timer: Stats: Simplify the flags handling
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
c5905afb
IM
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
169}
170
171static void sched_feat_enable(int i)
172{
c5905afb
IM
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
175}
176#else
177static void sched_feat_disable(int i) { };
178static void sched_feat_enable(int i) { };
179#endif /* HAVE_JUMP_LABEL */
180
1a687c2e 181static int sched_feat_set(char *cmp)
f00b45c1 182{
f00b45c1 183 int i;
1a687c2e 184 int neg = 0;
f00b45c1 185
524429c3 186 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
187 neg = 1;
188 cmp += 3;
189 }
190
f8b6d1cc 191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 193 if (neg) {
f00b45c1 194 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
195 sched_feat_disable(i);
196 } else {
f00b45c1 197 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
198 sched_feat_enable(i);
199 }
f00b45c1
PZ
200 break;
201 }
202 }
203
1a687c2e
MG
204 return i;
205}
206
207static ssize_t
208sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210{
211 char buf[64];
212 char *cmp;
213 int i;
5cd08fbf 214 struct inode *inode;
1a687c2e
MG
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
5cd08fbf
JB
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
1a687c2e 228 i = sched_feat_set(cmp);
5cd08fbf 229 mutex_unlock(&inode->i_mutex);
f8b6d1cc 230 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
231 return -EINVAL;
232
42994724 233 *ppos += cnt;
f00b45c1
PZ
234
235 return cnt;
236}
237
34f3a814
LZ
238static int sched_feat_open(struct inode *inode, struct file *filp)
239{
240 return single_open(filp, sched_feat_show, NULL);
241}
242
828c0950 243static const struct file_operations sched_feat_fops = {
34f3a814
LZ
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
f00b45c1
PZ
249};
250
251static __init int sched_init_debug(void)
252{
f00b45c1
PZ
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257}
258late_initcall(sched_init_debug);
f8b6d1cc 259#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 260
b82d9fdd
PZ
261/*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
e9e9250b
PZ
267/*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
fa85ae24 275/*
9f0c1e56 276 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
277 * default: 1s
278 */
9f0c1e56 279unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 280
029632fb 281__read_mostly int scheduler_running;
6892b75e 282
9f0c1e56
PZ
283/*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287int sysctl_sched_rt_runtime = 950000;
fa85ae24 288
3fa0818b
RR
289/* cpus with isolated domains */
290cpumask_var_t cpu_isolated_map;
291
1da177e4 292/*
cc2a73b5 293 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 294 */
a9957449 295static struct rq *this_rq_lock(void)
1da177e4
LT
296 __acquires(rq->lock)
297{
70b97a7f 298 struct rq *rq;
1da177e4
LT
299
300 local_irq_disable();
301 rq = this_rq();
05fa785c 302 raw_spin_lock(&rq->lock);
1da177e4
LT
303
304 return rq;
305}
306
8f4d37ec
PZ
307#ifdef CONFIG_SCHED_HRTICK
308/*
309 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 310 */
8f4d37ec 311
8f4d37ec
PZ
312static void hrtick_clear(struct rq *rq)
313{
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316}
317
8f4d37ec
PZ
318/*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322static enum hrtimer_restart hrtick(struct hrtimer *timer)
323{
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
05fa785c 328 raw_spin_lock(&rq->lock);
3e51f33f 329 update_rq_clock(rq);
8f4d37ec 330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 331 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
332
333 return HRTIMER_NORESTART;
334}
335
95e904c7 336#ifdef CONFIG_SMP
971ee28c 337
4961b6e1 338static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
339{
340 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 341
4961b6e1 342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
343}
344
31656519
PZ
345/*
346 * called from hardirq (IPI) context
347 */
348static void __hrtick_start(void *arg)
b328ca18 349{
31656519 350 struct rq *rq = arg;
b328ca18 351
05fa785c 352 raw_spin_lock(&rq->lock);
971ee28c 353 __hrtick_restart(rq);
31656519 354 rq->hrtick_csd_pending = 0;
05fa785c 355 raw_spin_unlock(&rq->lock);
b328ca18
PZ
356}
357
31656519
PZ
358/*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
029632fb 363void hrtick_start(struct rq *rq, u64 delay)
b328ca18 364{
31656519 365 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 375
cc584b21 376 hrtimer_set_expires(timer, time);
31656519
PZ
377
378 if (rq == this_rq()) {
971ee28c 379 __hrtick_restart(rq);
31656519 380 } else if (!rq->hrtick_csd_pending) {
c46fff2a 381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
382 rq->hrtick_csd_pending = 1;
383 }
b328ca18
PZ
384}
385
386static int
387hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388{
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
31656519 398 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403}
404
fa748203 405static __init void init_hrtick(void)
b328ca18
PZ
406{
407 hotcpu_notifier(hotplug_hrtick, 0);
408}
31656519
PZ
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
029632fb 415void hrtick_start(struct rq *rq, u64 delay)
31656519 416{
86893335
WL
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
31656519 424}
b328ca18 425
006c75f1 426static inline void init_hrtick(void)
8f4d37ec 427{
8f4d37ec 428}
31656519 429#endif /* CONFIG_SMP */
8f4d37ec 430
31656519 431static void init_rq_hrtick(struct rq *rq)
8f4d37ec 432{
31656519
PZ
433#ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
8f4d37ec 435
31656519
PZ
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439#endif
8f4d37ec 440
31656519
PZ
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
8f4d37ec 443}
006c75f1 444#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
445static inline void hrtick_clear(struct rq *rq)
446{
447}
448
8f4d37ec
PZ
449static inline void init_rq_hrtick(struct rq *rq)
450{
451}
452
b328ca18
PZ
453static inline void init_hrtick(void)
454{
455}
006c75f1 456#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 457
fd99f91a
PZ
458/*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461#define fetch_or(ptr, val) \
462({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470})
471
e3baac47 472#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
473/*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478static bool set_nr_and_not_polling(struct task_struct *p)
479{
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482}
e3baac47
PZ
483
484/*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490static bool set_nr_if_polling(struct task_struct *p)
491{
492 struct thread_info *ti = task_thread_info(p);
493 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506}
507
fd99f91a
PZ
508#else
509static bool set_nr_and_not_polling(struct task_struct *p)
510{
511 set_tsk_need_resched(p);
512 return true;
513}
e3baac47
PZ
514
515#ifdef CONFIG_SMP
516static bool set_nr_if_polling(struct task_struct *p)
517{
518 return false;
519}
520#endif
fd99f91a
PZ
521#endif
522
c24d20db 523/*
8875125e 524 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
525 *
526 * On UP this means the setting of the need_resched flag, on SMP it
527 * might also involve a cross-CPU call to trigger the scheduler on
528 * the target CPU.
529 */
8875125e 530void resched_curr(struct rq *rq)
c24d20db 531{
8875125e 532 struct task_struct *curr = rq->curr;
c24d20db
IM
533 int cpu;
534
8875125e 535 lockdep_assert_held(&rq->lock);
c24d20db 536
8875125e 537 if (test_tsk_need_resched(curr))
c24d20db
IM
538 return;
539
8875125e 540 cpu = cpu_of(rq);
fd99f91a 541
f27dde8d 542 if (cpu == smp_processor_id()) {
8875125e 543 set_tsk_need_resched(curr);
f27dde8d 544 set_preempt_need_resched();
c24d20db 545 return;
f27dde8d 546 }
c24d20db 547
8875125e 548 if (set_nr_and_not_polling(curr))
c24d20db 549 smp_send_reschedule(cpu);
dfc68f29
AL
550 else
551 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
552}
553
029632fb 554void resched_cpu(int cpu)
c24d20db
IM
555{
556 struct rq *rq = cpu_rq(cpu);
557 unsigned long flags;
558
05fa785c 559 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 560 return;
8875125e 561 resched_curr(rq);
05fa785c 562 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 563}
06d8308c 564
b021fe3e 565#ifdef CONFIG_SMP
3451d024 566#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
567/*
568 * In the semi idle case, use the nearest busy cpu for migrating timers
569 * from an idle cpu. This is good for power-savings.
570 *
571 * We don't do similar optimization for completely idle system, as
572 * selecting an idle cpu will add more delays to the timers than intended
573 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
574 */
6201b4d6 575int get_nohz_timer_target(int pinned)
83cd4fe2
VP
576{
577 int cpu = smp_processor_id();
578 int i;
579 struct sched_domain *sd;
580
6201b4d6
VK
581 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
582 return cpu;
583
057f3fad 584 rcu_read_lock();
83cd4fe2 585 for_each_domain(cpu, sd) {
057f3fad
PZ
586 for_each_cpu(i, sched_domain_span(sd)) {
587 if (!idle_cpu(i)) {
588 cpu = i;
589 goto unlock;
590 }
591 }
83cd4fe2 592 }
057f3fad
PZ
593unlock:
594 rcu_read_unlock();
83cd4fe2
VP
595 return cpu;
596}
06d8308c
TG
597/*
598 * When add_timer_on() enqueues a timer into the timer wheel of an
599 * idle CPU then this timer might expire before the next timer event
600 * which is scheduled to wake up that CPU. In case of a completely
601 * idle system the next event might even be infinite time into the
602 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
603 * leaves the inner idle loop so the newly added timer is taken into
604 * account when the CPU goes back to idle and evaluates the timer
605 * wheel for the next timer event.
606 */
1c20091e 607static void wake_up_idle_cpu(int cpu)
06d8308c
TG
608{
609 struct rq *rq = cpu_rq(cpu);
610
611 if (cpu == smp_processor_id())
612 return;
613
67b9ca70 614 if (set_nr_and_not_polling(rq->idle))
06d8308c 615 smp_send_reschedule(cpu);
dfc68f29
AL
616 else
617 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
618}
619
c5bfece2 620static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 621{
53c5fa16
FW
622 /*
623 * We just need the target to call irq_exit() and re-evaluate
624 * the next tick. The nohz full kick at least implies that.
625 * If needed we can still optimize that later with an
626 * empty IRQ.
627 */
c5bfece2 628 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
629 if (cpu != smp_processor_id() ||
630 tick_nohz_tick_stopped())
53c5fa16 631 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
632 return true;
633 }
634
635 return false;
636}
637
638void wake_up_nohz_cpu(int cpu)
639{
c5bfece2 640 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
641 wake_up_idle_cpu(cpu);
642}
643
ca38062e 644static inline bool got_nohz_idle_kick(void)
45bf76df 645{
1c792db7 646 int cpu = smp_processor_id();
873b4c65
VG
647
648 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
649 return false;
650
651 if (idle_cpu(cpu) && !need_resched())
652 return true;
653
654 /*
655 * We can't run Idle Load Balance on this CPU for this time so we
656 * cancel it and clear NOHZ_BALANCE_KICK
657 */
658 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
659 return false;
45bf76df
IM
660}
661
3451d024 662#else /* CONFIG_NO_HZ_COMMON */
45bf76df 663
ca38062e 664static inline bool got_nohz_idle_kick(void)
2069dd75 665{
ca38062e 666 return false;
2069dd75
PZ
667}
668
3451d024 669#endif /* CONFIG_NO_HZ_COMMON */
d842de87 670
ce831b38
FW
671#ifdef CONFIG_NO_HZ_FULL
672bool sched_can_stop_tick(void)
673{
1e78cdbd
RR
674 /*
675 * FIFO realtime policy runs the highest priority task. Other runnable
676 * tasks are of a lower priority. The scheduler tick does nothing.
677 */
678 if (current->policy == SCHED_FIFO)
679 return true;
680
681 /*
682 * Round-robin realtime tasks time slice with other tasks at the same
683 * realtime priority. Is this task the only one at this priority?
684 */
685 if (current->policy == SCHED_RR) {
686 struct sched_rt_entity *rt_se = &current->rt;
687
688 return rt_se->run_list.prev == rt_se->run_list.next;
689 }
690
3882ec64
FW
691 /*
692 * More than one running task need preemption.
693 * nr_running update is assumed to be visible
694 * after IPI is sent from wakers.
695 */
541b8264
VK
696 if (this_rq()->nr_running > 1)
697 return false;
ce831b38 698
541b8264 699 return true;
ce831b38
FW
700}
701#endif /* CONFIG_NO_HZ_FULL */
d842de87 702
029632fb 703void sched_avg_update(struct rq *rq)
18d95a28 704{
e9e9250b
PZ
705 s64 period = sched_avg_period();
706
78becc27 707 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
708 /*
709 * Inline assembly required to prevent the compiler
710 * optimising this loop into a divmod call.
711 * See __iter_div_u64_rem() for another example of this.
712 */
713 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
714 rq->age_stamp += period;
715 rq->rt_avg /= 2;
716 }
18d95a28
PZ
717}
718
6d6bc0ad 719#endif /* CONFIG_SMP */
18d95a28 720
a790de99
PT
721#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
722 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 723/*
8277434e
PT
724 * Iterate task_group tree rooted at *from, calling @down when first entering a
725 * node and @up when leaving it for the final time.
726 *
727 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 728 */
029632fb 729int walk_tg_tree_from(struct task_group *from,
8277434e 730 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
731{
732 struct task_group *parent, *child;
eb755805 733 int ret;
c09595f6 734
8277434e
PT
735 parent = from;
736
c09595f6 737down:
eb755805
PZ
738 ret = (*down)(parent, data);
739 if (ret)
8277434e 740 goto out;
c09595f6
PZ
741 list_for_each_entry_rcu(child, &parent->children, siblings) {
742 parent = child;
743 goto down;
744
745up:
746 continue;
747 }
eb755805 748 ret = (*up)(parent, data);
8277434e
PT
749 if (ret || parent == from)
750 goto out;
c09595f6
PZ
751
752 child = parent;
753 parent = parent->parent;
754 if (parent)
755 goto up;
8277434e 756out:
eb755805 757 return ret;
c09595f6
PZ
758}
759
029632fb 760int tg_nop(struct task_group *tg, void *data)
eb755805 761{
e2b245f8 762 return 0;
eb755805 763}
18d95a28
PZ
764#endif
765
45bf76df
IM
766static void set_load_weight(struct task_struct *p)
767{
f05998d4
NR
768 int prio = p->static_prio - MAX_RT_PRIO;
769 struct load_weight *load = &p->se.load;
770
dd41f596
IM
771 /*
772 * SCHED_IDLE tasks get minimal weight:
773 */
774 if (p->policy == SCHED_IDLE) {
c8b28116 775 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 776 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
777 return;
778 }
71f8bd46 779
c8b28116 780 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 781 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
782}
783
371fd7e7 784static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 785{
a64692a3 786 update_rq_clock(rq);
43148951 787 sched_info_queued(rq, p);
371fd7e7 788 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
789}
790
371fd7e7 791static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 792{
a64692a3 793 update_rq_clock(rq);
43148951 794 sched_info_dequeued(rq, p);
371fd7e7 795 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
796}
797
029632fb 798void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
799{
800 if (task_contributes_to_load(p))
801 rq->nr_uninterruptible--;
802
371fd7e7 803 enqueue_task(rq, p, flags);
1e3c88bd
PZ
804}
805
029632fb 806void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
807{
808 if (task_contributes_to_load(p))
809 rq->nr_uninterruptible++;
810
371fd7e7 811 dequeue_task(rq, p, flags);
1e3c88bd
PZ
812}
813
fe44d621 814static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 815{
095c0aa8
GC
816/*
817 * In theory, the compile should just see 0 here, and optimize out the call
818 * to sched_rt_avg_update. But I don't trust it...
819 */
820#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
821 s64 steal = 0, irq_delta = 0;
822#endif
823#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 824 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
825
826 /*
827 * Since irq_time is only updated on {soft,}irq_exit, we might run into
828 * this case when a previous update_rq_clock() happened inside a
829 * {soft,}irq region.
830 *
831 * When this happens, we stop ->clock_task and only update the
832 * prev_irq_time stamp to account for the part that fit, so that a next
833 * update will consume the rest. This ensures ->clock_task is
834 * monotonic.
835 *
836 * It does however cause some slight miss-attribution of {soft,}irq
837 * time, a more accurate solution would be to update the irq_time using
838 * the current rq->clock timestamp, except that would require using
839 * atomic ops.
840 */
841 if (irq_delta > delta)
842 irq_delta = delta;
843
844 rq->prev_irq_time += irq_delta;
845 delta -= irq_delta;
095c0aa8
GC
846#endif
847#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 848 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
849 steal = paravirt_steal_clock(cpu_of(rq));
850 steal -= rq->prev_steal_time_rq;
851
852 if (unlikely(steal > delta))
853 steal = delta;
854
095c0aa8 855 rq->prev_steal_time_rq += steal;
095c0aa8
GC
856 delta -= steal;
857 }
858#endif
859
fe44d621
PZ
860 rq->clock_task += delta;
861
095c0aa8 862#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 863 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
864 sched_rt_avg_update(rq, irq_delta + steal);
865#endif
aa483808
VP
866}
867
34f971f6
PZ
868void sched_set_stop_task(int cpu, struct task_struct *stop)
869{
870 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
871 struct task_struct *old_stop = cpu_rq(cpu)->stop;
872
873 if (stop) {
874 /*
875 * Make it appear like a SCHED_FIFO task, its something
876 * userspace knows about and won't get confused about.
877 *
878 * Also, it will make PI more or less work without too
879 * much confusion -- but then, stop work should not
880 * rely on PI working anyway.
881 */
882 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
883
884 stop->sched_class = &stop_sched_class;
885 }
886
887 cpu_rq(cpu)->stop = stop;
888
889 if (old_stop) {
890 /*
891 * Reset it back to a normal scheduling class so that
892 * it can die in pieces.
893 */
894 old_stop->sched_class = &rt_sched_class;
895 }
896}
897
14531189 898/*
dd41f596 899 * __normal_prio - return the priority that is based on the static prio
14531189 900 */
14531189
IM
901static inline int __normal_prio(struct task_struct *p)
902{
dd41f596 903 return p->static_prio;
14531189
IM
904}
905
b29739f9
IM
906/*
907 * Calculate the expected normal priority: i.e. priority
908 * without taking RT-inheritance into account. Might be
909 * boosted by interactivity modifiers. Changes upon fork,
910 * setprio syscalls, and whenever the interactivity
911 * estimator recalculates.
912 */
36c8b586 913static inline int normal_prio(struct task_struct *p)
b29739f9
IM
914{
915 int prio;
916
aab03e05
DF
917 if (task_has_dl_policy(p))
918 prio = MAX_DL_PRIO-1;
919 else if (task_has_rt_policy(p))
b29739f9
IM
920 prio = MAX_RT_PRIO-1 - p->rt_priority;
921 else
922 prio = __normal_prio(p);
923 return prio;
924}
925
926/*
927 * Calculate the current priority, i.e. the priority
928 * taken into account by the scheduler. This value might
929 * be boosted by RT tasks, or might be boosted by
930 * interactivity modifiers. Will be RT if the task got
931 * RT-boosted. If not then it returns p->normal_prio.
932 */
36c8b586 933static int effective_prio(struct task_struct *p)
b29739f9
IM
934{
935 p->normal_prio = normal_prio(p);
936 /*
937 * If we are RT tasks or we were boosted to RT priority,
938 * keep the priority unchanged. Otherwise, update priority
939 * to the normal priority:
940 */
941 if (!rt_prio(p->prio))
942 return p->normal_prio;
943 return p->prio;
944}
945
1da177e4
LT
946/**
947 * task_curr - is this task currently executing on a CPU?
948 * @p: the task in question.
e69f6186
YB
949 *
950 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 951 */
36c8b586 952inline int task_curr(const struct task_struct *p)
1da177e4
LT
953{
954 return cpu_curr(task_cpu(p)) == p;
955}
956
67dfa1b7
KT
957/*
958 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
959 */
cb469845
SR
960static inline void check_class_changed(struct rq *rq, struct task_struct *p,
961 const struct sched_class *prev_class,
da7a735e 962 int oldprio)
cb469845
SR
963{
964 if (prev_class != p->sched_class) {
965 if (prev_class->switched_from)
da7a735e 966 prev_class->switched_from(rq, p);
67dfa1b7 967 /* Possble rq->lock 'hole'. */
da7a735e 968 p->sched_class->switched_to(rq, p);
2d3d891d 969 } else if (oldprio != p->prio || dl_task(p))
da7a735e 970 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
971}
972
029632fb 973void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
974{
975 const struct sched_class *class;
976
977 if (p->sched_class == rq->curr->sched_class) {
978 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
979 } else {
980 for_each_class(class) {
981 if (class == rq->curr->sched_class)
982 break;
983 if (class == p->sched_class) {
8875125e 984 resched_curr(rq);
1e5a7405
PZ
985 break;
986 }
987 }
988 }
989
990 /*
991 * A queue event has occurred, and we're going to schedule. In
992 * this case, we can save a useless back to back clock update.
993 */
da0c1e65 994 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 995 rq_clock_skip_update(rq, true);
1e5a7405
PZ
996}
997
1da177e4 998#ifdef CONFIG_SMP
dd41f596 999void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1000{
e2912009
PZ
1001#ifdef CONFIG_SCHED_DEBUG
1002 /*
1003 * We should never call set_task_cpu() on a blocked task,
1004 * ttwu() will sort out the placement.
1005 */
077614ee 1006 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1007 !p->on_rq);
0122ec5b
PZ
1008
1009#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1010 /*
1011 * The caller should hold either p->pi_lock or rq->lock, when changing
1012 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1013 *
1014 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1015 * see task_group().
6c6c54e1
PZ
1016 *
1017 * Furthermore, all task_rq users should acquire both locks, see
1018 * task_rq_lock().
1019 */
0122ec5b
PZ
1020 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1021 lockdep_is_held(&task_rq(p)->lock)));
1022#endif
e2912009
PZ
1023#endif
1024
de1d7286 1025 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1026
0c69774e 1027 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1028 if (p->sched_class->migrate_task_rq)
1029 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1030 p->se.nr_migrations++;
86038c5e 1031 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
0c69774e 1032 }
dd41f596
IM
1033
1034 __set_task_cpu(p, new_cpu);
c65cc870
IM
1035}
1036
ac66f547
PZ
1037static void __migrate_swap_task(struct task_struct *p, int cpu)
1038{
da0c1e65 1039 if (task_on_rq_queued(p)) {
ac66f547
PZ
1040 struct rq *src_rq, *dst_rq;
1041
1042 src_rq = task_rq(p);
1043 dst_rq = cpu_rq(cpu);
1044
1045 deactivate_task(src_rq, p, 0);
1046 set_task_cpu(p, cpu);
1047 activate_task(dst_rq, p, 0);
1048 check_preempt_curr(dst_rq, p, 0);
1049 } else {
1050 /*
1051 * Task isn't running anymore; make it appear like we migrated
1052 * it before it went to sleep. This means on wakeup we make the
1053 * previous cpu our targer instead of where it really is.
1054 */
1055 p->wake_cpu = cpu;
1056 }
1057}
1058
1059struct migration_swap_arg {
1060 struct task_struct *src_task, *dst_task;
1061 int src_cpu, dst_cpu;
1062};
1063
1064static int migrate_swap_stop(void *data)
1065{
1066 struct migration_swap_arg *arg = data;
1067 struct rq *src_rq, *dst_rq;
1068 int ret = -EAGAIN;
1069
1070 src_rq = cpu_rq(arg->src_cpu);
1071 dst_rq = cpu_rq(arg->dst_cpu);
1072
74602315
PZ
1073 double_raw_lock(&arg->src_task->pi_lock,
1074 &arg->dst_task->pi_lock);
ac66f547
PZ
1075 double_rq_lock(src_rq, dst_rq);
1076 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1077 goto unlock;
1078
1079 if (task_cpu(arg->src_task) != arg->src_cpu)
1080 goto unlock;
1081
1082 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1083 goto unlock;
1084
1085 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1086 goto unlock;
1087
1088 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1089 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1090
1091 ret = 0;
1092
1093unlock:
1094 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1095 raw_spin_unlock(&arg->dst_task->pi_lock);
1096 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1097
1098 return ret;
1099}
1100
1101/*
1102 * Cross migrate two tasks
1103 */
1104int migrate_swap(struct task_struct *cur, struct task_struct *p)
1105{
1106 struct migration_swap_arg arg;
1107 int ret = -EINVAL;
1108
ac66f547
PZ
1109 arg = (struct migration_swap_arg){
1110 .src_task = cur,
1111 .src_cpu = task_cpu(cur),
1112 .dst_task = p,
1113 .dst_cpu = task_cpu(p),
1114 };
1115
1116 if (arg.src_cpu == arg.dst_cpu)
1117 goto out;
1118
6acce3ef
PZ
1119 /*
1120 * These three tests are all lockless; this is OK since all of them
1121 * will be re-checked with proper locks held further down the line.
1122 */
ac66f547
PZ
1123 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1124 goto out;
1125
1126 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1127 goto out;
1128
1129 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1130 goto out;
1131
286549dc 1132 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1133 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1134
1135out:
ac66f547
PZ
1136 return ret;
1137}
1138
969c7921 1139struct migration_arg {
36c8b586 1140 struct task_struct *task;
1da177e4 1141 int dest_cpu;
70b97a7f 1142};
1da177e4 1143
969c7921
TH
1144static int migration_cpu_stop(void *data);
1145
1da177e4
LT
1146/*
1147 * wait_task_inactive - wait for a thread to unschedule.
1148 *
85ba2d86
RM
1149 * If @match_state is nonzero, it's the @p->state value just checked and
1150 * not expected to change. If it changes, i.e. @p might have woken up,
1151 * then return zero. When we succeed in waiting for @p to be off its CPU,
1152 * we return a positive number (its total switch count). If a second call
1153 * a short while later returns the same number, the caller can be sure that
1154 * @p has remained unscheduled the whole time.
1155 *
1da177e4
LT
1156 * The caller must ensure that the task *will* unschedule sometime soon,
1157 * else this function might spin for a *long* time. This function can't
1158 * be called with interrupts off, or it may introduce deadlock with
1159 * smp_call_function() if an IPI is sent by the same process we are
1160 * waiting to become inactive.
1161 */
85ba2d86 1162unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1163{
1164 unsigned long flags;
da0c1e65 1165 int running, queued;
85ba2d86 1166 unsigned long ncsw;
70b97a7f 1167 struct rq *rq;
1da177e4 1168
3a5c359a
AK
1169 for (;;) {
1170 /*
1171 * We do the initial early heuristics without holding
1172 * any task-queue locks at all. We'll only try to get
1173 * the runqueue lock when things look like they will
1174 * work out!
1175 */
1176 rq = task_rq(p);
fa490cfd 1177
3a5c359a
AK
1178 /*
1179 * If the task is actively running on another CPU
1180 * still, just relax and busy-wait without holding
1181 * any locks.
1182 *
1183 * NOTE! Since we don't hold any locks, it's not
1184 * even sure that "rq" stays as the right runqueue!
1185 * But we don't care, since "task_running()" will
1186 * return false if the runqueue has changed and p
1187 * is actually now running somewhere else!
1188 */
85ba2d86
RM
1189 while (task_running(rq, p)) {
1190 if (match_state && unlikely(p->state != match_state))
1191 return 0;
3a5c359a 1192 cpu_relax();
85ba2d86 1193 }
fa490cfd 1194
3a5c359a
AK
1195 /*
1196 * Ok, time to look more closely! We need the rq
1197 * lock now, to be *sure*. If we're wrong, we'll
1198 * just go back and repeat.
1199 */
1200 rq = task_rq_lock(p, &flags);
27a9da65 1201 trace_sched_wait_task(p);
3a5c359a 1202 running = task_running(rq, p);
da0c1e65 1203 queued = task_on_rq_queued(p);
85ba2d86 1204 ncsw = 0;
f31e11d8 1205 if (!match_state || p->state == match_state)
93dcf55f 1206 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1207 task_rq_unlock(rq, p, &flags);
fa490cfd 1208
85ba2d86
RM
1209 /*
1210 * If it changed from the expected state, bail out now.
1211 */
1212 if (unlikely(!ncsw))
1213 break;
1214
3a5c359a
AK
1215 /*
1216 * Was it really running after all now that we
1217 * checked with the proper locks actually held?
1218 *
1219 * Oops. Go back and try again..
1220 */
1221 if (unlikely(running)) {
1222 cpu_relax();
1223 continue;
1224 }
fa490cfd 1225
3a5c359a
AK
1226 /*
1227 * It's not enough that it's not actively running,
1228 * it must be off the runqueue _entirely_, and not
1229 * preempted!
1230 *
80dd99b3 1231 * So if it was still runnable (but just not actively
3a5c359a
AK
1232 * running right now), it's preempted, and we should
1233 * yield - it could be a while.
1234 */
da0c1e65 1235 if (unlikely(queued)) {
8eb90c30
TG
1236 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1237
1238 set_current_state(TASK_UNINTERRUPTIBLE);
1239 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1240 continue;
1241 }
fa490cfd 1242
3a5c359a
AK
1243 /*
1244 * Ahh, all good. It wasn't running, and it wasn't
1245 * runnable, which means that it will never become
1246 * running in the future either. We're all done!
1247 */
1248 break;
1249 }
85ba2d86
RM
1250
1251 return ncsw;
1da177e4
LT
1252}
1253
1254/***
1255 * kick_process - kick a running thread to enter/exit the kernel
1256 * @p: the to-be-kicked thread
1257 *
1258 * Cause a process which is running on another CPU to enter
1259 * kernel-mode, without any delay. (to get signals handled.)
1260 *
25985edc 1261 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1262 * because all it wants to ensure is that the remote task enters
1263 * the kernel. If the IPI races and the task has been migrated
1264 * to another CPU then no harm is done and the purpose has been
1265 * achieved as well.
1266 */
36c8b586 1267void kick_process(struct task_struct *p)
1da177e4
LT
1268{
1269 int cpu;
1270
1271 preempt_disable();
1272 cpu = task_cpu(p);
1273 if ((cpu != smp_processor_id()) && task_curr(p))
1274 smp_send_reschedule(cpu);
1275 preempt_enable();
1276}
b43e3521 1277EXPORT_SYMBOL_GPL(kick_process);
476d139c 1278#endif /* CONFIG_SMP */
1da177e4 1279
970b13ba 1280#ifdef CONFIG_SMP
30da688e 1281/*
013fdb80 1282 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1283 */
5da9a0fb
PZ
1284static int select_fallback_rq(int cpu, struct task_struct *p)
1285{
aa00d89c
TC
1286 int nid = cpu_to_node(cpu);
1287 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1288 enum { cpuset, possible, fail } state = cpuset;
1289 int dest_cpu;
5da9a0fb 1290
aa00d89c
TC
1291 /*
1292 * If the node that the cpu is on has been offlined, cpu_to_node()
1293 * will return -1. There is no cpu on the node, and we should
1294 * select the cpu on the other node.
1295 */
1296 if (nid != -1) {
1297 nodemask = cpumask_of_node(nid);
1298
1299 /* Look for allowed, online CPU in same node. */
1300 for_each_cpu(dest_cpu, nodemask) {
1301 if (!cpu_online(dest_cpu))
1302 continue;
1303 if (!cpu_active(dest_cpu))
1304 continue;
1305 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1306 return dest_cpu;
1307 }
2baab4e9 1308 }
5da9a0fb 1309
2baab4e9
PZ
1310 for (;;) {
1311 /* Any allowed, online CPU? */
e3831edd 1312 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1313 if (!cpu_online(dest_cpu))
1314 continue;
1315 if (!cpu_active(dest_cpu))
1316 continue;
1317 goto out;
1318 }
5da9a0fb 1319
2baab4e9
PZ
1320 switch (state) {
1321 case cpuset:
1322 /* No more Mr. Nice Guy. */
1323 cpuset_cpus_allowed_fallback(p);
1324 state = possible;
1325 break;
1326
1327 case possible:
1328 do_set_cpus_allowed(p, cpu_possible_mask);
1329 state = fail;
1330 break;
1331
1332 case fail:
1333 BUG();
1334 break;
1335 }
1336 }
1337
1338out:
1339 if (state != cpuset) {
1340 /*
1341 * Don't tell them about moving exiting tasks or
1342 * kernel threads (both mm NULL), since they never
1343 * leave kernel.
