static const struct cpumask *sd_numa_mask(int cpu)
6465{
6466 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6467}
6468
d039ac60
PZ
6469static void sched_numa_warn(const char *str)
6470{
6471 static int done = false;
6472 int i,j;
6473
6474 if (done)
6475 return;
6476
6477 done = true;
6478
6479 printk(KERN_WARNING "ERROR: %s\n\n", str);
6480
6481 for (i = 0; i < nr_node_ids; i++) {
6482 printk(KERN_WARNING " ");
6483 for (j = 0; j < nr_node_ids; j++)
6484 printk(KERN_CONT "%02d ", node_distance(i,j));
6485 printk(KERN_CONT "\n");
6486 }
6487 printk(KERN_WARNING "\n");
6488}
6489
9942f79b 6490bool find_numa_distance(int distance)
d039ac60
PZ
6491{
6492 int i;
6493
6494 if (distance == node_distance(0, 0))
6495 return true;
6496
6497 for (i = 0; i < sched_domains_numa_levels; i++) {
6498 if (sched_domains_numa_distance[i] == distance)
6499 return true;
6500 }
6501
6502 return false;
6503}
6504
e3fe70b1
RR
6505/*
6506 * A system can have three types of NUMA topology:
6507 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6508 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6509 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6510 *
6511 * The difference between a glueless mesh topology and a backplane
6512 * topology lies in whether communication between not directly
6513 * connected nodes goes through intermediary nodes (where programs
6514 * could run), or through backplane controllers. This affects
6515 * placement of programs.
6516 *
6517 * The type of topology can be discerned with the following tests:
6518 * - If the maximum distance between any nodes is 1 hop, the system
6519 * is directly connected.
6520 * - If for two nodes A and B, located N > 1 hops away from each other,
6521 * there is an intermediary node C, which is < N hops away from both
6522 * nodes A and B, the system is a glueless mesh.
6523 */
6524static void init_numa_topology_type(void)
6525{
6526 int a, b, c, n;
6527
6528 n = sched_max_numa_distance;
6529
e237882b 6530 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6531 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6532 return;
6533 }
e3fe70b1
RR
6534
6535 for_each_online_node(a) {
6536 for_each_online_node(b) {
6537 /* Find two nodes furthest removed from each other. */
6538 if (node_distance(a, b) < n)
6539 continue;
6540
6541 /* Is there an intermediary node between a and b? */
6542 for_each_online_node(c) {
6543 if (node_distance(a, c) < n &&
6544 node_distance(b, c) < n) {
6545 sched_numa_topology_type =
6546 NUMA_GLUELESS_MESH;
6547 return;
6548 }
6549 }
6550
6551 sched_numa_topology_type = NUMA_BACKPLANE;
6552 return;
6553 }
6554 }
6555}
6556
cb83b629
PZ
6557static void sched_init_numa(void)
6558{
6559 int next_distance, curr_distance = node_distance(0, 0);
6560 struct sched_domain_topology_level *tl;
6561 int level = 0;
6562 int i, j, k;
6563
cb83b629
PZ
6564 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6565 if (!sched_domains_numa_distance)
6566 return;
6567
6568 /*
6569 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6570 * unique distances in the node_distance() table.
6571 *
6572 * Assumes node_distance(0,j) includes all distances in
6573 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6574 */
6575 next_distance = curr_distance;
6576 for (i = 0; i < nr_node_ids; i++) {
6577 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6578 for (k = 0; k < nr_node_ids; k++) {
6579 int distance = node_distance(i, k);
6580
6581 if (distance > curr_distance &&
6582 (distance < next_distance ||
6583 next_distance == curr_distance))
6584 next_distance = distance;
6585
6586 /*
6587 * While not a strong assumption it would be nice to know
6588 * about cases where if node A is connected to B, B is not
6589 * equally connected to A.
6590 */
6591 if (sched_debug() && node_distance(k, i) != distance)
6592 sched_numa_warn("Node-distance not symmetric");
6593
6594 if (sched_debug() && i && !find_numa_distance(distance))
6595 sched_numa_warn("Node-0 not representative");
6596 }
6597 if (next_distance != curr_distance) {
6598 sched_domains_numa_distance[level++] = next_distance;
6599 sched_domains_numa_levels = level;
6600 curr_distance = next_distance;
6601 } else break;
cb83b629 6602 }
d039ac60
PZ
6603
6604 /*
6605 * In case of sched_debug() we verify the above assumption.
6606 */
6607 if (!sched_debug())
6608 break;
cb83b629 6609 }
c123588b
AR
6610
6611 if (!level)
6612 return;
6613
cb83b629
PZ
6614 /*
6615 * 'level' contains the number of unique distances, excluding the
6616 * identity distance node_distance(i,i).
6617 *
28b4a521 6618 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6619 * numbers.
6620 */
6621
5f7865f3
TC
6622 /*
6623 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6624 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6625 * the array will contain less then 'level' members. This could be
6626 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6627 * in other functions.
6628 *
6629 * We reset it to 'level' at the end of this function.
6630 */
6631 sched_domains_numa_levels = 0;
6632
cb83b629
PZ
6633 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6634 if (!sched_domains_numa_masks)
6635 return;
6636
6637 /*
6638 * Now for each level, construct a mask per node which contains all
6639 * cpus of nodes that are that many hops away from us.
6640 */
6641 for (i = 0; i < level; i++) {
6642 sched_domains_numa_masks[i] =
6643 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6644 if (!sched_domains_numa_masks[i])
6645 return;
6646
6647 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6648 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6649 if (!mask)
6650 return;
6651
6652 sched_domains_numa_masks[i][j] = mask;
6653
9c03ee14 6654 for_each_node(k) {
dd7d8634 6655 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6656 continue;
6657
6658 cpumask_or(mask, mask, cpumask_of_node(k));
6659 }
6660 }
6661 }
6662
143e1e28
VG
6663 /* Compute default topology size */
6664 for (i = 0; sched_domain_topology[i].mask; i++);
6665
c515db8c 6666 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6667 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6668 if (!tl)
6669 return;
6670
6671 /*
6672 * Copy the default topology bits..
6673 */
143e1e28
VG
6674 for (i = 0; sched_domain_topology[i].mask; i++)
6675 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6676
6677 /*
6678 * .. and append 'j' levels of NUMA goodness.
