svcrdma: Use new CQ API for RPC-over-RDMA server receive CQs
[deliverable/linux.git] / kernel / sched / cputime.c
CommitLineData
73fbec60
FW
1#include <linux/export.h>
2#include <linux/sched.h>
3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h>
5#include <linux/static_key.h>
abf917cd 6#include <linux/context_tracking.h>
73fbec60 7#include "sched.h"
1fe7c4ef
SS
8#ifdef CONFIG_PARAVIRT
9#include <asm/paravirt.h>
10#endif
73fbec60
FW
11
12
13#ifdef CONFIG_IRQ_TIME_ACCOUNTING
14
15/*
16 * There are no locks covering percpu hardirq/softirq time.
bf9fae9f 17 * They are only modified in vtime_account, on corresponding CPU
73fbec60
FW
18 * with interrupts disabled. So, writes are safe.
19 * They are read and saved off onto struct rq in update_rq_clock().
20 * This may result in other CPU reading this CPU's irq time and can
bf9fae9f 21 * race with irq/vtime_account on this CPU. We would either get old
73fbec60
FW
22 * or new value with a side effect of accounting a slice of irq time to wrong
23 * task when irq is in progress while we read rq->clock. That is a worthy
24 * compromise in place of having locks on each irq in account_system_time.
25 */
26DEFINE_PER_CPU(u64, cpu_hardirq_time);
27DEFINE_PER_CPU(u64, cpu_softirq_time);
28
29static DEFINE_PER_CPU(u64, irq_start_time);
30static int sched_clock_irqtime;
31
32void enable_sched_clock_irqtime(void)
33{
34 sched_clock_irqtime = 1;
35}
36
37void disable_sched_clock_irqtime(void)
38{
39 sched_clock_irqtime = 0;
40}
41
42#ifndef CONFIG_64BIT
43DEFINE_PER_CPU(seqcount_t, irq_time_seq);
44#endif /* CONFIG_64BIT */
45
46/*
47 * Called before incrementing preempt_count on {soft,}irq_enter
48 * and before decrementing preempt_count on {soft,}irq_exit.
49 */
3e1df4f5 50void irqtime_account_irq(struct task_struct *curr)
73fbec60
FW
51{
52 unsigned long flags;
53 s64 delta;
54 int cpu;
55
56 if (!sched_clock_irqtime)
57 return;
58
59 local_irq_save(flags);
60
61 cpu = smp_processor_id();
62 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
63 __this_cpu_add(irq_start_time, delta);
64
65 irq_time_write_begin();
66 /*
67 * We do not account for softirq time from ksoftirqd here.
68 * We want to continue accounting softirq time to ksoftirqd thread
69 * in that case, so as not to confuse scheduler with a special task
70 * that do not consume any time, but still wants to run.
71 */
72 if (hardirq_count())
73 __this_cpu_add(cpu_hardirq_time, delta);
74 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
75 __this_cpu_add(cpu_softirq_time, delta);
76
77 irq_time_write_end();
78 local_irq_restore(flags);
79}
3e1df4f5 80EXPORT_SYMBOL_GPL(irqtime_account_irq);
73fbec60
FW
81
82static int irqtime_account_hi_update(void)
83{
84 u64 *cpustat = kcpustat_this_cpu->cpustat;
85 unsigned long flags;
86 u64 latest_ns;
87 int ret = 0;
88
89 local_irq_save(flags);
90 latest_ns = this_cpu_read(cpu_hardirq_time);
91 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
92 ret = 1;
93 local_irq_restore(flags);
94 return ret;
95}
96
97static int irqtime_account_si_update(void)
98{
99 u64 *cpustat = kcpustat_this_cpu->cpustat;
100 unsigned long flags;
101 u64 latest_ns;
102 int ret = 0;
103
104 local_irq_save(flags);
105 latest_ns = this_cpu_read(cpu_softirq_time);
106 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
107 ret = 1;
108 local_irq_restore(flags);
109 return ret;
110}
111
112#else /* CONFIG_IRQ_TIME_ACCOUNTING */
113
114#define sched_clock_irqtime (0)
115
116#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
117
118static inline void task_group_account_field(struct task_struct *p, int index,
119 u64 tmp)
120{
73fbec60
FW
121 /*
122 * Since all updates are sure to touch the root cgroup, we
123 * get ourselves ahead and touch it first. If the root cgroup
124 * is the only cgroup, then nothing else should be necessary.