1344 */
1345 if (p->mm && printk_ratelimit()) {
aac74dc4 1346 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1347 task_pid_nr(p), p->comm, cpu);
1348 }
5da9a0fb
PZ
1349 }
1350
1351 return dest_cpu;
1352}
1353
e2912009 1354/*
013fdb80 1355 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1356 */
970b13ba 1357static inline
ac66f547 1358int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1359{
6c1d9410
WL
1360 if (p->nr_cpus_allowed > 1)
1361 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1362
1363 /*
1364 * In order not to call set_task_cpu() on a blocking task we need
1365 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1366 * cpu.
1367 *
1368 * Since this is common to all placement strategies, this lives here.
1369 *
1370 * [ this allows ->select_task() to simply return task_cpu(p) and
1371 * not worry about this generic constraint ]
1372 */
fa17b507 1373 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1374 !cpu_online(cpu)))
5da9a0fb 1375 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1376
1377 return cpu;
970b13ba 1378}
09a40af5
MG
1379
1380static void update_avg(u64 *avg, u64 sample)
1381{
1382 s64 diff = sample - *avg;
1383 *avg += diff >> 3;
1384}
970b13ba
PZ
1385#endif
1386
d7c01d27 1387static void
b84cb5df 1388ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1389{
d7c01d27 1390#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1391 struct rq *rq = this_rq();
1392
d7c01d27
PZ
1393#ifdef CONFIG_SMP
1394 int this_cpu = smp_processor_id();
1395
1396 if (cpu == this_cpu) {
1397 schedstat_inc(rq, ttwu_local);
1398 schedstat_inc(p, se.statistics.nr_wakeups_local);
1399 } else {
1400 struct sched_domain *sd;
1401
1402 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1403 rcu_read_lock();
d7c01d27
PZ
1404 for_each_domain(this_cpu, sd) {
1405 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1406 schedstat_inc(sd, ttwu_wake_remote);
1407 break;
1408 }
1409 }
057f3fad 1410 rcu_read_unlock();
d7c01d27 1411 }
f339b9dc
PZ
1412
1413 if (wake_flags & WF_MIGRATED)
1414 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1415
d7c01d27
PZ
1416#endif /* CONFIG_SMP */
1417
1418 schedstat_inc(rq, ttwu_count);
9ed3811a 1419 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1420
1421 if (wake_flags & WF_SYNC)
9ed3811a 1422 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1423
d7c01d27
PZ
1424#endif /* CONFIG_SCHEDSTATS */
1425}
1426
1427static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1428{
9ed3811a 1429 activate_task(rq, p, en_flags);
da0c1e65 1430 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1431
1432 /* if a worker is waking up, notify workqueue */
1433 if (p->flags & PF_WQ_WORKER)
1434 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1435}
1436
23f41eeb
PZ
1437/*
1438 * Mark the task runnable and perform wakeup-preemption.
1439 */
89363381 1440static void
23f41eeb 1441ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1442{
9ed3811a 1443 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1444 trace_sched_wakeup(p, true);
9ed3811a
TH
1445
1446 p->state = TASK_RUNNING;
1447#ifdef CONFIG_SMP
1448 if (p->sched_class->task_woken)
1449 p->sched_class->task_woken(rq, p);
1450
e69c6341 1451 if (rq->idle_stamp) {
78becc27 1452 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1453 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1454
abfafa54
JL
1455 update_avg(&rq->avg_idle, delta);
1456
1457 if (rq->avg_idle > max)
9ed3811a 1458 rq->avg_idle = max;
abfafa54 1459
9ed3811a
TH
1460 rq->idle_stamp = 0;
1461 }
1462#endif
1463}
1464
c05fbafb
PZ
1465static void
1466ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1467{
1468#ifdef CONFIG_SMP
1469 if (p->sched_contributes_to_load)
1470 rq->nr_uninterruptible--;
1471#endif
1472
1473 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1474 ttwu_do_wakeup(rq, p, wake_flags);
1475}
1476
1477/*
1478 * Called in case the task @p isn't fully descheduled from its runqueue,
1479 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1480 * since all we need to do is flip p->state to TASK_RUNNING, since
1481 * the task is still ->on_rq.
1482 */
1483static int ttwu_remote(struct task_struct *p, int wake_flags)
1484{
1485 struct rq *rq;
1486 int ret = 0;
1487
1488 rq = __task_rq_lock(p);
da0c1e65 1489 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1490 /* check_preempt_curr() may use rq clock */
1491 update_rq_clock(rq);
c05fbafb
PZ
1492 ttwu_do_wakeup(rq, p, wake_flags);
1493 ret = 1;
1494 }
1495 __task_rq_unlock(rq);
1496
1497 return ret;
1498}
1499
317f3941 1500#ifdef CONFIG_SMP
e3baac47 1501void sched_ttwu_pending(void)
317f3941
PZ
1502{
1503 struct rq *rq = this_rq();
fa14ff4a
PZ
1504 struct llist_node *llist = llist_del_all(&rq->wake_list);
1505 struct task_struct *p;
e3baac47 1506 unsigned long flags;
317f3941 1507
e3baac47
PZ
1508 if (!llist)
1509 return;
1510
1511 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1512
fa14ff4a
PZ
1513 while (llist) {
1514 p = llist_entry(llist, struct task_struct, wake_entry);
1515 llist = llist_next(llist);
317f3941
PZ
1516 ttwu_do_activate(rq, p, 0);
1517 }
1518
e3baac47 1519 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1520}
1521
1522void scheduler_ipi(void)
1523{
f27dde8d
PZ
1524 /*
1525 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1526 * TIF_NEED_RESCHED remotely (for the first time) will also send
1527 * this IPI.
1528 */
8cb75e0c 1529 preempt_fold_need_resched();
f27dde8d 1530
fd2ac4f4 1531 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1532 return;
1533
1534 /*
1535 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1536 * traditionally all their work was done from the interrupt return
1537 * path. Now that we actually do some work, we need to make sure
1538 * we do call them.
1539 *
1540 * Some archs already do call them, luckily irq_enter/exit nest
1541 * properly.
1542 *
1543 * Arguably we should visit all archs and update all handlers,
1544 * however a fair share of IPIs are still resched only so this would
1545 * somewhat pessimize the simple resched case.
1546 */
1547 irq_enter();
fa14ff4a 1548 sched_ttwu_pending();
ca38062e
SS
1549
1550 /*
1551 * Check if someone kicked us for doing the nohz idle load balance.
1552 */
873b4c65 1553 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1554 this_rq()->idle_balance = 1;
ca38062e 1555 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1556 }
c5d753a5 1557 irq_exit();
317f3941
PZ
1558}
1559
1560static void ttwu_queue_remote(struct task_struct *p, int cpu)
1561{
e3baac47
PZ
1562 struct rq *rq = cpu_rq(cpu);
1563
1564 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1565 if (!set_nr_if_polling(rq->idle))
1566 smp_send_reschedule(cpu);
1567 else
1568 trace_sched_wake_idle_without_ipi(cpu);
1569 }
317f3941 1570}
d6aa8f85 1571
f6be8af1
CL
1572void wake_up_if_idle(int cpu)
1573{
1574 struct rq *rq = cpu_rq(cpu);
1575 unsigned long flags;
1576
fd7de1e8
AL
1577 rcu_read_lock();
1578
1579 if (!is_idle_task(rcu_dereference(rq->curr)))
1580 goto out;
f6be8af1
CL
1581
1582 if (set_nr_if_polling(rq->idle)) {
1583 trace_sched_wake_idle_without_ipi(cpu);
1584 } else {
1585 raw_spin_lock_irqsave(&rq->lock, flags);
1586 if (is_idle_task(rq->curr))
1587 smp_send_reschedule(cpu);
1588 /* Else cpu is not in idle, do nothing here */
1589 raw_spin_unlock_irqrestore(&rq->lock, flags);
1590 }
fd7de1e8
AL
1591
1592out:
1593 rcu_read_unlock();
f6be8af1
CL
1594}
1595
39be3501 1596bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1597{
1598 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1599}
d6aa8f85 1600#endif /* CONFIG_SMP */
317f3941 1601
c05fbafb
PZ
1602static void ttwu_queue(struct task_struct *p, int cpu)
1603{
1604 struct rq *rq = cpu_rq(cpu);
1605
17d9f311 1606#if defined(CONFIG_SMP)
39be3501 1607 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1608 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1609 ttwu_queue_remote(p, cpu);
1610 return;
1611 }
1612#endif
1613
c05fbafb
PZ
1614 raw_spin_lock(&rq->lock);
1615 ttwu_do_activate(rq, p, 0);
1616 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1617}
1618
1619/**
1da177e4 1620 * try_to_wake_up - wake up a thread
9ed3811a 1621 * @p: the thread to be awakened
1da177e4 1622 * @state: the mask of task states that can be woken
9ed3811a 1623 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1624 *
1625 * Put it on the run-queue if it's not already there. The "current"
1626 * thread is always on the run-queue (except when the actual
1627 * re-schedule is in progress), and as such you're allowed to do
1628 * the simpler "current->state = TASK_RUNNING" to mark yourself
1629 * runnable without the overhead of this.
1630 *
e69f6186 1631 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1632 * or @state didn't match @p's state.
1da177e4 1633 */
e4a52bcb
PZ
1634static int
1635try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1636{
1da177e4 1637 unsigned long flags;
c05fbafb 1638 int cpu, success = 0;
2398f2c6 1639
e0acd0a6
ON
1640 /*
1641 * If we are going to wake up a thread waiting for CONDITION we
1642 * need to ensure that CONDITION=1 done by the caller can not be
1643 * reordered with p->state check below. This pairs with mb() in
1644 * set_current_state() the waiting thread does.
1645 */
1646 smp_mb__before_spinlock();
013fdb80 1647 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1648 if (!(p->state & state))
1da177e4
LT
1649 goto out;
1650
c05fbafb 1651 success = 1; /* we're going to change ->state */
1da177e4 1652 cpu = task_cpu(p);
1da177e4 1653
c05fbafb
PZ
1654 if (p->on_rq && ttwu_remote(p, wake_flags))
1655 goto stat;
1da177e4 1656
1da177e4 1657#ifdef CONFIG_SMP
e9c84311 1658 /*
c05fbafb
PZ
1659 * If the owning (remote) cpu is still in the middle of schedule() with
1660 * this task as prev, wait until its done referencing the task.
e9c84311 1661 */
f3e94786 1662 while (p->on_cpu)
e4a52bcb 1663 cpu_relax();
0970d299 1664 /*
e4a52bcb 1665 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1666 */
e4a52bcb 1667 smp_rmb();
1da177e4 1668
a8e4f2ea 1669 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1670 p->state = TASK_WAKING;
e7693a36 1671
e4a52bcb 1672 if (p->sched_class->task_waking)
74f8e4b2 1673 p->sched_class->task_waking(p);
efbbd05a 1674
ac66f547 1675 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1676 if (task_cpu(p) != cpu) {
1677 wake_flags |= WF_MIGRATED;
e4a52bcb 1678 set_task_cpu(p, cpu);
f339b9dc 1679 }
1da177e4 1680#endif /* CONFIG_SMP */
1da177e4 1681
c05fbafb
PZ
1682 ttwu_queue(p, cpu);
1683stat:
b84cb5df 1684 ttwu_stat(p, cpu, wake_flags);
1da177e4 1685out:
013fdb80 1686 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1687
1688 return success;
1689}
1690
21aa9af0
TH
1691/**
1692 * try_to_wake_up_local - try to wake up a local task with rq lock held
1693 * @p: the thread to be awakened
1694 *
2acca55e 1695 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1696 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1697 * the current task.
21aa9af0
TH
1698 */
1699static void try_to_wake_up_local(struct task_struct *p)
1700{
1701 struct rq *rq = task_rq(p);
21aa9af0 1702
383efcd0
TH
1703 if (WARN_ON_ONCE(rq != this_rq()) ||
1704 WARN_ON_ONCE(p == current))
1705 return;
1706
21aa9af0
TH
1707 lockdep_assert_held(&rq->lock);
1708
2acca55e
PZ
1709 if (!raw_spin_trylock(&p->pi_lock)) {
1710 raw_spin_unlock(&rq->lock);
1711 raw_spin_lock(&p->pi_lock);
1712 raw_spin_lock(&rq->lock);
1713 }
1714
21aa9af0 1715 if (!(p->state & TASK_NORMAL))
2acca55e 1716 goto out;
21aa9af0 1717
da0c1e65 1718 if (!task_on_rq_queued(p))
d7c01d27
PZ
1719 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1720
23f41eeb 1721 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1722 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1723out:
1724 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1725}
1726
50fa610a
DH
1727/**
1728 * wake_up_process - Wake up a specific process
1729 * @p: The process to be woken up.
1730 *
1731 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1732 * processes.
1733 *
1734 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1735 *
1736 * It may be assumed that this function implies a write memory barrier before
1737 * changing the task state if and only if any tasks are woken up.
1738 */
7ad5b3a5 1739int wake_up_process(struct task_struct *p)
1da177e4 1740{
9067ac85
ON
1741 WARN_ON(task_is_stopped_or_traced(p));
1742 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1743}
1da177e4
LT
1744EXPORT_SYMBOL(wake_up_process);
1745
7ad5b3a5 1746int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1747{
1748 return try_to_wake_up(p, state, 0);
1749}
1750
a5e7be3b
JL
1751/*
1752 * This function clears the sched_dl_entity static params.
1753 */
1754void __dl_clear_params(struct task_struct *p)
1755{
1756 struct sched_dl_entity *dl_se = &p->dl;
1757
1758 dl_se->dl_runtime = 0;
1759 dl_se->dl_deadline = 0;
1760 dl_se->dl_period = 0;
1761 dl_se->flags = 0;
1762 dl_se->dl_bw = 0;
40767b0d
PZ
1763
1764 dl_se->dl_throttled = 0;
1765 dl_se->dl_new = 1;
1766 dl_se->dl_yielded = 0;
a5e7be3b
JL
1767}
1768
1da177e4
LT
1769/*
1770 * Perform scheduler related setup for a newly forked process p.
1771 * p is forked by current.
dd41f596
IM
1772 *
1773 * __sched_fork() is basic setup used by init_idle() too:
1774 */
5e1576ed 1775static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1776{
fd2f4419
PZ
1777 p->on_rq = 0;
1778
1779 p->se.on_rq = 0;
dd41f596
IM
1780 p->se.exec_start = 0;
1781 p->se.sum_exec_runtime = 0;
f6cf891c 1782 p->se.prev_sum_exec_runtime = 0;
6c594c21 1783 p->se.nr_migrations = 0;
da7a735e 1784 p->se.vruntime = 0;
bb04159d
KT
1785#ifdef CONFIG_SMP
1786 p->se.avg.decay_count = 0;
1787#endif
fd2f4419 1788 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1789
1790#ifdef CONFIG_SCHEDSTATS
41acab88 1791 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1792#endif
476d139c 1793
aab03e05 1794 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 1795 init_dl_task_timer(&p->dl);
a5e7be3b 1796 __dl_clear_params(p);
aab03e05 1797
fa717060 1798 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1799
e107be36
AK
1800#ifdef CONFIG_PREEMPT_NOTIFIERS
1801 INIT_HLIST_HEAD(&p->preempt_notifiers);
1802#endif
cbee9f88
PZ
1803
1804#ifdef CONFIG_NUMA_BALANCING
1805 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1806 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1807 p->mm->numa_scan_seq = 0;
1808 }
1809
5e1576ed
RR
1810 if (clone_flags & CLONE_VM)
1811 p->numa_preferred_nid = current->numa_preferred_nid;
1812 else
1813 p->numa_preferred_nid = -1;
1814
cbee9f88
PZ
1815 p->node_stamp = 0ULL;
1816 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1817 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1818 p->numa_work.next = &p->numa_work;
44dba3d5 1819 p->numa_faults = NULL;
7e2703e6
RR
1820 p->last_task_numa_placement = 0;
1821 p->last_sum_exec_runtime = 0;
8c8a743c 1822
8c8a743c 1823 p->numa_group = NULL;
cbee9f88 1824#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1825}
1826
1a687c2e 1827#ifdef CONFIG_NUMA_BALANCING
3105b86a 1828#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1829void set_numabalancing_state(bool enabled)
1830{
1831 if (enabled)
1832 sched_feat_set("NUMA");
1833 else
1834 sched_feat_set("NO_NUMA");
1835}
3105b86a
MG
1836#else
1837__read_mostly bool numabalancing_enabled;
1838
1839void set_numabalancing_state(bool enabled)
1840{
1841 numabalancing_enabled = enabled;
dd41f596 1842}
3105b86a 1843#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1844
1845#ifdef CONFIG_PROC_SYSCTL
1846int sysctl_numa_balancing(struct ctl_table *table, int write,
1847 void __user *buffer, size_t *lenp, loff_t *ppos)
1848{
1849 struct ctl_table t;
1850 int err;
1851 int state = numabalancing_enabled;
1852
1853 if (write && !capable(CAP_SYS_ADMIN))
1854 return -EPERM;
1855
1856 t = *table;
1857 t.data = &state;
1858 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1859 if (err < 0)
1860 return err;
1861 if (write)
1862 set_numabalancing_state(state);
1863 return err;
1864}
1865#endif
1866#endif
dd41f596
IM
1867
1868/*
1869 * fork()/clone()-time setup:
1870 */
aab03e05 1871int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1872{
0122ec5b 1873 unsigned long flags;
dd41f596
IM
1874 int cpu = get_cpu();
1875
5e1576ed 1876 __sched_fork(clone_flags, p);
06b83b5f 1877 /*
0017d735 1878 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1879 * nobody will actually run it, and a signal or other external
1880 * event cannot wake it up and insert it on the runqueue either.
1881 */
0017d735 1882 p->state = TASK_RUNNING;
dd41f596 1883
c350a04e
MG
1884 /*
1885 * Make sure we do not leak PI boosting priority to the child.
1886 */
1887 p->prio = current->normal_prio;
1888
b9dc29e7
MG
1889 /*
1890 * Revert to default priority/policy on fork if requested.
1891 */
1892 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1893 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1894 p->policy = SCHED_NORMAL;
6c697bdf 1895 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1896 p->rt_priority = 0;
1897 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1898 p->static_prio = NICE_TO_PRIO(0);
1899
1900 p->prio = p->normal_prio = __normal_prio(p);
1901 set_load_weight(p);
6c697bdf 1902
b9dc29e7
MG
1903 /*
1904 * We don't need the reset flag anymore after the fork. It has
1905 * fulfilled its duty:
1906 */
1907 p->sched_reset_on_fork = 0;
1908 }
ca94c442 1909
aab03e05
DF
1910 if (dl_prio(p->prio)) {
1911 put_cpu();
1912 return -EAGAIN;
1913 } else if (rt_prio(p->prio)) {
1914 p->sched_class = &rt_sched_class;
1915 } else {
2ddbf952 1916 p->sched_class = &fair_sched_class;
aab03e05 1917 }
b29739f9 1918
cd29fe6f
PZ
1919 if (p->sched_class->task_fork)
1920 p->sched_class->task_fork(p);
1921
86951599
PZ
1922 /*
1923 * The child is not yet in the pid-hash so no cgroup attach races,
1924 * and the cgroup is pinned to this child due to cgroup_fork()
1925 * is ran before sched_fork().
1926 *
1927 * Silence PROVE_RCU.
1928 */
0122ec5b 1929 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1930 set_task_cpu(p, cpu);
0122ec5b 1931 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1932
52f17b6c 1933#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1934 if (likely(sched_info_on()))
52f17b6c 1935 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1936#endif
3ca7a440
PZ
1937#if defined(CONFIG_SMP)
1938 p->on_cpu = 0;
4866cde0 1939#endif
01028747 1940 init_task_preempt_count(p);
806c09a7 1941#ifdef CONFIG_SMP
917b627d 1942 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1943 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1944#endif
917b627d 1945
476d139c 1946 put_cpu();
aab03e05 1947 return 0;
1da177e4
LT
1948}
1949
332ac17e
DF
1950unsigned long to_ratio(u64 period, u64 runtime)
1951{
1952 if (runtime == RUNTIME_INF)
1953 return 1ULL << 20;
1954
1955 /*
1956 * Doing this here saves a lot of checks in all
1957 * the calling paths, and returning zero seems
1958 * safe for them anyway.
1959 */
1960 if (period == 0)
1961 return 0;
1962
1963 return div64_u64(runtime << 20, period);
1964}
1965
1966#ifdef CONFIG_SMP
1967inline struct dl_bw *dl_bw_of(int i)
1968{
66339c31
KT
1969 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1970 "sched RCU must be held");
332ac17e
DF
1971 return &cpu_rq(i)->rd->dl_bw;
1972}
1973
de212f18 1974static inline int dl_bw_cpus(int i)
332ac17e 1975{
de212f18
PZ
1976 struct root_domain *rd = cpu_rq(i)->rd;
1977 int cpus = 0;
1978
66339c31
KT
1979 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1980 "sched RCU must be held");
de212f18
PZ
1981 for_each_cpu_and(i, rd->span, cpu_active_mask)
1982 cpus++;
1983
1984 return cpus;
332ac17e
DF
1985}
1986#else
1987inline struct dl_bw *dl_bw_of(int i)
1988{
1989 return &cpu_rq(i)->dl.dl_bw;
1990}
1991
de212f18 1992static inline int dl_bw_cpus(int i)
332ac17e
DF
1993{
1994 return 1;
1995}
1996#endif
1997
332ac17e
DF
1998/*
1999 * We must be sure that accepting a new task (or allowing changing the
2000 * parameters of an existing one) is consistent with the bandwidth
2001 * constraints. If yes, this function also accordingly updates the currently
2002 * allocated bandwidth to reflect the new situation.
2003 *
2004 * This function is called while holding p's rq->lock.
40767b0d
PZ
2005 *
2006 * XXX we should delay bw change until the task's 0-lag point, see
2007 * __setparam_dl().
332ac17e
DF
2008 */
2009static int dl_overflow(struct task_struct *p, int policy,
2010 const struct sched_attr *attr)
2011{
2012
2013 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2014 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2015 u64 runtime = attr->sched_runtime;
2016 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2017 int cpus, err = -1;
332ac17e
DF
2018
2019 if (new_bw == p->dl.dl_bw)
2020 return 0;
2021
2022 /*
2023 * Either if a task, enters, leave, or stays -deadline but changes
2024 * its parameters, we may need to update accordingly the total
2025 * allocated bandwidth of the container.
2026 */
2027 raw_spin_lock(&dl_b->lock);
de212f18 2028 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2029 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2030 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2031 __dl_add(dl_b, new_bw);
2032 err = 0;
2033 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2034 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2035 __dl_clear(dl_b, p->dl.dl_bw);
2036 __dl_add(dl_b, new_bw);
2037 err = 0;
2038 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2039 __dl_clear(dl_b, p->dl.dl_bw);
2040 err = 0;
2041 }
2042 raw_spin_unlock(&dl_b->lock);
2043
2044 return err;
2045}
2046
2047extern void init_dl_bw(struct dl_bw *dl_b);
2048
1da177e4
LT
2049/*
2050 * wake_up_new_task - wake up a newly created task for the first time.
2051 *
2052 * This function will do some initial scheduler statistics housekeeping
2053 * that must be done for every newly created context, then puts the task
2054 * on the runqueue and wakes it.
2055 */
3e51e3ed 2056void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2057{
2058 unsigned long flags;
dd41f596 2059 struct rq *rq;
fabf318e 2060
ab2515c4 2061 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2062#ifdef CONFIG_SMP
2063 /*
2064 * Fork balancing, do it here and not earlier because:
2065 * - cpus_allowed can change in the fork path
2066 * - any previously selected cpu might disappear through hotplug
fabf318e 2067 */
ac66f547 2068 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2069#endif
2070
a75cdaa9
AS
2071 /* Initialize new task's runnable average */
2072 init_task_runnable_average(p);
ab2515c4 2073 rq = __task_rq_lock(p);
cd29fe6f 2074 activate_task(rq, p, 0);
da0c1e65 2075 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2076 trace_sched_wakeup_new(p, true);
a7558e01 2077 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2078#ifdef CONFIG_SMP
efbbd05a
PZ
2079 if (p->sched_class->task_woken)
2080 p->sched_class->task_woken(rq, p);
9a897c5a 2081#endif
0122ec5b 2082 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2083}
2084
e107be36
AK
2085#ifdef CONFIG_PREEMPT_NOTIFIERS
2086
2087/**
80dd99b3 2088 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2089 * @notifier: notifier struct to register
e107be36
AK
2090 */
2091void preempt_notifier_register(struct preempt_notifier *notifier)
2092{
2093 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2094}
2095EXPORT_SYMBOL_GPL(preempt_notifier_register);
2096
2097/**
2098 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2099 * @notifier: notifier struct to unregister
e107be36
AK
2100 *
2101 * This is safe to call from within a preemption notifier.
2102 */
2103void preempt_notifier_unregister(struct preempt_notifier *notifier)
2104{
2105 hlist_del(&notifier->link);
2106}
2107EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2108
2109static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2110{
2111 struct preempt_notifier *notifier;
e107be36 2112
b67bfe0d 2113 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2114 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2115}
2116
2117static void
2118fire_sched_out_preempt_notifiers(struct task_struct *curr,
2119 struct task_struct *next)
2120{
2121 struct preempt_notifier *notifier;
e107be36 2122
b67bfe0d 2123 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2124 notifier->ops->sched_out(notifier, next);
2125}
2126
6d6bc0ad 2127#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2128
2129static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2130{
2131}
2132
2133static void
2134fire_sched_out_preempt_notifiers(struct task_struct *curr,
2135 struct task_struct *next)
2136{
2137}
2138
6d6bc0ad 2139#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2140
4866cde0
NP
2141/**
2142 * prepare_task_switch - prepare to switch tasks
2143 * @rq: the runqueue preparing to switch
421cee29 2144 * @prev: the current task that is being switched out
4866cde0
NP
2145 * @next: the task we are going to switch to.
2146 *
2147 * This is called with the rq lock held and interrupts off. It must
2148 * be paired with a subsequent finish_task_switch after the context
2149 * switch.
2150 *
2151 * prepare_task_switch sets up locking and calls architecture specific
2152 * hooks.
2153 */
e107be36
AK
2154static inline void
2155prepare_task_switch(struct rq *rq, struct task_struct *prev,
2156 struct task_struct *next)
4866cde0 2157{
895dd92c 2158 trace_sched_switch(prev, next);
43148951 2159 sched_info_switch(rq, prev, next);
fe4b04fa 2160 perf_event_task_sched_out(prev, next);
e107be36 2161 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2162 prepare_lock_switch(rq, next);
2163 prepare_arch_switch(next);
2164}
2165
1da177e4
LT
2166/**
2167 * finish_task_switch - clean up after a task-switch
2168 * @prev: the thread we just switched away from.
2169 *
4866cde0
NP
2170 * finish_task_switch must be called after the context switch, paired
2171 * with a prepare_task_switch call before the context switch.
2172 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2173 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2174 *
2175 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2176 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2177 * with the lock held can cause deadlocks; see schedule() for
2178 * details.)
dfa50b60
ON
2179 *
2180 * The context switch have flipped the stack from under us and restored the
2181 * local variables which were saved when this task called schedule() in the
2182 * past. prev == current is still correct but we need to recalculate this_rq
2183 * because prev may have moved to another CPU.
1da177e4 2184 */
dfa50b60 2185static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2186 __releases(rq->lock)
2187{
dfa50b60 2188 struct rq *rq = this_rq();
1da177e4 2189 struct mm_struct *mm = rq->prev_mm;
55a101f8 2190 long prev_state;
1da177e4
LT
2191
2192 rq->prev_mm = NULL;
2193
2194 /*
2195 * A task struct has one reference for the use as "current".
c394cc9f 2196 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2197 * schedule one last time. The schedule call will never return, and
2198 * the scheduled task must drop that reference.
c394cc9f 2199 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2200 * still held, otherwise prev could be scheduled on another cpu, die
2201 * there before we look at prev->state, and then the reference would
2202 * be dropped twice.
2203 * Manfred Spraul <manfred@colorfullife.com>
2204 */
55a101f8 2205 prev_state = prev->state;
bf9fae9f 2206 vtime_task_switch(prev);
4866cde0 2207 finish_arch_switch(prev);
a8d757ef 2208 perf_event_task_sched_in(prev, current);
4866cde0 2209 finish_lock_switch(rq, prev);
01f23e16 2210 finish_arch_post_lock_switch();
e8fa1362 2211
e107be36 2212 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2213 if (mm)
2214 mmdrop(mm);
c394cc9f 2215 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2216 if (prev->sched_class->task_dead)
2217 prev->sched_class->task_dead(prev);
2218
c6fd91f0 2219 /*
2220 * Remove function-return probe instances associated with this
2221 * task and put them back on the free list.
9761eea8 2222 */
c6fd91f0 2223 kprobe_flush_task(prev);
1da177e4 2224 put_task_struct(prev);
c6fd91f0 2225 }
99e5ada9
FW
2226
2227 tick_nohz_task_switch(current);
dfa50b60 2228 return rq;
1da177e4
LT
2229}
2230
3f029d3c
GH
2231#ifdef CONFIG_SMP
2232
3f029d3c
GH
2233/* rq->lock is NOT held, but preemption is disabled */
2234static inline void post_schedule(struct rq *rq)
2235{
2236 if (rq->post_schedule) {
2237 unsigned long flags;
2238
05fa785c 2239 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2240 if (rq->curr->sched_class->post_schedule)
2241 rq->curr->sched_class->post_schedule(rq);
05fa785c 2242 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2243
2244 rq->post_schedule = 0;
2245 }
2246}
2247
2248#else
da19ab51 2249
3f029d3c
GH
2250static inline void post_schedule(struct rq *rq)
2251{
1da177e4
LT
2252}
2253
3f029d3c
GH
2254#endif
2255
1da177e4
LT
2256/**
2257 * schedule_tail - first thing a freshly forked thread must call.
2258 * @prev: the thread we just switched away from.
2259 */
722a9f92 2260asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2261 __releases(rq->lock)
2262{
1a43a14a 2263 struct rq *rq;
da19ab51 2264
1a43a14a
ON
2265 /* finish_task_switch() drops rq->lock and enables preemtion */
2266 preempt_disable();
dfa50b60 2267 rq = finish_task_switch(prev);
3f029d3c 2268 post_schedule(rq);
1a43a14a 2269 preempt_enable();
70b97a7f 2270
1da177e4 2271 if (current->set_child_tid)
b488893a 2272 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2273}
2274
2275/*
dfa50b60 2276 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2277 */
dfa50b60 2278static inline struct rq *
70b97a7f 2279context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2280 struct task_struct *next)
1da177e4 2281{
dd41f596 2282 struct mm_struct *mm, *oldmm;
1da177e4 2283
e107be36 2284 prepare_task_switch(rq, prev, next);
fe4b04fa 2285
dd41f596
IM
2286 mm = next->mm;
2287 oldmm = prev->active_mm;
9226d125
ZA
2288 /*
2289 * For paravirt, this is coupled with an exit in switch_to to
2290 * combine the page table reload and the switch backend into
2291 * one hypercall.
2292 */
224101ed 2293 arch_start_context_switch(prev);
9226d125 2294
31915ab4 2295 if (!mm) {
1da177e4
LT
2296 next->active_mm = oldmm;
2297 atomic_inc(&oldmm->mm_count);
2298 enter_lazy_tlb(oldmm, next);
2299 } else
2300 switch_mm(oldmm, mm, next);
2301
31915ab4 2302 if (!prev->mm) {
1da177e4 2303 prev->active_mm = NULL;
1da177e4
LT
2304 rq->prev_mm = oldmm;
2305 }
3a5f5e48
IM
2306 /*
2307 * Since the runqueue lock will be released by the next
2308 * task (which is an invalid locking op but in the case
2309 * of the scheduler it's an obvious special-case), so we
2310 * do an early lockdep release here:
2311 */
8a25d5de 2312 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2313
91d1aa43 2314 context_tracking_task_switch(prev, next);
1da177e4
LT
2315 /* Here we just switch the register state and the stack. */
2316 switch_to(prev, next, prev);
dd41f596 2317 barrier();
dfa50b60
ON
2318
2319 return finish_task_switch(prev);
1da177e4
LT
2320}
2321
2322/*
1c3e8264 2323 * nr_running and nr_context_switches:
1da177e4
LT
2324 *
2325 * externally visible scheduler statistics: current number of runnable
1c3e8264 2326 * threads, total number of context switches performed since bootup.
