sched/numa: Do not move past the balance point if unbalanced
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9
AS
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677 u32 slice;
678
a75cdaa9
AS
679 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
680 p->se.avg.runnable_avg_sum = slice;
681 p->se.avg.runnable_avg_period = slice;
682 __update_task_entity_contrib(&p->se);
683}
684#else
685void init_task_runnable_average(struct task_struct *p)
686{
687}
688#endif
689
bf0f6f24 690/*
9dbdb155 691 * Update the current task's runtime statistics.
bf0f6f24 692 */
b7cc0896 693static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 694{
429d43bc 695 struct sched_entity *curr = cfs_rq->curr;
78becc27 696 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 697 u64 delta_exec;
bf0f6f24
IM
698
699 if (unlikely(!curr))
700 return;
701
9dbdb155
PZ
702 delta_exec = now - curr->exec_start;
703 if (unlikely((s64)delta_exec <= 0))
34f28ecd 704 return;
bf0f6f24 705
8ebc91d9 706 curr->exec_start = now;
d842de87 707
9dbdb155
PZ
708 schedstat_set(curr->statistics.exec_max,
709 max(delta_exec, curr->statistics.exec_max));
710
711 curr->sum_exec_runtime += delta_exec;
712 schedstat_add(cfs_rq, exec_clock, delta_exec);
713
714 curr->vruntime += calc_delta_fair(delta_exec, curr);
715 update_min_vruntime(cfs_rq);
716
d842de87
SV
717 if (entity_is_task(curr)) {
718 struct task_struct *curtask = task_of(curr);
719
f977bb49 720 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 721 cpuacct_charge(curtask, delta_exec);
f06febc9 722 account_group_exec_runtime(curtask, delta_exec);
d842de87 723 }
ec12cb7f
PT
724
725 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
726}
727
6e998916
SG
728static void update_curr_fair(struct rq *rq)
729{
730 update_curr(cfs_rq_of(&rq->curr->se));
731}
732
bf0f6f24 733static inline void
5870db5b 734update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 735{
78becc27 736 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
737}
738
bf0f6f24
IM
739/*
740 * Task is being enqueued - update stats:
741 */
d2417e5a 742static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 743{
bf0f6f24
IM
744 /*
745 * Are we enqueueing a waiting task? (for current tasks
746 * a dequeue/enqueue event is a NOP)
747 */
429d43bc 748 if (se != cfs_rq->curr)
5870db5b 749 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
750}
751
bf0f6f24 752static void
9ef0a961 753update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
41acab88 755 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 756 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
757 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
758 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
760#ifdef CONFIG_SCHEDSTATS
761 if (entity_is_task(se)) {
762 trace_sched_stat_wait(task_of(se),
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
764 }
765#endif
41acab88 766 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
767}
768
769static inline void
19b6a2e3 770update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 771{
bf0f6f24
IM
772 /*
773 * Mark the end of the wait period if dequeueing a
774 * waiting task:
775 */
429d43bc 776 if (se != cfs_rq->curr)
9ef0a961 777 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
778}
779
780/*
781 * We are picking a new current task - update its stats:
782 */
783static inline void
79303e9e 784update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
785{
786 /*
787 * We are starting a new run period:
788 */
78becc27 789 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
790}
791
bf0f6f24
IM
792/**************************************************
793 * Scheduling class queueing methods:
794 */
795
cbee9f88
PZ
796#ifdef CONFIG_NUMA_BALANCING
797/*
598f0ec0
MG
798 * Approximate time to scan a full NUMA task in ms. The task scan period is
799 * calculated based on the tasks virtual memory size and
800 * numa_balancing_scan_size.
cbee9f88 801 */
598f0ec0
MG
802unsigned int sysctl_numa_balancing_scan_period_min = 1000;
803unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
804
805/* Portion of address space to scan in MB */
806unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 807
4b96a29b
PZ
808/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
809unsigned int sysctl_numa_balancing_scan_delay = 1000;
810
598f0ec0
MG
811static unsigned int task_nr_scan_windows(struct task_struct *p)
812{
813 unsigned long rss = 0;
814 unsigned long nr_scan_pages;
815
816 /*
817 * Calculations based on RSS as non-present and empty pages are skipped
818 * by the PTE scanner and NUMA hinting faults should be trapped based
819 * on resident pages
820 */
821 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
822 rss = get_mm_rss(p->mm);
823 if (!rss)
824 rss = nr_scan_pages;
825
826 rss = round_up(rss, nr_scan_pages);
827 return rss / nr_scan_pages;
828}
829
830/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
831#define MAX_SCAN_WINDOW 2560
832
833static unsigned int task_scan_min(struct task_struct *p)
834{
64192658 835 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
836 unsigned int scan, floor;
837 unsigned int windows = 1;
838
64192658
KT
839 if (scan_size < MAX_SCAN_WINDOW)
840 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
841 floor = 1000 / windows;
842
843 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
844 return max_t(unsigned int, floor, scan);
845}
846
847static unsigned int task_scan_max(struct task_struct *p)
848{
849 unsigned int smin = task_scan_min(p);
850 unsigned int smax;
851
852 /* Watch for min being lower than max due to floor calculations */
853 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
854 return max(smin, smax);
855}
856
0ec8aa00
PZ
857static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
858{
859 rq->nr_numa_running += (p->numa_preferred_nid != -1);
860 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
861}
862
863static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
864{
865 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
866 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
867}
868
8c8a743c
PZ
869struct numa_group {
870 atomic_t refcount;
871
872 spinlock_t lock; /* nr_tasks, tasks */
873 int nr_tasks;
e29cf08b 874 pid_t gid;
8c8a743c
PZ
875
876 struct rcu_head rcu;
20e07dea 877 nodemask_t active_nodes;
989348b5 878 unsigned long total_faults;
7e2703e6
RR
879 /*
880 * Faults_cpu is used to decide whether memory should move
881 * towards the CPU. As a consequence, these stats are weighted
882 * more by CPU use than by memory faults.
883 */
50ec8a40 884 unsigned long *faults_cpu;
989348b5 885 unsigned long faults[0];
8c8a743c
PZ
886};
887
be1e4e76
RR
888/* Shared or private faults. */
889#define NR_NUMA_HINT_FAULT_TYPES 2
890
891/* Memory and CPU locality */
892#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
893
894/* Averaged statistics, and temporary buffers. */
895#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
896
e29cf08b
MG
897pid_t task_numa_group_id(struct task_struct *p)
898{
899 return p->numa_group ? p->numa_group->gid : 0;
900}
901
44dba3d5
IM
902/*
903 * The averaged statistics, shared & private, memory & cpu,
904 * occupy the first half of the array. The second half of the
905 * array is for current counters, which are averaged into the
906 * first set by task_numa_placement.
907 */
908static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 909{
44dba3d5 910 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
911}
912
913static inline unsigned long task_faults(struct task_struct *p, int nid)
914{
44dba3d5 915 if (!p->numa_faults)
ac8e895b
MG
916 return 0;
917
44dba3d5
IM
918 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
919 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
920}
921
83e1d2cd
MG
922static inline unsigned long group_faults(struct task_struct *p, int nid)
923{
924 if (!p->numa_group)
925 return 0;
926
44dba3d5
IM
927 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
928 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
929}
930
20e07dea
RR
931static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
932{
44dba3d5
IM
933 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
934 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
935}
936
6c6b1193
RR
937/* Handle placement on systems where not all nodes are directly connected. */
938static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
939 int maxdist, bool task)
940{
941 unsigned long score = 0;
942 int node;
943
944 /*
945 * All nodes are directly connected, and the same distance
946 * from each other. No need for fancy placement algorithms.
947 */
948 if (sched_numa_topology_type == NUMA_DIRECT)
949 return 0;
950
951 /*
952 * This code is called for each node, introducing N^2 complexity,
953 * which should be ok given the number of nodes rarely exceeds 8.
954 */
955 for_each_online_node(node) {
956 unsigned long faults;
957 int dist = node_distance(nid, node);
958
959 /*
960 * The furthest away nodes in the system are not interesting
961 * for placement; nid was already counted.
962 */
963 if (dist == sched_max_numa_distance || node == nid)
964 continue;
965
966 /*
967 * On systems with a backplane NUMA topology, compare groups
968 * of nodes, and move tasks towards the group with the most
969 * memory accesses. When comparing two nodes at distance
970 * "hoplimit", only nodes closer by than "hoplimit" are part
971 * of each group. Skip other nodes.
972 */
973 if (sched_numa_topology_type == NUMA_BACKPLANE &&
974 dist > maxdist)
975 continue;
976
977 /* Add up the faults from nearby nodes. */
978 if (task)
979 faults = task_faults(p, node);
980 else
981 faults = group_faults(p, node);
982
983 /*
984 * On systems with a glueless mesh NUMA topology, there are
985 * no fixed "groups of nodes". Instead, nodes that are not
986 * directly connected bounce traffic through intermediate
987 * nodes; a numa_group can occupy any set of nodes.
988 * The further away a node is, the less the faults count.
989 * This seems to result in good task placement.
990 */
991 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
992 faults *= (sched_max_numa_distance - dist);
993 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
994 }
995
996 score += faults;
997 }
998
999 return score;
1000}
1001
83e1d2cd
MG
1002/*
1003 * These return the fraction of accesses done by a particular task, or
1004 * task group, on a particular numa node. The group weight is given a
1005 * larger multiplier, in order to group tasks together that are almost
1006 * evenly spread out between numa nodes.
1007 */
7bd95320
RR
1008static inline unsigned long task_weight(struct task_struct *p, int nid,
1009 int dist)
83e1d2cd 1010{
7bd95320 1011 unsigned long faults, total_faults;
83e1d2cd 1012
44dba3d5 1013 if (!p->numa_faults)
83e1d2cd
MG
1014 return 0;
1015
1016 total_faults = p->total_numa_faults;
1017
1018 if (!total_faults)
1019 return 0;
1020
7bd95320 1021 faults = task_faults(p, nid);
6c6b1193
RR
1022 faults += score_nearby_nodes(p, nid, dist, true);
1023
7bd95320 1024 return 1000 * faults / total_faults;
83e1d2cd
MG
1025}
1026
7bd95320
RR
1027static inline unsigned long group_weight(struct task_struct *p, int nid,
1028 int dist)
83e1d2cd 1029{
7bd95320
RR
1030 unsigned long faults, total_faults;
1031
1032 if (!p->numa_group)
1033 return 0;
1034
1035 total_faults = p->numa_group->total_faults;
1036
1037 if (!total_faults)
83e1d2cd
MG
1038 return 0;
1039
7bd95320 1040 faults = group_faults(p, nid);
6c6b1193
RR
1041 faults += score_nearby_nodes(p, nid, dist, false);
1042
7bd95320 1043 return 1000 * faults / total_faults;
83e1d2cd
MG
1044}
1045
10f39042
RR
1046bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1047 int src_nid, int dst_cpu)
1048{
1049 struct numa_group *ng = p->numa_group;
1050 int dst_nid = cpu_to_node(dst_cpu);
1051 int last_cpupid, this_cpupid;
1052
1053 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1054
1055 /*
1056 * Multi-stage node selection is used in conjunction with a periodic
1057 * migration fault to build a temporal task<->page relation. By using
1058 * a two-stage filter we remove short/unlikely relations.
1059 *
1060 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1061 * a task's usage of a particular page (n_p) per total usage of this
1062 * page (n_t) (in a given time-span) to a probability.
1063 *
1064 * Our periodic faults will sample this probability and getting the
1065 * same result twice in a row, given these samples are fully
1066 * independent, is then given by P(n)^2, provided our sample period
1067 * is sufficiently short compared to the usage pattern.
1068 *
1069 * This quadric squishes small probabilities, making it less likely we
1070 * act on an unlikely task<->page relation.
1071 */
1072 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1073 if (!cpupid_pid_unset(last_cpupid) &&
1074 cpupid_to_nid(last_cpupid) != dst_nid)
1075 return false;
1076
1077 /* Always allow migrate on private faults */
1078 if (cpupid_match_pid(p, last_cpupid))
1079 return true;
1080
1081 /* A shared fault, but p->numa_group has not been set up yet. */
1082 if (!ng)
1083 return true;
1084
1085 /*
1086 * Do not migrate if the destination is not a node that
1087 * is actively used by this numa group.
1088 */
1089 if (!node_isset(dst_nid, ng->active_nodes))
1090 return false;
1091
1092 /*
1093 * Source is a node that is not actively used by this
1094 * numa group, while the destination is. Migrate.
1095 */
1096 if (!node_isset(src_nid, ng->active_nodes))
1097 return true;
1098
1099 /*
1100 * Both source and destination are nodes in active
1101 * use by this numa group. Maximize memory bandwidth
1102 * by migrating from more heavily used groups, to less
1103 * heavily used ones, spreading the load around.
1104 * Use a 1/4 hysteresis to avoid spurious page movement.
1105 */
1106 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1107}
1108
e6628d5b 1109static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1110static unsigned long source_load(int cpu, int type);
1111static unsigned long target_load(int cpu, int type);
ced549fa 1112static unsigned long capacity_of(int cpu);
58d081b5
MG
1113static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1114
fb13c7ee 1115/* Cached statistics for all CPUs within a node */
58d081b5 1116struct numa_stats {
fb13c7ee 1117 unsigned long nr_running;
58d081b5 1118 unsigned long load;
fb13c7ee
MG
1119
1120 /* Total compute capacity of CPUs on a node */
5ef20ca1 1121 unsigned long compute_capacity;
fb13c7ee
MG
1122
1123 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1124 unsigned long task_capacity;
1b6a7495 1125 int has_free_capacity;
58d081b5 1126};
e6628d5b 1127
fb13c7ee
MG
1128/*
1129 * XXX borrowed from update_sg_lb_stats
1130 */
1131static void update_numa_stats(struct numa_stats *ns, int nid)
1132{
83d7f242
RR
1133 int smt, cpu, cpus = 0;
1134 unsigned long capacity;
fb13c7ee
MG
1135
1136 memset(ns, 0, sizeof(*ns));
1137 for_each_cpu(cpu, cpumask_of_node(nid)) {
1138 struct rq *rq = cpu_rq(cpu);
1139
1140 ns->nr_running += rq->nr_running;
1141 ns->load += weighted_cpuload(cpu);
ced549fa 1142 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1143
1144 cpus++;
fb13c7ee
MG
1145 }
1146
5eca82a9
PZ
1147 /*
1148 * If we raced with hotplug and there are no CPUs left in our mask
1149 * the @ns structure is NULL'ed and task_numa_compare() will
1150 * not find this node attractive.
1151 *
1b6a7495
NP
1152 * We'll either bail at !has_free_capacity, or we'll detect a huge
1153 * imbalance and bail there.
5eca82a9
PZ
1154 */
1155 if (!cpus)
1156 return;
1157
83d7f242
RR
1158 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1159 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1160 capacity = cpus / smt; /* cores */
1161
1162 ns->task_capacity = min_t(unsigned, capacity,
1163 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1164 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1165}
1166
58d081b5
MG
1167struct task_numa_env {
1168 struct task_struct *p;
e6628d5b 1169
58d081b5
MG
1170 int src_cpu, src_nid;
1171 int dst_cpu, dst_nid;
e6628d5b 1172
58d081b5 1173 struct numa_stats src_stats, dst_stats;
e6628d5b 1174
40ea2b42 1175 int imbalance_pct;
7bd95320 1176 int dist;
fb13c7ee
MG
1177
1178 struct task_struct *best_task;
1179 long best_imp;
58d081b5
MG
1180 int best_cpu;
1181};
1182
fb13c7ee
MG
1183static void task_numa_assign(struct task_numa_env *env,
1184 struct task_struct *p, long imp)
1185{
1186 if (env->best_task)
1187 put_task_struct(env->best_task);
1188 if (p)
1189 get_task_struct(p);
1190
1191 env->best_task = p;
1192 env->best_imp = imp;
1193 env->best_cpu = env->dst_cpu;
1194}
1195
28a21745 1196static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1197 struct task_numa_env *env)
1198{
28a21745 1199 long src_capacity, dst_capacity;
095bebf6
RR
1200 long orig_src_load;
1201 long load_a, load_b;
1202 long moved_load;
1203 long imb;
28a21745
RR
1204
1205 /*
1206 * The load is corrected for the CPU capacity available on each node.
1207 *
1208 * src_load dst_load
1209 * ------------ vs ---------
1210 * src_capacity dst_capacity
1211 */
1212 src_capacity = env->src_stats.compute_capacity;
1213 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1214
1215 /* We care about the slope of the imbalance, not the direction. */
095bebf6
RR
1216 load_a = dst_load;
1217 load_b = src_load;
1218 if (load_a < load_b)
1219 swap(load_a, load_b);
e63da036
RR
1220
1221 /* Is the difference below the threshold? */
095bebf6
RR
1222 imb = load_a * src_capacity * 100 -
1223 load_b * dst_capacity * env->imbalance_pct;
e63da036
RR
1224 if (imb <= 0)
1225 return false;
1226
1227 /*
1228 * The imbalance is above the allowed threshold.
095bebf6
RR
1229 * Allow a move that brings us closer to a balanced situation,
1230 * without moving things past the point of balance.
e63da036 1231 */
28a21745 1232 orig_src_load = env->src_stats.load;
28a21745 1233
095bebf6
RR
1234 /*
1235 * In a task swap, there will be one load moving from src to dst,
1236 * and another moving back. This is the net sum of both moves.
1237 * A simple task move will always have a positive value.
1238 * Allow the move if it brings the system closer to a balanced
1239 * situation, without crossing over the balance point.
1240 */
1241 moved_load = orig_src_load - src_load;
e63da036 1242
095bebf6
RR
1243 if (moved_load > 0)
1244 /* Moving src -> dst. Did we overshoot balance? */
1245 return src_load * dst_capacity < dst_load * src_capacity;
1246 else
1247 /* Moving dst -> src. Did we overshoot balance? */
1248 return dst_load * src_capacity < src_load * dst_capacity;
e63da036
RR
1249}
1250
fb13c7ee
MG
1251/*
1252 * This checks if the overall compute and NUMA accesses of the system would
1253 * be improved if the source tasks was migrated to the target dst_cpu taking
1254 * into account that it might be best if task running on the dst_cpu should
1255 * be exchanged with the source task
1256 */
887c290e
RR
1257static void task_numa_compare(struct task_numa_env *env,
1258 long taskimp, long groupimp)
fb13c7ee
MG
1259{
1260 struct rq *src_rq = cpu_rq(env->src_cpu);
1261 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1262 struct task_struct *cur;
28a21745 1263 long src_load, dst_load;
fb13c7ee 1264 long load;
1c5d3eb3 1265 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1266 long moveimp = imp;
7bd95320 1267 int dist = env->dist;
fb13c7ee
MG
1268
1269 rcu_read_lock();
1effd9f1
KT
1270
1271 raw_spin_lock_irq(&dst_rq->lock);
1272 cur = dst_rq->curr;
1273 /*
1274 * No need to move the exiting task, and this ensures that ->curr
1275 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1276 * is safe under RCU read lock.
1277 * Note that rcu_read_lock() itself can't protect from the final
1278 * put_task_struct() after the last schedule().
1279 */
1280 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1281 cur = NULL;
1effd9f1 1282 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1283
7af68335
PZ
1284 /*
1285 * Because we have preemption enabled we can get migrated around and
1286 * end try selecting ourselves (current == env->p) as a swap candidate.
1287 */
1288 if (cur == env->p)
1289 goto unlock;
1290
fb13c7ee
MG
1291 /*
1292 * "imp" is the fault differential for the source task between the
1293 * source and destination node. Calculate the total differential for
1294 * the source task and potential destination task. The more negative
1295 * the value is, the more rmeote accesses that would be expected to
1296 * be incurred if the tasks were swapped.
1297 */
1298 if (cur) {
1299 /* Skip this swap candidate if cannot move to the source cpu */
1300 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1301 goto unlock;
1302
887c290e
RR
1303 /*
1304 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1305 * in any group then look only at task weights.
887c290e 1306 */
ca28aa53 1307 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1308 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1309 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1310 /*
1311 * Add some hysteresis to prevent swapping the
1312 * tasks within a group over tiny differences.
1313 */
1314 if (cur->numa_group)
1315 imp -= imp/16;
887c290e 1316 } else {
ca28aa53
RR
1317 /*
1318 * Compare the group weights. If a task is all by
1319 * itself (not part of a group), use the task weight
1320 * instead.
1321 */
ca28aa53 1322 if (cur->numa_group)
7bd95320
RR
1323 imp += group_weight(cur, env->src_nid, dist) -
1324 group_weight(cur, env->dst_nid, dist);
ca28aa53 1325 else
7bd95320
RR
1326 imp += task_weight(cur, env->src_nid, dist) -
1327 task_weight(cur, env->dst_nid, dist);
887c290e 1328 }
fb13c7ee
MG
1329 }
1330
0132c3e1 1331 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1332 goto unlock;
1333
1334 if (!cur) {
1335 /* Is there capacity at our destination? */
b932c03c 1336 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1337 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1338 goto unlock;
1339
1340 goto balance;
1341 }
1342
1343 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1344 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1345 dst_rq->nr_running == 1)
fb13c7ee
MG
1346 goto assign;
1347
1348 /*
1349 * In the overloaded case, try and keep the load balanced.
1350 */
1351balance:
e720fff6
PZ
1352 load = task_h_load(env->p);
1353 dst_load = env->dst_stats.load + load;
1354 src_load = env->src_stats.load - load;
fb13c7ee 1355
0132c3e1
RR
1356 if (moveimp > imp && moveimp > env->best_imp) {
1357 /*
1358 * If the improvement from just moving env->p direction is
1359 * better than swapping tasks around, check if a move is
1360 * possible. Store a slightly smaller score than moveimp,
1361 * so an actually idle CPU will win.
1362 */
1363 if (!load_too_imbalanced(src_load, dst_load, env)) {
1364 imp = moveimp - 1;
1365 cur = NULL;
1366 goto assign;
1367 }
1368 }
1369
1370 if (imp <= env->best_imp)
1371 goto unlock;
1372
fb13c7ee 1373 if (cur) {
e720fff6
PZ
1374 load = task_h_load(cur);
1375 dst_load -= load;
1376 src_load += load;
fb13c7ee
MG
1377 }
1378
28a21745 1379 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1380 goto unlock;
1381
ba7e5a27
RR
1382 /*
1383 * One idle CPU per node is evaluated for a task numa move.
1384 * Call select_idle_sibling to maybe find a better one.
1385 */
1386 if (!cur)
1387 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1388
fb13c7ee
MG
1389assign:
1390 task_numa_assign(env, cur, imp);
1391unlock:
1392 rcu_read_unlock();
1393}
1394
887c290e
RR
1395static void task_numa_find_cpu(struct task_numa_env *env,
1396 long taskimp, long groupimp)
2c8a50aa
MG
1397{
1398 int cpu;
1399
1400 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1401 /* Skip this CPU if the source task cannot migrate */
1402 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1403 continue;
1404
1405 env->dst_cpu = cpu;
887c290e 1406 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1407 }
1408}
1409
58d081b5
MG
1410static int task_numa_migrate(struct task_struct *p)
1411{
58d081b5
MG
1412 struct task_numa_env env = {
1413 .p = p,
fb13c7ee 1414
58d081b5 1415 .src_cpu = task_cpu(p),
b32e86b4 1416 .src_nid = task_node(p),
fb13c7ee
MG
1417
1418 .imbalance_pct = 112,
1419
1420 .best_task = NULL,
1421 .best_imp = 0,
1422 .best_cpu = -1
58d081b5
MG
1423 };
1424 struct sched_domain *sd;
887c290e 1425 unsigned long taskweight, groupweight;
7bd95320 1426 int nid, ret, dist;
887c290e 1427 long taskimp, groupimp;
e6628d5b 1428
58d081b5 1429 /*
fb13c7ee
MG
1430 * Pick the lowest SD_NUMA domain, as that would have the smallest
1431 * imbalance and would be the first to start moving tasks about.
1432 *
1433 * And we want to avoid any moving of tasks about, as that would create
1434 * random movement of tasks -- counter the numa conditions we're trying
1435 * to satisfy here.
58d081b5
MG
1436 */
1437 rcu_read_lock();
fb13c7ee 1438 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1439 if (sd)
1440 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1441 rcu_read_unlock();
1442
46a73e8a
RR
1443 /*
1444 * Cpusets can break the scheduler domain tree into smaller
1445 * balance domains, some of which do not cross NUMA boundaries.
1446 * Tasks that are "trapped" in such domains cannot be migrated
1447 * elsewhere, so there is no point in (re)trying.
1448 */
1449 if (unlikely(!sd)) {
de1b301a 1450 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1451 return -EINVAL;
1452 }
1453
2c8a50aa 1454 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1455 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1456 taskweight = task_weight(p, env.src_nid, dist);
1457 groupweight = group_weight(p, env.src_nid, dist);
1458 update_numa_stats(&env.src_stats, env.src_nid);
1459 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1460 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1461 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1462
a43455a1
RR
1463 /* Try to find a spot on the preferred nid. */
1464 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1465
9de05d48
RR
1466 /*
1467 * Look at other nodes in these cases:
1468 * - there is no space available on the preferred_nid
1469 * - the task is part of a numa_group that is interleaved across
1470 * multiple NUMA nodes; in order to better consolidate the group,
1471 * we need to check other locations.
1472 */
1473 if (env.best_cpu == -1 || (p->numa_group &&
1474 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1475 for_each_online_node(nid) {
1476 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1477 continue;
58d081b5 1478
7bd95320 1479 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1480 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1481 dist != env.dist) {
1482 taskweight = task_weight(p, env.src_nid, dist);
1483 groupweight = group_weight(p, env.src_nid, dist);
1484 }
7bd95320 1485
83e1d2cd 1486 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1487 taskimp = task_weight(p, nid, dist) - taskweight;
1488 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1489 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1490 continue;
1491
7bd95320 1492 env.dist = dist;
2c8a50aa
MG
1493 env.dst_nid = nid;
1494 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1495 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1496 }
1497 }
1498
68d1b02a
RR
1499 /*
1500 * If the task is part of a workload that spans multiple NUMA nodes,
1501 * and is migrating into one of the workload's active nodes, remember
1502 * this node as the task's preferred numa node, so the workload can
1503 * settle down.
1504 * A task that migrated to a second choice node will be better off
1505 * trying for a better one later. Do not set the preferred node here.
1506 */
db015dae
RR
1507 if (p->numa_group) {
1508 if (env.best_cpu == -1)
1509 nid = env.src_nid;
1510 else
1511 nid = env.dst_nid;
1512
1513 if (node_isset(nid, p->numa_group->active_nodes))
1514 sched_setnuma(p, env.dst_nid);
1515 }
1516
1517 /* No better CPU than the current one was found. */
1518 if (env.best_cpu == -1)
1519 return -EAGAIN;
0ec8aa00 1520
04bb2f94
RR
1521 /*
1522 * Reset the scan period if the task is being rescheduled on an
1523 * alternative node to recheck if the tasks is now properly placed.
1524 */
1525 p->numa_scan_period = task_scan_min(p);
1526
fb13c7ee 1527 if (env.best_task == NULL) {
286549dc
MG
1528 ret = migrate_task_to(p, env.best_cpu);
1529 if (ret != 0)
1530 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1531 return ret;
1532 }
1533
1534 ret = migrate_swap(p, env.best_task);
286549dc
MG
1535 if (ret != 0)
1536 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1537 put_task_struct(env.best_task);
1538 return ret;
e6628d5b
MG
1539}
1540
6b9a7460
MG
1541/* Attempt to migrate a task to a CPU on the preferred node. */
1542static void numa_migrate_preferred(struct task_struct *p)
1543{
5085e2a3
RR
1544 unsigned long interval = HZ;
1545
2739d3ee 1546 /* This task has no NUMA fault statistics yet */
44dba3d5 1547 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1548 return;
1549
2739d3ee 1550 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1551 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1552 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1553
1554 /* Success if task is already running on preferred CPU */
de1b301a 1555 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1556 return;
1557
1558 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1559 task_numa_migrate(p);
6b9a7460
MG
1560}
1561
20e07dea
RR
1562/*
1563 * Find the nodes on which the workload is actively running. We do this by
1564 * tracking the nodes from which NUMA hinting faults are triggered. This can
1565 * be different from the set of nodes where the workload's memory is currently
1566 * located.
1567 *
1568 * The bitmask is used to make smarter decisions on when to do NUMA page
1569 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1570 * are added when they cause over 6/16 of the maximum number of faults, but
1571 * only removed when they drop below 3/16.
1572 */
1573static void update_numa_active_node_mask(struct numa_group *numa_group)
1574{
1575 unsigned long faults, max_faults = 0;
1576 int nid;
1577
1578 for_each_online_node(nid) {
1579 faults = group_faults_cpu(numa_group, nid);
1580 if (faults > max_faults)
1581 max_faults = faults;
1582 }
1583
1584 for_each_online_node(nid) {
1585 faults = group_faults_cpu(numa_group, nid);
1586 if (!node_isset(nid, numa_group->active_nodes)) {
1587 if (faults > max_faults * 6 / 16)
1588 node_set(nid, numa_group->active_nodes);
1589 } else if (faults < max_faults * 3 / 16)
1590 node_clear(nid, numa_group->active_nodes);
1591 }
1592}
1593
04bb2f94
RR
1594/*
1595 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1596 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1597 * period will be for the next scan window. If local/(local+remote) ratio is
1598 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1599 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1600 */
1601#define NUMA_PERIOD_SLOTS 10
a22b4b01 1602#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1603
1604/*
1605 * Increase the scan period (slow down scanning) if the majority of
1606 * our memory is already on our local node, or if the majority of
1607 * the page accesses are shared with other processes.