6679 */
6680 for (j = 0; j < level; i++, j++) {
6681 tl[i] = (struct sched_domain_topology_level){
cb83b629 6682 .mask = sd_numa_mask,
143e1e28 6683 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6684 .flags = SDTL_OVERLAP,
6685 .numa_level = j,
143e1e28 6686 SD_INIT_NAME(NUMA)
cb83b629
PZ
6687 };
6688 }
6689
6690 sched_domain_topology = tl;
5f7865f3
TC
6691
6692 sched_domains_numa_levels = level;
9942f79b 6693 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6694
6695 init_numa_topology_type();
cb83b629 6696}
301a5cba 6697
135fb3e1 6698static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6699{
301a5cba 6700 int node = cpu_to_node(cpu);
135fb3e1 6701 int i, j;
301a5cba
TC
6702
6703 for (i = 0; i < sched_domains_numa_levels; i++) {
6704 for (j = 0; j < nr_node_ids; j++) {
6705 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6706 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6707 }
6708 }
6709}
6710
135fb3e1 6711static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6712{
6713 int i, j;
135fb3e1 6714
301a5cba
TC
6715 for (i = 0; i < sched_domains_numa_levels; i++) {
6716 for (j = 0; j < nr_node_ids; j++)
6717 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6718 }
6719}
6720
cb83b629 6721#else
135fb3e1
TG
6722static inline void sched_init_numa(void) { }
6723static void sched_domains_numa_masks_set(unsigned int cpu) { }
6724static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6725#endif /* CONFIG_NUMA */
6726
54ab4ff4
PZ
6727static int __sdt_alloc(const struct cpumask *cpu_map)
6728{
6729 struct sched_domain_topology_level *tl;
6730 int j;
6731
27723a68 6732 for_each_sd_topology(tl) {
54ab4ff4
PZ
6733 struct sd_data *sdd = &tl->data;
6734
6735 sdd->sd = alloc_percpu(struct sched_domain *);
6736 if (!sdd->sd)
6737 return -ENOMEM;
6738
6739 sdd->sg = alloc_percpu(struct sched_group *);
6740 if (!sdd->sg)
6741 return -ENOMEM;
6742
63b2ca30
NP
6743 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6744 if (!sdd->sgc)
9c3f75cb
PZ
6745 return -ENOMEM;
6746
54ab4ff4
PZ
6747 for_each_cpu(j, cpu_map) {
6748 struct sched_domain *sd;
6749 struct sched_group *sg;
63b2ca30 6750 struct sched_group_capacity *sgc;
54ab4ff4 6751
5cc389bc 6752 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6753 GFP_KERNEL, cpu_to_node(j));
6754 if (!sd)
6755 return -ENOMEM;
6756
6757 *per_cpu_ptr(sdd->sd, j) = sd;
6758
6759 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6760 GFP_KERNEL, cpu_to_node(j));
6761 if (!sg)
6762 return -ENOMEM;
6763
30b4e9eb
IM
6764 sg->next = sg;
6765
54ab4ff4 6766 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6767
63b2ca30 6768 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6769 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6770 if (!sgc)
9c3f75cb
PZ
6771 return -ENOMEM;
6772
63b2ca30 6773 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6774 }
6775 }
6776
6777 return 0;
6778}
6779
6780static void __sdt_free(const struct cpumask *cpu_map)
6781{
6782 struct sched_domain_topology_level *tl;
6783 int j;
6784
27723a68 6785 for_each_sd_topology(tl) {
54ab4ff4
PZ
6786 struct sd_data *sdd = &tl->data;
6787
6788 for_each_cpu(j, cpu_map) {
fb2cf2c6 6789 struct sched_domain *sd;
6790
6791 if (sdd->sd) {
6792 sd = *per_cpu_ptr(sdd->sd, j);
6793 if (sd && (sd->flags & SD_OVERLAP))
6794 free_sched_groups(sd->groups, 0);
6795 kfree(*per_cpu_ptr(sdd->sd, j));
6796 }
6797
6798 if (sdd->sg)
6799 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6800 if (sdd->sgc)
6801 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6802 }
6803 free_percpu(sdd->sd);
fb2cf2c6 6804 sdd->sd = NULL;
54ab4ff4 6805 free_percpu(sdd->sg);
fb2cf2c6 6806 sdd->sg = NULL;
63b2ca30
NP
6807 free_percpu(sdd->sgc);
6808 sdd->sgc = NULL;
54ab4ff4
PZ
6809 }
6810}
6811
2c402dc3 6812struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6813 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6814 struct sched_domain *child, int cpu)
2c402dc3 6815{
143e1e28 6816 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6817 if (!sd)
d069b916 6818 return child;
2c402dc3 6819
2c402dc3 6820 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6821 if (child) {
6822 sd->level = child->level + 1;
6823 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6824 child->parent = sd;
c75e0128 6825 sd->child = child;
6ae72dff
PZ
6826
6827 if (!cpumask_subset(sched_domain_span(child),
6828 sched_domain_span(sd))) {
6829 pr_err("BUG: arch topology borken\n");
6830#ifdef CONFIG_SCHED_DEBUG
6831 pr_err(" the %s domain not a subset of the %s domain\n",
6832 child->name, sd->name);
6833#endif
6834 /* Fixup, ensure @sd has at least @child cpus. */
6835 cpumask_or(sched_domain_span(sd),
6836 sched_domain_span(sd),
6837 sched_domain_span(child));
6838 }
6839
60495e77 6840 }
a841f8ce 6841 set_domain_attribute(sd, attr);
2c402dc3
PZ
6842
6843 return sd;
6844}
6845
2109b99e
AH
6846/*
6847 * Build sched domains for a given set of cpus and attach the sched domains
6848 * to the individual cpus
6849 */
dce840a0
PZ
6850static int build_sched_domains(const struct cpumask *cpu_map,
6851 struct sched_domain_attr *attr)
2109b99e 6852{
1c632169 6853 enum s_alloc alloc_state;
dce840a0 6854 struct sched_domain *sd;
2109b99e 6855 struct s_data d;
822ff793 6856 int i, ret = -ENOMEM;
9c1cfda2 6857
2109b99e
AH
6858 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6859 if (alloc_state != sa_rootdomain)
6860 goto error;
9c1cfda2 6861
dce840a0 6862 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6863 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6864 struct sched_domain_topology_level *tl;
6865
3bd65a80 6866 sd = NULL;
27723a68 6867 for_each_sd_topology(tl) {
4a850cbe 6868 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6869 if (tl == sched_domain_topology)
6870 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6871 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6872 sd->flags |= SD_OVERLAP;
d110235d
PZ
6873 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6874 break;
e3589f6c 6875 }
dce840a0
PZ
6876 }
6877
6878 /* Build the groups for the domains */
6879 for_each_cpu(i, cpu_map) {
6880 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6881 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6882 if (sd->flags & SD_OVERLAP) {
6883 if (build_overlap_sched_groups(sd, i))
6884 goto error;
6885 } else {
6886 if (build_sched_groups(sd, i))
6887 goto error;
6888 }
1cf51902 6889 }
a06dadbe 6890 }
9c1cfda2 6891
ced549fa 6892 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6893 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6894 if (!cpumask_test_cpu(i, cpu_map))
6895 continue;
9c1cfda2 6896
dce840a0
PZ
6897 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6898 claim_allocations(i, sd);
63b2ca30 6899 init_sched_groups_capacity(i, sd);
dce840a0 6900 }
f712c0c7 6901 }
9c1cfda2 6902
1da177e4 6903 /* Attach the domains */
dce840a0 6904 rcu_read_lock();
abcd083a 6905 for_each_cpu(i, cpu_map) {
21d42ccf 6906 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6907 cpu_attach_domain(sd, d.rd, i);
1da177e4 6908 }
dce840a0 6909 rcu_read_unlock();
51888ca2 6910
822ff793 6911 ret = 0;
51888ca2 6912error:
2109b99e 6913 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6914 return ret;
1da177e4 6915}
029190c5 6916
acc3f5d7 6917static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6918static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6919static struct sched_domain_attr *dattr_cur;
6920 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6921
6922/*
6923 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6924 * cpumask) fails, then fallback to a single sched domain,
6925 * as determined by the single cpumask fallback_doms.
029190c5 6926 */
4212823f 6927static cpumask_var_t fallback_doms;
029190c5 6928
ee79d1bd
HC
6929/*
6930 * arch_update_cpu_topology lets virtualized architectures update the
6931 * cpu core maps. It is supposed to return 1 if the topology changed
6932 * or 0 if it stayed the same.
6933 */
52f5684c 6934int __weak arch_update_cpu_topology(void)
22e52b07 6935{
ee79d1bd 6936 return 0;
22e52b07
HC
6937}
6938
acc3f5d7
RR
6939cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6940{
6941 int i;
6942 cpumask_var_t *doms;
6943
6944 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6945 if (!doms)
6946 return NULL;
6947 for (i = 0; i < ndoms; i++) {
6948 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6949 free_sched_domains(doms, i);
6950 return NULL;
6951 }
6952 }
6953 return doms;
6954}
6955
6956void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6957{
6958 unsigned int i;
6959 for (i = 0; i < ndoms; i++)
6960 free_cpumask_var(doms[i]);
6961 kfree(doms);
6962}
6963
1a20ff27 6964/*
41a2d6cf 6965 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6966 * For now this just excludes isolated cpus, but could be used to
6967 * exclude other special cases in the future.
1a20ff27 6968 */
c4a8849a 6969static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6970{
7378547f
MM
6971 int err;
6972
22e52b07 6973 arch_update_cpu_topology();
029190c5 6974 ndoms_cur = 1;
acc3f5d7 6975 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6976 if (!doms_cur)
acc3f5d7
RR
6977 doms_cur = &fallback_doms;
6978 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6979 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6980 register_sched_domain_sysctl();
7378547f
MM
6981
6982 return err;
1a20ff27
DG
6983}
6984
1a20ff27
DG
6985/*
6986 * Detach sched domains from a group of cpus specified in cpu_map
6987 * These cpus will now be attached to the NULL domain
6988 */
96f874e2 6989static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6990{
6991 int i;
6992
dce840a0 6993 rcu_read_lock();
abcd083a 6994 for_each_cpu(i, cpu_map)
57d885fe 6995 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6996 rcu_read_unlock();
1a20ff27
DG
6997}
6998
1d3504fc
HS
6999/* handle null as "default" */
7000static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7001 struct sched_domain_attr *new, int idx_new)
7002{
7003 struct sched_domain_attr tmp;
7004
7005 /* fast path */
7006 if (!new && !cur)
7007 return 1;
7008
7009 tmp = SD_ATTR_INIT;
7010 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7011 new ? (new + idx_new) : &tmp,
7012 sizeof(struct sched_domain_attr));
7013}
7014
029190c5
PJ
7015/*
7016 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7017 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7018 * doms_new[] to the current sched domain partitioning, doms_cur[].
