Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
e05606d3 902 if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
ac66f547
PZ
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
6acce3ef
PZ
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
ac66f547
PZ
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
1111 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1112
1113out:
ac66f547
PZ
1114 return ret;
1115}
1116
969c7921 1117struct migration_arg {
36c8b586 1118 struct task_struct *task;
1da177e4 1119 int dest_cpu;
70b97a7f 1120};
1da177e4 1121
969c7921
TH
1122static int migration_cpu_stop(void *data);
1123
1da177e4
LT
1124/*
1125 * wait_task_inactive - wait for a thread to unschedule.
1126 *
85ba2d86
RM
1127 * If @match_state is nonzero, it's the @p->state value just checked and
1128 * not expected to change. If it changes, i.e. @p might have woken up,
1129 * then return zero. When we succeed in waiting for @p to be off its CPU,
1130 * we return a positive number (its total switch count). If a second call
1131 * a short while later returns the same number, the caller can be sure that
1132 * @p has remained unscheduled the whole time.
1133 *
1da177e4
LT
1134 * The caller must ensure that the task *will* unschedule sometime soon,
1135 * else this function might spin for a *long* time. This function can't
1136 * be called with interrupts off, or it may introduce deadlock with
1137 * smp_call_function() if an IPI is sent by the same process we are
1138 * waiting to become inactive.
1139 */
85ba2d86 1140unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1141{
1142 unsigned long flags;
dd41f596 1143 int running, on_rq;
85ba2d86 1144 unsigned long ncsw;
70b97a7f 1145 struct rq *rq;
1da177e4 1146
3a5c359a
AK
1147 for (;;) {
1148 /*
1149 * We do the initial early heuristics without holding
1150 * any task-queue locks at all. We'll only try to get
1151 * the runqueue lock when things look like they will
1152 * work out!
1153 */
1154 rq = task_rq(p);
fa490cfd 1155
3a5c359a
AK
1156 /*
1157 * If the task is actively running on another CPU
1158 * still, just relax and busy-wait without holding
1159 * any locks.
1160 *
1161 * NOTE! Since we don't hold any locks, it's not
1162 * even sure that "rq" stays as the right runqueue!
1163 * But we don't care, since "task_running()" will
1164 * return false if the runqueue has changed and p
1165 * is actually now running somewhere else!
1166 */
85ba2d86
RM
1167 while (task_running(rq, p)) {
1168 if (match_state && unlikely(p->state != match_state))
1169 return 0;
3a5c359a 1170 cpu_relax();
85ba2d86 1171 }
fa490cfd 1172
3a5c359a
AK
1173 /*
1174 * Ok, time to look more closely! We need the rq
1175 * lock now, to be *sure*. If we're wrong, we'll
1176 * just go back and repeat.
1177 */
1178 rq = task_rq_lock(p, &flags);
27a9da65 1179 trace_sched_wait_task(p);
3a5c359a 1180 running = task_running(rq, p);
fd2f4419 1181 on_rq = p->on_rq;
85ba2d86 1182 ncsw = 0;
f31e11d8 1183 if (!match_state || p->state == match_state)
93dcf55f 1184 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1185 task_rq_unlock(rq, p, &flags);
fa490cfd 1186
85ba2d86
RM
1187 /*
1188 * If it changed from the expected state, bail out now.
1189 */
1190 if (unlikely(!ncsw))
1191 break;
1192
3a5c359a
AK
1193 /*
1194 * Was it really running after all now that we
1195 * checked with the proper locks actually held?
1196 *
1197 * Oops. Go back and try again..
1198 */
1199 if (unlikely(running)) {
1200 cpu_relax();
1201 continue;
1202 }
fa490cfd 1203
3a5c359a
AK
1204 /*
1205 * It's not enough that it's not actively running,
1206 * it must be off the runqueue _entirely_, and not
1207 * preempted!
1208 *
80dd99b3 1209 * So if it was still runnable (but just not actively
3a5c359a
AK
1210 * running right now), it's preempted, and we should
1211 * yield - it could be a while.
1212 */
1213 if (unlikely(on_rq)) {
8eb90c30
TG
1214 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1215
1216 set_current_state(TASK_UNINTERRUPTIBLE);
1217 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1218 continue;
1219 }
fa490cfd 1220
3a5c359a
AK
1221 /*
1222 * Ahh, all good. It wasn't running, and it wasn't
1223 * runnable, which means that it will never become
1224 * running in the future either. We're all done!
1225 */
1226 break;
1227 }
85ba2d86
RM
1228
1229 return ncsw;
1da177e4
LT
1230}
1231
1232/***
1233 * kick_process - kick a running thread to enter/exit the kernel
1234 * @p: the to-be-kicked thread
1235 *
1236 * Cause a process which is running on another CPU to enter
1237 * kernel-mode, without any delay. (to get signals handled.)
1238 *
25985edc 1239 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1240 * because all it wants to ensure is that the remote task enters
1241 * the kernel. If the IPI races and the task has been migrated
1242 * to another CPU then no harm is done and the purpose has been
1243 * achieved as well.
1244 */
36c8b586 1245void kick_process(struct task_struct *p)
1da177e4
LT
1246{
1247 int cpu;
1248
1249 preempt_disable();
1250 cpu = task_cpu(p);
1251 if ((cpu != smp_processor_id()) && task_curr(p))
1252 smp_send_reschedule(cpu);
1253 preempt_enable();
1254}
b43e3521 1255EXPORT_SYMBOL_GPL(kick_process);
476d139c 1256#endif /* CONFIG_SMP */
1da177e4 1257
970b13ba 1258#ifdef CONFIG_SMP
30da688e 1259/*
013fdb80 1260 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1261 */
5da9a0fb
PZ
1262static int select_fallback_rq(int cpu, struct task_struct *p)
1263{
aa00d89c
TC
1264 int nid = cpu_to_node(cpu);
1265 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1266 enum { cpuset, possible, fail } state = cpuset;
1267 int dest_cpu;
5da9a0fb 1268
aa00d89c
TC
1269 /*
1270 * If the node that the cpu is on has been offlined, cpu_to_node()
1271 * will return -1. There is no cpu on the node, and we should
1272 * select the cpu on the other node.
1273 */
1274 if (nid != -1) {
1275 nodemask = cpumask_of_node(nid);
1276
1277 /* Look for allowed, online CPU in same node. */
1278 for_each_cpu(dest_cpu, nodemask) {
1279 if (!cpu_online(dest_cpu))
1280 continue;
1281 if (!cpu_active(dest_cpu))
1282 continue;
1283 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1284 return dest_cpu;
1285 }
2baab4e9 1286 }
5da9a0fb 1287
2baab4e9
PZ
1288 for (;;) {
1289 /* Any allowed, online CPU? */
e3831edd 1290 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1291 if (!cpu_online(dest_cpu))
1292 continue;
1293 if (!cpu_active(dest_cpu))
1294 continue;
1295 goto out;
1296 }
5da9a0fb 1297
2baab4e9
PZ
1298 switch (state) {
1299 case cpuset:
1300 /* No more Mr. Nice Guy. */
1301 cpuset_cpus_allowed_fallback(p);
1302 state = possible;
1303 break;
1304
1305 case possible:
1306 do_set_cpus_allowed(p, cpu_possible_mask);
1307 state = fail;
1308 break;
1309
1310 case fail:
1311 BUG();
1312 break;
1313 }
1314 }
1315
1316out:
1317 if (state != cpuset) {
1318 /*
1319 * Don't tell them about moving exiting tasks or
1320 * kernel threads (both mm NULL), since they never
1321 * leave kernel.
1322 */
1323 if (p->mm && printk_ratelimit()) {
1324 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1325 task_pid_nr(p), p->comm, cpu);
1326 }
5da9a0fb
PZ
1327 }
1328
1329 return dest_cpu;
1330}
1331
e2912009 1332/*
013fdb80 1333 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1334 */
970b13ba 1335static inline
ac66f547 1336int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1337{
ac66f547 1338 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1339
1340 /*
1341 * In order not to call set_task_cpu() on a blocking task we need
1342 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1343 * cpu.
1344 *
1345 * Since this is common to all placement strategies, this lives here.
1346 *
1347 * [ this allows ->select_task() to simply return task_cpu(p) and
1348 * not worry about this generic constraint ]
1349 */
fa17b507 1350 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1351 !cpu_online(cpu)))
5da9a0fb 1352 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1353
1354 return cpu;
970b13ba 1355}
09a40af5
MG
1356
1357static void update_avg(u64 *avg, u64 sample)
1358{
1359 s64 diff = sample - *avg;
1360 *avg += diff >> 3;
1361}
970b13ba
PZ
1362#endif
1363
d7c01d27 1364static void
b84cb5df 1365ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1366{
d7c01d27 1367#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1368 struct rq *rq = this_rq();
1369
d7c01d27
PZ
1370#ifdef CONFIG_SMP
1371 int this_cpu = smp_processor_id();
1372
1373 if (cpu == this_cpu) {
1374 schedstat_inc(rq, ttwu_local);
1375 schedstat_inc(p, se.statistics.nr_wakeups_local);
1376 } else {
1377 struct sched_domain *sd;
1378
1379 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1380 rcu_read_lock();
d7c01d27
PZ
1381 for_each_domain(this_cpu, sd) {
1382 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1383 schedstat_inc(sd, ttwu_wake_remote);
1384 break;
1385 }
1386 }
057f3fad 1387 rcu_read_unlock();
d7c01d27 1388 }
f339b9dc
PZ
1389
1390 if (wake_flags & WF_MIGRATED)
1391 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1392
d7c01d27
PZ
1393#endif /* CONFIG_SMP */
1394
1395 schedstat_inc(rq, ttwu_count);
9ed3811a 1396 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1397
1398 if (wake_flags & WF_SYNC)
9ed3811a 1399 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1400
d7c01d27
PZ
1401#endif /* CONFIG_SCHEDSTATS */
1402}
1403
1404static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1405{
9ed3811a 1406 activate_task(rq, p, en_flags);
fd2f4419 1407 p->on_rq = 1;
c2f7115e
PZ
1408
1409 /* if a worker is waking up, notify workqueue */
1410 if (p->flags & PF_WQ_WORKER)
1411 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1412}
1413
23f41eeb
PZ
1414/*
1415 * Mark the task runnable and perform wakeup-preemption.
1416 */
89363381 1417static void
23f41eeb 1418ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1419{
9ed3811a 1420 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1421 trace_sched_wakeup(p, true);
9ed3811a
TH
1422
1423 p->state = TASK_RUNNING;
1424#ifdef CONFIG_SMP
1425 if (p->sched_class->task_woken)
1426 p->sched_class->task_woken(rq, p);
1427
e69c6341 1428 if (rq->idle_stamp) {
78becc27 1429 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1430 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1431
abfafa54
JL
1432 update_avg(&rq->avg_idle, delta);
1433
1434 if (rq->avg_idle > max)
9ed3811a 1435 rq->avg_idle = max;
abfafa54 1436
9ed3811a
TH
1437 rq->idle_stamp = 0;
1438 }
1439#endif
1440}
1441
c05fbafb
PZ
1442static void
1443ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1444{
1445#ifdef CONFIG_SMP
1446 if (p->sched_contributes_to_load)
1447 rq->nr_uninterruptible--;
1448#endif
1449
1450 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1451 ttwu_do_wakeup(rq, p, wake_flags);
1452}
1453
1454/*
1455 * Called in case the task @p isn't fully descheduled from its runqueue,
1456 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1457 * since all we need to do is flip p->state to TASK_RUNNING, since
1458 * the task is still ->on_rq.
1459 */
1460static int ttwu_remote(struct task_struct *p, int wake_flags)
1461{
1462 struct rq *rq;
1463 int ret = 0;
1464
1465 rq = __task_rq_lock(p);
1466 if (p->on_rq) {
1ad4ec0d
FW
1467 /* check_preempt_curr() may use rq clock */
1468 update_rq_clock(rq);
c05fbafb
PZ
1469 ttwu_do_wakeup(rq, p, wake_flags);
1470 ret = 1;
1471 }
1472 __task_rq_unlock(rq);
1473
1474 return ret;
1475}
1476
317f3941 1477#ifdef CONFIG_SMP
fa14ff4a 1478static void sched_ttwu_pending(void)
317f3941
PZ
1479{
1480 struct rq *rq = this_rq();
fa14ff4a
PZ
1481 struct llist_node *llist = llist_del_all(&rq->wake_list);
1482 struct task_struct *p;
317f3941
PZ
1483
1484 raw_spin_lock(&rq->lock);
1485
fa14ff4a
PZ
1486 while (llist) {
1487 p = llist_entry(llist, struct task_struct, wake_entry);
1488 llist = llist_next(llist);
317f3941
PZ
1489 ttwu_do_activate(rq, p, 0);
1490 }
1491
1492 raw_spin_unlock(&rq->lock);
1493}
1494
1495void scheduler_ipi(void)
1496{
f27dde8d
PZ
1497 /*
1498 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1499 * TIF_NEED_RESCHED remotely (for the first time) will also send
1500 * this IPI.
1501 */
1502 if (tif_need_resched())
1503 set_preempt_need_resched();
1504
873b4c65
VG
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
c5d753a5
PZ
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
ff442c51 1524 tick_nohz_full_check();
fa14ff4a 1525 sched_ttwu_pending();
ca38062e
SS
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
873b4c65 1530 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1531 this_rq()->idle_balance = 1;
ca38062e 1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1533 }
c5d753a5 1534 irq_exit();
317f3941
PZ
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
fa14ff4a 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1540 smp_send_reschedule(cpu);
1541}
d6aa8f85 1542
39be3501 1543bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1544{
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
d6aa8f85 1547#endif /* CONFIG_SMP */
317f3941 1548
c05fbafb
PZ
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552
17d9f311 1553#if defined(CONFIG_SMP)
39be3501 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559#endif
1560
c05fbafb
PZ
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1564}
1565
1566/**
1da177e4 1567 * try_to_wake_up - wake up a thread
9ed3811a 1568 * @p: the thread to be awakened
1da177e4 1569 * @state: the mask of task states that can be woken
9ed3811a 1570 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
e69f6186 1578 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1579 * or @state didn't match @p's state.
1da177e4 1580 */
e4a52bcb
PZ
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1583{
1da177e4 1584 unsigned long flags;
c05fbafb 1585 int cpu, success = 0;
2398f2c6 1586
e0acd0a6
ON
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
013fdb80 1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1595 if (!(p->state & state))
1da177e4
LT
1596 goto out;
1597
c05fbafb 1598 success = 1; /* we're going to change ->state */
1da177e4 1599 cpu = task_cpu(p);
1da177e4 1600
c05fbafb
PZ
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1da177e4 1603
1da177e4 1604#ifdef CONFIG_SMP
e9c84311 1605 /*
c05fbafb
PZ
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
e9c84311 1608 */
f3e94786 1609 while (p->on_cpu)
e4a52bcb 1610 cpu_relax();
0970d299 1611 /*
e4a52bcb 1612 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1613 */
e4a52bcb 1614 smp_rmb();
1da177e4 1615
a8e4f2ea 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1617 p->state = TASK_WAKING;
e7693a36 1618
e4a52bcb 1619 if (p->sched_class->task_waking)
74f8e4b2 1620 p->sched_class->task_waking(p);
efbbd05a 1621
ac66f547 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
e4a52bcb 1625 set_task_cpu(p, cpu);
f339b9dc 1626 }
1da177e4 1627#endif /* CONFIG_SMP */
1da177e4 1628
c05fbafb
PZ
1629 ttwu_queue(p, cpu);
1630stat:
b84cb5df 1631 ttwu_stat(p, cpu, wake_flags);
1da177e4 1632out:
013fdb80 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1634
1635 return success;
1636}
1637
21aa9af0
TH
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
2acca55e 1642 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1644 * the current task.
21aa9af0
TH
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648 struct rq *rq = task_rq(p);
21aa9af0 1649
383efcd0
TH
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
21aa9af0
TH
1654 lockdep_assert_held(&rq->lock);
1655
2acca55e
PZ
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
21aa9af0 1662 if (!(p->state & TASK_NORMAL))
2acca55e 1663 goto out;
21aa9af0 1664
fd2f4419 1665 if (!p->on_rq)
d7c01d27
PZ
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
23f41eeb 1668 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1669 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1670out:
1671 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1672}
1673
50fa610a
DH
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
7ad5b3a5 1686int wake_up_process(struct task_struct *p)
1da177e4 1687{
9067ac85
ON
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
5e1576ed 1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
fa717060 1720 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1721
e107be36
AK
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
cbee9f88
PZ
1725
1726#ifdef CONFIG_NUMA_BALANCING
1727 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1728 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1729 p->mm->numa_scan_seq = 0;
1730 }
1731
5e1576ed
RR
1732 if (clone_flags & CLONE_VM)
1733 p->numa_preferred_nid = current->numa_preferred_nid;
1734 else
1735 p->numa_preferred_nid = -1;
1736
cbee9f88
PZ
1737 p->node_stamp = 0ULL;
1738 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1739 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1740 p->numa_work.next = &p->numa_work;
f809ca9a 1741 p->numa_faults = NULL;
745d6147 1742 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1743
1744 INIT_LIST_HEAD(&p->numa_entry);
1745 p->numa_group = NULL;
cbee9f88 1746#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1747}
1748
1a687c2e 1749#ifdef CONFIG_NUMA_BALANCING
3105b86a 1750#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1751void set_numabalancing_state(bool enabled)
1752{
1753 if (enabled)
1754 sched_feat_set("NUMA");
1755 else
1756 sched_feat_set("NO_NUMA");
1757}
3105b86a
MG
1758#else
1759__read_mostly bool numabalancing_enabled;
1760
1761void set_numabalancing_state(bool enabled)
1762{
1763 numabalancing_enabled = enabled;
dd41f596 1764}
3105b86a 1765#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1766#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1767
1768/*
1769 * fork()/clone()-time setup:
1770 */
5e1576ed 1771void sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1772{
0122ec5b 1773 unsigned long flags;
dd41f596
IM
1774 int cpu = get_cpu();
1775
5e1576ed 1776 __sched_fork(clone_flags, p);
06b83b5f 1777 /*
0017d735 1778 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1779 * nobody will actually run it, and a signal or other external
1780 * event cannot wake it up and insert it on the runqueue either.
1781 */
0017d735 1782 p->state = TASK_RUNNING;
dd41f596 1783
c350a04e
MG
1784 /*
1785 * Make sure we do not leak PI boosting priority to the child.
1786 */
1787 p->prio = current->normal_prio;
1788
b9dc29e7
MG
1789 /*
1790 * Revert to default priority/policy on fork if requested.
1791 */
1792 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1793 if (task_has_rt_policy(p)) {
b9dc29e7 1794 p->policy = SCHED_NORMAL;
6c697bdf 1795 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1796 p->rt_priority = 0;
1797 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1798 p->static_prio = NICE_TO_PRIO(0);
1799
1800 p->prio = p->normal_prio = __normal_prio(p);
1801 set_load_weight(p);
6c697bdf 1802
b9dc29e7
MG
1803 /*
1804 * We don't need the reset flag anymore after the fork. It has
1805 * fulfilled its duty:
1806 */
1807 p->sched_reset_on_fork = 0;
1808 }
ca94c442 1809
2ddbf952
HS
1810 if (!rt_prio(p->prio))
1811 p->sched_class = &fair_sched_class;
b29739f9 1812
cd29fe6f
PZ
1813 if (p->sched_class->task_fork)
1814 p->sched_class->task_fork(p);
1815
86951599
PZ
1816 /*
1817 * The child is not yet in the pid-hash so no cgroup attach races,
1818 * and the cgroup is pinned to this child due to cgroup_fork()
1819 * is ran before sched_fork().
1820 *
1821 * Silence PROVE_RCU.
1822 */
0122ec5b 1823 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1824 set_task_cpu(p, cpu);
0122ec5b 1825 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1826
52f17b6c 1827#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1828 if (likely(sched_info_on()))
52f17b6c 1829 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1830#endif
3ca7a440
PZ
1831#if defined(CONFIG_SMP)
1832 p->on_cpu = 0;
4866cde0 1833#endif
01028747 1834 init_task_preempt_count(p);
806c09a7 1835#ifdef CONFIG_SMP
917b627d 1836 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1837#endif
917b627d 1838
476d139c 1839 put_cpu();
1da177e4
LT
1840}
1841
1842/*
1843 * wake_up_new_task - wake up a newly created task for the first time.
1844 *
1845 * This function will do some initial scheduler statistics housekeeping
1846 * that must be done for every newly created context, then puts the task
1847 * on the runqueue and wakes it.
1848 */
3e51e3ed 1849void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1850{
1851 unsigned long flags;
dd41f596 1852 struct rq *rq;
fabf318e 1853
ab2515c4 1854 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1855#ifdef CONFIG_SMP
1856 /*
1857 * Fork balancing, do it here and not earlier because:
1858 * - cpus_allowed can change in the fork path
1859 * - any previously selected cpu might disappear through hotplug
fabf318e 1860 */
ac66f547 1861 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1862#endif
1863
a75cdaa9
AS
1864 /* Initialize new task's runnable average */
1865 init_task_runnable_average(p);
ab2515c4 1866 rq = __task_rq_lock(p);
cd29fe6f 1867 activate_task(rq, p, 0);
fd2f4419 1868 p->on_rq = 1;
89363381 1869 trace_sched_wakeup_new(p, true);
a7558e01 1870 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1871#ifdef CONFIG_SMP
efbbd05a
PZ
1872 if (p->sched_class->task_woken)
1873 p->sched_class->task_woken(rq, p);
9a897c5a 1874#endif
0122ec5b 1875 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1876}
1877
e107be36
AK
1878#ifdef CONFIG_PREEMPT_NOTIFIERS
1879
1880/**
80dd99b3 1881 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1882 * @notifier: notifier struct to register
e107be36
AK
1883 */
1884void preempt_notifier_register(struct preempt_notifier *notifier)
1885{
1886 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1887}
1888EXPORT_SYMBOL_GPL(preempt_notifier_register);
1889
1890/**
1891 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1892 * @notifier: notifier struct to unregister
e107be36
AK
1893 *
1894 * This is safe to call from within a preemption notifier.
1895 */
1896void preempt_notifier_unregister(struct preempt_notifier *notifier)
1897{
1898 hlist_del(&notifier->link);
1899}
1900EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1901
1902static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1903{
1904 struct preempt_notifier *notifier;
e107be36 1905
b67bfe0d 1906 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1907 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1908}
1909
1910static void
1911fire_sched_out_preempt_notifiers(struct task_struct *curr,
1912 struct task_struct *next)
1913{
1914 struct preempt_notifier *notifier;
e107be36 1915
b67bfe0d 1916 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1917 notifier->ops->sched_out(notifier, next);
1918}
1919
6d6bc0ad 1920#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1921
1922static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1923{
1924}
1925
1926static void
1927fire_sched_out_preempt_notifiers(struct task_struct *curr,
1928 struct task_struct *next)
1929{
1930}
1931
6d6bc0ad 1932#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1933
4866cde0
NP
1934/**
1935 * prepare_task_switch - prepare to switch tasks
1936 * @rq: the runqueue preparing to switch
421cee29 1937 * @prev: the current task that is being switched out
4866cde0
NP
1938 * @next: the task we are going to switch to.
1939 *
1940 * This is called with the rq lock held and interrupts off. It must
1941 * be paired with a subsequent finish_task_switch after the context
1942 * switch.
1943 *
1944 * prepare_task_switch sets up locking and calls architecture specific
1945 * hooks.
1946 */
e107be36
AK
1947static inline void
1948prepare_task_switch(struct rq *rq, struct task_struct *prev,
1949 struct task_struct *next)
4866cde0 1950{
895dd92c 1951 trace_sched_switch(prev, next);
43148951 1952 sched_info_switch(rq, prev, next);
fe4b04fa 1953 perf_event_task_sched_out(prev, next);
e107be36 1954 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1955 prepare_lock_switch(rq, next);
1956 prepare_arch_switch(next);
1957}
1958
1da177e4
LT
1959/**
1960 * finish_task_switch - clean up after a task-switch
344babaa 1961 * @rq: runqueue associated with task-switch
1da177e4
LT
1962 * @prev: the thread we just switched away from.
1963 *
4866cde0
NP
1964 * finish_task_switch must be called after the context switch, paired
1965 * with a prepare_task_switch call before the context switch.
1966 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1967 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1968 *
1969 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1970 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1971 * with the lock held can cause deadlocks; see schedule() for
1972 * details.)
