sched/numa: Adjust scan rate in task_numa_placement
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
6e5fb223
PZ
830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 833
4b96a29b
PZ
834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
598f0ec0
MG
837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
3a7053b3
MG
882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
6fe6b2d6 889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 890
0ec8aa00
PZ
891static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
892{
893 rq->nr_numa_running += (p->numa_preferred_nid != -1);
894 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
895}
896
897static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
898{
899 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
900 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
901}
902
8c8a743c
PZ
903struct numa_group {
904 atomic_t refcount;
905
906 spinlock_t lock; /* nr_tasks, tasks */
907 int nr_tasks;
e29cf08b 908 pid_t gid;
8c8a743c
PZ
909 struct list_head task_list;
910
911 struct rcu_head rcu;
83e1d2cd 912 atomic_long_t total_faults;
8c8a743c
PZ
913 atomic_long_t faults[0];
914};
915
e29cf08b
MG
916pid_t task_numa_group_id(struct task_struct *p)
917{
918 return p->numa_group ? p->numa_group->gid : 0;
919}
920
ac8e895b
MG
921static inline int task_faults_idx(int nid, int priv)
922{
923 return 2 * nid + priv;
924}
925
926static inline unsigned long task_faults(struct task_struct *p, int nid)
927{
928 if (!p->numa_faults)
929 return 0;
930
931 return p->numa_faults[task_faults_idx(nid, 0)] +
932 p->numa_faults[task_faults_idx(nid, 1)];
933}
934
83e1d2cd
MG
935static inline unsigned long group_faults(struct task_struct *p, int nid)
936{
937 if (!p->numa_group)
938 return 0;
939
940 return atomic_long_read(&p->numa_group->faults[2*nid]) +
941 atomic_long_read(&p->numa_group->faults[2*nid+1]);
942}
943
944/*
945 * These return the fraction of accesses done by a particular task, or
946 * task group, on a particular numa node. The group weight is given a
947 * larger multiplier, in order to group tasks together that are almost
948 * evenly spread out between numa nodes.
949 */
950static inline unsigned long task_weight(struct task_struct *p, int nid)
951{
952 unsigned long total_faults;
953
954 if (!p->numa_faults)
955 return 0;
956
957 total_faults = p->total_numa_faults;
958
959 if (!total_faults)
960 return 0;
961
962 return 1000 * task_faults(p, nid) / total_faults;
963}
964
965static inline unsigned long group_weight(struct task_struct *p, int nid)
966{
967 unsigned long total_faults;
968
969 if (!p->numa_group)
970 return 0;
971
972 total_faults = atomic_long_read(&p->numa_group->total_faults);
973
974 if (!total_faults)
975 return 0;
976
ca28aa53 977 return 1000 * group_faults(p, nid) / total_faults;
83e1d2cd
MG
978}
979
e6628d5b 980static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
981static unsigned long source_load(int cpu, int type);
982static unsigned long target_load(int cpu, int type);
983static unsigned long power_of(int cpu);
984static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
985
fb13c7ee 986/* Cached statistics for all CPUs within a node */
58d081b5 987struct numa_stats {
fb13c7ee 988 unsigned long nr_running;
58d081b5 989 unsigned long load;
fb13c7ee
MG
990
991 /* Total compute capacity of CPUs on a node */
992 unsigned long power;
993
994 /* Approximate capacity in terms of runnable tasks on a node */
995 unsigned long capacity;
996 int has_capacity;
58d081b5 997};
e6628d5b 998
fb13c7ee
MG
999/*
1000 * XXX borrowed from update_sg_lb_stats
1001 */
1002static void update_numa_stats(struct numa_stats *ns, int nid)
1003{
1004 int cpu;
1005
1006 memset(ns, 0, sizeof(*ns));
1007 for_each_cpu(cpu, cpumask_of_node(nid)) {
1008 struct rq *rq = cpu_rq(cpu);
1009
1010 ns->nr_running += rq->nr_running;
1011 ns->load += weighted_cpuload(cpu);
1012 ns->power += power_of(cpu);
1013 }
1014
1015 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1016 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1017 ns->has_capacity = (ns->nr_running < ns->capacity);
1018}
1019
58d081b5
MG
1020struct task_numa_env {
1021 struct task_struct *p;
e6628d5b 1022
58d081b5
MG
1023 int src_cpu, src_nid;
1024 int dst_cpu, dst_nid;
e6628d5b 1025
58d081b5 1026 struct numa_stats src_stats, dst_stats;
e6628d5b 1027
fb13c7ee
MG
1028 int imbalance_pct, idx;
1029
1030 struct task_struct *best_task;
1031 long best_imp;
58d081b5
MG
1032 int best_cpu;
1033};
1034
fb13c7ee
MG
1035static void task_numa_assign(struct task_numa_env *env,
1036 struct task_struct *p, long imp)
1037{
1038 if (env->best_task)
1039 put_task_struct(env->best_task);
1040 if (p)
1041 get_task_struct(p);
1042
1043 env->best_task = p;
1044 env->best_imp = imp;
1045 env->best_cpu = env->dst_cpu;
1046}
1047
1048/*
1049 * This checks if the overall compute and NUMA accesses of the system would
1050 * be improved if the source tasks was migrated to the target dst_cpu taking
1051 * into account that it might be best if task running on the dst_cpu should
1052 * be exchanged with the source task
1053 */
887c290e
RR
1054static void task_numa_compare(struct task_numa_env *env,
1055 long taskimp, long groupimp)
fb13c7ee
MG
1056{
1057 struct rq *src_rq = cpu_rq(env->src_cpu);
1058 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1059 struct task_struct *cur;
1060 long dst_load, src_load;
1061 long load;
887c290e 1062 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1063
1064 rcu_read_lock();
1065 cur = ACCESS_ONCE(dst_rq->curr);
1066 if (cur->pid == 0) /* idle */
1067 cur = NULL;
1068
1069 /*
1070 * "imp" is the fault differential for the source task between the
1071 * source and destination node. Calculate the total differential for
1072 * the source task and potential destination task. The more negative
1073 * the value is, the more rmeote accesses that would be expected to
1074 * be incurred if the tasks were swapped.
1075 */
1076 if (cur) {
1077 /* Skip this swap candidate if cannot move to the source cpu */
1078 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1079 goto unlock;
1080
887c290e
RR
1081 /*
1082 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1083 * in any group then look only at task weights.
887c290e 1084 */
ca28aa53 1085 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1086 imp = taskimp + task_weight(cur, env->src_nid) -
1087 task_weight(cur, env->dst_nid);
ca28aa53
RR
1088 /*
1089 * Add some hysteresis to prevent swapping the
1090 * tasks within a group over tiny differences.
1091 */
1092 if (cur->numa_group)
1093 imp -= imp/16;
887c290e 1094 } else {
ca28aa53
RR
1095 /*
1096 * Compare the group weights. If a task is all by
1097 * itself (not part of a group), use the task weight
1098 * instead.
1099 */
1100 if (env->p->numa_group)
1101 imp = groupimp;
1102 else
1103 imp = taskimp;
1104
1105 if (cur->numa_group)
1106 imp += group_weight(cur, env->src_nid) -
1107 group_weight(cur, env->dst_nid);
1108 else
1109 imp += task_weight(cur, env->src_nid) -
1110 task_weight(cur, env->dst_nid);
887c290e 1111 }
fb13c7ee
MG
1112 }
1113
1114 if (imp < env->best_imp)
1115 goto unlock;
1116
1117 if (!cur) {
1118 /* Is there capacity at our destination? */
1119 if (env->src_stats.has_capacity &&
1120 !env->dst_stats.has_capacity)
1121 goto unlock;
1122
1123 goto balance;
1124 }
1125
1126 /* Balance doesn't matter much if we're running a task per cpu */
1127 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1128 goto assign;
1129
1130 /*
1131 * In the overloaded case, try and keep the load balanced.
1132 */
1133balance:
1134 dst_load = env->dst_stats.load;
1135 src_load = env->src_stats.load;
1136
1137 /* XXX missing power terms */
1138 load = task_h_load(env->p);
1139 dst_load += load;
1140 src_load -= load;
1141
1142 if (cur) {
1143 load = task_h_load(cur);
1144 dst_load -= load;
1145 src_load += load;
1146 }
1147
1148 /* make src_load the smaller */
1149 if (dst_load < src_load)
1150 swap(dst_load, src_load);
1151
1152 if (src_load * env->imbalance_pct < dst_load * 100)
1153 goto unlock;
1154
1155assign:
1156 task_numa_assign(env, cur, imp);
1157unlock:
1158 rcu_read_unlock();
1159}
1160
887c290e
RR
1161static void task_numa_find_cpu(struct task_numa_env *env,
1162 long taskimp, long groupimp)
2c8a50aa
MG
1163{
1164 int cpu;
1165
1166 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1167 /* Skip this CPU if the source task cannot migrate */
1168 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1169 continue;
1170
1171 env->dst_cpu = cpu;
887c290e 1172 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1173 }
1174}
1175
58d081b5
MG
1176static int task_numa_migrate(struct task_struct *p)
1177{
58d081b5
MG
1178 struct task_numa_env env = {
1179 .p = p,
fb13c7ee 1180
58d081b5 1181 .src_cpu = task_cpu(p),
b32e86b4 1182 .src_nid = task_node(p),
fb13c7ee
MG
1183
1184 .imbalance_pct = 112,
1185
1186 .best_task = NULL,
1187 .best_imp = 0,
1188 .best_cpu = -1
58d081b5
MG
1189 };
1190 struct sched_domain *sd;
887c290e 1191 unsigned long taskweight, groupweight;
2c8a50aa 1192 int nid, ret;
887c290e 1193 long taskimp, groupimp;
e6628d5b 1194
58d081b5 1195 /*
fb13c7ee
MG
1196 * Pick the lowest SD_NUMA domain, as that would have the smallest
1197 * imbalance and would be the first to start moving tasks about.
1198 *
1199 * And we want to avoid any moving of tasks about, as that would create
1200 * random movement of tasks -- counter the numa conditions we're trying
1201 * to satisfy here.
58d081b5
MG
1202 */
1203 rcu_read_lock();
fb13c7ee
MG
1204 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1205 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1206 rcu_read_unlock();
1207
887c290e
RR
1208 taskweight = task_weight(p, env.src_nid);
1209 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1210 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1211 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1212 taskimp = task_weight(p, env.dst_nid) - taskweight;
1213 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1214 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1215
e1dda8a7
RR
1216 /* If the preferred nid has capacity, try to use it. */
1217 if (env.dst_stats.has_capacity)
887c290e 1218 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1219
1220 /* No space available on the preferred nid. Look elsewhere. */
1221 if (env.best_cpu == -1) {
2c8a50aa
MG
1222 for_each_online_node(nid) {
1223 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1224 continue;
58d081b5 1225
83e1d2cd 1226 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1227 taskimp = task_weight(p, nid) - taskweight;
1228 groupimp = group_weight(p, nid) - groupweight;
1229 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1230 continue;
1231
2c8a50aa
MG
1232 env.dst_nid = nid;
1233 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1234 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1235 }
1236 }
1237
fb13c7ee
MG
1238 /* No better CPU than the current one was found. */
1239 if (env.best_cpu == -1)
1240 return -EAGAIN;
1241
0ec8aa00
PZ
1242 sched_setnuma(p, env.dst_nid);
1243
04bb2f94
RR
1244 /*
1245 * Reset the scan period if the task is being rescheduled on an
1246 * alternative node to recheck if the tasks is now properly placed.
1247 */
1248 p->numa_scan_period = task_scan_min(p);
1249
fb13c7ee
MG
1250 if (env.best_task == NULL) {
1251 int ret = migrate_task_to(p, env.best_cpu);
1252 return ret;
1253 }
1254
1255 ret = migrate_swap(p, env.best_task);
1256 put_task_struct(env.best_task);
1257 return ret;
e6628d5b
MG
1258}
1259
6b9a7460
MG
1260/* Attempt to migrate a task to a CPU on the preferred node. */
1261static void numa_migrate_preferred(struct task_struct *p)
1262{
1263 /* Success if task is already running on preferred CPU */
1264 p->numa_migrate_retry = 0;
06ea5e03
RR
1265 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1266 /*
1267 * If migration is temporarily disabled due to a task migration
1268 * then re-enable it now as the task is running on its
1269 * preferred node and memory should migrate locally
1270 */
1271 if (!p->numa_migrate_seq)
1272 p->numa_migrate_seq++;
6b9a7460 1273 return;
06ea5e03 1274 }
6b9a7460
MG
1275
1276 /* This task has no NUMA fault statistics yet */
1277 if (unlikely(p->numa_preferred_nid == -1))
1278 return;
1279
1280 /* Otherwise, try migrate to a CPU on the preferred node */
1281 if (task_numa_migrate(p) != 0)
1282 p->numa_migrate_retry = jiffies + HZ*5;
1283}
1284
04bb2f94
RR
1285/*
1286 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1287 * increments. The more local the fault statistics are, the higher the scan
1288 * period will be for the next scan window. If local/remote ratio is below
1289 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1290 * scan period will decrease
1291 */
1292#define NUMA_PERIOD_SLOTS 10
1293#define NUMA_PERIOD_THRESHOLD 3
1294
1295/*
1296 * Increase the scan period (slow down scanning) if the majority of
1297 * our memory is already on our local node, or if the majority of
1298 * the page accesses are shared with other processes.
1299 * Otherwise, decrease the scan period.
1300 */
1301static void update_task_scan_period(struct task_struct *p,
1302 unsigned long shared, unsigned long private)
1303{
1304 unsigned int period_slot;
1305 int ratio;
1306 int diff;
1307
1308 unsigned long remote = p->numa_faults_locality[0];
1309 unsigned long local = p->numa_faults_locality[1];
1310
1311 /*
1312 * If there were no record hinting faults then either the task is
1313 * completely idle or all activity is areas that are not of interest
1314 * to automatic numa balancing. Scan slower
1315 */
1316 if (local + shared == 0) {
1317 p->numa_scan_period = min(p->numa_scan_period_max,
1318 p->numa_scan_period << 1);
1319
1320 p->mm->numa_next_scan = jiffies +
1321 msecs_to_jiffies(p->numa_scan_period);
1322
1323 return;
1324 }
1325
1326 /*
1327 * Prepare to scale scan period relative to the current period.
1328 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1329 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1330 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1331 */
1332 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1333 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1334 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1335 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1336 if (!slot)
1337 slot = 1;
1338 diff = slot * period_slot;
1339 } else {
1340 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1341
1342 /*
1343 * Scale scan rate increases based on sharing. There is an
1344 * inverse relationship between the degree of sharing and
1345 * the adjustment made to the scanning period. Broadly
1346 * speaking the intent is that there is little point
1347 * scanning faster if shared accesses dominate as it may
1348 * simply bounce migrations uselessly
1349 */
1350 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1351 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1352 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1353 }
1354
1355 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1356 task_scan_min(p), task_scan_max(p));
1357 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1358}
1359
cbee9f88
PZ
1360static void task_numa_placement(struct task_struct *p)
1361{
83e1d2cd
MG
1362 int seq, nid, max_nid = -1, max_group_nid = -1;
1363 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1364 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1365 spinlock_t *group_lock = NULL;
cbee9f88 1366
2832bc19 1367 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1368 if (p->numa_scan_seq == seq)
1369 return;
1370 p->numa_scan_seq = seq;
3a7053b3 1371 p->numa_migrate_seq++;
598f0ec0 1372 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1373
7dbd13ed
MG
1374 /* If the task is part of a group prevent parallel updates to group stats */
1375 if (p->numa_group) {
1376 group_lock = &p->numa_group->lock;
1377 spin_lock(group_lock);
1378 }
1379
688b7585
MG
1380 /* Find the node with the highest number of faults */
1381 for_each_online_node(nid) {
83e1d2cd 1382 unsigned long faults = 0, group_faults = 0;
ac8e895b 1383 int priv, i;
745d6147 1384
ac8e895b 1385 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1386 long diff;
1387
ac8e895b 1388 i = task_faults_idx(nid, priv);
8c8a743c 1389 diff = -p->numa_faults[i];
745d6147 1390
ac8e895b
MG
1391 /* Decay existing window, copy faults since last scan */
1392 p->numa_faults[i] >>= 1;
1393 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1394 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1395 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1396
1397 faults += p->numa_faults[i];
8c8a743c 1398 diff += p->numa_faults[i];
83e1d2cd 1399 p->total_numa_faults += diff;
8c8a743c
PZ
1400 if (p->numa_group) {
1401 /* safe because we can only change our own group */
1402 atomic_long_add(diff, &p->numa_group->faults[i]);
83e1d2cd
MG
1403 atomic_long_add(diff, &p->numa_group->total_faults);
1404 group_faults += atomic_long_read(&p->numa_group->faults[i]);
8c8a743c 1405 }
ac8e895b
MG
1406 }
1407
688b7585
MG
1408 if (faults > max_faults) {
1409 max_faults = faults;
1410 max_nid = nid;
1411 }
83e1d2cd
MG
1412
1413 if (group_faults > max_group_faults) {
1414 max_group_faults = group_faults;
1415 max_group_nid = nid;
1416 }
1417 }
1418
04bb2f94
RR
1419 update_task_scan_period(p, fault_types[0], fault_types[1]);
1420
7dbd13ed
MG
1421 if (p->numa_group) {
1422 /*
1423 * If the preferred task and group nids are different,
1424 * iterate over the nodes again to find the best place.
1425 */
1426 if (max_nid != max_group_nid) {
1427 unsigned long weight, max_weight = 0;
1428
1429 for_each_online_node(nid) {
1430 weight = task_weight(p, nid) + group_weight(p, nid);
1431 if (weight > max_weight) {
1432 max_weight = weight;
1433 max_nid = nid;
1434 }
83e1d2cd
MG
1435 }
1436 }
7dbd13ed
MG
1437
1438 spin_unlock(group_lock);
688b7585
MG
1439 }
1440
6b9a7460 1441 /* Preferred node as the node with the most faults */
3a7053b3 1442 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1443 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1444 sched_setnuma(p, max_nid);
6b9a7460 1445 numa_migrate_preferred(p);
3a7053b3 1446 }
cbee9f88
PZ
1447}
1448
8c8a743c
PZ
1449static inline int get_numa_group(struct numa_group *grp)
1450{
1451 return atomic_inc_not_zero(&grp->refcount);
1452}
1453
1454static inline void put_numa_group(struct numa_group *grp)
1455{
1456 if (atomic_dec_and_test(&grp->refcount))
1457 kfree_rcu(grp, rcu);
1458}
1459
1460static void double_lock(spinlock_t *l1, spinlock_t *l2)
1461{
1462 if (l1 > l2)
1463 swap(l1, l2);
1464
1465 spin_lock(l1);
1466 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1467}
1468
3e6a9418
MG
1469static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1470 int *priv)
8c8a743c
PZ
1471{
1472 struct numa_group *grp, *my_grp;
1473 struct task_struct *tsk;
1474 bool join = false;
1475 int cpu = cpupid_to_cpu(cpupid);
1476 int i;
1477
1478 if (unlikely(!p->numa_group)) {
1479 unsigned int size = sizeof(struct numa_group) +
1480 2*nr_node_ids*sizeof(atomic_long_t);
1481
1482 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1483 if (!grp)
1484 return;
1485
1486 atomic_set(&grp->refcount, 1);
1487 spin_lock_init(&grp->lock);
1488 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1489 grp->gid = p->pid;
8c8a743c
PZ
1490
1491 for (i = 0; i < 2*nr_node_ids; i++)
1492 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1493
83e1d2cd
MG
1494 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1495
8c8a743c
PZ
1496 list_add(&p->numa_entry, &grp->task_list);
1497 grp->nr_tasks++;
1498 rcu_assign_pointer(p->numa_group, grp);
1499 }
1500
1501 rcu_read_lock();
1502 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1503
1504 if (!cpupid_match_pid(tsk, cpupid))
1505 goto unlock;
1506
1507 grp = rcu_dereference(tsk->numa_group);
1508 if (!grp)
1509 goto unlock;
1510
1511 my_grp = p->numa_group;
1512 if (grp == my_grp)
1513 goto unlock;
1514
1515 /*
1516 * Only join the other group if its bigger; if we're the bigger group,
1517 * the other task will join us.
1518 */
1519 if (my_grp->nr_tasks > grp->nr_tasks)
1520 goto unlock;
1521
1522 /*
1523 * Tie-break on the grp address.
1524 */
1525 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1526 goto unlock;
1527
dabe1d99
RR
1528 /* Always join threads in the same process. */
1529 if (tsk->mm == current->mm)
1530 join = true;
1531
1532 /* Simple filter to avoid false positives due to PID collisions */
1533 if (flags & TNF_SHARED)
1534 join = true;
8c8a743c 1535
3e6a9418
MG
1536 /* Update priv based on whether false sharing was detected */
1537 *priv = !join;
1538
dabe1d99
RR
1539 if (join && !get_numa_group(grp))
1540 join = false;
8c8a743c
PZ
1541
1542unlock:
1543 rcu_read_unlock();
1544
1545 if (!join)
1546 return;
1547
1548 for (i = 0; i < 2*nr_node_ids; i++) {
1549 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1550 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1551 }
83e1d2cd
MG
1552 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1553 atomic_long_add(p->total_numa_faults, &grp->total_faults);
8c8a743c
PZ
1554
1555 double_lock(&my_grp->lock, &grp->lock);
1556
1557 list_move(&p->numa_entry, &grp->task_list);
1558 my_grp->nr_tasks--;
1559 grp->nr_tasks++;
1560
1561 spin_unlock(&my_grp->lock);
1562 spin_unlock(&grp->lock);
1563
1564 rcu_assign_pointer(p->numa_group, grp);
1565
1566 put_numa_group(my_grp);
1567}
1568
1569void task_numa_free(struct task_struct *p)
1570{
1571 struct numa_group *grp = p->numa_group;
1572 int i;
82727018 1573 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1574
1575 if (grp) {
1576 for (i = 0; i < 2*nr_node_ids; i++)
1577 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1578
83e1d2cd
MG
1579 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1580
8c8a743c
PZ
1581 spin_lock(&grp->lock);
1582 list_del(&p->numa_entry);
1583 grp->nr_tasks--;
1584 spin_unlock(&grp->lock);
1585 rcu_assign_pointer(p->numa_group, NULL);
1586 put_numa_group(grp);
1587 }
1588
82727018
RR
1589 p->numa_faults = NULL;
1590 p->numa_faults_buffer = NULL;
1591 kfree(numa_faults);
8c8a743c
PZ
1592}
1593
cbee9f88
PZ
1594/*
1595 * Got a PROT_NONE fault for a page on @node.
1596 */
6688cc05 1597void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1598{
1599 struct task_struct *p = current;
6688cc05 1600 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1601 int priv;
cbee9f88 1602
10e84b97 1603 if (!numabalancing_enabled)
1a687c2e
MG
1604 return;
1605
9ff1d9ff
MG
1606 /* for example, ksmd faulting in a user's mm */
1607 if (!p->mm)
1608 return;
1609
82727018
RR
1610 /* Do not worry about placement if exiting */
1611 if (p->state == TASK_DEAD)
1612 return;
1613
f809ca9a
MG
1614 /* Allocate buffer to track faults on a per-node basis */
1615 if (unlikely(!p->numa_faults)) {
ac8e895b 1616 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1617
745d6147
MG
1618 /* numa_faults and numa_faults_buffer share the allocation */
1619 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1620 if (!p->numa_faults)
1621 return;
745d6147
MG
1622
1623 BUG_ON(p->numa_faults_buffer);
ac8e895b 1624 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1625 p->total_numa_faults = 0;
04bb2f94 1626 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1627 }
cbee9f88 1628
8c8a743c
PZ
1629 /*
1630 * First accesses are treated as private, otherwise consider accesses
1631 * to be private if the accessing pid has not changed
1632 */
1633 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1634 priv = 1;
1635 } else {
1636 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1637 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1638 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1639 }
1640
cbee9f88 1641 task_numa_placement(p);
f809ca9a 1642
6b9a7460
MG
1643 /* Retry task to preferred node migration if it previously failed */
1644 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1645 numa_migrate_preferred(p);
1646
b32e86b4
IM
1647 if (migrated)
1648 p->numa_pages_migrated += pages;
1649
ac8e895b 1650 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1651 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1652}
1653
6e5fb223
PZ
1654static void reset_ptenuma_scan(struct task_struct *p)
1655{
1656 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1657 p->mm->numa_scan_offset = 0;
1658}
1659
cbee9f88
PZ
1660/*
1661 * The expensive part of numa migration is done from task_work context.
1662 * Triggered from task_tick_numa().
1663 */
1664void task_numa_work(struct callback_head *work)
1665{
1666 unsigned long migrate, next_scan, now = jiffies;
1667 struct task_struct *p = current;
1668 struct mm_struct *mm = p->mm;
6e5fb223 1669 struct vm_area_struct *vma;
9f40604c 1670 unsigned long start, end;
598f0ec0 1671 unsigned long nr_pte_updates = 0;
9f40604c 1672 long pages;
cbee9f88
PZ
1673
1674 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1675
1676 work->next = work; /* protect against double add */
1677 /*
1678 * Who cares about NUMA placement when they're dying.
1679 *
1680 * NOTE: make sure not to dereference p->mm before this check,
1681 * exit_task_work() happens _after_ exit_mm() so we could be called
1682 * without p->mm even though we still had it when we enqueued this
1683 * work.
