sched: Final power vs. capacity cleanups
[deliverable/linux.git] / kernel / sched / cputime.c
CommitLineData
73fbec60
FW
1#include <linux/export.h>
2#include <linux/sched.h>
3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h>
5#include <linux/static_key.h>
abf917cd 6#include <linux/context_tracking.h>
73fbec60
FW
7#include "sched.h"
8
9
10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12/*
13 * There are no locks covering percpu hardirq/softirq time.
bf9fae9f 14 * They are only modified in vtime_account, on corresponding CPU
73fbec60
FW
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
bf9fae9f 18 * race with irq/vtime_account on this CPU. We would either get old
73fbec60
FW
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23DEFINE_PER_CPU(u64, cpu_hardirq_time);
24DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26static DEFINE_PER_CPU(u64, irq_start_time);
27static int sched_clock_irqtime;
28
29void enable_sched_clock_irqtime(void)
30{
31 sched_clock_irqtime = 1;
32}
33
34void disable_sched_clock_irqtime(void)
35{
36 sched_clock_irqtime = 0;
37}
38
39#ifndef CONFIG_64BIT
40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41#endif /* CONFIG_64BIT */
42
43/*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
3e1df4f5 47void irqtime_account_irq(struct task_struct *curr)
73fbec60
FW
48{
49 unsigned long flags;
50 s64 delta;
51 int cpu;
52
53 if (!sched_clock_irqtime)
54 return;
55
56 local_irq_save(flags);
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 local_irq_restore(flags);
76}
3e1df4f5 77EXPORT_SYMBOL_GPL(irqtime_account_irq);
73fbec60
FW
78
79static int irqtime_account_hi_update(void)
80{
81 u64 *cpustat = kcpustat_this_cpu->cpustat;
82 unsigned long flags;
83 u64 latest_ns;
84 int ret = 0;
85
86 local_irq_save(flags);
87 latest_ns = this_cpu_read(cpu_hardirq_time);
88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 ret = 1;
90 local_irq_restore(flags);
91 return ret;
92}
93
94static int irqtime_account_si_update(void)
95{
96 u64 *cpustat = kcpustat_this_cpu->cpustat;
97 unsigned long flags;
98 u64 latest_ns;
99 int ret = 0;
100
101 local_irq_save(flags);
102 latest_ns = this_cpu_read(cpu_softirq_time);
103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 ret = 1;
105 local_irq_restore(flags);
106 return ret;
107}
108
109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111#define sched_clock_irqtime (0)
112
113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115static inline void task_group_account_field(struct task_struct *p, int index,
116 u64 tmp)
117{
73fbec60
FW
118 /*
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
122 *
123 */
a4f61cc0 124 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
73fbec60 125
1966aaf7 126 cpuacct_account_field(p, index, tmp);
73fbec60
FW
127}
128
129/*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135void account_user_time(struct task_struct *p, cputime_t cputime,
136 cputime_t cputime_scaled)
137{
138 int index;
139
140 /* Add user time to process. */
141 p->utime += cputime;
142 p->utimescaled += cputime_scaled;
143 account_group_user_time(p, cputime);
144
d0ea0268 145 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
73fbec60
FW
146
147 /* Add user time to cpustat. */
148 task_group_account_field(p, index, (__force u64) cputime);
149
150 /* Account for user time used */
6fac4829 151 acct_account_cputime(p);
73fbec60
FW
152}
153
154/*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 cputime_t cputime_scaled)
162{
163 u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165 /* Add guest time to process. */
166 p->utime += cputime;
167 p->utimescaled += cputime_scaled;
168 account_group_user_time(p, cputime);
169 p->gtime += cputime;
170
171 /* Add guest time to cpustat. */
d0ea0268 172 if (task_nice(p) > 0) {
73fbec60
FW
173 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 } else {
176 cpustat[CPUTIME_USER] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 }
179}
180
181/*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188static inline
189void __account_system_time(struct task_struct *p, cputime_t cputime,
190 cputime_t cputime_scaled, int index)
191{
192 /* Add system time to process. */
193 p->stime += cputime;
194 p->stimescaled += cputime_scaled;
195 account_group_system_time(p, cputime);
196
197 /* Add system time to cpustat. */
