Merge tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
006cdf02 686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
9d89c257 687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 688}
7ea241af
YD
689
690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 692#else
540247fb 693void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
694{
695}
696#endif
697
bf0f6f24 698/*
9dbdb155 699 * Update the current task's runtime statistics.
bf0f6f24 700 */
b7cc0896 701static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 702{
429d43bc 703 struct sched_entity *curr = cfs_rq->curr;
78becc27 704 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 705 u64 delta_exec;
bf0f6f24
IM
706
707 if (unlikely(!curr))
708 return;
709
9dbdb155
PZ
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
34f28ecd 712 return;
bf0f6f24 713
8ebc91d9 714 curr->exec_start = now;
d842de87 715
9dbdb155
PZ
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
d842de87
SV
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
6e998916
SG
736static void update_curr_fair(struct rq *rq)
737{
738 update_curr(cfs_rq_of(&rq->curr->se));
739}
740
3ea94de1 741#ifdef CONFIG_SCHEDSTATS
bf0f6f24 742static inline void
5870db5b 743update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 744{
3ea94de1
JP
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
bf0f6f24
IM
752}
753
3ea94de1
JP
754static void
755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756{
757 struct task_struct *p;
cb251765
MG
758 u64 delta;
759
760 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
761
762 if (entity_is_task(se)) {
763 p = task_of(se);
764 if (task_on_rq_migrating(p)) {
765 /*
766 * Preserve migrating task's wait time so wait_start
767 * time stamp can be adjusted to accumulate wait time
768 * prior to migration.
769 */
770 se->statistics.wait_start = delta;
771 return;
772 }
773 trace_sched_stat_wait(p, delta);
774 }
775
776 se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 se->statistics.wait_count++;
778 se->statistics.wait_sum += delta;
779 se->statistics.wait_start = 0;
780}
3ea94de1 781
bf0f6f24
IM
782/*
783 * Task is being enqueued - update stats:
784 */
cb251765
MG
785static inline void
786update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 787{
bf0f6f24
IM
788 /*
789 * Are we enqueueing a waiting task? (for current tasks
790 * a dequeue/enqueue event is a NOP)
791 */
429d43bc 792 if (se != cfs_rq->curr)
5870db5b 793 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
794}
795
bf0f6f24 796static inline void
cb251765 797update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 798{
bf0f6f24
IM
799 /*
800 * Mark the end of the wait period if dequeueing a
801 * waiting task:
802 */
429d43bc 803 if (se != cfs_rq->curr)
9ef0a961 804 update_stats_wait_end(cfs_rq, se);
cb251765
MG
805
806 if (flags & DEQUEUE_SLEEP) {
807 if (entity_is_task(se)) {
808 struct task_struct *tsk = task_of(se);
809
810 if (tsk->state & TASK_INTERRUPTIBLE)
811 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 if (tsk->state & TASK_UNINTERRUPTIBLE)
813 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 }
815 }
816
817}
818#else
819static inline void
820update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821{
822}
823
824static inline void
825update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826{
827}
828
829static inline void
830update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831{
832}
833
834static inline void
835update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836{
bf0f6f24 837}
cb251765 838#endif
bf0f6f24
IM
839
840/*
841 * We are picking a new current task - update its stats:
842 */
843static inline void
79303e9e 844update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
845{
846 /*
847 * We are starting a new run period:
848 */
78becc27 849 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
850}
851
bf0f6f24
IM
852/**************************************************
853 * Scheduling class queueing methods:
854 */
855
cbee9f88
PZ
856#ifdef CONFIG_NUMA_BALANCING
857/*
598f0ec0
MG
858 * Approximate time to scan a full NUMA task in ms. The task scan period is
859 * calculated based on the tasks virtual memory size and
860 * numa_balancing_scan_size.
cbee9f88 861 */
598f0ec0
MG
862unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
864
865/* Portion of address space to scan in MB */
866unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 867
4b96a29b
PZ
868/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869unsigned int sysctl_numa_balancing_scan_delay = 1000;
870
598f0ec0
MG
871static unsigned int task_nr_scan_windows(struct task_struct *p)
872{
873 unsigned long rss = 0;
874 unsigned long nr_scan_pages;
875
876 /*
877 * Calculations based on RSS as non-present and empty pages are skipped
878 * by the PTE scanner and NUMA hinting faults should be trapped based
879 * on resident pages
880 */
881 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 rss = get_mm_rss(p->mm);
883 if (!rss)
884 rss = nr_scan_pages;
885
886 rss = round_up(rss, nr_scan_pages);
887 return rss / nr_scan_pages;
888}
889
890/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891#define MAX_SCAN_WINDOW 2560
892
893static unsigned int task_scan_min(struct task_struct *p)
894{
316c1608 895 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
896 unsigned int scan, floor;
897 unsigned int windows = 1;
898
64192658
KT
899 if (scan_size < MAX_SCAN_WINDOW)
900 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
901 floor = 1000 / windows;
902
903 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 return max_t(unsigned int, floor, scan);
905}
906
907static unsigned int task_scan_max(struct task_struct *p)
908{
909 unsigned int smin = task_scan_min(p);
910 unsigned int smax;
911
912 /* Watch for min being lower than max due to floor calculations */
913 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 return max(smin, smax);
915}
916
0ec8aa00
PZ
917static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918{
919 rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921}
922
923static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924{
925 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927}
928
8c8a743c
PZ
929struct numa_group {
930 atomic_t refcount;
931
932 spinlock_t lock; /* nr_tasks, tasks */
933 int nr_tasks;
e29cf08b 934 pid_t gid;
4142c3eb 935 int active_nodes;
8c8a743c
PZ
936
937 struct rcu_head rcu;
989348b5 938 unsigned long total_faults;
4142c3eb 939 unsigned long max_faults_cpu;
7e2703e6
RR
940 /*
941 * Faults_cpu is used to decide whether memory should move
942 * towards the CPU. As a consequence, these stats are weighted
943 * more by CPU use than by memory faults.
944 */
50ec8a40 945 unsigned long *faults_cpu;
989348b5 946 unsigned long faults[0];
8c8a743c
PZ
947};
948
be1e4e76
RR
949/* Shared or private faults. */
950#define NR_NUMA_HINT_FAULT_TYPES 2
951
952/* Memory and CPU locality */
953#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
954
955/* Averaged statistics, and temporary buffers. */
956#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
957
e29cf08b
MG
958pid_t task_numa_group_id(struct task_struct *p)
959{
960 return p->numa_group ? p->numa_group->gid : 0;
961}
962
44dba3d5
IM
963/*
964 * The averaged statistics, shared & private, memory & cpu,
965 * occupy the first half of the array. The second half of the
966 * array is for current counters, which are averaged into the
967 * first set by task_numa_placement.
968 */
969static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 970{
44dba3d5 971 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
972}
973
974static inline unsigned long task_faults(struct task_struct *p, int nid)
975{
44dba3d5 976 if (!p->numa_faults)
ac8e895b
MG
977 return 0;
978
44dba3d5
IM
979 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
980 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
981}
982
83e1d2cd
MG
983static inline unsigned long group_faults(struct task_struct *p, int nid)
984{
985 if (!p->numa_group)
986 return 0;
987
44dba3d5
IM
988 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
989 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
990}
991
20e07dea
RR
992static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
993{
44dba3d5
IM
994 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
995 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
996}
997
4142c3eb
RR
998/*
999 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1000 * considered part of a numa group's pseudo-interleaving set. Migrations
1001 * between these nodes are slowed down, to allow things to settle down.
1002 */
1003#define ACTIVE_NODE_FRACTION 3
1004
1005static bool numa_is_active_node(int nid, struct numa_group *ng)
1006{
1007 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1008}
1009
6c6b1193
RR
1010/* Handle placement on systems where not all nodes are directly connected. */
1011static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1012 int maxdist, bool task)
1013{
1014 unsigned long score = 0;
1015 int node;
1016
1017 /*
1018 * All nodes are directly connected, and the same distance
1019 * from each other. No need for fancy placement algorithms.
1020 */
1021 if (sched_numa_topology_type == NUMA_DIRECT)
1022 return 0;
1023
1024 /*
1025 * This code is called for each node, introducing N^2 complexity,
1026 * which should be ok given the number of nodes rarely exceeds 8.
1027 */
1028 for_each_online_node(node) {
1029 unsigned long faults;
1030 int dist = node_distance(nid, node);
1031
1032 /*
1033 * The furthest away nodes in the system are not interesting
1034 * for placement; nid was already counted.
1035 */
1036 if (dist == sched_max_numa_distance || node == nid)
1037 continue;
1038
1039 /*
1040 * On systems with a backplane NUMA topology, compare groups
1041 * of nodes, and move tasks towards the group with the most
1042 * memory accesses. When comparing two nodes at distance
1043 * "hoplimit", only nodes closer by than "hoplimit" are part
1044 * of each group. Skip other nodes.
1045 */
1046 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1047 dist > maxdist)
1048 continue;
1049
1050 /* Add up the faults from nearby nodes. */
1051 if (task)
1052 faults = task_faults(p, node);
1053 else
1054 faults = group_faults(p, node);
1055
1056 /*
1057 * On systems with a glueless mesh NUMA topology, there are
1058 * no fixed "groups of nodes". Instead, nodes that are not
1059 * directly connected bounce traffic through intermediate
1060 * nodes; a numa_group can occupy any set of nodes.
1061 * The further away a node is, the less the faults count.
1062 * This seems to result in good task placement.
1063 */
1064 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1065 faults *= (sched_max_numa_distance - dist);
1066 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1067 }
1068
1069 score += faults;
1070 }
1071
1072 return score;
1073}
1074
83e1d2cd
MG
1075/*
1076 * These return the fraction of accesses done by a particular task, or
1077 * task group, on a particular numa node. The group weight is given a
1078 * larger multiplier, in order to group tasks together that are almost
1079 * evenly spread out between numa nodes.
1080 */
7bd95320
RR
1081static inline unsigned long task_weight(struct task_struct *p, int nid,
1082 int dist)
83e1d2cd 1083{
7bd95320 1084 unsigned long faults, total_faults;
83e1d2cd 1085
44dba3d5 1086 if (!p->numa_faults)
83e1d2cd
MG
1087 return 0;
1088
1089 total_faults = p->total_numa_faults;
1090
1091 if (!total_faults)
1092 return 0;
1093
7bd95320 1094 faults = task_faults(p, nid);
6c6b1193
RR
1095 faults += score_nearby_nodes(p, nid, dist, true);
1096
7bd95320 1097 return 1000 * faults / total_faults;
83e1d2cd
MG
1098}
1099
7bd95320
RR
1100static inline unsigned long group_weight(struct task_struct *p, int nid,
1101 int dist)
83e1d2cd 1102{
7bd95320
RR
1103 unsigned long faults, total_faults;
1104
1105 if (!p->numa_group)
1106 return 0;
1107
1108 total_faults = p->numa_group->total_faults;
1109
1110 if (!total_faults)
83e1d2cd
MG
1111 return 0;
1112
7bd95320 1113 faults = group_faults(p, nid);
6c6b1193
RR
1114 faults += score_nearby_nodes(p, nid, dist, false);
1115
7bd95320 1116 return 1000 * faults / total_faults;
83e1d2cd
MG
1117}
1118
10f39042
RR
1119bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1120 int src_nid, int dst_cpu)
1121{
1122 struct numa_group *ng = p->numa_group;
1123 int dst_nid = cpu_to_node(dst_cpu);
1124 int last_cpupid, this_cpupid;
1125
1126 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1127
1128 /*
1129 * Multi-stage node selection is used in conjunction with a periodic
1130 * migration fault to build a temporal task<->page relation. By using
1131 * a two-stage filter we remove short/unlikely relations.
1132 *
1133 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1134 * a task's usage of a particular page (n_p) per total usage of this
1135 * page (n_t) (in a given time-span) to a probability.
1136 *
1137 * Our periodic faults will sample this probability and getting the
1138 * same result twice in a row, given these samples are fully
1139 * independent, is then given by P(n)^2, provided our sample period
1140 * is sufficiently short compared to the usage pattern.
1141 *
1142 * This quadric squishes small probabilities, making it less likely we
1143 * act on an unlikely task<->page relation.
1144 */
1145 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1146 if (!cpupid_pid_unset(last_cpupid) &&
1147 cpupid_to_nid(last_cpupid) != dst_nid)
1148 return false;
1149
1150 /* Always allow migrate on private faults */
1151 if (cpupid_match_pid(p, last_cpupid))
1152 return true;
1153
1154 /* A shared fault, but p->numa_group has not been set up yet. */
1155 if (!ng)
1156 return true;
1157
1158 /*
4142c3eb
RR
1159 * Destination node is much more heavily used than the source
1160 * node? Allow migration.
10f39042 1161 */
4142c3eb
RR
1162 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1163 ACTIVE_NODE_FRACTION)
10f39042
RR
1164 return true;
1165
1166 /*
4142c3eb
RR
1167 * Distribute memory according to CPU & memory use on each node,
1168 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1169 *
1170 * faults_cpu(dst) 3 faults_cpu(src)
1171 * --------------- * - > ---------------
1172 * faults_mem(dst) 4 faults_mem(src)
10f39042 1173 */
4142c3eb
RR
1174 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1175 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1176}
1177
e6628d5b 1178static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1179static unsigned long source_load(int cpu, int type);
1180static unsigned long target_load(int cpu, int type);
ced549fa 1181static unsigned long capacity_of(int cpu);
58d081b5
MG
1182static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1183
fb13c7ee 1184/* Cached statistics for all CPUs within a node */
58d081b5 1185struct numa_stats {
fb13c7ee 1186 unsigned long nr_running;
58d081b5 1187 unsigned long load;
fb13c7ee
MG
1188
1189 /* Total compute capacity of CPUs on a node */
5ef20ca1 1190 unsigned long compute_capacity;
fb13c7ee
MG
1191
1192 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1193 unsigned long task_capacity;
1b6a7495 1194 int has_free_capacity;
58d081b5 1195};
e6628d5b 1196
fb13c7ee
MG
1197/*
1198 * XXX borrowed from update_sg_lb_stats
1199 */
1200static void update_numa_stats(struct numa_stats *ns, int nid)
1201{
83d7f242
RR
1202 int smt, cpu, cpus = 0;
1203 unsigned long capacity;
fb13c7ee
MG
1204
1205 memset(ns, 0, sizeof(*ns));
1206 for_each_cpu(cpu, cpumask_of_node(nid)) {
1207 struct rq *rq = cpu_rq(cpu);
1208
1209 ns->nr_running += rq->nr_running;
1210 ns->load += weighted_cpuload(cpu);
ced549fa 1211 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1212
1213 cpus++;
fb13c7ee
MG
1214 }
1215
5eca82a9
PZ
1216 /*
1217 * If we raced with hotplug and there are no CPUs left in our mask
1218 * the @ns structure is NULL'ed and task_numa_compare() will
1219 * not find this node attractive.
1220 *
1b6a7495
NP
1221 * We'll either bail at !has_free_capacity, or we'll detect a huge
1222 * imbalance and bail there.
5eca82a9
PZ
1223 */
1224 if (!cpus)
1225 return;
1226
83d7f242
RR
1227 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1228 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1229 capacity = cpus / smt; /* cores */
1230
1231 ns->task_capacity = min_t(unsigned, capacity,
1232 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1233 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1234}
1235
58d081b5
MG
1236struct task_numa_env {
1237 struct task_struct *p;
e6628d5b 1238
58d081b5
MG
1239 int src_cpu, src_nid;
1240 int dst_cpu, dst_nid;
e6628d5b 1241
58d081b5 1242 struct numa_stats src_stats, dst_stats;
e6628d5b 1243
40ea2b42 1244 int imbalance_pct;
7bd95320 1245 int dist;
fb13c7ee
MG
1246
1247 struct task_struct *best_task;
1248 long best_imp;
58d081b5
MG
1249 int best_cpu;
1250};
1251
fb13c7ee
MG
1252static void task_numa_assign(struct task_numa_env *env,
1253 struct task_struct *p, long imp)
1254{
1255 if (env->best_task)
1256 put_task_struct(env->best_task);
fb13c7ee
MG
1257
1258 env->best_task = p;
1259 env->best_imp = imp;
1260 env->best_cpu = env->dst_cpu;
1261}
1262
28a21745 1263static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1264 struct task_numa_env *env)
1265{
e4991b24
RR
1266 long imb, old_imb;
1267 long orig_src_load, orig_dst_load;
28a21745
RR
1268 long src_capacity, dst_capacity;
1269
1270 /*
1271 * The load is corrected for the CPU capacity available on each node.
1272 *
1273 * src_load dst_load
1274 * ------------ vs ---------
1275 * src_capacity dst_capacity
1276 */
1277 src_capacity = env->src_stats.compute_capacity;
1278 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1279
1280 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1281 if (dst_load < src_load)
1282 swap(dst_load, src_load);
e63da036
RR
1283
1284 /* Is the difference below the threshold? */
e4991b24
RR
1285 imb = dst_load * src_capacity * 100 -
1286 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1287 if (imb <= 0)
1288 return false;
1289
1290 /*
1291 * The imbalance is above the allowed threshold.
e4991b24 1292 * Compare it with the old imbalance.
e63da036 1293 */
28a21745 1294 orig_src_load = env->src_stats.load;
e4991b24 1295 orig_dst_load = env->dst_stats.load;
28a21745 1296
e4991b24
RR
1297 if (orig_dst_load < orig_src_load)
1298 swap(orig_dst_load, orig_src_load);
e63da036 1299
e4991b24
RR
1300 old_imb = orig_dst_load * src_capacity * 100 -
1301 orig_src_load * dst_capacity * env->imbalance_pct;
1302
1303 /* Would this change make things worse? */
1304 return (imb > old_imb);
e63da036
RR
1305}
1306
fb13c7ee
MG
1307/*
1308 * This checks if the overall compute and NUMA accesses of the system would
1309 * be improved if the source tasks was migrated to the target dst_cpu taking
1310 * into account that it might be best if task running on the dst_cpu should
1311 * be exchanged with the source task
1312 */
887c290e
RR
1313static void task_numa_compare(struct task_numa_env *env,
1314 long taskimp, long groupimp)
fb13c7ee
MG
1315{
1316 struct rq *src_rq = cpu_rq(env->src_cpu);
1317 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1318 struct task_struct *cur;
28a21745 1319 long src_load, dst_load;
fb13c7ee 1320 long load;
1c5d3eb3 1321 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1322 long moveimp = imp;
7bd95320 1323 int dist = env->dist;
1dff76b9 1324 bool assigned = false;
fb13c7ee
MG
1325
1326 rcu_read_lock();
1effd9f1
KT
1327
1328 raw_spin_lock_irq(&dst_rq->lock);
1329 cur = dst_rq->curr;
1330 /*
1dff76b9 1331 * No need to move the exiting task or idle task.
1effd9f1
KT
1332 */
1333 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1334 cur = NULL;
1dff76b9
GG
1335 else {
1336 /*
1337 * The task_struct must be protected here to protect the
1338 * p->numa_faults access in the task_weight since the
1339 * numa_faults could already be freed in the following path:
1340 * finish_task_switch()
1341 * --> put_task_struct()
1342 * --> __put_task_struct()
1343 * --> task_numa_free()
1344 */
1345 get_task_struct(cur);
1346 }
1347
1effd9f1 1348 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1349
7af68335
PZ
1350 /*
1351 * Because we have preemption enabled we can get migrated around and
1352 * end try selecting ourselves (current == env->p) as a swap candidate.
1353 */
1354 if (cur == env->p)
1355 goto unlock;
1356
fb13c7ee
MG
1357 /*
1358 * "imp" is the fault differential for the source task between the
1359 * source and destination node. Calculate the total differential for
1360 * the source task and potential destination task. The more negative
1361 * the value is, the more rmeote accesses that would be expected to
1362 * be incurred if the tasks were swapped.
1363 */
1364 if (cur) {
1365 /* Skip this swap candidate if cannot move to the source cpu */
1366 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1367 goto unlock;
1368
887c290e
RR
1369 /*
1370 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1371 * in any group then look only at task weights.
887c290e 1372 */
ca28aa53 1373 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1374 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1375 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1376 /*
1377 * Add some hysteresis to prevent swapping the
1378 * tasks within a group over tiny differences.
1379 */
1380 if (cur->numa_group)
1381 imp -= imp/16;
887c290e 1382 } else {
ca28aa53
RR
1383 /*
1384 * Compare the group weights. If a task is all by
1385 * itself (not part of a group), use the task weight
1386 * instead.
1387 */
ca28aa53 1388 if (cur->numa_group)
7bd95320
RR
1389 imp += group_weight(cur, env->src_nid, dist) -
1390 group_weight(cur, env->dst_nid, dist);
ca28aa53 1391 else
7bd95320
RR
1392 imp += task_weight(cur, env->src_nid, dist) -
1393 task_weight(cur, env->dst_nid, dist);
887c290e 1394 }
fb13c7ee
MG
1395 }
1396
0132c3e1 1397 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1398 goto unlock;
1399
1400 if (!cur) {
1401 /* Is there capacity at our destination? */
b932c03c 1402 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1403 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1404 goto unlock;
1405
1406 goto balance;
1407 }
1408
1409 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1410 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1411 dst_rq->nr_running == 1)
fb13c7ee
MG
1412 goto assign;
1413
1414 /*
1415 * In the overloaded case, try and keep the load balanced.
1416 */
1417balance:
e720fff6
PZ
1418 load = task_h_load(env->p);
1419 dst_load = env->dst_stats.load + load;
1420 src_load = env->src_stats.load - load;
fb13c7ee 1421
0132c3e1
RR
1422 if (moveimp > imp && moveimp > env->best_imp) {
1423 /*
1424 * If the improvement from just moving env->p direction is
1425 * better than swapping tasks around, check if a move is
1426 * possible. Store a slightly smaller score than moveimp,
1427 * so an actually idle CPU will win.
1428 */
1429 if (!load_too_imbalanced(src_load, dst_load, env)) {
1430 imp = moveimp - 1;
1dff76b9 1431 put_task_struct(cur);
0132c3e1
RR
1432 cur = NULL;
1433 goto assign;
1434 }
1435 }
1436
1437 if (imp <= env->best_imp)
1438 goto unlock;
1439
fb13c7ee 1440 if (cur) {
e720fff6
PZ
1441 load = task_h_load(cur);
1442 dst_load -= load;
1443 src_load += load;
fb13c7ee
MG
1444 }
1445
28a21745 1446 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1447 goto unlock;
1448
ba7e5a27
RR
1449 /*
1450 * One idle CPU per node is evaluated for a task numa move.
1451 * Call select_idle_sibling to maybe find a better one.
1452 */
1453 if (!cur)
1454 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1455
fb13c7ee 1456assign:
1dff76b9 1457 assigned = true;
fb13c7ee
MG
1458 task_numa_assign(env, cur, imp);
1459unlock:
1460 rcu_read_unlock();
1dff76b9
GG
1461 /*
1462 * The dst_rq->curr isn't assigned. The protection for task_struct is
1463 * finished.
1464 */
1465 if (cur && !assigned)
1466 put_task_struct(cur);
fb13c7ee
MG
1467}
1468
887c290e
RR
1469static void task_numa_find_cpu(struct task_numa_env *env,
1470 long taskimp, long groupimp)
2c8a50aa
MG
1471{
1472 int cpu;
1473
1474 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1475 /* Skip this CPU if the source task cannot migrate */
1476 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1477 continue;
1478
1479 env->dst_cpu = cpu;
887c290e 1480 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1481 }
1482}
1483
6f9aad0b
RR
1484/* Only move tasks to a NUMA node less busy than the current node. */
1485static bool numa_has_capacity(struct task_numa_env *env)
1486{
1487 struct numa_stats *src = &env->src_stats;
1488 struct numa_stats *dst = &env->dst_stats;
1489
1490 if (src->has_free_capacity && !dst->has_free_capacity)
1491 return false;
1492
1493 /*
1494 * Only consider a task move if the source has a higher load
1495 * than the destination, corrected for CPU capacity on each node.
1496 *
1497 * src->load dst->load
1498 * --------------------- vs ---------------------
1499 * src->compute_capacity dst->compute_capacity
1500 */
44dcb04f
SD
1501 if (src->load * dst->compute_capacity * env->imbalance_pct >
1502
1503 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1504 return true;
1505
1506 return false;
1507}
1508
58d081b5
MG
1509static int task_numa_migrate(struct task_struct *p)
1510{
58d081b5
MG
1511 struct task_numa_env env = {
1512 .p = p,
fb13c7ee 1513
58d081b5 1514 .src_cpu = task_cpu(p),
b32e86b4 1515 .src_nid = task_node(p),
fb13c7ee
MG
1516
1517 .imbalance_pct = 112,
1518
1519 .best_task = NULL,
1520 .best_imp = 0,
4142c3eb 1521 .best_cpu = -1,
58d081b5
MG
1522 };
1523 struct sched_domain *sd;
887c290e 1524 unsigned long taskweight, groupweight;
7bd95320 1525 int nid, ret, dist;
887c290e 1526 long taskimp, groupimp;
e6628d5b 1527
58d081b5 1528 /*
fb13c7ee
MG
1529 * Pick the lowest SD_NUMA domain, as that would have the smallest
1530 * imbalance and would be the first to start moving tasks about.
1531 *
1532 * And we want to avoid any moving of tasks about, as that would create
1533 * random movement of tasks -- counter the numa conditions we're trying
1534 * to satisfy here.
58d081b5
MG
1535 */
1536 rcu_read_lock();
fb13c7ee 1537 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1538 if (sd)
1539 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1540 rcu_read_unlock();
1541
46a73e8a
RR
1542 /*
1543 * Cpusets can break the scheduler domain tree into smaller
1544 * balance domains, some of which do not cross NUMA boundaries.
1545 * Tasks that are "trapped" in such domains cannot be migrated
1546 * elsewhere, so there is no point in (re)trying.
1547 */
1548 if (unlikely(!sd)) {
de1b301a 1549 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1550 return -EINVAL;
1551 }
1552
2c8a50aa 1553 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1554 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1555 taskweight = task_weight(p, env.src_nid, dist);
1556 groupweight = group_weight(p, env.src_nid, dist);
1557 update_numa_stats(&env.src_stats, env.src_nid);
1558 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1559 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1560 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1561
a43455a1 1562 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1563 if (numa_has_capacity(&env))
1564 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1565
9de05d48
RR
1566 /*
1567 * Look at other nodes in these cases:
1568 * - there is no space available on the preferred_nid
1569 * - the task is part of a numa_group that is interleaved across
1570 * multiple NUMA nodes; in order to better consolidate the group,
1571 * we need to check other locations.
1572 */
4142c3eb 1573 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1574 for_each_online_node(nid) {
1575 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1576 continue;
58d081b5 1577
7bd95320 1578 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1579 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1580 dist != env.dist) {
1581 taskweight = task_weight(p, env.src_nid, dist);
1582 groupweight = group_weight(p, env.src_nid, dist);
1583 }
7bd95320 1584
83e1d2cd 1585 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1586 taskimp = task_weight(p, nid, dist) - taskweight;
1587 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1588 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1589 continue;
1590
7bd95320 1591 env.dist = dist;
2c8a50aa
MG
1592 env.dst_nid = nid;
1593 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1594 if (numa_has_capacity(&env))
1595 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1596 }
1597 }
1598
68d1b02a
RR
1599 /*
1600 * If the task is part of a workload that spans multiple NUMA nodes,
1601 * and is migrating into one of the workload's active nodes, remember
1602 * this node as the task's preferred numa node, so the workload can
1603 * settle down.
1604 * A task that migrated to a second choice node will be better off
1605 * trying for a better one later. Do not set the preferred node here.
1606 */
db015dae 1607 if (p->numa_group) {
4142c3eb
RR
1608 struct numa_group *ng = p->numa_group;
1609
db015dae
RR
1610 if (env.best_cpu == -1)
1611 nid = env.src_nid;
1612 else
1613 nid = env.dst_nid;
1614
4142c3eb 1615 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1616 sched_setnuma(p, env.dst_nid);
1617 }
1618
1619 /* No better CPU than the current one was found. */
1620 if (env.best_cpu == -1)
1621 return -EAGAIN;
0ec8aa00 1622
04bb2f94
RR
1623 /*
1624 * Reset the scan period if the task is being rescheduled on an
1625 * alternative node to recheck if the tasks is now properly placed.
1626 */
1627 p->numa_scan_period = task_scan_min(p);
1628
fb13c7ee 1629 if (env.best_task == NULL) {
286549dc
MG
1630 ret = migrate_task_to(p, env.best_cpu);
1631 if (ret != 0)
1632 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1633 return ret;
1634 }
1635
1636 ret = migrate_swap(p, env.best_task);
286549dc
MG
1637 if (ret != 0)
1638 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1639 put_task_struct(env.best_task);
1640 return ret;
e6628d5b
MG
1641}
1642
6b9a7460
MG
1643/* Attempt to migrate a task to a CPU on the preferred node. */
1644static void numa_migrate_preferred(struct task_struct *p)
1645{
5085e2a3
RR
1646 unsigned long interval = HZ;
1647
2739d3ee 1648 /* This task has no NUMA fault statistics yet */
44dba3d5 1649 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1650 return;
1651
2739d3ee 1652 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1653 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1654 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1655
1656 /* Success if task is already running on preferred CPU */
de1b301a 1657 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1658 return;
1659
1660 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1661 task_numa_migrate(p);
6b9a7460
MG
1662}
1663
20e07dea 1664/*
4142c3eb 1665 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1666 * tracking the nodes from which NUMA hinting faults are triggered. This can
1667 * be different from the set of nodes where the workload's memory is currently
1668 * located.
20e07dea 1669 */
4142c3eb 1670static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1671{
1672 unsigned long faults, max_faults = 0;
4142c3eb 1673 int nid, active_nodes = 0;
20e07dea
RR
1674
1675 for_each_online_node(nid) {
1676 faults = group_faults_cpu(numa_group, nid);
1677 if (faults > max_faults)
1678 max_faults = faults;
1679 }
1680
1681 for_each_online_node(nid) {
1682 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1683 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1684 active_nodes++;
20e07dea 1685 }
4142c3eb
RR
1686
1687 numa_group->max_faults_cpu = max_faults;
1688 numa_group->active_nodes = active_nodes;
20e07dea
RR
1689}
1690
04bb2f94
RR
1691/*
1692 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1693 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1694 * period will be for the next scan window. If local/(local+remote) ratio is
1695 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1696 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1697 */
1698#define NUMA_PERIOD_SLOTS 10
a22b4b01 1699#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1700
1701/*
1702 * Increase the scan period (slow down scanning) if the majority of
1703 * our memory is already on our local node, or if the majority of
1704 * the page accesses are shared with other processes.
1705 * Otherwise, decrease the scan period.