1973 */
a9957449 1974static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1975 __releases(rq->lock)
1976{
1da177e4 1977 struct mm_struct *mm = rq->prev_mm;
55a101f8 1978 long prev_state;
1da177e4
LT
1979
1980 rq->prev_mm = NULL;
1981
1982 /*
1983 * A task struct has one reference for the use as "current".
c394cc9f 1984 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1985 * schedule one last time. The schedule call will never return, and
1986 * the scheduled task must drop that reference.
c394cc9f 1987 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1988 * still held, otherwise prev could be scheduled on another cpu, die
1989 * there before we look at prev->state, and then the reference would
1990 * be dropped twice.
1991 * Manfred Spraul <manfred@colorfullife.com>
1992 */
55a101f8 1993 prev_state = prev->state;
bf9fae9f 1994 vtime_task_switch(prev);
4866cde0 1995 finish_arch_switch(prev);
a8d757ef 1996 perf_event_task_sched_in(prev, current);
4866cde0 1997 finish_lock_switch(rq, prev);
01f23e16 1998 finish_arch_post_lock_switch();
e8fa1362 1999
e107be36 2000 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2001 if (mm)
2002 mmdrop(mm);
c394cc9f 2003 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2004 task_numa_free(prev);
2005
c6fd91f0 2006 /*
2007 * Remove function-return probe instances associated with this
2008 * task and put them back on the free list.
9761eea8 2009 */
c6fd91f0 2010 kprobe_flush_task(prev);
1da177e4 2011 put_task_struct(prev);
c6fd91f0 2012 }
99e5ada9
FW
2013
2014 tick_nohz_task_switch(current);
1da177e4
LT
2015}
2016
3f029d3c
GH
2017#ifdef CONFIG_SMP
2018
2019/* assumes rq->lock is held */
2020static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2021{
2022 if (prev->sched_class->pre_schedule)
2023 prev->sched_class->pre_schedule(rq, prev);
2024}
2025
2026/* rq->lock is NOT held, but preemption is disabled */
2027static inline void post_schedule(struct rq *rq)
2028{
2029 if (rq->post_schedule) {
2030 unsigned long flags;
2031
05fa785c 2032 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2033 if (rq->curr->sched_class->post_schedule)
2034 rq->curr->sched_class->post_schedule(rq);
05fa785c 2035 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2036
2037 rq->post_schedule = 0;
2038 }
2039}
2040
2041#else
da19ab51 2042
3f029d3c
GH
2043static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2044{
2045}
2046
2047static inline void post_schedule(struct rq *rq)
2048{
1da177e4
LT
2049}
2050
3f029d3c
GH
2051#endif
2052
1da177e4
LT
2053/**
2054 * schedule_tail - first thing a freshly forked thread must call.
2055 * @prev: the thread we just switched away from.
2056 */
36c8b586 2057asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2058 __releases(rq->lock)
2059{
70b97a7f
IM
2060 struct rq *rq = this_rq();
2061
4866cde0 2062 finish_task_switch(rq, prev);
da19ab51 2063
3f029d3c
GH
2064 /*
2065 * FIXME: do we need to worry about rq being invalidated by the
2066 * task_switch?
2067 */
2068 post_schedule(rq);
70b97a7f 2069
4866cde0
NP
2070#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2071 /* In this case, finish_task_switch does not reenable preemption */
2072 preempt_enable();
2073#endif
1da177e4 2074 if (current->set_child_tid)
b488893a 2075 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2076}
2077
2078/*
2079 * context_switch - switch to the new MM and the new
2080 * thread's register state.
2081 */
dd41f596 2082static inline void
70b97a7f 2083context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2084 struct task_struct *next)
1da177e4 2085{
dd41f596 2086 struct mm_struct *mm, *oldmm;
1da177e4 2087
e107be36 2088 prepare_task_switch(rq, prev, next);
fe4b04fa 2089
dd41f596
IM
2090 mm = next->mm;
2091 oldmm = prev->active_mm;
9226d125
ZA
2092 /*
2093 * For paravirt, this is coupled with an exit in switch_to to
2094 * combine the page table reload and the switch backend into
2095 * one hypercall.
2096 */
224101ed 2097 arch_start_context_switch(prev);
9226d125 2098
31915ab4 2099 if (!mm) {
1da177e4
LT
2100 next->active_mm = oldmm;
2101 atomic_inc(&oldmm->mm_count);
2102 enter_lazy_tlb(oldmm, next);
2103 } else
2104 switch_mm(oldmm, mm, next);
2105
31915ab4 2106 if (!prev->mm) {
1da177e4 2107 prev->active_mm = NULL;
1da177e4
LT
2108 rq->prev_mm = oldmm;
2109 }
3a5f5e48
IM
2110 /*
2111 * Since the runqueue lock will be released by the next
2112 * task (which is an invalid locking op but in the case
2113 * of the scheduler it's an obvious special-case), so we
2114 * do an early lockdep release here:
2115 */
2116#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2117 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2118#endif
1da177e4 2119
91d1aa43 2120 context_tracking_task_switch(prev, next);
1da177e4
LT
2121 /* Here we just switch the register state and the stack. */
2122 switch_to(prev, next, prev);
2123
dd41f596
IM
2124 barrier();
2125 /*
2126 * this_rq must be evaluated again because prev may have moved
2127 * CPUs since it called schedule(), thus the 'rq' on its stack
2128 * frame will be invalid.
2129 */
2130 finish_task_switch(this_rq(), prev);
1da177e4
LT
2131}
2132
2133/*
1c3e8264 2134 * nr_running and nr_context_switches:
1da177e4
LT
2135 *
2136 * externally visible scheduler statistics: current number of runnable
1c3e8264 2137 * threads, total number of context switches performed since bootup.
1da177e4
LT
2138 */
2139unsigned long nr_running(void)
2140{
2141 unsigned long i, sum = 0;
2142
2143 for_each_online_cpu(i)
2144 sum += cpu_rq(i)->nr_running;
2145
2146 return sum;
f711f609 2147}
1da177e4 2148
1da177e4 2149unsigned long long nr_context_switches(void)
46cb4b7c 2150{
cc94abfc
SR
2151 int i;
2152 unsigned long long sum = 0;
46cb4b7c 2153
0a945022 2154 for_each_possible_cpu(i)
1da177e4 2155 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2156
1da177e4
LT
2157 return sum;
2158}
483b4ee6 2159
1da177e4
LT
2160unsigned long nr_iowait(void)
2161{
2162 unsigned long i, sum = 0;
483b4ee6 2163
0a945022 2164 for_each_possible_cpu(i)
1da177e4 2165 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2166
1da177e4
LT
2167 return sum;
2168}
483b4ee6 2169
8c215bd3 2170unsigned long nr_iowait_cpu(int cpu)
69d25870 2171{
8c215bd3 2172 struct rq *this = cpu_rq(cpu);
69d25870
AV
2173 return atomic_read(&this->nr_iowait);
2174}
46cb4b7c 2175
dd41f596 2176#ifdef CONFIG_SMP
8a0be9ef 2177
46cb4b7c 2178/*
38022906
PZ
2179 * sched_exec - execve() is a valuable balancing opportunity, because at
2180 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2181 */
38022906 2182void sched_exec(void)
46cb4b7c 2183{
38022906 2184 struct task_struct *p = current;
1da177e4 2185 unsigned long flags;
0017d735 2186 int dest_cpu;
46cb4b7c 2187
8f42ced9 2188 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2189 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2190 if (dest_cpu == smp_processor_id())
2191 goto unlock;
38022906 2192
8f42ced9 2193 if (likely(cpu_active(dest_cpu))) {
969c7921 2194 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2195
8f42ced9
PZ
2196 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2197 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2198 return;
2199 }
0017d735 2200unlock:
8f42ced9 2201 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2202}
dd41f596 2203
1da177e4
LT
2204#endif
2205
1da177e4 2206DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2207DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2208
2209EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2210EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2211
2212/*
c5f8d995 2213 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2214 * @p in case that task is currently running.
c5f8d995
HS
2215 *
2216 * Called with task_rq_lock() held on @rq.
1da177e4 2217 */
c5f8d995
HS
2218static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2219{
2220 u64 ns = 0;
2221
2222 if (task_current(rq, p)) {
2223 update_rq_clock(rq);
78becc27 2224 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2225 if ((s64)ns < 0)
2226 ns = 0;
2227 }
2228
2229 return ns;
2230}
2231
bb34d92f 2232unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2233{
1da177e4 2234 unsigned long flags;
41b86e9c 2235 struct rq *rq;
bb34d92f 2236 u64 ns = 0;
48f24c4d 2237
41b86e9c 2238 rq = task_rq_lock(p, &flags);
c5f8d995 2239 ns = do_task_delta_exec(p, rq);
0122ec5b 2240 task_rq_unlock(rq, p, &flags);
1508487e 2241
c5f8d995
HS
2242 return ns;
2243}
f06febc9 2244
c5f8d995
HS
2245/*
2246 * Return accounted runtime for the task.
2247 * In case the task is currently running, return the runtime plus current's
2248 * pending runtime that have not been accounted yet.
2249 */
2250unsigned long long task_sched_runtime(struct task_struct *p)
2251{
2252 unsigned long flags;
2253 struct rq *rq;
2254 u64 ns = 0;
2255
911b2898
PZ
2256#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2257 /*
2258 * 64-bit doesn't need locks to atomically read a 64bit value.
2259 * So we have a optimization chance when the task's delta_exec is 0.
2260 * Reading ->on_cpu is racy, but this is ok.
2261 *
2262 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2263 * If we race with it entering cpu, unaccounted time is 0. This is
2264 * indistinguishable from the read occurring a few cycles earlier.
2265 */
2266 if (!p->on_cpu)
2267 return p->se.sum_exec_runtime;
2268#endif
2269
c5f8d995
HS
2270 rq = task_rq_lock(p, &flags);
2271 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2272 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2273
2274 return ns;
2275}
48f24c4d 2276
7835b98b
CL
2277/*
2278 * This function gets called by the timer code, with HZ frequency.
2279 * We call it with interrupts disabled.
7835b98b
CL
2280 */
2281void scheduler_tick(void)
2282{
7835b98b
CL
2283 int cpu = smp_processor_id();
2284 struct rq *rq = cpu_rq(cpu);
dd41f596 2285 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2286
2287 sched_clock_tick();
dd41f596 2288
05fa785c 2289 raw_spin_lock(&rq->lock);
3e51f33f 2290 update_rq_clock(rq);
fa85ae24 2291 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2292 update_cpu_load_active(rq);
05fa785c 2293 raw_spin_unlock(&rq->lock);
7835b98b 2294
e9d2b064 2295 perf_event_task_tick();
e220d2dc 2296
e418e1c2 2297#ifdef CONFIG_SMP
6eb57e0d 2298 rq->idle_balance = idle_cpu(cpu);
dd41f596 2299 trigger_load_balance(rq, cpu);
e418e1c2 2300#endif
265f22a9 2301 rq_last_tick_reset(rq);
1da177e4
LT
2302}
2303
265f22a9
FW
2304#ifdef CONFIG_NO_HZ_FULL
2305/**
2306 * scheduler_tick_max_deferment
2307 *
2308 * Keep at least one tick per second when a single
2309 * active task is running because the scheduler doesn't
2310 * yet completely support full dynticks environment.
2311 *
2312 * This makes sure that uptime, CFS vruntime, load
2313 * balancing, etc... continue to move forward, even
2314 * with a very low granularity.
e69f6186
YB
2315 *
2316 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2317 */
2318u64 scheduler_tick_max_deferment(void)
2319{
2320 struct rq *rq = this_rq();
2321 unsigned long next, now = ACCESS_ONCE(jiffies);
2322
2323 next = rq->last_sched_tick + HZ;
2324
2325 if (time_before_eq(next, now))
2326 return 0;
2327
2328 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2329}
265f22a9 2330#endif
1da177e4 2331
132380a0 2332notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2333{
2334 if (in_lock_functions(addr)) {
2335 addr = CALLER_ADDR2;
2336 if (in_lock_functions(addr))
2337 addr = CALLER_ADDR3;
2338 }
2339 return addr;
2340}
1da177e4 2341
7e49fcce
SR
2342#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2343 defined(CONFIG_PREEMPT_TRACER))
2344
bdb43806 2345void __kprobes preempt_count_add(int val)
1da177e4 2346{
6cd8a4bb 2347#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2348 /*
2349 * Underflow?
2350 */
9a11b49a
IM
2351 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2352 return;
6cd8a4bb 2353#endif
bdb43806 2354 __preempt_count_add(val);
6cd8a4bb 2355#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2356 /*
2357 * Spinlock count overflowing soon?
2358 */
33859f7f
MOS
2359 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2360 PREEMPT_MASK - 10);
6cd8a4bb
SR
2361#endif
2362 if (preempt_count() == val)
2363 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2364}
bdb43806 2365EXPORT_SYMBOL(preempt_count_add);
1da177e4 2366
bdb43806 2367void __kprobes preempt_count_sub(int val)
1da177e4 2368{
6cd8a4bb 2369#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2370 /*
2371 * Underflow?
2372 */
01e3eb82 2373 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2374 return;
1da177e4
LT
2375 /*
2376 * Is the spinlock portion underflowing?
2377 */
9a11b49a
IM
2378 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2379 !(preempt_count() & PREEMPT_MASK)))
2380 return;
6cd8a4bb 2381#endif
9a11b49a 2382
6cd8a4bb
SR
2383 if (preempt_count() == val)
2384 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2385 __preempt_count_sub(val);
1da177e4 2386}
bdb43806 2387EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2388
2389#endif
2390
2391/*
dd41f596 2392 * Print scheduling while atomic bug:
1da177e4 2393 */
dd41f596 2394static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2395{
664dfa65
DJ
2396 if (oops_in_progress)
2397 return;
2398
3df0fc5b
PZ
2399 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2400 prev->comm, prev->pid, preempt_count());
838225b4 2401
dd41f596 2402 debug_show_held_locks(prev);
e21f5b15 2403 print_modules();
dd41f596
IM
2404 if (irqs_disabled())
2405 print_irqtrace_events(prev);
6135fc1e 2406 dump_stack();
373d4d09 2407 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2408}
1da177e4 2409
dd41f596
IM
2410/*
2411 * Various schedule()-time debugging checks and statistics:
2412 */
2413static inline void schedule_debug(struct task_struct *prev)
2414{
1da177e4 2415 /*
41a2d6cf 2416 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2417 * schedule() atomically, we ignore that path for now.
2418 * Otherwise, whine if we are scheduling when we should not be.
2419 */
3f33a7ce 2420 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2421 __schedule_bug(prev);
b3fbab05 2422 rcu_sleep_check();
dd41f596 2423
1da177e4
LT
2424 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2425
2d72376b 2426 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2427}
2428
6cecd084 2429static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2430{
61eadef6 2431 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2432 update_rq_clock(rq);
6cecd084 2433 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2434}
2435
dd41f596
IM
2436/*
2437 * Pick up the highest-prio task:
2438 */
2439static inline struct task_struct *
b67802ea 2440pick_next_task(struct rq *rq)
dd41f596 2441{
5522d5d5 2442 const struct sched_class *class;
dd41f596 2443 struct task_struct *p;
1da177e4
LT
2444
2445 /*
dd41f596
IM
2446 * Optimization: we know that if all tasks are in
2447 * the fair class we can call that function directly:
1da177e4 2448 */
953bfcd1 2449 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2450 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2451 if (likely(p))
2452 return p;
1da177e4
LT
2453 }
2454
34f971f6 2455 for_each_class(class) {
fb8d4724 2456 p = class->pick_next_task(rq);
dd41f596
IM
2457 if (p)
2458 return p;
dd41f596 2459 }
34f971f6
PZ
2460
2461 BUG(); /* the idle class will always have a runnable task */
dd41f596 2462}
1da177e4 2463
dd41f596 2464/*
c259e01a 2465 * __schedule() is the main scheduler function.
edde96ea
PE
2466 *
2467 * The main means of driving the scheduler and thus entering this function are:
2468 *
2469 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2470 *
2471 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2472 * paths. For example, see arch/x86/entry_64.S.
2473 *
2474 * To drive preemption between tasks, the scheduler sets the flag in timer
2475 * interrupt handler scheduler_tick().
2476 *
2477 * 3. Wakeups don't really cause entry into schedule(). They add a
2478 * task to the run-queue and that's it.
2479 *
2480 * Now, if the new task added to the run-queue preempts the current
2481 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2482 * called on the nearest possible occasion:
2483 *
2484 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2485 *
2486 * - in syscall or exception context, at the next outmost
2487 * preempt_enable(). (this might be as soon as the wake_up()'s
2488 * spin_unlock()!)
2489 *
2490 * - in IRQ context, return from interrupt-handler to
2491 * preemptible context
2492 *
2493 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2494 * then at the next:
2495 *
2496 * - cond_resched() call
2497 * - explicit schedule() call
2498 * - return from syscall or exception to user-space
2499 * - return from interrupt-handler to user-space
dd41f596 2500 */
c259e01a 2501static void __sched __schedule(void)
dd41f596
IM
2502{
2503 struct task_struct *prev, *next;
67ca7bde 2504 unsigned long *switch_count;
dd41f596 2505 struct rq *rq;
31656519 2506 int cpu;
dd41f596 2507
ff743345
PZ
2508need_resched:
2509 preempt_disable();
dd41f596
IM
2510 cpu = smp_processor_id();
2511 rq = cpu_rq(cpu);
25502a6c 2512 rcu_note_context_switch(cpu);
dd41f596 2513 prev = rq->curr;
dd41f596 2514
dd41f596 2515 schedule_debug(prev);
1da177e4 2516
31656519 2517 if (sched_feat(HRTICK))
f333fdc9 2518 hrtick_clear(rq);
8f4d37ec 2519
e0acd0a6
ON
2520 /*
2521 * Make sure that signal_pending_state()->signal_pending() below
2522 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2523 * done by the caller to avoid the race with signal_wake_up().
2524 */
2525 smp_mb__before_spinlock();
05fa785c 2526 raw_spin_lock_irq(&rq->lock);
1da177e4 2527
246d86b5 2528 switch_count = &prev->nivcsw;
1da177e4 2529 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2530 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2531 prev->state = TASK_RUNNING;
21aa9af0 2532 } else {
2acca55e
PZ
2533 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2534 prev->on_rq = 0;
2535
21aa9af0 2536 /*
2acca55e
PZ
2537 * If a worker went to sleep, notify and ask workqueue
2538 * whether it wants to wake up a task to maintain
2539 * concurrency.
21aa9af0
TH
2540 */
2541 if (prev->flags & PF_WQ_WORKER) {
2542 struct task_struct *to_wakeup;
2543
2544 to_wakeup = wq_worker_sleeping(prev, cpu);
2545 if (to_wakeup)
2546 try_to_wake_up_local(to_wakeup);
2547 }
21aa9af0 2548 }
dd41f596 2549 switch_count = &prev->nvcsw;
1da177e4
LT
2550 }
2551
3f029d3c 2552 pre_schedule(rq, prev);
f65eda4f 2553
dd41f596 2554 if (unlikely(!rq->nr_running))
1da177e4 2555 idle_balance(cpu, rq);
1da177e4 2556
df1c99d4 2557 put_prev_task(rq, prev);
b67802ea 2558 next = pick_next_task(rq);
f26f9aff 2559 clear_tsk_need_resched(prev);
f27dde8d 2560 clear_preempt_need_resched();
f26f9aff 2561 rq->skip_clock_update = 0;
1da177e4 2562
1da177e4 2563 if (likely(prev != next)) {
1da177e4
LT
2564 rq->nr_switches++;
2565 rq->curr = next;
2566 ++*switch_count;
2567
dd41f596 2568 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2569 /*
246d86b5
ON
2570 * The context switch have flipped the stack from under us
2571 * and restored the local variables which were saved when
2572 * this task called schedule() in the past. prev == current
2573 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2574 */
2575 cpu = smp_processor_id();
2576 rq = cpu_rq(cpu);
1da177e4 2577 } else
05fa785c 2578 raw_spin_unlock_irq(&rq->lock);
1da177e4 2579
3f029d3c 2580 post_schedule(rq);
1da177e4 2581
ba74c144 2582 sched_preempt_enable_no_resched();
ff743345 2583 if (need_resched())
1da177e4
LT
2584 goto need_resched;
2585}
c259e01a 2586
9c40cef2
TG
2587static inline void sched_submit_work(struct task_struct *tsk)
2588{
3c7d5184 2589 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2590 return;
2591 /*
2592 * If we are going to sleep and we have plugged IO queued,
2593 * make sure to submit it to avoid deadlocks.
2594 */
2595 if (blk_needs_flush_plug(tsk))
2596 blk_schedule_flush_plug(tsk);
2597}
2598
6ebbe7a0 2599asmlinkage void __sched schedule(void)
c259e01a 2600{
9c40cef2
TG
2601 struct task_struct *tsk = current;
2602
2603 sched_submit_work(tsk);
c259e01a
TG
2604 __schedule();
2605}
1da177e4
LT
2606EXPORT_SYMBOL(schedule);
2607
91d1aa43 2608#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2609asmlinkage void __sched schedule_user(void)
2610{
2611 /*
2612 * If we come here after a random call to set_need_resched(),
2613 * or we have been woken up remotely but the IPI has not yet arrived,
2614 * we haven't yet exited the RCU idle mode. Do it here manually until
2615 * we find a better solution.
2616 */
91d1aa43 2617 user_exit();
20ab65e3 2618 schedule();
91d1aa43 2619 user_enter();
20ab65e3
FW
2620}
2621#endif
2622
c5491ea7
TG
2623/**
2624 * schedule_preempt_disabled - called with preemption disabled
2625 *
2626 * Returns with preemption disabled. Note: preempt_count must be 1
2627 */
2628void __sched schedule_preempt_disabled(void)
2629{
ba74c144 2630 sched_preempt_enable_no_resched();
c5491ea7
TG
2631 schedule();
2632 preempt_disable();
2633}
2634
1da177e4
LT
2635#ifdef CONFIG_PREEMPT
2636/*
2ed6e34f 2637 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2638 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2639 * occur there and call schedule directly.
2640 */
d1f74e20 2641asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2642{
1da177e4
LT
2643 /*
2644 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2645 * we do not want to preempt the current task. Just return..
1da177e4 2646 */
fbb00b56 2647 if (likely(!preemptible()))
1da177e4
LT
2648 return;
2649
3a5c359a 2650 do {
bdb43806 2651 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2652 __schedule();
bdb43806 2653 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2654
3a5c359a
AK
2655 /*
2656 * Check again in case we missed a preemption opportunity
2657 * between schedule and now.
2658 */
2659 barrier();
5ed0cec0 2660 } while (need_resched());
1da177e4 2661}
1da177e4 2662EXPORT_SYMBOL(preempt_schedule);
32e475d7 2663#endif /* CONFIG_PREEMPT */
1da177e4
LT
2664
2665/*
2ed6e34f 2666 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2667 * off of irq context.
2668 * Note, that this is called and return with irqs disabled. This will
2669 * protect us against recursive calling from irq.
2670 */
2671asmlinkage void __sched preempt_schedule_irq(void)
2672{
b22366cd 2673 enum ctx_state prev_state;
6478d880 2674
2ed6e34f 2675 /* Catch callers which need to be fixed */
f27dde8d 2676 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2677
b22366cd
FW
2678 prev_state = exception_enter();
2679
3a5c359a 2680 do {
bdb43806 2681 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2682 local_irq_enable();
c259e01a 2683 __schedule();
3a5c359a 2684 local_irq_disable();
bdb43806 2685 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2686
3a5c359a
AK
2687 /*
2688 * Check again in case we missed a preemption opportunity
2689 * between schedule and now.