1608 * Otherwise, decrease the scan period.
1609 */
1610static void update_task_scan_period(struct task_struct *p,
1611 unsigned long shared, unsigned long private)
1612{
1613 unsigned int period_slot;
1614 int ratio;
1615 int diff;
1616
1617 unsigned long remote = p->numa_faults_locality[0];
1618 unsigned long local = p->numa_faults_locality[1];
1619
1620 /*
1621 * If there were no record hinting faults then either the task is
1622 * completely idle or all activity is areas that are not of interest
1623 * to automatic numa balancing. Scan slower
1624 */
1625 if (local + shared == 0) {
1626 p->numa_scan_period = min(p->numa_scan_period_max,
1627 p->numa_scan_period << 1);
1628
1629 p->mm->numa_next_scan = jiffies +
1630 msecs_to_jiffies(p->numa_scan_period);
1631
1632 return;
1633 }
1634
1635 /*
1636 * Prepare to scale scan period relative to the current period.
1637 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1638 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1639 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1640 */
1641 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1642 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1643 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1644 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1645 if (!slot)
1646 slot = 1;
1647 diff = slot * period_slot;
1648 } else {
1649 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1650
1651 /*
1652 * Scale scan rate increases based on sharing. There is an
1653 * inverse relationship between the degree of sharing and
1654 * the adjustment made to the scanning period. Broadly
1655 * speaking the intent is that there is little point
1656 * scanning faster if shared accesses dominate as it may
1657 * simply bounce migrations uselessly
1658 */
2847c90e 1659 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1660 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1661 }
1662
1663 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1664 task_scan_min(p), task_scan_max(p));
1665 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1666}
1667
7e2703e6
RR
1668/*
1669 * Get the fraction of time the task has been running since the last
1670 * NUMA placement cycle. The scheduler keeps similar statistics, but
1671 * decays those on a 32ms period, which is orders of magnitude off
1672 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1673 * stats only if the task is so new there are no NUMA statistics yet.
1674 */
1675static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1676{
1677 u64 runtime, delta, now;
1678 /* Use the start of this time slice to avoid calculations. */
1679 now = p->se.exec_start;
1680 runtime = p->se.sum_exec_runtime;
1681
1682 if (p->last_task_numa_placement) {
1683 delta = runtime - p->last_sum_exec_runtime;
1684 *period = now - p->last_task_numa_placement;
1685 } else {
1686 delta = p->se.avg.runnable_avg_sum;
1687 *period = p->se.avg.runnable_avg_period;
1688 }
1689
1690 p->last_sum_exec_runtime = runtime;
1691 p->last_task_numa_placement = now;
1692
1693 return delta;
1694}
1695
54009416
RR
1696/*
1697 * Determine the preferred nid for a task in a numa_group. This needs to
1698 * be done in a way that produces consistent results with group_weight,
1699 * otherwise workloads might not converge.
1700 */
1701static int preferred_group_nid(struct task_struct *p, int nid)
1702{
1703 nodemask_t nodes;
1704 int dist;
1705
1706 /* Direct connections between all NUMA nodes. */
1707 if (sched_numa_topology_type == NUMA_DIRECT)
1708 return nid;
1709
1710 /*
1711 * On a system with glueless mesh NUMA topology, group_weight
1712 * scores nodes according to the number of NUMA hinting faults on
1713 * both the node itself, and on nearby nodes.
1714 */
1715 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1716 unsigned long score, max_score = 0;
1717 int node, max_node = nid;
1718
1719 dist = sched_max_numa_distance;
1720
1721 for_each_online_node(node) {
1722 score = group_weight(p, node, dist);
1723 if (score > max_score) {
1724 max_score = score;
1725 max_node = node;
1726 }
1727 }
1728 return max_node;
1729 }
1730
1731 /*
1732 * Finding the preferred nid in a system with NUMA backplane
1733 * interconnect topology is more involved. The goal is to locate
1734 * tasks from numa_groups near each other in the system, and
1735 * untangle workloads from different sides of the system. This requires
1736 * searching down the hierarchy of node groups, recursively searching
1737 * inside the highest scoring group of nodes. The nodemask tricks
1738 * keep the complexity of the search down.
1739 */
1740 nodes = node_online_map;
1741 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1742 unsigned long max_faults = 0;
81907478 1743 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1744 int a, b;
1745
1746 /* Are there nodes at this distance from each other? */
1747 if (!find_numa_distance(dist))
1748 continue;
1749
1750 for_each_node_mask(a, nodes) {
1751 unsigned long faults = 0;
1752 nodemask_t this_group;
1753 nodes_clear(this_group);
1754
1755 /* Sum group's NUMA faults; includes a==b case. */
1756 for_each_node_mask(b, nodes) {
1757 if (node_distance(a, b) < dist) {
1758 faults += group_faults(p, b);
1759 node_set(b, this_group);
1760 node_clear(b, nodes);
1761 }
1762 }
1763
1764 /* Remember the top group. */
1765 if (faults > max_faults) {
1766 max_faults = faults;
1767 max_group = this_group;
1768 /*
1769 * subtle: at the smallest distance there is
1770 * just one node left in each "group", the
1771 * winner is the preferred nid.
1772 */
1773 nid = a;
1774 }
1775 }
1776 /* Next round, evaluate the nodes within max_group. */
1777 nodes = max_group;
1778 }
1779 return nid;
1780}
1781
cbee9f88
PZ
1782static void task_numa_placement(struct task_struct *p)
1783{
83e1d2cd
MG
1784 int seq, nid, max_nid = -1, max_group_nid = -1;
1785 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1786 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1787 unsigned long total_faults;
1788 u64 runtime, period;
7dbd13ed 1789 spinlock_t *group_lock = NULL;
cbee9f88 1790
2832bc19 1791 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1792 if (p->numa_scan_seq == seq)
1793 return;
1794 p->numa_scan_seq = seq;
598f0ec0 1795 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1796
7e2703e6
RR
1797 total_faults = p->numa_faults_locality[0] +
1798 p->numa_faults_locality[1];
1799 runtime = numa_get_avg_runtime(p, &period);
1800
7dbd13ed
MG
1801 /* If the task is part of a group prevent parallel updates to group stats */
1802 if (p->numa_group) {
1803 group_lock = &p->numa_group->lock;
60e69eed 1804 spin_lock_irq(group_lock);
7dbd13ed
MG
1805 }
1806
688b7585
MG
1807 /* Find the node with the highest number of faults */
1808 for_each_online_node(nid) {
44dba3d5
IM
1809 /* Keep track of the offsets in numa_faults array */
1810 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1811 unsigned long faults = 0, group_faults = 0;
44dba3d5 1812 int priv;
745d6147 1813
be1e4e76 1814 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1815 long diff, f_diff, f_weight;
8c8a743c 1816
44dba3d5
IM
1817 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1818 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1819 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1820 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1821
ac8e895b 1822 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1823 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1824 fault_types[priv] += p->numa_faults[membuf_idx];
1825 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1826
7e2703e6
RR
1827 /*
1828 * Normalize the faults_from, so all tasks in a group
1829 * count according to CPU use, instead of by the raw
1830 * number of faults. Tasks with little runtime have
1831 * little over-all impact on throughput, and thus their
1832 * faults are less important.
1833 */
1834 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1835 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1836 (total_faults + 1);
44dba3d5
IM
1837 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1838 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1839
44dba3d5
IM
1840 p->numa_faults[mem_idx] += diff;
1841 p->numa_faults[cpu_idx] += f_diff;
1842 faults += p->numa_faults[mem_idx];
83e1d2cd 1843 p->total_numa_faults += diff;
8c8a743c 1844 if (p->numa_group) {
44dba3d5
IM
1845 /*
1846 * safe because we can only change our own group
1847 *
1848 * mem_idx represents the offset for a given
1849 * nid and priv in a specific region because it
1850 * is at the beginning of the numa_faults array.
1851 */
1852 p->numa_group->faults[mem_idx] += diff;
1853 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1854 p->numa_group->total_faults += diff;
44dba3d5 1855 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1856 }
ac8e895b
MG
1857 }
1858
688b7585
MG
1859 if (faults > max_faults) {
1860 max_faults = faults;
1861 max_nid = nid;
1862 }
83e1d2cd
MG
1863
1864 if (group_faults > max_group_faults) {
1865 max_group_faults = group_faults;
1866 max_group_nid = nid;
1867 }
1868 }
1869
04bb2f94
RR
1870 update_task_scan_period(p, fault_types[0], fault_types[1]);
1871
7dbd13ed 1872 if (p->numa_group) {
20e07dea 1873 update_numa_active_node_mask(p->numa_group);
60e69eed 1874 spin_unlock_irq(group_lock);
54009416 1875 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1876 }
1877
bb97fc31
RR
1878 if (max_faults) {
1879 /* Set the new preferred node */
1880 if (max_nid != p->numa_preferred_nid)
1881 sched_setnuma(p, max_nid);
1882
1883 if (task_node(p) != p->numa_preferred_nid)
1884 numa_migrate_preferred(p);
3a7053b3 1885 }
cbee9f88
PZ
1886}
1887
8c8a743c
PZ
1888static inline int get_numa_group(struct numa_group *grp)
1889{
1890 return atomic_inc_not_zero(&grp->refcount);
1891}
1892
1893static inline void put_numa_group(struct numa_group *grp)
1894{
1895 if (atomic_dec_and_test(&grp->refcount))
1896 kfree_rcu(grp, rcu);
1897}
1898
3e6a9418
MG
1899static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1900 int *priv)
8c8a743c
PZ
1901{
1902 struct numa_group *grp, *my_grp;
1903 struct task_struct *tsk;
1904 bool join = false;
1905 int cpu = cpupid_to_cpu(cpupid);
1906 int i;
1907
1908 if (unlikely(!p->numa_group)) {
1909 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1910 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1911
1912 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1913 if (!grp)
1914 return;
1915
1916 atomic_set(&grp->refcount, 1);
1917 spin_lock_init(&grp->lock);
e29cf08b 1918 grp->gid = p->pid;
50ec8a40 1919 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1920 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1921 nr_node_ids;
8c8a743c 1922
20e07dea
RR
1923 node_set(task_node(current), grp->active_nodes);
1924
be1e4e76 1925 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1926 grp->faults[i] = p->numa_faults[i];
8c8a743c 1927
989348b5 1928 grp->total_faults = p->total_numa_faults;
83e1d2cd 1929
8c8a743c
PZ
1930 grp->nr_tasks++;
1931 rcu_assign_pointer(p->numa_group, grp);
1932 }
1933
1934 rcu_read_lock();
1935 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1936
1937 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1938 goto no_join;
8c8a743c
PZ
1939
1940 grp = rcu_dereference(tsk->numa_group);
1941 if (!grp)
3354781a 1942 goto no_join;
8c8a743c
PZ
1943
1944 my_grp = p->numa_group;
1945 if (grp == my_grp)
3354781a 1946 goto no_join;
8c8a743c
PZ
1947
1948 /*
1949 * Only join the other group if its bigger; if we're the bigger group,
1950 * the other task will join us.
1951 */
1952 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1953 goto no_join;
8c8a743c
PZ
1954
1955 /*
1956 * Tie-break on the grp address.
1957 */
1958 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1959 goto no_join;
8c8a743c 1960
dabe1d99
RR
1961 /* Always join threads in the same process. */
1962 if (tsk->mm == current->mm)
1963 join = true;
1964
1965 /* Simple filter to avoid false positives due to PID collisions */
1966 if (flags & TNF_SHARED)
1967 join = true;
8c8a743c 1968
3e6a9418
MG
1969 /* Update priv based on whether false sharing was detected */
1970 *priv = !join;
1971
dabe1d99 1972 if (join && !get_numa_group(grp))
3354781a 1973 goto no_join;
8c8a743c 1974
8c8a743c
PZ
1975 rcu_read_unlock();
1976
1977 if (!join)
1978 return;
1979
60e69eed
MG
1980 BUG_ON(irqs_disabled());
1981 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1982
be1e4e76 1983 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1984 my_grp->faults[i] -= p->numa_faults[i];
1985 grp->faults[i] += p->numa_faults[i];
8c8a743c 1986 }
989348b5
MG
1987 my_grp->total_faults -= p->total_numa_faults;
1988 grp->total_faults += p->total_numa_faults;
8c8a743c 1989
8c8a743c
PZ
1990 my_grp->nr_tasks--;
1991 grp->nr_tasks++;
1992
1993 spin_unlock(&my_grp->lock);
60e69eed 1994 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1995
1996 rcu_assign_pointer(p->numa_group, grp);
1997
1998 put_numa_group(my_grp);
3354781a
PZ
1999 return;
2000
2001no_join:
2002 rcu_read_unlock();
2003 return;
8c8a743c
PZ
2004}
2005
2006void task_numa_free(struct task_struct *p)
2007{
2008 struct numa_group *grp = p->numa_group;
44dba3d5 2009 void *numa_faults = p->numa_faults;
e9dd685c
SR
2010 unsigned long flags;
2011 int i;
8c8a743c
PZ
2012
2013 if (grp) {
e9dd685c 2014 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2015 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2016 grp->faults[i] -= p->numa_faults[i];
989348b5 2017 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2018
8c8a743c 2019 grp->nr_tasks--;
e9dd685c 2020 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2021 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2022 put_numa_group(grp);
2023 }
2024
44dba3d5 2025 p->numa_faults = NULL;
82727018 2026 kfree(numa_faults);
8c8a743c
PZ
2027}
2028
cbee9f88
PZ
2029/*
2030 * Got a PROT_NONE fault for a page on @node.
2031 */
58b46da3 2032void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2033{
2034 struct task_struct *p = current;
6688cc05 2035 bool migrated = flags & TNF_MIGRATED;
58b46da3 2036 int cpu_node = task_node(current);
792568ec 2037 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2038 int priv;
cbee9f88 2039
10e84b97 2040 if (!numabalancing_enabled)
1a687c2e
MG
2041 return;
2042
9ff1d9ff
MG
2043 /* for example, ksmd faulting in a user's mm */
2044 if (!p->mm)
2045 return;
2046
f809ca9a 2047 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2048 if (unlikely(!p->numa_faults)) {
2049 int size = sizeof(*p->numa_faults) *
be1e4e76 2050 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2051
44dba3d5
IM
2052 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2053 if (!p->numa_faults)
f809ca9a 2054 return;
745d6147 2055
83e1d2cd 2056 p->total_numa_faults = 0;
04bb2f94 2057 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2058 }
cbee9f88 2059
8c8a743c
PZ
2060 /*
2061 * First accesses are treated as private, otherwise consider accesses
2062 * to be private if the accessing pid has not changed
2063 */
2064 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2065 priv = 1;
2066 } else {
2067 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2068 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2069 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2070 }
2071
792568ec
RR
2072 /*
2073 * If a workload spans multiple NUMA nodes, a shared fault that
2074 * occurs wholly within the set of nodes that the workload is
2075 * actively using should be counted as local. This allows the
2076 * scan rate to slow down when a workload has settled down.
2077 */
2078 if (!priv && !local && p->numa_group &&
2079 node_isset(cpu_node, p->numa_group->active_nodes) &&
2080 node_isset(mem_node, p->numa_group->active_nodes))
2081 local = 1;
2082
cbee9f88 2083 task_numa_placement(p);
f809ca9a 2084
2739d3ee
RR
2085 /*
2086 * Retry task to preferred node migration periodically, in case it
2087 * case it previously failed, or the scheduler moved us.
2088 */
2089 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2090 numa_migrate_preferred(p);
2091
b32e86b4
IM
2092 if (migrated)
2093 p->numa_pages_migrated += pages;
2094
44dba3d5
IM
2095 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2096 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2097 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2098}
2099
6e5fb223
PZ
2100static void reset_ptenuma_scan(struct task_struct *p)
2101{
2102 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2103 p->mm->numa_scan_offset = 0;
2104}
2105
cbee9f88
PZ
2106/*
2107 * The expensive part of numa migration is done from task_work context.
2108 * Triggered from task_tick_numa().
2109 */
2110void task_numa_work(struct callback_head *work)
2111{
2112 unsigned long migrate, next_scan, now = jiffies;
2113 struct task_struct *p = current;
2114 struct mm_struct *mm = p->mm;
6e5fb223 2115 struct vm_area_struct *vma;
9f40604c 2116 unsigned long start, end;
598f0ec0 2117 unsigned long nr_pte_updates = 0;
9f40604c 2118 long pages;
cbee9f88
PZ
2119
2120 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2121
2122 work->next = work; /* protect against double add */
2123 /*
2124 * Who cares about NUMA placement when they're dying.
2125 *
2126 * NOTE: make sure not to dereference p->mm before this check,
2127 * exit_task_work() happens _after_ exit_mm() so we could be called
2128 * without p->mm even though we still had it when we enqueued this
2129 * work.
2130 */
2131 if (p->flags & PF_EXITING)
2132 return;
2133
930aa174 2134 if (!mm->numa_next_scan) {
7e8d16b6
MG
2135 mm->numa_next_scan = now +
2136 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2137 }
2138
cbee9f88
PZ
2139 /*
2140 * Enforce maximal scan/migration frequency..
2141 */
2142 migrate = mm->numa_next_scan;
2143 if (time_before(now, migrate))
2144 return;
2145
598f0ec0
MG
2146 if (p->numa_scan_period == 0) {
2147 p->numa_scan_period_max = task_scan_max(p);
2148 p->numa_scan_period = task_scan_min(p);
2149 }
cbee9f88 2150
fb003b80 2151 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2152 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2153 return;
2154
19a78d11
PZ
2155 /*
2156 * Delay this task enough that another task of this mm will likely win
2157 * the next time around.
2158 */
2159 p->node_stamp += 2 * TICK_NSEC;
2160
9f40604c
MG
2161 start = mm->numa_scan_offset;
2162 pages = sysctl_numa_balancing_scan_size;
2163 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2164 if (!pages)
2165 return;
cbee9f88 2166
6e5fb223 2167 down_read(&mm->mmap_sem);
9f40604c 2168 vma = find_vma(mm, start);
6e5fb223
PZ
2169 if (!vma) {
2170 reset_ptenuma_scan(p);
9f40604c 2171 start = 0;
6e5fb223
PZ
2172 vma = mm->mmap;
2173 }
9f40604c 2174 for (; vma; vma = vma->vm_next) {
6b6482bb 2175 if (!vma_migratable(vma) || !vma_policy_mof(vma))
6e5fb223
PZ
2176 continue;
2177
4591ce4f
MG
2178 /*
2179 * Shared library pages mapped by multiple processes are not
2180 * migrated as it is expected they are cache replicated. Avoid
2181 * hinting faults in read-only file-backed mappings or the vdso
2182 * as migrating the pages will be of marginal benefit.
2183 */
2184 if (!vma->vm_mm ||
2185 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2186 continue;
2187
3c67f474
MG
2188 /*
2189 * Skip inaccessible VMAs to avoid any confusion between
2190 * PROT_NONE and NUMA hinting ptes
2191 */
2192 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2193 continue;
4591ce4f 2194
9f40604c
MG
2195 do {
2196 start = max(start, vma->vm_start);
2197 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2198 end = min(end, vma->vm_end);
598f0ec0
MG
2199 nr_pte_updates += change_prot_numa(vma, start, end);
2200
2201 /*
2202 * Scan sysctl_numa_balancing_scan_size but ensure that
2203 * at least one PTE is updated so that unused virtual
2204 * address space is quickly skipped.
2205 */
2206 if (nr_pte_updates)
2207 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2208
9f40604c
MG
2209 start = end;
2210 if (pages <= 0)
2211 goto out;
3cf1962c
RR
2212
2213 cond_resched();
9f40604c 2214 } while (end != vma->vm_end);
cbee9f88 2215 }
6e5fb223 2216
9f40604c 2217out:
6e5fb223 2218 /*
c69307d5
PZ
2219 * It is possible to reach the end of the VMA list but the last few
2220 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2221 * would find the !migratable VMA on the next scan but not reset the
2222 * scanner to the start so check it now.
6e5fb223
PZ
2223 */
2224 if (vma)
9f40604c 2225 mm->numa_scan_offset = start;
6e5fb223
PZ
2226 else
2227 reset_ptenuma_scan(p);
2228 up_read(&mm->mmap_sem);
cbee9f88
PZ
2229}
2230
2231/*
2232 * Drive the periodic memory faults..
2233 */
2234void task_tick_numa(struct rq *rq, struct task_struct *curr)
2235{
2236 struct callback_head *work = &curr->numa_work;
2237 u64 period, now;
2238
2239 /*
2240 * We don't care about NUMA placement if we don't have memory.
2241 */
2242 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2243 return;
2244
2245 /*
2246 * Using runtime rather than walltime has the dual advantage that
2247 * we (mostly) drive the selection from busy threads and that the
2248 * task needs to have done some actual work before we bother with
2249 * NUMA placement.
2250 */
2251 now = curr->se.sum_exec_runtime;
2252 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2253
2254 if (now - curr->node_stamp > period) {
4b96a29b 2255 if (!curr->node_stamp)
598f0ec0 2256 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2257 curr->node_stamp += period;
cbee9f88
PZ
2258
2259 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2260 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2261 task_work_add(curr, work, true);
2262 }
2263 }
2264}
2265#else
2266static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2267{
2268}
0ec8aa00
PZ
2269
2270static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2271{
2272}
2273
2274static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2275{
2276}
cbee9f88
PZ
2277#endif /* CONFIG_NUMA_BALANCING */
2278
30cfdcfc
DA
2279static void
2280account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2281{
2282 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2283 if (!parent_entity(se))
029632fb 2284 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2285#ifdef CONFIG_SMP
0ec8aa00
PZ
2286 if (entity_is_task(se)) {
2287 struct rq *rq = rq_of(cfs_rq);
2288
2289 account_numa_enqueue(rq, task_of(se));
2290 list_add(&se->group_node, &rq->cfs_tasks);
2291 }
367456c7 2292#endif
30cfdcfc 2293 cfs_rq->nr_running++;
30cfdcfc
DA
2294}
2295
2296static void
2297account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2298{
2299 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2300 if (!parent_entity(se))
029632fb 2301 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2302 if (entity_is_task(se)) {
2303 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2304 list_del_init(&se->group_node);
0ec8aa00 2305 }
30cfdcfc 2306 cfs_rq->nr_running--;
30cfdcfc
DA
2307}
2308
3ff6dcac
YZ
2309#ifdef CONFIG_FAIR_GROUP_SCHED
2310# ifdef CONFIG_SMP
cf5f0acf
PZ
2311static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2312{
2313 long tg_weight;
2314
2315 /*
2316 * Use this CPU's actual weight instead of the last load_contribution
2317 * to gain a more accurate current total weight. See
2318 * update_cfs_rq_load_contribution().
2319 */
bf5b986e 2320 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2321 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2322 tg_weight += cfs_rq->load.weight;
2323
2324 return tg_weight;
2325}
2326
6d5ab293 2327static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2328{
cf5f0acf 2329 long tg_weight, load, shares;
3ff6dcac 2330
cf5f0acf 2331 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2332 load = cfs_rq->load.weight;
3ff6dcac 2333
3ff6dcac 2334 shares = (tg->shares * load);
cf5f0acf
PZ
2335 if (tg_weight)
2336 shares /= tg_weight;
3ff6dcac
YZ
2337
2338 if (shares < MIN_SHARES)
2339 shares = MIN_SHARES;
2340 if (shares > tg->shares)
2341 shares = tg->shares;
2342
2343 return shares;
2344}
3ff6dcac 2345# else /* CONFIG_SMP */
6d5ab293 2346static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2347{
2348 return tg->shares;
2349}
3ff6dcac 2350# endif /* CONFIG_SMP */
2069dd75
PZ
2351static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2352 unsigned long weight)
2353{
19e5eebb
PT
2354 if (se->on_rq) {
2355 /* commit outstanding execution time */
2356 if (cfs_rq->curr == se)
2357 update_curr(cfs_rq);
2069dd75 2358 account_entity_dequeue(cfs_rq, se);
19e5eebb 2359 }
2069dd75
PZ
2360
2361 update_load_set(&se->load, weight);
2362
2363 if (se->on_rq)
2364 account_entity_enqueue(cfs_rq, se);
2365}
2366
82958366
PT
2367static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2368
6d5ab293 2369static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2370{
2371 struct task_group *tg;
2372 struct sched_entity *se;
3ff6dcac 2373 long shares;
2069dd75 2374
2069dd75
PZ
2375 tg = cfs_rq->tg;
2376 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2377 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2378 return;
3ff6dcac
YZ
2379#ifndef CONFIG_SMP
2380 if (likely(se->load.weight == tg->shares))
2381 return;
2382#endif
6d5ab293 2383 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2384
2385 reweight_entity(cfs_rq_of(se), se, shares);
2386}
2387#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2388static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2389{
2390}
2391#endif /* CONFIG_FAIR_GROUP_SCHED */
2392
141965c7 2393#ifdef CONFIG_SMP
5b51f2f8
PT
2394/*
2395 * We choose a half-life close to 1 scheduling period.
2396 * Note: The tables below are dependent on this value.
2397 */
2398#define LOAD_AVG_PERIOD 32
2399#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2400#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2401
2402/* Precomputed fixed inverse multiplies for multiplication by y^n */
2403static const u32 runnable_avg_yN_inv[] = {
2404 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2405 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2406 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2407 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2408 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2409 0x85aac367, 0x82cd8698,
2410};
2411
2412/*
2413 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2414 * over-estimates when re-combining.
2415 */
2416static const u32 runnable_avg_yN_sum[] = {
2417 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2418 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2419 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2420};
2421
9d85f21c
PT
2422/*
2423 * Approximate:
2424 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2425 */
2426static __always_inline u64 decay_load(u64 val, u64 n)
2427{
5b51f2f8
PT
2428 unsigned int local_n;
2429
2430 if (!n)
2431 return val;
2432 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2433 return 0;
2434
2435 /* after bounds checking we can collapse to 32-bit */
2436 local_n = n;
2437
2438 /*
2439 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2440 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2441 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2442 *
2443 * To achieve constant time decay_load.
2444 */
2445 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2446 val >>= local_n / LOAD_AVG_PERIOD;
2447 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2448 }
2449
5b51f2f8
PT
2450 val *= runnable_avg_yN_inv[local_n];
2451 /* We don't use SRR here since we always want to round down. */
2452 return val >> 32;
2453}
2454
2455/*
2456 * For updates fully spanning n periods, the contribution to runnable
2457 * average will be: \Sum 1024*y^n
2458 *
2459 * We can compute this reasonably efficiently by combining:
2460 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2461 */
2462static u32 __compute_runnable_contrib(u64 n)
2463{
2464 u32 contrib = 0;
2465
2466 if (likely(n <= LOAD_AVG_PERIOD))
2467 return runnable_avg_yN_sum[n];
2468 else if (unlikely(n >= LOAD_AVG_MAX_N))
2469 return LOAD_AVG_MAX;
2470
2471 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2472 do {
2473 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2474 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2475
2476 n -= LOAD_AVG_PERIOD;
2477 } while (n > LOAD_AVG_PERIOD);
2478
2479 contrib = decay_load(contrib, n);
2480 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2481}
2482
2483/*
2484 * We can represent the historical contribution to runnable average as the
2485 * coefficients of a geometric series. To do this we sub-divide our runnable
2486 * history into segments of approximately 1ms (1024us); label the segment that
2487 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2488 *
2489 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2490 * p0 p1 p2
2491 * (now) (~1ms ago) (~2ms ago)
2492 *
2493 * Let u_i denote the fraction of p_i that the entity was runnable.
2494 *
2495 * We then designate the fractions u_i as our co-efficients, yielding the
2496 * following representation of historical load:
2497 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2498 *
2499 * We choose y based on the with of a reasonably scheduling period, fixing:
2500 * y^32 = 0.5
2501 *
2502 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2503 * approximately half as much as the contribution to load within the last ms
2504 * (u_0).
2505 *
2506 * When a period "rolls over" and we have new u_0`, multiplying the previous
2507 * sum again by y is sufficient to update:
2508 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2509 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2510 */
2511static __always_inline int __update_entity_runnable_avg(u64 now,
2512 struct sched_avg *sa,
2513 int runnable)
2514{
5b51f2f8
PT
2515 u64 delta, periods;
2516 u32 runnable_contrib;
9d85f21c
PT
2517 int delta_w, decayed = 0;
2518
2519 delta = now - sa->last_runnable_update;
2520 /*
2521 * This should only happen when time goes backwards, which it
2522 * unfortunately does during sched clock init when we swap over to TSC.
2523 */
2524 if ((s64)delta < 0) {
2525 sa->last_runnable_update = now;
2526 return 0;
2527 }
2528
2529 /*
2530 * Use 1024ns as the unit of measurement since it's a reasonable
2531 * approximation of 1us and fast to compute.
2532 */
2533 delta >>= 10;
2534 if (!delta)
2535 return 0;
2536 sa->last_runnable_update = now;
2537
2538 /* delta_w is the amount already accumulated against our next period */
2539 delta_w = sa->runnable_avg_period % 1024;
2540 if (delta + delta_w >= 1024) {
2541 /* period roll-over */
2542 decayed = 1;
2543
2544 /*
2545 * Now that we know we're crossing a period boundary, figure
2546 * out how much from delta we need to complete the current
2547 * period and accrue it.