7019 * It destroys each deleted domain and builds each new domain.
7020 *
acc3f5d7 7021 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7022 * The masks don't intersect (don't overlap.) We should setup one
7023 * sched domain for each mask. CPUs not in any of the cpumasks will
7024 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7025 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7026 * it as it is.
7027 *
acc3f5d7
RR
7028 * The passed in 'doms_new' should be allocated using
7029 * alloc_sched_domains. This routine takes ownership of it and will
7030 * free_sched_domains it when done with it. If the caller failed the
7031 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7032 * and partition_sched_domains() will fallback to the single partition
7033 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7034 *
96f874e2 7035 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7036 * ndoms_new == 0 is a special case for destroying existing domains,
7037 * and it will not create the default domain.
dfb512ec 7038 *
029190c5
PJ
7039 * Call with hotplug lock held
7040 */
acc3f5d7 7041void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7042 struct sched_domain_attr *dattr_new)
029190c5 7043{
dfb512ec 7044 int i, j, n;
d65bd5ec 7045 int new_topology;
029190c5 7046
712555ee 7047 mutex_lock(&sched_domains_mutex);
a1835615 7048
7378547f
MM
7049 /* always unregister in case we don't destroy any domains */
7050 unregister_sched_domain_sysctl();
7051
d65bd5ec
HC
7052 /* Let architecture update cpu core mappings. */
7053 new_topology = arch_update_cpu_topology();
7054
dfb512ec 7055 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7056
7057 /* Destroy deleted domains */
7058 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7059 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7060 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7061 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7062 goto match1;
7063 }
7064 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7065 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7066match1:
7067 ;
7068 }
7069
c8d2d47a 7070 n = ndoms_cur;
e761b772 7071 if (doms_new == NULL) {
c8d2d47a 7072 n = 0;
acc3f5d7 7073 doms_new = &fallback_doms;
6ad4c188 7074 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7075 WARN_ON_ONCE(dattr_new);
e761b772
MK
7076 }
7077
029190c5
PJ
7078 /* Build new domains */
7079 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7080 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7081 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7082 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7083 goto match2;
7084 }
7085 /* no match - add a new doms_new */
dce840a0 7086 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7087match2:
7088 ;
7089 }
7090
7091 /* Remember the new sched domains */
acc3f5d7
RR
7092 if (doms_cur != &fallback_doms)
7093 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7094 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7095 doms_cur = doms_new;
1d3504fc 7096 dattr_cur = dattr_new;
029190c5 7097 ndoms_cur = ndoms_new;
7378547f
MM
7098
7099 register_sched_domain_sysctl();
a1835615 7100
712555ee 7101 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7102}
7103
d35be8ba
SB
7104static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7105
1da177e4 7106/*
3a101d05
TH
7107 * Update cpusets according to cpu_active mask. If cpusets are
7108 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7109 * around partition_sched_domains().
d35be8ba
SB
7110 *
7111 * If we come here as part of a suspend/resume, don't touch cpusets because we
7112 * want to restore it back to its original state upon resume anyway.
1da177e4 7113 */
40190a78 7114static void cpuset_cpu_active(void)
e761b772 7115{
40190a78 7116 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7117 /*
7118 * num_cpus_frozen tracks how many CPUs are involved in suspend
7119 * resume sequence. As long as this is not the last online
7120 * operation in the resume sequence, just build a single sched
7121 * domain, ignoring cpusets.
7122 */
7123 num_cpus_frozen--;
7124 if (likely(num_cpus_frozen)) {
7125 partition_sched_domains(1, NULL, NULL);
135fb3e1 7126 return;
d35be8ba 7127 }
d35be8ba
SB
7128 /*
7129 * This is the last CPU online operation. So fall through and
7130 * restore the original sched domains by considering the
7131 * cpuset configurations.
7132 */
3a101d05 7133 }
135fb3e1 7134 cpuset_update_active_cpus(true);
3a101d05 7135}
e761b772 7136
40190a78 7137static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7138{
3c18d447 7139 unsigned long flags;
3c18d447 7140 struct dl_bw *dl_b;
533445c6
OS
7141 bool overflow;
7142 int cpus;
3c18d447 7143
40190a78 7144 if (!cpuhp_tasks_frozen) {
533445c6
OS
7145 rcu_read_lock_sched();
7146 dl_b = dl_bw_of(cpu);
3c18d447 7147
533445c6
OS
7148 raw_spin_lock_irqsave(&dl_b->lock, flags);
7149 cpus = dl_bw_cpus(cpu);
7150 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7151 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7152
533445c6 7153 rcu_read_unlock_sched();
3c18d447 7154
533445c6 7155 if (overflow)
135fb3e1 7156 return -EBUSY;
7ddf96b0 7157 cpuset_update_active_cpus(false);
135fb3e1 7158 } else {
d35be8ba
SB
7159 num_cpus_frozen++;
7160 partition_sched_domains(1, NULL, NULL);
e761b772 7161 }
135fb3e1 7162 return 0;
e761b772 7163}
e761b772 7164
40190a78 7165int sched_cpu_activate(unsigned int cpu)
135fb3e1 7166{
7d976699
TG
7167 struct rq *rq = cpu_rq(cpu);
7168 unsigned long flags;
7169
40190a78 7170 set_cpu_active(cpu, true);
135fb3e1 7171
40190a78 7172 if (sched_smp_initialized) {
135fb3e1 7173 sched_domains_numa_masks_set(cpu);
40190a78 7174 cpuset_cpu_active();
e761b772 7175 }
7d976699
TG
7176
7177 /*
7178 * Put the rq online, if not already. This happens:
7179 *
7180 * 1) In the early boot process, because we build the real domains
7181 * after all cpus have been brought up.
7182 *
7183 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7184 * domains.
7185 */
7186 raw_spin_lock_irqsave(&rq->lock, flags);
7187 if (rq->rd) {
7188 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7189 set_rq_online(rq);
7190 }
7191 raw_spin_unlock_irqrestore(&rq->lock, flags);
7192
7193 update_max_interval();
7194
40190a78 7195 return 0;
135fb3e1
TG
7196}
7197
40190a78 7198int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7199{
135fb3e1
TG
7200 int ret;
7201
40190a78 7202 set_cpu_active(cpu, false);
b2454caa
PZ
7203 /*
7204 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7205 * users of this state to go away such that all new such users will
7206 * observe it.
7207 *
7208 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7209 * not imply sync_sched(), so wait for both.
7210 *
7211 * Do sync before park smpboot threads to take care the rcu boost case.
7212 */
7213 if (IS_ENABLED(CONFIG_PREEMPT))
7214 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7215 else
7216 synchronize_rcu();
40190a78
TG
7217
7218 if (!sched_smp_initialized)
7219 return 0;
7220
7221 ret = cpuset_cpu_inactive(cpu);
7222 if (ret) {
7223 set_cpu_active(cpu, true);
7224 return ret;
135fb3e1 7225 }
40190a78
TG
7226 sched_domains_numa_masks_clear(cpu);
7227 return 0;
135fb3e1
TG
7228}
7229
94baf7a5
TG
7230static void sched_rq_cpu_starting(unsigned int cpu)
7231{
7232 struct rq *rq = cpu_rq(cpu);
7233
7234 rq->calc_load_update = calc_load_update;
7235 account_reset_rq(rq);
7236 update_max_interval();
7237}
7238
135fb3e1
TG
7239int sched_cpu_starting(unsigned int cpu)
7240{
7241 set_cpu_rq_start_time(cpu);
94baf7a5 7242 sched_rq_cpu_starting(cpu);
135fb3e1 7243 return 0;
e761b772 7244}
e761b772 7245
f2785ddb
TG
7246#ifdef CONFIG_HOTPLUG_CPU
7247int sched_cpu_dying(unsigned int cpu)
7248{
7249 struct rq *rq = cpu_rq(cpu);
7250 unsigned long flags;
7251
7252 /* Handle pending wakeups and then migrate everything off */
7253 sched_ttwu_pending();
7254 raw_spin_lock_irqsave(&rq->lock, flags);
7255 if (rq->rd) {
7256 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7257 set_rq_offline(rq);
7258 }
7259 migrate_tasks(rq);
7260 BUG_ON(rq->nr_running != 1);
7261 raw_spin_unlock_irqrestore(&rq->lock, flags);
7262 calc_load_migrate(rq);
7263 update_max_interval();
20a5c8cc 7264 nohz_balance_exit_idle(cpu);
e5ef27d0 7265 hrtick_clear(rq);
f2785ddb
TG
7266 return 0;
7267}
7268#endif
7269
1da177e4
LT
7270void __init sched_init_smp(void)
7271{
dcc30a35
RR
7272 cpumask_var_t non_isolated_cpus;
7273
7274 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7275 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7276
cb83b629
PZ
7277 sched_init_numa();
7278
6acce3ef
PZ
7279 /*
7280 * There's no userspace yet to cause hotplug operations; hence all the
7281 * cpu masks are stable and all blatant races in the below code cannot
7282 * happen.