2690 */
2691 barrier();
5ed0cec0 2692 } while (need_resched());
b22366cd
FW
2693
2694 exception_exit(prev_state);
1da177e4
LT
2695}
2696
63859d4f 2697int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2698 void *key)
1da177e4 2699{
63859d4f 2700 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2701}
1da177e4
LT
2702EXPORT_SYMBOL(default_wake_function);
2703
8cbbe86d
AK
2704static long __sched
2705sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2706{
0fec171c
IM
2707 unsigned long flags;
2708 wait_queue_t wait;
2709
2710 init_waitqueue_entry(&wait, current);
1da177e4 2711
8cbbe86d 2712 __set_current_state(state);
1da177e4 2713
8cbbe86d
AK
2714 spin_lock_irqsave(&q->lock, flags);
2715 __add_wait_queue(q, &wait);
2716 spin_unlock(&q->lock);
2717 timeout = schedule_timeout(timeout);
2718 spin_lock_irq(&q->lock);
2719 __remove_wait_queue(q, &wait);
2720 spin_unlock_irqrestore(&q->lock, flags);
2721
2722 return timeout;
2723}
2724
2725void __sched interruptible_sleep_on(wait_queue_head_t *q)
2726{
2727 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2728}
1da177e4
LT
2729EXPORT_SYMBOL(interruptible_sleep_on);
2730
0fec171c 2731long __sched
95cdf3b7 2732interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2733{
8cbbe86d 2734 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2735}
1da177e4
LT
2736EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2737
0fec171c 2738void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2739{
8cbbe86d 2740 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2741}
1da177e4
LT
2742EXPORT_SYMBOL(sleep_on);
2743
0fec171c 2744long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2745{
8cbbe86d 2746 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2747}
1da177e4
LT
2748EXPORT_SYMBOL(sleep_on_timeout);
2749
b29739f9
IM
2750#ifdef CONFIG_RT_MUTEXES
2751
2752/*
2753 * rt_mutex_setprio - set the current priority of a task
2754 * @p: task
2755 * @prio: prio value (kernel-internal form)
2756 *
2757 * This function changes the 'effective' priority of a task. It does
2758 * not touch ->normal_prio like __setscheduler().
2759 *
2760 * Used by the rt_mutex code to implement priority inheritance logic.
2761 */
36c8b586 2762void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2763{
83b699ed 2764 int oldprio, on_rq, running;
70b97a7f 2765 struct rq *rq;
83ab0aa0 2766 const struct sched_class *prev_class;
b29739f9
IM
2767
2768 BUG_ON(prio < 0 || prio > MAX_PRIO);
2769
0122ec5b 2770 rq = __task_rq_lock(p);
b29739f9 2771
1c4dd99b
TG
2772 /*
2773 * Idle task boosting is a nono in general. There is one
2774 * exception, when PREEMPT_RT and NOHZ is active:
2775 *
2776 * The idle task calls get_next_timer_interrupt() and holds
2777 * the timer wheel base->lock on the CPU and another CPU wants
2778 * to access the timer (probably to cancel it). We can safely
2779 * ignore the boosting request, as the idle CPU runs this code
2780 * with interrupts disabled and will complete the lock
2781 * protected section without being interrupted. So there is no
2782 * real need to boost.
2783 */
2784 if (unlikely(p == rq->idle)) {
2785 WARN_ON(p != rq->curr);
2786 WARN_ON(p->pi_blocked_on);
2787 goto out_unlock;
2788 }
2789
a8027073 2790 trace_sched_pi_setprio(p, prio);
d5f9f942 2791 oldprio = p->prio;
83ab0aa0 2792 prev_class = p->sched_class;
fd2f4419 2793 on_rq = p->on_rq;
051a1d1a 2794 running = task_current(rq, p);
0e1f3483 2795 if (on_rq)
69be72c1 2796 dequeue_task(rq, p, 0);
0e1f3483
HS
2797 if (running)
2798 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
2799
2800 if (rt_prio(prio))
2801 p->sched_class = &rt_sched_class;
2802 else
2803 p->sched_class = &fair_sched_class;
2804
b29739f9
IM
2805 p->prio = prio;
2806
0e1f3483
HS
2807 if (running)
2808 p->sched_class->set_curr_task(rq);
da7a735e 2809 if (on_rq)
371fd7e7 2810 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 2811
da7a735e 2812 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2813out_unlock:
0122ec5b 2814 __task_rq_unlock(rq);
b29739f9 2815}
b29739f9 2816#endif
36c8b586 2817void set_user_nice(struct task_struct *p, long nice)
1da177e4 2818{
dd41f596 2819 int old_prio, delta, on_rq;
1da177e4 2820 unsigned long flags;
70b97a7f 2821 struct rq *rq;
1da177e4
LT
2822
2823 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
2824 return;
2825 /*
2826 * We have to be careful, if called from sys_setpriority(),
2827 * the task might be in the middle of scheduling on another CPU.
2828 */
2829 rq = task_rq_lock(p, &flags);
2830 /*
2831 * The RT priorities are set via sched_setscheduler(), but we still
2832 * allow the 'normal' nice value to be set - but as expected
2833 * it wont have any effect on scheduling until the task is
dd41f596 2834 * SCHED_FIFO/SCHED_RR:
1da177e4 2835 */
e05606d3 2836 if (task_has_rt_policy(p)) {
1da177e4
LT
2837 p->static_prio = NICE_TO_PRIO(nice);
2838 goto out_unlock;
2839 }
fd2f4419 2840 on_rq = p->on_rq;
c09595f6 2841 if (on_rq)
69be72c1 2842 dequeue_task(rq, p, 0);
1da177e4 2843
1da177e4 2844 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 2845 set_load_weight(p);
b29739f9
IM
2846 old_prio = p->prio;
2847 p->prio = effective_prio(p);
2848 delta = p->prio - old_prio;
1da177e4 2849
dd41f596 2850 if (on_rq) {
371fd7e7 2851 enqueue_task(rq, p, 0);
1da177e4 2852 /*
d5f9f942
AM
2853 * If the task increased its priority or is running and
2854 * lowered its priority, then reschedule its CPU:
1da177e4 2855 */
d5f9f942 2856 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
2857 resched_task(rq->curr);
2858 }
2859out_unlock:
0122ec5b 2860 task_rq_unlock(rq, p, &flags);
1da177e4 2861}
1da177e4
LT
2862EXPORT_SYMBOL(set_user_nice);
2863
e43379f1
MM
2864/*
2865 * can_nice - check if a task can reduce its nice value
2866 * @p: task
2867 * @nice: nice value
2868 */
36c8b586 2869int can_nice(const struct task_struct *p, const int nice)
e43379f1 2870{
024f4747
MM
2871 /* convert nice value [19,-20] to rlimit style value [1,40] */
2872 int nice_rlim = 20 - nice;
48f24c4d 2873
78d7d407 2874 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
2875 capable(CAP_SYS_NICE));
2876}
2877
1da177e4
LT
2878#ifdef __ARCH_WANT_SYS_NICE
2879
2880/*
2881 * sys_nice - change the priority of the current process.
2882 * @increment: priority increment
2883 *
2884 * sys_setpriority is a more generic, but much slower function that
2885 * does similar things.
2886 */
5add95d4 2887SYSCALL_DEFINE1(nice, int, increment)
1da177e4 2888{
48f24c4d 2889 long nice, retval;
1da177e4
LT
2890
2891 /*
2892 * Setpriority might change our priority at the same moment.
2893 * We don't have to worry. Conceptually one call occurs first
2894 * and we have a single winner.
2895 */
e43379f1
MM
2896 if (increment < -40)
2897 increment = -40;
1da177e4
LT
2898 if (increment > 40)
2899 increment = 40;
2900
2b8f836f 2901 nice = TASK_NICE(current) + increment;
1da177e4
LT
2902 if (nice < -20)
2903 nice = -20;
2904 if (nice > 19)
2905 nice = 19;
2906
e43379f1
MM
2907 if (increment < 0 && !can_nice(current, nice))
2908 return -EPERM;
2909
1da177e4
LT
2910 retval = security_task_setnice(current, nice);
2911 if (retval)
2912 return retval;
2913
2914 set_user_nice(current, nice);
2915 return 0;
2916}
2917
2918#endif
2919
2920/**
2921 * task_prio - return the priority value of a given task.
2922 * @p: the task in question.
2923 *
e69f6186 2924 * Return: The priority value as seen by users in /proc.
1da177e4
LT
2925 * RT tasks are offset by -200. Normal tasks are centered
2926 * around 0, value goes from -16 to +15.
2927 */
36c8b586 2928int task_prio(const struct task_struct *p)
1da177e4
LT
2929{
2930 return p->prio - MAX_RT_PRIO;
2931}
2932
2933/**
2934 * task_nice - return the nice value of a given task.
2935 * @p: the task in question.
e69f6186
YB
2936 *
2937 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 2938 */
36c8b586 2939int task_nice(const struct task_struct *p)
1da177e4
LT
2940{
2941 return TASK_NICE(p);
2942}
150d8bed 2943EXPORT_SYMBOL(task_nice);
1da177e4
LT
2944
2945/**
2946 * idle_cpu - is a given cpu idle currently?
2947 * @cpu: the processor in question.
e69f6186
YB
2948 *
2949 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
2950 */
2951int idle_cpu(int cpu)
2952{
908a3283
TG
2953 struct rq *rq = cpu_rq(cpu);
2954
2955 if (rq->curr != rq->idle)
2956 return 0;
2957
2958 if (rq->nr_running)
2959 return 0;
2960
2961#ifdef CONFIG_SMP
2962 if (!llist_empty(&rq->wake_list))
2963 return 0;
2964#endif
2965
2966 return 1;
1da177e4
LT
2967}
2968
1da177e4
LT
2969/**
2970 * idle_task - return the idle task for a given cpu.
2971 * @cpu: the processor in question.
e69f6186
YB
2972 *
2973 * Return: The idle task for the cpu @cpu.
1da177e4 2974 */
36c8b586 2975struct task_struct *idle_task(int cpu)
1da177e4
LT
2976{
2977 return cpu_rq(cpu)->idle;
2978}
2979
2980/**
2981 * find_process_by_pid - find a process with a matching PID value.
2982 * @pid: the pid in question.
e69f6186
YB
2983 *
2984 * The task of @pid, if found. %NULL otherwise.
1da177e4 2985 */
a9957449 2986static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 2987{
228ebcbe 2988 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
2989}
2990
2991/* Actually do priority change: must hold rq lock. */
dd41f596
IM
2992static void
2993__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 2994{
1da177e4
LT
2995 p->policy = policy;
2996 p->rt_priority = prio;
b29739f9
IM
2997 p->normal_prio = normal_prio(p);
2998 /* we are holding p->pi_lock already */
2999 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3000 if (rt_prio(p->prio))
3001 p->sched_class = &rt_sched_class;
3002 else
3003 p->sched_class = &fair_sched_class;
2dd73a4f 3004 set_load_weight(p);
1da177e4
LT
3005}
3006
c69e8d9c
DH
3007/*
3008 * check the target process has a UID that matches the current process's
3009 */
3010static bool check_same_owner(struct task_struct *p)
3011{
3012 const struct cred *cred = current_cred(), *pcred;
3013 bool match;
3014
3015 rcu_read_lock();
3016 pcred = __task_cred(p);
9c806aa0
EB
3017 match = (uid_eq(cred->euid, pcred->euid) ||
3018 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3019 rcu_read_unlock();
3020 return match;
3021}
3022
961ccddd 3023static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3024 const struct sched_param *param, bool user)
1da177e4 3025{
83b699ed 3026 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3027 unsigned long flags;
83ab0aa0 3028 const struct sched_class *prev_class;
70b97a7f 3029 struct rq *rq;
ca94c442 3030 int reset_on_fork;
1da177e4 3031
66e5393a
SR
3032 /* may grab non-irq protected spin_locks */
3033 BUG_ON(in_interrupt());
1da177e4
LT
3034recheck:
3035 /* double check policy once rq lock held */
ca94c442
LP
3036 if (policy < 0) {
3037 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3038 policy = oldpolicy = p->policy;
ca94c442
LP
3039 } else {
3040 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3041 policy &= ~SCHED_RESET_ON_FORK;
3042
3043 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3044 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3045 policy != SCHED_IDLE)
3046 return -EINVAL;
3047 }
3048
1da177e4
LT
3049 /*
3050 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3051 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3052 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3053 */
3054 if (param->sched_priority < 0 ||
95cdf3b7 3055 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3056 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3057 return -EINVAL;
e05606d3 3058 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3059 return -EINVAL;
3060
37e4ab3f
OC
3061 /*
3062 * Allow unprivileged RT tasks to decrease priority:
3063 */
961ccddd 3064 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3065 if (rt_policy(policy)) {
a44702e8
ON
3066 unsigned long rlim_rtprio =
3067 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3068
3069 /* can't set/change the rt policy */
3070 if (policy != p->policy && !rlim_rtprio)
3071 return -EPERM;
3072
3073 /* can't increase priority */
3074 if (param->sched_priority > p->rt_priority &&
3075 param->sched_priority > rlim_rtprio)
3076 return -EPERM;
3077 }
c02aa73b 3078
dd41f596 3079 /*
c02aa73b
DH
3080 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3081 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3082 */
c02aa73b
DH
3083 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3084 if (!can_nice(p, TASK_NICE(p)))
3085 return -EPERM;
3086 }
5fe1d75f 3087
37e4ab3f 3088 /* can't change other user's priorities */
c69e8d9c 3089 if (!check_same_owner(p))
37e4ab3f 3090 return -EPERM;
ca94c442
LP
3091
3092 /* Normal users shall not reset the sched_reset_on_fork flag */
3093 if (p->sched_reset_on_fork && !reset_on_fork)
3094 return -EPERM;
37e4ab3f 3095 }
1da177e4 3096
725aad24 3097 if (user) {
b0ae1981 3098 retval = security_task_setscheduler(p);
725aad24
JF
3099 if (retval)
3100 return retval;
3101 }
3102
b29739f9
IM
3103 /*
3104 * make sure no PI-waiters arrive (or leave) while we are
3105 * changing the priority of the task:
0122ec5b 3106 *
25985edc 3107 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3108 * runqueue lock must be held.
3109 */
0122ec5b 3110 rq = task_rq_lock(p, &flags);
dc61b1d6 3111
34f971f6
PZ
3112 /*
3113 * Changing the policy of the stop threads its a very bad idea
3114 */
3115 if (p == rq->stop) {
0122ec5b 3116 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3117 return -EINVAL;
3118 }
3119
a51e9198
DF
3120 /*
3121 * If not changing anything there's no need to proceed further:
3122 */
3123 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3124 param->sched_priority == p->rt_priority))) {
45afb173 3125 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3126 return 0;
3127 }
3128
dc61b1d6
PZ
3129#ifdef CONFIG_RT_GROUP_SCHED
3130 if (user) {
3131 /*
3132 * Do not allow realtime tasks into groups that have no runtime
3133 * assigned.
3134 */
3135 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3136 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3137 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3138 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3139 return -EPERM;
3140 }
3141 }
3142#endif
3143
1da177e4
LT
3144 /* recheck policy now with rq lock held */
3145 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3146 policy = oldpolicy = -1;
0122ec5b 3147 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3148 goto recheck;
3149 }
fd2f4419 3150 on_rq = p->on_rq;
051a1d1a 3151 running = task_current(rq, p);
0e1f3483 3152 if (on_rq)
4ca9b72b 3153 dequeue_task(rq, p, 0);
0e1f3483
HS
3154 if (running)
3155 p->sched_class->put_prev_task(rq, p);
f6b53205 3156
ca94c442
LP
3157 p->sched_reset_on_fork = reset_on_fork;
3158
1da177e4 3159 oldprio = p->prio;
83ab0aa0 3160 prev_class = p->sched_class;
dd41f596 3161 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3162
0e1f3483
HS
3163 if (running)
3164 p->sched_class->set_curr_task(rq);
da7a735e 3165 if (on_rq)
4ca9b72b 3166 enqueue_task(rq, p, 0);
cb469845 3167
da7a735e 3168 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3169 task_rq_unlock(rq, p, &flags);
b29739f9 3170
95e02ca9
TG
3171 rt_mutex_adjust_pi(p);
3172
1da177e4
LT
3173 return 0;
3174}
961ccddd
RR
3175
3176/**
3177 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3178 * @p: the task in question.
3179 * @policy: new policy.
3180 * @param: structure containing the new RT priority.
3181 *
e69f6186
YB
3182 * Return: 0 on success. An error code otherwise.
3183 *
961ccddd
RR
3184 * NOTE that the task may be already dead.
3185 */
3186int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3187 const struct sched_param *param)
961ccddd
RR
3188{
3189 return __sched_setscheduler(p, policy, param, true);
3190}
1da177e4
LT
3191EXPORT_SYMBOL_GPL(sched_setscheduler);
3192
961ccddd
RR
3193/**
3194 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3195 * @p: the task in question.
3196 * @policy: new policy.
3197 * @param: structure containing the new RT priority.
3198 *
3199 * Just like sched_setscheduler, only don't bother checking if the
3200 * current context has permission. For example, this is needed in
3201 * stop_machine(): we create temporary high priority worker threads,
3202 * but our caller might not have that capability.
e69f6186
YB
3203 *
3204 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3205 */
3206int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3207 const struct sched_param *param)
961ccddd
RR
3208{
3209 return __sched_setscheduler(p, policy, param, false);
3210}
3211
95cdf3b7
IM
3212static int
3213do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3214{
1da177e4
LT
3215 struct sched_param lparam;
3216 struct task_struct *p;
36c8b586 3217 int retval;
1da177e4
LT
3218
3219 if (!param || pid < 0)
3220 return -EINVAL;
3221 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3222 return -EFAULT;
5fe1d75f
ON
3223
3224 rcu_read_lock();
3225 retval = -ESRCH;
1da177e4 3226 p = find_process_by_pid(pid);
5fe1d75f
ON
3227 if (p != NULL)
3228 retval = sched_setscheduler(p, policy, &lparam);
3229 rcu_read_unlock();
36c8b586 3230
1da177e4
LT
3231 return retval;
3232}
3233
3234/**
3235 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3236 * @pid: the pid in question.
3237 * @policy: new policy.
3238 * @param: structure containing the new RT priority.
e69f6186
YB
3239 *
3240 * Return: 0 on success. An error code otherwise.
1da177e4 3241 */
5add95d4
HC
3242SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3243 struct sched_param __user *, param)
1da177e4 3244{
c21761f1
JB
3245 /* negative values for policy are not valid */
3246 if (policy < 0)
3247 return -EINVAL;
3248
1da177e4
LT
3249 return do_sched_setscheduler(pid, policy, param);
3250}
3251
3252/**
3253 * sys_sched_setparam - set/change the RT priority of a thread
3254 * @pid: the pid in question.
3255 * @param: structure containing the new RT priority.
e69f6186
YB
3256 *
3257 * Return: 0 on success. An error code otherwise.
1da177e4 3258 */
5add95d4 3259SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3260{
3261 return do_sched_setscheduler(pid, -1, param);
3262}
3263
3264/**
3265 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3266 * @pid: the pid in question.
e69f6186
YB
3267 *
3268 * Return: On success, the policy of the thread. Otherwise, a negative error
3269 * code.
1da177e4 3270 */
5add95d4 3271SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3272{
36c8b586 3273 struct task_struct *p;
3a5c359a 3274 int retval;
1da177e4
LT
3275
3276 if (pid < 0)
3a5c359a 3277 return -EINVAL;
1da177e4
LT
3278
3279 retval = -ESRCH;
5fe85be0 3280 rcu_read_lock();
1da177e4
LT
3281 p = find_process_by_pid(pid);
3282 if (p) {
3283 retval = security_task_getscheduler(p);
3284 if (!retval)
ca94c442
LP
3285 retval = p->policy
3286 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3287 }
5fe85be0 3288 rcu_read_unlock();
1da177e4
LT
3289 return retval;
3290}
3291
3292/**
ca94c442 3293 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3294 * @pid: the pid in question.
3295 * @param: structure containing the RT priority.
e69f6186
YB
3296 *
3297 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3298 * code.
1da177e4 3299 */
5add95d4 3300SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3301{
3302 struct sched_param lp;
36c8b586 3303 struct task_struct *p;
3a5c359a 3304 int retval;
1da177e4
LT
3305
3306 if (!param || pid < 0)
3a5c359a 3307 return -EINVAL;
1da177e4 3308
5fe85be0 3309 rcu_read_lock();
1da177e4
LT
3310 p = find_process_by_pid(pid);
3311 retval = -ESRCH;
3312 if (!p)
3313 goto out_unlock;
3314
3315 retval = security_task_getscheduler(p);
3316 if (retval)
3317 goto out_unlock;
3318
3319 lp.sched_priority = p->rt_priority;
5fe85be0 3320 rcu_read_unlock();
1da177e4
LT
3321
3322 /*
3323 * This one might sleep, we cannot do it with a spinlock held ...
3324 */
3325 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3326
1da177e4
LT
3327 return retval;
3328
3329out_unlock:
5fe85be0 3330 rcu_read_unlock();
1da177e4
LT
3331 return retval;
3332}
3333
96f874e2 3334long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3335{
5a16f3d3 3336 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3337 struct task_struct *p;
3338 int retval;
1da177e4 3339
23f5d142 3340 rcu_read_lock();
1da177e4
LT
3341
3342 p = find_process_by_pid(pid);
3343 if (!p) {
23f5d142 3344 rcu_read_unlock();
1da177e4
LT
3345 return -ESRCH;
3346 }
3347
23f5d142 3348 /* Prevent p going away */
1da177e4 3349 get_task_struct(p);
23f5d142 3350 rcu_read_unlock();
1da177e4 3351
14a40ffc
TH
3352 if (p->flags & PF_NO_SETAFFINITY) {
3353 retval = -EINVAL;
3354 goto out_put_task;
3355 }
5a16f3d3
RR
3356 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3357 retval = -ENOMEM;
3358 goto out_put_task;
3359 }
3360 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3361 retval = -ENOMEM;
3362 goto out_free_cpus_allowed;
3363 }
1da177e4 3364 retval = -EPERM;
4c44aaaf
EB
3365 if (!check_same_owner(p)) {
3366 rcu_read_lock();
3367 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3368 rcu_read_unlock();
3369 goto out_unlock;
3370 }
3371 rcu_read_unlock();
3372 }
1da177e4 3373
b0ae1981 3374 retval = security_task_setscheduler(p);
e7834f8f
DQ
3375 if (retval)
3376 goto out_unlock;
3377
5a16f3d3
RR
3378 cpuset_cpus_allowed(p, cpus_allowed);
3379 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3380again:
5a16f3d3 3381 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3382
8707d8b8 3383 if (!retval) {
5a16f3d3
RR
3384 cpuset_cpus_allowed(p, cpus_allowed);
3385 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3386 /*
3387 * We must have raced with a concurrent cpuset
3388 * update. Just reset the cpus_allowed to the
3389 * cpuset's cpus_allowed
3390 */
5a16f3d3 3391 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3392 goto again;
3393 }
3394 }
1da177e4 3395out_unlock:
5a16f3d3
RR
3396 free_cpumask_var(new_mask);
3397out_free_cpus_allowed:
3398 free_cpumask_var(cpus_allowed);
3399out_put_task:
1da177e4 3400 put_task_struct(p);
1da177e4
LT
3401 return retval;
3402}
3403
3404static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3405 struct cpumask *new_mask)
1da177e4 3406{
96f874e2
RR
3407 if (len < cpumask_size())
3408 cpumask_clear(new_mask);
3409 else if (len > cpumask_size())
3410 len = cpumask_size();
3411
1da177e4
LT
3412 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3413}
3414
3415/**
3416 * sys_sched_setaffinity - set the cpu affinity of a process
3417 * @pid: pid of the process
3418 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3419 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3420 *
3421 * Return: 0 on success. An error code otherwise.
1da177e4 3422 */
5add95d4
HC
3423SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3424 unsigned long __user *, user_mask_ptr)
1da177e4 3425{
5a16f3d3 3426 cpumask_var_t new_mask;
1da177e4
LT
3427 int retval;
3428
5a16f3d3
RR
3429 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3430 return -ENOMEM;
1da177e4 3431
5a16f3d3
RR
3432 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3433 if (retval == 0)
3434 retval = sched_setaffinity(pid, new_mask);
3435 free_cpumask_var(new_mask);
3436 return retval;
1da177e4
LT
3437}
3438
96f874e2 3439long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3440{
36c8b586 3441 struct task_struct *p;
31605683 3442 unsigned long flags;
1da177e4 3443 int retval;
1da177e4 3444
23f5d142 3445 rcu_read_lock();
1da177e4
LT
3446
3447 retval = -ESRCH;
3448 p = find_process_by_pid(pid);
3449 if (!p)
3450 goto out_unlock;
3451
e7834f8f
DQ
3452 retval = security_task_getscheduler(p);
3453 if (retval)
3454 goto out_unlock;
3455
013fdb80 3456 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3457 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 3458 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3459
3460out_unlock:
23f5d142 3461 rcu_read_unlock();
1da177e4 3462
9531b62f 3463 return retval;
1da177e4
LT
3464}
3465
3466/**
3467 * sys_sched_getaffinity - get the cpu affinity of a process
3468 * @pid: pid of the process
3469 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3470 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3471 *
3472 * Return: 0 on success. An error code otherwise.