125 *
126 */
a4f61cc0 127 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
73fbec60 128
1966aaf7 129 cpuacct_account_field(p, index, tmp);
73fbec60
FW
130}
131
132/*
133 * Account user cpu time to a process.
134 * @p: the process that the cpu time gets accounted to
135 * @cputime: the cpu time spent in user space since the last update
136 * @cputime_scaled: cputime scaled by cpu frequency
137 */
138void account_user_time(struct task_struct *p, cputime_t cputime,
139 cputime_t cputime_scaled)
140{
141 int index;
142
143 /* Add user time to process. */
144 p->utime += cputime;
145 p->utimescaled += cputime_scaled;
146 account_group_user_time(p, cputime);
147
d0ea0268 148 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
73fbec60
FW
149
150 /* Add user time to cpustat. */
151 task_group_account_field(p, index, (__force u64) cputime);
152
153 /* Account for user time used */
6fac4829 154 acct_account_cputime(p);
73fbec60
FW
155}
156
157/*
158 * Account guest cpu time to a process.
159 * @p: the process that the cpu time gets accounted to
160 * @cputime: the cpu time spent in virtual machine since the last update
161 * @cputime_scaled: cputime scaled by cpu frequency
162 */
163static void account_guest_time(struct task_struct *p, cputime_t cputime,
164 cputime_t cputime_scaled)
165{
166 u64 *cpustat = kcpustat_this_cpu->cpustat;
167
168 /* Add guest time to process. */
169 p->utime += cputime;
170 p->utimescaled += cputime_scaled;
171 account_group_user_time(p, cputime);
172 p->gtime += cputime;
173
174 /* Add guest time to cpustat. */
d0ea0268 175 if (task_nice(p) > 0) {
73fbec60
FW
176 cpustat[CPUTIME_NICE] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
178 } else {
179 cpustat[CPUTIME_USER] += (__force u64) cputime;
180 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
181 }
182}
183
184/*
185 * Account system cpu time to a process and desired cpustat field
186 * @p: the process that the cpu time gets accounted to
187 * @cputime: the cpu time spent in kernel space since the last update
188 * @cputime_scaled: cputime scaled by cpu frequency
189 * @target_cputime64: pointer to cpustat field that has to be updated
190 */
191static inline
192void __account_system_time(struct task_struct *p, cputime_t cputime,
193 cputime_t cputime_scaled, int index)
194{
195 /* Add system time to process. */
196 p->stime += cputime;
197 p->stimescaled += cputime_scaled;
198 account_group_system_time(p, cputime);
199
200 /* Add system time to cpustat. */
201 task_group_account_field(p, index, (__force u64) cputime);
202
203 /* Account for system time used */
6fac4829 204 acct_account_cputime(p);
73fbec60
FW
205}
206
207/*
208 * Account system cpu time to a process.
209 * @p: the process that the cpu time gets accounted to
210 * @hardirq_offset: the offset to subtract from hardirq_count()
211 * @cputime: the cpu time spent in kernel space since the last update
212 * @cputime_scaled: cputime scaled by cpu frequency
213 */
214void account_system_time(struct task_struct *p, int hardirq_offset,
215 cputime_t cputime, cputime_t cputime_scaled)
216{
217 int index;
218
219 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
220 account_guest_time(p, cputime, cputime_scaled);
221 return;
222 }
223
224 if (hardirq_count() - hardirq_offset)
225 index = CPUTIME_IRQ;
226 else if (in_serving_softirq())
227 index = CPUTIME_SOFTIRQ;
228 else
229 index = CPUTIME_SYSTEM;
230
231 __account_system_time(p, cputime, cputime_scaled, index);
232}
233
234/*
235 * Account for involuntary wait time.
