sched/fair: Remove double_lock_balance() from load_balance()
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
ced549fa 1020static unsigned long capacity_of(int cpu);
58d081b5
MG
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
5ef20ca1 1029 unsigned long compute_capacity;
fb13c7ee
MG
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1032 unsigned long task_capacity;
1b6a7495 1033 int has_free_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
83d7f242
RR
1041 int smt, cpu, cpus = 0;
1042 unsigned long capacity;
fb13c7ee
MG
1043
1044 memset(ns, 0, sizeof(*ns));
1045 for_each_cpu(cpu, cpumask_of_node(nid)) {
1046 struct rq *rq = cpu_rq(cpu);
1047
1048 ns->nr_running += rq->nr_running;
1049 ns->load += weighted_cpuload(cpu);
ced549fa 1050 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1051
1052 cpus++;
fb13c7ee
MG
1053 }
1054
5eca82a9
PZ
1055 /*
1056 * If we raced with hotplug and there are no CPUs left in our mask
1057 * the @ns structure is NULL'ed and task_numa_compare() will
1058 * not find this node attractive.
1059 *
1b6a7495
NP
1060 * We'll either bail at !has_free_capacity, or we'll detect a huge
1061 * imbalance and bail there.
5eca82a9
PZ
1062 */
1063 if (!cpus)
1064 return;
1065
83d7f242
RR
1066 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1067 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1068 capacity = cpus / smt; /* cores */
1069
1070 ns->task_capacity = min_t(unsigned, capacity,
1071 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1072 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1073}
1074
58d081b5
MG
1075struct task_numa_env {
1076 struct task_struct *p;
e6628d5b 1077
58d081b5
MG
1078 int src_cpu, src_nid;
1079 int dst_cpu, dst_nid;
e6628d5b 1080
58d081b5 1081 struct numa_stats src_stats, dst_stats;
e6628d5b 1082
40ea2b42 1083 int imbalance_pct;
fb13c7ee
MG
1084
1085 struct task_struct *best_task;
1086 long best_imp;
58d081b5
MG
1087 int best_cpu;
1088};
1089
fb13c7ee
MG
1090static void task_numa_assign(struct task_numa_env *env,
1091 struct task_struct *p, long imp)
1092{
1093 if (env->best_task)
1094 put_task_struct(env->best_task);
1095 if (p)
1096 get_task_struct(p);
1097
1098 env->best_task = p;
1099 env->best_imp = imp;
1100 env->best_cpu = env->dst_cpu;
1101}
1102
28a21745 1103static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1104 struct task_numa_env *env)
1105{
1106 long imb, old_imb;
28a21745
RR
1107 long orig_src_load, orig_dst_load;
1108 long src_capacity, dst_capacity;
1109
1110 /*
1111 * The load is corrected for the CPU capacity available on each node.
1112 *
1113 * src_load dst_load
1114 * ------------ vs ---------
1115 * src_capacity dst_capacity
1116 */
1117 src_capacity = env->src_stats.compute_capacity;
1118 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1119
1120 /* We care about the slope of the imbalance, not the direction. */
1121 if (dst_load < src_load)
1122 swap(dst_load, src_load);
1123
1124 /* Is the difference below the threshold? */
28a21745
RR
1125 imb = dst_load * src_capacity * 100 -
1126 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1127 if (imb <= 0)
1128 return false;
1129
1130 /*
1131 * The imbalance is above the allowed threshold.
1132 * Compare it with the old imbalance.
1133 */
28a21745
RR
1134 orig_src_load = env->src_stats.load;
1135 orig_dst_load = env->dst_stats.load;
1136
e63da036
RR
1137 if (orig_dst_load < orig_src_load)
1138 swap(orig_dst_load, orig_src_load);
1139
28a21745
RR
1140 old_imb = orig_dst_load * src_capacity * 100 -
1141 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1142
1143 /* Would this change make things worse? */
1662867a 1144 return (imb > old_imb);
e63da036
RR
1145}
1146
fb13c7ee
MG
1147/*
1148 * This checks if the overall compute and NUMA accesses of the system would
1149 * be improved if the source tasks was migrated to the target dst_cpu taking
1150 * into account that it might be best if task running on the dst_cpu should
1151 * be exchanged with the source task
1152 */
887c290e
RR
1153static void task_numa_compare(struct task_numa_env *env,
1154 long taskimp, long groupimp)
fb13c7ee
MG
1155{
1156 struct rq *src_rq = cpu_rq(env->src_cpu);
1157 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1158 struct task_struct *cur;
28a21745 1159 long src_load, dst_load;
fb13c7ee 1160 long load;
1c5d3eb3 1161 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1162 long moveimp = imp;
fb13c7ee
MG
1163
1164 rcu_read_lock();
1165 cur = ACCESS_ONCE(dst_rq->curr);
1166 if (cur->pid == 0) /* idle */
1167 cur = NULL;
1168
1169 /*
1170 * "imp" is the fault differential for the source task between the
1171 * source and destination node. Calculate the total differential for
1172 * the source task and potential destination task. The more negative
1173 * the value is, the more rmeote accesses that would be expected to
1174 * be incurred if the tasks were swapped.
1175 */
1176 if (cur) {
1177 /* Skip this swap candidate if cannot move to the source cpu */
1178 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1179 goto unlock;
1180
887c290e
RR
1181 /*
1182 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1183 * in any group then look only at task weights.
887c290e 1184 */
ca28aa53 1185 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1186 imp = taskimp + task_weight(cur, env->src_nid) -
1187 task_weight(cur, env->dst_nid);
ca28aa53
RR
1188 /*
1189 * Add some hysteresis to prevent swapping the
1190 * tasks within a group over tiny differences.
1191 */
1192 if (cur->numa_group)
1193 imp -= imp/16;
887c290e 1194 } else {
ca28aa53
RR
1195 /*
1196 * Compare the group weights. If a task is all by
1197 * itself (not part of a group), use the task weight
1198 * instead.
1199 */
ca28aa53
RR
1200 if (cur->numa_group)
1201 imp += group_weight(cur, env->src_nid) -
1202 group_weight(cur, env->dst_nid);
1203 else
1204 imp += task_weight(cur, env->src_nid) -
1205 task_weight(cur, env->dst_nid);
887c290e 1206 }
fb13c7ee
MG
1207 }
1208
0132c3e1 1209 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1210 goto unlock;
1211
1212 if (!cur) {
1213 /* Is there capacity at our destination? */
b932c03c 1214 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1215 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1216 goto unlock;
1217
1218 goto balance;
1219 }
1220
1221 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1222 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1223 dst_rq->nr_running == 1)
fb13c7ee
MG
1224 goto assign;
1225
1226 /*
1227 * In the overloaded case, try and keep the load balanced.
1228 */
1229balance:
e720fff6
PZ
1230 load = task_h_load(env->p);
1231 dst_load = env->dst_stats.load + load;
1232 src_load = env->src_stats.load - load;
fb13c7ee 1233
0132c3e1
RR
1234 if (moveimp > imp && moveimp > env->best_imp) {
1235 /*
1236 * If the improvement from just moving env->p direction is
1237 * better than swapping tasks around, check if a move is
1238 * possible. Store a slightly smaller score than moveimp,
1239 * so an actually idle CPU will win.
1240 */
1241 if (!load_too_imbalanced(src_load, dst_load, env)) {
1242 imp = moveimp - 1;
1243 cur = NULL;
1244 goto assign;
1245 }
1246 }
1247
1248 if (imp <= env->best_imp)
1249 goto unlock;
1250
fb13c7ee 1251 if (cur) {
e720fff6
PZ
1252 load = task_h_load(cur);
1253 dst_load -= load;
1254 src_load += load;
fb13c7ee
MG
1255 }
1256
28a21745 1257 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1258 goto unlock;
1259
1260assign:
1261 task_numa_assign(env, cur, imp);
1262unlock:
1263 rcu_read_unlock();
1264}
1265
887c290e
RR
1266static void task_numa_find_cpu(struct task_numa_env *env,
1267 long taskimp, long groupimp)
2c8a50aa
MG
1268{
1269 int cpu;
1270
1271 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1272 /* Skip this CPU if the source task cannot migrate */
1273 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1274 continue;
1275
1276 env->dst_cpu = cpu;
887c290e 1277 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1278 }
1279}
1280
58d081b5
MG
1281static int task_numa_migrate(struct task_struct *p)
1282{
58d081b5
MG
1283 struct task_numa_env env = {
1284 .p = p,
fb13c7ee 1285
58d081b5 1286 .src_cpu = task_cpu(p),
b32e86b4 1287 .src_nid = task_node(p),
fb13c7ee
MG
1288
1289 .imbalance_pct = 112,
1290
1291 .best_task = NULL,
1292 .best_imp = 0,
1293 .best_cpu = -1
58d081b5
MG
1294 };
1295 struct sched_domain *sd;
887c290e 1296 unsigned long taskweight, groupweight;
2c8a50aa 1297 int nid, ret;
887c290e 1298 long taskimp, groupimp;
e6628d5b 1299
58d081b5 1300 /*
fb13c7ee
MG
1301 * Pick the lowest SD_NUMA domain, as that would have the smallest
1302 * imbalance and would be the first to start moving tasks about.
1303 *
1304 * And we want to avoid any moving of tasks about, as that would create
1305 * random movement of tasks -- counter the numa conditions we're trying
1306 * to satisfy here.
58d081b5
MG
1307 */
1308 rcu_read_lock();
fb13c7ee 1309 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1310 if (sd)
1311 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1312 rcu_read_unlock();
1313
46a73e8a
RR
1314 /*
1315 * Cpusets can break the scheduler domain tree into smaller
1316 * balance domains, some of which do not cross NUMA boundaries.
1317 * Tasks that are "trapped" in such domains cannot be migrated
1318 * elsewhere, so there is no point in (re)trying.
1319 */
1320 if (unlikely(!sd)) {
de1b301a 1321 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1322 return -EINVAL;
1323 }
1324
887c290e
RR
1325 taskweight = task_weight(p, env.src_nid);
1326 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1327 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1328 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1329 taskimp = task_weight(p, env.dst_nid) - taskweight;
1330 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1331 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1332
a43455a1
RR
1333 /* Try to find a spot on the preferred nid. */
1334 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1335
1336 /* No space available on the preferred nid. Look elsewhere. */
1337 if (env.best_cpu == -1) {
2c8a50aa
MG
1338 for_each_online_node(nid) {
1339 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1340 continue;
58d081b5 1341
83e1d2cd 1342 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1343 taskimp = task_weight(p, nid) - taskweight;
1344 groupimp = group_weight(p, nid) - groupweight;
1345 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1346 continue;
1347
2c8a50aa
MG
1348 env.dst_nid = nid;
1349 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1350 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1351 }
1352 }
1353
68d1b02a
RR
1354 /*
1355 * If the task is part of a workload that spans multiple NUMA nodes,
1356 * and is migrating into one of the workload's active nodes, remember
1357 * this node as the task's preferred numa node, so the workload can
1358 * settle down.
1359 * A task that migrated to a second choice node will be better off
1360 * trying for a better one later. Do not set the preferred node here.
1361 */
db015dae
RR
1362 if (p->numa_group) {
1363 if (env.best_cpu == -1)
1364 nid = env.src_nid;
1365 else
1366 nid = env.dst_nid;
1367
1368 if (node_isset(nid, p->numa_group->active_nodes))
1369 sched_setnuma(p, env.dst_nid);
1370 }
1371
1372 /* No better CPU than the current one was found. */
1373 if (env.best_cpu == -1)
1374 return -EAGAIN;
0ec8aa00 1375
04bb2f94
RR
1376 /*
1377 * Reset the scan period if the task is being rescheduled on an
1378 * alternative node to recheck if the tasks is now properly placed.
1379 */
1380 p->numa_scan_period = task_scan_min(p);
1381
fb13c7ee 1382 if (env.best_task == NULL) {
286549dc
MG
1383 ret = migrate_task_to(p, env.best_cpu);
1384 if (ret != 0)
1385 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1386 return ret;
1387 }
1388
1389 ret = migrate_swap(p, env.best_task);
286549dc
MG
1390 if (ret != 0)
1391 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1392 put_task_struct(env.best_task);
1393 return ret;
e6628d5b
MG
1394}
1395
6b9a7460
MG
1396/* Attempt to migrate a task to a CPU on the preferred node. */
1397static void numa_migrate_preferred(struct task_struct *p)
1398{
5085e2a3
RR
1399 unsigned long interval = HZ;
1400
2739d3ee 1401 /* This task has no NUMA fault statistics yet */
ff1df896 1402 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1403 return;
1404
2739d3ee 1405 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1406 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1407 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1408
1409 /* Success if task is already running on preferred CPU */
de1b301a 1410 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1411 return;
1412
1413 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1414 task_numa_migrate(p);
6b9a7460
MG
1415}
1416
20e07dea
RR
1417/*
1418 * Find the nodes on which the workload is actively running. We do this by
1419 * tracking the nodes from which NUMA hinting faults are triggered. This can
1420 * be different from the set of nodes where the workload's memory is currently
1421 * located.
1422 *
1423 * The bitmask is used to make smarter decisions on when to do NUMA page
1424 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1425 * are added when they cause over 6/16 of the maximum number of faults, but
1426 * only removed when they drop below 3/16.
1427 */
1428static void update_numa_active_node_mask(struct numa_group *numa_group)
1429{
1430 unsigned long faults, max_faults = 0;
1431 int nid;
1432
1433 for_each_online_node(nid) {
1434 faults = group_faults_cpu(numa_group, nid);
1435 if (faults > max_faults)
1436 max_faults = faults;
1437 }
1438
1439 for_each_online_node(nid) {
1440 faults = group_faults_cpu(numa_group, nid);
1441 if (!node_isset(nid, numa_group->active_nodes)) {
1442 if (faults > max_faults * 6 / 16)
1443 node_set(nid, numa_group->active_nodes);
1444 } else if (faults < max_faults * 3 / 16)
1445 node_clear(nid, numa_group->active_nodes);
1446 }
1447}
1448
04bb2f94
RR
1449/*
1450 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1451 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1452 * period will be for the next scan window. If local/(local+remote) ratio is
1453 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1454 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1455 */
1456#define NUMA_PERIOD_SLOTS 10
a22b4b01 1457#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1458
1459/*
1460 * Increase the scan period (slow down scanning) if the majority of
1461 * our memory is already on our local node, or if the majority of
1462 * the page accesses are shared with other processes.
1463 * Otherwise, decrease the scan period.
1464 */
1465static void update_task_scan_period(struct task_struct *p,
1466 unsigned long shared, unsigned long private)
1467{
1468 unsigned int period_slot;
1469 int ratio;
1470 int diff;
1471
1472 unsigned long remote = p->numa_faults_locality[0];
1473 unsigned long local = p->numa_faults_locality[1];
1474
1475 /*
1476 * If there were no record hinting faults then either the task is
1477 * completely idle or all activity is areas that are not of interest
1478 * to automatic numa balancing. Scan slower
1479 */
1480 if (local + shared == 0) {
1481 p->numa_scan_period = min(p->numa_scan_period_max,
1482 p->numa_scan_period << 1);
1483
1484 p->mm->numa_next_scan = jiffies +
1485 msecs_to_jiffies(p->numa_scan_period);
1486
1487 return;
1488 }
1489
1490 /*
1491 * Prepare to scale scan period relative to the current period.
1492 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1493 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1494 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1495 */
1496 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1497 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1498 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1499 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1500 if (!slot)
1501 slot = 1;
1502 diff = slot * period_slot;
1503 } else {
1504 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1505
1506 /*
1507 * Scale scan rate increases based on sharing. There is an
1508 * inverse relationship between the degree of sharing and
1509 * the adjustment made to the scanning period. Broadly
1510 * speaking the intent is that there is little point
1511 * scanning faster if shared accesses dominate as it may
1512 * simply bounce migrations uselessly
1513 */
04bb2f94
RR
1514 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1515 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1516 }
1517
1518 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1519 task_scan_min(p), task_scan_max(p));
1520 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1521}
1522
7e2703e6
RR
1523/*
1524 * Get the fraction of time the task has been running since the last
1525 * NUMA placement cycle. The scheduler keeps similar statistics, but
1526 * decays those on a 32ms period, which is orders of magnitude off
1527 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1528 * stats only if the task is so new there are no NUMA statistics yet.
1529 */
1530static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1531{
1532 u64 runtime, delta, now;
1533 /* Use the start of this time slice to avoid calculations. */
1534 now = p->se.exec_start;
1535 runtime = p->se.sum_exec_runtime;
1536
1537 if (p->last_task_numa_placement) {
1538 delta = runtime - p->last_sum_exec_runtime;
1539 *period = now - p->last_task_numa_placement;
1540 } else {
1541 delta = p->se.avg.runnable_avg_sum;
1542 *period = p->se.avg.runnable_avg_period;
1543 }
1544
1545 p->last_sum_exec_runtime = runtime;
1546 p->last_task_numa_placement = now;
1547
1548 return delta;
1549}
1550
cbee9f88
PZ
1551static void task_numa_placement(struct task_struct *p)
1552{
83e1d2cd
MG
1553 int seq, nid, max_nid = -1, max_group_nid = -1;
1554 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1555 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1556 unsigned long total_faults;
1557 u64 runtime, period;
7dbd13ed 1558 spinlock_t *group_lock = NULL;
cbee9f88 1559
2832bc19 1560 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1561 if (p->numa_scan_seq == seq)
1562 return;
1563 p->numa_scan_seq = seq;
598f0ec0 1564 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1565
7e2703e6
RR
1566 total_faults = p->numa_faults_locality[0] +
1567 p->numa_faults_locality[1];
1568 runtime = numa_get_avg_runtime(p, &period);
1569
7dbd13ed
MG
1570 /* If the task is part of a group prevent parallel updates to group stats */
1571 if (p->numa_group) {
1572 group_lock = &p->numa_group->lock;
60e69eed 1573 spin_lock_irq(group_lock);
7dbd13ed
MG
1574 }
1575
688b7585
MG
1576 /* Find the node with the highest number of faults */
1577 for_each_online_node(nid) {
83e1d2cd 1578 unsigned long faults = 0, group_faults = 0;
ac8e895b 1579 int priv, i;
745d6147 1580
be1e4e76 1581 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1582 long diff, f_diff, f_weight;
8c8a743c 1583
ac8e895b 1584 i = task_faults_idx(nid, priv);
745d6147 1585
ac8e895b 1586 /* Decay existing window, copy faults since last scan */
35664fd4 1587 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1588 fault_types[priv] += p->numa_faults_buffer_memory[i];
1589 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1590
7e2703e6
RR
1591 /*
1592 * Normalize the faults_from, so all tasks in a group
1593 * count according to CPU use, instead of by the raw
1594 * number of faults. Tasks with little runtime have
1595 * little over-all impact on throughput, and thus their
1596 * faults are less important.
1597 */
1598 f_weight = div64_u64(runtime << 16, period + 1);
1599 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1600 (total_faults + 1);
35664fd4 1601 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1602 p->numa_faults_buffer_cpu[i] = 0;
1603
35664fd4
RR
1604 p->numa_faults_memory[i] += diff;
1605 p->numa_faults_cpu[i] += f_diff;
ff1df896 1606 faults += p->numa_faults_memory[i];
83e1d2cd 1607 p->total_numa_faults += diff;
8c8a743c
PZ
1608 if (p->numa_group) {
1609 /* safe because we can only change our own group */
989348b5 1610 p->numa_group->faults[i] += diff;
50ec8a40 1611 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1612 p->numa_group->total_faults += diff;
1613 group_faults += p->numa_group->faults[i];
8c8a743c 1614 }
ac8e895b
MG
1615 }
1616
688b7585
MG
1617 if (faults > max_faults) {
1618 max_faults = faults;
1619 max_nid = nid;
1620 }
83e1d2cd
MG
1621
1622 if (group_faults > max_group_faults) {
1623 max_group_faults = group_faults;
1624 max_group_nid = nid;
1625 }
1626 }
1627
04bb2f94
RR
1628 update_task_scan_period(p, fault_types[0], fault_types[1]);
1629
7dbd13ed 1630 if (p->numa_group) {
20e07dea 1631 update_numa_active_node_mask(p->numa_group);
60e69eed 1632 spin_unlock_irq(group_lock);
f0b8a4af 1633 max_nid = max_group_nid;
688b7585
MG
1634 }
1635
bb97fc31
RR
1636 if (max_faults) {
1637 /* Set the new preferred node */
1638 if (max_nid != p->numa_preferred_nid)
1639 sched_setnuma(p, max_nid);
1640
1641 if (task_node(p) != p->numa_preferred_nid)
1642 numa_migrate_preferred(p);
3a7053b3 1643 }
cbee9f88
PZ
1644}
1645
8c8a743c
PZ
1646static inline int get_numa_group(struct numa_group *grp)
1647{
1648 return atomic_inc_not_zero(&grp->refcount);
1649}
1650
1651static inline void put_numa_group(struct numa_group *grp)
1652{
1653 if (atomic_dec_and_test(&grp->refcount))
1654 kfree_rcu(grp, rcu);
1655}
1656
3e6a9418
MG
1657static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1658 int *priv)
8c8a743c
PZ
1659{
1660 struct numa_group *grp, *my_grp;
1661 struct task_struct *tsk;
1662 bool join = false;
1663 int cpu = cpupid_to_cpu(cpupid);
1664 int i;
1665
1666 if (unlikely(!p->numa_group)) {
1667 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1668 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1669
1670 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1671 if (!grp)
1672 return;
1673
1674 atomic_set(&grp->refcount, 1);
1675 spin_lock_init(&grp->lock);
1676 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1677 grp->gid = p->pid;
50ec8a40 1678 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1679 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1680 nr_node_ids;
8c8a743c 1681
20e07dea
RR
1682 node_set(task_node(current), grp->active_nodes);
1683
be1e4e76 1684 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1685 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1686
989348b5 1687 grp->total_faults = p->total_numa_faults;
83e1d2cd 1688
8c8a743c
PZ
1689 list_add(&p->numa_entry, &grp->task_list);
1690 grp->nr_tasks++;
1691 rcu_assign_pointer(p->numa_group, grp);
1692 }
1693
1694 rcu_read_lock();
1695 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1696
1697 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1698 goto no_join;
8c8a743c
PZ
1699
1700 grp = rcu_dereference(tsk->numa_group);
1701 if (!grp)
3354781a 1702 goto no_join;
8c8a743c
PZ
1703
1704 my_grp = p->numa_group;
1705 if (grp == my_grp)
3354781a 1706 goto no_join;
8c8a743c
PZ
1707
1708 /*
1709 * Only join the other group if its bigger; if we're the bigger group,
1710 * the other task will join us.
1711 */
1712 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1713 goto no_join;
8c8a743c
PZ
1714
1715 /*
1716 * Tie-break on the grp address.
1717 */
1718 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1719 goto no_join;
8c8a743c 1720
dabe1d99
RR
1721 /* Always join threads in the same process. */
1722 if (tsk->mm == current->mm)
1723 join = true;
1724
1725 /* Simple filter to avoid false positives due to PID collisions */
1726 if (flags & TNF_SHARED)
1727 join = true;
8c8a743c 1728
3e6a9418
MG
1729 /* Update priv based on whether false sharing was detected */
1730 *priv = !join;
1731
dabe1d99 1732 if (join && !get_numa_group(grp))
3354781a 1733 goto no_join;
8c8a743c 1734
8c8a743c
PZ
1735 rcu_read_unlock();
1736
1737 if (!join)
1738 return;
1739
60e69eed
MG
1740 BUG_ON(irqs_disabled());
1741 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1742
be1e4e76 1743 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1744 my_grp->faults[i] -= p->numa_faults_memory[i];
1745 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1746 }
989348b5
MG
1747 my_grp->total_faults -= p->total_numa_faults;
1748 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1749
1750 list_move(&p->numa_entry, &grp->task_list);
1751 my_grp->nr_tasks--;
1752 grp->nr_tasks++;
1753
1754 spin_unlock(&my_grp->lock);
60e69eed 1755 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1756
1757 rcu_assign_pointer(p->numa_group, grp);
1758
1759 put_numa_group(my_grp);
3354781a
PZ
1760 return;
1761
1762no_join:
1763 rcu_read_unlock();
1764 return;
8c8a743c
PZ
1765}
1766
1767void task_numa_free(struct task_struct *p)
1768{
1769 struct numa_group *grp = p->numa_group;
ff1df896 1770 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1771 unsigned long flags;
1772 int i;
8c8a743c
PZ
1773
1774 if (grp) {
e9dd685c 1775 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1776 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1777 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1778 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1779
8c8a743c
PZ
1780 list_del(&p->numa_entry);
1781 grp->nr_tasks--;
e9dd685c 1782 spin_unlock_irqrestore(&grp->lock, flags);
8c8a743c
PZ
1783 rcu_assign_pointer(p->numa_group, NULL);
1784 put_numa_group(grp);
1785 }
1786
ff1df896
RR
1787 p->numa_faults_memory = NULL;
1788 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1789 p->numa_faults_cpu= NULL;
1790 p->numa_faults_buffer_cpu = NULL;
82727018 1791 kfree(numa_faults);
8c8a743c
PZ
1792}
1793
cbee9f88
PZ
1794/*
1795 * Got a PROT_NONE fault for a page on @node.
1796 */
58b46da3 1797void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1798{
1799 struct task_struct *p = current;
6688cc05 1800 bool migrated = flags & TNF_MIGRATED;
58b46da3 1801 int cpu_node = task_node(current);
792568ec 1802 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1803 int priv;
cbee9f88 1804
10e84b97 1805 if (!numabalancing_enabled)
1a687c2e
MG
1806 return;
1807
9ff1d9ff
MG
1808 /* for example, ksmd faulting in a user's mm */
1809 if (!p->mm)
1810 return;
1811
82727018
RR
1812 /* Do not worry about placement if exiting */
1813 if (p->state == TASK_DEAD)
1814 return;
1815
f809ca9a 1816 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1817 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1818 int size = sizeof(*p->numa_faults_memory) *
1819 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1820
be1e4e76 1821 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1822 if (!p->numa_faults_memory)
f809ca9a 1823 return;
745d6147 1824
ff1df896 1825 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1826 /*
1827 * The averaged statistics, shared & private, memory & cpu,
1828 * occupy the first half of the array. The second half of the
1829 * array is for current counters, which are averaged into the
1830 * first set by task_numa_placement.