1da177e4 3473 */
5add95d4
HC
3474SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3475 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3476{
3477 int ret;
f17c8607 3478 cpumask_var_t mask;
1da177e4 3479
84fba5ec 3480 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3481 return -EINVAL;
3482 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3483 return -EINVAL;
3484
f17c8607
RR
3485 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3486 return -ENOMEM;
1da177e4 3487
f17c8607
RR
3488 ret = sched_getaffinity(pid, mask);
3489 if (ret == 0) {
8bc037fb 3490 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3491
3492 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3493 ret = -EFAULT;
3494 else
cd3d8031 3495 ret = retlen;
f17c8607
RR
3496 }
3497 free_cpumask_var(mask);
1da177e4 3498
f17c8607 3499 return ret;
1da177e4
LT
3500}
3501
3502/**
3503 * sys_sched_yield - yield the current processor to other threads.
3504 *
dd41f596
IM
3505 * This function yields the current CPU to other tasks. If there are no
3506 * other threads running on this CPU then this function will return.
e69f6186
YB
3507 *
3508 * Return: 0.
1da177e4 3509 */
5add95d4 3510SYSCALL_DEFINE0(sched_yield)
1da177e4 3511{
70b97a7f 3512 struct rq *rq = this_rq_lock();
1da177e4 3513
2d72376b 3514 schedstat_inc(rq, yld_count);
4530d7ab 3515 current->sched_class->yield_task(rq);
1da177e4
LT
3516
3517 /*
3518 * Since we are going to call schedule() anyway, there's
3519 * no need to preempt or enable interrupts:
3520 */
3521 __release(rq->lock);
8a25d5de 3522 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3523 do_raw_spin_unlock(&rq->lock);
ba74c144 3524 sched_preempt_enable_no_resched();
1da177e4
LT
3525
3526 schedule();
3527
3528 return 0;
3529}
3530
e7b38404 3531static void __cond_resched(void)
1da177e4 3532{
bdb43806 3533 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 3534 __schedule();
bdb43806 3535 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
3536}
3537
02b67cc3 3538int __sched _cond_resched(void)
1da177e4 3539{
d86ee480 3540 if (should_resched()) {
1da177e4
LT
3541 __cond_resched();
3542 return 1;
3543 }
3544 return 0;
3545}
02b67cc3 3546EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3547
3548/*
613afbf8 3549 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3550 * call schedule, and on return reacquire the lock.
3551 *
41a2d6cf 3552 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3553 * operations here to prevent schedule() from being called twice (once via
3554 * spin_unlock(), once by hand).
3555 */
613afbf8 3556int __cond_resched_lock(spinlock_t *lock)
1da177e4 3557{
d86ee480 3558 int resched = should_resched();
6df3cecb
JK
3559 int ret = 0;
3560
f607c668
PZ
3561 lockdep_assert_held(lock);
3562
95c354fe 3563 if (spin_needbreak(lock) || resched) {
1da177e4 3564 spin_unlock(lock);
d86ee480 3565 if (resched)
95c354fe
NP
3566 __cond_resched();
3567 else
3568 cpu_relax();
6df3cecb 3569 ret = 1;
1da177e4 3570 spin_lock(lock);
1da177e4 3571 }
6df3cecb 3572 return ret;
1da177e4 3573}
613afbf8 3574EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3575
613afbf8 3576int __sched __cond_resched_softirq(void)
1da177e4
LT
3577{
3578 BUG_ON(!in_softirq());
3579
d86ee480 3580 if (should_resched()) {
98d82567 3581 local_bh_enable();
1da177e4
LT
3582 __cond_resched();
3583 local_bh_disable();
3584 return 1;
3585 }
3586 return 0;
3587}
613afbf8 3588EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3589
1da177e4
LT
3590/**
3591 * yield - yield the current processor to other threads.
3592 *
8e3fabfd
PZ
3593 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3594 *
3595 * The scheduler is at all times free to pick the calling task as the most
3596 * eligible task to run, if removing the yield() call from your code breaks
3597 * it, its already broken.
3598 *
3599 * Typical broken usage is:
3600 *
3601 * while (!event)
3602 * yield();
3603 *
3604 * where one assumes that yield() will let 'the other' process run that will
3605 * make event true. If the current task is a SCHED_FIFO task that will never
3606 * happen. Never use yield() as a progress guarantee!!
3607 *
3608 * If you want to use yield() to wait for something, use wait_event().
3609 * If you want to use yield() to be 'nice' for others, use cond_resched().
3610 * If you still want to use yield(), do not!
1da177e4
LT
3611 */
3612void __sched yield(void)
3613{
3614 set_current_state(TASK_RUNNING);
3615 sys_sched_yield();
3616}
1da177e4
LT
3617EXPORT_SYMBOL(yield);
3618
d95f4122
MG
3619/**
3620 * yield_to - yield the current processor to another thread in
3621 * your thread group, or accelerate that thread toward the
3622 * processor it's on.
16addf95
RD
3623 * @p: target task
3624 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3625 *
3626 * It's the caller's job to ensure that the target task struct
3627 * can't go away on us before we can do any checks.
3628 *
e69f6186 3629 * Return:
7b270f60
PZ
3630 * true (>0) if we indeed boosted the target task.
3631 * false (0) if we failed to boost the target.
3632 * -ESRCH if there's no task to yield to.
d95f4122
MG
3633 */
3634bool __sched yield_to(struct task_struct *p, bool preempt)
3635{
3636 struct task_struct *curr = current;
3637 struct rq *rq, *p_rq;
3638 unsigned long flags;
c3c18640 3639 int yielded = 0;
d95f4122
MG
3640
3641 local_irq_save(flags);
3642 rq = this_rq();
3643
3644again:
3645 p_rq = task_rq(p);
7b270f60
PZ
3646 /*
3647 * If we're the only runnable task on the rq and target rq also
3648 * has only one task, there's absolutely no point in yielding.
3649 */
3650 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3651 yielded = -ESRCH;
3652 goto out_irq;
3653 }
3654
d95f4122
MG
3655 double_rq_lock(rq, p_rq);
3656 while (task_rq(p) != p_rq) {
3657 double_rq_unlock(rq, p_rq);
3658 goto again;
3659 }
3660
3661 if (!curr->sched_class->yield_to_task)
7b270f60 3662 goto out_unlock;
d95f4122
MG
3663
3664 if (curr->sched_class != p->sched_class)
7b270f60 3665 goto out_unlock;
d95f4122
MG
3666
3667 if (task_running(p_rq, p) || p->state)
7b270f60 3668 goto out_unlock;
d95f4122
MG
3669
3670 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3671 if (yielded) {
d95f4122 3672 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3673 /*
3674 * Make p's CPU reschedule; pick_next_entity takes care of
3675 * fairness.
3676 */
3677 if (preempt && rq != p_rq)
3678 resched_task(p_rq->curr);
3679 }
d95f4122 3680
7b270f60 3681out_unlock:
d95f4122 3682 double_rq_unlock(rq, p_rq);
7b270f60 3683out_irq:
d95f4122
MG
3684 local_irq_restore(flags);
3685
7b270f60 3686 if (yielded > 0)
d95f4122
MG
3687 schedule();
3688
3689 return yielded;
3690}
3691EXPORT_SYMBOL_GPL(yield_to);
3692
1da177e4 3693/*
41a2d6cf 3694 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3695 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3696 */
3697void __sched io_schedule(void)
3698{
54d35f29 3699 struct rq *rq = raw_rq();
1da177e4 3700
0ff92245 3701 delayacct_blkio_start();
1da177e4 3702 atomic_inc(&rq->nr_iowait);
73c10101 3703 blk_flush_plug(current);
8f0dfc34 3704 current->in_iowait = 1;
1da177e4 3705 schedule();
8f0dfc34 3706 current->in_iowait = 0;
1da177e4 3707 atomic_dec(&rq->nr_iowait);
0ff92245 3708 delayacct_blkio_end();
1da177e4 3709}
1da177e4
LT
3710EXPORT_SYMBOL(io_schedule);
3711
3712long __sched io_schedule_timeout(long timeout)
3713{
54d35f29 3714 struct rq *rq = raw_rq();
1da177e4
LT
3715 long ret;
3716
0ff92245 3717 delayacct_blkio_start();
1da177e4 3718 atomic_inc(&rq->nr_iowait);
73c10101 3719 blk_flush_plug(current);
8f0dfc34 3720 current->in_iowait = 1;
1da177e4 3721 ret = schedule_timeout(timeout);
8f0dfc34 3722 current->in_iowait = 0;
1da177e4 3723 atomic_dec(&rq->nr_iowait);
0ff92245 3724 delayacct_blkio_end();
1da177e4
LT
3725 return ret;
3726}
3727
3728/**
3729 * sys_sched_get_priority_max - return maximum RT priority.
3730 * @policy: scheduling class.
3731 *
e69f6186
YB
3732 * Return: On success, this syscall returns the maximum
3733 * rt_priority that can be used by a given scheduling class.
3734 * On failure, a negative error code is returned.
1da177e4 3735 */
5add95d4 3736SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
3737{
3738 int ret = -EINVAL;
3739
3740 switch (policy) {
3741 case SCHED_FIFO:
3742 case SCHED_RR:
3743 ret = MAX_USER_RT_PRIO-1;
3744 break;
3745 case SCHED_NORMAL:
b0a9499c 3746 case SCHED_BATCH:
dd41f596 3747 case SCHED_IDLE:
1da177e4
LT
3748 ret = 0;
3749 break;
3750 }
3751 return ret;
3752}
3753
3754/**
3755 * sys_sched_get_priority_min - return minimum RT priority.
3756 * @policy: scheduling class.
3757 *
e69f6186
YB
3758 * Return: On success, this syscall returns the minimum
3759 * rt_priority that can be used by a given scheduling class.
3760 * On failure, a negative error code is returned.
1da177e4 3761 */
5add95d4 3762SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
3763{
3764 int ret = -EINVAL;
3765
3766 switch (policy) {
3767 case SCHED_FIFO:
3768 case SCHED_RR:
3769 ret = 1;
3770 break;
3771 case SCHED_NORMAL:
b0a9499c 3772 case SCHED_BATCH:
dd41f596 3773 case SCHED_IDLE:
1da177e4
LT
3774 ret = 0;
3775 }
3776 return ret;
3777}
3778
3779/**
3780 * sys_sched_rr_get_interval - return the default timeslice of a process.
3781 * @pid: pid of the process.
3782 * @interval: userspace pointer to the timeslice value.
3783 *
3784 * this syscall writes the default timeslice value of a given process
3785 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
3786 *
3787 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
3788 * an error code.
1da177e4 3789 */
17da2bd9 3790SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 3791 struct timespec __user *, interval)
1da177e4 3792{
36c8b586 3793 struct task_struct *p;
a4ec24b4 3794 unsigned int time_slice;
dba091b9
TG
3795 unsigned long flags;
3796 struct rq *rq;
3a5c359a 3797 int retval;
1da177e4 3798 struct timespec t;
1da177e4
LT
3799
3800 if (pid < 0)
3a5c359a 3801 return -EINVAL;
1da177e4
LT
3802
3803 retval = -ESRCH;
1a551ae7 3804 rcu_read_lock();
1da177e4
LT
3805 p = find_process_by_pid(pid);
3806 if (!p)
3807 goto out_unlock;
3808
3809 retval = security_task_getscheduler(p);
3810 if (retval)
3811 goto out_unlock;
3812
dba091b9
TG
3813 rq = task_rq_lock(p, &flags);
3814 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 3815 task_rq_unlock(rq, p, &flags);
a4ec24b4 3816
1a551ae7 3817 rcu_read_unlock();
a4ec24b4 3818 jiffies_to_timespec(time_slice, &t);
1da177e4 3819 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 3820 return retval;
3a5c359a 3821
1da177e4 3822out_unlock:
1a551ae7 3823 rcu_read_unlock();
1da177e4
LT
3824 return retval;
3825}
3826
7c731e0a 3827static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 3828
82a1fcb9 3829void sched_show_task(struct task_struct *p)
1da177e4 3830{
1da177e4 3831 unsigned long free = 0;
4e79752c 3832 int ppid;
36c8b586 3833 unsigned state;
1da177e4 3834
1da177e4 3835 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 3836 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 3837 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 3838#if BITS_PER_LONG == 32
1da177e4 3839 if (state == TASK_RUNNING)
3df0fc5b 3840 printk(KERN_CONT " running ");
1da177e4 3841 else
3df0fc5b 3842 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
3843#else
3844 if (state == TASK_RUNNING)
3df0fc5b 3845 printk(KERN_CONT " running task ");
1da177e4 3846 else
3df0fc5b 3847 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
3848#endif
3849#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 3850 free = stack_not_used(p);
1da177e4 3851#endif
4e79752c
PM
3852 rcu_read_lock();
3853 ppid = task_pid_nr(rcu_dereference(p->real_parent));
3854 rcu_read_unlock();
3df0fc5b 3855 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 3856 task_pid_nr(p), ppid,
aa47b7e0 3857 (unsigned long)task_thread_info(p)->flags);
1da177e4 3858
3d1cb205 3859 print_worker_info(KERN_INFO, p);
5fb5e6de 3860 show_stack(p, NULL);
1da177e4
LT
3861}
3862
e59e2ae2 3863void show_state_filter(unsigned long state_filter)
1da177e4 3864{
36c8b586 3865 struct task_struct *g, *p;
1da177e4 3866
4bd77321 3867#if BITS_PER_LONG == 32
3df0fc5b
PZ
3868 printk(KERN_INFO
3869 " task PC stack pid father\n");
1da177e4 3870#else
3df0fc5b
PZ
3871 printk(KERN_INFO
3872 " task PC stack pid father\n");
1da177e4 3873#endif
510f5acc 3874 rcu_read_lock();
1da177e4
LT
3875 do_each_thread(g, p) {
3876 /*
3877 * reset the NMI-timeout, listing all files on a slow
25985edc 3878 * console might take a lot of time:
1da177e4
LT
3879 */
3880 touch_nmi_watchdog();
39bc89fd 3881 if (!state_filter || (p->state & state_filter))
82a1fcb9 3882 sched_show_task(p);
1da177e4
LT
3883 } while_each_thread(g, p);
3884
04c9167f
JF
3885 touch_all_softlockup_watchdogs();
3886
dd41f596
IM
3887#ifdef CONFIG_SCHED_DEBUG
3888 sysrq_sched_debug_show();
3889#endif
510f5acc 3890 rcu_read_unlock();
e59e2ae2
IM
3891 /*
3892 * Only show locks if all tasks are dumped:
3893 */
93335a21 3894 if (!state_filter)
e59e2ae2 3895 debug_show_all_locks();
1da177e4
LT
3896}
3897
0db0628d 3898void init_idle_bootup_task(struct task_struct *idle)
1df21055 3899{
dd41f596 3900 idle->sched_class = &idle_sched_class;
1df21055
IM
3901}
3902
f340c0d1
IM
3903/**
3904 * init_idle - set up an idle thread for a given CPU
3905 * @idle: task in question
3906 * @cpu: cpu the idle task belongs to
3907 *
3908 * NOTE: this function does not set the idle thread's NEED_RESCHED
3909 * flag, to make booting more robust.
3910 */
0db0628d 3911void init_idle(struct task_struct *idle, int cpu)
1da177e4 3912{
70b97a7f 3913 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
3914 unsigned long flags;
3915
05fa785c 3916 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 3917
5e1576ed 3918 __sched_fork(0, idle);
06b83b5f 3919 idle->state = TASK_RUNNING;
dd41f596
IM
3920 idle->se.exec_start = sched_clock();
3921
1e1b6c51 3922 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
3923 /*
3924 * We're having a chicken and egg problem, even though we are
3925 * holding rq->lock, the cpu isn't yet set to this cpu so the
3926 * lockdep check in task_group() will fail.
3927 *
3928 * Similar case to sched_fork(). / Alternatively we could
3929 * use task_rq_lock() here and obtain the other rq->lock.
3930 *
3931 * Silence PROVE_RCU
3932 */
3933 rcu_read_lock();
dd41f596 3934 __set_task_cpu(idle, cpu);
6506cf6c 3935 rcu_read_unlock();
1da177e4 3936
1da177e4 3937 rq->curr = rq->idle = idle;
3ca7a440
PZ
3938#if defined(CONFIG_SMP)
3939 idle->on_cpu = 1;
4866cde0 3940#endif
05fa785c 3941 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
3942
3943 /* Set the preempt count _outside_ the spinlocks! */
01028747 3944 init_idle_preempt_count(idle, cpu);
55cd5340 3945
dd41f596
IM
3946 /*
3947 * The idle tasks have their own, simple scheduling class:
3948 */
3949 idle->sched_class = &idle_sched_class;
868baf07 3950 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 3951 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
3952#if defined(CONFIG_SMP)
3953 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
3954#endif
19978ca6
IM
3955}
3956
1da177e4 3957#ifdef CONFIG_SMP
1e1b6c51
KM
3958void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
3959{
3960 if (p->sched_class && p->sched_class->set_cpus_allowed)
3961 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
3962
3963 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 3964 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
3965}
3966
1da177e4
LT
3967/*
3968 * This is how migration works:
3969 *
969c7921
TH
3970 * 1) we invoke migration_cpu_stop() on the target CPU using
3971 * stop_one_cpu().
3972 * 2) stopper starts to run (implicitly forcing the migrated thread
3973 * off the CPU)
3974 * 3) it checks whether the migrated task is still in the wrong runqueue.
3975 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 3976 * it and puts it into the right queue.
969c7921
TH
3977 * 5) stopper completes and stop_one_cpu() returns and the migration
3978 * is done.
1da177e4
LT
3979 */
3980
3981/*
3982 * Change a given task's CPU affinity. Migrate the thread to a
3983 * proper CPU and schedule it away if the CPU it's executing on
3984 * is removed from the allowed bitmask.
3985 *
3986 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 3987 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
3988 * call is not atomic; no spinlocks may be held.
3989 */
96f874e2 3990int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
3991{
3992 unsigned long flags;
70b97a7f 3993 struct rq *rq;
969c7921 3994 unsigned int dest_cpu;
48f24c4d 3995 int ret = 0;
1da177e4
LT
3996
3997 rq = task_rq_lock(p, &flags);
e2912009 3998
db44fc01
YZ
3999 if (cpumask_equal(&p->cpus_allowed, new_mask))
4000 goto out;
4001
6ad4c188 4002 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4003 ret = -EINVAL;
4004 goto out;
4005 }
4006
1e1b6c51 4007 do_set_cpus_allowed(p, new_mask);
73fe6aae 4008
1da177e4 4009 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4010 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4011 goto out;
4012
969c7921 4013 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4014 if (p->on_rq) {
969c7921 4015 struct migration_arg arg = { p, dest_cpu };
1da177e4 4016 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4017 task_rq_unlock(rq, p, &flags);
969c7921 4018 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4019 tlb_migrate_finish(p->mm);
4020 return 0;
4021 }
4022out:
0122ec5b 4023 task_rq_unlock(rq, p, &flags);
48f24c4d 4024
1da177e4
LT
4025 return ret;
4026}
cd8ba7cd 4027EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4028
4029/*
41a2d6cf 4030 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4031 * this because either it can't run here any more (set_cpus_allowed()
4032 * away from this CPU, or CPU going down), or because we're
4033 * attempting to rebalance this task on exec (sched_exec).
4034 *
4035 * So we race with normal scheduler movements, but that's OK, as long
4036 * as the task is no longer on this CPU.
efc30814
KK
4037 *
4038 * Returns non-zero if task was successfully migrated.
1da177e4 4039 */
efc30814 4040static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4041{
70b97a7f 4042 struct rq *rq_dest, *rq_src;
e2912009 4043 int ret = 0;
1da177e4 4044
e761b772 4045 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4046 return ret;
1da177e4
LT
4047
4048 rq_src = cpu_rq(src_cpu);
4049 rq_dest = cpu_rq(dest_cpu);
4050
0122ec5b 4051 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4052 double_rq_lock(rq_src, rq_dest);
4053 /* Already moved. */
4054 if (task_cpu(p) != src_cpu)
b1e38734 4055 goto done;
1da177e4 4056 /* Affinity changed (again). */
fa17b507 4057 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4058 goto fail;
1da177e4 4059
e2912009
PZ
4060 /*
4061 * If we're not on a rq, the next wake-up will ensure we're
4062 * placed properly.
4063 */
fd2f4419 4064 if (p->on_rq) {
4ca9b72b 4065 dequeue_task(rq_src, p, 0);
e2912009 4066 set_task_cpu(p, dest_cpu);
4ca9b72b 4067 enqueue_task(rq_dest, p, 0);
15afe09b 4068 check_preempt_curr(rq_dest, p, 0);
1da177e4 4069 }
b1e38734 4070done:
efc30814 4071 ret = 1;
b1e38734 4072fail:
1da177e4 4073 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4074 raw_spin_unlock(&p->pi_lock);
efc30814 4075 return ret;
1da177e4
LT
4076}
4077
e6628d5b
MG
4078#ifdef CONFIG_NUMA_BALANCING
4079/* Migrate current task p to target_cpu */
4080int migrate_task_to(struct task_struct *p, int target_cpu)
4081{
4082 struct migration_arg arg = { p, target_cpu };
4083 int curr_cpu = task_cpu(p);
4084
4085 if (curr_cpu == target_cpu)
4086 return 0;
4087
4088 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4089 return -EINVAL;
4090
4091 /* TODO: This is not properly updating schedstats */
4092
4093 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4094}
0ec8aa00
PZ
4095
4096/*
4097 * Requeue a task on a given node and accurately track the number of NUMA
4098 * tasks on the runqueues
4099 */
4100void sched_setnuma(struct task_struct *p, int nid)
4101{
4102 struct rq *rq;
4103 unsigned long flags;
4104 bool on_rq, running;
4105
4106 rq = task_rq_lock(p, &flags);
4107 on_rq = p->on_rq;
4108 running = task_current(rq, p);
4109
4110 if (on_rq)
4111 dequeue_task(rq, p, 0);
4112 if (running)
4113 p->sched_class->put_prev_task(rq, p);
4114
4115 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4116
4117 if (running)
4118 p->sched_class->set_curr_task(rq);
4119 if (on_rq)
4120 enqueue_task(rq, p, 0);
4121 task_rq_unlock(rq, p, &flags);
4122}
e6628d5b
MG
4123#endif
4124
1da177e4 4125/*
969c7921
TH
4126 * migration_cpu_stop - this will be executed by a highprio stopper thread
4127 * and performs thread migration by bumping thread off CPU then
4128 * 'pushing' onto another runqueue.
1da177e4 4129 */
969c7921 4130static int migration_cpu_stop(void *data)
1da177e4 4131{
969c7921 4132 struct migration_arg *arg = data;
f7b4cddc 4133
969c7921
TH
4134 /*
4135 * The original target cpu might have gone down and we might
4136 * be on another cpu but it doesn't matter.
4137 */
f7b4cddc 4138 local_irq_disable();
969c7921 4139 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4140 local_irq_enable();
1da177e4 4141 return 0;
f7b4cddc
ON
4142}
4143
1da177e4 4144#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4145
054b9108 4146/*
48c5ccae
PZ
4147 * Ensures that the idle task is using init_mm right before its cpu goes
4148 * offline.
054b9108 4149 */
48c5ccae 4150void idle_task_exit(void)
1da177e4 4151{
48c5ccae 4152 struct mm_struct *mm = current->active_mm;
e76bd8d9 4153
48c5ccae 4154 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4155
48c5ccae
PZ
4156 if (mm != &init_mm)
4157 switch_mm(mm, &init_mm, current);
4158 mmdrop(mm);
1da177e4
LT
4159}
4160
4161/*
5d180232
PZ
4162 * Since this CPU is going 'away' for a while, fold any nr_active delta
4163 * we might have. Assumes we're called after migrate_tasks() so that the
4164 * nr_active count is stable.
4165 *
4166 * Also see the comment "Global load-average calculations".
1da177e4 4167 */
5d180232 4168static void calc_load_migrate(struct rq *rq)
1da177e4 4169{
5d180232
PZ
4170 long delta = calc_load_fold_active(rq);
4171 if (delta)
4172 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4173}
4174
48f24c4d 4175/*
48c5ccae
PZ
4176 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4177 * try_to_wake_up()->select_task_rq().
