sched/fair: Remove unused variable from expire_cfs_rq_runtime()
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
bf0f6f24
IM
683/*
684 * Update the current task's runtime statistics. Skip current tasks that
685 * are not in our scheduling class.
686 */
687static inline void
8ebc91d9
IM
688__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
689 unsigned long delta_exec)
bf0f6f24 690{
bbdba7c0 691 unsigned long delta_exec_weighted;
bf0f6f24 692
41acab88
LDM
693 schedstat_set(curr->statistics.exec_max,
694 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
695
696 curr->sum_exec_runtime += delta_exec;
7a62eabc 697 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 698 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 699
e9acbff6 700 curr->vruntime += delta_exec_weighted;
1af5f730 701 update_min_vruntime(cfs_rq);
bf0f6f24
IM
702}
703
b7cc0896 704static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 705{
429d43bc 706 struct sched_entity *curr = cfs_rq->curr;
78becc27 707 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
708 unsigned long delta_exec;
709
710 if (unlikely(!curr))
711 return;
712
713 /*
714 * Get the amount of time the current task was running
715 * since the last time we changed load (this cannot
716 * overflow on 32 bits):
717 */
8ebc91d9 718 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
719 if (!delta_exec)
720 return;
bf0f6f24 721
8ebc91d9
IM
722 __update_curr(cfs_rq, curr, delta_exec);
723 curr->exec_start = now;
d842de87
SV
724
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
736static inline void
5870db5b 737update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 738{
78becc27 739 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
740}
741
bf0f6f24
IM
742/*
743 * Task is being enqueued - update stats:
744 */
d2417e5a 745static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
bf0f6f24
IM
747 /*
748 * Are we enqueueing a waiting task? (for current tasks
749 * a dequeue/enqueue event is a NOP)
750 */
429d43bc 751 if (se != cfs_rq->curr)
5870db5b 752 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
753}
754
bf0f6f24 755static void
9ef0a961 756update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 757{
41acab88 758 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
760 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
761 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 762 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
763#ifdef CONFIG_SCHEDSTATS
764 if (entity_is_task(se)) {
765 trace_sched_stat_wait(task_of(se),
78becc27 766 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
767 }
768#endif
41acab88 769 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
770}
771
772static inline void
19b6a2e3 773update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 774{
bf0f6f24
IM
775 /*
776 * Mark the end of the wait period if dequeueing a
777 * waiting task:
778 */
429d43bc 779 if (se != cfs_rq->curr)
9ef0a961 780 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
781}
782
783/*
784 * We are picking a new current task - update its stats:
785 */
786static inline void
79303e9e 787update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
788{
789 /*
790 * We are starting a new run period:
791 */
78becc27 792 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
793}
794
bf0f6f24
IM
795/**************************************************
796 * Scheduling class queueing methods:
797 */
798
cbee9f88
PZ
799#ifdef CONFIG_NUMA_BALANCING
800/*
6e5fb223 801 * numa task sample period in ms
cbee9f88 802 */
6e5fb223 803unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
804unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
805unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
806
807/* Portion of address space to scan in MB */
808unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 809
4b96a29b
PZ
810/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
811unsigned int sysctl_numa_balancing_scan_delay = 1000;
812
cbee9f88
PZ
813static void task_numa_placement(struct task_struct *p)
814{
2832bc19 815 int seq;
cbee9f88 816
2832bc19
HD
817 if (!p->mm) /* for example, ksmd faulting in a user's mm */
818 return;
819 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
820 if (p->numa_scan_seq == seq)
821 return;
822 p->numa_scan_seq = seq;
823
824 /* FIXME: Scheduling placement policy hints go here */
825}
826
827/*
828 * Got a PROT_NONE fault for a page on @node.
829 */
b8593bfd 830void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
831{
832 struct task_struct *p = current;
833
1a687c2e
MG
834 if (!sched_feat_numa(NUMA))
835 return;
836
cbee9f88
PZ
837 /* FIXME: Allocate task-specific structure for placement policy here */
838
fb003b80 839 /*
b8593bfd
MG
840 * If pages are properly placed (did not migrate) then scan slower.
841 * This is reset periodically in case of phase changes
fb003b80 842 */
b8593bfd
MG
843 if (!migrated)
844 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
845 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 846
cbee9f88
PZ
847 task_numa_placement(p);
848}
849
6e5fb223
PZ
850static void reset_ptenuma_scan(struct task_struct *p)
851{
852 ACCESS_ONCE(p->mm->numa_scan_seq)++;
853 p->mm->numa_scan_offset = 0;
854}
855
cbee9f88
PZ
856/*
857 * The expensive part of numa migration is done from task_work context.
858 * Triggered from task_tick_numa().
859 */
860void task_numa_work(struct callback_head *work)
861{
862 unsigned long migrate, next_scan, now = jiffies;
863 struct task_struct *p = current;
864 struct mm_struct *mm = p->mm;
6e5fb223 865 struct vm_area_struct *vma;
9f40604c
MG
866 unsigned long start, end;
867 long pages;
cbee9f88
PZ
868
869 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
870
871 work->next = work; /* protect against double add */
872 /*
873 * Who cares about NUMA placement when they're dying.
874 *
875 * NOTE: make sure not to dereference p->mm before this check,
876 * exit_task_work() happens _after_ exit_mm() so we could be called
877 * without p->mm even though we still had it when we enqueued this
878 * work.
879 */
880 if (p->flags & PF_EXITING)
881 return;
882
5bca2303
MG
883 /*
884 * We do not care about task placement until a task runs on a node
885 * other than the first one used by the address space. This is
886 * largely because migrations are driven by what CPU the task
887 * is running on. If it's never scheduled on another node, it'll
888 * not migrate so why bother trapping the fault.
889 */
890 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
891 mm->first_nid = numa_node_id();
892 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
893 /* Are we running on a new node yet? */
894 if (numa_node_id() == mm->first_nid &&
895 !sched_feat_numa(NUMA_FORCE))
896 return;
897
898 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
899 }
900
b8593bfd
MG
901 /*
902 * Reset the scan period if enough time has gone by. Objective is that
903 * scanning will be reduced if pages are properly placed. As tasks
904 * can enter different phases this needs to be re-examined. Lacking
905 * proper tracking of reference behaviour, this blunt hammer is used.
906 */
907 migrate = mm->numa_next_reset;
908 if (time_after(now, migrate)) {
909 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
910 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
911 xchg(&mm->numa_next_reset, next_scan);
912 }
913
cbee9f88
PZ
914 /*
915 * Enforce maximal scan/migration frequency..
916 */
917 migrate = mm->numa_next_scan;
918 if (time_before(now, migrate))
919 return;
920
921 if (p->numa_scan_period == 0)
922 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
923
fb003b80 924 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
925 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
926 return;
927
e14808b4
MG
928 /*
929 * Do not set pte_numa if the current running node is rate-limited.
930 * This loses statistics on the fault but if we are unwilling to
931 * migrate to this node, it is less likely we can do useful work
932 */
933 if (migrate_ratelimited(numa_node_id()))
934 return;
935
9f40604c
MG
936 start = mm->numa_scan_offset;
937 pages = sysctl_numa_balancing_scan_size;
938 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
939 if (!pages)
940 return;
cbee9f88 941
6e5fb223 942 down_read(&mm->mmap_sem);
9f40604c 943 vma = find_vma(mm, start);
6e5fb223
PZ
944 if (!vma) {
945 reset_ptenuma_scan(p);
9f40604c 946 start = 0;
6e5fb223
PZ
947 vma = mm->mmap;
948 }
9f40604c 949 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
950 if (!vma_migratable(vma))
951 continue;
952
953 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 954 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
955 continue;
956
9f40604c
MG
957 do {
958 start = max(start, vma->vm_start);
959 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
960 end = min(end, vma->vm_end);
961 pages -= change_prot_numa(vma, start, end);
6e5fb223 962
9f40604c
MG
963 start = end;
964 if (pages <= 0)
965 goto out;
966 } while (end != vma->vm_end);
cbee9f88 967 }
6e5fb223 968
9f40604c 969out:
6e5fb223
PZ
970 /*
971 * It is possible to reach the end of the VMA list but the last few VMAs are
972 * not guaranteed to the vma_migratable. If they are not, we would find the
973 * !migratable VMA on the next scan but not reset the scanner to the start
974 * so check it now.
975 */
976 if (vma)
9f40604c 977 mm->numa_scan_offset = start;
6e5fb223
PZ
978 else
979 reset_ptenuma_scan(p);
980 up_read(&mm->mmap_sem);
cbee9f88
PZ
981}
982
983/*
984 * Drive the periodic memory faults..
985 */
986void task_tick_numa(struct rq *rq, struct task_struct *curr)
987{
988 struct callback_head *work = &curr->numa_work;
989 u64 period, now;
990
991 /*
992 * We don't care about NUMA placement if we don't have memory.
993 */
994 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
995 return;
996
997 /*
998 * Using runtime rather than walltime has the dual advantage that
999 * we (mostly) drive the selection from busy threads and that the
1000 * task needs to have done some actual work before we bother with
1001 * NUMA placement.
1002 */
1003 now = curr->se.sum_exec_runtime;
1004 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1005
1006 if (now - curr->node_stamp > period) {
4b96a29b
PZ
1007 if (!curr->node_stamp)
1008 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
1009 curr->node_stamp = now;
1010
1011 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1012 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1013 task_work_add(curr, work, true);
1014 }
1015 }
1016}
1017#else
1018static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1019{
1020}
1021#endif /* CONFIG_NUMA_BALANCING */
1022
30cfdcfc
DA
1023static void
1024account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1025{
1026 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1027 if (!parent_entity(se))
029632fb 1028 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1029#ifdef CONFIG_SMP
1030 if (entity_is_task(se))
eb95308e 1031 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1032#endif
30cfdcfc 1033 cfs_rq->nr_running++;
30cfdcfc
DA
1034}
1035
1036static void
1037account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1038{
1039 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1040 if (!parent_entity(se))
029632fb 1041 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1042 if (entity_is_task(se))
b87f1724 1043 list_del_init(&se->group_node);
30cfdcfc 1044 cfs_rq->nr_running--;
30cfdcfc
DA
1045}
1046
3ff6dcac
YZ
1047#ifdef CONFIG_FAIR_GROUP_SCHED
1048# ifdef CONFIG_SMP
cf5f0acf
PZ
1049static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1050{
1051 long tg_weight;
1052
1053 /*
1054 * Use this CPU's actual weight instead of the last load_contribution
1055 * to gain a more accurate current total weight. See
1056 * update_cfs_rq_load_contribution().
1057 */
82958366
PT
1058 tg_weight = atomic64_read(&tg->load_avg);
1059 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1060 tg_weight += cfs_rq->load.weight;
1061
1062 return tg_weight;
1063}
1064
6d5ab293 1065static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1066{
cf5f0acf 1067 long tg_weight, load, shares;
3ff6dcac 1068
cf5f0acf 1069 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1070 load = cfs_rq->load.weight;
3ff6dcac 1071
3ff6dcac 1072 shares = (tg->shares * load);
cf5f0acf
PZ
1073 if (tg_weight)
1074 shares /= tg_weight;
3ff6dcac
YZ
1075
1076 if (shares < MIN_SHARES)
1077 shares = MIN_SHARES;
1078 if (shares > tg->shares)
1079 shares = tg->shares;
1080
1081 return shares;
1082}
3ff6dcac 1083# else /* CONFIG_SMP */
6d5ab293 1084static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1085{
1086 return tg->shares;
1087}
3ff6dcac 1088# endif /* CONFIG_SMP */
2069dd75
PZ
1089static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1090 unsigned long weight)
1091{
19e5eebb
PT
1092 if (se->on_rq) {
1093 /* commit outstanding execution time */
1094 if (cfs_rq->curr == se)
1095 update_curr(cfs_rq);
2069dd75 1096 account_entity_dequeue(cfs_rq, se);
19e5eebb 1097 }
2069dd75
PZ
1098
1099 update_load_set(&se->load, weight);
1100
1101 if (se->on_rq)
1102 account_entity_enqueue(cfs_rq, se);
1103}
1104
82958366
PT
1105static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1106
6d5ab293 1107static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1108{
1109 struct task_group *tg;
1110 struct sched_entity *se;
3ff6dcac 1111 long shares;
2069dd75 1112
2069dd75
PZ
1113 tg = cfs_rq->tg;
1114 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1115 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1116 return;
3ff6dcac
YZ
1117#ifndef CONFIG_SMP
1118 if (likely(se->load.weight == tg->shares))
1119 return;
1120#endif
6d5ab293 1121 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1122
1123 reweight_entity(cfs_rq_of(se), se, shares);
1124}
1125#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1126static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1127{
1128}
1129#endif /* CONFIG_FAIR_GROUP_SCHED */
1130
f4e26b12
PT
1131/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1132#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
5b51f2f8
PT
1133/*
1134 * We choose a half-life close to 1 scheduling period.
1135 * Note: The tables below are dependent on this value.
1136 */
1137#define LOAD_AVG_PERIOD 32
1138#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1139#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1140
1141/* Precomputed fixed inverse multiplies for multiplication by y^n */
1142static const u32 runnable_avg_yN_inv[] = {
1143 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1144 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1145 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1146 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1147 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1148 0x85aac367, 0x82cd8698,
1149};
1150
1151/*
1152 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1153 * over-estimates when re-combining.
1154 */
1155static const u32 runnable_avg_yN_sum[] = {
1156 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1157 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1158 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1159};
1160
9d85f21c
PT
1161/*
1162 * Approximate:
1163 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1164 */
1165static __always_inline u64 decay_load(u64 val, u64 n)
1166{
5b51f2f8
PT
1167 unsigned int local_n;
1168
1169 if (!n)
1170 return val;
1171 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1172 return 0;
1173
1174 /* after bounds checking we can collapse to 32-bit */
1175 local_n = n;
1176
1177 /*
1178 * As y^PERIOD = 1/2, we can combine
1179 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1180 * With a look-up table which covers k^n (n<PERIOD)
1181 *
1182 * To achieve constant time decay_load.
1183 */
1184 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1185 val >>= local_n / LOAD_AVG_PERIOD;
1186 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1187 }
1188
5b51f2f8
PT
1189 val *= runnable_avg_yN_inv[local_n];
1190 /* We don't use SRR here since we always want to round down. */
1191 return val >> 32;
1192}
1193
1194/*
1195 * For updates fully spanning n periods, the contribution to runnable
1196 * average will be: \Sum 1024*y^n
1197 *
1198 * We can compute this reasonably efficiently by combining:
1199 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1200 */
1201static u32 __compute_runnable_contrib(u64 n)
1202{
1203 u32 contrib = 0;
1204
1205 if (likely(n <= LOAD_AVG_PERIOD))
1206 return runnable_avg_yN_sum[n];
1207 else if (unlikely(n >= LOAD_AVG_MAX_N))
1208 return LOAD_AVG_MAX;
1209
1210 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1211 do {
1212 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1213 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1214
1215 n -= LOAD_AVG_PERIOD;
1216 } while (n > LOAD_AVG_PERIOD);
1217
1218 contrib = decay_load(contrib, n);
1219 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1220}
1221
1222/*
1223 * We can represent the historical contribution to runnable average as the
1224 * coefficients of a geometric series. To do this we sub-divide our runnable
1225 * history into segments of approximately 1ms (1024us); label the segment that
1226 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1227 *
1228 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1229 * p0 p1 p2
1230 * (now) (~1ms ago) (~2ms ago)
1231 *
1232 * Let u_i denote the fraction of p_i that the entity was runnable.
1233 *
1234 * We then designate the fractions u_i as our co-efficients, yielding the
1235 * following representation of historical load:
1236 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1237 *
1238 * We choose y based on the with of a reasonably scheduling period, fixing:
1239 * y^32 = 0.5
1240 *
1241 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1242 * approximately half as much as the contribution to load within the last ms
1243 * (u_0).
1244 *
1245 * When a period "rolls over" and we have new u_0`, multiplying the previous
1246 * sum again by y is sufficient to update:
1247 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1248 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1249 */
1250static __always_inline int __update_entity_runnable_avg(u64 now,
1251 struct sched_avg *sa,
1252 int runnable)
1253{
5b51f2f8
PT
1254 u64 delta, periods;
1255 u32 runnable_contrib;
9d85f21c
PT
1256 int delta_w, decayed = 0;
1257
1258 delta = now - sa->last_runnable_update;
1259 /*
1260 * This should only happen when time goes backwards, which it
1261 * unfortunately does during sched clock init when we swap over to TSC.
1262 */
1263 if ((s64)delta < 0) {
1264 sa->last_runnable_update = now;
1265 return 0;
1266 }
1267
1268 /*
1269 * Use 1024ns as the unit of measurement since it's a reasonable
1270 * approximation of 1us and fast to compute.
1271 */
1272 delta >>= 10;
1273 if (!delta)
1274 return 0;
1275 sa->last_runnable_update = now;
1276
1277 /* delta_w is the amount already accumulated against our next period */
1278 delta_w = sa->runnable_avg_period % 1024;
1279 if (delta + delta_w >= 1024) {
1280 /* period roll-over */
1281 decayed = 1;
1282
1283 /*
1284 * Now that we know we're crossing a period boundary, figure
1285 * out how much from delta we need to complete the current
1286 * period and accrue it.
1287 */
1288 delta_w = 1024 - delta_w;
5b51f2f8
PT
1289 if (runnable)
1290 sa->runnable_avg_sum += delta_w;
1291 sa->runnable_avg_period += delta_w;
1292
1293 delta -= delta_w;
1294
1295 /* Figure out how many additional periods this update spans */
1296 periods = delta / 1024;
1297 delta %= 1024;
1298
1299 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1300 periods + 1);
1301 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1302 periods + 1);
1303
1304 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1305 runnable_contrib = __compute_runnable_contrib(periods);
1306 if (runnable)
1307 sa->runnable_avg_sum += runnable_contrib;
1308 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1309 }
1310
1311 /* Remainder of delta accrued against u_0` */
1312 if (runnable)
1313 sa->runnable_avg_sum += delta;
1314 sa->runnable_avg_period += delta;
1315
1316 return decayed;
1317}
1318
9ee474f5 1319/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1320static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1321{
1322 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1323 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1324
1325 decays -= se->avg.decay_count;
1326 if (!decays)
aff3e498 1327 return 0;
9ee474f5
PT
1328
1329 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1330 se->avg.decay_count = 0;
aff3e498
PT
1331
1332 return decays;
9ee474f5
PT
1333}
1334
c566e8e9
PT
1335#ifdef CONFIG_FAIR_GROUP_SCHED
1336static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1337 int force_update)
1338{
1339 struct task_group *tg = cfs_rq->tg;
1340 s64 tg_contrib;
1341
1342 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1343 tg_contrib -= cfs_rq->tg_load_contrib;
1344
1345 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1346 atomic64_add(tg_contrib, &tg->load_avg);
1347 cfs_rq->tg_load_contrib += tg_contrib;
1348 }
1349}
8165e145 1350
bb17f655
PT
1351/*
1352 * Aggregate cfs_rq runnable averages into an equivalent task_group
1353 * representation for computing load contributions.
1354 */
1355static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1356 struct cfs_rq *cfs_rq)
1357{
1358 struct task_group *tg = cfs_rq->tg;
1359 long contrib;
1360
1361 /* The fraction of a cpu used by this cfs_rq */
1362 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1363 sa->runnable_avg_period + 1);
1364 contrib -= cfs_rq->tg_runnable_contrib;
1365
1366 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1367 atomic_add(contrib, &tg->runnable_avg);
1368 cfs_rq->tg_runnable_contrib += contrib;
1369 }
1370}
1371
8165e145
PT
1372static inline void __update_group_entity_contrib(struct sched_entity *se)
1373{
1374 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1375 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1376 int runnable_avg;
1377
8165e145
PT
1378 u64 contrib;
1379
1380 contrib = cfs_rq->tg_load_contrib * tg->shares;
1381 se->avg.load_avg_contrib = div64_u64(contrib,
1382 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1383
1384 /*
1385 * For group entities we need to compute a correction term in the case
1386 * that they are consuming <1 cpu so that we would contribute the same
1387 * load as a task of equal weight.
1388 *
1389 * Explicitly co-ordinating this measurement would be expensive, but
1390 * fortunately the sum of each cpus contribution forms a usable
1391 * lower-bound on the true value.
1392 *
1393 * Consider the aggregate of 2 contributions. Either they are disjoint
1394 * (and the sum represents true value) or they are disjoint and we are
1395 * understating by the aggregate of their overlap.
1396 *
1397 * Extending this to N cpus, for a given overlap, the maximum amount we
1398 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1399 * cpus that overlap for this interval and w_i is the interval width.
1400 *
1401 * On a small machine; the first term is well-bounded which bounds the
1402 * total error since w_i is a subset of the period. Whereas on a
1403 * larger machine, while this first term can be larger, if w_i is the
1404 * of consequential size guaranteed to see n_i*w_i quickly converge to
1405 * our upper bound of 1-cpu.