1831 */
50ec8a40
RR
1832 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1833 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1834 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1835 p->total_numa_faults = 0;
04bb2f94 1836 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1837 }
cbee9f88 1838
8c8a743c
PZ
1839 /*
1840 * First accesses are treated as private, otherwise consider accesses
1841 * to be private if the accessing pid has not changed
1842 */
1843 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1844 priv = 1;
1845 } else {
1846 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1847 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1848 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1849 }
1850
792568ec
RR
1851 /*
1852 * If a workload spans multiple NUMA nodes, a shared fault that
1853 * occurs wholly within the set of nodes that the workload is
1854 * actively using should be counted as local. This allows the
1855 * scan rate to slow down when a workload has settled down.
1856 */
1857 if (!priv && !local && p->numa_group &&
1858 node_isset(cpu_node, p->numa_group->active_nodes) &&
1859 node_isset(mem_node, p->numa_group->active_nodes))
1860 local = 1;
1861
cbee9f88 1862 task_numa_placement(p);
f809ca9a 1863
2739d3ee
RR
1864 /*
1865 * Retry task to preferred node migration periodically, in case it
1866 * case it previously failed, or the scheduler moved us.
1867 */
1868 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1869 numa_migrate_preferred(p);
1870
b32e86b4
IM
1871 if (migrated)
1872 p->numa_pages_migrated += pages;
1873
58b46da3
RR
1874 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1875 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1876 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1877}
1878
6e5fb223
PZ
1879static void reset_ptenuma_scan(struct task_struct *p)
1880{
1881 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1882 p->mm->numa_scan_offset = 0;
1883}
1884
cbee9f88
PZ
1885/*
1886 * The expensive part of numa migration is done from task_work context.
1887 * Triggered from task_tick_numa().
1888 */
1889void task_numa_work(struct callback_head *work)
1890{
1891 unsigned long migrate, next_scan, now = jiffies;
1892 struct task_struct *p = current;
1893 struct mm_struct *mm = p->mm;
6e5fb223 1894 struct vm_area_struct *vma;
9f40604c 1895 unsigned long start, end;
598f0ec0 1896 unsigned long nr_pte_updates = 0;
9f40604c 1897 long pages;
cbee9f88
PZ
1898
1899 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1900
1901 work->next = work; /* protect against double add */
1902 /*
1903 * Who cares about NUMA placement when they're dying.
1904 *
1905 * NOTE: make sure not to dereference p->mm before this check,
1906 * exit_task_work() happens _after_ exit_mm() so we could be called
1907 * without p->mm even though we still had it when we enqueued this
1908 * work.
1909 */
1910 if (p->flags & PF_EXITING)
1911 return;
1912
930aa174 1913 if (!mm->numa_next_scan) {
7e8d16b6
MG
1914 mm->numa_next_scan = now +
1915 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1916 }
1917
cbee9f88
PZ
1918 /*
1919 * Enforce maximal scan/migration frequency..
1920 */
1921 migrate = mm->numa_next_scan;
1922 if (time_before(now, migrate))
1923 return;
1924
598f0ec0
MG
1925 if (p->numa_scan_period == 0) {
1926 p->numa_scan_period_max = task_scan_max(p);
1927 p->numa_scan_period = task_scan_min(p);
1928 }
cbee9f88 1929
fb003b80 1930 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1931 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1932 return;
1933
19a78d11
PZ
1934 /*
1935 * Delay this task enough that another task of this mm will likely win
1936 * the next time around.
1937 */
1938 p->node_stamp += 2 * TICK_NSEC;
1939
9f40604c
MG
1940 start = mm->numa_scan_offset;
1941 pages = sysctl_numa_balancing_scan_size;
1942 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1943 if (!pages)
1944 return;
cbee9f88 1945
6e5fb223 1946 down_read(&mm->mmap_sem);
9f40604c 1947 vma = find_vma(mm, start);
6e5fb223
PZ
1948 if (!vma) {
1949 reset_ptenuma_scan(p);
9f40604c 1950 start = 0;
6e5fb223
PZ
1951 vma = mm->mmap;
1952 }
9f40604c 1953 for (; vma; vma = vma->vm_next) {
fc314724 1954 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1955 continue;
1956
4591ce4f
MG
1957 /*
1958 * Shared library pages mapped by multiple processes are not
1959 * migrated as it is expected they are cache replicated. Avoid
1960 * hinting faults in read-only file-backed mappings or the vdso
1961 * as migrating the pages will be of marginal benefit.
1962 */
1963 if (!vma->vm_mm ||
1964 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1965 continue;
1966
3c67f474
MG
1967 /*
1968 * Skip inaccessible VMAs to avoid any confusion between
1969 * PROT_NONE and NUMA hinting ptes
1970 */
1971 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1972 continue;
4591ce4f 1973
9f40604c
MG
1974 do {
1975 start = max(start, vma->vm_start);
1976 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1977 end = min(end, vma->vm_end);
598f0ec0
MG
1978 nr_pte_updates += change_prot_numa(vma, start, end);
1979
1980 /*
1981 * Scan sysctl_numa_balancing_scan_size but ensure that
1982 * at least one PTE is updated so that unused virtual
1983 * address space is quickly skipped.
1984 */
1985 if (nr_pte_updates)
1986 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1987
9f40604c
MG
1988 start = end;
1989 if (pages <= 0)
1990 goto out;
3cf1962c
RR
1991
1992 cond_resched();
9f40604c 1993 } while (end != vma->vm_end);
cbee9f88 1994 }
6e5fb223 1995
9f40604c 1996out:
6e5fb223 1997 /*
c69307d5
PZ
1998 * It is possible to reach the end of the VMA list but the last few
1999 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2000 * would find the !migratable VMA on the next scan but not reset the
2001 * scanner to the start so check it now.
6e5fb223
PZ
2002 */
2003 if (vma)
9f40604c 2004 mm->numa_scan_offset = start;
6e5fb223
PZ
2005 else
2006 reset_ptenuma_scan(p);
2007 up_read(&mm->mmap_sem);
cbee9f88
PZ
2008}
2009
2010/*
2011 * Drive the periodic memory faults..
2012 */
2013void task_tick_numa(struct rq *rq, struct task_struct *curr)
2014{
2015 struct callback_head *work = &curr->numa_work;
2016 u64 period, now;
2017
2018 /*
2019 * We don't care about NUMA placement if we don't have memory.
2020 */
2021 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2022 return;
2023
2024 /*
2025 * Using runtime rather than walltime has the dual advantage that
2026 * we (mostly) drive the selection from busy threads and that the
2027 * task needs to have done some actual work before we bother with
2028 * NUMA placement.
2029 */
2030 now = curr->se.sum_exec_runtime;
2031 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2032
2033 if (now - curr->node_stamp > period) {
4b96a29b 2034 if (!curr->node_stamp)
598f0ec0 2035 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2036 curr->node_stamp += period;
cbee9f88
PZ
2037
2038 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2039 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2040 task_work_add(curr, work, true);
2041 }
2042 }
2043}
2044#else
2045static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2046{
2047}
0ec8aa00
PZ
2048
2049static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2050{
2051}
2052
2053static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2054{
2055}
cbee9f88
PZ
2056#endif /* CONFIG_NUMA_BALANCING */
2057
30cfdcfc
DA
2058static void
2059account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2060{
2061 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2062 if (!parent_entity(se))
029632fb 2063 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2064#ifdef CONFIG_SMP
0ec8aa00
PZ
2065 if (entity_is_task(se)) {
2066 struct rq *rq = rq_of(cfs_rq);
2067
2068 account_numa_enqueue(rq, task_of(se));
2069 list_add(&se->group_node, &rq->cfs_tasks);
2070 }
367456c7 2071#endif
30cfdcfc 2072 cfs_rq->nr_running++;
30cfdcfc
DA
2073}
2074
2075static void
2076account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2077{
2078 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2079 if (!parent_entity(se))
029632fb 2080 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2081 if (entity_is_task(se)) {
2082 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2083 list_del_init(&se->group_node);
0ec8aa00 2084 }
30cfdcfc 2085 cfs_rq->nr_running--;
30cfdcfc
DA
2086}
2087
3ff6dcac
YZ
2088#ifdef CONFIG_FAIR_GROUP_SCHED
2089# ifdef CONFIG_SMP
cf5f0acf
PZ
2090static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2091{
2092 long tg_weight;
2093
2094 /*
2095 * Use this CPU's actual weight instead of the last load_contribution
2096 * to gain a more accurate current total weight. See
2097 * update_cfs_rq_load_contribution().
2098 */
bf5b986e 2099 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2100 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2101 tg_weight += cfs_rq->load.weight;
2102
2103 return tg_weight;
2104}
2105
6d5ab293 2106static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2107{
cf5f0acf 2108 long tg_weight, load, shares;
3ff6dcac 2109
cf5f0acf 2110 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2111 load = cfs_rq->load.weight;
3ff6dcac 2112
3ff6dcac 2113 shares = (tg->shares * load);
cf5f0acf
PZ
2114 if (tg_weight)
2115 shares /= tg_weight;
3ff6dcac
YZ
2116
2117 if (shares < MIN_SHARES)
2118 shares = MIN_SHARES;
2119 if (shares > tg->shares)
2120 shares = tg->shares;
2121
2122 return shares;
2123}
3ff6dcac 2124# else /* CONFIG_SMP */
6d5ab293 2125static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2126{
2127 return tg->shares;
2128}
3ff6dcac 2129# endif /* CONFIG_SMP */
2069dd75
PZ
2130static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2131 unsigned long weight)
2132{
19e5eebb
PT
2133 if (se->on_rq) {
2134 /* commit outstanding execution time */
2135 if (cfs_rq->curr == se)
2136 update_curr(cfs_rq);
2069dd75 2137 account_entity_dequeue(cfs_rq, se);
19e5eebb 2138 }
2069dd75
PZ
2139
2140 update_load_set(&se->load, weight);
2141
2142 if (se->on_rq)
2143 account_entity_enqueue(cfs_rq, se);
2144}
2145
82958366
PT
2146static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2147
6d5ab293 2148static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2149{
2150 struct task_group *tg;
2151 struct sched_entity *se;
3ff6dcac 2152 long shares;
2069dd75 2153
2069dd75
PZ
2154 tg = cfs_rq->tg;
2155 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2156 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2157 return;
3ff6dcac
YZ
2158#ifndef CONFIG_SMP
2159 if (likely(se->load.weight == tg->shares))
2160 return;
2161#endif
6d5ab293 2162 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2163
2164 reweight_entity(cfs_rq_of(se), se, shares);
2165}
2166#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2167static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2168{
2169}
2170#endif /* CONFIG_FAIR_GROUP_SCHED */
2171
141965c7 2172#ifdef CONFIG_SMP
5b51f2f8
PT
2173/*
2174 * We choose a half-life close to 1 scheduling period.
2175 * Note: The tables below are dependent on this value.
2176 */
2177#define LOAD_AVG_PERIOD 32
2178#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2179#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2180
2181/* Precomputed fixed inverse multiplies for multiplication by y^n */
2182static const u32 runnable_avg_yN_inv[] = {
2183 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2184 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2185 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2186 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2187 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2188 0x85aac367, 0x82cd8698,
2189};
2190
2191/*
2192 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2193 * over-estimates when re-combining.
2194 */
2195static const u32 runnable_avg_yN_sum[] = {
2196 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2197 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2198 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2199};
2200
9d85f21c
PT
2201/*
2202 * Approximate:
2203 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2204 */
2205static __always_inline u64 decay_load(u64 val, u64 n)
2206{
5b51f2f8
PT
2207 unsigned int local_n;
2208
2209 if (!n)
2210 return val;
2211 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2212 return 0;
2213
2214 /* after bounds checking we can collapse to 32-bit */
2215 local_n = n;
2216
2217 /*
2218 * As y^PERIOD = 1/2, we can combine
2219 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2220 * With a look-up table which covers k^n (n<PERIOD)
2221 *
2222 * To achieve constant time decay_load.
2223 */
2224 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2225 val >>= local_n / LOAD_AVG_PERIOD;
2226 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2227 }
2228
5b51f2f8
PT
2229 val *= runnable_avg_yN_inv[local_n];
2230 /* We don't use SRR here since we always want to round down. */
2231 return val >> 32;
2232}
2233
2234/*
2235 * For updates fully spanning n periods, the contribution to runnable
2236 * average will be: \Sum 1024*y^n
2237 *
2238 * We can compute this reasonably efficiently by combining:
2239 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2240 */
2241static u32 __compute_runnable_contrib(u64 n)
2242{
2243 u32 contrib = 0;
2244
2245 if (likely(n <= LOAD_AVG_PERIOD))
2246 return runnable_avg_yN_sum[n];
2247 else if (unlikely(n >= LOAD_AVG_MAX_N))
2248 return LOAD_AVG_MAX;
2249
2250 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2251 do {
2252 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2253 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2254
2255 n -= LOAD_AVG_PERIOD;
2256 } while (n > LOAD_AVG_PERIOD);
2257
2258 contrib = decay_load(contrib, n);
2259 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2260}
2261
2262/*
2263 * We can represent the historical contribution to runnable average as the
2264 * coefficients of a geometric series. To do this we sub-divide our runnable
2265 * history into segments of approximately 1ms (1024us); label the segment that
2266 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2267 *
2268 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2269 * p0 p1 p2
2270 * (now) (~1ms ago) (~2ms ago)
2271 *
2272 * Let u_i denote the fraction of p_i that the entity was runnable.
2273 *
2274 * We then designate the fractions u_i as our co-efficients, yielding the
2275 * following representation of historical load:
2276 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2277 *
2278 * We choose y based on the with of a reasonably scheduling period, fixing:
2279 * y^32 = 0.5
2280 *
2281 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2282 * approximately half as much as the contribution to load within the last ms
2283 * (u_0).
2284 *
2285 * When a period "rolls over" and we have new u_0`, multiplying the previous
2286 * sum again by y is sufficient to update:
2287 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2288 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2289 */
2290static __always_inline int __update_entity_runnable_avg(u64 now,
2291 struct sched_avg *sa,
2292 int runnable)
2293{
5b51f2f8
PT
2294 u64 delta, periods;
2295 u32 runnable_contrib;
9d85f21c
PT
2296 int delta_w, decayed = 0;
2297
2298 delta = now - sa->last_runnable_update;
2299 /*
2300 * This should only happen when time goes backwards, which it
2301 * unfortunately does during sched clock init when we swap over to TSC.
2302 */
2303 if ((s64)delta < 0) {
2304 sa->last_runnable_update = now;
2305 return 0;
2306 }
2307
2308 /*
2309 * Use 1024ns as the unit of measurement since it's a reasonable
2310 * approximation of 1us and fast to compute.
2311 */
2312 delta >>= 10;
2313 if (!delta)
2314 return 0;
2315 sa->last_runnable_update = now;
2316
2317 /* delta_w is the amount already accumulated against our next period */
2318 delta_w = sa->runnable_avg_period % 1024;
2319 if (delta + delta_w >= 1024) {
2320 /* period roll-over */
2321 decayed = 1;
2322
2323 /*
2324 * Now that we know we're crossing a period boundary, figure
2325 * out how much from delta we need to complete the current
2326 * period and accrue it.
2327 */
2328 delta_w = 1024 - delta_w;
5b51f2f8
PT
2329 if (runnable)
2330 sa->runnable_avg_sum += delta_w;
2331 sa->runnable_avg_period += delta_w;
2332
2333 delta -= delta_w;
2334
2335 /* Figure out how many additional periods this update spans */
2336 periods = delta / 1024;
2337 delta %= 1024;
2338
2339 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2340 periods + 1);
2341 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2342 periods + 1);
2343
2344 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2345 runnable_contrib = __compute_runnable_contrib(periods);
2346 if (runnable)
2347 sa->runnable_avg_sum += runnable_contrib;
2348 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2349 }
2350
2351 /* Remainder of delta accrued against u_0` */
2352 if (runnable)
2353 sa->runnable_avg_sum += delta;
2354 sa->runnable_avg_period += delta;
2355
2356 return decayed;
2357}
2358
9ee474f5 2359/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2360static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2361{
2362 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2363 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2364
2365 decays -= se->avg.decay_count;
2366 if (!decays)
aff3e498 2367 return 0;
9ee474f5
PT
2368
2369 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2370 se->avg.decay_count = 0;
aff3e498
PT
2371
2372 return decays;
9ee474f5
PT
2373}
2374
c566e8e9
PT
2375#ifdef CONFIG_FAIR_GROUP_SCHED
2376static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2377 int force_update)
2378{
2379 struct task_group *tg = cfs_rq->tg;
bf5b986e 2380 long tg_contrib;
c566e8e9
PT
2381
2382 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2383 tg_contrib -= cfs_rq->tg_load_contrib;
2384
bf5b986e
AS
2385 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2386 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2387 cfs_rq->tg_load_contrib += tg_contrib;
2388 }
2389}
8165e145 2390
bb17f655
PT
2391/*
2392 * Aggregate cfs_rq runnable averages into an equivalent task_group
2393 * representation for computing load contributions.
2394 */
2395static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2396 struct cfs_rq *cfs_rq)
2397{
2398 struct task_group *tg = cfs_rq->tg;
2399 long contrib;
2400
2401 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2402 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2403 sa->runnable_avg_period + 1);
2404 contrib -= cfs_rq->tg_runnable_contrib;
2405
2406 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2407 atomic_add(contrib, &tg->runnable_avg);
2408 cfs_rq->tg_runnable_contrib += contrib;
2409 }
2410}
2411
8165e145
PT
2412static inline void __update_group_entity_contrib(struct sched_entity *se)
2413{
2414 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2415 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2416 int runnable_avg;
2417
8165e145
PT
2418 u64 contrib;
2419
2420 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2421 se->avg.load_avg_contrib = div_u64(contrib,
2422 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2423
2424 /*
2425 * For group entities we need to compute a correction term in the case
2426 * that they are consuming <1 cpu so that we would contribute the same
2427 * load as a task of equal weight.
2428 *
2429 * Explicitly co-ordinating this measurement would be expensive, but
2430 * fortunately the sum of each cpus contribution forms a usable
2431 * lower-bound on the true value.
2432 *
2433 * Consider the aggregate of 2 contributions. Either they are disjoint
2434 * (and the sum represents true value) or they are disjoint and we are
2435 * understating by the aggregate of their overlap.
2436 *
2437 * Extending this to N cpus, for a given overlap, the maximum amount we
2438 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2439 * cpus that overlap for this interval and w_i is the interval width.
2440 *
2441 * On a small machine; the first term is well-bounded which bounds the
2442 * total error since w_i is a subset of the period. Whereas on a
2443 * larger machine, while this first term can be larger, if w_i is the
2444 * of consequential size guaranteed to see n_i*w_i quickly converge to
2445 * our upper bound of 1-cpu.
2446 */
2447 runnable_avg = atomic_read(&tg->runnable_avg);
2448 if (runnable_avg < NICE_0_LOAD) {
2449 se->avg.load_avg_contrib *= runnable_avg;
2450 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2451 }
8165e145 2452}
f5f9739d
DE
2453
2454static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2455{
2456 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2457 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2458}
6e83125c 2459#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2460static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2461 int force_update) {}
bb17f655
PT
2462static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2463 struct cfs_rq *cfs_rq) {}
8165e145 2464static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2465static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2466#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2467
8165e145
PT
2468static inline void __update_task_entity_contrib(struct sched_entity *se)
2469{
2470 u32 contrib;
2471
2472 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2473 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2474 contrib /= (se->avg.runnable_avg_period + 1);
2475 se->avg.load_avg_contrib = scale_load(contrib);
2476}
2477
2dac754e
PT
2478/* Compute the current contribution to load_avg by se, return any delta */
2479static long __update_entity_load_avg_contrib(struct sched_entity *se)
2480{
2481 long old_contrib = se->avg.load_avg_contrib;
2482
8165e145
PT
2483 if (entity_is_task(se)) {
2484 __update_task_entity_contrib(se);
2485 } else {
bb17f655 2486 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2487 __update_group_entity_contrib(se);
2488 }
2dac754e
PT
2489
2490 return se->avg.load_avg_contrib - old_contrib;
2491}
2492
9ee474f5
PT
2493static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2494 long load_contrib)
2495{
2496 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2497 cfs_rq->blocked_load_avg -= load_contrib;
2498 else
2499 cfs_rq->blocked_load_avg = 0;
2500}
2501
f1b17280
PT
2502static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2503
9d85f21c 2504/* Update a sched_entity's runnable average */
9ee474f5
PT
2505static inline void update_entity_load_avg(struct sched_entity *se,
2506 int update_cfs_rq)
9d85f21c 2507{
2dac754e
PT
2508 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2509 long contrib_delta;
f1b17280 2510 u64 now;
2dac754e 2511
f1b17280
PT
2512 /*
2513 * For a group entity we need to use their owned cfs_rq_clock_task() in
2514 * case they are the parent of a throttled hierarchy.
2515 */
2516 if (entity_is_task(se))
2517 now = cfs_rq_clock_task(cfs_rq);
2518 else
2519 now = cfs_rq_clock_task(group_cfs_rq(se));
2520
2521 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2522 return;
2523
2524 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2525
2526 if (!update_cfs_rq)
2527 return;
2528
2dac754e
PT
2529 if (se->on_rq)
2530 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2531 else
2532 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2533}
2534
2535/*
2536 * Decay the load contributed by all blocked children and account this so that
2537 * their contribution may appropriately discounted when they wake up.
2538 */
aff3e498 2539static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2540{
f1b17280 2541 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2542 u64 decays;
2543
2544 decays = now - cfs_rq->last_decay;
aff3e498 2545 if (!decays && !force_update)
9ee474f5
PT
2546 return;
2547
2509940f
AS
2548 if (atomic_long_read(&cfs_rq->removed_load)) {
2549 unsigned long removed_load;
2550 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2551 subtract_blocked_load_contrib(cfs_rq, removed_load);
2552 }
9ee474f5 2553
aff3e498
PT
2554 if (decays) {
2555 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2556 decays);
2557 atomic64_add(decays, &cfs_rq->decay_counter);
2558 cfs_rq->last_decay = now;
2559 }
c566e8e9
PT
2560
2561 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2562}
18bf2805 2563
2dac754e
PT
2564/* Add the load generated by se into cfs_rq's child load-average */
2565static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2566 struct sched_entity *se,
2567 int wakeup)
2dac754e 2568{
aff3e498
PT
2569 /*
2570 * We track migrations using entity decay_count <= 0, on a wake-up
2571 * migration we use a negative decay count to track the remote decays
2572 * accumulated while sleeping.
a75cdaa9
AS
2573 *
2574 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2575 * are seen by enqueue_entity_load_avg() as a migration with an already
2576 * constructed load_avg_contrib.
aff3e498
PT
2577 */
2578 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2579 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2580 if (se->avg.decay_count) {
2581 /*
2582 * In a wake-up migration we have to approximate the
2583 * time sleeping. This is because we can't synchronize
2584 * clock_task between the two cpus, and it is not
2585 * guaranteed to be read-safe. Instead, we can
2586 * approximate this using our carried decays, which are
2587 * explicitly atomically readable.
2588 */
2589 se->avg.last_runnable_update -= (-se->avg.decay_count)
2590 << 20;
2591 update_entity_load_avg(se, 0);
2592 /* Indicate that we're now synchronized and on-rq */
2593 se->avg.decay_count = 0;
2594 }
9ee474f5
PT
2595 wakeup = 0;
2596 } else {
9390675a 2597 __synchronize_entity_decay(se);
9ee474f5
PT
2598 }
2599
aff3e498
PT
2600 /* migrated tasks did not contribute to our blocked load */
2601 if (wakeup) {
9ee474f5 2602 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2603 update_entity_load_avg(se, 0);
2604 }
9ee474f5 2605
2dac754e 2606 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2607 /* we force update consideration on load-balancer moves */
2608 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2609}
2610
9ee474f5
PT
2611/*
2612 * Remove se's load from this cfs_rq child load-average, if the entity is
2613 * transitioning to a blocked state we track its projected decay using
2614 * blocked_load_avg.
2615 */
2dac754e 2616static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2617 struct sched_entity *se,
2618 int sleep)
2dac754e 2619{
9ee474f5 2620 update_entity_load_avg(se, 1);
aff3e498
PT
2621 /* we force update consideration on load-balancer moves */
2622 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2623
2dac754e 2624 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2625 if (sleep) {
2626 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2627 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2628 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2629}
642dbc39
VG
2630
2631/*
2632 * Update the rq's load with the elapsed running time before entering
2633 * idle. if the last scheduled task is not a CFS task, idle_enter will
2634 * be the only way to update the runnable statistic.
2635 */
2636void idle_enter_fair(struct rq *this_rq)
2637{
2638 update_rq_runnable_avg(this_rq, 1);
2639}
2640
2641/*
2642 * Update the rq's load with the elapsed idle time before a task is
2643 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2644 * be the only way to update the runnable statistic.