1706 */
1707static void update_task_scan_period(struct task_struct *p,
1708 unsigned long shared, unsigned long private)
1709{
1710 unsigned int period_slot;
1711 int ratio;
1712 int diff;
1713
1714 unsigned long remote = p->numa_faults_locality[0];
1715 unsigned long local = p->numa_faults_locality[1];
1716
1717 /*
1718 * If there were no record hinting faults then either the task is
1719 * completely idle or all activity is areas that are not of interest
074c2381
MG
1720 * to automatic numa balancing. Related to that, if there were failed
1721 * migration then it implies we are migrating too quickly or the local
1722 * node is overloaded. In either case, scan slower
04bb2f94 1723 */
074c2381 1724 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1725 p->numa_scan_period = min(p->numa_scan_period_max,
1726 p->numa_scan_period << 1);
1727
1728 p->mm->numa_next_scan = jiffies +
1729 msecs_to_jiffies(p->numa_scan_period);
1730
1731 return;
1732 }
1733
1734 /*
1735 * Prepare to scale scan period relative to the current period.
1736 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1737 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1738 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1739 */
1740 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1741 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1742 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1743 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1744 if (!slot)
1745 slot = 1;
1746 diff = slot * period_slot;
1747 } else {
1748 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1749
1750 /*
1751 * Scale scan rate increases based on sharing. There is an
1752 * inverse relationship between the degree of sharing and
1753 * the adjustment made to the scanning period. Broadly
1754 * speaking the intent is that there is little point
1755 * scanning faster if shared accesses dominate as it may
1756 * simply bounce migrations uselessly
1757 */
2847c90e 1758 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1759 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1760 }
1761
1762 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1763 task_scan_min(p), task_scan_max(p));
1764 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1765}
1766
7e2703e6
RR
1767/*
1768 * Get the fraction of time the task has been running since the last
1769 * NUMA placement cycle. The scheduler keeps similar statistics, but
1770 * decays those on a 32ms period, which is orders of magnitude off
1771 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1772 * stats only if the task is so new there are no NUMA statistics yet.
1773 */
1774static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1775{
1776 u64 runtime, delta, now;
1777 /* Use the start of this time slice to avoid calculations. */
1778 now = p->se.exec_start;
1779 runtime = p->se.sum_exec_runtime;
1780
1781 if (p->last_task_numa_placement) {
1782 delta = runtime - p->last_sum_exec_runtime;
1783 *period = now - p->last_task_numa_placement;
1784 } else {
9d89c257
YD
1785 delta = p->se.avg.load_sum / p->se.load.weight;
1786 *period = LOAD_AVG_MAX;
7e2703e6
RR
1787 }
1788
1789 p->last_sum_exec_runtime = runtime;
1790 p->last_task_numa_placement = now;
1791
1792 return delta;
1793}
1794
54009416
RR
1795/*
1796 * Determine the preferred nid for a task in a numa_group. This needs to
1797 * be done in a way that produces consistent results with group_weight,
1798 * otherwise workloads might not converge.
1799 */
1800static int preferred_group_nid(struct task_struct *p, int nid)
1801{
1802 nodemask_t nodes;
1803 int dist;
1804
1805 /* Direct connections between all NUMA nodes. */
1806 if (sched_numa_topology_type == NUMA_DIRECT)
1807 return nid;
1808
1809 /*
1810 * On a system with glueless mesh NUMA topology, group_weight
1811 * scores nodes according to the number of NUMA hinting faults on
1812 * both the node itself, and on nearby nodes.
1813 */
1814 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1815 unsigned long score, max_score = 0;
1816 int node, max_node = nid;
1817
1818 dist = sched_max_numa_distance;
1819
1820 for_each_online_node(node) {
1821 score = group_weight(p, node, dist);
1822 if (score > max_score) {
1823 max_score = score;
1824 max_node = node;
1825 }
1826 }
1827 return max_node;
1828 }
1829
1830 /*
1831 * Finding the preferred nid in a system with NUMA backplane
1832 * interconnect topology is more involved. The goal is to locate
1833 * tasks from numa_groups near each other in the system, and
1834 * untangle workloads from different sides of the system. This requires
1835 * searching down the hierarchy of node groups, recursively searching
1836 * inside the highest scoring group of nodes. The nodemask tricks
1837 * keep the complexity of the search down.
1838 */
1839 nodes = node_online_map;
1840 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1841 unsigned long max_faults = 0;
81907478 1842 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1843 int a, b;
1844
1845 /* Are there nodes at this distance from each other? */
1846 if (!find_numa_distance(dist))
1847 continue;
1848
1849 for_each_node_mask(a, nodes) {
1850 unsigned long faults = 0;
1851 nodemask_t this_group;
1852 nodes_clear(this_group);
1853
1854 /* Sum group's NUMA faults; includes a==b case. */
1855 for_each_node_mask(b, nodes) {
1856 if (node_distance(a, b) < dist) {
1857 faults += group_faults(p, b);
1858 node_set(b, this_group);
1859 node_clear(b, nodes);
1860 }
1861 }
1862
1863 /* Remember the top group. */
1864 if (faults > max_faults) {
1865 max_faults = faults;
1866 max_group = this_group;
1867 /*
1868 * subtle: at the smallest distance there is
1869 * just one node left in each "group", the
1870 * winner is the preferred nid.
1871 */
1872 nid = a;
1873 }
1874 }
1875 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1876 if (!max_faults)
1877 break;
54009416
RR
1878 nodes = max_group;
1879 }
1880 return nid;
1881}
1882
cbee9f88
PZ
1883static void task_numa_placement(struct task_struct *p)
1884{
83e1d2cd
MG
1885 int seq, nid, max_nid = -1, max_group_nid = -1;
1886 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1887 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1888 unsigned long total_faults;
1889 u64 runtime, period;
7dbd13ed 1890 spinlock_t *group_lock = NULL;
cbee9f88 1891
7e5a2c17
JL
1892 /*
1893 * The p->mm->numa_scan_seq field gets updated without
1894 * exclusive access. Use READ_ONCE() here to ensure
1895 * that the field is read in a single access:
1896 */
316c1608 1897 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1898 if (p->numa_scan_seq == seq)
1899 return;
1900 p->numa_scan_seq = seq;
598f0ec0 1901 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1902
7e2703e6
RR
1903 total_faults = p->numa_faults_locality[0] +
1904 p->numa_faults_locality[1];
1905 runtime = numa_get_avg_runtime(p, &period);
1906
7dbd13ed
MG
1907 /* If the task is part of a group prevent parallel updates to group stats */
1908 if (p->numa_group) {
1909 group_lock = &p->numa_group->lock;
60e69eed 1910 spin_lock_irq(group_lock);
7dbd13ed
MG
1911 }
1912
688b7585
MG
1913 /* Find the node with the highest number of faults */
1914 for_each_online_node(nid) {
44dba3d5
IM
1915 /* Keep track of the offsets in numa_faults array */
1916 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1917 unsigned long faults = 0, group_faults = 0;
44dba3d5 1918 int priv;
745d6147 1919
be1e4e76 1920 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1921 long diff, f_diff, f_weight;
8c8a743c 1922
44dba3d5
IM
1923 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1924 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1925 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1926 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1927
ac8e895b 1928 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1929 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1930 fault_types[priv] += p->numa_faults[membuf_idx];
1931 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1932
7e2703e6
RR
1933 /*
1934 * Normalize the faults_from, so all tasks in a group
1935 * count according to CPU use, instead of by the raw
1936 * number of faults. Tasks with little runtime have
1937 * little over-all impact on throughput, and thus their
1938 * faults are less important.
1939 */
1940 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1941 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1942 (total_faults + 1);
44dba3d5
IM
1943 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1944 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1945
44dba3d5
IM
1946 p->numa_faults[mem_idx] += diff;
1947 p->numa_faults[cpu_idx] += f_diff;
1948 faults += p->numa_faults[mem_idx];
83e1d2cd 1949 p->total_numa_faults += diff;
8c8a743c 1950 if (p->numa_group) {
44dba3d5
IM
1951 /*
1952 * safe because we can only change our own group
1953 *
1954 * mem_idx represents the offset for a given
1955 * nid and priv in a specific region because it
1956 * is at the beginning of the numa_faults array.
1957 */
1958 p->numa_group->faults[mem_idx] += diff;
1959 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1960 p->numa_group->total_faults += diff;
44dba3d5 1961 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1962 }
ac8e895b
MG
1963 }
1964
688b7585
MG
1965 if (faults > max_faults) {
1966 max_faults = faults;
1967 max_nid = nid;
1968 }
83e1d2cd
MG
1969
1970 if (group_faults > max_group_faults) {
1971 max_group_faults = group_faults;
1972 max_group_nid = nid;
1973 }
1974 }
1975
04bb2f94
RR
1976 update_task_scan_period(p, fault_types[0], fault_types[1]);
1977
7dbd13ed 1978 if (p->numa_group) {
4142c3eb 1979 numa_group_count_active_nodes(p->numa_group);
60e69eed 1980 spin_unlock_irq(group_lock);
54009416 1981 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1982 }
1983
bb97fc31
RR
1984 if (max_faults) {
1985 /* Set the new preferred node */
1986 if (max_nid != p->numa_preferred_nid)
1987 sched_setnuma(p, max_nid);
1988
1989 if (task_node(p) != p->numa_preferred_nid)
1990 numa_migrate_preferred(p);
3a7053b3 1991 }
cbee9f88
PZ
1992}
1993
8c8a743c
PZ
1994static inline int get_numa_group(struct numa_group *grp)
1995{
1996 return atomic_inc_not_zero(&grp->refcount);
1997}
1998
1999static inline void put_numa_group(struct numa_group *grp)
2000{
2001 if (atomic_dec_and_test(&grp->refcount))
2002 kfree_rcu(grp, rcu);
2003}
2004
3e6a9418
MG
2005static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2006 int *priv)
8c8a743c
PZ
2007{
2008 struct numa_group *grp, *my_grp;
2009 struct task_struct *tsk;
2010 bool join = false;
2011 int cpu = cpupid_to_cpu(cpupid);
2012 int i;
2013
2014 if (unlikely(!p->numa_group)) {
2015 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2016 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2017
2018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2019 if (!grp)
2020 return;
2021
2022 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2023 grp->active_nodes = 1;
2024 grp->max_faults_cpu = 0;
8c8a743c 2025 spin_lock_init(&grp->lock);
e29cf08b 2026 grp->gid = p->pid;
50ec8a40 2027 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2028 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2029 nr_node_ids;
8c8a743c 2030
be1e4e76 2031 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2032 grp->faults[i] = p->numa_faults[i];
8c8a743c 2033
989348b5 2034 grp->total_faults = p->total_numa_faults;
83e1d2cd 2035
8c8a743c
PZ
2036 grp->nr_tasks++;
2037 rcu_assign_pointer(p->numa_group, grp);
2038 }
2039
2040 rcu_read_lock();
316c1608 2041 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2042
2043 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2044 goto no_join;
8c8a743c
PZ
2045
2046 grp = rcu_dereference(tsk->numa_group);
2047 if (!grp)
3354781a 2048 goto no_join;
8c8a743c
PZ
2049
2050 my_grp = p->numa_group;
2051 if (grp == my_grp)
3354781a 2052 goto no_join;
8c8a743c
PZ
2053
2054 /*
2055 * Only join the other group if its bigger; if we're the bigger group,
2056 * the other task will join us.
2057 */
2058 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2059 goto no_join;
8c8a743c
PZ
2060
2061 /*
2062 * Tie-break on the grp address.
2063 */
2064 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2065 goto no_join;
8c8a743c 2066
dabe1d99
RR
2067 /* Always join threads in the same process. */
2068 if (tsk->mm == current->mm)
2069 join = true;
2070
2071 /* Simple filter to avoid false positives due to PID collisions */
2072 if (flags & TNF_SHARED)
2073 join = true;
8c8a743c 2074
3e6a9418
MG
2075 /* Update priv based on whether false sharing was detected */
2076 *priv = !join;
2077
dabe1d99 2078 if (join && !get_numa_group(grp))
3354781a 2079 goto no_join;
8c8a743c 2080
8c8a743c
PZ
2081 rcu_read_unlock();
2082
2083 if (!join)
2084 return;
2085
60e69eed
MG
2086 BUG_ON(irqs_disabled());
2087 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2088
be1e4e76 2089 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2090 my_grp->faults[i] -= p->numa_faults[i];
2091 grp->faults[i] += p->numa_faults[i];
8c8a743c 2092 }
989348b5
MG
2093 my_grp->total_faults -= p->total_numa_faults;
2094 grp->total_faults += p->total_numa_faults;
8c8a743c 2095
8c8a743c
PZ
2096 my_grp->nr_tasks--;
2097 grp->nr_tasks++;
2098
2099 spin_unlock(&my_grp->lock);
60e69eed 2100 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2101
2102 rcu_assign_pointer(p->numa_group, grp);
2103
2104 put_numa_group(my_grp);
3354781a
PZ
2105 return;
2106
2107no_join:
2108 rcu_read_unlock();
2109 return;
8c8a743c
PZ
2110}
2111
2112void task_numa_free(struct task_struct *p)
2113{
2114 struct numa_group *grp = p->numa_group;
44dba3d5 2115 void *numa_faults = p->numa_faults;
e9dd685c
SR
2116 unsigned long flags;
2117 int i;
8c8a743c
PZ
2118
2119 if (grp) {
e9dd685c 2120 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2121 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2122 grp->faults[i] -= p->numa_faults[i];
989348b5 2123 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2124
8c8a743c 2125 grp->nr_tasks--;
e9dd685c 2126 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2127 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2128 put_numa_group(grp);
2129 }
2130
44dba3d5 2131 p->numa_faults = NULL;
82727018 2132 kfree(numa_faults);
8c8a743c
PZ
2133}
2134
cbee9f88
PZ
2135/*
2136 * Got a PROT_NONE fault for a page on @node.
2137 */
58b46da3 2138void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2139{
2140 struct task_struct *p = current;
6688cc05 2141 bool migrated = flags & TNF_MIGRATED;
58b46da3 2142 int cpu_node = task_node(current);
792568ec 2143 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2144 struct numa_group *ng;
ac8e895b 2145 int priv;
cbee9f88 2146
2a595721 2147 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2148 return;
2149
9ff1d9ff
MG
2150 /* for example, ksmd faulting in a user's mm */
2151 if (!p->mm)
2152 return;
2153
f809ca9a 2154 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2155 if (unlikely(!p->numa_faults)) {
2156 int size = sizeof(*p->numa_faults) *
be1e4e76 2157 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2158
44dba3d5
IM
2159 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2160 if (!p->numa_faults)
f809ca9a 2161 return;
745d6147 2162
83e1d2cd 2163 p->total_numa_faults = 0;
04bb2f94 2164 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2165 }
cbee9f88 2166
8c8a743c
PZ
2167 /*
2168 * First accesses are treated as private, otherwise consider accesses
2169 * to be private if the accessing pid has not changed
2170 */
2171 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2172 priv = 1;
2173 } else {
2174 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2175 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2176 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2177 }
2178
792568ec
RR
2179 /*
2180 * If a workload spans multiple NUMA nodes, a shared fault that
2181 * occurs wholly within the set of nodes that the workload is
2182 * actively using should be counted as local. This allows the
2183 * scan rate to slow down when a workload has settled down.
2184 */
4142c3eb
RR
2185 ng = p->numa_group;
2186 if (!priv && !local && ng && ng->active_nodes > 1 &&
2187 numa_is_active_node(cpu_node, ng) &&
2188 numa_is_active_node(mem_node, ng))
792568ec
RR
2189 local = 1;
2190
cbee9f88 2191 task_numa_placement(p);
f809ca9a 2192
2739d3ee
RR
2193 /*
2194 * Retry task to preferred node migration periodically, in case it
2195 * case it previously failed, or the scheduler moved us.
2196 */
2197 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2198 numa_migrate_preferred(p);
2199
b32e86b4
IM
2200 if (migrated)
2201 p->numa_pages_migrated += pages;
074c2381
MG
2202 if (flags & TNF_MIGRATE_FAIL)
2203 p->numa_faults_locality[2] += pages;
b32e86b4 2204
44dba3d5
IM
2205 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2206 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2207 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2208}
2209
6e5fb223
PZ
2210static void reset_ptenuma_scan(struct task_struct *p)
2211{
7e5a2c17
JL
2212 /*
2213 * We only did a read acquisition of the mmap sem, so
2214 * p->mm->numa_scan_seq is written to without exclusive access
2215 * and the update is not guaranteed to be atomic. That's not
2216 * much of an issue though, since this is just used for
2217 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2218 * expensive, to avoid any form of compiler optimizations:
2219 */
316c1608 2220 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2221 p->mm->numa_scan_offset = 0;
2222}
2223
cbee9f88
PZ
2224/*
2225 * The expensive part of numa migration is done from task_work context.
2226 * Triggered from task_tick_numa().
2227 */
2228void task_numa_work(struct callback_head *work)
2229{
2230 unsigned long migrate, next_scan, now = jiffies;
2231 struct task_struct *p = current;
2232 struct mm_struct *mm = p->mm;
51170840 2233 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2234 struct vm_area_struct *vma;
9f40604c 2235 unsigned long start, end;
598f0ec0 2236 unsigned long nr_pte_updates = 0;
4620f8c1 2237 long pages, virtpages;
cbee9f88
PZ
2238
2239 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2240
2241 work->next = work; /* protect against double add */
2242 /*
2243 * Who cares about NUMA placement when they're dying.
2244 *
2245 * NOTE: make sure not to dereference p->mm before this check,
2246 * exit_task_work() happens _after_ exit_mm() so we could be called
2247 * without p->mm even though we still had it when we enqueued this
2248 * work.
2249 */
2250 if (p->flags & PF_EXITING)
2251 return;
2252
930aa174 2253 if (!mm->numa_next_scan) {
7e8d16b6
MG
2254 mm->numa_next_scan = now +
2255 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2256 }
2257
cbee9f88
PZ
2258 /*
2259 * Enforce maximal scan/migration frequency..
2260 */
2261 migrate = mm->numa_next_scan;
2262 if (time_before(now, migrate))
2263 return;
2264
598f0ec0
MG
2265 if (p->numa_scan_period == 0) {
2266 p->numa_scan_period_max = task_scan_max(p);
2267 p->numa_scan_period = task_scan_min(p);
2268 }
cbee9f88 2269
fb003b80 2270 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2271 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2272 return;
2273
19a78d11
PZ
2274 /*
2275 * Delay this task enough that another task of this mm will likely win
2276 * the next time around.
2277 */
2278 p->node_stamp += 2 * TICK_NSEC;
2279
9f40604c
MG
2280 start = mm->numa_scan_offset;
2281 pages = sysctl_numa_balancing_scan_size;
2282 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2283 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2284 if (!pages)
2285 return;
cbee9f88 2286
4620f8c1 2287
6e5fb223 2288 down_read(&mm->mmap_sem);
9f40604c 2289 vma = find_vma(mm, start);
6e5fb223
PZ
2290 if (!vma) {
2291 reset_ptenuma_scan(p);
9f40604c 2292 start = 0;
6e5fb223
PZ
2293 vma = mm->mmap;
2294 }
9f40604c 2295 for (; vma; vma = vma->vm_next) {
6b79c57b 2296 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2297 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2298 continue;
6b79c57b 2299 }
6e5fb223 2300
4591ce4f
MG
2301 /*
2302 * Shared library pages mapped by multiple processes are not
2303 * migrated as it is expected they are cache replicated. Avoid
2304 * hinting faults in read-only file-backed mappings or the vdso
2305 * as migrating the pages will be of marginal benefit.
2306 */
2307 if (!vma->vm_mm ||
2308 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2309 continue;
2310
3c67f474
MG
2311 /*
2312 * Skip inaccessible VMAs to avoid any confusion between
2313 * PROT_NONE and NUMA hinting ptes
2314 */
2315 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2316 continue;
4591ce4f 2317
9f40604c
MG
2318 do {
2319 start = max(start, vma->vm_start);
2320 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2321 end = min(end, vma->vm_end);
4620f8c1 2322 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2323
2324 /*
4620f8c1
RR
2325 * Try to scan sysctl_numa_balancing_size worth of
2326 * hpages that have at least one present PTE that
2327 * is not already pte-numa. If the VMA contains
2328 * areas that are unused or already full of prot_numa
2329 * PTEs, scan up to virtpages, to skip through those
2330 * areas faster.
598f0ec0
MG
2331 */
2332 if (nr_pte_updates)
2333 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2334 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2335
9f40604c 2336 start = end;
4620f8c1 2337 if (pages <= 0 || virtpages <= 0)
9f40604c 2338 goto out;
3cf1962c
RR
2339
2340 cond_resched();
9f40604c 2341 } while (end != vma->vm_end);
cbee9f88 2342 }
6e5fb223 2343
9f40604c 2344out:
6e5fb223 2345 /*
c69307d5
PZ
2346 * It is possible to reach the end of the VMA list but the last few
2347 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2348 * would find the !migratable VMA on the next scan but not reset the
2349 * scanner to the start so check it now.
6e5fb223
PZ
2350 */
2351 if (vma)
9f40604c 2352 mm->numa_scan_offset = start;
6e5fb223
PZ
2353 else
2354 reset_ptenuma_scan(p);
2355 up_read(&mm->mmap_sem);
51170840
RR
2356
2357 /*
2358 * Make sure tasks use at least 32x as much time to run other code
2359 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2360 * Usually update_task_scan_period slows down scanning enough; on an
2361 * overloaded system we need to limit overhead on a per task basis.
2362 */
2363 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2364 u64 diff = p->se.sum_exec_runtime - runtime;
2365 p->node_stamp += 32 * diff;
2366 }
cbee9f88
PZ
2367}
2368
2369/*
2370 * Drive the periodic memory faults..
2371 */
2372void task_tick_numa(struct rq *rq, struct task_struct *curr)
2373{
2374 struct callback_head *work = &curr->numa_work;
2375 u64 period, now;
2376
2377 /*
2378 * We don't care about NUMA placement if we don't have memory.
2379 */
2380 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2381 return;
2382
2383 /*
2384 * Using runtime rather than walltime has the dual advantage that
2385 * we (mostly) drive the selection from busy threads and that the
2386 * task needs to have done some actual work before we bother with
2387 * NUMA placement.
2388 */
2389 now = curr->se.sum_exec_runtime;
2390 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2391
25b3e5a3 2392 if (now > curr->node_stamp + period) {
4b96a29b 2393 if (!curr->node_stamp)
598f0ec0 2394 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2395 curr->node_stamp += period;
cbee9f88
PZ
2396
2397 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2398 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2399 task_work_add(curr, work, true);
2400 }
2401 }
2402}
2403#else
2404static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2405{
2406}
0ec8aa00
PZ
2407
2408static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2409{
2410}
2411
2412static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2413{
2414}
cbee9f88
PZ
2415#endif /* CONFIG_NUMA_BALANCING */
2416
30cfdcfc
DA
2417static void
2418account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2419{
2420 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2421 if (!parent_entity(se))
029632fb 2422 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2423#ifdef CONFIG_SMP
0ec8aa00
PZ
2424 if (entity_is_task(se)) {
2425 struct rq *rq = rq_of(cfs_rq);
2426
2427 account_numa_enqueue(rq, task_of(se));
2428 list_add(&se->group_node, &rq->cfs_tasks);
2429 }
367456c7 2430#endif
30cfdcfc 2431 cfs_rq->nr_running++;
30cfdcfc
DA
2432}
2433
2434static void
2435account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2436{
2437 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2438 if (!parent_entity(se))
029632fb 2439 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2440 if (entity_is_task(se)) {
2441 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2442 list_del_init(&se->group_node);
0ec8aa00 2443 }
30cfdcfc 2444 cfs_rq->nr_running--;
30cfdcfc
DA
2445}
2446
3ff6dcac
YZ
2447#ifdef CONFIG_FAIR_GROUP_SCHED
2448# ifdef CONFIG_SMP
cf5f0acf
PZ
2449static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2450{
2451 long tg_weight;
2452
2453 /*
9d89c257
YD
2454 * Use this CPU's real-time load instead of the last load contribution
2455 * as the updating of the contribution is delayed, and we will use the
2456 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2457 */
bf5b986e 2458 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2459 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2460 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2461
2462 return tg_weight;
2463}
2464
6d5ab293 2465static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2466{
cf5f0acf 2467 long tg_weight, load, shares;
3ff6dcac 2468
cf5f0acf 2469 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2470 load = cfs_rq->load.weight;
3ff6dcac 2471
3ff6dcac 2472 shares = (tg->shares * load);
cf5f0acf
PZ
2473 if (tg_weight)
2474 shares /= tg_weight;
3ff6dcac
YZ
2475
2476 if (shares < MIN_SHARES)
2477 shares = MIN_SHARES;
2478 if (shares > tg->shares)
2479 shares = tg->shares;
2480
2481 return shares;
2482}
3ff6dcac 2483# else /* CONFIG_SMP */
6d5ab293 2484static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2485{
2486 return tg->shares;
2487}
3ff6dcac 2488# endif /* CONFIG_SMP */
2069dd75
PZ
2489static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2490 unsigned long weight)
2491{
19e5eebb
PT
2492 if (se->on_rq) {
2493 /* commit outstanding execution time */
2494 if (cfs_rq->curr == se)
2495 update_curr(cfs_rq);
2069dd75 2496 account_entity_dequeue(cfs_rq, se);
19e5eebb 2497 }
2069dd75
PZ
2498
2499 update_load_set(&se->load, weight);
2500
2501 if (se->on_rq)
2502 account_entity_enqueue(cfs_rq, se);
2503}
2504
82958366
PT
2505static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2506
6d5ab293 2507static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2508{
2509 struct task_group *tg;
2510 struct sched_entity *se;
3ff6dcac 2511 long shares;
2069dd75 2512
2069dd75
PZ
2513 tg = cfs_rq->tg;
2514 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2515 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2516 return;
3ff6dcac
YZ
2517#ifndef CONFIG_SMP
2518 if (likely(se->load.weight == tg->shares))
2519 return;
2520#endif
6d5ab293 2521 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2522
2523 reweight_entity(cfs_rq_of(se), se, shares);
2524}
2525#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2526static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2527{
2528}
2529#endif /* CONFIG_FAIR_GROUP_SCHED */
2530
141965c7 2531#ifdef CONFIG_SMP
5b51f2f8
PT
2532/* Precomputed fixed inverse multiplies for multiplication by y^n */
2533static const u32 runnable_avg_yN_inv[] = {
2534 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2535 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2536 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2537 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2538 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2539 0x85aac367, 0x82cd8698,
2540};
2541
2542/*
2543 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2544 * over-estimates when re-combining.
2545 */
2546static const u32 runnable_avg_yN_sum[] = {
2547 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2548 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2549 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2550};
2551
9d85f21c
PT
2552/*
2553 * Approximate:
2554 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2555 */
2556static __always_inline u64 decay_load(u64 val, u64 n)
2557{
5b51f2f8
PT
2558 unsigned int local_n;
2559
2560 if (!n)
2561 return val;
2562 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2563 return 0;
2564
2565 /* after bounds checking we can collapse to 32-bit */
2566 local_n = n;
2567
2568 /*
2569 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2570 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2571 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2572 *
2573 * To achieve constant time decay_load.
2574 */
2575 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2576 val >>= local_n / LOAD_AVG_PERIOD;
2577 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2578 }
2579
9d89c257
YD
2580 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2581 return val;
5b51f2f8
PT
2582}
2583
2584/*
2585 * For updates fully spanning n periods, the contribution to runnable
2586 * average will be: \Sum 1024*y^n
2587 *
2588 * We can compute this reasonably efficiently by combining:
2589 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2590 */
2591static u32 __compute_runnable_contrib(u64 n)
2592{
2593 u32 contrib = 0;
2594
2595 if (likely(n <= LOAD_AVG_PERIOD))
2596 return runnable_avg_yN_sum[n];
2597 else if (unlikely(n >= LOAD_AVG_MAX_N))
2598 return LOAD_AVG_MAX;
2599
2600 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2601 do {
2602 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2603 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2604
2605 n -= LOAD_AVG_PERIOD;
2606 } while (n > LOAD_AVG_PERIOD);
2607
2608 contrib = decay_load(contrib, n);
2609 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2610}
2611
006cdf02
PZ
2612#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2613#error "load tracking assumes 2^10 as unit"
2614#endif
2615
54a21385 2616#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2617
9d85f21c
PT
2618/*
2619 * We can represent the historical contribution to runnable average as the
2620 * coefficients of a geometric series. To do this we sub-divide our runnable
2621 * history into segments of approximately 1ms (1024us); label the segment that
2622 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2623 *
2624 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2625 * p0 p1 p2
2626 * (now) (~1ms ago) (~2ms ago)
2627 *
2628 * Let u_i denote the fraction of p_i that the entity was runnable.
2629 *
2630 * We then designate the fractions u_i as our co-efficients, yielding the
2631 * following representation of historical load:
2632 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2633 *
2634 * We choose y based on the with of a reasonably scheduling period, fixing:
2635 * y^32 = 0.5
2636 *
2637 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2638 * approximately half as much as the contribution to load within the last ms
2639 * (u_0).
2640 *
2641 * When a period "rolls over" and we have new u_0`, multiplying the previous
2642 * sum again by y is sufficient to update:
2643 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2644 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2645 */
9d89c257
YD
2646static __always_inline int
2647__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2648 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2649{
e0f5f3af 2650 u64 delta, scaled_delta, periods;
9d89c257 2651 u32 contrib;
6115c793 2652 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2653 unsigned long scale_freq, scale_cpu;
9d85f21c 2654
9d89c257 2655 delta = now - sa->last_update_time;
9d85f21c
PT
2656 /*
2657 * This should only happen when time goes backwards, which it
2658 * unfortunately does during sched clock init when we swap over to TSC.
2659 */
2660 if ((s64)delta < 0) {
9d89c257 2661 sa->last_update_time = now;
9d85f21c
PT
2662 return 0;
2663 }
2664
2665 /*
2666 * Use 1024ns as the unit of measurement since it's a reasonable
2667 * approximation of 1us and fast to compute.
2668 */
2669 delta >>= 10;
2670 if (!delta)
2671 return 0;
9d89c257 2672 sa->last_update_time = now;
9d85f21c 2673
6f2b0452
DE
2674 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2675 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2676
9d85f21c 2677 /* delta_w is the amount already accumulated against our next period */
9d89c257 2678 delta_w = sa->period_contrib;
9d85f21c 2679 if (delta + delta_w >= 1024) {
9d85f21c
PT
2680 decayed = 1;
2681
9d89c257
YD
2682 /* how much left for next period will start over, we don't know yet */
2683 sa->period_contrib = 0;
2684
9d85f21c
PT
2685 /*
2686 * Now that we know we're crossing a period boundary, figure
2687 * out how much from delta we need to complete the current
2688 * period and accrue it.