198 task_group_account_field(p, index, (__force u64) cputime);
199
200 /* Account for system time used */
6fac4829 201 acct_account_cputime(p);
73fbec60
FW
202}
203
204/*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211void account_system_time(struct task_struct *p, int hardirq_offset,
212 cputime_t cputime, cputime_t cputime_scaled)
213{
214 int index;
215
216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 account_guest_time(p, cputime, cputime_scaled);
218 return;
219 }
220
221 if (hardirq_count() - hardirq_offset)
222 index = CPUTIME_IRQ;
223 else if (in_serving_softirq())
224 index = CPUTIME_SOFTIRQ;
225 else
226 index = CPUTIME_SYSTEM;
227
228 __account_system_time(p, cputime, cputime_scaled, index);
229}
230
231/*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235void account_steal_time(cputime_t cputime)
236{
237 u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240}
241
242/*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246void account_idle_time(cputime_t cputime)
247{
248 u64 *cpustat = kcpustat_this_cpu->cpustat;
249 struct rq *rq = this_rq();
250
251 if (atomic_read(&rq->nr_iowait) > 0)
252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 else
254 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255}
256
257static __always_inline bool steal_account_process_tick(void)
258{
259#ifdef CONFIG_PARAVIRT
260 if (static_key_false(&paravirt_steal_enabled)) {
dee08a72
FW
261 u64 steal;
262 cputime_t steal_ct;
73fbec60
FW
263
264 steal = paravirt_steal_clock(smp_processor_id());
265 steal -= this_rq()->prev_steal_time;
266
dee08a72
FW
267 /*
268 * cputime_t may be less precise than nsecs (eg: if it's
269 * based on jiffies). Lets cast the result to cputime
270 * granularity and account the rest on the next rounds.
271 */
272 steal_ct = nsecs_to_cputime(steal);
273 this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
73fbec60 274
dee08a72
FW
275 account_steal_time(steal_ct);
276 return steal_ct;
73fbec60
FW
277 }
278#endif
279 return false;
280}
281
a634f933
FW
282/*
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
285 */
286void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287{
288 struct signal_struct *sig = tsk->signal;
6fac4829 289 cputime_t utime, stime;
a634f933
FW
290 struct task_struct *t;
291
292 times->utime = sig->utime;
293 times->stime = sig->stime;
294 times->sum_exec_runtime = sig->sum_sched_runtime;
295
296 rcu_read_lock();
297 /* make sure we can trust tsk->thread_group list */
298 if (!likely(pid_alive(tsk)))
299 goto out;
300
301 t = tsk;
302 do {
e614b333 303 task_cputime(t, &utime, &stime);
6fac4829
FW
304 times->utime += utime;
305 times->stime += stime;
a634f933
FW
306 times->sum_exec_runtime += task_sched_runtime(t);
307 } while_each_thread(tsk, t);
308out:
309 rcu_read_unlock();
310}
311
73fbec60
FW
312#ifdef CONFIG_IRQ_TIME_ACCOUNTING
313/*
314 * Account a tick to a process and cpustat
315 * @p: the process that the cpu time gets accounted to
316 * @user_tick: is the tick from userspace
317 * @rq: the pointer to rq
318 *
319 * Tick demultiplexing follows the order
320 * - pending hardirq update
321 * - pending softirq update
322 * - user_time
323 * - idle_time
324 * - system time
325 * - check for guest_time
326 * - else account as system_time
327 *
328 * Check for hardirq is done both for system and user time as there is
329 * no timer going off while we are on hardirq and hence we may never get an
330 * opportunity to update it solely in system time.
331 * p->stime and friends are only updated on system time and not on irq
332 * softirq as those do not count in task exec_runtime any more.
333 */
334static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2d513868 335 struct rq *rq, int ticks)
73fbec60 336{
2d513868
TG
337 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
338 u64 cputime = (__force u64) cputime_one_jiffy;
73fbec60
FW
339 u64 *cpustat = kcpustat_this_cpu->cpustat;
340
341 if (steal_account_process_tick())
342 return;
343
2d513868
TG
344 cputime *= ticks;
345 scaled *= ticks;
346
73fbec60 347 if (irqtime_account_hi_update()) {
2d513868 348 cpustat[CPUTIME_IRQ] += cputime;
73fbec60 349 } else if (irqtime_account_si_update()) {
2d513868 350 cpustat[CPUTIME_SOFTIRQ] += cputime;
73fbec60
FW
351 } else if (this_cpu_ksoftirqd() == p) {
352 /*
353 * ksoftirqd time do not get accounted in cpu_softirq_time.