2645 */
2646void idle_exit_fair(struct rq *this_rq)
2647{
2648 update_rq_runnable_avg(this_rq, 0);
2649}
2650
6e83125c
PZ
2651static int idle_balance(struct rq *this_rq);
2652
38033c37
PZ
2653#else /* CONFIG_SMP */
2654
9ee474f5
PT
2655static inline void update_entity_load_avg(struct sched_entity *se,
2656 int update_cfs_rq) {}
18bf2805 2657static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2658static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2659 struct sched_entity *se,
2660 int wakeup) {}
2dac754e 2661static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2662 struct sched_entity *se,
2663 int sleep) {}
aff3e498
PT
2664static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2665 int force_update) {}
6e83125c
PZ
2666
2667static inline int idle_balance(struct rq *rq)
2668{
2669 return 0;
2670}
2671
38033c37 2672#endif /* CONFIG_SMP */
9d85f21c 2673
2396af69 2674static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2675{
bf0f6f24 2676#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2677 struct task_struct *tsk = NULL;
2678
2679 if (entity_is_task(se))
2680 tsk = task_of(se);
2681
41acab88 2682 if (se->statistics.sleep_start) {
78becc27 2683 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2684
2685 if ((s64)delta < 0)
2686 delta = 0;
2687
41acab88
LDM
2688 if (unlikely(delta > se->statistics.sleep_max))
2689 se->statistics.sleep_max = delta;
bf0f6f24 2690
8c79a045 2691 se->statistics.sleep_start = 0;
41acab88 2692 se->statistics.sum_sleep_runtime += delta;
9745512c 2693
768d0c27 2694 if (tsk) {
e414314c 2695 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2696 trace_sched_stat_sleep(tsk, delta);
2697 }
bf0f6f24 2698 }
41acab88 2699 if (se->statistics.block_start) {
78becc27 2700 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2701
2702 if ((s64)delta < 0)
2703 delta = 0;
2704
41acab88
LDM
2705 if (unlikely(delta > se->statistics.block_max))
2706 se->statistics.block_max = delta;
bf0f6f24 2707
8c79a045 2708 se->statistics.block_start = 0;
41acab88 2709 se->statistics.sum_sleep_runtime += delta;
30084fbd 2710
e414314c 2711 if (tsk) {
8f0dfc34 2712 if (tsk->in_iowait) {
41acab88
LDM
2713 se->statistics.iowait_sum += delta;
2714 se->statistics.iowait_count++;
768d0c27 2715 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2716 }
2717
b781a602
AV
2718 trace_sched_stat_blocked(tsk, delta);
2719
e414314c
PZ
2720 /*
2721 * Blocking time is in units of nanosecs, so shift by
2722 * 20 to get a milliseconds-range estimation of the
2723 * amount of time that the task spent sleeping:
2724 */
2725 if (unlikely(prof_on == SLEEP_PROFILING)) {
2726 profile_hits(SLEEP_PROFILING,
2727 (void *)get_wchan(tsk),
2728 delta >> 20);
2729 }
2730 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2731 }
bf0f6f24
IM
2732 }
2733#endif
2734}
2735
ddc97297
PZ
2736static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2737{
2738#ifdef CONFIG_SCHED_DEBUG
2739 s64 d = se->vruntime - cfs_rq->min_vruntime;
2740
2741 if (d < 0)
2742 d = -d;
2743
2744 if (d > 3*sysctl_sched_latency)
2745 schedstat_inc(cfs_rq, nr_spread_over);
2746#endif
2747}
2748
aeb73b04
PZ
2749static void
2750place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2751{
1af5f730 2752 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2753
2cb8600e
PZ
2754 /*
2755 * The 'current' period is already promised to the current tasks,
2756 * however the extra weight of the new task will slow them down a
2757 * little, place the new task so that it fits in the slot that
2758 * stays open at the end.
2759 */
94dfb5e7 2760 if (initial && sched_feat(START_DEBIT))
f9c0b095 2761 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2762
a2e7a7eb 2763 /* sleeps up to a single latency don't count. */
5ca9880c 2764 if (!initial) {
a2e7a7eb 2765 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2766
a2e7a7eb
MG
2767 /*
2768 * Halve their sleep time's effect, to allow
2769 * for a gentler effect of sleepers:
2770 */
2771 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2772 thresh >>= 1;
51e0304c 2773
a2e7a7eb 2774 vruntime -= thresh;
aeb73b04
PZ
2775 }
2776
b5d9d734 2777 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2778 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2779}
2780
d3d9dc33
PT
2781static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2782
bf0f6f24 2783static void
88ec22d3 2784enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2785{
88ec22d3
PZ
2786 /*
2787 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2788 * through calling update_curr().
88ec22d3 2789 */
371fd7e7 2790 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2791 se->vruntime += cfs_rq->min_vruntime;
2792
bf0f6f24 2793 /*
a2a2d680 2794 * Update run-time statistics of the 'current'.
bf0f6f24 2795 */
b7cc0896 2796 update_curr(cfs_rq);
f269ae04 2797 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2798 account_entity_enqueue(cfs_rq, se);
2799 update_cfs_shares(cfs_rq);
bf0f6f24 2800
88ec22d3 2801 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2802 place_entity(cfs_rq, se, 0);
2396af69 2803 enqueue_sleeper(cfs_rq, se);
e9acbff6 2804 }
bf0f6f24 2805
d2417e5a 2806 update_stats_enqueue(cfs_rq, se);
ddc97297 2807 check_spread(cfs_rq, se);
83b699ed
SV
2808 if (se != cfs_rq->curr)
2809 __enqueue_entity(cfs_rq, se);
2069dd75 2810 se->on_rq = 1;
3d4b47b4 2811
d3d9dc33 2812 if (cfs_rq->nr_running == 1) {
3d4b47b4 2813 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2814 check_enqueue_throttle(cfs_rq);
2815 }
bf0f6f24
IM
2816}
2817
2c13c919 2818static void __clear_buddies_last(struct sched_entity *se)
2002c695 2819{
2c13c919
RR
2820 for_each_sched_entity(se) {
2821 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2822 if (cfs_rq->last != se)
2c13c919 2823 break;
f1044799
PZ
2824
2825 cfs_rq->last = NULL;
2c13c919
RR
2826 }
2827}
2002c695 2828
2c13c919
RR
2829static void __clear_buddies_next(struct sched_entity *se)
2830{
2831 for_each_sched_entity(se) {
2832 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2833 if (cfs_rq->next != se)
2c13c919 2834 break;
f1044799
PZ
2835
2836 cfs_rq->next = NULL;
2c13c919 2837 }
2002c695
PZ
2838}
2839
ac53db59
RR
2840static void __clear_buddies_skip(struct sched_entity *se)
2841{
2842 for_each_sched_entity(se) {
2843 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2844 if (cfs_rq->skip != se)
ac53db59 2845 break;
f1044799
PZ
2846
2847 cfs_rq->skip = NULL;
ac53db59
RR
2848 }
2849}
2850
a571bbea
PZ
2851static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2852{
2c13c919
RR
2853 if (cfs_rq->last == se)
2854 __clear_buddies_last(se);
2855
2856 if (cfs_rq->next == se)
2857 __clear_buddies_next(se);
ac53db59
RR
2858
2859 if (cfs_rq->skip == se)
2860 __clear_buddies_skip(se);
a571bbea
PZ
2861}
2862
6c16a6dc 2863static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2864
bf0f6f24 2865static void
371fd7e7 2866dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2867{
a2a2d680
DA
2868 /*
2869 * Update run-time statistics of the 'current'.
2870 */
2871 update_curr(cfs_rq);
17bc14b7 2872 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2873
19b6a2e3 2874 update_stats_dequeue(cfs_rq, se);
371fd7e7 2875 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2876#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2877 if (entity_is_task(se)) {
2878 struct task_struct *tsk = task_of(se);
2879
2880 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2881 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2882 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2883 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2884 }
db36cc7d 2885#endif
67e9fb2a
PZ
2886 }
2887
2002c695 2888 clear_buddies(cfs_rq, se);
4793241b 2889
83b699ed 2890 if (se != cfs_rq->curr)
30cfdcfc 2891 __dequeue_entity(cfs_rq, se);
17bc14b7 2892 se->on_rq = 0;
30cfdcfc 2893 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2894
2895 /*
2896 * Normalize the entity after updating the min_vruntime because the
2897 * update can refer to the ->curr item and we need to reflect this
2898 * movement in our normalized position.
2899 */
371fd7e7 2900 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2901 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2902
d8b4986d
PT
2903 /* return excess runtime on last dequeue */
2904 return_cfs_rq_runtime(cfs_rq);
2905
1e876231 2906 update_min_vruntime(cfs_rq);
17bc14b7 2907 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2908}
2909
2910/*
2911 * Preempt the current task with a newly woken task if needed:
2912 */
7c92e54f 2913static void
2e09bf55 2914check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2915{
11697830 2916 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2917 struct sched_entity *se;
2918 s64 delta;
11697830 2919
6d0f0ebd 2920 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2921 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2922 if (delta_exec > ideal_runtime) {
8875125e 2923 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
2924 /*
2925 * The current task ran long enough, ensure it doesn't get
2926 * re-elected due to buddy favours.
2927 */
2928 clear_buddies(cfs_rq, curr);
f685ceac
MG
2929 return;
2930 }
2931
2932 /*
2933 * Ensure that a task that missed wakeup preemption by a
2934 * narrow margin doesn't have to wait for a full slice.
2935 * This also mitigates buddy induced latencies under load.
2936 */
f685ceac
MG
2937 if (delta_exec < sysctl_sched_min_granularity)
2938 return;
2939
f4cfb33e
WX
2940 se = __pick_first_entity(cfs_rq);
2941 delta = curr->vruntime - se->vruntime;
f685ceac 2942
f4cfb33e
WX
2943 if (delta < 0)
2944 return;
d7d82944 2945
f4cfb33e 2946 if (delta > ideal_runtime)
8875125e 2947 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
2948}
2949
83b699ed 2950static void
8494f412 2951set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2952{
83b699ed
SV
2953 /* 'current' is not kept within the tree. */
2954 if (se->on_rq) {
2955 /*
2956 * Any task has to be enqueued before it get to execute on
2957 * a CPU. So account for the time it spent waiting on the
2958 * runqueue.
2959 */
2960 update_stats_wait_end(cfs_rq, se);
2961 __dequeue_entity(cfs_rq, se);
2962 }
2963
79303e9e 2964 update_stats_curr_start(cfs_rq, se);
429d43bc 2965 cfs_rq->curr = se;
eba1ed4b
IM
2966#ifdef CONFIG_SCHEDSTATS
2967 /*
2968 * Track our maximum slice length, if the CPU's load is at
2969 * least twice that of our own weight (i.e. dont track it
2970 * when there are only lesser-weight tasks around):
2971 */
495eca49 2972 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2973 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2974 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2975 }
2976#endif
4a55b450 2977 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2978}
2979
3f3a4904
PZ
2980static int
2981wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2982
ac53db59
RR
2983/*
2984 * Pick the next process, keeping these things in mind, in this order:
2985 * 1) keep things fair between processes/task groups
2986 * 2) pick the "next" process, since someone really wants that to run
2987 * 3) pick the "last" process, for cache locality
2988 * 4) do not run the "skip" process, if something else is available
2989 */
678d5718
PZ
2990static struct sched_entity *
2991pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2992{
678d5718
PZ
2993 struct sched_entity *left = __pick_first_entity(cfs_rq);
2994 struct sched_entity *se;
2995
2996 /*
2997 * If curr is set we have to see if its left of the leftmost entity
2998 * still in the tree, provided there was anything in the tree at all.
2999 */
3000 if (!left || (curr && entity_before(curr, left)))
3001 left = curr;
3002
3003 se = left; /* ideally we run the leftmost entity */
f4b6755f 3004
ac53db59
RR
3005 /*
3006 * Avoid running the skip buddy, if running something else can
3007 * be done without getting too unfair.
3008 */
3009 if (cfs_rq->skip == se) {
678d5718
PZ
3010 struct sched_entity *second;
3011
3012 if (se == curr) {
3013 second = __pick_first_entity(cfs_rq);
3014 } else {
3015 second = __pick_next_entity(se);
3016 if (!second || (curr && entity_before(curr, second)))
3017 second = curr;
3018 }
3019
ac53db59
RR
3020 if (second && wakeup_preempt_entity(second, left) < 1)
3021 se = second;
3022 }
aa2ac252 3023
f685ceac
MG
3024 /*
3025 * Prefer last buddy, try to return the CPU to a preempted task.
3026 */
3027 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3028 se = cfs_rq->last;
3029
ac53db59
RR
3030 /*
3031 * Someone really wants this to run. If it's not unfair, run it.
3032 */
3033 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3034 se = cfs_rq->next;
3035
f685ceac 3036 clear_buddies(cfs_rq, se);
4793241b
PZ
3037
3038 return se;
aa2ac252
PZ
3039}
3040
678d5718 3041static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3042
ab6cde26 3043static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3044{
3045 /*
3046 * If still on the runqueue then deactivate_task()
3047 * was not called and update_curr() has to be done:
3048 */
3049 if (prev->on_rq)
b7cc0896 3050 update_curr(cfs_rq);
bf0f6f24 3051
d3d9dc33
PT
3052 /* throttle cfs_rqs exceeding runtime */
3053 check_cfs_rq_runtime(cfs_rq);
3054
ddc97297 3055 check_spread(cfs_rq, prev);
30cfdcfc 3056 if (prev->on_rq) {
5870db5b 3057 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3058 /* Put 'current' back into the tree. */
3059 __enqueue_entity(cfs_rq, prev);
9d85f21c 3060 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3061 update_entity_load_avg(prev, 1);
30cfdcfc 3062 }
429d43bc 3063 cfs_rq->curr = NULL;
bf0f6f24
IM
3064}
3065
8f4d37ec
PZ
3066static void
3067entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3068{
bf0f6f24 3069 /*
30cfdcfc 3070 * Update run-time statistics of the 'current'.
bf0f6f24 3071 */
30cfdcfc 3072 update_curr(cfs_rq);
bf0f6f24 3073
9d85f21c
PT
3074 /*
3075 * Ensure that runnable average is periodically updated.
3076 */
9ee474f5 3077 update_entity_load_avg(curr, 1);
aff3e498 3078 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3079 update_cfs_shares(cfs_rq);
9d85f21c 3080
8f4d37ec
PZ
3081#ifdef CONFIG_SCHED_HRTICK
3082 /*
3083 * queued ticks are scheduled to match the slice, so don't bother
3084 * validating it and just reschedule.
3085 */
983ed7a6 3086 if (queued) {
8875125e 3087 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3088 return;
3089 }
8f4d37ec
PZ
3090 /*
3091 * don't let the period tick interfere with the hrtick preemption
3092 */
3093 if (!sched_feat(DOUBLE_TICK) &&
3094 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3095 return;
3096#endif
3097
2c2efaed 3098 if (cfs_rq->nr_running > 1)
2e09bf55 3099 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3100}
3101
ab84d31e
PT
3102
3103/**************************************************
3104 * CFS bandwidth control machinery
3105 */
3106
3107#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3108
3109#ifdef HAVE_JUMP_LABEL
c5905afb 3110static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3111
3112static inline bool cfs_bandwidth_used(void)
3113{
c5905afb 3114 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3115}
3116
1ee14e6c 3117void cfs_bandwidth_usage_inc(void)
029632fb 3118{
1ee14e6c
BS
3119 static_key_slow_inc(&__cfs_bandwidth_used);
3120}
3121
3122void cfs_bandwidth_usage_dec(void)
3123{
3124 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3125}
3126#else /* HAVE_JUMP_LABEL */
3127static bool cfs_bandwidth_used(void)
3128{
3129 return true;
3130}
3131
1ee14e6c
BS
3132void cfs_bandwidth_usage_inc(void) {}
3133void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3134#endif /* HAVE_JUMP_LABEL */
3135
ab84d31e
PT
3136/*
3137 * default period for cfs group bandwidth.
3138 * default: 0.1s, units: nanoseconds
3139 */
3140static inline u64 default_cfs_period(void)
3141{
3142 return 100000000ULL;
3143}
ec12cb7f
PT
3144
3145static inline u64 sched_cfs_bandwidth_slice(void)
3146{
3147 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3148}
3149
a9cf55b2
PT
3150/*
3151 * Replenish runtime according to assigned quota and update expiration time.
3152 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3153 * additional synchronization around rq->lock.
3154 *
3155 * requires cfs_b->lock
3156 */
029632fb 3157void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3158{
3159 u64 now;
3160
3161 if (cfs_b->quota == RUNTIME_INF)
3162 return;
3163
3164 now = sched_clock_cpu(smp_processor_id());
3165 cfs_b->runtime = cfs_b->quota;
3166 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3167}
3168
029632fb
PZ
3169static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3170{
3171 return &tg->cfs_bandwidth;
3172}
3173
f1b17280
PT
3174/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3175static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3176{
3177 if (unlikely(cfs_rq->throttle_count))
3178 return cfs_rq->throttled_clock_task;
3179
78becc27 3180 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3181}
3182
85dac906
PT
3183/* returns 0 on failure to allocate runtime */
3184static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3185{
3186 struct task_group *tg = cfs_rq->tg;
3187 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3188 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3189
3190 /* note: this is a positive sum as runtime_remaining <= 0 */
3191 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3192
3193 raw_spin_lock(&cfs_b->lock);
3194 if (cfs_b->quota == RUNTIME_INF)
3195 amount = min_amount;
58088ad0 3196 else {
a9cf55b2
PT
3197 /*
3198 * If the bandwidth pool has become inactive, then at least one
3199 * period must have elapsed since the last consumption.
3200 * Refresh the global state and ensure bandwidth timer becomes
3201 * active.
3202 */
3203 if (!cfs_b->timer_active) {
3204 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3205 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3206 }
58088ad0
PT
3207
3208 if (cfs_b->runtime > 0) {
3209 amount = min(cfs_b->runtime, min_amount);
3210 cfs_b->runtime -= amount;
3211 cfs_b->idle = 0;
3212 }
ec12cb7f 3213 }
a9cf55b2 3214 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3215 raw_spin_unlock(&cfs_b->lock);
3216
3217 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3218 /*
3219 * we may have advanced our local expiration to account for allowed
3220 * spread between our sched_clock and the one on which runtime was
3221 * issued.
3222 */
3223 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3224 cfs_rq->runtime_expires = expires;
85dac906
PT
3225
3226 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3227}
3228
a9cf55b2
PT
3229/*
3230 * Note: This depends on the synchronization provided by sched_clock and the
3231 * fact that rq->clock snapshots this value.
3232 */
3233static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3234{
a9cf55b2 3235 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3236
3237 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3238 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3239 return;
3240
a9cf55b2
PT
3241 if (cfs_rq->runtime_remaining < 0)
3242 return;
3243
3244 /*
3245 * If the local deadline has passed we have to consider the
3246 * possibility that our sched_clock is 'fast' and the global deadline
3247 * has not truly expired.
3248 *
3249 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3250 * whether the global deadline has advanced. It is valid to compare
3251 * cfs_b->runtime_expires without any locks since we only care about
3252 * exact equality, so a partial write will still work.
a9cf55b2
PT
3253 */
3254
51f2176d 3255 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3256 /* extend local deadline, drift is bounded above by 2 ticks */
3257 cfs_rq->runtime_expires += TICK_NSEC;
3258 } else {
3259 /* global deadline is ahead, expiration has passed */
3260 cfs_rq->runtime_remaining = 0;
3261 }
3262}
3263
9dbdb155 3264static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3265{
3266 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3267 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3268 expire_cfs_rq_runtime(cfs_rq);
3269
3270 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3271 return;
3272
85dac906
PT
3273 /*
3274 * if we're unable to extend our runtime we resched so that the active
3275 * hierarchy can be throttled
3276 */
3277 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3278 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3279}
3280
6c16a6dc 3281static __always_inline
9dbdb155 3282void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3283{
56f570e5 3284 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3285 return;
3286
3287 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3288}
3289
85dac906
PT
3290static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3291{
56f570e5 3292 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3293}
3294
64660c86
PT
3295/* check whether cfs_rq, or any parent, is throttled */
3296static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3297{
56f570e5 3298 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3299}
3300
3301/*
3302 * Ensure that neither of the group entities corresponding to src_cpu or
3303 * dest_cpu are members of a throttled hierarchy when performing group
3304 * load-balance operations.
3305 */
3306static inline int throttled_lb_pair(struct task_group *tg,
3307 int src_cpu, int dest_cpu)
3308{
3309 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3310
3311 src_cfs_rq = tg->cfs_rq[src_cpu];
3312 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3313
3314 return throttled_hierarchy(src_cfs_rq) ||
3315 throttled_hierarchy(dest_cfs_rq);
3316}
3317
3318/* updated child weight may affect parent so we have to do this bottom up */
3319static int tg_unthrottle_up(struct task_group *tg, void *data)
3320{
3321 struct rq *rq = data;
3322 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3323
3324 cfs_rq->throttle_count--;
3325#ifdef CONFIG_SMP
3326 if (!cfs_rq->throttle_count) {
f1b17280 3327 /* adjust cfs_rq_clock_task() */
78becc27 3328 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3329 cfs_rq->throttled_clock_task;
64660c86
PT
3330 }
3331#endif
3332
3333 return 0;
3334}
3335
3336static int tg_throttle_down(struct task_group *tg, void *data)
3337{
3338 struct rq *rq = data;
3339 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3340
82958366
PT
3341 /* group is entering throttled state, stop time */
3342 if (!cfs_rq->throttle_count)
78becc27 3343 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3344 cfs_rq->throttle_count++;
3345
3346 return 0;
3347}
3348
d3d9dc33 3349static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3350{
3351 struct rq *rq = rq_of(cfs_rq);
3352 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3353 struct sched_entity *se;
3354 long task_delta, dequeue = 1;
3355
3356 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3357
f1b17280 3358 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3359 rcu_read_lock();
3360 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3361 rcu_read_unlock();
85dac906
PT
3362
3363 task_delta = cfs_rq->h_nr_running;
3364 for_each_sched_entity(se) {
3365 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3366 /* throttled entity or throttle-on-deactivate */
3367 if (!se->on_rq)
3368 break;
3369
3370 if (dequeue)
3371 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3372 qcfs_rq->h_nr_running -= task_delta;
3373
3374 if (qcfs_rq->load.weight)
3375 dequeue = 0;
3376 }
3377
3378 if (!se)
72465447 3379 sub_nr_running(rq, task_delta);
85dac906
PT
3380
3381 cfs_rq->throttled = 1;
78becc27 3382 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3383 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3384 /*
3385 * Add to the _head_ of the list, so that an already-started
3386 * distribute_cfs_runtime will not see us
3387 */
3388 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3389 if (!cfs_b->timer_active)
09dc4ab0 3390 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3391 raw_spin_unlock(&cfs_b->lock);
3392}
3393
029632fb 3394void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3395{
3396 struct rq *rq = rq_of(cfs_rq);
3397 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3398 struct sched_entity *se;
3399 int enqueue = 1;
3400 long task_delta;
3401
22b958d8 3402 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3403
3404 cfs_rq->throttled = 0;
1a55af2e
FW
3405
3406 update_rq_clock(rq);
3407
671fd9da 3408 raw_spin_lock(&cfs_b->lock);
78becc27 3409 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3410 list_del_rcu(&cfs_rq->throttled_list);
3411 raw_spin_unlock(&cfs_b->lock);
3412
64660c86
PT
3413 /* update hierarchical throttle state */
3414 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3415
671fd9da
PT
3416 if (!cfs_rq->load.weight)
3417 return;
3418
3419 task_delta = cfs_rq->h_nr_running;
3420 for_each_sched_entity(se) {
3421 if (se->on_rq)
3422 enqueue = 0;
3423
3424 cfs_rq = cfs_rq_of(se);
3425 if (enqueue)
3426 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3427 cfs_rq->h_nr_running += task_delta;
3428
3429 if (cfs_rq_throttled(cfs_rq))
3430 break;
3431 }
3432
3433 if (!se)
72465447 3434 add_nr_running(rq, task_delta);
671fd9da
PT
3435
3436 /* determine whether we need to wake up potentially idle cpu */
3437 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3438 resched_curr(rq);
671fd9da
PT
3439}
3440
3441static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3442 u64 remaining, u64 expires)
3443{
3444 struct cfs_rq *cfs_rq;
c06f04c7
BS
3445 u64 runtime;
3446 u64 starting_runtime = remaining;
671fd9da
PT
3447
3448 rcu_read_lock();
3449 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3450 throttled_list) {
3451 struct rq *rq = rq_of(cfs_rq);
3452
3453 raw_spin_lock(&rq->lock);
3454 if (!cfs_rq_throttled(cfs_rq))
3455 goto next;
3456
3457 runtime = -cfs_rq->runtime_remaining + 1;
3458 if (runtime > remaining)
3459 runtime = remaining;
3460 remaining -= runtime;
3461
3462 cfs_rq->runtime_remaining += runtime;
3463 cfs_rq->runtime_expires = expires;
3464
3465 /* we check whether we're throttled above */
3466 if (cfs_rq->runtime_remaining > 0)
3467 unthrottle_cfs_rq(cfs_rq);
3468
3469next:
3470 raw_spin_unlock(&rq->lock);
3471
3472 if (!remaining)
3473 break;
3474 }
3475 rcu_read_unlock();
3476
c06f04c7 3477 return starting_runtime - remaining;
671fd9da
PT
3478}
3479
58088ad0
PT
3480/*
3481 * Responsible for refilling a task_group's bandwidth and unthrottling its
3482 * cfs_rqs as appropriate. If there has been no activity within the last
3483 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3484 * used to track this state.
3485 */
3486static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3487{
671fd9da 3488 u64 runtime, runtime_expires;
51f2176d 3489 int throttled;
58088ad0 3490
58088ad0
PT
3491 /* no need to continue the timer with no bandwidth constraint */
3492 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3493 goto out_deactivate;
58088ad0 3494
671fd9da 3495 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3496 cfs_b->nr_periods += overrun;
671fd9da 3497
51f2176d
BS
3498 /*
3499 * idle depends on !throttled (for the case of a large deficit), and if
3500 * we're going inactive then everything else can be deferred
3501 */
3502 if (cfs_b->idle && !throttled)
3503 goto out_deactivate;
a9cf55b2 3504
927b54fc
BS
3505 /*
3506 * if we have relooped after returning idle once, we need to update our
3507 * status as actually running, so that other cpus doing
3508 * __start_cfs_bandwidth will stop trying to cancel us.
3509 */
3510 cfs_b->timer_active = 1;
3511
a9cf55b2
PT
3512 __refill_cfs_bandwidth_runtime(cfs_b);
3513
671fd9da
PT
3514 if (!throttled) {
3515 /* mark as potentially idle for the upcoming period */
3516 cfs_b->idle = 1;
51f2176d 3517 return 0;
671fd9da
PT
3518 }
3519
e8da1b18
NR
3520 /* account preceding periods in which throttling occurred */
3521 cfs_b->nr_throttled += overrun;
3522
671fd9da 3523 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3524
3525 /*
c06f04c7
BS
3526 * This check is repeated as we are holding onto the new bandwidth while
3527 * we unthrottle. This can potentially race with an unthrottled group
3528 * trying to acquire new bandwidth from the global pool. This can result
3529 * in us over-using our runtime if it is all used during this loop, but
3530 * only by limited amounts in that extreme case.
671fd9da 3531 */
c06f04c7
BS
3532 while (throttled && cfs_b->runtime > 0) {
3533 runtime = cfs_b->runtime;
671fd9da
PT
3534 raw_spin_unlock(&cfs_b->lock);
3535 /* we can't nest cfs_b->lock while distributing bandwidth */
3536 runtime = distribute_cfs_runtime(cfs_b, runtime,
3537 runtime_expires);
3538 raw_spin_lock(&cfs_b->lock);
3539
3540 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3541
3542 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3543 }
58088ad0 3544
671fd9da
PT
3545 /*
3546 * While we are ensured activity in the period following an
3547 * unthrottle, this also covers the case in which the new bandwidth is
3548 * insufficient to cover the existing bandwidth deficit. (Forcing the
3549 * timer to remain active while there are any throttled entities.)