2548 */
2549 delta_w = 1024 - delta_w;
5b51f2f8
PT
2550 if (runnable)
2551 sa->runnable_avg_sum += delta_w;
2552 sa->runnable_avg_period += delta_w;
2553
2554 delta -= delta_w;
2555
2556 /* Figure out how many additional periods this update spans */
2557 periods = delta / 1024;
2558 delta %= 1024;
2559
2560 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2561 periods + 1);
2562 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2563 periods + 1);
2564
2565 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2566 runnable_contrib = __compute_runnable_contrib(periods);
2567 if (runnable)
2568 sa->runnable_avg_sum += runnable_contrib;
2569 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2570 }
2571
2572 /* Remainder of delta accrued against u_0` */
2573 if (runnable)
2574 sa->runnable_avg_sum += delta;
2575 sa->runnable_avg_period += delta;
2576
2577 return decayed;
2578}
2579
9ee474f5 2580/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2581static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2582{
2583 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2584 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2585
2586 decays -= se->avg.decay_count;
63847600 2587 se->avg.decay_count = 0;
9ee474f5 2588 if (!decays)
aff3e498 2589 return 0;
9ee474f5
PT
2590
2591 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
aff3e498
PT
2592
2593 return decays;
9ee474f5
PT
2594}
2595
c566e8e9
PT
2596#ifdef CONFIG_FAIR_GROUP_SCHED
2597static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2598 int force_update)
2599{
2600 struct task_group *tg = cfs_rq->tg;
bf5b986e 2601 long tg_contrib;
c566e8e9
PT
2602
2603 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2604 tg_contrib -= cfs_rq->tg_load_contrib;
2605
8236d907
JL
2606 if (!tg_contrib)
2607 return;
2608
bf5b986e
AS
2609 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2610 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2611 cfs_rq->tg_load_contrib += tg_contrib;
2612 }
2613}
8165e145 2614
bb17f655
PT
2615/*
2616 * Aggregate cfs_rq runnable averages into an equivalent task_group
2617 * representation for computing load contributions.
2618 */
2619static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2620 struct cfs_rq *cfs_rq)
2621{
2622 struct task_group *tg = cfs_rq->tg;
2623 long contrib;
2624
2625 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2626 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2627 sa->runnable_avg_period + 1);
2628 contrib -= cfs_rq->tg_runnable_contrib;
2629
2630 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2631 atomic_add(contrib, &tg->runnable_avg);
2632 cfs_rq->tg_runnable_contrib += contrib;
2633 }
2634}
2635
8165e145
PT
2636static inline void __update_group_entity_contrib(struct sched_entity *se)
2637{
2638 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2639 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2640 int runnable_avg;
2641
8165e145
PT
2642 u64 contrib;
2643
2644 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2645 se->avg.load_avg_contrib = div_u64(contrib,
2646 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2647
2648 /*
2649 * For group entities we need to compute a correction term in the case
2650 * that they are consuming <1 cpu so that we would contribute the same
2651 * load as a task of equal weight.
2652 *
2653 * Explicitly co-ordinating this measurement would be expensive, but
2654 * fortunately the sum of each cpus contribution forms a usable
2655 * lower-bound on the true value.
2656 *
2657 * Consider the aggregate of 2 contributions. Either they are disjoint
2658 * (and the sum represents true value) or they are disjoint and we are
2659 * understating by the aggregate of their overlap.
2660 *
2661 * Extending this to N cpus, for a given overlap, the maximum amount we
2662 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2663 * cpus that overlap for this interval and w_i is the interval width.
2664 *
2665 * On a small machine; the first term is well-bounded which bounds the
2666 * total error since w_i is a subset of the period. Whereas on a
2667 * larger machine, while this first term can be larger, if w_i is the
2668 * of consequential size guaranteed to see n_i*w_i quickly converge to
2669 * our upper bound of 1-cpu.
2670 */
2671 runnable_avg = atomic_read(&tg->runnable_avg);
2672 if (runnable_avg < NICE_0_LOAD) {
2673 se->avg.load_avg_contrib *= runnable_avg;
2674 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2675 }
8165e145 2676}
f5f9739d
DE
2677
2678static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2679{
2680 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2681 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2682}
6e83125c 2683#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2684static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2685 int force_update) {}
bb17f655
PT
2686static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2687 struct cfs_rq *cfs_rq) {}
8165e145 2688static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2689static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2690#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2691
8165e145
PT
2692static inline void __update_task_entity_contrib(struct sched_entity *se)
2693{
2694 u32 contrib;
2695
2696 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2697 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2698 contrib /= (se->avg.runnable_avg_period + 1);
2699 se->avg.load_avg_contrib = scale_load(contrib);
2700}
2701
2dac754e
PT
2702/* Compute the current contribution to load_avg by se, return any delta */
2703static long __update_entity_load_avg_contrib(struct sched_entity *se)
2704{
2705 long old_contrib = se->avg.load_avg_contrib;
2706
8165e145
PT
2707 if (entity_is_task(se)) {
2708 __update_task_entity_contrib(se);
2709 } else {
bb17f655 2710 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2711 __update_group_entity_contrib(se);
2712 }
2dac754e
PT
2713
2714 return se->avg.load_avg_contrib - old_contrib;
2715}
2716
9ee474f5
PT
2717static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2718 long load_contrib)
2719{
2720 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2721 cfs_rq->blocked_load_avg -= load_contrib;
2722 else
2723 cfs_rq->blocked_load_avg = 0;
2724}
2725
f1b17280
PT
2726static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2727
9d85f21c 2728/* Update a sched_entity's runnable average */
9ee474f5
PT
2729static inline void update_entity_load_avg(struct sched_entity *se,
2730 int update_cfs_rq)
9d85f21c 2731{
2dac754e
PT
2732 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2733 long contrib_delta;
f1b17280 2734 u64 now;
2dac754e 2735
f1b17280
PT
2736 /*
2737 * For a group entity we need to use their owned cfs_rq_clock_task() in
2738 * case they are the parent of a throttled hierarchy.
2739 */
2740 if (entity_is_task(se))
2741 now = cfs_rq_clock_task(cfs_rq);
2742 else
2743 now = cfs_rq_clock_task(group_cfs_rq(se));
2744
2745 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2746 return;
2747
2748 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2749
2750 if (!update_cfs_rq)
2751 return;
2752
2dac754e
PT
2753 if (se->on_rq)
2754 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2755 else
2756 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2757}
2758
2759/*
2760 * Decay the load contributed by all blocked children and account this so that
2761 * their contribution may appropriately discounted when they wake up.
2762 */
aff3e498 2763static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2764{
f1b17280 2765 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2766 u64 decays;
2767
2768 decays = now - cfs_rq->last_decay;
aff3e498 2769 if (!decays && !force_update)
9ee474f5
PT
2770 return;
2771
2509940f
AS
2772 if (atomic_long_read(&cfs_rq->removed_load)) {
2773 unsigned long removed_load;
2774 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2775 subtract_blocked_load_contrib(cfs_rq, removed_load);
2776 }
9ee474f5 2777
aff3e498
PT
2778 if (decays) {
2779 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2780 decays);
2781 atomic64_add(decays, &cfs_rq->decay_counter);
2782 cfs_rq->last_decay = now;
2783 }
c566e8e9
PT
2784
2785 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2786}
18bf2805 2787
2dac754e
PT
2788/* Add the load generated by se into cfs_rq's child load-average */
2789static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2790 struct sched_entity *se,
2791 int wakeup)
2dac754e 2792{
aff3e498
PT
2793 /*
2794 * We track migrations using entity decay_count <= 0, on a wake-up
2795 * migration we use a negative decay count to track the remote decays
2796 * accumulated while sleeping.
a75cdaa9
AS
2797 *
2798 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2799 * are seen by enqueue_entity_load_avg() as a migration with an already
2800 * constructed load_avg_contrib.
aff3e498
PT
2801 */
2802 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2803 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2804 if (se->avg.decay_count) {
2805 /*
2806 * In a wake-up migration we have to approximate the
2807 * time sleeping. This is because we can't synchronize
2808 * clock_task between the two cpus, and it is not
2809 * guaranteed to be read-safe. Instead, we can
2810 * approximate this using our carried decays, which are
2811 * explicitly atomically readable.
2812 */
2813 se->avg.last_runnable_update -= (-se->avg.decay_count)
2814 << 20;
2815 update_entity_load_avg(se, 0);
2816 /* Indicate that we're now synchronized and on-rq */
2817 se->avg.decay_count = 0;
2818 }
9ee474f5
PT
2819 wakeup = 0;
2820 } else {
9390675a 2821 __synchronize_entity_decay(se);
9ee474f5
PT
2822 }
2823
aff3e498
PT
2824 /* migrated tasks did not contribute to our blocked load */
2825 if (wakeup) {
9ee474f5 2826 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2827 update_entity_load_avg(se, 0);
2828 }
9ee474f5 2829
2dac754e 2830 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2831 /* we force update consideration on load-balancer moves */
2832 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2833}
2834
9ee474f5
PT
2835/*
2836 * Remove se's load from this cfs_rq child load-average, if the entity is
2837 * transitioning to a blocked state we track its projected decay using
2838 * blocked_load_avg.
2839 */
2dac754e 2840static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2841 struct sched_entity *se,
2842 int sleep)
2dac754e 2843{
9ee474f5 2844 update_entity_load_avg(se, 1);
aff3e498
PT
2845 /* we force update consideration on load-balancer moves */
2846 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2847
2dac754e 2848 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2849 if (sleep) {
2850 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2851 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2852 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2853}
642dbc39
VG
2854
2855/*
2856 * Update the rq's load with the elapsed running time before entering
2857 * idle. if the last scheduled task is not a CFS task, idle_enter will
2858 * be the only way to update the runnable statistic.
2859 */
2860void idle_enter_fair(struct rq *this_rq)
2861{
2862 update_rq_runnable_avg(this_rq, 1);
2863}
2864
2865/*
2866 * Update the rq's load with the elapsed idle time before a task is
2867 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2868 * be the only way to update the runnable statistic.
2869 */
2870void idle_exit_fair(struct rq *this_rq)
2871{
2872 update_rq_runnable_avg(this_rq, 0);
2873}
2874
6e83125c
PZ
2875static int idle_balance(struct rq *this_rq);
2876
38033c37
PZ
2877#else /* CONFIG_SMP */
2878
9ee474f5
PT
2879static inline void update_entity_load_avg(struct sched_entity *se,
2880 int update_cfs_rq) {}
18bf2805 2881static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2882static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2883 struct sched_entity *se,
2884 int wakeup) {}
2dac754e 2885static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2886 struct sched_entity *se,
2887 int sleep) {}
aff3e498
PT
2888static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2889 int force_update) {}
6e83125c
PZ
2890
2891static inline int idle_balance(struct rq *rq)
2892{
2893 return 0;
2894}
2895
38033c37 2896#endif /* CONFIG_SMP */
9d85f21c 2897
2396af69 2898static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2899{
bf0f6f24 2900#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2901 struct task_struct *tsk = NULL;
2902
2903 if (entity_is_task(se))
2904 tsk = task_of(se);
2905
41acab88 2906 if (se->statistics.sleep_start) {
78becc27 2907 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2908
2909 if ((s64)delta < 0)
2910 delta = 0;
2911
41acab88
LDM
2912 if (unlikely(delta > se->statistics.sleep_max))
2913 se->statistics.sleep_max = delta;
bf0f6f24 2914
8c79a045 2915 se->statistics.sleep_start = 0;
41acab88 2916 se->statistics.sum_sleep_runtime += delta;
9745512c 2917
768d0c27 2918 if (tsk) {
e414314c 2919 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2920 trace_sched_stat_sleep(tsk, delta);
2921 }
bf0f6f24 2922 }
41acab88 2923 if (se->statistics.block_start) {
78becc27 2924 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2925
2926 if ((s64)delta < 0)
2927 delta = 0;
2928
41acab88
LDM
2929 if (unlikely(delta > se->statistics.block_max))
2930 se->statistics.block_max = delta;
bf0f6f24 2931
8c79a045 2932 se->statistics.block_start = 0;
41acab88 2933 se->statistics.sum_sleep_runtime += delta;
30084fbd 2934
e414314c 2935 if (tsk) {
8f0dfc34 2936 if (tsk->in_iowait) {
41acab88
LDM
2937 se->statistics.iowait_sum += delta;
2938 se->statistics.iowait_count++;
768d0c27 2939 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2940 }
2941
b781a602
AV
2942 trace_sched_stat_blocked(tsk, delta);
2943
e414314c
PZ
2944 /*
2945 * Blocking time is in units of nanosecs, so shift by
2946 * 20 to get a milliseconds-range estimation of the
2947 * amount of time that the task spent sleeping:
2948 */
2949 if (unlikely(prof_on == SLEEP_PROFILING)) {
2950 profile_hits(SLEEP_PROFILING,
2951 (void *)get_wchan(tsk),
2952 delta >> 20);
2953 }
2954 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2955 }
bf0f6f24
IM
2956 }
2957#endif
2958}
2959
ddc97297
PZ
2960static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2961{
2962#ifdef CONFIG_SCHED_DEBUG
2963 s64 d = se->vruntime - cfs_rq->min_vruntime;
2964
2965 if (d < 0)
2966 d = -d;
2967
2968 if (d > 3*sysctl_sched_latency)
2969 schedstat_inc(cfs_rq, nr_spread_over);
2970#endif
2971}
2972
aeb73b04
PZ
2973static void
2974place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2975{
1af5f730 2976 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2977
2cb8600e
PZ
2978 /*
2979 * The 'current' period is already promised to the current tasks,
2980 * however the extra weight of the new task will slow them down a
2981 * little, place the new task so that it fits in the slot that
2982 * stays open at the end.
2983 */
94dfb5e7 2984 if (initial && sched_feat(START_DEBIT))
f9c0b095 2985 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2986
a2e7a7eb 2987 /* sleeps up to a single latency don't count. */
5ca9880c 2988 if (!initial) {
a2e7a7eb 2989 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2990
a2e7a7eb
MG
2991 /*
2992 * Halve their sleep time's effect, to allow
2993 * for a gentler effect of sleepers:
2994 */
2995 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2996 thresh >>= 1;
51e0304c 2997
a2e7a7eb 2998 vruntime -= thresh;
aeb73b04
PZ
2999 }
3000
b5d9d734 3001 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3002 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3003}
3004
d3d9dc33
PT
3005static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3006
bf0f6f24 3007static void
88ec22d3 3008enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3009{
88ec22d3
PZ
3010 /*
3011 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3012 * through calling update_curr().
88ec22d3 3013 */
371fd7e7 3014 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3015 se->vruntime += cfs_rq->min_vruntime;
3016
bf0f6f24 3017 /*
a2a2d680 3018 * Update run-time statistics of the 'current'.
bf0f6f24 3019 */
b7cc0896 3020 update_curr(cfs_rq);
f269ae04 3021 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3022 account_entity_enqueue(cfs_rq, se);
3023 update_cfs_shares(cfs_rq);
bf0f6f24 3024
88ec22d3 3025 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3026 place_entity(cfs_rq, se, 0);
2396af69 3027 enqueue_sleeper(cfs_rq, se);
e9acbff6 3028 }
bf0f6f24 3029
d2417e5a 3030 update_stats_enqueue(cfs_rq, se);
ddc97297 3031 check_spread(cfs_rq, se);
83b699ed
SV
3032 if (se != cfs_rq->curr)
3033 __enqueue_entity(cfs_rq, se);
2069dd75 3034 se->on_rq = 1;
3d4b47b4 3035
d3d9dc33 3036 if (cfs_rq->nr_running == 1) {
3d4b47b4 3037 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3038 check_enqueue_throttle(cfs_rq);
3039 }
bf0f6f24
IM
3040}
3041
2c13c919 3042static void __clear_buddies_last(struct sched_entity *se)
2002c695 3043{
2c13c919
RR
3044 for_each_sched_entity(se) {
3045 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3046 if (cfs_rq->last != se)
2c13c919 3047 break;
f1044799
PZ
3048
3049 cfs_rq->last = NULL;
2c13c919
RR
3050 }
3051}
2002c695 3052
2c13c919
RR
3053static void __clear_buddies_next(struct sched_entity *se)
3054{
3055 for_each_sched_entity(se) {
3056 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3057 if (cfs_rq->next != se)
2c13c919 3058 break;
f1044799
PZ
3059
3060 cfs_rq->next = NULL;
2c13c919 3061 }
2002c695
PZ
3062}
3063
ac53db59
RR
3064static void __clear_buddies_skip(struct sched_entity *se)
3065{
3066 for_each_sched_entity(se) {
3067 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3068 if (cfs_rq->skip != se)
ac53db59 3069 break;
f1044799
PZ
3070
3071 cfs_rq->skip = NULL;
ac53db59
RR
3072 }
3073}
3074
a571bbea
PZ
3075static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3076{
2c13c919
RR
3077 if (cfs_rq->last == se)
3078 __clear_buddies_last(se);
3079
3080 if (cfs_rq->next == se)
3081 __clear_buddies_next(se);
ac53db59
RR
3082
3083 if (cfs_rq->skip == se)
3084 __clear_buddies_skip(se);
a571bbea
PZ
3085}
3086
6c16a6dc 3087static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3088
bf0f6f24 3089static void
371fd7e7 3090dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3091{
a2a2d680
DA
3092 /*
3093 * Update run-time statistics of the 'current'.
3094 */
3095 update_curr(cfs_rq);
17bc14b7 3096 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3097
19b6a2e3 3098 update_stats_dequeue(cfs_rq, se);
371fd7e7 3099 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3100#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3101 if (entity_is_task(se)) {
3102 struct task_struct *tsk = task_of(se);
3103
3104 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3105 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3106 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3107 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3108 }
db36cc7d 3109#endif
67e9fb2a
PZ
3110 }
3111
2002c695 3112 clear_buddies(cfs_rq, se);
4793241b 3113
83b699ed 3114 if (se != cfs_rq->curr)
30cfdcfc 3115 __dequeue_entity(cfs_rq, se);
17bc14b7 3116 se->on_rq = 0;
30cfdcfc 3117 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3118
3119 /*
3120 * Normalize the entity after updating the min_vruntime because the
3121 * update can refer to the ->curr item and we need to reflect this
3122 * movement in our normalized position.
3123 */
371fd7e7 3124 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3125 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3126
d8b4986d
PT
3127 /* return excess runtime on last dequeue */
3128 return_cfs_rq_runtime(cfs_rq);
3129
1e876231 3130 update_min_vruntime(cfs_rq);
17bc14b7 3131 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3132}
3133
3134/*
3135 * Preempt the current task with a newly woken task if needed:
3136 */
7c92e54f 3137static void
2e09bf55 3138check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3139{
11697830 3140 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3141 struct sched_entity *se;
3142 s64 delta;
11697830 3143
6d0f0ebd 3144 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3145 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3146 if (delta_exec > ideal_runtime) {
8875125e 3147 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3148 /*
3149 * The current task ran long enough, ensure it doesn't get
3150 * re-elected due to buddy favours.
3151 */
3152 clear_buddies(cfs_rq, curr);
f685ceac
MG
3153 return;
3154 }
3155
3156 /*
3157 * Ensure that a task that missed wakeup preemption by a
3158 * narrow margin doesn't have to wait for a full slice.
3159 * This also mitigates buddy induced latencies under load.
3160 */
f685ceac
MG
3161 if (delta_exec < sysctl_sched_min_granularity)
3162 return;
3163
f4cfb33e
WX
3164 se = __pick_first_entity(cfs_rq);
3165 delta = curr->vruntime - se->vruntime;
f685ceac 3166
f4cfb33e
WX
3167 if (delta < 0)
3168 return;
d7d82944 3169
f4cfb33e 3170 if (delta > ideal_runtime)
8875125e 3171 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3172}
3173
83b699ed 3174static void
8494f412 3175set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3176{
83b699ed
SV
3177 /* 'current' is not kept within the tree. */
3178 if (se->on_rq) {
3179 /*
3180 * Any task has to be enqueued before it get to execute on
3181 * a CPU. So account for the time it spent waiting on the
3182 * runqueue.
3183 */
3184 update_stats_wait_end(cfs_rq, se);
3185 __dequeue_entity(cfs_rq, se);
3186 }
3187
79303e9e 3188 update_stats_curr_start(cfs_rq, se);
429d43bc 3189 cfs_rq->curr = se;
eba1ed4b
IM
3190#ifdef CONFIG_SCHEDSTATS
3191 /*
3192 * Track our maximum slice length, if the CPU's load is at
3193 * least twice that of our own weight (i.e. dont track it
3194 * when there are only lesser-weight tasks around):
3195 */
495eca49 3196 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3197 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3198 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3199 }
3200#endif
4a55b450 3201 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3202}
3203
3f3a4904
PZ
3204static int
3205wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3206
ac53db59
RR
3207/*
3208 * Pick the next process, keeping these things in mind, in this order:
3209 * 1) keep things fair between processes/task groups
3210 * 2) pick the "next" process, since someone really wants that to run
3211 * 3) pick the "last" process, for cache locality
3212 * 4) do not run the "skip" process, if something else is available
3213 */
678d5718
PZ
3214static struct sched_entity *
3215pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3216{
678d5718
PZ
3217 struct sched_entity *left = __pick_first_entity(cfs_rq);
3218 struct sched_entity *se;
3219
3220 /*
3221 * If curr is set we have to see if its left of the leftmost entity
3222 * still in the tree, provided there was anything in the tree at all.
3223 */
3224 if (!left || (curr && entity_before(curr, left)))
3225 left = curr;
3226
3227 se = left; /* ideally we run the leftmost entity */
f4b6755f 3228
ac53db59
RR
3229 /*
3230 * Avoid running the skip buddy, if running something else can
3231 * be done without getting too unfair.
3232 */
3233 if (cfs_rq->skip == se) {
678d5718
PZ
3234 struct sched_entity *second;
3235
3236 if (se == curr) {
3237 second = __pick_first_entity(cfs_rq);
3238 } else {
3239 second = __pick_next_entity(se);
3240 if (!second || (curr && entity_before(curr, second)))
3241 second = curr;
3242 }
3243
ac53db59
RR
3244 if (second && wakeup_preempt_entity(second, left) < 1)
3245 se = second;
3246 }
aa2ac252 3247
f685ceac
MG
3248 /*
3249 * Prefer last buddy, try to return the CPU to a preempted task.
3250 */
3251 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3252 se = cfs_rq->last;
3253
ac53db59
RR
3254 /*
3255 * Someone really wants this to run. If it's not unfair, run it.
3256 */
3257 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3258 se = cfs_rq->next;
3259
f685ceac 3260 clear_buddies(cfs_rq, se);
4793241b
PZ
3261
3262 return se;
aa2ac252
PZ
3263}
3264
678d5718 3265static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3266
ab6cde26 3267static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3268{
3269 /*
3270 * If still on the runqueue then deactivate_task()
3271 * was not called and update_curr() has to be done:
3272 */
3273 if (prev->on_rq)
b7cc0896 3274 update_curr(cfs_rq);
bf0f6f24 3275
d3d9dc33
PT
3276 /* throttle cfs_rqs exceeding runtime */
3277 check_cfs_rq_runtime(cfs_rq);
3278
ddc97297 3279 check_spread(cfs_rq, prev);
30cfdcfc 3280 if (prev->on_rq) {
5870db5b 3281 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3282 /* Put 'current' back into the tree. */
3283 __enqueue_entity(cfs_rq, prev);
9d85f21c 3284 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3285 update_entity_load_avg(prev, 1);
30cfdcfc 3286 }
429d43bc 3287 cfs_rq->curr = NULL;
bf0f6f24
IM
3288}
3289
8f4d37ec
PZ
3290static void
3291entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3292{
bf0f6f24 3293 /*
30cfdcfc 3294 * Update run-time statistics of the 'current'.
bf0f6f24 3295 */
30cfdcfc 3296 update_curr(cfs_rq);
bf0f6f24 3297
9d85f21c
PT
3298 /*
3299 * Ensure that runnable average is periodically updated.
3300 */
9ee474f5 3301 update_entity_load_avg(curr, 1);
aff3e498 3302 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3303 update_cfs_shares(cfs_rq);
9d85f21c 3304
8f4d37ec
PZ
3305#ifdef CONFIG_SCHED_HRTICK
3306 /*
3307 * queued ticks are scheduled to match the slice, so don't bother
3308 * validating it and just reschedule.
3309 */
983ed7a6 3310 if (queued) {
8875125e 3311 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3312 return;
3313 }
8f4d37ec
PZ
3314 /*
3315 * don't let the period tick interfere with the hrtick preemption
3316 */
3317 if (!sched_feat(DOUBLE_TICK) &&
3318 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3319 return;
3320#endif
3321
2c2efaed 3322 if (cfs_rq->nr_running > 1)
2e09bf55 3323 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3324}
3325
ab84d31e
PT
3326
3327/**************************************************
3328 * CFS bandwidth control machinery
3329 */
3330
3331#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3332
3333#ifdef HAVE_JUMP_LABEL
c5905afb 3334static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3335
3336static inline bool cfs_bandwidth_used(void)
3337{
c5905afb 3338 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3339}
3340
1ee14e6c 3341void cfs_bandwidth_usage_inc(void)
029632fb 3342{
1ee14e6c
BS
3343 static_key_slow_inc(&__cfs_bandwidth_used);
3344}
3345
3346void cfs_bandwidth_usage_dec(void)
3347{
3348 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3349}
3350#else /* HAVE_JUMP_LABEL */
3351static bool cfs_bandwidth_used(void)
3352{
3353 return true;
3354}
3355
1ee14e6c
BS
3356void cfs_bandwidth_usage_inc(void) {}
3357void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3358#endif /* HAVE_JUMP_LABEL */
3359
ab84d31e
PT
3360/*
3361 * default period for cfs group bandwidth.
3362 * default: 0.1s, units: nanoseconds
3363 */
3364static inline u64 default_cfs_period(void)
3365{
3366 return 100000000ULL;
3367}
ec12cb7f
PT
3368
3369static inline u64 sched_cfs_bandwidth_slice(void)
3370{
3371 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3372}
3373
a9cf55b2
PT
3374/*
3375 * Replenish runtime according to assigned quota and update expiration time.
3376 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3377 * additional synchronization around rq->lock.
3378 *
3379 * requires cfs_b->lock
3380 */
029632fb 3381void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3382{
3383 u64 now;
3384
3385 if (cfs_b->quota == RUNTIME_INF)
3386 return;
3387
3388 now = sched_clock_cpu(smp_processor_id());
3389 cfs_b->runtime = cfs_b->quota;
3390 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3391}
3392
029632fb
PZ
3393static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3394{
3395 return &tg->cfs_bandwidth;
3396}
3397
f1b17280
PT
3398/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3399static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3400{
3401 if (unlikely(cfs_rq->throttle_count))
3402 return cfs_rq->throttled_clock_task;
3403
78becc27 3404 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3405}
3406
85dac906
PT
3407/* returns 0 on failure to allocate runtime */
3408static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3409{
3410 struct task_group *tg = cfs_rq->tg;
3411 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3412 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3413
3414 /* note: this is a positive sum as runtime_remaining <= 0 */
3415 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3416
3417 raw_spin_lock(&cfs_b->lock);
3418 if (cfs_b->quota == RUNTIME_INF)
3419 amount = min_amount;
58088ad0 3420 else {
a9cf55b2
PT
3421 /*
3422 * If the bandwidth pool has become inactive, then at least one
3423 * period must have elapsed since the last consumption.
3424 * Refresh the global state and ensure bandwidth timer becomes
3425 * active.
3426 */
3427 if (!cfs_b->timer_active) {
3428 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3429 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3430 }
58088ad0
PT
3431
3432 if (cfs_b->runtime > 0) {
3433 amount = min(cfs_b->runtime, min_amount);
3434 cfs_b->runtime -= amount;
3435 cfs_b->idle = 0;
3436 }
ec12cb7f 3437 }
a9cf55b2 3438 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3439 raw_spin_unlock(&cfs_b->lock);
3440
3441 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3442 /*
3443 * we may have advanced our local expiration to account for allowed
3444 * spread between our sched_clock and the one on which runtime was
3445 * issued.
3446 */
3447 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3448 cfs_rq->runtime_expires = expires;
85dac906
PT
3449
3450 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3451}
3452
a9cf55b2
PT
3453/*
3454 * Note: This depends on the synchronization provided by sched_clock and the
3455 * fact that rq->clock snapshots this value.
3456 */
3457static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3458{
a9cf55b2 3459 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3460
3461 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3462 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3463 return;
3464
a9cf55b2
PT
3465 if (cfs_rq->runtime_remaining < 0)
3466 return;
3467
3468 /*
3469 * If the local deadline has passed we have to consider the
3470 * possibility that our sched_clock is 'fast' and the global deadline
3471 * has not truly expired.
3472 *
3473 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3474 * whether the global deadline has advanced. It is valid to compare
3475 * cfs_b->runtime_expires without any locks since we only care about
3476 * exact equality, so a partial write will still work.
a9cf55b2
PT
3477 */
3478
51f2176d 3479 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3480 /* extend local deadline, drift is bounded above by 2 ticks */
3481 cfs_rq->runtime_expires += TICK_NSEC;
3482 } else {
3483 /* global deadline is ahead, expiration has passed */
3484 cfs_rq->runtime_remaining = 0;
3485 }
3486}
3487
9dbdb155 3488static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3489{
3490 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3491 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3492 expire_cfs_rq_runtime(cfs_rq);
3493
3494 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3495 return;
3496
85dac906
PT
3497 /*
3498 * if we're unable to extend our runtime we resched so that the active
3499 * hierarchy can be throttled
3500 */
3501 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3502 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3503}
3504
6c16a6dc 3505static __always_inline
9dbdb155 3506void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3507{
56f570e5 3508 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3509 return;
3510
3511 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3512}
3513
85dac906
PT
3514static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3515{
56f570e5 3516 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3517}
3518
64660c86
PT
3519/* check whether cfs_rq, or any parent, is throttled */
3520static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3521{
56f570e5 3522 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3523}
3524
3525/*
3526 * Ensure that neither of the group entities corresponding to src_cpu or
3527 * dest_cpu are members of a throttled hierarchy when performing group
3528 * load-balance operations.