236 * @cputime: the cpu time spent in involuntary wait
237 */
238void account_steal_time(cputime_t cputime)
239{
240 u64 *cpustat = kcpustat_this_cpu->cpustat;
241
242 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
243}
244
245/*
246 * Account for idle time.
247 * @cputime: the cpu time spent in idle wait
248 */
249void account_idle_time(cputime_t cputime)
250{
251 u64 *cpustat = kcpustat_this_cpu->cpustat;
252 struct rq *rq = this_rq();
253
254 if (atomic_read(&rq->nr_iowait) > 0)
255 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
256 else
257 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
258}
259
260static __always_inline bool steal_account_process_tick(void)
261{
262#ifdef CONFIG_PARAVIRT
263 if (static_key_false(&paravirt_steal_enabled)) {
dee08a72
FW
264 u64 steal;
265 cputime_t steal_ct;
73fbec60
FW
266
267 steal = paravirt_steal_clock(smp_processor_id());
268 steal -= this_rq()->prev_steal_time;
269
dee08a72
FW
270 /*
271 * cputime_t may be less precise than nsecs (eg: if it's
272 * based on jiffies). Lets cast the result to cputime
273 * granularity and account the rest on the next rounds.
274 */
275 steal_ct = nsecs_to_cputime(steal);
276 this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
73fbec60 277
dee08a72
FW
278 account_steal_time(steal_ct);
279 return steal_ct;
73fbec60
FW
280 }
281#endif
282 return false;
283}
284
a634f933
FW
285/*
286 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
287 * tasks (sum on group iteration) belonging to @tsk's group.
288 */
289void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
290{
291 struct signal_struct *sig = tsk->signal;
6fac4829 292 cputime_t utime, stime;
a634f933 293 struct task_struct *t;
e78c3496 294 unsigned int seq, nextseq;
9c368b5b 295 unsigned long flags;
a634f933
FW
296
297 rcu_read_lock();
e78c3496
RR
298 /* Attempt a lockless read on the first round. */
299 nextseq = 0;
300 do {
301 seq = nextseq;
9c368b5b 302 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
e78c3496
RR
303 times->utime = sig->utime;
304 times->stime = sig->stime;
305 times->sum_exec_runtime = sig->sum_sched_runtime;
306
307 for_each_thread(tsk, t) {
308 task_cputime(t, &utime, &stime);
309 times->utime += utime;
310 times->stime += stime;
311 times->sum_exec_runtime += task_sched_runtime(t);
312 }
313 /* If lockless access failed, take the lock. */
314 nextseq = 1;
315 } while (need_seqretry(&sig->stats_lock, seq));
9c368b5b 316 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
a634f933
FW
317 rcu_read_unlock();
318}
319
73fbec60
FW
320#ifdef CONFIG_IRQ_TIME_ACCOUNTING
321/*
322 * Account a tick to a process and cpustat
323 * @p: the process that the cpu time gets accounted to
324 * @user_tick: is the tick from userspace
325 * @rq: the pointer to rq
326 *
327 * Tick demultiplexing follows the order
328 * - pending hardirq update
329 * - pending softirq update
330 * - user_time
331 * - idle_time
332 * - system time
333 * - check for guest_time
334 * - else account as system_time
335 *
336 * Check for hardirq is done both for system and user time as there is
337 * no timer going off while we are on hardirq and hence we may never get an
338 * opportunity to update it solely in system time.
339 * p->stime and friends are only updated on system time and not on irq
340 * softirq as those do not count in task exec_runtime any more.