354 * So, we have to handle it separately here.
355 * Also, p->stime needs to be updated for ksoftirqd.
356 */
2d513868 357 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
73fbec60 358 } else if (user_tick) {
2d513868 359 account_user_time(p, cputime, scaled);
73fbec60 360 } else if (p == rq->idle) {
2d513868 361 account_idle_time(cputime);
73fbec60 362 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2d513868 363 account_guest_time(p, cputime, scaled);
73fbec60 364 } else {
2d513868 365 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
73fbec60
FW
366 }
367}
368
369static void irqtime_account_idle_ticks(int ticks)
370{
73fbec60
FW
371 struct rq *rq = this_rq();
372
2d513868 373 irqtime_account_process_tick(current, 0, rq, ticks);
73fbec60
FW
374}
375#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3f4724ea
FW
376static inline void irqtime_account_idle_ticks(int ticks) {}
377static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2d513868 378 struct rq *rq, int nr_ticks) {}
73fbec60
FW
379#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
380
73fbec60
FW
381/*
382 * Use precise platform statistics if available:
383 */
384#ifdef CONFIG_VIRT_CPU_ACCOUNTING
a7e1a9e3 385
e3942ba0 386#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
b0493406 387void vtime_common_task_switch(struct task_struct *prev)
e3942ba0
FW
388{
389 if (is_idle_task(prev))
390 vtime_account_idle(prev);
391 else
392 vtime_account_system(prev);
393
abf917cd 394#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
e3942ba0 395 vtime_account_user(prev);
abf917cd 396#endif
e3942ba0
FW
397 arch_vtime_task_switch(prev);
398}
399#endif
11113334 400
a7e1a9e3
FW
401/*
402 * Archs that account the whole time spent in the idle task
403 * (outside irq) as idle time can rely on this and just implement
fd25b4c2 404 * vtime_account_system() and vtime_account_idle(). Archs that
a7e1a9e3
FW
405 * have other meaning of the idle time (s390 only includes the
406 * time spent by the CPU when it's in low power mode) must override
407 * vtime_account().
408 */
409#ifndef __ARCH_HAS_VTIME_ACCOUNT
b0493406 410void vtime_common_account_irq_enter(struct task_struct *tsk)
a7e1a9e3 411{
abf917cd
FW
412 if (!in_interrupt()) {
413 /*
414 * If we interrupted user, context_tracking_in_user()
415 * is 1 because the context tracking don't hook
416 * on irq entry/exit. This way we know if
417 * we need to flush user time on kernel entry.
418 */
419 if (context_tracking_in_user()) {
420 vtime_account_user(tsk);
421 return;
422 }
423
424 if (is_idle_task(tsk)) {
425 vtime_account_idle(tsk);
426 return;
427 }
428 }
429 vtime_account_system(tsk);
a7e1a9e3 430}
b0493406 431EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
a7e1a9e3 432#endif /* __ARCH_HAS_VTIME_ACCOUNT */
9fbc42ea
FW
433#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
434
435
436#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
437void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438{
439 *ut = p->utime;
440 *st = p->stime;
441}
a7e1a9e3 442
9fbc42ea
FW
443void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
444{
445 struct task_cputime cputime;
73fbec60 446
9fbc42ea
FW
447 thread_group_cputime(p, &cputime);
448
449 *ut = cputime.utime;
450 *st = cputime.stime;
451}
452#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
453/*
454 * Account a single tick of cpu time.
455 * @p: the process that the cpu time gets accounted to
456 * @user_tick: indicates if the tick is a user or a system tick
457 */
458void account_process_tick(struct task_struct *p, int user_tick)
73fbec60 459{
9fbc42ea
FW
460 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
461 struct rq *rq = this_rq();
73fbec60 462
9fbc42ea
FW
463 if (vtime_accounting_enabled())
464 return;
465
466 if (sched_clock_irqtime) {
2d513868 467 irqtime_account_process_tick(p, user_tick, rq, 1);
9fbc42ea
FW
468 return;
469 }
470
471 if (steal_account_process_tick())
472 return;
73fbec60 473
9fbc42ea
FW
474 if (user_tick)
475 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
476 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
477 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
478 one_jiffy_scaled);
73fbec60 479 else
9fbc42ea
FW
480 account_idle_time(cputime_one_jiffy);
481}
73fbec60 482
9fbc42ea
FW
483/*
484 * Account multiple ticks of steal time.