1406 */
1407 runnable_avg = atomic_read(&tg->runnable_avg);
1408 if (runnable_avg < NICE_0_LOAD) {
1409 se->avg.load_avg_contrib *= runnable_avg;
1410 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1411 }
8165e145 1412}
c566e8e9
PT
1413#else
1414static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1415 int force_update) {}
bb17f655
PT
1416static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1417 struct cfs_rq *cfs_rq) {}
8165e145 1418static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1419#endif
1420
8165e145
PT
1421static inline void __update_task_entity_contrib(struct sched_entity *se)
1422{
1423 u32 contrib;
1424
1425 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1426 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1427 contrib /= (se->avg.runnable_avg_period + 1);
1428 se->avg.load_avg_contrib = scale_load(contrib);
1429}
1430
2dac754e
PT
1431/* Compute the current contribution to load_avg by se, return any delta */
1432static long __update_entity_load_avg_contrib(struct sched_entity *se)
1433{
1434 long old_contrib = se->avg.load_avg_contrib;
1435
8165e145
PT
1436 if (entity_is_task(se)) {
1437 __update_task_entity_contrib(se);
1438 } else {
bb17f655 1439 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1440 __update_group_entity_contrib(se);
1441 }
2dac754e
PT
1442
1443 return se->avg.load_avg_contrib - old_contrib;
1444}
1445
9ee474f5
PT
1446static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1447 long load_contrib)
1448{
1449 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1450 cfs_rq->blocked_load_avg -= load_contrib;
1451 else
1452 cfs_rq->blocked_load_avg = 0;
1453}
1454
f1b17280
PT
1455static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1456
9d85f21c 1457/* Update a sched_entity's runnable average */
9ee474f5
PT
1458static inline void update_entity_load_avg(struct sched_entity *se,
1459 int update_cfs_rq)
9d85f21c 1460{
2dac754e
PT
1461 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1462 long contrib_delta;
f1b17280 1463 u64 now;
2dac754e 1464
f1b17280
PT
1465 /*
1466 * For a group entity we need to use their owned cfs_rq_clock_task() in
1467 * case they are the parent of a throttled hierarchy.
1468 */
1469 if (entity_is_task(se))
1470 now = cfs_rq_clock_task(cfs_rq);
1471 else
1472 now = cfs_rq_clock_task(group_cfs_rq(se));
1473
1474 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1475 return;
1476
1477 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1478
1479 if (!update_cfs_rq)
1480 return;
1481
2dac754e
PT
1482 if (se->on_rq)
1483 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1484 else
1485 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1486}
1487
1488/*
1489 * Decay the load contributed by all blocked children and account this so that
1490 * their contribution may appropriately discounted when they wake up.
1491 */
aff3e498 1492static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1493{
f1b17280 1494 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1495 u64 decays;
1496
1497 decays = now - cfs_rq->last_decay;
aff3e498 1498 if (!decays && !force_update)
9ee474f5
PT
1499 return;
1500
aff3e498
PT
1501 if (atomic64_read(&cfs_rq->removed_load)) {
1502 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1503 subtract_blocked_load_contrib(cfs_rq, removed_load);
1504 }
9ee474f5 1505
aff3e498
PT
1506 if (decays) {
1507 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1508 decays);
1509 atomic64_add(decays, &cfs_rq->decay_counter);
1510 cfs_rq->last_decay = now;
1511 }
c566e8e9
PT
1512
1513 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1514}
18bf2805
BS
1515
1516static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1517{
78becc27 1518 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 1519 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1520}
2dac754e
PT
1521
1522/* Add the load generated by se into cfs_rq's child load-average */
1523static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1524 struct sched_entity *se,
1525 int wakeup)
2dac754e 1526{
aff3e498
PT
1527 /*
1528 * We track migrations using entity decay_count <= 0, on a wake-up
1529 * migration we use a negative decay count to track the remote decays
1530 * accumulated while sleeping.
1531 */
1532 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 1533 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
1534 if (se->avg.decay_count) {
1535 /*
1536 * In a wake-up migration we have to approximate the
1537 * time sleeping. This is because we can't synchronize
1538 * clock_task between the two cpus, and it is not
1539 * guaranteed to be read-safe. Instead, we can
1540 * approximate this using our carried decays, which are
1541 * explicitly atomically readable.
1542 */
1543 se->avg.last_runnable_update -= (-se->avg.decay_count)
1544 << 20;
1545 update_entity_load_avg(se, 0);
1546 /* Indicate that we're now synchronized and on-rq */
1547 se->avg.decay_count = 0;
1548 }
9ee474f5
PT
1549 wakeup = 0;
1550 } else {
1551 __synchronize_entity_decay(se);
1552 }
1553
aff3e498
PT
1554 /* migrated tasks did not contribute to our blocked load */
1555 if (wakeup) {
9ee474f5 1556 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1557 update_entity_load_avg(se, 0);
1558 }
9ee474f5 1559
2dac754e 1560 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1561 /* we force update consideration on load-balancer moves */
1562 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1563}
1564
9ee474f5
PT
1565/*
1566 * Remove se's load from this cfs_rq child load-average, if the entity is
1567 * transitioning to a blocked state we track its projected decay using
1568 * blocked_load_avg.
1569 */
2dac754e 1570static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1571 struct sched_entity *se,
1572 int sleep)
2dac754e 1573{
9ee474f5 1574 update_entity_load_avg(se, 1);
aff3e498
PT
1575 /* we force update consideration on load-balancer moves */
1576 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1577
2dac754e 1578 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1579 if (sleep) {
1580 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1581 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1582 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1583}
642dbc39
VG
1584
1585/*
1586 * Update the rq's load with the elapsed running time before entering
1587 * idle. if the last scheduled task is not a CFS task, idle_enter will
1588 * be the only way to update the runnable statistic.
1589 */
1590void idle_enter_fair(struct rq *this_rq)
1591{
1592 update_rq_runnable_avg(this_rq, 1);
1593}
1594
1595/*
1596 * Update the rq's load with the elapsed idle time before a task is
1597 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1598 * be the only way to update the runnable statistic.
1599 */
1600void idle_exit_fair(struct rq *this_rq)
1601{
1602 update_rq_runnable_avg(this_rq, 0);
1603}
1604
9d85f21c 1605#else
9ee474f5
PT
1606static inline void update_entity_load_avg(struct sched_entity *se,
1607 int update_cfs_rq) {}
18bf2805 1608static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1609static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1610 struct sched_entity *se,
1611 int wakeup) {}
2dac754e 1612static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1613 struct sched_entity *se,
1614 int sleep) {}
aff3e498
PT
1615static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1616 int force_update) {}
9d85f21c
PT
1617#endif
1618
2396af69 1619static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1620{
bf0f6f24 1621#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1622 struct task_struct *tsk = NULL;
1623
1624 if (entity_is_task(se))
1625 tsk = task_of(se);
1626
41acab88 1627 if (se->statistics.sleep_start) {
78becc27 1628 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
1629
1630 if ((s64)delta < 0)
1631 delta = 0;
1632
41acab88
LDM
1633 if (unlikely(delta > se->statistics.sleep_max))
1634 se->statistics.sleep_max = delta;
bf0f6f24 1635
8c79a045 1636 se->statistics.sleep_start = 0;
41acab88 1637 se->statistics.sum_sleep_runtime += delta;
9745512c 1638
768d0c27 1639 if (tsk) {
e414314c 1640 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1641 trace_sched_stat_sleep(tsk, delta);
1642 }
bf0f6f24 1643 }
41acab88 1644 if (se->statistics.block_start) {
78becc27 1645 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
1646
1647 if ((s64)delta < 0)
1648 delta = 0;
1649
41acab88
LDM
1650 if (unlikely(delta > se->statistics.block_max))
1651 se->statistics.block_max = delta;
bf0f6f24 1652
8c79a045 1653 se->statistics.block_start = 0;
41acab88 1654 se->statistics.sum_sleep_runtime += delta;
30084fbd 1655
e414314c 1656 if (tsk) {
8f0dfc34 1657 if (tsk->in_iowait) {
41acab88
LDM
1658 se->statistics.iowait_sum += delta;
1659 se->statistics.iowait_count++;
768d0c27 1660 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1661 }
1662
b781a602
AV
1663 trace_sched_stat_blocked(tsk, delta);
1664
e414314c
PZ
1665 /*
1666 * Blocking time is in units of nanosecs, so shift by
1667 * 20 to get a milliseconds-range estimation of the
1668 * amount of time that the task spent sleeping:
1669 */
1670 if (unlikely(prof_on == SLEEP_PROFILING)) {
1671 profile_hits(SLEEP_PROFILING,
1672 (void *)get_wchan(tsk),
1673 delta >> 20);
1674 }
1675 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1676 }
bf0f6f24
IM
1677 }
1678#endif
1679}
1680
ddc97297
PZ
1681static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1682{
1683#ifdef CONFIG_SCHED_DEBUG
1684 s64 d = se->vruntime - cfs_rq->min_vruntime;
1685
1686 if (d < 0)
1687 d = -d;
1688
1689 if (d > 3*sysctl_sched_latency)
1690 schedstat_inc(cfs_rq, nr_spread_over);
1691#endif
1692}
1693
aeb73b04
PZ
1694static void
1695place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1696{
1af5f730 1697 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1698
2cb8600e
PZ
1699 /*
1700 * The 'current' period is already promised to the current tasks,
1701 * however the extra weight of the new task will slow them down a
1702 * little, place the new task so that it fits in the slot that
1703 * stays open at the end.
1704 */
94dfb5e7 1705 if (initial && sched_feat(START_DEBIT))
f9c0b095 1706 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1707
a2e7a7eb 1708 /* sleeps up to a single latency don't count. */
5ca9880c 1709 if (!initial) {
a2e7a7eb 1710 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1711
a2e7a7eb
MG
1712 /*
1713 * Halve their sleep time's effect, to allow
1714 * for a gentler effect of sleepers:
1715 */
1716 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1717 thresh >>= 1;
51e0304c 1718
a2e7a7eb 1719 vruntime -= thresh;
aeb73b04
PZ
1720 }
1721
b5d9d734 1722 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1723 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1724}
1725
d3d9dc33
PT
1726static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1727
bf0f6f24 1728static void
88ec22d3 1729enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1730{
88ec22d3
PZ
1731 /*
1732 * Update the normalized vruntime before updating min_vruntime
1733 * through callig update_curr().
1734 */
371fd7e7 1735 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1736 se->vruntime += cfs_rq->min_vruntime;
1737
bf0f6f24 1738 /*
a2a2d680 1739 * Update run-time statistics of the 'current'.
bf0f6f24 1740 */
b7cc0896 1741 update_curr(cfs_rq);
f269ae04 1742 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1743 account_entity_enqueue(cfs_rq, se);
1744 update_cfs_shares(cfs_rq);
bf0f6f24 1745
88ec22d3 1746 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1747 place_entity(cfs_rq, se, 0);
2396af69 1748 enqueue_sleeper(cfs_rq, se);
e9acbff6 1749 }
bf0f6f24 1750
d2417e5a 1751 update_stats_enqueue(cfs_rq, se);
ddc97297 1752 check_spread(cfs_rq, se);
83b699ed
SV
1753 if (se != cfs_rq->curr)
1754 __enqueue_entity(cfs_rq, se);
2069dd75 1755 se->on_rq = 1;
3d4b47b4 1756
d3d9dc33 1757 if (cfs_rq->nr_running == 1) {
3d4b47b4 1758 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1759 check_enqueue_throttle(cfs_rq);
1760 }
bf0f6f24
IM
1761}
1762
2c13c919 1763static void __clear_buddies_last(struct sched_entity *se)
2002c695 1764{
2c13c919
RR
1765 for_each_sched_entity(se) {
1766 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1767 if (cfs_rq->last == se)
1768 cfs_rq->last = NULL;
1769 else
1770 break;
1771 }
1772}
2002c695 1773
2c13c919
RR
1774static void __clear_buddies_next(struct sched_entity *se)
1775{
1776 for_each_sched_entity(se) {
1777 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1778 if (cfs_rq->next == se)
1779 cfs_rq->next = NULL;
1780 else
1781 break;
1782 }
2002c695
PZ
1783}
1784
ac53db59
RR
1785static void __clear_buddies_skip(struct sched_entity *se)
1786{
1787 for_each_sched_entity(se) {
1788 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1789 if (cfs_rq->skip == se)
1790 cfs_rq->skip = NULL;
1791 else
1792 break;
1793 }
1794}
1795
a571bbea
PZ
1796static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1797{
2c13c919
RR
1798 if (cfs_rq->last == se)
1799 __clear_buddies_last(se);
1800
1801 if (cfs_rq->next == se)
1802 __clear_buddies_next(se);
ac53db59
RR
1803
1804 if (cfs_rq->skip == se)
1805 __clear_buddies_skip(se);
a571bbea
PZ
1806}
1807
6c16a6dc 1808static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1809
bf0f6f24 1810static void
371fd7e7 1811dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1812{
a2a2d680
DA
1813 /*
1814 * Update run-time statistics of the 'current'.
1815 */
1816 update_curr(cfs_rq);
17bc14b7 1817 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1818
19b6a2e3 1819 update_stats_dequeue(cfs_rq, se);
371fd7e7 1820 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1821#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1822 if (entity_is_task(se)) {
1823 struct task_struct *tsk = task_of(se);
1824
1825 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 1826 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1827 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 1828 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 1829 }
db36cc7d 1830#endif
67e9fb2a
PZ
1831 }
1832
2002c695 1833 clear_buddies(cfs_rq, se);
4793241b 1834
83b699ed 1835 if (se != cfs_rq->curr)
30cfdcfc 1836 __dequeue_entity(cfs_rq, se);
17bc14b7 1837 se->on_rq = 0;
30cfdcfc 1838 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1839
1840 /*
1841 * Normalize the entity after updating the min_vruntime because the
1842 * update can refer to the ->curr item and we need to reflect this
1843 * movement in our normalized position.
1844 */
371fd7e7 1845 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1846 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1847
d8b4986d
PT
1848 /* return excess runtime on last dequeue */
1849 return_cfs_rq_runtime(cfs_rq);
1850
1e876231 1851 update_min_vruntime(cfs_rq);
17bc14b7 1852 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1853}
1854
1855/*
1856 * Preempt the current task with a newly woken task if needed:
1857 */
7c92e54f 1858static void
2e09bf55 1859check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1860{
11697830 1861 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1862 struct sched_entity *se;
1863 s64 delta;
11697830 1864
6d0f0ebd 1865 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1866 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1867 if (delta_exec > ideal_runtime) {
bf0f6f24 1868 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1869 /*
1870 * The current task ran long enough, ensure it doesn't get
1871 * re-elected due to buddy favours.
1872 */
1873 clear_buddies(cfs_rq, curr);
f685ceac
MG
1874 return;
1875 }
1876
1877 /*
1878 * Ensure that a task that missed wakeup preemption by a
1879 * narrow margin doesn't have to wait for a full slice.
1880 * This also mitigates buddy induced latencies under load.
1881 */
f685ceac
MG
1882 if (delta_exec < sysctl_sched_min_granularity)
1883 return;
1884
f4cfb33e
WX
1885 se = __pick_first_entity(cfs_rq);
1886 delta = curr->vruntime - se->vruntime;
f685ceac 1887
f4cfb33e
WX
1888 if (delta < 0)
1889 return;
d7d82944 1890
f4cfb33e
WX
1891 if (delta > ideal_runtime)
1892 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1893}
1894
83b699ed 1895static void
8494f412 1896set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1897{
83b699ed
SV
1898 /* 'current' is not kept within the tree. */
1899 if (se->on_rq) {
1900 /*
1901 * Any task has to be enqueued before it get to execute on
1902 * a CPU. So account for the time it spent waiting on the
1903 * runqueue.
1904 */
1905 update_stats_wait_end(cfs_rq, se);
1906 __dequeue_entity(cfs_rq, se);
1907 }
1908
79303e9e 1909 update_stats_curr_start(cfs_rq, se);
429d43bc 1910 cfs_rq->curr = se;
eba1ed4b
IM
1911#ifdef CONFIG_SCHEDSTATS
1912 /*
1913 * Track our maximum slice length, if the CPU's load is at
1914 * least twice that of our own weight (i.e. dont track it
1915 * when there are only lesser-weight tasks around):
1916 */
495eca49 1917 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1918 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1919 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1920 }
1921#endif
4a55b450 1922 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1923}
1924
3f3a4904
PZ
1925static int
1926wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1927
ac53db59
RR
1928/*
1929 * Pick the next process, keeping these things in mind, in this order:
1930 * 1) keep things fair between processes/task groups
1931 * 2) pick the "next" process, since someone really wants that to run
1932 * 3) pick the "last" process, for cache locality
1933 * 4) do not run the "skip" process, if something else is available
1934 */
f4b6755f 1935static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1936{
ac53db59 1937 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1938 struct sched_entity *left = se;
f4b6755f 1939
ac53db59
RR
1940 /*
1941 * Avoid running the skip buddy, if running something else can
1942 * be done without getting too unfair.
1943 */
1944 if (cfs_rq->skip == se) {
1945 struct sched_entity *second = __pick_next_entity(se);
1946 if (second && wakeup_preempt_entity(second, left) < 1)
1947 se = second;
1948 }
aa2ac252 1949
f685ceac
MG
1950 /*
1951 * Prefer last buddy, try to return the CPU to a preempted task.
1952 */
1953 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1954 se = cfs_rq->last;
1955
ac53db59
RR
1956 /*
1957 * Someone really wants this to run. If it's not unfair, run it.
1958 */
1959 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1960 se = cfs_rq->next;
1961
f685ceac 1962 clear_buddies(cfs_rq, se);
4793241b
PZ
1963
1964 return se;
aa2ac252
PZ
1965}
1966
d3d9dc33
PT
1967static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1968
ab6cde26 1969static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1970{
1971 /*
1972 * If still on the runqueue then deactivate_task()
1973 * was not called and update_curr() has to be done:
1974 */
1975 if (prev->on_rq)
b7cc0896 1976 update_curr(cfs_rq);
bf0f6f24 1977
d3d9dc33
PT
1978 /* throttle cfs_rqs exceeding runtime */
1979 check_cfs_rq_runtime(cfs_rq);
1980
ddc97297 1981 check_spread(cfs_rq, prev);
30cfdcfc 1982 if (prev->on_rq) {
5870db5b 1983 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1984 /* Put 'current' back into the tree. */
1985 __enqueue_entity(cfs_rq, prev);
9d85f21c 1986 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1987 update_entity_load_avg(prev, 1);
30cfdcfc 1988 }
429d43bc 1989 cfs_rq->curr = NULL;
bf0f6f24
IM
1990}
1991
8f4d37ec
PZ
1992static void
1993entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1994{
bf0f6f24 1995 /*
30cfdcfc 1996 * Update run-time statistics of the 'current'.
bf0f6f24 1997 */
30cfdcfc 1998 update_curr(cfs_rq);
bf0f6f24 1999
9d85f21c
PT
2000 /*
2001 * Ensure that runnable average is periodically updated.
2002 */
9ee474f5 2003 update_entity_load_avg(curr, 1);
aff3e498 2004 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 2005
8f4d37ec
PZ
2006#ifdef CONFIG_SCHED_HRTICK
2007 /*
2008 * queued ticks are scheduled to match the slice, so don't bother
2009 * validating it and just reschedule.
2010 */
983ed7a6
HH
2011 if (queued) {
2012 resched_task(rq_of(cfs_rq)->curr);
2013 return;
2014 }
8f4d37ec
PZ
2015 /*
2016 * don't let the period tick interfere with the hrtick preemption
2017 */
2018 if (!sched_feat(DOUBLE_TICK) &&
2019 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2020 return;
2021#endif
2022
2c2efaed 2023 if (cfs_rq->nr_running > 1)
2e09bf55 2024 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2025}
2026
ab84d31e
PT
2027
2028/**************************************************
2029 * CFS bandwidth control machinery
2030 */
2031
2032#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2033
2034#ifdef HAVE_JUMP_LABEL
c5905afb 2035static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2036
2037static inline bool cfs_bandwidth_used(void)
2038{
c5905afb 2039 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2040}
2041
2042void account_cfs_bandwidth_used(int enabled, int was_enabled)
2043{
2044 /* only need to count groups transitioning between enabled/!enabled */
2045 if (enabled && !was_enabled)
c5905afb 2046 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2047 else if (!enabled && was_enabled)
c5905afb 2048 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2049}
2050#else /* HAVE_JUMP_LABEL */
2051static bool cfs_bandwidth_used(void)
2052{
2053 return true;
2054}
2055
2056void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2057#endif /* HAVE_JUMP_LABEL */
2058
ab84d31e
PT
2059/*
2060 * default period for cfs group bandwidth.
2061 * default: 0.1s, units: nanoseconds
2062 */
2063static inline u64 default_cfs_period(void)
2064{
2065 return 100000000ULL;
2066}
ec12cb7f
PT
2067
2068static inline u64 sched_cfs_bandwidth_slice(void)
2069{
2070 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2071}
2072
a9cf55b2
PT
2073/*
2074 * Replenish runtime according to assigned quota and update expiration time.
2075 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2076 * additional synchronization around rq->lock.
2077 *
2078 * requires cfs_b->lock
2079 */
029632fb 2080void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2081{
2082 u64 now;
2083
2084 if (cfs_b->quota == RUNTIME_INF)
2085 return;
2086
2087 now = sched_clock_cpu(smp_processor_id());
2088 cfs_b->runtime = cfs_b->quota;
2089 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2090}
2091
029632fb
PZ
2092static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2093{
2094 return &tg->cfs_bandwidth;
2095}
2096
f1b17280
PT
2097/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2098static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2099{
2100 if (unlikely(cfs_rq->throttle_count))
2101 return cfs_rq->throttled_clock_task;
2102
78becc27 2103 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2104}
2105
85dac906
PT
2106/* returns 0 on failure to allocate runtime */
2107static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2108{
2109 struct task_group *tg = cfs_rq->tg;
2110 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2111 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2112
2113 /* note: this is a positive sum as runtime_remaining <= 0 */
2114 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2115
2116 raw_spin_lock(&cfs_b->lock);
2117 if (cfs_b->quota == RUNTIME_INF)
2118 amount = min_amount;
58088ad0 2119 else {
a9cf55b2
PT
2120 /*
2121 * If the bandwidth pool has become inactive, then at least one
2122 * period must have elapsed since the last consumption.