341 */
342static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2d513868 343 struct rq *rq, int ticks)
73fbec60 344{
2d513868
TG
345 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
346 u64 cputime = (__force u64) cputime_one_jiffy;
73fbec60
FW
347 u64 *cpustat = kcpustat_this_cpu->cpustat;
348
349 if (steal_account_process_tick())
350 return;
351
2d513868
TG
352 cputime *= ticks;
353 scaled *= ticks;
354
73fbec60 355 if (irqtime_account_hi_update()) {
2d513868 356 cpustat[CPUTIME_IRQ] += cputime;
73fbec60 357 } else if (irqtime_account_si_update()) {
2d513868 358 cpustat[CPUTIME_SOFTIRQ] += cputime;
73fbec60
FW
359 } else if (this_cpu_ksoftirqd() == p) {
360 /*
361 * ksoftirqd time do not get accounted in cpu_softirq_time.
362 * So, we have to handle it separately here.
363 * Also, p->stime needs to be updated for ksoftirqd.
364 */
2d513868 365 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
73fbec60 366 } else if (user_tick) {
2d513868 367 account_user_time(p, cputime, scaled);
73fbec60 368 } else if (p == rq->idle) {
2d513868 369 account_idle_time(cputime);
73fbec60 370 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2d513868 371 account_guest_time(p, cputime, scaled);
73fbec60 372 } else {
2d513868 373 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
73fbec60
FW
374 }
375}
376
377static void irqtime_account_idle_ticks(int ticks)
378{
73fbec60
FW
379 struct rq *rq = this_rq();
380
2d513868 381 irqtime_account_process_tick(current, 0, rq, ticks);
73fbec60
FW
382}
383#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3f4724ea
FW
384static inline void irqtime_account_idle_ticks(int ticks) {}
385static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2d513868 386 struct rq *rq, int nr_ticks) {}
73fbec60
FW
387#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
388
73fbec60
FW
389/*
390 * Use precise platform statistics if available:
391 */
392#ifdef CONFIG_VIRT_CPU_ACCOUNTING
a7e1a9e3 393
e3942ba0 394#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
b0493406 395void vtime_common_task_switch(struct task_struct *prev)
e3942ba0
FW
396{
397 if (is_idle_task(prev))
398 vtime_account_idle(prev);
399 else
400 vtime_account_system(prev);
401
abf917cd 402#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
e3942ba0 403 vtime_account_user(prev);
abf917cd 404#endif
e3942ba0
FW
405 arch_vtime_task_switch(prev);
406}
407#endif
11113334 408
a7e1a9e3
FW
409/*
410 * Archs that account the whole time spent in the idle task
411 * (outside irq) as idle time can rely on this and just implement
fd25b4c2 412 * vtime_account_system() and vtime_account_idle(). Archs that
a7e1a9e3
FW
413 * have other meaning of the idle time (s390 only includes the
414 * time spent by the CPU when it's in low power mode) must override
415 * vtime_account().
416 */
417#ifndef __ARCH_HAS_VTIME_ACCOUNT
b0493406 418void vtime_common_account_irq_enter(struct task_struct *tsk)
a7e1a9e3 419{
abf917cd
FW
420 if (!in_interrupt()) {
421 /*
422 * If we interrupted user, context_tracking_in_user()
423 * is 1 because the context tracking don't hook
424 * on irq entry/exit. This way we know if
425 * we need to flush user time on kernel entry.
426 */
427 if (context_tracking_in_user()) {
428 vtime_account_user(tsk);
429 return;
430 }
431
432 if (is_idle_task(tsk)) {
433 vtime_account_idle(tsk);
434 return;
435 }
436 }
437 vtime_account_system(tsk);
a7e1a9e3 438}
b0493406 439EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
a7e1a9e3 440#endif /* __ARCH_HAS_VTIME_ACCOUNT */
9fbc42ea
FW
441#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
442
443
444#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
445void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
446{
447 *ut = p->utime;
448 *st = p->stime;
449}
9eec50b8 450EXPORT_SYMBOL_GPL(task_cputime_adjusted);
a7e1a9e3 451
9fbc42ea
FW
452void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
453{
454 struct task_cputime cputime;
73fbec60 455
9fbc42ea
FW
456 thread_group_cputime(p, &cputime);
457
458 *ut = cputime.utime;
459 *st = cputime.stime;
460}
461#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
462/*
463 * Account a single tick of cpu time.