2689 */
2690 delta_w = 1024 - delta_w;
54a21385 2691 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2692 if (weight) {
e0f5f3af
DE
2693 sa->load_sum += weight * scaled_delta_w;
2694 if (cfs_rq) {
2695 cfs_rq->runnable_load_sum +=
2696 weight * scaled_delta_w;
2697 }
13962234 2698 }
36ee28e4 2699 if (running)
006cdf02 2700 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2701
2702 delta -= delta_w;
2703
2704 /* Figure out how many additional periods this update spans */
2705 periods = delta / 1024;
2706 delta %= 1024;
2707
9d89c257 2708 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2709 if (cfs_rq) {
2710 cfs_rq->runnable_load_sum =
2711 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2712 }
9d89c257 2713 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2714
2715 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2716 contrib = __compute_runnable_contrib(periods);
54a21385 2717 contrib = cap_scale(contrib, scale_freq);
13962234 2718 if (weight) {
9d89c257 2719 sa->load_sum += weight * contrib;
13962234
YD
2720 if (cfs_rq)
2721 cfs_rq->runnable_load_sum += weight * contrib;
2722 }
36ee28e4 2723 if (running)
006cdf02 2724 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2725 }
2726
2727 /* Remainder of delta accrued against u_0` */
54a21385 2728 scaled_delta = cap_scale(delta, scale_freq);
13962234 2729 if (weight) {
e0f5f3af 2730 sa->load_sum += weight * scaled_delta;
13962234 2731 if (cfs_rq)
e0f5f3af 2732 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2733 }
36ee28e4 2734 if (running)
006cdf02 2735 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2736
9d89c257 2737 sa->period_contrib += delta;
9ee474f5 2738
9d89c257
YD
2739 if (decayed) {
2740 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2741 if (cfs_rq) {
2742 cfs_rq->runnable_load_avg =
2743 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2744 }
006cdf02 2745 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2746 }
aff3e498 2747
9d89c257 2748 return decayed;
9ee474f5
PT
2749}
2750
c566e8e9 2751#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2752/*
9d89c257
YD
2753 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2754 * and effective_load (which is not done because it is too costly).
bb17f655 2755 */
9d89c257 2756static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2757{
9d89c257 2758 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2759
aa0b7ae0
WL
2760 /*
2761 * No need to update load_avg for root_task_group as it is not used.
2762 */
2763 if (cfs_rq->tg == &root_task_group)
2764 return;
2765
9d89c257
YD
2766 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2767 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2768 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2769 }
8165e145 2770}
f5f9739d 2771
ad936d86
BP
2772/*
2773 * Called within set_task_rq() right before setting a task's cpu. The
2774 * caller only guarantees p->pi_lock is held; no other assumptions,
2775 * including the state of rq->lock, should be made.
2776 */
2777void set_task_rq_fair(struct sched_entity *se,
2778 struct cfs_rq *prev, struct cfs_rq *next)
2779{
2780 if (!sched_feat(ATTACH_AGE_LOAD))
2781 return;
2782
2783 /*
2784 * We are supposed to update the task to "current" time, then its up to
2785 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2786 * getting what current time is, so simply throw away the out-of-date
2787 * time. This will result in the wakee task is less decayed, but giving
2788 * the wakee more load sounds not bad.
2789 */
2790 if (se->avg.last_update_time && prev) {
2791 u64 p_last_update_time;
2792 u64 n_last_update_time;
2793
2794#ifndef CONFIG_64BIT
2795 u64 p_last_update_time_copy;
2796 u64 n_last_update_time_copy;
2797
2798 do {
2799 p_last_update_time_copy = prev->load_last_update_time_copy;
2800 n_last_update_time_copy = next->load_last_update_time_copy;
2801
2802 smp_rmb();
2803
2804 p_last_update_time = prev->avg.last_update_time;
2805 n_last_update_time = next->avg.last_update_time;
2806
2807 } while (p_last_update_time != p_last_update_time_copy ||
2808 n_last_update_time != n_last_update_time_copy);
2809#else
2810 p_last_update_time = prev->avg.last_update_time;
2811 n_last_update_time = next->avg.last_update_time;
2812#endif
2813 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2814 &se->avg, 0, 0, NULL);
2815 se->avg.last_update_time = n_last_update_time;
2816 }
2817}
6e83125c 2818#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2819static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2820#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2821
9d89c257 2822static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2823
9d89c257
YD
2824/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2825static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2826{
9d89c257 2827 struct sched_avg *sa = &cfs_rq->avg;
3e386d56 2828 int decayed, removed = 0;
2dac754e 2829
9d89c257 2830 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2831 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2832 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2833 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
3e386d56 2834 removed = 1;
8165e145 2835 }
2dac754e 2836
9d89c257
YD
2837 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2838 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2839 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2840 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2841 }
36ee28e4 2842
9d89c257 2843 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2844 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2845
9d89c257
YD
2846#ifndef CONFIG_64BIT
2847 smp_wmb();
2848 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2849#endif
36ee28e4 2850
3e386d56 2851 return decayed || removed;
9ee474f5
PT
2852}
2853
9d89c257
YD
2854/* Update task and its cfs_rq load average */
2855static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2856{
2dac754e 2857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2858 u64 now = cfs_rq_clock_task(cfs_rq);
34e2c555
RW
2859 struct rq *rq = rq_of(cfs_rq);
2860 int cpu = cpu_of(rq);
2dac754e 2861
f1b17280 2862 /*
9d89c257
YD
2863 * Track task load average for carrying it to new CPU after migrated, and
2864 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2865 */
9d89c257 2866 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2867 se->on_rq * scale_load_down(se->load.weight),
2868 cfs_rq->curr == se, NULL);
f1b17280 2869
9d89c257
YD
2870 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2871 update_tg_load_avg(cfs_rq, 0);
34e2c555
RW
2872
2873 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2874 unsigned long max = rq->cpu_capacity_orig;
2875
2876 /*
2877 * There are a few boundary cases this might miss but it should
2878 * get called often enough that that should (hopefully) not be
2879 * a real problem -- added to that it only calls on the local
2880 * CPU, so if we enqueue remotely we'll miss an update, but
2881 * the next tick/schedule should update.
2882 *
2883 * It will not get called when we go idle, because the idle
2884 * thread is a different class (!fair), nor will the utilization
2885 * number include things like RT tasks.
2886 *
2887 * As is, the util number is not freq-invariant (we'd have to
2888 * implement arch_scale_freq_capacity() for that).
2889 *
2890 * See cpu_util().
2891 */
2892 cpufreq_update_util(rq_clock(rq),
2893 min(cfs_rq->avg.util_avg, max), max);
2894 }
9ee474f5
PT
2895}
2896
a05e8c51
BP
2897static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2898{
a9280514
PZ
2899 if (!sched_feat(ATTACH_AGE_LOAD))
2900 goto skip_aging;
2901
6efdb105
BP
2902 /*
2903 * If we got migrated (either between CPUs or between cgroups) we'll
2904 * have aged the average right before clearing @last_update_time.
2905 */
2906 if (se->avg.last_update_time) {
2907 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2908 &se->avg, 0, 0, NULL);
2909
2910 /*
2911 * XXX: we could have just aged the entire load away if we've been
2912 * absent from the fair class for too long.
2913 */
2914 }
2915
a9280514 2916skip_aging:
a05e8c51
BP
2917 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2918 cfs_rq->avg.load_avg += se->avg.load_avg;
2919 cfs_rq->avg.load_sum += se->avg.load_sum;
2920 cfs_rq->avg.util_avg += se->avg.util_avg;
2921 cfs_rq->avg.util_sum += se->avg.util_sum;
2922}
2923
2924static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2925{
2926 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2927 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2928 cfs_rq->curr == se, NULL);
2929
2930 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2931 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2932 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2933 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2934}
2935
9d89c257
YD
2936/* Add the load generated by se into cfs_rq's load average */
2937static inline void
2938enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2939{
9d89c257
YD
2940 struct sched_avg *sa = &se->avg;
2941 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2942 int migrated, decayed;
9ee474f5 2943
a05e8c51
BP
2944 migrated = !sa->last_update_time;
2945 if (!migrated) {
9d89c257 2946 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2947 se->on_rq * scale_load_down(se->load.weight),
2948 cfs_rq->curr == se, NULL);
aff3e498 2949 }
c566e8e9 2950
9d89c257 2951 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2952
13962234
YD
2953 cfs_rq->runnable_load_avg += sa->load_avg;
2954 cfs_rq->runnable_load_sum += sa->load_sum;
2955
a05e8c51
BP
2956 if (migrated)
2957 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2958
9d89c257
YD
2959 if (decayed || migrated)
2960 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2961}
2962
13962234
YD
2963/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2964static inline void
2965dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2966{
2967 update_load_avg(se, 1);
2968
2969 cfs_rq->runnable_load_avg =
2970 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2971 cfs_rq->runnable_load_sum =
a05e8c51 2972 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2973}
2974
9d89c257 2975#ifndef CONFIG_64BIT
0905f04e
YD
2976static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2977{
9d89c257 2978 u64 last_update_time_copy;
0905f04e 2979 u64 last_update_time;
9ee474f5 2980
9d89c257
YD
2981 do {
2982 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2983 smp_rmb();
2984 last_update_time = cfs_rq->avg.last_update_time;
2985 } while (last_update_time != last_update_time_copy);
0905f04e
YD
2986
2987 return last_update_time;
2988}
9d89c257 2989#else
0905f04e
YD
2990static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2991{
2992 return cfs_rq->avg.last_update_time;
2993}
9d89c257
YD
2994#endif
2995
0905f04e
YD
2996/*
2997 * Task first catches up with cfs_rq, and then subtract
2998 * itself from the cfs_rq (task must be off the queue now).
2999 */
3000void remove_entity_load_avg(struct sched_entity *se)
3001{
3002 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3003 u64 last_update_time;
3004
3005 /*
3006 * Newly created task or never used group entity should not be removed
3007 * from its (source) cfs_rq
3008 */
3009 if (se->avg.last_update_time == 0)
3010 return;
3011
3012 last_update_time = cfs_rq_last_update_time(cfs_rq);
3013
13962234 3014 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3015 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3016 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3017}
642dbc39 3018
7ea241af
YD
3019static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3020{
3021 return cfs_rq->runnable_load_avg;
3022}
3023
3024static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3025{
3026 return cfs_rq->avg.load_avg;
3027}
3028
6e83125c
PZ
3029static int idle_balance(struct rq *this_rq);
3030
38033c37
PZ
3031#else /* CONFIG_SMP */
3032
9d89c257
YD
3033static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3034static inline void
3035enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3036static inline void
3037dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3038static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3039
a05e8c51
BP
3040static inline void
3041attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3042static inline void
3043detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3044
6e83125c
PZ
3045static inline int idle_balance(struct rq *rq)
3046{
3047 return 0;
3048}
3049
38033c37 3050#endif /* CONFIG_SMP */
9d85f21c 3051
2396af69 3052static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3053{
bf0f6f24 3054#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3055 struct task_struct *tsk = NULL;
3056
3057 if (entity_is_task(se))
3058 tsk = task_of(se);
3059
41acab88 3060 if (se->statistics.sleep_start) {
78becc27 3061 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3062
3063 if ((s64)delta < 0)
3064 delta = 0;
3065
41acab88
LDM
3066 if (unlikely(delta > se->statistics.sleep_max))
3067 se->statistics.sleep_max = delta;
bf0f6f24 3068
8c79a045 3069 se->statistics.sleep_start = 0;
41acab88 3070 se->statistics.sum_sleep_runtime += delta;
9745512c 3071
768d0c27 3072 if (tsk) {
e414314c 3073 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3074 trace_sched_stat_sleep(tsk, delta);
3075 }
bf0f6f24 3076 }
41acab88 3077 if (se->statistics.block_start) {
78becc27 3078 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3079
3080 if ((s64)delta < 0)
3081 delta = 0;
3082
41acab88
LDM
3083 if (unlikely(delta > se->statistics.block_max))
3084 se->statistics.block_max = delta;
bf0f6f24 3085
8c79a045 3086 se->statistics.block_start = 0;
41acab88 3087 se->statistics.sum_sleep_runtime += delta;
30084fbd 3088
e414314c 3089 if (tsk) {
8f0dfc34 3090 if (tsk->in_iowait) {
41acab88
LDM
3091 se->statistics.iowait_sum += delta;
3092 se->statistics.iowait_count++;
768d0c27 3093 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3094 }
3095
b781a602
AV
3096 trace_sched_stat_blocked(tsk, delta);
3097
e414314c
PZ
3098 /*
3099 * Blocking time is in units of nanosecs, so shift by
3100 * 20 to get a milliseconds-range estimation of the
3101 * amount of time that the task spent sleeping:
3102 */
3103 if (unlikely(prof_on == SLEEP_PROFILING)) {
3104 profile_hits(SLEEP_PROFILING,
3105 (void *)get_wchan(tsk),
3106 delta >> 20);
3107 }
3108 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3109 }
bf0f6f24
IM
3110 }
3111#endif
3112}
3113
ddc97297
PZ
3114static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3115{
3116#ifdef CONFIG_SCHED_DEBUG
3117 s64 d = se->vruntime - cfs_rq->min_vruntime;
3118
3119 if (d < 0)
3120 d = -d;
3121
3122 if (d > 3*sysctl_sched_latency)
3123 schedstat_inc(cfs_rq, nr_spread_over);
3124#endif
3125}
3126
aeb73b04
PZ
3127static void
3128place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3129{
1af5f730 3130 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3131
2cb8600e
PZ
3132 /*
3133 * The 'current' period is already promised to the current tasks,
3134 * however the extra weight of the new task will slow them down a
3135 * little, place the new task so that it fits in the slot that
3136 * stays open at the end.
3137 */
94dfb5e7 3138 if (initial && sched_feat(START_DEBIT))
f9c0b095 3139 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3140
a2e7a7eb 3141 /* sleeps up to a single latency don't count. */
5ca9880c 3142 if (!initial) {
a2e7a7eb 3143 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3144
a2e7a7eb
MG
3145 /*
3146 * Halve their sleep time's effect, to allow
3147 * for a gentler effect of sleepers:
3148 */
3149 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3150 thresh >>= 1;
51e0304c 3151
a2e7a7eb 3152 vruntime -= thresh;
aeb73b04
PZ
3153 }
3154
b5d9d734 3155 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3156 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3157}
3158
d3d9dc33
PT
3159static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3160
cb251765
MG
3161static inline void check_schedstat_required(void)
3162{
3163#ifdef CONFIG_SCHEDSTATS
3164 if (schedstat_enabled())
3165 return;
3166
3167 /* Force schedstat enabled if a dependent tracepoint is active */
3168 if (trace_sched_stat_wait_enabled() ||
3169 trace_sched_stat_sleep_enabled() ||
3170 trace_sched_stat_iowait_enabled() ||
3171 trace_sched_stat_blocked_enabled() ||
3172 trace_sched_stat_runtime_enabled()) {
3173 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3174 "stat_blocked and stat_runtime require the "
3175 "kernel parameter schedstats=enabled or "
3176 "kernel.sched_schedstats=1\n");
3177 }
3178#endif
3179}
3180
bf0f6f24 3181static void
88ec22d3 3182enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3183{
88ec22d3
PZ
3184 /*
3185 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3186 * through calling update_curr().
88ec22d3 3187 */
371fd7e7 3188 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3189 se->vruntime += cfs_rq->min_vruntime;
3190
bf0f6f24 3191 /*
a2a2d680 3192 * Update run-time statistics of the 'current'.
bf0f6f24 3193 */
b7cc0896 3194 update_curr(cfs_rq);
9d89c257 3195 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3196 account_entity_enqueue(cfs_rq, se);
3197 update_cfs_shares(cfs_rq);
bf0f6f24 3198
88ec22d3 3199 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3200 place_entity(cfs_rq, se, 0);
cb251765
MG
3201 if (schedstat_enabled())
3202 enqueue_sleeper(cfs_rq, se);
e9acbff6 3203 }
bf0f6f24 3204
cb251765
MG
3205 check_schedstat_required();
3206 if (schedstat_enabled()) {
3207 update_stats_enqueue(cfs_rq, se);
3208 check_spread(cfs_rq, se);
3209 }
83b699ed
SV
3210 if (se != cfs_rq->curr)
3211 __enqueue_entity(cfs_rq, se);
2069dd75 3212 se->on_rq = 1;
3d4b47b4 3213
d3d9dc33 3214 if (cfs_rq->nr_running == 1) {
3d4b47b4 3215 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3216 check_enqueue_throttle(cfs_rq);
3217 }
bf0f6f24
IM
3218}
3219
2c13c919 3220static void __clear_buddies_last(struct sched_entity *se)
2002c695 3221{
2c13c919
RR
3222 for_each_sched_entity(se) {
3223 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3224 if (cfs_rq->last != se)
2c13c919 3225 break;
f1044799
PZ
3226
3227 cfs_rq->last = NULL;
2c13c919
RR
3228 }
3229}
2002c695 3230
2c13c919
RR
3231static void __clear_buddies_next(struct sched_entity *se)
3232{
3233 for_each_sched_entity(se) {
3234 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3235 if (cfs_rq->next != se)
2c13c919 3236 break;
f1044799
PZ
3237
3238 cfs_rq->next = NULL;
2c13c919 3239 }
2002c695
PZ
3240}
3241
ac53db59
RR
3242static void __clear_buddies_skip(struct sched_entity *se)
3243{
3244 for_each_sched_entity(se) {
3245 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3246 if (cfs_rq->skip != se)
ac53db59 3247 break;
f1044799
PZ
3248
3249 cfs_rq->skip = NULL;
ac53db59
RR
3250 }
3251}
3252
a571bbea
PZ
3253static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3254{
2c13c919
RR
3255 if (cfs_rq->last == se)
3256 __clear_buddies_last(se);
3257
3258 if (cfs_rq->next == se)
3259 __clear_buddies_next(se);
ac53db59
RR
3260
3261 if (cfs_rq->skip == se)
3262 __clear_buddies_skip(se);
a571bbea
PZ
3263}
3264
6c16a6dc 3265static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3266
bf0f6f24 3267static void
371fd7e7 3268dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3269{
a2a2d680
DA
3270 /*
3271 * Update run-time statistics of the 'current'.
3272 */
3273 update_curr(cfs_rq);
13962234 3274 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3275
cb251765
MG
3276 if (schedstat_enabled())
3277 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3278
2002c695 3279 clear_buddies(cfs_rq, se);
4793241b 3280
83b699ed 3281 if (se != cfs_rq->curr)
30cfdcfc 3282 __dequeue_entity(cfs_rq, se);
17bc14b7 3283 se->on_rq = 0;
30cfdcfc 3284 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3285
3286 /*
3287 * Normalize the entity after updating the min_vruntime because the
3288 * update can refer to the ->curr item and we need to reflect this
3289 * movement in our normalized position.
3290 */
371fd7e7 3291 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3292 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3293
d8b4986d
PT
3294 /* return excess runtime on last dequeue */
3295 return_cfs_rq_runtime(cfs_rq);
3296
1e876231 3297 update_min_vruntime(cfs_rq);
17bc14b7 3298 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3299}
3300
3301/*
3302 * Preempt the current task with a newly woken task if needed:
3303 */
7c92e54f 3304static void
2e09bf55 3305check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3306{
11697830 3307 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3308 struct sched_entity *se;
3309 s64 delta;
11697830 3310
6d0f0ebd 3311 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3312 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3313 if (delta_exec > ideal_runtime) {
8875125e 3314 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3315 /*
3316 * The current task ran long enough, ensure it doesn't get
3317 * re-elected due to buddy favours.
3318 */
3319 clear_buddies(cfs_rq, curr);
f685ceac
MG
3320 return;
3321 }
3322
3323 /*
3324 * Ensure that a task that missed wakeup preemption by a
3325 * narrow margin doesn't have to wait for a full slice.
3326 * This also mitigates buddy induced latencies under load.
3327 */
f685ceac
MG
3328 if (delta_exec < sysctl_sched_min_granularity)
3329 return;
3330
f4cfb33e
WX
3331 se = __pick_first_entity(cfs_rq);
3332 delta = curr->vruntime - se->vruntime;
f685ceac 3333
f4cfb33e
WX
3334 if (delta < 0)
3335 return;
d7d82944 3336
f4cfb33e 3337 if (delta > ideal_runtime)
8875125e 3338 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3339}
3340
83b699ed 3341static void
8494f412 3342set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3343{
83b699ed
SV
3344 /* 'current' is not kept within the tree. */
3345 if (se->on_rq) {
3346 /*
3347 * Any task has to be enqueued before it get to execute on
3348 * a CPU. So account for the time it spent waiting on the
3349 * runqueue.
3350 */
cb251765
MG
3351 if (schedstat_enabled())
3352 update_stats_wait_end(cfs_rq, se);
83b699ed 3353 __dequeue_entity(cfs_rq, se);
9d89c257 3354 update_load_avg(se, 1);
83b699ed
SV
3355 }
3356
79303e9e 3357 update_stats_curr_start(cfs_rq, se);
429d43bc 3358 cfs_rq->curr = se;
eba1ed4b
IM
3359#ifdef CONFIG_SCHEDSTATS
3360 /*
3361 * Track our maximum slice length, if the CPU's load is at
3362 * least twice that of our own weight (i.e. dont track it
3363 * when there are only lesser-weight tasks around):
3364 */
cb251765 3365 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3366 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3367 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3368 }
3369#endif
4a55b450 3370 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3371}
3372
3f3a4904
PZ
3373static int
3374wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3375
ac53db59
RR
3376/*
3377 * Pick the next process, keeping these things in mind, in this order:
3378 * 1) keep things fair between processes/task groups
3379 * 2) pick the "next" process, since someone really wants that to run
3380 * 3) pick the "last" process, for cache locality
3381 * 4) do not run the "skip" process, if something else is available
3382 */
678d5718
PZ
3383static struct sched_entity *
3384pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3385{
678d5718
PZ
3386 struct sched_entity *left = __pick_first_entity(cfs_rq);
3387 struct sched_entity *se;
3388
3389 /*
3390 * If curr is set we have to see if its left of the leftmost entity
3391 * still in the tree, provided there was anything in the tree at all.
3392 */
3393 if (!left || (curr && entity_before(curr, left)))
3394 left = curr;
3395
3396 se = left; /* ideally we run the leftmost entity */
f4b6755f 3397
ac53db59
RR
3398 /*
3399 * Avoid running the skip buddy, if running something else can
3400 * be done without getting too unfair.
3401 */
3402 if (cfs_rq->skip == se) {
678d5718
PZ
3403 struct sched_entity *second;
3404
3405 if (se == curr) {
3406 second = __pick_first_entity(cfs_rq);
3407 } else {
3408 second = __pick_next_entity(se);
3409 if (!second || (curr && entity_before(curr, second)))
3410 second = curr;
3411 }
3412
ac53db59
RR
3413 if (second && wakeup_preempt_entity(second, left) < 1)
3414 se = second;
3415 }
aa2ac252 3416
f685ceac
MG
3417 /*
3418 * Prefer last buddy, try to return the CPU to a preempted task.
3419 */
3420 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3421 se = cfs_rq->last;
3422
ac53db59
RR
3423 /*
3424 * Someone really wants this to run. If it's not unfair, run it.
3425 */
3426 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3427 se = cfs_rq->next;
3428
f685ceac 3429 clear_buddies(cfs_rq, se);
4793241b
PZ
3430
3431 return se;
aa2ac252
PZ
3432}
3433
678d5718 3434static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3435
ab6cde26 3436static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3437{
3438 /*
3439 * If still on the runqueue then deactivate_task()
3440 * was not called and update_curr() has to be done:
3441 */
3442 if (prev->on_rq)
b7cc0896 3443 update_curr(cfs_rq);
bf0f6f24 3444
d3d9dc33
PT
3445 /* throttle cfs_rqs exceeding runtime */
3446 check_cfs_rq_runtime(cfs_rq);
3447
cb251765
MG
3448 if (schedstat_enabled()) {
3449 check_spread(cfs_rq, prev);
3450 if (prev->on_rq)
3451 update_stats_wait_start(cfs_rq, prev);
3452 }
3453
30cfdcfc 3454 if (prev->on_rq) {
30cfdcfc
DA
3455 /* Put 'current' back into the tree. */
3456 __enqueue_entity(cfs_rq, prev);
9d85f21c 3457 /* in !on_rq case, update occurred at dequeue */
9d89c257 3458 update_load_avg(prev, 0);
30cfdcfc 3459 }
429d43bc 3460 cfs_rq->curr = NULL;
bf0f6f24
IM
3461}
3462
8f4d37ec
PZ
3463static void
3464entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3465{
bf0f6f24 3466 /*
30cfdcfc 3467 * Update run-time statistics of the 'current'.
bf0f6f24 3468 */
30cfdcfc 3469 update_curr(cfs_rq);
bf0f6f24 3470
9d85f21c
PT
3471 /*
3472 * Ensure that runnable average is periodically updated.
3473 */
9d89c257 3474 update_load_avg(curr, 1);
bf0bd948 3475 update_cfs_shares(cfs_rq);
9d85f21c 3476
8f4d37ec
PZ
3477#ifdef CONFIG_SCHED_HRTICK
3478 /*
3479 * queued ticks are scheduled to match the slice, so don't bother
3480 * validating it and just reschedule.
3481 */
983ed7a6 3482 if (queued) {
8875125e 3483 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3484 return;
3485 }
8f4d37ec
PZ
3486 /*
3487 * don't let the period tick interfere with the hrtick preemption
3488 */
3489 if (!sched_feat(DOUBLE_TICK) &&
3490 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3491 return;
3492#endif
3493
2c2efaed 3494 if (cfs_rq->nr_running > 1)
2e09bf55 3495 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3496}
3497
ab84d31e
PT
3498
3499/**************************************************
3500 * CFS bandwidth control machinery
3501 */
3502
3503#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3504
3505#ifdef HAVE_JUMP_LABEL
c5905afb 3506static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3507
3508static inline bool cfs_bandwidth_used(void)
3509{
c5905afb 3510 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3511}
3512
1ee14e6c 3513void cfs_bandwidth_usage_inc(void)
029632fb 3514{
1ee14e6c
BS
3515 static_key_slow_inc(&__cfs_bandwidth_used);
3516}
3517
3518void cfs_bandwidth_usage_dec(void)
3519{
3520 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3521}
3522#else /* HAVE_JUMP_LABEL */
3523static bool cfs_bandwidth_used(void)
3524{
3525 return true;
3526}
3527
1ee14e6c
BS
3528void cfs_bandwidth_usage_inc(void) {}
3529void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3530#endif /* HAVE_JUMP_LABEL */
3531
ab84d31e
PT
3532/*
3533 * default period for cfs group bandwidth.
3534 * default: 0.1s, units: nanoseconds
3535 */
3536static inline u64 default_cfs_period(void)
3537{
3538 return 100000000ULL;
3539}
ec12cb7f
PT
3540
3541static inline u64 sched_cfs_bandwidth_slice(void)
3542{
3543 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3544}
3545
a9cf55b2
PT
3546/*
3547 * Replenish runtime according to assigned quota and update expiration time.
3548 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3549 * additional synchronization around rq->lock.
3550 *
3551 * requires cfs_b->lock
3552 */
029632fb 3553void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3554{
3555 u64 now;
3556
3557 if (cfs_b->quota == RUNTIME_INF)
3558 return;
3559
3560 now = sched_clock_cpu(smp_processor_id());
3561 cfs_b->runtime = cfs_b->quota;
3562 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3563}
3564
029632fb
PZ
3565static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3566{
3567 return &tg->cfs_bandwidth;
3568}
3569
f1b17280
PT
3570/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3571static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3572{
3573 if (unlikely(cfs_rq->throttle_count))
3574 return cfs_rq->throttled_clock_task;
3575
78becc27 3576 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3577}
3578
85dac906
PT
3579/* returns 0 on failure to allocate runtime */
3580static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3581{
3582 struct task_group *tg = cfs_rq->tg;
3583 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3584 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3585
3586 /* note: this is a positive sum as runtime_remaining <= 0 */
3587 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3588
3589 raw_spin_lock(&cfs_b->lock);
3590 if (cfs_b->quota == RUNTIME_INF)
3591 amount = min_amount;
58088ad0 3592 else {
77a4d1a1 3593 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3594
3595 if (cfs_b->runtime > 0) {
3596 amount = min(cfs_b->runtime, min_amount);
3597 cfs_b->runtime -= amount;
3598 cfs_b->idle = 0;
3599 }
ec12cb7f 3600 }
a9cf55b2 3601 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3602 raw_spin_unlock(&cfs_b->lock);
3603
3604 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3605 /*
3606 * we may have advanced our local expiration to account for allowed
3607 * spread between our sched_clock and the one on which runtime was
3608 * issued.
3609 */
3610 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3611 cfs_rq->runtime_expires = expires;
85dac906
PT
3612
3613 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3614}
3615
a9cf55b2
PT
3616/*
3617 * Note: This depends on the synchronization provided by sched_clock and the
3618 * fact that rq->clock snapshots this value.
3619 */
3620static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3621{
a9cf55b2 3622 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3623
3624 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3625 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3626 return;
3627
a9cf55b2
PT
3628 if (cfs_rq->runtime_remaining < 0)
3629 return;
3630
3631 /*
3632 * If the local deadline has passed we have to consider the
3633 * possibility that our sched_clock is 'fast' and the global deadline
3634 * has not truly expired.
3635 *
3636 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3637 * whether the global deadline has advanced. It is valid to compare
3638 * cfs_b->runtime_expires without any locks since we only care about
3639 * exact equality, so a partial write will still work.
a9cf55b2
PT
3640 */
3641
51f2176d 3642 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3643 /* extend local deadline, drift is bounded above by 2 ticks */
3644 cfs_rq->runtime_expires += TICK_NSEC;
3645 } else {
3646 /* global deadline is ahead, expiration has passed */
3647 cfs_rq->runtime_remaining = 0;
3648 }
3649}
3650
9dbdb155 3651static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3652{
3653 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3654 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3655 expire_cfs_rq_runtime(cfs_rq);
3656
3657 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3658 return;
3659
85dac906
PT
3660 /*
3661 * if we're unable to extend our runtime we resched so that the active
3662 * hierarchy can be throttled
3663 */
3664 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3665 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3666}
3667
6c16a6dc 3668static __always_inline
9dbdb155 3669void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3670{
56f570e5 3671 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3672 return;
3673
3674 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3675}
3676
85dac906
PT
3677static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3678{
56f570e5 3679 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3680}
3681
64660c86
PT
3682/* check whether cfs_rq, or any parent, is throttled */
3683static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3684{
56f570e5 3685 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3686}
3687
3688/*
3689 * Ensure that neither of the group entities corresponding to src_cpu or
3690 * dest_cpu are members of a throttled hierarchy when performing group
3691 * load-balance operations.