1684 */
1685 if (p->flags & PF_EXITING)
1686 return;
1687
7e8d16b6
MG
1688 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1689 mm->numa_next_scan = now +
1690 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1691 mm->numa_next_reset = now +
1692 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1693 }
1694
b8593bfd
MG
1695 /*
1696 * Reset the scan period if enough time has gone by. Objective is that
1697 * scanning will be reduced if pages are properly placed. As tasks
1698 * can enter different phases this needs to be re-examined. Lacking
1699 * proper tracking of reference behaviour, this blunt hammer is used.
1700 */
1701 migrate = mm->numa_next_reset;
1702 if (time_after(now, migrate)) {
598f0ec0 1703 p->numa_scan_period = task_scan_min(p);
b8593bfd
MG
1704 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1705 xchg(&mm->numa_next_reset, next_scan);
1706 }
1707
cbee9f88
PZ
1708 /*
1709 * Enforce maximal scan/migration frequency..
1710 */
1711 migrate = mm->numa_next_scan;
1712 if (time_before(now, migrate))
1713 return;
1714
598f0ec0
MG
1715 if (p->numa_scan_period == 0) {
1716 p->numa_scan_period_max = task_scan_max(p);
1717 p->numa_scan_period = task_scan_min(p);
1718 }
cbee9f88 1719
fb003b80 1720 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1721 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1722 return;
1723
19a78d11
PZ
1724 /*
1725 * Delay this task enough that another task of this mm will likely win
1726 * the next time around.
1727 */
1728 p->node_stamp += 2 * TICK_NSEC;
1729
9f40604c
MG
1730 start = mm->numa_scan_offset;
1731 pages = sysctl_numa_balancing_scan_size;
1732 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1733 if (!pages)
1734 return;
cbee9f88 1735
6e5fb223 1736 down_read(&mm->mmap_sem);
9f40604c 1737 vma = find_vma(mm, start);
6e5fb223
PZ
1738 if (!vma) {
1739 reset_ptenuma_scan(p);
9f40604c 1740 start = 0;
6e5fb223
PZ
1741 vma = mm->mmap;
1742 }
9f40604c 1743 for (; vma; vma = vma->vm_next) {
fc314724 1744 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1745 continue;
1746
4591ce4f
MG
1747 /*
1748 * Shared library pages mapped by multiple processes are not
1749 * migrated as it is expected they are cache replicated. Avoid
1750 * hinting faults in read-only file-backed mappings or the vdso
1751 * as migrating the pages will be of marginal benefit.
1752 */
1753 if (!vma->vm_mm ||
1754 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1755 continue;
1756
9f40604c
MG
1757 do {
1758 start = max(start, vma->vm_start);
1759 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1760 end = min(end, vma->vm_end);
598f0ec0
MG
1761 nr_pte_updates += change_prot_numa(vma, start, end);
1762
1763 /*
1764 * Scan sysctl_numa_balancing_scan_size but ensure that
1765 * at least one PTE is updated so that unused virtual
1766 * address space is quickly skipped.
1767 */
1768 if (nr_pte_updates)
1769 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1770
9f40604c
MG
1771 start = end;
1772 if (pages <= 0)
1773 goto out;
1774 } while (end != vma->vm_end);
cbee9f88 1775 }
6e5fb223 1776
9f40604c 1777out:
6e5fb223 1778 /*
c69307d5
PZ
1779 * It is possible to reach the end of the VMA list but the last few
1780 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1781 * would find the !migratable VMA on the next scan but not reset the
1782 * scanner to the start so check it now.
6e5fb223
PZ
1783 */
1784 if (vma)
9f40604c 1785 mm->numa_scan_offset = start;
6e5fb223
PZ
1786 else
1787 reset_ptenuma_scan(p);
1788 up_read(&mm->mmap_sem);
cbee9f88
PZ
1789}
1790
1791/*
1792 * Drive the periodic memory faults..
1793 */
1794void task_tick_numa(struct rq *rq, struct task_struct *curr)
1795{
1796 struct callback_head *work = &curr->numa_work;
1797 u64 period, now;
1798
1799 /*
1800 * We don't care about NUMA placement if we don't have memory.
1801 */
1802 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1803 return;
1804
1805 /*
1806 * Using runtime rather than walltime has the dual advantage that
1807 * we (mostly) drive the selection from busy threads and that the
1808 * task needs to have done some actual work before we bother with
1809 * NUMA placement.
1810 */
1811 now = curr->se.sum_exec_runtime;
1812 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1813
1814 if (now - curr->node_stamp > period) {
4b96a29b 1815 if (!curr->node_stamp)
598f0ec0 1816 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1817 curr->node_stamp += period;
cbee9f88
PZ
1818
1819 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1820 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1821 task_work_add(curr, work, true);
1822 }
1823 }
1824}
1825#else
1826static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1827{
1828}
0ec8aa00
PZ
1829
1830static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1831{
1832}
1833
1834static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1835{
1836}
cbee9f88
PZ
1837#endif /* CONFIG_NUMA_BALANCING */
1838
30cfdcfc
DA
1839static void
1840account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1841{
1842 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1843 if (!parent_entity(se))
029632fb 1844 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1845#ifdef CONFIG_SMP
0ec8aa00
PZ
1846 if (entity_is_task(se)) {
1847 struct rq *rq = rq_of(cfs_rq);
1848
1849 account_numa_enqueue(rq, task_of(se));
1850 list_add(&se->group_node, &rq->cfs_tasks);
1851 }
367456c7 1852#endif
30cfdcfc 1853 cfs_rq->nr_running++;
30cfdcfc
DA
1854}
1855
1856static void
1857account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1858{
1859 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1860 if (!parent_entity(se))
029632fb 1861 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1862 if (entity_is_task(se)) {
1863 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1864 list_del_init(&se->group_node);
0ec8aa00 1865 }
30cfdcfc 1866 cfs_rq->nr_running--;
30cfdcfc
DA
1867}
1868
3ff6dcac
YZ
1869#ifdef CONFIG_FAIR_GROUP_SCHED
1870# ifdef CONFIG_SMP
cf5f0acf
PZ
1871static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1872{
1873 long tg_weight;
1874
1875 /*
1876 * Use this CPU's actual weight instead of the last load_contribution
1877 * to gain a more accurate current total weight. See
1878 * update_cfs_rq_load_contribution().
1879 */
bf5b986e 1880 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1881 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1882 tg_weight += cfs_rq->load.weight;
1883
1884 return tg_weight;
1885}
1886
6d5ab293 1887static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1888{
cf5f0acf 1889 long tg_weight, load, shares;
3ff6dcac 1890
cf5f0acf 1891 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1892 load = cfs_rq->load.weight;
3ff6dcac 1893
3ff6dcac 1894 shares = (tg->shares * load);
cf5f0acf
PZ
1895 if (tg_weight)
1896 shares /= tg_weight;
3ff6dcac
YZ
1897
1898 if (shares < MIN_SHARES)
1899 shares = MIN_SHARES;
1900 if (shares > tg->shares)
1901 shares = tg->shares;
1902
1903 return shares;
1904}
3ff6dcac 1905# else /* CONFIG_SMP */
6d5ab293 1906static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1907{
1908 return tg->shares;
1909}
3ff6dcac 1910# endif /* CONFIG_SMP */
2069dd75
PZ
1911static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1912 unsigned long weight)
1913{
19e5eebb
PT
1914 if (se->on_rq) {
1915 /* commit outstanding execution time */
1916 if (cfs_rq->curr == se)
1917 update_curr(cfs_rq);
2069dd75 1918 account_entity_dequeue(cfs_rq, se);
19e5eebb 1919 }
2069dd75
PZ
1920
1921 update_load_set(&se->load, weight);
1922
1923 if (se->on_rq)
1924 account_entity_enqueue(cfs_rq, se);
1925}
1926
82958366
PT
1927static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1928
6d5ab293 1929static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1930{
1931 struct task_group *tg;
1932 struct sched_entity *se;
3ff6dcac 1933 long shares;
2069dd75 1934
2069dd75
PZ
1935 tg = cfs_rq->tg;
1936 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1937 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1938 return;
3ff6dcac
YZ
1939#ifndef CONFIG_SMP
1940 if (likely(se->load.weight == tg->shares))
1941 return;
1942#endif
6d5ab293 1943 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1944
1945 reweight_entity(cfs_rq_of(se), se, shares);
1946}
1947#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1948static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1949{
1950}
1951#endif /* CONFIG_FAIR_GROUP_SCHED */
1952
141965c7 1953#ifdef CONFIG_SMP
5b51f2f8
PT
1954/*
1955 * We choose a half-life close to 1 scheduling period.
1956 * Note: The tables below are dependent on this value.
1957 */
1958#define LOAD_AVG_PERIOD 32
1959#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1960#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1961
1962/* Precomputed fixed inverse multiplies for multiplication by y^n */
1963static const u32 runnable_avg_yN_inv[] = {
1964 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1965 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1966 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1967 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1968 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1969 0x85aac367, 0x82cd8698,
1970};
1971
1972/*
1973 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1974 * over-estimates when re-combining.
1975 */
1976static const u32 runnable_avg_yN_sum[] = {
1977 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1978 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1979 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1980};
1981
9d85f21c
PT
1982/*
1983 * Approximate:
1984 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1985 */
1986static __always_inline u64 decay_load(u64 val, u64 n)
1987{
5b51f2f8
PT
1988 unsigned int local_n;
1989
1990 if (!n)
1991 return val;
1992 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1993 return 0;
1994
1995 /* after bounds checking we can collapse to 32-bit */
1996 local_n = n;
1997
1998 /*
1999 * As y^PERIOD = 1/2, we can combine
2000 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2001 * With a look-up table which covers k^n (n<PERIOD)
2002 *
2003 * To achieve constant time decay_load.
2004 */
2005 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2006 val >>= local_n / LOAD_AVG_PERIOD;
2007 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2008 }
2009
5b51f2f8
PT
2010 val *= runnable_avg_yN_inv[local_n];
2011 /* We don't use SRR here since we always want to round down. */
2012 return val >> 32;
2013}
2014
2015/*
2016 * For updates fully spanning n periods, the contribution to runnable
2017 * average will be: \Sum 1024*y^n
2018 *
2019 * We can compute this reasonably efficiently by combining:
2020 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2021 */
2022static u32 __compute_runnable_contrib(u64 n)
2023{
2024 u32 contrib = 0;
2025
2026 if (likely(n <= LOAD_AVG_PERIOD))
2027 return runnable_avg_yN_sum[n];
2028 else if (unlikely(n >= LOAD_AVG_MAX_N))
2029 return LOAD_AVG_MAX;
2030
2031 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2032 do {
2033 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2034 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2035
2036 n -= LOAD_AVG_PERIOD;
2037 } while (n > LOAD_AVG_PERIOD);
2038
2039 contrib = decay_load(contrib, n);
2040 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2041}
2042
2043/*
2044 * We can represent the historical contribution to runnable average as the
2045 * coefficients of a geometric series. To do this we sub-divide our runnable
2046 * history into segments of approximately 1ms (1024us); label the segment that
2047 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2048 *
2049 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2050 * p0 p1 p2
2051 * (now) (~1ms ago) (~2ms ago)
2052 *
2053 * Let u_i denote the fraction of p_i that the entity was runnable.
2054 *
2055 * We then designate the fractions u_i as our co-efficients, yielding the
2056 * following representation of historical load:
2057 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2058 *
2059 * We choose y based on the with of a reasonably scheduling period, fixing:
2060 * y^32 = 0.5
2061 *
2062 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2063 * approximately half as much as the contribution to load within the last ms
2064 * (u_0).
2065 *
2066 * When a period "rolls over" and we have new u_0`, multiplying the previous
2067 * sum again by y is sufficient to update:
2068 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2069 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2070 */
2071static __always_inline int __update_entity_runnable_avg(u64 now,
2072 struct sched_avg *sa,
2073 int runnable)
2074{
5b51f2f8
PT
2075 u64 delta, periods;
2076 u32 runnable_contrib;
9d85f21c
PT
2077 int delta_w, decayed = 0;
2078
2079 delta = now - sa->last_runnable_update;
2080 /*
2081 * This should only happen when time goes backwards, which it
2082 * unfortunately does during sched clock init when we swap over to TSC.
2083 */
2084 if ((s64)delta < 0) {
2085 sa->last_runnable_update = now;
2086 return 0;
2087 }
2088
2089 /*
2090 * Use 1024ns as the unit of measurement since it's a reasonable
2091 * approximation of 1us and fast to compute.
2092 */
2093 delta >>= 10;
2094 if (!delta)
2095 return 0;
2096 sa->last_runnable_update = now;
2097
2098 /* delta_w is the amount already accumulated against our next period */
2099 delta_w = sa->runnable_avg_period % 1024;
2100 if (delta + delta_w >= 1024) {
2101 /* period roll-over */
2102 decayed = 1;
2103
2104 /*
2105 * Now that we know we're crossing a period boundary, figure
2106 * out how much from delta we need to complete the current
2107 * period and accrue it.
2108 */
2109 delta_w = 1024 - delta_w;
5b51f2f8
PT
2110 if (runnable)
2111 sa->runnable_avg_sum += delta_w;
2112 sa->runnable_avg_period += delta_w;
2113
2114 delta -= delta_w;
2115
2116 /* Figure out how many additional periods this update spans */
2117 periods = delta / 1024;
2118 delta %= 1024;
2119
2120 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2121 periods + 1);
2122 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2123 periods + 1);
2124
2125 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2126 runnable_contrib = __compute_runnable_contrib(periods);
2127 if (runnable)
2128 sa->runnable_avg_sum += runnable_contrib;
2129 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2130 }
2131
2132 /* Remainder of delta accrued against u_0` */
2133 if (runnable)
2134 sa->runnable_avg_sum += delta;
2135 sa->runnable_avg_period += delta;
2136
2137 return decayed;
2138}
2139
9ee474f5 2140/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2141static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2142{
2143 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2144 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2145
2146 decays -= se->avg.decay_count;
2147 if (!decays)
aff3e498 2148 return 0;
9ee474f5
PT
2149
2150 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2151 se->avg.decay_count = 0;
aff3e498
PT
2152
2153 return decays;
9ee474f5
PT
2154}
2155
c566e8e9
PT
2156#ifdef CONFIG_FAIR_GROUP_SCHED
2157static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2158 int force_update)
2159{
2160 struct task_group *tg = cfs_rq->tg;
bf5b986e 2161 long tg_contrib;
c566e8e9
PT
2162
2163 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2164 tg_contrib -= cfs_rq->tg_load_contrib;
2165
bf5b986e
AS
2166 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2167 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2168 cfs_rq->tg_load_contrib += tg_contrib;
2169 }
2170}
8165e145 2171
bb17f655
PT
2172/*
2173 * Aggregate cfs_rq runnable averages into an equivalent task_group
2174 * representation for computing load contributions.
2175 */
2176static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2177 struct cfs_rq *cfs_rq)
2178{
2179 struct task_group *tg = cfs_rq->tg;
2180 long contrib;
2181
2182 /* The fraction of a cpu used by this cfs_rq */
2183 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2184 sa->runnable_avg_period + 1);
2185 contrib -= cfs_rq->tg_runnable_contrib;
2186
2187 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2188 atomic_add(contrib, &tg->runnable_avg);
2189 cfs_rq->tg_runnable_contrib += contrib;
2190 }
2191}
2192
8165e145
PT
2193static inline void __update_group_entity_contrib(struct sched_entity *se)
2194{
2195 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2196 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2197 int runnable_avg;
2198
8165e145
PT
2199 u64 contrib;
2200
2201 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2202 se->avg.load_avg_contrib = div_u64(contrib,
2203 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2204
2205 /*
2206 * For group entities we need to compute a correction term in the case
2207 * that they are consuming <1 cpu so that we would contribute the same
2208 * load as a task of equal weight.
2209 *
2210 * Explicitly co-ordinating this measurement would be expensive, but
2211 * fortunately the sum of each cpus contribution forms a usable
2212 * lower-bound on the true value.
2213 *
2214 * Consider the aggregate of 2 contributions. Either they are disjoint
2215 * (and the sum represents true value) or they are disjoint and we are
2216 * understating by the aggregate of their overlap.
2217 *
2218 * Extending this to N cpus, for a given overlap, the maximum amount we
2219 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2220 * cpus that overlap for this interval and w_i is the interval width.
2221 *
2222 * On a small machine; the first term is well-bounded which bounds the
2223 * total error since w_i is a subset of the period. Whereas on a
2224 * larger machine, while this first term can be larger, if w_i is the
2225 * of consequential size guaranteed to see n_i*w_i quickly converge to
2226 * our upper bound of 1-cpu.
2227 */
2228 runnable_avg = atomic_read(&tg->runnable_avg);
2229 if (runnable_avg < NICE_0_LOAD) {
2230 se->avg.load_avg_contrib *= runnable_avg;
2231 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2232 }
8165e145 2233}
c566e8e9
PT
2234#else
2235static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2236 int force_update) {}
bb17f655
PT
2237static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2238 struct cfs_rq *cfs_rq) {}
8165e145 2239static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2240#endif
2241
8165e145
PT
2242static inline void __update_task_entity_contrib(struct sched_entity *se)
2243{
2244 u32 contrib;
2245
2246 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2247 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2248 contrib /= (se->avg.runnable_avg_period + 1);
2249 se->avg.load_avg_contrib = scale_load(contrib);
2250}
2251
2dac754e
PT
2252/* Compute the current contribution to load_avg by se, return any delta */
2253static long __update_entity_load_avg_contrib(struct sched_entity *se)
2254{
2255 long old_contrib = se->avg.load_avg_contrib;
2256
8165e145
PT
2257 if (entity_is_task(se)) {
2258 __update_task_entity_contrib(se);
2259 } else {
bb17f655 2260 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2261 __update_group_entity_contrib(se);
2262 }
2dac754e
PT
2263
2264 return se->avg.load_avg_contrib - old_contrib;
2265}
2266
9ee474f5
PT
2267static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2268 long load_contrib)
2269{
2270 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2271 cfs_rq->blocked_load_avg -= load_contrib;
2272 else
2273 cfs_rq->blocked_load_avg = 0;
2274}
2275
f1b17280
PT
2276static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2277
9d85f21c 2278/* Update a sched_entity's runnable average */
9ee474f5
PT
2279static inline void update_entity_load_avg(struct sched_entity *se,
2280 int update_cfs_rq)
9d85f21c 2281{
2dac754e
PT
2282 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2283 long contrib_delta;
f1b17280 2284 u64 now;
2dac754e 2285
f1b17280
PT
2286 /*
2287 * For a group entity we need to use their owned cfs_rq_clock_task() in
2288 * case they are the parent of a throttled hierarchy.
2289 */
2290 if (entity_is_task(se))
2291 now = cfs_rq_clock_task(cfs_rq);
2292 else
2293 now = cfs_rq_clock_task(group_cfs_rq(se));
2294
2295 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2296 return;
2297
2298 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2299
2300 if (!update_cfs_rq)
2301 return;
2302
2dac754e
PT
2303 if (se->on_rq)
2304 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2305 else
2306 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2307}
2308
2309/*
2310 * Decay the load contributed by all blocked children and account this so that
2311 * their contribution may appropriately discounted when they wake up.
2312 */
aff3e498 2313static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2314{
f1b17280 2315 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2316 u64 decays;
2317
2318 decays = now - cfs_rq->last_decay;
aff3e498 2319 if (!decays && !force_update)
9ee474f5
PT
2320 return;
2321
2509940f
AS
2322 if (atomic_long_read(&cfs_rq->removed_load)) {
2323 unsigned long removed_load;
2324 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2325 subtract_blocked_load_contrib(cfs_rq, removed_load);
2326 }
9ee474f5 2327
aff3e498
PT
2328 if (decays) {
2329 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2330 decays);
2331 atomic64_add(decays, &cfs_rq->decay_counter);
2332 cfs_rq->last_decay = now;
2333 }
c566e8e9
PT
2334
2335 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2336}
18bf2805
BS
2337
2338static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2339{
78becc27 2340 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2341 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2342}
2dac754e
PT
2343
2344/* Add the load generated by se into cfs_rq's child load-average */
2345static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2346 struct sched_entity *se,
2347 int wakeup)
2dac754e 2348{
aff3e498
PT
2349 /*
2350 * We track migrations using entity decay_count <= 0, on a wake-up
2351 * migration we use a negative decay count to track the remote decays
2352 * accumulated while sleeping.
a75cdaa9
AS
2353 *
2354 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2355 * are seen by enqueue_entity_load_avg() as a migration with an already
2356 * constructed load_avg_contrib.
aff3e498
PT
2357 */
2358 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2359 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2360 if (se->avg.decay_count) {
2361 /*
2362 * In a wake-up migration we have to approximate the
2363 * time sleeping. This is because we can't synchronize
2364 * clock_task between the two cpus, and it is not
2365 * guaranteed to be read-safe. Instead, we can
2366 * approximate this using our carried decays, which are
2367 * explicitly atomically readable.
2368 */
2369 se->avg.last_runnable_update -= (-se->avg.decay_count)
2370 << 20;
2371 update_entity_load_avg(se, 0);
2372 /* Indicate that we're now synchronized and on-rq */
2373 se->avg.decay_count = 0;
2374 }
9ee474f5
PT
2375 wakeup = 0;
2376 } else {
282cf499
AS
2377 /*
2378 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2379 * would have made count negative); we must be careful to avoid
2380 * double-accounting blocked time after synchronizing decays.
2381 */
2382 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2383 << 20;
9ee474f5
PT
2384 }
2385
aff3e498
PT
2386 /* migrated tasks did not contribute to our blocked load */
2387 if (wakeup) {
9ee474f5 2388 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2389 update_entity_load_avg(se, 0);
2390 }
9ee474f5 2391
2dac754e 2392 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2393 /* we force update consideration on load-balancer moves */
2394 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2395}
2396
9ee474f5
PT
2397/*
2398 * Remove se's load from this cfs_rq child load-average, if the entity is
2399 * transitioning to a blocked state we track its projected decay using
2400 * blocked_load_avg.
2401 */
2dac754e 2402static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2403 struct sched_entity *se,
2404 int sleep)
2dac754e 2405{
9ee474f5 2406 update_entity_load_avg(se, 1);
aff3e498
PT
2407 /* we force update consideration on load-balancer moves */
2408 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2409
2dac754e 2410 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2411 if (sleep) {
2412 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2413 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2414 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2415}
642dbc39
VG
2416
2417/*
2418 * Update the rq's load with the elapsed running time before entering
2419 * idle. if the last scheduled task is not a CFS task, idle_enter will
2420 * be the only way to update the runnable statistic.
2421 */
2422void idle_enter_fair(struct rq *this_rq)
2423{
2424 update_rq_runnable_avg(this_rq, 1);
2425}
2426
2427/*
2428 * Update the rq's load with the elapsed idle time before a task is
2429 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2430 * be the only way to update the runnable statistic.
2431 */
2432void idle_exit_fair(struct rq *this_rq)
2433{
2434 update_rq_runnable_avg(this_rq, 0);
2435}
2436
9d85f21c 2437#else
9ee474f5
PT
2438static inline void update_entity_load_avg(struct sched_entity *se,
2439 int update_cfs_rq) {}
18bf2805 2440static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2441static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2442 struct sched_entity *se,
2443 int wakeup) {}
2dac754e 2444static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2445 struct sched_entity *se,
2446 int sleep) {}
aff3e498
PT
2447static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2448 int force_update) {}
9d85f21c
PT
2449#endif
2450
2396af69 2451static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2452{
bf0f6f24 2453#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2454 struct task_struct *tsk = NULL;
2455
2456 if (entity_is_task(se))
2457 tsk = task_of(se);
2458
41acab88 2459 if (se->statistics.sleep_start) {
78becc27 2460 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2461
2462 if ((s64)delta < 0)
2463 delta = 0;
2464
41acab88
LDM
2465 if (unlikely(delta > se->statistics.sleep_max))
2466 se->statistics.sleep_max = delta;
bf0f6f24 2467
8c79a045 2468 se->statistics.sleep_start = 0;
41acab88 2469 se->statistics.sum_sleep_runtime += delta;
9745512c 2470
768d0c27 2471 if (tsk) {
e414314c 2472 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2473 trace_sched_stat_sleep(tsk, delta);
2474 }
bf0f6f24 2475 }
41acab88 2476 if (se->statistics.block_start) {
78becc27 2477 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2478
2479 if ((s64)delta < 0)
2480 delta = 0;
2481
41acab88
LDM
2482 if (unlikely(delta > se->statistics.block_max))
2483 se->statistics.block_max = delta;
bf0f6f24 2484
8c79a045 2485 se->statistics.block_start = 0;
41acab88 2486 se->statistics.sum_sleep_runtime += delta;
30084fbd 2487
e414314c 2488 if (tsk) {
8f0dfc34 2489 if (tsk->in_iowait) {
41acab88
LDM
2490 se->statistics.iowait_sum += delta;
2491 se->statistics.iowait_count++;
768d0c27 2492 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2493 }
2494
b781a602
AV
2495 trace_sched_stat_blocked(tsk, delta);
2496
e414314c
PZ
2497 /*
2498 * Blocking time is in units of nanosecs, so shift by
2499 * 20 to get a milliseconds-range estimation of the
2500 * amount of time that the task spent sleeping:
2501 */
2502 if (unlikely(prof_on == SLEEP_PROFILING)) {
2503 profile_hits(SLEEP_PROFILING,
2504 (void *)get_wchan(tsk),
2505 delta >> 20);
2506 }
2507 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2508 }
bf0f6f24
IM
2509 }
2510#endif
2511}
2512
ddc97297
PZ
2513static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2514{
2515#ifdef CONFIG_SCHED_DEBUG
2516 s64 d = se->vruntime - cfs_rq->min_vruntime;
2517
2518 if (d < 0)
2519 d = -d;
2520
2521 if (d > 3*sysctl_sched_latency)
2522 schedstat_inc(cfs_rq, nr_spread_over);
2523#endif
2524}
2525
aeb73b04
PZ
2526static void
2527place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2528{
1af5f730 2529 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2530
2cb8600e
PZ
2531 /*
2532 * The 'current' period is already promised to the current tasks,
2533 * however the extra weight of the new task will slow them down a
2534 * little, place the new task so that it fits in the slot that
2535 * stays open at the end.