4178 *
4179 * Called with rq->lock held even though we'er in stop_machine() and
4180 * there's no concurrency possible, we hold the required locks anyway
4181 * because of lock validation efforts.
1da177e4 4182 */
48c5ccae 4183static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4184{
70b97a7f 4185 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4186 struct task_struct *next, *stop = rq->stop;
4187 int dest_cpu;
1da177e4
LT
4188
4189 /*
48c5ccae
PZ
4190 * Fudge the rq selection such that the below task selection loop
4191 * doesn't get stuck on the currently eligible stop task.
4192 *
4193 * We're currently inside stop_machine() and the rq is either stuck
4194 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4195 * either way we should never end up calling schedule() until we're
4196 * done here.
1da177e4 4197 */
48c5ccae 4198 rq->stop = NULL;
48f24c4d 4199
77bd3970
FW
4200 /*
4201 * put_prev_task() and pick_next_task() sched
4202 * class method both need to have an up-to-date
4203 * value of rq->clock[_task]
4204 */
4205 update_rq_clock(rq);
4206
dd41f596 4207 for ( ; ; ) {
48c5ccae
PZ
4208 /*
4209 * There's this thread running, bail when that's the only
4210 * remaining thread.
4211 */
4212 if (rq->nr_running == 1)
dd41f596 4213 break;
48c5ccae 4214
b67802ea 4215 next = pick_next_task(rq);
48c5ccae 4216 BUG_ON(!next);
79c53799 4217 next->sched_class->put_prev_task(rq, next);
e692ab53 4218
48c5ccae
PZ
4219 /* Find suitable destination for @next, with force if needed. */
4220 dest_cpu = select_fallback_rq(dead_cpu, next);
4221 raw_spin_unlock(&rq->lock);
4222
4223 __migrate_task(next, dead_cpu, dest_cpu);
4224
4225 raw_spin_lock(&rq->lock);
1da177e4 4226 }
dce48a84 4227
48c5ccae 4228 rq->stop = stop;
dce48a84 4229}
48c5ccae 4230
1da177e4
LT
4231#endif /* CONFIG_HOTPLUG_CPU */
4232
e692ab53
NP
4233#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4234
4235static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4236 {
4237 .procname = "sched_domain",
c57baf1e 4238 .mode = 0555,
e0361851 4239 },
56992309 4240 {}
e692ab53
NP
4241};
4242
4243static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4244 {
4245 .procname = "kernel",
c57baf1e 4246 .mode = 0555,
e0361851
AD
4247 .child = sd_ctl_dir,
4248 },
56992309 4249 {}
e692ab53
NP
4250};
4251
4252static struct ctl_table *sd_alloc_ctl_entry(int n)
4253{
4254 struct ctl_table *entry =
5cf9f062 4255 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4256
e692ab53
NP
4257 return entry;
4258}
4259
6382bc90
MM
4260static void sd_free_ctl_entry(struct ctl_table **tablep)
4261{
cd790076 4262 struct ctl_table *entry;
6382bc90 4263
cd790076
MM
4264 /*
4265 * In the intermediate directories, both the child directory and
4266 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4267 * will always be set. In the lowest directory the names are
cd790076
MM
4268 * static strings and all have proc handlers.
4269 */
4270 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4271 if (entry->child)
4272 sd_free_ctl_entry(&entry->child);
cd790076
MM
4273 if (entry->proc_handler == NULL)
4274 kfree(entry->procname);
4275 }
6382bc90
MM
4276
4277 kfree(*tablep);
4278 *tablep = NULL;
4279}
4280
201c373e 4281static int min_load_idx = 0;
fd9b86d3 4282static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4283
e692ab53 4284static void
e0361851 4285set_table_entry(struct ctl_table *entry,
e692ab53 4286 const char *procname, void *data, int maxlen,
201c373e
NK
4287 umode_t mode, proc_handler *proc_handler,
4288 bool load_idx)
e692ab53 4289{
e692ab53
NP
4290 entry->procname = procname;
4291 entry->data = data;
4292 entry->maxlen = maxlen;
4293 entry->mode = mode;
4294 entry->proc_handler = proc_handler;
201c373e
NK
4295
4296 if (load_idx) {
4297 entry->extra1 = &min_load_idx;
4298 entry->extra2 = &max_load_idx;
4299 }
e692ab53
NP
4300}
4301
4302static struct ctl_table *
4303sd_alloc_ctl_domain_table(struct sched_domain *sd)
4304{
a5d8c348 4305 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4306
ad1cdc1d
MM
4307 if (table == NULL)
4308 return NULL;
4309
e0361851 4310 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4311 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4312 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4313 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4314 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4315 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4316 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4317 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4318 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4319 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4320 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4321 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4322 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4323 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4324 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4325 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4326 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4327 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4328 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4329 &sd->cache_nice_tries,
201c373e 4330 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4331 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4332 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4333 set_table_entry(&table[11], "name", sd->name,
201c373e 4334 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4335 /* &table[12] is terminator */
e692ab53
NP
4336
4337 return table;
4338}
4339
be7002e6 4340static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4341{
4342 struct ctl_table *entry, *table;
4343 struct sched_domain *sd;
4344 int domain_num = 0, i;
4345 char buf[32];
4346
4347 for_each_domain(cpu, sd)
4348 domain_num++;
4349 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4350 if (table == NULL)
4351 return NULL;
e692ab53
NP
4352
4353 i = 0;
4354 for_each_domain(cpu, sd) {
4355 snprintf(buf, 32, "domain%d", i);
e692ab53 4356 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4357 entry->mode = 0555;
e692ab53
NP
4358 entry->child = sd_alloc_ctl_domain_table(sd);
4359 entry++;
4360 i++;
4361 }
4362 return table;
4363}
4364
4365static struct ctl_table_header *sd_sysctl_header;
6382bc90 4366static void register_sched_domain_sysctl(void)
e692ab53 4367{
6ad4c188 4368 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4369 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4370 char buf[32];
4371
7378547f
MM
4372 WARN_ON(sd_ctl_dir[0].child);
4373 sd_ctl_dir[0].child = entry;
4374
ad1cdc1d
MM
4375 if (entry == NULL)
4376 return;
4377
6ad4c188 4378 for_each_possible_cpu(i) {
e692ab53 4379 snprintf(buf, 32, "cpu%d", i);
e692ab53 4380 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4381 entry->mode = 0555;
e692ab53 4382 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4383 entry++;
e692ab53 4384 }
7378547f
MM
4385
4386 WARN_ON(sd_sysctl_header);
e692ab53
NP
4387 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4388}
6382bc90 4389
7378547f 4390/* may be called multiple times per register */
6382bc90
MM
4391static void unregister_sched_domain_sysctl(void)
4392{
7378547f
MM
4393 if (sd_sysctl_header)
4394 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4395 sd_sysctl_header = NULL;
7378547f
MM
4396 if (sd_ctl_dir[0].child)
4397 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4398}
e692ab53 4399#else
6382bc90
MM
4400static void register_sched_domain_sysctl(void)
4401{
4402}
4403static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4404{
4405}
4406#endif
4407
1f11eb6a
GH
4408static void set_rq_online(struct rq *rq)
4409{
4410 if (!rq->online) {
4411 const struct sched_class *class;
4412
c6c4927b 4413 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4414 rq->online = 1;
4415
4416 for_each_class(class) {
4417 if (class->rq_online)
4418 class->rq_online(rq);
4419 }
4420 }
4421}
4422
4423static void set_rq_offline(struct rq *rq)
4424{
4425 if (rq->online) {
4426 const struct sched_class *class;
4427
4428 for_each_class(class) {
4429 if (class->rq_offline)
4430 class->rq_offline(rq);
4431 }
4432
c6c4927b 4433 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4434 rq->online = 0;
4435 }
4436}
4437
1da177e4
LT
4438/*
4439 * migration_call - callback that gets triggered when a CPU is added.
4440 * Here we can start up the necessary migration thread for the new CPU.
4441 */
0db0628d 4442static int
48f24c4d 4443migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4444{
48f24c4d 4445 int cpu = (long)hcpu;
1da177e4 4446 unsigned long flags;
969c7921 4447 struct rq *rq = cpu_rq(cpu);
1da177e4 4448
48c5ccae 4449 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4450
1da177e4 4451 case CPU_UP_PREPARE:
a468d389 4452 rq->calc_load_update = calc_load_update;
1da177e4 4453 break;
48f24c4d 4454
1da177e4 4455 case CPU_ONLINE:
1f94ef59 4456 /* Update our root-domain */
05fa785c 4457 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4458 if (rq->rd) {
c6c4927b 4459 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4460
4461 set_rq_online(rq);
1f94ef59 4462 }
05fa785c 4463 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4464 break;
48f24c4d 4465
1da177e4 4466#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4467 case CPU_DYING:
317f3941 4468 sched_ttwu_pending();
57d885fe 4469 /* Update our root-domain */
05fa785c 4470 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4471 if (rq->rd) {
c6c4927b 4472 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4473 set_rq_offline(rq);
57d885fe 4474 }
48c5ccae
PZ
4475 migrate_tasks(cpu);
4476 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4477 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4478 break;
48c5ccae 4479
5d180232 4480 case CPU_DEAD:
f319da0c 4481 calc_load_migrate(rq);
57d885fe 4482 break;
1da177e4
LT
4483#endif
4484 }
49c022e6
PZ
4485
4486 update_max_interval();
4487
1da177e4
LT
4488 return NOTIFY_OK;
4489}
4490
f38b0820
PM
4491/*
4492 * Register at high priority so that task migration (migrate_all_tasks)
4493 * happens before everything else. This has to be lower priority than
cdd6c482 4494 * the notifier in the perf_event subsystem, though.
1da177e4 4495 */
0db0628d 4496static struct notifier_block migration_notifier = {
1da177e4 4497 .notifier_call = migration_call,
50a323b7 4498 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4499};
4500
0db0628d 4501static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4502 unsigned long action, void *hcpu)
4503{
4504 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4505 case CPU_STARTING:
3a101d05
TH
4506 case CPU_DOWN_FAILED:
4507 set_cpu_active((long)hcpu, true);
4508 return NOTIFY_OK;
4509 default:
4510 return NOTIFY_DONE;
4511 }
4512}
4513
0db0628d 4514static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4515 unsigned long action, void *hcpu)
4516{
4517 switch (action & ~CPU_TASKS_FROZEN) {
4518 case CPU_DOWN_PREPARE:
4519 set_cpu_active((long)hcpu, false);
4520 return NOTIFY_OK;
4521 default:
4522 return NOTIFY_DONE;
4523 }
4524}
4525
7babe8db 4526static int __init migration_init(void)
1da177e4
LT
4527{
4528 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4529 int err;
48f24c4d 4530
3a101d05 4531 /* Initialize migration for the boot CPU */
07dccf33
AM
4532 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4533 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4534 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4535 register_cpu_notifier(&migration_notifier);
7babe8db 4536
3a101d05
TH
4537 /* Register cpu active notifiers */
4538 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4539 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4540
a004cd42 4541 return 0;
1da177e4 4542}
7babe8db 4543early_initcall(migration_init);
1da177e4
LT
4544#endif
4545
4546#ifdef CONFIG_SMP
476f3534 4547
4cb98839
PZ
4548static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4549
3e9830dc 4550#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4551
d039ac60 4552static __read_mostly int sched_debug_enabled;
f6630114 4553
d039ac60 4554static int __init sched_debug_setup(char *str)
f6630114 4555{
d039ac60 4556 sched_debug_enabled = 1;
f6630114
MT
4557
4558 return 0;
4559}
d039ac60
PZ
4560early_param("sched_debug", sched_debug_setup);
4561
4562static inline bool sched_debug(void)
4563{
4564 return sched_debug_enabled;
4565}
f6630114 4566
7c16ec58 4567static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4568 struct cpumask *groupmask)
1da177e4 4569{
4dcf6aff 4570 struct sched_group *group = sd->groups;
434d53b0 4571 char str[256];
1da177e4 4572
968ea6d8 4573 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4574 cpumask_clear(groupmask);
4dcf6aff
IM
4575
4576 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4577
4578 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4579 printk("does not load-balance\n");
4dcf6aff 4580 if (sd->parent)
3df0fc5b
PZ
4581 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4582 " has parent");
4dcf6aff 4583 return -1;
41c7ce9a
NP
4584 }
4585
3df0fc5b 4586 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4587
758b2cdc 4588 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4589 printk(KERN_ERR "ERROR: domain->span does not contain "
4590 "CPU%d\n", cpu);
4dcf6aff 4591 }
758b2cdc 4592 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4593 printk(KERN_ERR "ERROR: domain->groups does not contain"
4594 " CPU%d\n", cpu);
4dcf6aff 4595 }
1da177e4 4596
4dcf6aff 4597 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4598 do {
4dcf6aff 4599 if (!group) {
3df0fc5b
PZ
4600 printk("\n");
4601 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4602 break;
4603 }
4604
c3decf0d
PZ
4605 /*
4606 * Even though we initialize ->power to something semi-sane,
4607 * we leave power_orig unset. This allows us to detect if
4608 * domain iteration is still funny without causing /0 traps.
4609 */
4610 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4611 printk(KERN_CONT "\n");
4612 printk(KERN_ERR "ERROR: domain->cpu_power not "
4613 "set\n");
4dcf6aff
IM
4614 break;
4615 }
1da177e4 4616
758b2cdc 4617 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4618 printk(KERN_CONT "\n");
4619 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4620 break;
4621 }
1da177e4 4622
cb83b629
PZ
4623 if (!(sd->flags & SD_OVERLAP) &&
4624 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4625 printk(KERN_CONT "\n");
4626 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4627 break;
4628 }
1da177e4 4629
758b2cdc 4630 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4631
968ea6d8 4632 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4633
3df0fc5b 4634 printk(KERN_CONT " %s", str);
9c3f75cb 4635 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4636 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4637 group->sgp->power);
381512cf 4638 }
1da177e4 4639
4dcf6aff
IM
4640 group = group->next;
4641 } while (group != sd->groups);
3df0fc5b 4642 printk(KERN_CONT "\n");
1da177e4 4643
758b2cdc 4644 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4645 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4646
758b2cdc
RR
4647 if (sd->parent &&
4648 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4649 printk(KERN_ERR "ERROR: parent span is not a superset "
4650 "of domain->span\n");
4dcf6aff
IM
4651 return 0;
4652}
1da177e4 4653
4dcf6aff
IM
4654static void sched_domain_debug(struct sched_domain *sd, int cpu)
4655{
4656 int level = 0;
1da177e4 4657
d039ac60 4658 if (!sched_debug_enabled)
f6630114
MT
4659 return;
4660
4dcf6aff
IM
4661 if (!sd) {
4662 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4663 return;
4664 }
1da177e4 4665
4dcf6aff
IM
4666 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4667
4668 for (;;) {
4cb98839 4669 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4670 break;
1da177e4
LT
4671 level++;
4672 sd = sd->parent;
33859f7f 4673 if (!sd)
4dcf6aff
IM
4674 break;
4675 }
1da177e4 4676}
6d6bc0ad 4677#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4678# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4679static inline bool sched_debug(void)
4680{
4681 return false;
4682}
6d6bc0ad 4683#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4684
1a20ff27 4685static int sd_degenerate(struct sched_domain *sd)
245af2c7 4686{
758b2cdc 4687 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4688 return 1;
4689
4690 /* Following flags need at least 2 groups */
4691 if (sd->flags & (SD_LOAD_BALANCE |
4692 SD_BALANCE_NEWIDLE |
4693 SD_BALANCE_FORK |
89c4710e
SS
4694 SD_BALANCE_EXEC |
4695 SD_SHARE_CPUPOWER |
4696 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4697 if (sd->groups != sd->groups->next)
4698 return 0;
4699 }
4700
4701 /* Following flags don't use groups */
c88d5910 4702 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4703 return 0;
4704
4705 return 1;
4706}
4707
48f24c4d
IM
4708static int
4709sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4710{
4711 unsigned long cflags = sd->flags, pflags = parent->flags;
4712
4713 if (sd_degenerate(parent))
4714 return 1;
4715
758b2cdc 4716 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4717 return 0;
4718
245af2c7
SS
4719 /* Flags needing groups don't count if only 1 group in parent */
4720 if (parent->groups == parent->groups->next) {
4721 pflags &= ~(SD_LOAD_BALANCE |
4722 SD_BALANCE_NEWIDLE |
4723 SD_BALANCE_FORK |
89c4710e
SS
4724 SD_BALANCE_EXEC |
4725 SD_SHARE_CPUPOWER |
10866e62
PZ
4726 SD_SHARE_PKG_RESOURCES |
4727 SD_PREFER_SIBLING);
5436499e
KC
4728 if (nr_node_ids == 1)
4729 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4730 }
4731 if (~cflags & pflags)
4732 return 0;
4733
4734 return 1;
4735}
4736
dce840a0 4737static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4738{
dce840a0 4739 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4740
68e74568 4741 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4742 free_cpumask_var(rd->rto_mask);
4743 free_cpumask_var(rd->online);
4744 free_cpumask_var(rd->span);
4745 kfree(rd);
4746}
4747
57d885fe
GH
4748static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4749{
a0490fa3 4750 struct root_domain *old_rd = NULL;
57d885fe 4751 unsigned long flags;
57d885fe 4752
05fa785c 4753 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4754
4755 if (rq->rd) {
a0490fa3 4756 old_rd = rq->rd;
57d885fe 4757
c6c4927b 4758 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4759 set_rq_offline(rq);
57d885fe 4760
c6c4927b 4761 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4762
a0490fa3 4763 /*
0515973f 4764 * If we dont want to free the old_rd yet then
a0490fa3
IM
4765 * set old_rd to NULL to skip the freeing later
4766 * in this function:
4767 */
4768 if (!atomic_dec_and_test(&old_rd->refcount))
4769 old_rd = NULL;
57d885fe
GH
4770 }
4771
4772 atomic_inc(&rd->refcount);
4773 rq->rd = rd;
4774
c6c4927b 4775 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 4776 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 4777 set_rq_online(rq);
57d885fe 4778
05fa785c 4779 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
4780
4781 if (old_rd)
dce840a0 4782 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
4783}
4784
68c38fc3 4785static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
4786{
4787 memset(rd, 0, sizeof(*rd));
4788
68c38fc3 4789 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 4790 goto out;
68c38fc3 4791 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 4792 goto free_span;
68c38fc3 4793 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 4794 goto free_online;
6e0534f2 4795
68c38fc3 4796 if (cpupri_init(&rd->cpupri) != 0)
68e74568 4797 goto free_rto_mask;
c6c4927b 4798 return 0;
6e0534f2 4799
68e74568
RR
4800free_rto_mask:
4801 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
4802free_online:
4803 free_cpumask_var(rd->online);
4804free_span:
4805 free_cpumask_var(rd->span);
0c910d28 4806out:
c6c4927b 4807 return -ENOMEM;
57d885fe
GH
4808}
4809
029632fb
PZ
4810/*
4811 * By default the system creates a single root-domain with all cpus as
4812 * members (mimicking the global state we have today).
4813 */
4814struct root_domain def_root_domain;
4815
57d885fe
GH
4816static void init_defrootdomain(void)
4817{
68c38fc3 4818 init_rootdomain(&def_root_domain);
c6c4927b 4819
57d885fe
GH
4820 atomic_set(&def_root_domain.refcount, 1);
4821}
4822
dc938520 4823static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
4824{
4825 struct root_domain *rd;
4826
4827 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
4828 if (!rd)
4829 return NULL;
4830
68c38fc3 4831 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
4832 kfree(rd);
4833 return NULL;
4834 }
57d885fe
GH
4835
4836 return rd;
4837}
4838
e3589f6c
PZ
4839static void free_sched_groups(struct sched_group *sg, int free_sgp)
4840{
4841 struct sched_group *tmp, *first;
4842
4843 if (!sg)
4844 return;
4845
4846 first = sg;
4847 do {
4848 tmp = sg->next;
4849
4850 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
4851 kfree(sg->sgp);
4852
4853 kfree(sg);
4854 sg = tmp;
4855 } while (sg != first);
4856}
4857
dce840a0
PZ
4858static void free_sched_domain(struct rcu_head *rcu)
4859{
4860 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
4861
4862 /*
4863 * If its an overlapping domain it has private groups, iterate and
4864 * nuke them all.
4865 */
4866 if (sd->flags & SD_OVERLAP) {
4867 free_sched_groups(sd->groups, 1);
4868 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 4869 kfree(sd->groups->sgp);
dce840a0 4870 kfree(sd->groups);
9c3f75cb 4871 }
dce840a0
PZ
4872 kfree(sd);
4873}
4874
4875static void destroy_sched_domain(struct sched_domain *sd, int cpu)
4876{
4877 call_rcu(&sd->rcu, free_sched_domain);
4878}
4879
4880static void destroy_sched_domains(struct sched_domain *sd, int cpu)
4881{
4882 for (; sd; sd = sd->parent)
4883 destroy_sched_domain(sd, cpu);
4884}
4885
518cd623
PZ
4886/*
4887 * Keep a special pointer to the highest sched_domain that has
4888 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
4889 * allows us to avoid some pointer chasing select_idle_sibling().
4890 *
4891 * Also keep a unique ID per domain (we use the first cpu number in
4892 * the cpumask of the domain), this allows us to quickly tell if
39be3501 4893 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
4894 */
4895DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 4896DEFINE_PER_CPU(int, sd_llc_size);
518cd623 4897DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 4898DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
4899DEFINE_PER_CPU(struct sched_domain *, sd_busy);
4900DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
4901
4902static void update_top_cache_domain(int cpu)
4903{
4904 struct sched_domain *sd;
4905 int id = cpu;
7d9ffa89 4906 int size = 1;
518cd623
PZ
4907
4908 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 4909 if (sd) {
518cd623 4910 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 4911 size = cpumask_weight(sched_domain_span(sd));
42eb088e 4912 sd = sd->parent; /* sd_busy */
7d9ffa89 4913 }
42eb088e 4914 rcu_assign_pointer(per_cpu(sd_busy, cpu), sd);
518cd623
PZ
4915
4916 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 4917 per_cpu(sd_llc_size, cpu) = size;
518cd623 4918 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
4919
4920 sd = lowest_flag_domain(cpu, SD_NUMA);
4921 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
4922
4923 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
4924 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
4925}
4926
1da177e4 4927/*
0eab9146 4928 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
4929 * hold the hotplug lock.
4930 */
0eab9146
IM
4931static void
4932cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 4933{
70b97a7f 4934 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
4935 struct sched_domain *tmp;
4936
4937 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 4938 for (tmp = sd; tmp; ) {
245af2c7
SS
4939 struct sched_domain *parent = tmp->parent;
4940 if (!parent)
4941 break;
f29c9b1c 4942
1a848870 4943 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 4944 tmp->parent = parent->parent;
1a848870
SS
4945 if (parent->parent)
4946 parent->parent->child = tmp;
10866e62
PZ
4947 /*
4948 * Transfer SD_PREFER_SIBLING down in case of a
4949 * degenerate parent; the spans match for this
4950 * so the property transfers.