2123 * Refresh the global state and ensure bandwidth timer becomes
2124 * active.
2125 */
2126 if (!cfs_b->timer_active) {
2127 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2128 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2129 }
58088ad0
PT
2130
2131 if (cfs_b->runtime > 0) {
2132 amount = min(cfs_b->runtime, min_amount);
2133 cfs_b->runtime -= amount;
2134 cfs_b->idle = 0;
2135 }
ec12cb7f 2136 }
a9cf55b2 2137 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2138 raw_spin_unlock(&cfs_b->lock);
2139
2140 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2141 /*
2142 * we may have advanced our local expiration to account for allowed
2143 * spread between our sched_clock and the one on which runtime was
2144 * issued.
2145 */
2146 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2147 cfs_rq->runtime_expires = expires;
85dac906
PT
2148
2149 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2150}
2151
a9cf55b2
PT
2152/*
2153 * Note: This depends on the synchronization provided by sched_clock and the
2154 * fact that rq->clock snapshots this value.
2155 */
2156static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2157{
a9cf55b2 2158 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2159
2160 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2161 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2162 return;
2163
a9cf55b2
PT
2164 if (cfs_rq->runtime_remaining < 0)
2165 return;
2166
2167 /*
2168 * If the local deadline has passed we have to consider the
2169 * possibility that our sched_clock is 'fast' and the global deadline
2170 * has not truly expired.
2171 *
2172 * Fortunately we can check determine whether this the case by checking
2173 * whether the global deadline has advanced.
2174 */
2175
2176 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2177 /* extend local deadline, drift is bounded above by 2 ticks */
2178 cfs_rq->runtime_expires += TICK_NSEC;
2179 } else {
2180 /* global deadline is ahead, expiration has passed */
2181 cfs_rq->runtime_remaining = 0;
2182 }
2183}
2184
2185static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2186 unsigned long delta_exec)
2187{
2188 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2189 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2190 expire_cfs_rq_runtime(cfs_rq);
2191
2192 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2193 return;
2194
85dac906
PT
2195 /*
2196 * if we're unable to extend our runtime we resched so that the active
2197 * hierarchy can be throttled
2198 */
2199 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2200 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2201}
2202
6c16a6dc
PZ
2203static __always_inline
2204void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2205{
56f570e5 2206 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2207 return;
2208
2209 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2210}
2211
85dac906
PT
2212static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2213{
56f570e5 2214 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2215}
2216
64660c86
PT
2217/* check whether cfs_rq, or any parent, is throttled */
2218static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2219{
56f570e5 2220 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2221}
2222
2223/*
2224 * Ensure that neither of the group entities corresponding to src_cpu or
2225 * dest_cpu are members of a throttled hierarchy when performing group
2226 * load-balance operations.
2227 */
2228static inline int throttled_lb_pair(struct task_group *tg,
2229 int src_cpu, int dest_cpu)
2230{
2231 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2232
2233 src_cfs_rq = tg->cfs_rq[src_cpu];
2234 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2235
2236 return throttled_hierarchy(src_cfs_rq) ||
2237 throttled_hierarchy(dest_cfs_rq);
2238}
2239
2240/* updated child weight may affect parent so we have to do this bottom up */
2241static int tg_unthrottle_up(struct task_group *tg, void *data)
2242{
2243 struct rq *rq = data;
2244 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2245
2246 cfs_rq->throttle_count--;
2247#ifdef CONFIG_SMP
2248 if (!cfs_rq->throttle_count) {
f1b17280 2249 /* adjust cfs_rq_clock_task() */
78becc27 2250 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 2251 cfs_rq->throttled_clock_task;
64660c86
PT
2252 }
2253#endif
2254
2255 return 0;
2256}
2257
2258static int tg_throttle_down(struct task_group *tg, void *data)
2259{
2260 struct rq *rq = data;
2261 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2262
82958366
PT
2263 /* group is entering throttled state, stop time */
2264 if (!cfs_rq->throttle_count)
78becc27 2265 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
2266 cfs_rq->throttle_count++;
2267
2268 return 0;
2269}
2270
d3d9dc33 2271static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2272{
2273 struct rq *rq = rq_of(cfs_rq);
2274 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2275 struct sched_entity *se;
2276 long task_delta, dequeue = 1;
2277
2278 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2279
f1b17280 2280 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2281 rcu_read_lock();
2282 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2283 rcu_read_unlock();
85dac906
PT
2284
2285 task_delta = cfs_rq->h_nr_running;
2286 for_each_sched_entity(se) {
2287 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2288 /* throttled entity or throttle-on-deactivate */
2289 if (!se->on_rq)
2290 break;
2291
2292 if (dequeue)
2293 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2294 qcfs_rq->h_nr_running -= task_delta;
2295
2296 if (qcfs_rq->load.weight)
2297 dequeue = 0;
2298 }
2299
2300 if (!se)
2301 rq->nr_running -= task_delta;
2302
2303 cfs_rq->throttled = 1;
78becc27 2304 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
2305 raw_spin_lock(&cfs_b->lock);
2306 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2307 raw_spin_unlock(&cfs_b->lock);
2308}
2309
029632fb 2310void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2311{
2312 struct rq *rq = rq_of(cfs_rq);
2313 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2314 struct sched_entity *se;
2315 int enqueue = 1;
2316 long task_delta;
2317
2318 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2319
2320 cfs_rq->throttled = 0;
1a55af2e
FW
2321
2322 update_rq_clock(rq);
2323
671fd9da 2324 raw_spin_lock(&cfs_b->lock);
78becc27 2325 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
2326 list_del_rcu(&cfs_rq->throttled_list);
2327 raw_spin_unlock(&cfs_b->lock);
2328
64660c86
PT
2329 /* update hierarchical throttle state */
2330 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2331
671fd9da
PT
2332 if (!cfs_rq->load.weight)
2333 return;
2334
2335 task_delta = cfs_rq->h_nr_running;
2336 for_each_sched_entity(se) {
2337 if (se->on_rq)
2338 enqueue = 0;
2339
2340 cfs_rq = cfs_rq_of(se);
2341 if (enqueue)
2342 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2343 cfs_rq->h_nr_running += task_delta;
2344
2345 if (cfs_rq_throttled(cfs_rq))
2346 break;
2347 }
2348
2349 if (!se)
2350 rq->nr_running += task_delta;
2351
2352 /* determine whether we need to wake up potentially idle cpu */
2353 if (rq->curr == rq->idle && rq->cfs.nr_running)
2354 resched_task(rq->curr);
2355}
2356
2357static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2358 u64 remaining, u64 expires)
2359{
2360 struct cfs_rq *cfs_rq;
2361 u64 runtime = remaining;
2362
2363 rcu_read_lock();
2364 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2365 throttled_list) {
2366 struct rq *rq = rq_of(cfs_rq);
2367
2368 raw_spin_lock(&rq->lock);
2369 if (!cfs_rq_throttled(cfs_rq))
2370 goto next;
2371
2372 runtime = -cfs_rq->runtime_remaining + 1;
2373 if (runtime > remaining)
2374 runtime = remaining;
2375 remaining -= runtime;
2376
2377 cfs_rq->runtime_remaining += runtime;
2378 cfs_rq->runtime_expires = expires;
2379
2380 /* we check whether we're throttled above */
2381 if (cfs_rq->runtime_remaining > 0)
2382 unthrottle_cfs_rq(cfs_rq);
2383
2384next:
2385 raw_spin_unlock(&rq->lock);
2386
2387 if (!remaining)
2388 break;
2389 }
2390 rcu_read_unlock();
2391
2392 return remaining;
2393}
2394
58088ad0
PT
2395/*
2396 * Responsible for refilling a task_group's bandwidth and unthrottling its
2397 * cfs_rqs as appropriate. If there has been no activity within the last
2398 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2399 * used to track this state.
2400 */
2401static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2402{
671fd9da
PT
2403 u64 runtime, runtime_expires;
2404 int idle = 1, throttled;
58088ad0
PT
2405
2406 raw_spin_lock(&cfs_b->lock);
2407 /* no need to continue the timer with no bandwidth constraint */
2408 if (cfs_b->quota == RUNTIME_INF)
2409 goto out_unlock;
2410
671fd9da
PT
2411 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2412 /* idle depends on !throttled (for the case of a large deficit) */
2413 idle = cfs_b->idle && !throttled;
e8da1b18 2414 cfs_b->nr_periods += overrun;
671fd9da 2415
a9cf55b2
PT
2416 /* if we're going inactive then everything else can be deferred */
2417 if (idle)
2418 goto out_unlock;
2419
2420 __refill_cfs_bandwidth_runtime(cfs_b);
2421
671fd9da
PT
2422 if (!throttled) {
2423 /* mark as potentially idle for the upcoming period */
2424 cfs_b->idle = 1;
2425 goto out_unlock;
2426 }
2427
e8da1b18
NR
2428 /* account preceding periods in which throttling occurred */
2429 cfs_b->nr_throttled += overrun;
2430
671fd9da
PT
2431 /*
2432 * There are throttled entities so we must first use the new bandwidth
2433 * to unthrottle them before making it generally available. This
2434 * ensures that all existing debts will be paid before a new cfs_rq is
2435 * allowed to run.
2436 */
2437 runtime = cfs_b->runtime;
2438 runtime_expires = cfs_b->runtime_expires;
2439 cfs_b->runtime = 0;
2440
2441 /*
2442 * This check is repeated as we are holding onto the new bandwidth
2443 * while we unthrottle. This can potentially race with an unthrottled
2444 * group trying to acquire new bandwidth from the global pool.
2445 */
2446 while (throttled && runtime > 0) {
2447 raw_spin_unlock(&cfs_b->lock);
2448 /* we can't nest cfs_b->lock while distributing bandwidth */
2449 runtime = distribute_cfs_runtime(cfs_b, runtime,
2450 runtime_expires);
2451 raw_spin_lock(&cfs_b->lock);
2452
2453 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2454 }
58088ad0 2455
671fd9da
PT
2456 /* return (any) remaining runtime */
2457 cfs_b->runtime = runtime;
2458 /*
2459 * While we are ensured activity in the period following an
2460 * unthrottle, this also covers the case in which the new bandwidth is
2461 * insufficient to cover the existing bandwidth deficit. (Forcing the
2462 * timer to remain active while there are any throttled entities.)
2463 */
2464 cfs_b->idle = 0;
58088ad0
PT
2465out_unlock:
2466 if (idle)
2467 cfs_b->timer_active = 0;
2468 raw_spin_unlock(&cfs_b->lock);
2469
2470 return idle;
2471}
d3d9dc33 2472
d8b4986d
PT
2473/* a cfs_rq won't donate quota below this amount */
2474static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2475/* minimum remaining period time to redistribute slack quota */
2476static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2477/* how long we wait to gather additional slack before distributing */
2478static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2479
2480/* are we near the end of the current quota period? */
2481static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2482{
2483 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2484 u64 remaining;
2485
2486 /* if the call-back is running a quota refresh is already occurring */
2487 if (hrtimer_callback_running(refresh_timer))
2488 return 1;
2489
2490 /* is a quota refresh about to occur? */
2491 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2492 if (remaining < min_expire)
2493 return 1;
2494
2495 return 0;
2496}
2497
2498static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2499{
2500 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2501
2502 /* if there's a quota refresh soon don't bother with slack */
2503 if (runtime_refresh_within(cfs_b, min_left))
2504 return;
2505
2506 start_bandwidth_timer(&cfs_b->slack_timer,
2507 ns_to_ktime(cfs_bandwidth_slack_period));
2508}
2509
2510/* we know any runtime found here is valid as update_curr() precedes return */
2511static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2512{
2513 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2514 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2515
2516 if (slack_runtime <= 0)
2517 return;
2518
2519 raw_spin_lock(&cfs_b->lock);
2520 if (cfs_b->quota != RUNTIME_INF &&
2521 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2522 cfs_b->runtime += slack_runtime;
2523
2524 /* we are under rq->lock, defer unthrottling using a timer */
2525 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2526 !list_empty(&cfs_b->throttled_cfs_rq))
2527 start_cfs_slack_bandwidth(cfs_b);
2528 }
2529 raw_spin_unlock(&cfs_b->lock);
2530
2531 /* even if it's not valid for return we don't want to try again */
2532 cfs_rq->runtime_remaining -= slack_runtime;
2533}
2534
2535static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2536{
56f570e5
PT
2537 if (!cfs_bandwidth_used())
2538 return;
2539
fccfdc6f 2540 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2541 return;
2542
2543 __return_cfs_rq_runtime(cfs_rq);
2544}
2545
2546/*
2547 * This is done with a timer (instead of inline with bandwidth return) since
2548 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2549 */
2550static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2551{
2552 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2553 u64 expires;
2554
2555 /* confirm we're still not at a refresh boundary */
2556 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2557 return;
2558
2559 raw_spin_lock(&cfs_b->lock);
2560 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2561 runtime = cfs_b->runtime;
2562 cfs_b->runtime = 0;
2563 }
2564 expires = cfs_b->runtime_expires;
2565 raw_spin_unlock(&cfs_b->lock);
2566
2567 if (!runtime)
2568 return;
2569
2570 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2571
2572 raw_spin_lock(&cfs_b->lock);
2573 if (expires == cfs_b->runtime_expires)
2574 cfs_b->runtime = runtime;
2575 raw_spin_unlock(&cfs_b->lock);
2576}
2577
d3d9dc33
PT
2578/*
2579 * When a group wakes up we want to make sure that its quota is not already
2580 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2581 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2582 */
2583static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2584{
56f570e5
PT
2585 if (!cfs_bandwidth_used())
2586 return;
2587
d3d9dc33
PT
2588 /* an active group must be handled by the update_curr()->put() path */
2589 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2590 return;
2591
2592 /* ensure the group is not already throttled */
2593 if (cfs_rq_throttled(cfs_rq))
2594 return;
2595
2596 /* update runtime allocation */
2597 account_cfs_rq_runtime(cfs_rq, 0);
2598 if (cfs_rq->runtime_remaining <= 0)
2599 throttle_cfs_rq(cfs_rq);
2600}
2601
2602/* conditionally throttle active cfs_rq's from put_prev_entity() */
2603static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2604{
56f570e5
PT
2605 if (!cfs_bandwidth_used())
2606 return;
2607
d3d9dc33
PT
2608 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2609 return;
2610
2611 /*
2612 * it's possible for a throttled entity to be forced into a running
2613 * state (e.g. set_curr_task), in this case we're finished.
2614 */
2615 if (cfs_rq_throttled(cfs_rq))
2616 return;
2617
2618 throttle_cfs_rq(cfs_rq);
2619}
029632fb
PZ
2620
2621static inline u64 default_cfs_period(void);
2622static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2623static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2624
2625static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2626{
2627 struct cfs_bandwidth *cfs_b =
2628 container_of(timer, struct cfs_bandwidth, slack_timer);
2629 do_sched_cfs_slack_timer(cfs_b);
2630
2631 return HRTIMER_NORESTART;
2632}
2633
2634static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2635{
2636 struct cfs_bandwidth *cfs_b =
2637 container_of(timer, struct cfs_bandwidth, period_timer);
2638 ktime_t now;
2639 int overrun;
2640 int idle = 0;
2641
2642 for (;;) {
2643 now = hrtimer_cb_get_time(timer);
2644 overrun = hrtimer_forward(timer, now, cfs_b->period);
2645
2646 if (!overrun)
2647 break;
2648
2649 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2650 }
2651
2652 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2653}
2654
2655void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2656{
2657 raw_spin_lock_init(&cfs_b->lock);
2658 cfs_b->runtime = 0;
2659 cfs_b->quota = RUNTIME_INF;
2660 cfs_b->period = ns_to_ktime(default_cfs_period());
2661
2662 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2663 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2664 cfs_b->period_timer.function = sched_cfs_period_timer;
2665 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2666 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2667}
2668
2669static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2670{
2671 cfs_rq->runtime_enabled = 0;
2672 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2673}
2674
2675/* requires cfs_b->lock, may release to reprogram timer */
2676void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2677{
2678 /*
2679 * The timer may be active because we're trying to set a new bandwidth
2680 * period or because we're racing with the tear-down path
2681 * (timer_active==0 becomes visible before the hrtimer call-back
2682 * terminates). In either case we ensure that it's re-programmed
2683 */
2684 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2685 raw_spin_unlock(&cfs_b->lock);
2686 /* ensure cfs_b->lock is available while we wait */
2687 hrtimer_cancel(&cfs_b->period_timer);
2688
2689 raw_spin_lock(&cfs_b->lock);
2690 /* if someone else restarted the timer then we're done */
2691 if (cfs_b->timer_active)
2692 return;
2693 }
2694
2695 cfs_b->timer_active = 1;
2696 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2697}
2698
2699static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2700{
2701 hrtimer_cancel(&cfs_b->period_timer);
2702 hrtimer_cancel(&cfs_b->slack_timer);
2703}
2704
38dc3348 2705static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2706{
2707 struct cfs_rq *cfs_rq;
2708
2709 for_each_leaf_cfs_rq(rq, cfs_rq) {
2710 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2711
2712 if (!cfs_rq->runtime_enabled)
2713 continue;
2714
2715 /*
2716 * clock_task is not advancing so we just need to make sure
2717 * there's some valid quota amount
2718 */
2719 cfs_rq->runtime_remaining = cfs_b->quota;
2720 if (cfs_rq_throttled(cfs_rq))
2721 unthrottle_cfs_rq(cfs_rq);
2722 }
2723}
2724
2725#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2726static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2727{
78becc27 2728 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
2729}
2730
2731static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2732 unsigned long delta_exec) {}
d3d9dc33
PT
2733static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2734static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2735static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2736
2737static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2738{
2739 return 0;
2740}
64660c86
PT
2741
2742static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2743{
2744 return 0;
2745}
2746
2747static inline int throttled_lb_pair(struct task_group *tg,
2748 int src_cpu, int dest_cpu)
2749{
2750 return 0;
2751}
029632fb
PZ
2752
2753void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2754
2755#ifdef CONFIG_FAIR_GROUP_SCHED
2756static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2757#endif
2758
029632fb
PZ
2759static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2760{
2761 return NULL;
2762}
2763static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2764static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2765
2766#endif /* CONFIG_CFS_BANDWIDTH */
2767
bf0f6f24
IM
2768/**************************************************
2769 * CFS operations on tasks:
2770 */
2771
8f4d37ec
PZ
2772#ifdef CONFIG_SCHED_HRTICK
2773static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2774{
8f4d37ec
PZ
2775 struct sched_entity *se = &p->se;
2776 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2777
2778 WARN_ON(task_rq(p) != rq);
2779
b39e66ea 2780 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2781 u64 slice = sched_slice(cfs_rq, se);
2782 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2783 s64 delta = slice - ran;
2784
2785 if (delta < 0) {
2786 if (rq->curr == p)
2787 resched_task(p);
2788 return;
2789 }
2790
2791 /*
2792 * Don't schedule slices shorter than 10000ns, that just
2793 * doesn't make sense. Rely on vruntime for fairness.
2794 */
31656519 2795 if (rq->curr != p)
157124c1 2796 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2797
31656519 2798 hrtick_start(rq, delta);
8f4d37ec
PZ
2799 }
2800}
a4c2f00f
PZ
2801
2802/*
2803 * called from enqueue/dequeue and updates the hrtick when the
2804 * current task is from our class and nr_running is low enough
2805 * to matter.
2806 */
2807static void hrtick_update(struct rq *rq)
2808{
2809 struct task_struct *curr = rq->curr;
2810
b39e66ea 2811 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2812 return;
2813
2814 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2815 hrtick_start_fair(rq, curr);
2816}
55e12e5e 2817#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2818static inline void
2819hrtick_start_fair(struct rq *rq, struct task_struct *p)
2820{
2821}
a4c2f00f
PZ
2822
2823static inline void hrtick_update(struct rq *rq)
2824{
2825}
8f4d37ec
PZ
2826#endif
2827
bf0f6f24
IM
2828/*
2829 * The enqueue_task method is called before nr_running is
2830 * increased. Here we update the fair scheduling stats and
2831 * then put the task into the rbtree:
2832 */
ea87bb78 2833static void
371fd7e7 2834enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2835{
2836 struct cfs_rq *cfs_rq;
62fb1851 2837 struct sched_entity *se = &p->se;
bf0f6f24
IM
2838
2839 for_each_sched_entity(se) {
62fb1851 2840 if (se->on_rq)
bf0f6f24
IM
2841 break;
2842 cfs_rq = cfs_rq_of(se);
88ec22d3 2843 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2844
2845 /*
2846 * end evaluation on encountering a throttled cfs_rq
2847 *
2848 * note: in the case of encountering a throttled cfs_rq we will
2849 * post the final h_nr_running increment below.