3550 */
3551 cfs_b->idle = 0;
58088ad0 3552
51f2176d
BS
3553 return 0;
3554
3555out_deactivate:
3556 cfs_b->timer_active = 0;
3557 return 1;
58088ad0 3558}
d3d9dc33 3559
d8b4986d
PT
3560/* a cfs_rq won't donate quota below this amount */
3561static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3562/* minimum remaining period time to redistribute slack quota */
3563static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3564/* how long we wait to gather additional slack before distributing */
3565static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3566
db06e78c
BS
3567/*
3568 * Are we near the end of the current quota period?
3569 *
3570 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3571 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3572 * migrate_hrtimers, base is never cleared, so we are fine.
3573 */
d8b4986d
PT
3574static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3575{
3576 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3577 u64 remaining;
3578
3579 /* if the call-back is running a quota refresh is already occurring */
3580 if (hrtimer_callback_running(refresh_timer))
3581 return 1;
3582
3583 /* is a quota refresh about to occur? */
3584 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3585 if (remaining < min_expire)
3586 return 1;
3587
3588 return 0;
3589}
3590
3591static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3592{
3593 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3594
3595 /* if there's a quota refresh soon don't bother with slack */
3596 if (runtime_refresh_within(cfs_b, min_left))
3597 return;
3598
3599 start_bandwidth_timer(&cfs_b->slack_timer,
3600 ns_to_ktime(cfs_bandwidth_slack_period));
3601}
3602
3603/* we know any runtime found here is valid as update_curr() precedes return */
3604static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3605{
3606 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3607 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3608
3609 if (slack_runtime <= 0)
3610 return;
3611
3612 raw_spin_lock(&cfs_b->lock);
3613 if (cfs_b->quota != RUNTIME_INF &&
3614 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3615 cfs_b->runtime += slack_runtime;
3616
3617 /* we are under rq->lock, defer unthrottling using a timer */
3618 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3619 !list_empty(&cfs_b->throttled_cfs_rq))
3620 start_cfs_slack_bandwidth(cfs_b);
3621 }
3622 raw_spin_unlock(&cfs_b->lock);
3623
3624 /* even if it's not valid for return we don't want to try again */
3625 cfs_rq->runtime_remaining -= slack_runtime;
3626}
3627
3628static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3629{
56f570e5
PT
3630 if (!cfs_bandwidth_used())
3631 return;
3632
fccfdc6f 3633 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3634 return;
3635
3636 __return_cfs_rq_runtime(cfs_rq);
3637}
3638
3639/*
3640 * This is done with a timer (instead of inline with bandwidth return) since
3641 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3642 */
3643static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3644{
3645 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3646 u64 expires;
3647
3648 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3649 raw_spin_lock(&cfs_b->lock);
3650 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3651 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3652 return;
db06e78c 3653 }
d8b4986d 3654
c06f04c7 3655 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3656 runtime = cfs_b->runtime;
c06f04c7 3657
d8b4986d
PT
3658 expires = cfs_b->runtime_expires;
3659 raw_spin_unlock(&cfs_b->lock);
3660
3661 if (!runtime)
3662 return;
3663
3664 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3665
3666 raw_spin_lock(&cfs_b->lock);
3667 if (expires == cfs_b->runtime_expires)
c06f04c7 3668 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3669 raw_spin_unlock(&cfs_b->lock);
3670}
3671
d3d9dc33
PT
3672/*
3673 * When a group wakes up we want to make sure that its quota is not already
3674 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3675 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3676 */
3677static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3678{
56f570e5
PT
3679 if (!cfs_bandwidth_used())
3680 return;
3681
d3d9dc33
PT
3682 /* an active group must be handled by the update_curr()->put() path */
3683 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3684 return;
3685
3686 /* ensure the group is not already throttled */
3687 if (cfs_rq_throttled(cfs_rq))
3688 return;
3689
3690 /* update runtime allocation */
3691 account_cfs_rq_runtime(cfs_rq, 0);
3692 if (cfs_rq->runtime_remaining <= 0)
3693 throttle_cfs_rq(cfs_rq);
3694}
3695
3696/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3697static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3698{
56f570e5 3699 if (!cfs_bandwidth_used())
678d5718 3700 return false;
56f570e5 3701
d3d9dc33 3702 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3703 return false;
d3d9dc33
PT
3704
3705 /*
3706 * it's possible for a throttled entity to be forced into a running
3707 * state (e.g. set_curr_task), in this case we're finished.
3708 */
3709 if (cfs_rq_throttled(cfs_rq))
678d5718 3710 return true;
d3d9dc33
PT
3711
3712 throttle_cfs_rq(cfs_rq);
678d5718 3713 return true;
d3d9dc33 3714}
029632fb 3715
029632fb
PZ
3716static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3717{
3718 struct cfs_bandwidth *cfs_b =
3719 container_of(timer, struct cfs_bandwidth, slack_timer);
3720 do_sched_cfs_slack_timer(cfs_b);
3721
3722 return HRTIMER_NORESTART;
3723}
3724
3725static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3726{
3727 struct cfs_bandwidth *cfs_b =
3728 container_of(timer, struct cfs_bandwidth, period_timer);
3729 ktime_t now;
3730 int overrun;
3731 int idle = 0;
3732
51f2176d 3733 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3734 for (;;) {
3735 now = hrtimer_cb_get_time(timer);
3736 overrun = hrtimer_forward(timer, now, cfs_b->period);
3737
3738 if (!overrun)
3739 break;
3740
3741 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3742 }
51f2176d 3743 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3744
3745 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3746}
3747
3748void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3749{
3750 raw_spin_lock_init(&cfs_b->lock);
3751 cfs_b->runtime = 0;
3752 cfs_b->quota = RUNTIME_INF;
3753 cfs_b->period = ns_to_ktime(default_cfs_period());
3754
3755 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3756 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3757 cfs_b->period_timer.function = sched_cfs_period_timer;
3758 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3759 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3760}
3761
3762static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3763{
3764 cfs_rq->runtime_enabled = 0;
3765 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3766}
3767
3768/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3769void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3770{
3771 /*
3772 * The timer may be active because we're trying to set a new bandwidth
3773 * period or because we're racing with the tear-down path
3774 * (timer_active==0 becomes visible before the hrtimer call-back
3775 * terminates). In either case we ensure that it's re-programmed
3776 */
927b54fc
BS
3777 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3778 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3779 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3780 raw_spin_unlock(&cfs_b->lock);
927b54fc 3781 cpu_relax();
029632fb
PZ
3782 raw_spin_lock(&cfs_b->lock);
3783 /* if someone else restarted the timer then we're done */
09dc4ab0 3784 if (!force && cfs_b->timer_active)
029632fb
PZ
3785 return;
3786 }
3787
3788 cfs_b->timer_active = 1;
3789 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3790}
3791
3792static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3793{
3794 hrtimer_cancel(&cfs_b->period_timer);
3795 hrtimer_cancel(&cfs_b->slack_timer);
3796}
3797
0e59bdae
KT
3798static void __maybe_unused update_runtime_enabled(struct rq *rq)
3799{
3800 struct cfs_rq *cfs_rq;
3801
3802 for_each_leaf_cfs_rq(rq, cfs_rq) {
3803 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3804
3805 raw_spin_lock(&cfs_b->lock);
3806 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3807 raw_spin_unlock(&cfs_b->lock);
3808 }
3809}
3810
38dc3348 3811static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3812{
3813 struct cfs_rq *cfs_rq;
3814
3815 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3816 if (!cfs_rq->runtime_enabled)
3817 continue;
3818
3819 /*
3820 * clock_task is not advancing so we just need to make sure
3821 * there's some valid quota amount
3822 */
51f2176d 3823 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3824 /*
3825 * Offline rq is schedulable till cpu is completely disabled
3826 * in take_cpu_down(), so we prevent new cfs throttling here.
3827 */
3828 cfs_rq->runtime_enabled = 0;
3829
029632fb
PZ
3830 if (cfs_rq_throttled(cfs_rq))
3831 unthrottle_cfs_rq(cfs_rq);
3832 }
3833}
3834
3835#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3836static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3837{
78becc27 3838 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3839}
3840
9dbdb155 3841static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3842static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3843static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3844static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3845
3846static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3847{
3848 return 0;
3849}
64660c86
PT
3850
3851static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3852{
3853 return 0;
3854}
3855
3856static inline int throttled_lb_pair(struct task_group *tg,
3857 int src_cpu, int dest_cpu)
3858{
3859 return 0;
3860}
029632fb
PZ
3861
3862void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3863
3864#ifdef CONFIG_FAIR_GROUP_SCHED
3865static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3866#endif
3867
029632fb
PZ
3868static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3869{
3870 return NULL;
3871}
3872static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3873static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3874static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3875
3876#endif /* CONFIG_CFS_BANDWIDTH */
3877
bf0f6f24
IM
3878/**************************************************
3879 * CFS operations on tasks:
3880 */
3881
8f4d37ec
PZ
3882#ifdef CONFIG_SCHED_HRTICK
3883static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3884{
8f4d37ec
PZ
3885 struct sched_entity *se = &p->se;
3886 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3887
3888 WARN_ON(task_rq(p) != rq);
3889
b39e66ea 3890 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3891 u64 slice = sched_slice(cfs_rq, se);
3892 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3893 s64 delta = slice - ran;
3894
3895 if (delta < 0) {
3896 if (rq->curr == p)
8875125e 3897 resched_curr(rq);
8f4d37ec
PZ
3898 return;
3899 }
3900
3901 /*
3902 * Don't schedule slices shorter than 10000ns, that just
3903 * doesn't make sense. Rely on vruntime for fairness.
3904 */
31656519 3905 if (rq->curr != p)
157124c1 3906 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3907
31656519 3908 hrtick_start(rq, delta);
8f4d37ec
PZ
3909 }
3910}
a4c2f00f
PZ
3911
3912/*
3913 * called from enqueue/dequeue and updates the hrtick when the
3914 * current task is from our class and nr_running is low enough
3915 * to matter.
3916 */
3917static void hrtick_update(struct rq *rq)
3918{
3919 struct task_struct *curr = rq->curr;
3920
b39e66ea 3921 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3922 return;
3923
3924 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3925 hrtick_start_fair(rq, curr);
3926}
55e12e5e 3927#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3928static inline void
3929hrtick_start_fair(struct rq *rq, struct task_struct *p)
3930{
3931}
a4c2f00f
PZ
3932
3933static inline void hrtick_update(struct rq *rq)
3934{
3935}
8f4d37ec
PZ
3936#endif
3937
bf0f6f24
IM
3938/*
3939 * The enqueue_task method is called before nr_running is
3940 * increased. Here we update the fair scheduling stats and
3941 * then put the task into the rbtree:
3942 */
ea87bb78 3943static void
371fd7e7 3944enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3945{
3946 struct cfs_rq *cfs_rq;
62fb1851 3947 struct sched_entity *se = &p->se;
bf0f6f24
IM
3948
3949 for_each_sched_entity(se) {
62fb1851 3950 if (se->on_rq)
bf0f6f24
IM
3951 break;
3952 cfs_rq = cfs_rq_of(se);
88ec22d3 3953 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3954
3955 /*
3956 * end evaluation on encountering a throttled cfs_rq
3957 *
3958 * note: in the case of encountering a throttled cfs_rq we will
3959 * post the final h_nr_running increment below.
3960 */
3961 if (cfs_rq_throttled(cfs_rq))
3962 break;
953bfcd1 3963 cfs_rq->h_nr_running++;
85dac906 3964
88ec22d3 3965 flags = ENQUEUE_WAKEUP;
bf0f6f24 3966 }
8f4d37ec 3967
2069dd75 3968 for_each_sched_entity(se) {
0f317143 3969 cfs_rq = cfs_rq_of(se);
953bfcd1 3970 cfs_rq->h_nr_running++;
2069dd75 3971
85dac906
PT
3972 if (cfs_rq_throttled(cfs_rq))
3973 break;
3974
17bc14b7 3975 update_cfs_shares(cfs_rq);
9ee474f5 3976 update_entity_load_avg(se, 1);
2069dd75
PZ
3977 }
3978
18bf2805
BS
3979 if (!se) {
3980 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3981 add_nr_running(rq, 1);
18bf2805 3982 }
a4c2f00f 3983 hrtick_update(rq);
bf0f6f24
IM
3984}
3985
2f36825b
VP
3986static void set_next_buddy(struct sched_entity *se);
3987
bf0f6f24
IM
3988/*
3989 * The dequeue_task method is called before nr_running is
3990 * decreased. We remove the task from the rbtree and
3991 * update the fair scheduling stats:
3992 */
371fd7e7 3993static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3994{
3995 struct cfs_rq *cfs_rq;
62fb1851 3996 struct sched_entity *se = &p->se;
2f36825b 3997 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3998
3999 for_each_sched_entity(se) {
4000 cfs_rq = cfs_rq_of(se);
371fd7e7 4001 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4002
4003 /*
4004 * end evaluation on encountering a throttled cfs_rq
4005 *
4006 * note: in the case of encountering a throttled cfs_rq we will
4007 * post the final h_nr_running decrement below.
4008 */
4009 if (cfs_rq_throttled(cfs_rq))
4010 break;
953bfcd1 4011 cfs_rq->h_nr_running--;
2069dd75 4012
bf0f6f24 4013 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4014 if (cfs_rq->load.weight) {
4015 /*
4016 * Bias pick_next to pick a task from this cfs_rq, as
4017 * p is sleeping when it is within its sched_slice.
4018 */
4019 if (task_sleep && parent_entity(se))
4020 set_next_buddy(parent_entity(se));
9598c82d
PT
4021
4022 /* avoid re-evaluating load for this entity */
4023 se = parent_entity(se);
bf0f6f24 4024 break;
2f36825b 4025 }
371fd7e7 4026 flags |= DEQUEUE_SLEEP;
bf0f6f24 4027 }
8f4d37ec 4028
2069dd75 4029 for_each_sched_entity(se) {
0f317143 4030 cfs_rq = cfs_rq_of(se);
953bfcd1 4031 cfs_rq->h_nr_running--;
2069dd75 4032
85dac906
PT
4033 if (cfs_rq_throttled(cfs_rq))
4034 break;
4035
17bc14b7 4036 update_cfs_shares(cfs_rq);
9ee474f5 4037 update_entity_load_avg(se, 1);
2069dd75
PZ
4038 }
4039
18bf2805 4040 if (!se) {
72465447 4041 sub_nr_running(rq, 1);
18bf2805
BS
4042 update_rq_runnable_avg(rq, 1);
4043 }
a4c2f00f 4044 hrtick_update(rq);
bf0f6f24
IM
4045}
4046
e7693a36 4047#ifdef CONFIG_SMP
029632fb
PZ
4048/* Used instead of source_load when we know the type == 0 */
4049static unsigned long weighted_cpuload(const int cpu)
4050{
b92486cb 4051 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4052}
4053
4054/*
4055 * Return a low guess at the load of a migration-source cpu weighted
4056 * according to the scheduling class and "nice" value.
4057 *
4058 * We want to under-estimate the load of migration sources, to
4059 * balance conservatively.
4060 */
4061static unsigned long source_load(int cpu, int type)
4062{
4063 struct rq *rq = cpu_rq(cpu);
4064 unsigned long total = weighted_cpuload(cpu);
4065
4066 if (type == 0 || !sched_feat(LB_BIAS))
4067 return total;
4068
4069 return min(rq->cpu_load[type-1], total);
4070}
4071
4072/*
4073 * Return a high guess at the load of a migration-target cpu weighted
4074 * according to the scheduling class and "nice" value.
4075 */
4076static unsigned long target_load(int cpu, int type)
4077{
4078 struct rq *rq = cpu_rq(cpu);
4079 unsigned long total = weighted_cpuload(cpu);
4080
4081 if (type == 0 || !sched_feat(LB_BIAS))
4082 return total;
4083
4084 return max(rq->cpu_load[type-1], total);
4085}
4086
ced549fa 4087static unsigned long capacity_of(int cpu)
029632fb 4088{
ced549fa 4089 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4090}
4091
4092static unsigned long cpu_avg_load_per_task(int cpu)
4093{
4094 struct rq *rq = cpu_rq(cpu);
4095 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4096 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4097
4098 if (nr_running)
b92486cb 4099 return load_avg / nr_running;
029632fb
PZ
4100
4101 return 0;
4102}
4103
62470419
MW
4104static void record_wakee(struct task_struct *p)
4105{
4106 /*
4107 * Rough decay (wiping) for cost saving, don't worry
4108 * about the boundary, really active task won't care
4109 * about the loss.
4110 */
2538d960 4111 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4112 current->wakee_flips >>= 1;
62470419
MW
4113 current->wakee_flip_decay_ts = jiffies;
4114 }
4115
4116 if (current->last_wakee != p) {
4117 current->last_wakee = p;
4118 current->wakee_flips++;
4119 }
4120}
098fb9db 4121
74f8e4b2 4122static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4123{
4124 struct sched_entity *se = &p->se;
4125 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4126 u64 min_vruntime;
4127
4128#ifndef CONFIG_64BIT
4129 u64 min_vruntime_copy;
88ec22d3 4130
3fe1698b
PZ
4131 do {
4132 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4133 smp_rmb();
4134 min_vruntime = cfs_rq->min_vruntime;
4135 } while (min_vruntime != min_vruntime_copy);
4136#else
4137 min_vruntime = cfs_rq->min_vruntime;
4138#endif
88ec22d3 4139
3fe1698b 4140 se->vruntime -= min_vruntime;
62470419 4141 record_wakee(p);
88ec22d3
PZ
4142}
4143
bb3469ac 4144#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4145/*
4146 * effective_load() calculates the load change as seen from the root_task_group
4147 *
4148 * Adding load to a group doesn't make a group heavier, but can cause movement
4149 * of group shares between cpus. Assuming the shares were perfectly aligned one
4150 * can calculate the shift in shares.
cf5f0acf
PZ
4151 *
4152 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4153 * on this @cpu and results in a total addition (subtraction) of @wg to the
4154 * total group weight.
4155 *
4156 * Given a runqueue weight distribution (rw_i) we can compute a shares
4157 * distribution (s_i) using:
4158 *
4159 * s_i = rw_i / \Sum rw_j (1)
4160 *
4161 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4162 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4163 * shares distribution (s_i):
4164 *
4165 * rw_i = { 2, 4, 1, 0 }
4166 * s_i = { 2/7, 4/7, 1/7, 0 }
4167 *
4168 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4169 * task used to run on and the CPU the waker is running on), we need to
4170 * compute the effect of waking a task on either CPU and, in case of a sync
4171 * wakeup, compute the effect of the current task going to sleep.
4172 *
4173 * So for a change of @wl to the local @cpu with an overall group weight change
4174 * of @wl we can compute the new shares distribution (s'_i) using:
4175 *
4176 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4177 *
4178 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4179 * differences in waking a task to CPU 0. The additional task changes the
4180 * weight and shares distributions like:
4181 *
4182 * rw'_i = { 3, 4, 1, 0 }
4183 * s'_i = { 3/8, 4/8, 1/8, 0 }
4184 *
4185 * We can then compute the difference in effective weight by using:
4186 *
4187 * dw_i = S * (s'_i - s_i) (3)
4188 *
4189 * Where 'S' is the group weight as seen by its parent.
4190 *
4191 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4192 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4193 * 4/7) times the weight of the group.
f5bfb7d9 4194 */
2069dd75 4195static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4196{
4be9daaa 4197 struct sched_entity *se = tg->se[cpu];
f1d239f7 4198
9722c2da 4199 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4200 return wl;
4201
4be9daaa 4202 for_each_sched_entity(se) {
cf5f0acf 4203 long w, W;
4be9daaa 4204
977dda7c 4205 tg = se->my_q->tg;
bb3469ac 4206
cf5f0acf
PZ
4207 /*
4208 * W = @wg + \Sum rw_j
4209 */
4210 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4211
cf5f0acf
PZ
4212 /*
4213 * w = rw_i + @wl
4214 */
4215 w = se->my_q->load.weight + wl;
940959e9 4216
cf5f0acf
PZ
4217 /*
4218 * wl = S * s'_i; see (2)
4219 */
4220 if (W > 0 && w < W)
4221 wl = (w * tg->shares) / W;
977dda7c
PT
4222 else
4223 wl = tg->shares;
940959e9 4224
cf5f0acf
PZ
4225 /*
4226 * Per the above, wl is the new se->load.weight value; since
4227 * those are clipped to [MIN_SHARES, ...) do so now. See
4228 * calc_cfs_shares().
4229 */
977dda7c
PT
4230 if (wl < MIN_SHARES)
4231 wl = MIN_SHARES;
cf5f0acf
PZ
4232
4233 /*
4234 * wl = dw_i = S * (s'_i - s_i); see (3)
4235 */
977dda7c 4236 wl -= se->load.weight;
cf5f0acf
PZ
4237
4238 /*
4239 * Recursively apply this logic to all parent groups to compute
4240 * the final effective load change on the root group. Since
4241 * only the @tg group gets extra weight, all parent groups can
4242 * only redistribute existing shares. @wl is the shift in shares
4243 * resulting from this level per the above.
4244 */
4be9daaa 4245 wg = 0;
4be9daaa 4246 }
bb3469ac 4247
4be9daaa 4248 return wl;
bb3469ac
PZ
4249}
4250#else
4be9daaa 4251
58d081b5 4252static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4253{
83378269 4254 return wl;
bb3469ac 4255}
4be9daaa 4256
bb3469ac
PZ
4257#endif
4258
62470419
MW
4259static int wake_wide(struct task_struct *p)
4260{
7d9ffa89 4261 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4262
4263 /*
4264 * Yeah, it's the switching-frequency, could means many wakee or
4265 * rapidly switch, use factor here will just help to automatically
4266 * adjust the loose-degree, so bigger node will lead to more pull.
4267 */
4268 if (p->wakee_flips > factor) {
4269 /*
4270 * wakee is somewhat hot, it needs certain amount of cpu
4271 * resource, so if waker is far more hot, prefer to leave
4272 * it alone.
4273 */
4274 if (current->wakee_flips > (factor * p->wakee_flips))
4275 return 1;
4276 }
4277
4278 return 0;
4279}
4280
c88d5910 4281static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4282{
e37b6a7b 4283 s64 this_load, load;
c88d5910 4284 int idx, this_cpu, prev_cpu;
098fb9db 4285 unsigned long tl_per_task;
c88d5910 4286 struct task_group *tg;
83378269 4287 unsigned long weight;
b3137bc8 4288 int balanced;
098fb9db 4289
62470419
MW
4290 /*
4291 * If we wake multiple tasks be careful to not bounce
4292 * ourselves around too much.
4293 */
4294 if (wake_wide(p))
4295 return 0;
4296
c88d5910
PZ
4297 idx = sd->wake_idx;
4298 this_cpu = smp_processor_id();
4299 prev_cpu = task_cpu(p);
4300 load = source_load(prev_cpu, idx);
4301 this_load = target_load(this_cpu, idx);
098fb9db 4302
b3137bc8
MG
4303 /*
4304 * If sync wakeup then subtract the (maximum possible)
4305 * effect of the currently running task from the load
4306 * of the current CPU:
4307 */
83378269
PZ
4308 if (sync) {
4309 tg = task_group(current);
4310 weight = current->se.load.weight;
4311
c88d5910 4312 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4313 load += effective_load(tg, prev_cpu, 0, -weight);
4314 }
b3137bc8 4315
83378269
PZ
4316 tg = task_group(p);
4317 weight = p->se.load.weight;
b3137bc8 4318
71a29aa7
PZ
4319 /*
4320 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4321 * due to the sync cause above having dropped this_load to 0, we'll
4322 * always have an imbalance, but there's really nothing you can do
4323 * about that, so that's good too.
71a29aa7
PZ
4324 *
4325 * Otherwise check if either cpus are near enough in load to allow this
4326 * task to be woken on this_cpu.
4327 */
e37b6a7b
PT
4328 if (this_load > 0) {
4329 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4330
4331 this_eff_load = 100;
ced549fa 4332 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2
PZ
4333 this_eff_load *= this_load +
4334 effective_load(tg, this_cpu, weight, weight);
4335
4336 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
ced549fa 4337 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2
PZ
4338 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4339
4340 balanced = this_eff_load <= prev_eff_load;
4341 } else
4342 balanced = true;
b3137bc8 4343
098fb9db 4344 /*
4ae7d5ce
IM
4345 * If the currently running task will sleep within
4346 * a reasonable amount of time then attract this newly
4347 * woken task:
098fb9db 4348 */
2fb7635c
PZ
4349 if (sync && balanced)
4350 return 1;
098fb9db 4351
41acab88 4352 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4353 tl_per_task = cpu_avg_load_per_task(this_cpu);
4354
c88d5910
PZ
4355 if (balanced ||
4356 (this_load <= load &&
4357 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4358 /*
4359 * This domain has SD_WAKE_AFFINE and
4360 * p is cache cold in this domain, and
4361 * there is no bad imbalance.
4362 */
c88d5910 4363 schedstat_inc(sd, ttwu_move_affine);
41acab88 4364 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4365
4366 return 1;
4367 }
4368 return 0;
4369}
4370
aaee1203
PZ
4371/*
4372 * find_idlest_group finds and returns the least busy CPU group within the
4373 * domain.
4374 */
4375static struct sched_group *
78e7ed53 4376find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4377 int this_cpu, int sd_flag)
e7693a36 4378{
b3bd3de6 4379 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4380 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4381 int load_idx = sd->forkexec_idx;
aaee1203 4382 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4383
c44f2a02
VG
4384 if (sd_flag & SD_BALANCE_WAKE)
4385 load_idx = sd->wake_idx;
4386
aaee1203
PZ
4387 do {
4388 unsigned long load, avg_load;
4389 int local_group;
4390 int i;
e7693a36 4391
aaee1203
PZ
4392 /* Skip over this group if it has no CPUs allowed */
4393 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4394 tsk_cpus_allowed(p)))
aaee1203
PZ
4395 continue;
4396
4397 local_group = cpumask_test_cpu(this_cpu,
4398 sched_group_cpus(group));
4399
4400 /* Tally up the load of all CPUs in the group */
4401 avg_load = 0;
4402
4403 for_each_cpu(i, sched_group_cpus(group)) {
4404 /* Bias balancing toward cpus of our domain */
4405 if (local_group)
4406 load = source_load(i, load_idx);
4407 else
4408 load = target_load(i, load_idx);
4409
4410 avg_load += load;
4411 }
4412
63b2ca30 4413 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4414 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4415
4416 if (local_group) {
4417 this_load = avg_load;
aaee1203
PZ
4418 } else if (avg_load < min_load) {
4419 min_load = avg_load;
4420 idlest = group;
4421 }
4422 } while (group = group->next, group != sd->groups);
4423
4424 if (!idlest || 100*this_load < imbalance*min_load)
4425 return NULL;
4426 return idlest;
4427}
4428
4429/*
4430 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4431 */
4432static int
4433find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4434{
4435 unsigned long load, min_load = ULONG_MAX;
4436 int idlest = -1;
4437 int i;
4438
4439 /* Traverse only the allowed CPUs */
fa17b507 4440 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4441 load = weighted_cpuload(i);
4442
4443 if (load < min_load || (load == min_load && i == this_cpu)) {
4444 min_load = load;
4445 idlest = i;
e7693a36
GH
4446 }
4447 }
4448
aaee1203
PZ
4449 return idlest;
4450}
e7693a36 4451
a50bde51
PZ
4452/*
4453 * Try and locate an idle CPU in the sched_domain.