4951 */
4952 if (parent->flags & SD_PREFER_SIBLING)
4953 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 4954 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
4955 } else
4956 tmp = tmp->parent;
245af2c7
SS
4957 }
4958
1a848870 4959 if (sd && sd_degenerate(sd)) {
dce840a0 4960 tmp = sd;
245af2c7 4961 sd = sd->parent;
dce840a0 4962 destroy_sched_domain(tmp, cpu);
1a848870
SS
4963 if (sd)
4964 sd->child = NULL;
4965 }
1da177e4 4966
4cb98839 4967 sched_domain_debug(sd, cpu);
1da177e4 4968
57d885fe 4969 rq_attach_root(rq, rd);
dce840a0 4970 tmp = rq->sd;
674311d5 4971 rcu_assign_pointer(rq->sd, sd);
dce840a0 4972 destroy_sched_domains(tmp, cpu);
518cd623
PZ
4973
4974 update_top_cache_domain(cpu);
1da177e4
LT
4975}
4976
4977/* cpus with isolated domains */
dcc30a35 4978static cpumask_var_t cpu_isolated_map;
1da177e4
LT
4979
4980/* Setup the mask of cpus configured for isolated domains */
4981static int __init isolated_cpu_setup(char *str)
4982{
bdddd296 4983 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 4984 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
4985 return 1;
4986}
4987
8927f494 4988__setup("isolcpus=", isolated_cpu_setup);
1da177e4 4989
d3081f52
PZ
4990static const struct cpumask *cpu_cpu_mask(int cpu)
4991{
4992 return cpumask_of_node(cpu_to_node(cpu));
4993}
4994
dce840a0
PZ
4995struct sd_data {
4996 struct sched_domain **__percpu sd;
4997 struct sched_group **__percpu sg;
9c3f75cb 4998 struct sched_group_power **__percpu sgp;
dce840a0
PZ
4999};
5000
49a02c51 5001struct s_data {
21d42ccf 5002 struct sched_domain ** __percpu sd;
49a02c51
AH
5003 struct root_domain *rd;
5004};
5005
2109b99e 5006enum s_alloc {
2109b99e 5007 sa_rootdomain,
21d42ccf 5008 sa_sd,
dce840a0 5009 sa_sd_storage,
2109b99e
AH
5010 sa_none,
5011};
5012
54ab4ff4
PZ
5013struct sched_domain_topology_level;
5014
5015typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5016typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5017
e3589f6c
PZ
5018#define SDTL_OVERLAP 0x01
5019
eb7a74e6 5020struct sched_domain_topology_level {
2c402dc3
PZ
5021 sched_domain_init_f init;
5022 sched_domain_mask_f mask;
e3589f6c 5023 int flags;
cb83b629 5024 int numa_level;
54ab4ff4 5025 struct sd_data data;
eb7a74e6
PZ
5026};
5027
c1174876
PZ
5028/*
5029 * Build an iteration mask that can exclude certain CPUs from the upwards
5030 * domain traversal.
5031 *
5032 * Asymmetric node setups can result in situations where the domain tree is of
5033 * unequal depth, make sure to skip domains that already cover the entire
5034 * range.
5035 *
5036 * In that case build_sched_domains() will have terminated the iteration early
5037 * and our sibling sd spans will be empty. Domains should always include the
5038 * cpu they're built on, so check that.
5039 *
5040 */
5041static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5042{
5043 const struct cpumask *span = sched_domain_span(sd);
5044 struct sd_data *sdd = sd->private;
5045 struct sched_domain *sibling;
5046 int i;
5047
5048 for_each_cpu(i, span) {
5049 sibling = *per_cpu_ptr(sdd->sd, i);
5050 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5051 continue;
5052
5053 cpumask_set_cpu(i, sched_group_mask(sg));
5054 }
5055}
5056
5057/*
5058 * Return the canonical balance cpu for this group, this is the first cpu
5059 * of this group that's also in the iteration mask.
5060 */
5061int group_balance_cpu(struct sched_group *sg)
5062{
5063 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5064}
5065
e3589f6c
PZ
5066static int
5067build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5068{
5069 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5070 const struct cpumask *span = sched_domain_span(sd);
5071 struct cpumask *covered = sched_domains_tmpmask;
5072 struct sd_data *sdd = sd->private;
5073 struct sched_domain *child;
5074 int i;
5075
5076 cpumask_clear(covered);
5077
5078 for_each_cpu(i, span) {
5079 struct cpumask *sg_span;
5080
5081 if (cpumask_test_cpu(i, covered))
5082 continue;
5083
c1174876
PZ
5084 child = *per_cpu_ptr(sdd->sd, i);
5085
5086 /* See the comment near build_group_mask(). */
5087 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5088 continue;
5089
e3589f6c 5090 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5091 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5092
5093 if (!sg)
5094 goto fail;
5095
5096 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5097 if (child->child) {
5098 child = child->child;
5099 cpumask_copy(sg_span, sched_domain_span(child));
5100 } else
5101 cpumask_set_cpu(i, sg_span);
5102
5103 cpumask_or(covered, covered, sg_span);
5104
74a5ce20 5105 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5106 if (atomic_inc_return(&sg->sgp->ref) == 1)
5107 build_group_mask(sd, sg);
5108
c3decf0d
PZ
5109 /*
5110 * Initialize sgp->power such that even if we mess up the
5111 * domains and no possible iteration will get us here, we won't
5112 * die on a /0 trap.
5113 */
5114 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5115 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5116
c1174876
PZ
5117 /*
5118 * Make sure the first group of this domain contains the
5119 * canonical balance cpu. Otherwise the sched_domain iteration
5120 * breaks. See update_sg_lb_stats().
5121 */
74a5ce20 5122 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5123 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5124 groups = sg;
5125
5126 if (!first)
5127 first = sg;
5128 if (last)
5129 last->next = sg;
5130 last = sg;
5131 last->next = first;
5132 }
5133 sd->groups = groups;
5134
5135 return 0;
5136
5137fail:
5138 free_sched_groups(first, 0);
5139
5140 return -ENOMEM;
5141}
5142
dce840a0 5143static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5144{
dce840a0
PZ
5145 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5146 struct sched_domain *child = sd->child;
1da177e4 5147
dce840a0
PZ
5148 if (child)
5149 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5150
9c3f75cb 5151 if (sg) {
dce840a0 5152 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5153 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5154 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5155 }
dce840a0
PZ
5156
5157 return cpu;
1e9f28fa 5158}
1e9f28fa 5159
01a08546 5160/*
dce840a0
PZ
5161 * build_sched_groups will build a circular linked list of the groups
5162 * covered by the given span, and will set each group's ->cpumask correctly,
5163 * and ->cpu_power to 0.
e3589f6c
PZ
5164 *
5165 * Assumes the sched_domain tree is fully constructed
01a08546 5166 */
e3589f6c
PZ
5167static int
5168build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5169{
dce840a0
PZ
5170 struct sched_group *first = NULL, *last = NULL;
5171 struct sd_data *sdd = sd->private;
5172 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5173 struct cpumask *covered;
dce840a0 5174 int i;
9c1cfda2 5175
e3589f6c
PZ
5176 get_group(cpu, sdd, &sd->groups);
5177 atomic_inc(&sd->groups->ref);
5178
0936629f 5179 if (cpu != cpumask_first(span))
e3589f6c
PZ
5180 return 0;
5181
f96225fd
PZ
5182 lockdep_assert_held(&sched_domains_mutex);
5183 covered = sched_domains_tmpmask;
5184
dce840a0 5185 cpumask_clear(covered);
6711cab4 5186
dce840a0
PZ
5187 for_each_cpu(i, span) {
5188 struct sched_group *sg;
cd08e923 5189 int group, j;
6711cab4 5190
dce840a0
PZ
5191 if (cpumask_test_cpu(i, covered))
5192 continue;
6711cab4 5193
cd08e923 5194 group = get_group(i, sdd, &sg);
dce840a0 5195 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5196 sg->sgp->power = 0;
c1174876 5197 cpumask_setall(sched_group_mask(sg));
0601a88d 5198
dce840a0
PZ
5199 for_each_cpu(j, span) {
5200 if (get_group(j, sdd, NULL) != group)
5201 continue;
0601a88d 5202
dce840a0
PZ
5203 cpumask_set_cpu(j, covered);
5204 cpumask_set_cpu(j, sched_group_cpus(sg));
5205 }
0601a88d 5206
dce840a0
PZ
5207 if (!first)
5208 first = sg;
5209 if (last)
5210 last->next = sg;
5211 last = sg;
5212 }
5213 last->next = first;
e3589f6c
PZ
5214
5215 return 0;
0601a88d 5216}
51888ca2 5217
89c4710e
SS
5218/*
5219 * Initialize sched groups cpu_power.
5220 *
5221 * cpu_power indicates the capacity of sched group, which is used while
5222 * distributing the load between different sched groups in a sched domain.
5223 * Typically cpu_power for all the groups in a sched domain will be same unless
5224 * there are asymmetries in the topology. If there are asymmetries, group
5225 * having more cpu_power will pickup more load compared to the group having
5226 * less cpu_power.
89c4710e
SS
5227 */
5228static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5229{
e3589f6c 5230 struct sched_group *sg = sd->groups;
89c4710e 5231
94c95ba6 5232 WARN_ON(!sg);
e3589f6c
PZ
5233
5234 do {
5235 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5236 sg = sg->next;
5237 } while (sg != sd->groups);
89c4710e 5238
c1174876 5239 if (cpu != group_balance_cpu(sg))
e3589f6c 5240 return;
aae6d3dd 5241
d274cb30 5242 update_group_power(sd, cpu);
69e1e811 5243 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5244}
5245
029632fb
PZ
5246int __weak arch_sd_sibling_asym_packing(void)
5247{
5248 return 0*SD_ASYM_PACKING;
89c4710e
SS
5249}
5250
7c16ec58
MT
5251/*
5252 * Initializers for schedule domains
5253 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5254 */
5255
a5d8c348
IM
5256#ifdef CONFIG_SCHED_DEBUG
5257# define SD_INIT_NAME(sd, type) sd->name = #type
5258#else
5259# define SD_INIT_NAME(sd, type) do { } while (0)
5260#endif
5261
54ab4ff4
PZ
5262#define SD_INIT_FUNC(type) \
5263static noinline struct sched_domain * \
5264sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5265{ \
5266 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5267 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5268 SD_INIT_NAME(sd, type); \
5269 sd->private = &tl->data; \
5270 return sd; \
7c16ec58
MT
5271}
5272
5273SD_INIT_FUNC(CPU)
7c16ec58
MT
5274#ifdef CONFIG_SCHED_SMT
5275 SD_INIT_FUNC(SIBLING)
5276#endif
5277#ifdef CONFIG_SCHED_MC
5278 SD_INIT_FUNC(MC)
5279#endif
01a08546
HC
5280#ifdef CONFIG_SCHED_BOOK
5281 SD_INIT_FUNC(BOOK)
5282#endif
7c16ec58 5283
1d3504fc 5284static int default_relax_domain_level = -1;
60495e77 5285int sched_domain_level_max;
1d3504fc
HS
5286
5287static int __init setup_relax_domain_level(char *str)
5288{
a841f8ce
DS
5289 if (kstrtoint(str, 0, &default_relax_domain_level))
5290 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5291
1d3504fc
HS
5292 return 1;
5293}
5294__setup("relax_domain_level=", setup_relax_domain_level);
5295
5296static void set_domain_attribute(struct sched_domain *sd,
5297 struct sched_domain_attr *attr)
5298{
5299 int request;
5300
5301 if (!attr || attr->relax_domain_level < 0) {
5302 if (default_relax_domain_level < 0)
5303 return;
5304 else
5305 request = default_relax_domain_level;
5306 } else
5307 request = attr->relax_domain_level;
5308 if (request < sd->level) {
5309 /* turn off idle balance on this domain */
c88d5910 5310 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5311 } else {
5312 /* turn on idle balance on this domain */
c88d5910 5313 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5314 }
5315}
5316
54ab4ff4
PZ
5317static void __sdt_free(const struct cpumask *cpu_map);
5318static int __sdt_alloc(const struct cpumask *cpu_map);
5319
2109b99e
AH
5320static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5321 const struct cpumask *cpu_map)
5322{
5323 switch (what) {
2109b99e 5324 case sa_rootdomain:
822ff793
PZ
5325 if (!atomic_read(&d->rd->refcount))
5326 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5327 case sa_sd:
5328 free_percpu(d->sd); /* fall through */
dce840a0 5329 case sa_sd_storage:
54ab4ff4 5330 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5331 case sa_none:
5332 break;
5333 }
5334}
3404c8d9 5335
2109b99e
AH
5336static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5337 const struct cpumask *cpu_map)
5338{
dce840a0
PZ
5339 memset(d, 0, sizeof(*d));
5340
54ab4ff4
PZ
5341 if (__sdt_alloc(cpu_map))
5342 return sa_sd_storage;
dce840a0
PZ
5343 d->sd = alloc_percpu(struct sched_domain *);
5344 if (!d->sd)
5345 return sa_sd_storage;
2109b99e 5346 d->rd = alloc_rootdomain();
dce840a0 5347 if (!d->rd)
21d42ccf 5348 return sa_sd;
2109b99e
AH
5349 return sa_rootdomain;
5350}
57d885fe 5351
dce840a0
PZ
5352/*
5353 * NULL the sd_data elements we've used to build the sched_domain and
5354 * sched_group structure so that the subsequent __free_domain_allocs()
5355 * will not free the data we're using.
5356 */
5357static void claim_allocations(int cpu, struct sched_domain *sd)
5358{
5359 struct sd_data *sdd = sd->private;
dce840a0
PZ
5360
5361 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5362 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5363
e3589f6c 5364 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5365 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5366
5367 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5368 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5369}
5370
2c402dc3
PZ
5371#ifdef CONFIG_SCHED_SMT
5372static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5373{
2c402dc3 5374 return topology_thread_cpumask(cpu);
3bd65a80 5375}
2c402dc3 5376#endif
7f4588f3 5377
d069b916
PZ
5378/*
5379 * Topology list, bottom-up.
5380 */
2c402dc3 5381static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5382#ifdef CONFIG_SCHED_SMT
5383 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5384#endif
1e9f28fa 5385#ifdef CONFIG_SCHED_MC
2c402dc3 5386 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5387#endif
d069b916
PZ
5388#ifdef CONFIG_SCHED_BOOK
5389 { sd_init_BOOK, cpu_book_mask, },
5390#endif
5391 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5392 { NULL, },
5393};
5394
5395static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5396
27723a68
VK
5397#define for_each_sd_topology(tl) \
5398 for (tl = sched_domain_topology; tl->init; tl++)
5399
cb83b629
PZ
5400#ifdef CONFIG_NUMA
5401
5402static int sched_domains_numa_levels;
cb83b629
PZ
5403static int *sched_domains_numa_distance;
5404static struct cpumask ***sched_domains_numa_masks;
5405static int sched_domains_curr_level;
5406
cb83b629
PZ
5407static inline int sd_local_flags(int level)
5408{
10717dcd 5409 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5410 return 0;
5411
5412 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5413}
5414
5415static struct sched_domain *
5416sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5417{
5418 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5419 int level = tl->numa_level;
5420 int sd_weight = cpumask_weight(
5421 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5422
5423 *sd = (struct sched_domain){
5424 .min_interval = sd_weight,
5425 .max_interval = 2*sd_weight,
5426 .busy_factor = 32,
870a0bb5 5427 .imbalance_pct = 125,
cb83b629
PZ
5428 .cache_nice_tries = 2,
5429 .busy_idx = 3,
5430 .idle_idx = 2,
5431 .newidle_idx = 0,
5432 .wake_idx = 0,
5433 .forkexec_idx = 0,
5434
5435 .flags = 1*SD_LOAD_BALANCE
5436 | 1*SD_BALANCE_NEWIDLE
5437 | 0*SD_BALANCE_EXEC
5438 | 0*SD_BALANCE_FORK
5439 | 0*SD_BALANCE_WAKE
5440 | 0*SD_WAKE_AFFINE
cb83b629 5441 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5442 | 0*SD_SHARE_PKG_RESOURCES
5443 | 1*SD_SERIALIZE
5444 | 0*SD_PREFER_SIBLING
3a7053b3 5445 | 1*SD_NUMA
cb83b629
PZ
5446 | sd_local_flags(level)
5447 ,
5448 .last_balance = jiffies,
5449 .balance_interval = sd_weight,
5450 };
5451 SD_INIT_NAME(sd, NUMA);
5452 sd->private = &tl->data;
5453
5454 /*
5455 * Ugly hack to pass state to sd_numa_mask()...
5456 */
5457 sched_domains_curr_level = tl->numa_level;
5458
5459 return sd;
5460}
5461
5462static const struct cpumask *sd_numa_mask(int cpu)
5463{
5464 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5465}
5466
d039ac60
PZ
5467static void sched_numa_warn(const char *str)
5468{
5469 static int done = false;
5470 int i,j;
5471
5472 if (done)
5473 return;
5474
5475 done = true;
5476
5477 printk(KERN_WARNING "ERROR: %s\n\n", str);
5478
5479 for (i = 0; i < nr_node_ids; i++) {
5480 printk(KERN_WARNING " ");
5481 for (j = 0; j < nr_node_ids; j++)
5482 printk(KERN_CONT "%02d ", node_distance(i,j));
5483 printk(KERN_CONT "\n");
5484 }
5485 printk(KERN_WARNING "\n");
5486}
5487
5488static bool find_numa_distance(int distance)
5489{
5490 int i;
5491
5492 if (distance == node_distance(0, 0))
5493 return true;
5494
5495 for (i = 0; i < sched_domains_numa_levels; i++) {
5496 if (sched_domains_numa_distance[i] == distance)
5497 return true;
5498 }
5499
5500 return false;
5501}
5502
cb83b629
PZ
5503static void sched_init_numa(void)
5504{
5505 int next_distance, curr_distance = node_distance(0, 0);
5506 struct sched_domain_topology_level *tl;
5507 int level = 0;
5508 int i, j, k;
5509
cb83b629
PZ
5510 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5511 if (!sched_domains_numa_distance)
5512 return;
5513
5514 /*
5515 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5516 * unique distances in the node_distance() table.
5517 *
5518 * Assumes node_distance(0,j) includes all distances in
5519 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5520 */
5521 next_distance = curr_distance;
5522 for (i = 0; i < nr_node_ids; i++) {
5523 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5524 for (k = 0; k < nr_node_ids; k++) {
5525 int distance = node_distance(i, k);
5526
5527 if (distance > curr_distance &&
5528 (distance < next_distance ||
5529 next_distance == curr_distance))
5530 next_distance = distance;
5531
5532 /*
5533 * While not a strong assumption it would be nice to know
5534 * about cases where if node A is connected to B, B is not
5535 * equally connected to A.
5536 */
5537 if (sched_debug() && node_distance(k, i) != distance)
5538 sched_numa_warn("Node-distance not symmetric");
5539
5540 if (sched_debug() && i && !find_numa_distance(distance))
5541 sched_numa_warn("Node-0 not representative");
5542 }
5543 if (next_distance != curr_distance) {
5544 sched_domains_numa_distance[level++] = next_distance;
5545 sched_domains_numa_levels = level;
5546 curr_distance = next_distance;
5547 } else break;
cb83b629 5548 }
d039ac60
PZ
5549
5550 /*
5551 * In case of sched_debug() we verify the above assumption.
5552 */
5553 if (!sched_debug())
5554 break;
cb83b629
PZ
5555 }
5556 /*
5557 * 'level' contains the number of unique distances, excluding the
5558 * identity distance node_distance(i,i).
5559 *
28b4a521 5560 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5561 * numbers.
5562 */
5563
5f7865f3
TC
5564 /*
5565 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5566 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5567 * the array will contain less then 'level' members. This could be
5568 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5569 * in other functions.
5570 *
5571 * We reset it to 'level' at the end of this function.
5572 */
5573 sched_domains_numa_levels = 0;
5574
cb83b629
PZ
5575 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5576 if (!sched_domains_numa_masks)
5577 return;
5578
5579 /*
5580 * Now for each level, construct a mask per node which contains all
5581 * cpus of nodes that are that many hops away from us.
5582 */
5583 for (i = 0; i < level; i++) {
5584 sched_domains_numa_masks[i] =
5585 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5586 if (!sched_domains_numa_masks[i])
5587 return;
5588
5589 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5590 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5591 if (!mask)
5592 return;
5593
5594 sched_domains_numa_masks[i][j] = mask;
5595
5596 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5597 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5598 continue;
5599
5600 cpumask_or(mask, mask, cpumask_of_node(k));
5601 }
5602 }
5603 }
5604
5605 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5606 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5607 if (!tl)
5608 return;
5609
5610 /*
5611 * Copy the default topology bits..
5612 */
5613 for (i = 0; default_topology[i].init; i++)
5614 tl[i] = default_topology[i];
5615
5616 /*
5617 * .. and append 'j' levels of NUMA goodness.
5618 */
5619 for (j = 0; j < level; i++, j++) {
5620 tl[i] = (struct sched_domain_topology_level){
5621 .init = sd_numa_init,
5622 .mask = sd_numa_mask,
5623 .flags = SDTL_OVERLAP,
5624 .numa_level = j,
5625 };
5626 }
5627
5628 sched_domain_topology = tl;
5f7865f3
TC
5629
5630 sched_domains_numa_levels = level;
cb83b629 5631}
301a5cba
TC
5632
5633static void sched_domains_numa_masks_set(int cpu)
5634{
5635 int i, j;
5636 int node = cpu_to_node(cpu);
5637
5638 for (i = 0; i < sched_domains_numa_levels; i++) {
5639 for (j = 0; j < nr_node_ids; j++) {
5640 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5641 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5642 }
5643 }
5644}
5645
5646static void sched_domains_numa_masks_clear(int cpu)
5647{
5648 int i, j;
5649 for (i = 0; i < sched_domains_numa_levels; i++) {
5650 for (j = 0; j < nr_node_ids; j++)
5651 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5652 }
5653}
5654
5655/*
5656 * Update sched_domains_numa_masks[level][node] array when new cpus
5657 * are onlined.
5658 */
5659static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5660 unsigned long action,
5661 void *hcpu)
5662{
5663 int cpu = (long)hcpu;
5664
5665 switch (action & ~CPU_TASKS_FROZEN) {
5666 case CPU_ONLINE:
5667 sched_domains_numa_masks_set(cpu);
5668 break;
5669
5670 case CPU_DEAD:
5671 sched_domains_numa_masks_clear(cpu);
5672 break;
5673
5674 default:
5675 return NOTIFY_DONE;
5676 }
5677
5678 return NOTIFY_OK;
cb83b629
PZ
5679}
5680#else
5681static inline void sched_init_numa(void)
5682{
5683}
301a5cba
TC
5684
5685static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5686 unsigned long action,
5687 void *hcpu)
5688{
5689 return 0;
5690}
cb83b629
PZ
5691#endif /* CONFIG_NUMA */
5692
54ab4ff4
PZ
5693static int __sdt_alloc(const struct cpumask *cpu_map)
5694{
5695 struct sched_domain_topology_level *tl;
5696 int j;
5697
27723a68 5698 for_each_sd_topology(tl) {
54ab4ff4
PZ
5699 struct sd_data *sdd = &tl->data;
5700
5701 sdd->sd = alloc_percpu(struct sched_domain *);
5702 if (!sdd->sd)
5703 return -ENOMEM;
5704
5705 sdd->sg = alloc_percpu(struct sched_group *);
5706 if (!sdd->sg)
5707 return -ENOMEM;
5708
9c3f75cb
PZ
5709 sdd->sgp = alloc_percpu(struct sched_group_power *);
5710 if (!sdd->sgp)
5711 return -ENOMEM;
5712
54ab4ff4
PZ
5713 for_each_cpu(j, cpu_map) {
5714 struct sched_domain *sd;
5715 struct sched_group *sg;
9c3f75cb 5716 struct sched_group_power *sgp;
54ab4ff4
PZ
5717
5718 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5719 GFP_KERNEL, cpu_to_node(j));
5720 if (!sd)
5721 return -ENOMEM;
5722
5723 *per_cpu_ptr(sdd->sd, j) = sd;
5724
5725 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5726 GFP_KERNEL, cpu_to_node(j));
5727 if (!sg)
5728 return -ENOMEM;
5729
30b4e9eb
IM
5730 sg->next = sg;
5731
54ab4ff4 5732 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5733
c1174876 5734 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5735 GFP_KERNEL, cpu_to_node(j));
5736 if (!sgp)
5737 return -ENOMEM;
5738
5739 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5740 }
5741 }
5742
5743 return 0;
5744}
5745
5746static void __sdt_free(const struct cpumask *cpu_map)
5747{
5748 struct sched_domain_topology_level *tl;
5749 int j;
5750
27723a68 5751 for_each_sd_topology(tl) {
54ab4ff4
PZ
5752 struct sd_data *sdd = &tl->data;
5753
5754 for_each_cpu(j, cpu_map) {
fb2cf2c6 5755 struct sched_domain *sd;
5756
5757 if (sdd->sd) {
5758 sd = *per_cpu_ptr(sdd->sd, j);
5759 if (sd && (sd->flags & SD_OVERLAP))
5760 free_sched_groups(sd->groups, 0);
5761 kfree(*per_cpu_ptr(sdd->sd, j));
5762 }
5763
5764 if (sdd->sg)
5765 kfree(*per_cpu_ptr(sdd->sg, j));
5766 if (sdd->sgp)
5767 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5768 }
5769 free_percpu(sdd->sd);
fb2cf2c6 5770 sdd->sd = NULL;
54ab4ff4 5771 free_percpu(sdd->sg);
fb2cf2c6 5772 sdd->sg = NULL;
9c3f75cb 5773 free_percpu(sdd->sgp);
fb2cf2c6 5774 sdd->sgp = NULL;
54ab4ff4
PZ
5775 }
5776}
5777
2c402dc3 5778struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
5779 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
5780 struct sched_domain *child, int cpu)
2c402dc3 5781{
54ab4ff4 5782 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 5783 if (!sd)
d069b916 5784 return child;
2c402dc3 5785
2c402dc3 5786 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
5787 if (child) {
5788 sd->level = child->level + 1;
5789 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 5790 child->parent = sd;
c75e0128 5791 sd->child = child;
60495e77 5792 }
a841f8ce 5793 set_domain_attribute(sd, attr);
2c402dc3
PZ
5794
5795 return sd;
5796}
5797
2109b99e
AH
5798/*
5799 * Build sched domains for a given set of cpus and attach the sched domains
5800 * to the individual cpus
5801 */
dce840a0
PZ
5802static int build_sched_domains(const struct cpumask *cpu_map,
5803 struct sched_domain_attr *attr)
2109b99e 5804{
1c632169 5805 enum s_alloc alloc_state;
dce840a0 5806 struct sched_domain *sd;
2109b99e 5807 struct s_data d;
822ff793 5808 int i, ret = -ENOMEM;
9c1cfda2 5809
2109b99e
AH
5810 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5811 if (alloc_state != sa_rootdomain)
5812 goto error;
9c1cfda2 5813
dce840a0 5814 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 5815 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
5816 struct sched_domain_topology_level *tl;
5817
3bd65a80 5818 sd = NULL;
27723a68 5819 for_each_sd_topology(tl) {
4a850cbe 5820 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
5821 if (tl == sched_domain_topology)
5822 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
5823 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5824 sd->flags |= SD_OVERLAP;
d110235d
PZ
5825 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5826 break;
e3589f6c 5827 }
dce840a0
PZ
5828 }
5829
5830 /* Build the groups for the domains */
5831 for_each_cpu(i, cpu_map) {
5832 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5833 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
5834 if (sd->flags & SD_OVERLAP) {
5835 if (build_overlap_sched_groups(sd, i))
5836 goto error;
5837 } else {
5838 if (build_sched_groups(sd, i))
5839 goto error;
5840 }
1cf51902 5841 }
a06dadbe 5842 }
9c1cfda2 5843
1da177e4 5844 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
5845 for (i = nr_cpumask_bits-1; i >= 0; i--) {
5846 if (!cpumask_test_cpu(i, cpu_map))
5847 continue;
9c1cfda2 5848
dce840a0
PZ
5849 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
5850 claim_allocations(i, sd);
cd4ea6ae 5851 init_sched_groups_power(i, sd);
dce840a0 5852 }
f712c0c7 5853 }
9c1cfda2 5854
1da177e4 5855 /* Attach the domains */
dce840a0 5856 rcu_read_lock();
abcd083a 5857 for_each_cpu(i, cpu_map) {
21d42ccf 5858 sd = *per_cpu_ptr(d.sd, i);
49a02c51 5859 cpu_attach_domain(sd, d.rd, i);
1da177e4 5860 }
dce840a0 5861 rcu_read_unlock();
51888ca2 5862
822ff793 5863 ret = 0;
51888ca2 5864error:
2109b99e 5865 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 5866 return ret;
1da177e4 5867}
029190c5 5868
acc3f5d7 5869static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 5870static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
5871static struct sched_domain_attr *dattr_cur;
5872 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
5873
5874/*
5875 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
5876 * cpumask) fails, then fallback to a single sched domain,
5877 * as determined by the single cpumask fallback_doms.