3692 */
3693static inline int throttled_lb_pair(struct task_group *tg,
3694 int src_cpu, int dest_cpu)
3695{
3696 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3697
3698 src_cfs_rq = tg->cfs_rq[src_cpu];
3699 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3700
3701 return throttled_hierarchy(src_cfs_rq) ||
3702 throttled_hierarchy(dest_cfs_rq);
3703}
3704
3705/* updated child weight may affect parent so we have to do this bottom up */
3706static int tg_unthrottle_up(struct task_group *tg, void *data)
3707{
3708 struct rq *rq = data;
3709 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3710
3711 cfs_rq->throttle_count--;
3712#ifdef CONFIG_SMP
3713 if (!cfs_rq->throttle_count) {
f1b17280 3714 /* adjust cfs_rq_clock_task() */
78becc27 3715 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3716 cfs_rq->throttled_clock_task;
64660c86
PT
3717 }
3718#endif
3719
3720 return 0;
3721}
3722
3723static int tg_throttle_down(struct task_group *tg, void *data)
3724{
3725 struct rq *rq = data;
3726 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3727
82958366
PT
3728 /* group is entering throttled state, stop time */
3729 if (!cfs_rq->throttle_count)
78becc27 3730 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3731 cfs_rq->throttle_count++;
3732
3733 return 0;
3734}
3735
d3d9dc33 3736static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3737{
3738 struct rq *rq = rq_of(cfs_rq);
3739 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3740 struct sched_entity *se;
3741 long task_delta, dequeue = 1;
77a4d1a1 3742 bool empty;
85dac906
PT
3743
3744 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3745
f1b17280 3746 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3747 rcu_read_lock();
3748 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3749 rcu_read_unlock();
85dac906
PT
3750
3751 task_delta = cfs_rq->h_nr_running;
3752 for_each_sched_entity(se) {
3753 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3754 /* throttled entity or throttle-on-deactivate */
3755 if (!se->on_rq)
3756 break;
3757
3758 if (dequeue)
3759 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3760 qcfs_rq->h_nr_running -= task_delta;
3761
3762 if (qcfs_rq->load.weight)
3763 dequeue = 0;
3764 }
3765
3766 if (!se)
72465447 3767 sub_nr_running(rq, task_delta);
85dac906
PT
3768
3769 cfs_rq->throttled = 1;
78becc27 3770 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3771 raw_spin_lock(&cfs_b->lock);
d49db342 3772 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3773
c06f04c7
BS
3774 /*
3775 * Add to the _head_ of the list, so that an already-started
3776 * distribute_cfs_runtime will not see us
3777 */
3778 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3779
3780 /*
3781 * If we're the first throttled task, make sure the bandwidth
3782 * timer is running.
3783 */
3784 if (empty)
3785 start_cfs_bandwidth(cfs_b);
3786
85dac906
PT
3787 raw_spin_unlock(&cfs_b->lock);
3788}
3789
029632fb 3790void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3791{
3792 struct rq *rq = rq_of(cfs_rq);
3793 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3794 struct sched_entity *se;
3795 int enqueue = 1;
3796 long task_delta;
3797
22b958d8 3798 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3799
3800 cfs_rq->throttled = 0;
1a55af2e
FW
3801
3802 update_rq_clock(rq);
3803
671fd9da 3804 raw_spin_lock(&cfs_b->lock);
78becc27 3805 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3806 list_del_rcu(&cfs_rq->throttled_list);
3807 raw_spin_unlock(&cfs_b->lock);
3808
64660c86
PT
3809 /* update hierarchical throttle state */
3810 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3811
671fd9da
PT
3812 if (!cfs_rq->load.weight)
3813 return;
3814
3815 task_delta = cfs_rq->h_nr_running;
3816 for_each_sched_entity(se) {
3817 if (se->on_rq)
3818 enqueue = 0;
3819
3820 cfs_rq = cfs_rq_of(se);
3821 if (enqueue)
3822 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3823 cfs_rq->h_nr_running += task_delta;
3824
3825 if (cfs_rq_throttled(cfs_rq))
3826 break;
3827 }
3828
3829 if (!se)
72465447 3830 add_nr_running(rq, task_delta);
671fd9da
PT
3831
3832 /* determine whether we need to wake up potentially idle cpu */
3833 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3834 resched_curr(rq);
671fd9da
PT
3835}
3836
3837static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3838 u64 remaining, u64 expires)
3839{
3840 struct cfs_rq *cfs_rq;
c06f04c7
BS
3841 u64 runtime;
3842 u64 starting_runtime = remaining;
671fd9da
PT
3843
3844 rcu_read_lock();
3845 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3846 throttled_list) {
3847 struct rq *rq = rq_of(cfs_rq);
3848
3849 raw_spin_lock(&rq->lock);
3850 if (!cfs_rq_throttled(cfs_rq))
3851 goto next;
3852
3853 runtime = -cfs_rq->runtime_remaining + 1;
3854 if (runtime > remaining)
3855 runtime = remaining;
3856 remaining -= runtime;
3857
3858 cfs_rq->runtime_remaining += runtime;
3859 cfs_rq->runtime_expires = expires;
3860
3861 /* we check whether we're throttled above */
3862 if (cfs_rq->runtime_remaining > 0)
3863 unthrottle_cfs_rq(cfs_rq);
3864
3865next:
3866 raw_spin_unlock(&rq->lock);
3867
3868 if (!remaining)
3869 break;
3870 }
3871 rcu_read_unlock();
3872
c06f04c7 3873 return starting_runtime - remaining;
671fd9da
PT
3874}
3875
58088ad0
PT
3876/*
3877 * Responsible for refilling a task_group's bandwidth and unthrottling its
3878 * cfs_rqs as appropriate. If there has been no activity within the last
3879 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3880 * used to track this state.
3881 */
3882static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3883{
671fd9da 3884 u64 runtime, runtime_expires;
51f2176d 3885 int throttled;
58088ad0 3886
58088ad0
PT
3887 /* no need to continue the timer with no bandwidth constraint */
3888 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3889 goto out_deactivate;
58088ad0 3890
671fd9da 3891 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3892 cfs_b->nr_periods += overrun;
671fd9da 3893
51f2176d
BS
3894 /*
3895 * idle depends on !throttled (for the case of a large deficit), and if
3896 * we're going inactive then everything else can be deferred
3897 */
3898 if (cfs_b->idle && !throttled)
3899 goto out_deactivate;
a9cf55b2
PT
3900
3901 __refill_cfs_bandwidth_runtime(cfs_b);
3902
671fd9da
PT
3903 if (!throttled) {
3904 /* mark as potentially idle for the upcoming period */
3905 cfs_b->idle = 1;
51f2176d 3906 return 0;
671fd9da
PT
3907 }
3908
e8da1b18
NR
3909 /* account preceding periods in which throttling occurred */
3910 cfs_b->nr_throttled += overrun;
3911
671fd9da 3912 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3913
3914 /*
c06f04c7
BS
3915 * This check is repeated as we are holding onto the new bandwidth while
3916 * we unthrottle. This can potentially race with an unthrottled group
3917 * trying to acquire new bandwidth from the global pool. This can result
3918 * in us over-using our runtime if it is all used during this loop, but
3919 * only by limited amounts in that extreme case.
671fd9da 3920 */
c06f04c7
BS
3921 while (throttled && cfs_b->runtime > 0) {
3922 runtime = cfs_b->runtime;
671fd9da
PT
3923 raw_spin_unlock(&cfs_b->lock);
3924 /* we can't nest cfs_b->lock while distributing bandwidth */
3925 runtime = distribute_cfs_runtime(cfs_b, runtime,
3926 runtime_expires);
3927 raw_spin_lock(&cfs_b->lock);
3928
3929 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3930
3931 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3932 }
58088ad0 3933
671fd9da
PT
3934 /*
3935 * While we are ensured activity in the period following an
3936 * unthrottle, this also covers the case in which the new bandwidth is
3937 * insufficient to cover the existing bandwidth deficit. (Forcing the
3938 * timer to remain active while there are any throttled entities.)
3939 */
3940 cfs_b->idle = 0;
58088ad0 3941
51f2176d
BS
3942 return 0;
3943
3944out_deactivate:
51f2176d 3945 return 1;
58088ad0 3946}
d3d9dc33 3947
d8b4986d
PT
3948/* a cfs_rq won't donate quota below this amount */
3949static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3950/* minimum remaining period time to redistribute slack quota */
3951static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3952/* how long we wait to gather additional slack before distributing */
3953static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3954
db06e78c
BS
3955/*
3956 * Are we near the end of the current quota period?
3957 *
3958 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3959 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3960 * migrate_hrtimers, base is never cleared, so we are fine.
3961 */
d8b4986d
PT
3962static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3963{
3964 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3965 u64 remaining;
3966
3967 /* if the call-back is running a quota refresh is already occurring */
3968 if (hrtimer_callback_running(refresh_timer))
3969 return 1;
3970
3971 /* is a quota refresh about to occur? */
3972 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3973 if (remaining < min_expire)
3974 return 1;
3975
3976 return 0;
3977}
3978
3979static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3980{
3981 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3982
3983 /* if there's a quota refresh soon don't bother with slack */
3984 if (runtime_refresh_within(cfs_b, min_left))
3985 return;
3986
4cfafd30
PZ
3987 hrtimer_start(&cfs_b->slack_timer,
3988 ns_to_ktime(cfs_bandwidth_slack_period),
3989 HRTIMER_MODE_REL);
d8b4986d
PT
3990}
3991
3992/* we know any runtime found here is valid as update_curr() precedes return */
3993static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3994{
3995 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3996 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3997
3998 if (slack_runtime <= 0)
3999 return;
4000
4001 raw_spin_lock(&cfs_b->lock);
4002 if (cfs_b->quota != RUNTIME_INF &&
4003 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4004 cfs_b->runtime += slack_runtime;
4005
4006 /* we are under rq->lock, defer unthrottling using a timer */
4007 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4008 !list_empty(&cfs_b->throttled_cfs_rq))
4009 start_cfs_slack_bandwidth(cfs_b);
4010 }
4011 raw_spin_unlock(&cfs_b->lock);
4012
4013 /* even if it's not valid for return we don't want to try again */
4014 cfs_rq->runtime_remaining -= slack_runtime;
4015}
4016
4017static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4018{
56f570e5
PT
4019 if (!cfs_bandwidth_used())
4020 return;
4021
fccfdc6f 4022 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4023 return;
4024
4025 __return_cfs_rq_runtime(cfs_rq);
4026}
4027
4028/*
4029 * This is done with a timer (instead of inline with bandwidth return) since
4030 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4031 */
4032static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4033{
4034 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4035 u64 expires;
4036
4037 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4038 raw_spin_lock(&cfs_b->lock);
4039 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4040 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4041 return;
db06e78c 4042 }
d8b4986d 4043
c06f04c7 4044 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4045 runtime = cfs_b->runtime;
c06f04c7 4046
d8b4986d
PT
4047 expires = cfs_b->runtime_expires;
4048 raw_spin_unlock(&cfs_b->lock);
4049
4050 if (!runtime)
4051 return;
4052
4053 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4054
4055 raw_spin_lock(&cfs_b->lock);
4056 if (expires == cfs_b->runtime_expires)
c06f04c7 4057 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4058 raw_spin_unlock(&cfs_b->lock);
4059}
4060
d3d9dc33
PT
4061/*
4062 * When a group wakes up we want to make sure that its quota is not already
4063 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4064 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4065 */
4066static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4067{
56f570e5
PT
4068 if (!cfs_bandwidth_used())
4069 return;
4070
d3d9dc33
PT
4071 /* an active group must be handled by the update_curr()->put() path */
4072 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4073 return;
4074
4075 /* ensure the group is not already throttled */
4076 if (cfs_rq_throttled(cfs_rq))
4077 return;
4078
4079 /* update runtime allocation */
4080 account_cfs_rq_runtime(cfs_rq, 0);
4081 if (cfs_rq->runtime_remaining <= 0)
4082 throttle_cfs_rq(cfs_rq);
4083}
4084
4085/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4086static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4087{
56f570e5 4088 if (!cfs_bandwidth_used())
678d5718 4089 return false;
56f570e5 4090
d3d9dc33 4091 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4092 return false;
d3d9dc33
PT
4093
4094 /*
4095 * it's possible for a throttled entity to be forced into a running
4096 * state (e.g. set_curr_task), in this case we're finished.
4097 */
4098 if (cfs_rq_throttled(cfs_rq))
678d5718 4099 return true;
d3d9dc33
PT
4100
4101 throttle_cfs_rq(cfs_rq);
678d5718 4102 return true;
d3d9dc33 4103}
029632fb 4104
029632fb
PZ
4105static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4106{
4107 struct cfs_bandwidth *cfs_b =
4108 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4109
029632fb
PZ
4110 do_sched_cfs_slack_timer(cfs_b);
4111
4112 return HRTIMER_NORESTART;
4113}
4114
4115static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4116{
4117 struct cfs_bandwidth *cfs_b =
4118 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4119 int overrun;
4120 int idle = 0;
4121
51f2176d 4122 raw_spin_lock(&cfs_b->lock);
029632fb 4123 for (;;) {
77a4d1a1 4124 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4125 if (!overrun)
4126 break;
4127
4128 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4129 }
4cfafd30
PZ
4130 if (idle)
4131 cfs_b->period_active = 0;
51f2176d 4132 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4133
4134 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4135}
4136
4137void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4138{
4139 raw_spin_lock_init(&cfs_b->lock);
4140 cfs_b->runtime = 0;
4141 cfs_b->quota = RUNTIME_INF;
4142 cfs_b->period = ns_to_ktime(default_cfs_period());
4143
4144 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4145 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4146 cfs_b->period_timer.function = sched_cfs_period_timer;
4147 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4148 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4149}
4150
4151static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4152{
4153 cfs_rq->runtime_enabled = 0;
4154 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4155}
4156
77a4d1a1 4157void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4158{
4cfafd30 4159 lockdep_assert_held(&cfs_b->lock);
029632fb 4160
4cfafd30
PZ
4161 if (!cfs_b->period_active) {
4162 cfs_b->period_active = 1;
4163 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4164 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4165 }
029632fb
PZ
4166}
4167
4168static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4169{
7f1a169b
TH
4170 /* init_cfs_bandwidth() was not called */
4171 if (!cfs_b->throttled_cfs_rq.next)
4172 return;
4173
029632fb
PZ
4174 hrtimer_cancel(&cfs_b->period_timer);
4175 hrtimer_cancel(&cfs_b->slack_timer);
4176}
4177
0e59bdae
KT
4178static void __maybe_unused update_runtime_enabled(struct rq *rq)
4179{
4180 struct cfs_rq *cfs_rq;
4181
4182 for_each_leaf_cfs_rq(rq, cfs_rq) {
4183 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4184
4185 raw_spin_lock(&cfs_b->lock);
4186 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4187 raw_spin_unlock(&cfs_b->lock);
4188 }
4189}
4190
38dc3348 4191static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4192{
4193 struct cfs_rq *cfs_rq;
4194
4195 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4196 if (!cfs_rq->runtime_enabled)
4197 continue;
4198
4199 /*
4200 * clock_task is not advancing so we just need to make sure
4201 * there's some valid quota amount
4202 */
51f2176d 4203 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4204 /*
4205 * Offline rq is schedulable till cpu is completely disabled
4206 * in take_cpu_down(), so we prevent new cfs throttling here.
4207 */
4208 cfs_rq->runtime_enabled = 0;
4209
029632fb
PZ
4210 if (cfs_rq_throttled(cfs_rq))
4211 unthrottle_cfs_rq(cfs_rq);
4212 }
4213}
4214
4215#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4216static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4217{
78becc27 4218 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4219}
4220
9dbdb155 4221static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4222static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4223static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4224static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4225
4226static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4227{
4228 return 0;
4229}
64660c86
PT
4230
4231static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4232{
4233 return 0;
4234}
4235
4236static inline int throttled_lb_pair(struct task_group *tg,
4237 int src_cpu, int dest_cpu)
4238{
4239 return 0;
4240}
029632fb
PZ
4241
4242void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4243
4244#ifdef CONFIG_FAIR_GROUP_SCHED
4245static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4246#endif
4247
029632fb
PZ
4248static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4249{
4250 return NULL;
4251}
4252static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4253static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4254static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4255
4256#endif /* CONFIG_CFS_BANDWIDTH */
4257
bf0f6f24
IM
4258/**************************************************
4259 * CFS operations on tasks:
4260 */
4261
8f4d37ec
PZ
4262#ifdef CONFIG_SCHED_HRTICK
4263static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4264{
8f4d37ec
PZ
4265 struct sched_entity *se = &p->se;
4266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4267
4268 WARN_ON(task_rq(p) != rq);
4269
b39e66ea 4270 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4271 u64 slice = sched_slice(cfs_rq, se);
4272 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4273 s64 delta = slice - ran;
4274
4275 if (delta < 0) {
4276 if (rq->curr == p)
8875125e 4277 resched_curr(rq);
8f4d37ec
PZ
4278 return;
4279 }
31656519 4280 hrtick_start(rq, delta);
8f4d37ec
PZ
4281 }
4282}
a4c2f00f
PZ
4283
4284/*
4285 * called from enqueue/dequeue and updates the hrtick when the
4286 * current task is from our class and nr_running is low enough
4287 * to matter.
4288 */
4289static void hrtick_update(struct rq *rq)
4290{
4291 struct task_struct *curr = rq->curr;
4292
b39e66ea 4293 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4294 return;
4295
4296 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4297 hrtick_start_fair(rq, curr);
4298}
55e12e5e 4299#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4300static inline void
4301hrtick_start_fair(struct rq *rq, struct task_struct *p)
4302{
4303}
a4c2f00f
PZ
4304
4305static inline void hrtick_update(struct rq *rq)
4306{
4307}
8f4d37ec
PZ
4308#endif
4309
bf0f6f24
IM
4310/*
4311 * The enqueue_task method is called before nr_running is
4312 * increased. Here we update the fair scheduling stats and
4313 * then put the task into the rbtree:
4314 */
ea87bb78 4315static void
371fd7e7 4316enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4317{
4318 struct cfs_rq *cfs_rq;
62fb1851 4319 struct sched_entity *se = &p->se;
bf0f6f24
IM
4320
4321 for_each_sched_entity(se) {
62fb1851 4322 if (se->on_rq)
bf0f6f24
IM
4323 break;
4324 cfs_rq = cfs_rq_of(se);
88ec22d3 4325 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4326
4327 /*
4328 * end evaluation on encountering a throttled cfs_rq
4329 *
4330 * note: in the case of encountering a throttled cfs_rq we will
4331 * post the final h_nr_running increment below.
4332 */
4333 if (cfs_rq_throttled(cfs_rq))
4334 break;
953bfcd1 4335 cfs_rq->h_nr_running++;
85dac906 4336
88ec22d3 4337 flags = ENQUEUE_WAKEUP;
bf0f6f24 4338 }
8f4d37ec 4339
2069dd75 4340 for_each_sched_entity(se) {
0f317143 4341 cfs_rq = cfs_rq_of(se);
953bfcd1 4342 cfs_rq->h_nr_running++;
2069dd75 4343
85dac906
PT
4344 if (cfs_rq_throttled(cfs_rq))
4345 break;
4346
9d89c257 4347 update_load_avg(se, 1);
17bc14b7 4348 update_cfs_shares(cfs_rq);
2069dd75
PZ
4349 }
4350
cd126afe 4351 if (!se)
72465447 4352 add_nr_running(rq, 1);
cd126afe 4353
a4c2f00f 4354 hrtick_update(rq);
bf0f6f24
IM
4355}
4356
2f36825b
VP
4357static void set_next_buddy(struct sched_entity *se);
4358
bf0f6f24
IM
4359/*
4360 * The dequeue_task method is called before nr_running is
4361 * decreased. We remove the task from the rbtree and
4362 * update the fair scheduling stats:
4363 */
371fd7e7 4364static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4365{
4366 struct cfs_rq *cfs_rq;
62fb1851 4367 struct sched_entity *se = &p->se;
2f36825b 4368 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4369
4370 for_each_sched_entity(se) {
4371 cfs_rq = cfs_rq_of(se);
371fd7e7 4372 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4373
4374 /*
4375 * end evaluation on encountering a throttled cfs_rq
4376 *
4377 * note: in the case of encountering a throttled cfs_rq we will
4378 * post the final h_nr_running decrement below.
4379 */
4380 if (cfs_rq_throttled(cfs_rq))
4381 break;
953bfcd1 4382 cfs_rq->h_nr_running--;
2069dd75 4383
bf0f6f24 4384 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4385 if (cfs_rq->load.weight) {
4386 /*
4387 * Bias pick_next to pick a task from this cfs_rq, as
4388 * p is sleeping when it is within its sched_slice.
4389 */
4390 if (task_sleep && parent_entity(se))
4391 set_next_buddy(parent_entity(se));
9598c82d
PT
4392
4393 /* avoid re-evaluating load for this entity */
4394 se = parent_entity(se);
bf0f6f24 4395 break;
2f36825b 4396 }
371fd7e7 4397 flags |= DEQUEUE_SLEEP;
bf0f6f24 4398 }
8f4d37ec 4399
2069dd75 4400 for_each_sched_entity(se) {
0f317143 4401 cfs_rq = cfs_rq_of(se);
953bfcd1 4402 cfs_rq->h_nr_running--;
2069dd75 4403
85dac906
PT
4404 if (cfs_rq_throttled(cfs_rq))
4405 break;
4406
9d89c257 4407 update_load_avg(se, 1);
17bc14b7 4408 update_cfs_shares(cfs_rq);
2069dd75
PZ
4409 }
4410
cd126afe 4411 if (!se)
72465447 4412 sub_nr_running(rq, 1);
cd126afe 4413
a4c2f00f 4414 hrtick_update(rq);
bf0f6f24
IM
4415}
4416
e7693a36 4417#ifdef CONFIG_SMP
3289bdb4
PZ
4418
4419/*
4420 * per rq 'load' arrray crap; XXX kill this.
4421 */
4422
4423/*
d937cdc5 4424 * The exact cpuload calculated at every tick would be:
3289bdb4 4425 *
d937cdc5
PZ
4426 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4427 *
4428 * If a cpu misses updates for n ticks (as it was idle) and update gets
4429 * called on the n+1-th tick when cpu may be busy, then we have:
4430 *
4431 * load_n = (1 - 1/2^i)^n * load_0
4432 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4433 *
4434 * decay_load_missed() below does efficient calculation of
3289bdb4 4435 *
d937cdc5
PZ
4436 * load' = (1 - 1/2^i)^n * load
4437 *
4438 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4439 * This allows us to precompute the above in said factors, thereby allowing the
4440 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4441 * fixed_power_int())
3289bdb4 4442 *
d937cdc5 4443 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4444 */
4445#define DEGRADE_SHIFT 7
d937cdc5
PZ
4446
4447static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4448static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4449 { 0, 0, 0, 0, 0, 0, 0, 0 },
4450 { 64, 32, 8, 0, 0, 0, 0, 0 },
4451 { 96, 72, 40, 12, 1, 0, 0, 0 },
4452 { 112, 98, 75, 43, 15, 1, 0, 0 },
4453 { 120, 112, 98, 76, 45, 16, 2, 0 }
4454};
3289bdb4
PZ
4455
4456/*
4457 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4458 * would be when CPU is idle and so we just decay the old load without
4459 * adding any new load.
4460 */
4461static unsigned long
4462decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4463{
4464 int j = 0;
4465
4466 if (!missed_updates)
4467 return load;
4468
4469 if (missed_updates >= degrade_zero_ticks[idx])
4470 return 0;
4471
4472 if (idx == 1)
4473 return load >> missed_updates;
4474
4475 while (missed_updates) {
4476 if (missed_updates % 2)
4477 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4478
4479 missed_updates >>= 1;
4480 j++;
4481 }
4482 return load;
4483}
4484
59543275
BP
4485/**
4486 * __update_cpu_load - update the rq->cpu_load[] statistics
4487 * @this_rq: The rq to update statistics for
4488 * @this_load: The current load
4489 * @pending_updates: The number of missed updates
4490 * @active: !0 for NOHZ_FULL
4491 *
3289bdb4 4492 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4493 * scheduler tick (TICK_NSEC).
4494 *
4495 * This function computes a decaying average:
4496 *
4497 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4498 *
4499 * Because of NOHZ it might not get called on every tick which gives need for
4500 * the @pending_updates argument.
4501 *
4502 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4503 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4504 * = A * (A * load[i]_n-2 + B) + B
4505 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4506 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4507 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4508 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4509 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4510 *
4511 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4512 * any change in load would have resulted in the tick being turned back on.
4513 *
4514 * For regular NOHZ, this reduces to:
4515 *
4516 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4517 *
4518 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4519 * term. See the @active paramter.
3289bdb4
PZ
4520 */
4521static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
59543275 4522 unsigned long pending_updates, int active)
3289bdb4 4523{
59543275 4524 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
3289bdb4
PZ
4525 int i, scale;
4526
4527 this_rq->nr_load_updates++;
4528
4529 /* Update our load: */
4530 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4531 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4532 unsigned long old_load, new_load;
4533
4534 /* scale is effectively 1 << i now, and >> i divides by scale */
4535
7400d3bb 4536 old_load = this_rq->cpu_load[i];
3289bdb4 4537 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4538 if (tickless_load) {
4539 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4540 /*
4541 * old_load can never be a negative value because a
4542 * decayed tickless_load cannot be greater than the
4543 * original tickless_load.
4544 */
4545 old_load += tickless_load;
4546 }
3289bdb4
PZ
4547 new_load = this_load;
4548 /*
4549 * Round up the averaging division if load is increasing. This
4550 * prevents us from getting stuck on 9 if the load is 10, for
4551 * example.
4552 */
4553 if (new_load > old_load)
4554 new_load += scale - 1;
4555
4556 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4557 }
4558
4559 sched_avg_update(this_rq);
4560}
4561
7ea241af
YD
4562/* Used instead of source_load when we know the type == 0 */
4563static unsigned long weighted_cpuload(const int cpu)
4564{
4565 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4566}
4567
3289bdb4 4568#ifdef CONFIG_NO_HZ_COMMON
be68a682
FW
4569static void __update_cpu_load_nohz(struct rq *this_rq,
4570 unsigned long curr_jiffies,
4571 unsigned long load,
4572 int active)
4573{
4574 unsigned long pending_updates;
4575
4576 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4577 if (pending_updates) {
4578 this_rq->last_load_update_tick = curr_jiffies;
4579 /*
4580 * In the regular NOHZ case, we were idle, this means load 0.
4581 * In the NOHZ_FULL case, we were non-idle, we should consider
4582 * its weighted load.
4583 */
4584 __update_cpu_load(this_rq, load, pending_updates, active);
4585 }
4586}
4587
3289bdb4
PZ
4588/*
4589 * There is no sane way to deal with nohz on smp when using jiffies because the
4590 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4591 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4592 *
4593 * Therefore we cannot use the delta approach from the regular tick since that
4594 * would seriously skew the load calculation. However we'll make do for those
4595 * updates happening while idle (nohz_idle_balance) or coming out of idle
4596 * (tick_nohz_idle_exit).
4597 *
4598 * This means we might still be one tick off for nohz periods.
4599 */
4600
4601/*
4602 * Called from nohz_idle_balance() to update the load ratings before doing the
4603 * idle balance.
4604 */
be68a682 4605static void update_cpu_load_idle(struct rq *this_rq)
3289bdb4 4606{
3289bdb4
PZ
4607 /*
4608 * bail if there's load or we're actually up-to-date.
4609 */
be68a682 4610 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4611 return;
4612
be68a682 4613 __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
3289bdb4
PZ
4614}
4615
4616/*
4617 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4618 */
525705d1 4619void update_cpu_load_nohz(int active)
3289bdb4
PZ
4620{
4621 struct rq *this_rq = this_rq();
316c1608 4622 unsigned long curr_jiffies = READ_ONCE(jiffies);
525705d1 4623 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
3289bdb4
PZ
4624
4625 if (curr_jiffies == this_rq->last_load_update_tick)
4626 return;
4627
4628 raw_spin_lock(&this_rq->lock);
be68a682 4629 __update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
3289bdb4
PZ
4630 raw_spin_unlock(&this_rq->lock);
4631}
4632#endif /* CONFIG_NO_HZ */
4633
4634/*
4635 * Called from scheduler_tick()
4636 */
4637void update_cpu_load_active(struct rq *this_rq)
4638{
7ea241af 4639 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4640 /*
be68a682 4641 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
3289bdb4
PZ
4642 */
4643 this_rq->last_load_update_tick = jiffies;
59543275 4644 __update_cpu_load(this_rq, load, 1, 1);
3289bdb4
PZ
4645}
4646
029632fb
PZ
4647/*
4648 * Return a low guess at the load of a migration-source cpu weighted
4649 * according to the scheduling class and "nice" value.
4650 *
4651 * We want to under-estimate the load of migration sources, to
4652 * balance conservatively.
4653 */
4654static unsigned long source_load(int cpu, int type)
4655{
4656 struct rq *rq = cpu_rq(cpu);
4657 unsigned long total = weighted_cpuload(cpu);
4658
4659 if (type == 0 || !sched_feat(LB_BIAS))
4660 return total;
4661
4662 return min(rq->cpu_load[type-1], total);
4663}
4664
4665/*
4666 * Return a high guess at the load of a migration-target cpu weighted
4667 * according to the scheduling class and "nice" value.
4668 */
4669static unsigned long target_load(int cpu, int type)
4670{
4671 struct rq *rq = cpu_rq(cpu);
4672 unsigned long total = weighted_cpuload(cpu);
4673
4674 if (type == 0 || !sched_feat(LB_BIAS))
4675 return total;
4676
4677 return max(rq->cpu_load[type-1], total);
4678}
4679
ced549fa 4680static unsigned long capacity_of(int cpu)
029632fb 4681{
ced549fa 4682 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4683}
4684
ca6d75e6
VG
4685static unsigned long capacity_orig_of(int cpu)
4686{
4687 return cpu_rq(cpu)->cpu_capacity_orig;
4688}
4689
029632fb
PZ
4690static unsigned long cpu_avg_load_per_task(int cpu)
4691{
4692 struct rq *rq = cpu_rq(cpu);
316c1608 4693 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4694 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4695
4696 if (nr_running)
b92486cb 4697 return load_avg / nr_running;
029632fb
PZ
4698
4699 return 0;
4700}
4701
62470419
MW
4702static void record_wakee(struct task_struct *p)
4703{
4704 /*
4705 * Rough decay (wiping) for cost saving, don't worry
4706 * about the boundary, really active task won't care
4707 * about the loss.
4708 */
2538d960 4709 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4710 current->wakee_flips >>= 1;
62470419
MW
4711 current->wakee_flip_decay_ts = jiffies;
4712 }
4713
4714 if (current->last_wakee != p) {
4715 current->last_wakee = p;
4716 current->wakee_flips++;
4717 }
4718}
098fb9db 4719
74f8e4b2 4720static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4721{
4722 struct sched_entity *se = &p->se;
4723 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4724 u64 min_vruntime;
4725
4726#ifndef CONFIG_64BIT
4727 u64 min_vruntime_copy;
88ec22d3 4728
3fe1698b
PZ
4729 do {
4730 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4731 smp_rmb();
4732 min_vruntime = cfs_rq->min_vruntime;
4733 } while (min_vruntime != min_vruntime_copy);
4734#else
4735 min_vruntime = cfs_rq->min_vruntime;
4736#endif
88ec22d3 4737
3fe1698b 4738 se->vruntime -= min_vruntime;
62470419 4739 record_wakee(p);
88ec22d3
PZ
4740}
4741
bb3469ac 4742#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4743/*
4744 * effective_load() calculates the load change as seen from the root_task_group
4745 *
4746 * Adding load to a group doesn't make a group heavier, but can cause movement
4747 * of group shares between cpus. Assuming the shares were perfectly aligned one
4748 * can calculate the shift in shares.
cf5f0acf
PZ
4749 *
4750 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4751 * on this @cpu and results in a total addition (subtraction) of @wg to the
4752 * total group weight.