7283 */
712555ee 7284 mutex_lock(&sched_domains_mutex);
c4a8849a 7285 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7286 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7287 if (cpumask_empty(non_isolated_cpus))
7288 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7289 mutex_unlock(&sched_domains_mutex);
e761b772 7290
5c1e1767 7291 /* Move init over to a non-isolated CPU */
dcc30a35 7292 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7293 BUG();
19978ca6 7294 sched_init_granularity();
dcc30a35 7295 free_cpumask_var(non_isolated_cpus);
4212823f 7296
0e3900e6 7297 init_sched_rt_class();
1baca4ce 7298 init_sched_dl_class();
e26fbffd 7299 sched_smp_initialized = true;
1da177e4 7300}
e26fbffd
TG
7301
7302static int __init migration_init(void)
7303{
94baf7a5 7304 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7305 return 0;
1da177e4 7306}
e26fbffd
TG
7307early_initcall(migration_init);
7308
1da177e4
LT
7309#else
7310void __init sched_init_smp(void)
7311{
19978ca6 7312 sched_init_granularity();
1da177e4
LT
7313}
7314#endif /* CONFIG_SMP */
7315
7316int in_sched_functions(unsigned long addr)
7317{
1da177e4
LT
7318 return in_lock_functions(addr) ||
7319 (addr >= (unsigned long)__sched_text_start
7320 && addr < (unsigned long)__sched_text_end);
7321}
7322
029632fb 7323#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7324/*
7325 * Default task group.
7326 * Every task in system belongs to this group at bootup.
7327 */
029632fb 7328struct task_group root_task_group;
35cf4e50 7329LIST_HEAD(task_groups);
b0367629
WL
7330
7331/* Cacheline aligned slab cache for task_group */
7332static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7333#endif
6f505b16 7334
e6252c3e 7335DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7336
1da177e4
LT
7337void __init sched_init(void)
7338{
dd41f596 7339 int i, j;
434d53b0
MT
7340 unsigned long alloc_size = 0, ptr;
7341
7342#ifdef CONFIG_FAIR_GROUP_SCHED
7343 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7344#endif
7345#ifdef CONFIG_RT_GROUP_SCHED
7346 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7347#endif
434d53b0 7348 if (alloc_size) {
36b7b6d4 7349 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7350
7351#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7352 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7353 ptr += nr_cpu_ids * sizeof(void **);
7354
07e06b01 7355 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7356 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7357
6d6bc0ad 7358#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7359#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7360 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7361 ptr += nr_cpu_ids * sizeof(void **);
7362
07e06b01 7363 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7364 ptr += nr_cpu_ids * sizeof(void **);
7365
6d6bc0ad 7366#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7367 }
df7c8e84 7368#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7369 for_each_possible_cpu(i) {
7370 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7371 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7372 }
b74e6278 7373#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7374
332ac17e
DF
7375 init_rt_bandwidth(&def_rt_bandwidth,
7376 global_rt_period(), global_rt_runtime());
7377 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7378 global_rt_period(), global_rt_runtime());
332ac17e 7379
57d885fe
GH
7380#ifdef CONFIG_SMP
7381 init_defrootdomain();
7382#endif
7383
d0b27fa7 7384#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7385 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7386 global_rt_period(), global_rt_runtime());
6d6bc0ad 7387#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7388
7c941438 7389#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7390 task_group_cache = KMEM_CACHE(task_group, 0);
7391
07e06b01
YZ
7392 list_add(&root_task_group.list, &task_groups);
7393 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7394 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7395 autogroup_init(&init_task);
7c941438 7396#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7397
0a945022 7398 for_each_possible_cpu(i) {
70b97a7f 7399 struct rq *rq;
1da177e4
LT
7400
7401 rq = cpu_rq(i);
05fa785c 7402 raw_spin_lock_init(&rq->lock);
7897986b 7403 rq->nr_running = 0;
dce48a84
TG
7404 rq->calc_load_active = 0;
7405 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7406 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7407 init_rt_rq(&rq->rt);
7408 init_dl_rq(&rq->dl);
dd41f596 7409#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7410 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7411 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7412 /*
07e06b01 7413 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7414 *
7415 * In case of task-groups formed thr' the cgroup filesystem, it
7416 * gets 100% of the cpu resources in the system. This overall
7417 * system cpu resource is divided among the tasks of
07e06b01 7418 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7419 * based on each entity's (task or task-group's) weight
7420 * (se->load.weight).
7421 *
07e06b01 7422 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7423 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7424 * then A0's share of the cpu resource is:
7425 *
0d905bca 7426 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7427 *
07e06b01
YZ
7428 * We achieve this by letting root_task_group's tasks sit
7429 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7430 */
ab84d31e 7431 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7432 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7433#endif /* CONFIG_FAIR_GROUP_SCHED */
7434
7435 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7436#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7437 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7438#endif
1da177e4 7439
dd41f596
IM
7440 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7441 rq->cpu_load[j] = 0;
fdf3e95d 7442
1da177e4 7443#ifdef CONFIG_SMP
41c7ce9a 7444 rq->sd = NULL;
57d885fe 7445 rq->rd = NULL;
ca6d75e6 7446 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7447 rq->balance_callback = NULL;
1da177e4 7448 rq->active_balance = 0;
dd41f596 7449 rq->next_balance = jiffies;
1da177e4 7450 rq->push_cpu = 0;
0a2966b4 7451 rq->cpu = i;
1f11eb6a 7452 rq->online = 0;
eae0c9df
MG
7453 rq->idle_stamp = 0;
7454 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7455 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7456
7457 INIT_LIST_HEAD(&rq->cfs_tasks);
7458
dc938520 7459 rq_attach_root(rq, &def_root_domain);
3451d024 7460#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7461 rq->last_load_update_tick = jiffies;
1c792db7 7462 rq->nohz_flags = 0;
83cd4fe2 7463#endif
265f22a9
FW
7464#ifdef CONFIG_NO_HZ_FULL
7465 rq->last_sched_tick = 0;
7466#endif
9fd81dd5 7467#endif /* CONFIG_SMP */
8f4d37ec 7468 init_rq_hrtick(rq);
1da177e4 7469 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7470 }
7471
2dd73a4f 7472 set_load_weight(&init_task);
b50f60ce 7473
e107be36
AK
7474#ifdef CONFIG_PREEMPT_NOTIFIERS
7475 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7476#endif
7477
1da177e4
LT
7478 /*
7479 * The boot idle thread does lazy MMU switching as well:
7480 */
7481 atomic_inc(&init_mm.mm_count);
7482 enter_lazy_tlb(&init_mm, current);
7483
1b537c7d
YD
7484 /*
7485 * During early bootup we pretend to be a normal task:
7486 */
7487 current->sched_class = &fair_sched_class;
7488
1da177e4
LT
7489 /*
7490 * Make us the idle thread. Technically, schedule() should not be
7491 * called from this thread, however somewhere below it might be,
7492 * but because we are the idle thread, we just pick up running again
7493 * when this runqueue becomes "idle".