4454 */
99bd5e2f 4455static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4456{
99bd5e2f 4457 struct sched_domain *sd;
37407ea7 4458 struct sched_group *sg;
e0a79f52 4459 int i = task_cpu(p);
a50bde51 4460
e0a79f52
MG
4461 if (idle_cpu(target))
4462 return target;
99bd5e2f
SS
4463
4464 /*
e0a79f52 4465 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4466 */
e0a79f52
MG
4467 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4468 return i;
a50bde51
PZ
4469
4470 /*
37407ea7 4471 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4472 */
518cd623 4473 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4474 for_each_lower_domain(sd) {
37407ea7
LT
4475 sg = sd->groups;
4476 do {
4477 if (!cpumask_intersects(sched_group_cpus(sg),
4478 tsk_cpus_allowed(p)))
4479 goto next;
4480
4481 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4482 if (i == target || !idle_cpu(i))
37407ea7
LT
4483 goto next;
4484 }
970e1789 4485
37407ea7
LT
4486 target = cpumask_first_and(sched_group_cpus(sg),
4487 tsk_cpus_allowed(p));
4488 goto done;
4489next:
4490 sg = sg->next;
4491 } while (sg != sd->groups);
4492 }
4493done:
a50bde51
PZ
4494 return target;
4495}
4496
aaee1203 4497/*
de91b9cb
MR
4498 * select_task_rq_fair: Select target runqueue for the waking task in domains
4499 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4500 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4501 *
de91b9cb
MR
4502 * Balances load by selecting the idlest cpu in the idlest group, or under
4503 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4504 *
de91b9cb 4505 * Returns the target cpu number.
aaee1203
PZ
4506 *
4507 * preempt must be disabled.
4508 */
0017d735 4509static int
ac66f547 4510select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4511{
29cd8bae 4512 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4513 int cpu = smp_processor_id();
c88d5910 4514 int new_cpu = cpu;
99bd5e2f 4515 int want_affine = 0;
5158f4e4 4516 int sync = wake_flags & WF_SYNC;
c88d5910 4517
29baa747 4518 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4519 return prev_cpu;
4520
0763a660 4521 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4522 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4523 want_affine = 1;
4524 new_cpu = prev_cpu;
4525 }
aaee1203 4526
dce840a0 4527 rcu_read_lock();
aaee1203 4528 for_each_domain(cpu, tmp) {
e4f42888
PZ
4529 if (!(tmp->flags & SD_LOAD_BALANCE))
4530 continue;
4531
fe3bcfe1 4532 /*
99bd5e2f
SS
4533 * If both cpu and prev_cpu are part of this domain,
4534 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4535 */
99bd5e2f
SS
4536 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4537 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4538 affine_sd = tmp;
29cd8bae 4539 break;
f03542a7 4540 }
29cd8bae 4541
f03542a7 4542 if (tmp->flags & sd_flag)
29cd8bae
PZ
4543 sd = tmp;
4544 }
4545
8bf21433
RR
4546 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4547 prev_cpu = cpu;
dce840a0 4548
8bf21433 4549 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4550 new_cpu = select_idle_sibling(p, prev_cpu);
4551 goto unlock;
8b911acd 4552 }
e7693a36 4553
aaee1203
PZ
4554 while (sd) {
4555 struct sched_group *group;
c88d5910 4556 int weight;
098fb9db 4557
0763a660 4558 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4559 sd = sd->child;
4560 continue;
4561 }
098fb9db 4562
c44f2a02 4563 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4564 if (!group) {
4565 sd = sd->child;
4566 continue;
4567 }
4ae7d5ce 4568
d7c33c49 4569 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4570 if (new_cpu == -1 || new_cpu == cpu) {
4571 /* Now try balancing at a lower domain level of cpu */
4572 sd = sd->child;
4573 continue;
e7693a36 4574 }
aaee1203
PZ
4575
4576 /* Now try balancing at a lower domain level of new_cpu */
4577 cpu = new_cpu;
669c55e9 4578 weight = sd->span_weight;
aaee1203
PZ
4579 sd = NULL;
4580 for_each_domain(cpu, tmp) {
669c55e9 4581 if (weight <= tmp->span_weight)
aaee1203 4582 break;
0763a660 4583 if (tmp->flags & sd_flag)
aaee1203
PZ
4584 sd = tmp;
4585 }
4586 /* while loop will break here if sd == NULL */
e7693a36 4587 }
dce840a0
PZ
4588unlock:
4589 rcu_read_unlock();
e7693a36 4590
c88d5910 4591 return new_cpu;
e7693a36 4592}
0a74bef8
PT
4593
4594/*
4595 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4596 * cfs_rq_of(p) references at time of call are still valid and identify the
4597 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4598 * other assumptions, including the state of rq->lock, should be made.
4599 */
4600static void
4601migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4602{
aff3e498
PT
4603 struct sched_entity *se = &p->se;
4604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4605
4606 /*
4607 * Load tracking: accumulate removed load so that it can be processed
4608 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4609 * to blocked load iff they have a positive decay-count. It can never
4610 * be negative here since on-rq tasks have decay-count == 0.
4611 */
4612 if (se->avg.decay_count) {
4613 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4614 atomic_long_add(se->avg.load_avg_contrib,
4615 &cfs_rq->removed_load);
aff3e498 4616 }
3944a927
BS
4617
4618 /* We have migrated, no longer consider this task hot */
4619 se->exec_start = 0;
0a74bef8 4620}
e7693a36
GH
4621#endif /* CONFIG_SMP */
4622
e52fb7c0
PZ
4623static unsigned long
4624wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4625{
4626 unsigned long gran = sysctl_sched_wakeup_granularity;
4627
4628 /*
e52fb7c0
PZ
4629 * Since its curr running now, convert the gran from real-time
4630 * to virtual-time in his units.
13814d42
MG
4631 *
4632 * By using 'se' instead of 'curr' we penalize light tasks, so
4633 * they get preempted easier. That is, if 'se' < 'curr' then
4634 * the resulting gran will be larger, therefore penalizing the
4635 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4636 * be smaller, again penalizing the lighter task.
4637 *
4638 * This is especially important for buddies when the leftmost
4639 * task is higher priority than the buddy.
0bbd3336 4640 */
f4ad9bd2 4641 return calc_delta_fair(gran, se);
0bbd3336
PZ
4642}
4643
464b7527
PZ
4644/*
4645 * Should 'se' preempt 'curr'.
4646 *
4647 * |s1
4648 * |s2
4649 * |s3
4650 * g
4651 * |<--->|c
4652 *
4653 * w(c, s1) = -1
4654 * w(c, s2) = 0
4655 * w(c, s3) = 1
4656 *
4657 */
4658static int
4659wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4660{
4661 s64 gran, vdiff = curr->vruntime - se->vruntime;
4662
4663 if (vdiff <= 0)
4664 return -1;
4665
e52fb7c0 4666 gran = wakeup_gran(curr, se);
464b7527
PZ
4667 if (vdiff > gran)
4668 return 1;
4669
4670 return 0;
4671}
4672
02479099
PZ
4673static void set_last_buddy(struct sched_entity *se)
4674{
69c80f3e
VP
4675 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4676 return;
4677
4678 for_each_sched_entity(se)
4679 cfs_rq_of(se)->last = se;
02479099
PZ
4680}
4681
4682static void set_next_buddy(struct sched_entity *se)
4683{
69c80f3e
VP
4684 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4685 return;
4686
4687 for_each_sched_entity(se)
4688 cfs_rq_of(se)->next = se;
02479099
PZ
4689}
4690
ac53db59
RR
4691static void set_skip_buddy(struct sched_entity *se)
4692{
69c80f3e
VP
4693 for_each_sched_entity(se)
4694 cfs_rq_of(se)->skip = se;
ac53db59
RR
4695}
4696
bf0f6f24
IM
4697/*
4698 * Preempt the current task with a newly woken task if needed:
4699 */
5a9b86f6 4700static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4701{
4702 struct task_struct *curr = rq->curr;
8651a86c 4703 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4704 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4705 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4706 int next_buddy_marked = 0;
bf0f6f24 4707
4ae7d5ce
IM
4708 if (unlikely(se == pse))
4709 return;
4710
5238cdd3 4711 /*
163122b7 4712 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4713 * unconditionally check_prempt_curr() after an enqueue (which may have
4714 * lead to a throttle). This both saves work and prevents false
4715 * next-buddy nomination below.
4716 */
4717 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4718 return;
4719
2f36825b 4720 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4721 set_next_buddy(pse);
2f36825b
VP
4722 next_buddy_marked = 1;
4723 }
57fdc26d 4724
aec0a514
BR
4725 /*
4726 * We can come here with TIF_NEED_RESCHED already set from new task
4727 * wake up path.
5238cdd3
PT
4728 *
4729 * Note: this also catches the edge-case of curr being in a throttled
4730 * group (e.g. via set_curr_task), since update_curr() (in the
4731 * enqueue of curr) will have resulted in resched being set. This
4732 * prevents us from potentially nominating it as a false LAST_BUDDY
4733 * below.
aec0a514
BR
4734 */
4735 if (test_tsk_need_resched(curr))
4736 return;
4737
a2f5c9ab
DH
4738 /* Idle tasks are by definition preempted by non-idle tasks. */
4739 if (unlikely(curr->policy == SCHED_IDLE) &&
4740 likely(p->policy != SCHED_IDLE))
4741 goto preempt;
4742
91c234b4 4743 /*
a2f5c9ab
DH
4744 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4745 * is driven by the tick):
91c234b4 4746 */
8ed92e51 4747 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4748 return;
bf0f6f24 4749
464b7527 4750 find_matching_se(&se, &pse);
9bbd7374 4751 update_curr(cfs_rq_of(se));
002f128b 4752 BUG_ON(!pse);
2f36825b
VP
4753 if (wakeup_preempt_entity(se, pse) == 1) {
4754 /*
4755 * Bias pick_next to pick the sched entity that is
4756 * triggering this preemption.
4757 */
4758 if (!next_buddy_marked)
4759 set_next_buddy(pse);
3a7e73a2 4760 goto preempt;
2f36825b 4761 }
464b7527 4762
3a7e73a2 4763 return;
a65ac745 4764
3a7e73a2 4765preempt:
8875125e 4766 resched_curr(rq);
3a7e73a2
PZ
4767 /*
4768 * Only set the backward buddy when the current task is still
4769 * on the rq. This can happen when a wakeup gets interleaved
4770 * with schedule on the ->pre_schedule() or idle_balance()
4771 * point, either of which can * drop the rq lock.
4772 *
4773 * Also, during early boot the idle thread is in the fair class,
4774 * for obvious reasons its a bad idea to schedule back to it.
4775 */
4776 if (unlikely(!se->on_rq || curr == rq->idle))
4777 return;
4778
4779 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4780 set_last_buddy(se);
bf0f6f24
IM
4781}
4782
606dba2e
PZ
4783static struct task_struct *
4784pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4785{
4786 struct cfs_rq *cfs_rq = &rq->cfs;
4787 struct sched_entity *se;
678d5718 4788 struct task_struct *p;
37e117c0 4789 int new_tasks;
678d5718 4790
6e83125c 4791again:
678d5718
PZ
4792#ifdef CONFIG_FAIR_GROUP_SCHED
4793 if (!cfs_rq->nr_running)
38033c37 4794 goto idle;
678d5718 4795
3f1d2a31 4796 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4797 goto simple;
4798
4799 /*
4800 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4801 * likely that a next task is from the same cgroup as the current.
4802 *
4803 * Therefore attempt to avoid putting and setting the entire cgroup
4804 * hierarchy, only change the part that actually changes.
4805 */
4806
4807 do {
4808 struct sched_entity *curr = cfs_rq->curr;
4809
4810 /*
4811 * Since we got here without doing put_prev_entity() we also
4812 * have to consider cfs_rq->curr. If it is still a runnable
4813 * entity, update_curr() will update its vruntime, otherwise
4814 * forget we've ever seen it.
4815 */
4816 if (curr && curr->on_rq)
4817 update_curr(cfs_rq);
4818 else
4819 curr = NULL;
4820
4821 /*
4822 * This call to check_cfs_rq_runtime() will do the throttle and
4823 * dequeue its entity in the parent(s). Therefore the 'simple'
4824 * nr_running test will indeed be correct.
4825 */
4826 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4827 goto simple;
4828
4829 se = pick_next_entity(cfs_rq, curr);
4830 cfs_rq = group_cfs_rq(se);
4831 } while (cfs_rq);
4832
4833 p = task_of(se);
4834
4835 /*
4836 * Since we haven't yet done put_prev_entity and if the selected task
4837 * is a different task than we started out with, try and touch the
4838 * least amount of cfs_rqs.
4839 */
4840 if (prev != p) {
4841 struct sched_entity *pse = &prev->se;
4842
4843 while (!(cfs_rq = is_same_group(se, pse))) {
4844 int se_depth = se->depth;
4845 int pse_depth = pse->depth;
4846
4847 if (se_depth <= pse_depth) {
4848 put_prev_entity(cfs_rq_of(pse), pse);
4849 pse = parent_entity(pse);
4850 }
4851 if (se_depth >= pse_depth) {
4852 set_next_entity(cfs_rq_of(se), se);
4853 se = parent_entity(se);
4854 }
4855 }
4856
4857 put_prev_entity(cfs_rq, pse);
4858 set_next_entity(cfs_rq, se);
4859 }
4860
4861 if (hrtick_enabled(rq))
4862 hrtick_start_fair(rq, p);
4863
4864 return p;
4865simple:
4866 cfs_rq = &rq->cfs;
4867#endif
bf0f6f24 4868
36ace27e 4869 if (!cfs_rq->nr_running)
38033c37 4870 goto idle;
bf0f6f24 4871
3f1d2a31 4872 put_prev_task(rq, prev);
606dba2e 4873
bf0f6f24 4874 do {
678d5718 4875 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4876 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4877 cfs_rq = group_cfs_rq(se);
4878 } while (cfs_rq);
4879
8f4d37ec 4880 p = task_of(se);
678d5718 4881
b39e66ea
MG
4882 if (hrtick_enabled(rq))
4883 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4884
4885 return p;
38033c37
PZ
4886
4887idle:
e4aa358b 4888 new_tasks = idle_balance(rq);
37e117c0
PZ
4889 /*
4890 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4891 * possible for any higher priority task to appear. In that case we
4892 * must re-start the pick_next_entity() loop.
4893 */
e4aa358b 4894 if (new_tasks < 0)
37e117c0
PZ
4895 return RETRY_TASK;
4896
e4aa358b 4897 if (new_tasks > 0)
38033c37 4898 goto again;
38033c37
PZ
4899
4900 return NULL;
bf0f6f24
IM
4901}
4902
4903/*
4904 * Account for a descheduled task:
4905 */
31ee529c 4906static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4907{
4908 struct sched_entity *se = &prev->se;
4909 struct cfs_rq *cfs_rq;
4910
4911 for_each_sched_entity(se) {
4912 cfs_rq = cfs_rq_of(se);
ab6cde26 4913 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4914 }
4915}
4916
ac53db59
RR
4917/*
4918 * sched_yield() is very simple
4919 *
4920 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4921 */
4922static void yield_task_fair(struct rq *rq)
4923{
4924 struct task_struct *curr = rq->curr;
4925 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4926 struct sched_entity *se = &curr->se;
4927
4928 /*
4929 * Are we the only task in the tree?
4930 */
4931 if (unlikely(rq->nr_running == 1))
4932 return;
4933
4934 clear_buddies(cfs_rq, se);
4935
4936 if (curr->policy != SCHED_BATCH) {
4937 update_rq_clock(rq);
4938 /*
4939 * Update run-time statistics of the 'current'.
4940 */
4941 update_curr(cfs_rq);
916671c0
MG
4942 /*
4943 * Tell update_rq_clock() that we've just updated,
4944 * so we don't do microscopic update in schedule()
4945 * and double the fastpath cost.
4946 */
4947 rq->skip_clock_update = 1;
ac53db59
RR
4948 }
4949
4950 set_skip_buddy(se);
4951}
4952
d95f4122
MG
4953static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4954{
4955 struct sched_entity *se = &p->se;
4956
5238cdd3
PT
4957 /* throttled hierarchies are not runnable */
4958 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4959 return false;
4960
4961 /* Tell the scheduler that we'd really like pse to run next. */
4962 set_next_buddy(se);
4963
d95f4122
MG
4964 yield_task_fair(rq);
4965
4966 return true;
4967}
4968
681f3e68 4969#ifdef CONFIG_SMP
bf0f6f24 4970/**************************************************
e9c84cb8
PZ
4971 * Fair scheduling class load-balancing methods.
4972 *
4973 * BASICS
4974 *
4975 * The purpose of load-balancing is to achieve the same basic fairness the
4976 * per-cpu scheduler provides, namely provide a proportional amount of compute
4977 * time to each task. This is expressed in the following equation:
4978 *
4979 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4980 *
4981 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4982 * W_i,0 is defined as:
4983 *
4984 * W_i,0 = \Sum_j w_i,j (2)
4985 *
4986 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4987 * is derived from the nice value as per prio_to_weight[].
4988 *
4989 * The weight average is an exponential decay average of the instantaneous
4990 * weight:
4991 *
4992 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4993 *
ced549fa 4994 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
4995 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4996 * can also include other factors [XXX].
4997 *
4998 * To achieve this balance we define a measure of imbalance which follows
4999 * directly from (1):
5000 *
ced549fa 5001 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5002 *
5003 * We them move tasks around to minimize the imbalance. In the continuous
5004 * function space it is obvious this converges, in the discrete case we get
5005 * a few fun cases generally called infeasible weight scenarios.
5006 *
5007 * [XXX expand on:
5008 * - infeasible weights;
5009 * - local vs global optima in the discrete case. ]
5010 *
5011 *
5012 * SCHED DOMAINS
5013 *
5014 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5015 * for all i,j solution, we create a tree of cpus that follows the hardware
5016 * topology where each level pairs two lower groups (or better). This results
5017 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5018 * tree to only the first of the previous level and we decrease the frequency
5019 * of load-balance at each level inv. proportional to the number of cpus in
5020 * the groups.
5021 *
5022 * This yields:
5023 *
5024 * log_2 n 1 n
5025 * \Sum { --- * --- * 2^i } = O(n) (5)
5026 * i = 0 2^i 2^i
5027 * `- size of each group
5028 * | | `- number of cpus doing load-balance
5029 * | `- freq
5030 * `- sum over all levels
5031 *
5032 * Coupled with a limit on how many tasks we can migrate every balance pass,
5033 * this makes (5) the runtime complexity of the balancer.
5034 *
5035 * An important property here is that each CPU is still (indirectly) connected
5036 * to every other cpu in at most O(log n) steps:
5037 *
5038 * The adjacency matrix of the resulting graph is given by:
5039 *
5040 * log_2 n
5041 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5042 * k = 0
5043 *
5044 * And you'll find that:
5045 *
5046 * A^(log_2 n)_i,j != 0 for all i,j (7)
5047 *
5048 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5049 * The task movement gives a factor of O(m), giving a convergence complexity
5050 * of:
5051 *
5052 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5053 *
5054 *
5055 * WORK CONSERVING
5056 *
5057 * In order to avoid CPUs going idle while there's still work to do, new idle
5058 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5059 * tree itself instead of relying on other CPUs to bring it work.
5060 *
5061 * This adds some complexity to both (5) and (8) but it reduces the total idle
5062 * time.
5063 *
5064 * [XXX more?]
5065 *
5066 *
5067 * CGROUPS
5068 *
5069 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5070 *
5071 * s_k,i
5072 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5073 * S_k
5074 *
5075 * Where
5076 *
5077 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5078 *
5079 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5080 *
5081 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5082 * property.
5083 *
5084 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5085 * rewrite all of this once again.]
5086 */
bf0f6f24 5087
ed387b78
HS
5088static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5089
0ec8aa00
PZ
5090enum fbq_type { regular, remote, all };
5091
ddcdf6e7 5092#define LBF_ALL_PINNED 0x01
367456c7 5093#define LBF_NEED_BREAK 0x02
6263322c
PZ
5094#define LBF_DST_PINNED 0x04
5095#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5096
5097struct lb_env {
5098 struct sched_domain *sd;
5099
ddcdf6e7 5100 struct rq *src_rq;
85c1e7da 5101 int src_cpu;
ddcdf6e7
PZ
5102
5103 int dst_cpu;
5104 struct rq *dst_rq;
5105
88b8dac0
SV
5106 struct cpumask *dst_grpmask;
5107 int new_dst_cpu;
ddcdf6e7 5108 enum cpu_idle_type idle;
bd939f45 5109 long imbalance;
b9403130
MW
5110 /* The set of CPUs under consideration for load-balancing */
5111 struct cpumask *cpus;
5112
ddcdf6e7 5113 unsigned int flags;
367456c7
PZ
5114
5115 unsigned int loop;
5116 unsigned int loop_break;
5117 unsigned int loop_max;
0ec8aa00
PZ
5118
5119 enum fbq_type fbq_type;
163122b7 5120 struct list_head tasks;
ddcdf6e7
PZ
5121};
5122
029632fb
PZ
5123/*
5124 * Is this task likely cache-hot:
5125 */
5d5e2b1b 5126static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5127{
5128 s64 delta;
5129
e5673f28
KT
5130 lockdep_assert_held(&env->src_rq->lock);
5131
029632fb
PZ
5132 if (p->sched_class != &fair_sched_class)
5133 return 0;
5134
5135 if (unlikely(p->policy == SCHED_IDLE))
5136 return 0;
5137
5138 /*
5139 * Buddy candidates are cache hot:
5140 */
5d5e2b1b 5141 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5142 (&p->se == cfs_rq_of(&p->se)->next ||
5143 &p->se == cfs_rq_of(&p->se)->last))
5144 return 1;
5145
5146 if (sysctl_sched_migration_cost == -1)
5147 return 1;
5148 if (sysctl_sched_migration_cost == 0)
5149 return 0;
5150
5d5e2b1b 5151 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5152
5153 return delta < (s64)sysctl_sched_migration_cost;
5154}
5155
3a7053b3
MG
5156#ifdef CONFIG_NUMA_BALANCING
5157/* Returns true if the destination node has incurred more faults */
5158static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5159{
b1ad065e 5160 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5161 int src_nid, dst_nid;
5162
ff1df896 5163 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5164 !(env->sd->flags & SD_NUMA)) {
5165 return false;
5166 }
5167
5168 src_nid = cpu_to_node(env->src_cpu);
5169 dst_nid = cpu_to_node(env->dst_cpu);
5170
83e1d2cd 5171 if (src_nid == dst_nid)
3a7053b3
MG
5172 return false;
5173
b1ad065e
RR
5174 if (numa_group) {
5175 /* Task is already in the group's interleave set. */
5176 if (node_isset(src_nid, numa_group->active_nodes))
5177 return false;
83e1d2cd 5178
b1ad065e
RR
5179 /* Task is moving into the group's interleave set. */
5180 if (node_isset(dst_nid, numa_group->active_nodes))
5181 return true;
83e1d2cd 5182
b1ad065e
RR
5183 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5184 }
5185
5186 /* Encourage migration to the preferred node. */
5187 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5188 return true;
5189
b1ad065e 5190 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5191}
7a0f3083
MG
5192
5193
5194static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5195{
b1ad065e 5196 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5197 int src_nid, dst_nid;
5198
5199 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5200 return false;
5201
ff1df896 5202 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5203 return false;
5204
5205 src_nid = cpu_to_node(env->src_cpu);
5206 dst_nid = cpu_to_node(env->dst_cpu);
5207
83e1d2cd 5208 if (src_nid == dst_nid)
7a0f3083
MG
5209 return false;
5210
b1ad065e
RR
5211 if (numa_group) {
5212 /* Task is moving within/into the group's interleave set. */
5213 if (node_isset(dst_nid, numa_group->active_nodes))
5214 return false;
5215
5216 /* Task is moving out of the group's interleave set. */
5217 if (node_isset(src_nid, numa_group->active_nodes))
5218 return true;
5219
5220 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5221 }
5222
83e1d2cd
MG
5223 /* Migrating away from the preferred node is always bad. */
5224 if (src_nid == p->numa_preferred_nid)
5225 return true;
5226
b1ad065e 5227 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5228}
5229
3a7053b3
MG
5230#else
5231static inline bool migrate_improves_locality(struct task_struct *p,
5232 struct lb_env *env)
5233{
5234 return false;
5235}
7a0f3083
MG
5236
5237static inline bool migrate_degrades_locality(struct task_struct *p,
5238 struct lb_env *env)
5239{
5240 return false;
5241}
3a7053b3
MG
5242#endif
5243
1e3c88bd
PZ
5244/*
5245 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5246 */
5247static
8e45cb54 5248int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5249{
5250 int tsk_cache_hot = 0;
e5673f28
KT
5251
5252 lockdep_assert_held(&env->src_rq->lock);
5253
1e3c88bd
PZ
5254 /*
5255 * We do not migrate tasks that are:
d3198084 5256 * 1) throttled_lb_pair, or
1e3c88bd 5257 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5258 * 3) running (obviously), or
5259 * 4) are cache-hot on their current CPU.
1e3c88bd 5260 */
d3198084
JK
5261 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5262 return 0;
5263
ddcdf6e7 5264 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5265 int cpu;
88b8dac0 5266
41acab88 5267 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5268
6263322c
PZ
5269 env->flags |= LBF_SOME_PINNED;
5270
88b8dac0
SV
5271 /*
5272 * Remember if this task can be migrated to any other cpu in
5273 * our sched_group. We may want to revisit it if we couldn't
5274 * meet load balance goals by pulling other tasks on src_cpu.
5275 *
5276 * Also avoid computing new_dst_cpu if we have already computed
5277 * one in current iteration.