3529 */
3530static inline int throttled_lb_pair(struct task_group *tg,
3531 int src_cpu, int dest_cpu)
3532{
3533 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3534
3535 src_cfs_rq = tg->cfs_rq[src_cpu];
3536 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3537
3538 return throttled_hierarchy(src_cfs_rq) ||
3539 throttled_hierarchy(dest_cfs_rq);
3540}
3541
3542/* updated child weight may affect parent so we have to do this bottom up */
3543static int tg_unthrottle_up(struct task_group *tg, void *data)
3544{
3545 struct rq *rq = data;
3546 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3547
3548 cfs_rq->throttle_count--;
3549#ifdef CONFIG_SMP
3550 if (!cfs_rq->throttle_count) {
f1b17280 3551 /* adjust cfs_rq_clock_task() */
78becc27 3552 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3553 cfs_rq->throttled_clock_task;
64660c86
PT
3554 }
3555#endif
3556
3557 return 0;
3558}
3559
3560static int tg_throttle_down(struct task_group *tg, void *data)
3561{
3562 struct rq *rq = data;
3563 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3564
82958366
PT
3565 /* group is entering throttled state, stop time */
3566 if (!cfs_rq->throttle_count)
78becc27 3567 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3568 cfs_rq->throttle_count++;
3569
3570 return 0;
3571}
3572
d3d9dc33 3573static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3574{
3575 struct rq *rq = rq_of(cfs_rq);
3576 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3577 struct sched_entity *se;
3578 long task_delta, dequeue = 1;
3579
3580 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3581
f1b17280 3582 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3583 rcu_read_lock();
3584 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3585 rcu_read_unlock();
85dac906
PT
3586
3587 task_delta = cfs_rq->h_nr_running;
3588 for_each_sched_entity(se) {
3589 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3590 /* throttled entity or throttle-on-deactivate */
3591 if (!se->on_rq)
3592 break;
3593
3594 if (dequeue)
3595 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3596 qcfs_rq->h_nr_running -= task_delta;
3597
3598 if (qcfs_rq->load.weight)
3599 dequeue = 0;
3600 }
3601
3602 if (!se)
72465447 3603 sub_nr_running(rq, task_delta);
85dac906
PT
3604
3605 cfs_rq->throttled = 1;
78becc27 3606 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3607 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3608 /*
3609 * Add to the _head_ of the list, so that an already-started
3610 * distribute_cfs_runtime will not see us
3611 */
3612 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3613 if (!cfs_b->timer_active)
09dc4ab0 3614 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3615 raw_spin_unlock(&cfs_b->lock);
3616}
3617
029632fb 3618void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3619{
3620 struct rq *rq = rq_of(cfs_rq);
3621 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3622 struct sched_entity *se;
3623 int enqueue = 1;
3624 long task_delta;
3625
22b958d8 3626 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3627
3628 cfs_rq->throttled = 0;
1a55af2e
FW
3629
3630 update_rq_clock(rq);
3631
671fd9da 3632 raw_spin_lock(&cfs_b->lock);
78becc27 3633 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3634 list_del_rcu(&cfs_rq->throttled_list);
3635 raw_spin_unlock(&cfs_b->lock);
3636
64660c86
PT
3637 /* update hierarchical throttle state */
3638 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3639
671fd9da
PT
3640 if (!cfs_rq->load.weight)
3641 return;
3642
3643 task_delta = cfs_rq->h_nr_running;
3644 for_each_sched_entity(se) {
3645 if (se->on_rq)
3646 enqueue = 0;
3647
3648 cfs_rq = cfs_rq_of(se);
3649 if (enqueue)
3650 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3651 cfs_rq->h_nr_running += task_delta;
3652
3653 if (cfs_rq_throttled(cfs_rq))
3654 break;
3655 }
3656
3657 if (!se)
72465447 3658 add_nr_running(rq, task_delta);
671fd9da
PT
3659
3660 /* determine whether we need to wake up potentially idle cpu */
3661 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3662 resched_curr(rq);
671fd9da
PT
3663}
3664
3665static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3666 u64 remaining, u64 expires)
3667{
3668 struct cfs_rq *cfs_rq;
c06f04c7
BS
3669 u64 runtime;
3670 u64 starting_runtime = remaining;
671fd9da
PT
3671
3672 rcu_read_lock();
3673 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3674 throttled_list) {
3675 struct rq *rq = rq_of(cfs_rq);
3676
3677 raw_spin_lock(&rq->lock);
3678 if (!cfs_rq_throttled(cfs_rq))
3679 goto next;
3680
3681 runtime = -cfs_rq->runtime_remaining + 1;
3682 if (runtime > remaining)
3683 runtime = remaining;
3684 remaining -= runtime;
3685
3686 cfs_rq->runtime_remaining += runtime;
3687 cfs_rq->runtime_expires = expires;
3688
3689 /* we check whether we're throttled above */
3690 if (cfs_rq->runtime_remaining > 0)
3691 unthrottle_cfs_rq(cfs_rq);
3692
3693next:
3694 raw_spin_unlock(&rq->lock);
3695
3696 if (!remaining)
3697 break;
3698 }
3699 rcu_read_unlock();
3700
c06f04c7 3701 return starting_runtime - remaining;
671fd9da
PT
3702}
3703
58088ad0
PT
3704/*
3705 * Responsible for refilling a task_group's bandwidth and unthrottling its
3706 * cfs_rqs as appropriate. If there has been no activity within the last
3707 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3708 * used to track this state.
3709 */
3710static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3711{
671fd9da 3712 u64 runtime, runtime_expires;
51f2176d 3713 int throttled;
58088ad0 3714
58088ad0
PT
3715 /* no need to continue the timer with no bandwidth constraint */
3716 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3717 goto out_deactivate;
58088ad0 3718
671fd9da 3719 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3720 cfs_b->nr_periods += overrun;
671fd9da 3721
51f2176d
BS
3722 /*
3723 * idle depends on !throttled (for the case of a large deficit), and if
3724 * we're going inactive then everything else can be deferred
3725 */
3726 if (cfs_b->idle && !throttled)
3727 goto out_deactivate;
a9cf55b2 3728
927b54fc
BS
3729 /*
3730 * if we have relooped after returning idle once, we need to update our
3731 * status as actually running, so that other cpus doing
3732 * __start_cfs_bandwidth will stop trying to cancel us.
3733 */
3734 cfs_b->timer_active = 1;
3735
a9cf55b2
PT
3736 __refill_cfs_bandwidth_runtime(cfs_b);
3737
671fd9da
PT
3738 if (!throttled) {
3739 /* mark as potentially idle for the upcoming period */
3740 cfs_b->idle = 1;
51f2176d 3741 return 0;
671fd9da
PT
3742 }
3743
e8da1b18
NR
3744 /* account preceding periods in which throttling occurred */
3745 cfs_b->nr_throttled += overrun;
3746
671fd9da 3747 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3748
3749 /*
c06f04c7
BS
3750 * This check is repeated as we are holding onto the new bandwidth while
3751 * we unthrottle. This can potentially race with an unthrottled group
3752 * trying to acquire new bandwidth from the global pool. This can result
3753 * in us over-using our runtime if it is all used during this loop, but
3754 * only by limited amounts in that extreme case.
671fd9da 3755 */
c06f04c7
BS
3756 while (throttled && cfs_b->runtime > 0) {
3757 runtime = cfs_b->runtime;
671fd9da
PT
3758 raw_spin_unlock(&cfs_b->lock);
3759 /* we can't nest cfs_b->lock while distributing bandwidth */
3760 runtime = distribute_cfs_runtime(cfs_b, runtime,
3761 runtime_expires);
3762 raw_spin_lock(&cfs_b->lock);
3763
3764 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3765
3766 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3767 }
58088ad0 3768
671fd9da
PT
3769 /*
3770 * While we are ensured activity in the period following an
3771 * unthrottle, this also covers the case in which the new bandwidth is
3772 * insufficient to cover the existing bandwidth deficit. (Forcing the
3773 * timer to remain active while there are any throttled entities.)
3774 */
3775 cfs_b->idle = 0;
58088ad0 3776
51f2176d
BS
3777 return 0;
3778
3779out_deactivate:
3780 cfs_b->timer_active = 0;
3781 return 1;
58088ad0 3782}
d3d9dc33 3783
d8b4986d
PT
3784/* a cfs_rq won't donate quota below this amount */
3785static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3786/* minimum remaining period time to redistribute slack quota */
3787static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3788/* how long we wait to gather additional slack before distributing */
3789static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3790
db06e78c
BS
3791/*
3792 * Are we near the end of the current quota period?
3793 *
3794 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3795 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3796 * migrate_hrtimers, base is never cleared, so we are fine.
3797 */
d8b4986d
PT
3798static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3799{
3800 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3801 u64 remaining;
3802
3803 /* if the call-back is running a quota refresh is already occurring */
3804 if (hrtimer_callback_running(refresh_timer))
3805 return 1;
3806
3807 /* is a quota refresh about to occur? */
3808 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3809 if (remaining < min_expire)
3810 return 1;
3811
3812 return 0;
3813}
3814
3815static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3816{
3817 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3818
3819 /* if there's a quota refresh soon don't bother with slack */
3820 if (runtime_refresh_within(cfs_b, min_left))
3821 return;
3822
3823 start_bandwidth_timer(&cfs_b->slack_timer,
3824 ns_to_ktime(cfs_bandwidth_slack_period));
3825}
3826
3827/* we know any runtime found here is valid as update_curr() precedes return */
3828static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3829{
3830 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3831 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3832
3833 if (slack_runtime <= 0)
3834 return;
3835
3836 raw_spin_lock(&cfs_b->lock);
3837 if (cfs_b->quota != RUNTIME_INF &&
3838 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3839 cfs_b->runtime += slack_runtime;
3840
3841 /* we are under rq->lock, defer unthrottling using a timer */
3842 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3843 !list_empty(&cfs_b->throttled_cfs_rq))
3844 start_cfs_slack_bandwidth(cfs_b);
3845 }
3846 raw_spin_unlock(&cfs_b->lock);
3847
3848 /* even if it's not valid for return we don't want to try again */
3849 cfs_rq->runtime_remaining -= slack_runtime;
3850}
3851
3852static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3853{
56f570e5
PT
3854 if (!cfs_bandwidth_used())
3855 return;
3856
fccfdc6f 3857 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3858 return;
3859
3860 __return_cfs_rq_runtime(cfs_rq);
3861}
3862
3863/*
3864 * This is done with a timer (instead of inline with bandwidth return) since
3865 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3866 */
3867static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3868{
3869 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3870 u64 expires;
3871
3872 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3873 raw_spin_lock(&cfs_b->lock);
3874 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3875 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3876 return;
db06e78c 3877 }
d8b4986d 3878
c06f04c7 3879 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3880 runtime = cfs_b->runtime;
c06f04c7 3881
d8b4986d
PT
3882 expires = cfs_b->runtime_expires;
3883 raw_spin_unlock(&cfs_b->lock);
3884
3885 if (!runtime)
3886 return;
3887
3888 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3889
3890 raw_spin_lock(&cfs_b->lock);
3891 if (expires == cfs_b->runtime_expires)
c06f04c7 3892 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3893 raw_spin_unlock(&cfs_b->lock);
3894}
3895
d3d9dc33
PT
3896/*
3897 * When a group wakes up we want to make sure that its quota is not already
3898 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3899 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3900 */
3901static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3902{
56f570e5
PT
3903 if (!cfs_bandwidth_used())
3904 return;
3905
d3d9dc33
PT
3906 /* an active group must be handled by the update_curr()->put() path */
3907 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3908 return;
3909
3910 /* ensure the group is not already throttled */
3911 if (cfs_rq_throttled(cfs_rq))
3912 return;
3913
3914 /* update runtime allocation */
3915 account_cfs_rq_runtime(cfs_rq, 0);
3916 if (cfs_rq->runtime_remaining <= 0)
3917 throttle_cfs_rq(cfs_rq);
3918}
3919
3920/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3921static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3922{
56f570e5 3923 if (!cfs_bandwidth_used())
678d5718 3924 return false;
56f570e5 3925
d3d9dc33 3926 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3927 return false;
d3d9dc33
PT
3928
3929 /*
3930 * it's possible for a throttled entity to be forced into a running
3931 * state (e.g. set_curr_task), in this case we're finished.
3932 */
3933 if (cfs_rq_throttled(cfs_rq))
678d5718 3934 return true;
d3d9dc33
PT
3935
3936 throttle_cfs_rq(cfs_rq);
678d5718 3937 return true;
d3d9dc33 3938}
029632fb 3939
029632fb
PZ
3940static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3941{
3942 struct cfs_bandwidth *cfs_b =
3943 container_of(timer, struct cfs_bandwidth, slack_timer);
3944 do_sched_cfs_slack_timer(cfs_b);
3945
3946 return HRTIMER_NORESTART;
3947}
3948
3949static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3950{
3951 struct cfs_bandwidth *cfs_b =
3952 container_of(timer, struct cfs_bandwidth, period_timer);
3953 ktime_t now;
3954 int overrun;
3955 int idle = 0;
3956
51f2176d 3957 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3958 for (;;) {
3959 now = hrtimer_cb_get_time(timer);
3960 overrun = hrtimer_forward(timer, now, cfs_b->period);
3961
3962 if (!overrun)
3963 break;
3964
3965 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3966 }
51f2176d 3967 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3968
3969 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3970}
3971
3972void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3973{
3974 raw_spin_lock_init(&cfs_b->lock);
3975 cfs_b->runtime = 0;
3976 cfs_b->quota = RUNTIME_INF;
3977 cfs_b->period = ns_to_ktime(default_cfs_period());
3978
3979 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3980 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3981 cfs_b->period_timer.function = sched_cfs_period_timer;
3982 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3983 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3984}
3985
3986static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3987{
3988 cfs_rq->runtime_enabled = 0;
3989 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3990}
3991
3992/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3993void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3994{
3995 /*
3996 * The timer may be active because we're trying to set a new bandwidth
3997 * period or because we're racing with the tear-down path
3998 * (timer_active==0 becomes visible before the hrtimer call-back
3999 * terminates). In either case we ensure that it's re-programmed
4000 */
927b54fc
BS
4001 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4002 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4003 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 4004 raw_spin_unlock(&cfs_b->lock);
927b54fc 4005 cpu_relax();
029632fb
PZ
4006 raw_spin_lock(&cfs_b->lock);
4007 /* if someone else restarted the timer then we're done */
09dc4ab0 4008 if (!force && cfs_b->timer_active)
029632fb
PZ
4009 return;
4010 }
4011
4012 cfs_b->timer_active = 1;
4013 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4014}
4015
4016static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4017{
7f1a169b
TH
4018 /* init_cfs_bandwidth() was not called */
4019 if (!cfs_b->throttled_cfs_rq.next)
4020 return;
4021
029632fb
PZ
4022 hrtimer_cancel(&cfs_b->period_timer);
4023 hrtimer_cancel(&cfs_b->slack_timer);
4024}
4025
0e59bdae
KT
4026static void __maybe_unused update_runtime_enabled(struct rq *rq)
4027{
4028 struct cfs_rq *cfs_rq;
4029
4030 for_each_leaf_cfs_rq(rq, cfs_rq) {
4031 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4032
4033 raw_spin_lock(&cfs_b->lock);
4034 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4035 raw_spin_unlock(&cfs_b->lock);
4036 }
4037}
4038
38dc3348 4039static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4040{
4041 struct cfs_rq *cfs_rq;
4042
4043 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4044 if (!cfs_rq->runtime_enabled)
4045 continue;
4046
4047 /*
4048 * clock_task is not advancing so we just need to make sure
4049 * there's some valid quota amount
4050 */
51f2176d 4051 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4052 /*
4053 * Offline rq is schedulable till cpu is completely disabled
4054 * in take_cpu_down(), so we prevent new cfs throttling here.
4055 */
4056 cfs_rq->runtime_enabled = 0;
4057
029632fb
PZ
4058 if (cfs_rq_throttled(cfs_rq))
4059 unthrottle_cfs_rq(cfs_rq);
4060 }
4061}
4062
4063#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4064static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4065{
78becc27 4066 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4067}
4068
9dbdb155 4069static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4070static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4071static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4072static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4073
4074static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4075{
4076 return 0;
4077}
64660c86
PT
4078
4079static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4080{
4081 return 0;
4082}
4083
4084static inline int throttled_lb_pair(struct task_group *tg,
4085 int src_cpu, int dest_cpu)
4086{
4087 return 0;
4088}
029632fb
PZ
4089
4090void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4091
4092#ifdef CONFIG_FAIR_GROUP_SCHED
4093static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4094#endif
4095
029632fb
PZ
4096static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4097{
4098 return NULL;
4099}
4100static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4101static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4102static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4103
4104#endif /* CONFIG_CFS_BANDWIDTH */
4105
bf0f6f24
IM
4106/**************************************************
4107 * CFS operations on tasks:
4108 */
4109
8f4d37ec
PZ
4110#ifdef CONFIG_SCHED_HRTICK
4111static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4112{
8f4d37ec
PZ
4113 struct sched_entity *se = &p->se;
4114 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4115
4116 WARN_ON(task_rq(p) != rq);
4117
b39e66ea 4118 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4119 u64 slice = sched_slice(cfs_rq, se);
4120 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4121 s64 delta = slice - ran;
4122
4123 if (delta < 0) {
4124 if (rq->curr == p)
8875125e 4125 resched_curr(rq);
8f4d37ec
PZ
4126 return;
4127 }
31656519 4128 hrtick_start(rq, delta);
8f4d37ec
PZ
4129 }
4130}
a4c2f00f
PZ
4131
4132/*
4133 * called from enqueue/dequeue and updates the hrtick when the
4134 * current task is from our class and nr_running is low enough
4135 * to matter.
4136 */
4137static void hrtick_update(struct rq *rq)
4138{
4139 struct task_struct *curr = rq->curr;
4140
b39e66ea 4141 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4142 return;
4143
4144 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4145 hrtick_start_fair(rq, curr);
4146}
55e12e5e 4147#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4148static inline void
4149hrtick_start_fair(struct rq *rq, struct task_struct *p)
4150{
4151}
a4c2f00f
PZ
4152
4153static inline void hrtick_update(struct rq *rq)
4154{
4155}
8f4d37ec
PZ
4156#endif
4157
bf0f6f24
IM
4158/*
4159 * The enqueue_task method is called before nr_running is
4160 * increased. Here we update the fair scheduling stats and
4161 * then put the task into the rbtree:
4162 */
ea87bb78 4163static void
371fd7e7 4164enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4165{
4166 struct cfs_rq *cfs_rq;
62fb1851 4167 struct sched_entity *se = &p->se;
bf0f6f24
IM
4168
4169 for_each_sched_entity(se) {
62fb1851 4170 if (se->on_rq)
bf0f6f24
IM
4171 break;
4172 cfs_rq = cfs_rq_of(se);
88ec22d3 4173 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4174
4175 /*
4176 * end evaluation on encountering a throttled cfs_rq
4177 *
4178 * note: in the case of encountering a throttled cfs_rq we will
4179 * post the final h_nr_running increment below.
4180 */
4181 if (cfs_rq_throttled(cfs_rq))
4182 break;
953bfcd1 4183 cfs_rq->h_nr_running++;
85dac906 4184
88ec22d3 4185 flags = ENQUEUE_WAKEUP;
bf0f6f24 4186 }
8f4d37ec 4187
2069dd75 4188 for_each_sched_entity(se) {
0f317143 4189 cfs_rq = cfs_rq_of(se);
953bfcd1 4190 cfs_rq->h_nr_running++;
2069dd75 4191
85dac906
PT
4192 if (cfs_rq_throttled(cfs_rq))
4193 break;
4194
17bc14b7 4195 update_cfs_shares(cfs_rq);
9ee474f5 4196 update_entity_load_avg(se, 1);
2069dd75
PZ
4197 }
4198
18bf2805
BS
4199 if (!se) {
4200 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4201 add_nr_running(rq, 1);
18bf2805 4202 }
a4c2f00f 4203 hrtick_update(rq);
bf0f6f24
IM
4204}
4205
2f36825b
VP
4206static void set_next_buddy(struct sched_entity *se);
4207
bf0f6f24
IM
4208/*
4209 * The dequeue_task method is called before nr_running is
4210 * decreased. We remove the task from the rbtree and
4211 * update the fair scheduling stats:
4212 */
371fd7e7 4213static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4214{
4215 struct cfs_rq *cfs_rq;
62fb1851 4216 struct sched_entity *se = &p->se;
2f36825b 4217 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4218
4219 for_each_sched_entity(se) {
4220 cfs_rq = cfs_rq_of(se);
371fd7e7 4221 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4222
4223 /*
4224 * end evaluation on encountering a throttled cfs_rq
4225 *
4226 * note: in the case of encountering a throttled cfs_rq we will
4227 * post the final h_nr_running decrement below.
4228 */
4229 if (cfs_rq_throttled(cfs_rq))
4230 break;
953bfcd1 4231 cfs_rq->h_nr_running--;
2069dd75 4232
bf0f6f24 4233 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4234 if (cfs_rq->load.weight) {
4235 /*
4236 * Bias pick_next to pick a task from this cfs_rq, as
4237 * p is sleeping when it is within its sched_slice.
4238 */
4239 if (task_sleep && parent_entity(se))
4240 set_next_buddy(parent_entity(se));
9598c82d
PT
4241
4242 /* avoid re-evaluating load for this entity */
4243 se = parent_entity(se);
bf0f6f24 4244 break;
2f36825b 4245 }
371fd7e7 4246 flags |= DEQUEUE_SLEEP;
bf0f6f24 4247 }
8f4d37ec 4248
2069dd75 4249 for_each_sched_entity(se) {
0f317143 4250 cfs_rq = cfs_rq_of(se);
953bfcd1 4251 cfs_rq->h_nr_running--;
2069dd75 4252
85dac906
PT
4253 if (cfs_rq_throttled(cfs_rq))
4254 break;
4255
17bc14b7 4256 update_cfs_shares(cfs_rq);
9ee474f5 4257 update_entity_load_avg(se, 1);
2069dd75
PZ
4258 }
4259
18bf2805 4260 if (!se) {
72465447 4261 sub_nr_running(rq, 1);
18bf2805
BS
4262 update_rq_runnable_avg(rq, 1);
4263 }
a4c2f00f 4264 hrtick_update(rq);
bf0f6f24
IM
4265}
4266
e7693a36 4267#ifdef CONFIG_SMP
029632fb
PZ
4268/* Used instead of source_load when we know the type == 0 */
4269static unsigned long weighted_cpuload(const int cpu)
4270{
b92486cb 4271 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4272}
4273
4274/*
4275 * Return a low guess at the load of a migration-source cpu weighted
4276 * according to the scheduling class and "nice" value.
4277 *
4278 * We want to under-estimate the load of migration sources, to
4279 * balance conservatively.
4280 */
4281static unsigned long source_load(int cpu, int type)
4282{
4283 struct rq *rq = cpu_rq(cpu);
4284 unsigned long total = weighted_cpuload(cpu);
4285
4286 if (type == 0 || !sched_feat(LB_BIAS))
4287 return total;
4288
4289 return min(rq->cpu_load[type-1], total);
4290}
4291
4292/*
4293 * Return a high guess at the load of a migration-target cpu weighted
4294 * according to the scheduling class and "nice" value.
4295 */
4296static unsigned long target_load(int cpu, int type)
4297{
4298 struct rq *rq = cpu_rq(cpu);
4299 unsigned long total = weighted_cpuload(cpu);
4300
4301 if (type == 0 || !sched_feat(LB_BIAS))
4302 return total;
4303
4304 return max(rq->cpu_load[type-1], total);
4305}
4306
ced549fa 4307static unsigned long capacity_of(int cpu)
029632fb 4308{
ced549fa 4309 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4310}
4311
4312static unsigned long cpu_avg_load_per_task(int cpu)
4313{
4314 struct rq *rq = cpu_rq(cpu);
65fdac08 4315 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4316 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4317
4318 if (nr_running)
b92486cb 4319 return load_avg / nr_running;
029632fb
PZ
4320
4321 return 0;
4322}
4323
62470419
MW
4324static void record_wakee(struct task_struct *p)
4325{
4326 /*
4327 * Rough decay (wiping) for cost saving, don't worry
4328 * about the boundary, really active task won't care
4329 * about the loss.
4330 */
2538d960 4331 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4332 current->wakee_flips >>= 1;
62470419
MW
4333 current->wakee_flip_decay_ts = jiffies;
4334 }
4335
4336 if (current->last_wakee != p) {
4337 current->last_wakee = p;
4338 current->wakee_flips++;
4339 }
4340}
098fb9db 4341
74f8e4b2 4342static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4343{
4344 struct sched_entity *se = &p->se;
4345 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4346 u64 min_vruntime;
4347
4348#ifndef CONFIG_64BIT
4349 u64 min_vruntime_copy;
88ec22d3 4350
3fe1698b
PZ
4351 do {
4352 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4353 smp_rmb();
4354 min_vruntime = cfs_rq->min_vruntime;
4355 } while (min_vruntime != min_vruntime_copy);
4356#else
4357 min_vruntime = cfs_rq->min_vruntime;
4358#endif
88ec22d3 4359
3fe1698b 4360 se->vruntime -= min_vruntime;
62470419 4361 record_wakee(p);
88ec22d3
PZ
4362}
4363
bb3469ac 4364#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4365/*
4366 * effective_load() calculates the load change as seen from the root_task_group
4367 *
4368 * Adding load to a group doesn't make a group heavier, but can cause movement
4369 * of group shares between cpus. Assuming the shares were perfectly aligned one
4370 * can calculate the shift in shares.
cf5f0acf
PZ
4371 *
4372 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4373 * on this @cpu and results in a total addition (subtraction) of @wg to the
4374 * total group weight.
4375 *
4376 * Given a runqueue weight distribution (rw_i) we can compute a shares
4377 * distribution (s_i) using:
4378 *
4379 * s_i = rw_i / \Sum rw_j (1)
4380 *
4381 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4382 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4383 * shares distribution (s_i):
4384 *
4385 * rw_i = { 2, 4, 1, 0 }
4386 * s_i = { 2/7, 4/7, 1/7, 0 }
4387 *
4388 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4389 * task used to run on and the CPU the waker is running on), we need to
4390 * compute the effect of waking a task on either CPU and, in case of a sync
4391 * wakeup, compute the effect of the current task going to sleep.
4392 *
4393 * So for a change of @wl to the local @cpu with an overall group weight change
4394 * of @wl we can compute the new shares distribution (s'_i) using:
4395 *
4396 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4397 *
4398 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4399 * differences in waking a task to CPU 0. The additional task changes the
4400 * weight and shares distributions like:
4401 *
4402 * rw'_i = { 3, 4, 1, 0 }
4403 * s'_i = { 3/8, 4/8, 1/8, 0 }
4404 *
4405 * We can then compute the difference in effective weight by using:
4406 *
4407 * dw_i = S * (s'_i - s_i) (3)
4408 *
4409 * Where 'S' is the group weight as seen by its parent.
4410 *
4411 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4412 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4413 * 4/7) times the weight of the group.
f5bfb7d9 4414 */
2069dd75 4415static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4416{
4be9daaa 4417 struct sched_entity *se = tg->se[cpu];
f1d239f7 4418
9722c2da 4419 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4420 return wl;
4421
4be9daaa 4422 for_each_sched_entity(se) {
cf5f0acf 4423 long w, W;
4be9daaa 4424
977dda7c 4425 tg = se->my_q->tg;
bb3469ac 4426
cf5f0acf
PZ
4427 /*
4428 * W = @wg + \Sum rw_j
4429 */
4430 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4431
cf5f0acf
PZ
4432 /*
4433 * w = rw_i + @wl
4434 */
4435 w = se->my_q->load.weight + wl;
940959e9 4436
cf5f0acf
PZ
4437 /*
4438 * wl = S * s'_i; see (2)
4439 */
4440 if (W > 0 && w < W)
32a8df4e 4441 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4442 else
4443 wl = tg->shares;
940959e9 4444
cf5f0acf
PZ
4445 /*
4446 * Per the above, wl is the new se->load.weight value; since
4447 * those are clipped to [MIN_SHARES, ...) do so now. See
4448 * calc_cfs_shares().
4449 */
977dda7c
PT
4450 if (wl < MIN_SHARES)
4451 wl = MIN_SHARES;
cf5f0acf
PZ
4452
4453 /*
4454 * wl = dw_i = S * (s'_i - s_i); see (3)
4455 */
977dda7c 4456 wl -= se->load.weight;
cf5f0acf
PZ
4457
4458 /*
4459 * Recursively apply this logic to all parent groups to compute
4460 * the final effective load change on the root group. Since
4461 * only the @tg group gets extra weight, all parent groups can
4462 * only redistribute existing shares. @wl is the shift in shares
4463 * resulting from this level per the above.