1da177e4
LT
2327 */
2328unsigned long nr_running(void)
2329{
2330 unsigned long i, sum = 0;
2331
2332 for_each_online_cpu(i)
2333 sum += cpu_rq(i)->nr_running;
2334
2335 return sum;
f711f609 2336}
1da177e4 2337
2ee507c4
TC
2338/*
2339 * Check if only the current task is running on the cpu.
2340 */
2341bool single_task_running(void)
2342{
2343 if (cpu_rq(smp_processor_id())->nr_running == 1)
2344 return true;
2345 else
2346 return false;
2347}
2348EXPORT_SYMBOL(single_task_running);
2349
1da177e4 2350unsigned long long nr_context_switches(void)
46cb4b7c 2351{
cc94abfc
SR
2352 int i;
2353 unsigned long long sum = 0;
46cb4b7c 2354
0a945022 2355 for_each_possible_cpu(i)
1da177e4 2356 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2357
1da177e4
LT
2358 return sum;
2359}
483b4ee6 2360
1da177e4
LT
2361unsigned long nr_iowait(void)
2362{
2363 unsigned long i, sum = 0;
483b4ee6 2364
0a945022 2365 for_each_possible_cpu(i)
1da177e4 2366 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2367
1da177e4
LT
2368 return sum;
2369}
483b4ee6 2370
8c215bd3 2371unsigned long nr_iowait_cpu(int cpu)
69d25870 2372{
8c215bd3 2373 struct rq *this = cpu_rq(cpu);
69d25870
AV
2374 return atomic_read(&this->nr_iowait);
2375}
46cb4b7c 2376
372ba8cb
MG
2377void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2378{
2379 struct rq *this = this_rq();
2380 *nr_waiters = atomic_read(&this->nr_iowait);
2381 *load = this->cpu_load[0];
2382}
2383
dd41f596 2384#ifdef CONFIG_SMP
8a0be9ef 2385
46cb4b7c 2386/*
38022906
PZ
2387 * sched_exec - execve() is a valuable balancing opportunity, because at
2388 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2389 */
38022906 2390void sched_exec(void)
46cb4b7c 2391{
38022906 2392 struct task_struct *p = current;
1da177e4 2393 unsigned long flags;
0017d735 2394 int dest_cpu;
46cb4b7c 2395
8f42ced9 2396 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2397 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2398 if (dest_cpu == smp_processor_id())
2399 goto unlock;
38022906 2400
8f42ced9 2401 if (likely(cpu_active(dest_cpu))) {
969c7921 2402 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2403
8f42ced9
PZ
2404 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2405 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2406 return;
2407 }
0017d735 2408unlock:
8f42ced9 2409 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2410}
dd41f596 2411
1da177e4
LT
2412#endif
2413
1da177e4 2414DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2415DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2416
2417EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2418EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2419
c5f8d995
HS
2420/*
2421 * Return accounted runtime for the task.
2422 * In case the task is currently running, return the runtime plus current's
2423 * pending runtime that have not been accounted yet.
2424 */
2425unsigned long long task_sched_runtime(struct task_struct *p)
2426{
2427 unsigned long flags;
2428 struct rq *rq;
6e998916 2429 u64 ns;
c5f8d995 2430
911b2898
PZ
2431#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2432 /*
2433 * 64-bit doesn't need locks to atomically read a 64bit value.
2434 * So we have a optimization chance when the task's delta_exec is 0.
2435 * Reading ->on_cpu is racy, but this is ok.
2436 *
2437 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2438 * If we race with it entering cpu, unaccounted time is 0. This is
2439 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2440 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2441 * been accounted, so we're correct here as well.
911b2898 2442 */
da0c1e65 2443 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2444 return p->se.sum_exec_runtime;
2445#endif
2446
c5f8d995 2447 rq = task_rq_lock(p, &flags);
6e998916
SG
2448 /*
2449 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2450 * project cycles that may never be accounted to this
2451 * thread, breaking clock_gettime().
2452 */
2453 if (task_current(rq, p) && task_on_rq_queued(p)) {
2454 update_rq_clock(rq);
2455 p->sched_class->update_curr(rq);
2456 }
2457 ns = p->se.sum_exec_runtime;
0122ec5b 2458 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2459
2460 return ns;
2461}
48f24c4d 2462
7835b98b
CL
2463/*
2464 * This function gets called by the timer code, with HZ frequency.
2465 * We call it with interrupts disabled.
7835b98b
CL
2466 */
2467void scheduler_tick(void)
2468{
7835b98b
CL
2469 int cpu = smp_processor_id();
2470 struct rq *rq = cpu_rq(cpu);
dd41f596 2471 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2472
2473 sched_clock_tick();
dd41f596 2474
05fa785c 2475 raw_spin_lock(&rq->lock);
3e51f33f 2476 update_rq_clock(rq);
fa85ae24 2477 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2478 update_cpu_load_active(rq);
05fa785c 2479 raw_spin_unlock(&rq->lock);
7835b98b 2480
e9d2b064 2481 perf_event_task_tick();
e220d2dc 2482
e418e1c2 2483#ifdef CONFIG_SMP
6eb57e0d 2484 rq->idle_balance = idle_cpu(cpu);
7caff66f 2485 trigger_load_balance(rq);
e418e1c2 2486#endif
265f22a9 2487 rq_last_tick_reset(rq);
1da177e4
LT
2488}
2489
265f22a9
FW
2490#ifdef CONFIG_NO_HZ_FULL
2491/**
2492 * scheduler_tick_max_deferment
2493 *
2494 * Keep at least one tick per second when a single
2495 * active task is running because the scheduler doesn't
2496 * yet completely support full dynticks environment.
2497 *
2498 * This makes sure that uptime, CFS vruntime, load
2499 * balancing, etc... continue to move forward, even
2500 * with a very low granularity.
e69f6186
YB
2501 *
2502 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2503 */
2504u64 scheduler_tick_max_deferment(void)
2505{
2506 struct rq *rq = this_rq();
2507 unsigned long next, now = ACCESS_ONCE(jiffies);
2508
2509 next = rq->last_sched_tick + HZ;
2510
2511 if (time_before_eq(next, now))
2512 return 0;
2513
8fe8ff09 2514 return jiffies_to_nsecs(next - now);
1da177e4 2515}
265f22a9 2516#endif
1da177e4 2517
132380a0 2518notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2519{
2520 if (in_lock_functions(addr)) {
2521 addr = CALLER_ADDR2;
2522 if (in_lock_functions(addr))
2523 addr = CALLER_ADDR3;
2524 }
2525 return addr;
2526}
1da177e4 2527
7e49fcce
SR
2528#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2529 defined(CONFIG_PREEMPT_TRACER))
2530
edafe3a5 2531void preempt_count_add(int val)
1da177e4 2532{
6cd8a4bb 2533#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2534 /*
2535 * Underflow?
2536 */
9a11b49a
IM
2537 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2538 return;
6cd8a4bb 2539#endif
bdb43806 2540 __preempt_count_add(val);
6cd8a4bb 2541#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2542 /*
2543 * Spinlock count overflowing soon?
2544 */
33859f7f
MOS
2545 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2546 PREEMPT_MASK - 10);
6cd8a4bb 2547#endif
8f47b187
TG
2548 if (preempt_count() == val) {
2549 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2550#ifdef CONFIG_DEBUG_PREEMPT
2551 current->preempt_disable_ip = ip;
2552#endif
2553 trace_preempt_off(CALLER_ADDR0, ip);
2554 }
1da177e4 2555}
bdb43806 2556EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2557NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2558
edafe3a5 2559void preempt_count_sub(int val)
1da177e4 2560{
6cd8a4bb 2561#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2562 /*
2563 * Underflow?
2564 */
01e3eb82 2565 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2566 return;
1da177e4
LT
2567 /*
2568 * Is the spinlock portion underflowing?
2569 */
9a11b49a
IM
2570 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2571 !(preempt_count() & PREEMPT_MASK)))
2572 return;
6cd8a4bb 2573#endif
9a11b49a 2574
6cd8a4bb
SR
2575 if (preempt_count() == val)
2576 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2577 __preempt_count_sub(val);
1da177e4 2578}
bdb43806 2579EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2580NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2581
2582#endif
2583
2584/*
dd41f596 2585 * Print scheduling while atomic bug:
1da177e4 2586 */
dd41f596 2587static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2588{
664dfa65
DJ
2589 if (oops_in_progress)
2590 return;
2591
3df0fc5b
PZ
2592 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2593 prev->comm, prev->pid, preempt_count());
838225b4 2594
dd41f596 2595 debug_show_held_locks(prev);
e21f5b15 2596 print_modules();
dd41f596
IM
2597 if (irqs_disabled())
2598 print_irqtrace_events(prev);
8f47b187
TG
2599#ifdef CONFIG_DEBUG_PREEMPT
2600 if (in_atomic_preempt_off()) {
2601 pr_err("Preemption disabled at:");
2602 print_ip_sym(current->preempt_disable_ip);
2603 pr_cont("\n");
2604 }
2605#endif
6135fc1e 2606 dump_stack();
373d4d09 2607 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2608}
1da177e4 2609
dd41f596
IM
2610/*
2611 * Various schedule()-time debugging checks and statistics:
2612 */
2613static inline void schedule_debug(struct task_struct *prev)
2614{
0d9e2632
AT
2615#ifdef CONFIG_SCHED_STACK_END_CHECK
2616 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2617#endif
1da177e4 2618 /*
41a2d6cf 2619 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2620 * schedule() atomically, we ignore that path. Otherwise whine
2621 * if we are scheduling when we should not.
1da177e4 2622 */
192301e7 2623 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2624 __schedule_bug(prev);
b3fbab05 2625 rcu_sleep_check();
dd41f596 2626
1da177e4
LT
2627 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2628
2d72376b 2629 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2630}
2631
2632/*
2633 * Pick up the highest-prio task:
2634 */
2635static inline struct task_struct *
606dba2e 2636pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2637{
37e117c0 2638 const struct sched_class *class = &fair_sched_class;
dd41f596 2639 struct task_struct *p;
1da177e4
LT
2640
2641 /*
dd41f596
IM
2642 * Optimization: we know that if all tasks are in
2643 * the fair class we can call that function directly:
1da177e4 2644 */
37e117c0 2645 if (likely(prev->sched_class == class &&
38033c37 2646 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2647 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2648 if (unlikely(p == RETRY_TASK))
2649 goto again;
2650
2651 /* assumes fair_sched_class->next == idle_sched_class */
2652 if (unlikely(!p))
2653 p = idle_sched_class.pick_next_task(rq, prev);
2654
2655 return p;
1da177e4
LT
2656 }
2657
37e117c0 2658again:
34f971f6 2659 for_each_class(class) {
606dba2e 2660 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2661 if (p) {
2662 if (unlikely(p == RETRY_TASK))
2663 goto again;
dd41f596 2664 return p;
37e117c0 2665 }
dd41f596 2666 }
34f971f6
PZ
2667
2668 BUG(); /* the idle class will always have a runnable task */
dd41f596 2669}
1da177e4 2670
dd41f596 2671/*
c259e01a 2672 * __schedule() is the main scheduler function.
edde96ea
PE
2673 *
2674 * The main means of driving the scheduler and thus entering this function are:
2675 *
2676 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2677 *
2678 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2679 * paths. For example, see arch/x86/entry_64.S.
2680 *
2681 * To drive preemption between tasks, the scheduler sets the flag in timer
2682 * interrupt handler scheduler_tick().
2683 *
2684 * 3. Wakeups don't really cause entry into schedule(). They add a
2685 * task to the run-queue and that's it.
2686 *
2687 * Now, if the new task added to the run-queue preempts the current
2688 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2689 * called on the nearest possible occasion:
2690 *
2691 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2692 *
2693 * - in syscall or exception context, at the next outmost
2694 * preempt_enable(). (this might be as soon as the wake_up()'s
2695 * spin_unlock()!)
2696 *
2697 * - in IRQ context, return from interrupt-handler to
2698 * preemptible context
2699 *
2700 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2701 * then at the next:
2702 *
2703 * - cond_resched() call
2704 * - explicit schedule() call
2705 * - return from syscall or exception to user-space
2706 * - return from interrupt-handler to user-space
bfd9b2b5
FW
2707 *
2708 * WARNING: all callers must re-check need_resched() afterward and reschedule
2709 * accordingly in case an event triggered the need for rescheduling (such as
2710 * an interrupt waking up a task) while preemption was disabled in __schedule().
dd41f596 2711 */
c259e01a 2712static void __sched __schedule(void)
dd41f596
IM
2713{
2714 struct task_struct *prev, *next;
67ca7bde 2715 unsigned long *switch_count;
dd41f596 2716 struct rq *rq;
31656519 2717 int cpu;
dd41f596 2718
ff743345 2719 preempt_disable();
dd41f596
IM
2720 cpu = smp_processor_id();
2721 rq = cpu_rq(cpu);
38200cf2 2722 rcu_note_context_switch();
dd41f596 2723 prev = rq->curr;
dd41f596 2724
dd41f596 2725 schedule_debug(prev);
1da177e4 2726
31656519 2727 if (sched_feat(HRTICK))
f333fdc9 2728 hrtick_clear(rq);
8f4d37ec 2729
e0acd0a6
ON
2730 /*
2731 * Make sure that signal_pending_state()->signal_pending() below
2732 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2733 * done by the caller to avoid the race with signal_wake_up().
2734 */
2735 smp_mb__before_spinlock();
05fa785c 2736 raw_spin_lock_irq(&rq->lock);
1da177e4 2737
9edfbfed
PZ
2738 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2739
246d86b5 2740 switch_count = &prev->nivcsw;
1da177e4 2741 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2742 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2743 prev->state = TASK_RUNNING;
21aa9af0 2744 } else {
2acca55e
PZ
2745 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2746 prev->on_rq = 0;
2747
21aa9af0 2748 /*
2acca55e
PZ
2749 * If a worker went to sleep, notify and ask workqueue
2750 * whether it wants to wake up a task to maintain
2751 * concurrency.
21aa9af0
TH
2752 */
2753 if (prev->flags & PF_WQ_WORKER) {
2754 struct task_struct *to_wakeup;
2755
2756 to_wakeup = wq_worker_sleeping(prev, cpu);
2757 if (to_wakeup)
2758 try_to_wake_up_local(to_wakeup);
2759 }
21aa9af0 2760 }
dd41f596 2761 switch_count = &prev->nvcsw;
1da177e4
LT
2762 }
2763
9edfbfed 2764 if (task_on_rq_queued(prev))
606dba2e
PZ
2765 update_rq_clock(rq);
2766
2767 next = pick_next_task(rq, prev);
f26f9aff 2768 clear_tsk_need_resched(prev);
f27dde8d 2769 clear_preempt_need_resched();
9edfbfed 2770 rq->clock_skip_update = 0;
1da177e4 2771
1da177e4 2772 if (likely(prev != next)) {
1da177e4
LT
2773 rq->nr_switches++;
2774 rq->curr = next;
2775 ++*switch_count;
2776
dfa50b60
ON
2777 rq = context_switch(rq, prev, next); /* unlocks the rq */
2778 cpu = cpu_of(rq);
1da177e4 2779 } else
05fa785c 2780 raw_spin_unlock_irq(&rq->lock);
1da177e4 2781
3f029d3c 2782 post_schedule(rq);
1da177e4 2783
ba74c144 2784 sched_preempt_enable_no_resched();
1da177e4 2785}
c259e01a 2786
9c40cef2
TG
2787static inline void sched_submit_work(struct task_struct *tsk)
2788{
3c7d5184 2789 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2790 return;
2791 /*
2792 * If we are going to sleep and we have plugged IO queued,
2793 * make sure to submit it to avoid deadlocks.
2794 */
2795 if (blk_needs_flush_plug(tsk))
2796 blk_schedule_flush_plug(tsk);
2797}
2798
722a9f92 2799asmlinkage __visible void __sched schedule(void)
c259e01a 2800{
9c40cef2
TG
2801 struct task_struct *tsk = current;
2802
2803 sched_submit_work(tsk);
bfd9b2b5
FW
2804 do {
2805 __schedule();
2806 } while (need_resched());
c259e01a 2807}
1da177e4
LT
2808EXPORT_SYMBOL(schedule);
2809
91d1aa43 2810#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2811asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2812{
2813 /*
2814 * If we come here after a random call to set_need_resched(),
2815 * or we have been woken up remotely but the IPI has not yet arrived,
2816 * we haven't yet exited the RCU idle mode. Do it here manually until
2817 * we find a better solution.
7cc78f8f
AL
2818 *
2819 * NB: There are buggy callers of this function. Ideally we
c467ea76 2820 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 2821 * too frequently to make sense yet.
20ab65e3 2822 */
7cc78f8f 2823 enum ctx_state prev_state = exception_enter();
20ab65e3 2824 schedule();
7cc78f8f 2825 exception_exit(prev_state);
20ab65e3
FW
2826}
2827#endif
2828
c5491ea7
TG
2829/**
2830 * schedule_preempt_disabled - called with preemption disabled
2831 *
2832 * Returns with preemption disabled. Note: preempt_count must be 1
2833 */
2834void __sched schedule_preempt_disabled(void)
2835{
ba74c144 2836 sched_preempt_enable_no_resched();
c5491ea7
TG
2837 schedule();
2838 preempt_disable();
2839}
2840
06b1f808 2841static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
2842{
2843 do {
2844 __preempt_count_add(PREEMPT_ACTIVE);
2845 __schedule();
2846 __preempt_count_sub(PREEMPT_ACTIVE);
2847
2848 /*
2849 * Check again in case we missed a preemption opportunity
2850 * between schedule and now.
2851 */
2852 barrier();
2853 } while (need_resched());
2854}
2855
1da177e4
LT
2856#ifdef CONFIG_PREEMPT
2857/*
2ed6e34f 2858 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2859 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2860 * occur there and call schedule directly.
2861 */
722a9f92 2862asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2863{
1da177e4
LT
2864 /*
2865 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2866 * we do not want to preempt the current task. Just return..
1da177e4 2867 */
fbb00b56 2868 if (likely(!preemptible()))
1da177e4
LT
2869 return;
2870
a18b5d01 2871 preempt_schedule_common();
1da177e4 2872}
376e2424 2873NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2874EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2875
2876#ifdef CONFIG_CONTEXT_TRACKING
2877/**
2878 * preempt_schedule_context - preempt_schedule called by tracing
2879 *
2880 * The tracing infrastructure uses preempt_enable_notrace to prevent
2881 * recursion and tracing preempt enabling caused by the tracing
2882 * infrastructure itself. But as tracing can happen in areas coming
2883 * from userspace or just about to enter userspace, a preempt enable
2884 * can occur before user_exit() is called. This will cause the scheduler
2885 * to be called when the system is still in usermode.
2886 *
2887 * To prevent this, the preempt_enable_notrace will use this function
2888 * instead of preempt_schedule() to exit user context if needed before
2889 * calling the scheduler.
2890 */
2891asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2892{
2893 enum ctx_state prev_ctx;
2894
2895 if (likely(!preemptible()))
2896 return;
2897
2898 do {
2899 __preempt_count_add(PREEMPT_ACTIVE);
2900 /*
2901 * Needs preempt disabled in case user_exit() is traced
2902 * and the tracer calls preempt_enable_notrace() causing
2903 * an infinite recursion.
2904 */
2905 prev_ctx = exception_enter();
2906 __schedule();
2907 exception_exit(prev_ctx);
2908
2909 __preempt_count_sub(PREEMPT_ACTIVE);
2910 barrier();
2911 } while (need_resched());
2912}
2913EXPORT_SYMBOL_GPL(preempt_schedule_context);
2914#endif /* CONFIG_CONTEXT_TRACKING */
2915
32e475d7 2916#endif /* CONFIG_PREEMPT */
1da177e4
LT
2917
2918/*
2ed6e34f 2919 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2920 * off of irq context.
2921 * Note, that this is called and return with irqs disabled. This will
2922 * protect us against recursive calling from irq.
2923 */
722a9f92 2924asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2925{
b22366cd 2926 enum ctx_state prev_state;
6478d880 2927
2ed6e34f 2928 /* Catch callers which need to be fixed */
f27dde8d 2929 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2930
b22366cd
FW
2931 prev_state = exception_enter();
2932
3a5c359a 2933 do {
bdb43806 2934 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2935 local_irq_enable();
c259e01a 2936 __schedule();
3a5c359a 2937 local_irq_disable();
bdb43806 2938 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2939
3a5c359a
AK
2940 /*
2941 * Check again in case we missed a preemption opportunity
2942 * between schedule and now.
2943 */
2944 barrier();
5ed0cec0 2945 } while (need_resched());
b22366cd
FW
2946
2947 exception_exit(prev_state);
1da177e4
LT
2948}
2949
63859d4f 2950int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2951 void *key)
1da177e4 2952{
63859d4f 2953 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2954}
1da177e4
LT
2955EXPORT_SYMBOL(default_wake_function);
2956
b29739f9
IM
2957#ifdef CONFIG_RT_MUTEXES
2958
2959/*
2960 * rt_mutex_setprio - set the current priority of a task
2961 * @p: task
2962 * @prio: prio value (kernel-internal form)
2963 *
2964 * This function changes the 'effective' priority of a task. It does
2965 * not touch ->normal_prio like __setscheduler().
2966 *
c365c292
TG
2967 * Used by the rt_mutex code to implement priority inheritance
2968 * logic. Call site only calls if the priority of the task changed.
b29739f9 2969 */
36c8b586 2970void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2971{
da0c1e65 2972 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 2973 struct rq *rq;
83ab0aa0 2974 const struct sched_class *prev_class;
b29739f9 2975
aab03e05 2976 BUG_ON(prio > MAX_PRIO);
b29739f9 2977
0122ec5b 2978 rq = __task_rq_lock(p);
b29739f9 2979
1c4dd99b
TG
2980 /*
2981 * Idle task boosting is a nono in general. There is one
2982 * exception, when PREEMPT_RT and NOHZ is active:
2983 *
2984 * The idle task calls get_next_timer_interrupt() and holds
2985 * the timer wheel base->lock on the CPU and another CPU wants
2986 * to access the timer (probably to cancel it). We can safely
2987 * ignore the boosting request, as the idle CPU runs this code
2988 * with interrupts disabled and will complete the lock
2989 * protected section without being interrupted. So there is no
2990 * real need to boost.
2991 */
2992 if (unlikely(p == rq->idle)) {
2993 WARN_ON(p != rq->curr);
2994 WARN_ON(p->pi_blocked_on);
2995 goto out_unlock;
2996 }
2997
a8027073 2998 trace_sched_pi_setprio(p, prio);
d5f9f942 2999 oldprio = p->prio;
83ab0aa0 3000 prev_class = p->sched_class;
da0c1e65 3001 queued = task_on_rq_queued(p);
051a1d1a 3002 running = task_current(rq, p);
da0c1e65 3003 if (queued)
69be72c1 3004 dequeue_task(rq, p, 0);
0e1f3483 3005 if (running)
f3cd1c4e 3006 put_prev_task(rq, p);
dd41f596 3007
2d3d891d
DF
3008 /*
3009 * Boosting condition are:
3010 * 1. -rt task is running and holds mutex A
3011 * --> -dl task blocks on mutex A
3012 *
3013 * 2. -dl task is running and holds mutex A
3014 * --> -dl task blocks on mutex A and could preempt the
3015 * running task
3016 */
3017 if (dl_prio(prio)) {
466af29b
ON
3018 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3019 if (!dl_prio(p->normal_prio) ||
3020 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3021 p->dl.dl_boosted = 1;
3022 p->dl.dl_throttled = 0;
3023 enqueue_flag = ENQUEUE_REPLENISH;
3024 } else
3025 p->dl.dl_boosted = 0;
aab03e05 3026 p->sched_class = &dl_sched_class;
2d3d891d
DF
3027 } else if (rt_prio(prio)) {
3028 if (dl_prio(oldprio))
3029 p->dl.dl_boosted = 0;
3030 if (oldprio < prio)
3031 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3032 p->sched_class = &rt_sched_class;
2d3d891d
DF
3033 } else {
3034 if (dl_prio(oldprio))
3035 p->dl.dl_boosted = 0;
746db944
BS
3036 if (rt_prio(oldprio))
3037 p->rt.timeout = 0;
dd41f596 3038 p->sched_class = &fair_sched_class;
2d3d891d 3039 }
dd41f596 3040
b29739f9
IM
3041 p->prio = prio;
3042
0e1f3483
HS
3043 if (running)
3044 p->sched_class->set_curr_task(rq);
da0c1e65 3045 if (queued)
2d3d891d 3046 enqueue_task(rq, p, enqueue_flag);
cb469845 3047
da7a735e 3048 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3049out_unlock:
0122ec5b 3050 __task_rq_unlock(rq);
b29739f9 3051}
b29739f9 3052#endif
d50dde5a 3053
36c8b586 3054void set_user_nice(struct task_struct *p, long nice)
1da177e4 3055{
da0c1e65 3056 int old_prio, delta, queued;
1da177e4 3057 unsigned long flags;
70b97a7f 3058 struct rq *rq;
1da177e4 3059
75e45d51 3060 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3061 return;
3062 /*
3063 * We have to be careful, if called from sys_setpriority(),
3064 * the task might be in the middle of scheduling on another CPU.
3065 */
3066 rq = task_rq_lock(p, &flags);
3067 /*
3068 * The RT priorities are set via sched_setscheduler(), but we still
3069 * allow the 'normal' nice value to be set - but as expected
3070 * it wont have any effect on scheduling until the task is
aab03e05 3071 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3072 */
aab03e05 3073 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3074 p->static_prio = NICE_TO_PRIO(nice);
3075 goto out_unlock;
3076 }
da0c1e65
KT
3077 queued = task_on_rq_queued(p);
3078 if (queued)
69be72c1 3079 dequeue_task(rq, p, 0);
1da177e4 3080
1da177e4 3081 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3082 set_load_weight(p);
b29739f9
IM
3083 old_prio = p->prio;
3084 p->prio = effective_prio(p);
3085 delta = p->prio - old_prio;
1da177e4 3086
da0c1e65 3087 if (queued) {
371fd7e7 3088 enqueue_task(rq, p, 0);
1da177e4 3089 /*
d5f9f942
AM
3090 * If the task increased its priority or is running and
3091 * lowered its priority, then reschedule its CPU:
1da177e4 3092 */
d5f9f942 3093 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3094 resched_curr(rq);
1da177e4
LT
3095 }
3096out_unlock:
0122ec5b 3097 task_rq_unlock(rq, p, &flags);
1da177e4 3098}
1da177e4
LT
3099EXPORT_SYMBOL(set_user_nice);
3100
e43379f1
MM
3101/*
3102 * can_nice - check if a task can reduce its nice value
3103 * @p: task
3104 * @nice: nice value
3105 */
36c8b586 3106int can_nice(const struct task_struct *p, const int nice)
e43379f1 3107{
024f4747 3108 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3109 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3110
78d7d407 3111 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3112 capable(CAP_SYS_NICE));
3113}
3114
1da177e4
LT
3115#ifdef __ARCH_WANT_SYS_NICE
3116
3117/*
3118 * sys_nice - change the priority of the current process.
3119 * @increment: priority increment
3120 *
3121 * sys_setpriority is a more generic, but much slower function that
3122 * does similar things.
3123 */
5add95d4 3124SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3125{
48f24c4d 3126 long nice, retval;
1da177e4
LT
3127
3128 /*
3129 * Setpriority might change our priority at the same moment.
3130 * We don't have to worry. Conceptually one call occurs first
3131 * and we have a single winner.
3132 */
a9467fa3 3133 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3134 nice = task_nice(current) + increment;
1da177e4 3135
a9467fa3 3136 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3137 if (increment < 0 && !can_nice(current, nice))
3138 return -EPERM;
3139
1da177e4
LT
3140 retval = security_task_setnice(current, nice);
3141 if (retval)
3142 return retval;
3143
3144 set_user_nice(current, nice);
3145 return 0;
3146}
3147
3148#endif
3149
3150/**
3151 * task_prio - return the priority value of a given task.
3152 * @p: the task in question.
3153 *
e69f6186 3154 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3155 * RT tasks are offset by -200. Normal tasks are centered
3156 * around 0, value goes from -16 to +15.
3157 */
36c8b586 3158int task_prio(const struct task_struct *p)
1da177e4
LT
3159{
3160 return p->prio - MAX_RT_PRIO;
3161}
3162
1da177e4
LT
3163/**
3164 * idle_cpu - is a given cpu idle currently?
3165 * @cpu: the processor in question.
e69f6186
YB
3166 *
3167 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3168 */
3169int idle_cpu(int cpu)
3170{
908a3283
TG
3171 struct rq *rq = cpu_rq(cpu);
3172
3173 if (rq->curr != rq->idle)
3174 return 0;
3175
3176 if (rq->nr_running)
3177 return 0;
3178
3179#ifdef CONFIG_SMP
3180 if (!llist_empty(&rq->wake_list))
3181 return 0;
3182#endif
3183
3184 return 1;
1da177e4
LT
3185}
3186
1da177e4
LT
3187/**
3188 * idle_task - return the idle task for a given cpu.
3189 * @cpu: the processor in question.
e69f6186
YB
3190 *
3191 * Return: The idle task for the cpu @cpu.
1da177e4 3192 */
36c8b586 3193struct task_struct *idle_task(int cpu)
1da177e4
LT
3194{
3195 return cpu_rq(cpu)->idle;
3196}
3197
3198/**
3199 * find_process_by_pid - find a process with a matching PID value.
3200 * @pid: the pid in question.
e69f6186
YB
3201 *
3202 * The task of @pid, if found. %NULL otherwise.
1da177e4 3203 */
a9957449 3204static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3205{
228ebcbe 3206 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3207}
3208
aab03e05
DF
3209/*
3210 * This function initializes the sched_dl_entity of a newly becoming
3211 * SCHED_DEADLINE task.
3212 *
3213 * Only the static values are considered here, the actual runtime and the
3214 * absolute deadline will be properly calculated when the task is enqueued
3215 * for the first time with its new policy.
3216 */
3217static void
3218__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3219{
3220 struct sched_dl_entity *dl_se = &p->dl;
3221
aab03e05
DF
3222 dl_se->dl_runtime = attr->sched_runtime;
3223 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3224 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3225 dl_se->flags = attr->sched_flags;
332ac17e 3226 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3227
3228 /*
3229 * Changing the parameters of a task is 'tricky' and we're not doing
3230 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3231 *
3232 * What we SHOULD do is delay the bandwidth release until the 0-lag
3233 * point. This would include retaining the task_struct until that time
3234 * and change dl_overflow() to not immediately decrement the current
3235 * amount.
3236 *
3237 * Instead we retain the current runtime/deadline and let the new
3238 * parameters take effect after the current reservation period lapses.
3239 * This is safe (albeit pessimistic) because the 0-lag point is always
3240 * before the current scheduling deadline.
3241 *
3242 * We can still have temporary overloads because we do not delay the
3243 * change in bandwidth until that time; so admission control is
3244 * not on the safe side. It does however guarantee tasks will never
3245 * consume more than promised.
3246 */
aab03e05
DF
3247}
3248
c13db6b1
SR
3249/*
3250 * sched_setparam() passes in -1 for its policy, to let the functions
3251 * it calls know not to change it.