7494 */
7495 init_idle(current, smp_processor_id());
dce48a84
TG
7496
7497 calc_load_update = jiffies + LOAD_FREQ;
7498
bf4d83f6 7499#ifdef CONFIG_SMP
4cb98839 7500 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7501 /* May be allocated at isolcpus cmdline parse time */
7502 if (cpu_isolated_map == NULL)
7503 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7504 idle_thread_set_boot_cpu();
9cf7243d 7505 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7506#endif
7507 init_sched_fair_class();
6a7b3dc3 7508
4698f88c
JP
7509 init_schedstats();
7510
6892b75e 7511 scheduler_running = 1;
1da177e4
LT
7512}
7513
d902db1e 7514#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7515static inline int preempt_count_equals(int preempt_offset)
7516{
da7142e2 7517 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7518
4ba8216c 7519 return (nested == preempt_offset);
e4aafea2
FW
7520}
7521
d894837f 7522void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7523{
8eb23b9f
PZ
7524 /*
7525 * Blocking primitives will set (and therefore destroy) current->state,
7526 * since we will exit with TASK_RUNNING make sure we enter with it,
7527 * otherwise we will destroy state.
7528 */
00845eb9 7529 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7530 "do not call blocking ops when !TASK_RUNNING; "
7531 "state=%lx set at [<%p>] %pS\n",
7532 current->state,
7533 (void *)current->task_state_change,
00845eb9 7534 (void *)current->task_state_change);
8eb23b9f 7535
3427445a
PZ
7536 ___might_sleep(file, line, preempt_offset);
7537}
7538EXPORT_SYMBOL(__might_sleep);
7539
7540void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7541{
1da177e4
LT
7542 static unsigned long prev_jiffy; /* ratelimiting */
7543
b3fbab05 7544 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7545 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7546 !is_idle_task(current)) ||
e4aafea2 7547 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7548 return;
7549 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7550 return;
7551 prev_jiffy = jiffies;
7552
3df0fc5b
PZ
7553 printk(KERN_ERR
7554 "BUG: sleeping function called from invalid context at %s:%d\n",
7555 file, line);
7556 printk(KERN_ERR
7557 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7558 in_atomic(), irqs_disabled(),
7559 current->pid, current->comm);
aef745fc 7560
a8b686b3
ES
7561 if (task_stack_end_corrupted(current))
7562 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7563
aef745fc
IM
7564 debug_show_held_locks(current);
7565 if (irqs_disabled())
7566 print_irqtrace_events(current);
8f47b187
TG
7567#ifdef CONFIG_DEBUG_PREEMPT
7568 if (!preempt_count_equals(preempt_offset)) {
7569 pr_err("Preemption disabled at:");
7570 print_ip_sym(current->preempt_disable_ip);
7571 pr_cont("\n");
7572 }
7573#endif
aef745fc 7574 dump_stack();
1da177e4 7575}
3427445a 7576EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7577#endif
7578
7579#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7580void normalize_rt_tasks(void)
3a5e4dc1 7581{
dbc7f069 7582 struct task_struct *g, *p;
d50dde5a
DF
7583 struct sched_attr attr = {
7584 .sched_policy = SCHED_NORMAL,
7585 };
1da177e4 7586
3472eaa1 7587 read_lock(&tasklist_lock);
5d07f420 7588 for_each_process_thread(g, p) {
178be793
IM
7589 /*
7590 * Only normalize user tasks:
7591 */
3472eaa1 7592 if (p->flags & PF_KTHREAD)
178be793
IM
7593 continue;
7594
6cfb0d5d 7595 p->se.exec_start = 0;
6cfb0d5d 7596#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7597 p->se.statistics.wait_start = 0;
7598 p->se.statistics.sleep_start = 0;
7599 p->se.statistics.block_start = 0;
6cfb0d5d 7600#endif
dd41f596 7601
aab03e05 7602 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7603 /*
7604 * Renice negative nice level userspace
7605 * tasks back to 0:
7606 */
3472eaa1 7607 if (task_nice(p) < 0)
dd41f596 7608 set_user_nice(p, 0);
1da177e4 7609 continue;
dd41f596 7610 }
1da177e4 7611
dbc7f069 7612 __sched_setscheduler(p, &attr, false, false);
5d07f420 7613 }
3472eaa1 7614 read_unlock(&tasklist_lock);
1da177e4
LT
7615}
7616
7617#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7618
67fc4e0c 7619#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7620/*
67fc4e0c 7621 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7622 *
7623 * They can only be called when the whole system has been
7624 * stopped - every CPU needs to be quiescent, and no scheduling
7625 * activity can take place. Using them for anything else would
7626 * be a serious bug, and as a result, they aren't even visible
7627 * under any other configuration.
7628 */
7629
7630/**
7631 * curr_task - return the current task for a given cpu.
7632 * @cpu: the processor in question.
7633 *
7634 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7635 *
7636 * Return: The current task for @cpu.
1df5c10a 7637 */
36c8b586 7638struct task_struct *curr_task(int cpu)
1df5c10a
LT
7639{
7640 return cpu_curr(cpu);
7641}
7642
67fc4e0c
JW
7643#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7644
7645#ifdef CONFIG_IA64
1df5c10a
LT
7646/**
7647 * set_curr_task - set the current task for a given cpu.
7648 * @cpu: the processor in question.
7649 * @p: the task pointer to set.
7650 *
7651 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7652 * are serviced on a separate stack. It allows the architecture to switch the
7653 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7654 * must be called with all CPU's synchronized, and interrupts disabled, the
7655 * and caller must save the original value of the current task (see
7656 * curr_task() above) and restore that value before reenabling interrupts and
7657 * re-starting the system.
7658 *
7659 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7660 */
36c8b586 7661void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7662{
7663 cpu_curr(cpu) = p;
7664}
7665
7666#endif
29f59db3 7667
7c941438 7668#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7669/* task_group_lock serializes the addition/removal of task groups */
7670static DEFINE_SPINLOCK(task_group_lock);
7671
2f5177f0 7672static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7673{
7674 free_fair_sched_group(tg);
7675 free_rt_sched_group(tg);
e9aa1dd1 7676 autogroup_free(tg);
b0367629 7677 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7678}
7679
7680/* allocate runqueue etc for a new task group */
ec7dc8ac 7681struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7682{
7683 struct task_group *tg;
bccbe08a 7684
b0367629 7685 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7686 if (!tg)
7687 return ERR_PTR(-ENOMEM);
7688
ec7dc8ac 7689 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7690 goto err;
7691
ec7dc8ac 7692 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7693 goto err;
7694
ace783b9
LZ
7695 return tg;
7696
7697err:
2f5177f0 7698 sched_free_group(tg);
ace783b9
LZ
7699 return ERR_PTR(-ENOMEM);
7700}
7701
7702void sched_online_group(struct task_group *tg, struct task_group *parent)
7703{
7704 unsigned long flags;
7705
8ed36996 7706 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7707 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7708
7709 WARN_ON(!parent); /* root should already exist */
7710
7711 tg->parent = parent;
f473aa5e 7712 INIT_LIST_HEAD(&tg->children);
09f2724a 7713 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7714 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7715}
7716
9b5b7751 7717/* rcu callback to free various structures associated with a task group */
2f5177f0 7718static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7719{
29f59db3 7720 /* now it should be safe to free those cfs_rqs */
2f5177f0 7721 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7722}
7723
4cf86d77 7724void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7725{
7726 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7727 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7728}
7729
7730void sched_offline_group(struct task_group *tg)
29f59db3 7731{
8ed36996 7732 unsigned long flags;
29f59db3 7733
3d4b47b4 7734 /* end participation in shares distribution */
6fe1f348 7735 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7736
7737 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7738 list_del_rcu(&tg->list);
f473aa5e 7739 list_del_rcu(&tg->siblings);
8ed36996 7740 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7741}
7742
9b5b7751 7743/* change task's runqueue when it moves between groups.
3a252015
IM
7744 * The caller of this function should have put the task in its new group
7745 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7746 * reflect its new group.
9b5b7751
SV
7747 */
7748void sched_move_task(struct task_struct *tsk)
29f59db3 7749{
8323f26c 7750 struct task_group *tg;
da0c1e65 7751 int queued, running;
eb580751 7752 struct rq_flags rf;
29f59db3
SV
7753 struct rq *rq;
7754
eb580751 7755 rq = task_rq_lock(tsk, &rf);
29f59db3 7756
051a1d1a 7757 running = task_current(rq, tsk);
da0c1e65 7758 queued = task_on_rq_queued(tsk);
29f59db3 7759
da0c1e65 7760 if (queued)
ff77e468 7761 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7762 if (unlikely(running))
f3cd1c4e 7763 put_prev_task(rq, tsk);
29f59db3 7764
f7b8a47d
KT
7765 /*
7766 * All callers are synchronized by task_rq_lock(); we do not use RCU
7767 * which is pointless here. Thus, we pass "true" to task_css_check()
7768 * to prevent lockdep warnings.