4464 */
4be9daaa 4465 wg = 0;
4be9daaa 4466 }
bb3469ac 4467
4be9daaa 4468 return wl;
bb3469ac
PZ
4469}
4470#else
4be9daaa 4471
58d081b5 4472static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4473{
83378269 4474 return wl;
bb3469ac 4475}
4be9daaa 4476
bb3469ac
PZ
4477#endif
4478
62470419
MW
4479static int wake_wide(struct task_struct *p)
4480{
7d9ffa89 4481 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4482
4483 /*
4484 * Yeah, it's the switching-frequency, could means many wakee or
4485 * rapidly switch, use factor here will just help to automatically
4486 * adjust the loose-degree, so bigger node will lead to more pull.
4487 */
4488 if (p->wakee_flips > factor) {
4489 /*
4490 * wakee is somewhat hot, it needs certain amount of cpu
4491 * resource, so if waker is far more hot, prefer to leave
4492 * it alone.
4493 */
4494 if (current->wakee_flips > (factor * p->wakee_flips))
4495 return 1;
4496 }
4497
4498 return 0;
4499}
4500
c88d5910 4501static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4502{
e37b6a7b 4503 s64 this_load, load;
bd61c98f 4504 s64 this_eff_load, prev_eff_load;
c88d5910 4505 int idx, this_cpu, prev_cpu;
c88d5910 4506 struct task_group *tg;
83378269 4507 unsigned long weight;
b3137bc8 4508 int balanced;
098fb9db 4509
62470419
MW
4510 /*
4511 * If we wake multiple tasks be careful to not bounce
4512 * ourselves around too much.
4513 */
4514 if (wake_wide(p))
4515 return 0;
4516
c88d5910
PZ
4517 idx = sd->wake_idx;
4518 this_cpu = smp_processor_id();
4519 prev_cpu = task_cpu(p);
4520 load = source_load(prev_cpu, idx);
4521 this_load = target_load(this_cpu, idx);
098fb9db 4522
b3137bc8
MG
4523 /*
4524 * If sync wakeup then subtract the (maximum possible)
4525 * effect of the currently running task from the load
4526 * of the current CPU:
4527 */
83378269
PZ
4528 if (sync) {
4529 tg = task_group(current);
4530 weight = current->se.load.weight;
4531
c88d5910 4532 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4533 load += effective_load(tg, prev_cpu, 0, -weight);
4534 }
b3137bc8 4535
83378269
PZ
4536 tg = task_group(p);
4537 weight = p->se.load.weight;
b3137bc8 4538
71a29aa7
PZ
4539 /*
4540 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4541 * due to the sync cause above having dropped this_load to 0, we'll
4542 * always have an imbalance, but there's really nothing you can do
4543 * about that, so that's good too.
71a29aa7
PZ
4544 *
4545 * Otherwise check if either cpus are near enough in load to allow this
4546 * task to be woken on this_cpu.
4547 */
bd61c98f
VG
4548 this_eff_load = 100;
4549 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4550
bd61c98f
VG
4551 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4552 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4553
bd61c98f 4554 if (this_load > 0) {
e51fd5e2
PZ
4555 this_eff_load *= this_load +
4556 effective_load(tg, this_cpu, weight, weight);
4557
e51fd5e2 4558 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4559 }
e51fd5e2 4560
bd61c98f 4561 balanced = this_eff_load <= prev_eff_load;
098fb9db 4562
41acab88 4563 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4564
05bfb65f
VG
4565 if (!balanced)
4566 return 0;
098fb9db 4567
05bfb65f
VG
4568 schedstat_inc(sd, ttwu_move_affine);
4569 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4570
4571 return 1;
098fb9db
IM
4572}
4573
aaee1203
PZ
4574/*
4575 * find_idlest_group finds and returns the least busy CPU group within the
4576 * domain.
4577 */
4578static struct sched_group *
78e7ed53 4579find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4580 int this_cpu, int sd_flag)
e7693a36 4581{
b3bd3de6 4582 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4583 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4584 int load_idx = sd->forkexec_idx;
aaee1203 4585 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4586
c44f2a02
VG
4587 if (sd_flag & SD_BALANCE_WAKE)
4588 load_idx = sd->wake_idx;
4589
aaee1203
PZ
4590 do {
4591 unsigned long load, avg_load;
4592 int local_group;
4593 int i;
e7693a36 4594
aaee1203
PZ
4595 /* Skip over this group if it has no CPUs allowed */
4596 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4597 tsk_cpus_allowed(p)))
aaee1203
PZ
4598 continue;
4599
4600 local_group = cpumask_test_cpu(this_cpu,
4601 sched_group_cpus(group));
4602
4603 /* Tally up the load of all CPUs in the group */
4604 avg_load = 0;
4605
4606 for_each_cpu(i, sched_group_cpus(group)) {
4607 /* Bias balancing toward cpus of our domain */
4608 if (local_group)
4609 load = source_load(i, load_idx);
4610 else
4611 load = target_load(i, load_idx);
4612
4613 avg_load += load;
4614 }
4615
63b2ca30 4616 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4617 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4618
4619 if (local_group) {
4620 this_load = avg_load;
aaee1203
PZ
4621 } else if (avg_load < min_load) {
4622 min_load = avg_load;
4623 idlest = group;
4624 }
4625 } while (group = group->next, group != sd->groups);
4626
4627 if (!idlest || 100*this_load < imbalance*min_load)
4628 return NULL;
4629 return idlest;
4630}
4631
4632/*
4633 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4634 */
4635static int
4636find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4637{
4638 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4639 unsigned int min_exit_latency = UINT_MAX;
4640 u64 latest_idle_timestamp = 0;
4641 int least_loaded_cpu = this_cpu;
4642 int shallowest_idle_cpu = -1;
aaee1203
PZ
4643 int i;
4644
4645 /* Traverse only the allowed CPUs */
fa17b507 4646 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4647 if (idle_cpu(i)) {
4648 struct rq *rq = cpu_rq(i);
4649 struct cpuidle_state *idle = idle_get_state(rq);
4650 if (idle && idle->exit_latency < min_exit_latency) {
4651 /*
4652 * We give priority to a CPU whose idle state
4653 * has the smallest exit latency irrespective
4654 * of any idle timestamp.
4655 */
4656 min_exit_latency = idle->exit_latency;
4657 latest_idle_timestamp = rq->idle_stamp;
4658 shallowest_idle_cpu = i;
4659 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4660 rq->idle_stamp > latest_idle_timestamp) {
4661 /*
4662 * If equal or no active idle state, then
4663 * the most recently idled CPU might have
4664 * a warmer cache.
4665 */
4666 latest_idle_timestamp = rq->idle_stamp;
4667 shallowest_idle_cpu = i;
4668 }
9f96742a 4669 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4670 load = weighted_cpuload(i);
4671 if (load < min_load || (load == min_load && i == this_cpu)) {
4672 min_load = load;
4673 least_loaded_cpu = i;
4674 }
e7693a36
GH
4675 }
4676 }
4677
83a0a96a 4678 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4679}
e7693a36 4680
a50bde51
PZ
4681/*
4682 * Try and locate an idle CPU in the sched_domain.
4683 */
99bd5e2f 4684static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4685{
99bd5e2f 4686 struct sched_domain *sd;
37407ea7 4687 struct sched_group *sg;
e0a79f52 4688 int i = task_cpu(p);
a50bde51 4689
e0a79f52
MG
4690 if (idle_cpu(target))
4691 return target;
99bd5e2f
SS
4692
4693 /*
e0a79f52 4694 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4695 */
e0a79f52
MG
4696 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4697 return i;
a50bde51
PZ
4698
4699 /*
37407ea7 4700 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4701 */
518cd623 4702 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4703 for_each_lower_domain(sd) {
37407ea7
LT
4704 sg = sd->groups;
4705 do {
4706 if (!cpumask_intersects(sched_group_cpus(sg),
4707 tsk_cpus_allowed(p)))
4708 goto next;
4709
4710 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4711 if (i == target || !idle_cpu(i))
37407ea7
LT
4712 goto next;
4713 }
970e1789 4714
37407ea7
LT
4715 target = cpumask_first_and(sched_group_cpus(sg),
4716 tsk_cpus_allowed(p));
4717 goto done;
4718next:
4719 sg = sg->next;
4720 } while (sg != sd->groups);
4721 }
4722done:
a50bde51
PZ
4723 return target;
4724}
4725
aaee1203 4726/*
de91b9cb
MR
4727 * select_task_rq_fair: Select target runqueue for the waking task in domains
4728 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4729 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4730 *
de91b9cb
MR
4731 * Balances load by selecting the idlest cpu in the idlest group, or under
4732 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4733 *
de91b9cb 4734 * Returns the target cpu number.
aaee1203
PZ
4735 *
4736 * preempt must be disabled.
4737 */
0017d735 4738static int
ac66f547 4739select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4740{
29cd8bae 4741 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4742 int cpu = smp_processor_id();
c88d5910 4743 int new_cpu = cpu;
99bd5e2f 4744 int want_affine = 0;
5158f4e4 4745 int sync = wake_flags & WF_SYNC;
c88d5910 4746
a8edd075
KT
4747 if (sd_flag & SD_BALANCE_WAKE)
4748 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4749
dce840a0 4750 rcu_read_lock();
aaee1203 4751 for_each_domain(cpu, tmp) {
e4f42888
PZ
4752 if (!(tmp->flags & SD_LOAD_BALANCE))
4753 continue;
4754
fe3bcfe1 4755 /*
99bd5e2f
SS
4756 * If both cpu and prev_cpu are part of this domain,
4757 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4758 */
99bd5e2f
SS
4759 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4760 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4761 affine_sd = tmp;
29cd8bae 4762 break;
f03542a7 4763 }
29cd8bae 4764
f03542a7 4765 if (tmp->flags & sd_flag)
29cd8bae
PZ
4766 sd = tmp;
4767 }
4768
8bf21433
RR
4769 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4770 prev_cpu = cpu;
dce840a0 4771
8bf21433 4772 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4773 new_cpu = select_idle_sibling(p, prev_cpu);
4774 goto unlock;
8b911acd 4775 }
e7693a36 4776
aaee1203
PZ
4777 while (sd) {
4778 struct sched_group *group;
c88d5910 4779 int weight;
098fb9db 4780
0763a660 4781 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4782 sd = sd->child;
4783 continue;
4784 }
098fb9db 4785
c44f2a02 4786 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4787 if (!group) {
4788 sd = sd->child;
4789 continue;
4790 }
4ae7d5ce 4791
d7c33c49 4792 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4793 if (new_cpu == -1 || new_cpu == cpu) {
4794 /* Now try balancing at a lower domain level of cpu */
4795 sd = sd->child;
4796 continue;
e7693a36 4797 }
aaee1203
PZ
4798
4799 /* Now try balancing at a lower domain level of new_cpu */
4800 cpu = new_cpu;
669c55e9 4801 weight = sd->span_weight;
aaee1203
PZ
4802 sd = NULL;
4803 for_each_domain(cpu, tmp) {
669c55e9 4804 if (weight <= tmp->span_weight)
aaee1203 4805 break;
0763a660 4806 if (tmp->flags & sd_flag)
aaee1203
PZ
4807 sd = tmp;
4808 }
4809 /* while loop will break here if sd == NULL */
e7693a36 4810 }
dce840a0
PZ
4811unlock:
4812 rcu_read_unlock();
e7693a36 4813
c88d5910 4814 return new_cpu;
e7693a36 4815}
0a74bef8
PT
4816
4817/*
4818 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4819 * cfs_rq_of(p) references at time of call are still valid and identify the
4820 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4821 * other assumptions, including the state of rq->lock, should be made.
4822 */
4823static void
4824migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4825{
aff3e498
PT
4826 struct sched_entity *se = &p->se;
4827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4828
4829 /*
4830 * Load tracking: accumulate removed load so that it can be processed
4831 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4832 * to blocked load iff they have a positive decay-count. It can never
4833 * be negative here since on-rq tasks have decay-count == 0.
4834 */
4835 if (se->avg.decay_count) {
4836 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4837 atomic_long_add(se->avg.load_avg_contrib,
4838 &cfs_rq->removed_load);
aff3e498 4839 }
3944a927
BS
4840
4841 /* We have migrated, no longer consider this task hot */
4842 se->exec_start = 0;
0a74bef8 4843}
e7693a36
GH
4844#endif /* CONFIG_SMP */
4845
e52fb7c0
PZ
4846static unsigned long
4847wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4848{
4849 unsigned long gran = sysctl_sched_wakeup_granularity;
4850
4851 /*
e52fb7c0
PZ
4852 * Since its curr running now, convert the gran from real-time
4853 * to virtual-time in his units.
13814d42
MG
4854 *
4855 * By using 'se' instead of 'curr' we penalize light tasks, so
4856 * they get preempted easier. That is, if 'se' < 'curr' then
4857 * the resulting gran will be larger, therefore penalizing the
4858 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4859 * be smaller, again penalizing the lighter task.
4860 *
4861 * This is especially important for buddies when the leftmost
4862 * task is higher priority than the buddy.
0bbd3336 4863 */
f4ad9bd2 4864 return calc_delta_fair(gran, se);
0bbd3336
PZ
4865}
4866
464b7527
PZ
4867/*
4868 * Should 'se' preempt 'curr'.
4869 *
4870 * |s1
4871 * |s2
4872 * |s3
4873 * g
4874 * |<--->|c
4875 *
4876 * w(c, s1) = -1
4877 * w(c, s2) = 0
4878 * w(c, s3) = 1
4879 *
4880 */
4881static int
4882wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4883{
4884 s64 gran, vdiff = curr->vruntime - se->vruntime;
4885
4886 if (vdiff <= 0)
4887 return -1;
4888
e52fb7c0 4889 gran = wakeup_gran(curr, se);
464b7527
PZ
4890 if (vdiff > gran)
4891 return 1;
4892
4893 return 0;
4894}
4895
02479099
PZ
4896static void set_last_buddy(struct sched_entity *se)
4897{
69c80f3e
VP
4898 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4899 return;
4900
4901 for_each_sched_entity(se)
4902 cfs_rq_of(se)->last = se;
02479099
PZ
4903}
4904
4905static void set_next_buddy(struct sched_entity *se)
4906{
69c80f3e
VP
4907 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4908 return;
4909
4910 for_each_sched_entity(se)
4911 cfs_rq_of(se)->next = se;
02479099
PZ
4912}
4913
ac53db59
RR
4914static void set_skip_buddy(struct sched_entity *se)
4915{
69c80f3e
VP
4916 for_each_sched_entity(se)
4917 cfs_rq_of(se)->skip = se;
ac53db59
RR
4918}
4919
bf0f6f24
IM
4920/*
4921 * Preempt the current task with a newly woken task if needed:
4922 */
5a9b86f6 4923static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4924{
4925 struct task_struct *curr = rq->curr;
8651a86c 4926 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4927 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4928 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4929 int next_buddy_marked = 0;
bf0f6f24 4930
4ae7d5ce
IM
4931 if (unlikely(se == pse))
4932 return;
4933
5238cdd3 4934 /*
163122b7 4935 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4936 * unconditionally check_prempt_curr() after an enqueue (which may have
4937 * lead to a throttle). This both saves work and prevents false
4938 * next-buddy nomination below.
4939 */
4940 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4941 return;
4942
2f36825b 4943 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4944 set_next_buddy(pse);
2f36825b
VP
4945 next_buddy_marked = 1;
4946 }
57fdc26d 4947
aec0a514
BR
4948 /*
4949 * We can come here with TIF_NEED_RESCHED already set from new task
4950 * wake up path.
5238cdd3
PT
4951 *
4952 * Note: this also catches the edge-case of curr being in a throttled
4953 * group (e.g. via set_curr_task), since update_curr() (in the
4954 * enqueue of curr) will have resulted in resched being set. This
4955 * prevents us from potentially nominating it as a false LAST_BUDDY
4956 * below.
aec0a514
BR
4957 */
4958 if (test_tsk_need_resched(curr))
4959 return;
4960
a2f5c9ab
DH
4961 /* Idle tasks are by definition preempted by non-idle tasks. */
4962 if (unlikely(curr->policy == SCHED_IDLE) &&
4963 likely(p->policy != SCHED_IDLE))
4964 goto preempt;
4965
91c234b4 4966 /*
a2f5c9ab
DH
4967 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4968 * is driven by the tick):
91c234b4 4969 */
8ed92e51 4970 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4971 return;
bf0f6f24 4972
464b7527 4973 find_matching_se(&se, &pse);
9bbd7374 4974 update_curr(cfs_rq_of(se));
002f128b 4975 BUG_ON(!pse);
2f36825b
VP
4976 if (wakeup_preempt_entity(se, pse) == 1) {
4977 /*
4978 * Bias pick_next to pick the sched entity that is
4979 * triggering this preemption.
4980 */
4981 if (!next_buddy_marked)
4982 set_next_buddy(pse);
3a7e73a2 4983 goto preempt;
2f36825b 4984 }
464b7527 4985
3a7e73a2 4986 return;
a65ac745 4987
3a7e73a2 4988preempt:
8875125e 4989 resched_curr(rq);
3a7e73a2
PZ
4990 /*
4991 * Only set the backward buddy when the current task is still
4992 * on the rq. This can happen when a wakeup gets interleaved
4993 * with schedule on the ->pre_schedule() or idle_balance()
4994 * point, either of which can * drop the rq lock.
4995 *
4996 * Also, during early boot the idle thread is in the fair class,
4997 * for obvious reasons its a bad idea to schedule back to it.
4998 */
4999 if (unlikely(!se->on_rq || curr == rq->idle))
5000 return;
5001
5002 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5003 set_last_buddy(se);
bf0f6f24
IM
5004}
5005
606dba2e
PZ
5006static struct task_struct *
5007pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5008{
5009 struct cfs_rq *cfs_rq = &rq->cfs;
5010 struct sched_entity *se;
678d5718 5011 struct task_struct *p;
37e117c0 5012 int new_tasks;
678d5718 5013
6e83125c 5014again:
678d5718
PZ
5015#ifdef CONFIG_FAIR_GROUP_SCHED
5016 if (!cfs_rq->nr_running)
38033c37 5017 goto idle;
678d5718 5018
3f1d2a31 5019 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5020 goto simple;
5021
5022 /*
5023 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5024 * likely that a next task is from the same cgroup as the current.
5025 *
5026 * Therefore attempt to avoid putting and setting the entire cgroup
5027 * hierarchy, only change the part that actually changes.
5028 */
5029
5030 do {
5031 struct sched_entity *curr = cfs_rq->curr;
5032
5033 /*
5034 * Since we got here without doing put_prev_entity() we also
5035 * have to consider cfs_rq->curr. If it is still a runnable
5036 * entity, update_curr() will update its vruntime, otherwise
5037 * forget we've ever seen it.
5038 */
5039 if (curr && curr->on_rq)
5040 update_curr(cfs_rq);
5041 else
5042 curr = NULL;
5043
5044 /*
5045 * This call to check_cfs_rq_runtime() will do the throttle and
5046 * dequeue its entity in the parent(s). Therefore the 'simple'
5047 * nr_running test will indeed be correct.
5048 */
5049 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5050 goto simple;
5051
5052 se = pick_next_entity(cfs_rq, curr);
5053 cfs_rq = group_cfs_rq(se);
5054 } while (cfs_rq);
5055
5056 p = task_of(se);
5057
5058 /*
5059 * Since we haven't yet done put_prev_entity and if the selected task
5060 * is a different task than we started out with, try and touch the
5061 * least amount of cfs_rqs.
5062 */
5063 if (prev != p) {
5064 struct sched_entity *pse = &prev->se;
5065
5066 while (!(cfs_rq = is_same_group(se, pse))) {
5067 int se_depth = se->depth;
5068 int pse_depth = pse->depth;
5069
5070 if (se_depth <= pse_depth) {
5071 put_prev_entity(cfs_rq_of(pse), pse);
5072 pse = parent_entity(pse);
5073 }
5074 if (se_depth >= pse_depth) {
5075 set_next_entity(cfs_rq_of(se), se);
5076 se = parent_entity(se);
5077 }
5078 }
5079
5080 put_prev_entity(cfs_rq, pse);
5081 set_next_entity(cfs_rq, se);
5082 }
5083
5084 if (hrtick_enabled(rq))
5085 hrtick_start_fair(rq, p);
5086
5087 return p;
5088simple:
5089 cfs_rq = &rq->cfs;
5090#endif
bf0f6f24 5091
36ace27e 5092 if (!cfs_rq->nr_running)
38033c37 5093 goto idle;
bf0f6f24 5094
3f1d2a31 5095 put_prev_task(rq, prev);
606dba2e 5096
bf0f6f24 5097 do {
678d5718 5098 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5099 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5100 cfs_rq = group_cfs_rq(se);
5101 } while (cfs_rq);
5102
8f4d37ec 5103 p = task_of(se);
678d5718 5104
b39e66ea
MG
5105 if (hrtick_enabled(rq))
5106 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5107
5108 return p;
38033c37
PZ
5109
5110idle:
e4aa358b 5111 new_tasks = idle_balance(rq);
37e117c0
PZ
5112 /*
5113 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5114 * possible for any higher priority task to appear. In that case we
5115 * must re-start the pick_next_entity() loop.
5116 */
e4aa358b 5117 if (new_tasks < 0)
37e117c0
PZ
5118 return RETRY_TASK;
5119
e4aa358b 5120 if (new_tasks > 0)
38033c37 5121 goto again;
38033c37
PZ
5122
5123 return NULL;
bf0f6f24
IM
5124}
5125
5126/*
5127 * Account for a descheduled task:
5128 */
31ee529c 5129static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5130{
5131 struct sched_entity *se = &prev->se;
5132 struct cfs_rq *cfs_rq;
5133
5134 for_each_sched_entity(se) {
5135 cfs_rq = cfs_rq_of(se);
ab6cde26 5136 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5137 }
5138}
5139
ac53db59
RR
5140/*
5141 * sched_yield() is very simple
5142 *
5143 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5144 */
5145static void yield_task_fair(struct rq *rq)
5146{
5147 struct task_struct *curr = rq->curr;
5148 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5149 struct sched_entity *se = &curr->se;
5150
5151 /*
5152 * Are we the only task in the tree?
5153 */
5154 if (unlikely(rq->nr_running == 1))
5155 return;
5156
5157 clear_buddies(cfs_rq, se);
5158
5159 if (curr->policy != SCHED_BATCH) {
5160 update_rq_clock(rq);
5161 /*
5162 * Update run-time statistics of the 'current'.
5163 */
5164 update_curr(cfs_rq);
916671c0
MG
5165 /*
5166 * Tell update_rq_clock() that we've just updated,
5167 * so we don't do microscopic update in schedule()
5168 * and double the fastpath cost.
5169 */
9edfbfed 5170 rq_clock_skip_update(rq, true);
ac53db59
RR
5171 }
5172
5173 set_skip_buddy(se);
5174}
5175
d95f4122
MG
5176static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5177{
5178 struct sched_entity *se = &p->se;
5179
5238cdd3
PT
5180 /* throttled hierarchies are not runnable */
5181 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5182 return false;
5183
5184 /* Tell the scheduler that we'd really like pse to run next. */
5185 set_next_buddy(se);
5186
d95f4122
MG
5187 yield_task_fair(rq);
5188
5189 return true;
5190}
5191
681f3e68 5192#ifdef CONFIG_SMP
bf0f6f24 5193/**************************************************
e9c84cb8
PZ
5194 * Fair scheduling class load-balancing methods.
5195 *
5196 * BASICS
5197 *
5198 * The purpose of load-balancing is to achieve the same basic fairness the
5199 * per-cpu scheduler provides, namely provide a proportional amount of compute
5200 * time to each task. This is expressed in the following equation:
5201 *
5202 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5203 *
5204 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5205 * W_i,0 is defined as:
5206 *
5207 * W_i,0 = \Sum_j w_i,j (2)
5208 *
5209 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5210 * is derived from the nice value as per prio_to_weight[].
5211 *
5212 * The weight average is an exponential decay average of the instantaneous
5213 * weight:
5214 *
5215 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5216 *
ced549fa 5217 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5218 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5219 * can also include other factors [XXX].
5220 *
5221 * To achieve this balance we define a measure of imbalance which follows
5222 * directly from (1):
5223 *
ced549fa 5224 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5225 *
5226 * We them move tasks around to minimize the imbalance. In the continuous
5227 * function space it is obvious this converges, in the discrete case we get
5228 * a few fun cases generally called infeasible weight scenarios.
5229 *
5230 * [XXX expand on:
5231 * - infeasible weights;
5232 * - local vs global optima in the discrete case. ]
5233 *
5234 *
5235 * SCHED DOMAINS
5236 *
5237 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5238 * for all i,j solution, we create a tree of cpus that follows the hardware
5239 * topology where each level pairs two lower groups (or better). This results
5240 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5241 * tree to only the first of the previous level and we decrease the frequency
5242 * of load-balance at each level inv. proportional to the number of cpus in
5243 * the groups.
5244 *
5245 * This yields:
5246 *
5247 * log_2 n 1 n
5248 * \Sum { --- * --- * 2^i } = O(n) (5)
5249 * i = 0 2^i 2^i
5250 * `- size of each group
5251 * | | `- number of cpus doing load-balance
5252 * | `- freq
5253 * `- sum over all levels
5254 *
5255 * Coupled with a limit on how many tasks we can migrate every balance pass,
5256 * this makes (5) the runtime complexity of the balancer.
5257 *
5258 * An important property here is that each CPU is still (indirectly) connected
5259 * to every other cpu in at most O(log n) steps:
5260 *
5261 * The adjacency matrix of the resulting graph is given by:
5262 *
5263 * log_2 n
5264 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5265 * k = 0
5266 *
5267 * And you'll find that:
5268 *
5269 * A^(log_2 n)_i,j != 0 for all i,j (7)
5270 *
5271 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5272 * The task movement gives a factor of O(m), giving a convergence complexity
5273 * of:
5274 *
5275 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5276 *
5277 *
5278 * WORK CONSERVING
5279 *
5280 * In order to avoid CPUs going idle while there's still work to do, new idle
5281 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5282 * tree itself instead of relying on other CPUs to bring it work.
5283 *
5284 * This adds some complexity to both (5) and (8) but it reduces the total idle
5285 * time.
5286 *
5287 * [XXX more?]
5288 *
5289 *
5290 * CGROUPS
5291 *
5292 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5293 *
5294 * s_k,i
5295 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5296 * S_k
5297 *
5298 * Where
5299 *
5300 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5301 *
5302 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5303 *
5304 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5305 * property.
5306 *
5307 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5308 * rewrite all of this once again.]
5309 */
bf0f6f24 5310
ed387b78
HS
5311static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5312
0ec8aa00
PZ
5313enum fbq_type { regular, remote, all };
5314
ddcdf6e7 5315#define LBF_ALL_PINNED 0x01
367456c7 5316#define LBF_NEED_BREAK 0x02
6263322c
PZ
5317#define LBF_DST_PINNED 0x04
5318#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5319
5320struct lb_env {
5321 struct sched_domain *sd;
5322
ddcdf6e7 5323 struct rq *src_rq;
85c1e7da 5324 int src_cpu;
ddcdf6e7
PZ
5325
5326 int dst_cpu;
5327 struct rq *dst_rq;
5328
88b8dac0
SV
5329 struct cpumask *dst_grpmask;
5330 int new_dst_cpu;
ddcdf6e7 5331 enum cpu_idle_type idle;
bd939f45 5332 long imbalance;
b9403130
MW
5333 /* The set of CPUs under consideration for load-balancing */
5334 struct cpumask *cpus;
5335
ddcdf6e7 5336 unsigned int flags;
367456c7
PZ
5337
5338 unsigned int loop;
5339 unsigned int loop_break;
5340 unsigned int loop_max;
0ec8aa00
PZ
5341
5342 enum fbq_type fbq_type;
163122b7 5343 struct list_head tasks;
ddcdf6e7
PZ
5344};
5345
029632fb
PZ
5346/*
5347 * Is this task likely cache-hot:
5348 */
5d5e2b1b 5349static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5350{
5351 s64 delta;
5352
e5673f28
KT
5353 lockdep_assert_held(&env->src_rq->lock);
5354
029632fb
PZ
5355 if (p->sched_class != &fair_sched_class)
5356 return 0;
5357
5358 if (unlikely(p->policy == SCHED_IDLE))
5359 return 0;
5360
5361 /*
5362 * Buddy candidates are cache hot:
5363 */
5d5e2b1b 5364 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5365 (&p->se == cfs_rq_of(&p->se)->next ||
5366 &p->se == cfs_rq_of(&p->se)->last))
5367 return 1;
5368
5369 if (sysctl_sched_migration_cost == -1)
5370 return 1;
5371 if (sysctl_sched_migration_cost == 0)
5372 return 0;
5373
5d5e2b1b 5374 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5375
5376 return delta < (s64)sysctl_sched_migration_cost;
5377}
5378
3a7053b3
MG
5379#ifdef CONFIG_NUMA_BALANCING
5380/* Returns true if the destination node has incurred more faults */
5381static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5382{
b1ad065e 5383 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5384 int src_nid, dst_nid;
5385
44dba3d5 5386 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5387 !(env->sd->flags & SD_NUMA)) {
5388 return false;
5389 }
5390
5391 src_nid = cpu_to_node(env->src_cpu);
5392 dst_nid = cpu_to_node(env->dst_cpu);
5393
83e1d2cd 5394 if (src_nid == dst_nid)
3a7053b3
MG
5395 return false;
5396
b1ad065e
RR
5397 if (numa_group) {
5398 /* Task is already in the group's interleave set. */
5399 if (node_isset(src_nid, numa_group->active_nodes))
5400 return false;
83e1d2cd 5401
b1ad065e
RR
5402 /* Task is moving into the group's interleave set. */
5403 if (node_isset(dst_nid, numa_group->active_nodes))
5404 return true;
83e1d2cd 5405
b1ad065e
RR
5406 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5407 }
5408
5409 /* Encourage migration to the preferred node. */
5410 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5411 return true;
5412
b1ad065e 5413 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5414}
7a0f3083
MG
5415
5416
5417static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5418{
b1ad065e 5419 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5420 int src_nid, dst_nid;
5421
5422 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5423 return false;
5424
44dba3d5 5425 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5426 return false;
5427
5428 src_nid = cpu_to_node(env->src_cpu);
5429 dst_nid = cpu_to_node(env->dst_cpu);
5430
83e1d2cd 5431 if (src_nid == dst_nid)
7a0f3083
MG
5432 return false;
5433
b1ad065e
RR
5434 if (numa_group) {
5435 /* Task is moving within/into the group's interleave set. */
5436 if (node_isset(dst_nid, numa_group->active_nodes))
5437 return false;
5438
5439 /* Task is moving out of the group's interleave set. */
5440 if (node_isset(src_nid, numa_group->active_nodes))
5441 return true;
5442
5443 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5444 }
5445
83e1d2cd
MG
5446 /* Migrating away from the preferred node is always bad. */
5447 if (src_nid == p->numa_preferred_nid)
5448 return true;
5449
b1ad065e 5450 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5451}
5452
3a7053b3
MG
5453#else
5454static inline bool migrate_improves_locality(struct task_struct *p,
5455 struct lb_env *env)
5456{
5457 return false;
5458}
7a0f3083
MG
5459
5460static inline bool migrate_degrades_locality(struct task_struct *p,
5461 struct lb_env *env)
5462{
5463 return false;
5464}
3a7053b3
MG
5465#endif
5466
1e3c88bd
PZ
5467/*
5468 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5469 */
5470static
8e45cb54 5471int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5472{
5473 int tsk_cache_hot = 0;
e5673f28
KT
5474
5475 lockdep_assert_held(&env->src_rq->lock);
5476
1e3c88bd
PZ
5477 /*
5478 * We do not migrate tasks that are:
d3198084 5479 * 1) throttled_lb_pair, or
1e3c88bd 5480 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5481 * 3) running (obviously), or
5482 * 4) are cache-hot on their current CPU.