4753 *
4754 * Given a runqueue weight distribution (rw_i) we can compute a shares
4755 * distribution (s_i) using:
4756 *
4757 * s_i = rw_i / \Sum rw_j (1)
4758 *
4759 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4760 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4761 * shares distribution (s_i):
4762 *
4763 * rw_i = { 2, 4, 1, 0 }
4764 * s_i = { 2/7, 4/7, 1/7, 0 }
4765 *
4766 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4767 * task used to run on and the CPU the waker is running on), we need to
4768 * compute the effect of waking a task on either CPU and, in case of a sync
4769 * wakeup, compute the effect of the current task going to sleep.
4770 *
4771 * So for a change of @wl to the local @cpu with an overall group weight change
4772 * of @wl we can compute the new shares distribution (s'_i) using:
4773 *
4774 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4775 *
4776 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4777 * differences in waking a task to CPU 0. The additional task changes the
4778 * weight and shares distributions like:
4779 *
4780 * rw'_i = { 3, 4, 1, 0 }
4781 * s'_i = { 3/8, 4/8, 1/8, 0 }
4782 *
4783 * We can then compute the difference in effective weight by using:
4784 *
4785 * dw_i = S * (s'_i - s_i) (3)
4786 *
4787 * Where 'S' is the group weight as seen by its parent.
4788 *
4789 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4790 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4791 * 4/7) times the weight of the group.
f5bfb7d9 4792 */
2069dd75 4793static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4794{
4be9daaa 4795 struct sched_entity *se = tg->se[cpu];
f1d239f7 4796
9722c2da 4797 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4798 return wl;
4799
4be9daaa 4800 for_each_sched_entity(se) {
cf5f0acf 4801 long w, W;
4be9daaa 4802
977dda7c 4803 tg = se->my_q->tg;
bb3469ac 4804
cf5f0acf
PZ
4805 /*
4806 * W = @wg + \Sum rw_j
4807 */
4808 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4809
cf5f0acf
PZ
4810 /*
4811 * w = rw_i + @wl
4812 */
7ea241af 4813 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4814
cf5f0acf
PZ
4815 /*
4816 * wl = S * s'_i; see (2)
4817 */
4818 if (W > 0 && w < W)
32a8df4e 4819 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4820 else
4821 wl = tg->shares;
940959e9 4822
cf5f0acf
PZ
4823 /*
4824 * Per the above, wl is the new se->load.weight value; since
4825 * those are clipped to [MIN_SHARES, ...) do so now. See
4826 * calc_cfs_shares().
4827 */
977dda7c
PT
4828 if (wl < MIN_SHARES)
4829 wl = MIN_SHARES;
cf5f0acf
PZ
4830
4831 /*
4832 * wl = dw_i = S * (s'_i - s_i); see (3)
4833 */
9d89c257 4834 wl -= se->avg.load_avg;
cf5f0acf
PZ
4835
4836 /*
4837 * Recursively apply this logic to all parent groups to compute
4838 * the final effective load change on the root group. Since
4839 * only the @tg group gets extra weight, all parent groups can
4840 * only redistribute existing shares. @wl is the shift in shares
4841 * resulting from this level per the above.
4842 */
4be9daaa 4843 wg = 0;
4be9daaa 4844 }
bb3469ac 4845
4be9daaa 4846 return wl;
bb3469ac
PZ
4847}
4848#else
4be9daaa 4849
58d081b5 4850static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4851{
83378269 4852 return wl;
bb3469ac 4853}
4be9daaa 4854
bb3469ac
PZ
4855#endif
4856
63b0e9ed
MG
4857/*
4858 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4859 * A waker of many should wake a different task than the one last awakened
4860 * at a frequency roughly N times higher than one of its wakees. In order
4861 * to determine whether we should let the load spread vs consolodating to
4862 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4863 * partner, and a factor of lls_size higher frequency in the other. With
4864 * both conditions met, we can be relatively sure that the relationship is
4865 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4866 * being client/server, worker/dispatcher, interrupt source or whatever is
4867 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4868 */
62470419
MW
4869static int wake_wide(struct task_struct *p)
4870{
63b0e9ed
MG
4871 unsigned int master = current->wakee_flips;
4872 unsigned int slave = p->wakee_flips;
7d9ffa89 4873 int factor = this_cpu_read(sd_llc_size);
62470419 4874
63b0e9ed
MG
4875 if (master < slave)
4876 swap(master, slave);
4877 if (slave < factor || master < slave * factor)
4878 return 0;
4879 return 1;
62470419
MW
4880}
4881
c88d5910 4882static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4883{
e37b6a7b 4884 s64 this_load, load;
bd61c98f 4885 s64 this_eff_load, prev_eff_load;
c88d5910 4886 int idx, this_cpu, prev_cpu;
c88d5910 4887 struct task_group *tg;
83378269 4888 unsigned long weight;
b3137bc8 4889 int balanced;
098fb9db 4890
c88d5910
PZ
4891 idx = sd->wake_idx;
4892 this_cpu = smp_processor_id();
4893 prev_cpu = task_cpu(p);
4894 load = source_load(prev_cpu, idx);
4895 this_load = target_load(this_cpu, idx);
098fb9db 4896
b3137bc8
MG
4897 /*
4898 * If sync wakeup then subtract the (maximum possible)
4899 * effect of the currently running task from the load
4900 * of the current CPU:
4901 */
83378269
PZ
4902 if (sync) {
4903 tg = task_group(current);
9d89c257 4904 weight = current->se.avg.load_avg;
83378269 4905
c88d5910 4906 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4907 load += effective_load(tg, prev_cpu, 0, -weight);
4908 }
b3137bc8 4909
83378269 4910 tg = task_group(p);
9d89c257 4911 weight = p->se.avg.load_avg;
b3137bc8 4912
71a29aa7
PZ
4913 /*
4914 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4915 * due to the sync cause above having dropped this_load to 0, we'll
4916 * always have an imbalance, but there's really nothing you can do
4917 * about that, so that's good too.
71a29aa7
PZ
4918 *
4919 * Otherwise check if either cpus are near enough in load to allow this
4920 * task to be woken on this_cpu.
4921 */
bd61c98f
VG
4922 this_eff_load = 100;
4923 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4924
bd61c98f
VG
4925 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4926 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4927
bd61c98f 4928 if (this_load > 0) {
e51fd5e2
PZ
4929 this_eff_load *= this_load +
4930 effective_load(tg, this_cpu, weight, weight);
4931
e51fd5e2 4932 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4933 }
e51fd5e2 4934
bd61c98f 4935 balanced = this_eff_load <= prev_eff_load;
098fb9db 4936
41acab88 4937 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4938
05bfb65f
VG
4939 if (!balanced)
4940 return 0;
098fb9db 4941
05bfb65f
VG
4942 schedstat_inc(sd, ttwu_move_affine);
4943 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4944
4945 return 1;
098fb9db
IM
4946}
4947
aaee1203
PZ
4948/*
4949 * find_idlest_group finds and returns the least busy CPU group within the
4950 * domain.
4951 */
4952static struct sched_group *
78e7ed53 4953find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4954 int this_cpu, int sd_flag)
e7693a36 4955{
b3bd3de6 4956 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4957 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4958 int load_idx = sd->forkexec_idx;
aaee1203 4959 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4960
c44f2a02
VG
4961 if (sd_flag & SD_BALANCE_WAKE)
4962 load_idx = sd->wake_idx;
4963
aaee1203
PZ
4964 do {
4965 unsigned long load, avg_load;
4966 int local_group;
4967 int i;
e7693a36 4968
aaee1203
PZ
4969 /* Skip over this group if it has no CPUs allowed */
4970 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4971 tsk_cpus_allowed(p)))
aaee1203
PZ
4972 continue;
4973
4974 local_group = cpumask_test_cpu(this_cpu,
4975 sched_group_cpus(group));
4976
4977 /* Tally up the load of all CPUs in the group */
4978 avg_load = 0;
4979
4980 for_each_cpu(i, sched_group_cpus(group)) {
4981 /* Bias balancing toward cpus of our domain */
4982 if (local_group)
4983 load = source_load(i, load_idx);
4984 else
4985 load = target_load(i, load_idx);
4986
4987 avg_load += load;
4988 }
4989
63b2ca30 4990 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4991 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4992
4993 if (local_group) {
4994 this_load = avg_load;
aaee1203
PZ
4995 } else if (avg_load < min_load) {
4996 min_load = avg_load;
4997 idlest = group;
4998 }
4999 } while (group = group->next, group != sd->groups);
5000
5001 if (!idlest || 100*this_load < imbalance*min_load)
5002 return NULL;
5003 return idlest;
5004}
5005
5006/*
5007 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5008 */
5009static int
5010find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5011{
5012 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5013 unsigned int min_exit_latency = UINT_MAX;
5014 u64 latest_idle_timestamp = 0;
5015 int least_loaded_cpu = this_cpu;
5016 int shallowest_idle_cpu = -1;
aaee1203
PZ
5017 int i;
5018
5019 /* Traverse only the allowed CPUs */
fa17b507 5020 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5021 if (idle_cpu(i)) {
5022 struct rq *rq = cpu_rq(i);
5023 struct cpuidle_state *idle = idle_get_state(rq);
5024 if (idle && idle->exit_latency < min_exit_latency) {
5025 /*
5026 * We give priority to a CPU whose idle state
5027 * has the smallest exit latency irrespective
5028 * of any idle timestamp.
5029 */
5030 min_exit_latency = idle->exit_latency;
5031 latest_idle_timestamp = rq->idle_stamp;
5032 shallowest_idle_cpu = i;
5033 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5034 rq->idle_stamp > latest_idle_timestamp) {
5035 /*
5036 * If equal or no active idle state, then
5037 * the most recently idled CPU might have
5038 * a warmer cache.
5039 */
5040 latest_idle_timestamp = rq->idle_stamp;
5041 shallowest_idle_cpu = i;
5042 }
9f96742a 5043 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5044 load = weighted_cpuload(i);
5045 if (load < min_load || (load == min_load && i == this_cpu)) {
5046 min_load = load;
5047 least_loaded_cpu = i;
5048 }
e7693a36
GH
5049 }
5050 }
5051
83a0a96a 5052 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5053}
e7693a36 5054
a50bde51
PZ
5055/*
5056 * Try and locate an idle CPU in the sched_domain.
5057 */
99bd5e2f 5058static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5059{
99bd5e2f 5060 struct sched_domain *sd;
37407ea7 5061 struct sched_group *sg;
e0a79f52 5062 int i = task_cpu(p);
a50bde51 5063
e0a79f52
MG
5064 if (idle_cpu(target))
5065 return target;
99bd5e2f
SS
5066
5067 /*
e0a79f52 5068 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5069 */
e0a79f52
MG
5070 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5071 return i;
a50bde51
PZ
5072
5073 /*
37407ea7 5074 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 5075 */
518cd623 5076 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5077 for_each_lower_domain(sd) {
37407ea7
LT
5078 sg = sd->groups;
5079 do {
5080 if (!cpumask_intersects(sched_group_cpus(sg),
5081 tsk_cpus_allowed(p)))
5082 goto next;
5083
5084 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5085 if (i == target || !idle_cpu(i))
37407ea7
LT
5086 goto next;
5087 }
970e1789 5088
37407ea7
LT
5089 target = cpumask_first_and(sched_group_cpus(sg),
5090 tsk_cpus_allowed(p));
5091 goto done;
5092next:
5093 sg = sg->next;
5094 } while (sg != sd->groups);
5095 }
5096done:
a50bde51
PZ
5097 return target;
5098}
231678b7 5099
8bb5b00c 5100/*
9e91d61d 5101 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5102 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5103 * compare the utilization with the capacity of the CPU that is available for
5104 * CFS task (ie cpu_capacity).
231678b7
DE
5105 *
5106 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5107 * recent utilization of currently non-runnable tasks on a CPU. It represents
5108 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5109 * capacity_orig is the cpu_capacity available at the highest frequency
5110 * (arch_scale_freq_capacity()).
5111 * The utilization of a CPU converges towards a sum equal to or less than the
5112 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5113 * the running time on this CPU scaled by capacity_curr.
5114 *
5115 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5116 * higher than capacity_orig because of unfortunate rounding in
5117 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5118 * the average stabilizes with the new running time. We need to check that the
5119 * utilization stays within the range of [0..capacity_orig] and cap it if
5120 * necessary. Without utilization capping, a group could be seen as overloaded
5121 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5122 * available capacity. We allow utilization to overshoot capacity_curr (but not
5123 * capacity_orig) as it useful for predicting the capacity required after task
5124 * migrations (scheduler-driven DVFS).
8bb5b00c 5125 */
9e91d61d 5126static int cpu_util(int cpu)
8bb5b00c 5127{
9e91d61d 5128 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5129 unsigned long capacity = capacity_orig_of(cpu);
5130
231678b7 5131 return (util >= capacity) ? capacity : util;
8bb5b00c 5132}
a50bde51 5133
aaee1203 5134/*
de91b9cb
MR
5135 * select_task_rq_fair: Select target runqueue for the waking task in domains
5136 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5137 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5138 *
de91b9cb
MR
5139 * Balances load by selecting the idlest cpu in the idlest group, or under
5140 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5141 *
de91b9cb 5142 * Returns the target cpu number.
aaee1203
PZ
5143 *
5144 * preempt must be disabled.
5145 */
0017d735 5146static int
ac66f547 5147select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5148{
29cd8bae 5149 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5150 int cpu = smp_processor_id();
63b0e9ed 5151 int new_cpu = prev_cpu;
99bd5e2f 5152 int want_affine = 0;
5158f4e4 5153 int sync = wake_flags & WF_SYNC;
c88d5910 5154
a8edd075 5155 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5156 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5157
dce840a0 5158 rcu_read_lock();
aaee1203 5159 for_each_domain(cpu, tmp) {
e4f42888 5160 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5161 break;
e4f42888 5162
fe3bcfe1 5163 /*
99bd5e2f
SS
5164 * If both cpu and prev_cpu are part of this domain,
5165 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5166 */
99bd5e2f
SS
5167 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5168 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5169 affine_sd = tmp;
29cd8bae 5170 break;
f03542a7 5171 }
29cd8bae 5172
f03542a7 5173 if (tmp->flags & sd_flag)
29cd8bae 5174 sd = tmp;
63b0e9ed
MG
5175 else if (!want_affine)
5176 break;
29cd8bae
PZ
5177 }
5178
63b0e9ed
MG
5179 if (affine_sd) {
5180 sd = NULL; /* Prefer wake_affine over balance flags */
5181 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5182 new_cpu = cpu;
8b911acd 5183 }
e7693a36 5184
63b0e9ed
MG
5185 if (!sd) {
5186 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5187 new_cpu = select_idle_sibling(p, new_cpu);
5188
5189 } else while (sd) {
aaee1203 5190 struct sched_group *group;
c88d5910 5191 int weight;
098fb9db 5192
0763a660 5193 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5194 sd = sd->child;
5195 continue;
5196 }
098fb9db 5197
c44f2a02 5198 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5199 if (!group) {
5200 sd = sd->child;
5201 continue;
5202 }
4ae7d5ce 5203
d7c33c49 5204 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5205 if (new_cpu == -1 || new_cpu == cpu) {
5206 /* Now try balancing at a lower domain level of cpu */
5207 sd = sd->child;
5208 continue;
e7693a36 5209 }
aaee1203
PZ
5210
5211 /* Now try balancing at a lower domain level of new_cpu */
5212 cpu = new_cpu;
669c55e9 5213 weight = sd->span_weight;
aaee1203
PZ
5214 sd = NULL;
5215 for_each_domain(cpu, tmp) {
669c55e9 5216 if (weight <= tmp->span_weight)
aaee1203 5217 break;
0763a660 5218 if (tmp->flags & sd_flag)
aaee1203
PZ
5219 sd = tmp;
5220 }
5221 /* while loop will break here if sd == NULL */
e7693a36 5222 }
dce840a0 5223 rcu_read_unlock();
e7693a36 5224
c88d5910 5225 return new_cpu;
e7693a36 5226}
0a74bef8
PT
5227
5228/*
5229 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5230 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5231 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5232 */
5a4fd036 5233static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5234{
aff3e498 5235 /*
9d89c257
YD
5236 * We are supposed to update the task to "current" time, then its up to date
5237 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5238 * what current time is, so simply throw away the out-of-date time. This
5239 * will result in the wakee task is less decayed, but giving the wakee more
5240 * load sounds not bad.
aff3e498 5241 */
9d89c257
YD
5242 remove_entity_load_avg(&p->se);
5243
5244 /* Tell new CPU we are migrated */
5245 p->se.avg.last_update_time = 0;
3944a927
BS
5246
5247 /* We have migrated, no longer consider this task hot */
9d89c257 5248 p->se.exec_start = 0;
0a74bef8 5249}
12695578
YD
5250
5251static void task_dead_fair(struct task_struct *p)
5252{
5253 remove_entity_load_avg(&p->se);
5254}
e7693a36
GH
5255#endif /* CONFIG_SMP */
5256
e52fb7c0
PZ
5257static unsigned long
5258wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5259{
5260 unsigned long gran = sysctl_sched_wakeup_granularity;
5261
5262 /*
e52fb7c0
PZ
5263 * Since its curr running now, convert the gran from real-time
5264 * to virtual-time in his units.
13814d42
MG
5265 *
5266 * By using 'se' instead of 'curr' we penalize light tasks, so
5267 * they get preempted easier. That is, if 'se' < 'curr' then
5268 * the resulting gran will be larger, therefore penalizing the
5269 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5270 * be smaller, again penalizing the lighter task.
5271 *
5272 * This is especially important for buddies when the leftmost
5273 * task is higher priority than the buddy.
0bbd3336 5274 */
f4ad9bd2 5275 return calc_delta_fair(gran, se);
0bbd3336
PZ
5276}
5277
464b7527
PZ
5278/*
5279 * Should 'se' preempt 'curr'.
5280 *
5281 * |s1
5282 * |s2
5283 * |s3
5284 * g
5285 * |<--->|c
5286 *
5287 * w(c, s1) = -1
5288 * w(c, s2) = 0
5289 * w(c, s3) = 1
5290 *
5291 */
5292static int
5293wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5294{
5295 s64 gran, vdiff = curr->vruntime - se->vruntime;
5296
5297 if (vdiff <= 0)
5298 return -1;
5299
e52fb7c0 5300 gran = wakeup_gran(curr, se);
464b7527
PZ
5301 if (vdiff > gran)
5302 return 1;
5303
5304 return 0;
5305}
5306
02479099
PZ
5307static void set_last_buddy(struct sched_entity *se)
5308{
69c80f3e
VP
5309 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5310 return;
5311
5312 for_each_sched_entity(se)
5313 cfs_rq_of(se)->last = se;
02479099
PZ
5314}
5315
5316static void set_next_buddy(struct sched_entity *se)
5317{
69c80f3e
VP
5318 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5319 return;
5320
5321 for_each_sched_entity(se)
5322 cfs_rq_of(se)->next = se;
02479099
PZ
5323}
5324
ac53db59
RR
5325static void set_skip_buddy(struct sched_entity *se)
5326{
69c80f3e
VP
5327 for_each_sched_entity(se)
5328 cfs_rq_of(se)->skip = se;
ac53db59
RR
5329}
5330
bf0f6f24
IM
5331/*
5332 * Preempt the current task with a newly woken task if needed:
5333 */
5a9b86f6 5334static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5335{
5336 struct task_struct *curr = rq->curr;
8651a86c 5337 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5338 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5339 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5340 int next_buddy_marked = 0;
bf0f6f24 5341
4ae7d5ce
IM
5342 if (unlikely(se == pse))
5343 return;
5344
5238cdd3 5345 /*
163122b7 5346 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5347 * unconditionally check_prempt_curr() after an enqueue (which may have
5348 * lead to a throttle). This both saves work and prevents false
5349 * next-buddy nomination below.
5350 */
5351 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5352 return;
5353
2f36825b 5354 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5355 set_next_buddy(pse);
2f36825b
VP
5356 next_buddy_marked = 1;
5357 }
57fdc26d 5358
aec0a514
BR
5359 /*
5360 * We can come here with TIF_NEED_RESCHED already set from new task
5361 * wake up path.
5238cdd3
PT
5362 *
5363 * Note: this also catches the edge-case of curr being in a throttled
5364 * group (e.g. via set_curr_task), since update_curr() (in the
5365 * enqueue of curr) will have resulted in resched being set. This
5366 * prevents us from potentially nominating it as a false LAST_BUDDY
5367 * below.
aec0a514
BR
5368 */
5369 if (test_tsk_need_resched(curr))
5370 return;
5371
a2f5c9ab
DH
5372 /* Idle tasks are by definition preempted by non-idle tasks. */
5373 if (unlikely(curr->policy == SCHED_IDLE) &&
5374 likely(p->policy != SCHED_IDLE))
5375 goto preempt;
5376
91c234b4 5377 /*
a2f5c9ab
DH
5378 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5379 * is driven by the tick):
91c234b4 5380 */
8ed92e51 5381 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5382 return;
bf0f6f24 5383
464b7527 5384 find_matching_se(&se, &pse);
9bbd7374 5385 update_curr(cfs_rq_of(se));
002f128b 5386 BUG_ON(!pse);
2f36825b
VP
5387 if (wakeup_preempt_entity(se, pse) == 1) {
5388 /*
5389 * Bias pick_next to pick the sched entity that is
5390 * triggering this preemption.
5391 */
5392 if (!next_buddy_marked)
5393 set_next_buddy(pse);
3a7e73a2 5394 goto preempt;
2f36825b 5395 }
464b7527 5396
3a7e73a2 5397 return;
a65ac745 5398
3a7e73a2 5399preempt:
8875125e 5400 resched_curr(rq);
3a7e73a2
PZ
5401 /*
5402 * Only set the backward buddy when the current task is still
5403 * on the rq. This can happen when a wakeup gets interleaved
5404 * with schedule on the ->pre_schedule() or idle_balance()
5405 * point, either of which can * drop the rq lock.
5406 *
5407 * Also, during early boot the idle thread is in the fair class,
5408 * for obvious reasons its a bad idea to schedule back to it.
5409 */
5410 if (unlikely(!se->on_rq || curr == rq->idle))
5411 return;
5412
5413 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5414 set_last_buddy(se);
bf0f6f24
IM
5415}
5416
606dba2e
PZ
5417static struct task_struct *
5418pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5419{
5420 struct cfs_rq *cfs_rq = &rq->cfs;
5421 struct sched_entity *se;
678d5718 5422 struct task_struct *p;
37e117c0 5423 int new_tasks;
678d5718 5424
6e83125c 5425again:
678d5718
PZ
5426#ifdef CONFIG_FAIR_GROUP_SCHED
5427 if (!cfs_rq->nr_running)
38033c37 5428 goto idle;
678d5718 5429
3f1d2a31 5430 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5431 goto simple;
5432
5433 /*
5434 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5435 * likely that a next task is from the same cgroup as the current.
5436 *
5437 * Therefore attempt to avoid putting and setting the entire cgroup
5438 * hierarchy, only change the part that actually changes.
5439 */
5440
5441 do {
5442 struct sched_entity *curr = cfs_rq->curr;
5443
5444 /*
5445 * Since we got here without doing put_prev_entity() we also
5446 * have to consider cfs_rq->curr. If it is still a runnable
5447 * entity, update_curr() will update its vruntime, otherwise
5448 * forget we've ever seen it.
5449 */
54d27365
BS
5450 if (curr) {
5451 if (curr->on_rq)
5452 update_curr(cfs_rq);
5453 else
5454 curr = NULL;
678d5718 5455
54d27365
BS
5456 /*
5457 * This call to check_cfs_rq_runtime() will do the
5458 * throttle and dequeue its entity in the parent(s).
5459 * Therefore the 'simple' nr_running test will indeed
5460 * be correct.
5461 */
5462 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5463 goto simple;
5464 }
678d5718
PZ
5465
5466 se = pick_next_entity(cfs_rq, curr);
5467 cfs_rq = group_cfs_rq(se);
5468 } while (cfs_rq);
5469
5470 p = task_of(se);
5471
5472 /*
5473 * Since we haven't yet done put_prev_entity and if the selected task
5474 * is a different task than we started out with, try and touch the
5475 * least amount of cfs_rqs.
5476 */
5477 if (prev != p) {
5478 struct sched_entity *pse = &prev->se;
5479
5480 while (!(cfs_rq = is_same_group(se, pse))) {
5481 int se_depth = se->depth;
5482 int pse_depth = pse->depth;
5483
5484 if (se_depth <= pse_depth) {
5485 put_prev_entity(cfs_rq_of(pse), pse);
5486 pse = parent_entity(pse);
5487 }
5488 if (se_depth >= pse_depth) {
5489 set_next_entity(cfs_rq_of(se), se);
5490 se = parent_entity(se);
5491 }
5492 }
5493
5494 put_prev_entity(cfs_rq, pse);
5495 set_next_entity(cfs_rq, se);
5496 }
5497
5498 if (hrtick_enabled(rq))
5499 hrtick_start_fair(rq, p);
5500
5501 return p;
5502simple:
5503 cfs_rq = &rq->cfs;
5504#endif
bf0f6f24 5505
36ace27e 5506 if (!cfs_rq->nr_running)
38033c37 5507 goto idle;
bf0f6f24 5508
3f1d2a31 5509 put_prev_task(rq, prev);
606dba2e 5510
bf0f6f24 5511 do {
678d5718 5512 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5513 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5514 cfs_rq = group_cfs_rq(se);
5515 } while (cfs_rq);
5516
8f4d37ec 5517 p = task_of(se);
678d5718 5518
b39e66ea
MG
5519 if (hrtick_enabled(rq))
5520 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5521
5522 return p;
38033c37
PZ
5523
5524idle:
cbce1a68
PZ
5525 /*
5526 * This is OK, because current is on_cpu, which avoids it being picked
5527 * for load-balance and preemption/IRQs are still disabled avoiding
5528 * further scheduler activity on it and we're being very careful to
5529 * re-start the picking loop.
5530 */
5531 lockdep_unpin_lock(&rq->lock);
e4aa358b 5532 new_tasks = idle_balance(rq);
cbce1a68 5533 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5534 /*
5535 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5536 * possible for any higher priority task to appear. In that case we
5537 * must re-start the pick_next_entity() loop.
5538 */
e4aa358b 5539 if (new_tasks < 0)
37e117c0
PZ
5540 return RETRY_TASK;
5541
e4aa358b 5542 if (new_tasks > 0)
38033c37 5543 goto again;
38033c37
PZ
5544
5545 return NULL;
bf0f6f24
IM
5546}
5547
5548/*
5549 * Account for a descheduled task:
5550 */
31ee529c 5551static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5552{
5553 struct sched_entity *se = &prev->se;
5554 struct cfs_rq *cfs_rq;
5555
5556 for_each_sched_entity(se) {
5557 cfs_rq = cfs_rq_of(se);
ab6cde26 5558 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5559 }
5560}
5561
ac53db59
RR
5562/*
5563 * sched_yield() is very simple
5564 *
5565 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5566 */
5567static void yield_task_fair(struct rq *rq)
5568{
5569 struct task_struct *curr = rq->curr;
5570 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5571 struct sched_entity *se = &curr->se;
5572
5573 /*
5574 * Are we the only task in the tree?
5575 */
5576 if (unlikely(rq->nr_running == 1))
5577 return;
5578
5579 clear_buddies(cfs_rq, se);
5580
5581 if (curr->policy != SCHED_BATCH) {
5582 update_rq_clock(rq);
5583 /*
5584 * Update run-time statistics of the 'current'.
5585 */
5586 update_curr(cfs_rq);
916671c0
MG
5587 /*
5588 * Tell update_rq_clock() that we've just updated,
5589 * so we don't do microscopic update in schedule()
5590 * and double the fastpath cost.
5591 */
9edfbfed 5592 rq_clock_skip_update(rq, true);
ac53db59
RR
5593 }
5594
5595 set_skip_buddy(se);
5596}
5597
d95f4122
MG
5598static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5599{
5600 struct sched_entity *se = &p->se;
5601
5238cdd3
PT
5602 /* throttled hierarchies are not runnable */
5603 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5604 return false;
5605
5606 /* Tell the scheduler that we'd really like pse to run next. */
5607 set_next_buddy(se);
5608
d95f4122
MG
5609 yield_task_fair(rq);
5610
5611 return true;
5612}
5613
681f3e68 5614#ifdef CONFIG_SMP
bf0f6f24 5615/**************************************************
e9c84cb8
PZ
5616 * Fair scheduling class load-balancing methods.
5617 *
5618 * BASICS
5619 *
5620 * The purpose of load-balancing is to achieve the same basic fairness the
5621 * per-cpu scheduler provides, namely provide a proportional amount of compute
5622 * time to each task. This is expressed in the following equation:
5623 *
5624 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5625 *
5626 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5627 * W_i,0 is defined as:
5628 *
5629 * W_i,0 = \Sum_j w_i,j (2)
5630 *
5631 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5632 * is derived from the nice value as per prio_to_weight[].
5633 *
5634 * The weight average is an exponential decay average of the instantaneous
5635 * weight:
5636 *
5637 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5638 *
ced549fa 5639 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5640 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5641 * can also include other factors [XXX].
5642 *
5643 * To achieve this balance we define a measure of imbalance which follows
5644 * directly from (1):
5645 *
ced549fa 5646 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5647 *
5648 * We them move tasks around to minimize the imbalance. In the continuous
5649 * function space it is obvious this converges, in the discrete case we get
5650 * a few fun cases generally called infeasible weight scenarios.
5651 *
5652 * [XXX expand on:
5653 * - infeasible weights;
5654 * - local vs global optima in the discrete case. ]
5655 *
5656 *
5657 * SCHED DOMAINS
5658 *
5659 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5660 * for all i,j solution, we create a tree of cpus that follows the hardware
5661 * topology where each level pairs two lower groups (or better). This results
5662 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5663 * tree to only the first of the previous level and we decrease the frequency
5664 * of load-balance at each level inv. proportional to the number of cpus in
5665 * the groups.
5666 *
5667 * This yields:
5668 *
5669 * log_2 n 1 n
5670 * \Sum { --- * --- * 2^i } = O(n) (5)
5671 * i = 0 2^i 2^i
5672 * `- size of each group
5673 * | | `- number of cpus doing load-balance
5674 * | `- freq
5675 * `- sum over all levels
5676 *
5677 * Coupled with a limit on how many tasks we can migrate every balance pass,
5678 * this makes (5) the runtime complexity of the balancer.
5679 *
5680 * An important property here is that each CPU is still (indirectly) connected
5681 * to every other cpu in at most O(log n) steps:
5682 *
5683 * The adjacency matrix of the resulting graph is given by:
5684 *
5685 * log_2 n
5686 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5687 * k = 0
5688 *
5689 * And you'll find that:
5690 *
5691 * A^(log_2 n)_i,j != 0 for all i,j (7)
5692 *
5693 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5694 * The task movement gives a factor of O(m), giving a convergence complexity
5695 * of:
5696 *
5697 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5698 *
5699 *
5700 * WORK CONSERVING
5701 *
5702 * In order to avoid CPUs going idle while there's still work to do, new idle
5703 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5704 * tree itself instead of relying on other CPUs to bring it work.