7769 */
7770 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7771 struct task_group, css);
7772 tg = autogroup_task_group(tsk, tg);
7773 tsk->sched_task_group = tg;
7774
810b3817 7775#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7776 if (tsk->sched_class->task_move_group)
bc54da21 7777 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7778 else
810b3817 7779#endif
b2b5ce02 7780 set_task_rq(tsk, task_cpu(tsk));
810b3817 7781
0e1f3483
HS
7782 if (unlikely(running))
7783 tsk->sched_class->set_curr_task(rq);
da0c1e65 7784 if (queued)
ff77e468 7785 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7786
eb580751 7787 task_rq_unlock(rq, tsk, &rf);
29f59db3 7788}
7c941438 7789#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7790
a790de99
PT
7791#ifdef CONFIG_RT_GROUP_SCHED
7792/*
7793 * Ensure that the real time constraints are schedulable.
7794 */
7795static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7796
9a7e0b18
PZ
7797/* Must be called with tasklist_lock held */
7798static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7799{
9a7e0b18 7800 struct task_struct *g, *p;
b40b2e8e 7801
1fe89e1b
PZ
7802 /*
7803 * Autogroups do not have RT tasks; see autogroup_create().
7804 */
7805 if (task_group_is_autogroup(tg))
7806 return 0;
7807
5d07f420 7808 for_each_process_thread(g, p) {
8651c658 7809 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7810 return 1;
5d07f420 7811 }
b40b2e8e 7812
9a7e0b18
PZ
7813 return 0;
7814}
b40b2e8e 7815
9a7e0b18
PZ
7816struct rt_schedulable_data {
7817 struct task_group *tg;
7818 u64 rt_period;
7819 u64 rt_runtime;
7820};
b40b2e8e 7821
a790de99 7822static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7823{
7824 struct rt_schedulable_data *d = data;
7825 struct task_group *child;
7826 unsigned long total, sum = 0;
7827 u64 period, runtime;
b40b2e8e 7828
9a7e0b18
PZ
7829 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7830 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7831
9a7e0b18
PZ
7832 if (tg == d->tg) {
7833 period = d->rt_period;
7834 runtime = d->rt_runtime;
b40b2e8e 7835 }
b40b2e8e 7836
4653f803
PZ
7837 /*
7838 * Cannot have more runtime than the period.
7839 */
7840 if (runtime > period && runtime != RUNTIME_INF)
7841 return -EINVAL;
6f505b16 7842
4653f803
PZ
7843 /*
7844 * Ensure we don't starve existing RT tasks.
7845 */
9a7e0b18
PZ
7846 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7847 return -EBUSY;
6f505b16 7848
9a7e0b18 7849 total = to_ratio(period, runtime);
6f505b16 7850
4653f803
PZ
7851 /*
7852 * Nobody can have more than the global setting allows.
7853 */
7854 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7855 return -EINVAL;
6f505b16 7856
4653f803
PZ
7857 /*
7858 * The sum of our children's runtime should not exceed our own.
7859 */
9a7e0b18
PZ
7860 list_for_each_entry_rcu(child, &tg->children, siblings) {
7861 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7862 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7863
9a7e0b18
PZ
7864 if (child == d->tg) {
7865 period = d->rt_period;
7866 runtime = d->rt_runtime;
7867 }
6f505b16 7868
9a7e0b18 7869 sum += to_ratio(period, runtime);
9f0c1e56 7870 }
6f505b16 7871
9a7e0b18
PZ
7872 if (sum > total)
7873 return -EINVAL;
7874
7875 return 0;
6f505b16
PZ
7876}
7877
9a7e0b18 7878static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7879{
8277434e
PT
7880 int ret;
7881
9a7e0b18
PZ
7882 struct rt_schedulable_data data = {
7883 .tg = tg,
7884 .rt_period = period,
7885 .rt_runtime = runtime,
7886 };
7887
8277434e
PT
7888 rcu_read_lock();
7889 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7890 rcu_read_unlock();
7891
7892 return ret;
521f1a24
DG
7893}
7894
ab84d31e 7895static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7896 u64 rt_period, u64 rt_runtime)
6f505b16 7897{
ac086bc2 7898 int i, err = 0;
9f0c1e56 7899
2636ed5f
PZ
7900 /*
7901 * Disallowing the root group RT runtime is BAD, it would disallow the
7902 * kernel creating (and or operating) RT threads.
7903 */
7904 if (tg == &root_task_group && rt_runtime == 0)
7905 return -EINVAL;
7906
7907 /* No period doesn't make any sense. */
7908 if (rt_period == 0)
7909 return -EINVAL;
7910
9f0c1e56 7911 mutex_lock(&rt_constraints_mutex);
521f1a24 7912 read_lock(&tasklist_lock);
9a7e0b18
PZ
7913 err = __rt_schedulable(tg, rt_period, rt_runtime);
7914 if (err)
9f0c1e56 7915 goto unlock;
ac086bc2 7916
0986b11b 7917 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7918 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7919 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7920
7921 for_each_possible_cpu(i) {
7922 struct rt_rq *rt_rq = tg->rt_rq[i];
7923
0986b11b 7924 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7925 rt_rq->rt_runtime = rt_runtime;
0986b11b 7926 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7927 }
0986b11b 7928 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7929unlock:
521f1a24 7930 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7931 mutex_unlock(&rt_constraints_mutex);
7932
7933 return err;
6f505b16
PZ
7934}
7935
25cc7da7 7936static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7937{
7938 u64 rt_runtime, rt_period;
7939
7940 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7941 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7942 if (rt_runtime_us < 0)
7943 rt_runtime = RUNTIME_INF;
7944
ab84d31e 7945 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7946}
7947
25cc7da7 7948static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7949{
7950 u64 rt_runtime_us;
7951
d0b27fa7 7952 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7953 return -1;
7954
d0b27fa7 7955 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7956 do_div(rt_runtime_us, NSEC_PER_USEC);
7957 return rt_runtime_us;
7958}
d0b27fa7 7959
ce2f5fe4 7960static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7961{
7962 u64 rt_runtime, rt_period;
7963
ce2f5fe4 7964 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7965 rt_runtime = tg->rt_bandwidth.rt_runtime;
7966
ab84d31e 7967 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7968}
7969
25cc7da7 7970static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7971{
7972 u64 rt_period_us;
7973
7974 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7975 do_div(rt_period_us, NSEC_PER_USEC);
7976 return rt_period_us;
7977}
332ac17e 7978#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7979
332ac17e 7980#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7981static int sched_rt_global_constraints(void)
7982{
7983 int ret = 0;
7984
7985 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7986 read_lock(&tasklist_lock);
4653f803 7987 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7988 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7989 mutex_unlock(&rt_constraints_mutex);
7990
7991 return ret;
7992}
54e99124 7993
25cc7da7 7994static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7995{
7996 /* Don't accept realtime tasks when there is no way for them to run */
7997 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7998 return 0;
7999
8000 return 1;
8001}
8002
6d6bc0ad 8003#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8004static int sched_rt_global_constraints(void)
8005{
ac086bc2 8006 unsigned long flags;
8c5e9554 8007 int i;
ec5d4989 8008
0986b11b 8009 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8010 for_each_possible_cpu(i) {
8011 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8012
0986b11b 8013 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8014 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8015 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8016 }
0986b11b 8017 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8018
8c5e9554 8019 return 0;
d0b27fa7 8020}
6d6bc0ad 8021#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8022
a1963b81 8023static int sched_dl_global_validate(void)
332ac17e 8024{
1724813d
PZ
8025 u64 runtime = global_rt_runtime();
8026 u64 period = global_rt_period();
332ac17e 8027 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8028 struct dl_bw *dl_b;
1724813d 8029 int cpu, ret = 0;
49516342 8030 unsigned long flags;
332ac17e
DF
8031
8032 /*
8033 * Here we want to check the bandwidth not being set to some
8034 * value smaller than the currently allocated bandwidth in
8035 * any of the root_domains.
8036 *
8037 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8038 * cycling on root_domains... Discussion on different/better
8039 * solutions is welcome!