3252 */
3253#define SETPARAM_POLICY -1
3254
c365c292
TG
3255static void __setscheduler_params(struct task_struct *p,
3256 const struct sched_attr *attr)
1da177e4 3257{
d50dde5a
DF
3258 int policy = attr->sched_policy;
3259
c13db6b1 3260 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3261 policy = p->policy;
3262
1da177e4 3263 p->policy = policy;
d50dde5a 3264
aab03e05
DF
3265 if (dl_policy(policy))
3266 __setparam_dl(p, attr);
39fd8fd2 3267 else if (fair_policy(policy))
d50dde5a
DF
3268 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3269
39fd8fd2
PZ
3270 /*
3271 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3272 * !rt_policy. Always setting this ensures that things like
3273 * getparam()/getattr() don't report silly values for !rt tasks.
3274 */
3275 p->rt_priority = attr->sched_priority;
383afd09 3276 p->normal_prio = normal_prio(p);
c365c292
TG
3277 set_load_weight(p);
3278}
39fd8fd2 3279
c365c292
TG
3280/* Actually do priority change: must hold pi & rq lock. */
3281static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3282 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3283{
3284 __setscheduler_params(p, attr);
d50dde5a 3285
383afd09 3286 /*
0782e63b
TG
3287 * Keep a potential priority boosting if called from
3288 * sched_setscheduler().
383afd09 3289 */
0782e63b
TG
3290 if (keep_boost)
3291 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3292 else
3293 p->prio = normal_prio(p);
383afd09 3294
aab03e05
DF
3295 if (dl_prio(p->prio))
3296 p->sched_class = &dl_sched_class;
3297 else if (rt_prio(p->prio))
ffd44db5
PZ
3298 p->sched_class = &rt_sched_class;
3299 else
3300 p->sched_class = &fair_sched_class;
1da177e4 3301}
aab03e05
DF
3302
3303static void
3304__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3305{
3306 struct sched_dl_entity *dl_se = &p->dl;
3307
3308 attr->sched_priority = p->rt_priority;
3309 attr->sched_runtime = dl_se->dl_runtime;
3310 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3311 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3312 attr->sched_flags = dl_se->flags;
3313}
3314
3315/*
3316 * This function validates the new parameters of a -deadline task.
3317 * We ask for the deadline not being zero, and greater or equal
755378a4 3318 * than the runtime, as well as the period of being zero or
332ac17e 3319 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3320 * user parameters are above the internal resolution of 1us (we
3321 * check sched_runtime only since it is always the smaller one) and
3322 * below 2^63 ns (we have to check both sched_deadline and
3323 * sched_period, as the latter can be zero).
aab03e05
DF
3324 */
3325static bool
3326__checkparam_dl(const struct sched_attr *attr)
3327{
b0827819
JL
3328 /* deadline != 0 */
3329 if (attr->sched_deadline == 0)
3330 return false;
3331
3332 /*
3333 * Since we truncate DL_SCALE bits, make sure we're at least
3334 * that big.
3335 */
3336 if (attr->sched_runtime < (1ULL << DL_SCALE))
3337 return false;
3338
3339 /*
3340 * Since we use the MSB for wrap-around and sign issues, make
3341 * sure it's not set (mind that period can be equal to zero).
3342 */
3343 if (attr->sched_deadline & (1ULL << 63) ||
3344 attr->sched_period & (1ULL << 63))
3345 return false;
3346
3347 /* runtime <= deadline <= period (if period != 0) */
3348 if ((attr->sched_period != 0 &&
3349 attr->sched_period < attr->sched_deadline) ||
3350 attr->sched_deadline < attr->sched_runtime)
3351 return false;
3352
3353 return true;
aab03e05
DF
3354}
3355
c69e8d9c
DH
3356/*
3357 * check the target process has a UID that matches the current process's
3358 */
3359static bool check_same_owner(struct task_struct *p)
3360{
3361 const struct cred *cred = current_cred(), *pcred;
3362 bool match;
3363
3364 rcu_read_lock();
3365 pcred = __task_cred(p);
9c806aa0
EB
3366 match = (uid_eq(cred->euid, pcred->euid) ||
3367 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3368 rcu_read_unlock();
3369 return match;
3370}
3371
75381608
WL
3372static bool dl_param_changed(struct task_struct *p,
3373 const struct sched_attr *attr)
3374{
3375 struct sched_dl_entity *dl_se = &p->dl;
3376
3377 if (dl_se->dl_runtime != attr->sched_runtime ||
3378 dl_se->dl_deadline != attr->sched_deadline ||
3379 dl_se->dl_period != attr->sched_period ||
3380 dl_se->flags != attr->sched_flags)
3381 return true;
3382
3383 return false;
3384}
3385
d50dde5a
DF
3386static int __sched_setscheduler(struct task_struct *p,
3387 const struct sched_attr *attr,
3388 bool user)
1da177e4 3389{
383afd09
SR
3390 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3391 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3392 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3393 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3394 unsigned long flags;
83ab0aa0 3395 const struct sched_class *prev_class;
70b97a7f 3396 struct rq *rq;
ca94c442 3397 int reset_on_fork;
1da177e4 3398
66e5393a
SR
3399 /* may grab non-irq protected spin_locks */
3400 BUG_ON(in_interrupt());
1da177e4
LT
3401recheck:
3402 /* double check policy once rq lock held */
ca94c442
LP
3403 if (policy < 0) {
3404 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3405 policy = oldpolicy = p->policy;
ca94c442 3406 } else {
7479f3c9 3407 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3408
aab03e05
DF
3409 if (policy != SCHED_DEADLINE &&
3410 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3411 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3412 policy != SCHED_IDLE)
3413 return -EINVAL;
3414 }
3415
7479f3c9
PZ
3416 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3417 return -EINVAL;
3418
1da177e4
LT
3419 /*
3420 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3421 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3422 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3423 */
0bb040a4 3424 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3425 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3426 return -EINVAL;
aab03e05
DF
3427 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3428 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3429 return -EINVAL;
3430
37e4ab3f
OC
3431 /*
3432 * Allow unprivileged RT tasks to decrease priority:
3433 */
961ccddd 3434 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3435 if (fair_policy(policy)) {
d0ea0268 3436 if (attr->sched_nice < task_nice(p) &&
eaad4513 3437 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3438 return -EPERM;
3439 }
3440
e05606d3 3441 if (rt_policy(policy)) {
a44702e8
ON
3442 unsigned long rlim_rtprio =
3443 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3444
3445 /* can't set/change the rt policy */
3446 if (policy != p->policy && !rlim_rtprio)
3447 return -EPERM;
3448
3449 /* can't increase priority */
d50dde5a
DF
3450 if (attr->sched_priority > p->rt_priority &&
3451 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3452 return -EPERM;
3453 }
c02aa73b 3454
d44753b8
JL
3455 /*
3456 * Can't set/change SCHED_DEADLINE policy at all for now
3457 * (safest behavior); in the future we would like to allow
3458 * unprivileged DL tasks to increase their relative deadline
3459 * or reduce their runtime (both ways reducing utilization)
3460 */
3461 if (dl_policy(policy))
3462 return -EPERM;
3463
dd41f596 3464 /*
c02aa73b
DH
3465 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3466 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3467 */
c02aa73b 3468 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3469 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3470 return -EPERM;
3471 }
5fe1d75f 3472
37e4ab3f 3473 /* can't change other user's priorities */
c69e8d9c 3474 if (!check_same_owner(p))
37e4ab3f 3475 return -EPERM;
ca94c442
LP
3476
3477 /* Normal users shall not reset the sched_reset_on_fork flag */
3478 if (p->sched_reset_on_fork && !reset_on_fork)
3479 return -EPERM;
37e4ab3f 3480 }
1da177e4 3481
725aad24 3482 if (user) {
b0ae1981 3483 retval = security_task_setscheduler(p);
725aad24
JF
3484 if (retval)
3485 return retval;
3486 }
3487
b29739f9
IM
3488 /*
3489 * make sure no PI-waiters arrive (or leave) while we are
3490 * changing the priority of the task:
0122ec5b 3491 *
25985edc 3492 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3493 * runqueue lock must be held.
3494 */
0122ec5b 3495 rq = task_rq_lock(p, &flags);
dc61b1d6 3496
34f971f6
PZ
3497 /*
3498 * Changing the policy of the stop threads its a very bad idea
3499 */
3500 if (p == rq->stop) {
0122ec5b 3501 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3502 return -EINVAL;
3503 }
3504
a51e9198 3505 /*
d6b1e911
TG
3506 * If not changing anything there's no need to proceed further,
3507 * but store a possible modification of reset_on_fork.
a51e9198 3508 */
d50dde5a 3509 if (unlikely(policy == p->policy)) {
d0ea0268 3510 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3511 goto change;
3512 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3513 goto change;
75381608 3514 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3515 goto change;
d50dde5a 3516
d6b1e911 3517 p->sched_reset_on_fork = reset_on_fork;
45afb173 3518 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3519 return 0;
3520 }
d50dde5a 3521change:
a51e9198 3522
dc61b1d6 3523 if (user) {
332ac17e 3524#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3525 /*
3526 * Do not allow realtime tasks into groups that have no runtime
3527 * assigned.
3528 */
3529 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3530 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3531 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3532 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3533 return -EPERM;
3534 }
dc61b1d6 3535#endif
332ac17e
DF
3536#ifdef CONFIG_SMP
3537 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3538 cpumask_t *span = rq->rd->span;
332ac17e
DF
3539
3540 /*
3541 * Don't allow tasks with an affinity mask smaller than
3542 * the entire root_domain to become SCHED_DEADLINE. We
3543 * will also fail if there's no bandwidth available.
3544 */
e4099a5e
PZ
3545 if (!cpumask_subset(span, &p->cpus_allowed) ||
3546 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3547 task_rq_unlock(rq, p, &flags);
3548 return -EPERM;
3549 }
3550 }
3551#endif
3552 }
dc61b1d6 3553
1da177e4
LT
3554 /* recheck policy now with rq lock held */
3555 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3556 policy = oldpolicy = -1;
0122ec5b 3557 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3558 goto recheck;
3559 }
332ac17e
DF
3560
3561 /*
3562 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3563 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3564 * is available.
3565 */
e4099a5e 3566 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3567 task_rq_unlock(rq, p, &flags);
3568 return -EBUSY;
3569 }
3570
c365c292
TG
3571 p->sched_reset_on_fork = reset_on_fork;
3572 oldprio = p->prio;
3573
3574 /*
0782e63b
TG
3575 * Take priority boosted tasks into account. If the new
3576 * effective priority is unchanged, we just store the new
c365c292
TG
3577 * normal parameters and do not touch the scheduler class and
3578 * the runqueue. This will be done when the task deboost
3579 * itself.
3580 */
0782e63b
TG
3581 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3582 if (new_effective_prio == oldprio) {
c365c292
TG
3583 __setscheduler_params(p, attr);
3584 task_rq_unlock(rq, p, &flags);
3585 return 0;
3586 }
3587
da0c1e65 3588 queued = task_on_rq_queued(p);
051a1d1a 3589 running = task_current(rq, p);
da0c1e65 3590 if (queued)
4ca9b72b 3591 dequeue_task(rq, p, 0);
0e1f3483 3592 if (running)
f3cd1c4e 3593 put_prev_task(rq, p);
f6b53205 3594
83ab0aa0 3595 prev_class = p->sched_class;
0782e63b 3596 __setscheduler(rq, p, attr, true);
f6b53205 3597
0e1f3483
HS
3598 if (running)
3599 p->sched_class->set_curr_task(rq);
da0c1e65 3600 if (queued) {
81a44c54
TG
3601 /*
3602 * We enqueue to tail when the priority of a task is
3603 * increased (user space view).
3604 */
3605 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3606 }
cb469845 3607
da7a735e 3608 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3609 task_rq_unlock(rq, p, &flags);
b29739f9 3610
95e02ca9
TG
3611 rt_mutex_adjust_pi(p);
3612
1da177e4
LT
3613 return 0;
3614}
961ccddd 3615
7479f3c9
PZ
3616static int _sched_setscheduler(struct task_struct *p, int policy,
3617 const struct sched_param *param, bool check)
3618{
3619 struct sched_attr attr = {
3620 .sched_policy = policy,
3621 .sched_priority = param->sched_priority,
3622 .sched_nice = PRIO_TO_NICE(p->static_prio),
3623 };
3624
c13db6b1
SR
3625 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3626 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3627 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3628 policy &= ~SCHED_RESET_ON_FORK;
3629 attr.sched_policy = policy;
3630 }
3631
3632 return __sched_setscheduler(p, &attr, check);
3633}
961ccddd
RR
3634/**
3635 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3636 * @p: the task in question.
3637 * @policy: new policy.
3638 * @param: structure containing the new RT priority.
3639 *
e69f6186
YB
3640 * Return: 0 on success. An error code otherwise.
3641 *
961ccddd
RR
3642 * NOTE that the task may be already dead.
3643 */
3644int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3645 const struct sched_param *param)
961ccddd 3646{
7479f3c9 3647 return _sched_setscheduler(p, policy, param, true);
961ccddd 3648}
1da177e4
LT
3649EXPORT_SYMBOL_GPL(sched_setscheduler);
3650
d50dde5a
DF
3651int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3652{
3653 return __sched_setscheduler(p, attr, true);
3654}
3655EXPORT_SYMBOL_GPL(sched_setattr);
3656
961ccddd
RR
3657/**
3658 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3659 * @p: the task in question.
3660 * @policy: new policy.
3661 * @param: structure containing the new RT priority.
3662 *
3663 * Just like sched_setscheduler, only don't bother checking if the
3664 * current context has permission. For example, this is needed in
3665 * stop_machine(): we create temporary high priority worker threads,
3666 * but our caller might not have that capability.
e69f6186
YB
3667 *
3668 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3669 */
3670int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3671 const struct sched_param *param)
961ccddd 3672{
7479f3c9 3673 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3674}
3675
95cdf3b7
IM
3676static int
3677do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3678{
1da177e4
LT
3679 struct sched_param lparam;
3680 struct task_struct *p;
36c8b586 3681 int retval;
1da177e4
LT
3682
3683 if (!param || pid < 0)
3684 return -EINVAL;
3685 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3686 return -EFAULT;
5fe1d75f
ON
3687
3688 rcu_read_lock();
3689 retval = -ESRCH;
1da177e4 3690 p = find_process_by_pid(pid);
5fe1d75f
ON
3691 if (p != NULL)
3692 retval = sched_setscheduler(p, policy, &lparam);
3693 rcu_read_unlock();
36c8b586 3694
1da177e4
LT
3695 return retval;
3696}
3697
d50dde5a
DF
3698/*
3699 * Mimics kernel/events/core.c perf_copy_attr().
3700 */
3701static int sched_copy_attr(struct sched_attr __user *uattr,
3702 struct sched_attr *attr)
3703{
3704 u32 size;
3705 int ret;
3706
3707 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3708 return -EFAULT;
3709
3710 /*
3711 * zero the full structure, so that a short copy will be nice.
3712 */
3713 memset(attr, 0, sizeof(*attr));
3714
3715 ret = get_user(size, &uattr->size);
3716 if (ret)
3717 return ret;
3718
3719 if (size > PAGE_SIZE) /* silly large */
3720 goto err_size;
3721
3722 if (!size) /* abi compat */
3723 size = SCHED_ATTR_SIZE_VER0;
3724
3725 if (size < SCHED_ATTR_SIZE_VER0)
3726 goto err_size;
3727
3728 /*
3729 * If we're handed a bigger struct than we know of,
3730 * ensure all the unknown bits are 0 - i.e. new
3731 * user-space does not rely on any kernel feature
3732 * extensions we dont know about yet.
3733 */
3734 if (size > sizeof(*attr)) {
3735 unsigned char __user *addr;
3736 unsigned char __user *end;
3737 unsigned char val;
3738
3739 addr = (void __user *)uattr + sizeof(*attr);
3740 end = (void __user *)uattr + size;
3741
3742 for (; addr < end; addr++) {
3743 ret = get_user(val, addr);
3744 if (ret)
3745 return ret;
3746 if (val)
3747 goto err_size;
3748 }
3749 size = sizeof(*attr);
3750 }
3751
3752 ret = copy_from_user(attr, uattr, size);
3753 if (ret)
3754 return -EFAULT;
3755
3756 /*
3757 * XXX: do we want to be lenient like existing syscalls; or do we want
3758 * to be strict and return an error on out-of-bounds values?
3759 */
75e45d51 3760 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3761
e78c7bca 3762 return 0;
d50dde5a
DF
3763
3764err_size:
3765 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3766 return -E2BIG;
d50dde5a
DF
3767}
3768
1da177e4
LT
3769/**
3770 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3771 * @pid: the pid in question.
3772 * @policy: new policy.
3773 * @param: structure containing the new RT priority.
e69f6186
YB
3774 *
3775 * Return: 0 on success. An error code otherwise.
1da177e4 3776 */
5add95d4
HC
3777SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3778 struct sched_param __user *, param)
1da177e4 3779{
c21761f1
JB
3780 /* negative values for policy are not valid */
3781 if (policy < 0)
3782 return -EINVAL;
3783
1da177e4
LT
3784 return do_sched_setscheduler(pid, policy, param);
3785}
3786
3787/**
3788 * sys_sched_setparam - set/change the RT priority of a thread
3789 * @pid: the pid in question.
3790 * @param: structure containing the new RT priority.
e69f6186
YB
3791 *
3792 * Return: 0 on success. An error code otherwise.
1da177e4 3793 */
5add95d4 3794SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3795{
c13db6b1 3796 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3797}
3798
d50dde5a
DF
3799/**
3800 * sys_sched_setattr - same as above, but with extended sched_attr
3801 * @pid: the pid in question.
5778fccf 3802 * @uattr: structure containing the extended parameters.
db66d756 3803 * @flags: for future extension.
d50dde5a 3804 */
6d35ab48
PZ
3805SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3806 unsigned int, flags)
d50dde5a
DF
3807{
3808 struct sched_attr attr;
3809 struct task_struct *p;
3810 int retval;
3811
6d35ab48 3812 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3813 return -EINVAL;
3814
143cf23d
MK
3815 retval = sched_copy_attr(uattr, &attr);
3816 if (retval)
3817 return retval;
d50dde5a 3818
b14ed2c2 3819 if ((int)attr.sched_policy < 0)
dbdb2275 3820 return -EINVAL;
d50dde5a
DF
3821
3822 rcu_read_lock();
3823 retval = -ESRCH;
3824 p = find_process_by_pid(pid);
3825 if (p != NULL)
3826 retval = sched_setattr(p, &attr);
3827 rcu_read_unlock();
3828
3829 return retval;
3830}
3831
1da177e4
LT
3832/**
3833 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3834 * @pid: the pid in question.
e69f6186
YB
3835 *
3836 * Return: On success, the policy of the thread. Otherwise, a negative error
3837 * code.
1da177e4 3838 */
5add95d4 3839SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3840{
36c8b586 3841 struct task_struct *p;
3a5c359a 3842 int retval;
1da177e4
LT
3843
3844 if (pid < 0)
3a5c359a 3845 return -EINVAL;
1da177e4
LT
3846
3847 retval = -ESRCH;
5fe85be0 3848 rcu_read_lock();
1da177e4
LT
3849 p = find_process_by_pid(pid);
3850 if (p) {
3851 retval = security_task_getscheduler(p);
3852 if (!retval)
ca94c442
LP
3853 retval = p->policy
3854 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3855 }
5fe85be0 3856 rcu_read_unlock();
1da177e4
LT
3857 return retval;
3858}
3859
3860/**
ca94c442 3861 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3862 * @pid: the pid in question.
3863 * @param: structure containing the RT priority.
e69f6186
YB
3864 *
3865 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3866 * code.
1da177e4 3867 */
5add95d4 3868SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3869{
ce5f7f82 3870 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3871 struct task_struct *p;
3a5c359a 3872 int retval;
1da177e4
LT
3873
3874 if (!param || pid < 0)
3a5c359a 3875 return -EINVAL;
1da177e4 3876
5fe85be0 3877 rcu_read_lock();
1da177e4
LT
3878 p = find_process_by_pid(pid);
3879 retval = -ESRCH;
3880 if (!p)
3881 goto out_unlock;
3882
3883 retval = security_task_getscheduler(p);
3884 if (retval)
3885 goto out_unlock;
3886
ce5f7f82
PZ
3887 if (task_has_rt_policy(p))
3888 lp.sched_priority = p->rt_priority;
5fe85be0 3889 rcu_read_unlock();
1da177e4
LT
3890
3891 /*
3892 * This one might sleep, we cannot do it with a spinlock held ...
3893 */
3894 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3895
1da177e4
LT
3896 return retval;
3897
3898out_unlock:
5fe85be0 3899 rcu_read_unlock();
1da177e4
LT
3900 return retval;
3901}
3902
d50dde5a
DF
3903static int sched_read_attr(struct sched_attr __user *uattr,
3904 struct sched_attr *attr,
3905 unsigned int usize)
3906{
3907 int ret;
3908
3909 if (!access_ok(VERIFY_WRITE, uattr, usize))
3910 return -EFAULT;
3911
3912 /*
3913 * If we're handed a smaller struct than we know of,
3914 * ensure all the unknown bits are 0 - i.e. old
3915 * user-space does not get uncomplete information.
3916 */
3917 if (usize < sizeof(*attr)) {
3918 unsigned char *addr;
3919 unsigned char *end;
3920
3921 addr = (void *)attr + usize;
3922 end = (void *)attr + sizeof(*attr);
3923
3924 for (; addr < end; addr++) {
3925 if (*addr)
22400674 3926 return -EFBIG;
d50dde5a
DF
3927 }
3928
3929 attr->size = usize;
3930 }
3931
4efbc454 3932 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3933 if (ret)
3934 return -EFAULT;
3935
22400674 3936 return 0;
d50dde5a
DF
3937}
3938
3939/**
aab03e05 3940 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3941 * @pid: the pid in question.
5778fccf 3942 * @uattr: structure containing the extended parameters.
d50dde5a 3943 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3944 * @flags: for future extension.
d50dde5a 3945 */
6d35ab48
PZ
3946SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3947 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3948{
3949 struct sched_attr attr = {
3950 .size = sizeof(struct sched_attr),
3951 };
3952 struct task_struct *p;
3953 int retval;
3954
3955 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3956 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3957 return -EINVAL;
3958
3959 rcu_read_lock();
3960 p = find_process_by_pid(pid);
3961 retval = -ESRCH;
3962 if (!p)
3963 goto out_unlock;
3964
3965 retval = security_task_getscheduler(p);
3966 if (retval)
3967 goto out_unlock;
3968
3969 attr.sched_policy = p->policy;
7479f3c9
PZ
3970 if (p->sched_reset_on_fork)
3971 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3972 if (task_has_dl_policy(p))
3973 __getparam_dl(p, &attr);
3974 else if (task_has_rt_policy(p))
d50dde5a
DF
3975 attr.sched_priority = p->rt_priority;
3976 else
d0ea0268 3977 attr.sched_nice = task_nice(p);
d50dde5a
DF
3978
3979 rcu_read_unlock();
3980
3981 retval = sched_read_attr(uattr, &attr, size);
3982 return retval;
3983
3984out_unlock:
3985 rcu_read_unlock();
3986 return retval;
3987}
3988
96f874e2 3989long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3990{
5a16f3d3 3991 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3992 struct task_struct *p;
3993 int retval;
1da177e4 3994
23f5d142 3995 rcu_read_lock();
1da177e4
LT
3996
3997 p = find_process_by_pid(pid);
3998 if (!p) {
23f5d142 3999 rcu_read_unlock();
1da177e4
LT
4000 return -ESRCH;
4001 }
4002
23f5d142 4003 /* Prevent p going away */
1da177e4 4004 get_task_struct(p);
23f5d142 4005 rcu_read_unlock();
1da177e4 4006
14a40ffc
TH
4007 if (p->flags & PF_NO_SETAFFINITY) {
4008 retval = -EINVAL;
4009 goto out_put_task;
4010 }
5a16f3d3
RR
4011 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4012 retval = -ENOMEM;
4013 goto out_put_task;
4014 }
4015 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4016 retval = -ENOMEM;
4017 goto out_free_cpus_allowed;
4018 }
1da177e4 4019 retval = -EPERM;
4c44aaaf
EB
4020 if (!check_same_owner(p)) {
4021 rcu_read_lock();
4022 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4023 rcu_read_unlock();
16303ab2 4024 goto out_free_new_mask;
4c44aaaf
EB
4025 }
4026 rcu_read_unlock();
4027 }
1da177e4 4028
b0ae1981 4029 retval = security_task_setscheduler(p);
e7834f8f 4030 if (retval)
16303ab2 4031 goto out_free_new_mask;
e7834f8f 4032
e4099a5e
PZ
4033
4034 cpuset_cpus_allowed(p, cpus_allowed);
4035 cpumask_and(new_mask, in_mask, cpus_allowed);
4036
332ac17e
DF
4037 /*
4038 * Since bandwidth control happens on root_domain basis,
4039 * if admission test is enabled, we only admit -deadline
4040 * tasks allowed to run on all the CPUs in the task's
4041 * root_domain.
4042 */
4043#ifdef CONFIG_SMP
f1e3a093
KT
4044 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4045 rcu_read_lock();
4046 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4047 retval = -EBUSY;
f1e3a093 4048 rcu_read_unlock();
16303ab2 4049 goto out_free_new_mask;
332ac17e 4050 }
f1e3a093 4051 rcu_read_unlock();
332ac17e
DF
4052 }
4053#endif
49246274 4054again:
5a16f3d3 4055 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4056
8707d8b8 4057 if (!retval) {
5a16f3d3
RR
4058 cpuset_cpus_allowed(p, cpus_allowed);
4059 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4060 /*
4061 * We must have raced with a concurrent cpuset
4062 * update. Just reset the cpus_allowed to the
4063 * cpuset's cpus_allowed
4064 */
5a16f3d3 4065 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4066 goto again;
4067 }
4068 }
16303ab2 4069out_free_new_mask:
5a16f3d3
RR
4070 free_cpumask_var(new_mask);
4071out_free_cpus_allowed:
4072 free_cpumask_var(cpus_allowed);
4073out_put_task:
1da177e4 4074 put_task_struct(p);
1da177e4
LT
4075 return retval;
4076}
4077
4078static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4079 struct cpumask *new_mask)
1da177e4 4080{
96f874e2
RR
4081 if (len < cpumask_size())
4082 cpumask_clear(new_mask);
4083 else if (len > cpumask_size())
4084 len = cpumask_size();
4085
1da177e4
LT
4086 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4087}
4088
4089/**
4090 * sys_sched_setaffinity - set the cpu affinity of a process
4091 * @pid: pid of the process
4092 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4093 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4094 *
4095 * Return: 0 on success. An error code otherwise.
1da177e4 4096 */
5add95d4
HC
4097SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4098 unsigned long __user *, user_mask_ptr)
1da177e4 4099{
5a16f3d3 4100 cpumask_var_t new_mask;
1da177e4
LT
4101 int retval;
4102
5a16f3d3
RR
4103 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4104 return -ENOMEM;
1da177e4 4105
5a16f3d3
RR
4106 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4107 if (retval == 0)
4108 retval = sched_setaffinity(pid, new_mask);
4109 free_cpumask_var(new_mask);
4110 return retval;
1da177e4
LT
4111}
4112
96f874e2 4113long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4114{
36c8b586 4115 struct task_struct *p;
31605683 4116 unsigned long flags;
1da177e4 4117 int retval;
1da177e4 4118
23f5d142 4119 rcu_read_lock();
1da177e4
LT
4120
4121 retval = -ESRCH;
4122 p = find_process_by_pid(pid);
4123 if (!p)
4124 goto out_unlock;
4125
e7834f8f
DQ
4126 retval = security_task_getscheduler(p);
4127 if (retval)
4128 goto out_unlock;
4129
013fdb80 4130 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4131 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4132 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4133
4134out_unlock:
23f5d142 4135 rcu_read_unlock();
1da177e4 4136
9531b62f 4137 return retval;
1da177e4
LT
4138}
4139
4140/**
4141 * sys_sched_getaffinity - get the cpu affinity of a process
4142 * @pid: pid of the process
4143 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4144 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4145 *
4146 * Return: 0 on success. An error code otherwise.
1da177e4 4147 */
5add95d4
HC
4148SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4149 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4150{
4151 int ret;
f17c8607 4152 cpumask_var_t mask;
1da177e4 4153
84fba5ec 4154 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4155 return -EINVAL;
4156 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4157 return -EINVAL;
4158
f17c8607
RR
4159 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4160 return -ENOMEM;
1da177e4 4161
f17c8607
RR
4162 ret = sched_getaffinity(pid, mask);
4163 if (ret == 0) {
8bc037fb 4164 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4165
4166 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4167 ret = -EFAULT;
4168 else
cd3d8031 4169 ret = retlen;
f17c8607
RR
4170 }
4171 free_cpumask_var(mask);
1da177e4 4172
f17c8607 4173 return ret;
1da177e4
LT
4174}
4175
4176/**
4177 * sys_sched_yield - yield the current processor to other threads.
4178 *
dd41f596
IM
4179 * This function yields the current CPU to other tasks. If there are no
4180 * other threads running on this CPU then this function will return.
e69f6186
YB
4181 *
4182 * Return: 0.
1da177e4 4183 */
5add95d4 4184SYSCALL_DEFINE0(sched_yield)
1da177e4 4185{
70b97a7f 4186 struct rq *rq = this_rq_lock();
1da177e4 4187
2d72376b 4188 schedstat_inc(rq, yld_count);
4530d7ab 4189 current->sched_class->yield_task(rq);
1da177e4
LT
4190
4191 /*
4192 * Since we are going to call schedule() anyway, there's
4193 * no need to preempt or enable interrupts:
4194 */
4195 __release(rq->lock);
8a25d5de 4196 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4197 do_raw_spin_unlock(&rq->lock);
ba74c144 4198 sched_preempt_enable_no_resched();
1da177e4
LT
4199
4200 schedule();
4201
4202 return 0;
4203}
4204
02b67cc3 4205int __sched _cond_resched(void)
1da177e4 4206{
d86ee480 4207 if (should_resched()) {
a18b5d01 4208 preempt_schedule_common();
1da177e4
LT
4209 return 1;
4210 }
4211 return 0;
4212}
02b67cc3 4213EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4214
4215/*
613afbf8 4216 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4217 * call schedule, and on return reacquire the lock.
4218 *
41a2d6cf 4219 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4220 * operations here to prevent schedule() from being called twice (once via
4221 * spin_unlock(), once by hand).
4222 */
613afbf8 4223int __cond_resched_lock(spinlock_t *lock)
1da177e4 4224{
d86ee480 4225 int resched = should_resched();
6df3cecb
JK
4226 int ret = 0;
4227
f607c668
PZ
4228 lockdep_assert_held(lock);
4229
4a81e832 4230 if (spin_needbreak(lock) || resched) {
1da177e4 4231 spin_unlock(lock);
d86ee480 4232 if (resched)
a18b5d01 4233 preempt_schedule_common();
95c354fe
NP
4234 else
4235 cpu_relax();
6df3cecb 4236 ret = 1;
1da177e4 4237 spin_lock(lock);
1da177e4 4238 }
6df3cecb 4239 return ret;
1da177e4 4240}
613afbf8 4241EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4242
613afbf8 4243int __sched __cond_resched_softirq(void)
1da177e4
LT
4244{
4245 BUG_ON(!in_softirq());
4246
d86ee480 4247 if (should_resched()) {
98d82567 4248 local_bh_enable();
a18b5d01 4249 preempt_schedule_common();
1da177e4
LT
4250 local_bh_disable();
4251 return 1;
4252 }
4253 return 0;
4254}
613afbf8 4255EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4256
1da177e4
LT
4257/**
4258 * yield - yield the current processor to other threads.
4259 *
8e3fabfd
PZ
4260 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4261 *
4262 * The scheduler is at all times free to pick the calling task as the most
4263 * eligible task to run, if removing the yield() call from your code breaks
4264 * it, its already broken.