2850 */
2851 if (cfs_rq_throttled(cfs_rq))
2852 break;
953bfcd1 2853 cfs_rq->h_nr_running++;
85dac906 2854
88ec22d3 2855 flags = ENQUEUE_WAKEUP;
bf0f6f24 2856 }
8f4d37ec 2857
2069dd75 2858 for_each_sched_entity(se) {
0f317143 2859 cfs_rq = cfs_rq_of(se);
953bfcd1 2860 cfs_rq->h_nr_running++;
2069dd75 2861
85dac906
PT
2862 if (cfs_rq_throttled(cfs_rq))
2863 break;
2864
17bc14b7 2865 update_cfs_shares(cfs_rq);
9ee474f5 2866 update_entity_load_avg(se, 1);
2069dd75
PZ
2867 }
2868
18bf2805
BS
2869 if (!se) {
2870 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2871 inc_nr_running(rq);
18bf2805 2872 }
a4c2f00f 2873 hrtick_update(rq);
bf0f6f24
IM
2874}
2875
2f36825b
VP
2876static void set_next_buddy(struct sched_entity *se);
2877
bf0f6f24
IM
2878/*
2879 * The dequeue_task method is called before nr_running is
2880 * decreased. We remove the task from the rbtree and
2881 * update the fair scheduling stats:
2882 */
371fd7e7 2883static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2884{
2885 struct cfs_rq *cfs_rq;
62fb1851 2886 struct sched_entity *se = &p->se;
2f36825b 2887 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2888
2889 for_each_sched_entity(se) {
2890 cfs_rq = cfs_rq_of(se);
371fd7e7 2891 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2892
2893 /*
2894 * end evaluation on encountering a throttled cfs_rq
2895 *
2896 * note: in the case of encountering a throttled cfs_rq we will
2897 * post the final h_nr_running decrement below.
2898 */
2899 if (cfs_rq_throttled(cfs_rq))
2900 break;
953bfcd1 2901 cfs_rq->h_nr_running--;
2069dd75 2902
bf0f6f24 2903 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2904 if (cfs_rq->load.weight) {
2905 /*
2906 * Bias pick_next to pick a task from this cfs_rq, as
2907 * p is sleeping when it is within its sched_slice.
2908 */
2909 if (task_sleep && parent_entity(se))
2910 set_next_buddy(parent_entity(se));
9598c82d
PT
2911
2912 /* avoid re-evaluating load for this entity */
2913 se = parent_entity(se);
bf0f6f24 2914 break;
2f36825b 2915 }
371fd7e7 2916 flags |= DEQUEUE_SLEEP;
bf0f6f24 2917 }
8f4d37ec 2918
2069dd75 2919 for_each_sched_entity(se) {
0f317143 2920 cfs_rq = cfs_rq_of(se);
953bfcd1 2921 cfs_rq->h_nr_running--;
2069dd75 2922
85dac906
PT
2923 if (cfs_rq_throttled(cfs_rq))
2924 break;
2925
17bc14b7 2926 update_cfs_shares(cfs_rq);
9ee474f5 2927 update_entity_load_avg(se, 1);
2069dd75
PZ
2928 }
2929
18bf2805 2930 if (!se) {
85dac906 2931 dec_nr_running(rq);
18bf2805
BS
2932 update_rq_runnable_avg(rq, 1);
2933 }
a4c2f00f 2934 hrtick_update(rq);
bf0f6f24
IM
2935}
2936
e7693a36 2937#ifdef CONFIG_SMP
029632fb
PZ
2938/* Used instead of source_load when we know the type == 0 */
2939static unsigned long weighted_cpuload(const int cpu)
2940{
2941 return cpu_rq(cpu)->load.weight;
2942}
2943
2944/*
2945 * Return a low guess at the load of a migration-source cpu weighted
2946 * according to the scheduling class and "nice" value.
2947 *
2948 * We want to under-estimate the load of migration sources, to
2949 * balance conservatively.
2950 */
2951static unsigned long source_load(int cpu, int type)
2952{
2953 struct rq *rq = cpu_rq(cpu);
2954 unsigned long total = weighted_cpuload(cpu);
2955
2956 if (type == 0 || !sched_feat(LB_BIAS))
2957 return total;
2958
2959 return min(rq->cpu_load[type-1], total);
2960}
2961
2962/*
2963 * Return a high guess at the load of a migration-target cpu weighted
2964 * according to the scheduling class and "nice" value.
2965 */
2966static unsigned long target_load(int cpu, int type)
2967{
2968 struct rq *rq = cpu_rq(cpu);
2969 unsigned long total = weighted_cpuload(cpu);
2970
2971 if (type == 0 || !sched_feat(LB_BIAS))
2972 return total;
2973
2974 return max(rq->cpu_load[type-1], total);
2975}
2976
2977static unsigned long power_of(int cpu)
2978{
2979 return cpu_rq(cpu)->cpu_power;
2980}
2981
2982static unsigned long cpu_avg_load_per_task(int cpu)
2983{
2984 struct rq *rq = cpu_rq(cpu);
2985 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2986
2987 if (nr_running)
2988 return rq->load.weight / nr_running;
2989
2990 return 0;
2991}
2992
098fb9db 2993
74f8e4b2 2994static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2995{
2996 struct sched_entity *se = &p->se;
2997 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2998 u64 min_vruntime;
2999
3000#ifndef CONFIG_64BIT
3001 u64 min_vruntime_copy;
88ec22d3 3002
3fe1698b
PZ
3003 do {
3004 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3005 smp_rmb();
3006 min_vruntime = cfs_rq->min_vruntime;
3007 } while (min_vruntime != min_vruntime_copy);
3008#else
3009 min_vruntime = cfs_rq->min_vruntime;
3010#endif
88ec22d3 3011
3fe1698b 3012 se->vruntime -= min_vruntime;
88ec22d3
PZ
3013}
3014
bb3469ac 3015#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3016/*
3017 * effective_load() calculates the load change as seen from the root_task_group
3018 *
3019 * Adding load to a group doesn't make a group heavier, but can cause movement
3020 * of group shares between cpus. Assuming the shares were perfectly aligned one
3021 * can calculate the shift in shares.
cf5f0acf
PZ
3022 *
3023 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3024 * on this @cpu and results in a total addition (subtraction) of @wg to the
3025 * total group weight.
3026 *
3027 * Given a runqueue weight distribution (rw_i) we can compute a shares
3028 * distribution (s_i) using:
3029 *
3030 * s_i = rw_i / \Sum rw_j (1)
3031 *
3032 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3033 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3034 * shares distribution (s_i):
3035 *
3036 * rw_i = { 2, 4, 1, 0 }
3037 * s_i = { 2/7, 4/7, 1/7, 0 }
3038 *
3039 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3040 * task used to run on and the CPU the waker is running on), we need to
3041 * compute the effect of waking a task on either CPU and, in case of a sync
3042 * wakeup, compute the effect of the current task going to sleep.
3043 *
3044 * So for a change of @wl to the local @cpu with an overall group weight change
3045 * of @wl we can compute the new shares distribution (s'_i) using:
3046 *
3047 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3048 *
3049 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3050 * differences in waking a task to CPU 0. The additional task changes the
3051 * weight and shares distributions like:
3052 *
3053 * rw'_i = { 3, 4, 1, 0 }
3054 * s'_i = { 3/8, 4/8, 1/8, 0 }
3055 *
3056 * We can then compute the difference in effective weight by using:
3057 *
3058 * dw_i = S * (s'_i - s_i) (3)
3059 *
3060 * Where 'S' is the group weight as seen by its parent.
3061 *
3062 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3063 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3064 * 4/7) times the weight of the group.
f5bfb7d9 3065 */
2069dd75 3066static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3067{
4be9daaa 3068 struct sched_entity *se = tg->se[cpu];
f1d239f7 3069
cf5f0acf 3070 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3071 return wl;
3072
4be9daaa 3073 for_each_sched_entity(se) {
cf5f0acf 3074 long w, W;
4be9daaa 3075
977dda7c 3076 tg = se->my_q->tg;
bb3469ac 3077
cf5f0acf
PZ
3078 /*
3079 * W = @wg + \Sum rw_j
3080 */
3081 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3082
cf5f0acf
PZ
3083 /*
3084 * w = rw_i + @wl
3085 */
3086 w = se->my_q->load.weight + wl;
940959e9 3087
cf5f0acf
PZ
3088 /*
3089 * wl = S * s'_i; see (2)
3090 */
3091 if (W > 0 && w < W)
3092 wl = (w * tg->shares) / W;
977dda7c
PT
3093 else
3094 wl = tg->shares;
940959e9 3095
cf5f0acf
PZ
3096 /*
3097 * Per the above, wl is the new se->load.weight value; since
3098 * those are clipped to [MIN_SHARES, ...) do so now. See
3099 * calc_cfs_shares().
3100 */
977dda7c
PT
3101 if (wl < MIN_SHARES)
3102 wl = MIN_SHARES;
cf5f0acf
PZ
3103
3104 /*
3105 * wl = dw_i = S * (s'_i - s_i); see (3)
3106 */
977dda7c 3107 wl -= se->load.weight;
cf5f0acf
PZ
3108
3109 /*
3110 * Recursively apply this logic to all parent groups to compute
3111 * the final effective load change on the root group. Since
3112 * only the @tg group gets extra weight, all parent groups can
3113 * only redistribute existing shares. @wl is the shift in shares
3114 * resulting from this level per the above.
3115 */
4be9daaa 3116 wg = 0;
4be9daaa 3117 }
bb3469ac 3118
4be9daaa 3119 return wl;
bb3469ac
PZ
3120}
3121#else
4be9daaa 3122
83378269
PZ
3123static inline unsigned long effective_load(struct task_group *tg, int cpu,
3124 unsigned long wl, unsigned long wg)
4be9daaa 3125{
83378269 3126 return wl;
bb3469ac 3127}
4be9daaa 3128
bb3469ac
PZ
3129#endif
3130
c88d5910 3131static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3132{
e37b6a7b 3133 s64 this_load, load;
c88d5910 3134 int idx, this_cpu, prev_cpu;
098fb9db 3135 unsigned long tl_per_task;
c88d5910 3136 struct task_group *tg;
83378269 3137 unsigned long weight;
b3137bc8 3138 int balanced;
098fb9db 3139
c88d5910
PZ
3140 idx = sd->wake_idx;
3141 this_cpu = smp_processor_id();
3142 prev_cpu = task_cpu(p);
3143 load = source_load(prev_cpu, idx);
3144 this_load = target_load(this_cpu, idx);
098fb9db 3145
b3137bc8
MG
3146 /*
3147 * If sync wakeup then subtract the (maximum possible)
3148 * effect of the currently running task from the load
3149 * of the current CPU:
3150 */
83378269
PZ
3151 if (sync) {
3152 tg = task_group(current);
3153 weight = current->se.load.weight;
3154
c88d5910 3155 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3156 load += effective_load(tg, prev_cpu, 0, -weight);
3157 }
b3137bc8 3158
83378269
PZ
3159 tg = task_group(p);
3160 weight = p->se.load.weight;
b3137bc8 3161
71a29aa7
PZ
3162 /*
3163 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3164 * due to the sync cause above having dropped this_load to 0, we'll
3165 * always have an imbalance, but there's really nothing you can do
3166 * about that, so that's good too.
71a29aa7
PZ
3167 *
3168 * Otherwise check if either cpus are near enough in load to allow this
3169 * task to be woken on this_cpu.
3170 */
e37b6a7b
PT
3171 if (this_load > 0) {
3172 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3173
3174 this_eff_load = 100;
3175 this_eff_load *= power_of(prev_cpu);
3176 this_eff_load *= this_load +
3177 effective_load(tg, this_cpu, weight, weight);
3178
3179 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3180 prev_eff_load *= power_of(this_cpu);
3181 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3182
3183 balanced = this_eff_load <= prev_eff_load;
3184 } else
3185 balanced = true;
b3137bc8 3186
098fb9db 3187 /*
4ae7d5ce
IM
3188 * If the currently running task will sleep within
3189 * a reasonable amount of time then attract this newly
3190 * woken task:
098fb9db 3191 */
2fb7635c
PZ
3192 if (sync && balanced)
3193 return 1;
098fb9db 3194
41acab88 3195 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3196 tl_per_task = cpu_avg_load_per_task(this_cpu);
3197
c88d5910
PZ
3198 if (balanced ||
3199 (this_load <= load &&
3200 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3201 /*
3202 * This domain has SD_WAKE_AFFINE and
3203 * p is cache cold in this domain, and
3204 * there is no bad imbalance.
3205 */
c88d5910 3206 schedstat_inc(sd, ttwu_move_affine);
41acab88 3207 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3208
3209 return 1;
3210 }
3211 return 0;
3212}
3213
aaee1203
PZ
3214/*
3215 * find_idlest_group finds and returns the least busy CPU group within the
3216 * domain.
3217 */
3218static struct sched_group *
78e7ed53 3219find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3220 int this_cpu, int load_idx)
e7693a36 3221{
b3bd3de6 3222 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3223 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3224 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3225
aaee1203
PZ
3226 do {
3227 unsigned long load, avg_load;
3228 int local_group;
3229 int i;
e7693a36 3230
aaee1203
PZ
3231 /* Skip over this group if it has no CPUs allowed */
3232 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3233 tsk_cpus_allowed(p)))
aaee1203
PZ
3234 continue;
3235
3236 local_group = cpumask_test_cpu(this_cpu,
3237 sched_group_cpus(group));
3238
3239 /* Tally up the load of all CPUs in the group */
3240 avg_load = 0;
3241
3242 for_each_cpu(i, sched_group_cpus(group)) {
3243 /* Bias balancing toward cpus of our domain */
3244 if (local_group)
3245 load = source_load(i, load_idx);
3246 else
3247 load = target_load(i, load_idx);
3248
3249 avg_load += load;
3250 }
3251
3252 /* Adjust by relative CPU power of the group */
9c3f75cb 3253 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3254
3255 if (local_group) {
3256 this_load = avg_load;
aaee1203
PZ
3257 } else if (avg_load < min_load) {
3258 min_load = avg_load;
3259 idlest = group;
3260 }
3261 } while (group = group->next, group != sd->groups);
3262
3263 if (!idlest || 100*this_load < imbalance*min_load)
3264 return NULL;
3265 return idlest;
3266}
3267
3268/*
3269 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3270 */
3271static int
3272find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3273{
3274 unsigned long load, min_load = ULONG_MAX;
3275 int idlest = -1;
3276 int i;
3277
3278 /* Traverse only the allowed CPUs */
fa17b507 3279 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3280 load = weighted_cpuload(i);
3281
3282 if (load < min_load || (load == min_load && i == this_cpu)) {
3283 min_load = load;
3284 idlest = i;
e7693a36
GH
3285 }
3286 }
3287
aaee1203
PZ
3288 return idlest;
3289}
e7693a36 3290
a50bde51
PZ
3291/*
3292 * Try and locate an idle CPU in the sched_domain.
3293 */
99bd5e2f 3294static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3295{
99bd5e2f 3296 struct sched_domain *sd;
37407ea7 3297 struct sched_group *sg;
e0a79f52 3298 int i = task_cpu(p);
a50bde51 3299
e0a79f52
MG
3300 if (idle_cpu(target))
3301 return target;
99bd5e2f
SS
3302
3303 /*
e0a79f52 3304 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3305 */
e0a79f52
MG
3306 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3307 return i;
a50bde51
PZ
3308
3309 /*
37407ea7 3310 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3311 */
518cd623 3312 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3313 for_each_lower_domain(sd) {
37407ea7
LT
3314 sg = sd->groups;
3315 do {
3316 if (!cpumask_intersects(sched_group_cpus(sg),
3317 tsk_cpus_allowed(p)))
3318 goto next;
3319
3320 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3321 if (i == target || !idle_cpu(i))
37407ea7
LT
3322 goto next;
3323 }
970e1789 3324
37407ea7
LT
3325 target = cpumask_first_and(sched_group_cpus(sg),
3326 tsk_cpus_allowed(p));
3327 goto done;
3328next:
3329 sg = sg->next;
3330 } while (sg != sd->groups);
3331 }
3332done:
a50bde51
PZ
3333 return target;
3334}
3335
aaee1203
PZ
3336/*
3337 * sched_balance_self: balance the current task (running on cpu) in domains
3338 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3339 * SD_BALANCE_EXEC.
3340 *
3341 * Balance, ie. select the least loaded group.
3342 *
3343 * Returns the target CPU number, or the same CPU if no balancing is needed.
3344 *
3345 * preempt must be disabled.
3346 */
0017d735 3347static int
7608dec2 3348select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3349{
29cd8bae 3350 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3351 int cpu = smp_processor_id();
3352 int prev_cpu = task_cpu(p);
3353 int new_cpu = cpu;
99bd5e2f 3354 int want_affine = 0;
5158f4e4 3355 int sync = wake_flags & WF_SYNC;
c88d5910 3356
29baa747 3357 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3358 return prev_cpu;
3359
0763a660 3360 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3361 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3362 want_affine = 1;
3363 new_cpu = prev_cpu;
3364 }
aaee1203 3365
dce840a0 3366 rcu_read_lock();
aaee1203 3367 for_each_domain(cpu, tmp) {
e4f42888
PZ
3368 if (!(tmp->flags & SD_LOAD_BALANCE))
3369 continue;
3370
fe3bcfe1 3371 /*
99bd5e2f
SS
3372 * If both cpu and prev_cpu are part of this domain,
3373 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3374 */
99bd5e2f
SS
3375 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3376 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3377 affine_sd = tmp;
29cd8bae 3378 break;
f03542a7 3379 }
29cd8bae 3380
f03542a7 3381 if (tmp->flags & sd_flag)
29cd8bae
PZ
3382 sd = tmp;
3383 }
3384
8b911acd 3385 if (affine_sd) {
f03542a7 3386 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3387 prev_cpu = cpu;
3388
3389 new_cpu = select_idle_sibling(p, prev_cpu);
3390 goto unlock;
8b911acd 3391 }
e7693a36 3392
aaee1203 3393 while (sd) {
5158f4e4 3394 int load_idx = sd->forkexec_idx;
aaee1203 3395 struct sched_group *group;
c88d5910 3396 int weight;
098fb9db 3397
0763a660 3398 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3399 sd = sd->child;
3400 continue;
3401 }
098fb9db 3402
5158f4e4
PZ
3403 if (sd_flag & SD_BALANCE_WAKE)
3404 load_idx = sd->wake_idx;
098fb9db 3405
5158f4e4 3406 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3407 if (!group) {
3408 sd = sd->child;
3409 continue;
3410 }
4ae7d5ce 3411
d7c33c49 3412 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3413 if (new_cpu == -1 || new_cpu == cpu) {
3414 /* Now try balancing at a lower domain level of cpu */
3415 sd = sd->child;
3416 continue;
e7693a36 3417 }
aaee1203
PZ
3418
3419 /* Now try balancing at a lower domain level of new_cpu */
3420 cpu = new_cpu;
669c55e9 3421 weight = sd->span_weight;
aaee1203
PZ
3422 sd = NULL;
3423 for_each_domain(cpu, tmp) {
669c55e9 3424 if (weight <= tmp->span_weight)
aaee1203 3425 break;
0763a660 3426 if (tmp->flags & sd_flag)
aaee1203
PZ
3427 sd = tmp;
3428 }
3429 /* while loop will break here if sd == NULL */
e7693a36 3430 }
dce840a0
PZ
3431unlock:
3432 rcu_read_unlock();
e7693a36 3433
c88d5910 3434 return new_cpu;
e7693a36 3435}
0a74bef8 3436
f4e26b12
PT
3437/*
3438 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3439 * removed when useful for applications beyond shares distribution (e.g.
3440 * load-balance).
3441 */
3442#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8
PT
3443/*
3444 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3445 * cfs_rq_of(p) references at time of call are still valid and identify the
3446 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3447 * other assumptions, including the state of rq->lock, should be made.
3448 */
3449static void
3450migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3451{
aff3e498
PT
3452 struct sched_entity *se = &p->se;
3453 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3454
3455 /*
3456 * Load tracking: accumulate removed load so that it can be processed
3457 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3458 * to blocked load iff they have a positive decay-count. It can never
3459 * be negative here since on-rq tasks have decay-count == 0.
3460 */
3461 if (se->avg.decay_count) {
3462 se->avg.decay_count = -__synchronize_entity_decay(se);
3463 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3464 }
0a74bef8 3465}
f4e26b12 3466#endif
e7693a36
GH
3467#endif /* CONFIG_SMP */
3468
e52fb7c0
PZ
3469static unsigned long
3470wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3471{
3472 unsigned long gran = sysctl_sched_wakeup_granularity;
3473
3474 /*
e52fb7c0
PZ
3475 * Since its curr running now, convert the gran from real-time
3476 * to virtual-time in his units.
13814d42
MG
3477 *
3478 * By using 'se' instead of 'curr' we penalize light tasks, so
3479 * they get preempted easier. That is, if 'se' < 'curr' then
3480 * the resulting gran will be larger, therefore penalizing the
3481 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3482 * be smaller, again penalizing the lighter task.
3483 *
3484 * This is especially important for buddies when the leftmost
3485 * task is higher priority than the buddy.
0bbd3336 3486 */
f4ad9bd2 3487 return calc_delta_fair(gran, se);
0bbd3336
PZ
3488}
3489
464b7527
PZ
3490/*
3491 * Should 'se' preempt 'curr'.