464 * @p: the process that the cpu time gets accounted to
465 * @user_tick: indicates if the tick is a user or a system tick
466 */
467void account_process_tick(struct task_struct *p, int user_tick)
73fbec60 468{
9fbc42ea
FW
469 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
470 struct rq *rq = this_rq();
73fbec60 471
55dbdcfa 472 if (vtime_accounting_cpu_enabled())
9fbc42ea
FW
473 return;
474
475 if (sched_clock_irqtime) {
2d513868 476 irqtime_account_process_tick(p, user_tick, rq, 1);
9fbc42ea
FW
477 return;
478 }
479
480 if (steal_account_process_tick())
481 return;
73fbec60 482
9fbc42ea
FW
483 if (user_tick)
484 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
485 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
486 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
487 one_jiffy_scaled);
73fbec60 488 else
9fbc42ea
FW
489 account_idle_time(cputime_one_jiffy);
490}
73fbec60 491
9fbc42ea
FW
492/*
493 * Account multiple ticks of steal time.
494 * @p: the process from which the cpu time has been stolen
495 * @ticks: number of stolen ticks
496 */
497void account_steal_ticks(unsigned long ticks)
498{
499 account_steal_time(jiffies_to_cputime(ticks));
500}
501
502/*
503 * Account multiple ticks of idle time.
504 * @ticks: number of stolen ticks
505 */
506void account_idle_ticks(unsigned long ticks)
507{
508
509 if (sched_clock_irqtime) {
510 irqtime_account_idle_ticks(ticks);
511 return;
512 }
513
514 account_idle_time(jiffies_to_cputime(ticks));
515}
73fbec60 516
d9a3c982 517/*
55eaa7c1
SG
518 * Perform (stime * rtime) / total, but avoid multiplication overflow by
519 * loosing precision when the numbers are big.
d9a3c982
FW
520 */
521static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
73fbec60 522{
55eaa7c1 523 u64 scaled;
73fbec60 524
55eaa7c1
SG
525 for (;;) {
526 /* Make sure "rtime" is the bigger of stime/rtime */
84f9f3a1
SG
527 if (stime > rtime)
528 swap(rtime, stime);
55eaa7c1
SG
529
530 /* Make sure 'total' fits in 32 bits */
531 if (total >> 32)
532 goto drop_precision;
533
534 /* Does rtime (and thus stime) fit in 32 bits? */
535 if (!(rtime >> 32))
536 break;
537
538 /* Can we just balance rtime/stime rather than dropping bits? */
539 if (stime >> 31)
540 goto drop_precision;
541
542 /* We can grow stime and shrink rtime and try to make them both fit */
543 stime <<= 1;
544 rtime >>= 1;
545 continue;
546
547drop_precision:
548 /* We drop from rtime, it has more bits than stime */
549 rtime >>= 1;
550 total >>= 1;
d9a3c982 551 }
73fbec60 552
55eaa7c1
SG
553 /*
554 * Make sure gcc understands that this is a 32x32->64 multiply,
555 * followed by a 64/32->64 divide.
556 */
557 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
d9a3c982 558 return (__force cputime_t) scaled;
73fbec60
FW
559}
560
347abad9 561/*
9d7fb042
PZ
562 * Adjust tick based cputime random precision against scheduler runtime
563 * accounting.
347abad9 564 *
9d7fb042
PZ
565 * Tick based cputime accounting depend on random scheduling timeslices of a
566 * task to be interrupted or not by the timer. Depending on these
567 * circumstances, the number of these interrupts may be over or
568 * under-optimistic, matching the real user and system cputime with a variable
569 * precision.
570 *
571 * Fix this by scaling these tick based values against the total runtime
572 * accounted by the CFS scheduler.