5278 */
6263322c 5279 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5280 return 0;
5281
e02e60c1
JK
5282 /* Prevent to re-select dst_cpu via env's cpus */
5283 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5284 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5285 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5286 env->new_dst_cpu = cpu;
5287 break;
5288 }
88b8dac0 5289 }
e02e60c1 5290
1e3c88bd
PZ
5291 return 0;
5292 }
88b8dac0
SV
5293
5294 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5295 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5296
ddcdf6e7 5297 if (task_running(env->src_rq, p)) {
41acab88 5298 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5299 return 0;
5300 }
5301
5302 /*
5303 * Aggressive migration if:
3a7053b3
MG
5304 * 1) destination numa is preferred
5305 * 2) task is cache cold, or
5306 * 3) too many balance attempts have failed.
1e3c88bd 5307 */
5d5e2b1b 5308 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5309 if (!tsk_cache_hot)
5310 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5311
5312 if (migrate_improves_locality(p, env)) {
5313#ifdef CONFIG_SCHEDSTATS
5314 if (tsk_cache_hot) {
5315 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5316 schedstat_inc(p, se.statistics.nr_forced_migrations);
5317 }
5318#endif
5319 return 1;
5320 }
5321
1e3c88bd 5322 if (!tsk_cache_hot ||
8e45cb54 5323 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5324
1e3c88bd 5325 if (tsk_cache_hot) {
8e45cb54 5326 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5327 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5328 }
4e2dcb73 5329
1e3c88bd
PZ
5330 return 1;
5331 }
5332
4e2dcb73
ZH
5333 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5334 return 0;
1e3c88bd
PZ
5335}
5336
163122b7
KT
5337/*
5338 * detach_task() -- detach the task for the migration specified in env
5339 */
5340static void detach_task(struct task_struct *p, struct lb_env *env)
5341{
5342 lockdep_assert_held(&env->src_rq->lock);
5343
5344 deactivate_task(env->src_rq, p, 0);
5345 p->on_rq = TASK_ON_RQ_MIGRATING;
5346 set_task_cpu(p, env->dst_cpu);
5347}
5348
897c395f 5349/*
e5673f28 5350 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5351 * part of active balancing operations within "domain".
897c395f 5352 *
e5673f28 5353 * Returns a task if successful and NULL otherwise.
897c395f 5354 */
e5673f28 5355static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5356{
5357 struct task_struct *p, *n;
897c395f 5358
e5673f28
KT
5359 lockdep_assert_held(&env->src_rq->lock);
5360
367456c7 5361 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5362 if (!can_migrate_task(p, env))
5363 continue;
897c395f 5364
163122b7 5365 detach_task(p, env);
e5673f28 5366
367456c7 5367 /*
e5673f28 5368 * Right now, this is only the second place where
163122b7 5369 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5370 * so we can safely collect stats here rather than
163122b7 5371 * inside detach_tasks().
367456c7
PZ
5372 */
5373 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5374 return p;
897c395f 5375 }
e5673f28
KT
5376 return NULL;
5377}
5378
eb95308e
PZ
5379static const unsigned int sched_nr_migrate_break = 32;
5380
5d6523eb 5381/*
163122b7
KT
5382 * detach_tasks() -- tries to detach up to imbalance weighted load from
5383 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5384 *
163122b7 5385 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5386 */
163122b7 5387static int detach_tasks(struct lb_env *env)
1e3c88bd 5388{
5d6523eb
PZ
5389 struct list_head *tasks = &env->src_rq->cfs_tasks;
5390 struct task_struct *p;
367456c7 5391 unsigned long load;
163122b7
KT
5392 int detached = 0;
5393
5394 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5395
bd939f45 5396 if (env->imbalance <= 0)
5d6523eb 5397 return 0;
1e3c88bd 5398
5d6523eb
PZ
5399 while (!list_empty(tasks)) {
5400 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5401
367456c7
PZ
5402 env->loop++;
5403 /* We've more or less seen every task there is, call it quits */
5d6523eb 5404 if (env->loop > env->loop_max)
367456c7 5405 break;
5d6523eb
PZ
5406
5407 /* take a breather every nr_migrate tasks */
367456c7 5408 if (env->loop > env->loop_break) {
eb95308e 5409 env->loop_break += sched_nr_migrate_break;
8e45cb54 5410 env->flags |= LBF_NEED_BREAK;
ee00e66f 5411 break;
a195f004 5412 }
1e3c88bd 5413
d3198084 5414 if (!can_migrate_task(p, env))
367456c7
PZ
5415 goto next;
5416
5417 load = task_h_load(p);
5d6523eb 5418
eb95308e 5419 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5420 goto next;
5421
bd939f45 5422 if ((load / 2) > env->imbalance)
367456c7 5423 goto next;
1e3c88bd 5424
163122b7
KT
5425 detach_task(p, env);
5426 list_add(&p->se.group_node, &env->tasks);
5427
5428 detached++;
bd939f45 5429 env->imbalance -= load;
1e3c88bd
PZ
5430
5431#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5432 /*
5433 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5434 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5435 * the critical section.
5436 */
5d6523eb 5437 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5438 break;
1e3c88bd
PZ
5439#endif
5440
ee00e66f
PZ
5441 /*
5442 * We only want to steal up to the prescribed amount of
5443 * weighted load.
5444 */
bd939f45 5445 if (env->imbalance <= 0)
ee00e66f 5446 break;
367456c7
PZ
5447
5448 continue;
5449next:
5d6523eb 5450 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5451 }
5d6523eb 5452
1e3c88bd 5453 /*
163122b7
KT
5454 * Right now, this is one of only two places we collect this stat
5455 * so we can safely collect detach_one_task() stats here rather
5456 * than inside detach_one_task().
1e3c88bd 5457 */
163122b7 5458 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5459
163122b7
KT
5460 return detached;
5461}
5462
5463/*
5464 * attach_task() -- attach the task detached by detach_task() to its new rq.
5465 */
5466static void attach_task(struct rq *rq, struct task_struct *p)
5467{
5468 lockdep_assert_held(&rq->lock);
5469
5470 BUG_ON(task_rq(p) != rq);
5471 p->on_rq = TASK_ON_RQ_QUEUED;
5472 activate_task(rq, p, 0);
5473 check_preempt_curr(rq, p, 0);
5474}
5475
5476/*
5477 * attach_one_task() -- attaches the task returned from detach_one_task() to
5478 * its new rq.
5479 */
5480static void attach_one_task(struct rq *rq, struct task_struct *p)
5481{
5482 raw_spin_lock(&rq->lock);
5483 attach_task(rq, p);
5484 raw_spin_unlock(&rq->lock);
5485}
5486
5487/*
5488 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5489 * new rq.
5490 */
5491static void attach_tasks(struct lb_env *env)
5492{
5493 struct list_head *tasks = &env->tasks;
5494 struct task_struct *p;
5495
5496 raw_spin_lock(&env->dst_rq->lock);
5497
5498 while (!list_empty(tasks)) {
5499 p = list_first_entry(tasks, struct task_struct, se.group_node);
5500 list_del_init(&p->se.group_node);
5501
5502 attach_task(env->dst_rq, p);
5503 }
5504
5505 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5506}
5507
230059de 5508#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5509/*
5510 * update tg->load_weight by folding this cpu's load_avg
5511 */
48a16753 5512static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5513{
48a16753
PT
5514 struct sched_entity *se = tg->se[cpu];
5515 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5516
48a16753
PT
5517 /* throttled entities do not contribute to load */
5518 if (throttled_hierarchy(cfs_rq))
5519 return;
9e3081ca 5520
aff3e498 5521 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5522
82958366
PT
5523 if (se) {
5524 update_entity_load_avg(se, 1);
5525 /*
5526 * We pivot on our runnable average having decayed to zero for
5527 * list removal. This generally implies that all our children
5528 * have also been removed (modulo rounding error or bandwidth
5529 * control); however, such cases are rare and we can fix these
5530 * at enqueue.
5531 *
5532 * TODO: fix up out-of-order children on enqueue.
5533 */
5534 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5535 list_del_leaf_cfs_rq(cfs_rq);
5536 } else {
48a16753 5537 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5538 update_rq_runnable_avg(rq, rq->nr_running);
5539 }
9e3081ca
PZ
5540}
5541
48a16753 5542static void update_blocked_averages(int cpu)
9e3081ca 5543{
9e3081ca 5544 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5545 struct cfs_rq *cfs_rq;
5546 unsigned long flags;
9e3081ca 5547
48a16753
PT
5548 raw_spin_lock_irqsave(&rq->lock, flags);
5549 update_rq_clock(rq);
9763b67f
PZ
5550 /*
5551 * Iterates the task_group tree in a bottom up fashion, see
5552 * list_add_leaf_cfs_rq() for details.
5553 */
64660c86 5554 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5555 /*
5556 * Note: We may want to consider periodically releasing
5557 * rq->lock about these updates so that creating many task
5558 * groups does not result in continually extending hold time.
5559 */
5560 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5561 }
48a16753
PT
5562
5563 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5564}
5565
9763b67f 5566/*
68520796 5567 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5568 * This needs to be done in a top-down fashion because the load of a child
5569 * group is a fraction of its parents load.
5570 */
68520796 5571static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5572{
68520796
VD
5573 struct rq *rq = rq_of(cfs_rq);
5574 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5575 unsigned long now = jiffies;
68520796 5576 unsigned long load;
a35b6466 5577
68520796 5578 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5579 return;
5580
68520796
VD
5581 cfs_rq->h_load_next = NULL;
5582 for_each_sched_entity(se) {
5583 cfs_rq = cfs_rq_of(se);
5584 cfs_rq->h_load_next = se;
5585 if (cfs_rq->last_h_load_update == now)
5586 break;
5587 }
a35b6466 5588
68520796 5589 if (!se) {
7e3115ef 5590 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5591 cfs_rq->last_h_load_update = now;
5592 }
5593
5594 while ((se = cfs_rq->h_load_next) != NULL) {
5595 load = cfs_rq->h_load;
5596 load = div64_ul(load * se->avg.load_avg_contrib,
5597 cfs_rq->runnable_load_avg + 1);
5598 cfs_rq = group_cfs_rq(se);
5599 cfs_rq->h_load = load;
5600 cfs_rq->last_h_load_update = now;
5601 }
9763b67f
PZ
5602}
5603
367456c7 5604static unsigned long task_h_load(struct task_struct *p)
230059de 5605{
367456c7 5606 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5607
68520796 5608 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5609 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5610 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5611}
5612#else
48a16753 5613static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5614{
5615}
5616
367456c7 5617static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5618{
a003a25b 5619 return p->se.avg.load_avg_contrib;
1e3c88bd 5620}
230059de 5621#endif
1e3c88bd 5622
1e3c88bd 5623/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5624
5625enum group_type {
5626 group_other = 0,
5627 group_imbalanced,
5628 group_overloaded,
5629};
5630
1e3c88bd
PZ
5631/*
5632 * sg_lb_stats - stats of a sched_group required for load_balancing
5633 */
5634struct sg_lb_stats {
5635 unsigned long avg_load; /*Avg load across the CPUs of the group */
5636 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5637 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5638 unsigned long load_per_task;
63b2ca30 5639 unsigned long group_capacity;
147c5fc2 5640 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5641 unsigned int group_capacity_factor;
147c5fc2
PZ
5642 unsigned int idle_cpus;
5643 unsigned int group_weight;
caeb178c 5644 enum group_type group_type;
1b6a7495 5645 int group_has_free_capacity;
0ec8aa00
PZ
5646#ifdef CONFIG_NUMA_BALANCING
5647 unsigned int nr_numa_running;
5648 unsigned int nr_preferred_running;
5649#endif
1e3c88bd
PZ
5650};
5651
56cf515b
JK
5652/*
5653 * sd_lb_stats - Structure to store the statistics of a sched_domain
5654 * during load balancing.
5655 */
5656struct sd_lb_stats {
5657 struct sched_group *busiest; /* Busiest group in this sd */
5658 struct sched_group *local; /* Local group in this sd */
5659 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5660 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5661 unsigned long avg_load; /* Average load across all groups in sd */
5662
56cf515b 5663 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5664 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5665};
5666
147c5fc2
PZ
5667static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5668{
5669 /*
5670 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5671 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5672 * We must however clear busiest_stat::avg_load because
5673 * update_sd_pick_busiest() reads this before assignment.
5674 */
5675 *sds = (struct sd_lb_stats){
5676 .busiest = NULL,
5677 .local = NULL,
5678 .total_load = 0UL,
63b2ca30 5679 .total_capacity = 0UL,
147c5fc2
PZ
5680 .busiest_stat = {
5681 .avg_load = 0UL,
caeb178c
RR
5682 .sum_nr_running = 0,
5683 .group_type = group_other,
147c5fc2
PZ
5684 },
5685 };
5686}
5687
1e3c88bd
PZ
5688/**
5689 * get_sd_load_idx - Obtain the load index for a given sched domain.
5690 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5691 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5692 *
5693 * Return: The load index.
1e3c88bd
PZ
5694 */
5695static inline int get_sd_load_idx(struct sched_domain *sd,
5696 enum cpu_idle_type idle)
5697{
5698 int load_idx;
5699
5700 switch (idle) {
5701 case CPU_NOT_IDLE:
5702 load_idx = sd->busy_idx;
5703 break;
5704
5705 case CPU_NEWLY_IDLE:
5706 load_idx = sd->newidle_idx;
5707 break;
5708 default:
5709 load_idx = sd->idle_idx;
5710 break;
5711 }
5712
5713 return load_idx;
5714}
5715
ced549fa 5716static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5717{
ca8ce3d0 5718 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5719}
5720
ca8ce3d0 5721unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5722{
ced549fa 5723 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5724}
5725
ced549fa 5726static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5727{
669c55e9 5728 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5729 unsigned long smt_gain = sd->smt_gain;
5730
5731 smt_gain /= weight;
5732
5733 return smt_gain;
5734}
5735
ca8ce3d0 5736unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5737{
ced549fa 5738 return default_scale_smt_capacity(sd, cpu);
1e3c88bd
PZ
5739}
5740
ced549fa 5741static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5742{
5743 struct rq *rq = cpu_rq(cpu);
b654f7de 5744 u64 total, available, age_stamp, avg;
cadefd3d 5745 s64 delta;
1e3c88bd 5746
b654f7de
PZ
5747 /*
5748 * Since we're reading these variables without serialization make sure
5749 * we read them once before doing sanity checks on them.
5750 */
5751 age_stamp = ACCESS_ONCE(rq->age_stamp);
5752 avg = ACCESS_ONCE(rq->rt_avg);
5753
cadefd3d
PZ
5754 delta = rq_clock(rq) - age_stamp;
5755 if (unlikely(delta < 0))
5756 delta = 0;
5757
5758 total = sched_avg_period() + delta;
aa483808 5759
b654f7de 5760 if (unlikely(total < avg)) {
ced549fa 5761 /* Ensures that capacity won't end up being negative */
aa483808
VP
5762 available = 0;
5763 } else {
b654f7de 5764 available = total - avg;
aa483808 5765 }
1e3c88bd 5766
ca8ce3d0
NP
5767 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5768 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5769
ca8ce3d0 5770 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5771
5772 return div_u64(available, total);
5773}
5774
ced549fa 5775static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5776{
669c55e9 5777 unsigned long weight = sd->span_weight;
ca8ce3d0 5778 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5779 struct sched_group *sdg = sd->groups;
5780
5d4dfddd
NP
5781 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5782 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5783 capacity *= arch_scale_smt_capacity(sd, cpu);
1e3c88bd 5784 else
ced549fa 5785 capacity *= default_scale_smt_capacity(sd, cpu);
1e3c88bd 5786
ca8ce3d0 5787 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5788 }
5789
ced549fa 5790 sdg->sgc->capacity_orig = capacity;
9d5efe05 5791
5d4dfddd 5792 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5793 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5794 else
ced549fa 5795 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5796
ca8ce3d0 5797 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5798
ced549fa 5799 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5800 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5801
ced549fa
NP
5802 if (!capacity)
5803 capacity = 1;
1e3c88bd 5804
ced549fa
NP
5805 cpu_rq(cpu)->cpu_capacity = capacity;
5806 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5807}
5808
63b2ca30 5809void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5810{
5811 struct sched_domain *child = sd->child;
5812 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5813 unsigned long capacity, capacity_orig;
4ec4412e
VG
5814 unsigned long interval;
5815
5816 interval = msecs_to_jiffies(sd->balance_interval);
5817 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5818 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5819
5820 if (!child) {
ced549fa 5821 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5822 return;
5823 }
5824
63b2ca30 5825 capacity_orig = capacity = 0;
1e3c88bd 5826
74a5ce20
PZ
5827 if (child->flags & SD_OVERLAP) {
5828 /*
5829 * SD_OVERLAP domains cannot assume that child groups
5830 * span the current group.
5831 */
5832
863bffc8 5833 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5834 struct sched_group_capacity *sgc;
9abf24d4 5835 struct rq *rq = cpu_rq(cpu);
863bffc8 5836
9abf24d4 5837 /*
63b2ca30 5838 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5839 * gets here before we've attached the domains to the
5840 * runqueues.
5841 *
ced549fa
NP
5842 * Use capacity_of(), which is set irrespective of domains
5843 * in update_cpu_capacity().
9abf24d4 5844 *
63b2ca30 5845 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5846 * causing divide-by-zero issues on boot.
5847 *
63b2ca30 5848 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5849 */
5850 if (unlikely(!rq->sd)) {
ced549fa
NP
5851 capacity_orig += capacity_of(cpu);
5852 capacity += capacity_of(cpu);
9abf24d4
SD
5853 continue;
5854 }
863bffc8 5855
63b2ca30
NP
5856 sgc = rq->sd->groups->sgc;
5857 capacity_orig += sgc->capacity_orig;
5858 capacity += sgc->capacity;
863bffc8 5859 }
74a5ce20
PZ
5860 } else {
5861 /*
5862 * !SD_OVERLAP domains can assume that child groups
5863 * span the current group.
5864 */
5865
5866 group = child->groups;
5867 do {
63b2ca30
NP
5868 capacity_orig += group->sgc->capacity_orig;
5869 capacity += group->sgc->capacity;
74a5ce20
PZ
5870 group = group->next;
5871 } while (group != child->groups);
5872 }
1e3c88bd 5873
63b2ca30
NP
5874 sdg->sgc->capacity_orig = capacity_orig;
5875 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5876}
5877
9d5efe05
SV
5878/*
5879 * Try and fix up capacity for tiny siblings, this is needed when
5880 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5881 * which on its own isn't powerful enough.
5882 *
5883 * See update_sd_pick_busiest() and check_asym_packing().
5884 */
5885static inline int
5886fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5887{
5888 /*
ca8ce3d0 5889 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5890 */
5d4dfddd 5891 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5892 return 0;
5893
5894 /*
63b2ca30 5895 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5896 */
63b2ca30 5897 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5898 return 1;
5899
5900 return 0;
5901}
5902
30ce5dab
PZ
5903/*
5904 * Group imbalance indicates (and tries to solve) the problem where balancing
5905 * groups is inadequate due to tsk_cpus_allowed() constraints.
5906 *
5907 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5908 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5909 * Something like:
5910 *
5911 * { 0 1 2 3 } { 4 5 6 7 }
5912 * * * * *
5913 *
5914 * If we were to balance group-wise we'd place two tasks in the first group and
5915 * two tasks in the second group. Clearly this is undesired as it will overload
5916 * cpu 3 and leave one of the cpus in the second group unused.
5917 *
5918 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5919 * by noticing the lower domain failed to reach balance and had difficulty
5920 * moving tasks due to affinity constraints.
30ce5dab
PZ
5921 *
5922 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5923 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5924 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5925 * to create an effective group imbalance.
5926 *
5927 * This is a somewhat tricky proposition since the next run might not find the
5928 * group imbalance and decide the groups need to be balanced again. A most
5929 * subtle and fragile situation.
5930 */
5931
6263322c 5932static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5933{
63b2ca30 5934 return group->sgc->imbalance;
30ce5dab
PZ
5935}
5936
b37d9316 5937/*
0fedc6c8 5938 * Compute the group capacity factor.
b37d9316 5939 *
ced549fa 5940 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5941 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5942 * and limit unit capacity with that.
b37d9316 5943 */
0fedc6c8 5944static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5945{
0fedc6c8 5946 unsigned int capacity_factor, smt, cpus;
63b2ca30 5947 unsigned int capacity, capacity_orig;
c61037e9 5948
63b2ca30
NP
5949 capacity = group->sgc->capacity;
5950 capacity_orig = group->sgc->capacity_orig;
c61037e9 5951 cpus = group->group_weight;
b37d9316 5952
63b2ca30 5953 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5954 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5955 capacity_factor = cpus / smt; /* cores */
b37d9316 5956
63b2ca30 5957 capacity_factor = min_t(unsigned,
ca8ce3d0 5958 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5959 if (!capacity_factor)
5960 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5961
0fedc6c8 5962 return capacity_factor;
b37d9316
PZ
5963}
5964
caeb178c
RR
5965static enum group_type
5966group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5967{
5968 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5969 return group_overloaded;
5970
5971 if (sg_imbalanced(group))
5972 return group_imbalanced;
5973
5974 return group_other;
5975}
5976
1e3c88bd
PZ
5977/**
5978 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5979 * @env: The load balancing environment.
1e3c88bd 5980 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5981 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5982 * @local_group: Does group contain this_cpu.
1e3c88bd 5983 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 5984 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 5985 */
bd939f45
PZ
5986static inline void update_sg_lb_stats(struct lb_env *env,
5987 struct sched_group *group, int load_idx,
4486edd1
TC
5988 int local_group, struct sg_lb_stats *sgs,
5989 bool *overload)
1e3c88bd 5990{
30ce5dab 5991 unsigned long load;
bd939f45 5992 int i;
1e3c88bd 5993
b72ff13c
PZ
5994 memset(sgs, 0, sizeof(*sgs));
5995
b9403130 5996 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5997 struct rq *rq = cpu_rq(i);
5998
1e3c88bd 5999 /* Bias balancing toward cpus of our domain */
6263322c 6000 if (local_group)
04f733b4 6001 load = target_load(i, load_idx);
6263322c 6002 else
1e3c88bd 6003 load = source_load(i, load_idx);
1e3c88bd
PZ
6004
6005 sgs->group_load += load;
380c9077 6006 sgs->sum_nr_running += rq->nr_running;
4486edd1
TC
6007
6008 if (rq->nr_running > 1)
6009 *overload = true;
6010
0ec8aa00
PZ
6011#ifdef CONFIG_NUMA_BALANCING
6012 sgs->nr_numa_running += rq->nr_numa_running;
6013 sgs->nr_preferred_running += rq->nr_preferred_running;
6014#endif
1e3c88bd 6015 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6016 if (idle_cpu(i))
6017 sgs->idle_cpus++;
1e3c88bd
PZ
6018 }
6019
63b2ca30
NP
6020 /* Adjust by relative CPU capacity of the group */
6021 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6022 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6023
dd5feea1 6024 if (sgs->sum_nr_running)
38d0f770 6025 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6026
aae6d3dd 6027 sgs->group_weight = group->group_weight;
0fedc6c8 6028 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6029 sgs->group_type = group_classify(group, sgs);
b37d9316 6030
0fedc6c8 6031 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6032 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6033}
6034
532cb4c4
MN
6035/**
6036 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6037 * @env: The load balancing environment.
532cb4c4
MN
6038 * @sds: sched_domain statistics
6039 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6040 * @sgs: sched_group statistics
532cb4c4
MN
6041 *
6042 * Determine if @sg is a busier group than the previously selected
6043 * busiest group.
e69f6186
YB
6044 *
6045 * Return: %true if @sg is a busier group than the previously selected
6046 * busiest group. %false otherwise.
532cb4c4 6047 */
bd939f45 6048static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6049 struct sd_lb_stats *sds,
6050 struct sched_group *sg,
bd939f45 6051 struct sg_lb_stats *sgs)
532cb4c4 6052{
caeb178c 6053 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6054
caeb178c 6055 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6056 return true;
6057
caeb178c
RR
6058 if (sgs->group_type < busiest->group_type)
6059 return false;
6060
6061 if (sgs->avg_load <= busiest->avg_load)
6062 return false;
6063
6064 /* This is the busiest node in its class. */
6065 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6066 return true;
6067
6068 /*
6069 * ASYM_PACKING needs to move all the work to the lowest
6070 * numbered CPUs in the group, therefore mark all groups
6071 * higher than ourself as busy.
6072 */
caeb178c 6073 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6074 if (!sds->busiest)
6075 return true;
6076
6077 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6078 return true;
6079 }
6080
6081 return false;
6082}
6083
0ec8aa00
PZ
6084#ifdef CONFIG_NUMA_BALANCING
6085static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6086{
6087 if (sgs->sum_nr_running > sgs->nr_numa_running)
6088 return regular;
6089 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6090 return remote;
6091 return all;
6092}
6093
6094static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6095{
6096 if (rq->nr_running > rq->nr_numa_running)
6097 return regular;
6098 if (rq->nr_running > rq->nr_preferred_running)
6099 return remote;
6100 return all;
6101}
6102#else
6103static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6104{
6105 return all;
6106}
6107
6108static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6109{
6110 return regular;
6111}
6112#endif /* CONFIG_NUMA_BALANCING */
6113
1e3c88bd 6114/**
461819ac 6115 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6116 * @env: The load balancing environment.
1e3c88bd
PZ
6117 * @sds: variable to hold the statistics for this sched_domain.