3492 *
3493 * |s1
3494 * |s2
3495 * |s3
3496 * g
3497 * |<--->|c
3498 *
3499 * w(c, s1) = -1
3500 * w(c, s2) = 0
3501 * w(c, s3) = 1
3502 *
3503 */
3504static int
3505wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3506{
3507 s64 gran, vdiff = curr->vruntime - se->vruntime;
3508
3509 if (vdiff <= 0)
3510 return -1;
3511
e52fb7c0 3512 gran = wakeup_gran(curr, se);
464b7527
PZ
3513 if (vdiff > gran)
3514 return 1;
3515
3516 return 0;
3517}
3518
02479099
PZ
3519static void set_last_buddy(struct sched_entity *se)
3520{
69c80f3e
VP
3521 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3522 return;
3523
3524 for_each_sched_entity(se)
3525 cfs_rq_of(se)->last = se;
02479099
PZ
3526}
3527
3528static void set_next_buddy(struct sched_entity *se)
3529{
69c80f3e
VP
3530 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3531 return;
3532
3533 for_each_sched_entity(se)
3534 cfs_rq_of(se)->next = se;
02479099
PZ
3535}
3536
ac53db59
RR
3537static void set_skip_buddy(struct sched_entity *se)
3538{
69c80f3e
VP
3539 for_each_sched_entity(se)
3540 cfs_rq_of(se)->skip = se;
ac53db59
RR
3541}
3542
bf0f6f24
IM
3543/*
3544 * Preempt the current task with a newly woken task if needed:
3545 */
5a9b86f6 3546static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3547{
3548 struct task_struct *curr = rq->curr;
8651a86c 3549 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3550 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3551 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3552 int next_buddy_marked = 0;
bf0f6f24 3553
4ae7d5ce
IM
3554 if (unlikely(se == pse))
3555 return;
3556
5238cdd3 3557 /*
ddcdf6e7 3558 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3559 * unconditionally check_prempt_curr() after an enqueue (which may have
3560 * lead to a throttle). This both saves work and prevents false
3561 * next-buddy nomination below.
3562 */
3563 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3564 return;
3565
2f36825b 3566 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3567 set_next_buddy(pse);
2f36825b
VP
3568 next_buddy_marked = 1;
3569 }
57fdc26d 3570
aec0a514
BR
3571 /*
3572 * We can come here with TIF_NEED_RESCHED already set from new task
3573 * wake up path.
5238cdd3
PT
3574 *
3575 * Note: this also catches the edge-case of curr being in a throttled
3576 * group (e.g. via set_curr_task), since update_curr() (in the
3577 * enqueue of curr) will have resulted in resched being set. This
3578 * prevents us from potentially nominating it as a false LAST_BUDDY
3579 * below.
aec0a514
BR
3580 */
3581 if (test_tsk_need_resched(curr))
3582 return;
3583
a2f5c9ab
DH
3584 /* Idle tasks are by definition preempted by non-idle tasks. */
3585 if (unlikely(curr->policy == SCHED_IDLE) &&
3586 likely(p->policy != SCHED_IDLE))
3587 goto preempt;
3588
91c234b4 3589 /*
a2f5c9ab
DH
3590 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3591 * is driven by the tick):
91c234b4 3592 */
8ed92e51 3593 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3594 return;
bf0f6f24 3595
464b7527 3596 find_matching_se(&se, &pse);
9bbd7374 3597 update_curr(cfs_rq_of(se));
002f128b 3598 BUG_ON(!pse);
2f36825b
VP
3599 if (wakeup_preempt_entity(se, pse) == 1) {
3600 /*
3601 * Bias pick_next to pick the sched entity that is
3602 * triggering this preemption.
3603 */
3604 if (!next_buddy_marked)
3605 set_next_buddy(pse);
3a7e73a2 3606 goto preempt;
2f36825b 3607 }
464b7527 3608
3a7e73a2 3609 return;
a65ac745 3610
3a7e73a2
PZ
3611preempt:
3612 resched_task(curr);
3613 /*
3614 * Only set the backward buddy when the current task is still
3615 * on the rq. This can happen when a wakeup gets interleaved
3616 * with schedule on the ->pre_schedule() or idle_balance()
3617 * point, either of which can * drop the rq lock.
3618 *
3619 * Also, during early boot the idle thread is in the fair class,
3620 * for obvious reasons its a bad idea to schedule back to it.
3621 */
3622 if (unlikely(!se->on_rq || curr == rq->idle))
3623 return;
3624
3625 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3626 set_last_buddy(se);
bf0f6f24
IM
3627}
3628
fb8d4724 3629static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3630{
8f4d37ec 3631 struct task_struct *p;
bf0f6f24
IM
3632 struct cfs_rq *cfs_rq = &rq->cfs;
3633 struct sched_entity *se;
3634
36ace27e 3635 if (!cfs_rq->nr_running)
bf0f6f24
IM
3636 return NULL;
3637
3638 do {
9948f4b2 3639 se = pick_next_entity(cfs_rq);
f4b6755f 3640 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3641 cfs_rq = group_cfs_rq(se);
3642 } while (cfs_rq);
3643
8f4d37ec 3644 p = task_of(se);
b39e66ea
MG
3645 if (hrtick_enabled(rq))
3646 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3647
3648 return p;
bf0f6f24
IM
3649}
3650
3651/*
3652 * Account for a descheduled task:
3653 */
31ee529c 3654static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3655{
3656 struct sched_entity *se = &prev->se;
3657 struct cfs_rq *cfs_rq;
3658
3659 for_each_sched_entity(se) {
3660 cfs_rq = cfs_rq_of(se);
ab6cde26 3661 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3662 }
3663}
3664
ac53db59
RR
3665/*
3666 * sched_yield() is very simple
3667 *
3668 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3669 */
3670static void yield_task_fair(struct rq *rq)
3671{
3672 struct task_struct *curr = rq->curr;
3673 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3674 struct sched_entity *se = &curr->se;
3675
3676 /*
3677 * Are we the only task in the tree?
3678 */
3679 if (unlikely(rq->nr_running == 1))
3680 return;
3681
3682 clear_buddies(cfs_rq, se);
3683
3684 if (curr->policy != SCHED_BATCH) {
3685 update_rq_clock(rq);
3686 /*
3687 * Update run-time statistics of the 'current'.
3688 */
3689 update_curr(cfs_rq);
916671c0
MG
3690 /*
3691 * Tell update_rq_clock() that we've just updated,
3692 * so we don't do microscopic update in schedule()
3693 * and double the fastpath cost.
3694 */
3695 rq->skip_clock_update = 1;
ac53db59
RR
3696 }
3697
3698 set_skip_buddy(se);
3699}
3700
d95f4122
MG
3701static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3702{
3703 struct sched_entity *se = &p->se;
3704
5238cdd3
PT
3705 /* throttled hierarchies are not runnable */
3706 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3707 return false;
3708
3709 /* Tell the scheduler that we'd really like pse to run next. */
3710 set_next_buddy(se);
3711
d95f4122
MG
3712 yield_task_fair(rq);
3713
3714 return true;
3715}
3716
681f3e68 3717#ifdef CONFIG_SMP
bf0f6f24 3718/**************************************************
e9c84cb8
PZ
3719 * Fair scheduling class load-balancing methods.
3720 *
3721 * BASICS
3722 *
3723 * The purpose of load-balancing is to achieve the same basic fairness the
3724 * per-cpu scheduler provides, namely provide a proportional amount of compute
3725 * time to each task. This is expressed in the following equation:
3726 *
3727 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3728 *
3729 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3730 * W_i,0 is defined as:
3731 *
3732 * W_i,0 = \Sum_j w_i,j (2)
3733 *
3734 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3735 * is derived from the nice value as per prio_to_weight[].
3736 *
3737 * The weight average is an exponential decay average of the instantaneous
3738 * weight:
3739 *
3740 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3741 *
3742 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3743 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3744 * can also include other factors [XXX].
3745 *
3746 * To achieve this balance we define a measure of imbalance which follows
3747 * directly from (1):
3748 *
3749 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3750 *
3751 * We them move tasks around to minimize the imbalance. In the continuous
3752 * function space it is obvious this converges, in the discrete case we get
3753 * a few fun cases generally called infeasible weight scenarios.
3754 *
3755 * [XXX expand on:
3756 * - infeasible weights;
3757 * - local vs global optima in the discrete case. ]
3758 *
3759 *
3760 * SCHED DOMAINS
3761 *
3762 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3763 * for all i,j solution, we create a tree of cpus that follows the hardware
3764 * topology where each level pairs two lower groups (or better). This results
3765 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3766 * tree to only the first of the previous level and we decrease the frequency
3767 * of load-balance at each level inv. proportional to the number of cpus in
3768 * the groups.
3769 *
3770 * This yields:
3771 *
3772 * log_2 n 1 n
3773 * \Sum { --- * --- * 2^i } = O(n) (5)
3774 * i = 0 2^i 2^i
3775 * `- size of each group
3776 * | | `- number of cpus doing load-balance
3777 * | `- freq
3778 * `- sum over all levels
3779 *
3780 * Coupled with a limit on how many tasks we can migrate every balance pass,
3781 * this makes (5) the runtime complexity of the balancer.
3782 *
3783 * An important property here is that each CPU is still (indirectly) connected
3784 * to every other cpu in at most O(log n) steps:
3785 *
3786 * The adjacency matrix of the resulting graph is given by:
3787 *
3788 * log_2 n
3789 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3790 * k = 0
3791 *
3792 * And you'll find that:
3793 *
3794 * A^(log_2 n)_i,j != 0 for all i,j (7)
3795 *
3796 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3797 * The task movement gives a factor of O(m), giving a convergence complexity
3798 * of:
3799 *
3800 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3801 *
3802 *
3803 * WORK CONSERVING
3804 *
3805 * In order to avoid CPUs going idle while there's still work to do, new idle
3806 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3807 * tree itself instead of relying on other CPUs to bring it work.
3808 *
3809 * This adds some complexity to both (5) and (8) but it reduces the total idle
3810 * time.
3811 *
3812 * [XXX more?]
3813 *
3814 *
3815 * CGROUPS
3816 *
3817 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3818 *
3819 * s_k,i
3820 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3821 * S_k
3822 *
3823 * Where
3824 *
3825 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3826 *
3827 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3828 *
3829 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3830 * property.
3831 *
3832 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3833 * rewrite all of this once again.]
3834 */
bf0f6f24 3835
ed387b78
HS
3836static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3837
ddcdf6e7 3838#define LBF_ALL_PINNED 0x01
367456c7 3839#define LBF_NEED_BREAK 0x02
88b8dac0 3840#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3841
3842struct lb_env {
3843 struct sched_domain *sd;
3844
ddcdf6e7 3845 struct rq *src_rq;
85c1e7da 3846 int src_cpu;
ddcdf6e7
PZ
3847
3848 int dst_cpu;
3849 struct rq *dst_rq;
3850
88b8dac0
SV
3851 struct cpumask *dst_grpmask;
3852 int new_dst_cpu;
ddcdf6e7 3853 enum cpu_idle_type idle;
bd939f45 3854 long imbalance;
b9403130
MW
3855 /* The set of CPUs under consideration for load-balancing */
3856 struct cpumask *cpus;
3857
ddcdf6e7 3858 unsigned int flags;
367456c7
PZ
3859
3860 unsigned int loop;
3861 unsigned int loop_break;
3862 unsigned int loop_max;
ddcdf6e7
PZ
3863};
3864
1e3c88bd 3865/*
ddcdf6e7 3866 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3867 * Both runqueues must be locked.
3868 */
ddcdf6e7 3869static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3870{
ddcdf6e7
PZ
3871 deactivate_task(env->src_rq, p, 0);
3872 set_task_cpu(p, env->dst_cpu);
3873 activate_task(env->dst_rq, p, 0);
3874 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3875}
3876
029632fb
PZ
3877/*
3878 * Is this task likely cache-hot:
3879 */
3880static int
3881task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3882{
3883 s64 delta;
3884
3885 if (p->sched_class != &fair_sched_class)
3886 return 0;
3887
3888 if (unlikely(p->policy == SCHED_IDLE))
3889 return 0;
3890
3891 /*
3892 * Buddy candidates are cache hot:
3893 */
3894 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3895 (&p->se == cfs_rq_of(&p->se)->next ||
3896 &p->se == cfs_rq_of(&p->se)->last))
3897 return 1;
3898
3899 if (sysctl_sched_migration_cost == -1)
3900 return 1;
3901 if (sysctl_sched_migration_cost == 0)
3902 return 0;
3903
3904 delta = now - p->se.exec_start;
3905
3906 return delta < (s64)sysctl_sched_migration_cost;
3907}
3908
1e3c88bd
PZ
3909/*
3910 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3911 */
3912static
8e45cb54 3913int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3914{
3915 int tsk_cache_hot = 0;
3916 /*
3917 * We do not migrate tasks that are:
d3198084 3918 * 1) throttled_lb_pair, or
1e3c88bd 3919 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
3920 * 3) running (obviously), or
3921 * 4) are cache-hot on their current CPU.
1e3c88bd 3922 */
d3198084
JK
3923 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3924 return 0;
3925
ddcdf6e7 3926 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 3927 int cpu;
88b8dac0 3928
41acab88 3929 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3930
3931 /*
3932 * Remember if this task can be migrated to any other cpu in
3933 * our sched_group. We may want to revisit it if we couldn't
3934 * meet load balance goals by pulling other tasks on src_cpu.
3935 *
3936 * Also avoid computing new_dst_cpu if we have already computed
3937 * one in current iteration.
3938 */
3939 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3940 return 0;
3941
e02e60c1
JK
3942 /* Prevent to re-select dst_cpu via env's cpus */
3943 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3944 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3945 env->flags |= LBF_SOME_PINNED;
3946 env->new_dst_cpu = cpu;
3947 break;
3948 }
88b8dac0 3949 }
e02e60c1 3950
1e3c88bd
PZ
3951 return 0;
3952 }
88b8dac0
SV
3953
3954 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3955 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3956
ddcdf6e7 3957 if (task_running(env->src_rq, p)) {
41acab88 3958 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3959 return 0;
3960 }
3961
3962 /*
3963 * Aggressive migration if:
3964 * 1) task is cache cold, or
3965 * 2) too many balance attempts have failed.
3966 */
3967
78becc27 3968 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
1e3c88bd 3969 if (!tsk_cache_hot ||
8e45cb54 3970 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 3971
1e3c88bd 3972 if (tsk_cache_hot) {
8e45cb54 3973 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3974 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 3975 }
4e2dcb73 3976
1e3c88bd
PZ
3977 return 1;
3978 }
3979
4e2dcb73
ZH
3980 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3981 return 0;
1e3c88bd
PZ
3982}
3983
897c395f
PZ
3984/*
3985 * move_one_task tries to move exactly one task from busiest to this_rq, as
3986 * part of active balancing operations within "domain".
3987 * Returns 1 if successful and 0 otherwise.
3988 *
3989 * Called with both runqueues locked.
3990 */
8e45cb54 3991static int move_one_task(struct lb_env *env)
897c395f
PZ
3992{
3993 struct task_struct *p, *n;
897c395f 3994
367456c7 3995 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
3996 if (!can_migrate_task(p, env))
3997 continue;
897c395f 3998
367456c7
PZ
3999 move_task(p, env);
4000 /*
4001 * Right now, this is only the second place move_task()
4002 * is called, so we can safely collect move_task()
4003 * stats here rather than inside move_task().
4004 */
4005 schedstat_inc(env->sd, lb_gained[env->idle]);
4006 return 1;
897c395f 4007 }
897c395f
PZ
4008 return 0;
4009}
4010
367456c7
PZ
4011static unsigned long task_h_load(struct task_struct *p);
4012
eb95308e
PZ
4013static const unsigned int sched_nr_migrate_break = 32;
4014
5d6523eb 4015/*
bd939f45 4016 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4017 * this_rq, as part of a balancing operation within domain "sd".
4018 * Returns 1 if successful and 0 otherwise.
4019 *
4020 * Called with both runqueues locked.
4021 */
4022static int move_tasks(struct lb_env *env)
1e3c88bd 4023{
5d6523eb
PZ
4024 struct list_head *tasks = &env->src_rq->cfs_tasks;
4025 struct task_struct *p;
367456c7
PZ
4026 unsigned long load;
4027 int pulled = 0;
1e3c88bd 4028
bd939f45 4029 if (env->imbalance <= 0)
5d6523eb 4030 return 0;
1e3c88bd 4031
5d6523eb
PZ
4032 while (!list_empty(tasks)) {
4033 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4034
367456c7
PZ
4035 env->loop++;
4036 /* We've more or less seen every task there is, call it quits */
5d6523eb 4037 if (env->loop > env->loop_max)
367456c7 4038 break;
5d6523eb
PZ
4039
4040 /* take a breather every nr_migrate tasks */
367456c7 4041 if (env->loop > env->loop_break) {
eb95308e 4042 env->loop_break += sched_nr_migrate_break;
8e45cb54 4043 env->flags |= LBF_NEED_BREAK;
ee00e66f 4044 break;
a195f004 4045 }
1e3c88bd 4046
d3198084 4047 if (!can_migrate_task(p, env))
367456c7
PZ
4048 goto next;
4049
4050 load = task_h_load(p);
5d6523eb 4051
eb95308e 4052 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4053 goto next;
4054
bd939f45 4055 if ((load / 2) > env->imbalance)
367456c7 4056 goto next;
1e3c88bd 4057
ddcdf6e7 4058 move_task(p, env);
ee00e66f 4059 pulled++;
bd939f45 4060 env->imbalance -= load;
1e3c88bd
PZ
4061
4062#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4063 /*
4064 * NEWIDLE balancing is a source of latency, so preemptible
4065 * kernels will stop after the first task is pulled to minimize
4066 * the critical section.
4067 */
5d6523eb 4068 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4069 break;
1e3c88bd
PZ
4070#endif
4071
ee00e66f
PZ
4072 /*
4073 * We only want to steal up to the prescribed amount of
4074 * weighted load.
4075 */
bd939f45 4076 if (env->imbalance <= 0)
ee00e66f 4077 break;
367456c7
PZ
4078
4079 continue;
4080next:
5d6523eb 4081 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4082 }
5d6523eb 4083
1e3c88bd 4084 /*
ddcdf6e7
PZ
4085 * Right now, this is one of only two places move_task() is called,
4086 * so we can safely collect move_task() stats here rather than
4087 * inside move_task().
1e3c88bd 4088 */
8e45cb54 4089 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4090
5d6523eb 4091 return pulled;
1e3c88bd
PZ
4092}
4093
230059de 4094#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4095/*
4096 * update tg->load_weight by folding this cpu's load_avg
4097 */
48a16753 4098static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4099{
48a16753
PT
4100 struct sched_entity *se = tg->se[cpu];
4101 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4102
48a16753
PT
4103 /* throttled entities do not contribute to load */
4104 if (throttled_hierarchy(cfs_rq))
4105 return;
9e3081ca 4106
aff3e498 4107 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4108
82958366
PT
4109 if (se) {
4110 update_entity_load_avg(se, 1);
4111 /*
4112 * We pivot on our runnable average having decayed to zero for
4113 * list removal. This generally implies that all our children
4114 * have also been removed (modulo rounding error or bandwidth
4115 * control); however, such cases are rare and we can fix these
4116 * at enqueue.
4117 *
4118 * TODO: fix up out-of-order children on enqueue.
4119 */
4120 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4121 list_del_leaf_cfs_rq(cfs_rq);
4122 } else {
48a16753 4123 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4124 update_rq_runnable_avg(rq, rq->nr_running);
4125 }
9e3081ca
PZ
4126}
4127
48a16753 4128static void update_blocked_averages(int cpu)
9e3081ca 4129{
9e3081ca 4130 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4131 struct cfs_rq *cfs_rq;
4132 unsigned long flags;
9e3081ca 4133
48a16753
PT
4134 raw_spin_lock_irqsave(&rq->lock, flags);
4135 update_rq_clock(rq);
9763b67f
PZ
4136 /*
4137 * Iterates the task_group tree in a bottom up fashion, see
4138 * list_add_leaf_cfs_rq() for details.
4139 */
64660c86 4140 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4141 /*
4142 * Note: We may want to consider periodically releasing
4143 * rq->lock about these updates so that creating many task
4144 * groups does not result in continually extending hold time.
4145 */
4146 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4147 }
48a16753
PT
4148
4149 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4150}
4151
9763b67f
PZ
4152/*
4153 * Compute the cpu's hierarchical load factor for each task group.
4154 * This needs to be done in a top-down fashion because the load of a child
4155 * group is a fraction of its parents load.
4156 */
4157static int tg_load_down(struct task_group *tg, void *data)
4158{
4159 unsigned long load;
4160 long cpu = (long)data;
4161
4162 if (!tg->parent) {
4163 load = cpu_rq(cpu)->load.weight;
4164 } else {
4165 load = tg->parent->cfs_rq[cpu]->h_load;
4166 load *= tg->se[cpu]->load.weight;
4167 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4168 }
4169
4170 tg->cfs_rq[cpu]->h_load = load;
4171
4172 return 0;
4173}
4174
4175static void update_h_load(long cpu)
4176{
a35b6466
PZ
4177 struct rq *rq = cpu_rq(cpu);
4178 unsigned long now = jiffies;
4179
4180 if (rq->h_load_throttle == now)
4181 return;
4182
4183 rq->h_load_throttle = now;
4184
367456c7 4185 rcu_read_lock();
9763b67f 4186 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4187 rcu_read_unlock();
9763b67f
PZ
4188}
4189
367456c7 4190static unsigned long task_h_load(struct task_struct *p)
230059de 4191{
367456c7
PZ
4192 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4193 unsigned long load;
230059de 4194
367456c7
PZ
4195 load = p->se.load.weight;
4196 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 4197
367456c7 4198 return load;
230059de
PZ
4199}
4200#else
48a16753 4201static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4202{
4203}
4204
367456c7 4205static inline void update_h_load(long cpu)
230059de 4206{
230059de 4207}
230059de 4208
367456c7 4209static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4210{
367456c7 4211 return p->se.load.weight;
1e3c88bd 4212}
230059de 4213#endif
1e3c88bd 4214
1e3c88bd
PZ
4215/********** Helpers for find_busiest_group ************************/
4216/*
4217 * sd_lb_stats - Structure to store the statistics of a sched_domain
4218 * during load balancing.