573 *
574 * This code provides the following guarantees:
575 *
576 * stime + utime == rtime
577 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
578 *
579 * Assuming that rtime_i+1 >= rtime_i.
fa092057 580 */
d37f761d 581static void cputime_adjust(struct task_cputime *curr,
9d7fb042 582 struct prev_cputime *prev,
d37f761d 583 cputime_t *ut, cputime_t *st)
73fbec60 584{
5a8e01f8 585 cputime_t rtime, stime, utime;
9d7fb042 586 unsigned long flags;
fa092057 587
9d7fb042
PZ
588 /* Serialize concurrent callers such that we can honour our guarantees */
589 raw_spin_lock_irqsave(&prev->lock, flags);
d37f761d 590 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
73fbec60 591
772c808a 592 /*
9d7fb042
PZ
593 * This is possible under two circumstances:
594 * - rtime isn't monotonic after all (a bug);
595 * - we got reordered by the lock.
596 *
597 * In both cases this acts as a filter such that the rest of the code
598 * can assume it is monotonic regardless of anything else.
772c808a
SG
599 */
600 if (prev->stime + prev->utime >= rtime)
601 goto out;
602
5a8e01f8
SG
603 stime = curr->stime;
604 utime = curr->utime;
605
606 if (utime == 0) {
607 stime = rtime;
9d7fb042
PZ
608 goto update;
609 }
5a8e01f8 610
9d7fb042
PZ
611 if (stime == 0) {
612 utime = rtime;
613 goto update;
d9a3c982 614 }
73fbec60 615
9d7fb042
PZ
616 stime = scale_stime((__force u64)stime, (__force u64)rtime,
617 (__force u64)(stime + utime));
618
619 /*
620 * Make sure stime doesn't go backwards; this preserves monotonicity
621 * for utime because rtime is monotonic.
622 *
623 * utime_i+1 = rtime_i+1 - stime_i
624 * = rtime_i+1 - (rtime_i - utime_i)
625 * = (rtime_i+1 - rtime_i) + utime_i
626 * >= utime_i
627 */
628 if (stime < prev->stime)
629 stime = prev->stime;
630 utime = rtime - stime;
631
632 /*
633 * Make sure utime doesn't go backwards; this still preserves
634 * monotonicity for stime, analogous argument to above.
635 */
636 if (utime < prev->utime) {
637 utime = prev->utime;
638 stime = rtime - utime;
639 }
d37f761d 640
9d7fb042
PZ
641update:
642 prev->stime = stime;
643 prev->utime = utime;
772c808a 644out:
d37f761d
FW
645 *ut = prev->utime;
646 *st = prev->stime;
9d7fb042 647 raw_spin_unlock_irqrestore(&prev->lock, flags);
d37f761d 648}
73fbec60 649
d37f761d
FW
650void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
651{
652 struct task_cputime cputime = {
d37f761d
FW
653 .sum_exec_runtime = p->se.sum_exec_runtime,
654 };
655
6fac4829 656 task_cputime(p, &cputime.utime, &cputime.stime);
d37f761d 657 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
73fbec60 658}
9eec50b8 659EXPORT_SYMBOL_GPL(task_cputime_adjusted);
73fbec60 660
e80d0a1a 661void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
73fbec60 662{
73fbec60 663 struct task_cputime cputime;
73fbec60
FW
664
665 thread_group_cputime(p, &cputime);
d37f761d 666 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
73fbec60 667}
9fbc42ea 668#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
abf917cd
FW
669
670#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
6a61671b
FW
671static unsigned long long vtime_delta(struct task_struct *tsk)
672{
673 unsigned long long clock;
674
7f6575f1 675 clock = local_clock();
6a61671b
FW
676 if (clock < tsk->vtime_snap)
677 return 0;
abf917cd 678
6a61671b
FW
679 return clock - tsk->vtime_snap;
680}
681