2536 */
94dfb5e7 2537 if (initial && sched_feat(START_DEBIT))
f9c0b095 2538 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2539
a2e7a7eb 2540 /* sleeps up to a single latency don't count. */
5ca9880c 2541 if (!initial) {
a2e7a7eb 2542 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2543
a2e7a7eb
MG
2544 /*
2545 * Halve their sleep time's effect, to allow
2546 * for a gentler effect of sleepers:
2547 */
2548 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2549 thresh >>= 1;
51e0304c 2550
a2e7a7eb 2551 vruntime -= thresh;
aeb73b04
PZ
2552 }
2553
b5d9d734 2554 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2555 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2556}
2557
d3d9dc33
PT
2558static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2559
bf0f6f24 2560static void
88ec22d3 2561enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2562{
88ec22d3
PZ
2563 /*
2564 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2565 * through calling update_curr().
88ec22d3 2566 */
371fd7e7 2567 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2568 se->vruntime += cfs_rq->min_vruntime;
2569
bf0f6f24 2570 /*
a2a2d680 2571 * Update run-time statistics of the 'current'.
bf0f6f24 2572 */
b7cc0896 2573 update_curr(cfs_rq);
f269ae04 2574 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2575 account_entity_enqueue(cfs_rq, se);
2576 update_cfs_shares(cfs_rq);
bf0f6f24 2577
88ec22d3 2578 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2579 place_entity(cfs_rq, se, 0);
2396af69 2580 enqueue_sleeper(cfs_rq, se);
e9acbff6 2581 }
bf0f6f24 2582
d2417e5a 2583 update_stats_enqueue(cfs_rq, se);
ddc97297 2584 check_spread(cfs_rq, se);
83b699ed
SV
2585 if (se != cfs_rq->curr)
2586 __enqueue_entity(cfs_rq, se);
2069dd75 2587 se->on_rq = 1;
3d4b47b4 2588
d3d9dc33 2589 if (cfs_rq->nr_running == 1) {
3d4b47b4 2590 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2591 check_enqueue_throttle(cfs_rq);
2592 }
bf0f6f24
IM
2593}
2594
2c13c919 2595static void __clear_buddies_last(struct sched_entity *se)
2002c695 2596{
2c13c919
RR
2597 for_each_sched_entity(se) {
2598 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2599 if (cfs_rq->last == se)
2600 cfs_rq->last = NULL;
2601 else
2602 break;
2603 }
2604}
2002c695 2605
2c13c919
RR
2606static void __clear_buddies_next(struct sched_entity *se)
2607{
2608 for_each_sched_entity(se) {
2609 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2610 if (cfs_rq->next == se)
2611 cfs_rq->next = NULL;
2612 else
2613 break;
2614 }
2002c695
PZ
2615}
2616
ac53db59
RR
2617static void __clear_buddies_skip(struct sched_entity *se)
2618{
2619 for_each_sched_entity(se) {
2620 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2621 if (cfs_rq->skip == se)
2622 cfs_rq->skip = NULL;
2623 else
2624 break;
2625 }
2626}
2627
a571bbea
PZ
2628static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2629{
2c13c919
RR
2630 if (cfs_rq->last == se)
2631 __clear_buddies_last(se);
2632
2633 if (cfs_rq->next == se)
2634 __clear_buddies_next(se);
ac53db59
RR
2635
2636 if (cfs_rq->skip == se)
2637 __clear_buddies_skip(se);
a571bbea
PZ
2638}
2639
6c16a6dc 2640static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2641
bf0f6f24 2642static void
371fd7e7 2643dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2644{
a2a2d680
DA
2645 /*
2646 * Update run-time statistics of the 'current'.
2647 */
2648 update_curr(cfs_rq);
17bc14b7 2649 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2650
19b6a2e3 2651 update_stats_dequeue(cfs_rq, se);
371fd7e7 2652 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2653#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2654 if (entity_is_task(se)) {
2655 struct task_struct *tsk = task_of(se);
2656
2657 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2658 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2659 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2660 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2661 }
db36cc7d 2662#endif
67e9fb2a
PZ
2663 }
2664
2002c695 2665 clear_buddies(cfs_rq, se);
4793241b 2666
83b699ed 2667 if (se != cfs_rq->curr)
30cfdcfc 2668 __dequeue_entity(cfs_rq, se);
17bc14b7 2669 se->on_rq = 0;
30cfdcfc 2670 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2671
2672 /*
2673 * Normalize the entity after updating the min_vruntime because the
2674 * update can refer to the ->curr item and we need to reflect this
2675 * movement in our normalized position.
2676 */
371fd7e7 2677 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2678 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2679
d8b4986d
PT
2680 /* return excess runtime on last dequeue */
2681 return_cfs_rq_runtime(cfs_rq);
2682
1e876231 2683 update_min_vruntime(cfs_rq);
17bc14b7 2684 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2685}
2686
2687/*
2688 * Preempt the current task with a newly woken task if needed:
2689 */
7c92e54f 2690static void
2e09bf55 2691check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2692{
11697830 2693 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2694 struct sched_entity *se;
2695 s64 delta;
11697830 2696
6d0f0ebd 2697 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2698 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2699 if (delta_exec > ideal_runtime) {
bf0f6f24 2700 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2701 /*
2702 * The current task ran long enough, ensure it doesn't get
2703 * re-elected due to buddy favours.
2704 */
2705 clear_buddies(cfs_rq, curr);
f685ceac
MG
2706 return;
2707 }
2708
2709 /*
2710 * Ensure that a task that missed wakeup preemption by a
2711 * narrow margin doesn't have to wait for a full slice.
2712 * This also mitigates buddy induced latencies under load.
2713 */
f685ceac
MG
2714 if (delta_exec < sysctl_sched_min_granularity)
2715 return;
2716
f4cfb33e
WX
2717 se = __pick_first_entity(cfs_rq);
2718 delta = curr->vruntime - se->vruntime;
f685ceac 2719
f4cfb33e
WX
2720 if (delta < 0)
2721 return;
d7d82944 2722
f4cfb33e
WX
2723 if (delta > ideal_runtime)
2724 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2725}
2726
83b699ed 2727static void
8494f412 2728set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2729{
83b699ed
SV
2730 /* 'current' is not kept within the tree. */
2731 if (se->on_rq) {
2732 /*
2733 * Any task has to be enqueued before it get to execute on
2734 * a CPU. So account for the time it spent waiting on the
2735 * runqueue.
2736 */
2737 update_stats_wait_end(cfs_rq, se);
2738 __dequeue_entity(cfs_rq, se);
2739 }
2740
79303e9e 2741 update_stats_curr_start(cfs_rq, se);
429d43bc 2742 cfs_rq->curr = se;
eba1ed4b
IM
2743#ifdef CONFIG_SCHEDSTATS
2744 /*
2745 * Track our maximum slice length, if the CPU's load is at
2746 * least twice that of our own weight (i.e. dont track it
2747 * when there are only lesser-weight tasks around):
2748 */
495eca49 2749 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2750 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2751 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2752 }
2753#endif
4a55b450 2754 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2755}
2756
3f3a4904
PZ
2757static int
2758wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2759
ac53db59
RR
2760/*
2761 * Pick the next process, keeping these things in mind, in this order:
2762 * 1) keep things fair between processes/task groups
2763 * 2) pick the "next" process, since someone really wants that to run
2764 * 3) pick the "last" process, for cache locality
2765 * 4) do not run the "skip" process, if something else is available
2766 */
f4b6755f 2767static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2768{
ac53db59 2769 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2770 struct sched_entity *left = se;
f4b6755f 2771
ac53db59
RR
2772 /*
2773 * Avoid running the skip buddy, if running something else can
2774 * be done without getting too unfair.
2775 */
2776 if (cfs_rq->skip == se) {
2777 struct sched_entity *second = __pick_next_entity(se);
2778 if (second && wakeup_preempt_entity(second, left) < 1)
2779 se = second;
2780 }
aa2ac252 2781
f685ceac
MG
2782 /*
2783 * Prefer last buddy, try to return the CPU to a preempted task.
2784 */
2785 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2786 se = cfs_rq->last;
2787
ac53db59
RR
2788 /*
2789 * Someone really wants this to run. If it's not unfair, run it.
2790 */
2791 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2792 se = cfs_rq->next;
2793
f685ceac 2794 clear_buddies(cfs_rq, se);
4793241b
PZ
2795
2796 return se;
aa2ac252
PZ
2797}
2798
d3d9dc33
PT
2799static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2800
ab6cde26 2801static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2802{
2803 /*
2804 * If still on the runqueue then deactivate_task()
2805 * was not called and update_curr() has to be done:
2806 */
2807 if (prev->on_rq)
b7cc0896 2808 update_curr(cfs_rq);
bf0f6f24 2809
d3d9dc33
PT
2810 /* throttle cfs_rqs exceeding runtime */
2811 check_cfs_rq_runtime(cfs_rq);
2812
ddc97297 2813 check_spread(cfs_rq, prev);
30cfdcfc 2814 if (prev->on_rq) {
5870db5b 2815 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2816 /* Put 'current' back into the tree. */
2817 __enqueue_entity(cfs_rq, prev);
9d85f21c 2818 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2819 update_entity_load_avg(prev, 1);
30cfdcfc 2820 }
429d43bc 2821 cfs_rq->curr = NULL;
bf0f6f24
IM
2822}
2823
8f4d37ec
PZ
2824static void
2825entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2826{
bf0f6f24 2827 /*
30cfdcfc 2828 * Update run-time statistics of the 'current'.
bf0f6f24 2829 */
30cfdcfc 2830 update_curr(cfs_rq);
bf0f6f24 2831
9d85f21c
PT
2832 /*
2833 * Ensure that runnable average is periodically updated.
2834 */
9ee474f5 2835 update_entity_load_avg(curr, 1);
aff3e498 2836 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2837 update_cfs_shares(cfs_rq);
9d85f21c 2838
8f4d37ec
PZ
2839#ifdef CONFIG_SCHED_HRTICK
2840 /*
2841 * queued ticks are scheduled to match the slice, so don't bother
2842 * validating it and just reschedule.
2843 */
983ed7a6
HH
2844 if (queued) {
2845 resched_task(rq_of(cfs_rq)->curr);
2846 return;
2847 }
8f4d37ec
PZ
2848 /*
2849 * don't let the period tick interfere with the hrtick preemption
2850 */
2851 if (!sched_feat(DOUBLE_TICK) &&
2852 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2853 return;
2854#endif
2855
2c2efaed 2856 if (cfs_rq->nr_running > 1)
2e09bf55 2857 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2858}
2859
ab84d31e
PT
2860
2861/**************************************************
2862 * CFS bandwidth control machinery
2863 */
2864
2865#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2866
2867#ifdef HAVE_JUMP_LABEL
c5905afb 2868static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2869
2870static inline bool cfs_bandwidth_used(void)
2871{
c5905afb 2872 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2873}
2874
2875void account_cfs_bandwidth_used(int enabled, int was_enabled)
2876{
2877 /* only need to count groups transitioning between enabled/!enabled */
2878 if (enabled && !was_enabled)
c5905afb 2879 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2880 else if (!enabled && was_enabled)
c5905afb 2881 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2882}
2883#else /* HAVE_JUMP_LABEL */
2884static bool cfs_bandwidth_used(void)
2885{
2886 return true;
2887}
2888
2889void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2890#endif /* HAVE_JUMP_LABEL */
2891
ab84d31e
PT
2892/*
2893 * default period for cfs group bandwidth.
2894 * default: 0.1s, units: nanoseconds
2895 */
2896static inline u64 default_cfs_period(void)
2897{
2898 return 100000000ULL;
2899}
ec12cb7f
PT
2900
2901static inline u64 sched_cfs_bandwidth_slice(void)
2902{
2903 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2904}
2905
a9cf55b2
PT
2906/*
2907 * Replenish runtime according to assigned quota and update expiration time.
2908 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2909 * additional synchronization around rq->lock.
2910 *
2911 * requires cfs_b->lock
2912 */
029632fb 2913void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2914{
2915 u64 now;
2916
2917 if (cfs_b->quota == RUNTIME_INF)
2918 return;
2919
2920 now = sched_clock_cpu(smp_processor_id());
2921 cfs_b->runtime = cfs_b->quota;
2922 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2923}
2924
029632fb
PZ
2925static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2926{
2927 return &tg->cfs_bandwidth;
2928}
2929
f1b17280
PT
2930/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2931static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2932{
2933 if (unlikely(cfs_rq->throttle_count))
2934 return cfs_rq->throttled_clock_task;
2935
78becc27 2936 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2937}
2938
85dac906
PT
2939/* returns 0 on failure to allocate runtime */
2940static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2941{
2942 struct task_group *tg = cfs_rq->tg;
2943 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2944 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2945
2946 /* note: this is a positive sum as runtime_remaining <= 0 */
2947 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2948
2949 raw_spin_lock(&cfs_b->lock);
2950 if (cfs_b->quota == RUNTIME_INF)
2951 amount = min_amount;
58088ad0 2952 else {
a9cf55b2
PT
2953 /*
2954 * If the bandwidth pool has become inactive, then at least one
2955 * period must have elapsed since the last consumption.
2956 * Refresh the global state and ensure bandwidth timer becomes
2957 * active.
2958 */
2959 if (!cfs_b->timer_active) {
2960 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2961 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2962 }
58088ad0
PT
2963
2964 if (cfs_b->runtime > 0) {
2965 amount = min(cfs_b->runtime, min_amount);
2966 cfs_b->runtime -= amount;
2967 cfs_b->idle = 0;
2968 }
ec12cb7f 2969 }
a9cf55b2 2970 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2971 raw_spin_unlock(&cfs_b->lock);
2972
2973 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2974 /*
2975 * we may have advanced our local expiration to account for allowed
2976 * spread between our sched_clock and the one on which runtime was
2977 * issued.
2978 */
2979 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2980 cfs_rq->runtime_expires = expires;
85dac906
PT
2981
2982 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2983}
2984
a9cf55b2
PT
2985/*
2986 * Note: This depends on the synchronization provided by sched_clock and the
2987 * fact that rq->clock snapshots this value.
2988 */
2989static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2990{
a9cf55b2 2991 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2992
2993 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2994 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2995 return;
2996
a9cf55b2
PT
2997 if (cfs_rq->runtime_remaining < 0)
2998 return;
2999
3000 /*
3001 * If the local deadline has passed we have to consider the
3002 * possibility that our sched_clock is 'fast' and the global deadline
3003 * has not truly expired.
3004 *
3005 * Fortunately we can check determine whether this the case by checking
3006 * whether the global deadline has advanced.
3007 */
3008
3009 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3010 /* extend local deadline, drift is bounded above by 2 ticks */
3011 cfs_rq->runtime_expires += TICK_NSEC;
3012 } else {
3013 /* global deadline is ahead, expiration has passed */
3014 cfs_rq->runtime_remaining = 0;
3015 }
3016}
3017
3018static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3019 unsigned long delta_exec)
3020{
3021 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3022 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3023 expire_cfs_rq_runtime(cfs_rq);
3024
3025 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3026 return;
3027
85dac906
PT
3028 /*
3029 * if we're unable to extend our runtime we resched so that the active
3030 * hierarchy can be throttled
3031 */
3032 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3033 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3034}
3035
6c16a6dc
PZ
3036static __always_inline
3037void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 3038{
56f570e5 3039 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3040 return;
3041
3042 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3043}
3044
85dac906
PT
3045static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3046{
56f570e5 3047 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3048}
3049
64660c86
PT
3050/* check whether cfs_rq, or any parent, is throttled */
3051static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3052{
56f570e5 3053 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3054}
3055
3056/*
3057 * Ensure that neither of the group entities corresponding to src_cpu or
3058 * dest_cpu are members of a throttled hierarchy when performing group
3059 * load-balance operations.
3060 */
3061static inline int throttled_lb_pair(struct task_group *tg,
3062 int src_cpu, int dest_cpu)
3063{
3064 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3065
3066 src_cfs_rq = tg->cfs_rq[src_cpu];
3067 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3068
3069 return throttled_hierarchy(src_cfs_rq) ||
3070 throttled_hierarchy(dest_cfs_rq);
3071}
3072
3073/* updated child weight may affect parent so we have to do this bottom up */
3074static int tg_unthrottle_up(struct task_group *tg, void *data)
3075{
3076 struct rq *rq = data;
3077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3078
3079 cfs_rq->throttle_count--;
3080#ifdef CONFIG_SMP
3081 if (!cfs_rq->throttle_count) {
f1b17280 3082 /* adjust cfs_rq_clock_task() */
78becc27 3083 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3084 cfs_rq->throttled_clock_task;
64660c86
PT
3085 }
3086#endif
3087
3088 return 0;
3089}
3090
3091static int tg_throttle_down(struct task_group *tg, void *data)
3092{
3093 struct rq *rq = data;
3094 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3095
82958366
PT
3096 /* group is entering throttled state, stop time */
3097 if (!cfs_rq->throttle_count)
78becc27 3098 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3099 cfs_rq->throttle_count++;
3100
3101 return 0;
3102}
3103
d3d9dc33 3104static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3105{
3106 struct rq *rq = rq_of(cfs_rq);
3107 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3108 struct sched_entity *se;
3109 long task_delta, dequeue = 1;
3110
3111 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3112
f1b17280 3113 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3114 rcu_read_lock();
3115 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3116 rcu_read_unlock();
85dac906
PT
3117
3118 task_delta = cfs_rq->h_nr_running;
3119 for_each_sched_entity(se) {
3120 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3121 /* throttled entity or throttle-on-deactivate */
3122 if (!se->on_rq)
3123 break;
3124
3125 if (dequeue)
3126 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3127 qcfs_rq->h_nr_running -= task_delta;
3128
3129 if (qcfs_rq->load.weight)
3130 dequeue = 0;
3131 }
3132
3133 if (!se)
3134 rq->nr_running -= task_delta;
3135
3136 cfs_rq->throttled = 1;
78becc27 3137 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3138 raw_spin_lock(&cfs_b->lock);
3139 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3140 raw_spin_unlock(&cfs_b->lock);
3141}
3142
029632fb 3143void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3144{
3145 struct rq *rq = rq_of(cfs_rq);
3146 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3147 struct sched_entity *se;
3148 int enqueue = 1;
3149 long task_delta;
3150
22b958d8 3151 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3152
3153 cfs_rq->throttled = 0;
1a55af2e
FW
3154
3155 update_rq_clock(rq);
3156
671fd9da 3157 raw_spin_lock(&cfs_b->lock);
78becc27 3158 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3159 list_del_rcu(&cfs_rq->throttled_list);
3160 raw_spin_unlock(&cfs_b->lock);
3161
64660c86
PT
3162 /* update hierarchical throttle state */
3163 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3164
671fd9da
PT
3165 if (!cfs_rq->load.weight)
3166 return;
3167
3168 task_delta = cfs_rq->h_nr_running;
3169 for_each_sched_entity(se) {
3170 if (se->on_rq)
3171 enqueue = 0;
3172
3173 cfs_rq = cfs_rq_of(se);
3174 if (enqueue)
3175 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3176 cfs_rq->h_nr_running += task_delta;
3177
3178 if (cfs_rq_throttled(cfs_rq))
3179 break;
3180 }
3181
3182 if (!se)
3183 rq->nr_running += task_delta;
3184
3185 /* determine whether we need to wake up potentially idle cpu */
3186 if (rq->curr == rq->idle && rq->cfs.nr_running)
3187 resched_task(rq->curr);
3188}
3189
3190static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3191 u64 remaining, u64 expires)
3192{
3193 struct cfs_rq *cfs_rq;
3194 u64 runtime = remaining;
3195
3196 rcu_read_lock();
3197 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3198 throttled_list) {
3199 struct rq *rq = rq_of(cfs_rq);
3200
3201 raw_spin_lock(&rq->lock);
3202 if (!cfs_rq_throttled(cfs_rq))
3203 goto next;
3204
3205 runtime = -cfs_rq->runtime_remaining + 1;
3206 if (runtime > remaining)
3207 runtime = remaining;
3208 remaining -= runtime;
3209
3210 cfs_rq->runtime_remaining += runtime;
3211 cfs_rq->runtime_expires = expires;
3212
3213 /* we check whether we're throttled above */
3214 if (cfs_rq->runtime_remaining > 0)
3215 unthrottle_cfs_rq(cfs_rq);
3216
3217next:
3218 raw_spin_unlock(&rq->lock);
3219
3220 if (!remaining)
3221 break;
3222 }
3223 rcu_read_unlock();
3224
3225 return remaining;
3226}
3227
58088ad0
PT
3228/*
3229 * Responsible for refilling a task_group's bandwidth and unthrottling its
3230 * cfs_rqs as appropriate. If there has been no activity within the last
3231 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3232 * used to track this state.
3233 */
3234static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3235{
671fd9da
PT
3236 u64 runtime, runtime_expires;
3237 int idle = 1, throttled;
58088ad0
PT
3238
3239 raw_spin_lock(&cfs_b->lock);
3240 /* no need to continue the timer with no bandwidth constraint */
3241 if (cfs_b->quota == RUNTIME_INF)
3242 goto out_unlock;
3243
671fd9da
PT
3244 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3245 /* idle depends on !throttled (for the case of a large deficit) */
3246 idle = cfs_b->idle && !throttled;
e8da1b18 3247 cfs_b->nr_periods += overrun;
671fd9da 3248
a9cf55b2
PT
3249 /* if we're going inactive then everything else can be deferred */
3250 if (idle)
3251 goto out_unlock;
3252
3253 __refill_cfs_bandwidth_runtime(cfs_b);
3254
671fd9da
PT
3255 if (!throttled) {
3256 /* mark as potentially idle for the upcoming period */
3257 cfs_b->idle = 1;
3258 goto out_unlock;
3259 }
3260
e8da1b18
NR
3261 /* account preceding periods in which throttling occurred */
3262 cfs_b->nr_throttled += overrun;
3263
671fd9da
PT
3264 /*
3265 * There are throttled entities so we must first use the new bandwidth
3266 * to unthrottle them before making it generally available. This
3267 * ensures that all existing debts will be paid before a new cfs_rq is
3268 * allowed to run.
3269 */
3270 runtime = cfs_b->runtime;
3271 runtime_expires = cfs_b->runtime_expires;
3272 cfs_b->runtime = 0;
3273
3274 /*
3275 * This check is repeated as we are holding onto the new bandwidth
3276 * while we unthrottle. This can potentially race with an unthrottled
3277 * group trying to acquire new bandwidth from the global pool.
3278 */
3279 while (throttled && runtime > 0) {
3280 raw_spin_unlock(&cfs_b->lock);
3281 /* we can't nest cfs_b->lock while distributing bandwidth */
3282 runtime = distribute_cfs_runtime(cfs_b, runtime,
3283 runtime_expires);
3284 raw_spin_lock(&cfs_b->lock);
3285
3286 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3287 }
58088ad0 3288
671fd9da
PT
3289 /* return (any) remaining runtime */
3290 cfs_b->runtime = runtime;
3291 /*
3292 * While we are ensured activity in the period following an
3293 * unthrottle, this also covers the case in which the new bandwidth is
3294 * insufficient to cover the existing bandwidth deficit. (Forcing the
3295 * timer to remain active while there are any throttled entities.)