485 * @p: the process from which the cpu time has been stolen
486 * @ticks: number of stolen ticks
487 */
488void account_steal_ticks(unsigned long ticks)
489{
490 account_steal_time(jiffies_to_cputime(ticks));
491}
492
493/*
494 * Account multiple ticks of idle time.
495 * @ticks: number of stolen ticks
496 */
497void account_idle_ticks(unsigned long ticks)
498{
499
500 if (sched_clock_irqtime) {
501 irqtime_account_idle_ticks(ticks);
502 return;
503 }
504
505 account_idle_time(jiffies_to_cputime(ticks));
506}
73fbec60 507
d9a3c982 508/*
55eaa7c1
SG
509 * Perform (stime * rtime) / total, but avoid multiplication overflow by
510 * loosing precision when the numbers are big.
d9a3c982
FW
511 */
512static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
73fbec60 513{
55eaa7c1 514 u64 scaled;
73fbec60 515
55eaa7c1
SG
516 for (;;) {
517 /* Make sure "rtime" is the bigger of stime/rtime */
84f9f3a1
SG
518 if (stime > rtime)
519 swap(rtime, stime);
55eaa7c1
SG
520
521 /* Make sure 'total' fits in 32 bits */
522 if (total >> 32)
523 goto drop_precision;
524
525 /* Does rtime (and thus stime) fit in 32 bits? */
526 if (!(rtime >> 32))
527 break;
528
529 /* Can we just balance rtime/stime rather than dropping bits? */
530 if (stime >> 31)
531 goto drop_precision;
532
533 /* We can grow stime and shrink rtime and try to make them both fit */
534 stime <<= 1;
535 rtime >>= 1;
536 continue;
537
538drop_precision:
539 /* We drop from rtime, it has more bits than stime */
540 rtime >>= 1;
541 total >>= 1;
d9a3c982 542 }
73fbec60 543
55eaa7c1
SG
544 /*
545 * Make sure gcc understands that this is a 32x32->64 multiply,
546 * followed by a 64/32->64 divide.
547 */
548 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
d9a3c982 549 return (__force cputime_t) scaled;
73fbec60
FW
550}
551
fa092057
FW
552/*
553 * Adjust tick based cputime random precision against scheduler
554 * runtime accounting.
555 */
d37f761d
FW
556static void cputime_adjust(struct task_cputime *curr,
557 struct cputime *prev,
558 cputime_t *ut, cputime_t *st)
73fbec60 559{
5a8e01f8 560 cputime_t rtime, stime, utime;
fa092057 561
73fbec60 562 /*
fa092057
FW
563 * Tick based cputime accounting depend on random scheduling
564 * timeslices of a task to be interrupted or not by the timer.
565 * Depending on these circumstances, the number of these interrupts
566 * may be over or under-optimistic, matching the real user and system
567 * cputime with a variable precision.
568 *
569 * Fix this by scaling these tick based values against the total
570 * runtime accounted by the CFS scheduler.
73fbec60 571 */
d37f761d 572 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
73fbec60 573
772c808a
SG
574 /*
575 * Update userspace visible utime/stime values only if actual execution
576 * time is bigger than already exported. Note that can happen, that we
577 * provided bigger values due to scaling inaccuracy on big numbers.
578 */
579 if (prev->stime + prev->utime >= rtime)
580 goto out;
581
5a8e01f8
SG
582 stime = curr->stime;
583 utime = curr->utime;
584
585 if (utime == 0) {
586 stime = rtime;
587 } else if (stime == 0) {
588 utime = rtime;
589 } else {
590 cputime_t total = stime + utime;
591
d9a3c982
FW
592 stime = scale_stime((__force u64)stime,
593 (__force u64)rtime, (__force u64)total);
68aa8efc 594 utime = rtime - stime;
d9a3c982 595 }
73fbec60
FW
596
597 /*
fa092057
FW
598 * If the tick based count grows faster than the scheduler one,
599 * the result of the scaling may go backward.