1e3c88bd 5483 */
d3198084
JK
5484 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5485 return 0;
5486
ddcdf6e7 5487 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5488 int cpu;
88b8dac0 5489
41acab88 5490 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5491
6263322c
PZ
5492 env->flags |= LBF_SOME_PINNED;
5493
88b8dac0
SV
5494 /*
5495 * Remember if this task can be migrated to any other cpu in
5496 * our sched_group. We may want to revisit it if we couldn't
5497 * meet load balance goals by pulling other tasks on src_cpu.
5498 *
5499 * Also avoid computing new_dst_cpu if we have already computed
5500 * one in current iteration.
5501 */
6263322c 5502 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5503 return 0;
5504
e02e60c1
JK
5505 /* Prevent to re-select dst_cpu via env's cpus */
5506 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5507 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5508 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5509 env->new_dst_cpu = cpu;
5510 break;
5511 }
88b8dac0 5512 }
e02e60c1 5513
1e3c88bd
PZ
5514 return 0;
5515 }
88b8dac0
SV
5516
5517 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5518 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5519
ddcdf6e7 5520 if (task_running(env->src_rq, p)) {
41acab88 5521 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5522 return 0;
5523 }
5524
5525 /*
5526 * Aggressive migration if:
3a7053b3
MG
5527 * 1) destination numa is preferred
5528 * 2) task is cache cold, or
5529 * 3) too many balance attempts have failed.
1e3c88bd 5530 */
5d5e2b1b 5531 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5532 if (!tsk_cache_hot)
5533 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5534
7a96c231
KT
5535 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5536 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5537 if (tsk_cache_hot) {
5538 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5539 schedstat_inc(p, se.statistics.nr_forced_migrations);
5540 }
1e3c88bd
PZ
5541 return 1;
5542 }
5543
4e2dcb73
ZH
5544 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5545 return 0;
1e3c88bd
PZ
5546}
5547
897c395f 5548/*
163122b7
KT
5549 * detach_task() -- detach the task for the migration specified in env
5550 */
5551static void detach_task(struct task_struct *p, struct lb_env *env)
5552{
5553 lockdep_assert_held(&env->src_rq->lock);
5554
5555 deactivate_task(env->src_rq, p, 0);
5556 p->on_rq = TASK_ON_RQ_MIGRATING;
5557 set_task_cpu(p, env->dst_cpu);
5558}
5559
897c395f 5560/*
e5673f28 5561 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5562 * part of active balancing operations within "domain".
897c395f 5563 *
e5673f28 5564 * Returns a task if successful and NULL otherwise.
897c395f 5565 */
e5673f28 5566static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5567{
5568 struct task_struct *p, *n;
897c395f 5569
e5673f28
KT
5570 lockdep_assert_held(&env->src_rq->lock);
5571
367456c7 5572 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5573 if (!can_migrate_task(p, env))
5574 continue;
897c395f 5575
163122b7 5576 detach_task(p, env);
e5673f28 5577
367456c7 5578 /*
e5673f28 5579 * Right now, this is only the second place where
163122b7 5580 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5581 * so we can safely collect stats here rather than
163122b7 5582 * inside detach_tasks().
367456c7
PZ
5583 */
5584 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5585 return p;
897c395f 5586 }
e5673f28 5587 return NULL;
897c395f
PZ
5588}
5589
eb95308e
PZ
5590static const unsigned int sched_nr_migrate_break = 32;
5591
5d6523eb 5592/*
163122b7
KT
5593 * detach_tasks() -- tries to detach up to imbalance weighted load from
5594 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5595 *
163122b7 5596 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5597 */
163122b7 5598static int detach_tasks(struct lb_env *env)
1e3c88bd 5599{
5d6523eb
PZ
5600 struct list_head *tasks = &env->src_rq->cfs_tasks;
5601 struct task_struct *p;
367456c7 5602 unsigned long load;
163122b7
KT
5603 int detached = 0;
5604
5605 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5606
bd939f45 5607 if (env->imbalance <= 0)
5d6523eb 5608 return 0;
1e3c88bd 5609
5d6523eb
PZ
5610 while (!list_empty(tasks)) {
5611 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5612
367456c7
PZ
5613 env->loop++;
5614 /* We've more or less seen every task there is, call it quits */
5d6523eb 5615 if (env->loop > env->loop_max)
367456c7 5616 break;
5d6523eb
PZ
5617
5618 /* take a breather every nr_migrate tasks */
367456c7 5619 if (env->loop > env->loop_break) {
eb95308e 5620 env->loop_break += sched_nr_migrate_break;
8e45cb54 5621 env->flags |= LBF_NEED_BREAK;
ee00e66f 5622 break;
a195f004 5623 }
1e3c88bd 5624
d3198084 5625 if (!can_migrate_task(p, env))
367456c7
PZ
5626 goto next;
5627
5628 load = task_h_load(p);
5d6523eb 5629
eb95308e 5630 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5631 goto next;
5632
bd939f45 5633 if ((load / 2) > env->imbalance)
367456c7 5634 goto next;
1e3c88bd 5635
163122b7
KT
5636 detach_task(p, env);
5637 list_add(&p->se.group_node, &env->tasks);
5638
5639 detached++;
bd939f45 5640 env->imbalance -= load;
1e3c88bd
PZ
5641
5642#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5643 /*
5644 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5645 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5646 * the critical section.
5647 */
5d6523eb 5648 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5649 break;
1e3c88bd
PZ
5650#endif
5651
ee00e66f
PZ
5652 /*
5653 * We only want to steal up to the prescribed amount of
5654 * weighted load.
5655 */
bd939f45 5656 if (env->imbalance <= 0)
ee00e66f 5657 break;
367456c7
PZ
5658
5659 continue;
5660next:
5d6523eb 5661 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5662 }
5d6523eb 5663
1e3c88bd 5664 /*
163122b7
KT
5665 * Right now, this is one of only two places we collect this stat
5666 * so we can safely collect detach_one_task() stats here rather
5667 * than inside detach_one_task().
1e3c88bd 5668 */
163122b7 5669 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5670
163122b7
KT
5671 return detached;
5672}
5673
5674/*
5675 * attach_task() -- attach the task detached by detach_task() to its new rq.
5676 */
5677static void attach_task(struct rq *rq, struct task_struct *p)
5678{
5679 lockdep_assert_held(&rq->lock);
5680
5681 BUG_ON(task_rq(p) != rq);
5682 p->on_rq = TASK_ON_RQ_QUEUED;
5683 activate_task(rq, p, 0);
5684 check_preempt_curr(rq, p, 0);
5685}
5686
5687/*
5688 * attach_one_task() -- attaches the task returned from detach_one_task() to
5689 * its new rq.
5690 */
5691static void attach_one_task(struct rq *rq, struct task_struct *p)
5692{
5693 raw_spin_lock(&rq->lock);
5694 attach_task(rq, p);
5695 raw_spin_unlock(&rq->lock);
5696}
5697
5698/*
5699 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5700 * new rq.
5701 */
5702static void attach_tasks(struct lb_env *env)
5703{
5704 struct list_head *tasks = &env->tasks;
5705 struct task_struct *p;
5706
5707 raw_spin_lock(&env->dst_rq->lock);
5708
5709 while (!list_empty(tasks)) {
5710 p = list_first_entry(tasks, struct task_struct, se.group_node);
5711 list_del_init(&p->se.group_node);
1e3c88bd 5712
163122b7
KT
5713 attach_task(env->dst_rq, p);
5714 }
5715
5716 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5717}
5718
230059de 5719#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5720/*
5721 * update tg->load_weight by folding this cpu's load_avg
5722 */
48a16753 5723static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5724{
48a16753
PT
5725 struct sched_entity *se = tg->se[cpu];
5726 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5727
48a16753
PT
5728 /* throttled entities do not contribute to load */
5729 if (throttled_hierarchy(cfs_rq))
5730 return;
9e3081ca 5731
aff3e498 5732 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5733
82958366
PT
5734 if (se) {
5735 update_entity_load_avg(se, 1);
5736 /*
5737 * We pivot on our runnable average having decayed to zero for
5738 * list removal. This generally implies that all our children
5739 * have also been removed (modulo rounding error or bandwidth
5740 * control); however, such cases are rare and we can fix these
5741 * at enqueue.
5742 *
5743 * TODO: fix up out-of-order children on enqueue.
5744 */
5745 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5746 list_del_leaf_cfs_rq(cfs_rq);
5747 } else {
48a16753 5748 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5749 update_rq_runnable_avg(rq, rq->nr_running);
5750 }
9e3081ca
PZ
5751}
5752
48a16753 5753static void update_blocked_averages(int cpu)
9e3081ca 5754{
9e3081ca 5755 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5756 struct cfs_rq *cfs_rq;
5757 unsigned long flags;
9e3081ca 5758
48a16753
PT
5759 raw_spin_lock_irqsave(&rq->lock, flags);
5760 update_rq_clock(rq);
9763b67f
PZ
5761 /*
5762 * Iterates the task_group tree in a bottom up fashion, see
5763 * list_add_leaf_cfs_rq() for details.
5764 */
64660c86 5765 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5766 /*
5767 * Note: We may want to consider periodically releasing
5768 * rq->lock about these updates so that creating many task
5769 * groups does not result in continually extending hold time.
5770 */
5771 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5772 }
48a16753
PT
5773
5774 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5775}
5776
9763b67f 5777/*
68520796 5778 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5779 * This needs to be done in a top-down fashion because the load of a child
5780 * group is a fraction of its parents load.
5781 */
68520796 5782static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5783{
68520796
VD
5784 struct rq *rq = rq_of(cfs_rq);
5785 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5786 unsigned long now = jiffies;
68520796 5787 unsigned long load;
a35b6466 5788
68520796 5789 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5790 return;
5791
68520796
VD
5792 cfs_rq->h_load_next = NULL;
5793 for_each_sched_entity(se) {
5794 cfs_rq = cfs_rq_of(se);
5795 cfs_rq->h_load_next = se;
5796 if (cfs_rq->last_h_load_update == now)
5797 break;
5798 }
a35b6466 5799
68520796 5800 if (!se) {
7e3115ef 5801 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5802 cfs_rq->last_h_load_update = now;
5803 }
5804
5805 while ((se = cfs_rq->h_load_next) != NULL) {
5806 load = cfs_rq->h_load;
5807 load = div64_ul(load * se->avg.load_avg_contrib,
5808 cfs_rq->runnable_load_avg + 1);
5809 cfs_rq = group_cfs_rq(se);
5810 cfs_rq->h_load = load;
5811 cfs_rq->last_h_load_update = now;
5812 }
9763b67f
PZ
5813}
5814
367456c7 5815static unsigned long task_h_load(struct task_struct *p)
230059de 5816{
367456c7 5817 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5818
68520796 5819 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5820 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5821 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5822}
5823#else
48a16753 5824static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5825{
5826}
5827
367456c7 5828static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5829{
a003a25b 5830 return p->se.avg.load_avg_contrib;
1e3c88bd 5831}
230059de 5832#endif
1e3c88bd 5833
1e3c88bd 5834/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5835
5836enum group_type {
5837 group_other = 0,
5838 group_imbalanced,
5839 group_overloaded,
5840};
5841
1e3c88bd
PZ
5842/*
5843 * sg_lb_stats - stats of a sched_group required for load_balancing
5844 */
5845struct sg_lb_stats {
5846 unsigned long avg_load; /*Avg load across the CPUs of the group */
5847 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5848 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5849 unsigned long load_per_task;
63b2ca30 5850 unsigned long group_capacity;
147c5fc2 5851 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5852 unsigned int group_capacity_factor;
147c5fc2
PZ
5853 unsigned int idle_cpus;
5854 unsigned int group_weight;
caeb178c 5855 enum group_type group_type;
1b6a7495 5856 int group_has_free_capacity;
0ec8aa00
PZ
5857#ifdef CONFIG_NUMA_BALANCING
5858 unsigned int nr_numa_running;
5859 unsigned int nr_preferred_running;
5860#endif
1e3c88bd
PZ
5861};
5862
56cf515b
JK
5863/*
5864 * sd_lb_stats - Structure to store the statistics of a sched_domain
5865 * during load balancing.
5866 */
5867struct sd_lb_stats {
5868 struct sched_group *busiest; /* Busiest group in this sd */
5869 struct sched_group *local; /* Local group in this sd */
5870 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5871 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5872 unsigned long avg_load; /* Average load across all groups in sd */
5873
56cf515b 5874 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5875 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5876};
5877
147c5fc2
PZ
5878static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5879{
5880 /*
5881 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5882 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5883 * We must however clear busiest_stat::avg_load because
5884 * update_sd_pick_busiest() reads this before assignment.
5885 */
5886 *sds = (struct sd_lb_stats){
5887 .busiest = NULL,
5888 .local = NULL,
5889 .total_load = 0UL,
63b2ca30 5890 .total_capacity = 0UL,
147c5fc2
PZ
5891 .busiest_stat = {
5892 .avg_load = 0UL,
caeb178c
RR
5893 .sum_nr_running = 0,
5894 .group_type = group_other,
147c5fc2
PZ
5895 },
5896 };
5897}
5898
1e3c88bd
PZ
5899/**
5900 * get_sd_load_idx - Obtain the load index for a given sched domain.
5901 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5902 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5903 *
5904 * Return: The load index.
1e3c88bd
PZ
5905 */
5906static inline int get_sd_load_idx(struct sched_domain *sd,
5907 enum cpu_idle_type idle)
5908{
5909 int load_idx;
5910
5911 switch (idle) {
5912 case CPU_NOT_IDLE:
5913 load_idx = sd->busy_idx;
5914 break;
5915
5916 case CPU_NEWLY_IDLE:
5917 load_idx = sd->newidle_idx;
5918 break;
5919 default:
5920 load_idx = sd->idle_idx;
5921 break;
5922 }
5923
5924 return load_idx;
5925}
5926
ced549fa 5927static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5928{
ca8ce3d0 5929 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5930}
5931
ca8ce3d0 5932unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5933{
ced549fa 5934 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5935}
5936
26bc3c50 5937static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5938{
26bc3c50
VG
5939 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5940 return sd->smt_gain / sd->span_weight;
1e3c88bd 5941
26bc3c50 5942 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5943}
5944
26bc3c50 5945unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5946{
26bc3c50 5947 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5948}
5949
ced549fa 5950static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5951{
5952 struct rq *rq = cpu_rq(cpu);
b654f7de 5953 u64 total, available, age_stamp, avg;
cadefd3d 5954 s64 delta;
1e3c88bd 5955
b654f7de
PZ
5956 /*
5957 * Since we're reading these variables without serialization make sure
5958 * we read them once before doing sanity checks on them.
5959 */
5960 age_stamp = ACCESS_ONCE(rq->age_stamp);
5961 avg = ACCESS_ONCE(rq->rt_avg);
cebde6d6 5962 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 5963
cadefd3d
PZ
5964 if (unlikely(delta < 0))
5965 delta = 0;
5966
5967 total = sched_avg_period() + delta;
aa483808 5968
b654f7de 5969 if (unlikely(total < avg)) {
ced549fa 5970 /* Ensures that capacity won't end up being negative */
aa483808
VP
5971 available = 0;
5972 } else {
b654f7de 5973 available = total - avg;
aa483808 5974 }
1e3c88bd 5975
ca8ce3d0
NP
5976 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5977 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5978
ca8ce3d0 5979 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5980
5981 return div_u64(available, total);
5982}
5983
ced549fa 5984static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5985{
ca8ce3d0 5986 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5987 struct sched_group *sdg = sd->groups;
5988
26bc3c50
VG
5989 if (sched_feat(ARCH_CAPACITY))
5990 capacity *= arch_scale_cpu_capacity(sd, cpu);
5991 else
5992 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 5993
26bc3c50 5994 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5995
ced549fa 5996 sdg->sgc->capacity_orig = capacity;
9d5efe05 5997
5d4dfddd 5998 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5999 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 6000 else
ced549fa 6001 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 6002
ca8ce3d0 6003 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 6004
ced549fa 6005 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6006 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6007
ced549fa
NP
6008 if (!capacity)
6009 capacity = 1;
1e3c88bd 6010
ced549fa
NP
6011 cpu_rq(cpu)->cpu_capacity = capacity;
6012 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6013}
6014
63b2ca30 6015void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6016{
6017 struct sched_domain *child = sd->child;
6018 struct sched_group *group, *sdg = sd->groups;
63b2ca30 6019 unsigned long capacity, capacity_orig;
4ec4412e
VG
6020 unsigned long interval;
6021
6022 interval = msecs_to_jiffies(sd->balance_interval);
6023 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6024 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6025
6026 if (!child) {
ced549fa 6027 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6028 return;
6029 }
6030
63b2ca30 6031 capacity_orig = capacity = 0;
1e3c88bd 6032
74a5ce20
PZ
6033 if (child->flags & SD_OVERLAP) {
6034 /*
6035 * SD_OVERLAP domains cannot assume that child groups
6036 * span the current group.
6037 */
6038
863bffc8 6039 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6040 struct sched_group_capacity *sgc;
9abf24d4 6041 struct rq *rq = cpu_rq(cpu);
863bffc8 6042
9abf24d4 6043 /*
63b2ca30 6044 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6045 * gets here before we've attached the domains to the
6046 * runqueues.
6047 *
ced549fa
NP
6048 * Use capacity_of(), which is set irrespective of domains
6049 * in update_cpu_capacity().
9abf24d4 6050 *
63b2ca30 6051 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
6052 * causing divide-by-zero issues on boot.
6053 *
63b2ca30 6054 * Runtime updates will correct capacity_orig.
9abf24d4
SD
6055 */
6056 if (unlikely(!rq->sd)) {
ced549fa
NP
6057 capacity_orig += capacity_of(cpu);
6058 capacity += capacity_of(cpu);
9abf24d4
SD
6059 continue;
6060 }
863bffc8 6061
63b2ca30
NP
6062 sgc = rq->sd->groups->sgc;
6063 capacity_orig += sgc->capacity_orig;
6064 capacity += sgc->capacity;
863bffc8 6065 }
74a5ce20
PZ
6066 } else {
6067 /*
6068 * !SD_OVERLAP domains can assume that child groups
6069 * span the current group.
6070 */
6071
6072 group = child->groups;
6073 do {
63b2ca30
NP
6074 capacity_orig += group->sgc->capacity_orig;
6075 capacity += group->sgc->capacity;
74a5ce20
PZ
6076 group = group->next;
6077 } while (group != child->groups);
6078 }
1e3c88bd 6079
63b2ca30
NP
6080 sdg->sgc->capacity_orig = capacity_orig;
6081 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6082}
6083
9d5efe05
SV
6084/*
6085 * Try and fix up capacity for tiny siblings, this is needed when
6086 * things like SD_ASYM_PACKING need f_b_g to select another sibling
6087 * which on its own isn't powerful enough.
6088 *
6089 * See update_sd_pick_busiest() and check_asym_packing().
6090 */
6091static inline int
6092fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6093{
6094 /*
ca8ce3d0 6095 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 6096 */
5d4dfddd 6097 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
6098 return 0;
6099
6100 /*
63b2ca30 6101 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 6102 */
63b2ca30 6103 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
6104 return 1;
6105
6106 return 0;
6107}
6108
30ce5dab
PZ
6109/*
6110 * Group imbalance indicates (and tries to solve) the problem where balancing
6111 * groups is inadequate due to tsk_cpus_allowed() constraints.
6112 *
6113 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6114 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6115 * Something like:
6116 *
6117 * { 0 1 2 3 } { 4 5 6 7 }
6118 * * * * *
6119 *
6120 * If we were to balance group-wise we'd place two tasks in the first group and
6121 * two tasks in the second group. Clearly this is undesired as it will overload
6122 * cpu 3 and leave one of the cpus in the second group unused.
6123 *
6124 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6125 * by noticing the lower domain failed to reach balance and had difficulty
6126 * moving tasks due to affinity constraints.
30ce5dab
PZ
6127 *
6128 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6129 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6130 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6131 * to create an effective group imbalance.
6132 *
6133 * This is a somewhat tricky proposition since the next run might not find the
6134 * group imbalance and decide the groups need to be balanced again. A most
6135 * subtle and fragile situation.
6136 */
6137
6263322c 6138static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6139{
63b2ca30 6140 return group->sgc->imbalance;
30ce5dab
PZ
6141}
6142
b37d9316 6143/*
0fedc6c8 6144 * Compute the group capacity factor.
b37d9316 6145 *
ced549fa 6146 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 6147 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 6148 * and limit unit capacity with that.
b37d9316 6149 */
0fedc6c8 6150static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 6151{
0fedc6c8 6152 unsigned int capacity_factor, smt, cpus;
63b2ca30 6153 unsigned int capacity, capacity_orig;
c61037e9 6154
63b2ca30
NP
6155 capacity = group->sgc->capacity;
6156 capacity_orig = group->sgc->capacity_orig;
c61037e9 6157 cpus = group->group_weight;
b37d9316 6158
63b2ca30 6159 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 6160 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 6161 capacity_factor = cpus / smt; /* cores */
b37d9316 6162
63b2ca30 6163 capacity_factor = min_t(unsigned,
ca8ce3d0 6164 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
6165 if (!capacity_factor)
6166 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 6167
0fedc6c8 6168 return capacity_factor;
b37d9316
PZ
6169}
6170
caeb178c
RR
6171static enum group_type
6172group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6173{
6174 if (sgs->sum_nr_running > sgs->group_capacity_factor)
6175 return group_overloaded;
6176
6177 if (sg_imbalanced(group))
6178 return group_imbalanced;
6179
6180 return group_other;
6181}
6182
1e3c88bd
PZ
6183/**
6184 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6185 * @env: The load balancing environment.
1e3c88bd 6186 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6187 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6188 * @local_group: Does group contain this_cpu.
1e3c88bd 6189 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6190 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6191 */
bd939f45
PZ
6192static inline void update_sg_lb_stats(struct lb_env *env,
6193 struct sched_group *group, int load_idx,
4486edd1
TC
6194 int local_group, struct sg_lb_stats *sgs,
6195 bool *overload)
1e3c88bd 6196{
30ce5dab 6197 unsigned long load;
bd939f45 6198 int i;
1e3c88bd 6199
b72ff13c
PZ
6200 memset(sgs, 0, sizeof(*sgs));
6201
b9403130 6202 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6203 struct rq *rq = cpu_rq(i);
6204
1e3c88bd 6205 /* Bias balancing toward cpus of our domain */
6263322c 6206 if (local_group)
04f733b4 6207 load = target_load(i, load_idx);
6263322c 6208 else
1e3c88bd 6209 load = source_load(i, load_idx);
1e3c88bd
PZ
6210
6211 sgs->group_load += load;
65fdac08 6212 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6213
6214 if (rq->nr_running > 1)
6215 *overload = true;
6216
0ec8aa00
PZ
6217#ifdef CONFIG_NUMA_BALANCING
6218 sgs->nr_numa_running += rq->nr_numa_running;
6219 sgs->nr_preferred_running += rq->nr_preferred_running;
6220#endif
1e3c88bd 6221 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6222 if (idle_cpu(i))
6223 sgs->idle_cpus++;
1e3c88bd
PZ
6224 }
6225
63b2ca30
NP
6226 /* Adjust by relative CPU capacity of the group */
6227 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6228 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6229
dd5feea1 6230 if (sgs->sum_nr_running)
38d0f770 6231 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6232
aae6d3dd 6233 sgs->group_weight = group->group_weight;
0fedc6c8 6234 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6235 sgs->group_type = group_classify(group, sgs);
b37d9316 6236
0fedc6c8 6237 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6238 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6239}
6240
532cb4c4
MN
6241/**
6242 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6243 * @env: The load balancing environment.
532cb4c4
MN
6244 * @sds: sched_domain statistics
6245 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6246 * @sgs: sched_group statistics
532cb4c4
MN
6247 *
6248 * Determine if @sg is a busier group than the previously selected
6249 * busiest group.
e69f6186
YB
6250 *
6251 * Return: %true if @sg is a busier group than the previously selected
6252 * busiest group. %false otherwise.
532cb4c4 6253 */
bd939f45 6254static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6255 struct sd_lb_stats *sds,
6256 struct sched_group *sg,
bd939f45 6257 struct sg_lb_stats *sgs)
532cb4c4 6258{
caeb178c 6259 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6260
caeb178c 6261 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6262 return true;
6263
caeb178c
RR
6264 if (sgs->group_type < busiest->group_type)
6265 return false;
6266
6267 if (sgs->avg_load <= busiest->avg_load)
6268 return false;
6269
6270 /* This is the busiest node in its class. */
6271 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6272 return true;
6273
6274 /*
6275 * ASYM_PACKING needs to move all the work to the lowest
6276 * numbered CPUs in the group, therefore mark all groups
6277 * higher than ourself as busy.
6278 */
caeb178c 6279 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6280 if (!sds->busiest)
6281 return true;
6282
6283 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6284 return true;
6285 }
6286
6287 return false;
6288}
6289
0ec8aa00
PZ
6290#ifdef CONFIG_NUMA_BALANCING
6291static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6292{
6293 if (sgs->sum_nr_running > sgs->nr_numa_running)
6294 return regular;
6295 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6296 return remote;
6297 return all;
6298}
6299
6300static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6301{
6302 if (rq->nr_running > rq->nr_numa_running)
6303 return regular;
6304 if (rq->nr_running > rq->nr_preferred_running)
6305 return remote;
6306 return all;
6307}
6308#else
6309static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6310{
6311 return all;
6312}
6313
6314static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6315{
6316 return regular;
6317}
6318#endif /* CONFIG_NUMA_BALANCING */
6319
1e3c88bd 6320/**
461819ac 6321 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6322 * @env: The load balancing environment.
1e3c88bd
PZ
6323 * @sds: variable to hold the statistics for this sched_domain.
6324 */
0ec8aa00 6325static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6326{
bd939f45
PZ
6327 struct sched_domain *child = env->sd->child;
6328 struct sched_group *sg = env->sd->groups;
56cf515b 6329 struct sg_lb_stats tmp_sgs;
1e3c88bd 6330 int load_idx, prefer_sibling = 0;
4486edd1 6331 bool overload = false;
1e3c88bd
PZ
6332
6333 if (child && child->flags & SD_PREFER_SIBLING)
6334 prefer_sibling = 1;
6335
bd939f45 6336 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6337
6338 do {
56cf515b 6339 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6340 int local_group;
6341
bd939f45 6342 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6343 if (local_group) {
6344 sds->local = sg;
6345 sgs = &sds->local_stat;
b72ff13c
PZ
6346
6347 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6348 time_after_eq(jiffies, sg->sgc->next_update))
6349 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6350 }
1e3c88bd 6351
4486edd1
TC
6352 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6353 &overload);
1e3c88bd 6354
b72ff13c
PZ
6355 if (local_group)
6356 goto next_group;
6357
1e3c88bd
PZ
6358 /*
6359 * In case the child domain prefers tasks go to siblings
0fedc6c8 6360 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6361 * and move all the excess tasks away. We lower the capacity
6362 * of a group only if the local group has the capacity to fit
0fedc6c8 6363 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6364 * extra check prevents the case where you always pull from the
6365 * heaviest group when it is already under-utilized (possible
6366 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6367 */
b72ff13c 6368 if (prefer_sibling && sds->local &&
cb0b9f24 6369 sds->local_stat.group_has_free_capacity) {
0fedc6c8 6370 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
cb0b9f24
WL
6371 sgs->group_type = group_classify(sg, sgs);
6372 }
1e3c88bd 6373
b72ff13c 6374 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6375 sds->busiest = sg;
56cf515b 6376 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6377 }
6378
b72ff13c
PZ
6379next_group:
6380 /* Now, start updating sd_lb_stats */
6381 sds->total_load += sgs->group_load;
63b2ca30 6382 sds->total_capacity += sgs->group_capacity;
b72ff13c 6383
532cb4c4 6384 sg = sg->next;
bd939f45 6385 } while (sg != env->sd->groups);
0ec8aa00
PZ
6386
6387 if (env->sd->flags & SD_NUMA)
6388 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6389
6390 if (!env->sd->parent) {
6391 /* update overload indicator if we are at root domain */
6392 if (env->dst_rq->rd->overload != overload)
6393 env->dst_rq->rd->overload = overload;
6394 }
6395
532cb4c4
MN
6396}
6397
532cb4c4
MN
6398/**
6399 * check_asym_packing - Check to see if the group is packed into the
6400 * sched doman.