3296 */
3297 cfs_b->idle = 0;
58088ad0
PT
3298out_unlock:
3299 if (idle)
3300 cfs_b->timer_active = 0;
3301 raw_spin_unlock(&cfs_b->lock);
3302
3303 return idle;
3304}
d3d9dc33 3305
d8b4986d
PT
3306/* a cfs_rq won't donate quota below this amount */
3307static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3308/* minimum remaining period time to redistribute slack quota */
3309static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3310/* how long we wait to gather additional slack before distributing */
3311static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3312
3313/* are we near the end of the current quota period? */
3314static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3315{
3316 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3317 u64 remaining;
3318
3319 /* if the call-back is running a quota refresh is already occurring */
3320 if (hrtimer_callback_running(refresh_timer))
3321 return 1;
3322
3323 /* is a quota refresh about to occur? */
3324 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3325 if (remaining < min_expire)
3326 return 1;
3327
3328 return 0;
3329}
3330
3331static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3332{
3333 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3334
3335 /* if there's a quota refresh soon don't bother with slack */
3336 if (runtime_refresh_within(cfs_b, min_left))
3337 return;
3338
3339 start_bandwidth_timer(&cfs_b->slack_timer,
3340 ns_to_ktime(cfs_bandwidth_slack_period));
3341}
3342
3343/* we know any runtime found here is valid as update_curr() precedes return */
3344static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3345{
3346 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3347 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3348
3349 if (slack_runtime <= 0)
3350 return;
3351
3352 raw_spin_lock(&cfs_b->lock);
3353 if (cfs_b->quota != RUNTIME_INF &&
3354 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3355 cfs_b->runtime += slack_runtime;
3356
3357 /* we are under rq->lock, defer unthrottling using a timer */
3358 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3359 !list_empty(&cfs_b->throttled_cfs_rq))
3360 start_cfs_slack_bandwidth(cfs_b);
3361 }
3362 raw_spin_unlock(&cfs_b->lock);
3363
3364 /* even if it's not valid for return we don't want to try again */
3365 cfs_rq->runtime_remaining -= slack_runtime;
3366}
3367
3368static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3369{
56f570e5
PT
3370 if (!cfs_bandwidth_used())
3371 return;
3372
fccfdc6f 3373 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3374 return;
3375
3376 __return_cfs_rq_runtime(cfs_rq);
3377}
3378
3379/*
3380 * This is done with a timer (instead of inline with bandwidth return) since
3381 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3382 */
3383static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3384{
3385 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3386 u64 expires;
3387
3388 /* confirm we're still not at a refresh boundary */
3389 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3390 return;
3391
3392 raw_spin_lock(&cfs_b->lock);
3393 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3394 runtime = cfs_b->runtime;
3395 cfs_b->runtime = 0;
3396 }
3397 expires = cfs_b->runtime_expires;
3398 raw_spin_unlock(&cfs_b->lock);
3399
3400 if (!runtime)
3401 return;
3402
3403 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3404
3405 raw_spin_lock(&cfs_b->lock);
3406 if (expires == cfs_b->runtime_expires)
3407 cfs_b->runtime = runtime;
3408 raw_spin_unlock(&cfs_b->lock);
3409}
3410
d3d9dc33
PT
3411/*
3412 * When a group wakes up we want to make sure that its quota is not already
3413 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3414 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3415 */
3416static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3417{
56f570e5
PT
3418 if (!cfs_bandwidth_used())
3419 return;
3420
d3d9dc33
PT
3421 /* an active group must be handled by the update_curr()->put() path */
3422 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3423 return;
3424
3425 /* ensure the group is not already throttled */
3426 if (cfs_rq_throttled(cfs_rq))
3427 return;
3428
3429 /* update runtime allocation */
3430 account_cfs_rq_runtime(cfs_rq, 0);
3431 if (cfs_rq->runtime_remaining <= 0)
3432 throttle_cfs_rq(cfs_rq);
3433}
3434
3435/* conditionally throttle active cfs_rq's from put_prev_entity() */
3436static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3437{
56f570e5
PT
3438 if (!cfs_bandwidth_used())
3439 return;
3440
d3d9dc33
PT
3441 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3442 return;
3443
3444 /*
3445 * it's possible for a throttled entity to be forced into a running
3446 * state (e.g. set_curr_task), in this case we're finished.
3447 */
3448 if (cfs_rq_throttled(cfs_rq))
3449 return;
3450
3451 throttle_cfs_rq(cfs_rq);
3452}
029632fb 3453
029632fb
PZ
3454static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3455{
3456 struct cfs_bandwidth *cfs_b =
3457 container_of(timer, struct cfs_bandwidth, slack_timer);
3458 do_sched_cfs_slack_timer(cfs_b);
3459
3460 return HRTIMER_NORESTART;
3461}
3462
3463static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3464{
3465 struct cfs_bandwidth *cfs_b =
3466 container_of(timer, struct cfs_bandwidth, period_timer);
3467 ktime_t now;
3468 int overrun;
3469 int idle = 0;
3470
3471 for (;;) {
3472 now = hrtimer_cb_get_time(timer);
3473 overrun = hrtimer_forward(timer, now, cfs_b->period);
3474
3475 if (!overrun)
3476 break;
3477
3478 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3479 }
3480
3481 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3482}
3483
3484void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3485{
3486 raw_spin_lock_init(&cfs_b->lock);
3487 cfs_b->runtime = 0;
3488 cfs_b->quota = RUNTIME_INF;
3489 cfs_b->period = ns_to_ktime(default_cfs_period());
3490
3491 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3492 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3493 cfs_b->period_timer.function = sched_cfs_period_timer;
3494 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3495 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3496}
3497
3498static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3499{
3500 cfs_rq->runtime_enabled = 0;
3501 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3502}
3503
3504/* requires cfs_b->lock, may release to reprogram timer */
3505void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3506{
3507 /*
3508 * The timer may be active because we're trying to set a new bandwidth
3509 * period or because we're racing with the tear-down path
3510 * (timer_active==0 becomes visible before the hrtimer call-back
3511 * terminates). In either case we ensure that it's re-programmed
3512 */
3513 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3514 raw_spin_unlock(&cfs_b->lock);
3515 /* ensure cfs_b->lock is available while we wait */
3516 hrtimer_cancel(&cfs_b->period_timer);
3517
3518 raw_spin_lock(&cfs_b->lock);
3519 /* if someone else restarted the timer then we're done */
3520 if (cfs_b->timer_active)
3521 return;
3522 }
3523
3524 cfs_b->timer_active = 1;
3525 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3526}
3527
3528static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3529{
3530 hrtimer_cancel(&cfs_b->period_timer);
3531 hrtimer_cancel(&cfs_b->slack_timer);
3532}
3533
38dc3348 3534static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3535{
3536 struct cfs_rq *cfs_rq;
3537
3538 for_each_leaf_cfs_rq(rq, cfs_rq) {
3539 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3540
3541 if (!cfs_rq->runtime_enabled)
3542 continue;
3543
3544 /*
3545 * clock_task is not advancing so we just need to make sure
3546 * there's some valid quota amount
3547 */
3548 cfs_rq->runtime_remaining = cfs_b->quota;
3549 if (cfs_rq_throttled(cfs_rq))
3550 unthrottle_cfs_rq(cfs_rq);
3551 }
3552}
3553
3554#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3555static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3556{
78becc27 3557 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3558}
3559
3560static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3561 unsigned long delta_exec) {}
d3d9dc33
PT
3562static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3563static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3564static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3565
3566static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3567{
3568 return 0;
3569}
64660c86
PT
3570
3571static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3572{
3573 return 0;
3574}
3575
3576static inline int throttled_lb_pair(struct task_group *tg,
3577 int src_cpu, int dest_cpu)
3578{
3579 return 0;
3580}
029632fb
PZ
3581
3582void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3583
3584#ifdef CONFIG_FAIR_GROUP_SCHED
3585static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3586#endif
3587
029632fb
PZ
3588static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3589{
3590 return NULL;
3591}
3592static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3593static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3594
3595#endif /* CONFIG_CFS_BANDWIDTH */
3596
bf0f6f24
IM
3597/**************************************************
3598 * CFS operations on tasks:
3599 */
3600
8f4d37ec
PZ
3601#ifdef CONFIG_SCHED_HRTICK
3602static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3603{
8f4d37ec
PZ
3604 struct sched_entity *se = &p->se;
3605 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3606
3607 WARN_ON(task_rq(p) != rq);
3608
b39e66ea 3609 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3610 u64 slice = sched_slice(cfs_rq, se);
3611 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3612 s64 delta = slice - ran;
3613
3614 if (delta < 0) {
3615 if (rq->curr == p)
3616 resched_task(p);
3617 return;
3618 }
3619
3620 /*
3621 * Don't schedule slices shorter than 10000ns, that just
3622 * doesn't make sense. Rely on vruntime for fairness.
3623 */
31656519 3624 if (rq->curr != p)
157124c1 3625 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3626
31656519 3627 hrtick_start(rq, delta);
8f4d37ec
PZ
3628 }
3629}
a4c2f00f
PZ
3630
3631/*
3632 * called from enqueue/dequeue and updates the hrtick when the
3633 * current task is from our class and nr_running is low enough
3634 * to matter.
3635 */
3636static void hrtick_update(struct rq *rq)
3637{
3638 struct task_struct *curr = rq->curr;
3639
b39e66ea 3640 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3641 return;
3642
3643 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3644 hrtick_start_fair(rq, curr);
3645}
55e12e5e 3646#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3647static inline void
3648hrtick_start_fair(struct rq *rq, struct task_struct *p)
3649{
3650}
a4c2f00f
PZ
3651
3652static inline void hrtick_update(struct rq *rq)
3653{
3654}
8f4d37ec
PZ
3655#endif
3656
bf0f6f24
IM
3657/*
3658 * The enqueue_task method is called before nr_running is
3659 * increased. Here we update the fair scheduling stats and
3660 * then put the task into the rbtree:
3661 */
ea87bb78 3662static void
371fd7e7 3663enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3664{
3665 struct cfs_rq *cfs_rq;
62fb1851 3666 struct sched_entity *se = &p->se;
bf0f6f24
IM
3667
3668 for_each_sched_entity(se) {
62fb1851 3669 if (se->on_rq)
bf0f6f24
IM
3670 break;
3671 cfs_rq = cfs_rq_of(se);
88ec22d3 3672 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3673
3674 /*
3675 * end evaluation on encountering a throttled cfs_rq
3676 *
3677 * note: in the case of encountering a throttled cfs_rq we will
3678 * post the final h_nr_running increment below.
3679 */
3680 if (cfs_rq_throttled(cfs_rq))
3681 break;
953bfcd1 3682 cfs_rq->h_nr_running++;
85dac906 3683
88ec22d3 3684 flags = ENQUEUE_WAKEUP;
bf0f6f24 3685 }
8f4d37ec 3686
2069dd75 3687 for_each_sched_entity(se) {
0f317143 3688 cfs_rq = cfs_rq_of(se);
953bfcd1 3689 cfs_rq->h_nr_running++;
2069dd75 3690
85dac906
PT
3691 if (cfs_rq_throttled(cfs_rq))
3692 break;
3693
17bc14b7 3694 update_cfs_shares(cfs_rq);
9ee474f5 3695 update_entity_load_avg(se, 1);
2069dd75
PZ
3696 }
3697
18bf2805
BS
3698 if (!se) {
3699 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3700 inc_nr_running(rq);
18bf2805 3701 }
a4c2f00f 3702 hrtick_update(rq);
bf0f6f24
IM
3703}
3704
2f36825b
VP
3705static void set_next_buddy(struct sched_entity *se);
3706
bf0f6f24
IM
3707/*
3708 * The dequeue_task method is called before nr_running is
3709 * decreased. We remove the task from the rbtree and
3710 * update the fair scheduling stats:
3711 */
371fd7e7 3712static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3713{
3714 struct cfs_rq *cfs_rq;
62fb1851 3715 struct sched_entity *se = &p->se;
2f36825b 3716 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3717
3718 for_each_sched_entity(se) {
3719 cfs_rq = cfs_rq_of(se);
371fd7e7 3720 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3721
3722 /*
3723 * end evaluation on encountering a throttled cfs_rq
3724 *
3725 * note: in the case of encountering a throttled cfs_rq we will
3726 * post the final h_nr_running decrement below.
3727 */
3728 if (cfs_rq_throttled(cfs_rq))
3729 break;
953bfcd1 3730 cfs_rq->h_nr_running--;
2069dd75 3731
bf0f6f24 3732 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3733 if (cfs_rq->load.weight) {
3734 /*
3735 * Bias pick_next to pick a task from this cfs_rq, as
3736 * p is sleeping when it is within its sched_slice.
3737 */
3738 if (task_sleep && parent_entity(se))
3739 set_next_buddy(parent_entity(se));
9598c82d
PT
3740
3741 /* avoid re-evaluating load for this entity */
3742 se = parent_entity(se);
bf0f6f24 3743 break;
2f36825b 3744 }
371fd7e7 3745 flags |= DEQUEUE_SLEEP;
bf0f6f24 3746 }
8f4d37ec 3747
2069dd75 3748 for_each_sched_entity(se) {
0f317143 3749 cfs_rq = cfs_rq_of(se);
953bfcd1 3750 cfs_rq->h_nr_running--;
2069dd75 3751
85dac906
PT
3752 if (cfs_rq_throttled(cfs_rq))
3753 break;
3754
17bc14b7 3755 update_cfs_shares(cfs_rq);
9ee474f5 3756 update_entity_load_avg(se, 1);
2069dd75
PZ
3757 }
3758
18bf2805 3759 if (!se) {
85dac906 3760 dec_nr_running(rq);
18bf2805
BS
3761 update_rq_runnable_avg(rq, 1);
3762 }
a4c2f00f 3763 hrtick_update(rq);
bf0f6f24
IM
3764}
3765
e7693a36 3766#ifdef CONFIG_SMP
029632fb
PZ
3767/* Used instead of source_load when we know the type == 0 */
3768static unsigned long weighted_cpuload(const int cpu)
3769{
b92486cb 3770 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3771}
3772
3773/*
3774 * Return a low guess at the load of a migration-source cpu weighted
3775 * according to the scheduling class and "nice" value.
3776 *
3777 * We want to under-estimate the load of migration sources, to
3778 * balance conservatively.
3779 */
3780static unsigned long source_load(int cpu, int type)
3781{
3782 struct rq *rq = cpu_rq(cpu);
3783 unsigned long total = weighted_cpuload(cpu);
3784
3785 if (type == 0 || !sched_feat(LB_BIAS))
3786 return total;
3787
3788 return min(rq->cpu_load[type-1], total);
3789}
3790
3791/*
3792 * Return a high guess at the load of a migration-target cpu weighted
3793 * according to the scheduling class and "nice" value.
3794 */
3795static unsigned long target_load(int cpu, int type)
3796{
3797 struct rq *rq = cpu_rq(cpu);
3798 unsigned long total = weighted_cpuload(cpu);
3799
3800 if (type == 0 || !sched_feat(LB_BIAS))
3801 return total;
3802
3803 return max(rq->cpu_load[type-1], total);
3804}
3805
3806static unsigned long power_of(int cpu)
3807{
3808 return cpu_rq(cpu)->cpu_power;
3809}
3810
3811static unsigned long cpu_avg_load_per_task(int cpu)
3812{
3813 struct rq *rq = cpu_rq(cpu);
3814 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3815 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3816
3817 if (nr_running)
b92486cb 3818 return load_avg / nr_running;
029632fb
PZ
3819
3820 return 0;
3821}
3822
62470419
MW
3823static void record_wakee(struct task_struct *p)
3824{
3825 /*
3826 * Rough decay (wiping) for cost saving, don't worry
3827 * about the boundary, really active task won't care
3828 * about the loss.
3829 */
3830 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3831 current->wakee_flips = 0;
3832 current->wakee_flip_decay_ts = jiffies;
3833 }
3834
3835 if (current->last_wakee != p) {
3836 current->last_wakee = p;
3837 current->wakee_flips++;
3838 }
3839}
098fb9db 3840
74f8e4b2 3841static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3842{
3843 struct sched_entity *se = &p->se;
3844 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3845 u64 min_vruntime;
3846
3847#ifndef CONFIG_64BIT
3848 u64 min_vruntime_copy;
88ec22d3 3849
3fe1698b
PZ
3850 do {
3851 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3852 smp_rmb();
3853 min_vruntime = cfs_rq->min_vruntime;
3854 } while (min_vruntime != min_vruntime_copy);
3855#else
3856 min_vruntime = cfs_rq->min_vruntime;
3857#endif
88ec22d3 3858
3fe1698b 3859 se->vruntime -= min_vruntime;
62470419 3860 record_wakee(p);
88ec22d3
PZ
3861}
3862
bb3469ac 3863#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3864/*
3865 * effective_load() calculates the load change as seen from the root_task_group
3866 *
3867 * Adding load to a group doesn't make a group heavier, but can cause movement
3868 * of group shares between cpus. Assuming the shares were perfectly aligned one
3869 * can calculate the shift in shares.
cf5f0acf
PZ
3870 *
3871 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3872 * on this @cpu and results in a total addition (subtraction) of @wg to the
3873 * total group weight.
3874 *
3875 * Given a runqueue weight distribution (rw_i) we can compute a shares
3876 * distribution (s_i) using:
3877 *
3878 * s_i = rw_i / \Sum rw_j (1)
3879 *
3880 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3881 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3882 * shares distribution (s_i):
3883 *
3884 * rw_i = { 2, 4, 1, 0 }
3885 * s_i = { 2/7, 4/7, 1/7, 0 }
3886 *
3887 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3888 * task used to run on and the CPU the waker is running on), we need to
3889 * compute the effect of waking a task on either CPU and, in case of a sync
3890 * wakeup, compute the effect of the current task going to sleep.
3891 *
3892 * So for a change of @wl to the local @cpu with an overall group weight change
3893 * of @wl we can compute the new shares distribution (s'_i) using:
3894 *
3895 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3896 *
3897 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3898 * differences in waking a task to CPU 0. The additional task changes the
3899 * weight and shares distributions like:
3900 *
3901 * rw'_i = { 3, 4, 1, 0 }
3902 * s'_i = { 3/8, 4/8, 1/8, 0 }
3903 *
3904 * We can then compute the difference in effective weight by using:
3905 *
3906 * dw_i = S * (s'_i - s_i) (3)
3907 *
3908 * Where 'S' is the group weight as seen by its parent.
3909 *
3910 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3911 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3912 * 4/7) times the weight of the group.
f5bfb7d9 3913 */
2069dd75 3914static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3915{
4be9daaa 3916 struct sched_entity *se = tg->se[cpu];
f1d239f7 3917
58d081b5 3918 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3919 return wl;
3920
4be9daaa 3921 for_each_sched_entity(se) {
cf5f0acf 3922 long w, W;
4be9daaa 3923
977dda7c 3924 tg = se->my_q->tg;
bb3469ac 3925
cf5f0acf
PZ
3926 /*
3927 * W = @wg + \Sum rw_j
3928 */
3929 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3930
cf5f0acf
PZ
3931 /*
3932 * w = rw_i + @wl
3933 */
3934 w = se->my_q->load.weight + wl;
940959e9 3935
cf5f0acf
PZ
3936 /*
3937 * wl = S * s'_i; see (2)
3938 */
3939 if (W > 0 && w < W)
3940 wl = (w * tg->shares) / W;
977dda7c
PT
3941 else
3942 wl = tg->shares;
940959e9 3943
cf5f0acf
PZ
3944 /*
3945 * Per the above, wl is the new se->load.weight value; since
3946 * those are clipped to [MIN_SHARES, ...) do so now. See
3947 * calc_cfs_shares().
3948 */
977dda7c
PT
3949 if (wl < MIN_SHARES)
3950 wl = MIN_SHARES;
cf5f0acf
PZ
3951
3952 /*
3953 * wl = dw_i = S * (s'_i - s_i); see (3)
3954 */
977dda7c 3955 wl -= se->load.weight;
cf5f0acf
PZ
3956
3957 /*
3958 * Recursively apply this logic to all parent groups to compute
3959 * the final effective load change on the root group. Since
3960 * only the @tg group gets extra weight, all parent groups can
3961 * only redistribute existing shares. @wl is the shift in shares
3962 * resulting from this level per the above.
3963 */
4be9daaa 3964 wg = 0;
4be9daaa 3965 }
bb3469ac 3966
4be9daaa 3967 return wl;
bb3469ac
PZ
3968}
3969#else
4be9daaa 3970
58d081b5 3971static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3972{
83378269 3973 return wl;
bb3469ac 3974}
4be9daaa 3975
bb3469ac
PZ
3976#endif
3977
62470419
MW
3978static int wake_wide(struct task_struct *p)
3979{
7d9ffa89 3980 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3981
3982 /*
3983 * Yeah, it's the switching-frequency, could means many wakee or
3984 * rapidly switch, use factor here will just help to automatically
3985 * adjust the loose-degree, so bigger node will lead to more pull.
3986 */
3987 if (p->wakee_flips > factor) {
3988 /*
3989 * wakee is somewhat hot, it needs certain amount of cpu
3990 * resource, so if waker is far more hot, prefer to leave
3991 * it alone.
3992 */
3993 if (current->wakee_flips > (factor * p->wakee_flips))
3994 return 1;
3995 }
3996
3997 return 0;
3998}
3999
c88d5910 4000static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4001{
e37b6a7b 4002 s64 this_load, load;
c88d5910 4003 int idx, this_cpu, prev_cpu;
098fb9db 4004 unsigned long tl_per_task;
c88d5910 4005 struct task_group *tg;
83378269 4006 unsigned long weight;
b3137bc8 4007 int balanced;
098fb9db 4008
62470419
MW
4009 /*
4010 * If we wake multiple tasks be careful to not bounce
4011 * ourselves around too much.
4012 */
4013 if (wake_wide(p))
4014 return 0;
4015
c88d5910
PZ
4016 idx = sd->wake_idx;
4017 this_cpu = smp_processor_id();
4018 prev_cpu = task_cpu(p);
4019 load = source_load(prev_cpu, idx);
4020 this_load = target_load(this_cpu, idx);
098fb9db 4021
b3137bc8
MG
4022 /*
4023 * If sync wakeup then subtract the (maximum possible)
4024 * effect of the currently running task from the load
4025 * of the current CPU:
4026 */
83378269
PZ
4027 if (sync) {
4028 tg = task_group(current);
4029 weight = current->se.load.weight;
4030
c88d5910 4031 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4032 load += effective_load(tg, prev_cpu, 0, -weight);
4033 }
b3137bc8 4034
83378269
PZ
4035 tg = task_group(p);
4036 weight = p->se.load.weight;
b3137bc8 4037
71a29aa7
PZ
4038 /*
4039 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4040 * due to the sync cause above having dropped this_load to 0, we'll
4041 * always have an imbalance, but there's really nothing you can do
4042 * about that, so that's good too.
71a29aa7
PZ
4043 *
4044 * Otherwise check if either cpus are near enough in load to allow this
4045 * task to be woken on this_cpu.
4046 */
e37b6a7b
PT
4047 if (this_load > 0) {
4048 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4049
4050 this_eff_load = 100;
4051 this_eff_load *= power_of(prev_cpu);
4052 this_eff_load *= this_load +
4053 effective_load(tg, this_cpu, weight, weight);
4054
4055 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4056 prev_eff_load *= power_of(this_cpu);
4057 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4058
4059 balanced = this_eff_load <= prev_eff_load;
4060 } else
4061 balanced = true;
b3137bc8 4062
098fb9db 4063 /*
4ae7d5ce
IM
4064 * If the currently running task will sleep within
4065 * a reasonable amount of time then attract this newly
4066 * woken task:
098fb9db 4067 */
2fb7635c
PZ
4068 if (sync && balanced)
4069 return 1;
098fb9db 4070
41acab88 4071 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4072 tl_per_task = cpu_avg_load_per_task(this_cpu);
4073
c88d5910
PZ
4074 if (balanced ||
4075 (this_load <= load &&
4076 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4077 /*
4078 * This domain has SD_WAKE_AFFINE and
4079 * p is cache cold in this domain, and
4080 * there is no bad imbalance.
4081 */
c88d5910 4082 schedstat_inc(sd, ttwu_move_affine);
41acab88 4083 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4084
4085 return 1;
4086 }
4087 return 0;
4088}
4089
aaee1203
PZ
4090/*
4091 * find_idlest_group finds and returns the least busy CPU group within the
4092 * domain.
4093 */
4094static struct sched_group *
78e7ed53 4095find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 4096 int this_cpu, int load_idx)
e7693a36 4097{
b3bd3de6 4098 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4099 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 4100 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4101
aaee1203
PZ
4102 do {
4103 unsigned long load, avg_load;
4104 int local_group;
4105 int i;
e7693a36 4106
aaee1203
PZ
4107 /* Skip over this group if it has no CPUs allowed */
4108 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4109 tsk_cpus_allowed(p)))
aaee1203
PZ
4110 continue;
4111
4112 local_group = cpumask_test_cpu(this_cpu,
4113 sched_group_cpus(group));
4114
4115 /* Tally up the load of all CPUs in the group */
4116 avg_load = 0;
4117
4118 for_each_cpu(i, sched_group_cpus(group)) {
4119 /* Bias balancing toward cpus of our domain */
4120 if (local_group)
4121 load = source_load(i, load_idx);
4122 else
4123 load = target_load(i, load_idx);
4124
4125 avg_load += load;
4126 }
4127
4128 /* Adjust by relative CPU power of the group */
9c3f75cb 4129 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4130
4131 if (local_group) {
4132 this_load = avg_load;
aaee1203
PZ
4133 } else if (avg_load < min_load) {
4134 min_load = avg_load;
4135 idlest = group;
4136 }
4137 } while (group = group->next, group != sd->groups);
4138
4139 if (!idlest || 100*this_load < imbalance*min_load)
4140 return NULL;
4141 return idlest;
4142}
4143
4144/*
4145 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4146 */
4147static int
4148find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4149{
4150 unsigned long load, min_load = ULONG_MAX;
4151 int idlest = -1;
4152 int i;
4153
4154 /* Traverse only the allowed CPUs */
fa17b507 4155 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4156 load = weighted_cpuload(i);
4157
4158 if (load < min_load || (load == min_load && i == this_cpu)) {
4159 min_load = load;
4160 idlest = i;
e7693a36
GH
4161 }
4162 }
4163
aaee1203
PZ
4164 return idlest;
4165}
e7693a36 4166
a50bde51
PZ
4167/*
4168 * Try and locate an idle CPU in the sched_domain.