5705 *
5706 * This adds some complexity to both (5) and (8) but it reduces the total idle
5707 * time.
5708 *
5709 * [XXX more?]
5710 *
5711 *
5712 * CGROUPS
5713 *
5714 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5715 *
5716 * s_k,i
5717 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5718 * S_k
5719 *
5720 * Where
5721 *
5722 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5723 *
5724 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5725 *
5726 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5727 * property.
5728 *
5729 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5730 * rewrite all of this once again.]
5731 */
bf0f6f24 5732
ed387b78
HS
5733static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5734
0ec8aa00
PZ
5735enum fbq_type { regular, remote, all };
5736
ddcdf6e7 5737#define LBF_ALL_PINNED 0x01
367456c7 5738#define LBF_NEED_BREAK 0x02
6263322c
PZ
5739#define LBF_DST_PINNED 0x04
5740#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5741
5742struct lb_env {
5743 struct sched_domain *sd;
5744
ddcdf6e7 5745 struct rq *src_rq;
85c1e7da 5746 int src_cpu;
ddcdf6e7
PZ
5747
5748 int dst_cpu;
5749 struct rq *dst_rq;
5750
88b8dac0
SV
5751 struct cpumask *dst_grpmask;
5752 int new_dst_cpu;
ddcdf6e7 5753 enum cpu_idle_type idle;
bd939f45 5754 long imbalance;
b9403130
MW
5755 /* The set of CPUs under consideration for load-balancing */
5756 struct cpumask *cpus;
5757
ddcdf6e7 5758 unsigned int flags;
367456c7
PZ
5759
5760 unsigned int loop;
5761 unsigned int loop_break;
5762 unsigned int loop_max;
0ec8aa00
PZ
5763
5764 enum fbq_type fbq_type;
163122b7 5765 struct list_head tasks;
ddcdf6e7
PZ
5766};
5767
029632fb
PZ
5768/*
5769 * Is this task likely cache-hot:
5770 */
5d5e2b1b 5771static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5772{
5773 s64 delta;
5774
e5673f28
KT
5775 lockdep_assert_held(&env->src_rq->lock);
5776
029632fb
PZ
5777 if (p->sched_class != &fair_sched_class)
5778 return 0;
5779
5780 if (unlikely(p->policy == SCHED_IDLE))
5781 return 0;
5782
5783 /*
5784 * Buddy candidates are cache hot:
5785 */
5d5e2b1b 5786 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5787 (&p->se == cfs_rq_of(&p->se)->next ||
5788 &p->se == cfs_rq_of(&p->se)->last))
5789 return 1;
5790
5791 if (sysctl_sched_migration_cost == -1)
5792 return 1;
5793 if (sysctl_sched_migration_cost == 0)
5794 return 0;
5795
5d5e2b1b 5796 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5797
5798 return delta < (s64)sysctl_sched_migration_cost;
5799}
5800
3a7053b3 5801#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5802/*
2a1ed24c
SD
5803 * Returns 1, if task migration degrades locality
5804 * Returns 0, if task migration improves locality i.e migration preferred.
5805 * Returns -1, if task migration is not affected by locality.
c1ceac62 5806 */
2a1ed24c 5807static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5808{
b1ad065e 5809 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5810 unsigned long src_faults, dst_faults;
3a7053b3
MG
5811 int src_nid, dst_nid;
5812
2a595721 5813 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5814 return -1;
5815
c3b9bc5b 5816 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5817 return -1;
7a0f3083
MG
5818
5819 src_nid = cpu_to_node(env->src_cpu);
5820 dst_nid = cpu_to_node(env->dst_cpu);
5821
83e1d2cd 5822 if (src_nid == dst_nid)
2a1ed24c 5823 return -1;
7a0f3083 5824
2a1ed24c
SD
5825 /* Migrating away from the preferred node is always bad. */
5826 if (src_nid == p->numa_preferred_nid) {
5827 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5828 return 1;
5829 else
5830 return -1;
5831 }
b1ad065e 5832
c1ceac62
RR
5833 /* Encourage migration to the preferred node. */
5834 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5835 return 0;
b1ad065e 5836
c1ceac62
RR
5837 if (numa_group) {
5838 src_faults = group_faults(p, src_nid);
5839 dst_faults = group_faults(p, dst_nid);
5840 } else {
5841 src_faults = task_faults(p, src_nid);
5842 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5843 }
5844
c1ceac62 5845 return dst_faults < src_faults;
7a0f3083
MG
5846}
5847
3a7053b3 5848#else
2a1ed24c 5849static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5850 struct lb_env *env)
5851{
2a1ed24c 5852 return -1;
7a0f3083 5853}
3a7053b3
MG
5854#endif
5855
1e3c88bd
PZ
5856/*
5857 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5858 */
5859static
8e45cb54 5860int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5861{
2a1ed24c 5862 int tsk_cache_hot;
e5673f28
KT
5863
5864 lockdep_assert_held(&env->src_rq->lock);
5865
1e3c88bd
PZ
5866 /*
5867 * We do not migrate tasks that are:
d3198084 5868 * 1) throttled_lb_pair, or
1e3c88bd 5869 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5870 * 3) running (obviously), or
5871 * 4) are cache-hot on their current CPU.
1e3c88bd 5872 */
d3198084
JK
5873 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5874 return 0;
5875
ddcdf6e7 5876 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5877 int cpu;
88b8dac0 5878
41acab88 5879 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5880
6263322c
PZ
5881 env->flags |= LBF_SOME_PINNED;
5882
88b8dac0
SV
5883 /*
5884 * Remember if this task can be migrated to any other cpu in
5885 * our sched_group. We may want to revisit it if we couldn't
5886 * meet load balance goals by pulling other tasks on src_cpu.
5887 *
5888 * Also avoid computing new_dst_cpu if we have already computed
5889 * one in current iteration.
5890 */
6263322c 5891 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5892 return 0;
5893
e02e60c1
JK
5894 /* Prevent to re-select dst_cpu via env's cpus */
5895 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5896 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5897 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5898 env->new_dst_cpu = cpu;
5899 break;
5900 }
88b8dac0 5901 }
e02e60c1 5902
1e3c88bd
PZ
5903 return 0;
5904 }
88b8dac0
SV
5905
5906 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5907 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5908
ddcdf6e7 5909 if (task_running(env->src_rq, p)) {
41acab88 5910 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5911 return 0;
5912 }
5913
5914 /*
5915 * Aggressive migration if:
3a7053b3
MG
5916 * 1) destination numa is preferred
5917 * 2) task is cache cold, or
5918 * 3) too many balance attempts have failed.
1e3c88bd 5919 */
2a1ed24c
SD
5920 tsk_cache_hot = migrate_degrades_locality(p, env);
5921 if (tsk_cache_hot == -1)
5922 tsk_cache_hot = task_hot(p, env);
3a7053b3 5923
2a1ed24c 5924 if (tsk_cache_hot <= 0 ||
7a96c231 5925 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5926 if (tsk_cache_hot == 1) {
3a7053b3
MG
5927 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5928 schedstat_inc(p, se.statistics.nr_forced_migrations);
5929 }
1e3c88bd
PZ
5930 return 1;
5931 }
5932
4e2dcb73
ZH
5933 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5934 return 0;
1e3c88bd
PZ
5935}
5936
897c395f 5937/*
163122b7
KT
5938 * detach_task() -- detach the task for the migration specified in env
5939 */
5940static void detach_task(struct task_struct *p, struct lb_env *env)
5941{
5942 lockdep_assert_held(&env->src_rq->lock);
5943
163122b7 5944 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 5945 deactivate_task(env->src_rq, p, 0);
163122b7
KT
5946 set_task_cpu(p, env->dst_cpu);
5947}
5948
897c395f 5949/*
e5673f28 5950 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5951 * part of active balancing operations within "domain".
897c395f 5952 *
e5673f28 5953 * Returns a task if successful and NULL otherwise.
897c395f 5954 */
e5673f28 5955static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5956{
5957 struct task_struct *p, *n;
897c395f 5958
e5673f28
KT
5959 lockdep_assert_held(&env->src_rq->lock);
5960
367456c7 5961 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5962 if (!can_migrate_task(p, env))
5963 continue;
897c395f 5964
163122b7 5965 detach_task(p, env);
e5673f28 5966
367456c7 5967 /*
e5673f28 5968 * Right now, this is only the second place where
163122b7 5969 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5970 * so we can safely collect stats here rather than
163122b7 5971 * inside detach_tasks().
367456c7
PZ
5972 */
5973 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5974 return p;
897c395f 5975 }
e5673f28 5976 return NULL;
897c395f
PZ
5977}
5978
eb95308e
PZ
5979static const unsigned int sched_nr_migrate_break = 32;
5980
5d6523eb 5981/*
163122b7
KT
5982 * detach_tasks() -- tries to detach up to imbalance weighted load from
5983 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5984 *
163122b7 5985 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5986 */
163122b7 5987static int detach_tasks(struct lb_env *env)
1e3c88bd 5988{
5d6523eb
PZ
5989 struct list_head *tasks = &env->src_rq->cfs_tasks;
5990 struct task_struct *p;
367456c7 5991 unsigned long load;
163122b7
KT
5992 int detached = 0;
5993
5994 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5995
bd939f45 5996 if (env->imbalance <= 0)
5d6523eb 5997 return 0;
1e3c88bd 5998
5d6523eb 5999 while (!list_empty(tasks)) {
985d3a4c
YD
6000 /*
6001 * We don't want to steal all, otherwise we may be treated likewise,
6002 * which could at worst lead to a livelock crash.
6003 */
6004 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6005 break;
6006
5d6523eb 6007 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6008
367456c7
PZ
6009 env->loop++;
6010 /* We've more or less seen every task there is, call it quits */
5d6523eb 6011 if (env->loop > env->loop_max)
367456c7 6012 break;
5d6523eb
PZ
6013
6014 /* take a breather every nr_migrate tasks */
367456c7 6015 if (env->loop > env->loop_break) {
eb95308e 6016 env->loop_break += sched_nr_migrate_break;
8e45cb54 6017 env->flags |= LBF_NEED_BREAK;
ee00e66f 6018 break;
a195f004 6019 }
1e3c88bd 6020
d3198084 6021 if (!can_migrate_task(p, env))
367456c7
PZ
6022 goto next;
6023
6024 load = task_h_load(p);
5d6523eb 6025
eb95308e 6026 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6027 goto next;
6028
bd939f45 6029 if ((load / 2) > env->imbalance)
367456c7 6030 goto next;
1e3c88bd 6031
163122b7
KT
6032 detach_task(p, env);
6033 list_add(&p->se.group_node, &env->tasks);
6034
6035 detached++;
bd939f45 6036 env->imbalance -= load;
1e3c88bd
PZ
6037
6038#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6039 /*
6040 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6041 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6042 * the critical section.
6043 */
5d6523eb 6044 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6045 break;
1e3c88bd
PZ
6046#endif
6047
ee00e66f
PZ
6048 /*
6049 * We only want to steal up to the prescribed amount of
6050 * weighted load.
6051 */
bd939f45 6052 if (env->imbalance <= 0)
ee00e66f 6053 break;
367456c7
PZ
6054
6055 continue;
6056next:
5d6523eb 6057 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6058 }
5d6523eb 6059
1e3c88bd 6060 /*
163122b7
KT
6061 * Right now, this is one of only two places we collect this stat
6062 * so we can safely collect detach_one_task() stats here rather
6063 * than inside detach_one_task().
1e3c88bd 6064 */
163122b7 6065 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6066
163122b7
KT
6067 return detached;
6068}
6069
6070/*
6071 * attach_task() -- attach the task detached by detach_task() to its new rq.
6072 */
6073static void attach_task(struct rq *rq, struct task_struct *p)
6074{
6075 lockdep_assert_held(&rq->lock);
6076
6077 BUG_ON(task_rq(p) != rq);
163122b7 6078 activate_task(rq, p, 0);
3ea94de1 6079 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6080 check_preempt_curr(rq, p, 0);
6081}
6082
6083/*
6084 * attach_one_task() -- attaches the task returned from detach_one_task() to
6085 * its new rq.
6086 */
6087static void attach_one_task(struct rq *rq, struct task_struct *p)
6088{
6089 raw_spin_lock(&rq->lock);
6090 attach_task(rq, p);
6091 raw_spin_unlock(&rq->lock);
6092}
6093
6094/*
6095 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6096 * new rq.
6097 */
6098static void attach_tasks(struct lb_env *env)
6099{
6100 struct list_head *tasks = &env->tasks;
6101 struct task_struct *p;
6102
6103 raw_spin_lock(&env->dst_rq->lock);
6104
6105 while (!list_empty(tasks)) {
6106 p = list_first_entry(tasks, struct task_struct, se.group_node);
6107 list_del_init(&p->se.group_node);
1e3c88bd 6108
163122b7
KT
6109 attach_task(env->dst_rq, p);
6110 }
6111
6112 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6113}
6114
230059de 6115#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6116static void update_blocked_averages(int cpu)
9e3081ca 6117{
9e3081ca 6118 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6119 struct cfs_rq *cfs_rq;
6120 unsigned long flags;
9e3081ca 6121
48a16753
PT
6122 raw_spin_lock_irqsave(&rq->lock, flags);
6123 update_rq_clock(rq);
9d89c257 6124
9763b67f
PZ
6125 /*
6126 * Iterates the task_group tree in a bottom up fashion, see
6127 * list_add_leaf_cfs_rq() for details.
6128 */
64660c86 6129 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6130 /* throttled entities do not contribute to load */
6131 if (throttled_hierarchy(cfs_rq))
6132 continue;
48a16753 6133
9d89c257
YD
6134 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6135 update_tg_load_avg(cfs_rq, 0);
6136 }
48a16753 6137 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6138}
6139
9763b67f 6140/*
68520796 6141 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6142 * This needs to be done in a top-down fashion because the load of a child
6143 * group is a fraction of its parents load.
6144 */
68520796 6145static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6146{
68520796
VD
6147 struct rq *rq = rq_of(cfs_rq);
6148 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6149 unsigned long now = jiffies;
68520796 6150 unsigned long load;
a35b6466 6151
68520796 6152 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6153 return;
6154
68520796
VD
6155 cfs_rq->h_load_next = NULL;
6156 for_each_sched_entity(se) {
6157 cfs_rq = cfs_rq_of(se);
6158 cfs_rq->h_load_next = se;
6159 if (cfs_rq->last_h_load_update == now)
6160 break;
6161 }
a35b6466 6162
68520796 6163 if (!se) {
7ea241af 6164 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6165 cfs_rq->last_h_load_update = now;
6166 }
6167
6168 while ((se = cfs_rq->h_load_next) != NULL) {
6169 load = cfs_rq->h_load;
7ea241af
YD
6170 load = div64_ul(load * se->avg.load_avg,
6171 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6172 cfs_rq = group_cfs_rq(se);
6173 cfs_rq->h_load = load;
6174 cfs_rq->last_h_load_update = now;
6175 }
9763b67f
PZ
6176}
6177
367456c7 6178static unsigned long task_h_load(struct task_struct *p)
230059de 6179{
367456c7 6180 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6181
68520796 6182 update_cfs_rq_h_load(cfs_rq);
9d89c257 6183 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6184 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6185}
6186#else
48a16753 6187static inline void update_blocked_averages(int cpu)
9e3081ca 6188{
6c1d47c0
VG
6189 struct rq *rq = cpu_rq(cpu);
6190 struct cfs_rq *cfs_rq = &rq->cfs;
6191 unsigned long flags;
6192
6193 raw_spin_lock_irqsave(&rq->lock, flags);
6194 update_rq_clock(rq);
6195 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6196 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6197}
6198
367456c7 6199static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6200{
9d89c257 6201 return p->se.avg.load_avg;
1e3c88bd 6202}
230059de 6203#endif
1e3c88bd 6204
1e3c88bd 6205/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6206
6207enum group_type {
6208 group_other = 0,
6209 group_imbalanced,
6210 group_overloaded,
6211};
6212
1e3c88bd
PZ
6213/*
6214 * sg_lb_stats - stats of a sched_group required for load_balancing
6215 */
6216struct sg_lb_stats {
6217 unsigned long avg_load; /*Avg load across the CPUs of the group */
6218 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6219 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6220 unsigned long load_per_task;
63b2ca30 6221 unsigned long group_capacity;
9e91d61d 6222 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6223 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6224 unsigned int idle_cpus;
6225 unsigned int group_weight;
caeb178c 6226 enum group_type group_type;
ea67821b 6227 int group_no_capacity;
0ec8aa00
PZ
6228#ifdef CONFIG_NUMA_BALANCING
6229 unsigned int nr_numa_running;
6230 unsigned int nr_preferred_running;
6231#endif
1e3c88bd
PZ
6232};
6233
56cf515b
JK
6234/*
6235 * sd_lb_stats - Structure to store the statistics of a sched_domain
6236 * during load balancing.
6237 */
6238struct sd_lb_stats {
6239 struct sched_group *busiest; /* Busiest group in this sd */
6240 struct sched_group *local; /* Local group in this sd */
6241 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6242 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6243 unsigned long avg_load; /* Average load across all groups in sd */
6244
56cf515b 6245 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6246 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6247};
6248
147c5fc2
PZ
6249static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6250{
6251 /*
6252 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6253 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6254 * We must however clear busiest_stat::avg_load because
6255 * update_sd_pick_busiest() reads this before assignment.
6256 */
6257 *sds = (struct sd_lb_stats){
6258 .busiest = NULL,
6259 .local = NULL,
6260 .total_load = 0UL,
63b2ca30 6261 .total_capacity = 0UL,
147c5fc2
PZ
6262 .busiest_stat = {
6263 .avg_load = 0UL,
caeb178c
RR
6264 .sum_nr_running = 0,
6265 .group_type = group_other,
147c5fc2
PZ
6266 },
6267 };
6268}
6269
1e3c88bd
PZ
6270/**
6271 * get_sd_load_idx - Obtain the load index for a given sched domain.
6272 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6273 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6274 *
6275 * Return: The load index.
1e3c88bd
PZ
6276 */
6277static inline int get_sd_load_idx(struct sched_domain *sd,
6278 enum cpu_idle_type idle)
6279{
6280 int load_idx;
6281
6282 switch (idle) {
6283 case CPU_NOT_IDLE:
6284 load_idx = sd->busy_idx;
6285 break;
6286
6287 case CPU_NEWLY_IDLE:
6288 load_idx = sd->newidle_idx;
6289 break;
6290 default:
6291 load_idx = sd->idle_idx;
6292 break;
6293 }
6294
6295 return load_idx;
6296}
6297
ced549fa 6298static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6299{
6300 struct rq *rq = cpu_rq(cpu);
b5b4860d 6301 u64 total, used, age_stamp, avg;
cadefd3d 6302 s64 delta;
1e3c88bd 6303
b654f7de
PZ
6304 /*
6305 * Since we're reading these variables without serialization make sure
6306 * we read them once before doing sanity checks on them.
6307 */
316c1608
JL
6308 age_stamp = READ_ONCE(rq->age_stamp);
6309 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6310 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6311
cadefd3d
PZ
6312 if (unlikely(delta < 0))
6313 delta = 0;
6314
6315 total = sched_avg_period() + delta;
aa483808 6316
b5b4860d 6317 used = div_u64(avg, total);
1e3c88bd 6318
b5b4860d
VG
6319 if (likely(used < SCHED_CAPACITY_SCALE))
6320 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6321
b5b4860d 6322 return 1;
1e3c88bd
PZ
6323}
6324
ced549fa 6325static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6326{
8cd5601c 6327 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6328 struct sched_group *sdg = sd->groups;
6329
ca6d75e6 6330 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6331
ced549fa 6332 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6333 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6334
ced549fa
NP
6335 if (!capacity)
6336 capacity = 1;
1e3c88bd 6337
ced549fa
NP
6338 cpu_rq(cpu)->cpu_capacity = capacity;
6339 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6340}
6341
63b2ca30 6342void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6343{
6344 struct sched_domain *child = sd->child;
6345 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6346 unsigned long capacity;
4ec4412e
VG
6347 unsigned long interval;
6348
6349 interval = msecs_to_jiffies(sd->balance_interval);
6350 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6351 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6352
6353 if (!child) {
ced549fa 6354 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6355 return;
6356 }
6357
dc7ff76e 6358 capacity = 0;
1e3c88bd 6359
74a5ce20
PZ
6360 if (child->flags & SD_OVERLAP) {
6361 /*
6362 * SD_OVERLAP domains cannot assume that child groups
6363 * span the current group.
6364 */
6365
863bffc8 6366 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6367 struct sched_group_capacity *sgc;
9abf24d4 6368 struct rq *rq = cpu_rq(cpu);
863bffc8 6369
9abf24d4 6370 /*
63b2ca30 6371 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6372 * gets here before we've attached the domains to the
6373 * runqueues.
6374 *
ced549fa
NP
6375 * Use capacity_of(), which is set irrespective of domains
6376 * in update_cpu_capacity().
9abf24d4 6377 *
dc7ff76e 6378 * This avoids capacity from being 0 and
9abf24d4 6379 * causing divide-by-zero issues on boot.
9abf24d4
SD
6380 */
6381 if (unlikely(!rq->sd)) {
ced549fa 6382 capacity += capacity_of(cpu);
9abf24d4
SD
6383 continue;
6384 }
863bffc8 6385
63b2ca30 6386 sgc = rq->sd->groups->sgc;
63b2ca30 6387 capacity += sgc->capacity;
863bffc8 6388 }
74a5ce20
PZ
6389 } else {
6390 /*
6391 * !SD_OVERLAP domains can assume that child groups
6392 * span the current group.
6393 */
6394
6395 group = child->groups;
6396 do {
63b2ca30 6397 capacity += group->sgc->capacity;
74a5ce20
PZ
6398 group = group->next;
6399 } while (group != child->groups);
6400 }
1e3c88bd 6401
63b2ca30 6402 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6403}
6404
9d5efe05 6405/*
ea67821b
VG
6406 * Check whether the capacity of the rq has been noticeably reduced by side
6407 * activity. The imbalance_pct is used for the threshold.
6408 * Return true is the capacity is reduced
9d5efe05
SV
6409 */
6410static inline int
ea67821b 6411check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6412{
ea67821b
VG
6413 return ((rq->cpu_capacity * sd->imbalance_pct) <
6414 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6415}
6416
30ce5dab
PZ
6417/*
6418 * Group imbalance indicates (and tries to solve) the problem where balancing
6419 * groups is inadequate due to tsk_cpus_allowed() constraints.
6420 *
6421 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6422 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6423 * Something like:
6424 *
6425 * { 0 1 2 3 } { 4 5 6 7 }
6426 * * * * *
6427 *
6428 * If we were to balance group-wise we'd place two tasks in the first group and
6429 * two tasks in the second group. Clearly this is undesired as it will overload
6430 * cpu 3 and leave one of the cpus in the second group unused.
6431 *
6432 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6433 * by noticing the lower domain failed to reach balance and had difficulty
6434 * moving tasks due to affinity constraints.
30ce5dab
PZ
6435 *
6436 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6437 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6438 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6439 * to create an effective group imbalance.
6440 *
6441 * This is a somewhat tricky proposition since the next run might not find the
6442 * group imbalance and decide the groups need to be balanced again. A most
6443 * subtle and fragile situation.
6444 */
6445
6263322c 6446static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6447{
63b2ca30 6448 return group->sgc->imbalance;
30ce5dab
PZ
6449}
6450
b37d9316 6451/*
ea67821b
VG
6452 * group_has_capacity returns true if the group has spare capacity that could
6453 * be used by some tasks.
6454 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6455 * smaller than the number of CPUs or if the utilization is lower than the
6456 * available capacity for CFS tasks.
ea67821b
VG
6457 * For the latter, we use a threshold to stabilize the state, to take into
6458 * account the variance of the tasks' load and to return true if the available
6459 * capacity in meaningful for the load balancer.
6460 * As an example, an available capacity of 1% can appear but it doesn't make
6461 * any benefit for the load balance.
b37d9316 6462 */
ea67821b
VG
6463static inline bool
6464group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6465{
ea67821b
VG
6466 if (sgs->sum_nr_running < sgs->group_weight)
6467 return true;
c61037e9 6468
ea67821b 6469 if ((sgs->group_capacity * 100) >
9e91d61d 6470 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6471 return true;
b37d9316 6472
ea67821b
VG
6473 return false;
6474}
6475
6476/*
6477 * group_is_overloaded returns true if the group has more tasks than it can
6478 * handle.
6479 * group_is_overloaded is not equals to !group_has_capacity because a group
6480 * with the exact right number of tasks, has no more spare capacity but is not
6481 * overloaded so both group_has_capacity and group_is_overloaded return
6482 * false.
6483 */
6484static inline bool
6485group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6486{
6487 if (sgs->sum_nr_running <= sgs->group_weight)
6488 return false;
b37d9316 6489
ea67821b 6490 if ((sgs->group_capacity * 100) <
9e91d61d 6491 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6492 return true;
b37d9316 6493
ea67821b 6494 return false;
b37d9316
PZ
6495}
6496
79a89f92
LY
6497static inline enum
6498group_type group_classify(struct sched_group *group,
6499 struct sg_lb_stats *sgs)
caeb178c 6500{
ea67821b 6501 if (sgs->group_no_capacity)
caeb178c
RR
6502 return group_overloaded;
6503
6504 if (sg_imbalanced(group))
6505 return group_imbalanced;
6506
6507 return group_other;
6508}
6509
1e3c88bd
PZ
6510/**
6511 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6512 * @env: The load balancing environment.
1e3c88bd 6513 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6514 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6515 * @local_group: Does group contain this_cpu.
1e3c88bd 6516 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6517 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6518 */
bd939f45
PZ
6519static inline void update_sg_lb_stats(struct lb_env *env,
6520 struct sched_group *group, int load_idx,
4486edd1
TC
6521 int local_group, struct sg_lb_stats *sgs,
6522 bool *overload)
1e3c88bd 6523{
30ce5dab 6524 unsigned long load;
a426f99c 6525 int i, nr_running;
1e3c88bd 6526
b72ff13c
PZ
6527 memset(sgs, 0, sizeof(*sgs));
6528
b9403130 6529 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6530 struct rq *rq = cpu_rq(i);
6531
1e3c88bd 6532 /* Bias balancing toward cpus of our domain */
6263322c 6533 if (local_group)
04f733b4 6534 load = target_load(i, load_idx);
6263322c 6535 else
1e3c88bd 6536 load = source_load(i, load_idx);
1e3c88bd
PZ
6537
6538 sgs->group_load += load;
9e91d61d 6539 sgs->group_util += cpu_util(i);
65fdac08 6540 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6541
a426f99c
WL
6542 nr_running = rq->nr_running;
6543 if (nr_running > 1)
4486edd1
TC
6544 *overload = true;
6545
0ec8aa00
PZ
6546#ifdef CONFIG_NUMA_BALANCING
6547 sgs->nr_numa_running += rq->nr_numa_running;
6548 sgs->nr_preferred_running += rq->nr_preferred_running;
6549#endif
1e3c88bd 6550 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6551 /*
6552 * No need to call idle_cpu() if nr_running is not 0
6553 */
6554 if (!nr_running && idle_cpu(i))
aae6d3dd 6555 sgs->idle_cpus++;
1e3c88bd
PZ
6556 }
6557
63b2ca30
NP
6558 /* Adjust by relative CPU capacity of the group */
6559 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6560 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6561
dd5feea1 6562 if (sgs->sum_nr_running)
38d0f770 6563 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6564
aae6d3dd 6565 sgs->group_weight = group->group_weight;
b37d9316 6566
ea67821b 6567 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6568 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6569}
6570
532cb4c4
MN
6571/**
6572 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6573 * @env: The load balancing environment.
532cb4c4
MN
6574 * @sds: sched_domain statistics
6575 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6576 * @sgs: sched_group statistics
532cb4c4
MN
6577 *
6578 * Determine if @sg is a busier group than the previously selected
6579 * busiest group.
e69f6186
YB
6580 *
6581 * Return: %true if @sg is a busier group than the previously selected
6582 * busiest group. %false otherwise.
532cb4c4 6583 */
bd939f45 6584static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6585 struct sd_lb_stats *sds,
6586 struct sched_group *sg,
bd939f45 6587 struct sg_lb_stats *sgs)
532cb4c4 6588{
caeb178c 6589 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6590
caeb178c 6591 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6592 return true;
6593
caeb178c
RR
6594 if (sgs->group_type < busiest->group_type)
6595 return false;
6596
6597 if (sgs->avg_load <= busiest->avg_load)
6598 return false;
6599
6600 /* This is the busiest node in its class. */
6601 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6602 return true;
6603
6604 /*
6605 * ASYM_PACKING needs to move all the work to the lowest
6606 * numbered CPUs in the group, therefore mark all groups
6607 * higher than ourself as busy.
6608 */
caeb178c 6609 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6610 if (!sds->busiest)
6611 return true;
6612
6613 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6614 return true;
6615 }
6616
6617 return false;
6618}
6619
0ec8aa00
PZ
6620#ifdef CONFIG_NUMA_BALANCING
6621static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6622{
6623 if (sgs->sum_nr_running > sgs->nr_numa_running)
6624 return regular;
6625 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6626 return remote;
6627 return all;
6628}
6629
6630static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6631{
6632 if (rq->nr_running > rq->nr_numa_running)
6633 return regular;
6634 if (rq->nr_running > rq->nr_preferred_running)
6635 return remote;
6636 return all;
6637}
6638#else
6639static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6640{
6641 return all;
6642}
6643
6644static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6645{
6646 return regular;
6647}
6648#endif /* CONFIG_NUMA_BALANCING */
6649
1e3c88bd 6650/**
461819ac 6651 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6652 * @env: The load balancing environment.
1e3c88bd
PZ
6653 * @sds: variable to hold the statistics for this sched_domain.
6654 */
0ec8aa00 6655static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6656{
bd939f45
PZ
6657 struct sched_domain *child = env->sd->child;
6658 struct sched_group *sg = env->sd->groups;
56cf515b 6659 struct sg_lb_stats tmp_sgs;
1e3c88bd 6660 int load_idx, prefer_sibling = 0;
4486edd1 6661 bool overload = false;
1e3c88bd
PZ
6662
6663 if (child && child->flags & SD_PREFER_SIBLING)
6664 prefer_sibling = 1;
6665
bd939f45 6666 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6667
6668 do {
56cf515b 6669 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6670 int local_group;
6671
bd939f45 6672 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6673 if (local_group) {
6674 sds->local = sg;
6675 sgs = &sds->local_stat;
b72ff13c
PZ
6676
6677 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6678 time_after_eq(jiffies, sg->sgc->next_update))
6679 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6680 }
1e3c88bd 6681
4486edd1
TC
6682 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6683 &overload);
1e3c88bd 6684
b72ff13c
PZ
6685 if (local_group)
6686 goto next_group;
6687
1e3c88bd
PZ
6688 /*
6689 * In case the child domain prefers tasks go to siblings
ea67821b 6690 * first, lower the sg capacity so that we'll try
75dd321d
NR
6691 * and move all the excess tasks away. We lower the capacity
6692 * of a group only if the local group has the capacity to fit
ea67821b
VG
6693 * these excess tasks. The extra check prevents the case where
6694 * you always pull from the heaviest group when it is already
6695 * under-utilized (possible with a large weight task outweighs
6696 * the tasks on the system).