4219 */
4220struct sd_lb_stats {
4221 struct sched_group *busiest; /* Busiest group in this sd */
4222 struct sched_group *this; /* Local group in this sd */
4223 unsigned long total_load; /* Total load of all groups in sd */
4224 unsigned long total_pwr; /* Total power of all groups in sd */
4225 unsigned long avg_load; /* Average load across all groups in sd */
4226
4227 /** Statistics of this group */
4228 unsigned long this_load;
4229 unsigned long this_load_per_task;
4230 unsigned long this_nr_running;
fab47622 4231 unsigned long this_has_capacity;
aae6d3dd 4232 unsigned int this_idle_cpus;
1e3c88bd
PZ
4233
4234 /* Statistics of the busiest group */
aae6d3dd 4235 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4236 unsigned long max_load;
4237 unsigned long busiest_load_per_task;
4238 unsigned long busiest_nr_running;
dd5feea1 4239 unsigned long busiest_group_capacity;
fab47622 4240 unsigned long busiest_has_capacity;
aae6d3dd 4241 unsigned int busiest_group_weight;
1e3c88bd
PZ
4242
4243 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4244};
4245
4246/*
4247 * sg_lb_stats - stats of a sched_group required for load_balancing
4248 */
4249struct sg_lb_stats {
4250 unsigned long avg_load; /*Avg load across the CPUs of the group */
4251 unsigned long group_load; /* Total load over the CPUs of the group */
4252 unsigned long sum_nr_running; /* Nr tasks running in the group */
4253 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4254 unsigned long group_capacity;
aae6d3dd
SS
4255 unsigned long idle_cpus;
4256 unsigned long group_weight;
1e3c88bd 4257 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4258 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4259};
4260
1e3c88bd
PZ
4261/**
4262 * get_sd_load_idx - Obtain the load index for a given sched domain.
4263 * @sd: The sched_domain whose load_idx is to be obtained.
4264 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4265 */
4266static inline int get_sd_load_idx(struct sched_domain *sd,
4267 enum cpu_idle_type idle)
4268{
4269 int load_idx;
4270
4271 switch (idle) {
4272 case CPU_NOT_IDLE:
4273 load_idx = sd->busy_idx;
4274 break;
4275
4276 case CPU_NEWLY_IDLE:
4277 load_idx = sd->newidle_idx;
4278 break;
4279 default:
4280 load_idx = sd->idle_idx;
4281 break;
4282 }
4283
4284 return load_idx;
4285}
4286
15f803c9 4287static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4288{
1399fa78 4289 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4290}
4291
4292unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4293{
4294 return default_scale_freq_power(sd, cpu);
4295}
4296
15f803c9 4297static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4298{
669c55e9 4299 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4300 unsigned long smt_gain = sd->smt_gain;
4301
4302 smt_gain /= weight;
4303
4304 return smt_gain;
4305}
4306
4307unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4308{
4309 return default_scale_smt_power(sd, cpu);
4310}
4311
15f803c9 4312static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4313{
4314 struct rq *rq = cpu_rq(cpu);
b654f7de 4315 u64 total, available, age_stamp, avg;
1e3c88bd 4316
b654f7de
PZ
4317 /*
4318 * Since we're reading these variables without serialization make sure
4319 * we read them once before doing sanity checks on them.
4320 */
4321 age_stamp = ACCESS_ONCE(rq->age_stamp);
4322 avg = ACCESS_ONCE(rq->rt_avg);
4323
78becc27 4324 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 4325
b654f7de 4326 if (unlikely(total < avg)) {
aa483808
VP
4327 /* Ensures that power won't end up being negative */
4328 available = 0;
4329 } else {
b654f7de 4330 available = total - avg;
aa483808 4331 }
1e3c88bd 4332
1399fa78
NR
4333 if (unlikely((s64)total < SCHED_POWER_SCALE))
4334 total = SCHED_POWER_SCALE;
1e3c88bd 4335
1399fa78 4336 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4337
4338 return div_u64(available, total);
4339}
4340
4341static void update_cpu_power(struct sched_domain *sd, int cpu)
4342{
669c55e9 4343 unsigned long weight = sd->span_weight;
1399fa78 4344 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4345 struct sched_group *sdg = sd->groups;
4346
1e3c88bd
PZ
4347 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4348 if (sched_feat(ARCH_POWER))
4349 power *= arch_scale_smt_power(sd, cpu);
4350 else
4351 power *= default_scale_smt_power(sd, cpu);
4352
1399fa78 4353 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4354 }
4355
9c3f75cb 4356 sdg->sgp->power_orig = power;
9d5efe05
SV
4357
4358 if (sched_feat(ARCH_POWER))
4359 power *= arch_scale_freq_power(sd, cpu);
4360 else
4361 power *= default_scale_freq_power(sd, cpu);
4362
1399fa78 4363 power >>= SCHED_POWER_SHIFT;
9d5efe05 4364
1e3c88bd 4365 power *= scale_rt_power(cpu);
1399fa78 4366 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4367
4368 if (!power)
4369 power = 1;
4370
e51fd5e2 4371 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4372 sdg->sgp->power = power;
1e3c88bd
PZ
4373}
4374
029632fb 4375void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4376{
4377 struct sched_domain *child = sd->child;
4378 struct sched_group *group, *sdg = sd->groups;
4379 unsigned long power;
4ec4412e
VG
4380 unsigned long interval;
4381
4382 interval = msecs_to_jiffies(sd->balance_interval);
4383 interval = clamp(interval, 1UL, max_load_balance_interval);
4384 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4385
4386 if (!child) {
4387 update_cpu_power(sd, cpu);
4388 return;
4389 }
4390
4391 power = 0;
4392
74a5ce20
PZ
4393 if (child->flags & SD_OVERLAP) {
4394 /*
4395 * SD_OVERLAP domains cannot assume that child groups
4396 * span the current group.
4397 */
4398
4399 for_each_cpu(cpu, sched_group_cpus(sdg))
4400 power += power_of(cpu);
4401 } else {
4402 /*
4403 * !SD_OVERLAP domains can assume that child groups
4404 * span the current group.
4405 */
4406
4407 group = child->groups;
4408 do {
4409 power += group->sgp->power;
4410 group = group->next;
4411 } while (group != child->groups);
4412 }
1e3c88bd 4413
c3decf0d 4414 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4415}
4416
9d5efe05
SV
4417/*
4418 * Try and fix up capacity for tiny siblings, this is needed when
4419 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4420 * which on its own isn't powerful enough.
4421 *
4422 * See update_sd_pick_busiest() and check_asym_packing().
4423 */
4424static inline int
4425fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4426{
4427 /*
1399fa78 4428 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4429 */
a6c75f2f 4430 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4431 return 0;
4432
4433 /*
4434 * If ~90% of the cpu_power is still there, we're good.
4435 */
9c3f75cb 4436 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4437 return 1;
4438
4439 return 0;
4440}
4441
1e3c88bd
PZ
4442/**
4443 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4444 * @env: The load balancing environment.
1e3c88bd 4445 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4446 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4447 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4448 * @balance: Should we balance.
4449 * @sgs: variable to hold the statistics for this group.
4450 */
bd939f45
PZ
4451static inline void update_sg_lb_stats(struct lb_env *env,
4452 struct sched_group *group, int load_idx,
b9403130 4453 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4454{
e44bc5c5
PZ
4455 unsigned long nr_running, max_nr_running, min_nr_running;
4456 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4457 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4458 unsigned long avg_load_per_task = 0;
bd939f45 4459 int i;
1e3c88bd 4460
871e35bc 4461 if (local_group)
c1174876 4462 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4463
4464 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4465 max_cpu_load = 0;
4466 min_cpu_load = ~0UL;
2582f0eb 4467 max_nr_running = 0;
e44bc5c5 4468 min_nr_running = ~0UL;
1e3c88bd 4469
b9403130 4470 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4471 struct rq *rq = cpu_rq(i);
4472
e44bc5c5
PZ
4473 nr_running = rq->nr_running;
4474
1e3c88bd
PZ
4475 /* Bias balancing toward cpus of our domain */
4476 if (local_group) {
c1174876
PZ
4477 if (idle_cpu(i) && !first_idle_cpu &&
4478 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4479 first_idle_cpu = 1;
1e3c88bd
PZ
4480 balance_cpu = i;
4481 }
04f733b4
PZ
4482
4483 load = target_load(i, load_idx);
1e3c88bd
PZ
4484 } else {
4485 load = source_load(i, load_idx);
e44bc5c5 4486 if (load > max_cpu_load)
1e3c88bd
PZ
4487 max_cpu_load = load;
4488 if (min_cpu_load > load)
4489 min_cpu_load = load;
e44bc5c5
PZ
4490
4491 if (nr_running > max_nr_running)
4492 max_nr_running = nr_running;
4493 if (min_nr_running > nr_running)
4494 min_nr_running = nr_running;
1e3c88bd
PZ
4495 }
4496
4497 sgs->group_load += load;
e44bc5c5 4498 sgs->sum_nr_running += nr_running;
1e3c88bd 4499 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4500 if (idle_cpu(i))
4501 sgs->idle_cpus++;
1e3c88bd
PZ
4502 }
4503
4504 /*
4505 * First idle cpu or the first cpu(busiest) in this sched group
4506 * is eligible for doing load balancing at this and above
4507 * domains. In the newly idle case, we will allow all the cpu's
4508 * to do the newly idle load balance.
4509 */
4ec4412e 4510 if (local_group) {
bd939f45 4511 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4512 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4513 *balance = 0;
4514 return;
4515 }
bd939f45 4516 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4517 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4518 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4519 }
4520
4521 /* Adjust by relative CPU power of the group */
9c3f75cb 4522 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4523
1e3c88bd
PZ
4524 /*
4525 * Consider the group unbalanced when the imbalance is larger
866ab43e 4526 * than the average weight of a task.
1e3c88bd
PZ
4527 *
4528 * APZ: with cgroup the avg task weight can vary wildly and
4529 * might not be a suitable number - should we keep a
4530 * normalized nr_running number somewhere that negates
4531 * the hierarchy?
4532 */
dd5feea1
SS
4533 if (sgs->sum_nr_running)
4534 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4535
e44bc5c5
PZ
4536 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4537 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4538 sgs->group_imb = 1;
4539
9c3f75cb 4540 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4541 SCHED_POWER_SCALE);
9d5efe05 4542 if (!sgs->group_capacity)
bd939f45 4543 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4544 sgs->group_weight = group->group_weight;
fab47622
NR
4545
4546 if (sgs->group_capacity > sgs->sum_nr_running)
4547 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4548}
4549
532cb4c4
MN
4550/**
4551 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4552 * @env: The load balancing environment.
532cb4c4
MN
4553 * @sds: sched_domain statistics
4554 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4555 * @sgs: sched_group statistics
532cb4c4
MN
4556 *
4557 * Determine if @sg is a busier group than the previously selected
4558 * busiest group.
4559 */
bd939f45 4560static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4561 struct sd_lb_stats *sds,
4562 struct sched_group *sg,
bd939f45 4563 struct sg_lb_stats *sgs)
532cb4c4
MN
4564{
4565 if (sgs->avg_load <= sds->max_load)
4566 return false;
4567
4568 if (sgs->sum_nr_running > sgs->group_capacity)
4569 return true;
4570
4571 if (sgs->group_imb)
4572 return true;
4573
4574 /*
4575 * ASYM_PACKING needs to move all the work to the lowest
4576 * numbered CPUs in the group, therefore mark all groups
4577 * higher than ourself as busy.
4578 */
bd939f45
PZ
4579 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4580 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4581 if (!sds->busiest)
4582 return true;
4583
4584 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4585 return true;
4586 }
4587
4588 return false;
4589}
4590
1e3c88bd 4591/**
461819ac 4592 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4593 * @env: The load balancing environment.
1e3c88bd
PZ
4594 * @balance: Should we balance.
4595 * @sds: variable to hold the statistics for this sched_domain.
4596 */
bd939f45 4597static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4598 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4599{
bd939f45
PZ
4600 struct sched_domain *child = env->sd->child;
4601 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4602 struct sg_lb_stats sgs;
4603 int load_idx, prefer_sibling = 0;
4604
4605 if (child && child->flags & SD_PREFER_SIBLING)
4606 prefer_sibling = 1;
4607
bd939f45 4608 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4609
4610 do {
4611 int local_group;
4612
bd939f45 4613 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4614 memset(&sgs, 0, sizeof(sgs));
b9403130 4615 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4616
8f190fb3 4617 if (local_group && !(*balance))
1e3c88bd
PZ
4618 return;
4619
4620 sds->total_load += sgs.group_load;
9c3f75cb 4621 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4622
4623 /*
4624 * In case the child domain prefers tasks go to siblings
532cb4c4 4625 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4626 * and move all the excess tasks away. We lower the capacity
4627 * of a group only if the local group has the capacity to fit
4628 * these excess tasks, i.e. nr_running < group_capacity. The
4629 * extra check prevents the case where you always pull from the
4630 * heaviest group when it is already under-utilized (possible
4631 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4632 */
75dd321d 4633 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4634 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4635
4636 if (local_group) {
4637 sds->this_load = sgs.avg_load;
532cb4c4 4638 sds->this = sg;
1e3c88bd
PZ
4639 sds->this_nr_running = sgs.sum_nr_running;
4640 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4641 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4642 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4643 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4644 sds->max_load = sgs.avg_load;
532cb4c4 4645 sds->busiest = sg;
1e3c88bd 4646 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4647 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4648 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4649 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4650 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4651 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4652 sds->group_imb = sgs.group_imb;
4653 }
4654
532cb4c4 4655 sg = sg->next;
bd939f45 4656 } while (sg != env->sd->groups);
532cb4c4
MN
4657}
4658
532cb4c4
MN
4659/**
4660 * check_asym_packing - Check to see if the group is packed into the
4661 * sched doman.
4662 *
4663 * This is primarily intended to used at the sibling level. Some
4664 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4665 * case of POWER7, it can move to lower SMT modes only when higher
4666 * threads are idle. When in lower SMT modes, the threads will
4667 * perform better since they share less core resources. Hence when we
4668 * have idle threads, we want them to be the higher ones.
4669 *
4670 * This packing function is run on idle threads. It checks to see if
4671 * the busiest CPU in this domain (core in the P7 case) has a higher
4672 * CPU number than the packing function is being run on. Here we are
4673 * assuming lower CPU number will be equivalent to lower a SMT thread
4674 * number.
4675 *
b6b12294
MN
4676 * Returns 1 when packing is required and a task should be moved to
4677 * this CPU. The amount of the imbalance is returned in *imbalance.
4678 *
cd96891d 4679 * @env: The load balancing environment.
532cb4c4 4680 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4681 */
bd939f45 4682static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4683{
4684 int busiest_cpu;
4685
bd939f45 4686 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4687 return 0;
4688
4689 if (!sds->busiest)
4690 return 0;
4691
4692 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4693 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4694 return 0;
4695
bd939f45
PZ
4696 env->imbalance = DIV_ROUND_CLOSEST(
4697 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4698
532cb4c4 4699 return 1;
1e3c88bd
PZ
4700}
4701
4702/**
4703 * fix_small_imbalance - Calculate the minor imbalance that exists
4704 * amongst the groups of a sched_domain, during
4705 * load balancing.
cd96891d 4706 * @env: The load balancing environment.
1e3c88bd 4707 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4708 */
bd939f45
PZ
4709static inline
4710void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4711{
4712 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4713 unsigned int imbn = 2;
dd5feea1 4714 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4715
4716 if (sds->this_nr_running) {
4717 sds->this_load_per_task /= sds->this_nr_running;
4718 if (sds->busiest_load_per_task >
4719 sds->this_load_per_task)
4720 imbn = 1;
bd939f45 4721 } else {
1e3c88bd 4722 sds->this_load_per_task =
bd939f45
PZ
4723 cpu_avg_load_per_task(env->dst_cpu);
4724 }
1e3c88bd 4725
dd5feea1 4726 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4727 * SCHED_POWER_SCALE;
9c3f75cb 4728 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4729
4730 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4731 (scaled_busy_load_per_task * imbn)) {
bd939f45 4732 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4733 return;
4734 }
4735
4736 /*
4737 * OK, we don't have enough imbalance to justify moving tasks,
4738 * however we may be able to increase total CPU power used by
4739 * moving them.
4740 */
4741
9c3f75cb 4742 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4743 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4744 pwr_now += sds->this->sgp->power *
1e3c88bd 4745 min(sds->this_load_per_task, sds->this_load);
1399fa78 4746 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4747
4748 /* Amount of load we'd subtract */
1399fa78 4749 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4750 sds->busiest->sgp->power;
1e3c88bd 4751 if (sds->max_load > tmp)
9c3f75cb 4752 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4753 min(sds->busiest_load_per_task, sds->max_load - tmp);
4754
4755 /* Amount of load we'd add */
9c3f75cb 4756 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4757 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4758 tmp = (sds->max_load * sds->busiest->sgp->power) /
4759 sds->this->sgp->power;
1e3c88bd 4760 else
1399fa78 4761 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4762 sds->this->sgp->power;
4763 pwr_move += sds->this->sgp->power *
1e3c88bd 4764 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4765 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4766
4767 /* Move if we gain throughput */
4768 if (pwr_move > pwr_now)
bd939f45 4769 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4770}
4771
4772/**
4773 * calculate_imbalance - Calculate the amount of imbalance present within the
4774 * groups of a given sched_domain during load balance.
bd939f45 4775 * @env: load balance environment
1e3c88bd 4776 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4777 */
bd939f45 4778static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4779{
dd5feea1
SS
4780 unsigned long max_pull, load_above_capacity = ~0UL;
4781
4782 sds->busiest_load_per_task /= sds->busiest_nr_running;
4783 if (sds->group_imb) {
4784 sds->busiest_load_per_task =
4785 min(sds->busiest_load_per_task, sds->avg_load);
4786 }
4787
1e3c88bd
PZ
4788 /*
4789 * In the presence of smp nice balancing, certain scenarios can have
4790 * max load less than avg load(as we skip the groups at or below
4791 * its cpu_power, while calculating max_load..)
4792 */
4793 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4794 env->imbalance = 0;
4795 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4796 }
4797
dd5feea1
SS
4798 if (!sds->group_imb) {
4799 /*
4800 * Don't want to pull so many tasks that a group would go idle.
4801 */
4802 load_above_capacity = (sds->busiest_nr_running -
4803 sds->busiest_group_capacity);
4804
1399fa78 4805 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4806
9c3f75cb 4807 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4808 }
4809
4810 /*
4811 * We're trying to get all the cpus to the average_load, so we don't
4812 * want to push ourselves above the average load, nor do we wish to
4813 * reduce the max loaded cpu below the average load. At the same time,
4814 * we also don't want to reduce the group load below the group capacity
4815 * (so that we can implement power-savings policies etc). Thus we look
4816 * for the minimum possible imbalance.
4817 * Be careful of negative numbers as they'll appear as very large values
4818 * with unsigned longs.
4819 */
4820 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4821
4822 /* How much load to actually move to equalise the imbalance */
bd939f45 4823 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4824 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4825 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4826
4827 /*
4828 * if *imbalance is less than the average load per runnable task
25985edc 4829 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4830 * a think about bumping its value to force at least one task to be
4831 * moved
4832 */
bd939f45
PZ
4833 if (env->imbalance < sds->busiest_load_per_task)
4834 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4835
4836}
fab47622 4837
1e3c88bd
PZ
4838/******* find_busiest_group() helpers end here *********************/
4839
4840/**
4841 * find_busiest_group - Returns the busiest group within the sched_domain
4842 * if there is an imbalance. If there isn't an imbalance, and
4843 * the user has opted for power-savings, it returns a group whose
4844 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4845 * such a group exists.
4846 *
4847 * Also calculates the amount of weighted load which should be moved
4848 * to restore balance.
4849 *
cd96891d 4850 * @env: The load balancing environment.
1e3c88bd
PZ
4851 * @balance: Pointer to a variable indicating if this_cpu
4852 * is the appropriate cpu to perform load balancing at this_level.
4853 *
4854 * Returns: - the busiest group if imbalance exists.
4855 * - If no imbalance and user has opted for power-savings balance,
4856 * return the least loaded group whose CPUs can be
4857 * put to idle by rebalancing its tasks onto our group.
4858 */
4859static struct sched_group *
b9403130 4860find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4861{
4862 struct sd_lb_stats sds;
4863
4864 memset(&sds, 0, sizeof(sds));
4865
4866 /*
4867 * Compute the various statistics relavent for load balancing at
4868 * this level.
4869 */
b9403130 4870 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4871
cc57aa8f
PZ
4872 /*
4873 * this_cpu is not the appropriate cpu to perform load balancing at
4874 * this level.
1e3c88bd 4875 */
8f190fb3 4876 if (!(*balance))
1e3c88bd
PZ
4877 goto ret;
4878
bd939f45
PZ
4879 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4880 check_asym_packing(env, &sds))
532cb4c4
MN
4881 return sds.busiest;
4882
cc57aa8f 4883 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4884 if (!sds.busiest || sds.busiest_nr_running == 0)
4885 goto out_balanced;
4886
1399fa78 4887 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4888
866ab43e
PZ
4889 /*
4890 * If the busiest group is imbalanced the below checks don't
4891 * work because they assumes all things are equal, which typically
4892 * isn't true due to cpus_allowed constraints and the like.