682static cputime_t get_vtime_delta(struct task_struct *tsk)
abf917cd 683{
6a61671b 684 unsigned long long delta = vtime_delta(tsk);
abf917cd 685
7098c1ea 686 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
6a61671b 687 tsk->vtime_snap += delta;
abf917cd
FW
688
689 /* CHECKME: always safe to convert nsecs to cputime? */
690 return nsecs_to_cputime(delta);
691}
692
6a61671b
FW
693static void __vtime_account_system(struct task_struct *tsk)
694{
695 cputime_t delta_cpu = get_vtime_delta(tsk);
696
697 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
698}
699
abf917cd
FW
700void vtime_account_system(struct task_struct *tsk)
701{
b7ce2277 702 write_seqcount_begin(&tsk->vtime_seqcount);
6a61671b 703 __vtime_account_system(tsk);
b7ce2277 704 write_seqcount_end(&tsk->vtime_seqcount);
6a61671b 705}
3f4724ea 706
b0493406 707void vtime_gen_account_irq_exit(struct task_struct *tsk)
6a61671b 708{
b7ce2277 709 write_seqcount_begin(&tsk->vtime_seqcount);
af2350bd 710 __vtime_account_system(tsk);
6a61671b
FW
711 if (context_tracking_in_user())
712 tsk->vtime_snap_whence = VTIME_USER;
b7ce2277 713 write_seqcount_end(&tsk->vtime_seqcount);
abf917cd
FW
714}
715
716void vtime_account_user(struct task_struct *tsk)
717{
3f4724ea
FW
718 cputime_t delta_cpu;
719
b7ce2277 720 write_seqcount_begin(&tsk->vtime_seqcount);
54461562 721 delta_cpu = get_vtime_delta(tsk);
6a61671b 722 tsk->vtime_snap_whence = VTIME_SYS;
abf917cd 723 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
b7ce2277 724 write_seqcount_end(&tsk->vtime_seqcount);
6a61671b
FW
725}
726
727void vtime_user_enter(struct task_struct *tsk)
728{
b7ce2277 729 write_seqcount_begin(&tsk->vtime_seqcount);
6a61671b 730 __vtime_account_system(tsk);
af2350bd 731 tsk->vtime_snap_whence = VTIME_USER;
b7ce2277 732 write_seqcount_end(&tsk->vtime_seqcount);
6a61671b
FW
733}
734
735void vtime_guest_enter(struct task_struct *tsk)
736{
5b206d48
FW
737 /*
738 * The flags must be updated under the lock with
739 * the vtime_snap flush and update.
740 * That enforces a right ordering and update sequence
741 * synchronization against the reader (task_gtime())
742 * that can thus safely catch up with a tickless delta.
743 */
b7ce2277 744 write_seqcount_begin(&tsk->vtime_seqcount);
6a61671b
FW
745 __vtime_account_system(tsk);
746 current->flags |= PF_VCPU;
b7ce2277 747 write_seqcount_end(&tsk->vtime_seqcount);
6a61671b 748}
48d6a816 749EXPORT_SYMBOL_GPL(vtime_guest_enter);
6a61671b
FW
750
751void vtime_guest_exit(struct task_struct *tsk)
752{
b7ce2277 753 write_seqcount_begin(&tsk->vtime_seqcount);
6a61671b
FW
754 __vtime_account_system(tsk);
755 current->flags &= ~PF_VCPU;
b7ce2277 756 write_seqcount_end(&tsk->vtime_seqcount);
abf917cd 757}
48d6a816 758EXPORT_SYMBOL_GPL(vtime_guest_exit);
abf917cd
FW
759
760void vtime_account_idle(struct task_struct *tsk)
761{
6a61671b 762 cputime_t delta_cpu = get_vtime_delta(tsk);
abf917cd
FW
763
764 account_idle_time(delta_cpu);
765}
3f4724ea 766
6a61671b
FW
767void arch_vtime_task_switch(struct task_struct *prev)
768{
b7ce2277 769 write_seqcount_begin(&prev->vtime_seqcount);
7098c1ea 770 prev->vtime_snap_whence = VTIME_INACTIVE;
b7ce2277 771 write_seqcount_end(&prev->vtime_seqcount);
6a61671b 772
b7ce2277 773 write_seqcount_begin(&current->vtime_seqcount);
6a61671b 774 current->vtime_snap_whence = VTIME_SYS;
45eacc69 775 current->vtime_snap = sched_clock_cpu(smp_processor_id());