1e3c88bd 6697 */
b72ff13c 6698 if (prefer_sibling && sds->local &&
ea67821b
VG
6699 group_has_capacity(env, &sds->local_stat) &&
6700 (sgs->sum_nr_running > 1)) {
6701 sgs->group_no_capacity = 1;
79a89f92 6702 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6703 }
1e3c88bd 6704
b72ff13c 6705 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6706 sds->busiest = sg;
56cf515b 6707 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6708 }
6709
b72ff13c
PZ
6710next_group:
6711 /* Now, start updating sd_lb_stats */
6712 sds->total_load += sgs->group_load;
63b2ca30 6713 sds->total_capacity += sgs->group_capacity;
b72ff13c 6714
532cb4c4 6715 sg = sg->next;
bd939f45 6716 } while (sg != env->sd->groups);
0ec8aa00
PZ
6717
6718 if (env->sd->flags & SD_NUMA)
6719 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6720
6721 if (!env->sd->parent) {
6722 /* update overload indicator if we are at root domain */
6723 if (env->dst_rq->rd->overload != overload)
6724 env->dst_rq->rd->overload = overload;
6725 }
6726
532cb4c4
MN
6727}
6728
532cb4c4
MN
6729/**
6730 * check_asym_packing - Check to see if the group is packed into the
6731 * sched doman.
6732 *
6733 * This is primarily intended to used at the sibling level. Some
6734 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6735 * case of POWER7, it can move to lower SMT modes only when higher
6736 * threads are idle. When in lower SMT modes, the threads will
6737 * perform better since they share less core resources. Hence when we
6738 * have idle threads, we want them to be the higher ones.
6739 *
6740 * This packing function is run on idle threads. It checks to see if
6741 * the busiest CPU in this domain (core in the P7 case) has a higher
6742 * CPU number than the packing function is being run on. Here we are
6743 * assuming lower CPU number will be equivalent to lower a SMT thread
6744 * number.
6745 *
e69f6186 6746 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6747 * this CPU. The amount of the imbalance is returned in *imbalance.
6748 *
cd96891d 6749 * @env: The load balancing environment.
532cb4c4 6750 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6751 */
bd939f45 6752static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6753{
6754 int busiest_cpu;
6755
bd939f45 6756 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6757 return 0;
6758
6759 if (!sds->busiest)
6760 return 0;
6761
6762 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6763 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6764 return 0;
6765
bd939f45 6766 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6767 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6768 SCHED_CAPACITY_SCALE);
bd939f45 6769
532cb4c4 6770 return 1;
1e3c88bd
PZ
6771}
6772
6773/**
6774 * fix_small_imbalance - Calculate the minor imbalance that exists
6775 * amongst the groups of a sched_domain, during
6776 * load balancing.
cd96891d 6777 * @env: The load balancing environment.
1e3c88bd 6778 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6779 */
bd939f45
PZ
6780static inline
6781void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6782{
63b2ca30 6783 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6784 unsigned int imbn = 2;
dd5feea1 6785 unsigned long scaled_busy_load_per_task;
56cf515b 6786 struct sg_lb_stats *local, *busiest;
1e3c88bd 6787
56cf515b
JK
6788 local = &sds->local_stat;
6789 busiest = &sds->busiest_stat;
1e3c88bd 6790
56cf515b
JK
6791 if (!local->sum_nr_running)
6792 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6793 else if (busiest->load_per_task > local->load_per_task)
6794 imbn = 1;
dd5feea1 6795
56cf515b 6796 scaled_busy_load_per_task =
ca8ce3d0 6797 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6798 busiest->group_capacity;
56cf515b 6799
3029ede3
VD
6800 if (busiest->avg_load + scaled_busy_load_per_task >=
6801 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6802 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6803 return;
6804 }
6805
6806 /*
6807 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6808 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6809 * moving them.
6810 */
6811
63b2ca30 6812 capa_now += busiest->group_capacity *
56cf515b 6813 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6814 capa_now += local->group_capacity *
56cf515b 6815 min(local->load_per_task, local->avg_load);
ca8ce3d0 6816 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6817
6818 /* Amount of load we'd subtract */
a2cd4260 6819 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6820 capa_move += busiest->group_capacity *
56cf515b 6821 min(busiest->load_per_task,
a2cd4260 6822 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6823 }
1e3c88bd
PZ
6824
6825 /* Amount of load we'd add */
63b2ca30 6826 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6827 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6828 tmp = (busiest->avg_load * busiest->group_capacity) /
6829 local->group_capacity;
56cf515b 6830 } else {
ca8ce3d0 6831 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6832 local->group_capacity;
56cf515b 6833 }
63b2ca30 6834 capa_move += local->group_capacity *
3ae11c90 6835 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6836 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6837
6838 /* Move if we gain throughput */
63b2ca30 6839 if (capa_move > capa_now)
56cf515b 6840 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6841}
6842
6843/**
6844 * calculate_imbalance - Calculate the amount of imbalance present within the
6845 * groups of a given sched_domain during load balance.
bd939f45 6846 * @env: load balance environment
1e3c88bd 6847 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6848 */
bd939f45 6849static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6850{
dd5feea1 6851 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6852 struct sg_lb_stats *local, *busiest;
6853
6854 local = &sds->local_stat;
56cf515b 6855 busiest = &sds->busiest_stat;
dd5feea1 6856
caeb178c 6857 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6858 /*
6859 * In the group_imb case we cannot rely on group-wide averages
6860 * to ensure cpu-load equilibrium, look at wider averages. XXX
6861 */
56cf515b
JK
6862 busiest->load_per_task =
6863 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6864 }
6865
1e3c88bd
PZ
6866 /*
6867 * In the presence of smp nice balancing, certain scenarios can have
6868 * max load less than avg load(as we skip the groups at or below
ced549fa 6869 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6870 */
b1885550
VD
6871 if (busiest->avg_load <= sds->avg_load ||
6872 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6873 env->imbalance = 0;
6874 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6875 }
6876
9a5d9ba6
PZ
6877 /*
6878 * If there aren't any idle cpus, avoid creating some.
6879 */
6880 if (busiest->group_type == group_overloaded &&
6881 local->group_type == group_overloaded) {
ea67821b
VG
6882 load_above_capacity = busiest->sum_nr_running *
6883 SCHED_LOAD_SCALE;
6884 if (load_above_capacity > busiest->group_capacity)
6885 load_above_capacity -= busiest->group_capacity;
6886 else
6887 load_above_capacity = ~0UL;
dd5feea1
SS
6888 }
6889
6890 /*
6891 * We're trying to get all the cpus to the average_load, so we don't
6892 * want to push ourselves above the average load, nor do we wish to
6893 * reduce the max loaded cpu below the average load. At the same time,
6894 * we also don't want to reduce the group load below the group capacity
6895 * (so that we can implement power-savings policies etc). Thus we look
6896 * for the minimum possible imbalance.
dd5feea1 6897 */
30ce5dab 6898 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6899
6900 /* How much load to actually move to equalise the imbalance */
56cf515b 6901 env->imbalance = min(
63b2ca30
NP
6902 max_pull * busiest->group_capacity,
6903 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6904 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6905
6906 /*
6907 * if *imbalance is less than the average load per runnable task
25985edc 6908 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6909 * a think about bumping its value to force at least one task to be
6910 * moved
6911 */
56cf515b 6912 if (env->imbalance < busiest->load_per_task)
bd939f45 6913 return fix_small_imbalance(env, sds);
1e3c88bd 6914}
fab47622 6915
1e3c88bd
PZ
6916/******* find_busiest_group() helpers end here *********************/
6917
6918/**
6919 * find_busiest_group - Returns the busiest group within the sched_domain
6920 * if there is an imbalance. If there isn't an imbalance, and
6921 * the user has opted for power-savings, it returns a group whose
6922 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6923 * such a group exists.
6924 *
6925 * Also calculates the amount of weighted load which should be moved
6926 * to restore balance.
6927 *
cd96891d 6928 * @env: The load balancing environment.
1e3c88bd 6929 *
e69f6186 6930 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6931 * - If no imbalance and user has opted for power-savings balance,
6932 * return the least loaded group whose CPUs can be
6933 * put to idle by rebalancing its tasks onto our group.
6934 */
56cf515b 6935static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6936{
56cf515b 6937 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6938 struct sd_lb_stats sds;
6939
147c5fc2 6940 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6941
6942 /*
6943 * Compute the various statistics relavent for load balancing at
6944 * this level.
6945 */
23f0d209 6946 update_sd_lb_stats(env, &sds);
56cf515b
JK
6947 local = &sds.local_stat;
6948 busiest = &sds.busiest_stat;
1e3c88bd 6949
ea67821b 6950 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6951 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6952 check_asym_packing(env, &sds))
532cb4c4
MN
6953 return sds.busiest;
6954
cc57aa8f 6955 /* There is no busy sibling group to pull tasks from */
56cf515b 6956 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6957 goto out_balanced;
6958
ca8ce3d0
NP
6959 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6960 / sds.total_capacity;
b0432d8f 6961
866ab43e
PZ
6962 /*
6963 * If the busiest group is imbalanced the below checks don't
30ce5dab 6964 * work because they assume all things are equal, which typically
866ab43e
PZ
6965 * isn't true due to cpus_allowed constraints and the like.
6966 */
caeb178c 6967 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6968 goto force_balance;
6969
cc57aa8f 6970 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6971 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6972 busiest->group_no_capacity)
fab47622
NR
6973 goto force_balance;
6974
cc57aa8f 6975 /*
9c58c79a 6976 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6977 * don't try and pull any tasks.
6978 */
56cf515b 6979 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6980 goto out_balanced;
6981
cc57aa8f
PZ
6982 /*
6983 * Don't pull any tasks if this group is already above the domain
6984 * average load.
6985 */
56cf515b 6986 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6987 goto out_balanced;
6988
bd939f45 6989 if (env->idle == CPU_IDLE) {
aae6d3dd 6990 /*
43f4d666
VG
6991 * This cpu is idle. If the busiest group is not overloaded
6992 * and there is no imbalance between this and busiest group
6993 * wrt idle cpus, it is balanced. The imbalance becomes
6994 * significant if the diff is greater than 1 otherwise we
6995 * might end up to just move the imbalance on another group
aae6d3dd 6996 */
43f4d666
VG
6997 if ((busiest->group_type != group_overloaded) &&
6998 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6999 goto out_balanced;
c186fafe
PZ
7000 } else {
7001 /*
7002 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7003 * imbalance_pct to be conservative.
7004 */
56cf515b
JK
7005 if (100 * busiest->avg_load <=
7006 env->sd->imbalance_pct * local->avg_load)
c186fafe 7007 goto out_balanced;
aae6d3dd 7008 }
1e3c88bd 7009
fab47622 7010force_balance:
1e3c88bd 7011 /* Looks like there is an imbalance. Compute it */
bd939f45 7012 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7013 return sds.busiest;
7014
7015out_balanced:
bd939f45 7016 env->imbalance = 0;
1e3c88bd
PZ
7017 return NULL;
7018}
7019
7020/*
7021 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7022 */
bd939f45 7023static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7024 struct sched_group *group)
1e3c88bd
PZ
7025{
7026 struct rq *busiest = NULL, *rq;
ced549fa 7027 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7028 int i;
7029
6906a408 7030 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7031 unsigned long capacity, wl;
0ec8aa00
PZ
7032 enum fbq_type rt;
7033
7034 rq = cpu_rq(i);
7035 rt = fbq_classify_rq(rq);
1e3c88bd 7036
0ec8aa00
PZ
7037 /*
7038 * We classify groups/runqueues into three groups:
7039 * - regular: there are !numa tasks
7040 * - remote: there are numa tasks that run on the 'wrong' node
7041 * - all: there is no distinction
7042 *
7043 * In order to avoid migrating ideally placed numa tasks,
7044 * ignore those when there's better options.
7045 *
7046 * If we ignore the actual busiest queue to migrate another
7047 * task, the next balance pass can still reduce the busiest
7048 * queue by moving tasks around inside the node.
7049 *
7050 * If we cannot move enough load due to this classification
7051 * the next pass will adjust the group classification and
7052 * allow migration of more tasks.
7053 *
7054 * Both cases only affect the total convergence complexity.
7055 */
7056 if (rt > env->fbq_type)
7057 continue;
7058
ced549fa 7059 capacity = capacity_of(i);
9d5efe05 7060
6e40f5bb 7061 wl = weighted_cpuload(i);
1e3c88bd 7062
6e40f5bb
TG
7063 /*
7064 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7065 * which is not scaled with the cpu capacity.
6e40f5bb 7066 */
ea67821b
VG
7067
7068 if (rq->nr_running == 1 && wl > env->imbalance &&
7069 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7070 continue;
7071
6e40f5bb
TG
7072 /*
7073 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7074 * the weighted_cpuload() scaled with the cpu capacity, so
7075 * that the load can be moved away from the cpu that is
7076 * potentially running at a lower capacity.
95a79b80 7077 *
ced549fa 7078 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7079 * multiplication to rid ourselves of the division works out
ced549fa
NP
7080 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7081 * our previous maximum.
6e40f5bb 7082 */
ced549fa 7083 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7084 busiest_load = wl;
ced549fa 7085 busiest_capacity = capacity;
1e3c88bd
PZ
7086 busiest = rq;
7087 }
7088 }
7089
7090 return busiest;
7091}
7092
7093/*
7094 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7095 * so long as it is large enough.
7096 */
7097#define MAX_PINNED_INTERVAL 512
7098
7099/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7100DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7101
bd939f45 7102static int need_active_balance(struct lb_env *env)
1af3ed3d 7103{
bd939f45
PZ
7104 struct sched_domain *sd = env->sd;
7105
7106 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7107
7108 /*
7109 * ASYM_PACKING needs to force migrate tasks from busy but
7110 * higher numbered CPUs in order to pack all tasks in the
7111 * lowest numbered CPUs.
7112 */
bd939f45 7113 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7114 return 1;
1af3ed3d
PZ
7115 }
7116
1aaf90a4
VG
7117 /*
7118 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7119 * It's worth migrating the task if the src_cpu's capacity is reduced
7120 * because of other sched_class or IRQs if more capacity stays
7121 * available on dst_cpu.
7122 */
7123 if ((env->idle != CPU_NOT_IDLE) &&
7124 (env->src_rq->cfs.h_nr_running == 1)) {
7125 if ((check_cpu_capacity(env->src_rq, sd)) &&
7126 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7127 return 1;
7128 }
7129
1af3ed3d
PZ
7130 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7131}
7132
969c7921
TH
7133static int active_load_balance_cpu_stop(void *data);
7134
23f0d209
JK
7135static int should_we_balance(struct lb_env *env)
7136{
7137 struct sched_group *sg = env->sd->groups;
7138 struct cpumask *sg_cpus, *sg_mask;
7139 int cpu, balance_cpu = -1;
7140
7141 /*
7142 * In the newly idle case, we will allow all the cpu's
7143 * to do the newly idle load balance.
7144 */
7145 if (env->idle == CPU_NEWLY_IDLE)
7146 return 1;
7147
7148 sg_cpus = sched_group_cpus(sg);
7149 sg_mask = sched_group_mask(sg);
7150 /* Try to find first idle cpu */
7151 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7152 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7153 continue;
7154
7155 balance_cpu = cpu;
7156 break;
7157 }
7158
7159 if (balance_cpu == -1)
7160 balance_cpu = group_balance_cpu(sg);
7161
7162 /*
7163 * First idle cpu or the first cpu(busiest) in this sched group
7164 * is eligible for doing load balancing at this and above domains.
7165 */
b0cff9d8 7166 return balance_cpu == env->dst_cpu;
23f0d209
JK
7167}
7168
1e3c88bd
PZ
7169/*
7170 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7171 * tasks if there is an imbalance.
7172 */
7173static int load_balance(int this_cpu, struct rq *this_rq,
7174 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7175 int *continue_balancing)
1e3c88bd 7176{
88b8dac0 7177 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7178 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7179 struct sched_group *group;
1e3c88bd
PZ
7180 struct rq *busiest;
7181 unsigned long flags;
4ba29684 7182 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7183
8e45cb54
PZ
7184 struct lb_env env = {
7185 .sd = sd,
ddcdf6e7
PZ
7186 .dst_cpu = this_cpu,
7187 .dst_rq = this_rq,
88b8dac0 7188 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7189 .idle = idle,
eb95308e 7190 .loop_break = sched_nr_migrate_break,
b9403130 7191 .cpus = cpus,
0ec8aa00 7192 .fbq_type = all,
163122b7 7193 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7194 };
7195
cfc03118
JK
7196 /*
7197 * For NEWLY_IDLE load_balancing, we don't need to consider
7198 * other cpus in our group
7199 */
e02e60c1 7200 if (idle == CPU_NEWLY_IDLE)
cfc03118 7201 env.dst_grpmask = NULL;
cfc03118 7202
1e3c88bd
PZ
7203 cpumask_copy(cpus, cpu_active_mask);
7204
1e3c88bd
PZ
7205 schedstat_inc(sd, lb_count[idle]);
7206
7207redo:
23f0d209
JK
7208 if (!should_we_balance(&env)) {
7209 *continue_balancing = 0;
1e3c88bd 7210 goto out_balanced;
23f0d209 7211 }
1e3c88bd 7212
23f0d209 7213 group = find_busiest_group(&env);
1e3c88bd
PZ
7214 if (!group) {
7215 schedstat_inc(sd, lb_nobusyg[idle]);
7216 goto out_balanced;
7217 }
7218
b9403130 7219 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7220 if (!busiest) {
7221 schedstat_inc(sd, lb_nobusyq[idle]);
7222 goto out_balanced;
7223 }
7224
78feefc5 7225 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7226
bd939f45 7227 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7228
1aaf90a4
VG
7229 env.src_cpu = busiest->cpu;
7230 env.src_rq = busiest;
7231
1e3c88bd
PZ
7232 ld_moved = 0;
7233 if (busiest->nr_running > 1) {
7234 /*
7235 * Attempt to move tasks. If find_busiest_group has found
7236 * an imbalance but busiest->nr_running <= 1, the group is
7237 * still unbalanced. ld_moved simply stays zero, so it is
7238 * correctly treated as an imbalance.
7239 */
8e45cb54 7240 env.flags |= LBF_ALL_PINNED;
c82513e5 7241 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7242
5d6523eb 7243more_balance:
163122b7 7244 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7245
7246 /*
7247 * cur_ld_moved - load moved in current iteration
7248 * ld_moved - cumulative load moved across iterations
7249 */
163122b7 7250 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7251
7252 /*
163122b7
KT
7253 * We've detached some tasks from busiest_rq. Every
7254 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7255 * unlock busiest->lock, and we are able to be sure
7256 * that nobody can manipulate the tasks in parallel.
7257 * See task_rq_lock() family for the details.
1e3c88bd 7258 */
163122b7
KT
7259
7260 raw_spin_unlock(&busiest->lock);
7261
7262 if (cur_ld_moved) {
7263 attach_tasks(&env);
7264 ld_moved += cur_ld_moved;
7265 }
7266
1e3c88bd 7267 local_irq_restore(flags);
88b8dac0 7268
f1cd0858
JK
7269 if (env.flags & LBF_NEED_BREAK) {
7270 env.flags &= ~LBF_NEED_BREAK;
7271 goto more_balance;
7272 }
7273
88b8dac0
SV
7274 /*
7275 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7276 * us and move them to an alternate dst_cpu in our sched_group
7277 * where they can run. The upper limit on how many times we
7278 * iterate on same src_cpu is dependent on number of cpus in our
7279 * sched_group.
7280 *
7281 * This changes load balance semantics a bit on who can move
7282 * load to a given_cpu. In addition to the given_cpu itself
7283 * (or a ilb_cpu acting on its behalf where given_cpu is
7284 * nohz-idle), we now have balance_cpu in a position to move
7285 * load to given_cpu. In rare situations, this may cause
7286 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7287 * _independently_ and at _same_ time to move some load to
7288 * given_cpu) causing exceess load to be moved to given_cpu.
7289 * This however should not happen so much in practice and
7290 * moreover subsequent load balance cycles should correct the
7291 * excess load moved.
7292 */
6263322c 7293 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7294
7aff2e3a
VD
7295 /* Prevent to re-select dst_cpu via env's cpus */
7296 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7297
78feefc5 7298 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7299 env.dst_cpu = env.new_dst_cpu;
6263322c 7300 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7301 env.loop = 0;
7302 env.loop_break = sched_nr_migrate_break;
e02e60c1 7303
88b8dac0
SV
7304 /*
7305 * Go back to "more_balance" rather than "redo" since we
7306 * need to continue with same src_cpu.
7307 */
7308 goto more_balance;
7309 }
1e3c88bd 7310
6263322c
PZ
7311 /*
7312 * We failed to reach balance because of affinity.
7313 */
7314 if (sd_parent) {
63b2ca30 7315 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7316
afdeee05 7317 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7318 *group_imbalance = 1;
6263322c
PZ
7319 }
7320
1e3c88bd 7321 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7322 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7323 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7324 if (!cpumask_empty(cpus)) {
7325 env.loop = 0;
7326 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7327 goto redo;
bbf18b19 7328 }
afdeee05 7329 goto out_all_pinned;
1e3c88bd
PZ
7330 }
7331 }
7332
7333 if (!ld_moved) {
7334 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7335 /*
7336 * Increment the failure counter only on periodic balance.
7337 * We do not want newidle balance, which can be very
7338 * frequent, pollute the failure counter causing
7339 * excessive cache_hot migrations and active balances.
7340 */
7341 if (idle != CPU_NEWLY_IDLE)
7342 sd->nr_balance_failed++;
1e3c88bd 7343
bd939f45 7344 if (need_active_balance(&env)) {
1e3c88bd
PZ
7345 raw_spin_lock_irqsave(&busiest->lock, flags);
7346
969c7921
TH
7347 /* don't kick the active_load_balance_cpu_stop,
7348 * if the curr task on busiest cpu can't be
7349 * moved to this_cpu
1e3c88bd
PZ
7350 */
7351 if (!cpumask_test_cpu(this_cpu,
fa17b507 7352 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7353 raw_spin_unlock_irqrestore(&busiest->lock,
7354 flags);
8e45cb54 7355 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7356 goto out_one_pinned;
7357 }
7358
969c7921
TH
7359 /*
7360 * ->active_balance synchronizes accesses to
7361 * ->active_balance_work. Once set, it's cleared
7362 * only after active load balance is finished.
7363 */
1e3c88bd
PZ
7364 if (!busiest->active_balance) {
7365 busiest->active_balance = 1;
7366 busiest->push_cpu = this_cpu;
7367 active_balance = 1;
7368 }
7369 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7370
bd939f45 7371 if (active_balance) {
969c7921
TH
7372 stop_one_cpu_nowait(cpu_of(busiest),
7373 active_load_balance_cpu_stop, busiest,
7374 &busiest->active_balance_work);
bd939f45 7375 }
1e3c88bd
PZ
7376
7377 /*
7378 * We've kicked active balancing, reset the failure
7379 * counter.
7380 */
7381 sd->nr_balance_failed = sd->cache_nice_tries+1;
7382 }
7383 } else
7384 sd->nr_balance_failed = 0;
7385
7386 if (likely(!active_balance)) {
7387 /* We were unbalanced, so reset the balancing interval */
7388 sd->balance_interval = sd->min_interval;
7389 } else {
7390 /*
7391 * If we've begun active balancing, start to back off. This
7392 * case may not be covered by the all_pinned logic if there
7393 * is only 1 task on the busy runqueue (because we don't call
163122b7 7394 * detach_tasks).
1e3c88bd
PZ
7395 */
7396 if (sd->balance_interval < sd->max_interval)
7397 sd->balance_interval *= 2;
7398 }
7399
1e3c88bd
PZ
7400 goto out;
7401
7402out_balanced:
afdeee05
VG
7403 /*
7404 * We reach balance although we may have faced some affinity
7405 * constraints. Clear the imbalance flag if it was set.
7406 */
7407 if (sd_parent) {
7408 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7409
7410 if (*group_imbalance)
7411 *group_imbalance = 0;
7412 }
7413
7414out_all_pinned:
7415 /*
7416 * We reach balance because all tasks are pinned at this level so
7417 * we can't migrate them. Let the imbalance flag set so parent level
7418 * can try to migrate them.
7419 */
1e3c88bd
PZ
7420 schedstat_inc(sd, lb_balanced[idle]);
7421
7422 sd->nr_balance_failed = 0;
7423
7424out_one_pinned:
7425 /* tune up the balancing interval */
8e45cb54 7426 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7427 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7428 (sd->balance_interval < sd->max_interval))
7429 sd->balance_interval *= 2;
7430
46e49b38 7431 ld_moved = 0;
1e3c88bd 7432out:
1e3c88bd
PZ
7433 return ld_moved;
7434}
7435
52a08ef1
JL
7436static inline unsigned long
7437get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7438{
7439 unsigned long interval = sd->balance_interval;
7440
7441 if (cpu_busy)
7442 interval *= sd->busy_factor;
7443
7444 /* scale ms to jiffies */
7445 interval = msecs_to_jiffies(interval);
7446 interval = clamp(interval, 1UL, max_load_balance_interval);
7447
7448 return interval;
7449}
7450
7451static inline void
7452update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7453{
7454 unsigned long interval, next;
7455
7456 interval = get_sd_balance_interval(sd, cpu_busy);
7457 next = sd->last_balance + interval;
7458
7459 if (time_after(*next_balance, next))
7460 *next_balance = next;
7461}
7462
1e3c88bd
PZ
7463/*
7464 * idle_balance is called by schedule() if this_cpu is about to become
7465 * idle. Attempts to pull tasks from other CPUs.
7466 */
6e83125c 7467static int idle_balance(struct rq *this_rq)
1e3c88bd 7468{
52a08ef1
JL
7469 unsigned long next_balance = jiffies + HZ;
7470 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7471 struct sched_domain *sd;
7472 int pulled_task = 0;
9bd721c5 7473 u64 curr_cost = 0;
1e3c88bd 7474
6e83125c
PZ
7475 /*
7476 * We must set idle_stamp _before_ calling idle_balance(), such that we
7477 * measure the duration of idle_balance() as idle time.
7478 */
7479 this_rq->idle_stamp = rq_clock(this_rq);
7480
4486edd1
TC
7481 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7482 !this_rq->rd->overload) {
52a08ef1
JL
7483 rcu_read_lock();
7484 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7485 if (sd)
7486 update_next_balance(sd, 0, &next_balance);
7487 rcu_read_unlock();
7488
6e83125c 7489 goto out;
52a08ef1 7490 }
1e3c88bd 7491
f492e12e
PZ
7492 raw_spin_unlock(&this_rq->lock);
7493
48a16753 7494 update_blocked_averages(this_cpu);
dce840a0 7495 rcu_read_lock();
1e3c88bd 7496 for_each_domain(this_cpu, sd) {
23f0d209 7497 int continue_balancing = 1;
9bd721c5 7498 u64 t0, domain_cost;
1e3c88bd
PZ
7499
7500 if (!(sd->flags & SD_LOAD_BALANCE))
7501 continue;
7502
52a08ef1
JL
7503 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7504 update_next_balance(sd, 0, &next_balance);
9bd721c5 7505 break;
52a08ef1 7506 }
9bd721c5 7507
f492e12e 7508 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7509 t0 = sched_clock_cpu(this_cpu);
7510
f492e12e 7511 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7512 sd, CPU_NEWLY_IDLE,
7513 &continue_balancing);
9bd721c5
JL
7514
7515 domain_cost = sched_clock_cpu(this_cpu) - t0;
7516 if (domain_cost > sd->max_newidle_lb_cost)
7517 sd->max_newidle_lb_cost = domain_cost;
7518
7519 curr_cost += domain_cost;
f492e12e 7520 }
1e3c88bd 7521
52a08ef1 7522 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7523
7524 /*
7525 * Stop searching for tasks to pull if there are
7526 * now runnable tasks on this rq.
7527 */
7528 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7529 break;
1e3c88bd 7530 }
dce840a0 7531 rcu_read_unlock();
f492e12e
PZ
7532
7533 raw_spin_lock(&this_rq->lock);
7534
0e5b5337
JL
7535 if (curr_cost > this_rq->max_idle_balance_cost)
7536 this_rq->max_idle_balance_cost = curr_cost;
7537
e5fc6611 7538 /*
0e5b5337
JL
7539 * While browsing the domains, we released the rq lock, a task could
7540 * have been enqueued in the meantime. Since we're not going idle,
7541 * pretend we pulled a task.
e5fc6611 7542 */
0e5b5337 7543 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7544 pulled_task = 1;
e5fc6611 7545
52a08ef1
JL
7546out:
7547 /* Move the next balance forward */
7548 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7549 this_rq->next_balance = next_balance;
9bd721c5 7550
e4aa358b 7551 /* Is there a task of a high priority class? */
46383648 7552 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7553 pulled_task = -1;
7554
38c6ade2 7555 if (pulled_task)
6e83125c
PZ
7556 this_rq->idle_stamp = 0;
7557
3c4017c1 7558 return pulled_task;
1e3c88bd
PZ
7559}
7560
7561/*
969c7921
TH
7562 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7563 * running tasks off the busiest CPU onto idle CPUs. It requires at
7564 * least 1 task to be running on each physical CPU where possible, and
7565 * avoids physical / logical imbalances.
1e3c88bd 7566 */
969c7921 7567static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7568{
969c7921
TH
7569 struct rq *busiest_rq = data;
7570 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7571 int target_cpu = busiest_rq->push_cpu;
969c7921 7572 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7573 struct sched_domain *sd;
e5673f28 7574 struct task_struct *p = NULL;
969c7921
TH
7575
7576 raw_spin_lock_irq(&busiest_rq->lock);
7577
7578 /* make sure the requested cpu hasn't gone down in the meantime */
7579 if (unlikely(busiest_cpu != smp_processor_id() ||
7580 !busiest_rq->active_balance))
7581 goto out_unlock;
1e3c88bd
PZ
7582
7583 /* Is there any task to move? */
7584 if (busiest_rq->nr_running <= 1)
969c7921 7585 goto out_unlock;
1e3c88bd
PZ
7586
7587 /*
7588 * This condition is "impossible", if it occurs
7589 * we need to fix it. Originally reported by
7590 * Bjorn Helgaas on a 128-cpu setup.