4893 */
4894 if (sds.group_imb)
4895 goto force_balance;
4896
cc57aa8f 4897 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4898 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4899 !sds.busiest_has_capacity)
4900 goto force_balance;
4901
cc57aa8f
PZ
4902 /*
4903 * If the local group is more busy than the selected busiest group
4904 * don't try and pull any tasks.
4905 */
1e3c88bd
PZ
4906 if (sds.this_load >= sds.max_load)
4907 goto out_balanced;
4908
cc57aa8f
PZ
4909 /*
4910 * Don't pull any tasks if this group is already above the domain
4911 * average load.
4912 */
1e3c88bd
PZ
4913 if (sds.this_load >= sds.avg_load)
4914 goto out_balanced;
4915
bd939f45 4916 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4917 /*
4918 * This cpu is idle. If the busiest group load doesn't
4919 * have more tasks than the number of available cpu's and
4920 * there is no imbalance between this and busiest group
4921 * wrt to idle cpu's, it is balanced.
4922 */
c186fafe 4923 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4924 sds.busiest_nr_running <= sds.busiest_group_weight)
4925 goto out_balanced;
c186fafe
PZ
4926 } else {
4927 /*
4928 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4929 * imbalance_pct to be conservative.
4930 */
bd939f45 4931 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4932 goto out_balanced;
aae6d3dd 4933 }
1e3c88bd 4934
fab47622 4935force_balance:
1e3c88bd 4936 /* Looks like there is an imbalance. Compute it */
bd939f45 4937 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4938 return sds.busiest;
4939
4940out_balanced:
1e3c88bd 4941ret:
bd939f45 4942 env->imbalance = 0;
1e3c88bd
PZ
4943 return NULL;
4944}
4945
4946/*
4947 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4948 */
bd939f45 4949static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4950 struct sched_group *group)
1e3c88bd
PZ
4951{
4952 struct rq *busiest = NULL, *rq;
4953 unsigned long max_load = 0;
4954 int i;
4955
4956 for_each_cpu(i, sched_group_cpus(group)) {
4957 unsigned long power = power_of(i);
1399fa78
NR
4958 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4959 SCHED_POWER_SCALE);
1e3c88bd
PZ
4960 unsigned long wl;
4961
9d5efe05 4962 if (!capacity)
bd939f45 4963 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4964
b9403130 4965 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4966 continue;
4967
4968 rq = cpu_rq(i);
6e40f5bb 4969 wl = weighted_cpuload(i);
1e3c88bd 4970
6e40f5bb
TG
4971 /*
4972 * When comparing with imbalance, use weighted_cpuload()
4973 * which is not scaled with the cpu power.
4974 */
bd939f45 4975 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4976 continue;
4977
6e40f5bb
TG
4978 /*
4979 * For the load comparisons with the other cpu's, consider
4980 * the weighted_cpuload() scaled with the cpu power, so that
4981 * the load can be moved away from the cpu that is potentially
4982 * running at a lower capacity.
4983 */
1399fa78 4984 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4985
1e3c88bd
PZ
4986 if (wl > max_load) {
4987 max_load = wl;
4988 busiest = rq;
4989 }
4990 }
4991
4992 return busiest;
4993}
4994
4995/*
4996 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4997 * so long as it is large enough.
4998 */
4999#define MAX_PINNED_INTERVAL 512
5000
5001/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 5002DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 5003
bd939f45 5004static int need_active_balance(struct lb_env *env)
1af3ed3d 5005{
bd939f45
PZ
5006 struct sched_domain *sd = env->sd;
5007
5008 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
5009
5010 /*
5011 * ASYM_PACKING needs to force migrate tasks from busy but
5012 * higher numbered CPUs in order to pack all tasks in the
5013 * lowest numbered CPUs.
5014 */
bd939f45 5015 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 5016 return 1;
1af3ed3d
PZ
5017 }
5018
5019 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5020}
5021
969c7921
TH
5022static int active_load_balance_cpu_stop(void *data);
5023
1e3c88bd
PZ
5024/*
5025 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5026 * tasks if there is an imbalance.
5027 */
5028static int load_balance(int this_cpu, struct rq *this_rq,
5029 struct sched_domain *sd, enum cpu_idle_type idle,
5030 int *balance)
5031{
88b8dac0 5032 int ld_moved, cur_ld_moved, active_balance = 0;
1e3c88bd 5033 struct sched_group *group;
1e3c88bd
PZ
5034 struct rq *busiest;
5035 unsigned long flags;
e6252c3e 5036 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 5037
8e45cb54
PZ
5038 struct lb_env env = {
5039 .sd = sd,
ddcdf6e7
PZ
5040 .dst_cpu = this_cpu,
5041 .dst_rq = this_rq,
88b8dac0 5042 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5043 .idle = idle,
eb95308e 5044 .loop_break = sched_nr_migrate_break,
b9403130 5045 .cpus = cpus,
8e45cb54
PZ
5046 };
5047
cfc03118
JK
5048 /*
5049 * For NEWLY_IDLE load_balancing, we don't need to consider
5050 * other cpus in our group
5051 */
e02e60c1 5052 if (idle == CPU_NEWLY_IDLE)
cfc03118 5053 env.dst_grpmask = NULL;
cfc03118 5054
1e3c88bd
PZ
5055 cpumask_copy(cpus, cpu_active_mask);
5056
1e3c88bd
PZ
5057 schedstat_inc(sd, lb_count[idle]);
5058
5059redo:
b9403130 5060 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
5061
5062 if (*balance == 0)
5063 goto out_balanced;
5064
5065 if (!group) {
5066 schedstat_inc(sd, lb_nobusyg[idle]);
5067 goto out_balanced;
5068 }
5069
b9403130 5070 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5071 if (!busiest) {
5072 schedstat_inc(sd, lb_nobusyq[idle]);
5073 goto out_balanced;
5074 }
5075
78feefc5 5076 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5077
bd939f45 5078 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5079
5080 ld_moved = 0;
5081 if (busiest->nr_running > 1) {
5082 /*
5083 * Attempt to move tasks. If find_busiest_group has found
5084 * an imbalance but busiest->nr_running <= 1, the group is
5085 * still unbalanced. ld_moved simply stays zero, so it is
5086 * correctly treated as an imbalance.
5087 */
8e45cb54 5088 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5089 env.src_cpu = busiest->cpu;
5090 env.src_rq = busiest;
5091 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5092
a35b6466 5093 update_h_load(env.src_cpu);
5d6523eb 5094more_balance:
1e3c88bd 5095 local_irq_save(flags);
78feefc5 5096 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5097
5098 /*
5099 * cur_ld_moved - load moved in current iteration
5100 * ld_moved - cumulative load moved across iterations
5101 */
5102 cur_ld_moved = move_tasks(&env);
5103 ld_moved += cur_ld_moved;
78feefc5 5104 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5105 local_irq_restore(flags);
5106
5107 /*
5108 * some other cpu did the load balance for us.
5109 */
88b8dac0
SV
5110 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5111 resched_cpu(env.dst_cpu);
5112
f1cd0858
JK
5113 if (env.flags & LBF_NEED_BREAK) {
5114 env.flags &= ~LBF_NEED_BREAK;
5115 goto more_balance;
5116 }
5117
88b8dac0
SV
5118 /*
5119 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5120 * us and move them to an alternate dst_cpu in our sched_group
5121 * where they can run. The upper limit on how many times we
5122 * iterate on same src_cpu is dependent on number of cpus in our
5123 * sched_group.
5124 *
5125 * This changes load balance semantics a bit on who can move
5126 * load to a given_cpu. In addition to the given_cpu itself
5127 * (or a ilb_cpu acting on its behalf where given_cpu is
5128 * nohz-idle), we now have balance_cpu in a position to move
5129 * load to given_cpu. In rare situations, this may cause
5130 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5131 * _independently_ and at _same_ time to move some load to
5132 * given_cpu) causing exceess load to be moved to given_cpu.
5133 * This however should not happen so much in practice and
5134 * moreover subsequent load balance cycles should correct the
5135 * excess load moved.
5136 */
e02e60c1 5137 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
88b8dac0 5138
78feefc5 5139 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5140 env.dst_cpu = env.new_dst_cpu;
5141 env.flags &= ~LBF_SOME_PINNED;
5142 env.loop = 0;
5143 env.loop_break = sched_nr_migrate_break;
e02e60c1
JK
5144
5145 /* Prevent to re-select dst_cpu via env's cpus */
5146 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5147
88b8dac0
SV
5148 /*
5149 * Go back to "more_balance" rather than "redo" since we
5150 * need to continue with same src_cpu.
5151 */
5152 goto more_balance;
5153 }
1e3c88bd
PZ
5154
5155 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5156 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5157 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5158 if (!cpumask_empty(cpus)) {
5159 env.loop = 0;
5160 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5161 goto redo;
bbf18b19 5162 }
1e3c88bd
PZ
5163 goto out_balanced;
5164 }
5165 }
5166
5167 if (!ld_moved) {
5168 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5169 /*
5170 * Increment the failure counter only on periodic balance.
5171 * We do not want newidle balance, which can be very
5172 * frequent, pollute the failure counter causing
5173 * excessive cache_hot migrations and active balances.
5174 */
5175 if (idle != CPU_NEWLY_IDLE)
5176 sd->nr_balance_failed++;
1e3c88bd 5177
bd939f45 5178 if (need_active_balance(&env)) {
1e3c88bd
PZ
5179 raw_spin_lock_irqsave(&busiest->lock, flags);
5180
969c7921
TH
5181 /* don't kick the active_load_balance_cpu_stop,
5182 * if the curr task on busiest cpu can't be
5183 * moved to this_cpu
1e3c88bd
PZ
5184 */
5185 if (!cpumask_test_cpu(this_cpu,
fa17b507 5186 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5187 raw_spin_unlock_irqrestore(&busiest->lock,
5188 flags);
8e45cb54 5189 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5190 goto out_one_pinned;
5191 }
5192
969c7921
TH
5193 /*
5194 * ->active_balance synchronizes accesses to
5195 * ->active_balance_work. Once set, it's cleared
5196 * only after active load balance is finished.
5197 */
1e3c88bd
PZ
5198 if (!busiest->active_balance) {
5199 busiest->active_balance = 1;
5200 busiest->push_cpu = this_cpu;
5201 active_balance = 1;
5202 }
5203 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5204
bd939f45 5205 if (active_balance) {
969c7921
TH
5206 stop_one_cpu_nowait(cpu_of(busiest),
5207 active_load_balance_cpu_stop, busiest,
5208 &busiest->active_balance_work);
bd939f45 5209 }
1e3c88bd
PZ
5210
5211 /*
5212 * We've kicked active balancing, reset the failure
5213 * counter.
5214 */
5215 sd->nr_balance_failed = sd->cache_nice_tries+1;
5216 }
5217 } else
5218 sd->nr_balance_failed = 0;
5219
5220 if (likely(!active_balance)) {
5221 /* We were unbalanced, so reset the balancing interval */
5222 sd->balance_interval = sd->min_interval;
5223 } else {
5224 /*
5225 * If we've begun active balancing, start to back off. This
5226 * case may not be covered by the all_pinned logic if there
5227 * is only 1 task on the busy runqueue (because we don't call
5228 * move_tasks).
5229 */
5230 if (sd->balance_interval < sd->max_interval)
5231 sd->balance_interval *= 2;
5232 }
5233
1e3c88bd
PZ
5234 goto out;
5235
5236out_balanced:
5237 schedstat_inc(sd, lb_balanced[idle]);
5238
5239 sd->nr_balance_failed = 0;
5240
5241out_one_pinned:
5242 /* tune up the balancing interval */
8e45cb54 5243 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5244 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5245 (sd->balance_interval < sd->max_interval))
5246 sd->balance_interval *= 2;
5247
46e49b38 5248 ld_moved = 0;
1e3c88bd 5249out:
1e3c88bd
PZ
5250 return ld_moved;
5251}
5252
1e3c88bd
PZ
5253/*
5254 * idle_balance is called by schedule() if this_cpu is about to become
5255 * idle. Attempts to pull tasks from other CPUs.
5256 */
029632fb 5257void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5258{
5259 struct sched_domain *sd;
5260 int pulled_task = 0;
5261 unsigned long next_balance = jiffies + HZ;
5262
78becc27 5263 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
5264
5265 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5266 return;
5267
f492e12e
PZ
5268 /*
5269 * Drop the rq->lock, but keep IRQ/preempt disabled.
5270 */
5271 raw_spin_unlock(&this_rq->lock);
5272
48a16753 5273 update_blocked_averages(this_cpu);
dce840a0 5274 rcu_read_lock();
1e3c88bd
PZ
5275 for_each_domain(this_cpu, sd) {
5276 unsigned long interval;
f492e12e 5277 int balance = 1;
1e3c88bd
PZ
5278
5279 if (!(sd->flags & SD_LOAD_BALANCE))
5280 continue;
5281
f492e12e 5282 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5283 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5284 pulled_task = load_balance(this_cpu, this_rq,
5285 sd, CPU_NEWLY_IDLE, &balance);
5286 }
1e3c88bd
PZ
5287
5288 interval = msecs_to_jiffies(sd->balance_interval);
5289 if (time_after(next_balance, sd->last_balance + interval))
5290 next_balance = sd->last_balance + interval;
d5ad140b
NR
5291 if (pulled_task) {
5292 this_rq->idle_stamp = 0;
1e3c88bd 5293 break;
d5ad140b 5294 }
1e3c88bd 5295 }
dce840a0 5296 rcu_read_unlock();
f492e12e
PZ
5297
5298 raw_spin_lock(&this_rq->lock);
5299
1e3c88bd
PZ
5300 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5301 /*
5302 * We are going idle. next_balance may be set based on
5303 * a busy processor. So reset next_balance.
5304 */
5305 this_rq->next_balance = next_balance;
5306 }
5307}
5308
5309/*
969c7921
TH
5310 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5311 * running tasks off the busiest CPU onto idle CPUs. It requires at
5312 * least 1 task to be running on each physical CPU where possible, and
5313 * avoids physical / logical imbalances.
1e3c88bd 5314 */
969c7921 5315static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5316{
969c7921
TH
5317 struct rq *busiest_rq = data;
5318 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5319 int target_cpu = busiest_rq->push_cpu;
969c7921 5320 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5321 struct sched_domain *sd;
969c7921
TH
5322
5323 raw_spin_lock_irq(&busiest_rq->lock);
5324
5325 /* make sure the requested cpu hasn't gone down in the meantime */
5326 if (unlikely(busiest_cpu != smp_processor_id() ||
5327 !busiest_rq->active_balance))
5328 goto out_unlock;
1e3c88bd
PZ
5329
5330 /* Is there any task to move? */
5331 if (busiest_rq->nr_running <= 1)
969c7921 5332 goto out_unlock;
1e3c88bd
PZ
5333
5334 /*
5335 * This condition is "impossible", if it occurs
5336 * we need to fix it. Originally reported by
5337 * Bjorn Helgaas on a 128-cpu setup.
5338 */
5339 BUG_ON(busiest_rq == target_rq);
5340
5341 /* move a task from busiest_rq to target_rq */
5342 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5343
5344 /* Search for an sd spanning us and the target CPU. */
dce840a0 5345 rcu_read_lock();
1e3c88bd
PZ
5346 for_each_domain(target_cpu, sd) {
5347 if ((sd->flags & SD_LOAD_BALANCE) &&
5348 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5349 break;
5350 }
5351
5352 if (likely(sd)) {
8e45cb54
PZ
5353 struct lb_env env = {
5354 .sd = sd,
ddcdf6e7
PZ
5355 .dst_cpu = target_cpu,
5356 .dst_rq = target_rq,
5357 .src_cpu = busiest_rq->cpu,
5358 .src_rq = busiest_rq,
8e45cb54
PZ
5359 .idle = CPU_IDLE,
5360 };
5361
1e3c88bd
PZ
5362 schedstat_inc(sd, alb_count);
5363
8e45cb54 5364 if (move_one_task(&env))
1e3c88bd
PZ
5365 schedstat_inc(sd, alb_pushed);
5366 else
5367 schedstat_inc(sd, alb_failed);
5368 }
dce840a0 5369 rcu_read_unlock();
1e3c88bd 5370 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5371out_unlock:
5372 busiest_rq->active_balance = 0;
5373 raw_spin_unlock_irq(&busiest_rq->lock);
5374 return 0;
1e3c88bd
PZ
5375}
5376
3451d024 5377#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
5378/*
5379 * idle load balancing details
83cd4fe2
VP
5380 * - When one of the busy CPUs notice that there may be an idle rebalancing
5381 * needed, they will kick the idle load balancer, which then does idle
5382 * load balancing for all the idle CPUs.
5383 */
1e3c88bd 5384static struct {
83cd4fe2 5385 cpumask_var_t idle_cpus_mask;
0b005cf5 5386 atomic_t nr_cpus;
83cd4fe2
VP
5387 unsigned long next_balance; /* in jiffy units */
5388} nohz ____cacheline_aligned;
1e3c88bd 5389
8e7fbcbc 5390static inline int find_new_ilb(int call_cpu)
1e3c88bd 5391{
0b005cf5 5392 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5393
786d6dc7
SS
5394 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5395 return ilb;
5396
5397 return nr_cpu_ids;
1e3c88bd 5398}
1e3c88bd 5399
83cd4fe2
VP
5400/*
5401 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5402 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5403 * CPU (if there is one).
5404 */
5405static void nohz_balancer_kick(int cpu)
5406{
5407 int ilb_cpu;
5408
5409 nohz.next_balance++;
5410
0b005cf5 5411 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5412
0b005cf5
SS
5413 if (ilb_cpu >= nr_cpu_ids)
5414 return;
83cd4fe2 5415
cd490c5b 5416 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5417 return;
5418 /*
5419 * Use smp_send_reschedule() instead of resched_cpu().
5420 * This way we generate a sched IPI on the target cpu which
5421 * is idle. And the softirq performing nohz idle load balance
5422 * will be run before returning from the IPI.
5423 */
5424 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5425 return;
5426}
5427
c1cc017c 5428static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5429{
5430 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5431 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5432 atomic_dec(&nohz.nr_cpus);
5433 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5434 }
5435}
5436
69e1e811
SS
5437static inline void set_cpu_sd_state_busy(void)
5438{
5439 struct sched_domain *sd;
69e1e811 5440
69e1e811 5441 rcu_read_lock();
424c93fe 5442 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5443
5444 if (!sd || !sd->nohz_idle)
5445 goto unlock;
5446 sd->nohz_idle = 0;
5447
5448 for (; sd; sd = sd->parent)
69e1e811 5449 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5450unlock:
69e1e811
SS
5451 rcu_read_unlock();
5452}
5453
5454void set_cpu_sd_state_idle(void)
5455{
5456 struct sched_domain *sd;
69e1e811 5457
69e1e811 5458 rcu_read_lock();
424c93fe 5459 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
25f55d9d
VG
5460
5461 if (!sd || sd->nohz_idle)
5462 goto unlock;
5463 sd->nohz_idle = 1;
5464
5465 for (; sd; sd = sd->parent)
69e1e811 5466 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 5467unlock:
69e1e811
SS
5468 rcu_read_unlock();
5469}
5470
1e3c88bd 5471/*
c1cc017c 5472 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5473 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5474 */
c1cc017c 5475void nohz_balance_enter_idle(int cpu)
1e3c88bd 5476{
71325960
SS
5477 /*
5478 * If this cpu is going down, then nothing needs to be done.
5479 */
5480 if (!cpu_active(cpu))
5481 return;
5482
c1cc017c
AS
5483 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5484 return;
1e3c88bd 5485
c1cc017c
AS
5486 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5487 atomic_inc(&nohz.nr_cpus);
5488 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5489}
71325960
SS
5490
5491static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5492 unsigned long action, void *hcpu)
5493{
5494 switch (action & ~CPU_TASKS_FROZEN) {
5495 case CPU_DYING:
c1cc017c 5496 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5497 return NOTIFY_OK;
5498 default:
5499 return NOTIFY_DONE;
5500 }
5501}
1e3c88bd
PZ
5502#endif
5503
5504static DEFINE_SPINLOCK(balancing);
5505
49c022e6
PZ
5506/*
5507 * Scale the max load_balance interval with the number of CPUs in the system.
5508 * This trades load-balance latency on larger machines for less cross talk.
5509 */
029632fb 5510void update_max_interval(void)
49c022e6
PZ
5511{
5512 max_load_balance_interval = HZ*num_online_cpus()/10;
5513}
5514
1e3c88bd
PZ
5515/*
5516 * It checks each scheduling domain to see if it is due to be balanced,
5517 * and initiates a balancing operation if so.