4169 */
99bd5e2f 4170static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4171{
99bd5e2f 4172 struct sched_domain *sd;
37407ea7 4173 struct sched_group *sg;
e0a79f52 4174 int i = task_cpu(p);
a50bde51 4175
e0a79f52
MG
4176 if (idle_cpu(target))
4177 return target;
99bd5e2f
SS
4178
4179 /*
e0a79f52 4180 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4181 */
e0a79f52
MG
4182 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4183 return i;
a50bde51
PZ
4184
4185 /*
37407ea7 4186 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4187 */
518cd623 4188 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4189 for_each_lower_domain(sd) {
37407ea7
LT
4190 sg = sd->groups;
4191 do {
4192 if (!cpumask_intersects(sched_group_cpus(sg),
4193 tsk_cpus_allowed(p)))
4194 goto next;
4195
4196 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4197 if (i == target || !idle_cpu(i))
37407ea7
LT
4198 goto next;
4199 }
970e1789 4200
37407ea7
LT
4201 target = cpumask_first_and(sched_group_cpus(sg),
4202 tsk_cpus_allowed(p));
4203 goto done;
4204next:
4205 sg = sg->next;
4206 } while (sg != sd->groups);
4207 }
4208done:
a50bde51
PZ
4209 return target;
4210}
4211
aaee1203
PZ
4212/*
4213 * sched_balance_self: balance the current task (running on cpu) in domains
4214 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4215 * SD_BALANCE_EXEC.
4216 *
4217 * Balance, ie. select the least loaded group.
4218 *
4219 * Returns the target CPU number, or the same CPU if no balancing is needed.
4220 *
4221 * preempt must be disabled.
4222 */
0017d735 4223static int
ac66f547 4224select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4225{
29cd8bae 4226 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4227 int cpu = smp_processor_id();
c88d5910 4228 int new_cpu = cpu;
99bd5e2f 4229 int want_affine = 0;
5158f4e4 4230 int sync = wake_flags & WF_SYNC;
c88d5910 4231
29baa747 4232 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4233 return prev_cpu;
4234
0763a660 4235 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4236 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4237 want_affine = 1;
4238 new_cpu = prev_cpu;
4239 }
aaee1203 4240
dce840a0 4241 rcu_read_lock();
aaee1203 4242 for_each_domain(cpu, tmp) {
e4f42888
PZ
4243 if (!(tmp->flags & SD_LOAD_BALANCE))
4244 continue;
4245
fe3bcfe1 4246 /*
99bd5e2f
SS
4247 * If both cpu and prev_cpu are part of this domain,
4248 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4249 */
99bd5e2f
SS
4250 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4251 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4252 affine_sd = tmp;
29cd8bae 4253 break;
f03542a7 4254 }
29cd8bae 4255
f03542a7 4256 if (tmp->flags & sd_flag)
29cd8bae
PZ
4257 sd = tmp;
4258 }
4259
8b911acd 4260 if (affine_sd) {
f03542a7 4261 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4262 prev_cpu = cpu;
4263
4264 new_cpu = select_idle_sibling(p, prev_cpu);
4265 goto unlock;
8b911acd 4266 }
e7693a36 4267
aaee1203 4268 while (sd) {
5158f4e4 4269 int load_idx = sd->forkexec_idx;
aaee1203 4270 struct sched_group *group;
c88d5910 4271 int weight;
098fb9db 4272
0763a660 4273 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4274 sd = sd->child;
4275 continue;
4276 }
098fb9db 4277
5158f4e4
PZ
4278 if (sd_flag & SD_BALANCE_WAKE)
4279 load_idx = sd->wake_idx;
098fb9db 4280
5158f4e4 4281 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4282 if (!group) {
4283 sd = sd->child;
4284 continue;
4285 }
4ae7d5ce 4286
d7c33c49 4287 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4288 if (new_cpu == -1 || new_cpu == cpu) {
4289 /* Now try balancing at a lower domain level of cpu */
4290 sd = sd->child;
4291 continue;
e7693a36 4292 }
aaee1203
PZ
4293
4294 /* Now try balancing at a lower domain level of new_cpu */
4295 cpu = new_cpu;
669c55e9 4296 weight = sd->span_weight;
aaee1203
PZ
4297 sd = NULL;
4298 for_each_domain(cpu, tmp) {
669c55e9 4299 if (weight <= tmp->span_weight)
aaee1203 4300 break;
0763a660 4301 if (tmp->flags & sd_flag)
aaee1203
PZ
4302 sd = tmp;
4303 }
4304 /* while loop will break here if sd == NULL */
e7693a36 4305 }
dce840a0
PZ
4306unlock:
4307 rcu_read_unlock();
e7693a36 4308
c88d5910 4309 return new_cpu;
e7693a36 4310}
0a74bef8
PT
4311
4312/*
4313 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4314 * cfs_rq_of(p) references at time of call are still valid and identify the
4315 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4316 * other assumptions, including the state of rq->lock, should be made.
4317 */
4318static void
4319migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4320{
aff3e498
PT
4321 struct sched_entity *se = &p->se;
4322 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4323
4324 /*
4325 * Load tracking: accumulate removed load so that it can be processed
4326 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4327 * to blocked load iff they have a positive decay-count. It can never
4328 * be negative here since on-rq tasks have decay-count == 0.
4329 */
4330 if (se->avg.decay_count) {
4331 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4332 atomic_long_add(se->avg.load_avg_contrib,
4333 &cfs_rq->removed_load);
aff3e498 4334 }
0a74bef8 4335}
e7693a36
GH
4336#endif /* CONFIG_SMP */
4337
e52fb7c0
PZ
4338static unsigned long
4339wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4340{
4341 unsigned long gran = sysctl_sched_wakeup_granularity;
4342
4343 /*
e52fb7c0
PZ
4344 * Since its curr running now, convert the gran from real-time
4345 * to virtual-time in his units.
13814d42
MG
4346 *
4347 * By using 'se' instead of 'curr' we penalize light tasks, so
4348 * they get preempted easier. That is, if 'se' < 'curr' then
4349 * the resulting gran will be larger, therefore penalizing the
4350 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4351 * be smaller, again penalizing the lighter task.
4352 *
4353 * This is especially important for buddies when the leftmost
4354 * task is higher priority than the buddy.
0bbd3336 4355 */
f4ad9bd2 4356 return calc_delta_fair(gran, se);
0bbd3336
PZ
4357}
4358
464b7527
PZ
4359/*
4360 * Should 'se' preempt 'curr'.
4361 *
4362 * |s1
4363 * |s2
4364 * |s3
4365 * g
4366 * |<--->|c
4367 *
4368 * w(c, s1) = -1
4369 * w(c, s2) = 0
4370 * w(c, s3) = 1
4371 *
4372 */
4373static int
4374wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4375{
4376 s64 gran, vdiff = curr->vruntime - se->vruntime;
4377
4378 if (vdiff <= 0)
4379 return -1;
4380
e52fb7c0 4381 gran = wakeup_gran(curr, se);
464b7527
PZ
4382 if (vdiff > gran)
4383 return 1;
4384
4385 return 0;
4386}
4387
02479099
PZ
4388static void set_last_buddy(struct sched_entity *se)
4389{
69c80f3e
VP
4390 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4391 return;
4392
4393 for_each_sched_entity(se)
4394 cfs_rq_of(se)->last = se;
02479099
PZ
4395}
4396
4397static void set_next_buddy(struct sched_entity *se)
4398{
69c80f3e
VP
4399 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4400 return;
4401
4402 for_each_sched_entity(se)
4403 cfs_rq_of(se)->next = se;
02479099
PZ
4404}
4405
ac53db59
RR
4406static void set_skip_buddy(struct sched_entity *se)
4407{
69c80f3e
VP
4408 for_each_sched_entity(se)
4409 cfs_rq_of(se)->skip = se;
ac53db59
RR
4410}
4411
bf0f6f24
IM
4412/*
4413 * Preempt the current task with a newly woken task if needed:
4414 */
5a9b86f6 4415static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4416{
4417 struct task_struct *curr = rq->curr;
8651a86c 4418 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4419 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4420 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4421 int next_buddy_marked = 0;
bf0f6f24 4422
4ae7d5ce
IM
4423 if (unlikely(se == pse))
4424 return;
4425
5238cdd3 4426 /*
ddcdf6e7 4427 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4428 * unconditionally check_prempt_curr() after an enqueue (which may have
4429 * lead to a throttle). This both saves work and prevents false
4430 * next-buddy nomination below.
4431 */
4432 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4433 return;
4434
2f36825b 4435 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4436 set_next_buddy(pse);
2f36825b
VP
4437 next_buddy_marked = 1;
4438 }
57fdc26d 4439
aec0a514
BR
4440 /*
4441 * We can come here with TIF_NEED_RESCHED already set from new task
4442 * wake up path.
5238cdd3
PT
4443 *
4444 * Note: this also catches the edge-case of curr being in a throttled
4445 * group (e.g. via set_curr_task), since update_curr() (in the
4446 * enqueue of curr) will have resulted in resched being set. This
4447 * prevents us from potentially nominating it as a false LAST_BUDDY
4448 * below.
aec0a514
BR
4449 */
4450 if (test_tsk_need_resched(curr))
4451 return;
4452
a2f5c9ab
DH
4453 /* Idle tasks are by definition preempted by non-idle tasks. */
4454 if (unlikely(curr->policy == SCHED_IDLE) &&
4455 likely(p->policy != SCHED_IDLE))
4456 goto preempt;
4457
91c234b4 4458 /*
a2f5c9ab
DH
4459 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4460 * is driven by the tick):
91c234b4 4461 */
8ed92e51 4462 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4463 return;
bf0f6f24 4464
464b7527 4465 find_matching_se(&se, &pse);
9bbd7374 4466 update_curr(cfs_rq_of(se));
002f128b 4467 BUG_ON(!pse);
2f36825b
VP
4468 if (wakeup_preempt_entity(se, pse) == 1) {
4469 /*
4470 * Bias pick_next to pick the sched entity that is
4471 * triggering this preemption.
4472 */
4473 if (!next_buddy_marked)
4474 set_next_buddy(pse);
3a7e73a2 4475 goto preempt;
2f36825b 4476 }
464b7527 4477
3a7e73a2 4478 return;
a65ac745 4479
3a7e73a2
PZ
4480preempt:
4481 resched_task(curr);
4482 /*
4483 * Only set the backward buddy when the current task is still
4484 * on the rq. This can happen when a wakeup gets interleaved
4485 * with schedule on the ->pre_schedule() or idle_balance()
4486 * point, either of which can * drop the rq lock.
4487 *
4488 * Also, during early boot the idle thread is in the fair class,
4489 * for obvious reasons its a bad idea to schedule back to it.
4490 */
4491 if (unlikely(!se->on_rq || curr == rq->idle))
4492 return;
4493
4494 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4495 set_last_buddy(se);
bf0f6f24
IM
4496}
4497
fb8d4724 4498static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4499{
8f4d37ec 4500 struct task_struct *p;
bf0f6f24
IM
4501 struct cfs_rq *cfs_rq = &rq->cfs;
4502 struct sched_entity *se;
4503
36ace27e 4504 if (!cfs_rq->nr_running)
bf0f6f24
IM
4505 return NULL;
4506
4507 do {
9948f4b2 4508 se = pick_next_entity(cfs_rq);
f4b6755f 4509 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4510 cfs_rq = group_cfs_rq(se);
4511 } while (cfs_rq);
4512
8f4d37ec 4513 p = task_of(se);
b39e66ea
MG
4514 if (hrtick_enabled(rq))
4515 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4516
4517 return p;
bf0f6f24
IM
4518}
4519
4520/*
4521 * Account for a descheduled task:
4522 */
31ee529c 4523static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4524{
4525 struct sched_entity *se = &prev->se;
4526 struct cfs_rq *cfs_rq;
4527
4528 for_each_sched_entity(se) {
4529 cfs_rq = cfs_rq_of(se);
ab6cde26 4530 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4531 }
4532}
4533
ac53db59
RR
4534/*
4535 * sched_yield() is very simple
4536 *
4537 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4538 */
4539static void yield_task_fair(struct rq *rq)
4540{
4541 struct task_struct *curr = rq->curr;
4542 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4543 struct sched_entity *se = &curr->se;
4544
4545 /*
4546 * Are we the only task in the tree?
4547 */
4548 if (unlikely(rq->nr_running == 1))
4549 return;
4550
4551 clear_buddies(cfs_rq, se);
4552
4553 if (curr->policy != SCHED_BATCH) {
4554 update_rq_clock(rq);
4555 /*
4556 * Update run-time statistics of the 'current'.
4557 */
4558 update_curr(cfs_rq);
916671c0
MG
4559 /*
4560 * Tell update_rq_clock() that we've just updated,
4561 * so we don't do microscopic update in schedule()
4562 * and double the fastpath cost.
4563 */
4564 rq->skip_clock_update = 1;
ac53db59
RR
4565 }
4566
4567 set_skip_buddy(se);
4568}
4569
d95f4122
MG
4570static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4571{
4572 struct sched_entity *se = &p->se;
4573
5238cdd3
PT
4574 /* throttled hierarchies are not runnable */
4575 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4576 return false;
4577
4578 /* Tell the scheduler that we'd really like pse to run next. */
4579 set_next_buddy(se);
4580
d95f4122
MG
4581 yield_task_fair(rq);
4582
4583 return true;
4584}
4585
681f3e68 4586#ifdef CONFIG_SMP
bf0f6f24 4587/**************************************************
e9c84cb8
PZ
4588 * Fair scheduling class load-balancing methods.
4589 *
4590 * BASICS
4591 *
4592 * The purpose of load-balancing is to achieve the same basic fairness the
4593 * per-cpu scheduler provides, namely provide a proportional amount of compute
4594 * time to each task. This is expressed in the following equation:
4595 *
4596 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4597 *
4598 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4599 * W_i,0 is defined as:
4600 *
4601 * W_i,0 = \Sum_j w_i,j (2)
4602 *
4603 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4604 * is derived from the nice value as per prio_to_weight[].
4605 *
4606 * The weight average is an exponential decay average of the instantaneous
4607 * weight:
4608 *
4609 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4610 *
4611 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4612 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4613 * can also include other factors [XXX].
4614 *
4615 * To achieve this balance we define a measure of imbalance which follows
4616 * directly from (1):
4617 *
4618 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4619 *
4620 * We them move tasks around to minimize the imbalance. In the continuous
4621 * function space it is obvious this converges, in the discrete case we get
4622 * a few fun cases generally called infeasible weight scenarios.
4623 *
4624 * [XXX expand on:
4625 * - infeasible weights;
4626 * - local vs global optima in the discrete case. ]
4627 *
4628 *
4629 * SCHED DOMAINS
4630 *
4631 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4632 * for all i,j solution, we create a tree of cpus that follows the hardware
4633 * topology where each level pairs two lower groups (or better). This results
4634 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4635 * tree to only the first of the previous level and we decrease the frequency
4636 * of load-balance at each level inv. proportional to the number of cpus in
4637 * the groups.
4638 *
4639 * This yields:
4640 *
4641 * log_2 n 1 n
4642 * \Sum { --- * --- * 2^i } = O(n) (5)
4643 * i = 0 2^i 2^i
4644 * `- size of each group
4645 * | | `- number of cpus doing load-balance
4646 * | `- freq
4647 * `- sum over all levels
4648 *
4649 * Coupled with a limit on how many tasks we can migrate every balance pass,
4650 * this makes (5) the runtime complexity of the balancer.
4651 *
4652 * An important property here is that each CPU is still (indirectly) connected
4653 * to every other cpu in at most O(log n) steps:
4654 *
4655 * The adjacency matrix of the resulting graph is given by:
4656 *
4657 * log_2 n
4658 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4659 * k = 0
4660 *
4661 * And you'll find that:
4662 *
4663 * A^(log_2 n)_i,j != 0 for all i,j (7)
4664 *
4665 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4666 * The task movement gives a factor of O(m), giving a convergence complexity
4667 * of:
4668 *
4669 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4670 *
4671 *
4672 * WORK CONSERVING
4673 *
4674 * In order to avoid CPUs going idle while there's still work to do, new idle
4675 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4676 * tree itself instead of relying on other CPUs to bring it work.
4677 *
4678 * This adds some complexity to both (5) and (8) but it reduces the total idle
4679 * time.
4680 *
4681 * [XXX more?]
4682 *
4683 *
4684 * CGROUPS
4685 *
4686 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4687 *
4688 * s_k,i
4689 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4690 * S_k
4691 *
4692 * Where
4693 *
4694 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4695 *
4696 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4697 *
4698 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4699 * property.
4700 *
4701 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4702 * rewrite all of this once again.]
4703 */
bf0f6f24 4704
ed387b78
HS
4705static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4706
0ec8aa00
PZ
4707enum fbq_type { regular, remote, all };
4708
ddcdf6e7 4709#define LBF_ALL_PINNED 0x01
367456c7 4710#define LBF_NEED_BREAK 0x02
6263322c
PZ
4711#define LBF_DST_PINNED 0x04
4712#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4713
4714struct lb_env {
4715 struct sched_domain *sd;
4716
ddcdf6e7 4717 struct rq *src_rq;
85c1e7da 4718 int src_cpu;
ddcdf6e7
PZ
4719
4720 int dst_cpu;
4721 struct rq *dst_rq;
4722
88b8dac0
SV
4723 struct cpumask *dst_grpmask;
4724 int new_dst_cpu;
ddcdf6e7 4725 enum cpu_idle_type idle;
bd939f45 4726 long imbalance;
b9403130
MW
4727 /* The set of CPUs under consideration for load-balancing */
4728 struct cpumask *cpus;
4729
ddcdf6e7 4730 unsigned int flags;
367456c7
PZ
4731
4732 unsigned int loop;
4733 unsigned int loop_break;
4734 unsigned int loop_max;
0ec8aa00
PZ
4735
4736 enum fbq_type fbq_type;
ddcdf6e7
PZ
4737};
4738
1e3c88bd 4739/*
ddcdf6e7 4740 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4741 * Both runqueues must be locked.
4742 */
ddcdf6e7 4743static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4744{
ddcdf6e7
PZ
4745 deactivate_task(env->src_rq, p, 0);
4746 set_task_cpu(p, env->dst_cpu);
4747 activate_task(env->dst_rq, p, 0);
4748 check_preempt_curr(env->dst_rq, p, 0);
6fe6b2d6
RR
4749#ifdef CONFIG_NUMA_BALANCING
4750 if (p->numa_preferred_nid != -1) {
4751 int src_nid = cpu_to_node(env->src_cpu);
4752 int dst_nid = cpu_to_node(env->dst_cpu);
4753
4754 /*
4755 * If the load balancer has moved the task then limit
4756 * migrations from taking place in the short term in
4757 * case this is a short-lived migration.
4758 */
4759 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4760 p->numa_migrate_seq = 0;
4761 }
4762#endif
1e3c88bd
PZ
4763}
4764
029632fb
PZ
4765/*
4766 * Is this task likely cache-hot:
4767 */
4768static int
4769task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4770{
4771 s64 delta;
4772
4773 if (p->sched_class != &fair_sched_class)
4774 return 0;
4775
4776 if (unlikely(p->policy == SCHED_IDLE))
4777 return 0;
4778
4779 /*
4780 * Buddy candidates are cache hot:
4781 */
4782 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4783 (&p->se == cfs_rq_of(&p->se)->next ||
4784 &p->se == cfs_rq_of(&p->se)->last))
4785 return 1;
4786
4787 if (sysctl_sched_migration_cost == -1)
4788 return 1;
4789 if (sysctl_sched_migration_cost == 0)
4790 return 0;
4791
4792 delta = now - p->se.exec_start;
4793
4794 return delta < (s64)sysctl_sched_migration_cost;
4795}
4796
3a7053b3
MG
4797#ifdef CONFIG_NUMA_BALANCING
4798/* Returns true if the destination node has incurred more faults */
4799static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4800{
4801 int src_nid, dst_nid;
4802
4803 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4804 !(env->sd->flags & SD_NUMA)) {
4805 return false;
4806 }
4807
4808 src_nid = cpu_to_node(env->src_cpu);
4809 dst_nid = cpu_to_node(env->dst_cpu);
4810
83e1d2cd 4811 if (src_nid == dst_nid)
3a7053b3
MG
4812 return false;
4813
83e1d2cd
MG
4814 /* Always encourage migration to the preferred node. */
4815 if (dst_nid == p->numa_preferred_nid)
4816 return true;
4817
887c290e
RR
4818 /* If both task and group weight improve, this move is a winner. */
4819 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4820 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4821 return true;
4822
4823 return false;
4824}
7a0f3083
MG
4825
4826
4827static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4828{
4829 int src_nid, dst_nid;
4830
4831 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4832 return false;
4833
4834 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4835 return false;
4836
4837 src_nid = cpu_to_node(env->src_cpu);
4838 dst_nid = cpu_to_node(env->dst_cpu);
4839
83e1d2cd 4840 if (src_nid == dst_nid)
7a0f3083
MG
4841 return false;
4842
83e1d2cd
MG
4843 /* Migrating away from the preferred node is always bad. */
4844 if (src_nid == p->numa_preferred_nid)
4845 return true;
4846
887c290e
RR
4847 /* If either task or group weight get worse, don't do it. */
4848 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4849 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4850 return true;
4851
4852 return false;
4853}
4854
3a7053b3
MG
4855#else
4856static inline bool migrate_improves_locality(struct task_struct *p,
4857 struct lb_env *env)
4858{
4859 return false;
4860}
7a0f3083
MG
4861
4862static inline bool migrate_degrades_locality(struct task_struct *p,
4863 struct lb_env *env)
4864{
4865 return false;
4866}
3a7053b3
MG
4867#endif
4868
1e3c88bd
PZ
4869/*
4870 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4871 */
4872static
8e45cb54 4873int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4874{
4875 int tsk_cache_hot = 0;
4876 /*
4877 * We do not migrate tasks that are:
d3198084 4878 * 1) throttled_lb_pair, or
1e3c88bd 4879 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4880 * 3) running (obviously), or
4881 * 4) are cache-hot on their current CPU.
1e3c88bd 4882 */
d3198084
JK
4883 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4884 return 0;
4885
ddcdf6e7 4886 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4887 int cpu;
88b8dac0 4888
41acab88 4889 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4890
6263322c
PZ
4891 env->flags |= LBF_SOME_PINNED;
4892
88b8dac0
SV
4893 /*
4894 * Remember if this task can be migrated to any other cpu in
4895 * our sched_group. We may want to revisit it if we couldn't
4896 * meet load balance goals by pulling other tasks on src_cpu.
4897 *
4898 * Also avoid computing new_dst_cpu if we have already computed
4899 * one in current iteration.
4900 */
6263322c 4901 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4902 return 0;
4903
e02e60c1
JK
4904 /* Prevent to re-select dst_cpu via env's cpus */
4905 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4906 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4907 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4908 env->new_dst_cpu = cpu;
4909 break;
4910 }
88b8dac0 4911 }
e02e60c1 4912
1e3c88bd
PZ
4913 return 0;
4914 }
88b8dac0
SV
4915
4916 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4917 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4918
ddcdf6e7 4919 if (task_running(env->src_rq, p)) {
41acab88 4920 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4921 return 0;
4922 }
4923
4924 /*
4925 * Aggressive migration if:
3a7053b3
MG
4926 * 1) destination numa is preferred
4927 * 2) task is cache cold, or
4928 * 3) too many balance attempts have failed.
1e3c88bd 4929 */
78becc27 4930 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4931 if (!tsk_cache_hot)
4932 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4933
4934 if (migrate_improves_locality(p, env)) {
4935#ifdef CONFIG_SCHEDSTATS
4936 if (tsk_cache_hot) {
4937 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4938 schedstat_inc(p, se.statistics.nr_forced_migrations);
4939 }
4940#endif
4941 return 1;
4942 }
4943
1e3c88bd 4944 if (!tsk_cache_hot ||
8e45cb54 4945 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4946
1e3c88bd 4947 if (tsk_cache_hot) {
8e45cb54 4948 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4949 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4950 }
4e2dcb73 4951
1e3c88bd
PZ
4952 return 1;
4953 }
4954
4e2dcb73
ZH
4955 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4956 return 0;
1e3c88bd
PZ
4957}
4958
897c395f
PZ
4959/*
4960 * move_one_task tries to move exactly one task from busiest to this_rq, as
4961 * part of active balancing operations within "domain".
4962 * Returns 1 if successful and 0 otherwise.
4963 *
4964 * Called with both runqueues locked.
4965 */
8e45cb54 4966static int move_one_task(struct lb_env *env)
897c395f
PZ
4967{
4968 struct task_struct *p, *n;
897c395f 4969
367456c7 4970 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4971 if (!can_migrate_task(p, env))
4972 continue;
897c395f 4973
367456c7
PZ
4974 move_task(p, env);
4975 /*
4976 * Right now, this is only the second place move_task()
4977 * is called, so we can safely collect move_task()
4978 * stats here rather than inside move_task().
4979 */
4980 schedstat_inc(env->sd, lb_gained[env->idle]);
4981 return 1;
897c395f 4982 }
897c395f
PZ
4983 return 0;
4984}
4985
eb95308e
PZ
4986static const unsigned int sched_nr_migrate_break = 32;
4987
5d6523eb 4988/*
bd939f45 4989 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4990 * this_rq, as part of a balancing operation within domain "sd".
4991 * Returns 1 if successful and 0 otherwise.
4992 *
4993 * Called with both runqueues locked.