6401 *
6402 * This is primarily intended to used at the sibling level. Some
6403 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6404 * case of POWER7, it can move to lower SMT modes only when higher
6405 * threads are idle. When in lower SMT modes, the threads will
6406 * perform better since they share less core resources. Hence when we
6407 * have idle threads, we want them to be the higher ones.
6408 *
6409 * This packing function is run on idle threads. It checks to see if
6410 * the busiest CPU in this domain (core in the P7 case) has a higher
6411 * CPU number than the packing function is being run on. Here we are
6412 * assuming lower CPU number will be equivalent to lower a SMT thread
6413 * number.
6414 *
e69f6186 6415 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6416 * this CPU. The amount of the imbalance is returned in *imbalance.
6417 *
cd96891d 6418 * @env: The load balancing environment.
532cb4c4 6419 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6420 */
bd939f45 6421static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6422{
6423 int busiest_cpu;
6424
bd939f45 6425 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6426 return 0;
6427
6428 if (!sds->busiest)
6429 return 0;
6430
6431 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6432 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6433 return 0;
6434
bd939f45 6435 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6436 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6437 SCHED_CAPACITY_SCALE);
bd939f45 6438
532cb4c4 6439 return 1;
1e3c88bd
PZ
6440}
6441
6442/**
6443 * fix_small_imbalance - Calculate the minor imbalance that exists
6444 * amongst the groups of a sched_domain, during
6445 * load balancing.
cd96891d 6446 * @env: The load balancing environment.
1e3c88bd 6447 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6448 */
bd939f45
PZ
6449static inline
6450void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6451{
63b2ca30 6452 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6453 unsigned int imbn = 2;
dd5feea1 6454 unsigned long scaled_busy_load_per_task;
56cf515b 6455 struct sg_lb_stats *local, *busiest;
1e3c88bd 6456
56cf515b
JK
6457 local = &sds->local_stat;
6458 busiest = &sds->busiest_stat;
1e3c88bd 6459
56cf515b
JK
6460 if (!local->sum_nr_running)
6461 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6462 else if (busiest->load_per_task > local->load_per_task)
6463 imbn = 1;
dd5feea1 6464
56cf515b 6465 scaled_busy_load_per_task =
ca8ce3d0 6466 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6467 busiest->group_capacity;
56cf515b 6468
3029ede3
VD
6469 if (busiest->avg_load + scaled_busy_load_per_task >=
6470 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6471 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6472 return;
6473 }
6474
6475 /*
6476 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6477 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6478 * moving them.
6479 */
6480
63b2ca30 6481 capa_now += busiest->group_capacity *
56cf515b 6482 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6483 capa_now += local->group_capacity *
56cf515b 6484 min(local->load_per_task, local->avg_load);
ca8ce3d0 6485 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6486
6487 /* Amount of load we'd subtract */
a2cd4260 6488 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6489 capa_move += busiest->group_capacity *
56cf515b 6490 min(busiest->load_per_task,
a2cd4260 6491 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6492 }
1e3c88bd
PZ
6493
6494 /* Amount of load we'd add */
63b2ca30 6495 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6496 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6497 tmp = (busiest->avg_load * busiest->group_capacity) /
6498 local->group_capacity;
56cf515b 6499 } else {
ca8ce3d0 6500 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6501 local->group_capacity;
56cf515b 6502 }
63b2ca30 6503 capa_move += local->group_capacity *
3ae11c90 6504 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6505 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6506
6507 /* Move if we gain throughput */
63b2ca30 6508 if (capa_move > capa_now)
56cf515b 6509 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6510}
6511
6512/**
6513 * calculate_imbalance - Calculate the amount of imbalance present within the
6514 * groups of a given sched_domain during load balance.
bd939f45 6515 * @env: load balance environment
1e3c88bd 6516 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6517 */
bd939f45 6518static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6519{
dd5feea1 6520 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6521 struct sg_lb_stats *local, *busiest;
6522
6523 local = &sds->local_stat;
56cf515b 6524 busiest = &sds->busiest_stat;
dd5feea1 6525
caeb178c 6526 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6527 /*
6528 * In the group_imb case we cannot rely on group-wide averages
6529 * to ensure cpu-load equilibrium, look at wider averages. XXX
6530 */
56cf515b
JK
6531 busiest->load_per_task =
6532 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6533 }
6534
1e3c88bd
PZ
6535 /*
6536 * In the presence of smp nice balancing, certain scenarios can have
6537 * max load less than avg load(as we skip the groups at or below
ced549fa 6538 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6539 */
b1885550
VD
6540 if (busiest->avg_load <= sds->avg_load ||
6541 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6542 env->imbalance = 0;
6543 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6544 }
6545
9a5d9ba6
PZ
6546 /*
6547 * If there aren't any idle cpus, avoid creating some.
6548 */
6549 if (busiest->group_type == group_overloaded &&
6550 local->group_type == group_overloaded) {
56cf515b 6551 load_above_capacity =
0fedc6c8 6552 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6553
ca8ce3d0 6554 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6555 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6556 }
6557
6558 /*
6559 * We're trying to get all the cpus to the average_load, so we don't
6560 * want to push ourselves above the average load, nor do we wish to
6561 * reduce the max loaded cpu below the average load. At the same time,
6562 * we also don't want to reduce the group load below the group capacity
6563 * (so that we can implement power-savings policies etc). Thus we look
6564 * for the minimum possible imbalance.
dd5feea1 6565 */
30ce5dab 6566 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6567
6568 /* How much load to actually move to equalise the imbalance */
56cf515b 6569 env->imbalance = min(
63b2ca30
NP
6570 max_pull * busiest->group_capacity,
6571 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6572 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6573
6574 /*
6575 * if *imbalance is less than the average load per runnable task
25985edc 6576 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6577 * a think about bumping its value to force at least one task to be
6578 * moved
6579 */
56cf515b 6580 if (env->imbalance < busiest->load_per_task)
bd939f45 6581 return fix_small_imbalance(env, sds);
1e3c88bd 6582}
fab47622 6583
1e3c88bd
PZ
6584/******* find_busiest_group() helpers end here *********************/
6585
6586/**
6587 * find_busiest_group - Returns the busiest group within the sched_domain
6588 * if there is an imbalance. If there isn't an imbalance, and
6589 * the user has opted for power-savings, it returns a group whose
6590 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6591 * such a group exists.
6592 *
6593 * Also calculates the amount of weighted load which should be moved
6594 * to restore balance.
6595 *
cd96891d 6596 * @env: The load balancing environment.
1e3c88bd 6597 *
e69f6186 6598 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6599 * - If no imbalance and user has opted for power-savings balance,
6600 * return the least loaded group whose CPUs can be
6601 * put to idle by rebalancing its tasks onto our group.
6602 */
56cf515b 6603static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6604{
56cf515b 6605 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6606 struct sd_lb_stats sds;
6607
147c5fc2 6608 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6609
6610 /*
6611 * Compute the various statistics relavent for load balancing at
6612 * this level.
6613 */
23f0d209 6614 update_sd_lb_stats(env, &sds);
56cf515b
JK
6615 local = &sds.local_stat;
6616 busiest = &sds.busiest_stat;
1e3c88bd 6617
bd939f45
PZ
6618 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6619 check_asym_packing(env, &sds))
532cb4c4
MN
6620 return sds.busiest;
6621
cc57aa8f 6622 /* There is no busy sibling group to pull tasks from */
56cf515b 6623 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6624 goto out_balanced;
6625
ca8ce3d0
NP
6626 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6627 / sds.total_capacity;
b0432d8f 6628
866ab43e
PZ
6629 /*
6630 * If the busiest group is imbalanced the below checks don't
30ce5dab 6631 * work because they assume all things are equal, which typically
866ab43e
PZ
6632 * isn't true due to cpus_allowed constraints and the like.
6633 */
caeb178c 6634 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6635 goto force_balance;
6636
cc57aa8f 6637 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6638 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6639 !busiest->group_has_free_capacity)
fab47622
NR
6640 goto force_balance;
6641
cc57aa8f 6642 /*
9c58c79a 6643 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6644 * don't try and pull any tasks.
6645 */
56cf515b 6646 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6647 goto out_balanced;
6648
cc57aa8f
PZ
6649 /*
6650 * Don't pull any tasks if this group is already above the domain
6651 * average load.
6652 */
56cf515b 6653 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6654 goto out_balanced;
6655
bd939f45 6656 if (env->idle == CPU_IDLE) {
aae6d3dd 6657 /*
43f4d666
VG
6658 * This cpu is idle. If the busiest group is not overloaded
6659 * and there is no imbalance between this and busiest group
6660 * wrt idle cpus, it is balanced. The imbalance becomes
6661 * significant if the diff is greater than 1 otherwise we
6662 * might end up to just move the imbalance on another group
aae6d3dd 6663 */
43f4d666
VG
6664 if ((busiest->group_type != group_overloaded) &&
6665 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6666 goto out_balanced;
c186fafe
PZ
6667 } else {
6668 /*
6669 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6670 * imbalance_pct to be conservative.
6671 */
56cf515b
JK
6672 if (100 * busiest->avg_load <=
6673 env->sd->imbalance_pct * local->avg_load)
c186fafe 6674 goto out_balanced;
aae6d3dd 6675 }
1e3c88bd 6676
fab47622 6677force_balance:
1e3c88bd 6678 /* Looks like there is an imbalance. Compute it */
bd939f45 6679 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6680 return sds.busiest;
6681
6682out_balanced:
bd939f45 6683 env->imbalance = 0;
1e3c88bd
PZ
6684 return NULL;
6685}
6686
6687/*
6688 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6689 */
bd939f45 6690static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6691 struct sched_group *group)
1e3c88bd
PZ
6692{
6693 struct rq *busiest = NULL, *rq;
ced549fa 6694 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6695 int i;
6696
6906a408 6697 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6698 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6699 enum fbq_type rt;
6700
6701 rq = cpu_rq(i);
6702 rt = fbq_classify_rq(rq);
1e3c88bd 6703
0ec8aa00
PZ
6704 /*
6705 * We classify groups/runqueues into three groups:
6706 * - regular: there are !numa tasks
6707 * - remote: there are numa tasks that run on the 'wrong' node
6708 * - all: there is no distinction
6709 *
6710 * In order to avoid migrating ideally placed numa tasks,
6711 * ignore those when there's better options.
6712 *
6713 * If we ignore the actual busiest queue to migrate another
6714 * task, the next balance pass can still reduce the busiest
6715 * queue by moving tasks around inside the node.
6716 *
6717 * If we cannot move enough load due to this classification
6718 * the next pass will adjust the group classification and
6719 * allow migration of more tasks.
6720 *
6721 * Both cases only affect the total convergence complexity.
6722 */
6723 if (rt > env->fbq_type)
6724 continue;
6725
ced549fa 6726 capacity = capacity_of(i);
ca8ce3d0 6727 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6728 if (!capacity_factor)
6729 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6730
6e40f5bb 6731 wl = weighted_cpuload(i);
1e3c88bd 6732
6e40f5bb
TG
6733 /*
6734 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6735 * which is not scaled with the cpu capacity.
6e40f5bb 6736 */
0fedc6c8 6737 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6738 continue;
6739
6e40f5bb
TG
6740 /*
6741 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6742 * the weighted_cpuload() scaled with the cpu capacity, so
6743 * that the load can be moved away from the cpu that is
6744 * potentially running at a lower capacity.
95a79b80 6745 *
ced549fa 6746 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6747 * multiplication to rid ourselves of the division works out
ced549fa
NP
6748 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6749 * our previous maximum.
6e40f5bb 6750 */
ced549fa 6751 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6752 busiest_load = wl;
ced549fa 6753 busiest_capacity = capacity;
1e3c88bd
PZ
6754 busiest = rq;
6755 }
6756 }
6757
6758 return busiest;
6759}
6760
6761/*
6762 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6763 * so long as it is large enough.
6764 */
6765#define MAX_PINNED_INTERVAL 512
6766
6767/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6768DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6769
bd939f45 6770static int need_active_balance(struct lb_env *env)
1af3ed3d 6771{
bd939f45
PZ
6772 struct sched_domain *sd = env->sd;
6773
6774 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6775
6776 /*
6777 * ASYM_PACKING needs to force migrate tasks from busy but
6778 * higher numbered CPUs in order to pack all tasks in the
6779 * lowest numbered CPUs.
6780 */
bd939f45 6781 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6782 return 1;
1af3ed3d
PZ
6783 }
6784
6785 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6786}
6787
969c7921
TH
6788static int active_load_balance_cpu_stop(void *data);
6789
23f0d209
JK
6790static int should_we_balance(struct lb_env *env)
6791{
6792 struct sched_group *sg = env->sd->groups;
6793 struct cpumask *sg_cpus, *sg_mask;
6794 int cpu, balance_cpu = -1;
6795
6796 /*
6797 * In the newly idle case, we will allow all the cpu's
6798 * to do the newly idle load balance.
6799 */
6800 if (env->idle == CPU_NEWLY_IDLE)
6801 return 1;
6802
6803 sg_cpus = sched_group_cpus(sg);
6804 sg_mask = sched_group_mask(sg);
6805 /* Try to find first idle cpu */
6806 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6807 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6808 continue;
6809
6810 balance_cpu = cpu;
6811 break;
6812 }
6813
6814 if (balance_cpu == -1)
6815 balance_cpu = group_balance_cpu(sg);
6816
6817 /*
6818 * First idle cpu or the first cpu(busiest) in this sched group
6819 * is eligible for doing load balancing at this and above domains.
6820 */
b0cff9d8 6821 return balance_cpu == env->dst_cpu;
23f0d209
JK
6822}
6823
1e3c88bd
PZ
6824/*
6825 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6826 * tasks if there is an imbalance.
6827 */
6828static int load_balance(int this_cpu, struct rq *this_rq,
6829 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6830 int *continue_balancing)
1e3c88bd 6831{
88b8dac0 6832 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6833 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6834 struct sched_group *group;
1e3c88bd
PZ
6835 struct rq *busiest;
6836 unsigned long flags;
4ba29684 6837 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6838
8e45cb54
PZ
6839 struct lb_env env = {
6840 .sd = sd,
ddcdf6e7
PZ
6841 .dst_cpu = this_cpu,
6842 .dst_rq = this_rq,
88b8dac0 6843 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6844 .idle = idle,
eb95308e 6845 .loop_break = sched_nr_migrate_break,
b9403130 6846 .cpus = cpus,
0ec8aa00 6847 .fbq_type = all,
163122b7 6848 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6849 };
6850
cfc03118
JK
6851 /*
6852 * For NEWLY_IDLE load_balancing, we don't need to consider
6853 * other cpus in our group
6854 */
e02e60c1 6855 if (idle == CPU_NEWLY_IDLE)
cfc03118 6856 env.dst_grpmask = NULL;
cfc03118 6857
1e3c88bd
PZ
6858 cpumask_copy(cpus, cpu_active_mask);
6859
1e3c88bd
PZ
6860 schedstat_inc(sd, lb_count[idle]);
6861
6862redo:
23f0d209
JK
6863 if (!should_we_balance(&env)) {
6864 *continue_balancing = 0;
1e3c88bd 6865 goto out_balanced;
23f0d209 6866 }
1e3c88bd 6867
23f0d209 6868 group = find_busiest_group(&env);
1e3c88bd
PZ
6869 if (!group) {
6870 schedstat_inc(sd, lb_nobusyg[idle]);
6871 goto out_balanced;
6872 }
6873
b9403130 6874 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6875 if (!busiest) {
6876 schedstat_inc(sd, lb_nobusyq[idle]);
6877 goto out_balanced;
6878 }
6879
78feefc5 6880 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6881
bd939f45 6882 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6883
6884 ld_moved = 0;
6885 if (busiest->nr_running > 1) {
6886 /*
6887 * Attempt to move tasks. If find_busiest_group has found
6888 * an imbalance but busiest->nr_running <= 1, the group is
6889 * still unbalanced. ld_moved simply stays zero, so it is
6890 * correctly treated as an imbalance.
6891 */
8e45cb54 6892 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6893 env.src_cpu = busiest->cpu;
6894 env.src_rq = busiest;
6895 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6896
5d6523eb 6897more_balance:
163122b7 6898 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6899
6900 /*
6901 * cur_ld_moved - load moved in current iteration
6902 * ld_moved - cumulative load moved across iterations
6903 */
163122b7 6904 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6905
6906 /*
163122b7
KT
6907 * We've detached some tasks from busiest_rq. Every
6908 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6909 * unlock busiest->lock, and we are able to be sure
6910 * that nobody can manipulate the tasks in parallel.
6911 * See task_rq_lock() family for the details.
1e3c88bd 6912 */
163122b7
KT
6913
6914 raw_spin_unlock(&busiest->lock);
6915
6916 if (cur_ld_moved) {
6917 attach_tasks(&env);
6918 ld_moved += cur_ld_moved;
6919 }
6920
1e3c88bd 6921 local_irq_restore(flags);
88b8dac0 6922
f1cd0858
JK
6923 if (env.flags & LBF_NEED_BREAK) {
6924 env.flags &= ~LBF_NEED_BREAK;
6925 goto more_balance;
6926 }
6927
88b8dac0
SV
6928 /*
6929 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6930 * us and move them to an alternate dst_cpu in our sched_group
6931 * where they can run. The upper limit on how many times we
6932 * iterate on same src_cpu is dependent on number of cpus in our
6933 * sched_group.
6934 *
6935 * This changes load balance semantics a bit on who can move
6936 * load to a given_cpu. In addition to the given_cpu itself
6937 * (or a ilb_cpu acting on its behalf where given_cpu is
6938 * nohz-idle), we now have balance_cpu in a position to move
6939 * load to given_cpu. In rare situations, this may cause
6940 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6941 * _independently_ and at _same_ time to move some load to
6942 * given_cpu) causing exceess load to be moved to given_cpu.
6943 * This however should not happen so much in practice and
6944 * moreover subsequent load balance cycles should correct the
6945 * excess load moved.
6946 */
6263322c 6947 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6948
7aff2e3a
VD
6949 /* Prevent to re-select dst_cpu via env's cpus */
6950 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6951
78feefc5 6952 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6953 env.dst_cpu = env.new_dst_cpu;
6263322c 6954 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6955 env.loop = 0;
6956 env.loop_break = sched_nr_migrate_break;
e02e60c1 6957
88b8dac0
SV
6958 /*
6959 * Go back to "more_balance" rather than "redo" since we
6960 * need to continue with same src_cpu.
6961 */
6962 goto more_balance;
6963 }
1e3c88bd 6964
6263322c
PZ
6965 /*
6966 * We failed to reach balance because of affinity.
6967 */
6968 if (sd_parent) {
63b2ca30 6969 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6970
afdeee05 6971 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6972 *group_imbalance = 1;
6263322c
PZ
6973 }
6974
1e3c88bd 6975 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6976 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6977 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6978 if (!cpumask_empty(cpus)) {
6979 env.loop = 0;
6980 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6981 goto redo;
bbf18b19 6982 }
afdeee05 6983 goto out_all_pinned;
1e3c88bd
PZ
6984 }
6985 }
6986
6987 if (!ld_moved) {
6988 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6989 /*
6990 * Increment the failure counter only on periodic balance.
6991 * We do not want newidle balance, which can be very
6992 * frequent, pollute the failure counter causing
6993 * excessive cache_hot migrations and active balances.
6994 */
6995 if (idle != CPU_NEWLY_IDLE)
6996 sd->nr_balance_failed++;
1e3c88bd 6997
bd939f45 6998 if (need_active_balance(&env)) {
1e3c88bd
PZ
6999 raw_spin_lock_irqsave(&busiest->lock, flags);
7000
969c7921
TH
7001 /* don't kick the active_load_balance_cpu_stop,
7002 * if the curr task on busiest cpu can't be
7003 * moved to this_cpu
1e3c88bd
PZ
7004 */
7005 if (!cpumask_test_cpu(this_cpu,
fa17b507 7006 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7007 raw_spin_unlock_irqrestore(&busiest->lock,
7008 flags);
8e45cb54 7009 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7010 goto out_one_pinned;
7011 }
7012
969c7921
TH
7013 /*
7014 * ->active_balance synchronizes accesses to
7015 * ->active_balance_work. Once set, it's cleared
7016 * only after active load balance is finished.
7017 */
1e3c88bd
PZ
7018 if (!busiest->active_balance) {
7019 busiest->active_balance = 1;
7020 busiest->push_cpu = this_cpu;
7021 active_balance = 1;
7022 }
7023 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7024
bd939f45 7025 if (active_balance) {
969c7921
TH
7026 stop_one_cpu_nowait(cpu_of(busiest),
7027 active_load_balance_cpu_stop, busiest,
7028 &busiest->active_balance_work);
bd939f45 7029 }
1e3c88bd
PZ
7030
7031 /*
7032 * We've kicked active balancing, reset the failure
7033 * counter.
7034 */
7035 sd->nr_balance_failed = sd->cache_nice_tries+1;
7036 }
7037 } else
7038 sd->nr_balance_failed = 0;
7039
7040 if (likely(!active_balance)) {
7041 /* We were unbalanced, so reset the balancing interval */
7042 sd->balance_interval = sd->min_interval;
7043 } else {
7044 /*
7045 * If we've begun active balancing, start to back off. This
7046 * case may not be covered by the all_pinned logic if there
7047 * is only 1 task on the busy runqueue (because we don't call
163122b7 7048 * detach_tasks).
1e3c88bd
PZ
7049 */
7050 if (sd->balance_interval < sd->max_interval)
7051 sd->balance_interval *= 2;
7052 }
7053
1e3c88bd
PZ
7054 goto out;
7055
7056out_balanced:
afdeee05
VG
7057 /*
7058 * We reach balance although we may have faced some affinity
7059 * constraints. Clear the imbalance flag if it was set.
7060 */
7061 if (sd_parent) {
7062 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7063
7064 if (*group_imbalance)
7065 *group_imbalance = 0;
7066 }
7067
7068out_all_pinned:
7069 /*
7070 * We reach balance because all tasks are pinned at this level so
7071 * we can't migrate them. Let the imbalance flag set so parent level
7072 * can try to migrate them.
7073 */
1e3c88bd
PZ
7074 schedstat_inc(sd, lb_balanced[idle]);
7075
7076 sd->nr_balance_failed = 0;
7077
7078out_one_pinned:
7079 /* tune up the balancing interval */
8e45cb54 7080 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7081 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7082 (sd->balance_interval < sd->max_interval))
7083 sd->balance_interval *= 2;
7084
46e49b38 7085 ld_moved = 0;
1e3c88bd 7086out:
1e3c88bd
PZ
7087 return ld_moved;
7088}
7089
52a08ef1
JL
7090static inline unsigned long
7091get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7092{
7093 unsigned long interval = sd->balance_interval;
7094
7095 if (cpu_busy)
7096 interval *= sd->busy_factor;
7097
7098 /* scale ms to jiffies */
7099 interval = msecs_to_jiffies(interval);
7100 interval = clamp(interval, 1UL, max_load_balance_interval);
7101
7102 return interval;
7103}
7104
7105static inline void
7106update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7107{
7108 unsigned long interval, next;
7109
7110 interval = get_sd_balance_interval(sd, cpu_busy);
7111 next = sd->last_balance + interval;
7112
7113 if (time_after(*next_balance, next))
7114 *next_balance = next;
7115}
7116
1e3c88bd
PZ
7117/*
7118 * idle_balance is called by schedule() if this_cpu is about to become
7119 * idle. Attempts to pull tasks from other CPUs.
7120 */
6e83125c 7121static int idle_balance(struct rq *this_rq)
1e3c88bd 7122{
52a08ef1
JL
7123 unsigned long next_balance = jiffies + HZ;
7124 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7125 struct sched_domain *sd;
7126 int pulled_task = 0;
9bd721c5 7127 u64 curr_cost = 0;
1e3c88bd 7128
6e83125c 7129 idle_enter_fair(this_rq);
0e5b5337 7130
6e83125c
PZ
7131 /*
7132 * We must set idle_stamp _before_ calling idle_balance(), such that we
7133 * measure the duration of idle_balance() as idle time.
7134 */
7135 this_rq->idle_stamp = rq_clock(this_rq);
7136
4486edd1
TC
7137 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7138 !this_rq->rd->overload) {
52a08ef1
JL
7139 rcu_read_lock();
7140 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7141 if (sd)
7142 update_next_balance(sd, 0, &next_balance);
7143 rcu_read_unlock();
7144
6e83125c 7145 goto out;
52a08ef1 7146 }
1e3c88bd 7147
f492e12e
PZ
7148 /*
7149 * Drop the rq->lock, but keep IRQ/preempt disabled.
7150 */
7151 raw_spin_unlock(&this_rq->lock);
7152
48a16753 7153 update_blocked_averages(this_cpu);
dce840a0 7154 rcu_read_lock();
1e3c88bd 7155 for_each_domain(this_cpu, sd) {
23f0d209 7156 int continue_balancing = 1;
9bd721c5 7157 u64 t0, domain_cost;
1e3c88bd
PZ
7158
7159 if (!(sd->flags & SD_LOAD_BALANCE))
7160 continue;
7161
52a08ef1
JL
7162 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7163 update_next_balance(sd, 0, &next_balance);
9bd721c5 7164 break;
52a08ef1 7165 }
9bd721c5 7166
f492e12e 7167 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7168 t0 = sched_clock_cpu(this_cpu);
7169
f492e12e 7170 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7171 sd, CPU_NEWLY_IDLE,
7172 &continue_balancing);
9bd721c5
JL
7173
7174 domain_cost = sched_clock_cpu(this_cpu) - t0;
7175 if (domain_cost > sd->max_newidle_lb_cost)
7176 sd->max_newidle_lb_cost = domain_cost;
7177
7178 curr_cost += domain_cost;
f492e12e 7179 }
1e3c88bd 7180
52a08ef1 7181 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7182
7183 /*
7184 * Stop searching for tasks to pull if there are
7185 * now runnable tasks on this rq.
7186 */
7187 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7188 break;
1e3c88bd 7189 }
dce840a0 7190 rcu_read_unlock();
f492e12e
PZ
7191
7192 raw_spin_lock(&this_rq->lock);
7193
0e5b5337
JL
7194 if (curr_cost > this_rq->max_idle_balance_cost)
7195 this_rq->max_idle_balance_cost = curr_cost;
7196
e5fc6611 7197 /*
0e5b5337
JL
7198 * While browsing the domains, we released the rq lock, a task could
7199 * have been enqueued in the meantime. Since we're not going idle,
7200 * pretend we pulled a task.
e5fc6611 7201 */
0e5b5337 7202 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7203 pulled_task = 1;
e5fc6611 7204
52a08ef1
JL
7205out:
7206 /* Move the next balance forward */
7207 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7208 this_rq->next_balance = next_balance;
9bd721c5 7209
e4aa358b 7210 /* Is there a task of a high priority class? */
46383648 7211 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7212 pulled_task = -1;
7213
7214 if (pulled_task) {
7215 idle_exit_fair(this_rq);
6e83125c 7216 this_rq->idle_stamp = 0;
e4aa358b 7217 }
6e83125c 7218
3c4017c1 7219 return pulled_task;
1e3c88bd
PZ
7220}
7221
7222/*
969c7921
TH
7223 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7224 * running tasks off the busiest CPU onto idle CPUs. It requires at
7225 * least 1 task to be running on each physical CPU where possible, and
7226 * avoids physical / logical imbalances.
1e3c88bd 7227 */
969c7921 7228static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7229{
969c7921
TH
7230 struct rq *busiest_rq = data;
7231 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7232 int target_cpu = busiest_rq->push_cpu;
969c7921 7233 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7234 struct sched_domain *sd;
e5673f28 7235 struct task_struct *p = NULL;
969c7921
TH
7236
7237 raw_spin_lock_irq(&busiest_rq->lock);
7238
7239 /* make sure the requested cpu hasn't gone down in the meantime */
7240 if (unlikely(busiest_cpu != smp_processor_id() ||
7241 !busiest_rq->active_balance))
7242 goto out_unlock;
1e3c88bd
PZ
7243
7244 /* Is there any task to move? */
7245 if (busiest_rq->nr_running <= 1)
969c7921 7246 goto out_unlock;
1e3c88bd
PZ
7247
7248 /*
7249 * This condition is "impossible", if it occurs
7250 * we need to fix it. Originally reported by
7251 * Bjorn Helgaas on a 128-cpu setup.