8040 */
1724813d 8041 for_each_possible_cpu(cpu) {
f10e00f4
KT
8042 rcu_read_lock_sched();
8043 dl_b = dl_bw_of(cpu);
332ac17e 8044
49516342 8045 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8046 if (new_bw < dl_b->total_bw)
8047 ret = -EBUSY;
49516342 8048 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8049
f10e00f4
KT
8050 rcu_read_unlock_sched();
8051
1724813d
PZ
8052 if (ret)
8053 break;
332ac17e
DF
8054 }
8055
1724813d 8056 return ret;
332ac17e
DF
8057}
8058
1724813d 8059static void sched_dl_do_global(void)
ce0dbbbb 8060{
1724813d 8061 u64 new_bw = -1;
f10e00f4 8062 struct dl_bw *dl_b;
1724813d 8063 int cpu;
49516342 8064 unsigned long flags;
ce0dbbbb 8065
1724813d
PZ
8066 def_dl_bandwidth.dl_period = global_rt_period();
8067 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8068
8069 if (global_rt_runtime() != RUNTIME_INF)
8070 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8071
8072 /*
8073 * FIXME: As above...
8074 */
8075 for_each_possible_cpu(cpu) {
f10e00f4
KT
8076 rcu_read_lock_sched();
8077 dl_b = dl_bw_of(cpu);
1724813d 8078
49516342 8079 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8080 dl_b->bw = new_bw;
49516342 8081 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8082
8083 rcu_read_unlock_sched();
ce0dbbbb 8084 }
1724813d
PZ
8085}
8086
8087static int sched_rt_global_validate(void)
8088{
8089 if (sysctl_sched_rt_period <= 0)
8090 return -EINVAL;
8091
e9e7cb38
JL
8092 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8093 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8094 return -EINVAL;
8095
8096 return 0;
8097}
8098
8099static void sched_rt_do_global(void)
8100{
8101 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8102 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8103}
8104
d0b27fa7 8105int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8106 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8107 loff_t *ppos)
8108{
d0b27fa7
PZ
8109 int old_period, old_runtime;
8110 static DEFINE_MUTEX(mutex);
1724813d 8111 int ret;
d0b27fa7
PZ
8112
8113 mutex_lock(&mutex);
8114 old_period = sysctl_sched_rt_period;
8115 old_runtime = sysctl_sched_rt_runtime;
8116
8d65af78 8117 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8118
8119 if (!ret && write) {
1724813d
PZ
8120 ret = sched_rt_global_validate();
8121 if (ret)
8122 goto undo;
8123
a1963b81 8124 ret = sched_dl_global_validate();
1724813d
PZ
8125 if (ret)
8126 goto undo;
8127
a1963b81 8128 ret = sched_rt_global_constraints();
1724813d
PZ
8129 if (ret)
8130 goto undo;
8131
8132 sched_rt_do_global();
8133 sched_dl_do_global();
8134 }
8135 if (0) {
8136undo:
8137 sysctl_sched_rt_period = old_period;
8138 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8139 }
8140 mutex_unlock(&mutex);
8141
8142 return ret;
8143}
68318b8e 8144
1724813d 8145int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8146 void __user *buffer, size_t *lenp,
8147 loff_t *ppos)
8148{
8149 int ret;
332ac17e 8150 static DEFINE_MUTEX(mutex);
332ac17e
DF
8151
8152 mutex_lock(&mutex);
332ac17e 8153 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8154 /* make sure that internally we keep jiffies */
8155 /* also, writing zero resets timeslice to default */
332ac17e 8156 if (!ret && write) {
1724813d
PZ
8157 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8158 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8159 }
8160 mutex_unlock(&mutex);
332ac17e
DF
8161 return ret;
8162}
8163
052f1dc7 8164#ifdef CONFIG_CGROUP_SCHED
68318b8e 8165
a7c6d554 8166static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8167{
a7c6d554 8168 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8169}
8170
eb95419b
TH
8171static struct cgroup_subsys_state *
8172cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8173{
eb95419b
TH
8174 struct task_group *parent = css_tg(parent_css);
8175 struct task_group *tg;
68318b8e 8176
eb95419b 8177 if (!parent) {
68318b8e 8178 /* This is early initialization for the top cgroup */
07e06b01 8179 return &root_task_group.css;
68318b8e
SV
8180 }
8181
ec7dc8ac 8182 tg = sched_create_group(parent);
68318b8e
SV
8183 if (IS_ERR(tg))
8184 return ERR_PTR(-ENOMEM);
8185
2f5177f0
PZ
8186 sched_online_group(tg, parent);
8187
68318b8e
SV
8188 return &tg->css;
8189}
8190
2f5177f0 8191static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8192{
eb95419b 8193 struct task_group *tg = css_tg(css);
ace783b9 8194
2f5177f0 8195 sched_offline_group(tg);
ace783b9
LZ
8196}
8197
eb95419b 8198static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8199{
eb95419b 8200 struct task_group *tg = css_tg(css);
68318b8e 8201
2f5177f0
PZ
8202 /*
8203 * Relies on the RCU grace period between css_released() and this.
8204 */
8205 sched_free_group(tg);
ace783b9
LZ
8206}
8207
b53202e6 8208static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8209{
8210 sched_move_task(task);
8211}
8212
1f7dd3e5 8213static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8214{
bb9d97b6 8215 struct task_struct *task;
1f7dd3e5 8216 struct cgroup_subsys_state *css;
bb9d97b6 8217
1f7dd3e5 8218 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8219#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8220 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8221 return -EINVAL;
b68aa230 8222#else
bb9d97b6
TH
8223 /* We don't support RT-tasks being in separate groups */
8224 if (task->sched_class != &fair_sched_class)
8225 return -EINVAL;
b68aa230 8226#endif
bb9d97b6 8227 }
be367d09
BB
8228 return 0;
8229}
68318b8e 8230
1f7dd3e5 8231static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8232{
bb9d97b6 8233 struct task_struct *task;
1f7dd3e5 8234 struct cgroup_subsys_state *css;
bb9d97b6 8235
1f7dd3e5 8236 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8237 sched_move_task(task);
68318b8e
SV
8238}
8239
052f1dc7 8240#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8241static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8242 struct cftype *cftype, u64 shareval)
68318b8e 8243{
182446d0 8244 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8245}
8246
182446d0
TH
8247static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8248 struct cftype *cft)
68318b8e 8249{
182446d0 8250 struct task_group *tg = css_tg(css);
68318b8e 8251
c8b28116 8252 return (u64) scale_load_down(tg->shares);
68318b8e 8253}
ab84d31e
PT
8254
8255#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8256static DEFINE_MUTEX(cfs_constraints_mutex);
8257
ab84d31e
PT
8258const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8259const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8260
a790de99
PT
8261static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8262
ab84d31e
PT
8263static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8264{
56f570e5 8265 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8266 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8267
8268 if (tg == &root_task_group)
8269 return -EINVAL;
8270
8271 /*
8272 * Ensure we have at some amount of bandwidth every period. This is
8273 * to prevent reaching a state of large arrears when throttled via
8274 * entity_tick() resulting in prolonged exit starvation.
8275 */
8276 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8277 return -EINVAL;
8278
8279 /*
8280 * Likewise, bound things on the otherside by preventing insane quota
8281 * periods. This also allows us to normalize in computing quota
8282 * feasibility.
8283 */
8284 if (period > max_cfs_quota_period)
8285 return -EINVAL;
8286
0e59bdae
KT
8287 /*
8288 * Prevent race between setting of cfs_rq->runtime_enabled and
8289 * unthrottle_offline_cfs_rqs().