4994 */
4995static int move_tasks(struct lb_env *env)
1e3c88bd 4996{
5d6523eb
PZ
4997 struct list_head *tasks = &env->src_rq->cfs_tasks;
4998 struct task_struct *p;
367456c7
PZ
4999 unsigned long load;
5000 int pulled = 0;
1e3c88bd 5001
bd939f45 5002 if (env->imbalance <= 0)
5d6523eb 5003 return 0;
1e3c88bd 5004
5d6523eb
PZ
5005 while (!list_empty(tasks)) {
5006 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5007
367456c7
PZ
5008 env->loop++;
5009 /* We've more or less seen every task there is, call it quits */
5d6523eb 5010 if (env->loop > env->loop_max)
367456c7 5011 break;
5d6523eb
PZ
5012
5013 /* take a breather every nr_migrate tasks */
367456c7 5014 if (env->loop > env->loop_break) {
eb95308e 5015 env->loop_break += sched_nr_migrate_break;
8e45cb54 5016 env->flags |= LBF_NEED_BREAK;
ee00e66f 5017 break;
a195f004 5018 }
1e3c88bd 5019
d3198084 5020 if (!can_migrate_task(p, env))
367456c7
PZ
5021 goto next;
5022
5023 load = task_h_load(p);
5d6523eb 5024
eb95308e 5025 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5026 goto next;
5027
bd939f45 5028 if ((load / 2) > env->imbalance)
367456c7 5029 goto next;
1e3c88bd 5030
ddcdf6e7 5031 move_task(p, env);
ee00e66f 5032 pulled++;
bd939f45 5033 env->imbalance -= load;
1e3c88bd
PZ
5034
5035#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5036 /*
5037 * NEWIDLE balancing is a source of latency, so preemptible
5038 * kernels will stop after the first task is pulled to minimize
5039 * the critical section.
5040 */
5d6523eb 5041 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5042 break;
1e3c88bd
PZ
5043#endif
5044
ee00e66f
PZ
5045 /*
5046 * We only want to steal up to the prescribed amount of
5047 * weighted load.
5048 */
bd939f45 5049 if (env->imbalance <= 0)
ee00e66f 5050 break;
367456c7
PZ
5051
5052 continue;
5053next:
5d6523eb 5054 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5055 }
5d6523eb 5056
1e3c88bd 5057 /*
ddcdf6e7
PZ
5058 * Right now, this is one of only two places move_task() is called,
5059 * so we can safely collect move_task() stats here rather than
5060 * inside move_task().
1e3c88bd 5061 */
8e45cb54 5062 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5063
5d6523eb 5064 return pulled;
1e3c88bd
PZ
5065}
5066
230059de 5067#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5068/*
5069 * update tg->load_weight by folding this cpu's load_avg
5070 */
48a16753 5071static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5072{
48a16753
PT
5073 struct sched_entity *se = tg->se[cpu];
5074 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5075
48a16753
PT
5076 /* throttled entities do not contribute to load */
5077 if (throttled_hierarchy(cfs_rq))
5078 return;
9e3081ca 5079
aff3e498 5080 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5081
82958366
PT
5082 if (se) {
5083 update_entity_load_avg(se, 1);
5084 /*
5085 * We pivot on our runnable average having decayed to zero for
5086 * list removal. This generally implies that all our children
5087 * have also been removed (modulo rounding error or bandwidth
5088 * control); however, such cases are rare and we can fix these
5089 * at enqueue.
5090 *
5091 * TODO: fix up out-of-order children on enqueue.
5092 */
5093 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5094 list_del_leaf_cfs_rq(cfs_rq);
5095 } else {
48a16753 5096 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5097 update_rq_runnable_avg(rq, rq->nr_running);
5098 }
9e3081ca
PZ
5099}
5100
48a16753 5101static void update_blocked_averages(int cpu)
9e3081ca 5102{
9e3081ca 5103 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5104 struct cfs_rq *cfs_rq;
5105 unsigned long flags;
9e3081ca 5106
48a16753
PT
5107 raw_spin_lock_irqsave(&rq->lock, flags);
5108 update_rq_clock(rq);
9763b67f
PZ
5109 /*
5110 * Iterates the task_group tree in a bottom up fashion, see
5111 * list_add_leaf_cfs_rq() for details.
5112 */
64660c86 5113 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5114 /*
5115 * Note: We may want to consider periodically releasing
5116 * rq->lock about these updates so that creating many task
5117 * groups does not result in continually extending hold time.
5118 */
5119 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5120 }
48a16753
PT
5121
5122 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5123}
5124
9763b67f 5125/*
68520796 5126 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5127 * This needs to be done in a top-down fashion because the load of a child
5128 * group is a fraction of its parents load.
5129 */
68520796 5130static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5131{
68520796
VD
5132 struct rq *rq = rq_of(cfs_rq);
5133 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5134 unsigned long now = jiffies;
68520796 5135 unsigned long load;
a35b6466 5136
68520796 5137 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5138 return;
5139
68520796
VD
5140 cfs_rq->h_load_next = NULL;
5141 for_each_sched_entity(se) {
5142 cfs_rq = cfs_rq_of(se);
5143 cfs_rq->h_load_next = se;
5144 if (cfs_rq->last_h_load_update == now)
5145 break;
5146 }
a35b6466 5147
68520796 5148 if (!se) {
7e3115ef 5149 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5150 cfs_rq->last_h_load_update = now;
5151 }
5152
5153 while ((se = cfs_rq->h_load_next) != NULL) {
5154 load = cfs_rq->h_load;
5155 load = div64_ul(load * se->avg.load_avg_contrib,
5156 cfs_rq->runnable_load_avg + 1);
5157 cfs_rq = group_cfs_rq(se);
5158 cfs_rq->h_load = load;
5159 cfs_rq->last_h_load_update = now;
5160 }
9763b67f
PZ
5161}
5162
367456c7 5163static unsigned long task_h_load(struct task_struct *p)
230059de 5164{
367456c7 5165 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5166
68520796 5167 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5168 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5169 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5170}
5171#else
48a16753 5172static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5173{
5174}
5175
367456c7 5176static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5177{
a003a25b 5178 return p->se.avg.load_avg_contrib;
1e3c88bd 5179}
230059de 5180#endif
1e3c88bd 5181
1e3c88bd 5182/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5183/*
5184 * sg_lb_stats - stats of a sched_group required for load_balancing
5185 */
5186struct sg_lb_stats {
5187 unsigned long avg_load; /*Avg load across the CPUs of the group */
5188 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5189 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5190 unsigned long load_per_task;
3ae11c90 5191 unsigned long group_power;
147c5fc2
PZ
5192 unsigned int sum_nr_running; /* Nr tasks running in the group */
5193 unsigned int group_capacity;
5194 unsigned int idle_cpus;
5195 unsigned int group_weight;
1e3c88bd 5196 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5197 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5198#ifdef CONFIG_NUMA_BALANCING
5199 unsigned int nr_numa_running;
5200 unsigned int nr_preferred_running;
5201#endif
1e3c88bd
PZ
5202};
5203
56cf515b
JK
5204/*
5205 * sd_lb_stats - Structure to store the statistics of a sched_domain
5206 * during load balancing.
5207 */
5208struct sd_lb_stats {
5209 struct sched_group *busiest; /* Busiest group in this sd */
5210 struct sched_group *local; /* Local group in this sd */
5211 unsigned long total_load; /* Total load of all groups in sd */
5212 unsigned long total_pwr; /* Total power of all groups in sd */
5213 unsigned long avg_load; /* Average load across all groups in sd */
5214
56cf515b 5215 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5216 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5217};
5218
147c5fc2
PZ
5219static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5220{
5221 /*
5222 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5223 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5224 * We must however clear busiest_stat::avg_load because
5225 * update_sd_pick_busiest() reads this before assignment.
5226 */
5227 *sds = (struct sd_lb_stats){
5228 .busiest = NULL,
5229 .local = NULL,
5230 .total_load = 0UL,
5231 .total_pwr = 0UL,
5232 .busiest_stat = {
5233 .avg_load = 0UL,
5234 },
5235 };
5236}
5237
1e3c88bd
PZ
5238/**
5239 * get_sd_load_idx - Obtain the load index for a given sched domain.
5240 * @sd: The sched_domain whose load_idx is to be obtained.
5241 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
e69f6186
YB
5242 *
5243 * Return: The load index.
1e3c88bd
PZ
5244 */
5245static inline int get_sd_load_idx(struct sched_domain *sd,
5246 enum cpu_idle_type idle)
5247{
5248 int load_idx;
5249
5250 switch (idle) {
5251 case CPU_NOT_IDLE:
5252 load_idx = sd->busy_idx;
5253 break;
5254
5255 case CPU_NEWLY_IDLE:
5256 load_idx = sd->newidle_idx;
5257 break;
5258 default:
5259 load_idx = sd->idle_idx;
5260 break;
5261 }
5262
5263 return load_idx;
5264}
5265
15f803c9 5266static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5267{
1399fa78 5268 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5269}
5270
5271unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5272{
5273 return default_scale_freq_power(sd, cpu);
5274}
5275
15f803c9 5276static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5277{
669c55e9 5278 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5279 unsigned long smt_gain = sd->smt_gain;
5280
5281 smt_gain /= weight;
5282
5283 return smt_gain;
5284}
5285
5286unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5287{
5288 return default_scale_smt_power(sd, cpu);
5289}
5290
15f803c9 5291static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5292{
5293 struct rq *rq = cpu_rq(cpu);
b654f7de 5294 u64 total, available, age_stamp, avg;
1e3c88bd 5295
b654f7de
PZ
5296 /*
5297 * Since we're reading these variables without serialization make sure
5298 * we read them once before doing sanity checks on them.
5299 */
5300 age_stamp = ACCESS_ONCE(rq->age_stamp);
5301 avg = ACCESS_ONCE(rq->rt_avg);
5302
78becc27 5303 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5304
b654f7de 5305 if (unlikely(total < avg)) {
aa483808
VP
5306 /* Ensures that power won't end up being negative */
5307 available = 0;
5308 } else {
b654f7de 5309 available = total - avg;
aa483808 5310 }
1e3c88bd 5311
1399fa78
NR
5312 if (unlikely((s64)total < SCHED_POWER_SCALE))
5313 total = SCHED_POWER_SCALE;
1e3c88bd 5314
1399fa78 5315 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5316
5317 return div_u64(available, total);
5318}
5319
5320static void update_cpu_power(struct sched_domain *sd, int cpu)
5321{
669c55e9 5322 unsigned long weight = sd->span_weight;
1399fa78 5323 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5324 struct sched_group *sdg = sd->groups;
5325
1e3c88bd
PZ
5326 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5327 if (sched_feat(ARCH_POWER))
5328 power *= arch_scale_smt_power(sd, cpu);
5329 else
5330 power *= default_scale_smt_power(sd, cpu);
5331
1399fa78 5332 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5333 }
5334
9c3f75cb 5335 sdg->sgp->power_orig = power;
9d5efe05
SV
5336
5337 if (sched_feat(ARCH_POWER))
5338 power *= arch_scale_freq_power(sd, cpu);
5339 else
5340 power *= default_scale_freq_power(sd, cpu);
5341
1399fa78 5342 power >>= SCHED_POWER_SHIFT;
9d5efe05 5343
1e3c88bd 5344 power *= scale_rt_power(cpu);
1399fa78 5345 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5346
5347 if (!power)
5348 power = 1;
5349
e51fd5e2 5350 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5351 sdg->sgp->power = power;
1e3c88bd
PZ
5352}
5353
029632fb 5354void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5355{
5356 struct sched_domain *child = sd->child;
5357 struct sched_group *group, *sdg = sd->groups;
863bffc8 5358 unsigned long power, power_orig;
4ec4412e
VG
5359 unsigned long interval;
5360
5361 interval = msecs_to_jiffies(sd->balance_interval);
5362 interval = clamp(interval, 1UL, max_load_balance_interval);
5363 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5364
5365 if (!child) {
5366 update_cpu_power(sd, cpu);
5367 return;
5368 }
5369
863bffc8 5370 power_orig = power = 0;
1e3c88bd 5371
74a5ce20
PZ
5372 if (child->flags & SD_OVERLAP) {
5373 /*
5374 * SD_OVERLAP domains cannot assume that child groups
5375 * span the current group.
5376 */
5377
863bffc8
PZ
5378 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5379 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5380
5381 power_orig += sg->sgp->power_orig;
5382 power += sg->sgp->power;
5383 }
74a5ce20
PZ
5384 } else {
5385 /*
5386 * !SD_OVERLAP domains can assume that child groups
5387 * span the current group.
5388 */
5389
5390 group = child->groups;
5391 do {
863bffc8 5392 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5393 power += group->sgp->power;
5394 group = group->next;
5395 } while (group != child->groups);
5396 }
1e3c88bd 5397
863bffc8
PZ
5398 sdg->sgp->power_orig = power_orig;
5399 sdg->sgp->power = power;
1e3c88bd
PZ
5400}
5401
9d5efe05
SV
5402/*
5403 * Try and fix up capacity for tiny siblings, this is needed when
5404 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5405 * which on its own isn't powerful enough.
5406 *
5407 * See update_sd_pick_busiest() and check_asym_packing().
5408 */
5409static inline int
5410fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5411{
5412 /*
1399fa78 5413 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5414 */
a6c75f2f 5415 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5416 return 0;
5417
5418 /*
5419 * If ~90% of the cpu_power is still there, we're good.
5420 */
9c3f75cb 5421 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5422 return 1;
5423
5424 return 0;
5425}
5426
30ce5dab
PZ
5427/*
5428 * Group imbalance indicates (and tries to solve) the problem where balancing
5429 * groups is inadequate due to tsk_cpus_allowed() constraints.
5430 *
5431 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5432 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5433 * Something like:
5434 *
5435 * { 0 1 2 3 } { 4 5 6 7 }
5436 * * * * *
5437 *
5438 * If we were to balance group-wise we'd place two tasks in the first group and
5439 * two tasks in the second group. Clearly this is undesired as it will overload
5440 * cpu 3 and leave one of the cpus in the second group unused.
5441 *
5442 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5443 * by noticing the lower domain failed to reach balance and had difficulty
5444 * moving tasks due to affinity constraints.
30ce5dab
PZ
5445 *
5446 * When this is so detected; this group becomes a candidate for busiest; see
5447 * update_sd_pick_busiest(). And calculcate_imbalance() and
6263322c 5448 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5449 * to create an effective group imbalance.
5450 *
5451 * This is a somewhat tricky proposition since the next run might not find the
5452 * group imbalance and decide the groups need to be balanced again. A most
5453 * subtle and fragile situation.
5454 */
5455
6263322c 5456static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5457{
6263322c 5458 return group->sgp->imbalance;
30ce5dab
PZ
5459}
5460
b37d9316
PZ
5461/*
5462 * Compute the group capacity.
5463 *
c61037e9
PZ
5464 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5465 * first dividing out the smt factor and computing the actual number of cores
5466 * and limit power unit capacity with that.
b37d9316
PZ
5467 */
5468static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5469{
c61037e9
PZ
5470 unsigned int capacity, smt, cpus;
5471 unsigned int power, power_orig;
5472
5473 power = group->sgp->power;
5474 power_orig = group->sgp->power_orig;
5475 cpus = group->group_weight;
b37d9316 5476
c61037e9
PZ
5477 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5478 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5479 capacity = cpus / smt; /* cores */
b37d9316 5480
c61037e9 5481 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5482 if (!capacity)
5483 capacity = fix_small_capacity(env->sd, group);
5484
5485 return capacity;
5486}
5487
1e3c88bd
PZ
5488/**
5489 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5490 * @env: The load balancing environment.
1e3c88bd 5491 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5492 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5493 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5494 * @sgs: variable to hold the statistics for this group.
5495 */
bd939f45
PZ
5496static inline void update_sg_lb_stats(struct lb_env *env,
5497 struct sched_group *group, int load_idx,
23f0d209 5498 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5499{
30ce5dab
PZ
5500 unsigned long nr_running;
5501 unsigned long load;
bd939f45 5502 int i;
1e3c88bd 5503
b72ff13c
PZ
5504 memset(sgs, 0, sizeof(*sgs));
5505
b9403130 5506 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5507 struct rq *rq = cpu_rq(i);
5508
e44bc5c5
PZ
5509 nr_running = rq->nr_running;
5510
1e3c88bd 5511 /* Bias balancing toward cpus of our domain */
6263322c 5512 if (local_group)
04f733b4 5513 load = target_load(i, load_idx);
6263322c 5514 else
1e3c88bd 5515 load = source_load(i, load_idx);
1e3c88bd
PZ
5516
5517 sgs->group_load += load;
e44bc5c5 5518 sgs->sum_nr_running += nr_running;
0ec8aa00
PZ
5519#ifdef CONFIG_NUMA_BALANCING
5520 sgs->nr_numa_running += rq->nr_numa_running;
5521 sgs->nr_preferred_running += rq->nr_preferred_running;
5522#endif
1e3c88bd 5523 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5524 if (idle_cpu(i))
5525 sgs->idle_cpus++;
1e3c88bd
PZ
5526 }
5527
1e3c88bd 5528 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5529 sgs->group_power = group->sgp->power;
5530 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5531
dd5feea1 5532 if (sgs->sum_nr_running)
38d0f770 5533 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5534
aae6d3dd 5535 sgs->group_weight = group->group_weight;
fab47622 5536
b37d9316
PZ
5537 sgs->group_imb = sg_imbalanced(group);
5538 sgs->group_capacity = sg_capacity(env, group);
5539
fab47622
NR
5540 if (sgs->group_capacity > sgs->sum_nr_running)
5541 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5542}
5543
532cb4c4
MN
5544/**
5545 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5546 * @env: The load balancing environment.
532cb4c4
MN
5547 * @sds: sched_domain statistics
5548 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5549 * @sgs: sched_group statistics
532cb4c4
MN
5550 *
5551 * Determine if @sg is a busier group than the previously selected
5552 * busiest group.
e69f6186
YB
5553 *
5554 * Return: %true if @sg is a busier group than the previously selected
5555 * busiest group. %false otherwise.
532cb4c4 5556 */
bd939f45 5557static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5558 struct sd_lb_stats *sds,
5559 struct sched_group *sg,
bd939f45 5560 struct sg_lb_stats *sgs)
532cb4c4 5561{
56cf515b 5562 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5563 return false;
5564
5565 if (sgs->sum_nr_running > sgs->group_capacity)
5566 return true;
5567
5568 if (sgs->group_imb)
5569 return true;
5570
5571 /*
5572 * ASYM_PACKING needs to move all the work to the lowest
5573 * numbered CPUs in the group, therefore mark all groups
5574 * higher than ourself as busy.
5575 */
bd939f45
PZ
5576 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5577 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5578 if (!sds->busiest)
5579 return true;
5580
5581 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5582 return true;
5583 }
5584
5585 return false;
5586}
5587
0ec8aa00
PZ
5588#ifdef CONFIG_NUMA_BALANCING
5589static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5590{
5591 if (sgs->sum_nr_running > sgs->nr_numa_running)
5592 return regular;
5593 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5594 return remote;
5595 return all;
5596}
5597
5598static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5599{
5600 if (rq->nr_running > rq->nr_numa_running)
5601 return regular;
5602 if (rq->nr_running > rq->nr_preferred_running)
5603 return remote;
5604 return all;
5605}
5606#else
5607static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5608{
5609 return all;
5610}
5611
5612static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5613{
5614 return regular;
5615}
5616#endif /* CONFIG_NUMA_BALANCING */
5617
1e3c88bd 5618/**
461819ac 5619 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5620 * @env: The load balancing environment.
1e3c88bd
PZ
5621 * @balance: Should we balance.
5622 * @sds: variable to hold the statistics for this sched_domain.
5623 */
0ec8aa00 5624static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5625{
bd939f45
PZ
5626 struct sched_domain *child = env->sd->child;
5627 struct sched_group *sg = env->sd->groups;
56cf515b 5628 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5629 int load_idx, prefer_sibling = 0;
5630
5631 if (child && child->flags & SD_PREFER_SIBLING)
5632 prefer_sibling = 1;
5633
bd939f45 5634 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5635
5636 do {
56cf515b 5637 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5638 int local_group;
5639
bd939f45 5640 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5641 if (local_group) {
5642 sds->local = sg;
5643 sgs = &sds->local_stat;
b72ff13c
PZ
5644
5645 if (env->idle != CPU_NEWLY_IDLE ||
5646 time_after_eq(jiffies, sg->sgp->next_update))
5647 update_group_power(env->sd, env->dst_cpu);
56cf515b 5648 }
1e3c88bd 5649
56cf515b 5650 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5651
b72ff13c
PZ
5652 if (local_group)
5653 goto next_group;
5654
1e3c88bd
PZ
5655 /*
5656 * In case the child domain prefers tasks go to siblings
532cb4c4 5657 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5658 * and move all the excess tasks away. We lower the capacity
5659 * of a group only if the local group has the capacity to fit
5660 * these excess tasks, i.e. nr_running < group_capacity. The
5661 * extra check prevents the case where you always pull from the
5662 * heaviest group when it is already under-utilized (possible
5663 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5664 */
b72ff13c
PZ
5665 if (prefer_sibling && sds->local &&
5666 sds->local_stat.group_has_capacity)
147c5fc2 5667 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5668
b72ff13c 5669 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5670 sds->busiest = sg;
56cf515b 5671 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5672 }
5673
b72ff13c
PZ
5674next_group:
5675 /* Now, start updating sd_lb_stats */
5676 sds->total_load += sgs->group_load;
5677 sds->total_pwr += sgs->group_power;
5678
532cb4c4 5679 sg = sg->next;
bd939f45 5680 } while (sg != env->sd->groups);
0ec8aa00
PZ
5681
5682 if (env->sd->flags & SD_NUMA)
5683 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5684}
5685
532cb4c4
MN
5686/**
5687 * check_asym_packing - Check to see if the group is packed into the
5688 * sched doman.
5689 *
5690 * This is primarily intended to used at the sibling level. Some
5691 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5692 * case of POWER7, it can move to lower SMT modes only when higher
5693 * threads are idle. When in lower SMT modes, the threads will
5694 * perform better since they share less core resources. Hence when we
5695 * have idle threads, we want them to be the higher ones.
5696 *
5697 * This packing function is run on idle threads. It checks to see if
5698 * the busiest CPU in this domain (core in the P7 case) has a higher
5699 * CPU number than the packing function is being run on. Here we are
5700 * assuming lower CPU number will be equivalent to lower a SMT thread
5701 * number.
5702 *
e69f6186 5703 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5704 * this CPU. The amount of the imbalance is returned in *imbalance.
5705 *
cd96891d 5706 * @env: The load balancing environment.
532cb4c4 5707 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5708 */
bd939f45 5709static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5710{
5711 int busiest_cpu;
5712
bd939f45 5713 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5714 return 0;
5715
5716 if (!sds->busiest)
5717 return 0;
5718
5719 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5720 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5721 return 0;
5722
bd939f45 5723 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5724 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5725 SCHED_POWER_SCALE);
bd939f45 5726
532cb4c4 5727 return 1;
1e3c88bd
PZ
5728}
5729
5730/**
5731 * fix_small_imbalance - Calculate the minor imbalance that exists
5732 * amongst the groups of a sched_domain, during
5733 * load balancing.
cd96891d 5734 * @env: The load balancing environment.
1e3c88bd 5735 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5736 */
bd939f45
PZ
5737static inline
5738void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5739{
5740 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5741 unsigned int imbn = 2;
dd5feea1 5742 unsigned long scaled_busy_load_per_task;
56cf515b 5743 struct sg_lb_stats *local, *busiest;
1e3c88bd 5744
56cf515b
JK
5745 local = &sds->local_stat;
5746 busiest = &sds->busiest_stat;
1e3c88bd 5747
56cf515b
JK
5748 if (!local->sum_nr_running)
5749 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5750 else if (busiest->load_per_task > local->load_per_task)
5751 imbn = 1;
dd5feea1 5752
56cf515b
JK
5753 scaled_busy_load_per_task =
5754 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5755 busiest->group_power;
56cf515b 5756
3029ede3
VD
5757 if (busiest->avg_load + scaled_busy_load_per_task >=
5758 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5759 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5760 return;
5761 }
5762
5763 /*
5764 * OK, we don't have enough imbalance to justify moving tasks,
5765 * however we may be able to increase total CPU power used by
5766 * moving them.
5767 */
5768
3ae11c90 5769 pwr_now += busiest->group_power *
56cf515b 5770 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5771 pwr_now += local->group_power *
56cf515b 5772 min(local->load_per_task, local->avg_load);
1399fa78 5773 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5774
5775 /* Amount of load we'd subtract */
56cf515b 5776 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5777 busiest->group_power;
56cf515b 5778 if (busiest->avg_load > tmp) {
3ae11c90 5779 pwr_move += busiest->group_power *
56cf515b
JK
5780 min(busiest->load_per_task,
5781 busiest->avg_load - tmp);
5782 }
1e3c88bd
PZ
5783
5784 /* Amount of load we'd add */
3ae11c90 5785 if (busiest->avg_load * busiest->group_power <
56cf515b 5786 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5787 tmp = (busiest->avg_load * busiest->group_power) /
5788 local->group_power;
56cf515b
JK
5789 } else {
5790 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5791 local->group_power;
56cf515b 5792 }
3ae11c90
PZ
5793 pwr_move += local->group_power *
5794 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5795 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5796
5797 /* Move if we gain throughput */
5798 if (pwr_move > pwr_now)
56cf515b 5799 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5800}
5801
5802/**
5803 * calculate_imbalance - Calculate the amount of imbalance present within the
5804 * groups of a given sched_domain during load balance.
bd939f45 5805 * @env: load balance environment
1e3c88bd 5806 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5807 */
bd939f45 5808static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5809{
dd5feea1 5810 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5811 struct sg_lb_stats *local, *busiest;
5812
5813 local = &sds->local_stat;
56cf515b 5814 busiest = &sds->busiest_stat;
dd5feea1 5815
56cf515b 5816 if (busiest->group_imb) {
30ce5dab
PZ
5817 /*
5818 * In the group_imb case we cannot rely on group-wide averages
5819 * to ensure cpu-load equilibrium, look at wider averages. XXX
5820 */
56cf515b
JK
5821 busiest->load_per_task =
5822 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5823 }
5824
1e3c88bd
PZ
5825 /*
5826 * In the presence of smp nice balancing, certain scenarios can have
5827 * max load less than avg load(as we skip the groups at or below
5828 * its cpu_power, while calculating max_load..)