7252 */
7253 BUG_ON(busiest_rq == target_rq);
7254
1e3c88bd 7255 /* Search for an sd spanning us and the target CPU. */
dce840a0 7256 rcu_read_lock();
1e3c88bd
PZ
7257 for_each_domain(target_cpu, sd) {
7258 if ((sd->flags & SD_LOAD_BALANCE) &&
7259 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7260 break;
7261 }
7262
7263 if (likely(sd)) {
8e45cb54
PZ
7264 struct lb_env env = {
7265 .sd = sd,
ddcdf6e7
PZ
7266 .dst_cpu = target_cpu,
7267 .dst_rq = target_rq,
7268 .src_cpu = busiest_rq->cpu,
7269 .src_rq = busiest_rq,
8e45cb54
PZ
7270 .idle = CPU_IDLE,
7271 };
7272
1e3c88bd
PZ
7273 schedstat_inc(sd, alb_count);
7274
e5673f28
KT
7275 p = detach_one_task(&env);
7276 if (p)
1e3c88bd
PZ
7277 schedstat_inc(sd, alb_pushed);
7278 else
7279 schedstat_inc(sd, alb_failed);
7280 }
dce840a0 7281 rcu_read_unlock();
969c7921
TH
7282out_unlock:
7283 busiest_rq->active_balance = 0;
e5673f28
KT
7284 raw_spin_unlock(&busiest_rq->lock);
7285
7286 if (p)
7287 attach_one_task(target_rq, p);
7288
7289 local_irq_enable();
7290
969c7921 7291 return 0;
1e3c88bd
PZ
7292}
7293
d987fc7f
MG
7294static inline int on_null_domain(struct rq *rq)
7295{
7296 return unlikely(!rcu_dereference_sched(rq->sd));
7297}
7298
3451d024 7299#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7300/*
7301 * idle load balancing details
83cd4fe2
VP
7302 * - When one of the busy CPUs notice that there may be an idle rebalancing
7303 * needed, they will kick the idle load balancer, which then does idle
7304 * load balancing for all the idle CPUs.
7305 */
1e3c88bd 7306static struct {
83cd4fe2 7307 cpumask_var_t idle_cpus_mask;
0b005cf5 7308 atomic_t nr_cpus;
83cd4fe2
VP
7309 unsigned long next_balance; /* in jiffy units */
7310} nohz ____cacheline_aligned;
1e3c88bd 7311
3dd0337d 7312static inline int find_new_ilb(void)
1e3c88bd 7313{
0b005cf5 7314 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7315
786d6dc7
SS
7316 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7317 return ilb;
7318
7319 return nr_cpu_ids;
1e3c88bd 7320}
1e3c88bd 7321
83cd4fe2
VP
7322/*
7323 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7324 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7325 * CPU (if there is one).
7326 */
0aeeeeba 7327static void nohz_balancer_kick(void)
83cd4fe2
VP
7328{
7329 int ilb_cpu;
7330
7331 nohz.next_balance++;
7332
3dd0337d 7333 ilb_cpu = find_new_ilb();
83cd4fe2 7334
0b005cf5
SS
7335 if (ilb_cpu >= nr_cpu_ids)
7336 return;
83cd4fe2 7337
cd490c5b 7338 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7339 return;
7340 /*
7341 * Use smp_send_reschedule() instead of resched_cpu().
7342 * This way we generate a sched IPI on the target cpu which
7343 * is idle. And the softirq performing nohz idle load balance
7344 * will be run before returning from the IPI.
7345 */
7346 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7347 return;
7348}
7349
c1cc017c 7350static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7351{
7352 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7353 /*
7354 * Completely isolated CPUs don't ever set, so we must test.
7355 */
7356 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7357 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7358 atomic_dec(&nohz.nr_cpus);
7359 }
71325960
SS
7360 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7361 }
7362}
7363
69e1e811
SS
7364static inline void set_cpu_sd_state_busy(void)
7365{
7366 struct sched_domain *sd;
37dc6b50 7367 int cpu = smp_processor_id();
69e1e811 7368
69e1e811 7369 rcu_read_lock();
37dc6b50 7370 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7371
7372 if (!sd || !sd->nohz_idle)
7373 goto unlock;
7374 sd->nohz_idle = 0;
7375
63b2ca30 7376 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7377unlock:
69e1e811
SS
7378 rcu_read_unlock();
7379}
7380
7381void set_cpu_sd_state_idle(void)
7382{
7383 struct sched_domain *sd;
37dc6b50 7384 int cpu = smp_processor_id();
69e1e811 7385
69e1e811 7386 rcu_read_lock();
37dc6b50 7387 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7388
7389 if (!sd || sd->nohz_idle)
7390 goto unlock;
7391 sd->nohz_idle = 1;
7392
63b2ca30 7393 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7394unlock:
69e1e811
SS
7395 rcu_read_unlock();
7396}
7397
1e3c88bd 7398/*
c1cc017c 7399 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7400 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7401 */
c1cc017c 7402void nohz_balance_enter_idle(int cpu)
1e3c88bd 7403{
71325960
SS
7404 /*
7405 * If this cpu is going down, then nothing needs to be done.
7406 */
7407 if (!cpu_active(cpu))
7408 return;
7409
c1cc017c
AS
7410 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7411 return;
1e3c88bd 7412
d987fc7f
MG
7413 /*
7414 * If we're a completely isolated CPU, we don't play.
7415 */
7416 if (on_null_domain(cpu_rq(cpu)))
7417 return;
7418
c1cc017c
AS
7419 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7420 atomic_inc(&nohz.nr_cpus);
7421 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7422}
71325960 7423
0db0628d 7424static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7425 unsigned long action, void *hcpu)
7426{
7427 switch (action & ~CPU_TASKS_FROZEN) {
7428 case CPU_DYING:
c1cc017c 7429 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7430 return NOTIFY_OK;
7431 default:
7432 return NOTIFY_DONE;
7433 }
7434}
1e3c88bd
PZ
7435#endif
7436
7437static DEFINE_SPINLOCK(balancing);
7438
49c022e6
PZ
7439/*
7440 * Scale the max load_balance interval with the number of CPUs in the system.
7441 * This trades load-balance latency on larger machines for less cross talk.
7442 */
029632fb 7443void update_max_interval(void)
49c022e6
PZ
7444{
7445 max_load_balance_interval = HZ*num_online_cpus()/10;
7446}
7447
1e3c88bd
PZ
7448/*
7449 * It checks each scheduling domain to see if it is due to be balanced,
7450 * and initiates a balancing operation if so.
7451 *
b9b0853a 7452 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7453 */
f7ed0a89 7454static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7455{
23f0d209 7456 int continue_balancing = 1;
f7ed0a89 7457 int cpu = rq->cpu;
1e3c88bd 7458 unsigned long interval;
04f733b4 7459 struct sched_domain *sd;
1e3c88bd
PZ
7460 /* Earliest time when we have to do rebalance again */
7461 unsigned long next_balance = jiffies + 60*HZ;
7462 int update_next_balance = 0;
f48627e6
JL
7463 int need_serialize, need_decay = 0;
7464 u64 max_cost = 0;
1e3c88bd 7465
48a16753 7466 update_blocked_averages(cpu);
2069dd75 7467
dce840a0 7468 rcu_read_lock();
1e3c88bd 7469 for_each_domain(cpu, sd) {
f48627e6
JL
7470 /*
7471 * Decay the newidle max times here because this is a regular
7472 * visit to all the domains. Decay ~1% per second.
7473 */
7474 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7475 sd->max_newidle_lb_cost =
7476 (sd->max_newidle_lb_cost * 253) / 256;
7477 sd->next_decay_max_lb_cost = jiffies + HZ;
7478 need_decay = 1;
7479 }
7480 max_cost += sd->max_newidle_lb_cost;
7481
1e3c88bd
PZ
7482 if (!(sd->flags & SD_LOAD_BALANCE))
7483 continue;
7484
f48627e6
JL
7485 /*
7486 * Stop the load balance at this level. There is another
7487 * CPU in our sched group which is doing load balancing more
7488 * actively.
7489 */
7490 if (!continue_balancing) {
7491 if (need_decay)
7492 continue;
7493 break;
7494 }
7495
52a08ef1 7496 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7497
7498 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7499 if (need_serialize) {
7500 if (!spin_trylock(&balancing))
7501 goto out;
7502 }
7503
7504 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7505 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7506 /*
6263322c 7507 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7508 * env->dst_cpu, so we can't know our idle
7509 * state even if we migrated tasks. Update it.
1e3c88bd 7510 */
de5eb2dd 7511 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7512 }
7513 sd->last_balance = jiffies;
52a08ef1 7514 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7515 }
7516 if (need_serialize)
7517 spin_unlock(&balancing);
7518out:
7519 if (time_after(next_balance, sd->last_balance + interval)) {
7520 next_balance = sd->last_balance + interval;
7521 update_next_balance = 1;
7522 }
f48627e6
JL
7523 }
7524 if (need_decay) {
1e3c88bd 7525 /*
f48627e6
JL
7526 * Ensure the rq-wide value also decays but keep it at a
7527 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7528 */
f48627e6
JL
7529 rq->max_idle_balance_cost =
7530 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7531 }
dce840a0 7532 rcu_read_unlock();
1e3c88bd
PZ
7533
7534 /*
7535 * next_balance will be updated only when there is a need.
7536 * When the cpu is attached to null domain for ex, it will not be
7537 * updated.
7538 */
7539 if (likely(update_next_balance))
7540 rq->next_balance = next_balance;
7541}
7542
3451d024 7543#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7544/*
3451d024 7545 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7546 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7547 */
208cb16b 7548static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7549{
208cb16b 7550 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7551 struct rq *rq;
7552 int balance_cpu;
7553
1c792db7
SS
7554 if (idle != CPU_IDLE ||
7555 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7556 goto end;
83cd4fe2
VP
7557
7558 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7559 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7560 continue;
7561
7562 /*
7563 * If this cpu gets work to do, stop the load balancing
7564 * work being done for other cpus. Next load
7565 * balancing owner will pick it up.
7566 */
1c792db7 7567 if (need_resched())
83cd4fe2 7568 break;
83cd4fe2 7569
5ed4f1d9
VG
7570 rq = cpu_rq(balance_cpu);
7571
ed61bbc6
TC
7572 /*
7573 * If time for next balance is due,
7574 * do the balance.
7575 */
7576 if (time_after_eq(jiffies, rq->next_balance)) {
7577 raw_spin_lock_irq(&rq->lock);
7578 update_rq_clock(rq);
7579 update_idle_cpu_load(rq);
7580 raw_spin_unlock_irq(&rq->lock);
7581 rebalance_domains(rq, CPU_IDLE);
7582 }
83cd4fe2 7583
83cd4fe2
VP
7584 if (time_after(this_rq->next_balance, rq->next_balance))
7585 this_rq->next_balance = rq->next_balance;
7586 }
7587 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7588end:
7589 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7590}
7591
7592/*
0b005cf5
SS
7593 * Current heuristic for kicking the idle load balancer in the presence
7594 * of an idle cpu is the system.
7595 * - This rq has more than one task.
7596 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7597 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7598 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7599 * domain span are idle.
83cd4fe2 7600 */
4a725627 7601static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7602{
7603 unsigned long now = jiffies;
0b005cf5 7604 struct sched_domain *sd;
63b2ca30 7605 struct sched_group_capacity *sgc;
4a725627 7606 int nr_busy, cpu = rq->cpu;
83cd4fe2 7607
4a725627 7608 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7609 return 0;
7610
1c792db7
SS
7611 /*
7612 * We may be recently in ticked or tickless idle mode. At the first
7613 * busy tick after returning from idle, we will update the busy stats.
7614 */
69e1e811 7615 set_cpu_sd_state_busy();
c1cc017c 7616 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7617
7618 /*
7619 * None are in tickless mode and hence no need for NOHZ idle load
7620 * balancing.
7621 */
7622 if (likely(!atomic_read(&nohz.nr_cpus)))
7623 return 0;
1c792db7
SS
7624
7625 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7626 return 0;
7627
0b005cf5
SS
7628 if (rq->nr_running >= 2)
7629 goto need_kick;
83cd4fe2 7630
067491b7 7631 rcu_read_lock();
37dc6b50 7632 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7633
37dc6b50 7634 if (sd) {
63b2ca30
NP
7635 sgc = sd->groups->sgc;
7636 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7637
37dc6b50 7638 if (nr_busy > 1)
067491b7 7639 goto need_kick_unlock;
83cd4fe2 7640 }
37dc6b50
PM
7641
7642 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7643
7644 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7645 sched_domain_span(sd)) < cpu))
7646 goto need_kick_unlock;
7647
067491b7 7648 rcu_read_unlock();
83cd4fe2 7649 return 0;
067491b7
PZ
7650
7651need_kick_unlock:
7652 rcu_read_unlock();
0b005cf5
SS
7653need_kick:
7654 return 1;
83cd4fe2
VP
7655}
7656#else
208cb16b 7657static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7658#endif
7659
7660/*
7661 * run_rebalance_domains is triggered when needed from the scheduler tick.
7662 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7663 */
1e3c88bd
PZ
7664static void run_rebalance_domains(struct softirq_action *h)
7665{
208cb16b 7666 struct rq *this_rq = this_rq();
6eb57e0d 7667 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7668 CPU_IDLE : CPU_NOT_IDLE;
7669
f7ed0a89 7670 rebalance_domains(this_rq, idle);
1e3c88bd 7671
1e3c88bd 7672 /*
83cd4fe2 7673 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7674 * balancing on behalf of the other idle cpus whose ticks are
7675 * stopped.
7676 */
208cb16b 7677 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7678}
7679
1e3c88bd
PZ
7680/*
7681 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7682 */
7caff66f 7683void trigger_load_balance(struct rq *rq)
1e3c88bd 7684{
1e3c88bd 7685 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7686 if (unlikely(on_null_domain(rq)))
7687 return;
7688
7689 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7690 raise_softirq(SCHED_SOFTIRQ);
3451d024 7691#ifdef CONFIG_NO_HZ_COMMON
c726099e 7692 if (nohz_kick_needed(rq))
0aeeeeba 7693 nohz_balancer_kick();
83cd4fe2 7694#endif
1e3c88bd
PZ
7695}
7696
0bcdcf28
CE
7697static void rq_online_fair(struct rq *rq)
7698{
7699 update_sysctl();
0e59bdae
KT
7700
7701 update_runtime_enabled(rq);
0bcdcf28
CE
7702}
7703
7704static void rq_offline_fair(struct rq *rq)
7705{
7706 update_sysctl();
a4c96ae3
PB
7707
7708 /* Ensure any throttled groups are reachable by pick_next_task */
7709 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7710}
7711
55e12e5e 7712#endif /* CONFIG_SMP */
e1d1484f 7713
bf0f6f24
IM
7714/*
7715 * scheduler tick hitting a task of our scheduling class:
7716 */
8f4d37ec 7717static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7718{
7719 struct cfs_rq *cfs_rq;
7720 struct sched_entity *se = &curr->se;
7721
7722 for_each_sched_entity(se) {
7723 cfs_rq = cfs_rq_of(se);
8f4d37ec 7724 entity_tick(cfs_rq, se, queued);
bf0f6f24 7725 }
18bf2805 7726
10e84b97 7727 if (numabalancing_enabled)
cbee9f88 7728 task_tick_numa(rq, curr);
3d59eebc 7729
18bf2805 7730 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7731}
7732
7733/*
cd29fe6f
PZ
7734 * called on fork with the child task as argument from the parent's context
7735 * - child not yet on the tasklist
7736 * - preemption disabled
bf0f6f24 7737 */
cd29fe6f 7738static void task_fork_fair(struct task_struct *p)
bf0f6f24 7739{
4fc420c9
DN
7740 struct cfs_rq *cfs_rq;
7741 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7742 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7743 struct rq *rq = this_rq();
7744 unsigned long flags;
7745
05fa785c 7746 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7747
861d034e
PZ
7748 update_rq_clock(rq);
7749
4fc420c9
DN
7750 cfs_rq = task_cfs_rq(current);
7751 curr = cfs_rq->curr;
7752
6c9a27f5
DN
7753 /*
7754 * Not only the cpu but also the task_group of the parent might have
7755 * been changed after parent->se.parent,cfs_rq were copied to
7756 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7757 * of child point to valid ones.
7758 */
7759 rcu_read_lock();
7760 __set_task_cpu(p, this_cpu);
7761 rcu_read_unlock();
bf0f6f24 7762
7109c442 7763 update_curr(cfs_rq);
cd29fe6f 7764
b5d9d734
MG
7765 if (curr)
7766 se->vruntime = curr->vruntime;
aeb73b04 7767 place_entity(cfs_rq, se, 1);
4d78e7b6 7768
cd29fe6f 7769 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7770 /*
edcb60a3
IM
7771 * Upon rescheduling, sched_class::put_prev_task() will place
7772 * 'current' within the tree based on its new key value.
7773 */
4d78e7b6 7774 swap(curr->vruntime, se->vruntime);
8875125e 7775 resched_curr(rq);
4d78e7b6 7776 }
bf0f6f24 7777
88ec22d3
PZ
7778 se->vruntime -= cfs_rq->min_vruntime;
7779
05fa785c 7780 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7781}
7782
cb469845
SR
7783/*
7784 * Priority of the task has changed. Check to see if we preempt
7785 * the current task.
7786 */
da7a735e
PZ
7787static void
7788prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7789{
da0c1e65 7790 if (!task_on_rq_queued(p))
da7a735e
PZ
7791 return;
7792
cb469845
SR
7793 /*
7794 * Reschedule if we are currently running on this runqueue and
7795 * our priority decreased, or if we are not currently running on
7796 * this runqueue and our priority is higher than the current's
7797 */
da7a735e 7798 if (rq->curr == p) {
cb469845 7799 if (p->prio > oldprio)
8875125e 7800 resched_curr(rq);
cb469845 7801 } else
15afe09b 7802 check_preempt_curr(rq, p, 0);
cb469845
SR
7803}
7804
da7a735e
PZ
7805static void switched_from_fair(struct rq *rq, struct task_struct *p)
7806{
7807 struct sched_entity *se = &p->se;
7808 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7809
7810 /*
791c9e02 7811 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7812 * switched back to the fair class the enqueue_entity(.flags=0) will
7813 * do the right thing.
7814 *
da0c1e65
KT
7815 * If it's queued, then the dequeue_entity(.flags=0) will already
7816 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7817 * the task is sleeping will it still have non-normalized vruntime.
7818 */
da0c1e65 7819 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7820 /*
7821 * Fix up our vruntime so that the current sleep doesn't
7822 * cause 'unlimited' sleep bonus.
7823 */
7824 place_entity(cfs_rq, se, 0);
7825 se->vruntime -= cfs_rq->min_vruntime;
7826 }
9ee474f5 7827
141965c7 7828#ifdef CONFIG_SMP
9ee474f5
PT
7829 /*
7830 * Remove our load from contribution when we leave sched_fair
7831 * and ensure we don't carry in an old decay_count if we
7832 * switch back.
7833 */
87e3c8ae
KT
7834 if (se->avg.decay_count) {
7835 __synchronize_entity_decay(se);
7836 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7837 }
7838#endif
da7a735e
PZ
7839}
7840
cb469845
SR
7841/*
7842 * We switched to the sched_fair class.
7843 */
da7a735e 7844static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7845{
eb7a59b2 7846#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7847 struct sched_entity *se = &p->se;
eb7a59b2
M
7848 /*
7849 * Since the real-depth could have been changed (only FAIR
7850 * class maintain depth value), reset depth properly.
7851 */
7852 se->depth = se->parent ? se->parent->depth + 1 : 0;
7853#endif
da0c1e65 7854 if (!task_on_rq_queued(p))
da7a735e
PZ
7855 return;
7856
cb469845
SR
7857 /*
7858 * We were most likely switched from sched_rt, so
7859 * kick off the schedule if running, otherwise just see
7860 * if we can still preempt the current task.
7861 */
da7a735e 7862 if (rq->curr == p)
8875125e 7863 resched_curr(rq);
cb469845 7864 else
15afe09b 7865 check_preempt_curr(rq, p, 0);
cb469845
SR
7866}
7867
83b699ed
SV
7868/* Account for a task changing its policy or group.
7869 *
7870 * This routine is mostly called to set cfs_rq->curr field when a task
7871 * migrates between groups/classes.
7872 */
7873static void set_curr_task_fair(struct rq *rq)
7874{
7875 struct sched_entity *se = &rq->curr->se;
7876
ec12cb7f
PT
7877 for_each_sched_entity(se) {
7878 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7879
7880 set_next_entity(cfs_rq, se);
7881 /* ensure bandwidth has been allocated on our new cfs_rq */
7882 account_cfs_rq_runtime(cfs_rq, 0);
7883 }
83b699ed
SV
7884}
7885
029632fb
PZ
7886void init_cfs_rq(struct cfs_rq *cfs_rq)
7887{
7888 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7889 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7890#ifndef CONFIG_64BIT
7891 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7892#endif
141965c7 7893#ifdef CONFIG_SMP
9ee474f5 7894 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7895 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7896#endif
029632fb
PZ
7897}
7898
810b3817 7899#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7900static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7901{
fed14d45 7902 struct sched_entity *se = &p->se;
aff3e498 7903 struct cfs_rq *cfs_rq;
fed14d45 7904
b2b5ce02
PZ
7905 /*
7906 * If the task was not on the rq at the time of this cgroup movement
7907 * it must have been asleep, sleeping tasks keep their ->vruntime
7908 * absolute on their old rq until wakeup (needed for the fair sleeper
7909 * bonus in place_entity()).
7910 *
7911 * If it was on the rq, we've just 'preempted' it, which does convert
7912 * ->vruntime to a relative base.
7913 *
7914 * Make sure both cases convert their relative position when migrating
7915 * to another cgroup's rq. This does somewhat interfere with the
7916 * fair sleeper stuff for the first placement, but who cares.
7917 */
7ceff013 7918 /*
da0c1e65 7919 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7920 * But there are some cases where it has already been normalized:
7921 *
7922 * - Moving a forked child which is waiting for being woken up by
7923 * wake_up_new_task().
62af3783
DN
7924 * - Moving a task which has been woken up by try_to_wake_up() and
7925 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7926 *
7927 * To prevent boost or penalty in the new cfs_rq caused by delta
7928 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7929 */
da0c1e65
KT
7930 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7931 queued = 1;
7ceff013 7932
da0c1e65 7933 if (!queued)
fed14d45 7934 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7935 set_task_rq(p, task_cpu(p));
fed14d45 7936 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7937 if (!queued) {
fed14d45
PZ
7938 cfs_rq = cfs_rq_of(se);
7939 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7940#ifdef CONFIG_SMP
7941 /*
7942 * migrate_task_rq_fair() will have removed our previous
7943 * contribution, but we must synchronize for ongoing future
7944 * decay.
7945 */
fed14d45
PZ
7946 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7947 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7948#endif
7949 }
810b3817 7950}
029632fb
PZ
7951
7952void free_fair_sched_group(struct task_group *tg)
7953{
7954 int i;
7955
7956 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7957
7958 for_each_possible_cpu(i) {
7959 if (tg->cfs_rq)
7960 kfree(tg->cfs_rq[i]);
7961 if (tg->se)
7962 kfree(tg->se[i]);
7963 }
7964
7965 kfree(tg->cfs_rq);
7966 kfree(tg->se);
7967}
7968
7969int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7970{
7971 struct cfs_rq *cfs_rq;
7972 struct sched_entity *se;
7973 int i;
7974
7975 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7976 if (!tg->cfs_rq)
7977 goto err;
7978 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7979 if (!tg->se)
7980 goto err;
7981
7982 tg->shares = NICE_0_LOAD;
7983
7984 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7985
7986 for_each_possible_cpu(i) {
7987 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7988 GFP_KERNEL, cpu_to_node(i));
7989 if (!cfs_rq)
7990 goto err;
7991
7992 se = kzalloc_node(sizeof(struct sched_entity),
7993 GFP_KERNEL, cpu_to_node(i));
7994 if (!se)
7995 goto err_free_rq;
7996
7997 init_cfs_rq(cfs_rq);
7998 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7999 }
8000
8001 return 1;
8002
8003err_free_rq:
8004 kfree(cfs_rq);
8005err:
8006 return 0;
8007}
8008
8009void unregister_fair_sched_group(struct task_group *tg, int cpu)
8010{
8011 struct rq *rq = cpu_rq(cpu);
8012 unsigned long flags;
8013
8014 /*
8015 * Only empty task groups can be destroyed; so we can speculatively
8016 * check on_list without danger of it being re-added.
8017 */
8018 if (!tg->cfs_rq[cpu]->on_list)
8019 return;
8020
8021 raw_spin_lock_irqsave(&rq->lock, flags);
8022 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8023 raw_spin_unlock_irqrestore(&rq->lock, flags);
8024}
8025
8026void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8027 struct sched_entity *se, int cpu,
8028 struct sched_entity *parent)
8029{
8030 struct rq *rq = cpu_rq(cpu);
8031
8032 cfs_rq->tg = tg;
8033 cfs_rq->rq = rq;
029632fb
PZ
8034 init_cfs_rq_runtime(cfs_rq);
8035
8036 tg->cfs_rq[cpu] = cfs_rq;
8037 tg->se[cpu] = se;
8038
8039 /* se could be NULL for root_task_group */
8040 if (!se)
8041 return;
8042
fed14d45 8043 if (!parent) {
029632fb 8044 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8045 se->depth = 0;
8046 } else {
029632fb 8047 se->cfs_rq = parent->my_q;
fed14d45
PZ
8048 se->depth = parent->depth + 1;
8049 }
029632fb
PZ
8050
8051 se->my_q = cfs_rq;
0ac9b1c2
PT
8052 /* guarantee group entities always have weight */
8053 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8054 se->parent = parent;
8055}
8056
8057static DEFINE_MUTEX(shares_mutex);
8058
8059int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8060{
8061 int i;
8062 unsigned long flags;
8063
8064 /*
8065 * We can't change the weight of the root cgroup.
8066 */
8067 if (!tg->se[0])
8068 return -EINVAL;
8069
8070 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8071
8072 mutex_lock(&shares_mutex);
8073 if (tg->shares == shares)
8074 goto done;
8075
8076 tg->shares = shares;
8077 for_each_possible_cpu(i) {
8078 struct rq *rq = cpu_rq(i);
8079 struct sched_entity *se;
8080
8081 se = tg->se[i];
8082 /* Propagate contribution to hierarchy */
8083 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8084
8085 /* Possible calls to update_curr() need rq clock */
8086 update_rq_clock(rq);
17bc14b7 8087 for_each_sched_entity(se)
029632fb
PZ
8088 update_cfs_shares(group_cfs_rq(se));
8089 raw_spin_unlock_irqrestore(&rq->lock, flags);
8090 }
8091
8092done:
8093 mutex_unlock(&shares_mutex);
8094 return 0;
8095}
8096#else /* CONFIG_FAIR_GROUP_SCHED */
8097
8098void free_fair_sched_group(struct task_group *tg) { }
8099
8100int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8101{
8102 return 1;
8103}
8104
8105void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8106
8107#endif /* CONFIG_FAIR_GROUP_SCHED */
8108
810b3817 8109
6d686f45 8110static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8111{
8112 struct sched_entity *se = &task->se;
0d721cea
PW
8113 unsigned int rr_interval = 0;
8114
8115 /*
8116 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8117 * idle runqueue:
8118 */
0d721cea 8119 if (rq->cfs.load.weight)
a59f4e07 8120 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8121
8122 return rr_interval;
8123}
8124
bf0f6f24
IM
8125/*
8126 * All the scheduling class methods:
8127 */
029632fb 8128const struct sched_class fair_sched_class = {
5522d5d5 8129 .next = &idle_sched_class,
bf0f6f24
IM
8130 .enqueue_task = enqueue_task_fair,
8131 .dequeue_task = dequeue_task_fair,
8132 .yield_task = yield_task_fair,
d95f4122 8133 .yield_to_task = yield_to_task_fair,
bf0f6f24 8134
2e09bf55 8135 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8136
8137 .pick_next_task = pick_next_task_fair,
8138 .put_prev_task = put_prev_task_fair,
8139
681f3e68 8140#ifdef CONFIG_SMP
4ce72a2c 8141 .select_task_rq = select_task_rq_fair,
0a74bef8 8142 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8143
0bcdcf28
CE
8144 .rq_online = rq_online_fair,
8145 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8146
8147 .task_waking = task_waking_fair,
681f3e68 8148#endif
bf0f6f24 8149
83b699ed 8150 .set_curr_task = set_curr_task_fair,
bf0f6f24 8151 .task_tick = task_tick_fair,
cd29fe6f 8152 .task_fork = task_fork_fair,
cb469845
SR
8153
8154 .prio_changed = prio_changed_fair,
da7a735e 8155 .switched_from = switched_from_fair,
cb469845 8156 .switched_to = switched_to_fair,
810b3817 8157
0d721cea
PW
8158 .get_rr_interval = get_rr_interval_fair,
8159
6e998916
SG
8160 .update_curr = update_curr_fair,
8161
810b3817 8162#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8163 .task_move_group = task_move_group_fair,
810b3817 8164#endif
bf0f6f24
IM
8165};
8166
8167#ifdef CONFIG_SCHED_DEBUG
029632fb 8168void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8169{
bf0f6f24
IM
8170 struct cfs_rq *cfs_rq;
8171
5973e5b9 8172 rcu_read_lock();
c3b64f1e 8173 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8174 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8175 rcu_read_unlock();
bf0f6f24
IM
8176}
8177#endif
029632fb
PZ
8178
8179__init void init_sched_fair_class(void)
8180{
8181#ifdef CONFIG_SMP
8182 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8183
3451d024 8184#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8185 nohz.next_balance = jiffies;
029632fb 8186 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8187 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8188#endif
8189#endif /* SMP */
8190
8191}
This page took 1.190642 seconds and 5 git commands to generate.