600 * Let's enforce monotonicity.
73fbec60 601 */
62188451 602 prev->stime = max(prev->stime, stime);
68aa8efc 603 prev->utime = max(prev->utime, utime);
d37f761d 604
772c808a 605out:
d37f761d
FW
606 *ut = prev->utime;
607 *st = prev->stime;
608}
73fbec60 609
d37f761d
FW
610void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
611{
612 struct task_cputime cputime = {
d37f761d
FW
613 .sum_exec_runtime = p->se.sum_exec_runtime,
614 };
615
6fac4829 616 task_cputime(p, &cputime.utime, &cputime.stime);
d37f761d 617 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
73fbec60
FW
618}
619
620/*
621 * Must be called with siglock held.
622 */
e80d0a1a 623void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
73fbec60 624{
73fbec60 625 struct task_cputime cputime;
73fbec60
FW
626
627 thread_group_cputime(p, &cputime);
d37f761d 628 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
73fbec60 629}
9fbc42ea 630#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
abf917cd
FW
631
632#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
6a61671b
FW
633static unsigned long long vtime_delta(struct task_struct *tsk)
634{
635 unsigned long long clock;
636
7f6575f1 637 clock = local_clock();
6a61671b
FW
638 if (clock < tsk->vtime_snap)
639 return 0;
abf917cd 640
6a61671b
FW
641 return clock - tsk->vtime_snap;
642}
643
644static cputime_t get_vtime_delta(struct task_struct *tsk)
abf917cd 645{
6a61671b 646 unsigned long long delta = vtime_delta(tsk);
abf917cd 647
6a61671b
FW
648 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
649 tsk->vtime_snap += delta;
abf917cd
FW
650
651 /* CHECKME: always safe to convert nsecs to cputime? */
652 return nsecs_to_cputime(delta);
653}
654
6a61671b
FW
655static void __vtime_account_system(struct task_struct *tsk)
656{
657 cputime_t delta_cpu = get_vtime_delta(tsk);
658
659 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
660}
661
abf917cd
FW
662void vtime_account_system(struct task_struct *tsk)
663{
6a61671b
FW
664 write_seqlock(&tsk->vtime_seqlock);
665 __vtime_account_system(tsk);
666 write_sequnlock(&tsk->vtime_seqlock);
667}
3f4724ea 668
b0493406 669void vtime_gen_account_irq_exit(struct task_struct *tsk)
6a61671b 670{
6a61671b 671 write_seqlock(&tsk->vtime_seqlock);
af2350bd 672 __vtime_account_system(tsk);
6a61671b
FW
673 if (context_tracking_in_user())
674 tsk->vtime_snap_whence = VTIME_USER;
6a61671b 675 write_sequnlock(&tsk->vtime_seqlock);
abf917cd
FW
676}
677
678void vtime_account_user(struct task_struct *tsk)
679{
3f4724ea
FW
680 cputime_t delta_cpu;
681
6a61671b 682 write_seqlock(&tsk->vtime_seqlock);
54461562 683 delta_cpu = get_vtime_delta(tsk);
6a61671b 684 tsk->vtime_snap_whence = VTIME_SYS;
abf917cd 685 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
6a61671b
FW
686 write_sequnlock(&tsk->vtime_seqlock);
687}
688
689void vtime_user_enter(struct task_struct *tsk)
690{
6a61671b 691 write_seqlock(&tsk->vtime_seqlock);
6a61671b 692 __vtime_account_system(tsk);
af2350bd 693 tsk->vtime_snap_whence = VTIME_USER;
6a61671b
FW
694 write_sequnlock(&tsk->vtime_seqlock);
695}
696
697void vtime_guest_enter(struct task_struct *tsk)
698{
5b206d48
FW
699 /*
700 * The flags must be updated under the lock with
701 * the vtime_snap flush and update.
702 * That enforces a right ordering and update sequence
703 * synchronization against the reader (task_gtime())
704 * that can thus safely catch up with a tickless delta.