8290 */
8291 get_online_cpus();
a790de99
PT
8292 mutex_lock(&cfs_constraints_mutex);
8293 ret = __cfs_schedulable(tg, period, quota);
8294 if (ret)
8295 goto out_unlock;
8296
58088ad0 8297 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8298 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8299 /*
8300 * If we need to toggle cfs_bandwidth_used, off->on must occur
8301 * before making related changes, and on->off must occur afterwards
8302 */
8303 if (runtime_enabled && !runtime_was_enabled)
8304 cfs_bandwidth_usage_inc();
ab84d31e
PT
8305 raw_spin_lock_irq(&cfs_b->lock);
8306 cfs_b->period = ns_to_ktime(period);
8307 cfs_b->quota = quota;
58088ad0 8308
a9cf55b2 8309 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8310 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8311 if (runtime_enabled)
8312 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8313 raw_spin_unlock_irq(&cfs_b->lock);
8314
0e59bdae 8315 for_each_online_cpu(i) {
ab84d31e 8316 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8317 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8318
8319 raw_spin_lock_irq(&rq->lock);
58088ad0 8320 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8321 cfs_rq->runtime_remaining = 0;
671fd9da 8322
029632fb 8323 if (cfs_rq->throttled)
671fd9da 8324 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8325 raw_spin_unlock_irq(&rq->lock);
8326 }
1ee14e6c
BS
8327 if (runtime_was_enabled && !runtime_enabled)
8328 cfs_bandwidth_usage_dec();
a790de99
PT
8329out_unlock:
8330 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8331 put_online_cpus();
ab84d31e 8332
a790de99 8333 return ret;
ab84d31e
PT
8334}
8335
8336int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8337{
8338 u64 quota, period;
8339
029632fb 8340 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8341 if (cfs_quota_us < 0)
8342 quota = RUNTIME_INF;
8343 else
8344 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8345
8346 return tg_set_cfs_bandwidth(tg, period, quota);
8347}
8348
8349long tg_get_cfs_quota(struct task_group *tg)
8350{
8351 u64 quota_us;
8352
029632fb 8353 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8354 return -1;
8355
029632fb 8356 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8357 do_div(quota_us, NSEC_PER_USEC);
8358
8359 return quota_us;
8360}
8361
8362int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8363{
8364 u64 quota, period;
8365
8366 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8367 quota = tg->cfs_bandwidth.quota;
ab84d31e 8368
ab84d31e
PT
8369 return tg_set_cfs_bandwidth(tg, period, quota);
8370}
8371
8372long tg_get_cfs_period(struct task_group *tg)
8373{
8374 u64 cfs_period_us;
8375
029632fb 8376 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8377 do_div(cfs_period_us, NSEC_PER_USEC);
8378
8379 return cfs_period_us;
8380}
8381
182446d0
TH
8382static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8383 struct cftype *cft)
ab84d31e 8384{
182446d0 8385 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8386}
8387
182446d0
TH
8388static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8389 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8390{
182446d0 8391 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8392}
8393
182446d0
TH
8394static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8395 struct cftype *cft)
ab84d31e 8396{
182446d0 8397 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8398}
8399
182446d0
TH
8400static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8401 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8402{
182446d0 8403 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8404}
8405
a790de99
PT
8406struct cfs_schedulable_data {
8407 struct task_group *tg;
8408 u64 period, quota;
8409};
8410
8411/*
8412 * normalize group quota/period to be quota/max_period
8413 * note: units are usecs
8414 */
8415static u64 normalize_cfs_quota(struct task_group *tg,
8416 struct cfs_schedulable_data *d)
8417{
8418 u64 quota, period;
8419
8420 if (tg == d->tg) {
8421 period = d->period;
8422 quota = d->quota;
8423 } else {
8424 period = tg_get_cfs_period(tg);
8425 quota = tg_get_cfs_quota(tg);
8426 }
8427
8428 /* note: these should typically be equivalent */
8429 if (quota == RUNTIME_INF || quota == -1)
8430 return RUNTIME_INF;
8431
8432 return to_ratio(period, quota);
8433}
8434
8435static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8436{
8437 struct cfs_schedulable_data *d = data;
029632fb 8438 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8439 s64 quota = 0, parent_quota = -1;
8440
8441 if (!tg->parent) {
8442 quota = RUNTIME_INF;
8443 } else {
029632fb 8444 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8445
8446 quota = normalize_cfs_quota(tg, d);
9c58c79a 8447 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8448
8449 /*
8450 * ensure max(child_quota) <= parent_quota, inherit when no
8451 * limit is set
8452 */
8453 if (quota == RUNTIME_INF)
8454 quota = parent_quota;
8455 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8456 return -EINVAL;
8457 }
9c58c79a 8458 cfs_b->hierarchical_quota = quota;
a790de99
PT
8459
8460 return 0;
8461}
8462
8463static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8464{
8277434e 8465 int ret;
a790de99
PT
8466 struct cfs_schedulable_data data = {
8467 .tg = tg,
8468 .period = period,
8469 .quota = quota,
8470 };
8471
8472 if (quota != RUNTIME_INF) {
8473 do_div(data.period, NSEC_PER_USEC);
8474 do_div(data.quota, NSEC_PER_USEC);
8475 }
8476
8277434e
PT
8477 rcu_read_lock();
8478 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8479 rcu_read_unlock();
8480
8481 return ret;
a790de99 8482}
e8da1b18 8483
2da8ca82 8484static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8485{
2da8ca82 8486 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8487 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8488
44ffc75b
TH
8489 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8490 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8491 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8492
8493 return 0;
8494}
ab84d31e 8495#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8496#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8497
052f1dc7 8498#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8499static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8500 struct cftype *cft, s64 val)
6f505b16 8501{
182446d0 8502 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8503}
8504
182446d0
TH
8505static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8506 struct cftype *cft)
6f505b16 8507{
182446d0 8508 return sched_group_rt_runtime(css_tg(css));
6f505b16 8509}
d0b27fa7 8510
182446d0
TH
8511static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8512 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8513{
182446d0 8514 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8515}
8516
182446d0
TH
8517static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8518 struct cftype *cft)
d0b27fa7 8519{
182446d0 8520 return sched_group_rt_period(css_tg(css));
d0b27fa7 8521}
6d6bc0ad 8522#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8523
fe5c7cc2 8524static struct cftype cpu_files[] = {
052f1dc7 8525#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8526 {
8527 .name = "shares",
f4c753b7
PM
8528 .read_u64 = cpu_shares_read_u64,
8529 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8530 },
052f1dc7 8531#endif
ab84d31e
PT
8532#ifdef CONFIG_CFS_BANDWIDTH
8533 {
8534 .name = "cfs_quota_us",
8535 .read_s64 = cpu_cfs_quota_read_s64,
8536 .write_s64 = cpu_cfs_quota_write_s64,
8537 },
8538 {
8539 .name = "cfs_period_us",
8540 .read_u64 = cpu_cfs_period_read_u64,
8541 .write_u64 = cpu_cfs_period_write_u64,
8542 },
e8da1b18
NR
8543 {
8544 .name = "stat",
2da8ca82 8545 .seq_show = cpu_stats_show,
e8da1b18 8546 },
ab84d31e 8547#endif
052f1dc7 8548#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8549 {
9f0c1e56 8550 .name = "rt_runtime_us",
06ecb27c
PM
8551 .read_s64 = cpu_rt_runtime_read,
8552 .write_s64 = cpu_rt_runtime_write,
6f505b16 8553 },
d0b27fa7
PZ
8554 {
8555 .name = "rt_period_us",
f4c753b7
PM
8556 .read_u64 = cpu_rt_period_read_uint,
8557 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8558 },
052f1dc7 8559#endif
4baf6e33 8560 { } /* terminate */
68318b8e
SV
8561};
8562
073219e9 8563struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8564 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8565 .css_released = cpu_cgroup_css_released,
92fb9748 8566 .css_free = cpu_cgroup_css_free,
eeb61e53 8567 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8568 .can_attach = cpu_cgroup_can_attach,
8569 .attach = cpu_cgroup_attach,
5577964e 8570 .legacy_cftypes = cpu_files,
b38e42e9 8571 .early_init = true,
68318b8e
SV
8572};
8573
052f1dc7 8574#endif /* CONFIG_CGROUP_SCHED */
d842de87 8575
b637a328
PM
8576void dump_cpu_task(int cpu)
8577{
8578 pr_info("Task dump for CPU %d:\n", cpu);
8579 sched_show_task(cpu_curr(cpu));
8580}
ed82b8a1
AK
8581
8582/*
8583 * Nice levels are multiplicative, with a gentle 10% change for every
8584 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8585 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8586 * that remained on nice 0.
8587 *
8588 * The "10% effect" is relative and cumulative: from _any_ nice level,
8589 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8590 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8591 * If a task goes up by ~10% and another task goes down by ~10% then
8592 * the relative distance between them is ~25%.)
8593 */
8594const int sched_prio_to_weight[40] = {
8595 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8596 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8597 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8598 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8599 /* 0 */ 1024, 820, 655, 526, 423,
8600 /* 5 */ 335, 272, 215, 172, 137,
8601 /* 10 */ 110, 87, 70, 56, 45,
8602 /* 15 */ 36, 29, 23, 18, 15,
8603};
8604
8605/*
8606 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8607 *
8608 * In cases where the weight does not change often, we can use the
8609 * precalculated inverse to speed up arithmetics by turning divisions
8610 * into multiplications:
8611 */
8612const u32 sched_prio_to_wmult[40] = {
8613 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8614 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8615 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8616 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8617 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8618 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8619 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8620 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8621};
This page took 3.270825 seconds and 5 git commands to generate.