b7ce2277 776 write_seqcount_end(&current->vtime_seqcount);
6a61671b
FW
777}
778
45eacc69 779void vtime_init_idle(struct task_struct *t, int cpu)
6a61671b
FW
780{
781 unsigned long flags;
782
b7ce2277
FW
783 local_irq_save(flags);
784 write_seqcount_begin(&t->vtime_seqcount);
6a61671b 785 t->vtime_snap_whence = VTIME_SYS;
45eacc69 786 t->vtime_snap = sched_clock_cpu(cpu);
b7ce2277
FW
787 write_seqcount_end(&t->vtime_seqcount);
788 local_irq_restore(flags);
6a61671b
FW
789}
790
791cputime_t task_gtime(struct task_struct *t)
792{
6a61671b
FW
793 unsigned int seq;
794 cputime_t gtime;
795
e5925394 796 if (!vtime_accounting_enabled())
2541117b
HS
797 return t->gtime;
798
6a61671b 799 do {
b7ce2277 800 seq = read_seqcount_begin(&t->vtime_seqcount);
6a61671b
FW
801
802 gtime = t->gtime;
cab245d6 803 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
6a61671b
FW
804 gtime += vtime_delta(t);
805
b7ce2277 806 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
6a61671b
FW
807
808 return gtime;
809}
810
811/*
812 * Fetch cputime raw values from fields of task_struct and
813 * add up the pending nohz execution time since the last
814 * cputime snapshot.
815 */
816static void
817fetch_task_cputime(struct task_struct *t,
818 cputime_t *u_dst, cputime_t *s_dst,
819 cputime_t *u_src, cputime_t *s_src,
820 cputime_t *udelta, cputime_t *sdelta)
821{
6a61671b
FW
822 unsigned int seq;
823 unsigned long long delta;
824
825 do {
826 *udelta = 0;
827 *sdelta = 0;
828
b7ce2277 829 seq = read_seqcount_begin(&t->vtime_seqcount);
6a61671b
FW
830
831 if (u_dst)
832 *u_dst = *u_src;
833 if (s_dst)
834 *s_dst = *s_src;
835
836 /* Task is sleeping, nothing to add */
7098c1ea 837 if (t->vtime_snap_whence == VTIME_INACTIVE ||
6a61671b
FW
838 is_idle_task(t))
839 continue;
840
841 delta = vtime_delta(t);
842
843 /*
844 * Task runs either in user or kernel space, add pending nohz time to
845 * the right place.
846 */
847 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
848 *udelta = delta;
849 } else {
850 if (t->vtime_snap_whence == VTIME_SYS)
851 *sdelta = delta;
852 }
b7ce2277 853 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
6a61671b
FW
854}
855
856
857void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
858{
859 cputime_t udelta, sdelta;
860
e5925394 861 if (!vtime_accounting_enabled()) {
7877a0ba
HS
862 if (utime)
863 *utime = t->utime;
864 if (stime)
865 *stime = t->stime;
866 return;
867 }
868
6a61671b
FW
869 fetch_task_cputime(t, utime, stime, &t->utime,
870 &t->stime, &udelta, &sdelta);
871 if (utime)
872 *utime += udelta;
873 if (stime)
874 *stime += sdelta;
875}
876
877void task_cputime_scaled(struct task_struct *t,
878 cputime_t *utimescaled, cputime_t *stimescaled)
879{
880 cputime_t udelta, sdelta;
881
e5925394 882 if (!vtime_accounting_enabled()) {
7877a0ba
HS
883 if (utimescaled)
884 *utimescaled = t->utimescaled;
885 if (stimescaled)
886 *stimescaled = t->stimescaled;
887 return;
888 }
889
6a61671b
FW
890 fetch_task_cputime(t, utimescaled, stimescaled,
891 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
892 if (utimescaled)
893 *utimescaled += cputime_to_scaled(udelta);
894 if (stimescaled)
895 *stimescaled += cputime_to_scaled(sdelta);
896}
abf917cd 897#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
This page took 0.185605 seconds and 5 git commands to generate.