029190c5 5878 */
4212823f 5879static cpumask_var_t fallback_doms;
029190c5 5880
ee79d1bd
HC
5881/*
5882 * arch_update_cpu_topology lets virtualized architectures update the
5883 * cpu core maps. It is supposed to return 1 if the topology changed
5884 * or 0 if it stayed the same.
5885 */
5886int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 5887{
ee79d1bd 5888 return 0;
22e52b07
HC
5889}
5890
acc3f5d7
RR
5891cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
5892{
5893 int i;
5894 cpumask_var_t *doms;
5895
5896 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
5897 if (!doms)
5898 return NULL;
5899 for (i = 0; i < ndoms; i++) {
5900 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
5901 free_sched_domains(doms, i);
5902 return NULL;
5903 }
5904 }
5905 return doms;
5906}
5907
5908void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
5909{
5910 unsigned int i;
5911 for (i = 0; i < ndoms; i++)
5912 free_cpumask_var(doms[i]);
5913 kfree(doms);
5914}
5915
1a20ff27 5916/*
41a2d6cf 5917 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
5918 * For now this just excludes isolated cpus, but could be used to
5919 * exclude other special cases in the future.
1a20ff27 5920 */
c4a8849a 5921static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 5922{
7378547f
MM
5923 int err;
5924
22e52b07 5925 arch_update_cpu_topology();
029190c5 5926 ndoms_cur = 1;
acc3f5d7 5927 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 5928 if (!doms_cur)
acc3f5d7
RR
5929 doms_cur = &fallback_doms;
5930 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 5931 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 5932 register_sched_domain_sysctl();
7378547f
MM
5933
5934 return err;
1a20ff27
DG
5935}
5936
1a20ff27
DG
5937/*
5938 * Detach sched domains from a group of cpus specified in cpu_map
5939 * These cpus will now be attached to the NULL domain
5940 */
96f874e2 5941static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
5942{
5943 int i;
5944
dce840a0 5945 rcu_read_lock();
abcd083a 5946 for_each_cpu(i, cpu_map)
57d885fe 5947 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 5948 rcu_read_unlock();
1a20ff27
DG
5949}
5950
1d3504fc
HS
5951/* handle null as "default" */
5952static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
5953 struct sched_domain_attr *new, int idx_new)
5954{
5955 struct sched_domain_attr tmp;
5956
5957 /* fast path */
5958 if (!new && !cur)
5959 return 1;
5960
5961 tmp = SD_ATTR_INIT;
5962 return !memcmp(cur ? (cur + idx_cur) : &tmp,
5963 new ? (new + idx_new) : &tmp,
5964 sizeof(struct sched_domain_attr));
5965}
5966
029190c5
PJ
5967/*
5968 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 5969 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
5970 * doms_new[] to the current sched domain partitioning, doms_cur[].
5971 * It destroys each deleted domain and builds each new domain.
5972 *
acc3f5d7 5973 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
5974 * The masks don't intersect (don't overlap.) We should setup one
5975 * sched domain for each mask. CPUs not in any of the cpumasks will
5976 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
5977 * current 'doms_cur' domains and in the new 'doms_new', we can leave
5978 * it as it is.
5979 *
acc3f5d7
RR
5980 * The passed in 'doms_new' should be allocated using
5981 * alloc_sched_domains. This routine takes ownership of it and will
5982 * free_sched_domains it when done with it. If the caller failed the
5983 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
5984 * and partition_sched_domains() will fallback to the single partition
5985 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 5986 *
96f874e2 5987 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
5988 * ndoms_new == 0 is a special case for destroying existing domains,
5989 * and it will not create the default domain.
dfb512ec 5990 *
029190c5
PJ
5991 * Call with hotplug lock held
5992 */
acc3f5d7 5993void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 5994 struct sched_domain_attr *dattr_new)
029190c5 5995{
dfb512ec 5996 int i, j, n;
d65bd5ec 5997 int new_topology;
029190c5 5998
712555ee 5999 mutex_lock(&sched_domains_mutex);
a1835615 6000
7378547f
MM
6001 /* always unregister in case we don't destroy any domains */
6002 unregister_sched_domain_sysctl();
6003
d65bd5ec
HC
6004 /* Let architecture update cpu core mappings. */
6005 new_topology = arch_update_cpu_topology();
6006
dfb512ec 6007 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6008
6009 /* Destroy deleted domains */
6010 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6011 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6012 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6013 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6014 goto match1;
6015 }
6016 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6017 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6018match1:
6019 ;
6020 }
6021
c8d2d47a 6022 n = ndoms_cur;
e761b772 6023 if (doms_new == NULL) {
c8d2d47a 6024 n = 0;
acc3f5d7 6025 doms_new = &fallback_doms;
6ad4c188 6026 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6027 WARN_ON_ONCE(dattr_new);
e761b772
MK
6028 }
6029
029190c5
PJ
6030 /* Build new domains */
6031 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6032 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6033 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6034 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6035 goto match2;
6036 }
6037 /* no match - add a new doms_new */
dce840a0 6038 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6039match2:
6040 ;
6041 }
6042
6043 /* Remember the new sched domains */
acc3f5d7
RR
6044 if (doms_cur != &fallback_doms)
6045 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6046 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6047 doms_cur = doms_new;
1d3504fc 6048 dattr_cur = dattr_new;
029190c5 6049 ndoms_cur = ndoms_new;
7378547f
MM
6050
6051 register_sched_domain_sysctl();
a1835615 6052
712555ee 6053 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6054}
6055
d35be8ba
SB
6056static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6057
1da177e4 6058/*
3a101d05
TH
6059 * Update cpusets according to cpu_active mask. If cpusets are
6060 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6061 * around partition_sched_domains().
d35be8ba
SB
6062 *
6063 * If we come here as part of a suspend/resume, don't touch cpusets because we
6064 * want to restore it back to its original state upon resume anyway.
1da177e4 6065 */
0b2e918a
TH
6066static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6067 void *hcpu)
e761b772 6068{
d35be8ba
SB
6069 switch (action) {
6070 case CPU_ONLINE_FROZEN:
6071 case CPU_DOWN_FAILED_FROZEN:
6072
6073 /*
6074 * num_cpus_frozen tracks how many CPUs are involved in suspend
6075 * resume sequence. As long as this is not the last online
6076 * operation in the resume sequence, just build a single sched
6077 * domain, ignoring cpusets.
6078 */
6079 num_cpus_frozen--;
6080 if (likely(num_cpus_frozen)) {
6081 partition_sched_domains(1, NULL, NULL);
6082 break;
6083 }
6084
6085 /*
6086 * This is the last CPU online operation. So fall through and
6087 * restore the original sched domains by considering the
6088 * cpuset configurations.
6089 */
6090
e761b772 6091 case CPU_ONLINE:
6ad4c188 6092 case CPU_DOWN_FAILED:
7ddf96b0 6093 cpuset_update_active_cpus(true);
d35be8ba 6094 break;
3a101d05
TH
6095 default:
6096 return NOTIFY_DONE;
6097 }
d35be8ba 6098 return NOTIFY_OK;
3a101d05 6099}
e761b772 6100
0b2e918a
TH
6101static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6102 void *hcpu)
3a101d05 6103{
d35be8ba 6104 switch (action) {
3a101d05 6105 case CPU_DOWN_PREPARE:
7ddf96b0 6106 cpuset_update_active_cpus(false);
d35be8ba
SB
6107 break;
6108 case CPU_DOWN_PREPARE_FROZEN:
6109 num_cpus_frozen++;
6110 partition_sched_domains(1, NULL, NULL);
6111 break;
e761b772
MK
6112 default:
6113 return NOTIFY_DONE;
6114 }
d35be8ba 6115 return NOTIFY_OK;
e761b772 6116}
e761b772 6117
1da177e4
LT
6118void __init sched_init_smp(void)
6119{
dcc30a35
RR
6120 cpumask_var_t non_isolated_cpus;
6121
6122 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6123 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6124
cb83b629
PZ
6125 sched_init_numa();
6126
6acce3ef
PZ
6127 /*
6128 * There's no userspace yet to cause hotplug operations; hence all the
6129 * cpu masks are stable and all blatant races in the below code cannot
6130 * happen.
6131 */
712555ee 6132 mutex_lock(&sched_domains_mutex);
c4a8849a 6133 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6134 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6135 if (cpumask_empty(non_isolated_cpus))
6136 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6137 mutex_unlock(&sched_domains_mutex);
e761b772 6138
301a5cba 6139 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6140 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6141 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6142
b328ca18 6143 init_hrtick();
5c1e1767
NP
6144
6145 /* Move init over to a non-isolated CPU */
dcc30a35 6146 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6147 BUG();
19978ca6 6148 sched_init_granularity();
dcc30a35 6149 free_cpumask_var(non_isolated_cpus);
4212823f 6150
0e3900e6 6151 init_sched_rt_class();
1da177e4
LT
6152}
6153#else
6154void __init sched_init_smp(void)
6155{
19978ca6 6156 sched_init_granularity();
1da177e4
LT
6157}
6158#endif /* CONFIG_SMP */
6159
cd1bb94b
AB
6160const_debug unsigned int sysctl_timer_migration = 1;
6161
1da177e4
LT
6162int in_sched_functions(unsigned long addr)
6163{
1da177e4
LT
6164 return in_lock_functions(addr) ||
6165 (addr >= (unsigned long)__sched_text_start
6166 && addr < (unsigned long)__sched_text_end);
6167}
6168
029632fb 6169#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6170/*
6171 * Default task group.
6172 * Every task in system belongs to this group at bootup.
6173 */
029632fb 6174struct task_group root_task_group;
35cf4e50 6175LIST_HEAD(task_groups);
052f1dc7 6176#endif
6f505b16 6177
e6252c3e 6178DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6179
1da177e4
LT
6180void __init sched_init(void)
6181{
dd41f596 6182 int i, j;
434d53b0
MT
6183 unsigned long alloc_size = 0, ptr;
6184
6185#ifdef CONFIG_FAIR_GROUP_SCHED
6186 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6187#endif
6188#ifdef CONFIG_RT_GROUP_SCHED
6189 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6190#endif
df7c8e84 6191#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6192 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6193#endif
434d53b0 6194 if (alloc_size) {
36b7b6d4 6195 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6196
6197#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6198 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6199 ptr += nr_cpu_ids * sizeof(void **);
6200
07e06b01 6201 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6202 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6203
6d6bc0ad 6204#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6205#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6206 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6207 ptr += nr_cpu_ids * sizeof(void **);
6208
07e06b01 6209 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6210 ptr += nr_cpu_ids * sizeof(void **);
6211
6d6bc0ad 6212#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6213#ifdef CONFIG_CPUMASK_OFFSTACK
6214 for_each_possible_cpu(i) {
e6252c3e 6215 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6216 ptr += cpumask_size();
6217 }
6218#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6219 }
dd41f596 6220
57d885fe
GH
6221#ifdef CONFIG_SMP
6222 init_defrootdomain();
6223#endif
6224
d0b27fa7
PZ
6225 init_rt_bandwidth(&def_rt_bandwidth,
6226 global_rt_period(), global_rt_runtime());
6227
6228#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6229 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6230 global_rt_period(), global_rt_runtime());
6d6bc0ad 6231#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6232
7c941438 6233#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6234 list_add(&root_task_group.list, &task_groups);
6235 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6236 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6237 autogroup_init(&init_task);
54c707e9 6238
7c941438 6239#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6240
0a945022 6241 for_each_possible_cpu(i) {
70b97a7f 6242 struct rq *rq;
1da177e4
LT
6243
6244 rq = cpu_rq(i);
05fa785c 6245 raw_spin_lock_init(&rq->lock);
7897986b 6246 rq->nr_running = 0;
dce48a84
TG
6247 rq->calc_load_active = 0;
6248 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6249 init_cfs_rq(&rq->cfs);
6f505b16 6250 init_rt_rq(&rq->rt, rq);
dd41f596 6251#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6252 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6253 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6254 /*
07e06b01 6255 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6256 *
6257 * In case of task-groups formed thr' the cgroup filesystem, it
6258 * gets 100% of the cpu resources in the system. This overall
6259 * system cpu resource is divided among the tasks of
07e06b01 6260 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6261 * based on each entity's (task or task-group's) weight
6262 * (se->load.weight).
6263 *
07e06b01 6264 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6265 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6266 * then A0's share of the cpu resource is:
6267 *
0d905bca 6268 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6269 *
07e06b01
YZ
6270 * We achieve this by letting root_task_group's tasks sit
6271 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6272 */
ab84d31e 6273 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6274 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6275#endif /* CONFIG_FAIR_GROUP_SCHED */
6276
6277 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6278#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6279 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6280 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6281#endif
1da177e4 6282
dd41f596
IM
6283 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6284 rq->cpu_load[j] = 0;
fdf3e95d
VP
6285
6286 rq->last_load_update_tick = jiffies;
6287
1da177e4 6288#ifdef CONFIG_SMP
41c7ce9a 6289 rq->sd = NULL;
57d885fe 6290 rq->rd = NULL;
1399fa78 6291 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6292 rq->post_schedule = 0;
1da177e4 6293 rq->active_balance = 0;
dd41f596 6294 rq->next_balance = jiffies;
1da177e4 6295 rq->push_cpu = 0;
0a2966b4 6296 rq->cpu = i;
1f11eb6a 6297 rq->online = 0;
eae0c9df
MG
6298 rq->idle_stamp = 0;
6299 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6300 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6301
6302 INIT_LIST_HEAD(&rq->cfs_tasks);
6303
dc938520 6304 rq_attach_root(rq, &def_root_domain);
3451d024 6305#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6306 rq->nohz_flags = 0;
83cd4fe2 6307#endif
265f22a9
FW
6308#ifdef CONFIG_NO_HZ_FULL
6309 rq->last_sched_tick = 0;
6310#endif
1da177e4 6311#endif
8f4d37ec 6312 init_rq_hrtick(rq);
1da177e4 6313 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6314 }
6315
2dd73a4f 6316 set_load_weight(&init_task);
b50f60ce 6317
e107be36
AK
6318#ifdef CONFIG_PREEMPT_NOTIFIERS
6319 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6320#endif
6321
b50f60ce 6322#ifdef CONFIG_RT_MUTEXES
732375c6 6323 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6324#endif
6325
1da177e4
LT
6326 /*
6327 * The boot idle thread does lazy MMU switching as well:
6328 */
6329 atomic_inc(&init_mm.mm_count);
6330 enter_lazy_tlb(&init_mm, current);
6331
6332 /*
6333 * Make us the idle thread. Technically, schedule() should not be
6334 * called from this thread, however somewhere below it might be,
6335 * but because we are the idle thread, we just pick up running again
6336 * when this runqueue becomes "idle".
6337 */
6338 init_idle(current, smp_processor_id());
dce48a84
TG
6339
6340 calc_load_update = jiffies + LOAD_FREQ;
6341
dd41f596
IM
6342 /*
6343 * During early bootup we pretend to be a normal task:
6344 */
6345 current->sched_class = &fair_sched_class;
6892b75e 6346
bf4d83f6 6347#ifdef CONFIG_SMP
4cb98839 6348 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6349 /* May be allocated at isolcpus cmdline parse time */
6350 if (cpu_isolated_map == NULL)
6351 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6352 idle_thread_set_boot_cpu();
029632fb
PZ
6353#endif
6354 init_sched_fair_class();
6a7b3dc3 6355
6892b75e 6356 scheduler_running = 1;
1da177e4
LT
6357}
6358
d902db1e 6359#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6360static inline int preempt_count_equals(int preempt_offset)
6361{
234da7bc 6362 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6363
4ba8216c 6364 return (nested == preempt_offset);
e4aafea2
FW
6365}
6366
d894837f 6367void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6368{
1da177e4
LT
6369 static unsigned long prev_jiffy; /* ratelimiting */
6370
b3fbab05 6371 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6372 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6373 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6374 return;
6375 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6376 return;
6377 prev_jiffy = jiffies;
6378
3df0fc5b
PZ
6379 printk(KERN_ERR
6380 "BUG: sleeping function called from invalid context at %s:%d\n",
6381 file, line);
6382 printk(KERN_ERR
6383 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6384 in_atomic(), irqs_disabled(),
6385 current->pid, current->comm);
aef745fc
IM
6386
6387 debug_show_held_locks(current);
6388 if (irqs_disabled())
6389 print_irqtrace_events(current);
6390 dump_stack();
1da177e4
LT
6391}
6392EXPORT_SYMBOL(__might_sleep);
6393#endif
6394
6395#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6396static void normalize_task(struct rq *rq, struct task_struct *p)
6397{
da7a735e
PZ
6398 const struct sched_class *prev_class = p->sched_class;
6399 int old_prio = p->prio;
3a5e4dc1 6400 int on_rq;
3e51f33f 6401
fd2f4419 6402 on_rq = p->on_rq;
3a5e4dc1 6403 if (on_rq)
4ca9b72b 6404 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6405 __setscheduler(rq, p, SCHED_NORMAL, 0);
6406 if (on_rq) {
4ca9b72b 6407 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6408 resched_task(rq->curr);
6409 }
da7a735e
PZ
6410
6411 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6412}
6413
1da177e4
LT
6414void normalize_rt_tasks(void)
6415{
a0f98a1c 6416 struct task_struct *g, *p;
1da177e4 6417 unsigned long flags;
70b97a7f 6418 struct rq *rq;
1da177e4 6419
4cf5d77a 6420 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6421 do_each_thread(g, p) {
178be793
IM
6422 /*
6423 * Only normalize user tasks:
6424 */
6425 if (!p->mm)
6426 continue;
6427
6cfb0d5d 6428 p->se.exec_start = 0;
6cfb0d5d 6429#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6430 p->se.statistics.wait_start = 0;
6431 p->se.statistics.sleep_start = 0;
6432 p->se.statistics.block_start = 0;
6cfb0d5d 6433#endif
dd41f596
IM
6434
6435 if (!rt_task(p)) {
6436 /*
6437 * Renice negative nice level userspace
6438 * tasks back to 0:
6439 */
6440 if (TASK_NICE(p) < 0 && p->mm)
6441 set_user_nice(p, 0);
1da177e4 6442 continue;
dd41f596 6443 }
1da177e4 6444
1d615482 6445 raw_spin_lock(&p->pi_lock);
b29739f9 6446 rq = __task_rq_lock(p);
1da177e4 6447
178be793 6448 normalize_task(rq, p);
3a5e4dc1 6449
b29739f9 6450 __task_rq_unlock(rq);
1d615482 6451 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6452 } while_each_thread(g, p);
6453
4cf5d77a 6454 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6455}
6456
6457#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6458
67fc4e0c 6459#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6460/*
67fc4e0c 6461 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6462 *
6463 * They can only be called when the whole system has been
6464 * stopped - every CPU needs to be quiescent, and no scheduling
6465 * activity can take place. Using them for anything else would
6466 * be a serious bug, and as a result, they aren't even visible
6467 * under any other configuration.
6468 */
6469
6470/**
6471 * curr_task - return the current task for a given cpu.
6472 * @cpu: the processor in question.
6473 *
6474 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6475 *
6476 * Return: The current task for @cpu.
1df5c10a 6477 */
36c8b586 6478struct task_struct *curr_task(int cpu)
1df5c10a
LT
6479{
6480 return cpu_curr(cpu);
6481}
6482
67fc4e0c
JW
6483#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6484
6485#ifdef CONFIG_IA64
1df5c10a
LT
6486/**
6487 * set_curr_task - set the current task for a given cpu.
6488 * @cpu: the processor in question.
6489 * @p: the task pointer to set.
6490 *
6491 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6492 * are serviced on a separate stack. It allows the architecture to switch the
6493 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6494 * must be called with all CPU's synchronized, and interrupts disabled, the
6495 * and caller must save the original value of the current task (see
6496 * curr_task() above) and restore that value before reenabling interrupts and
6497 * re-starting the system.