6118 */
0ec8aa00 6119static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6120{
bd939f45
PZ
6121 struct sched_domain *child = env->sd->child;
6122 struct sched_group *sg = env->sd->groups;
56cf515b 6123 struct sg_lb_stats tmp_sgs;
1e3c88bd 6124 int load_idx, prefer_sibling = 0;
4486edd1 6125 bool overload = false;
1e3c88bd
PZ
6126
6127 if (child && child->flags & SD_PREFER_SIBLING)
6128 prefer_sibling = 1;
6129
bd939f45 6130 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6131
6132 do {
56cf515b 6133 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6134 int local_group;
6135
bd939f45 6136 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6137 if (local_group) {
6138 sds->local = sg;
6139 sgs = &sds->local_stat;
b72ff13c
PZ
6140
6141 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6142 time_after_eq(jiffies, sg->sgc->next_update))
6143 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6144 }
1e3c88bd 6145
4486edd1
TC
6146 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6147 &overload);
1e3c88bd 6148
b72ff13c
PZ
6149 if (local_group)
6150 goto next_group;
6151
1e3c88bd
PZ
6152 /*
6153 * In case the child domain prefers tasks go to siblings
0fedc6c8 6154 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6155 * and move all the excess tasks away. We lower the capacity
6156 * of a group only if the local group has the capacity to fit
0fedc6c8 6157 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6158 * extra check prevents the case where you always pull from the
6159 * heaviest group when it is already under-utilized (possible
6160 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6161 */
b72ff13c 6162 if (prefer_sibling && sds->local &&
1b6a7495 6163 sds->local_stat.group_has_free_capacity)
0fedc6c8 6164 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6165
b72ff13c 6166 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6167 sds->busiest = sg;
56cf515b 6168 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6169 }
6170
b72ff13c
PZ
6171next_group:
6172 /* Now, start updating sd_lb_stats */
6173 sds->total_load += sgs->group_load;
63b2ca30 6174 sds->total_capacity += sgs->group_capacity;
b72ff13c 6175
532cb4c4 6176 sg = sg->next;
bd939f45 6177 } while (sg != env->sd->groups);
0ec8aa00
PZ
6178
6179 if (env->sd->flags & SD_NUMA)
6180 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6181
6182 if (!env->sd->parent) {
6183 /* update overload indicator if we are at root domain */
6184 if (env->dst_rq->rd->overload != overload)
6185 env->dst_rq->rd->overload = overload;
6186 }
6187
532cb4c4
MN
6188}
6189
532cb4c4
MN
6190/**
6191 * check_asym_packing - Check to see if the group is packed into the
6192 * sched doman.
6193 *
6194 * This is primarily intended to used at the sibling level. Some
6195 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6196 * case of POWER7, it can move to lower SMT modes only when higher
6197 * threads are idle. When in lower SMT modes, the threads will
6198 * perform better since they share less core resources. Hence when we
6199 * have idle threads, we want them to be the higher ones.
6200 *
6201 * This packing function is run on idle threads. It checks to see if
6202 * the busiest CPU in this domain (core in the P7 case) has a higher
6203 * CPU number than the packing function is being run on. Here we are
6204 * assuming lower CPU number will be equivalent to lower a SMT thread
6205 * number.
6206 *
e69f6186 6207 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6208 * this CPU. The amount of the imbalance is returned in *imbalance.
6209 *
cd96891d 6210 * @env: The load balancing environment.
532cb4c4 6211 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6212 */
bd939f45 6213static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6214{
6215 int busiest_cpu;
6216
bd939f45 6217 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6218 return 0;
6219
6220 if (!sds->busiest)
6221 return 0;
6222
6223 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6224 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6225 return 0;
6226
bd939f45 6227 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6228 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6229 SCHED_CAPACITY_SCALE);
bd939f45 6230
532cb4c4 6231 return 1;
1e3c88bd
PZ
6232}
6233
6234/**
6235 * fix_small_imbalance - Calculate the minor imbalance that exists
6236 * amongst the groups of a sched_domain, during
6237 * load balancing.
cd96891d 6238 * @env: The load balancing environment.
1e3c88bd 6239 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6240 */
bd939f45
PZ
6241static inline
6242void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6243{
63b2ca30 6244 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6245 unsigned int imbn = 2;
dd5feea1 6246 unsigned long scaled_busy_load_per_task;
56cf515b 6247 struct sg_lb_stats *local, *busiest;
1e3c88bd 6248
56cf515b
JK
6249 local = &sds->local_stat;
6250 busiest = &sds->busiest_stat;
1e3c88bd 6251
56cf515b
JK
6252 if (!local->sum_nr_running)
6253 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6254 else if (busiest->load_per_task > local->load_per_task)
6255 imbn = 1;
dd5feea1 6256
56cf515b 6257 scaled_busy_load_per_task =
ca8ce3d0 6258 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6259 busiest->group_capacity;
56cf515b 6260
3029ede3
VD
6261 if (busiest->avg_load + scaled_busy_load_per_task >=
6262 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6263 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6264 return;
6265 }
6266
6267 /*
6268 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6269 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6270 * moving them.
6271 */
6272
63b2ca30 6273 capa_now += busiest->group_capacity *
56cf515b 6274 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6275 capa_now += local->group_capacity *
56cf515b 6276 min(local->load_per_task, local->avg_load);
ca8ce3d0 6277 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6278
6279 /* Amount of load we'd subtract */
a2cd4260 6280 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6281 capa_move += busiest->group_capacity *
56cf515b 6282 min(busiest->load_per_task,
a2cd4260 6283 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6284 }
1e3c88bd
PZ
6285
6286 /* Amount of load we'd add */
63b2ca30 6287 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6288 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6289 tmp = (busiest->avg_load * busiest->group_capacity) /
6290 local->group_capacity;
56cf515b 6291 } else {
ca8ce3d0 6292 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6293 local->group_capacity;
56cf515b 6294 }
63b2ca30 6295 capa_move += local->group_capacity *
3ae11c90 6296 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6297 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6298
6299 /* Move if we gain throughput */
63b2ca30 6300 if (capa_move > capa_now)
56cf515b 6301 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6302}
6303
6304/**
6305 * calculate_imbalance - Calculate the amount of imbalance present within the
6306 * groups of a given sched_domain during load balance.
bd939f45 6307 * @env: load balance environment
1e3c88bd 6308 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6309 */
bd939f45 6310static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6311{
dd5feea1 6312 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6313 struct sg_lb_stats *local, *busiest;
6314
6315 local = &sds->local_stat;
56cf515b 6316 busiest = &sds->busiest_stat;
dd5feea1 6317
caeb178c 6318 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6319 /*
6320 * In the group_imb case we cannot rely on group-wide averages
6321 * to ensure cpu-load equilibrium, look at wider averages. XXX
6322 */
56cf515b
JK
6323 busiest->load_per_task =
6324 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6325 }
6326
1e3c88bd
PZ
6327 /*
6328 * In the presence of smp nice balancing, certain scenarios can have
6329 * max load less than avg load(as we skip the groups at or below
ced549fa 6330 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6331 */
b1885550
VD
6332 if (busiest->avg_load <= sds->avg_load ||
6333 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6334 env->imbalance = 0;
6335 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6336 }
6337
9a5d9ba6
PZ
6338 /*
6339 * If there aren't any idle cpus, avoid creating some.
6340 */
6341 if (busiest->group_type == group_overloaded &&
6342 local->group_type == group_overloaded) {
56cf515b 6343 load_above_capacity =
0fedc6c8 6344 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6345
ca8ce3d0 6346 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6347 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6348 }
6349
6350 /*
6351 * We're trying to get all the cpus to the average_load, so we don't
6352 * want to push ourselves above the average load, nor do we wish to
6353 * reduce the max loaded cpu below the average load. At the same time,
6354 * we also don't want to reduce the group load below the group capacity
6355 * (so that we can implement power-savings policies etc). Thus we look
6356 * for the minimum possible imbalance.
dd5feea1 6357 */
30ce5dab 6358 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6359
6360 /* How much load to actually move to equalise the imbalance */
56cf515b 6361 env->imbalance = min(
63b2ca30
NP
6362 max_pull * busiest->group_capacity,
6363 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6364 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6365
6366 /*
6367 * if *imbalance is less than the average load per runnable task
25985edc 6368 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6369 * a think about bumping its value to force at least one task to be
6370 * moved
6371 */
56cf515b 6372 if (env->imbalance < busiest->load_per_task)
bd939f45 6373 return fix_small_imbalance(env, sds);
1e3c88bd 6374}
fab47622 6375
1e3c88bd
PZ
6376/******* find_busiest_group() helpers end here *********************/
6377
6378/**
6379 * find_busiest_group - Returns the busiest group within the sched_domain
6380 * if there is an imbalance. If there isn't an imbalance, and
6381 * the user has opted for power-savings, it returns a group whose
6382 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6383 * such a group exists.
6384 *
6385 * Also calculates the amount of weighted load which should be moved
6386 * to restore balance.
6387 *
cd96891d 6388 * @env: The load balancing environment.
1e3c88bd 6389 *
e69f6186 6390 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6391 * - If no imbalance and user has opted for power-savings balance,
6392 * return the least loaded group whose CPUs can be
6393 * put to idle by rebalancing its tasks onto our group.
6394 */
56cf515b 6395static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6396{
56cf515b 6397 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6398 struct sd_lb_stats sds;
6399
147c5fc2 6400 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6401
6402 /*
6403 * Compute the various statistics relavent for load balancing at
6404 * this level.
6405 */
23f0d209 6406 update_sd_lb_stats(env, &sds);
56cf515b
JK
6407 local = &sds.local_stat;
6408 busiest = &sds.busiest_stat;
1e3c88bd 6409
bd939f45
PZ
6410 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6411 check_asym_packing(env, &sds))
532cb4c4
MN
6412 return sds.busiest;
6413
cc57aa8f 6414 /* There is no busy sibling group to pull tasks from */
56cf515b 6415 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6416 goto out_balanced;
6417
ca8ce3d0
NP
6418 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6419 / sds.total_capacity;
b0432d8f 6420
866ab43e
PZ
6421 /*
6422 * If the busiest group is imbalanced the below checks don't
30ce5dab 6423 * work because they assume all things are equal, which typically
866ab43e
PZ
6424 * isn't true due to cpus_allowed constraints and the like.
6425 */
caeb178c 6426 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6427 goto force_balance;
6428
cc57aa8f 6429 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6430 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6431 !busiest->group_has_free_capacity)
fab47622
NR
6432 goto force_balance;
6433
cc57aa8f
PZ
6434 /*
6435 * If the local group is more busy than the selected busiest group
6436 * don't try and pull any tasks.
6437 */
56cf515b 6438 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6439 goto out_balanced;
6440
cc57aa8f
PZ
6441 /*
6442 * Don't pull any tasks if this group is already above the domain
6443 * average load.
6444 */
56cf515b 6445 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6446 goto out_balanced;
6447
bd939f45 6448 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6449 /*
6450 * This cpu is idle. If the busiest group load doesn't
6451 * have more tasks than the number of available cpu's and
6452 * there is no imbalance between this and busiest group
6453 * wrt to idle cpu's, it is balanced.
6454 */
56cf515b
JK
6455 if ((local->idle_cpus < busiest->idle_cpus) &&
6456 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6457 goto out_balanced;
c186fafe
PZ
6458 } else {
6459 /*
6460 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6461 * imbalance_pct to be conservative.
6462 */
56cf515b
JK
6463 if (100 * busiest->avg_load <=
6464 env->sd->imbalance_pct * local->avg_load)
c186fafe 6465 goto out_balanced;
aae6d3dd 6466 }
1e3c88bd 6467
fab47622 6468force_balance:
1e3c88bd 6469 /* Looks like there is an imbalance. Compute it */
bd939f45 6470 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6471 return sds.busiest;
6472
6473out_balanced:
bd939f45 6474 env->imbalance = 0;
1e3c88bd
PZ
6475 return NULL;
6476}
6477
6478/*
6479 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6480 */
bd939f45 6481static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6482 struct sched_group *group)
1e3c88bd
PZ
6483{
6484 struct rq *busiest = NULL, *rq;
ced549fa 6485 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6486 int i;
6487
6906a408 6488 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6489 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6490 enum fbq_type rt;
6491
6492 rq = cpu_rq(i);
6493 rt = fbq_classify_rq(rq);
1e3c88bd 6494
0ec8aa00
PZ
6495 /*
6496 * We classify groups/runqueues into three groups:
6497 * - regular: there are !numa tasks
6498 * - remote: there are numa tasks that run on the 'wrong' node
6499 * - all: there is no distinction
6500 *
6501 * In order to avoid migrating ideally placed numa tasks,
6502 * ignore those when there's better options.
6503 *
6504 * If we ignore the actual busiest queue to migrate another
6505 * task, the next balance pass can still reduce the busiest
6506 * queue by moving tasks around inside the node.
6507 *
6508 * If we cannot move enough load due to this classification
6509 * the next pass will adjust the group classification and
6510 * allow migration of more tasks.
6511 *
6512 * Both cases only affect the total convergence complexity.
6513 */
6514 if (rt > env->fbq_type)
6515 continue;
6516
ced549fa 6517 capacity = capacity_of(i);
ca8ce3d0 6518 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6519 if (!capacity_factor)
6520 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6521
6e40f5bb 6522 wl = weighted_cpuload(i);
1e3c88bd 6523
6e40f5bb
TG
6524 /*
6525 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6526 * which is not scaled with the cpu capacity.
6e40f5bb 6527 */
0fedc6c8 6528 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6529 continue;
6530
6e40f5bb
TG
6531 /*
6532 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6533 * the weighted_cpuload() scaled with the cpu capacity, so
6534 * that the load can be moved away from the cpu that is
6535 * potentially running at a lower capacity.
95a79b80 6536 *
ced549fa 6537 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6538 * multiplication to rid ourselves of the division works out
ced549fa
NP
6539 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6540 * our previous maximum.
6e40f5bb 6541 */
ced549fa 6542 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6543 busiest_load = wl;
ced549fa 6544 busiest_capacity = capacity;
1e3c88bd
PZ
6545 busiest = rq;
6546 }
6547 }
6548
6549 return busiest;
6550}
6551
6552/*
6553 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6554 * so long as it is large enough.
6555 */
6556#define MAX_PINNED_INTERVAL 512
6557
6558/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6559DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6560
bd939f45 6561static int need_active_balance(struct lb_env *env)
1af3ed3d 6562{
bd939f45
PZ
6563 struct sched_domain *sd = env->sd;
6564
6565 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6566
6567 /*
6568 * ASYM_PACKING needs to force migrate tasks from busy but
6569 * higher numbered CPUs in order to pack all tasks in the
6570 * lowest numbered CPUs.
6571 */
bd939f45 6572 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6573 return 1;
1af3ed3d
PZ
6574 }
6575
6576 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6577}
6578
969c7921
TH
6579static int active_load_balance_cpu_stop(void *data);
6580
23f0d209
JK
6581static int should_we_balance(struct lb_env *env)
6582{
6583 struct sched_group *sg = env->sd->groups;
6584 struct cpumask *sg_cpus, *sg_mask;
6585 int cpu, balance_cpu = -1;
6586
6587 /*
6588 * In the newly idle case, we will allow all the cpu's
6589 * to do the newly idle load balance.
6590 */
6591 if (env->idle == CPU_NEWLY_IDLE)
6592 return 1;
6593
6594 sg_cpus = sched_group_cpus(sg);
6595 sg_mask = sched_group_mask(sg);
6596 /* Try to find first idle cpu */
6597 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6598 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6599 continue;
6600
6601 balance_cpu = cpu;
6602 break;
6603 }
6604
6605 if (balance_cpu == -1)
6606 balance_cpu = group_balance_cpu(sg);
6607
6608 /*
6609 * First idle cpu or the first cpu(busiest) in this sched group
6610 * is eligible for doing load balancing at this and above domains.
6611 */
b0cff9d8 6612 return balance_cpu == env->dst_cpu;
23f0d209
JK
6613}
6614
1e3c88bd
PZ
6615/*
6616 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6617 * tasks if there is an imbalance.
6618 */
6619static int load_balance(int this_cpu, struct rq *this_rq,
6620 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6621 int *continue_balancing)
1e3c88bd 6622{
88b8dac0 6623 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6624 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6625 struct sched_group *group;
1e3c88bd
PZ
6626 struct rq *busiest;
6627 unsigned long flags;
e6252c3e 6628 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6629
8e45cb54
PZ
6630 struct lb_env env = {
6631 .sd = sd,
ddcdf6e7
PZ
6632 .dst_cpu = this_cpu,
6633 .dst_rq = this_rq,
88b8dac0 6634 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6635 .idle = idle,
eb95308e 6636 .loop_break = sched_nr_migrate_break,
b9403130 6637 .cpus = cpus,
0ec8aa00 6638 .fbq_type = all,
163122b7 6639 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6640 };
6641
cfc03118
JK
6642 /*
6643 * For NEWLY_IDLE load_balancing, we don't need to consider
6644 * other cpus in our group
6645 */
e02e60c1 6646 if (idle == CPU_NEWLY_IDLE)
cfc03118 6647 env.dst_grpmask = NULL;
cfc03118 6648
1e3c88bd
PZ
6649 cpumask_copy(cpus, cpu_active_mask);
6650
1e3c88bd
PZ
6651 schedstat_inc(sd, lb_count[idle]);
6652
6653redo:
23f0d209
JK
6654 if (!should_we_balance(&env)) {
6655 *continue_balancing = 0;
1e3c88bd 6656 goto out_balanced;
23f0d209 6657 }
1e3c88bd 6658
23f0d209 6659 group = find_busiest_group(&env);
1e3c88bd
PZ
6660 if (!group) {
6661 schedstat_inc(sd, lb_nobusyg[idle]);
6662 goto out_balanced;
6663 }
6664
b9403130 6665 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6666 if (!busiest) {
6667 schedstat_inc(sd, lb_nobusyq[idle]);
6668 goto out_balanced;
6669 }
6670
78feefc5 6671 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6672
bd939f45 6673 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6674
6675 ld_moved = 0;
6676 if (busiest->nr_running > 1) {
6677 /*
6678 * Attempt to move tasks. If find_busiest_group has found
6679 * an imbalance but busiest->nr_running <= 1, the group is
6680 * still unbalanced. ld_moved simply stays zero, so it is
6681 * correctly treated as an imbalance.
6682 */
8e45cb54 6683 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6684 env.src_cpu = busiest->cpu;
6685 env.src_rq = busiest;
6686 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6687
5d6523eb 6688more_balance:
163122b7 6689 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6690
6691 /*
6692 * cur_ld_moved - load moved in current iteration
6693 * ld_moved - cumulative load moved across iterations
6694 */
163122b7
KT
6695 cur_ld_moved = detach_tasks(&env);
6696
6697 /*
6698 * We've detached some tasks from busiest_rq. Every
6699 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6700 * unlock busiest->lock, and we are able to be sure
6701 * that nobody can manipulate the tasks in parallel.
6702 * See task_rq_lock() family for the details.
6703 */
6704
6705 raw_spin_unlock(&busiest->lock);
6706
6707 if (cur_ld_moved) {
6708 attach_tasks(&env);
6709 ld_moved += cur_ld_moved;
6710 }
6711
1e3c88bd
PZ
6712 local_irq_restore(flags);
6713
6714 /*
6715 * some other cpu did the load balance for us.
6716 */
88b8dac0
SV
6717 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6718 resched_cpu(env.dst_cpu);
6719
f1cd0858
JK
6720 if (env.flags & LBF_NEED_BREAK) {
6721 env.flags &= ~LBF_NEED_BREAK;
6722 goto more_balance;
6723 }
6724
88b8dac0
SV
6725 /*
6726 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6727 * us and move them to an alternate dst_cpu in our sched_group
6728 * where they can run. The upper limit on how many times we
6729 * iterate on same src_cpu is dependent on number of cpus in our
6730 * sched_group.
6731 *
6732 * This changes load balance semantics a bit on who can move
6733 * load to a given_cpu. In addition to the given_cpu itself
6734 * (or a ilb_cpu acting on its behalf where given_cpu is
6735 * nohz-idle), we now have balance_cpu in a position to move
6736 * load to given_cpu. In rare situations, this may cause
6737 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6738 * _independently_ and at _same_ time to move some load to
6739 * given_cpu) causing exceess load to be moved to given_cpu.
6740 * This however should not happen so much in practice and
6741 * moreover subsequent load balance cycles should correct the
6742 * excess load moved.
6743 */
6263322c 6744 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6745
7aff2e3a
VD
6746 /* Prevent to re-select dst_cpu via env's cpus */
6747 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6748
78feefc5 6749 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6750 env.dst_cpu = env.new_dst_cpu;
6263322c 6751 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6752 env.loop = 0;
6753 env.loop_break = sched_nr_migrate_break;
e02e60c1 6754
88b8dac0
SV
6755 /*
6756 * Go back to "more_balance" rather than "redo" since we
6757 * need to continue with same src_cpu.
6758 */
6759 goto more_balance;
6760 }
1e3c88bd 6761
6263322c
PZ
6762 /*
6763 * We failed to reach balance because of affinity.
6764 */
6765 if (sd_parent) {
63b2ca30 6766 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c
PZ
6767
6768 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6769 *group_imbalance = 1;
6770 } else if (*group_imbalance)
6771 *group_imbalance = 0;
6772 }
6773
1e3c88bd 6774 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6775 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6776 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6777 if (!cpumask_empty(cpus)) {
6778 env.loop = 0;
6779 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6780 goto redo;
bbf18b19 6781 }
1e3c88bd
PZ
6782 goto out_balanced;
6783 }
6784 }
6785
6786 if (!ld_moved) {
6787 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6788 /*
6789 * Increment the failure counter only on periodic balance.
6790 * We do not want newidle balance, which can be very
6791 * frequent, pollute the failure counter causing
6792 * excessive cache_hot migrations and active balances.
6793 */
6794 if (idle != CPU_NEWLY_IDLE)
6795 sd->nr_balance_failed++;
1e3c88bd 6796
bd939f45 6797 if (need_active_balance(&env)) {
1e3c88bd
PZ
6798 raw_spin_lock_irqsave(&busiest->lock, flags);
6799
969c7921
TH
6800 /* don't kick the active_load_balance_cpu_stop,
6801 * if the curr task on busiest cpu can't be
6802 * moved to this_cpu
1e3c88bd
PZ
6803 */
6804 if (!cpumask_test_cpu(this_cpu,
fa17b507 6805 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6806 raw_spin_unlock_irqrestore(&busiest->lock,
6807 flags);
8e45cb54 6808 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6809 goto out_one_pinned;
6810 }
6811
969c7921
TH
6812 /*
6813 * ->active_balance synchronizes accesses to
6814 * ->active_balance_work. Once set, it's cleared
6815 * only after active load balance is finished.
6816 */
1e3c88bd
PZ
6817 if (!busiest->active_balance) {
6818 busiest->active_balance = 1;
6819 busiest->push_cpu = this_cpu;
6820 active_balance = 1;
6821 }
6822 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6823
bd939f45 6824 if (active_balance) {
969c7921
TH
6825 stop_one_cpu_nowait(cpu_of(busiest),
6826 active_load_balance_cpu_stop, busiest,
6827 &busiest->active_balance_work);
bd939f45 6828 }
1e3c88bd
PZ
6829
6830 /*
6831 * We've kicked active balancing, reset the failure
6832 * counter.
6833 */
6834 sd->nr_balance_failed = sd->cache_nice_tries+1;
6835 }
6836 } else
6837 sd->nr_balance_failed = 0;
6838
6839 if (likely(!active_balance)) {
6840 /* We were unbalanced, so reset the balancing interval */
6841 sd->balance_interval = sd->min_interval;
6842 } else {
6843 /*
6844 * If we've begun active balancing, start to back off. This
6845 * case may not be covered by the all_pinned logic if there
6846 * is only 1 task on the busy runqueue (because we don't call
163122b7 6847 * detach_tasks).
1e3c88bd
PZ
6848 */
6849 if (sd->balance_interval < sd->max_interval)
6850 sd->balance_interval *= 2;
6851 }
6852
1e3c88bd
PZ
6853 goto out;
6854
6855out_balanced:
6856 schedstat_inc(sd, lb_balanced[idle]);
6857
6858 sd->nr_balance_failed = 0;
6859
6860out_one_pinned:
6861 /* tune up the balancing interval */
8e45cb54 6862 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6863 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6864 (sd->balance_interval < sd->max_interval))
6865 sd->balance_interval *= 2;
6866
46e49b38 6867 ld_moved = 0;
1e3c88bd 6868out:
1e3c88bd
PZ
6869 return ld_moved;
6870}
6871
52a08ef1
JL
6872static inline unsigned long
6873get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6874{
6875 unsigned long interval = sd->balance_interval;
6876
6877 if (cpu_busy)
6878 interval *= sd->busy_factor;
6879
6880 /* scale ms to jiffies */
6881 interval = msecs_to_jiffies(interval);
6882 interval = clamp(interval, 1UL, max_load_balance_interval);
6883
6884 return interval;
6885}
6886
6887static inline void
6888update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6889{
6890 unsigned long interval, next;
6891
6892 interval = get_sd_balance_interval(sd, cpu_busy);
6893 next = sd->last_balance + interval;
6894
6895 if (time_after(*next_balance, next))
6896 *next_balance = next;
6897}
6898
1e3c88bd
PZ
6899/*
6900 * idle_balance is called by schedule() if this_cpu is about to become
6901 * idle. Attempts to pull tasks from other CPUs.
6902 */
6e83125c 6903static int idle_balance(struct rq *this_rq)
1e3c88bd 6904{
52a08ef1
JL
6905 unsigned long next_balance = jiffies + HZ;
6906 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6907 struct sched_domain *sd;
6908 int pulled_task = 0;
9bd721c5 6909 u64 curr_cost = 0;
1e3c88bd 6910
6e83125c 6911 idle_enter_fair(this_rq);
0e5b5337 6912
6e83125c
PZ
6913 /*
6914 * We must set idle_stamp _before_ calling idle_balance(), such that we
6915 * measure the duration of idle_balance() as idle time.
6916 */
6917 this_rq->idle_stamp = rq_clock(this_rq);
6918
4486edd1
TC
6919 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6920 !this_rq->rd->overload) {
52a08ef1
JL
6921 rcu_read_lock();
6922 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6923 if (sd)
6924 update_next_balance(sd, 0, &next_balance);
6925 rcu_read_unlock();
6926
6e83125c 6927 goto out;
52a08ef1 6928 }
1e3c88bd 6929
f492e12e
PZ
6930 /*
6931 * Drop the rq->lock, but keep IRQ/preempt disabled.
6932 */
6933 raw_spin_unlock(&this_rq->lock);
6934
48a16753 6935 update_blocked_averages(this_cpu);
dce840a0 6936 rcu_read_lock();
1e3c88bd 6937 for_each_domain(this_cpu, sd) {
23f0d209 6938 int continue_balancing = 1;
9bd721c5 6939 u64 t0, domain_cost;
1e3c88bd
PZ
6940
6941 if (!(sd->flags & SD_LOAD_BALANCE))
6942 continue;
6943
52a08ef1
JL
6944 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6945 update_next_balance(sd, 0, &next_balance);
9bd721c5 6946 break;
52a08ef1 6947 }
9bd721c5 6948
f492e12e 6949 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6950 t0 = sched_clock_cpu(this_cpu);
6951
f492e12e 6952 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6953 sd, CPU_NEWLY_IDLE,
6954 &continue_balancing);
9bd721c5
JL
6955
6956 domain_cost = sched_clock_cpu(this_cpu) - t0;
6957 if (domain_cost > sd->max_newidle_lb_cost)
6958 sd->max_newidle_lb_cost = domain_cost;
6959
6960 curr_cost += domain_cost;
f492e12e 6961 }
1e3c88bd 6962
52a08ef1 6963 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6964
6965 /*
6966 * Stop searching for tasks to pull if there are
6967 * now runnable tasks on this rq.