4265 *
4266 * Typical broken usage is:
4267 *
4268 * while (!event)
4269 * yield();
4270 *
4271 * where one assumes that yield() will let 'the other' process run that will
4272 * make event true. If the current task is a SCHED_FIFO task that will never
4273 * happen. Never use yield() as a progress guarantee!!
4274 *
4275 * If you want to use yield() to wait for something, use wait_event().
4276 * If you want to use yield() to be 'nice' for others, use cond_resched().
4277 * If you still want to use yield(), do not!
1da177e4
LT
4278 */
4279void __sched yield(void)
4280{
4281 set_current_state(TASK_RUNNING);
4282 sys_sched_yield();
4283}
1da177e4
LT
4284EXPORT_SYMBOL(yield);
4285
d95f4122
MG
4286/**
4287 * yield_to - yield the current processor to another thread in
4288 * your thread group, or accelerate that thread toward the
4289 * processor it's on.
16addf95
RD
4290 * @p: target task
4291 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4292 *
4293 * It's the caller's job to ensure that the target task struct
4294 * can't go away on us before we can do any checks.
4295 *
e69f6186 4296 * Return:
7b270f60
PZ
4297 * true (>0) if we indeed boosted the target task.
4298 * false (0) if we failed to boost the target.
4299 * -ESRCH if there's no task to yield to.
d95f4122 4300 */
fa93384f 4301int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4302{
4303 struct task_struct *curr = current;
4304 struct rq *rq, *p_rq;
4305 unsigned long flags;
c3c18640 4306 int yielded = 0;
d95f4122
MG
4307
4308 local_irq_save(flags);
4309 rq = this_rq();
4310
4311again:
4312 p_rq = task_rq(p);
7b270f60
PZ
4313 /*
4314 * If we're the only runnable task on the rq and target rq also
4315 * has only one task, there's absolutely no point in yielding.
4316 */
4317 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4318 yielded = -ESRCH;
4319 goto out_irq;
4320 }
4321
d95f4122 4322 double_rq_lock(rq, p_rq);
39e24d8f 4323 if (task_rq(p) != p_rq) {
d95f4122
MG
4324 double_rq_unlock(rq, p_rq);
4325 goto again;
4326 }
4327
4328 if (!curr->sched_class->yield_to_task)
7b270f60 4329 goto out_unlock;
d95f4122
MG
4330
4331 if (curr->sched_class != p->sched_class)
7b270f60 4332 goto out_unlock;
d95f4122
MG
4333
4334 if (task_running(p_rq, p) || p->state)
7b270f60 4335 goto out_unlock;
d95f4122
MG
4336
4337 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4338 if (yielded) {
d95f4122 4339 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4340 /*
4341 * Make p's CPU reschedule; pick_next_entity takes care of
4342 * fairness.
4343 */
4344 if (preempt && rq != p_rq)
8875125e 4345 resched_curr(p_rq);
6d1cafd8 4346 }
d95f4122 4347
7b270f60 4348out_unlock:
d95f4122 4349 double_rq_unlock(rq, p_rq);
7b270f60 4350out_irq:
d95f4122
MG
4351 local_irq_restore(flags);
4352
7b270f60 4353 if (yielded > 0)
d95f4122
MG
4354 schedule();
4355
4356 return yielded;
4357}
4358EXPORT_SYMBOL_GPL(yield_to);
4359
1da177e4 4360/*
41a2d6cf 4361 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4362 * that process accounting knows that this is a task in IO wait state.
1da177e4 4363 */
1da177e4
LT
4364long __sched io_schedule_timeout(long timeout)
4365{
9cff8ade
N
4366 int old_iowait = current->in_iowait;
4367 struct rq *rq;
1da177e4
LT
4368 long ret;
4369
9cff8ade
N
4370 current->in_iowait = 1;
4371 if (old_iowait)
4372 blk_schedule_flush_plug(current);
4373 else
4374 blk_flush_plug(current);
4375
0ff92245 4376 delayacct_blkio_start();
9cff8ade 4377 rq = raw_rq();
1da177e4
LT
4378 atomic_inc(&rq->nr_iowait);
4379 ret = schedule_timeout(timeout);
9cff8ade 4380 current->in_iowait = old_iowait;
1da177e4 4381 atomic_dec(&rq->nr_iowait);
0ff92245 4382 delayacct_blkio_end();
9cff8ade 4383
1da177e4
LT
4384 return ret;
4385}
9cff8ade 4386EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4387
4388/**
4389 * sys_sched_get_priority_max - return maximum RT priority.
4390 * @policy: scheduling class.
4391 *
e69f6186
YB
4392 * Return: On success, this syscall returns the maximum
4393 * rt_priority that can be used by a given scheduling class.
4394 * On failure, a negative error code is returned.
1da177e4 4395 */
5add95d4 4396SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4397{
4398 int ret = -EINVAL;
4399
4400 switch (policy) {
4401 case SCHED_FIFO:
4402 case SCHED_RR:
4403 ret = MAX_USER_RT_PRIO-1;
4404 break;
aab03e05 4405 case SCHED_DEADLINE:
1da177e4 4406 case SCHED_NORMAL:
b0a9499c 4407 case SCHED_BATCH:
dd41f596 4408 case SCHED_IDLE:
1da177e4
LT
4409 ret = 0;
4410 break;
4411 }
4412 return ret;
4413}
4414
4415/**
4416 * sys_sched_get_priority_min - return minimum RT priority.
4417 * @policy: scheduling class.
4418 *
e69f6186
YB
4419 * Return: On success, this syscall returns the minimum
4420 * rt_priority that can be used by a given scheduling class.
4421 * On failure, a negative error code is returned.
1da177e4 4422 */
5add95d4 4423SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4424{
4425 int ret = -EINVAL;
4426
4427 switch (policy) {
4428 case SCHED_FIFO:
4429 case SCHED_RR:
4430 ret = 1;
4431 break;
aab03e05 4432 case SCHED_DEADLINE:
1da177e4 4433 case SCHED_NORMAL:
b0a9499c 4434 case SCHED_BATCH:
dd41f596 4435 case SCHED_IDLE:
1da177e4
LT
4436 ret = 0;
4437 }
4438 return ret;
4439}
4440
4441/**
4442 * sys_sched_rr_get_interval - return the default timeslice of a process.
4443 * @pid: pid of the process.
4444 * @interval: userspace pointer to the timeslice value.
4445 *
4446 * this syscall writes the default timeslice value of a given process
4447 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4448 *
4449 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4450 * an error code.
1da177e4 4451 */
17da2bd9 4452SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4453 struct timespec __user *, interval)
1da177e4 4454{
36c8b586 4455 struct task_struct *p;
a4ec24b4 4456 unsigned int time_slice;
dba091b9
TG
4457 unsigned long flags;
4458 struct rq *rq;
3a5c359a 4459 int retval;
1da177e4 4460 struct timespec t;
1da177e4
LT
4461
4462 if (pid < 0)
3a5c359a 4463 return -EINVAL;
1da177e4
LT
4464
4465 retval = -ESRCH;
1a551ae7 4466 rcu_read_lock();
1da177e4
LT
4467 p = find_process_by_pid(pid);
4468 if (!p)
4469 goto out_unlock;
4470
4471 retval = security_task_getscheduler(p);
4472 if (retval)
4473 goto out_unlock;
4474
dba091b9 4475 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4476 time_slice = 0;
4477 if (p->sched_class->get_rr_interval)
4478 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4479 task_rq_unlock(rq, p, &flags);
a4ec24b4 4480
1a551ae7 4481 rcu_read_unlock();
a4ec24b4 4482 jiffies_to_timespec(time_slice, &t);
1da177e4 4483 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4484 return retval;
3a5c359a 4485
1da177e4 4486out_unlock:
1a551ae7 4487 rcu_read_unlock();
1da177e4
LT
4488 return retval;
4489}
4490
7c731e0a 4491static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4492
82a1fcb9 4493void sched_show_task(struct task_struct *p)
1da177e4 4494{
1da177e4 4495 unsigned long free = 0;
4e79752c 4496 int ppid;
1f8a7633 4497 unsigned long state = p->state;
1da177e4 4498
1f8a7633
TH
4499 if (state)
4500 state = __ffs(state) + 1;
28d0686c 4501 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4502 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4503#if BITS_PER_LONG == 32
1da177e4 4504 if (state == TASK_RUNNING)
3df0fc5b 4505 printk(KERN_CONT " running ");
1da177e4 4506 else
3df0fc5b 4507 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4508#else
4509 if (state == TASK_RUNNING)
3df0fc5b 4510 printk(KERN_CONT " running task ");
1da177e4 4511 else
3df0fc5b 4512 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4513#endif
4514#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4515 free = stack_not_used(p);
1da177e4 4516#endif
a90e984c 4517 ppid = 0;
4e79752c 4518 rcu_read_lock();
a90e984c
ON
4519 if (pid_alive(p))
4520 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4521 rcu_read_unlock();
3df0fc5b 4522 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4523 task_pid_nr(p), ppid,
aa47b7e0 4524 (unsigned long)task_thread_info(p)->flags);
1da177e4 4525
3d1cb205 4526 print_worker_info(KERN_INFO, p);
5fb5e6de 4527 show_stack(p, NULL);
1da177e4
LT
4528}
4529
e59e2ae2 4530void show_state_filter(unsigned long state_filter)
1da177e4 4531{
36c8b586 4532 struct task_struct *g, *p;
1da177e4 4533
4bd77321 4534#if BITS_PER_LONG == 32
3df0fc5b
PZ
4535 printk(KERN_INFO
4536 " task PC stack pid father\n");
1da177e4 4537#else
3df0fc5b
PZ
4538 printk(KERN_INFO
4539 " task PC stack pid father\n");
1da177e4 4540#endif
510f5acc 4541 rcu_read_lock();
5d07f420 4542 for_each_process_thread(g, p) {
1da177e4
LT
4543 /*
4544 * reset the NMI-timeout, listing all files on a slow
25985edc 4545 * console might take a lot of time:
1da177e4
LT
4546 */
4547 touch_nmi_watchdog();
39bc89fd 4548 if (!state_filter || (p->state & state_filter))
82a1fcb9 4549 sched_show_task(p);
5d07f420 4550 }
1da177e4 4551
04c9167f
JF
4552 touch_all_softlockup_watchdogs();
4553
dd41f596
IM
4554#ifdef CONFIG_SCHED_DEBUG
4555 sysrq_sched_debug_show();
4556#endif
510f5acc 4557 rcu_read_unlock();
e59e2ae2
IM
4558 /*
4559 * Only show locks if all tasks are dumped:
4560 */
93335a21 4561 if (!state_filter)
e59e2ae2 4562 debug_show_all_locks();
1da177e4
LT
4563}
4564
0db0628d 4565void init_idle_bootup_task(struct task_struct *idle)
1df21055 4566{
dd41f596 4567 idle->sched_class = &idle_sched_class;
1df21055
IM
4568}
4569
f340c0d1
IM
4570/**
4571 * init_idle - set up an idle thread for a given CPU
4572 * @idle: task in question
4573 * @cpu: cpu the idle task belongs to
4574 *
4575 * NOTE: this function does not set the idle thread's NEED_RESCHED
4576 * flag, to make booting more robust.
4577 */
0db0628d 4578void init_idle(struct task_struct *idle, int cpu)
1da177e4 4579{
70b97a7f 4580 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4581 unsigned long flags;
4582
05fa785c 4583 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4584
5e1576ed 4585 __sched_fork(0, idle);
06b83b5f 4586 idle->state = TASK_RUNNING;
dd41f596
IM
4587 idle->se.exec_start = sched_clock();
4588
1e1b6c51 4589 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4590 /*
4591 * We're having a chicken and egg problem, even though we are
4592 * holding rq->lock, the cpu isn't yet set to this cpu so the
4593 * lockdep check in task_group() will fail.
4594 *
4595 * Similar case to sched_fork(). / Alternatively we could
4596 * use task_rq_lock() here and obtain the other rq->lock.
4597 *
4598 * Silence PROVE_RCU
4599 */
4600 rcu_read_lock();
dd41f596 4601 __set_task_cpu(idle, cpu);
6506cf6c 4602 rcu_read_unlock();
1da177e4 4603
1da177e4 4604 rq->curr = rq->idle = idle;
da0c1e65 4605 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4606#if defined(CONFIG_SMP)
4607 idle->on_cpu = 1;
4866cde0 4608#endif
05fa785c 4609 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4610
4611 /* Set the preempt count _outside_ the spinlocks! */
01028747 4612 init_idle_preempt_count(idle, cpu);
55cd5340 4613
dd41f596
IM
4614 /*
4615 * The idle tasks have their own, simple scheduling class:
4616 */
4617 idle->sched_class = &idle_sched_class;
868baf07 4618 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4619 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4620#if defined(CONFIG_SMP)
4621 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4622#endif
19978ca6
IM
4623}
4624
f82f8042
JL
4625int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4626 const struct cpumask *trial)
4627{
4628 int ret = 1, trial_cpus;
4629 struct dl_bw *cur_dl_b;
4630 unsigned long flags;
4631
bb2bc55a
MG
4632 if (!cpumask_weight(cur))
4633 return ret;
4634
75e23e49 4635 rcu_read_lock_sched();
f82f8042
JL
4636 cur_dl_b = dl_bw_of(cpumask_any(cur));
4637 trial_cpus = cpumask_weight(trial);
4638
4639 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4640 if (cur_dl_b->bw != -1 &&
4641 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4642 ret = 0;
4643 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4644 rcu_read_unlock_sched();
f82f8042
JL
4645
4646 return ret;
4647}
4648
7f51412a
JL
4649int task_can_attach(struct task_struct *p,
4650 const struct cpumask *cs_cpus_allowed)
4651{
4652 int ret = 0;
4653
4654 /*
4655 * Kthreads which disallow setaffinity shouldn't be moved
4656 * to a new cpuset; we don't want to change their cpu
4657 * affinity and isolating such threads by their set of
4658 * allowed nodes is unnecessary. Thus, cpusets are not
4659 * applicable for such threads. This prevents checking for
4660 * success of set_cpus_allowed_ptr() on all attached tasks
4661 * before cpus_allowed may be changed.
4662 */
4663 if (p->flags & PF_NO_SETAFFINITY) {
4664 ret = -EINVAL;
4665 goto out;
4666 }
4667
4668#ifdef CONFIG_SMP
4669 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4670 cs_cpus_allowed)) {
4671 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4672 cs_cpus_allowed);
75e23e49 4673 struct dl_bw *dl_b;
7f51412a
JL
4674 bool overflow;
4675 int cpus;
4676 unsigned long flags;
4677
75e23e49
JL
4678 rcu_read_lock_sched();
4679 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4680 raw_spin_lock_irqsave(&dl_b->lock, flags);
4681 cpus = dl_bw_cpus(dest_cpu);
4682 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4683 if (overflow)
4684 ret = -EBUSY;
4685 else {
4686 /*
4687 * We reserve space for this task in the destination
4688 * root_domain, as we can't fail after this point.
4689 * We will free resources in the source root_domain
4690 * later on (see set_cpus_allowed_dl()).
4691 */
4692 __dl_add(dl_b, p->dl.dl_bw);
4693 }
4694 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4695 rcu_read_unlock_sched();
7f51412a
JL
4696
4697 }
4698#endif
4699out:
4700 return ret;
4701}
4702
1da177e4 4703#ifdef CONFIG_SMP
a15b12ac
KT
4704/*
4705 * move_queued_task - move a queued task to new rq.
4706 *
4707 * Returns (locked) new rq. Old rq's lock is released.
4708 */
4709static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4710{
4711 struct rq *rq = task_rq(p);
4712
4713 lockdep_assert_held(&rq->lock);
4714
4715 dequeue_task(rq, p, 0);
4716 p->on_rq = TASK_ON_RQ_MIGRATING;
4717 set_task_cpu(p, new_cpu);
4718 raw_spin_unlock(&rq->lock);
4719
4720 rq = cpu_rq(new_cpu);
4721
4722 raw_spin_lock(&rq->lock);
4723 BUG_ON(task_cpu(p) != new_cpu);
4724 p->on_rq = TASK_ON_RQ_QUEUED;
4725 enqueue_task(rq, p, 0);
4726 check_preempt_curr(rq, p, 0);
4727
4728 return rq;
4729}
4730
1e1b6c51
KM
4731void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4732{
1b537c7d 4733 if (p->sched_class->set_cpus_allowed)
1e1b6c51 4734 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4735
4736 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4737 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4738}
4739
1da177e4
LT
4740/*
4741 * This is how migration works:
4742 *
969c7921
TH
4743 * 1) we invoke migration_cpu_stop() on the target CPU using
4744 * stop_one_cpu().
4745 * 2) stopper starts to run (implicitly forcing the migrated thread
4746 * off the CPU)
4747 * 3) it checks whether the migrated task is still in the wrong runqueue.
4748 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4749 * it and puts it into the right queue.
969c7921
TH
4750 * 5) stopper completes and stop_one_cpu() returns and the migration
4751 * is done.
1da177e4
LT
4752 */
4753
4754/*
4755 * Change a given task's CPU affinity. Migrate the thread to a
4756 * proper CPU and schedule it away if the CPU it's executing on
4757 * is removed from the allowed bitmask.
4758 *
4759 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4760 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4761 * call is not atomic; no spinlocks may be held.
4762 */
96f874e2 4763int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4764{
4765 unsigned long flags;
70b97a7f 4766 struct rq *rq;
969c7921 4767 unsigned int dest_cpu;
48f24c4d 4768 int ret = 0;
1da177e4
LT
4769
4770 rq = task_rq_lock(p, &flags);
e2912009 4771
db44fc01
YZ
4772 if (cpumask_equal(&p->cpus_allowed, new_mask))
4773 goto out;
4774
6ad4c188 4775 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4776 ret = -EINVAL;
4777 goto out;
4778 }
4779
1e1b6c51 4780 do_set_cpus_allowed(p, new_mask);
73fe6aae 4781
1da177e4 4782 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4783 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4784 goto out;
4785
969c7921 4786 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4787 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4788 struct migration_arg arg = { p, dest_cpu };
1da177e4 4789 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4790 task_rq_unlock(rq, p, &flags);
969c7921 4791 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4792 tlb_migrate_finish(p->mm);
4793 return 0;
a15b12ac
KT
4794 } else if (task_on_rq_queued(p))
4795 rq = move_queued_task(p, dest_cpu);
1da177e4 4796out:
0122ec5b 4797 task_rq_unlock(rq, p, &flags);
48f24c4d 4798
1da177e4
LT
4799 return ret;
4800}
cd8ba7cd 4801EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4802
4803/*
41a2d6cf 4804 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4805 * this because either it can't run here any more (set_cpus_allowed()
4806 * away from this CPU, or CPU going down), or because we're
4807 * attempting to rebalance this task on exec (sched_exec).
4808 *
4809 * So we race with normal scheduler movements, but that's OK, as long
4810 * as the task is no longer on this CPU.
efc30814
KK
4811 *
4812 * Returns non-zero if task was successfully migrated.
1da177e4 4813 */
efc30814 4814static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4815{
a1e01829 4816 struct rq *rq;
e2912009 4817 int ret = 0;
1da177e4 4818
e761b772 4819 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4820 return ret;
1da177e4 4821
a1e01829 4822 rq = cpu_rq(src_cpu);
1da177e4 4823
0122ec5b 4824 raw_spin_lock(&p->pi_lock);
a1e01829 4825 raw_spin_lock(&rq->lock);
1da177e4
LT
4826 /* Already moved. */
4827 if (task_cpu(p) != src_cpu)
b1e38734 4828 goto done;
a1e01829 4829
1da177e4 4830 /* Affinity changed (again). */
fa17b507 4831 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4832 goto fail;
1da177e4 4833
e2912009
PZ
4834 /*
4835 * If we're not on a rq, the next wake-up will ensure we're
4836 * placed properly.
4837 */
a15b12ac
KT
4838 if (task_on_rq_queued(p))
4839 rq = move_queued_task(p, dest_cpu);
b1e38734 4840done:
efc30814 4841 ret = 1;
b1e38734 4842fail:
a1e01829 4843 raw_spin_unlock(&rq->lock);
0122ec5b 4844 raw_spin_unlock(&p->pi_lock);
efc30814 4845 return ret;
1da177e4
LT
4846}
4847
e6628d5b
MG
4848#ifdef CONFIG_NUMA_BALANCING
4849/* Migrate current task p to target_cpu */
4850int migrate_task_to(struct task_struct *p, int target_cpu)
4851{
4852 struct migration_arg arg = { p, target_cpu };
4853 int curr_cpu = task_cpu(p);
4854
4855 if (curr_cpu == target_cpu)
4856 return 0;
4857
4858 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4859 return -EINVAL;
4860
4861 /* TODO: This is not properly updating schedstats */
4862
286549dc 4863 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4864 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4865}
0ec8aa00
PZ
4866
4867/*
4868 * Requeue a task on a given node and accurately track the number of NUMA
4869 * tasks on the runqueues
4870 */
4871void sched_setnuma(struct task_struct *p, int nid)
4872{
4873 struct rq *rq;
4874 unsigned long flags;
da0c1e65 4875 bool queued, running;
0ec8aa00
PZ
4876
4877 rq = task_rq_lock(p, &flags);
da0c1e65 4878 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4879 running = task_current(rq, p);
4880
da0c1e65 4881 if (queued)
0ec8aa00
PZ
4882 dequeue_task(rq, p, 0);
4883 if (running)
f3cd1c4e 4884 put_prev_task(rq, p);
0ec8aa00
PZ
4885
4886 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4887
4888 if (running)
4889 p->sched_class->set_curr_task(rq);
da0c1e65 4890 if (queued)
0ec8aa00
PZ
4891 enqueue_task(rq, p, 0);
4892 task_rq_unlock(rq, p, &flags);
4893}
e6628d5b
MG
4894#endif
4895
1da177e4 4896/*
969c7921
TH
4897 * migration_cpu_stop - this will be executed by a highprio stopper thread
4898 * and performs thread migration by bumping thread off CPU then
4899 * 'pushing' onto another runqueue.
1da177e4 4900 */
969c7921 4901static int migration_cpu_stop(void *data)
1da177e4 4902{
969c7921 4903 struct migration_arg *arg = data;
f7b4cddc 4904
969c7921
TH
4905 /*
4906 * The original target cpu might have gone down and we might
4907 * be on another cpu but it doesn't matter.
4908 */
f7b4cddc 4909 local_irq_disable();
5cd038f5
LJ
4910 /*
4911 * We need to explicitly wake pending tasks before running
4912 * __migrate_task() such that we will not miss enforcing cpus_allowed
4913 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4914 */
4915 sched_ttwu_pending();
969c7921 4916 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4917 local_irq_enable();
1da177e4 4918 return 0;
f7b4cddc
ON
4919}
4920
1da177e4 4921#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4922
054b9108 4923/*
48c5ccae
PZ
4924 * Ensures that the idle task is using init_mm right before its cpu goes
4925 * offline.
054b9108 4926 */
48c5ccae 4927void idle_task_exit(void)
1da177e4 4928{
48c5ccae 4929 struct mm_struct *mm = current->active_mm;
e76bd8d9 4930
48c5ccae 4931 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4932
a53efe5f 4933 if (mm != &init_mm) {
48c5ccae 4934 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4935 finish_arch_post_lock_switch();
4936 }
48c5ccae 4937 mmdrop(mm);
1da177e4
LT
4938}
4939
4940/*
5d180232
PZ
4941 * Since this CPU is going 'away' for a while, fold any nr_active delta
4942 * we might have. Assumes we're called after migrate_tasks() so that the
4943 * nr_active count is stable.
4944 *
4945 * Also see the comment "Global load-average calculations".
1da177e4 4946 */
5d180232 4947static void calc_load_migrate(struct rq *rq)
1da177e4 4948{
5d180232
PZ
4949 long delta = calc_load_fold_active(rq);
4950 if (delta)
4951 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4952}
4953
3f1d2a31
PZ
4954static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4955{
4956}
4957
4958static const struct sched_class fake_sched_class = {
4959 .put_prev_task = put_prev_task_fake,
4960};
4961
4962static struct task_struct fake_task = {
4963 /*
4964 * Avoid pull_{rt,dl}_task()
4965 */
4966 .prio = MAX_PRIO + 1,
4967 .sched_class = &fake_sched_class,
4968};
4969
48f24c4d 4970/*
48c5ccae
PZ
4971 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4972 * try_to_wake_up()->select_task_rq().
4973 *
4974 * Called with rq->lock held even though we'er in stop_machine() and
4975 * there's no concurrency possible, we hold the required locks anyway
4976 * because of lock validation efforts.
1da177e4 4977 */
48c5ccae 4978static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4979{
70b97a7f 4980 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4981 struct task_struct *next, *stop = rq->stop;
4982 int dest_cpu;
1da177e4
LT
4983
4984 /*
48c5ccae
PZ
4985 * Fudge the rq selection such that the below task selection loop
4986 * doesn't get stuck on the currently eligible stop task.
4987 *
4988 * We're currently inside stop_machine() and the rq is either stuck
4989 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4990 * either way we should never end up calling schedule() until we're
4991 * done here.
1da177e4 4992 */
48c5ccae 4993 rq->stop = NULL;
48f24c4d 4994
77bd3970
FW
4995 /*
4996 * put_prev_task() and pick_next_task() sched
4997 * class method both need to have an up-to-date
4998 * value of rq->clock[_task]
4999 */
5000 update_rq_clock(rq);
5001
dd41f596 5002 for ( ; ; ) {
48c5ccae
PZ
5003 /*
5004 * There's this thread running, bail when that's the only
5005 * remaining thread.
5006 */
5007 if (rq->nr_running == 1)
dd41f596 5008 break;
48c5ccae 5009
3f1d2a31 5010 next = pick_next_task(rq, &fake_task);
48c5ccae 5011 BUG_ON(!next);
79c53799 5012 next->sched_class->put_prev_task(rq, next);
e692ab53 5013
48c5ccae
PZ
5014 /* Find suitable destination for @next, with force if needed. */
5015 dest_cpu = select_fallback_rq(dead_cpu, next);
5016 raw_spin_unlock(&rq->lock);
5017
5018 __migrate_task(next, dead_cpu, dest_cpu);
5019
5020 raw_spin_lock(&rq->lock);
1da177e4 5021 }
dce48a84 5022
48c5ccae 5023 rq->stop = stop;
dce48a84 5024}
48c5ccae 5025
1da177e4
LT
5026#endif /* CONFIG_HOTPLUG_CPU */
5027
e692ab53
NP
5028#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5029
5030static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5031 {
5032 .procname = "sched_domain",
c57baf1e 5033 .mode = 0555,
e0361851 5034 },
56992309 5035 {}
e692ab53
NP
5036};
5037
5038static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5039 {
5040 .procname = "kernel",
c57baf1e 5041 .mode = 0555,
e0361851
AD
5042 .child = sd_ctl_dir,
5043 },
56992309 5044 {}
e692ab53
NP
5045};
5046
5047static struct ctl_table *sd_alloc_ctl_entry(int n)
5048{
5049 struct ctl_table *entry =
5cf9f062 5050 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5051
e692ab53
NP
5052 return entry;
5053}
5054
6382bc90
MM
5055static void sd_free_ctl_entry(struct ctl_table **tablep)
5056{
cd790076 5057 struct ctl_table *entry;
6382bc90 5058
cd790076
MM
5059 /*
5060 * In the intermediate directories, both the child directory and
5061 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5062 * will always be set. In the lowest directory the names are
cd790076
MM
5063 * static strings and all have proc handlers.
5064 */
5065 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5066 if (entry->child)
5067 sd_free_ctl_entry(&entry->child);
cd790076
MM
5068 if (entry->proc_handler == NULL)
5069 kfree(entry->procname);
5070 }
6382bc90
MM
5071
5072 kfree(*tablep);
5073 *tablep = NULL;
5074}
5075
201c373e 5076static int min_load_idx = 0;
fd9b86d3 5077static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5078
e692ab53 5079static void
e0361851 5080set_table_entry(struct ctl_table *entry,
e692ab53 5081 const char *procname, void *data, int maxlen,
201c373e
NK
5082 umode_t mode, proc_handler *proc_handler,
5083 bool load_idx)
e692ab53 5084{
e692ab53
NP
5085 entry->procname = procname;
5086 entry->data = data;
5087 entry->maxlen = maxlen;
5088 entry->mode = mode;
5089 entry->proc_handler = proc_handler;
201c373e
NK
5090
5091 if (load_idx) {
5092 entry->extra1 = &min_load_idx;
5093 entry->extra2 = &max_load_idx;
5094 }
e692ab53
NP
5095}
5096
5097static struct ctl_table *
5098sd_alloc_ctl_domain_table(struct sched_domain *sd)
5099{
37e6bae8 5100 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5101
ad1cdc1d
MM
5102 if (table == NULL)
5103 return NULL;
5104
e0361851 5105 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5106 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5107 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5108 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5109 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5110 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5111 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5112 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5113 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5114 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5115 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5116 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5117 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5118 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5119 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5120 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5121 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5122 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5123 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5124 &sd->cache_nice_tries,
201c373e 5125 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5126 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5127 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5128 set_table_entry(&table[11], "max_newidle_lb_cost",
5129 &sd->max_newidle_lb_cost,
5130 sizeof(long), 0644, proc_doulongvec_minmax, false);
5131 set_table_entry(&table[12], "name", sd->name,
201c373e 5132 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5133 /* &table[13] is terminator */
e692ab53
NP
5134
5135 return table;
5136}
5137
be7002e6 5138static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5139{
5140 struct ctl_table *entry, *table;
5141 struct sched_domain *sd;
5142 int domain_num = 0, i;
5143 char buf[32];
5144
5145 for_each_domain(cpu, sd)
5146 domain_num++;
5147 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5148 if (table == NULL)
5149 return NULL;
e692ab53
NP
5150
5151 i = 0;
5152 for_each_domain(cpu, sd) {
5153 snprintf(buf, 32, "domain%d", i);
e692ab53 5154 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5155 entry->mode = 0555;
e692ab53
NP
5156 entry->child = sd_alloc_ctl_domain_table(sd);
5157 entry++;
5158 i++;
5159 }
5160 return table;
5161}
5162
5163static struct ctl_table_header *sd_sysctl_header;
6382bc90 5164static void register_sched_domain_sysctl(void)
e692ab53 5165{
6ad4c188 5166 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5167 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5168 char buf[32];
5169
7378547f
MM
5170 WARN_ON(sd_ctl_dir[0].child);
5171 sd_ctl_dir[0].child = entry;
5172
ad1cdc1d
MM
5173 if (entry == NULL)
5174 return;
5175
6ad4c188 5176 for_each_possible_cpu(i) {
e692ab53 5177 snprintf(buf, 32, "cpu%d", i);
e692ab53 5178 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5179 entry->mode = 0555;
e692ab53 5180 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5181 entry++;
e692ab53 5182 }
7378547f
MM
5183
5184 WARN_ON(sd_sysctl_header);
e692ab53
NP
5185 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5186}
6382bc90 5187
7378547f 5188/* may be called multiple times per register */
6382bc90
MM
5189static void unregister_sched_domain_sysctl(void)
5190{
7378547f
MM
5191 if (sd_sysctl_header)
5192 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5193 sd_sysctl_header = NULL;
7378547f
MM
5194 if (sd_ctl_dir[0].child)
5195 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5196}
e692ab53 5197#else
6382bc90
MM
5198static void register_sched_domain_sysctl(void)
5199{
5200}
5201static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5202{
5203}
5204#endif
5205
1f11eb6a
GH
5206static void set_rq_online(struct rq *rq)
5207{
5208 if (!rq->online) {
5209 const struct sched_class *class;
5210
c6c4927b 5211 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5212 rq->online = 1;
5213
5214 for_each_class(class) {
5215 if (class->rq_online)
5216 class->rq_online(rq);
5217 }
5218 }
5219}
5220
5221static void set_rq_offline(struct rq *rq)
5222{
5223 if (rq->online) {
5224 const struct sched_class *class;
5225
5226 for_each_class(class) {
5227 if (class->rq_offline)
5228 class->rq_offline(rq);
5229 }
5230
c6c4927b 5231 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5232 rq->online = 0;
5233 }
5234}
5235
1da177e4
LT
5236/*
5237 * migration_call - callback that gets triggered when a CPU is added.