5829 */
b1885550
VD
5830 if (busiest->avg_load <= sds->avg_load ||
5831 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5832 env->imbalance = 0;
5833 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5834 }
5835
56cf515b 5836 if (!busiest->group_imb) {
dd5feea1
SS
5837 /*
5838 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5839 * Except of course for the group_imb case, since then we might
5840 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5841 */
56cf515b
JK
5842 load_above_capacity =
5843 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5844
1399fa78 5845 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5846 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5847 }
5848
5849 /*
5850 * We're trying to get all the cpus to the average_load, so we don't
5851 * want to push ourselves above the average load, nor do we wish to
5852 * reduce the max loaded cpu below the average load. At the same time,
5853 * we also don't want to reduce the group load below the group capacity
5854 * (so that we can implement power-savings policies etc). Thus we look
5855 * for the minimum possible imbalance.
dd5feea1 5856 */
30ce5dab 5857 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5858
5859 /* How much load to actually move to equalise the imbalance */
56cf515b 5860 env->imbalance = min(
3ae11c90
PZ
5861 max_pull * busiest->group_power,
5862 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5863 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5864
5865 /*
5866 * if *imbalance is less than the average load per runnable task
25985edc 5867 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5868 * a think about bumping its value to force at least one task to be
5869 * moved
5870 */
56cf515b 5871 if (env->imbalance < busiest->load_per_task)
bd939f45 5872 return fix_small_imbalance(env, sds);
1e3c88bd 5873}
fab47622 5874
1e3c88bd
PZ
5875/******* find_busiest_group() helpers end here *********************/
5876
5877/**
5878 * find_busiest_group - Returns the busiest group within the sched_domain
5879 * if there is an imbalance. If there isn't an imbalance, and
5880 * the user has opted for power-savings, it returns a group whose
5881 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5882 * such a group exists.
5883 *
5884 * Also calculates the amount of weighted load which should be moved
5885 * to restore balance.
5886 *
cd96891d 5887 * @env: The load balancing environment.
1e3c88bd 5888 *
e69f6186 5889 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5890 * - If no imbalance and user has opted for power-savings balance,
5891 * return the least loaded group whose CPUs can be
5892 * put to idle by rebalancing its tasks onto our group.
5893 */
56cf515b 5894static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5895{
56cf515b 5896 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5897 struct sd_lb_stats sds;
5898
147c5fc2 5899 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5900
5901 /*
5902 * Compute the various statistics relavent for load balancing at
5903 * this level.
5904 */
23f0d209 5905 update_sd_lb_stats(env, &sds);
56cf515b
JK
5906 local = &sds.local_stat;
5907 busiest = &sds.busiest_stat;
1e3c88bd 5908
bd939f45
PZ
5909 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5910 check_asym_packing(env, &sds))
532cb4c4
MN
5911 return sds.busiest;
5912
cc57aa8f 5913 /* There is no busy sibling group to pull tasks from */
56cf515b 5914 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5915 goto out_balanced;
5916
1399fa78 5917 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5918
866ab43e
PZ
5919 /*
5920 * If the busiest group is imbalanced the below checks don't
30ce5dab 5921 * work because they assume all things are equal, which typically
866ab43e
PZ
5922 * isn't true due to cpus_allowed constraints and the like.
5923 */
56cf515b 5924 if (busiest->group_imb)
866ab43e
PZ
5925 goto force_balance;
5926
cc57aa8f 5927 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5928 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5929 !busiest->group_has_capacity)
fab47622
NR
5930 goto force_balance;
5931
cc57aa8f
PZ
5932 /*
5933 * If the local group is more busy than the selected busiest group
5934 * don't try and pull any tasks.
5935 */
56cf515b 5936 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5937 goto out_balanced;
5938
cc57aa8f
PZ
5939 /*
5940 * Don't pull any tasks if this group is already above the domain
5941 * average load.
5942 */
56cf515b 5943 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5944 goto out_balanced;
5945
bd939f45 5946 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5947 /*
5948 * This cpu is idle. If the busiest group load doesn't
5949 * have more tasks than the number of available cpu's and
5950 * there is no imbalance between this and busiest group
5951 * wrt to idle cpu's, it is balanced.
5952 */
56cf515b
JK
5953 if ((local->idle_cpus < busiest->idle_cpus) &&
5954 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5955 goto out_balanced;
c186fafe
PZ
5956 } else {
5957 /*
5958 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5959 * imbalance_pct to be conservative.
5960 */
56cf515b
JK
5961 if (100 * busiest->avg_load <=
5962 env->sd->imbalance_pct * local->avg_load)
c186fafe 5963 goto out_balanced;
aae6d3dd 5964 }
1e3c88bd 5965
fab47622 5966force_balance:
1e3c88bd 5967 /* Looks like there is an imbalance. Compute it */
bd939f45 5968 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5969 return sds.busiest;
5970
5971out_balanced:
bd939f45 5972 env->imbalance = 0;
1e3c88bd
PZ
5973 return NULL;
5974}
5975
5976/*
5977 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5978 */
bd939f45 5979static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5980 struct sched_group *group)
1e3c88bd
PZ
5981{
5982 struct rq *busiest = NULL, *rq;
95a79b80 5983 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5984 int i;
5985
6906a408 5986 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5987 unsigned long power, capacity, wl;
5988 enum fbq_type rt;
5989
5990 rq = cpu_rq(i);
5991 rt = fbq_classify_rq(rq);
1e3c88bd 5992
0ec8aa00
PZ
5993 /*
5994 * We classify groups/runqueues into three groups:
5995 * - regular: there are !numa tasks
5996 * - remote: there are numa tasks that run on the 'wrong' node
5997 * - all: there is no distinction
5998 *
5999 * In order to avoid migrating ideally placed numa tasks,
6000 * ignore those when there's better options.
6001 *
6002 * If we ignore the actual busiest queue to migrate another
6003 * task, the next balance pass can still reduce the busiest
6004 * queue by moving tasks around inside the node.
6005 *
6006 * If we cannot move enough load due to this classification
6007 * the next pass will adjust the group classification and
6008 * allow migration of more tasks.
6009 *
6010 * Both cases only affect the total convergence complexity.
6011 */
6012 if (rt > env->fbq_type)
6013 continue;
6014
6015 power = power_of(i);
6016 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6017 if (!capacity)
bd939f45 6018 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6019
6e40f5bb 6020 wl = weighted_cpuload(i);
1e3c88bd 6021
6e40f5bb
TG
6022 /*
6023 * When comparing with imbalance, use weighted_cpuload()
6024 * which is not scaled with the cpu power.
6025 */
bd939f45 6026 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6027 continue;
6028
6e40f5bb
TG
6029 /*
6030 * For the load comparisons with the other cpu's, consider
6031 * the weighted_cpuload() scaled with the cpu power, so that
6032 * the load can be moved away from the cpu that is potentially
6033 * running at a lower capacity.
95a79b80
JK
6034 *
6035 * Thus we're looking for max(wl_i / power_i), crosswise
6036 * multiplication to rid ourselves of the division works out
6037 * to: wl_i * power_j > wl_j * power_i; where j is our
6038 * previous maximum.
6e40f5bb 6039 */
95a79b80
JK
6040 if (wl * busiest_power > busiest_load * power) {
6041 busiest_load = wl;
6042 busiest_power = power;
1e3c88bd
PZ
6043 busiest = rq;
6044 }
6045 }
6046
6047 return busiest;
6048}
6049
6050/*
6051 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6052 * so long as it is large enough.
6053 */
6054#define MAX_PINNED_INTERVAL 512
6055
6056/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6057DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6058
bd939f45 6059static int need_active_balance(struct lb_env *env)
1af3ed3d 6060{
bd939f45
PZ
6061 struct sched_domain *sd = env->sd;
6062
6063 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6064
6065 /*
6066 * ASYM_PACKING needs to force migrate tasks from busy but
6067 * higher numbered CPUs in order to pack all tasks in the
6068 * lowest numbered CPUs.
6069 */
bd939f45 6070 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6071 return 1;
1af3ed3d
PZ
6072 }
6073
6074 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6075}
6076
969c7921
TH
6077static int active_load_balance_cpu_stop(void *data);
6078
23f0d209
JK
6079static int should_we_balance(struct lb_env *env)
6080{
6081 struct sched_group *sg = env->sd->groups;
6082 struct cpumask *sg_cpus, *sg_mask;
6083 int cpu, balance_cpu = -1;
6084
6085 /*
6086 * In the newly idle case, we will allow all the cpu's
6087 * to do the newly idle load balance.
6088 */
6089 if (env->idle == CPU_NEWLY_IDLE)
6090 return 1;
6091
6092 sg_cpus = sched_group_cpus(sg);
6093 sg_mask = sched_group_mask(sg);
6094 /* Try to find first idle cpu */
6095 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6096 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6097 continue;
6098
6099 balance_cpu = cpu;
6100 break;
6101 }
6102
6103 if (balance_cpu == -1)
6104 balance_cpu = group_balance_cpu(sg);
6105
6106 /*
6107 * First idle cpu or the first cpu(busiest) in this sched group
6108 * is eligible for doing load balancing at this and above domains.
6109 */
b0cff9d8 6110 return balance_cpu == env->dst_cpu;
23f0d209
JK
6111}
6112
1e3c88bd
PZ
6113/*
6114 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6115 * tasks if there is an imbalance.
6116 */
6117static int load_balance(int this_cpu, struct rq *this_rq,
6118 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6119 int *continue_balancing)
1e3c88bd 6120{
88b8dac0 6121 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6122 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6123 struct sched_group *group;
1e3c88bd
PZ
6124 struct rq *busiest;
6125 unsigned long flags;
e6252c3e 6126 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6127
8e45cb54
PZ
6128 struct lb_env env = {
6129 .sd = sd,
ddcdf6e7
PZ
6130 .dst_cpu = this_cpu,
6131 .dst_rq = this_rq,
88b8dac0 6132 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6133 .idle = idle,
eb95308e 6134 .loop_break = sched_nr_migrate_break,
b9403130 6135 .cpus = cpus,
0ec8aa00 6136 .fbq_type = all,
8e45cb54
PZ
6137 };
6138
cfc03118
JK
6139 /*
6140 * For NEWLY_IDLE load_balancing, we don't need to consider
6141 * other cpus in our group
6142 */
e02e60c1 6143 if (idle == CPU_NEWLY_IDLE)
cfc03118 6144 env.dst_grpmask = NULL;
cfc03118 6145
1e3c88bd
PZ
6146 cpumask_copy(cpus, cpu_active_mask);
6147
1e3c88bd
PZ
6148 schedstat_inc(sd, lb_count[idle]);
6149
6150redo:
23f0d209
JK
6151 if (!should_we_balance(&env)) {
6152 *continue_balancing = 0;
1e3c88bd 6153 goto out_balanced;
23f0d209 6154 }
1e3c88bd 6155
23f0d209 6156 group = find_busiest_group(&env);
1e3c88bd
PZ
6157 if (!group) {
6158 schedstat_inc(sd, lb_nobusyg[idle]);
6159 goto out_balanced;
6160 }
6161
b9403130 6162 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6163 if (!busiest) {
6164 schedstat_inc(sd, lb_nobusyq[idle]);
6165 goto out_balanced;
6166 }
6167
78feefc5 6168 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6169
bd939f45 6170 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6171
6172 ld_moved = 0;
6173 if (busiest->nr_running > 1) {
6174 /*
6175 * Attempt to move tasks. If find_busiest_group has found
6176 * an imbalance but busiest->nr_running <= 1, the group is
6177 * still unbalanced. ld_moved simply stays zero, so it is
6178 * correctly treated as an imbalance.
6179 */
8e45cb54 6180 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6181 env.src_cpu = busiest->cpu;
6182 env.src_rq = busiest;
6183 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6184
5d6523eb 6185more_balance:
1e3c88bd 6186 local_irq_save(flags);
78feefc5 6187 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6188
6189 /*
6190 * cur_ld_moved - load moved in current iteration
6191 * ld_moved - cumulative load moved across iterations
6192 */
6193 cur_ld_moved = move_tasks(&env);
6194 ld_moved += cur_ld_moved;
78feefc5 6195 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6196 local_irq_restore(flags);
6197
6198 /*
6199 * some other cpu did the load balance for us.
6200 */
88b8dac0
SV
6201 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6202 resched_cpu(env.dst_cpu);
6203
f1cd0858
JK
6204 if (env.flags & LBF_NEED_BREAK) {
6205 env.flags &= ~LBF_NEED_BREAK;
6206 goto more_balance;
6207 }
6208
88b8dac0
SV
6209 /*
6210 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6211 * us and move them to an alternate dst_cpu in our sched_group
6212 * where they can run. The upper limit on how many times we
6213 * iterate on same src_cpu is dependent on number of cpus in our
6214 * sched_group.
6215 *
6216 * This changes load balance semantics a bit on who can move
6217 * load to a given_cpu. In addition to the given_cpu itself
6218 * (or a ilb_cpu acting on its behalf where given_cpu is
6219 * nohz-idle), we now have balance_cpu in a position to move
6220 * load to given_cpu. In rare situations, this may cause
6221 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6222 * _independently_ and at _same_ time to move some load to
6223 * given_cpu) causing exceess load to be moved to given_cpu.
6224 * This however should not happen so much in practice and
6225 * moreover subsequent load balance cycles should correct the
6226 * excess load moved.
6227 */
6263322c 6228 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6229
7aff2e3a
VD
6230 /* Prevent to re-select dst_cpu via env's cpus */
6231 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6232
78feefc5 6233 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6234 env.dst_cpu = env.new_dst_cpu;
6263322c 6235 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6236 env.loop = 0;
6237 env.loop_break = sched_nr_migrate_break;
e02e60c1 6238
88b8dac0
SV
6239 /*
6240 * Go back to "more_balance" rather than "redo" since we
6241 * need to continue with same src_cpu.
6242 */
6243 goto more_balance;
6244 }
1e3c88bd 6245
6263322c
PZ
6246 /*
6247 * We failed to reach balance because of affinity.
6248 */
6249 if (sd_parent) {
6250 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6251
6252 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6253 *group_imbalance = 1;
6254 } else if (*group_imbalance)
6255 *group_imbalance = 0;
6256 }
6257
1e3c88bd 6258 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6259 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6260 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6261 if (!cpumask_empty(cpus)) {
6262 env.loop = 0;
6263 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6264 goto redo;
bbf18b19 6265 }
1e3c88bd
PZ
6266 goto out_balanced;
6267 }
6268 }
6269
6270 if (!ld_moved) {
6271 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6272 /*
6273 * Increment the failure counter only on periodic balance.
6274 * We do not want newidle balance, which can be very
6275 * frequent, pollute the failure counter causing
6276 * excessive cache_hot migrations and active balances.
6277 */
6278 if (idle != CPU_NEWLY_IDLE)
6279 sd->nr_balance_failed++;
1e3c88bd 6280
bd939f45 6281 if (need_active_balance(&env)) {
1e3c88bd
PZ
6282 raw_spin_lock_irqsave(&busiest->lock, flags);
6283
969c7921
TH
6284 /* don't kick the active_load_balance_cpu_stop,
6285 * if the curr task on busiest cpu can't be
6286 * moved to this_cpu
1e3c88bd
PZ
6287 */
6288 if (!cpumask_test_cpu(this_cpu,
fa17b507 6289 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6290 raw_spin_unlock_irqrestore(&busiest->lock,
6291 flags);
8e45cb54 6292 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6293 goto out_one_pinned;
6294 }
6295
969c7921
TH
6296 /*
6297 * ->active_balance synchronizes accesses to
6298 * ->active_balance_work. Once set, it's cleared
6299 * only after active load balance is finished.
6300 */
1e3c88bd
PZ
6301 if (!busiest->active_balance) {
6302 busiest->active_balance = 1;
6303 busiest->push_cpu = this_cpu;
6304 active_balance = 1;
6305 }
6306 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6307
bd939f45 6308 if (active_balance) {
969c7921
TH
6309 stop_one_cpu_nowait(cpu_of(busiest),
6310 active_load_balance_cpu_stop, busiest,
6311 &busiest->active_balance_work);
bd939f45 6312 }
1e3c88bd
PZ
6313
6314 /*
6315 * We've kicked active balancing, reset the failure
6316 * counter.
6317 */
6318 sd->nr_balance_failed = sd->cache_nice_tries+1;
6319 }
6320 } else
6321 sd->nr_balance_failed = 0;
6322
6323 if (likely(!active_balance)) {
6324 /* We were unbalanced, so reset the balancing interval */
6325 sd->balance_interval = sd->min_interval;
6326 } else {
6327 /*
6328 * If we've begun active balancing, start to back off. This
6329 * case may not be covered by the all_pinned logic if there
6330 * is only 1 task on the busy runqueue (because we don't call
6331 * move_tasks).
6332 */
6333 if (sd->balance_interval < sd->max_interval)
6334 sd->balance_interval *= 2;
6335 }
6336
1e3c88bd
PZ
6337 goto out;
6338
6339out_balanced:
6340 schedstat_inc(sd, lb_balanced[idle]);
6341
6342 sd->nr_balance_failed = 0;
6343
6344out_one_pinned:
6345 /* tune up the balancing interval */
8e45cb54 6346 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6347 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6348 (sd->balance_interval < sd->max_interval))
6349 sd->balance_interval *= 2;
6350
46e49b38 6351 ld_moved = 0;
1e3c88bd 6352out:
1e3c88bd
PZ
6353 return ld_moved;
6354}
6355
1e3c88bd
PZ
6356/*
6357 * idle_balance is called by schedule() if this_cpu is about to become
6358 * idle. Attempts to pull tasks from other CPUs.
6359 */
029632fb 6360void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6361{
6362 struct sched_domain *sd;
6363 int pulled_task = 0;
6364 unsigned long next_balance = jiffies + HZ;
9bd721c5 6365 u64 curr_cost = 0;
1e3c88bd 6366
78becc27 6367 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6368
6369 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6370 return;
6371
f492e12e
PZ
6372 /*
6373 * Drop the rq->lock, but keep IRQ/preempt disabled.
6374 */
6375 raw_spin_unlock(&this_rq->lock);
6376
48a16753 6377 update_blocked_averages(this_cpu);
dce840a0 6378 rcu_read_lock();
1e3c88bd
PZ
6379 for_each_domain(this_cpu, sd) {
6380 unsigned long interval;
23f0d209 6381 int continue_balancing = 1;
9bd721c5 6382 u64 t0, domain_cost;
1e3c88bd
PZ
6383
6384 if (!(sd->flags & SD_LOAD_BALANCE))
6385 continue;
6386
9bd721c5
JL
6387 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6388 break;
6389
f492e12e 6390 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6391 t0 = sched_clock_cpu(this_cpu);
6392
1e3c88bd 6393 /* If we've pulled tasks over stop searching: */
f492e12e 6394 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6395 sd, CPU_NEWLY_IDLE,
6396 &continue_balancing);
9bd721c5
JL
6397
6398 domain_cost = sched_clock_cpu(this_cpu) - t0;
6399 if (domain_cost > sd->max_newidle_lb_cost)
6400 sd->max_newidle_lb_cost = domain_cost;
6401
6402 curr_cost += domain_cost;
f492e12e 6403 }
1e3c88bd
PZ
6404
6405 interval = msecs_to_jiffies(sd->balance_interval);
6406 if (time_after(next_balance, sd->last_balance + interval))
6407 next_balance = sd->last_balance + interval;
d5ad140b
NR
6408 if (pulled_task) {
6409 this_rq->idle_stamp = 0;
1e3c88bd 6410 break;
d5ad140b 6411 }
1e3c88bd 6412 }
dce840a0 6413 rcu_read_unlock();
f492e12e
PZ
6414
6415 raw_spin_lock(&this_rq->lock);
6416
1e3c88bd
PZ
6417 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6418 /*
6419 * We are going idle. next_balance may be set based on
6420 * a busy processor. So reset next_balance.
6421 */
6422 this_rq->next_balance = next_balance;
6423 }
9bd721c5
JL
6424
6425 if (curr_cost > this_rq->max_idle_balance_cost)
6426 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6427}
6428
6429/*
969c7921
TH
6430 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6431 * running tasks off the busiest CPU onto idle CPUs. It requires at
6432 * least 1 task to be running on each physical CPU where possible, and
6433 * avoids physical / logical imbalances.
1e3c88bd 6434 */
969c7921 6435static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6436{
969c7921
TH
6437 struct rq *busiest_rq = data;
6438 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6439 int target_cpu = busiest_rq->push_cpu;
969c7921 6440 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6441 struct sched_domain *sd;
969c7921
TH
6442
6443 raw_spin_lock_irq(&busiest_rq->lock);
6444
6445 /* make sure the requested cpu hasn't gone down in the meantime */
6446 if (unlikely(busiest_cpu != smp_processor_id() ||
6447 !busiest_rq->active_balance))
6448 goto out_unlock;
1e3c88bd
PZ
6449
6450 /* Is there any task to move? */
6451 if (busiest_rq->nr_running <= 1)
969c7921 6452 goto out_unlock;
1e3c88bd
PZ
6453
6454 /*
6455 * This condition is "impossible", if it occurs
6456 * we need to fix it. Originally reported by
6457 * Bjorn Helgaas on a 128-cpu setup.
6458 */
6459 BUG_ON(busiest_rq == target_rq);
6460
6461 /* move a task from busiest_rq to target_rq */
6462 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6463
6464 /* Search for an sd spanning us and the target CPU. */
dce840a0 6465 rcu_read_lock();
1e3c88bd
PZ
6466 for_each_domain(target_cpu, sd) {
6467 if ((sd->flags & SD_LOAD_BALANCE) &&
6468 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6469 break;
6470 }
6471
6472 if (likely(sd)) {
8e45cb54
PZ
6473 struct lb_env env = {
6474 .sd = sd,
ddcdf6e7
PZ
6475 .dst_cpu = target_cpu,
6476 .dst_rq = target_rq,
6477 .src_cpu = busiest_rq->cpu,
6478 .src_rq = busiest_rq,
8e45cb54
PZ
6479 .idle = CPU_IDLE,
6480 };
6481
1e3c88bd
PZ
6482 schedstat_inc(sd, alb_count);
6483
8e45cb54 6484 if (move_one_task(&env))
1e3c88bd
PZ
6485 schedstat_inc(sd, alb_pushed);
6486 else
6487 schedstat_inc(sd, alb_failed);
6488 }
dce840a0 6489 rcu_read_unlock();
1e3c88bd 6490 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6491out_unlock:
6492 busiest_rq->active_balance = 0;
6493 raw_spin_unlock_irq(&busiest_rq->lock);
6494 return 0;
1e3c88bd
PZ
6495}
6496
3451d024 6497#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6498/*
6499 * idle load balancing details
83cd4fe2
VP
6500 * - When one of the busy CPUs notice that there may be an idle rebalancing
6501 * needed, they will kick the idle load balancer, which then does idle
6502 * load balancing for all the idle CPUs.
6503 */
1e3c88bd 6504static struct {
83cd4fe2 6505 cpumask_var_t idle_cpus_mask;
0b005cf5 6506 atomic_t nr_cpus;
83cd4fe2
VP
6507 unsigned long next_balance; /* in jiffy units */
6508} nohz ____cacheline_aligned;
1e3c88bd 6509
8e7fbcbc 6510static inline int find_new_ilb(int call_cpu)
1e3c88bd 6511{
0b005cf5 6512 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6513
786d6dc7
SS
6514 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6515 return ilb;
6516
6517 return nr_cpu_ids;
1e3c88bd 6518}
1e3c88bd 6519
83cd4fe2
VP
6520/*
6521 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6522 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6523 * CPU (if there is one).
6524 */
6525static void nohz_balancer_kick(int cpu)
6526{
6527 int ilb_cpu;
6528
6529 nohz.next_balance++;
6530
0b005cf5 6531 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6532
0b005cf5
SS
6533 if (ilb_cpu >= nr_cpu_ids)
6534 return;
83cd4fe2 6535
cd490c5b 6536 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6537 return;
6538 /*
6539 * Use smp_send_reschedule() instead of resched_cpu().
6540 * This way we generate a sched IPI on the target cpu which
6541 * is idle. And the softirq performing nohz idle load balance
6542 * will be run before returning from the IPI.