705 */
6a61671b
FW
706 write_seqlock(&tsk->vtime_seqlock);
707 __vtime_account_system(tsk);
708 current->flags |= PF_VCPU;
709 write_sequnlock(&tsk->vtime_seqlock);
710}
48d6a816 711EXPORT_SYMBOL_GPL(vtime_guest_enter);
6a61671b
FW
712
713void vtime_guest_exit(struct task_struct *tsk)
714{
715 write_seqlock(&tsk->vtime_seqlock);
716 __vtime_account_system(tsk);
717 current->flags &= ~PF_VCPU;
718 write_sequnlock(&tsk->vtime_seqlock);
abf917cd 719}
48d6a816 720EXPORT_SYMBOL_GPL(vtime_guest_exit);
abf917cd
FW
721
722void vtime_account_idle(struct task_struct *tsk)
723{
6a61671b 724 cputime_t delta_cpu = get_vtime_delta(tsk);
abf917cd
FW
725
726 account_idle_time(delta_cpu);
727}
3f4724ea 728
6a61671b
FW
729void arch_vtime_task_switch(struct task_struct *prev)
730{
731 write_seqlock(&prev->vtime_seqlock);
732 prev->vtime_snap_whence = VTIME_SLEEPING;
733 write_sequnlock(&prev->vtime_seqlock);
734
735 write_seqlock(&current->vtime_seqlock);
736 current->vtime_snap_whence = VTIME_SYS;
45eacc69 737 current->vtime_snap = sched_clock_cpu(smp_processor_id());
6a61671b
FW
738 write_sequnlock(&current->vtime_seqlock);
739}
740
45eacc69 741void vtime_init_idle(struct task_struct *t, int cpu)
6a61671b
FW
742{
743 unsigned long flags;
744
745 write_seqlock_irqsave(&t->vtime_seqlock, flags);
746 t->vtime_snap_whence = VTIME_SYS;
45eacc69 747 t->vtime_snap = sched_clock_cpu(cpu);
6a61671b
FW
748 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
749}
750
751cputime_t task_gtime(struct task_struct *t)
752{
6a61671b
FW
753 unsigned int seq;
754 cputime_t gtime;
755
756 do {
cdc4e86b 757 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
758
759 gtime = t->gtime;
760 if (t->flags & PF_VCPU)
761 gtime += vtime_delta(t);
762
cdc4e86b 763 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
764
765 return gtime;
766}
767
768/*
769 * Fetch cputime raw values from fields of task_struct and
770 * add up the pending nohz execution time since the last
771 * cputime snapshot.
772 */
773static void
774fetch_task_cputime(struct task_struct *t,
775 cputime_t *u_dst, cputime_t *s_dst,
776 cputime_t *u_src, cputime_t *s_src,
777 cputime_t *udelta, cputime_t *sdelta)
778{
6a61671b
FW
779 unsigned int seq;
780 unsigned long long delta;
781
782 do {
783 *udelta = 0;
784 *sdelta = 0;
785
cdc4e86b 786 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
787
788 if (u_dst)
789 *u_dst = *u_src;
790 if (s_dst)
791 *s_dst = *s_src;
792
793 /* Task is sleeping, nothing to add */
794 if (t->vtime_snap_whence == VTIME_SLEEPING ||
795 is_idle_task(t))
796 continue;
797
798 delta = vtime_delta(t);
799
800 /*
801 * Task runs either in user or kernel space, add pending nohz time to
802 * the right place.
803 */
804 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
805 *udelta = delta;
806 } else {
807 if (t->vtime_snap_whence == VTIME_SYS)
808 *sdelta = delta;
809 }
cdc4e86b 810 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
811}
812
813
814void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
815{
816 cputime_t udelta, sdelta;
817
818 fetch_task_cputime(t, utime, stime, &t->utime,
819 &t->stime, &udelta, &sdelta);
820 if (utime)
821 *utime += udelta;
822 if (stime)
823 *stime += sdelta;
824}
825
826void task_cputime_scaled(struct task_struct *t,
827 cputime_t *utimescaled, cputime_t *stimescaled)
828{
829 cputime_t udelta, sdelta;
830
831 fetch_task_cputime(t, utimescaled, stimescaled,
832 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
833 if (utimescaled)
834 *utimescaled += cputime_to_scaled(udelta);
835 if (stimescaled)
836 *stimescaled += cputime_to_scaled(sdelta);
837}
abf917cd 838#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
This page took 0.118609 seconds and 5 git commands to generate.