5238 * Here we can start up the necessary migration thread for the new CPU.
5239 */
0db0628d 5240static int
48f24c4d 5241migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5242{
48f24c4d 5243 int cpu = (long)hcpu;
1da177e4 5244 unsigned long flags;
969c7921 5245 struct rq *rq = cpu_rq(cpu);
1da177e4 5246
48c5ccae 5247 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5248
1da177e4 5249 case CPU_UP_PREPARE:
a468d389 5250 rq->calc_load_update = calc_load_update;
1da177e4 5251 break;
48f24c4d 5252
1da177e4 5253 case CPU_ONLINE:
1f94ef59 5254 /* Update our root-domain */
05fa785c 5255 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5256 if (rq->rd) {
c6c4927b 5257 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5258
5259 set_rq_online(rq);
1f94ef59 5260 }
05fa785c 5261 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5262 break;
48f24c4d 5263
1da177e4 5264#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5265 case CPU_DYING:
317f3941 5266 sched_ttwu_pending();
57d885fe 5267 /* Update our root-domain */
05fa785c 5268 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5269 if (rq->rd) {
c6c4927b 5270 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5271 set_rq_offline(rq);
57d885fe 5272 }
48c5ccae
PZ
5273 migrate_tasks(cpu);
5274 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5275 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5276 break;
48c5ccae 5277
5d180232 5278 case CPU_DEAD:
f319da0c 5279 calc_load_migrate(rq);
57d885fe 5280 break;
1da177e4
LT
5281#endif
5282 }
49c022e6
PZ
5283
5284 update_max_interval();
5285
1da177e4
LT
5286 return NOTIFY_OK;
5287}
5288
f38b0820
PM
5289/*
5290 * Register at high priority so that task migration (migrate_all_tasks)
5291 * happens before everything else. This has to be lower priority than
cdd6c482 5292 * the notifier in the perf_event subsystem, though.
1da177e4 5293 */
0db0628d 5294static struct notifier_block migration_notifier = {
1da177e4 5295 .notifier_call = migration_call,
50a323b7 5296 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5297};
5298
a803f026
CM
5299static void __cpuinit set_cpu_rq_start_time(void)
5300{
5301 int cpu = smp_processor_id();
5302 struct rq *rq = cpu_rq(cpu);
5303 rq->age_stamp = sched_clock_cpu(cpu);
5304}
5305
0db0628d 5306static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5307 unsigned long action, void *hcpu)
5308{
5309 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5310 case CPU_STARTING:
5311 set_cpu_rq_start_time();
5312 return NOTIFY_OK;
3a101d05
TH
5313 case CPU_DOWN_FAILED:
5314 set_cpu_active((long)hcpu, true);
5315 return NOTIFY_OK;
5316 default:
5317 return NOTIFY_DONE;
5318 }
5319}
5320
0db0628d 5321static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5322 unsigned long action, void *hcpu)
5323{
5324 switch (action & ~CPU_TASKS_FROZEN) {
5325 case CPU_DOWN_PREPARE:
3c18d447 5326 set_cpu_active((long)hcpu, false);
3a101d05 5327 return NOTIFY_OK;
3c18d447
JL
5328 default:
5329 return NOTIFY_DONE;
3a101d05
TH
5330 }
5331}
5332
7babe8db 5333static int __init migration_init(void)
1da177e4
LT
5334{
5335 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5336 int err;
48f24c4d 5337
3a101d05 5338 /* Initialize migration for the boot CPU */
07dccf33
AM
5339 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5340 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5341 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5342 register_cpu_notifier(&migration_notifier);
7babe8db 5343
3a101d05
TH
5344 /* Register cpu active notifiers */
5345 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5346 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5347
a004cd42 5348 return 0;
1da177e4 5349}
7babe8db 5350early_initcall(migration_init);
1da177e4
LT
5351#endif
5352
5353#ifdef CONFIG_SMP
476f3534 5354
4cb98839
PZ
5355static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5356
3e9830dc 5357#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5358
d039ac60 5359static __read_mostly int sched_debug_enabled;
f6630114 5360
d039ac60 5361static int __init sched_debug_setup(char *str)
f6630114 5362{
d039ac60 5363 sched_debug_enabled = 1;
f6630114
MT
5364
5365 return 0;
5366}
d039ac60
PZ
5367early_param("sched_debug", sched_debug_setup);
5368
5369static inline bool sched_debug(void)
5370{
5371 return sched_debug_enabled;
5372}
f6630114 5373
7c16ec58 5374static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5375 struct cpumask *groupmask)
1da177e4 5376{
4dcf6aff 5377 struct sched_group *group = sd->groups;
1da177e4 5378
96f874e2 5379 cpumask_clear(groupmask);
4dcf6aff
IM
5380
5381 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5382
5383 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5384 printk("does not load-balance\n");
4dcf6aff 5385 if (sd->parent)
3df0fc5b
PZ
5386 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5387 " has parent");
4dcf6aff 5388 return -1;
41c7ce9a
NP
5389 }
5390
333470ee
TH
5391 printk(KERN_CONT "span %*pbl level %s\n",
5392 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5393
758b2cdc 5394 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5395 printk(KERN_ERR "ERROR: domain->span does not contain "
5396 "CPU%d\n", cpu);
4dcf6aff 5397 }
758b2cdc 5398 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5399 printk(KERN_ERR "ERROR: domain->groups does not contain"
5400 " CPU%d\n", cpu);
4dcf6aff 5401 }
1da177e4 5402
4dcf6aff 5403 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5404 do {
4dcf6aff 5405 if (!group) {
3df0fc5b
PZ
5406 printk("\n");
5407 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5408 break;
5409 }
5410
758b2cdc 5411 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5412 printk(KERN_CONT "\n");
5413 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5414 break;
5415 }
1da177e4 5416
cb83b629
PZ
5417 if (!(sd->flags & SD_OVERLAP) &&
5418 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5419 printk(KERN_CONT "\n");
5420 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5421 break;
5422 }
1da177e4 5423
758b2cdc 5424 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5425
333470ee
TH
5426 printk(KERN_CONT " %*pbl",
5427 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5428 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5429 printk(KERN_CONT " (cpu_capacity = %d)",
5430 group->sgc->capacity);
381512cf 5431 }
1da177e4 5432
4dcf6aff
IM
5433 group = group->next;
5434 } while (group != sd->groups);
3df0fc5b 5435 printk(KERN_CONT "\n");
1da177e4 5436
758b2cdc 5437 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5438 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5439
758b2cdc
RR
5440 if (sd->parent &&
5441 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5442 printk(KERN_ERR "ERROR: parent span is not a superset "
5443 "of domain->span\n");
4dcf6aff
IM
5444 return 0;
5445}
1da177e4 5446
4dcf6aff
IM
5447static void sched_domain_debug(struct sched_domain *sd, int cpu)
5448{
5449 int level = 0;
1da177e4 5450
d039ac60 5451 if (!sched_debug_enabled)
f6630114
MT
5452 return;
5453
4dcf6aff
IM
5454 if (!sd) {
5455 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5456 return;
5457 }
1da177e4 5458
4dcf6aff
IM
5459 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5460
5461 for (;;) {
4cb98839 5462 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5463 break;
1da177e4
LT
5464 level++;
5465 sd = sd->parent;
33859f7f 5466 if (!sd)
4dcf6aff
IM
5467 break;
5468 }
1da177e4 5469}
6d6bc0ad 5470#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5471# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5472static inline bool sched_debug(void)
5473{
5474 return false;
5475}
6d6bc0ad 5476#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5477
1a20ff27 5478static int sd_degenerate(struct sched_domain *sd)
245af2c7 5479{
758b2cdc 5480 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5481 return 1;
5482
5483 /* Following flags need at least 2 groups */
5484 if (sd->flags & (SD_LOAD_BALANCE |
5485 SD_BALANCE_NEWIDLE |
5486 SD_BALANCE_FORK |
89c4710e 5487 SD_BALANCE_EXEC |
5d4dfddd 5488 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5489 SD_SHARE_PKG_RESOURCES |
5490 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5491 if (sd->groups != sd->groups->next)
5492 return 0;
5493 }
5494
5495 /* Following flags don't use groups */
c88d5910 5496 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5497 return 0;
5498
5499 return 1;
5500}
5501
48f24c4d
IM
5502static int
5503sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5504{
5505 unsigned long cflags = sd->flags, pflags = parent->flags;
5506
5507 if (sd_degenerate(parent))
5508 return 1;
5509
758b2cdc 5510 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5511 return 0;
5512
245af2c7
SS
5513 /* Flags needing groups don't count if only 1 group in parent */
5514 if (parent->groups == parent->groups->next) {
5515 pflags &= ~(SD_LOAD_BALANCE |
5516 SD_BALANCE_NEWIDLE |
5517 SD_BALANCE_FORK |
89c4710e 5518 SD_BALANCE_EXEC |
5d4dfddd 5519 SD_SHARE_CPUCAPACITY |
10866e62 5520 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5521 SD_PREFER_SIBLING |
5522 SD_SHARE_POWERDOMAIN);
5436499e
KC
5523 if (nr_node_ids == 1)
5524 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5525 }
5526 if (~cflags & pflags)
5527 return 0;
5528
5529 return 1;
5530}
5531
dce840a0 5532static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5533{
dce840a0 5534 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5535
68e74568 5536 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5537 cpudl_cleanup(&rd->cpudl);
1baca4ce 5538 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5539 free_cpumask_var(rd->rto_mask);
5540 free_cpumask_var(rd->online);
5541 free_cpumask_var(rd->span);
5542 kfree(rd);
5543}
5544
57d885fe
GH
5545static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5546{
a0490fa3 5547 struct root_domain *old_rd = NULL;
57d885fe 5548 unsigned long flags;
57d885fe 5549
05fa785c 5550 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5551
5552 if (rq->rd) {
a0490fa3 5553 old_rd = rq->rd;
57d885fe 5554
c6c4927b 5555 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5556 set_rq_offline(rq);
57d885fe 5557
c6c4927b 5558 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5559
a0490fa3 5560 /*
0515973f 5561 * If we dont want to free the old_rd yet then
a0490fa3
IM
5562 * set old_rd to NULL to skip the freeing later
5563 * in this function:
5564 */
5565 if (!atomic_dec_and_test(&old_rd->refcount))
5566 old_rd = NULL;
57d885fe
GH
5567 }
5568
5569 atomic_inc(&rd->refcount);
5570 rq->rd = rd;
5571
c6c4927b 5572 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5573 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5574 set_rq_online(rq);
57d885fe 5575
05fa785c 5576 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5577
5578 if (old_rd)
dce840a0 5579 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5580}
5581
68c38fc3 5582static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5583{
5584 memset(rd, 0, sizeof(*rd));
5585
68c38fc3 5586 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5587 goto out;
68c38fc3 5588 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5589 goto free_span;
1baca4ce 5590 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5591 goto free_online;
1baca4ce
JL
5592 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5593 goto free_dlo_mask;
6e0534f2 5594
332ac17e 5595 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5596 if (cpudl_init(&rd->cpudl) != 0)
5597 goto free_dlo_mask;
332ac17e 5598
68c38fc3 5599 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5600 goto free_rto_mask;
c6c4927b 5601 return 0;
6e0534f2 5602
68e74568
RR
5603free_rto_mask:
5604 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5605free_dlo_mask:
5606 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5607free_online:
5608 free_cpumask_var(rd->online);
5609free_span:
5610 free_cpumask_var(rd->span);
0c910d28 5611out:
c6c4927b 5612 return -ENOMEM;
57d885fe
GH
5613}
5614
029632fb
PZ
5615/*
5616 * By default the system creates a single root-domain with all cpus as
5617 * members (mimicking the global state we have today).
5618 */
5619struct root_domain def_root_domain;
5620
57d885fe
GH
5621static void init_defrootdomain(void)
5622{
68c38fc3 5623 init_rootdomain(&def_root_domain);
c6c4927b 5624
57d885fe
GH
5625 atomic_set(&def_root_domain.refcount, 1);
5626}
5627
dc938520 5628static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5629{
5630 struct root_domain *rd;
5631
5632 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5633 if (!rd)
5634 return NULL;
5635
68c38fc3 5636 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5637 kfree(rd);
5638 return NULL;
5639 }
57d885fe
GH
5640
5641 return rd;
5642}
5643
63b2ca30 5644static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5645{
5646 struct sched_group *tmp, *first;
5647
5648 if (!sg)
5649 return;
5650
5651 first = sg;
5652 do {
5653 tmp = sg->next;
5654
63b2ca30
NP
5655 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5656 kfree(sg->sgc);
e3589f6c
PZ
5657
5658 kfree(sg);
5659 sg = tmp;
5660 } while (sg != first);
5661}
5662
dce840a0
PZ
5663static void free_sched_domain(struct rcu_head *rcu)
5664{
5665 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5666
5667 /*
5668 * If its an overlapping domain it has private groups, iterate and
5669 * nuke them all.
5670 */
5671 if (sd->flags & SD_OVERLAP) {
5672 free_sched_groups(sd->groups, 1);
5673 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5674 kfree(sd->groups->sgc);
dce840a0 5675 kfree(sd->groups);
9c3f75cb 5676 }
dce840a0
PZ
5677 kfree(sd);
5678}
5679
5680static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5681{
5682 call_rcu(&sd->rcu, free_sched_domain);
5683}
5684
5685static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5686{
5687 for (; sd; sd = sd->parent)
5688 destroy_sched_domain(sd, cpu);
5689}
5690
518cd623
PZ
5691/*
5692 * Keep a special pointer to the highest sched_domain that has
5693 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5694 * allows us to avoid some pointer chasing select_idle_sibling().
5695 *
5696 * Also keep a unique ID per domain (we use the first cpu number in
5697 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5698 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5699 */
5700DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5701DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5702DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5703DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5704DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5705DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5706
5707static void update_top_cache_domain(int cpu)
5708{
5709 struct sched_domain *sd;
5d4cf996 5710 struct sched_domain *busy_sd = NULL;
518cd623 5711 int id = cpu;
7d9ffa89 5712 int size = 1;
518cd623
PZ
5713
5714 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5715 if (sd) {
518cd623 5716 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5717 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5718 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5719 }
5d4cf996 5720 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5721
5722 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5723 per_cpu(sd_llc_size, cpu) = size;
518cd623 5724 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5725
5726 sd = lowest_flag_domain(cpu, SD_NUMA);
5727 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5728
5729 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5730 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5731}
5732
1da177e4 5733/*
0eab9146 5734 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5735 * hold the hotplug lock.
5736 */
0eab9146
IM
5737static void
5738cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5739{
70b97a7f 5740 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5741 struct sched_domain *tmp;
5742
5743 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5744 for (tmp = sd; tmp; ) {
245af2c7
SS
5745 struct sched_domain *parent = tmp->parent;
5746 if (!parent)
5747 break;
f29c9b1c 5748
1a848870 5749 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5750 tmp->parent = parent->parent;
1a848870
SS
5751 if (parent->parent)
5752 parent->parent->child = tmp;
10866e62
PZ
5753 /*
5754 * Transfer SD_PREFER_SIBLING down in case of a
5755 * degenerate parent; the spans match for this
5756 * so the property transfers.
5757 */
5758 if (parent->flags & SD_PREFER_SIBLING)
5759 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5760 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5761 } else
5762 tmp = tmp->parent;
245af2c7
SS
5763 }
5764
1a848870 5765 if (sd && sd_degenerate(sd)) {
dce840a0 5766 tmp = sd;
245af2c7 5767 sd = sd->parent;
dce840a0 5768 destroy_sched_domain(tmp, cpu);
1a848870
SS
5769 if (sd)
5770 sd->child = NULL;
5771 }
1da177e4 5772
4cb98839 5773 sched_domain_debug(sd, cpu);
1da177e4 5774
57d885fe 5775 rq_attach_root(rq, rd);
dce840a0 5776 tmp = rq->sd;
674311d5 5777 rcu_assign_pointer(rq->sd, sd);
dce840a0 5778 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5779
5780 update_top_cache_domain(cpu);
1da177e4
LT
5781}
5782
1da177e4
LT
5783/* Setup the mask of cpus configured for isolated domains */
5784static int __init isolated_cpu_setup(char *str)
5785{
bdddd296 5786 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5787 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5788 return 1;
5789}
5790
8927f494 5791__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5792
49a02c51 5793struct s_data {
21d42ccf 5794 struct sched_domain ** __percpu sd;
49a02c51
AH
5795 struct root_domain *rd;
5796};
5797
2109b99e 5798enum s_alloc {
2109b99e 5799 sa_rootdomain,
21d42ccf 5800 sa_sd,
dce840a0 5801 sa_sd_storage,
2109b99e
AH
5802 sa_none,
5803};
5804
c1174876
PZ
5805/*
5806 * Build an iteration mask that can exclude certain CPUs from the upwards
5807 * domain traversal.
5808 *
5809 * Asymmetric node setups can result in situations where the domain tree is of
5810 * unequal depth, make sure to skip domains that already cover the entire
5811 * range.
5812 *
5813 * In that case build_sched_domains() will have terminated the iteration early
5814 * and our sibling sd spans will be empty. Domains should always include the
5815 * cpu they're built on, so check that.
5816 *
5817 */
5818static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5819{
5820 const struct cpumask *span = sched_domain_span(sd);
5821 struct sd_data *sdd = sd->private;
5822 struct sched_domain *sibling;
5823 int i;
5824
5825 for_each_cpu(i, span) {
5826 sibling = *per_cpu_ptr(sdd->sd, i);
5827 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5828 continue;
5829
5830 cpumask_set_cpu(i, sched_group_mask(sg));
5831 }
5832}
5833
5834/*
5835 * Return the canonical balance cpu for this group, this is the first cpu
5836 * of this group that's also in the iteration mask.
5837 */
5838int group_balance_cpu(struct sched_group *sg)
5839{
5840 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5841}
5842
e3589f6c
PZ
5843static int
5844build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5845{
5846 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5847 const struct cpumask *span = sched_domain_span(sd);
5848 struct cpumask *covered = sched_domains_tmpmask;
5849 struct sd_data *sdd = sd->private;
aaecac4a 5850 struct sched_domain *sibling;
e3589f6c
PZ
5851 int i;
5852
5853 cpumask_clear(covered);
5854
5855 for_each_cpu(i, span) {
5856 struct cpumask *sg_span;
5857
5858 if (cpumask_test_cpu(i, covered))
5859 continue;
5860
aaecac4a 5861 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5862
5863 /* See the comment near build_group_mask(). */
aaecac4a 5864 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5865 continue;
5866
e3589f6c 5867 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5868 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5869
5870 if (!sg)
5871 goto fail;
5872
5873 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5874 if (sibling->child)
5875 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5876 else
e3589f6c
PZ
5877 cpumask_set_cpu(i, sg_span);
5878
5879 cpumask_or(covered, covered, sg_span);
5880
63b2ca30
NP
5881 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5882 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5883 build_group_mask(sd, sg);
5884
c3decf0d 5885 /*
63b2ca30 5886 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5887 * domains and no possible iteration will get us here, we won't
5888 * die on a /0 trap.
5889 */
ca8ce3d0 5890 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 5891
c1174876
PZ
5892 /*
5893 * Make sure the first group of this domain contains the
5894 * canonical balance cpu. Otherwise the sched_domain iteration
5895 * breaks. See update_sg_lb_stats().
5896 */
74a5ce20 5897 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5898 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5899 groups = sg;
5900
5901 if (!first)
5902 first = sg;
5903 if (last)
5904 last->next = sg;
5905 last = sg;
5906 last->next = first;
5907 }
5908 sd->groups = groups;
5909
5910 return 0;
5911
5912fail:
5913 free_sched_groups(first, 0);
5914
5915 return -ENOMEM;
5916}
5917
dce840a0 5918static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5919{
dce840a0
PZ
5920 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5921 struct sched_domain *child = sd->child;
1da177e4 5922
dce840a0
PZ
5923 if (child)
5924 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5925
9c3f75cb 5926 if (sg) {
dce840a0 5927 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5928 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5929 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5930 }
dce840a0
PZ
5931
5932 return cpu;
1e9f28fa 5933}
1e9f28fa 5934
01a08546 5935/*
dce840a0
PZ
5936 * build_sched_groups will build a circular linked list of the groups
5937 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5938 * and ->cpu_capacity to 0.
e3589f6c
PZ
5939 *
5940 * Assumes the sched_domain tree is fully constructed
01a08546 5941 */
e3589f6c
PZ
5942static int
5943build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5944{
dce840a0
PZ
5945 struct sched_group *first = NULL, *last = NULL;
5946 struct sd_data *sdd = sd->private;
5947 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5948 struct cpumask *covered;
dce840a0 5949 int i;
9c1cfda2 5950
e3589f6c
PZ
5951 get_group(cpu, sdd, &sd->groups);
5952 atomic_inc(&sd->groups->ref);
5953
0936629f 5954 if (cpu != cpumask_first(span))
e3589f6c
PZ
5955 return 0;
5956
f96225fd
PZ
5957 lockdep_assert_held(&sched_domains_mutex);
5958 covered = sched_domains_tmpmask;
5959
dce840a0 5960 cpumask_clear(covered);
6711cab4 5961
dce840a0
PZ
5962 for_each_cpu(i, span) {
5963 struct sched_group *sg;
cd08e923 5964 int group, j;
6711cab4 5965
dce840a0
PZ
5966 if (cpumask_test_cpu(i, covered))
5967 continue;
6711cab4 5968
cd08e923 5969 group = get_group(i, sdd, &sg);
c1174876 5970 cpumask_setall(sched_group_mask(sg));
0601a88d 5971
dce840a0
PZ
5972 for_each_cpu(j, span) {
5973 if (get_group(j, sdd, NULL) != group)
5974 continue;
0601a88d 5975
dce840a0
PZ
5976 cpumask_set_cpu(j, covered);
5977 cpumask_set_cpu(j, sched_group_cpus(sg));
5978 }
0601a88d 5979
dce840a0
PZ
5980 if (!first)
5981 first = sg;
5982 if (last)
5983 last->next = sg;
5984 last = sg;
5985 }
5986 last->next = first;
e3589f6c
PZ
5987
5988 return 0;
0601a88d 5989}
51888ca2 5990
89c4710e 5991/*
63b2ca30 5992 * Initialize sched groups cpu_capacity.
89c4710e 5993 *
63b2ca30 5994 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 5995 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
5996 * Typically cpu_capacity for all the groups in a sched domain will be same
5997 * unless there are asymmetries in the topology. If there are asymmetries,
5998 * group having more cpu_capacity will pickup more load compared to the
5999 * group having less cpu_capacity.
89c4710e 6000 */
63b2ca30 6001static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6002{
e3589f6c 6003 struct sched_group *sg = sd->groups;
89c4710e 6004
94c95ba6 6005 WARN_ON(!sg);
e3589f6c
PZ
6006
6007 do {
6008 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6009 sg = sg->next;
6010 } while (sg != sd->groups);
89c4710e 6011
c1174876 6012 if (cpu != group_balance_cpu(sg))
e3589f6c 6013 return;
aae6d3dd 6014
63b2ca30
NP
6015 update_group_capacity(sd, cpu);
6016 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6017}
6018
7c16ec58
MT
6019/*
6020 * Initializers for schedule domains
6021 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6022 */
6023
1d3504fc 6024static int default_relax_domain_level = -1;
60495e77 6025int sched_domain_level_max;
1d3504fc
HS
6026
6027static int __init setup_relax_domain_level(char *str)
6028{
a841f8ce
DS
6029 if (kstrtoint(str, 0, &default_relax_domain_level))
6030 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6031
1d3504fc
HS
6032 return 1;
6033}
6034__setup("relax_domain_level=", setup_relax_domain_level);
6035
6036static void set_domain_attribute(struct sched_domain *sd,
6037 struct sched_domain_attr *attr)
6038{
6039 int request;
6040
6041 if (!attr || attr->relax_domain_level < 0) {
6042 if (default_relax_domain_level < 0)
6043 return;
6044 else
6045 request = default_relax_domain_level;
6046 } else
6047 request = attr->relax_domain_level;
6048 if (request < sd->level) {
6049 /* turn off idle balance on this domain */
c88d5910 6050 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6051 } else {
6052 /* turn on idle balance on this domain */
c88d5910 6053 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6054 }
6055}
6056
54ab4ff4
PZ
6057static void __sdt_free(const struct cpumask *cpu_map);
6058static int __sdt_alloc(const struct cpumask *cpu_map);
6059
2109b99e
AH
6060static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6061 const struct cpumask *cpu_map)
6062{
6063 switch (what) {
2109b99e 6064 case sa_rootdomain:
822ff793
PZ
6065 if (!atomic_read(&d->rd->refcount))
6066 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6067 case sa_sd:
6068 free_percpu(d->sd); /* fall through */
dce840a0 6069 case sa_sd_storage:
54ab4ff4 6070 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6071 case sa_none:
6072 break;
6073 }
6074}
3404c8d9 6075
2109b99e
AH
6076static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6077 const struct cpumask *cpu_map)
6078{
dce840a0
PZ
6079 memset(d, 0, sizeof(*d));
6080
54ab4ff4
PZ
6081 if (__sdt_alloc(cpu_map))
6082 return sa_sd_storage;
dce840a0
PZ
6083 d->sd = alloc_percpu(struct sched_domain *);
6084 if (!d->sd)
6085 return sa_sd_storage;
2109b99e 6086 d->rd = alloc_rootdomain();
dce840a0 6087 if (!d->rd)
21d42ccf 6088 return sa_sd;
2109b99e
AH
6089 return sa_rootdomain;
6090}
57d885fe 6091
dce840a0
PZ
6092/*
6093 * NULL the sd_data elements we've used to build the sched_domain and
6094 * sched_group structure so that the subsequent __free_domain_allocs()
6095 * will not free the data we're using.
6096 */
6097static void claim_allocations(int cpu, struct sched_domain *sd)
6098{
6099 struct sd_data *sdd = sd->private;
dce840a0
PZ
6100
6101 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6102 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6103
e3589f6c 6104 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6105 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6106
63b2ca30
NP
6107 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6108 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6109}
6110
cb83b629 6111#ifdef CONFIG_NUMA
cb83b629 6112static int sched_domains_numa_levels;
e3fe70b1 6113enum numa_topology_type sched_numa_topology_type;
cb83b629 6114static int *sched_domains_numa_distance;
9942f79b 6115int sched_max_numa_distance;
cb83b629
PZ
6116static struct cpumask ***sched_domains_numa_masks;
6117static int sched_domains_curr_level;
143e1e28 6118#endif
cb83b629 6119
143e1e28
VG
6120/*
6121 * SD_flags allowed in topology descriptions.
6122 *
5d4dfddd 6123 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6124 * SD_SHARE_PKG_RESOURCES - describes shared caches
6125 * SD_NUMA - describes NUMA topologies
d77b3ed5 6126 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6127 *
6128 * Odd one out:
6129 * SD_ASYM_PACKING - describes SMT quirks
6130 */
6131#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6132 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6133 SD_SHARE_PKG_RESOURCES | \
6134 SD_NUMA | \
d77b3ed5
VG
6135 SD_ASYM_PACKING | \
6136 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6137
6138static struct sched_domain *
143e1e28 6139sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6140{
6141 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6142 int sd_weight, sd_flags = 0;
6143
6144#ifdef CONFIG_NUMA
6145 /*
6146 * Ugly hack to pass state to sd_numa_mask()...
6147 */
6148 sched_domains_curr_level = tl->numa_level;
6149#endif
6150
6151 sd_weight = cpumask_weight(tl->mask(cpu));
6152
6153 if (tl->sd_flags)
6154 sd_flags = (*tl->sd_flags)();
6155 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6156 "wrong sd_flags in topology description\n"))
6157 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6158
6159 *sd = (struct sched_domain){
6160 .min_interval = sd_weight,
6161 .max_interval = 2*sd_weight,
6162 .busy_factor = 32,
870a0bb5 6163 .imbalance_pct = 125,
143e1e28
VG
6164
6165 .cache_nice_tries = 0,
6166 .busy_idx = 0,
6167 .idle_idx = 0,
cb83b629
PZ
6168 .newidle_idx = 0,
6169 .wake_idx = 0,
6170 .forkexec_idx = 0,
6171
6172 .flags = 1*SD_LOAD_BALANCE
6173 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6174 | 1*SD_BALANCE_EXEC
6175 | 1*SD_BALANCE_FORK
cb83b629 6176 | 0*SD_BALANCE_WAKE
143e1e28 6177 | 1*SD_WAKE_AFFINE
5d4dfddd 6178 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6179 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6180 | 0*SD_SERIALIZE
cb83b629 6181 | 0*SD_PREFER_SIBLING
143e1e28
VG
6182 | 0*SD_NUMA
6183 | sd_flags
cb83b629 6184 ,
143e1e28 6185
cb83b629
PZ
6186 .last_balance = jiffies,
6187 .balance_interval = sd_weight,
143e1e28 6188 .smt_gain = 0,
2b4cfe64
JL
6189 .max_newidle_lb_cost = 0,
6190 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6191#ifdef CONFIG_SCHED_DEBUG
6192 .name = tl->name,
6193#endif
cb83b629 6194 };
cb83b629
PZ
6195
6196 /*
143e1e28 6197 * Convert topological properties into behaviour.
cb83b629 6198 */
143e1e28 6199
5d4dfddd 6200 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6201 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6202 sd->imbalance_pct = 110;
6203 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6204
6205 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6206 sd->imbalance_pct = 117;
6207 sd->cache_nice_tries = 1;
6208 sd->busy_idx = 2;
6209
6210#ifdef CONFIG_NUMA
6211 } else if (sd->flags & SD_NUMA) {
6212 sd->cache_nice_tries = 2;
6213 sd->busy_idx = 3;
6214 sd->idle_idx = 2;
6215
6216 sd->flags |= SD_SERIALIZE;
6217 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6218 sd->flags &= ~(SD_BALANCE_EXEC |
6219 SD_BALANCE_FORK |
6220 SD_WAKE_AFFINE);
6221 }
6222
6223#endif
6224 } else {
6225 sd->flags |= SD_PREFER_SIBLING;
6226 sd->cache_nice_tries = 1;
6227 sd->busy_idx = 2;
6228 sd->idle_idx = 1;
6229 }
6230
6231 sd->private = &tl->data;
cb83b629
PZ
6232
6233 return sd;
6234}
6235
143e1e28
VG
6236/*
6237 * Topology list, bottom-up.
6238 */
6239static struct sched_domain_topology_level default_topology[] = {
6240#ifdef CONFIG_SCHED_SMT
6241 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6242#endif
6243#ifdef CONFIG_SCHED_MC
6244 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6245#endif
6246 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6247 { NULL, },
6248};
6249
6250struct sched_domain_topology_level *sched_domain_topology = default_topology;
6251
6252#define for_each_sd_topology(tl) \
6253 for (tl = sched_domain_topology; tl->mask; tl++)
6254
6255void set_sched_topology(struct sched_domain_topology_level *tl)
6256{
6257 sched_domain_topology = tl;
6258}
6259
6260#ifdef CONFIG_NUMA
6261
cb83b629
PZ
6262static const struct cpumask *sd_numa_mask(int cpu)
6263{
6264 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6265}
6266
d039ac60
PZ
6267static void sched_numa_warn(const char *str)
6268{
6269 static int done = false;
6270 int i,j;
6271
6272 if (done)
6273 return;
6274
6275 done = true;
6276
6277 printk(KERN_WARNING "ERROR: %s\n\n", str);
6278
6279 for (i = 0; i < nr_node_ids; i++) {
6280 printk(KERN_WARNING " ");
6281 for (j = 0; j < nr_node_ids; j++)
6282 printk(KERN_CONT "%02d ", node_distance(i,j));
6283 printk(KERN_CONT "\n");
6284 }
6285 printk(KERN_WARNING "\n");
6286}
6287
9942f79b 6288bool find_numa_distance(int distance)
d039ac60
PZ
6289{
6290 int i;
6291
6292 if (distance == node_distance(0, 0))
6293 return true;
6294
6295 for (i = 0; i < sched_domains_numa_levels; i++) {
6296 if (sched_domains_numa_distance[i] == distance)
6297 return true;
6298 }
6299
6300 return false;
6301}
6302
e3fe70b1
RR
6303/*
6304 * A system can have three types of NUMA topology:
6305 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6306 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6307 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6308 *
6309 * The difference between a glueless mesh topology and a backplane
6310 * topology lies in whether communication between not directly
6311 * connected nodes goes through intermediary nodes (where programs
6312 * could run), or through backplane controllers. This affects
6313 * placement of programs.