5518 *
b9b0853a 5519 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5520 */
5521static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5522{
5523 int balance = 1;
5524 struct rq *rq = cpu_rq(cpu);
5525 unsigned long interval;
04f733b4 5526 struct sched_domain *sd;
1e3c88bd
PZ
5527 /* Earliest time when we have to do rebalance again */
5528 unsigned long next_balance = jiffies + 60*HZ;
5529 int update_next_balance = 0;
5530 int need_serialize;
5531
48a16753 5532 update_blocked_averages(cpu);
2069dd75 5533
dce840a0 5534 rcu_read_lock();
1e3c88bd
PZ
5535 for_each_domain(cpu, sd) {
5536 if (!(sd->flags & SD_LOAD_BALANCE))
5537 continue;
5538
5539 interval = sd->balance_interval;
5540 if (idle != CPU_IDLE)
5541 interval *= sd->busy_factor;
5542
5543 /* scale ms to jiffies */
5544 interval = msecs_to_jiffies(interval);
49c022e6 5545 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5546
5547 need_serialize = sd->flags & SD_SERIALIZE;
5548
5549 if (need_serialize) {
5550 if (!spin_trylock(&balancing))
5551 goto out;
5552 }
5553
5554 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5555 if (load_balance(cpu, rq, sd, idle, &balance)) {
5556 /*
de5eb2dd
JK
5557 * The LBF_SOME_PINNED logic could have changed
5558 * env->dst_cpu, so we can't know our idle
5559 * state even if we migrated tasks. Update it.
1e3c88bd 5560 */
de5eb2dd 5561 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
5562 }
5563 sd->last_balance = jiffies;
5564 }
5565 if (need_serialize)
5566 spin_unlock(&balancing);
5567out:
5568 if (time_after(next_balance, sd->last_balance + interval)) {
5569 next_balance = sd->last_balance + interval;
5570 update_next_balance = 1;
5571 }
5572
5573 /*
5574 * Stop the load balance at this level. There is another
5575 * CPU in our sched group which is doing load balancing more
5576 * actively.
5577 */
5578 if (!balance)
5579 break;
5580 }
dce840a0 5581 rcu_read_unlock();
1e3c88bd
PZ
5582
5583 /*
5584 * next_balance will be updated only when there is a need.
5585 * When the cpu is attached to null domain for ex, it will not be
5586 * updated.
5587 */
5588 if (likely(update_next_balance))
5589 rq->next_balance = next_balance;
5590}
5591
3451d024 5592#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 5593/*
3451d024 5594 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
5595 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5596 */
83cd4fe2
VP
5597static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5598{
5599 struct rq *this_rq = cpu_rq(this_cpu);
5600 struct rq *rq;
5601 int balance_cpu;
5602
1c792db7
SS
5603 if (idle != CPU_IDLE ||
5604 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5605 goto end;
83cd4fe2
VP
5606
5607 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5608 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5609 continue;
5610
5611 /*
5612 * If this cpu gets work to do, stop the load balancing
5613 * work being done for other cpus. Next load
5614 * balancing owner will pick it up.
5615 */
1c792db7 5616 if (need_resched())
83cd4fe2 5617 break;
83cd4fe2 5618
5ed4f1d9
VG
5619 rq = cpu_rq(balance_cpu);
5620
5621 raw_spin_lock_irq(&rq->lock);
5622 update_rq_clock(rq);
5623 update_idle_cpu_load(rq);
5624 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5625
5626 rebalance_domains(balance_cpu, CPU_IDLE);
5627
83cd4fe2
VP
5628 if (time_after(this_rq->next_balance, rq->next_balance))
5629 this_rq->next_balance = rq->next_balance;
5630 }
5631 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5632end:
5633 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5634}
5635
5636/*
0b005cf5
SS
5637 * Current heuristic for kicking the idle load balancer in the presence
5638 * of an idle cpu is the system.
5639 * - This rq has more than one task.
5640 * - At any scheduler domain level, this cpu's scheduler group has multiple
5641 * busy cpu's exceeding the group's power.
5642 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5643 * domain span are idle.
83cd4fe2
VP
5644 */
5645static inline int nohz_kick_needed(struct rq *rq, int cpu)
5646{
5647 unsigned long now = jiffies;
0b005cf5 5648 struct sched_domain *sd;
83cd4fe2 5649
1c792db7 5650 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5651 return 0;
5652
1c792db7
SS
5653 /*
5654 * We may be recently in ticked or tickless idle mode. At the first
5655 * busy tick after returning from idle, we will update the busy stats.
5656 */
69e1e811 5657 set_cpu_sd_state_busy();
c1cc017c 5658 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5659
5660 /*
5661 * None are in tickless mode and hence no need for NOHZ idle load
5662 * balancing.
5663 */
5664 if (likely(!atomic_read(&nohz.nr_cpus)))
5665 return 0;
1c792db7
SS
5666
5667 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5668 return 0;
5669
0b005cf5
SS
5670 if (rq->nr_running >= 2)
5671 goto need_kick;
83cd4fe2 5672
067491b7 5673 rcu_read_lock();
0b005cf5
SS
5674 for_each_domain(cpu, sd) {
5675 struct sched_group *sg = sd->groups;
5676 struct sched_group_power *sgp = sg->sgp;
5677 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5678
0b005cf5 5679 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5680 goto need_kick_unlock;
0b005cf5
SS
5681
5682 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5683 && (cpumask_first_and(nohz.idle_cpus_mask,
5684 sched_domain_span(sd)) < cpu))
067491b7 5685 goto need_kick_unlock;
0b005cf5
SS
5686
5687 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5688 break;
83cd4fe2 5689 }
067491b7 5690 rcu_read_unlock();
83cd4fe2 5691 return 0;
067491b7
PZ
5692
5693need_kick_unlock:
5694 rcu_read_unlock();
0b005cf5
SS
5695need_kick:
5696 return 1;
83cd4fe2
VP
5697}
5698#else
5699static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5700#endif
5701
5702/*
5703 * run_rebalance_domains is triggered when needed from the scheduler tick.
5704 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5705 */
1e3c88bd
PZ
5706static void run_rebalance_domains(struct softirq_action *h)
5707{
5708 int this_cpu = smp_processor_id();
5709 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5710 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5711 CPU_IDLE : CPU_NOT_IDLE;
5712
5713 rebalance_domains(this_cpu, idle);
5714
1e3c88bd 5715 /*
83cd4fe2 5716 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5717 * balancing on behalf of the other idle cpus whose ticks are
5718 * stopped.
5719 */
83cd4fe2 5720 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5721}
5722
5723static inline int on_null_domain(int cpu)
5724{
90a6501f 5725 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5726}
5727
5728/*
5729 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5730 */
029632fb 5731void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5732{
1e3c88bd
PZ
5733 /* Don't need to rebalance while attached to NULL domain */
5734 if (time_after_eq(jiffies, rq->next_balance) &&
5735 likely(!on_null_domain(cpu)))
5736 raise_softirq(SCHED_SOFTIRQ);
3451d024 5737#ifdef CONFIG_NO_HZ_COMMON
1c792db7 5738 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5739 nohz_balancer_kick(cpu);
5740#endif
1e3c88bd
PZ
5741}
5742
0bcdcf28
CE
5743static void rq_online_fair(struct rq *rq)
5744{
5745 update_sysctl();
5746}
5747
5748static void rq_offline_fair(struct rq *rq)
5749{
5750 update_sysctl();
a4c96ae3
PB
5751
5752 /* Ensure any throttled groups are reachable by pick_next_task */
5753 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5754}
5755
55e12e5e 5756#endif /* CONFIG_SMP */
e1d1484f 5757
bf0f6f24
IM
5758/*
5759 * scheduler tick hitting a task of our scheduling class:
5760 */
8f4d37ec 5761static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5762{
5763 struct cfs_rq *cfs_rq;
5764 struct sched_entity *se = &curr->se;
5765
5766 for_each_sched_entity(se) {
5767 cfs_rq = cfs_rq_of(se);
8f4d37ec 5768 entity_tick(cfs_rq, se, queued);
bf0f6f24 5769 }
18bf2805 5770
cbee9f88
PZ
5771 if (sched_feat_numa(NUMA))
5772 task_tick_numa(rq, curr);
3d59eebc 5773
18bf2805 5774 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5775}
5776
5777/*
cd29fe6f
PZ
5778 * called on fork with the child task as argument from the parent's context
5779 * - child not yet on the tasklist
5780 * - preemption disabled
bf0f6f24 5781 */
cd29fe6f 5782static void task_fork_fair(struct task_struct *p)
bf0f6f24 5783{
4fc420c9
DN
5784 struct cfs_rq *cfs_rq;
5785 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5786 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5787 struct rq *rq = this_rq();
5788 unsigned long flags;
5789
05fa785c 5790 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5791
861d034e
PZ
5792 update_rq_clock(rq);
5793
4fc420c9
DN
5794 cfs_rq = task_cfs_rq(current);
5795 curr = cfs_rq->curr;
5796
b0a0f667
PM
5797 if (unlikely(task_cpu(p) != this_cpu)) {
5798 rcu_read_lock();
cd29fe6f 5799 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5800 rcu_read_unlock();
5801 }
bf0f6f24 5802
7109c442 5803 update_curr(cfs_rq);
cd29fe6f 5804
b5d9d734
MG
5805 if (curr)
5806 se->vruntime = curr->vruntime;
aeb73b04 5807 place_entity(cfs_rq, se, 1);
4d78e7b6 5808
cd29fe6f 5809 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5810 /*
edcb60a3
IM
5811 * Upon rescheduling, sched_class::put_prev_task() will place
5812 * 'current' within the tree based on its new key value.
5813 */
4d78e7b6 5814 swap(curr->vruntime, se->vruntime);
aec0a514 5815 resched_task(rq->curr);
4d78e7b6 5816 }
bf0f6f24 5817
88ec22d3
PZ
5818 se->vruntime -= cfs_rq->min_vruntime;
5819
05fa785c 5820 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5821}
5822
cb469845
SR
5823/*
5824 * Priority of the task has changed. Check to see if we preempt
5825 * the current task.
5826 */
da7a735e
PZ
5827static void
5828prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5829{
da7a735e
PZ
5830 if (!p->se.on_rq)
5831 return;
5832
cb469845
SR
5833 /*
5834 * Reschedule if we are currently running on this runqueue and
5835 * our priority decreased, or if we are not currently running on
5836 * this runqueue and our priority is higher than the current's
5837 */
da7a735e 5838 if (rq->curr == p) {
cb469845
SR
5839 if (p->prio > oldprio)
5840 resched_task(rq->curr);
5841 } else
15afe09b 5842 check_preempt_curr(rq, p, 0);
cb469845
SR
5843}
5844
da7a735e
PZ
5845static void switched_from_fair(struct rq *rq, struct task_struct *p)
5846{
5847 struct sched_entity *se = &p->se;
5848 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5849
5850 /*
5851 * Ensure the task's vruntime is normalized, so that when its
5852 * switched back to the fair class the enqueue_entity(.flags=0) will
5853 * do the right thing.
5854 *
5855 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5856 * have normalized the vruntime, if it was !on_rq, then only when
5857 * the task is sleeping will it still have non-normalized vruntime.
5858 */
5859 if (!se->on_rq && p->state != TASK_RUNNING) {
5860 /*
5861 * Fix up our vruntime so that the current sleep doesn't
5862 * cause 'unlimited' sleep bonus.
5863 */
5864 place_entity(cfs_rq, se, 0);
5865 se->vruntime -= cfs_rq->min_vruntime;
5866 }
9ee474f5
PT
5867
5868#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5869 /*
5870 * Remove our load from contribution when we leave sched_fair
5871 * and ensure we don't carry in an old decay_count if we
5872 * switch back.
5873 */
5874 if (p->se.avg.decay_count) {
5875 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5876 __synchronize_entity_decay(&p->se);
5877 subtract_blocked_load_contrib(cfs_rq,
5878 p->se.avg.load_avg_contrib);
5879 }
5880#endif
da7a735e
PZ
5881}
5882
cb469845
SR
5883/*
5884 * We switched to the sched_fair class.
5885 */
da7a735e 5886static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5887{
da7a735e
PZ
5888 if (!p->se.on_rq)
5889 return;
5890
cb469845
SR
5891 /*
5892 * We were most likely switched from sched_rt, so
5893 * kick off the schedule if running, otherwise just see
5894 * if we can still preempt the current task.
5895 */
da7a735e 5896 if (rq->curr == p)
cb469845
SR
5897 resched_task(rq->curr);
5898 else
15afe09b 5899 check_preempt_curr(rq, p, 0);
cb469845
SR
5900}
5901
83b699ed
SV
5902/* Account for a task changing its policy or group.
5903 *
5904 * This routine is mostly called to set cfs_rq->curr field when a task
5905 * migrates between groups/classes.
5906 */
5907static void set_curr_task_fair(struct rq *rq)
5908{
5909 struct sched_entity *se = &rq->curr->se;
5910
ec12cb7f
PT
5911 for_each_sched_entity(se) {
5912 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5913
5914 set_next_entity(cfs_rq, se);
5915 /* ensure bandwidth has been allocated on our new cfs_rq */
5916 account_cfs_rq_runtime(cfs_rq, 0);
5917 }
83b699ed
SV
5918}
5919
029632fb
PZ
5920void init_cfs_rq(struct cfs_rq *cfs_rq)
5921{
5922 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5923 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5924#ifndef CONFIG_64BIT
5925 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5926#endif
9ee474f5
PT
5927#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5928 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5929 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5930#endif
029632fb
PZ
5931}
5932
810b3817 5933#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5934static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5935{
aff3e498 5936 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5937 /*
5938 * If the task was not on the rq at the time of this cgroup movement
5939 * it must have been asleep, sleeping tasks keep their ->vruntime
5940 * absolute on their old rq until wakeup (needed for the fair sleeper
5941 * bonus in place_entity()).
5942 *
5943 * If it was on the rq, we've just 'preempted' it, which does convert
5944 * ->vruntime to a relative base.
5945 *
5946 * Make sure both cases convert their relative position when migrating
5947 * to another cgroup's rq. This does somewhat interfere with the
5948 * fair sleeper stuff for the first placement, but who cares.
5949 */
7ceff013
DN
5950 /*
5951 * When !on_rq, vruntime of the task has usually NOT been normalized.
5952 * But there are some cases where it has already been normalized:
5953 *
5954 * - Moving a forked child which is waiting for being woken up by
5955 * wake_up_new_task().
62af3783
DN
5956 * - Moving a task which has been woken up by try_to_wake_up() and
5957 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5958 *
5959 * To prevent boost or penalty in the new cfs_rq caused by delta
5960 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5961 */
62af3783 5962 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5963 on_rq = 1;
5964
b2b5ce02
PZ
5965 if (!on_rq)
5966 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5967 set_task_rq(p, task_cpu(p));
aff3e498
PT
5968 if (!on_rq) {
5969 cfs_rq = cfs_rq_of(&p->se);
5970 p->se.vruntime += cfs_rq->min_vruntime;
5971#ifdef CONFIG_SMP
5972 /*
5973 * migrate_task_rq_fair() will have removed our previous
5974 * contribution, but we must synchronize for ongoing future
5975 * decay.
5976 */
5977 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5978 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5979#endif
5980 }
810b3817 5981}
029632fb
PZ
5982
5983void free_fair_sched_group(struct task_group *tg)
5984{
5985 int i;
5986
5987 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5988
5989 for_each_possible_cpu(i) {
5990 if (tg->cfs_rq)
5991 kfree(tg->cfs_rq[i]);
5992 if (tg->se)
5993 kfree(tg->se[i]);
5994 }
5995
5996 kfree(tg->cfs_rq);
5997 kfree(tg->se);
5998}
5999
6000int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6001{
6002 struct cfs_rq *cfs_rq;
6003 struct sched_entity *se;
6004 int i;
6005
6006 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6007 if (!tg->cfs_rq)
6008 goto err;
6009 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6010 if (!tg->se)
6011 goto err;
6012
6013 tg->shares = NICE_0_LOAD;
6014
6015 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6016
6017 for_each_possible_cpu(i) {
6018 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6019 GFP_KERNEL, cpu_to_node(i));
6020 if (!cfs_rq)
6021 goto err;
6022
6023 se = kzalloc_node(sizeof(struct sched_entity),
6024 GFP_KERNEL, cpu_to_node(i));
6025 if (!se)
6026 goto err_free_rq;
6027
6028 init_cfs_rq(cfs_rq);
6029 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6030 }
6031
6032 return 1;
6033
6034err_free_rq:
6035 kfree(cfs_rq);
6036err:
6037 return 0;
6038}
6039
6040void unregister_fair_sched_group(struct task_group *tg, int cpu)
6041{
6042 struct rq *rq = cpu_rq(cpu);
6043 unsigned long flags;
6044
6045 /*
6046 * Only empty task groups can be destroyed; so we can speculatively
6047 * check on_list without danger of it being re-added.
6048 */
6049 if (!tg->cfs_rq[cpu]->on_list)
6050 return;
6051
6052 raw_spin_lock_irqsave(&rq->lock, flags);
6053 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6054 raw_spin_unlock_irqrestore(&rq->lock, flags);
6055}
6056
6057void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6058 struct sched_entity *se, int cpu,
6059 struct sched_entity *parent)
6060{
6061 struct rq *rq = cpu_rq(cpu);
6062
6063 cfs_rq->tg = tg;
6064 cfs_rq->rq = rq;
029632fb
PZ
6065 init_cfs_rq_runtime(cfs_rq);
6066
6067 tg->cfs_rq[cpu] = cfs_rq;
6068 tg->se[cpu] = se;
6069
6070 /* se could be NULL for root_task_group */
6071 if (!se)
6072 return;
6073
6074 if (!parent)
6075 se->cfs_rq = &rq->cfs;
6076 else
6077 se->cfs_rq = parent->my_q;
6078
6079 se->my_q = cfs_rq;
6080 update_load_set(&se->load, 0);
6081 se->parent = parent;
6082}
6083
6084static DEFINE_MUTEX(shares_mutex);
6085
6086int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6087{
6088 int i;
6089 unsigned long flags;
6090
6091 /*
6092 * We can't change the weight of the root cgroup.
6093 */
6094 if (!tg->se[0])
6095 return -EINVAL;
6096
6097 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6098
6099 mutex_lock(&shares_mutex);
6100 if (tg->shares == shares)
6101 goto done;
6102
6103 tg->shares = shares;
6104 for_each_possible_cpu(i) {
6105 struct rq *rq = cpu_rq(i);
6106 struct sched_entity *se;
6107
6108 se = tg->se[i];
6109 /* Propagate contribution to hierarchy */
6110 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
6111
6112 /* Possible calls to update_curr() need rq clock */
6113 update_rq_clock(rq);
17bc14b7 6114 for_each_sched_entity(se)
029632fb
PZ
6115 update_cfs_shares(group_cfs_rq(se));
6116 raw_spin_unlock_irqrestore(&rq->lock, flags);
6117 }
6118
6119done:
6120 mutex_unlock(&shares_mutex);
6121 return 0;
6122}
6123#else /* CONFIG_FAIR_GROUP_SCHED */
6124
6125void free_fair_sched_group(struct task_group *tg) { }
6126
6127int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6128{
6129 return 1;
6130}
6131
6132void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6133
6134#endif /* CONFIG_FAIR_GROUP_SCHED */
6135
810b3817 6136
6d686f45 6137static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6138{
6139 struct sched_entity *se = &task->se;
0d721cea
PW
6140 unsigned int rr_interval = 0;
6141
6142 /*
6143 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6144 * idle runqueue:
6145 */
0d721cea 6146 if (rq->cfs.load.weight)
a59f4e07 6147 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6148
6149 return rr_interval;
6150}
6151
bf0f6f24
IM
6152/*
6153 * All the scheduling class methods:
6154 */
029632fb 6155const struct sched_class fair_sched_class = {
5522d5d5 6156 .next = &idle_sched_class,
bf0f6f24
IM
6157 .enqueue_task = enqueue_task_fair,
6158 .dequeue_task = dequeue_task_fair,
6159 .yield_task = yield_task_fair,
d95f4122 6160 .yield_to_task = yield_to_task_fair,
bf0f6f24 6161
2e09bf55 6162 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6163
6164 .pick_next_task = pick_next_task_fair,
6165 .put_prev_task = put_prev_task_fair,
6166
681f3e68 6167#ifdef CONFIG_SMP
4ce72a2c 6168 .select_task_rq = select_task_rq_fair,
f4e26b12 6169#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8 6170 .migrate_task_rq = migrate_task_rq_fair,
f4e26b12 6171#endif
0bcdcf28
CE
6172 .rq_online = rq_online_fair,
6173 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6174
6175 .task_waking = task_waking_fair,
681f3e68 6176#endif
bf0f6f24 6177
83b699ed 6178 .set_curr_task = set_curr_task_fair,
bf0f6f24 6179 .task_tick = task_tick_fair,
cd29fe6f 6180 .task_fork = task_fork_fair,
cb469845
SR
6181
6182 .prio_changed = prio_changed_fair,
da7a735e 6183 .switched_from = switched_from_fair,
cb469845 6184 .switched_to = switched_to_fair,
810b3817 6185
0d721cea
PW
6186 .get_rr_interval = get_rr_interval_fair,
6187
810b3817 6188#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6189 .task_move_group = task_move_group_fair,
810b3817 6190#endif
bf0f6f24
IM
6191};
6192
6193#ifdef CONFIG_SCHED_DEBUG
029632fb 6194void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6195{
bf0f6f24
IM
6196 struct cfs_rq *cfs_rq;
6197
5973e5b9 6198 rcu_read_lock();
c3b64f1e 6199 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6200 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6201 rcu_read_unlock();
bf0f6f24
IM
6202}
6203#endif
029632fb
PZ
6204
6205__init void init_sched_fair_class(void)
6206{
6207#ifdef CONFIG_SMP
6208 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6209
3451d024 6210#ifdef CONFIG_NO_HZ_COMMON
554cecaf 6211 nohz.next_balance = jiffies;
029632fb 6212 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6213 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6214#endif
6215#endif /* SMP */
6216
6217}
This page took 0.843946 seconds and 5 git commands to generate.