6543 */
6544 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6545 return;
6546}
6547
c1cc017c 6548static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6549{
6550 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6551 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6552 atomic_dec(&nohz.nr_cpus);
6553 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6554 }
6555}
6556
69e1e811
SS
6557static inline void set_cpu_sd_state_busy(void)
6558{
6559 struct sched_domain *sd;
69e1e811 6560
69e1e811 6561 rcu_read_lock();
424c93fe 6562 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6563
6564 if (!sd || !sd->nohz_idle)
6565 goto unlock;
6566 sd->nohz_idle = 0;
6567
6568 for (; sd; sd = sd->parent)
69e1e811 6569 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6570unlock:
69e1e811
SS
6571 rcu_read_unlock();
6572}
6573
6574void set_cpu_sd_state_idle(void)
6575{
6576 struct sched_domain *sd;
69e1e811 6577
69e1e811 6578 rcu_read_lock();
424c93fe 6579 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
6580
6581 if (!sd || sd->nohz_idle)
6582 goto unlock;
6583 sd->nohz_idle = 1;
6584
6585 for (; sd; sd = sd->parent)
69e1e811 6586 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6587unlock:
69e1e811
SS
6588 rcu_read_unlock();
6589}
6590
1e3c88bd 6591/*
c1cc017c 6592 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6593 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6594 */
c1cc017c 6595void nohz_balance_enter_idle(int cpu)
1e3c88bd 6596{
71325960
SS
6597 /*
6598 * If this cpu is going down, then nothing needs to be done.
6599 */
6600 if (!cpu_active(cpu))
6601 return;
6602
c1cc017c
AS
6603 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6604 return;
1e3c88bd 6605
c1cc017c
AS
6606 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6607 atomic_inc(&nohz.nr_cpus);
6608 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6609}
71325960 6610
0db0628d 6611static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6612 unsigned long action, void *hcpu)
6613{
6614 switch (action & ~CPU_TASKS_FROZEN) {
6615 case CPU_DYING:
c1cc017c 6616 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6617 return NOTIFY_OK;
6618 default:
6619 return NOTIFY_DONE;
6620 }
6621}
1e3c88bd
PZ
6622#endif
6623
6624static DEFINE_SPINLOCK(balancing);
6625
49c022e6
PZ
6626/*
6627 * Scale the max load_balance interval with the number of CPUs in the system.
6628 * This trades load-balance latency on larger machines for less cross talk.
6629 */
029632fb 6630void update_max_interval(void)
49c022e6
PZ
6631{
6632 max_load_balance_interval = HZ*num_online_cpus()/10;
6633}
6634
1e3c88bd
PZ
6635/*
6636 * It checks each scheduling domain to see if it is due to be balanced,
6637 * and initiates a balancing operation if so.
6638 *
b9b0853a 6639 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6640 */
6641static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6642{
23f0d209 6643 int continue_balancing = 1;
1e3c88bd
PZ
6644 struct rq *rq = cpu_rq(cpu);
6645 unsigned long interval;
04f733b4 6646 struct sched_domain *sd;
1e3c88bd
PZ
6647 /* Earliest time when we have to do rebalance again */
6648 unsigned long next_balance = jiffies + 60*HZ;
6649 int update_next_balance = 0;
f48627e6
JL
6650 int need_serialize, need_decay = 0;
6651 u64 max_cost = 0;
1e3c88bd 6652
48a16753 6653 update_blocked_averages(cpu);
2069dd75 6654
dce840a0 6655 rcu_read_lock();
1e3c88bd 6656 for_each_domain(cpu, sd) {
f48627e6
JL
6657 /*
6658 * Decay the newidle max times here because this is a regular
6659 * visit to all the domains. Decay ~1% per second.
6660 */
6661 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6662 sd->max_newidle_lb_cost =
6663 (sd->max_newidle_lb_cost * 253) / 256;
6664 sd->next_decay_max_lb_cost = jiffies + HZ;
6665 need_decay = 1;
6666 }
6667 max_cost += sd->max_newidle_lb_cost;
6668
1e3c88bd
PZ
6669 if (!(sd->flags & SD_LOAD_BALANCE))
6670 continue;
6671
f48627e6
JL
6672 /*
6673 * Stop the load balance at this level. There is another
6674 * CPU in our sched group which is doing load balancing more
6675 * actively.
6676 */
6677 if (!continue_balancing) {
6678 if (need_decay)
6679 continue;
6680 break;
6681 }
6682
1e3c88bd
PZ
6683 interval = sd->balance_interval;
6684 if (idle != CPU_IDLE)
6685 interval *= sd->busy_factor;
6686
6687 /* scale ms to jiffies */
6688 interval = msecs_to_jiffies(interval);
49c022e6 6689 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6690
6691 need_serialize = sd->flags & SD_SERIALIZE;
6692
6693 if (need_serialize) {
6694 if (!spin_trylock(&balancing))
6695 goto out;
6696 }
6697
6698 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6699 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6700 /*
6263322c 6701 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6702 * env->dst_cpu, so we can't know our idle
6703 * state even if we migrated tasks. Update it.
1e3c88bd 6704 */
de5eb2dd 6705 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6706 }
6707 sd->last_balance = jiffies;
6708 }
6709 if (need_serialize)
6710 spin_unlock(&balancing);
6711out:
6712 if (time_after(next_balance, sd->last_balance + interval)) {
6713 next_balance = sd->last_balance + interval;
6714 update_next_balance = 1;
6715 }
f48627e6
JL
6716 }
6717 if (need_decay) {
1e3c88bd 6718 /*
f48627e6
JL
6719 * Ensure the rq-wide value also decays but keep it at a
6720 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6721 */
f48627e6
JL
6722 rq->max_idle_balance_cost =
6723 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6724 }
dce840a0 6725 rcu_read_unlock();
1e3c88bd
PZ
6726
6727 /*
6728 * next_balance will be updated only when there is a need.
6729 * When the cpu is attached to null domain for ex, it will not be
6730 * updated.
6731 */
6732 if (likely(update_next_balance))
6733 rq->next_balance = next_balance;
6734}
6735
3451d024 6736#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6737/*
3451d024 6738 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6739 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6740 */
83cd4fe2
VP
6741static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6742{
6743 struct rq *this_rq = cpu_rq(this_cpu);
6744 struct rq *rq;
6745 int balance_cpu;
6746
1c792db7
SS
6747 if (idle != CPU_IDLE ||
6748 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6749 goto end;
83cd4fe2
VP
6750
6751 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6752 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6753 continue;
6754
6755 /*
6756 * If this cpu gets work to do, stop the load balancing
6757 * work being done for other cpus. Next load
6758 * balancing owner will pick it up.
6759 */
1c792db7 6760 if (need_resched())
83cd4fe2 6761 break;
83cd4fe2 6762
5ed4f1d9
VG
6763 rq = cpu_rq(balance_cpu);
6764
6765 raw_spin_lock_irq(&rq->lock);
6766 update_rq_clock(rq);
6767 update_idle_cpu_load(rq);
6768 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6769
6770 rebalance_domains(balance_cpu, CPU_IDLE);
6771
83cd4fe2
VP
6772 if (time_after(this_rq->next_balance, rq->next_balance))
6773 this_rq->next_balance = rq->next_balance;
6774 }
6775 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6776end:
6777 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6778}
6779
6780/*
0b005cf5
SS
6781 * Current heuristic for kicking the idle load balancer in the presence
6782 * of an idle cpu is the system.
6783 * - This rq has more than one task.
6784 * - At any scheduler domain level, this cpu's scheduler group has multiple
6785 * busy cpu's exceeding the group's power.
6786 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6787 * domain span are idle.
83cd4fe2
VP
6788 */
6789static inline int nohz_kick_needed(struct rq *rq, int cpu)
6790{
6791 unsigned long now = jiffies;
0b005cf5 6792 struct sched_domain *sd;
83cd4fe2 6793
1c792db7 6794 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6795 return 0;
6796
1c792db7
SS
6797 /*
6798 * We may be recently in ticked or tickless idle mode. At the first
6799 * busy tick after returning from idle, we will update the busy stats.
6800 */
69e1e811 6801 set_cpu_sd_state_busy();
c1cc017c 6802 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6803
6804 /*
6805 * None are in tickless mode and hence no need for NOHZ idle load
6806 * balancing.
6807 */
6808 if (likely(!atomic_read(&nohz.nr_cpus)))
6809 return 0;
1c792db7
SS
6810
6811 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6812 return 0;
6813
0b005cf5
SS
6814 if (rq->nr_running >= 2)
6815 goto need_kick;
83cd4fe2 6816
067491b7 6817 rcu_read_lock();
0b005cf5
SS
6818 for_each_domain(cpu, sd) {
6819 struct sched_group *sg = sd->groups;
6820 struct sched_group_power *sgp = sg->sgp;
6821 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 6822
0b005cf5 6823 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 6824 goto need_kick_unlock;
0b005cf5
SS
6825
6826 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6827 && (cpumask_first_and(nohz.idle_cpus_mask,
6828 sched_domain_span(sd)) < cpu))
067491b7 6829 goto need_kick_unlock;
0b005cf5
SS
6830
6831 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6832 break;
83cd4fe2 6833 }
067491b7 6834 rcu_read_unlock();
83cd4fe2 6835 return 0;
067491b7
PZ
6836
6837need_kick_unlock:
6838 rcu_read_unlock();
0b005cf5
SS
6839need_kick:
6840 return 1;
83cd4fe2
VP
6841}
6842#else
6843static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6844#endif
6845
6846/*
6847 * run_rebalance_domains is triggered when needed from the scheduler tick.
6848 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6849 */
1e3c88bd
PZ
6850static void run_rebalance_domains(struct softirq_action *h)
6851{
6852 int this_cpu = smp_processor_id();
6853 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6854 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6855 CPU_IDLE : CPU_NOT_IDLE;
6856
6857 rebalance_domains(this_cpu, idle);
6858
1e3c88bd 6859 /*
83cd4fe2 6860 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6861 * balancing on behalf of the other idle cpus whose ticks are
6862 * stopped.
6863 */
83cd4fe2 6864 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6865}
6866
6867static inline int on_null_domain(int cpu)
6868{
90a6501f 6869 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6870}
6871
6872/*
6873 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6874 */
029632fb 6875void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6876{
1e3c88bd
PZ
6877 /* Don't need to rebalance while attached to NULL domain */
6878 if (time_after_eq(jiffies, rq->next_balance) &&
6879 likely(!on_null_domain(cpu)))
6880 raise_softirq(SCHED_SOFTIRQ);
3451d024 6881#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6882 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6883 nohz_balancer_kick(cpu);
6884#endif
1e3c88bd
PZ
6885}
6886
0bcdcf28
CE
6887static void rq_online_fair(struct rq *rq)
6888{
6889 update_sysctl();
6890}
6891
6892static void rq_offline_fair(struct rq *rq)
6893{
6894 update_sysctl();
a4c96ae3
PB
6895
6896 /* Ensure any throttled groups are reachable by pick_next_task */
6897 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6898}
6899
55e12e5e 6900#endif /* CONFIG_SMP */
e1d1484f 6901
bf0f6f24
IM
6902/*
6903 * scheduler tick hitting a task of our scheduling class:
6904 */
8f4d37ec 6905static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6906{
6907 struct cfs_rq *cfs_rq;
6908 struct sched_entity *se = &curr->se;
6909
6910 for_each_sched_entity(se) {
6911 cfs_rq = cfs_rq_of(se);
8f4d37ec 6912 entity_tick(cfs_rq, se, queued);
bf0f6f24 6913 }
18bf2805 6914
10e84b97 6915 if (numabalancing_enabled)
cbee9f88 6916 task_tick_numa(rq, curr);
3d59eebc 6917
18bf2805 6918 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6919}
6920
6921/*
cd29fe6f
PZ
6922 * called on fork with the child task as argument from the parent's context
6923 * - child not yet on the tasklist
6924 * - preemption disabled
bf0f6f24 6925 */
cd29fe6f 6926static void task_fork_fair(struct task_struct *p)
bf0f6f24 6927{
4fc420c9
DN
6928 struct cfs_rq *cfs_rq;
6929 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6930 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6931 struct rq *rq = this_rq();
6932 unsigned long flags;
6933
05fa785c 6934 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6935
861d034e
PZ
6936 update_rq_clock(rq);
6937
4fc420c9
DN
6938 cfs_rq = task_cfs_rq(current);
6939 curr = cfs_rq->curr;
6940
6c9a27f5
DN
6941 /*
6942 * Not only the cpu but also the task_group of the parent might have
6943 * been changed after parent->se.parent,cfs_rq were copied to
6944 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6945 * of child point to valid ones.
6946 */
6947 rcu_read_lock();
6948 __set_task_cpu(p, this_cpu);
6949 rcu_read_unlock();
bf0f6f24 6950
7109c442 6951 update_curr(cfs_rq);
cd29fe6f 6952
b5d9d734
MG
6953 if (curr)
6954 se->vruntime = curr->vruntime;
aeb73b04 6955 place_entity(cfs_rq, se, 1);
4d78e7b6 6956
cd29fe6f 6957 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6958 /*
edcb60a3
IM
6959 * Upon rescheduling, sched_class::put_prev_task() will place
6960 * 'current' within the tree based on its new key value.
6961 */
4d78e7b6 6962 swap(curr->vruntime, se->vruntime);
aec0a514 6963 resched_task(rq->curr);
4d78e7b6 6964 }
bf0f6f24 6965
88ec22d3
PZ
6966 se->vruntime -= cfs_rq->min_vruntime;
6967
05fa785c 6968 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6969}
6970
cb469845
SR
6971/*
6972 * Priority of the task has changed. Check to see if we preempt
6973 * the current task.
6974 */
da7a735e
PZ
6975static void
6976prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6977{
da7a735e
PZ
6978 if (!p->se.on_rq)
6979 return;
6980
cb469845
SR
6981 /*
6982 * Reschedule if we are currently running on this runqueue and
6983 * our priority decreased, or if we are not currently running on
6984 * this runqueue and our priority is higher than the current's
6985 */
da7a735e 6986 if (rq->curr == p) {
cb469845
SR
6987 if (p->prio > oldprio)
6988 resched_task(rq->curr);
6989 } else
15afe09b 6990 check_preempt_curr(rq, p, 0);
cb469845
SR
6991}
6992
da7a735e
PZ
6993static void switched_from_fair(struct rq *rq, struct task_struct *p)
6994{
6995 struct sched_entity *se = &p->se;
6996 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6997
6998 /*
6999 * Ensure the task's vruntime is normalized, so that when its
7000 * switched back to the fair class the enqueue_entity(.flags=0) will
7001 * do the right thing.
7002 *
7003 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7004 * have normalized the vruntime, if it was !on_rq, then only when
7005 * the task is sleeping will it still have non-normalized vruntime.
7006 */
7007 if (!se->on_rq && p->state != TASK_RUNNING) {
7008 /*
7009 * Fix up our vruntime so that the current sleep doesn't
7010 * cause 'unlimited' sleep bonus.
7011 */
7012 place_entity(cfs_rq, se, 0);
7013 se->vruntime -= cfs_rq->min_vruntime;
7014 }
9ee474f5 7015
141965c7 7016#ifdef CONFIG_SMP
9ee474f5
PT
7017 /*
7018 * Remove our load from contribution when we leave sched_fair
7019 * and ensure we don't carry in an old decay_count if we
7020 * switch back.
7021 */
87e3c8ae
KT
7022 if (se->avg.decay_count) {
7023 __synchronize_entity_decay(se);
7024 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7025 }
7026#endif
da7a735e
PZ
7027}
7028
cb469845
SR
7029/*
7030 * We switched to the sched_fair class.
7031 */
da7a735e 7032static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7033{
da7a735e
PZ
7034 if (!p->se.on_rq)
7035 return;
7036
cb469845
SR
7037 /*
7038 * We were most likely switched from sched_rt, so
7039 * kick off the schedule if running, otherwise just see
7040 * if we can still preempt the current task.
7041 */
da7a735e 7042 if (rq->curr == p)
cb469845
SR
7043 resched_task(rq->curr);
7044 else
15afe09b 7045 check_preempt_curr(rq, p, 0);
cb469845
SR
7046}
7047
83b699ed
SV
7048/* Account for a task changing its policy or group.
7049 *
7050 * This routine is mostly called to set cfs_rq->curr field when a task
7051 * migrates between groups/classes.
7052 */
7053static void set_curr_task_fair(struct rq *rq)
7054{
7055 struct sched_entity *se = &rq->curr->se;
7056
ec12cb7f
PT
7057 for_each_sched_entity(se) {
7058 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7059
7060 set_next_entity(cfs_rq, se);
7061 /* ensure bandwidth has been allocated on our new cfs_rq */
7062 account_cfs_rq_runtime(cfs_rq, 0);
7063 }
83b699ed
SV
7064}
7065
029632fb
PZ
7066void init_cfs_rq(struct cfs_rq *cfs_rq)
7067{
7068 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7069 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7070#ifndef CONFIG_64BIT
7071 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7072#endif
141965c7 7073#ifdef CONFIG_SMP
9ee474f5 7074 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7075 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7076#endif
029632fb
PZ
7077}
7078
810b3817 7079#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7080static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7081{
aff3e498 7082 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7083 /*
7084 * If the task was not on the rq at the time of this cgroup movement
7085 * it must have been asleep, sleeping tasks keep their ->vruntime
7086 * absolute on their old rq until wakeup (needed for the fair sleeper
7087 * bonus in place_entity()).
7088 *
7089 * If it was on the rq, we've just 'preempted' it, which does convert
7090 * ->vruntime to a relative base.
7091 *
7092 * Make sure both cases convert their relative position when migrating
7093 * to another cgroup's rq. This does somewhat interfere with the
7094 * fair sleeper stuff for the first placement, but who cares.
7095 */
7ceff013
DN
7096 /*
7097 * When !on_rq, vruntime of the task has usually NOT been normalized.
7098 * But there are some cases where it has already been normalized:
7099 *
7100 * - Moving a forked child which is waiting for being woken up by
7101 * wake_up_new_task().
62af3783
DN
7102 * - Moving a task which has been woken up by try_to_wake_up() and
7103 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7104 *
7105 * To prevent boost or penalty in the new cfs_rq caused by delta
7106 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7107 */
62af3783 7108 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7109 on_rq = 1;
7110
b2b5ce02
PZ
7111 if (!on_rq)
7112 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7113 set_task_rq(p, task_cpu(p));
aff3e498
PT
7114 if (!on_rq) {
7115 cfs_rq = cfs_rq_of(&p->se);
7116 p->se.vruntime += cfs_rq->min_vruntime;
7117#ifdef CONFIG_SMP
7118 /*
7119 * migrate_task_rq_fair() will have removed our previous
7120 * contribution, but we must synchronize for ongoing future
7121 * decay.
7122 */
7123 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7124 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7125#endif
7126 }
810b3817 7127}
029632fb
PZ
7128
7129void free_fair_sched_group(struct task_group *tg)
7130{
7131 int i;
7132
7133 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7134
7135 for_each_possible_cpu(i) {
7136 if (tg->cfs_rq)
7137 kfree(tg->cfs_rq[i]);
7138 if (tg->se)
7139 kfree(tg->se[i]);
7140 }
7141
7142 kfree(tg->cfs_rq);
7143 kfree(tg->se);
7144}
7145
7146int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7147{
7148 struct cfs_rq *cfs_rq;
7149 struct sched_entity *se;
7150 int i;
7151
7152 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7153 if (!tg->cfs_rq)
7154 goto err;
7155 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7156 if (!tg->se)
7157 goto err;
7158
7159 tg->shares = NICE_0_LOAD;
7160
7161 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7162
7163 for_each_possible_cpu(i) {
7164 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7165 GFP_KERNEL, cpu_to_node(i));
7166 if (!cfs_rq)
7167 goto err;
7168
7169 se = kzalloc_node(sizeof(struct sched_entity),
7170 GFP_KERNEL, cpu_to_node(i));
7171 if (!se)
7172 goto err_free_rq;
7173
7174 init_cfs_rq(cfs_rq);
7175 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7176 }
7177
7178 return 1;
7179
7180err_free_rq:
7181 kfree(cfs_rq);
7182err:
7183 return 0;
7184}
7185
7186void unregister_fair_sched_group(struct task_group *tg, int cpu)
7187{
7188 struct rq *rq = cpu_rq(cpu);
7189 unsigned long flags;
7190
7191 /*
7192 * Only empty task groups can be destroyed; so we can speculatively
7193 * check on_list without danger of it being re-added.
7194 */
7195 if (!tg->cfs_rq[cpu]->on_list)
7196 return;
7197
7198 raw_spin_lock_irqsave(&rq->lock, flags);
7199 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7200 raw_spin_unlock_irqrestore(&rq->lock, flags);
7201}
7202
7203void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7204 struct sched_entity *se, int cpu,
7205 struct sched_entity *parent)
7206{
7207 struct rq *rq = cpu_rq(cpu);
7208
7209 cfs_rq->tg = tg;
7210 cfs_rq->rq = rq;
029632fb
PZ
7211 init_cfs_rq_runtime(cfs_rq);
7212
7213 tg->cfs_rq[cpu] = cfs_rq;
7214 tg->se[cpu] = se;
7215
7216 /* se could be NULL for root_task_group */
7217 if (!se)
7218 return;
7219
7220 if (!parent)
7221 se->cfs_rq = &rq->cfs;
7222 else
7223 se->cfs_rq = parent->my_q;
7224
7225 se->my_q = cfs_rq;
7226 update_load_set(&se->load, 0);
7227 se->parent = parent;
7228}
7229
7230static DEFINE_MUTEX(shares_mutex);
7231
7232int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7233{
7234 int i;
7235 unsigned long flags;
7236
7237 /*
7238 * We can't change the weight of the root cgroup.
7239 */
7240 if (!tg->se[0])
7241 return -EINVAL;
7242
7243 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7244
7245 mutex_lock(&shares_mutex);
7246 if (tg->shares == shares)
7247 goto done;
7248
7249 tg->shares = shares;
7250 for_each_possible_cpu(i) {
7251 struct rq *rq = cpu_rq(i);
7252 struct sched_entity *se;
7253
7254 se = tg->se[i];
7255 /* Propagate contribution to hierarchy */
7256 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7257
7258 /* Possible calls to update_curr() need rq clock */
7259 update_rq_clock(rq);
17bc14b7 7260 for_each_sched_entity(se)
029632fb
PZ
7261 update_cfs_shares(group_cfs_rq(se));
7262 raw_spin_unlock_irqrestore(&rq->lock, flags);
7263 }
7264
7265done:
7266 mutex_unlock(&shares_mutex);
7267 return 0;
7268}
7269#else /* CONFIG_FAIR_GROUP_SCHED */
7270
7271void free_fair_sched_group(struct task_group *tg) { }
7272
7273int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7274{
7275 return 1;
7276}
7277
7278void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7279
7280#endif /* CONFIG_FAIR_GROUP_SCHED */
7281
810b3817 7282
6d686f45 7283static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7284{
7285 struct sched_entity *se = &task->se;
0d721cea
PW
7286 unsigned int rr_interval = 0;
7287
7288 /*
7289 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7290 * idle runqueue:
7291 */
0d721cea 7292 if (rq->cfs.load.weight)
a59f4e07 7293 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7294
7295 return rr_interval;
7296}
7297
bf0f6f24
IM
7298/*
7299 * All the scheduling class methods:
7300 */
029632fb 7301const struct sched_class fair_sched_class = {
5522d5d5 7302 .next = &idle_sched_class,
bf0f6f24
IM
7303 .enqueue_task = enqueue_task_fair,
7304 .dequeue_task = dequeue_task_fair,
7305 .yield_task = yield_task_fair,
d95f4122 7306 .yield_to_task = yield_to_task_fair,
bf0f6f24 7307
2e09bf55 7308 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7309
7310 .pick_next_task = pick_next_task_fair,
7311 .put_prev_task = put_prev_task_fair,
7312
681f3e68 7313#ifdef CONFIG_SMP
4ce72a2c 7314 .select_task_rq = select_task_rq_fair,
0a74bef8 7315 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7316
0bcdcf28
CE
7317 .rq_online = rq_online_fair,
7318 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7319
7320 .task_waking = task_waking_fair,
681f3e68 7321#endif
bf0f6f24 7322
83b699ed 7323 .set_curr_task = set_curr_task_fair,
bf0f6f24 7324 .task_tick = task_tick_fair,
cd29fe6f 7325 .task_fork = task_fork_fair,
cb469845
SR
7326
7327 .prio_changed = prio_changed_fair,
da7a735e 7328 .switched_from = switched_from_fair,
cb469845 7329 .switched_to = switched_to_fair,
810b3817 7330
0d721cea
PW
7331 .get_rr_interval = get_rr_interval_fair,
7332
810b3817 7333#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7334 .task_move_group = task_move_group_fair,
810b3817 7335#endif
bf0f6f24
IM
7336};
7337
7338#ifdef CONFIG_SCHED_DEBUG
029632fb 7339void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7340{
bf0f6f24
IM
7341 struct cfs_rq *cfs_rq;
7342
5973e5b9 7343 rcu_read_lock();
c3b64f1e 7344 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7345 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7346 rcu_read_unlock();
bf0f6f24
IM
7347}
7348#endif
029632fb
PZ
7349
7350__init void init_sched_fair_class(void)
7351{
7352#ifdef CONFIG_SMP
7353 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7354
3451d024 7355#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7356 nohz.next_balance = jiffies;
029632fb 7357 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7358 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7359#endif
7360#endif /* SMP */
7361
7362}
This page took 0.974408 seconds and 5 git commands to generate.