6314 *
6315 * The type of topology can be discerned with the following tests:
6316 * - If the maximum distance between any nodes is 1 hop, the system
6317 * is directly connected.
6318 * - If for two nodes A and B, located N > 1 hops away from each other,
6319 * there is an intermediary node C, which is < N hops away from both
6320 * nodes A and B, the system is a glueless mesh.
6321 */
6322static void init_numa_topology_type(void)
6323{
6324 int a, b, c, n;
6325
6326 n = sched_max_numa_distance;
6327
6328 if (n <= 1)
6329 sched_numa_topology_type = NUMA_DIRECT;
6330
6331 for_each_online_node(a) {
6332 for_each_online_node(b) {
6333 /* Find two nodes furthest removed from each other. */
6334 if (node_distance(a, b) < n)
6335 continue;
6336
6337 /* Is there an intermediary node between a and b? */
6338 for_each_online_node(c) {
6339 if (node_distance(a, c) < n &&
6340 node_distance(b, c) < n) {
6341 sched_numa_topology_type =
6342 NUMA_GLUELESS_MESH;
6343 return;
6344 }
6345 }
6346
6347 sched_numa_topology_type = NUMA_BACKPLANE;
6348 return;
6349 }
6350 }
6351}
6352
cb83b629
PZ
6353static void sched_init_numa(void)
6354{
6355 int next_distance, curr_distance = node_distance(0, 0);
6356 struct sched_domain_topology_level *tl;
6357 int level = 0;
6358 int i, j, k;
6359
cb83b629
PZ
6360 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6361 if (!sched_domains_numa_distance)
6362 return;
6363
6364 /*
6365 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6366 * unique distances in the node_distance() table.
6367 *
6368 * Assumes node_distance(0,j) includes all distances in
6369 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6370 */
6371 next_distance = curr_distance;
6372 for (i = 0; i < nr_node_ids; i++) {
6373 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6374 for (k = 0; k < nr_node_ids; k++) {
6375 int distance = node_distance(i, k);
6376
6377 if (distance > curr_distance &&
6378 (distance < next_distance ||
6379 next_distance == curr_distance))
6380 next_distance = distance;
6381
6382 /*
6383 * While not a strong assumption it would be nice to know
6384 * about cases where if node A is connected to B, B is not
6385 * equally connected to A.
6386 */
6387 if (sched_debug() && node_distance(k, i) != distance)
6388 sched_numa_warn("Node-distance not symmetric");
6389
6390 if (sched_debug() && i && !find_numa_distance(distance))
6391 sched_numa_warn("Node-0 not representative");
6392 }
6393 if (next_distance != curr_distance) {
6394 sched_domains_numa_distance[level++] = next_distance;
6395 sched_domains_numa_levels = level;
6396 curr_distance = next_distance;
6397 } else break;
cb83b629 6398 }
d039ac60
PZ
6399
6400 /*
6401 * In case of sched_debug() we verify the above assumption.
6402 */
6403 if (!sched_debug())
6404 break;
cb83b629 6405 }
c123588b
AR
6406
6407 if (!level)
6408 return;
6409
cb83b629
PZ
6410 /*
6411 * 'level' contains the number of unique distances, excluding the
6412 * identity distance node_distance(i,i).
6413 *
28b4a521 6414 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6415 * numbers.
6416 */
6417
5f7865f3
TC
6418 /*
6419 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6420 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6421 * the array will contain less then 'level' members. This could be
6422 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6423 * in other functions.
6424 *
6425 * We reset it to 'level' at the end of this function.
6426 */
6427 sched_domains_numa_levels = 0;
6428
cb83b629
PZ
6429 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6430 if (!sched_domains_numa_masks)
6431 return;
6432
6433 /*
6434 * Now for each level, construct a mask per node which contains all
6435 * cpus of nodes that are that many hops away from us.
6436 */
6437 for (i = 0; i < level; i++) {
6438 sched_domains_numa_masks[i] =
6439 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6440 if (!sched_domains_numa_masks[i])
6441 return;
6442
6443 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6444 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6445 if (!mask)
6446 return;
6447
6448 sched_domains_numa_masks[i][j] = mask;
6449
6450 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6451 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6452 continue;
6453
6454 cpumask_or(mask, mask, cpumask_of_node(k));
6455 }
6456 }
6457 }
6458
143e1e28
VG
6459 /* Compute default topology size */
6460 for (i = 0; sched_domain_topology[i].mask; i++);
6461
c515db8c 6462 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6463 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6464 if (!tl)
6465 return;
6466
6467 /*
6468 * Copy the default topology bits..
6469 */
143e1e28
VG
6470 for (i = 0; sched_domain_topology[i].mask; i++)
6471 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6472
6473 /*
6474 * .. and append 'j' levels of NUMA goodness.
6475 */
6476 for (j = 0; j < level; i++, j++) {
6477 tl[i] = (struct sched_domain_topology_level){
cb83b629 6478 .mask = sd_numa_mask,
143e1e28 6479 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6480 .flags = SDTL_OVERLAP,
6481 .numa_level = j,
143e1e28 6482 SD_INIT_NAME(NUMA)
cb83b629
PZ
6483 };
6484 }
6485
6486 sched_domain_topology = tl;
5f7865f3
TC
6487
6488 sched_domains_numa_levels = level;
9942f79b 6489 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6490
6491 init_numa_topology_type();
cb83b629 6492}
301a5cba
TC
6493
6494static void sched_domains_numa_masks_set(int cpu)
6495{
6496 int i, j;
6497 int node = cpu_to_node(cpu);
6498
6499 for (i = 0; i < sched_domains_numa_levels; i++) {
6500 for (j = 0; j < nr_node_ids; j++) {
6501 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6502 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6503 }
6504 }
6505}
6506
6507static void sched_domains_numa_masks_clear(int cpu)
6508{
6509 int i, j;
6510 for (i = 0; i < sched_domains_numa_levels; i++) {
6511 for (j = 0; j < nr_node_ids; j++)
6512 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6513 }
6514}
6515
6516/*
6517 * Update sched_domains_numa_masks[level][node] array when new cpus
6518 * are onlined.
6519 */
6520static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6521 unsigned long action,
6522 void *hcpu)
6523{
6524 int cpu = (long)hcpu;
6525
6526 switch (action & ~CPU_TASKS_FROZEN) {
6527 case CPU_ONLINE:
6528 sched_domains_numa_masks_set(cpu);
6529 break;
6530
6531 case CPU_DEAD:
6532 sched_domains_numa_masks_clear(cpu);
6533 break;
6534
6535 default:
6536 return NOTIFY_DONE;
6537 }
6538
6539 return NOTIFY_OK;
cb83b629
PZ
6540}
6541#else
6542static inline void sched_init_numa(void)
6543{
6544}
301a5cba
TC
6545
6546static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6547 unsigned long action,
6548 void *hcpu)
6549{
6550 return 0;
6551}
cb83b629
PZ
6552#endif /* CONFIG_NUMA */
6553
54ab4ff4
PZ
6554static int __sdt_alloc(const struct cpumask *cpu_map)
6555{
6556 struct sched_domain_topology_level *tl;
6557 int j;
6558
27723a68 6559 for_each_sd_topology(tl) {
54ab4ff4
PZ
6560 struct sd_data *sdd = &tl->data;
6561
6562 sdd->sd = alloc_percpu(struct sched_domain *);
6563 if (!sdd->sd)
6564 return -ENOMEM;
6565
6566 sdd->sg = alloc_percpu(struct sched_group *);
6567 if (!sdd->sg)
6568 return -ENOMEM;
6569
63b2ca30
NP
6570 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6571 if (!sdd->sgc)
9c3f75cb
PZ
6572 return -ENOMEM;
6573
54ab4ff4
PZ
6574 for_each_cpu(j, cpu_map) {
6575 struct sched_domain *sd;
6576 struct sched_group *sg;
63b2ca30 6577 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6578
6579 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6580 GFP_KERNEL, cpu_to_node(j));
6581 if (!sd)
6582 return -ENOMEM;
6583
6584 *per_cpu_ptr(sdd->sd, j) = sd;
6585
6586 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6587 GFP_KERNEL, cpu_to_node(j));
6588 if (!sg)
6589 return -ENOMEM;
6590
30b4e9eb
IM
6591 sg->next = sg;
6592
54ab4ff4 6593 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6594
63b2ca30 6595 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6596 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6597 if (!sgc)
9c3f75cb
PZ
6598 return -ENOMEM;
6599
63b2ca30 6600 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6601 }
6602 }
6603
6604 return 0;
6605}
6606
6607static void __sdt_free(const struct cpumask *cpu_map)
6608{
6609 struct sched_domain_topology_level *tl;
6610 int j;
6611
27723a68 6612 for_each_sd_topology(tl) {
54ab4ff4
PZ
6613 struct sd_data *sdd = &tl->data;
6614
6615 for_each_cpu(j, cpu_map) {
fb2cf2c6 6616 struct sched_domain *sd;
6617
6618 if (sdd->sd) {
6619 sd = *per_cpu_ptr(sdd->sd, j);
6620 if (sd && (sd->flags & SD_OVERLAP))
6621 free_sched_groups(sd->groups, 0);
6622 kfree(*per_cpu_ptr(sdd->sd, j));
6623 }
6624
6625 if (sdd->sg)
6626 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6627 if (sdd->sgc)
6628 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6629 }
6630 free_percpu(sdd->sd);
fb2cf2c6 6631 sdd->sd = NULL;
54ab4ff4 6632 free_percpu(sdd->sg);
fb2cf2c6 6633 sdd->sg = NULL;
63b2ca30
NP
6634 free_percpu(sdd->sgc);
6635 sdd->sgc = NULL;
54ab4ff4
PZ
6636 }
6637}
6638
2c402dc3 6639struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6640 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6641 struct sched_domain *child, int cpu)
2c402dc3 6642{
143e1e28 6643 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6644 if (!sd)
d069b916 6645 return child;
2c402dc3 6646
2c402dc3 6647 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6648 if (child) {
6649 sd->level = child->level + 1;
6650 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6651 child->parent = sd;
c75e0128 6652 sd->child = child;
6ae72dff
PZ
6653
6654 if (!cpumask_subset(sched_domain_span(child),
6655 sched_domain_span(sd))) {
6656 pr_err("BUG: arch topology borken\n");
6657#ifdef CONFIG_SCHED_DEBUG
6658 pr_err(" the %s domain not a subset of the %s domain\n",
6659 child->name, sd->name);
6660#endif
6661 /* Fixup, ensure @sd has at least @child cpus. */
6662 cpumask_or(sched_domain_span(sd),
6663 sched_domain_span(sd),
6664 sched_domain_span(child));
6665 }
6666
60495e77 6667 }
a841f8ce 6668 set_domain_attribute(sd, attr);
2c402dc3
PZ
6669
6670 return sd;
6671}
6672
2109b99e
AH
6673/*
6674 * Build sched domains for a given set of cpus and attach the sched domains
6675 * to the individual cpus
6676 */
dce840a0
PZ
6677static int build_sched_domains(const struct cpumask *cpu_map,
6678 struct sched_domain_attr *attr)
2109b99e 6679{
1c632169 6680 enum s_alloc alloc_state;
dce840a0 6681 struct sched_domain *sd;
2109b99e 6682 struct s_data d;
822ff793 6683 int i, ret = -ENOMEM;
9c1cfda2 6684
2109b99e
AH
6685 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6686 if (alloc_state != sa_rootdomain)
6687 goto error;
9c1cfda2 6688
dce840a0 6689 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6690 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6691 struct sched_domain_topology_level *tl;
6692
3bd65a80 6693 sd = NULL;
27723a68 6694 for_each_sd_topology(tl) {
4a850cbe 6695 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6696 if (tl == sched_domain_topology)
6697 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6698 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6699 sd->flags |= SD_OVERLAP;
d110235d
PZ
6700 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6701 break;
e3589f6c 6702 }
dce840a0
PZ
6703 }
6704
6705 /* Build the groups for the domains */
6706 for_each_cpu(i, cpu_map) {
6707 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6708 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6709 if (sd->flags & SD_OVERLAP) {
6710 if (build_overlap_sched_groups(sd, i))
6711 goto error;
6712 } else {
6713 if (build_sched_groups(sd, i))
6714 goto error;
6715 }
1cf51902 6716 }
a06dadbe 6717 }
9c1cfda2 6718
ced549fa 6719 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6720 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6721 if (!cpumask_test_cpu(i, cpu_map))
6722 continue;
9c1cfda2 6723
dce840a0
PZ
6724 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6725 claim_allocations(i, sd);
63b2ca30 6726 init_sched_groups_capacity(i, sd);
dce840a0 6727 }
f712c0c7 6728 }
9c1cfda2 6729
1da177e4 6730 /* Attach the domains */
dce840a0 6731 rcu_read_lock();
abcd083a 6732 for_each_cpu(i, cpu_map) {
21d42ccf 6733 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6734 cpu_attach_domain(sd, d.rd, i);
1da177e4 6735 }
dce840a0 6736 rcu_read_unlock();
51888ca2 6737
822ff793 6738 ret = 0;
51888ca2 6739error:
2109b99e 6740 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6741 return ret;
1da177e4 6742}
029190c5 6743
acc3f5d7 6744static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6745static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6746static struct sched_domain_attr *dattr_cur;
6747 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6748
6749/*
6750 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6751 * cpumask) fails, then fallback to a single sched domain,
6752 * as determined by the single cpumask fallback_doms.
029190c5 6753 */
4212823f 6754static cpumask_var_t fallback_doms;
029190c5 6755
ee79d1bd
HC
6756/*
6757 * arch_update_cpu_topology lets virtualized architectures update the
6758 * cpu core maps. It is supposed to return 1 if the topology changed
6759 * or 0 if it stayed the same.
6760 */
52f5684c 6761int __weak arch_update_cpu_topology(void)
22e52b07 6762{
ee79d1bd 6763 return 0;
22e52b07
HC
6764}
6765
acc3f5d7
RR
6766cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6767{
6768 int i;
6769 cpumask_var_t *doms;
6770
6771 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6772 if (!doms)
6773 return NULL;
6774 for (i = 0; i < ndoms; i++) {
6775 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6776 free_sched_domains(doms, i);
6777 return NULL;
6778 }
6779 }
6780 return doms;
6781}
6782
6783void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6784{
6785 unsigned int i;
6786 for (i = 0; i < ndoms; i++)
6787 free_cpumask_var(doms[i]);
6788 kfree(doms);
6789}
6790
1a20ff27 6791/*
41a2d6cf 6792 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6793 * For now this just excludes isolated cpus, but could be used to
6794 * exclude other special cases in the future.
1a20ff27 6795 */
c4a8849a 6796static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6797{
7378547f
MM
6798 int err;
6799
22e52b07 6800 arch_update_cpu_topology();
029190c5 6801 ndoms_cur = 1;
acc3f5d7 6802 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6803 if (!doms_cur)
acc3f5d7
RR
6804 doms_cur = &fallback_doms;
6805 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6806 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6807 register_sched_domain_sysctl();
7378547f
MM
6808
6809 return err;
1a20ff27
DG
6810}
6811
1a20ff27
DG
6812/*
6813 * Detach sched domains from a group of cpus specified in cpu_map
6814 * These cpus will now be attached to the NULL domain
6815 */
96f874e2 6816static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6817{
6818 int i;
6819
dce840a0 6820 rcu_read_lock();
abcd083a 6821 for_each_cpu(i, cpu_map)
57d885fe 6822 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6823 rcu_read_unlock();
1a20ff27
DG
6824}
6825
1d3504fc
HS
6826/* handle null as "default" */
6827static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6828 struct sched_domain_attr *new, int idx_new)
6829{
6830 struct sched_domain_attr tmp;
6831
6832 /* fast path */
6833 if (!new && !cur)
6834 return 1;
6835
6836 tmp = SD_ATTR_INIT;
6837 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6838 new ? (new + idx_new) : &tmp,
6839 sizeof(struct sched_domain_attr));
6840}
6841
029190c5
PJ
6842/*
6843 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6844 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6845 * doms_new[] to the current sched domain partitioning, doms_cur[].
6846 * It destroys each deleted domain and builds each new domain.
6847 *
acc3f5d7 6848 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6849 * The masks don't intersect (don't overlap.) We should setup one
6850 * sched domain for each mask. CPUs not in any of the cpumasks will
6851 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6852 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6853 * it as it is.
6854 *
acc3f5d7
RR
6855 * The passed in 'doms_new' should be allocated using
6856 * alloc_sched_domains. This routine takes ownership of it and will
6857 * free_sched_domains it when done with it. If the caller failed the
6858 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6859 * and partition_sched_domains() will fallback to the single partition
6860 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6861 *
96f874e2 6862 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6863 * ndoms_new == 0 is a special case for destroying existing domains,
6864 * and it will not create the default domain.
dfb512ec 6865 *
029190c5
PJ
6866 * Call with hotplug lock held
6867 */
acc3f5d7 6868void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6869 struct sched_domain_attr *dattr_new)
029190c5 6870{
dfb512ec 6871 int i, j, n;
d65bd5ec 6872 int new_topology;
029190c5 6873
712555ee 6874 mutex_lock(&sched_domains_mutex);
a1835615 6875
7378547f
MM
6876 /* always unregister in case we don't destroy any domains */
6877 unregister_sched_domain_sysctl();
6878
d65bd5ec
HC
6879 /* Let architecture update cpu core mappings. */
6880 new_topology = arch_update_cpu_topology();
6881
dfb512ec 6882 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6883
6884 /* Destroy deleted domains */
6885 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6886 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6887 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6888 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6889 goto match1;
6890 }
6891 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6892 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6893match1:
6894 ;
6895 }
6896
c8d2d47a 6897 n = ndoms_cur;
e761b772 6898 if (doms_new == NULL) {
c8d2d47a 6899 n = 0;
acc3f5d7 6900 doms_new = &fallback_doms;
6ad4c188 6901 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6902 WARN_ON_ONCE(dattr_new);
e761b772
MK
6903 }
6904
029190c5
PJ
6905 /* Build new domains */
6906 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6907 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6908 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6909 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6910 goto match2;
6911 }
6912 /* no match - add a new doms_new */
dce840a0 6913 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6914match2:
6915 ;
6916 }
6917
6918 /* Remember the new sched domains */
acc3f5d7
RR
6919 if (doms_cur != &fallback_doms)
6920 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6921 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6922 doms_cur = doms_new;
1d3504fc 6923 dattr_cur = dattr_new;
029190c5 6924 ndoms_cur = ndoms_new;
7378547f
MM
6925
6926 register_sched_domain_sysctl();
a1835615 6927
712555ee 6928 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6929}
6930
d35be8ba
SB
6931static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6932
1da177e4 6933/*
3a101d05
TH
6934 * Update cpusets according to cpu_active mask. If cpusets are
6935 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6936 * around partition_sched_domains().
d35be8ba
SB
6937 *
6938 * If we come here as part of a suspend/resume, don't touch cpusets because we
6939 * want to restore it back to its original state upon resume anyway.
1da177e4 6940 */
0b2e918a
TH
6941static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6942 void *hcpu)
e761b772 6943{
d35be8ba
SB
6944 switch (action) {
6945 case CPU_ONLINE_FROZEN:
6946 case CPU_DOWN_FAILED_FROZEN:
6947
6948 /*
6949 * num_cpus_frozen tracks how many CPUs are involved in suspend
6950 * resume sequence. As long as this is not the last online
6951 * operation in the resume sequence, just build a single sched
6952 * domain, ignoring cpusets.
6953 */
6954 num_cpus_frozen--;
6955 if (likely(num_cpus_frozen)) {
6956 partition_sched_domains(1, NULL, NULL);
6957 break;
6958 }
6959
6960 /*
6961 * This is the last CPU online operation. So fall through and
6962 * restore the original sched domains by considering the
6963 * cpuset configurations.
6964 */
6965
e761b772 6966 case CPU_ONLINE:
7ddf96b0 6967 cpuset_update_active_cpus(true);
d35be8ba 6968 break;
3a101d05
TH
6969 default:
6970 return NOTIFY_DONE;
6971 }
d35be8ba 6972 return NOTIFY_OK;
3a101d05 6973}
e761b772 6974
0b2e918a
TH
6975static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6976 void *hcpu)
3a101d05 6977{
3c18d447
JL
6978 unsigned long flags;
6979 long cpu = (long)hcpu;
6980 struct dl_bw *dl_b;
533445c6
OS
6981 bool overflow;
6982 int cpus;
3c18d447 6983
533445c6 6984 switch (action) {
3a101d05 6985 case CPU_DOWN_PREPARE:
533445c6
OS
6986 rcu_read_lock_sched();
6987 dl_b = dl_bw_of(cpu);
3c18d447 6988
533445c6
OS
6989 raw_spin_lock_irqsave(&dl_b->lock, flags);
6990 cpus = dl_bw_cpus(cpu);
6991 overflow = __dl_overflow(dl_b, cpus, 0, 0);
6992 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 6993
533445c6 6994 rcu_read_unlock_sched();
3c18d447 6995
533445c6
OS
6996 if (overflow)
6997 return notifier_from_errno(-EBUSY);
7ddf96b0 6998 cpuset_update_active_cpus(false);
d35be8ba
SB
6999 break;
7000 case CPU_DOWN_PREPARE_FROZEN:
7001 num_cpus_frozen++;
7002 partition_sched_domains(1, NULL, NULL);
7003 break;
e761b772
MK
7004 default:
7005 return NOTIFY_DONE;
7006 }
d35be8ba 7007 return NOTIFY_OK;
e761b772 7008}
e761b772 7009
1da177e4
LT
7010void __init sched_init_smp(void)
7011{
dcc30a35
RR
7012 cpumask_var_t non_isolated_cpus;
7013
7014 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7015 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7016
cb83b629
PZ
7017 sched_init_numa();
7018
6acce3ef
PZ
7019 /*
7020 * There's no userspace yet to cause hotplug operations; hence all the
7021 * cpu masks are stable and all blatant races in the below code cannot
7022 * happen.
7023 */
712555ee 7024 mutex_lock(&sched_domains_mutex);
c4a8849a 7025 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7026 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7027 if (cpumask_empty(non_isolated_cpus))
7028 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7029 mutex_unlock(&sched_domains_mutex);
e761b772 7030
301a5cba 7031 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7032 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7033 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7034
b328ca18 7035 init_hrtick();
5c1e1767
NP
7036
7037 /* Move init over to a non-isolated CPU */
dcc30a35 7038 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7039 BUG();
19978ca6 7040 sched_init_granularity();
dcc30a35 7041 free_cpumask_var(non_isolated_cpus);
4212823f 7042
0e3900e6 7043 init_sched_rt_class();
1baca4ce 7044 init_sched_dl_class();
1da177e4
LT
7045}
7046#else
7047void __init sched_init_smp(void)
7048{
19978ca6 7049 sched_init_granularity();
1da177e4
LT
7050}
7051#endif /* CONFIG_SMP */
7052
cd1bb94b
AB
7053const_debug unsigned int sysctl_timer_migration = 1;
7054
1da177e4
LT
7055int in_sched_functions(unsigned long addr)
7056{
1da177e4
LT
7057 return in_lock_functions(addr) ||
7058 (addr >= (unsigned long)__sched_text_start
7059 && addr < (unsigned long)__sched_text_end);
7060}
7061
029632fb 7062#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7063/*
7064 * Default task group.
7065 * Every task in system belongs to this group at bootup.
7066 */
029632fb 7067struct task_group root_task_group;
35cf4e50 7068LIST_HEAD(task_groups);
052f1dc7 7069#endif
6f505b16 7070
e6252c3e 7071DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7072
1da177e4
LT
7073void __init sched_init(void)
7074{
dd41f596 7075 int i, j;
434d53b0
MT
7076 unsigned long alloc_size = 0, ptr;
7077
7078#ifdef CONFIG_FAIR_GROUP_SCHED
7079 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7080#endif
7081#ifdef CONFIG_RT_GROUP_SCHED
7082 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7083#endif
434d53b0 7084 if (alloc_size) {
36b7b6d4 7085 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7086
7087#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7088 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7089 ptr += nr_cpu_ids * sizeof(void **);
7090
07e06b01 7091 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7092 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7093
6d6bc0ad 7094#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7095#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7096 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7097 ptr += nr_cpu_ids * sizeof(void **);
7098
07e06b01 7099 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7100 ptr += nr_cpu_ids * sizeof(void **);
7101
6d6bc0ad 7102#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7103 }
df7c8e84 7104#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7105 for_each_possible_cpu(i) {
7106 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7107 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7108 }
b74e6278 7109#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7110
332ac17e
DF
7111 init_rt_bandwidth(&def_rt_bandwidth,
7112 global_rt_period(), global_rt_runtime());
7113 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7114 global_rt_period(), global_rt_runtime());
332ac17e 7115
57d885fe
GH
7116#ifdef CONFIG_SMP
7117 init_defrootdomain();
7118#endif
7119
d0b27fa7 7120#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7121 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7122 global_rt_period(), global_rt_runtime());
6d6bc0ad 7123#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7124
7c941438 7125#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7126 list_add(&root_task_group.list, &task_groups);
7127 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7128 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7129 autogroup_init(&init_task);
54c707e9 7130
7c941438 7131#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7132
0a945022 7133 for_each_possible_cpu(i) {
70b97a7f 7134 struct rq *rq;
1da177e4
LT
7135
7136 rq = cpu_rq(i);
05fa785c 7137 raw_spin_lock_init(&rq->lock);
7897986b 7138 rq->nr_running = 0;
dce48a84
TG
7139 rq->calc_load_active = 0;
7140 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7141 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7142 init_rt_rq(&rq->rt);
7143 init_dl_rq(&rq->dl);
dd41f596 7144#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7145 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7146 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7147 /*
07e06b01 7148 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7149 *
7150 * In case of task-groups formed thr' the cgroup filesystem, it
7151 * gets 100% of the cpu resources in the system. This overall
7152 * system cpu resource is divided among the tasks of
07e06b01 7153 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7154 * based on each entity's (task or task-group's) weight
7155 * (se->load.weight).
7156 *
07e06b01 7157 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7158 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7159 * then A0's share of the cpu resource is:
7160 *
0d905bca 7161 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7162 *
07e06b01
YZ
7163 * We achieve this by letting root_task_group's tasks sit
7164 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7165 */
ab84d31e 7166 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7167 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7168#endif /* CONFIG_FAIR_GROUP_SCHED */
7169
7170 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7171#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7172 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7173#endif
1da177e4 7174
dd41f596
IM
7175 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7176 rq->cpu_load[j] = 0;
fdf3e95d
VP
7177
7178 rq->last_load_update_tick = jiffies;
7179
1da177e4 7180#ifdef CONFIG_SMP
41c7ce9a 7181 rq->sd = NULL;
57d885fe 7182 rq->rd = NULL;
ca6d75e6 7183 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
3f029d3c 7184 rq->post_schedule = 0;
1da177e4 7185 rq->active_balance = 0;
dd41f596 7186 rq->next_balance = jiffies;
1da177e4 7187 rq->push_cpu = 0;
0a2966b4 7188 rq->cpu = i;
1f11eb6a 7189 rq->online = 0;
eae0c9df
MG
7190 rq->idle_stamp = 0;
7191 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7192 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7193
7194 INIT_LIST_HEAD(&rq->cfs_tasks);
7195
dc938520 7196 rq_attach_root(rq, &def_root_domain);
3451d024 7197#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7198 rq->nohz_flags = 0;
83cd4fe2 7199#endif
265f22a9
FW
7200#ifdef CONFIG_NO_HZ_FULL
7201 rq->last_sched_tick = 0;
7202#endif
1da177e4 7203#endif
8f4d37ec 7204 init_rq_hrtick(rq);
1da177e4 7205 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7206 }
7207
2dd73a4f 7208 set_load_weight(&init_task);
b50f60ce 7209
e107be36
AK
7210#ifdef CONFIG_PREEMPT_NOTIFIERS
7211 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7212#endif
7213
1da177e4
LT
7214 /*
7215 * The boot idle thread does lazy MMU switching as well:
7216 */
7217 atomic_inc(&init_mm.mm_count);
7218 enter_lazy_tlb(&init_mm, current);
7219
1b537c7d
YD
7220 /*
7221 * During early bootup we pretend to be a normal task:
7222 */
7223 current->sched_class = &fair_sched_class;
7224
1da177e4
LT
7225 /*
7226 * Make us the idle thread. Technically, schedule() should not be
7227 * called from this thread, however somewhere below it might be,
7228 * but because we are the idle thread, we just pick up running again
7229 * when this runqueue becomes "idle".
7230 */
7231 init_idle(current, smp_processor_id());
dce48a84
TG
7232
7233 calc_load_update = jiffies + LOAD_FREQ;
7234
bf4d83f6 7235#ifdef CONFIG_SMP
4cb98839 7236 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7237 /* May be allocated at isolcpus cmdline parse time */
7238 if (cpu_isolated_map == NULL)
7239 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7240 idle_thread_set_boot_cpu();
a803f026 7241 set_cpu_rq_start_time();
029632fb
PZ
7242#endif
7243 init_sched_fair_class();
6a7b3dc3 7244
6892b75e 7245 scheduler_running = 1;
1da177e4
LT
7246}
7247
d902db1e 7248#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7249static inline int preempt_count_equals(int preempt_offset)
7250{
234da7bc 7251 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7252
4ba8216c 7253 return (nested == preempt_offset);
e4aafea2
FW
7254}
7255
d894837f 7256void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7257{
8eb23b9f
PZ
7258 /*
7259 * Blocking primitives will set (and therefore destroy) current->state,
7260 * since we will exit with TASK_RUNNING make sure we enter with it,
7261 * otherwise we will destroy state.