7591 */
7592 BUG_ON(busiest_rq == target_rq);
7593
1e3c88bd 7594 /* Search for an sd spanning us and the target CPU. */
dce840a0 7595 rcu_read_lock();
1e3c88bd
PZ
7596 for_each_domain(target_cpu, sd) {
7597 if ((sd->flags & SD_LOAD_BALANCE) &&
7598 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7599 break;
7600 }
7601
7602 if (likely(sd)) {
8e45cb54
PZ
7603 struct lb_env env = {
7604 .sd = sd,
ddcdf6e7
PZ
7605 .dst_cpu = target_cpu,
7606 .dst_rq = target_rq,
7607 .src_cpu = busiest_rq->cpu,
7608 .src_rq = busiest_rq,
8e45cb54
PZ
7609 .idle = CPU_IDLE,
7610 };
7611
1e3c88bd
PZ
7612 schedstat_inc(sd, alb_count);
7613
e5673f28
KT
7614 p = detach_one_task(&env);
7615 if (p)
1e3c88bd
PZ
7616 schedstat_inc(sd, alb_pushed);
7617 else
7618 schedstat_inc(sd, alb_failed);
7619 }
dce840a0 7620 rcu_read_unlock();
969c7921
TH
7621out_unlock:
7622 busiest_rq->active_balance = 0;
e5673f28
KT
7623 raw_spin_unlock(&busiest_rq->lock);
7624
7625 if (p)
7626 attach_one_task(target_rq, p);
7627
7628 local_irq_enable();
7629
969c7921 7630 return 0;
1e3c88bd
PZ
7631}
7632
d987fc7f
MG
7633static inline int on_null_domain(struct rq *rq)
7634{
7635 return unlikely(!rcu_dereference_sched(rq->sd));
7636}
7637
3451d024 7638#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7639/*
7640 * idle load balancing details
83cd4fe2
VP
7641 * - When one of the busy CPUs notice that there may be an idle rebalancing
7642 * needed, they will kick the idle load balancer, which then does idle
7643 * load balancing for all the idle CPUs.
7644 */
1e3c88bd 7645static struct {
83cd4fe2 7646 cpumask_var_t idle_cpus_mask;
0b005cf5 7647 atomic_t nr_cpus;
83cd4fe2
VP
7648 unsigned long next_balance; /* in jiffy units */
7649} nohz ____cacheline_aligned;
1e3c88bd 7650
3dd0337d 7651static inline int find_new_ilb(void)
1e3c88bd 7652{
0b005cf5 7653 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7654
786d6dc7
SS
7655 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7656 return ilb;
7657
7658 return nr_cpu_ids;
1e3c88bd 7659}
1e3c88bd 7660
83cd4fe2
VP
7661/*
7662 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7663 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7664 * CPU (if there is one).
7665 */
0aeeeeba 7666static void nohz_balancer_kick(void)
83cd4fe2
VP
7667{
7668 int ilb_cpu;
7669
7670 nohz.next_balance++;
7671
3dd0337d 7672 ilb_cpu = find_new_ilb();
83cd4fe2 7673
0b005cf5
SS
7674 if (ilb_cpu >= nr_cpu_ids)
7675 return;
83cd4fe2 7676
cd490c5b 7677 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7678 return;
7679 /*
7680 * Use smp_send_reschedule() instead of resched_cpu().
7681 * This way we generate a sched IPI on the target cpu which
7682 * is idle. And the softirq performing nohz idle load balance
7683 * will be run before returning from the IPI.
7684 */
7685 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7686 return;
7687}
7688
c1cc017c 7689static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7690{
7691 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7692 /*
7693 * Completely isolated CPUs don't ever set, so we must test.
7694 */
7695 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7696 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7697 atomic_dec(&nohz.nr_cpus);
7698 }
71325960
SS
7699 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7700 }
7701}
7702
69e1e811
SS
7703static inline void set_cpu_sd_state_busy(void)
7704{
7705 struct sched_domain *sd;
37dc6b50 7706 int cpu = smp_processor_id();
69e1e811 7707
69e1e811 7708 rcu_read_lock();
37dc6b50 7709 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7710
7711 if (!sd || !sd->nohz_idle)
7712 goto unlock;
7713 sd->nohz_idle = 0;
7714
63b2ca30 7715 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7716unlock:
69e1e811
SS
7717 rcu_read_unlock();
7718}
7719
7720void set_cpu_sd_state_idle(void)
7721{
7722 struct sched_domain *sd;
37dc6b50 7723 int cpu = smp_processor_id();
69e1e811 7724
69e1e811 7725 rcu_read_lock();
37dc6b50 7726 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7727
7728 if (!sd || sd->nohz_idle)
7729 goto unlock;
7730 sd->nohz_idle = 1;
7731
63b2ca30 7732 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7733unlock:
69e1e811
SS
7734 rcu_read_unlock();
7735}
7736
1e3c88bd 7737/*
c1cc017c 7738 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7739 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7740 */
c1cc017c 7741void nohz_balance_enter_idle(int cpu)
1e3c88bd 7742{
71325960
SS
7743 /*
7744 * If this cpu is going down, then nothing needs to be done.
7745 */
7746 if (!cpu_active(cpu))
7747 return;
7748
c1cc017c
AS
7749 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7750 return;
1e3c88bd 7751
d987fc7f
MG
7752 /*
7753 * If we're a completely isolated CPU, we don't play.
7754 */
7755 if (on_null_domain(cpu_rq(cpu)))
7756 return;
7757
c1cc017c
AS
7758 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7759 atomic_inc(&nohz.nr_cpus);
7760 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7761}
71325960 7762
0db0628d 7763static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7764 unsigned long action, void *hcpu)
7765{
7766 switch (action & ~CPU_TASKS_FROZEN) {
7767 case CPU_DYING:
c1cc017c 7768 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7769 return NOTIFY_OK;
7770 default:
7771 return NOTIFY_DONE;
7772 }
7773}
1e3c88bd
PZ
7774#endif
7775
7776static DEFINE_SPINLOCK(balancing);
7777
49c022e6
PZ
7778/*
7779 * Scale the max load_balance interval with the number of CPUs in the system.
7780 * This trades load-balance latency on larger machines for less cross talk.
7781 */
029632fb 7782void update_max_interval(void)
49c022e6
PZ
7783{
7784 max_load_balance_interval = HZ*num_online_cpus()/10;
7785}
7786
1e3c88bd
PZ
7787/*
7788 * It checks each scheduling domain to see if it is due to be balanced,
7789 * and initiates a balancing operation if so.
7790 *
b9b0853a 7791 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7792 */
f7ed0a89 7793static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7794{
23f0d209 7795 int continue_balancing = 1;
f7ed0a89 7796 int cpu = rq->cpu;
1e3c88bd 7797 unsigned long interval;
04f733b4 7798 struct sched_domain *sd;
1e3c88bd
PZ
7799 /* Earliest time when we have to do rebalance again */
7800 unsigned long next_balance = jiffies + 60*HZ;
7801 int update_next_balance = 0;
f48627e6
JL
7802 int need_serialize, need_decay = 0;
7803 u64 max_cost = 0;
1e3c88bd 7804
48a16753 7805 update_blocked_averages(cpu);
2069dd75 7806
dce840a0 7807 rcu_read_lock();
1e3c88bd 7808 for_each_domain(cpu, sd) {
f48627e6
JL
7809 /*
7810 * Decay the newidle max times here because this is a regular
7811 * visit to all the domains. Decay ~1% per second.
7812 */
7813 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7814 sd->max_newidle_lb_cost =
7815 (sd->max_newidle_lb_cost * 253) / 256;
7816 sd->next_decay_max_lb_cost = jiffies + HZ;
7817 need_decay = 1;
7818 }
7819 max_cost += sd->max_newidle_lb_cost;
7820
1e3c88bd
PZ
7821 if (!(sd->flags & SD_LOAD_BALANCE))
7822 continue;
7823
f48627e6
JL
7824 /*
7825 * Stop the load balance at this level. There is another
7826 * CPU in our sched group which is doing load balancing more
7827 * actively.
7828 */
7829 if (!continue_balancing) {
7830 if (need_decay)
7831 continue;
7832 break;
7833 }
7834
52a08ef1 7835 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7836
7837 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7838 if (need_serialize) {
7839 if (!spin_trylock(&balancing))
7840 goto out;
7841 }
7842
7843 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7844 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7845 /*
6263322c 7846 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7847 * env->dst_cpu, so we can't know our idle
7848 * state even if we migrated tasks. Update it.
1e3c88bd 7849 */
de5eb2dd 7850 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7851 }
7852 sd->last_balance = jiffies;
52a08ef1 7853 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7854 }
7855 if (need_serialize)
7856 spin_unlock(&balancing);
7857out:
7858 if (time_after(next_balance, sd->last_balance + interval)) {
7859 next_balance = sd->last_balance + interval;
7860 update_next_balance = 1;
7861 }
f48627e6
JL
7862 }
7863 if (need_decay) {
1e3c88bd 7864 /*
f48627e6
JL
7865 * Ensure the rq-wide value also decays but keep it at a
7866 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7867 */
f48627e6
JL
7868 rq->max_idle_balance_cost =
7869 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7870 }
dce840a0 7871 rcu_read_unlock();
1e3c88bd
PZ
7872
7873 /*
7874 * next_balance will be updated only when there is a need.
7875 * When the cpu is attached to null domain for ex, it will not be
7876 * updated.
7877 */
c5afb6a8 7878 if (likely(update_next_balance)) {
1e3c88bd 7879 rq->next_balance = next_balance;
c5afb6a8
VG
7880
7881#ifdef CONFIG_NO_HZ_COMMON
7882 /*
7883 * If this CPU has been elected to perform the nohz idle
7884 * balance. Other idle CPUs have already rebalanced with
7885 * nohz_idle_balance() and nohz.next_balance has been
7886 * updated accordingly. This CPU is now running the idle load
7887 * balance for itself and we need to update the
7888 * nohz.next_balance accordingly.
7889 */
7890 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7891 nohz.next_balance = rq->next_balance;
7892#endif
7893 }
1e3c88bd
PZ
7894}
7895
3451d024 7896#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7897/*
3451d024 7898 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7899 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7900 */
208cb16b 7901static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7902{
208cb16b 7903 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7904 struct rq *rq;
7905 int balance_cpu;
c5afb6a8
VG
7906 /* Earliest time when we have to do rebalance again */
7907 unsigned long next_balance = jiffies + 60*HZ;
7908 int update_next_balance = 0;
83cd4fe2 7909
1c792db7
SS
7910 if (idle != CPU_IDLE ||
7911 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7912 goto end;
83cd4fe2
VP
7913
7914 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7915 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7916 continue;
7917
7918 /*
7919 * If this cpu gets work to do, stop the load balancing
7920 * work being done for other cpus. Next load
7921 * balancing owner will pick it up.
7922 */
1c792db7 7923 if (need_resched())
83cd4fe2 7924 break;
83cd4fe2 7925
5ed4f1d9
VG
7926 rq = cpu_rq(balance_cpu);
7927
ed61bbc6
TC
7928 /*
7929 * If time for next balance is due,
7930 * do the balance.
7931 */
7932 if (time_after_eq(jiffies, rq->next_balance)) {
7933 raw_spin_lock_irq(&rq->lock);
7934 update_rq_clock(rq);
be68a682 7935 update_cpu_load_idle(rq);
ed61bbc6
TC
7936 raw_spin_unlock_irq(&rq->lock);
7937 rebalance_domains(rq, CPU_IDLE);
7938 }
83cd4fe2 7939
c5afb6a8
VG
7940 if (time_after(next_balance, rq->next_balance)) {
7941 next_balance = rq->next_balance;
7942 update_next_balance = 1;
7943 }
83cd4fe2 7944 }
c5afb6a8
VG
7945
7946 /*
7947 * next_balance will be updated only when there is a need.
7948 * When the CPU is attached to null domain for ex, it will not be
7949 * updated.
7950 */
7951 if (likely(update_next_balance))
7952 nohz.next_balance = next_balance;
1c792db7
SS
7953end:
7954 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7955}
7956
7957/*
0b005cf5 7958 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7959 * of an idle cpu in the system.
0b005cf5 7960 * - This rq has more than one task.
1aaf90a4
VG
7961 * - This rq has at least one CFS task and the capacity of the CPU is
7962 * significantly reduced because of RT tasks or IRQs.
7963 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7964 * multiple busy cpu.
0b005cf5
SS
7965 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7966 * domain span are idle.
83cd4fe2 7967 */
1aaf90a4 7968static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7969{
7970 unsigned long now = jiffies;
0b005cf5 7971 struct sched_domain *sd;
63b2ca30 7972 struct sched_group_capacity *sgc;
4a725627 7973 int nr_busy, cpu = rq->cpu;
1aaf90a4 7974 bool kick = false;
83cd4fe2 7975
4a725627 7976 if (unlikely(rq->idle_balance))
1aaf90a4 7977 return false;
83cd4fe2 7978
1c792db7
SS
7979 /*
7980 * We may be recently in ticked or tickless idle mode. At the first
7981 * busy tick after returning from idle, we will update the busy stats.
7982 */
69e1e811 7983 set_cpu_sd_state_busy();
c1cc017c 7984 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7985
7986 /*
7987 * None are in tickless mode and hence no need for NOHZ idle load
7988 * balancing.
7989 */
7990 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7991 return false;
1c792db7
SS
7992
7993 if (time_before(now, nohz.next_balance))
1aaf90a4 7994 return false;
83cd4fe2 7995
0b005cf5 7996 if (rq->nr_running >= 2)
1aaf90a4 7997 return true;
83cd4fe2 7998
067491b7 7999 rcu_read_lock();
37dc6b50 8000 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8001 if (sd) {
63b2ca30
NP
8002 sgc = sd->groups->sgc;
8003 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8004
1aaf90a4
VG
8005 if (nr_busy > 1) {
8006 kick = true;
8007 goto unlock;
8008 }
8009
83cd4fe2 8010 }
37dc6b50 8011
1aaf90a4
VG
8012 sd = rcu_dereference(rq->sd);
8013 if (sd) {
8014 if ((rq->cfs.h_nr_running >= 1) &&
8015 check_cpu_capacity(rq, sd)) {
8016 kick = true;
8017 goto unlock;
8018 }
8019 }
37dc6b50 8020
1aaf90a4 8021 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8022 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8023 sched_domain_span(sd)) < cpu)) {
8024 kick = true;
8025 goto unlock;
8026 }
067491b7 8027
1aaf90a4 8028unlock:
067491b7 8029 rcu_read_unlock();
1aaf90a4 8030 return kick;
83cd4fe2
VP
8031}
8032#else
208cb16b 8033static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8034#endif
8035
8036/*
8037 * run_rebalance_domains is triggered when needed from the scheduler tick.
8038 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8039 */
1e3c88bd
PZ
8040static void run_rebalance_domains(struct softirq_action *h)
8041{
208cb16b 8042 struct rq *this_rq = this_rq();
6eb57e0d 8043 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8044 CPU_IDLE : CPU_NOT_IDLE;
8045
1e3c88bd 8046 /*
83cd4fe2 8047 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8048 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8049 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8050 * give the idle cpus a chance to load balance. Else we may
8051 * load balance only within the local sched_domain hierarchy
8052 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8053 */
208cb16b 8054 nohz_idle_balance(this_rq, idle);
d4573c3e 8055 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8056}
8057
1e3c88bd
PZ
8058/*
8059 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8060 */
7caff66f 8061void trigger_load_balance(struct rq *rq)
1e3c88bd 8062{
1e3c88bd 8063 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8064 if (unlikely(on_null_domain(rq)))
8065 return;
8066
8067 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8068 raise_softirq(SCHED_SOFTIRQ);
3451d024 8069#ifdef CONFIG_NO_HZ_COMMON
c726099e 8070 if (nohz_kick_needed(rq))
0aeeeeba 8071 nohz_balancer_kick();
83cd4fe2 8072#endif
1e3c88bd
PZ
8073}
8074
0bcdcf28
CE
8075static void rq_online_fair(struct rq *rq)
8076{
8077 update_sysctl();
0e59bdae
KT
8078
8079 update_runtime_enabled(rq);
0bcdcf28
CE
8080}
8081
8082static void rq_offline_fair(struct rq *rq)
8083{
8084 update_sysctl();
a4c96ae3
PB
8085
8086 /* Ensure any throttled groups are reachable by pick_next_task */
8087 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8088}
8089
55e12e5e 8090#endif /* CONFIG_SMP */
e1d1484f 8091
bf0f6f24
IM
8092/*
8093 * scheduler tick hitting a task of our scheduling class:
8094 */
8f4d37ec 8095static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8096{
8097 struct cfs_rq *cfs_rq;
8098 struct sched_entity *se = &curr->se;
8099
8100 for_each_sched_entity(se) {
8101 cfs_rq = cfs_rq_of(se);
8f4d37ec 8102 entity_tick(cfs_rq, se, queued);
bf0f6f24 8103 }
18bf2805 8104
b52da86e 8105 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8106 task_tick_numa(rq, curr);
bf0f6f24
IM
8107}
8108
8109/*
cd29fe6f
PZ
8110 * called on fork with the child task as argument from the parent's context
8111 * - child not yet on the tasklist
8112 * - preemption disabled
bf0f6f24 8113 */
cd29fe6f 8114static void task_fork_fair(struct task_struct *p)
bf0f6f24 8115{
4fc420c9
DN
8116 struct cfs_rq *cfs_rq;
8117 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8118 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8119 struct rq *rq = this_rq();
8120 unsigned long flags;
8121
05fa785c 8122 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8123
861d034e
PZ
8124 update_rq_clock(rq);
8125
4fc420c9
DN
8126 cfs_rq = task_cfs_rq(current);
8127 curr = cfs_rq->curr;
8128
6c9a27f5
DN
8129 /*
8130 * Not only the cpu but also the task_group of the parent might have
8131 * been changed after parent->se.parent,cfs_rq were copied to
8132 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8133 * of child point to valid ones.
8134 */
8135 rcu_read_lock();
8136 __set_task_cpu(p, this_cpu);
8137 rcu_read_unlock();
bf0f6f24 8138
7109c442 8139 update_curr(cfs_rq);
cd29fe6f 8140
b5d9d734
MG
8141 if (curr)
8142 se->vruntime = curr->vruntime;
aeb73b04 8143 place_entity(cfs_rq, se, 1);
4d78e7b6 8144
cd29fe6f 8145 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8146 /*
edcb60a3
IM
8147 * Upon rescheduling, sched_class::put_prev_task() will place
8148 * 'current' within the tree based on its new key value.
8149 */
4d78e7b6 8150 swap(curr->vruntime, se->vruntime);
8875125e 8151 resched_curr(rq);
4d78e7b6 8152 }
bf0f6f24 8153
88ec22d3
PZ
8154 se->vruntime -= cfs_rq->min_vruntime;
8155
05fa785c 8156 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8157}
8158
cb469845
SR
8159/*
8160 * Priority of the task has changed. Check to see if we preempt
8161 * the current task.
8162 */
da7a735e
PZ
8163static void
8164prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8165{
da0c1e65 8166 if (!task_on_rq_queued(p))
da7a735e
PZ
8167 return;
8168
cb469845
SR
8169 /*
8170 * Reschedule if we are currently running on this runqueue and
8171 * our priority decreased, or if we are not currently running on
8172 * this runqueue and our priority is higher than the current's
8173 */
da7a735e 8174 if (rq->curr == p) {
cb469845 8175 if (p->prio > oldprio)
8875125e 8176 resched_curr(rq);
cb469845 8177 } else
15afe09b 8178 check_preempt_curr(rq, p, 0);
cb469845
SR
8179}
8180
daa59407 8181static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8182{
8183 struct sched_entity *se = &p->se;
da7a735e
PZ
8184
8185 /*
daa59407
BP
8186 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8187 * the dequeue_entity(.flags=0) will already have normalized the
8188 * vruntime.
8189 */
8190 if (p->on_rq)
8191 return true;
8192
8193 /*
8194 * When !on_rq, vruntime of the task has usually NOT been normalized.
8195 * But there are some cases where it has already been normalized:
da7a735e 8196 *
daa59407
BP
8197 * - A forked child which is waiting for being woken up by
8198 * wake_up_new_task().
8199 * - A task which has been woken up by try_to_wake_up() and
8200 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8201 */
daa59407
BP
8202 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8203 return true;
8204
8205 return false;
8206}
8207
8208static void detach_task_cfs_rq(struct task_struct *p)
8209{
8210 struct sched_entity *se = &p->se;
8211 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8212
8213 if (!vruntime_normalized(p)) {
da7a735e
PZ
8214 /*
8215 * Fix up our vruntime so that the current sleep doesn't
8216 * cause 'unlimited' sleep bonus.
8217 */
8218 place_entity(cfs_rq, se, 0);
8219 se->vruntime -= cfs_rq->min_vruntime;
8220 }
9ee474f5 8221
9d89c257 8222 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8223 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8224}
8225
daa59407 8226static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8227{
f36c019c 8228 struct sched_entity *se = &p->se;
daa59407 8229 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8230
8231#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8232 /*
8233 * Since the real-depth could have been changed (only FAIR
8234 * class maintain depth value), reset depth properly.
8235 */
8236 se->depth = se->parent ? se->parent->depth + 1 : 0;
8237#endif
7855a35a 8238
6efdb105 8239 /* Synchronize task with its cfs_rq */
daa59407
BP
8240 attach_entity_load_avg(cfs_rq, se);
8241
8242 if (!vruntime_normalized(p))
8243 se->vruntime += cfs_rq->min_vruntime;
8244}
6efdb105 8245
daa59407
BP
8246static void switched_from_fair(struct rq *rq, struct task_struct *p)
8247{
8248 detach_task_cfs_rq(p);
8249}
8250
8251static void switched_to_fair(struct rq *rq, struct task_struct *p)
8252{
8253 attach_task_cfs_rq(p);
7855a35a 8254
daa59407 8255 if (task_on_rq_queued(p)) {
7855a35a 8256 /*
daa59407
BP
8257 * We were most likely switched from sched_rt, so
8258 * kick off the schedule if running, otherwise just see
8259 * if we can still preempt the current task.
7855a35a 8260 */
daa59407
BP
8261 if (rq->curr == p)
8262 resched_curr(rq);
8263 else
8264 check_preempt_curr(rq, p, 0);
7855a35a 8265 }
cb469845
SR
8266}
8267
83b699ed
SV
8268/* Account for a task changing its policy or group.
8269 *
8270 * This routine is mostly called to set cfs_rq->curr field when a task
8271 * migrates between groups/classes.
8272 */
8273static void set_curr_task_fair(struct rq *rq)
8274{
8275 struct sched_entity *se = &rq->curr->se;
8276
ec12cb7f
PT
8277 for_each_sched_entity(se) {
8278 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8279
8280 set_next_entity(cfs_rq, se);
8281 /* ensure bandwidth has been allocated on our new cfs_rq */
8282 account_cfs_rq_runtime(cfs_rq, 0);
8283 }
83b699ed
SV
8284}
8285
029632fb
PZ
8286void init_cfs_rq(struct cfs_rq *cfs_rq)
8287{
8288 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8289 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8290#ifndef CONFIG_64BIT
8291 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8292#endif
141965c7 8293#ifdef CONFIG_SMP
9d89c257
YD
8294 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8295 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8296#endif
029632fb
PZ
8297}
8298
810b3817 8299#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8300static void task_move_group_fair(struct task_struct *p)
810b3817 8301{
daa59407 8302 detach_task_cfs_rq(p);
b2b5ce02 8303 set_task_rq(p, task_cpu(p));
6efdb105
BP
8304
8305#ifdef CONFIG_SMP
8306 /* Tell se's cfs_rq has been changed -- migrated */
8307 p->se.avg.last_update_time = 0;
8308#endif
daa59407 8309 attach_task_cfs_rq(p);
810b3817 8310}
029632fb
PZ
8311
8312void free_fair_sched_group(struct task_group *tg)
8313{
8314 int i;
8315
8316 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8317
8318 for_each_possible_cpu(i) {
8319 if (tg->cfs_rq)
8320 kfree(tg->cfs_rq[i]);
6fe1f348 8321 if (tg->se)
029632fb
PZ
8322 kfree(tg->se[i]);
8323 }
8324
8325 kfree(tg->cfs_rq);
8326 kfree(tg->se);
8327}
8328
8329int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8330{
8331 struct cfs_rq *cfs_rq;
8332 struct sched_entity *se;
8333 int i;
8334
8335 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8336 if (!tg->cfs_rq)
8337 goto err;
8338 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8339 if (!tg->se)
8340 goto err;
8341
8342 tg->shares = NICE_0_LOAD;
8343
8344 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8345
8346 for_each_possible_cpu(i) {
8347 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8348 GFP_KERNEL, cpu_to_node(i));
8349 if (!cfs_rq)
8350 goto err;
8351
8352 se = kzalloc_node(sizeof(struct sched_entity),
8353 GFP_KERNEL, cpu_to_node(i));
8354 if (!se)
8355 goto err_free_rq;
8356
8357 init_cfs_rq(cfs_rq);
8358 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8359 init_entity_runnable_average(se);
029632fb
PZ
8360 }
8361
8362 return 1;
8363
8364err_free_rq:
8365 kfree(cfs_rq);
8366err:
8367 return 0;
8368}
8369
6fe1f348 8370void unregister_fair_sched_group(struct task_group *tg)
029632fb 8371{
029632fb 8372 unsigned long flags;
6fe1f348
PZ
8373 struct rq *rq;
8374 int cpu;
029632fb 8375
6fe1f348
PZ
8376 for_each_possible_cpu(cpu) {
8377 if (tg->se[cpu])
8378 remove_entity_load_avg(tg->se[cpu]);
029632fb 8379
6fe1f348
PZ
8380 /*
8381 * Only empty task groups can be destroyed; so we can speculatively
8382 * check on_list without danger of it being re-added.
8383 */
8384 if (!tg->cfs_rq[cpu]->on_list)
8385 continue;
8386
8387 rq = cpu_rq(cpu);
8388
8389 raw_spin_lock_irqsave(&rq->lock, flags);
8390 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8391 raw_spin_unlock_irqrestore(&rq->lock, flags);
8392 }
029632fb
PZ
8393}
8394
8395void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8396 struct sched_entity *se, int cpu,
8397 struct sched_entity *parent)
8398{
8399 struct rq *rq = cpu_rq(cpu);
8400
8401 cfs_rq->tg = tg;
8402 cfs_rq->rq = rq;
029632fb
PZ
8403 init_cfs_rq_runtime(cfs_rq);
8404
8405 tg->cfs_rq[cpu] = cfs_rq;
8406 tg->se[cpu] = se;
8407
8408 /* se could be NULL for root_task_group */
8409 if (!se)
8410 return;
8411
fed14d45 8412 if (!parent) {
029632fb 8413 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8414 se->depth = 0;
8415 } else {
029632fb 8416 se->cfs_rq = parent->my_q;
fed14d45
PZ
8417 se->depth = parent->depth + 1;
8418 }
029632fb
PZ
8419
8420 se->my_q = cfs_rq;
0ac9b1c2
PT
8421 /* guarantee group entities always have weight */
8422 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8423 se->parent = parent;
8424}
8425
8426static DEFINE_MUTEX(shares_mutex);
8427
8428int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8429{
8430 int i;
8431 unsigned long flags;
8432
8433 /*
8434 * We can't change the weight of the root cgroup.
8435 */
8436 if (!tg->se[0])
8437 return -EINVAL;
8438
8439 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8440
8441 mutex_lock(&shares_mutex);
8442 if (tg->shares == shares)
8443 goto done;
8444
8445 tg->shares = shares;
8446 for_each_possible_cpu(i) {
8447 struct rq *rq = cpu_rq(i);
8448 struct sched_entity *se;
8449
8450 se = tg->se[i];
8451 /* Propagate contribution to hierarchy */
8452 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8453
8454 /* Possible calls to update_curr() need rq clock */
8455 update_rq_clock(rq);
17bc14b7 8456 for_each_sched_entity(se)
029632fb
PZ
8457 update_cfs_shares(group_cfs_rq(se));
8458 raw_spin_unlock_irqrestore(&rq->lock, flags);
8459 }
8460
8461done:
8462 mutex_unlock(&shares_mutex);
8463 return 0;
8464}
8465#else /* CONFIG_FAIR_GROUP_SCHED */
8466
8467void free_fair_sched_group(struct task_group *tg) { }
8468
8469int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8470{
8471 return 1;
8472}
8473
6fe1f348 8474void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8475
8476#endif /* CONFIG_FAIR_GROUP_SCHED */
8477
810b3817 8478
6d686f45 8479static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8480{
8481 struct sched_entity *se = &task->se;
0d721cea
PW
8482 unsigned int rr_interval = 0;
8483
8484 /*
8485 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8486 * idle runqueue:
8487 */
0d721cea 8488 if (rq->cfs.load.weight)
a59f4e07 8489 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8490
8491 return rr_interval;
8492}
8493
bf0f6f24
IM
8494/*
8495 * All the scheduling class methods:
8496 */
029632fb 8497const struct sched_class fair_sched_class = {
5522d5d5 8498 .next = &idle_sched_class,
bf0f6f24
IM
8499 .enqueue_task = enqueue_task_fair,
8500 .dequeue_task = dequeue_task_fair,
8501 .yield_task = yield_task_fair,
d95f4122 8502 .yield_to_task = yield_to_task_fair,
bf0f6f24 8503
2e09bf55 8504 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8505
8506 .pick_next_task = pick_next_task_fair,
8507 .put_prev_task = put_prev_task_fair,
8508
681f3e68 8509#ifdef CONFIG_SMP
4ce72a2c 8510 .select_task_rq = select_task_rq_fair,
0a74bef8 8511 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8512
0bcdcf28
CE
8513 .rq_online = rq_online_fair,
8514 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8515
8516 .task_waking = task_waking_fair,
12695578 8517 .task_dead = task_dead_fair,
c5b28038 8518 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8519#endif
bf0f6f24 8520
83b699ed 8521 .set_curr_task = set_curr_task_fair,
bf0f6f24 8522 .task_tick = task_tick_fair,
cd29fe6f 8523 .task_fork = task_fork_fair,
cb469845
SR
8524
8525 .prio_changed = prio_changed_fair,
da7a735e 8526 .switched_from = switched_from_fair,
cb469845 8527 .switched_to = switched_to_fair,
810b3817 8528
0d721cea
PW
8529 .get_rr_interval = get_rr_interval_fair,
8530
6e998916
SG
8531 .update_curr = update_curr_fair,
8532
810b3817 8533#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8534 .task_move_group = task_move_group_fair,
810b3817 8535#endif
bf0f6f24
IM
8536};
8537
8538#ifdef CONFIG_SCHED_DEBUG
029632fb 8539void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8540{
bf0f6f24
IM
8541 struct cfs_rq *cfs_rq;
8542
5973e5b9 8543 rcu_read_lock();
c3b64f1e 8544 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8545 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8546 rcu_read_unlock();
bf0f6f24 8547}
397f2378
SD
8548
8549#ifdef CONFIG_NUMA_BALANCING
8550void show_numa_stats(struct task_struct *p, struct seq_file *m)
8551{
8552 int node;
8553 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8554
8555 for_each_online_node(node) {
8556 if (p->numa_faults) {
8557 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8558 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8559 }
8560 if (p->numa_group) {
8561 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8562 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8563 }
8564 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8565 }
8566}
8567#endif /* CONFIG_NUMA_BALANCING */
8568#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8569
8570__init void init_sched_fair_class(void)
8571{
8572#ifdef CONFIG_SMP
8573 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8574
3451d024 8575#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8576 nohz.next_balance = jiffies;
029632fb 8577 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8578 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8579#endif
8580#endif /* SMP */
8581
8582}
This page took 2.201572 seconds and 5 git commands to generate.