6498 *
6499 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6500 */
36c8b586 6501void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6502{
6503 cpu_curr(cpu) = p;
6504}
6505
6506#endif
29f59db3 6507
7c941438 6508#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6509/* task_group_lock serializes the addition/removal of task groups */
6510static DEFINE_SPINLOCK(task_group_lock);
6511
bccbe08a
PZ
6512static void free_sched_group(struct task_group *tg)
6513{
6514 free_fair_sched_group(tg);
6515 free_rt_sched_group(tg);
e9aa1dd1 6516 autogroup_free(tg);
bccbe08a
PZ
6517 kfree(tg);
6518}
6519
6520/* allocate runqueue etc for a new task group */
ec7dc8ac 6521struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6522{
6523 struct task_group *tg;
bccbe08a
PZ
6524
6525 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6526 if (!tg)
6527 return ERR_PTR(-ENOMEM);
6528
ec7dc8ac 6529 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6530 goto err;
6531
ec7dc8ac 6532 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6533 goto err;
6534
ace783b9
LZ
6535 return tg;
6536
6537err:
6538 free_sched_group(tg);
6539 return ERR_PTR(-ENOMEM);
6540}
6541
6542void sched_online_group(struct task_group *tg, struct task_group *parent)
6543{
6544 unsigned long flags;
6545
8ed36996 6546 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6547 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6548
6549 WARN_ON(!parent); /* root should already exist */
6550
6551 tg->parent = parent;
f473aa5e 6552 INIT_LIST_HEAD(&tg->children);
09f2724a 6553 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6554 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6555}
6556
9b5b7751 6557/* rcu callback to free various structures associated with a task group */
6f505b16 6558static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6559{
29f59db3 6560 /* now it should be safe to free those cfs_rqs */
6f505b16 6561 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6562}
6563
9b5b7751 6564/* Destroy runqueue etc associated with a task group */
4cf86d77 6565void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6566{
6567 /* wait for possible concurrent references to cfs_rqs complete */
6568 call_rcu(&tg->rcu, free_sched_group_rcu);
6569}
6570
6571void sched_offline_group(struct task_group *tg)
29f59db3 6572{
8ed36996 6573 unsigned long flags;
9b5b7751 6574 int i;
29f59db3 6575
3d4b47b4
PZ
6576 /* end participation in shares distribution */
6577 for_each_possible_cpu(i)
bccbe08a 6578 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6579
6580 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6581 list_del_rcu(&tg->list);
f473aa5e 6582 list_del_rcu(&tg->siblings);
8ed36996 6583 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6584}
6585
9b5b7751 6586/* change task's runqueue when it moves between groups.
3a252015
IM
6587 * The caller of this function should have put the task in its new group
6588 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6589 * reflect its new group.
9b5b7751
SV
6590 */
6591void sched_move_task(struct task_struct *tsk)
29f59db3 6592{
8323f26c 6593 struct task_group *tg;
29f59db3
SV
6594 int on_rq, running;
6595 unsigned long flags;
6596 struct rq *rq;
6597
6598 rq = task_rq_lock(tsk, &flags);
6599
051a1d1a 6600 running = task_current(rq, tsk);
fd2f4419 6601 on_rq = tsk->on_rq;
29f59db3 6602
0e1f3483 6603 if (on_rq)
29f59db3 6604 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6605 if (unlikely(running))
6606 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6607
8af01f56 6608 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6609 lockdep_is_held(&tsk->sighand->siglock)),
6610 struct task_group, css);
6611 tg = autogroup_task_group(tsk, tg);
6612 tsk->sched_task_group = tg;
6613
810b3817 6614#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6615 if (tsk->sched_class->task_move_group)
6616 tsk->sched_class->task_move_group(tsk, on_rq);
6617 else
810b3817 6618#endif
b2b5ce02 6619 set_task_rq(tsk, task_cpu(tsk));
810b3817 6620
0e1f3483
HS
6621 if (unlikely(running))
6622 tsk->sched_class->set_curr_task(rq);
6623 if (on_rq)
371fd7e7 6624 enqueue_task(rq, tsk, 0);
29f59db3 6625
0122ec5b 6626 task_rq_unlock(rq, tsk, &flags);
29f59db3 6627}
7c941438 6628#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6629
a790de99 6630#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6631static unsigned long to_ratio(u64 period, u64 runtime)
6632{
6633 if (runtime == RUNTIME_INF)
9a7e0b18 6634 return 1ULL << 20;
9f0c1e56 6635
9a7e0b18 6636 return div64_u64(runtime << 20, period);
9f0c1e56 6637}
a790de99
PT
6638#endif
6639
6640#ifdef CONFIG_RT_GROUP_SCHED
6641/*
6642 * Ensure that the real time constraints are schedulable.
6643 */
6644static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6645
9a7e0b18
PZ
6646/* Must be called with tasklist_lock held */
6647static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6648{
9a7e0b18 6649 struct task_struct *g, *p;
b40b2e8e 6650
9a7e0b18 6651 do_each_thread(g, p) {
029632fb 6652 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6653 return 1;
6654 } while_each_thread(g, p);
b40b2e8e 6655
9a7e0b18
PZ
6656 return 0;
6657}
b40b2e8e 6658
9a7e0b18
PZ
6659struct rt_schedulable_data {
6660 struct task_group *tg;
6661 u64 rt_period;
6662 u64 rt_runtime;
6663};
b40b2e8e 6664
a790de99 6665static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6666{
6667 struct rt_schedulable_data *d = data;
6668 struct task_group *child;
6669 unsigned long total, sum = 0;
6670 u64 period, runtime;
b40b2e8e 6671
9a7e0b18
PZ
6672 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6673 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6674
9a7e0b18
PZ
6675 if (tg == d->tg) {
6676 period = d->rt_period;
6677 runtime = d->rt_runtime;
b40b2e8e 6678 }
b40b2e8e 6679
4653f803
PZ
6680 /*
6681 * Cannot have more runtime than the period.
6682 */
6683 if (runtime > period && runtime != RUNTIME_INF)
6684 return -EINVAL;
6f505b16 6685
4653f803
PZ
6686 /*
6687 * Ensure we don't starve existing RT tasks.
6688 */
9a7e0b18
PZ
6689 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6690 return -EBUSY;
6f505b16 6691
9a7e0b18 6692 total = to_ratio(period, runtime);
6f505b16 6693
4653f803
PZ
6694 /*
6695 * Nobody can have more than the global setting allows.
6696 */
6697 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6698 return -EINVAL;
6f505b16 6699
4653f803
PZ
6700 /*
6701 * The sum of our children's runtime should not exceed our own.
6702 */
9a7e0b18
PZ
6703 list_for_each_entry_rcu(child, &tg->children, siblings) {
6704 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6705 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6706
9a7e0b18
PZ
6707 if (child == d->tg) {
6708 period = d->rt_period;
6709 runtime = d->rt_runtime;
6710 }
6f505b16 6711
9a7e0b18 6712 sum += to_ratio(period, runtime);
9f0c1e56 6713 }
6f505b16 6714
9a7e0b18
PZ
6715 if (sum > total)
6716 return -EINVAL;
6717
6718 return 0;
6f505b16
PZ
6719}
6720
9a7e0b18 6721static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6722{
8277434e
PT
6723 int ret;
6724
9a7e0b18
PZ
6725 struct rt_schedulable_data data = {
6726 .tg = tg,
6727 .rt_period = period,
6728 .rt_runtime = runtime,
6729 };
6730
8277434e
PT
6731 rcu_read_lock();
6732 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6733 rcu_read_unlock();
6734
6735 return ret;
521f1a24
DG
6736}
6737
ab84d31e 6738static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6739 u64 rt_period, u64 rt_runtime)
6f505b16 6740{
ac086bc2 6741 int i, err = 0;
9f0c1e56 6742
9f0c1e56 6743 mutex_lock(&rt_constraints_mutex);
521f1a24 6744 read_lock(&tasklist_lock);
9a7e0b18
PZ
6745 err = __rt_schedulable(tg, rt_period, rt_runtime);
6746 if (err)
9f0c1e56 6747 goto unlock;
ac086bc2 6748
0986b11b 6749 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6750 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6751 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6752
6753 for_each_possible_cpu(i) {
6754 struct rt_rq *rt_rq = tg->rt_rq[i];
6755
0986b11b 6756 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6757 rt_rq->rt_runtime = rt_runtime;
0986b11b 6758 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6759 }
0986b11b 6760 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6761unlock:
521f1a24 6762 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6763 mutex_unlock(&rt_constraints_mutex);
6764
6765 return err;
6f505b16
PZ
6766}
6767
25cc7da7 6768static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6769{
6770 u64 rt_runtime, rt_period;
6771
6772 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6773 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6774 if (rt_runtime_us < 0)
6775 rt_runtime = RUNTIME_INF;
6776
ab84d31e 6777 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6778}
6779
25cc7da7 6780static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6781{
6782 u64 rt_runtime_us;
6783
d0b27fa7 6784 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6785 return -1;
6786
d0b27fa7 6787 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6788 do_div(rt_runtime_us, NSEC_PER_USEC);
6789 return rt_runtime_us;
6790}
d0b27fa7 6791
25cc7da7 6792static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
6793{
6794 u64 rt_runtime, rt_period;
6795
6796 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6797 rt_runtime = tg->rt_bandwidth.rt_runtime;
6798
619b0488
R
6799 if (rt_period == 0)
6800 return -EINVAL;
6801
ab84d31e 6802 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6803}
6804
25cc7da7 6805static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6806{
6807 u64 rt_period_us;
6808
6809 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6810 do_div(rt_period_us, NSEC_PER_USEC);
6811 return rt_period_us;
6812}
6813
6814static int sched_rt_global_constraints(void)
6815{
4653f803 6816 u64 runtime, period;
d0b27fa7
PZ
6817 int ret = 0;
6818
ec5d4989
HS
6819 if (sysctl_sched_rt_period <= 0)
6820 return -EINVAL;
6821
4653f803
PZ
6822 runtime = global_rt_runtime();
6823 period = global_rt_period();
6824
6825 /*
6826 * Sanity check on the sysctl variables.
6827 */
6828 if (runtime > period && runtime != RUNTIME_INF)
6829 return -EINVAL;
10b612f4 6830
d0b27fa7 6831 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6832 read_lock(&tasklist_lock);
4653f803 6833 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6834 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6835 mutex_unlock(&rt_constraints_mutex);
6836
6837 return ret;
6838}
54e99124 6839
25cc7da7 6840static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
6841{
6842 /* Don't accept realtime tasks when there is no way for them to run */
6843 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
6844 return 0;
6845
6846 return 1;
6847}
6848
6d6bc0ad 6849#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
6850static int sched_rt_global_constraints(void)
6851{
ac086bc2
PZ
6852 unsigned long flags;
6853 int i;
6854
ec5d4989
HS
6855 if (sysctl_sched_rt_period <= 0)
6856 return -EINVAL;
6857
60aa605d
PZ
6858 /*
6859 * There's always some RT tasks in the root group
6860 * -- migration, kstopmachine etc..
6861 */
6862 if (sysctl_sched_rt_runtime == 0)
6863 return -EBUSY;
6864
0986b11b 6865 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
6866 for_each_possible_cpu(i) {
6867 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
6868
0986b11b 6869 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6870 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 6871 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6872 }
0986b11b 6873 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 6874
d0b27fa7
PZ
6875 return 0;
6876}
6d6bc0ad 6877#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6878
ce0dbbbb
CW
6879int sched_rr_handler(struct ctl_table *table, int write,
6880 void __user *buffer, size_t *lenp,
6881 loff_t *ppos)
6882{
6883 int ret;
6884 static DEFINE_MUTEX(mutex);
6885
6886 mutex_lock(&mutex);
6887 ret = proc_dointvec(table, write, buffer, lenp, ppos);
6888 /* make sure that internally we keep jiffies */
6889 /* also, writing zero resets timeslice to default */
6890 if (!ret && write) {
6891 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
6892 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
6893 }
6894 mutex_unlock(&mutex);
6895 return ret;
6896}
6897
d0b27fa7 6898int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 6899 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
6900 loff_t *ppos)
6901{
6902 int ret;
6903 int old_period, old_runtime;
6904 static DEFINE_MUTEX(mutex);
6905
6906 mutex_lock(&mutex);
6907 old_period = sysctl_sched_rt_period;
6908 old_runtime = sysctl_sched_rt_runtime;
6909
8d65af78 6910 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
6911
6912 if (!ret && write) {
6913 ret = sched_rt_global_constraints();
6914 if (ret) {
6915 sysctl_sched_rt_period = old_period;
6916 sysctl_sched_rt_runtime = old_runtime;
6917 } else {
6918 def_rt_bandwidth.rt_runtime = global_rt_runtime();
6919 def_rt_bandwidth.rt_period =
6920 ns_to_ktime(global_rt_period());
6921 }
6922 }
6923 mutex_unlock(&mutex);
6924
6925 return ret;
6926}
68318b8e 6927
052f1dc7 6928#ifdef CONFIG_CGROUP_SCHED
68318b8e 6929
a7c6d554 6930static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 6931{
a7c6d554 6932 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
6933}
6934
eb95419b
TH
6935static struct cgroup_subsys_state *
6936cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 6937{
eb95419b
TH
6938 struct task_group *parent = css_tg(parent_css);
6939 struct task_group *tg;
68318b8e 6940
eb95419b 6941 if (!parent) {
68318b8e 6942 /* This is early initialization for the top cgroup */
07e06b01 6943 return &root_task_group.css;
68318b8e
SV
6944 }
6945
ec7dc8ac 6946 tg = sched_create_group(parent);
68318b8e
SV
6947 if (IS_ERR(tg))
6948 return ERR_PTR(-ENOMEM);
6949
68318b8e
SV
6950 return &tg->css;
6951}
6952
eb95419b 6953static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 6954{
eb95419b
TH
6955 struct task_group *tg = css_tg(css);
6956 struct task_group *parent = css_tg(css_parent(css));
ace783b9 6957
63876986
TH
6958 if (parent)
6959 sched_online_group(tg, parent);
ace783b9
LZ
6960 return 0;
6961}
6962
eb95419b 6963static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 6964{
eb95419b 6965 struct task_group *tg = css_tg(css);
68318b8e
SV
6966
6967 sched_destroy_group(tg);
6968}
6969
eb95419b 6970static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 6971{
eb95419b 6972 struct task_group *tg = css_tg(css);
ace783b9
LZ
6973
6974 sched_offline_group(tg);
6975}
6976
eb95419b 6977static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 6978 struct cgroup_taskset *tset)
68318b8e 6979{
bb9d97b6
TH
6980 struct task_struct *task;
6981
d99c8727 6982 cgroup_taskset_for_each(task, css, tset) {
b68aa230 6983#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 6984 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 6985 return -EINVAL;
b68aa230 6986#else
bb9d97b6
TH
6987 /* We don't support RT-tasks being in separate groups */
6988 if (task->sched_class != &fair_sched_class)
6989 return -EINVAL;
b68aa230 6990#endif
bb9d97b6 6991 }
be367d09
BB
6992 return 0;
6993}
68318b8e 6994
eb95419b 6995static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 6996 struct cgroup_taskset *tset)
68318b8e 6997{
bb9d97b6
TH
6998 struct task_struct *task;
6999
d99c8727 7000 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7001 sched_move_task(task);
68318b8e
SV
7002}
7003
eb95419b
TH
7004static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7005 struct cgroup_subsys_state *old_css,
7006 struct task_struct *task)
068c5cc5
PZ
7007{
7008 /*
7009 * cgroup_exit() is called in the copy_process() failure path.
7010 * Ignore this case since the task hasn't ran yet, this avoids
7011 * trying to poke a half freed task state from generic code.
7012 */
7013 if (!(task->flags & PF_EXITING))
7014 return;
7015
7016 sched_move_task(task);
7017}
7018
052f1dc7 7019#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7020static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7021 struct cftype *cftype, u64 shareval)
68318b8e 7022{
182446d0 7023 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7024}
7025
182446d0
TH
7026static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7027 struct cftype *cft)
68318b8e 7028{
182446d0 7029 struct task_group *tg = css_tg(css);
68318b8e 7030
c8b28116 7031 return (u64) scale_load_down(tg->shares);
68318b8e 7032}
ab84d31e
PT
7033
7034#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7035static DEFINE_MUTEX(cfs_constraints_mutex);
7036
ab84d31e
PT
7037const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7038const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7039
a790de99
PT
7040static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7041
ab84d31e
PT
7042static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7043{
56f570e5 7044 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7045 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7046
7047 if (tg == &root_task_group)
7048 return -EINVAL;
7049
7050 /*
7051 * Ensure we have at some amount of bandwidth every period. This is
7052 * to prevent reaching a state of large arrears when throttled via
7053 * entity_tick() resulting in prolonged exit starvation.
7054 */
7055 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7056 return -EINVAL;
7057
7058 /*
7059 * Likewise, bound things on the otherside by preventing insane quota
7060 * periods. This also allows us to normalize in computing quota
7061 * feasibility.
7062 */
7063 if (period > max_cfs_quota_period)
7064 return -EINVAL;
7065
a790de99
PT
7066 mutex_lock(&cfs_constraints_mutex);
7067 ret = __cfs_schedulable(tg, period, quota);
7068 if (ret)
7069 goto out_unlock;
7070
58088ad0 7071 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7072 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7073 /*
7074 * If we need to toggle cfs_bandwidth_used, off->on must occur
7075 * before making related changes, and on->off must occur afterwards
7076 */
7077 if (runtime_enabled && !runtime_was_enabled)
7078 cfs_bandwidth_usage_inc();
ab84d31e
PT
7079 raw_spin_lock_irq(&cfs_b->lock);
7080 cfs_b->period = ns_to_ktime(period);
7081 cfs_b->quota = quota;
58088ad0 7082
a9cf55b2 7083 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7084 /* restart the period timer (if active) to handle new period expiry */
7085 if (runtime_enabled && cfs_b->timer_active) {
7086 /* force a reprogram */
7087 cfs_b->timer_active = 0;
7088 __start_cfs_bandwidth(cfs_b);
7089 }
ab84d31e
PT
7090 raw_spin_unlock_irq(&cfs_b->lock);
7091
7092 for_each_possible_cpu(i) {
7093 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7094 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7095
7096 raw_spin_lock_irq(&rq->lock);
58088ad0 7097 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7098 cfs_rq->runtime_remaining = 0;
671fd9da 7099
029632fb 7100 if (cfs_rq->throttled)
671fd9da 7101 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7102 raw_spin_unlock_irq(&rq->lock);
7103 }
1ee14e6c
BS
7104 if (runtime_was_enabled && !runtime_enabled)
7105 cfs_bandwidth_usage_dec();
a790de99
PT
7106out_unlock:
7107 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7108
a790de99 7109 return ret;
ab84d31e
PT
7110}
7111
7112int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7113{
7114 u64 quota, period;
7115
029632fb 7116 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7117 if (cfs_quota_us < 0)
7118 quota = RUNTIME_INF;
7119 else
7120 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7121
7122 return tg_set_cfs_bandwidth(tg, period, quota);
7123}
7124
7125long tg_get_cfs_quota(struct task_group *tg)
7126{
7127 u64 quota_us;
7128
029632fb 7129 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7130 return -1;
7131
029632fb 7132 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7133 do_div(quota_us, NSEC_PER_USEC);
7134
7135 return quota_us;
7136}
7137
7138int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7139{
7140 u64 quota, period;
7141
7142 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7143 quota = tg->cfs_bandwidth.quota;
ab84d31e 7144
ab84d31e
PT
7145 return tg_set_cfs_bandwidth(tg, period, quota);
7146}
7147
7148long tg_get_cfs_period(struct task_group *tg)
7149{
7150 u64 cfs_period_us;
7151
029632fb 7152 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7153 do_div(cfs_period_us, NSEC_PER_USEC);
7154
7155 return cfs_period_us;
7156}
7157
182446d0
TH
7158static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7159 struct cftype *cft)
ab84d31e 7160{
182446d0 7161 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7162}
7163
182446d0
TH
7164static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7165 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7166{
182446d0 7167 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7168}
7169
182446d0
TH
7170static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7171 struct cftype *cft)
ab84d31e 7172{
182446d0 7173 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7174}
7175
182446d0
TH
7176static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7177 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7178{
182446d0 7179 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7180}
7181
a790de99
PT
7182struct cfs_schedulable_data {
7183 struct task_group *tg;
7184 u64 period, quota;
7185};
7186
7187/*
7188 * normalize group quota/period to be quota/max_period
7189 * note: units are usecs
7190 */
7191static u64 normalize_cfs_quota(struct task_group *tg,
7192 struct cfs_schedulable_data *d)
7193{
7194 u64 quota, period;
7195
7196 if (tg == d->tg) {
7197 period = d->period;
7198 quota = d->quota;
7199 } else {
7200 period = tg_get_cfs_period(tg);
7201 quota = tg_get_cfs_quota(tg);
7202 }
7203
7204 /* note: these should typically be equivalent */
7205 if (quota == RUNTIME_INF || quota == -1)
7206 return RUNTIME_INF;
7207
7208 return to_ratio(period, quota);
7209}
7210
7211static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7212{
7213 struct cfs_schedulable_data *d = data;
029632fb 7214 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7215 s64 quota = 0, parent_quota = -1;
7216
7217 if (!tg->parent) {
7218 quota = RUNTIME_INF;
7219 } else {
029632fb 7220 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7221
7222 quota = normalize_cfs_quota(tg, d);
7223 parent_quota = parent_b->hierarchal_quota;
7224
7225 /*
7226 * ensure max(child_quota) <= parent_quota, inherit when no
7227 * limit is set
7228 */
7229 if (quota == RUNTIME_INF)
7230 quota = parent_quota;
7231 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7232 return -EINVAL;
7233 }
7234 cfs_b->hierarchal_quota = quota;
7235
7236 return 0;
7237}
7238
7239static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7240{
8277434e 7241 int ret;
a790de99
PT
7242 struct cfs_schedulable_data data = {
7243 .tg = tg,
7244 .period = period,
7245 .quota = quota,
7246 };
7247
7248 if (quota != RUNTIME_INF) {
7249 do_div(data.period, NSEC_PER_USEC);
7250 do_div(data.quota, NSEC_PER_USEC);
7251 }
7252
8277434e
PT
7253 rcu_read_lock();
7254 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7255 rcu_read_unlock();
7256
7257 return ret;
a790de99 7258}
e8da1b18 7259
182446d0 7260static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7261 struct cgroup_map_cb *cb)
7262{
182446d0 7263 struct task_group *tg = css_tg(css);
029632fb 7264 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7265
7266 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7267 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7268 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7269
7270 return 0;
7271}
ab84d31e 7272#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7273#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7274
052f1dc7 7275#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7276static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7277 struct cftype *cft, s64 val)
6f505b16 7278{
182446d0 7279 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7280}
7281
182446d0
TH
7282static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7283 struct cftype *cft)
6f505b16 7284{
182446d0 7285 return sched_group_rt_runtime(css_tg(css));
6f505b16 7286}
d0b27fa7 7287
182446d0
TH
7288static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7289 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7290{
182446d0 7291 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7292}
7293
182446d0
TH
7294static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7295 struct cftype *cft)
d0b27fa7 7296{
182446d0 7297 return sched_group_rt_period(css_tg(css));
d0b27fa7 7298}
6d6bc0ad 7299#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7300
fe5c7cc2 7301static struct cftype cpu_files[] = {
052f1dc7 7302#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7303 {
7304 .name = "shares",
f4c753b7
PM
7305 .read_u64 = cpu_shares_read_u64,
7306 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7307 },
052f1dc7 7308#endif
ab84d31e
PT
7309#ifdef CONFIG_CFS_BANDWIDTH
7310 {
7311 .name = "cfs_quota_us",
7312 .read_s64 = cpu_cfs_quota_read_s64,
7313 .write_s64 = cpu_cfs_quota_write_s64,
7314 },
7315 {
7316 .name = "cfs_period_us",
7317 .read_u64 = cpu_cfs_period_read_u64,
7318 .write_u64 = cpu_cfs_period_write_u64,
7319 },
e8da1b18
NR
7320 {
7321 .name = "stat",
7322 .read_map = cpu_stats_show,
7323 },
ab84d31e 7324#endif
052f1dc7 7325#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7326 {
9f0c1e56 7327 .name = "rt_runtime_us",
06ecb27c
PM
7328 .read_s64 = cpu_rt_runtime_read,
7329 .write_s64 = cpu_rt_runtime_write,
6f505b16 7330 },
d0b27fa7
PZ
7331 {
7332 .name = "rt_period_us",
f4c753b7
PM
7333 .read_u64 = cpu_rt_period_read_uint,
7334 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7335 },
052f1dc7 7336#endif
4baf6e33 7337 { } /* terminate */
68318b8e
SV
7338};
7339
68318b8e 7340struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7341 .name = "cpu",
92fb9748
TH
7342 .css_alloc = cpu_cgroup_css_alloc,
7343 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7344 .css_online = cpu_cgroup_css_online,
7345 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7346 .can_attach = cpu_cgroup_can_attach,
7347 .attach = cpu_cgroup_attach,
068c5cc5 7348 .exit = cpu_cgroup_exit,
38605cae 7349 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7350 .base_cftypes = cpu_files,
68318b8e
SV
7351 .early_init = 1,
7352};
7353
052f1dc7 7354#endif /* CONFIG_CGROUP_SCHED */
d842de87 7355
b637a328
PM
7356void dump_cpu_task(int cpu)
7357{
7358 pr_info("Task dump for CPU %d:\n", cpu);
7359 sched_show_task(cpu_curr(cpu));
7360}
This page took 2.971487 seconds and 5 git commands to generate.