7262 */
00845eb9 7263 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7264 "do not call blocking ops when !TASK_RUNNING; "
7265 "state=%lx set at [<%p>] %pS\n",
7266 current->state,
7267 (void *)current->task_state_change,
00845eb9 7268 (void *)current->task_state_change);
8eb23b9f 7269
3427445a
PZ
7270 ___might_sleep(file, line, preempt_offset);
7271}
7272EXPORT_SYMBOL(__might_sleep);
7273
7274void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7275{
1da177e4
LT
7276 static unsigned long prev_jiffy; /* ratelimiting */
7277
b3fbab05 7278 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7279 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7280 !is_idle_task(current)) ||
e4aafea2 7281 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7282 return;
7283 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7284 return;
7285 prev_jiffy = jiffies;
7286
3df0fc5b
PZ
7287 printk(KERN_ERR
7288 "BUG: sleeping function called from invalid context at %s:%d\n",
7289 file, line);
7290 printk(KERN_ERR
7291 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7292 in_atomic(), irqs_disabled(),
7293 current->pid, current->comm);
aef745fc 7294
a8b686b3
ES
7295 if (task_stack_end_corrupted(current))
7296 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7297
aef745fc
IM
7298 debug_show_held_locks(current);
7299 if (irqs_disabled())
7300 print_irqtrace_events(current);
8f47b187
TG
7301#ifdef CONFIG_DEBUG_PREEMPT
7302 if (!preempt_count_equals(preempt_offset)) {
7303 pr_err("Preemption disabled at:");
7304 print_ip_sym(current->preempt_disable_ip);
7305 pr_cont("\n");
7306 }
7307#endif
aef745fc 7308 dump_stack();
1da177e4 7309}
3427445a 7310EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7311#endif
7312
7313#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7314static void normalize_task(struct rq *rq, struct task_struct *p)
7315{
da7a735e 7316 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7317 struct sched_attr attr = {
7318 .sched_policy = SCHED_NORMAL,
7319 };
da7a735e 7320 int old_prio = p->prio;
da0c1e65 7321 int queued;
3e51f33f 7322
da0c1e65
KT
7323 queued = task_on_rq_queued(p);
7324 if (queued)
4ca9b72b 7325 dequeue_task(rq, p, 0);
0782e63b 7326 __setscheduler(rq, p, &attr, false);
da0c1e65 7327 if (queued) {
4ca9b72b 7328 enqueue_task(rq, p, 0);
8875125e 7329 resched_curr(rq);
3a5e4dc1 7330 }
da7a735e
PZ
7331
7332 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7333}
7334
1da177e4
LT
7335void normalize_rt_tasks(void)
7336{
a0f98a1c 7337 struct task_struct *g, *p;
1da177e4 7338 unsigned long flags;
70b97a7f 7339 struct rq *rq;
1da177e4 7340
3472eaa1 7341 read_lock(&tasklist_lock);
5d07f420 7342 for_each_process_thread(g, p) {
178be793
IM
7343 /*
7344 * Only normalize user tasks:
7345 */
3472eaa1 7346 if (p->flags & PF_KTHREAD)
178be793
IM
7347 continue;
7348
6cfb0d5d 7349 p->se.exec_start = 0;
6cfb0d5d 7350#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7351 p->se.statistics.wait_start = 0;
7352 p->se.statistics.sleep_start = 0;
7353 p->se.statistics.block_start = 0;
6cfb0d5d 7354#endif
dd41f596 7355
aab03e05 7356 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7357 /*
7358 * Renice negative nice level userspace
7359 * tasks back to 0:
7360 */
3472eaa1 7361 if (task_nice(p) < 0)
dd41f596 7362 set_user_nice(p, 0);
1da177e4 7363 continue;
dd41f596 7364 }
1da177e4 7365
3472eaa1 7366 rq = task_rq_lock(p, &flags);
178be793 7367 normalize_task(rq, p);
3472eaa1 7368 task_rq_unlock(rq, p, &flags);
5d07f420 7369 }
3472eaa1 7370 read_unlock(&tasklist_lock);
1da177e4
LT
7371}
7372
7373#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7374
67fc4e0c 7375#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7376/*
67fc4e0c 7377 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7378 *
7379 * They can only be called when the whole system has been
7380 * stopped - every CPU needs to be quiescent, and no scheduling
7381 * activity can take place. Using them for anything else would
7382 * be a serious bug, and as a result, they aren't even visible
7383 * under any other configuration.
7384 */
7385
7386/**
7387 * curr_task - return the current task for a given cpu.
7388 * @cpu: the processor in question.
7389 *
7390 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7391 *
7392 * Return: The current task for @cpu.
1df5c10a 7393 */
36c8b586 7394struct task_struct *curr_task(int cpu)
1df5c10a
LT
7395{
7396 return cpu_curr(cpu);
7397}
7398
67fc4e0c
JW
7399#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7400
7401#ifdef CONFIG_IA64
1df5c10a
LT
7402/**
7403 * set_curr_task - set the current task for a given cpu.
7404 * @cpu: the processor in question.
7405 * @p: the task pointer to set.
7406 *
7407 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7408 * are serviced on a separate stack. It allows the architecture to switch the
7409 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7410 * must be called with all CPU's synchronized, and interrupts disabled, the
7411 * and caller must save the original value of the current task (see
7412 * curr_task() above) and restore that value before reenabling interrupts and
7413 * re-starting the system.
7414 *
7415 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7416 */
36c8b586 7417void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7418{
7419 cpu_curr(cpu) = p;
7420}
7421
7422#endif
29f59db3 7423
7c941438 7424#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7425/* task_group_lock serializes the addition/removal of task groups */
7426static DEFINE_SPINLOCK(task_group_lock);
7427
bccbe08a
PZ
7428static void free_sched_group(struct task_group *tg)
7429{
7430 free_fair_sched_group(tg);
7431 free_rt_sched_group(tg);
e9aa1dd1 7432 autogroup_free(tg);
bccbe08a
PZ
7433 kfree(tg);
7434}
7435
7436/* allocate runqueue etc for a new task group */
ec7dc8ac 7437struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7438{
7439 struct task_group *tg;
bccbe08a
PZ
7440
7441 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7442 if (!tg)
7443 return ERR_PTR(-ENOMEM);
7444
ec7dc8ac 7445 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7446 goto err;
7447
ec7dc8ac 7448 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7449 goto err;
7450
ace783b9
LZ
7451 return tg;
7452
7453err:
7454 free_sched_group(tg);
7455 return ERR_PTR(-ENOMEM);
7456}
7457
7458void sched_online_group(struct task_group *tg, struct task_group *parent)
7459{
7460 unsigned long flags;
7461
8ed36996 7462 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7463 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7464
7465 WARN_ON(!parent); /* root should already exist */
7466
7467 tg->parent = parent;
f473aa5e 7468 INIT_LIST_HEAD(&tg->children);
09f2724a 7469 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7470 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7471}
7472
9b5b7751 7473/* rcu callback to free various structures associated with a task group */
6f505b16 7474static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7475{
29f59db3 7476 /* now it should be safe to free those cfs_rqs */
6f505b16 7477 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7478}
7479
9b5b7751 7480/* Destroy runqueue etc associated with a task group */
4cf86d77 7481void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7482{
7483 /* wait for possible concurrent references to cfs_rqs complete */
7484 call_rcu(&tg->rcu, free_sched_group_rcu);
7485}
7486
7487void sched_offline_group(struct task_group *tg)
29f59db3 7488{
8ed36996 7489 unsigned long flags;
9b5b7751 7490 int i;
29f59db3 7491
3d4b47b4
PZ
7492 /* end participation in shares distribution */
7493 for_each_possible_cpu(i)
bccbe08a 7494 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7495
7496 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7497 list_del_rcu(&tg->list);
f473aa5e 7498 list_del_rcu(&tg->siblings);
8ed36996 7499 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7500}
7501
9b5b7751 7502/* change task's runqueue when it moves between groups.
3a252015
IM
7503 * The caller of this function should have put the task in its new group
7504 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7505 * reflect its new group.
9b5b7751
SV
7506 */
7507void sched_move_task(struct task_struct *tsk)
29f59db3 7508{
8323f26c 7509 struct task_group *tg;
da0c1e65 7510 int queued, running;
29f59db3
SV
7511 unsigned long flags;
7512 struct rq *rq;
7513
7514 rq = task_rq_lock(tsk, &flags);
7515
051a1d1a 7516 running = task_current(rq, tsk);
da0c1e65 7517 queued = task_on_rq_queued(tsk);
29f59db3 7518
da0c1e65 7519 if (queued)
29f59db3 7520 dequeue_task(rq, tsk, 0);
0e1f3483 7521 if (unlikely(running))
f3cd1c4e 7522 put_prev_task(rq, tsk);
29f59db3 7523
f7b8a47d
KT
7524 /*
7525 * All callers are synchronized by task_rq_lock(); we do not use RCU
7526 * which is pointless here. Thus, we pass "true" to task_css_check()
7527 * to prevent lockdep warnings.
7528 */
7529 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7530 struct task_group, css);
7531 tg = autogroup_task_group(tsk, tg);
7532 tsk->sched_task_group = tg;
7533
810b3817 7534#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7535 if (tsk->sched_class->task_move_group)
da0c1e65 7536 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7537 else
810b3817 7538#endif
b2b5ce02 7539 set_task_rq(tsk, task_cpu(tsk));
810b3817 7540
0e1f3483
HS
7541 if (unlikely(running))
7542 tsk->sched_class->set_curr_task(rq);
da0c1e65 7543 if (queued)
371fd7e7 7544 enqueue_task(rq, tsk, 0);
29f59db3 7545
0122ec5b 7546 task_rq_unlock(rq, tsk, &flags);
29f59db3 7547}
7c941438 7548#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7549
a790de99
PT
7550#ifdef CONFIG_RT_GROUP_SCHED
7551/*
7552 * Ensure that the real time constraints are schedulable.
7553 */
7554static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7555
9a7e0b18
PZ
7556/* Must be called with tasklist_lock held */
7557static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7558{
9a7e0b18 7559 struct task_struct *g, *p;
b40b2e8e 7560
1fe89e1b
PZ
7561 /*
7562 * Autogroups do not have RT tasks; see autogroup_create().
7563 */
7564 if (task_group_is_autogroup(tg))
7565 return 0;
7566
5d07f420 7567 for_each_process_thread(g, p) {
8651c658 7568 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7569 return 1;
5d07f420 7570 }
b40b2e8e 7571
9a7e0b18
PZ
7572 return 0;
7573}
b40b2e8e 7574
9a7e0b18
PZ
7575struct rt_schedulable_data {
7576 struct task_group *tg;
7577 u64 rt_period;
7578 u64 rt_runtime;
7579};
b40b2e8e 7580
a790de99 7581static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7582{
7583 struct rt_schedulable_data *d = data;
7584 struct task_group *child;
7585 unsigned long total, sum = 0;
7586 u64 period, runtime;
b40b2e8e 7587
9a7e0b18
PZ
7588 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7589 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7590
9a7e0b18
PZ
7591 if (tg == d->tg) {
7592 period = d->rt_period;
7593 runtime = d->rt_runtime;
b40b2e8e 7594 }
b40b2e8e 7595
4653f803
PZ
7596 /*
7597 * Cannot have more runtime than the period.
7598 */
7599 if (runtime > period && runtime != RUNTIME_INF)
7600 return -EINVAL;
6f505b16 7601
4653f803
PZ
7602 /*
7603 * Ensure we don't starve existing RT tasks.
7604 */
9a7e0b18
PZ
7605 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7606 return -EBUSY;
6f505b16 7607
9a7e0b18 7608 total = to_ratio(period, runtime);
6f505b16 7609
4653f803
PZ
7610 /*
7611 * Nobody can have more than the global setting allows.
7612 */
7613 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7614 return -EINVAL;
6f505b16 7615
4653f803
PZ
7616 /*
7617 * The sum of our children's runtime should not exceed our own.
7618 */
9a7e0b18
PZ
7619 list_for_each_entry_rcu(child, &tg->children, siblings) {
7620 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7621 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7622
9a7e0b18
PZ
7623 if (child == d->tg) {
7624 period = d->rt_period;
7625 runtime = d->rt_runtime;
7626 }
6f505b16 7627
9a7e0b18 7628 sum += to_ratio(period, runtime);
9f0c1e56 7629 }
6f505b16 7630
9a7e0b18
PZ
7631 if (sum > total)
7632 return -EINVAL;
7633
7634 return 0;
6f505b16
PZ
7635}
7636
9a7e0b18 7637static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7638{
8277434e
PT
7639 int ret;
7640
9a7e0b18
PZ
7641 struct rt_schedulable_data data = {
7642 .tg = tg,
7643 .rt_period = period,
7644 .rt_runtime = runtime,
7645 };
7646
8277434e
PT
7647 rcu_read_lock();
7648 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7649 rcu_read_unlock();
7650
7651 return ret;
521f1a24
DG
7652}
7653
ab84d31e 7654static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7655 u64 rt_period, u64 rt_runtime)
6f505b16 7656{
ac086bc2 7657 int i, err = 0;
9f0c1e56 7658
2636ed5f
PZ
7659 /*
7660 * Disallowing the root group RT runtime is BAD, it would disallow the
7661 * kernel creating (and or operating) RT threads.
7662 */
7663 if (tg == &root_task_group && rt_runtime == 0)
7664 return -EINVAL;
7665
7666 /* No period doesn't make any sense. */
7667 if (rt_period == 0)
7668 return -EINVAL;
7669
9f0c1e56 7670 mutex_lock(&rt_constraints_mutex);
521f1a24 7671 read_lock(&tasklist_lock);
9a7e0b18
PZ
7672 err = __rt_schedulable(tg, rt_period, rt_runtime);
7673 if (err)
9f0c1e56 7674 goto unlock;
ac086bc2 7675
0986b11b 7676 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7677 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7678 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7679
7680 for_each_possible_cpu(i) {
7681 struct rt_rq *rt_rq = tg->rt_rq[i];
7682
0986b11b 7683 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7684 rt_rq->rt_runtime = rt_runtime;
0986b11b 7685 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7686 }
0986b11b 7687 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7688unlock:
521f1a24 7689 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7690 mutex_unlock(&rt_constraints_mutex);
7691
7692 return err;
6f505b16
PZ
7693}
7694
25cc7da7 7695static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7696{
7697 u64 rt_runtime, rt_period;
7698
7699 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7700 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7701 if (rt_runtime_us < 0)
7702 rt_runtime = RUNTIME_INF;
7703
ab84d31e 7704 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7705}
7706
25cc7da7 7707static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7708{
7709 u64 rt_runtime_us;
7710
d0b27fa7 7711 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7712 return -1;
7713
d0b27fa7 7714 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7715 do_div(rt_runtime_us, NSEC_PER_USEC);
7716 return rt_runtime_us;
7717}
d0b27fa7 7718
25cc7da7 7719static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7720{
7721 u64 rt_runtime, rt_period;
7722
7723 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7724 rt_runtime = tg->rt_bandwidth.rt_runtime;
7725
ab84d31e 7726 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7727}
7728
25cc7da7 7729static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7730{
7731 u64 rt_period_us;
7732
7733 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7734 do_div(rt_period_us, NSEC_PER_USEC);
7735 return rt_period_us;
7736}
332ac17e 7737#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7738
332ac17e 7739#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7740static int sched_rt_global_constraints(void)
7741{
7742 int ret = 0;
7743
7744 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7745 read_lock(&tasklist_lock);
4653f803 7746 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7747 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7748 mutex_unlock(&rt_constraints_mutex);
7749
7750 return ret;
7751}
54e99124 7752
25cc7da7 7753static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7754{
7755 /* Don't accept realtime tasks when there is no way for them to run */
7756 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7757 return 0;
7758
7759 return 1;
7760}
7761
6d6bc0ad 7762#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7763static int sched_rt_global_constraints(void)
7764{
ac086bc2 7765 unsigned long flags;
332ac17e 7766 int i, ret = 0;
ec5d4989 7767
0986b11b 7768 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7769 for_each_possible_cpu(i) {
7770 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7771
0986b11b 7772 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7773 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7774 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7775 }
0986b11b 7776 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7777
332ac17e 7778 return ret;
d0b27fa7 7779}
6d6bc0ad 7780#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7781
a1963b81 7782static int sched_dl_global_validate(void)
332ac17e 7783{
1724813d
PZ
7784 u64 runtime = global_rt_runtime();
7785 u64 period = global_rt_period();
332ac17e 7786 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7787 struct dl_bw *dl_b;
1724813d 7788 int cpu, ret = 0;
49516342 7789 unsigned long flags;
332ac17e
DF
7790
7791 /*
7792 * Here we want to check the bandwidth not being set to some
7793 * value smaller than the currently allocated bandwidth in
7794 * any of the root_domains.
7795 *
7796 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7797 * cycling on root_domains... Discussion on different/better
7798 * solutions is welcome!
7799 */
1724813d 7800 for_each_possible_cpu(cpu) {
f10e00f4
KT
7801 rcu_read_lock_sched();
7802 dl_b = dl_bw_of(cpu);
332ac17e 7803
49516342 7804 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7805 if (new_bw < dl_b->total_bw)
7806 ret = -EBUSY;
49516342 7807 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7808
f10e00f4
KT
7809 rcu_read_unlock_sched();
7810
1724813d
PZ
7811 if (ret)
7812 break;
332ac17e
DF
7813 }
7814
1724813d 7815 return ret;
332ac17e
DF
7816}
7817
1724813d 7818static void sched_dl_do_global(void)
ce0dbbbb 7819{
1724813d 7820 u64 new_bw = -1;
f10e00f4 7821 struct dl_bw *dl_b;
1724813d 7822 int cpu;
49516342 7823 unsigned long flags;
ce0dbbbb 7824
1724813d
PZ
7825 def_dl_bandwidth.dl_period = global_rt_period();
7826 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7827
7828 if (global_rt_runtime() != RUNTIME_INF)
7829 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7830
7831 /*
7832 * FIXME: As above...
7833 */
7834 for_each_possible_cpu(cpu) {
f10e00f4
KT
7835 rcu_read_lock_sched();
7836 dl_b = dl_bw_of(cpu);
1724813d 7837
49516342 7838 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7839 dl_b->bw = new_bw;
49516342 7840 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7841
7842 rcu_read_unlock_sched();
ce0dbbbb 7843 }
1724813d
PZ
7844}
7845
7846static int sched_rt_global_validate(void)
7847{
7848 if (sysctl_sched_rt_period <= 0)
7849 return -EINVAL;
7850
e9e7cb38
JL
7851 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7852 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7853 return -EINVAL;
7854
7855 return 0;
7856}
7857
7858static void sched_rt_do_global(void)
7859{
7860 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7861 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7862}
7863
d0b27fa7 7864int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7865 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7866 loff_t *ppos)
7867{
d0b27fa7
PZ
7868 int old_period, old_runtime;
7869 static DEFINE_MUTEX(mutex);
1724813d 7870 int ret;
d0b27fa7
PZ
7871
7872 mutex_lock(&mutex);
7873 old_period = sysctl_sched_rt_period;
7874 old_runtime = sysctl_sched_rt_runtime;
7875
8d65af78 7876 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7877
7878 if (!ret && write) {
1724813d
PZ
7879 ret = sched_rt_global_validate();
7880 if (ret)
7881 goto undo;
7882
a1963b81 7883 ret = sched_dl_global_validate();
1724813d
PZ
7884 if (ret)
7885 goto undo;
7886
a1963b81 7887 ret = sched_rt_global_constraints();
1724813d
PZ
7888 if (ret)
7889 goto undo;
7890
7891 sched_rt_do_global();
7892 sched_dl_do_global();
7893 }
7894 if (0) {
7895undo:
7896 sysctl_sched_rt_period = old_period;
7897 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7898 }
7899 mutex_unlock(&mutex);
7900
7901 return ret;
7902}
68318b8e 7903
1724813d 7904int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7905 void __user *buffer, size_t *lenp,
7906 loff_t *ppos)
7907{
7908 int ret;
332ac17e 7909 static DEFINE_MUTEX(mutex);
332ac17e
DF
7910
7911 mutex_lock(&mutex);
332ac17e 7912 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7913 /* make sure that internally we keep jiffies */
7914 /* also, writing zero resets timeslice to default */
332ac17e 7915 if (!ret && write) {
1724813d
PZ
7916 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7917 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7918 }
7919 mutex_unlock(&mutex);
332ac17e
DF
7920 return ret;
7921}
7922
052f1dc7 7923#ifdef CONFIG_CGROUP_SCHED
68318b8e 7924
a7c6d554 7925static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7926{
a7c6d554 7927 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7928}
7929
eb95419b
TH
7930static struct cgroup_subsys_state *
7931cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7932{
eb95419b
TH
7933 struct task_group *parent = css_tg(parent_css);
7934 struct task_group *tg;
68318b8e 7935
eb95419b 7936 if (!parent) {
68318b8e 7937 /* This is early initialization for the top cgroup */
07e06b01 7938 return &root_task_group.css;
68318b8e
SV
7939 }
7940
ec7dc8ac 7941 tg = sched_create_group(parent);
68318b8e
SV
7942 if (IS_ERR(tg))
7943 return ERR_PTR(-ENOMEM);
7944
68318b8e
SV
7945 return &tg->css;
7946}
7947
eb95419b 7948static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7949{
eb95419b 7950 struct task_group *tg = css_tg(css);
5c9d535b 7951 struct task_group *parent = css_tg(css->parent);
ace783b9 7952
63876986
TH
7953 if (parent)
7954 sched_online_group(tg, parent);
ace783b9
LZ
7955 return 0;
7956}
7957
eb95419b 7958static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7959{
eb95419b 7960 struct task_group *tg = css_tg(css);
68318b8e
SV
7961
7962 sched_destroy_group(tg);
7963}
7964
eb95419b 7965static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7966{
eb95419b 7967 struct task_group *tg = css_tg(css);
ace783b9
LZ
7968
7969 sched_offline_group(tg);
7970}
7971
eeb61e53
KT
7972static void cpu_cgroup_fork(struct task_struct *task)
7973{
7974 sched_move_task(task);
7975}
7976
eb95419b 7977static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7978 struct cgroup_taskset *tset)
68318b8e 7979{
bb9d97b6
TH
7980 struct task_struct *task;
7981
924f0d9a 7982 cgroup_taskset_for_each(task, tset) {
b68aa230 7983#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7984 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7985 return -EINVAL;
b68aa230 7986#else
bb9d97b6
TH
7987 /* We don't support RT-tasks being in separate groups */
7988 if (task->sched_class != &fair_sched_class)
7989 return -EINVAL;
b68aa230 7990#endif
bb9d97b6 7991 }
be367d09
BB
7992 return 0;
7993}
68318b8e 7994
eb95419b 7995static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7996 struct cgroup_taskset *tset)
68318b8e 7997{
bb9d97b6
TH
7998 struct task_struct *task;
7999
924f0d9a 8000 cgroup_taskset_for_each(task, tset)
bb9d97b6 8001 sched_move_task(task);
68318b8e
SV
8002}
8003
eb95419b
TH
8004static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8005 struct cgroup_subsys_state *old_css,
8006 struct task_struct *task)
068c5cc5
PZ
8007{
8008 /*
8009 * cgroup_exit() is called in the copy_process() failure path.
8010 * Ignore this case since the task hasn't ran yet, this avoids
8011 * trying to poke a half freed task state from generic code.
8012 */
8013 if (!(task->flags & PF_EXITING))
8014 return;
8015
8016 sched_move_task(task);
8017}
8018
052f1dc7 8019#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8020static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8021 struct cftype *cftype, u64 shareval)
68318b8e 8022{
182446d0 8023 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8024}
8025
182446d0
TH
8026static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8027 struct cftype *cft)
68318b8e 8028{
182446d0 8029 struct task_group *tg = css_tg(css);
68318b8e 8030
c8b28116 8031 return (u64) scale_load_down(tg->shares);
68318b8e 8032}
ab84d31e
PT
8033
8034#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8035static DEFINE_MUTEX(cfs_constraints_mutex);
8036
ab84d31e
PT
8037const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8038const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8039
a790de99
PT
8040static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8041
ab84d31e
PT
8042static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8043{
56f570e5 8044 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8045 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8046
8047 if (tg == &root_task_group)
8048 return -EINVAL;
8049
8050 /*
8051 * Ensure we have at some amount of bandwidth every period. This is
8052 * to prevent reaching a state of large arrears when throttled via
8053 * entity_tick() resulting in prolonged exit starvation.
8054 */
8055 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8056 return -EINVAL;
8057
8058 /*
8059 * Likewise, bound things on the otherside by preventing insane quota
8060 * periods. This also allows us to normalize in computing quota
8061 * feasibility.
8062 */
8063 if (period > max_cfs_quota_period)
8064 return -EINVAL;
8065
0e59bdae
KT
8066 /*
8067 * Prevent race between setting of cfs_rq->runtime_enabled and
8068 * unthrottle_offline_cfs_rqs().
8069 */
8070 get_online_cpus();
a790de99
PT
8071 mutex_lock(&cfs_constraints_mutex);
8072 ret = __cfs_schedulable(tg, period, quota);
8073 if (ret)
8074 goto out_unlock;
8075
58088ad0 8076 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8077 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8078 /*
8079 * If we need to toggle cfs_bandwidth_used, off->on must occur
8080 * before making related changes, and on->off must occur afterwards
8081 */
8082 if (runtime_enabled && !runtime_was_enabled)
8083 cfs_bandwidth_usage_inc();
ab84d31e
PT
8084 raw_spin_lock_irq(&cfs_b->lock);
8085 cfs_b->period = ns_to_ktime(period);
8086 cfs_b->quota = quota;
58088ad0 8087
a9cf55b2 8088 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8089 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8090 if (runtime_enabled)
8091 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8092 raw_spin_unlock_irq(&cfs_b->lock);
8093
0e59bdae 8094 for_each_online_cpu(i) {
ab84d31e 8095 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8096 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8097
8098 raw_spin_lock_irq(&rq->lock);
58088ad0 8099 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8100 cfs_rq->runtime_remaining = 0;
671fd9da 8101
029632fb 8102 if (cfs_rq->throttled)
671fd9da 8103 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8104 raw_spin_unlock_irq(&rq->lock);
8105 }
1ee14e6c
BS
8106 if (runtime_was_enabled && !runtime_enabled)
8107 cfs_bandwidth_usage_dec();
a790de99
PT
8108out_unlock:
8109 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8110 put_online_cpus();
ab84d31e 8111
a790de99 8112 return ret;
ab84d31e
PT
8113}
8114
8115int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8116{
8117 u64 quota, period;
8118
029632fb 8119 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8120 if (cfs_quota_us < 0)
8121 quota = RUNTIME_INF;
8122 else
8123 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8124
8125 return tg_set_cfs_bandwidth(tg, period, quota);
8126}
8127
8128long tg_get_cfs_quota(struct task_group *tg)
8129{
8130 u64 quota_us;
8131
029632fb 8132 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8133 return -1;
8134
029632fb 8135 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8136 do_div(quota_us, NSEC_PER_USEC);
8137
8138 return quota_us;
8139}
8140
8141int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8142{
8143 u64 quota, period;
8144
8145 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8146 quota = tg->cfs_bandwidth.quota;
ab84d31e 8147
ab84d31e
PT
8148 return tg_set_cfs_bandwidth(tg, period, quota);
8149}
8150
8151long tg_get_cfs_period(struct task_group *tg)
8152{
8153 u64 cfs_period_us;
8154
029632fb 8155 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8156 do_div(cfs_period_us, NSEC_PER_USEC);
8157
8158 return cfs_period_us;
8159}
8160
182446d0
TH
8161static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8162 struct cftype *cft)
ab84d31e 8163{
182446d0 8164 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8165}
8166
182446d0
TH
8167static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8168 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8169{
182446d0 8170 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8171}
8172
182446d0
TH
8173static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8174 struct cftype *cft)
ab84d31e 8175{
182446d0 8176 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8177}
8178
182446d0
TH
8179static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8180 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8181{
182446d0 8182 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8183}
8184
a790de99
PT
8185struct cfs_schedulable_data {
8186 struct task_group *tg;
8187 u64 period, quota;
8188};
8189
8190/*
8191 * normalize group quota/period to be quota/max_period
8192 * note: units are usecs
8193 */
8194static u64 normalize_cfs_quota(struct task_group *tg,
8195 struct cfs_schedulable_data *d)
8196{
8197 u64 quota, period;
8198
8199 if (tg == d->tg) {
8200 period = d->period;
8201 quota = d->quota;
8202 } else {
8203 period = tg_get_cfs_period(tg);
8204 quota = tg_get_cfs_quota(tg);
8205 }
8206
8207 /* note: these should typically be equivalent */
8208 if (quota == RUNTIME_INF || quota == -1)
8209 return RUNTIME_INF;
8210
8211 return to_ratio(period, quota);
8212}
8213
8214static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8215{
8216 struct cfs_schedulable_data *d = data;
029632fb 8217 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8218 s64 quota = 0, parent_quota = -1;
8219
8220 if (!tg->parent) {
8221 quota = RUNTIME_INF;
8222 } else {
029632fb 8223 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8224
8225 quota = normalize_cfs_quota(tg, d);
9c58c79a 8226 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8227
8228 /*
8229 * ensure max(child_quota) <= parent_quota, inherit when no
8230 * limit is set
8231 */
8232 if (quota == RUNTIME_INF)
8233 quota = parent_quota;
8234 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8235 return -EINVAL;
8236 }
9c58c79a 8237 cfs_b->hierarchical_quota = quota;
a790de99
PT
8238
8239 return 0;
8240}
8241
8242static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8243{
8277434e 8244 int ret;
a790de99
PT
8245 struct cfs_schedulable_data data = {
8246 .tg = tg,
8247 .period = period,
8248 .quota = quota,
8249 };
8250
8251 if (quota != RUNTIME_INF) {
8252 do_div(data.period, NSEC_PER_USEC);
8253 do_div(data.quota, NSEC_PER_USEC);
8254 }
8255
8277434e
PT
8256 rcu_read_lock();
8257 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8258 rcu_read_unlock();
8259
8260 return ret;
a790de99 8261}
e8da1b18 8262
2da8ca82 8263static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8264{
2da8ca82 8265 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8266 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8267
44ffc75b
TH
8268 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8269 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8270 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8271
8272 return 0;
8273}
ab84d31e 8274#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8275#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8276
052f1dc7 8277#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8278static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8279 struct cftype *cft, s64 val)
6f505b16 8280{
182446d0 8281 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8282}
8283
182446d0
TH
8284static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8285 struct cftype *cft)
6f505b16 8286{
182446d0 8287 return sched_group_rt_runtime(css_tg(css));
6f505b16 8288}
d0b27fa7 8289
182446d0
TH
8290static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8291 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8292{
182446d0 8293 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8294}
8295
182446d0
TH
8296static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8297 struct cftype *cft)
d0b27fa7 8298{
182446d0 8299 return sched_group_rt_period(css_tg(css));
d0b27fa7 8300}
6d6bc0ad 8301#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8302
fe5c7cc2 8303static struct cftype cpu_files[] = {
052f1dc7 8304#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8305 {
8306 .name = "shares",
f4c753b7
PM
8307 .read_u64 = cpu_shares_read_u64,
8308 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8309 },
052f1dc7 8310#endif
ab84d31e
PT
8311#ifdef CONFIG_CFS_BANDWIDTH
8312 {
8313 .name = "cfs_quota_us",
8314 .read_s64 = cpu_cfs_quota_read_s64,
8315 .write_s64 = cpu_cfs_quota_write_s64,
8316 },
8317 {
8318 .name = "cfs_period_us",
8319 .read_u64 = cpu_cfs_period_read_u64,
8320 .write_u64 = cpu_cfs_period_write_u64,
8321 },
e8da1b18
NR
8322 {
8323 .name = "stat",
2da8ca82 8324 .seq_show = cpu_stats_show,
e8da1b18 8325 },
ab84d31e 8326#endif
052f1dc7 8327#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8328 {
9f0c1e56 8329 .name = "rt_runtime_us",
06ecb27c
PM
8330 .read_s64 = cpu_rt_runtime_read,
8331 .write_s64 = cpu_rt_runtime_write,
6f505b16 8332 },
d0b27fa7
PZ
8333 {
8334 .name = "rt_period_us",
f4c753b7
PM
8335 .read_u64 = cpu_rt_period_read_uint,
8336 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8337 },
052f1dc7 8338#endif
4baf6e33 8339 { } /* terminate */
68318b8e
SV
8340};
8341
073219e9 8342struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8343 .css_alloc = cpu_cgroup_css_alloc,
8344 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8345 .css_online = cpu_cgroup_css_online,
8346 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8347 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8348 .can_attach = cpu_cgroup_can_attach,
8349 .attach = cpu_cgroup_attach,
068c5cc5 8350 .exit = cpu_cgroup_exit,
5577964e 8351 .legacy_cftypes = cpu_files,
68318b8e
SV
8352 .early_init = 1,
8353};
8354
052f1dc7 8355#endif /* CONFIG_CGROUP_SCHED */
d842de87 8356
b637a328
PM
8357void dump_cpu_task(int cpu)
8358{
8359 pr_info("Task dump for CPU %d:\n", cpu);
8360 sched_show_task(cpu_curr(cpu));
8361}
This page took 3.499013 seconds and 5 git commands to generate.