6968 */
6969 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6970 break;
1e3c88bd 6971 }
dce840a0 6972 rcu_read_unlock();
f492e12e
PZ
6973
6974 raw_spin_lock(&this_rq->lock);
6975
0e5b5337
JL
6976 if (curr_cost > this_rq->max_idle_balance_cost)
6977 this_rq->max_idle_balance_cost = curr_cost;
6978
e5fc6611 6979 /*
0e5b5337
JL
6980 * While browsing the domains, we released the rq lock, a task could
6981 * have been enqueued in the meantime. Since we're not going idle,
6982 * pretend we pulled a task.
e5fc6611 6983 */
0e5b5337 6984 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6985 pulled_task = 1;
e5fc6611 6986
52a08ef1
JL
6987out:
6988 /* Move the next balance forward */
6989 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6990 this_rq->next_balance = next_balance;
9bd721c5 6991
e4aa358b 6992 /* Is there a task of a high priority class? */
46383648 6993 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6994 pulled_task = -1;
6995
6996 if (pulled_task) {
6997 idle_exit_fair(this_rq);
6e83125c 6998 this_rq->idle_stamp = 0;
e4aa358b 6999 }
6e83125c 7000
3c4017c1 7001 return pulled_task;
1e3c88bd
PZ
7002}
7003
7004/*
969c7921
TH
7005 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7006 * running tasks off the busiest CPU onto idle CPUs. It requires at
7007 * least 1 task to be running on each physical CPU where possible, and
7008 * avoids physical / logical imbalances.
1e3c88bd 7009 */
969c7921 7010static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7011{
969c7921
TH
7012 struct rq *busiest_rq = data;
7013 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7014 int target_cpu = busiest_rq->push_cpu;
969c7921 7015 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7016 struct sched_domain *sd;
e5673f28 7017 struct task_struct *p = NULL;
969c7921
TH
7018
7019 raw_spin_lock_irq(&busiest_rq->lock);
7020
7021 /* make sure the requested cpu hasn't gone down in the meantime */
7022 if (unlikely(busiest_cpu != smp_processor_id() ||
7023 !busiest_rq->active_balance))
7024 goto out_unlock;
1e3c88bd
PZ
7025
7026 /* Is there any task to move? */
7027 if (busiest_rq->nr_running <= 1)
969c7921 7028 goto out_unlock;
1e3c88bd
PZ
7029
7030 /*
7031 * This condition is "impossible", if it occurs
7032 * we need to fix it. Originally reported by
7033 * Bjorn Helgaas on a 128-cpu setup.
7034 */
7035 BUG_ON(busiest_rq == target_rq);
7036
1e3c88bd 7037 /* Search for an sd spanning us and the target CPU. */
dce840a0 7038 rcu_read_lock();
1e3c88bd
PZ
7039 for_each_domain(target_cpu, sd) {
7040 if ((sd->flags & SD_LOAD_BALANCE) &&
7041 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7042 break;
7043 }
7044
7045 if (likely(sd)) {
8e45cb54
PZ
7046 struct lb_env env = {
7047 .sd = sd,
ddcdf6e7
PZ
7048 .dst_cpu = target_cpu,
7049 .dst_rq = target_rq,
7050 .src_cpu = busiest_rq->cpu,
7051 .src_rq = busiest_rq,
8e45cb54
PZ
7052 .idle = CPU_IDLE,
7053 };
7054
1e3c88bd
PZ
7055 schedstat_inc(sd, alb_count);
7056
e5673f28
KT
7057 p = detach_one_task(&env);
7058 if (p)
1e3c88bd
PZ
7059 schedstat_inc(sd, alb_pushed);
7060 else
7061 schedstat_inc(sd, alb_failed);
7062 }
dce840a0 7063 rcu_read_unlock();
969c7921
TH
7064out_unlock:
7065 busiest_rq->active_balance = 0;
e5673f28
KT
7066 raw_spin_unlock(&busiest_rq->lock);
7067
7068 if (p)
7069 attach_one_task(target_rq, p);
7070
7071 local_irq_enable();
7072
969c7921 7073 return 0;
1e3c88bd
PZ
7074}
7075
d987fc7f
MG
7076static inline int on_null_domain(struct rq *rq)
7077{
7078 return unlikely(!rcu_dereference_sched(rq->sd));
7079}
7080
3451d024 7081#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7082/*
7083 * idle load balancing details
83cd4fe2
VP
7084 * - When one of the busy CPUs notice that there may be an idle rebalancing
7085 * needed, they will kick the idle load balancer, which then does idle
7086 * load balancing for all the idle CPUs.
7087 */
1e3c88bd 7088static struct {
83cd4fe2 7089 cpumask_var_t idle_cpus_mask;
0b005cf5 7090 atomic_t nr_cpus;
83cd4fe2
VP
7091 unsigned long next_balance; /* in jiffy units */
7092} nohz ____cacheline_aligned;
1e3c88bd 7093
3dd0337d 7094static inline int find_new_ilb(void)
1e3c88bd 7095{
0b005cf5 7096 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7097
786d6dc7
SS
7098 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7099 return ilb;
7100
7101 return nr_cpu_ids;
1e3c88bd 7102}
1e3c88bd 7103
83cd4fe2
VP
7104/*
7105 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7106 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7107 * CPU (if there is one).
7108 */
0aeeeeba 7109static void nohz_balancer_kick(void)
83cd4fe2
VP
7110{
7111 int ilb_cpu;
7112
7113 nohz.next_balance++;
7114
3dd0337d 7115 ilb_cpu = find_new_ilb();
83cd4fe2 7116
0b005cf5
SS
7117 if (ilb_cpu >= nr_cpu_ids)
7118 return;
83cd4fe2 7119
cd490c5b 7120 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7121 return;
7122 /*
7123 * Use smp_send_reschedule() instead of resched_cpu().
7124 * This way we generate a sched IPI on the target cpu which
7125 * is idle. And the softirq performing nohz idle load balance
7126 * will be run before returning from the IPI.
7127 */
7128 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7129 return;
7130}
7131
c1cc017c 7132static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7133{
7134 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7135 /*
7136 * Completely isolated CPUs don't ever set, so we must test.
7137 */
7138 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7139 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7140 atomic_dec(&nohz.nr_cpus);
7141 }
71325960
SS
7142 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7143 }
7144}
7145
69e1e811
SS
7146static inline void set_cpu_sd_state_busy(void)
7147{
7148 struct sched_domain *sd;
37dc6b50 7149 int cpu = smp_processor_id();
69e1e811 7150
69e1e811 7151 rcu_read_lock();
37dc6b50 7152 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7153
7154 if (!sd || !sd->nohz_idle)
7155 goto unlock;
7156 sd->nohz_idle = 0;
7157
63b2ca30 7158 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7159unlock:
69e1e811
SS
7160 rcu_read_unlock();
7161}
7162
7163void set_cpu_sd_state_idle(void)
7164{
7165 struct sched_domain *sd;
37dc6b50 7166 int cpu = smp_processor_id();
69e1e811 7167
69e1e811 7168 rcu_read_lock();
37dc6b50 7169 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7170
7171 if (!sd || sd->nohz_idle)
7172 goto unlock;
7173 sd->nohz_idle = 1;
7174
63b2ca30 7175 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7176unlock:
69e1e811
SS
7177 rcu_read_unlock();
7178}
7179
1e3c88bd 7180/*
c1cc017c 7181 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7182 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7183 */
c1cc017c 7184void nohz_balance_enter_idle(int cpu)
1e3c88bd 7185{
71325960
SS
7186 /*
7187 * If this cpu is going down, then nothing needs to be done.
7188 */
7189 if (!cpu_active(cpu))
7190 return;
7191
c1cc017c
AS
7192 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7193 return;
1e3c88bd 7194
d987fc7f
MG
7195 /*
7196 * If we're a completely isolated CPU, we don't play.
7197 */
7198 if (on_null_domain(cpu_rq(cpu)))
7199 return;
7200
c1cc017c
AS
7201 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7202 atomic_inc(&nohz.nr_cpus);
7203 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7204}
71325960 7205
0db0628d 7206static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7207 unsigned long action, void *hcpu)
7208{
7209 switch (action & ~CPU_TASKS_FROZEN) {
7210 case CPU_DYING:
c1cc017c 7211 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7212 return NOTIFY_OK;
7213 default:
7214 return NOTIFY_DONE;
7215 }
7216}
1e3c88bd
PZ
7217#endif
7218
7219static DEFINE_SPINLOCK(balancing);
7220
49c022e6
PZ
7221/*
7222 * Scale the max load_balance interval with the number of CPUs in the system.
7223 * This trades load-balance latency on larger machines for less cross talk.
7224 */
029632fb 7225void update_max_interval(void)
49c022e6
PZ
7226{
7227 max_load_balance_interval = HZ*num_online_cpus()/10;
7228}
7229
1e3c88bd
PZ
7230/*
7231 * It checks each scheduling domain to see if it is due to be balanced,
7232 * and initiates a balancing operation if so.
7233 *
b9b0853a 7234 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7235 */
f7ed0a89 7236static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7237{
23f0d209 7238 int continue_balancing = 1;
f7ed0a89 7239 int cpu = rq->cpu;
1e3c88bd 7240 unsigned long interval;
04f733b4 7241 struct sched_domain *sd;
1e3c88bd
PZ
7242 /* Earliest time when we have to do rebalance again */
7243 unsigned long next_balance = jiffies + 60*HZ;
7244 int update_next_balance = 0;
f48627e6
JL
7245 int need_serialize, need_decay = 0;
7246 u64 max_cost = 0;
1e3c88bd 7247
48a16753 7248 update_blocked_averages(cpu);
2069dd75 7249
dce840a0 7250 rcu_read_lock();
1e3c88bd 7251 for_each_domain(cpu, sd) {
f48627e6
JL
7252 /*
7253 * Decay the newidle max times here because this is a regular
7254 * visit to all the domains. Decay ~1% per second.
7255 */
7256 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7257 sd->max_newidle_lb_cost =
7258 (sd->max_newidle_lb_cost * 253) / 256;
7259 sd->next_decay_max_lb_cost = jiffies + HZ;
7260 need_decay = 1;
7261 }
7262 max_cost += sd->max_newidle_lb_cost;
7263
1e3c88bd
PZ
7264 if (!(sd->flags & SD_LOAD_BALANCE))
7265 continue;
7266
f48627e6
JL
7267 /*
7268 * Stop the load balance at this level. There is another
7269 * CPU in our sched group which is doing load balancing more
7270 * actively.
7271 */
7272 if (!continue_balancing) {
7273 if (need_decay)
7274 continue;
7275 break;
7276 }
7277
52a08ef1 7278 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7279
7280 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7281 if (need_serialize) {
7282 if (!spin_trylock(&balancing))
7283 goto out;
7284 }
7285
7286 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7287 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7288 /*
6263322c 7289 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7290 * env->dst_cpu, so we can't know our idle
7291 * state even if we migrated tasks. Update it.
1e3c88bd 7292 */
de5eb2dd 7293 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7294 }
7295 sd->last_balance = jiffies;
52a08ef1 7296 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7297 }
7298 if (need_serialize)
7299 spin_unlock(&balancing);
7300out:
7301 if (time_after(next_balance, sd->last_balance + interval)) {
7302 next_balance = sd->last_balance + interval;
7303 update_next_balance = 1;
7304 }
f48627e6
JL
7305 }
7306 if (need_decay) {
1e3c88bd 7307 /*
f48627e6
JL
7308 * Ensure the rq-wide value also decays but keep it at a
7309 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7310 */
f48627e6
JL
7311 rq->max_idle_balance_cost =
7312 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7313 }
dce840a0 7314 rcu_read_unlock();
1e3c88bd
PZ
7315
7316 /*
7317 * next_balance will be updated only when there is a need.
7318 * When the cpu is attached to null domain for ex, it will not be
7319 * updated.
7320 */
7321 if (likely(update_next_balance))
7322 rq->next_balance = next_balance;
7323}
7324
3451d024 7325#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7326/*
3451d024 7327 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7328 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7329 */
208cb16b 7330static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7331{
208cb16b 7332 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7333 struct rq *rq;
7334 int balance_cpu;
7335
1c792db7
SS
7336 if (idle != CPU_IDLE ||
7337 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7338 goto end;
83cd4fe2
VP
7339
7340 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7341 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7342 continue;
7343
7344 /*
7345 * If this cpu gets work to do, stop the load balancing
7346 * work being done for other cpus. Next load
7347 * balancing owner will pick it up.
7348 */
1c792db7 7349 if (need_resched())
83cd4fe2 7350 break;
83cd4fe2 7351
5ed4f1d9
VG
7352 rq = cpu_rq(balance_cpu);
7353
ed61bbc6
TC
7354 /*
7355 * If time for next balance is due,
7356 * do the balance.
7357 */
7358 if (time_after_eq(jiffies, rq->next_balance)) {
7359 raw_spin_lock_irq(&rq->lock);
7360 update_rq_clock(rq);
7361 update_idle_cpu_load(rq);
7362 raw_spin_unlock_irq(&rq->lock);
7363 rebalance_domains(rq, CPU_IDLE);
7364 }
83cd4fe2 7365
83cd4fe2
VP
7366 if (time_after(this_rq->next_balance, rq->next_balance))
7367 this_rq->next_balance = rq->next_balance;
7368 }
7369 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7370end:
7371 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7372}
7373
7374/*
0b005cf5
SS
7375 * Current heuristic for kicking the idle load balancer in the presence
7376 * of an idle cpu is the system.
7377 * - This rq has more than one task.
7378 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7379 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7380 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7381 * domain span are idle.
83cd4fe2 7382 */
4a725627 7383static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7384{
7385 unsigned long now = jiffies;
0b005cf5 7386 struct sched_domain *sd;
63b2ca30 7387 struct sched_group_capacity *sgc;
4a725627 7388 int nr_busy, cpu = rq->cpu;
83cd4fe2 7389
4a725627 7390 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7391 return 0;
7392
1c792db7
SS
7393 /*
7394 * We may be recently in ticked or tickless idle mode. At the first
7395 * busy tick after returning from idle, we will update the busy stats.
7396 */
69e1e811 7397 set_cpu_sd_state_busy();
c1cc017c 7398 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7399
7400 /*
7401 * None are in tickless mode and hence no need for NOHZ idle load
7402 * balancing.
7403 */
7404 if (likely(!atomic_read(&nohz.nr_cpus)))
7405 return 0;
1c792db7
SS
7406
7407 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7408 return 0;
7409
0b005cf5
SS
7410 if (rq->nr_running >= 2)
7411 goto need_kick;
83cd4fe2 7412
067491b7 7413 rcu_read_lock();
37dc6b50 7414 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7415
37dc6b50 7416 if (sd) {
63b2ca30
NP
7417 sgc = sd->groups->sgc;
7418 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7419
37dc6b50 7420 if (nr_busy > 1)
067491b7 7421 goto need_kick_unlock;
83cd4fe2 7422 }
37dc6b50
PM
7423
7424 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7425
7426 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7427 sched_domain_span(sd)) < cpu))
7428 goto need_kick_unlock;
7429
067491b7 7430 rcu_read_unlock();
83cd4fe2 7431 return 0;
067491b7
PZ
7432
7433need_kick_unlock:
7434 rcu_read_unlock();
0b005cf5
SS
7435need_kick:
7436 return 1;
83cd4fe2
VP
7437}
7438#else
208cb16b 7439static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7440#endif
7441
7442/*
7443 * run_rebalance_domains is triggered when needed from the scheduler tick.
7444 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7445 */
1e3c88bd
PZ
7446static void run_rebalance_domains(struct softirq_action *h)
7447{
208cb16b 7448 struct rq *this_rq = this_rq();
6eb57e0d 7449 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7450 CPU_IDLE : CPU_NOT_IDLE;
7451
f7ed0a89 7452 rebalance_domains(this_rq, idle);
1e3c88bd 7453
1e3c88bd 7454 /*
83cd4fe2 7455 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7456 * balancing on behalf of the other idle cpus whose ticks are
7457 * stopped.
7458 */
208cb16b 7459 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7460}
7461
1e3c88bd
PZ
7462/*
7463 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7464 */
7caff66f 7465void trigger_load_balance(struct rq *rq)
1e3c88bd 7466{
1e3c88bd 7467 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7468 if (unlikely(on_null_domain(rq)))
7469 return;
7470
7471 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7472 raise_softirq(SCHED_SOFTIRQ);
3451d024 7473#ifdef CONFIG_NO_HZ_COMMON
c726099e 7474 if (nohz_kick_needed(rq))
0aeeeeba 7475 nohz_balancer_kick();
83cd4fe2 7476#endif
1e3c88bd
PZ
7477}
7478
0bcdcf28
CE
7479static void rq_online_fair(struct rq *rq)
7480{
7481 update_sysctl();
0e59bdae
KT
7482
7483 update_runtime_enabled(rq);
0bcdcf28
CE
7484}
7485
7486static void rq_offline_fair(struct rq *rq)
7487{
7488 update_sysctl();
a4c96ae3
PB
7489
7490 /* Ensure any throttled groups are reachable by pick_next_task */
7491 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7492}
7493
55e12e5e 7494#endif /* CONFIG_SMP */
e1d1484f 7495
bf0f6f24
IM
7496/*
7497 * scheduler tick hitting a task of our scheduling class:
7498 */
8f4d37ec 7499static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7500{
7501 struct cfs_rq *cfs_rq;
7502 struct sched_entity *se = &curr->se;
7503
7504 for_each_sched_entity(se) {
7505 cfs_rq = cfs_rq_of(se);
8f4d37ec 7506 entity_tick(cfs_rq, se, queued);
bf0f6f24 7507 }
18bf2805 7508
10e84b97 7509 if (numabalancing_enabled)
cbee9f88 7510 task_tick_numa(rq, curr);
3d59eebc 7511
18bf2805 7512 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7513}
7514
7515/*
cd29fe6f
PZ
7516 * called on fork with the child task as argument from the parent's context
7517 * - child not yet on the tasklist
7518 * - preemption disabled
bf0f6f24 7519 */
cd29fe6f 7520static void task_fork_fair(struct task_struct *p)
bf0f6f24 7521{
4fc420c9
DN
7522 struct cfs_rq *cfs_rq;
7523 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7524 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7525 struct rq *rq = this_rq();
7526 unsigned long flags;
7527
05fa785c 7528 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7529
861d034e
PZ
7530 update_rq_clock(rq);
7531
4fc420c9
DN
7532 cfs_rq = task_cfs_rq(current);
7533 curr = cfs_rq->curr;
7534
6c9a27f5
DN
7535 /*
7536 * Not only the cpu but also the task_group of the parent might have
7537 * been changed after parent->se.parent,cfs_rq were copied to
7538 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7539 * of child point to valid ones.
7540 */
7541 rcu_read_lock();
7542 __set_task_cpu(p, this_cpu);
7543 rcu_read_unlock();
bf0f6f24 7544
7109c442 7545 update_curr(cfs_rq);
cd29fe6f 7546
b5d9d734
MG
7547 if (curr)
7548 se->vruntime = curr->vruntime;
aeb73b04 7549 place_entity(cfs_rq, se, 1);
4d78e7b6 7550
cd29fe6f 7551 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7552 /*
edcb60a3
IM
7553 * Upon rescheduling, sched_class::put_prev_task() will place
7554 * 'current' within the tree based on its new key value.
7555 */
4d78e7b6 7556 swap(curr->vruntime, se->vruntime);
8875125e 7557 resched_curr(rq);
4d78e7b6 7558 }
bf0f6f24 7559
88ec22d3
PZ
7560 se->vruntime -= cfs_rq->min_vruntime;
7561
05fa785c 7562 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7563}
7564
cb469845
SR
7565/*
7566 * Priority of the task has changed. Check to see if we preempt
7567 * the current task.
7568 */
da7a735e
PZ
7569static void
7570prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7571{
da0c1e65 7572 if (!task_on_rq_queued(p))
da7a735e
PZ
7573 return;
7574
cb469845
SR
7575 /*
7576 * Reschedule if we are currently running on this runqueue and
7577 * our priority decreased, or if we are not currently running on
7578 * this runqueue and our priority is higher than the current's
7579 */
da7a735e 7580 if (rq->curr == p) {
cb469845 7581 if (p->prio > oldprio)
8875125e 7582 resched_curr(rq);
cb469845 7583 } else
15afe09b 7584 check_preempt_curr(rq, p, 0);
cb469845
SR
7585}
7586
da7a735e
PZ
7587static void switched_from_fair(struct rq *rq, struct task_struct *p)
7588{
7589 struct sched_entity *se = &p->se;
7590 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7591
7592 /*
791c9e02 7593 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7594 * switched back to the fair class the enqueue_entity(.flags=0) will
7595 * do the right thing.
7596 *
da0c1e65
KT
7597 * If it's queued, then the dequeue_entity(.flags=0) will already
7598 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7599 * the task is sleeping will it still have non-normalized vruntime.
7600 */
da0c1e65 7601 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7602 /*
7603 * Fix up our vruntime so that the current sleep doesn't
7604 * cause 'unlimited' sleep bonus.
7605 */
7606 place_entity(cfs_rq, se, 0);
7607 se->vruntime -= cfs_rq->min_vruntime;
7608 }
9ee474f5 7609
141965c7 7610#ifdef CONFIG_SMP
9ee474f5
PT
7611 /*
7612 * Remove our load from contribution when we leave sched_fair
7613 * and ensure we don't carry in an old decay_count if we
7614 * switch back.
7615 */
87e3c8ae
KT
7616 if (se->avg.decay_count) {
7617 __synchronize_entity_decay(se);
7618 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7619 }
7620#endif
da7a735e
PZ
7621}
7622
cb469845
SR
7623/*
7624 * We switched to the sched_fair class.
7625 */
da7a735e 7626static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7627{
eb7a59b2 7628#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7629 struct sched_entity *se = &p->se;
eb7a59b2
M
7630 /*
7631 * Since the real-depth could have been changed (only FAIR
7632 * class maintain depth value), reset depth properly.
7633 */
7634 se->depth = se->parent ? se->parent->depth + 1 : 0;
7635#endif
da0c1e65 7636 if (!task_on_rq_queued(p))
da7a735e
PZ
7637 return;
7638
cb469845
SR
7639 /*
7640 * We were most likely switched from sched_rt, so
7641 * kick off the schedule if running, otherwise just see
7642 * if we can still preempt the current task.
7643 */
da7a735e 7644 if (rq->curr == p)
8875125e 7645 resched_curr(rq);
cb469845 7646 else
15afe09b 7647 check_preempt_curr(rq, p, 0);
cb469845
SR
7648}
7649
83b699ed
SV
7650/* Account for a task changing its policy or group.
7651 *
7652 * This routine is mostly called to set cfs_rq->curr field when a task
7653 * migrates between groups/classes.
7654 */
7655static void set_curr_task_fair(struct rq *rq)
7656{
7657 struct sched_entity *se = &rq->curr->se;
7658
ec12cb7f
PT
7659 for_each_sched_entity(se) {
7660 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7661
7662 set_next_entity(cfs_rq, se);
7663 /* ensure bandwidth has been allocated on our new cfs_rq */
7664 account_cfs_rq_runtime(cfs_rq, 0);
7665 }
83b699ed
SV
7666}
7667
029632fb
PZ
7668void init_cfs_rq(struct cfs_rq *cfs_rq)
7669{
7670 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7671 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7672#ifndef CONFIG_64BIT
7673 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7674#endif
141965c7 7675#ifdef CONFIG_SMP
9ee474f5 7676 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7677 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7678#endif
029632fb
PZ
7679}
7680
810b3817 7681#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7682static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7683{
fed14d45 7684 struct sched_entity *se = &p->se;
aff3e498 7685 struct cfs_rq *cfs_rq;
fed14d45 7686
b2b5ce02
PZ
7687 /*
7688 * If the task was not on the rq at the time of this cgroup movement
7689 * it must have been asleep, sleeping tasks keep their ->vruntime
7690 * absolute on their old rq until wakeup (needed for the fair sleeper
7691 * bonus in place_entity()).
7692 *
7693 * If it was on the rq, we've just 'preempted' it, which does convert
7694 * ->vruntime to a relative base.
7695 *
7696 * Make sure both cases convert their relative position when migrating
7697 * to another cgroup's rq. This does somewhat interfere with the
7698 * fair sleeper stuff for the first placement, but who cares.
7699 */
7ceff013 7700 /*
da0c1e65 7701 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7702 * But there are some cases where it has already been normalized:
7703 *
7704 * - Moving a forked child which is waiting for being woken up by
7705 * wake_up_new_task().
62af3783
DN
7706 * - Moving a task which has been woken up by try_to_wake_up() and
7707 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7708 *
7709 * To prevent boost or penalty in the new cfs_rq caused by delta
7710 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7711 */
da0c1e65
KT
7712 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7713 queued = 1;
7ceff013 7714
da0c1e65 7715 if (!queued)
fed14d45 7716 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7717 set_task_rq(p, task_cpu(p));
fed14d45 7718 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7719 if (!queued) {
fed14d45
PZ
7720 cfs_rq = cfs_rq_of(se);
7721 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7722#ifdef CONFIG_SMP
7723 /*
7724 * migrate_task_rq_fair() will have removed our previous
7725 * contribution, but we must synchronize for ongoing future
7726 * decay.
7727 */
fed14d45
PZ
7728 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7729 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7730#endif
7731 }
810b3817 7732}
029632fb
PZ
7733
7734void free_fair_sched_group(struct task_group *tg)
7735{
7736 int i;
7737
7738 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7739
7740 for_each_possible_cpu(i) {
7741 if (tg->cfs_rq)
7742 kfree(tg->cfs_rq[i]);
7743 if (tg->se)
7744 kfree(tg->se[i]);
7745 }
7746
7747 kfree(tg->cfs_rq);
7748 kfree(tg->se);
7749}
7750
7751int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7752{
7753 struct cfs_rq *cfs_rq;
7754 struct sched_entity *se;
7755 int i;
7756
7757 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7758 if (!tg->cfs_rq)
7759 goto err;
7760 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7761 if (!tg->se)
7762 goto err;
7763
7764 tg->shares = NICE_0_LOAD;
7765
7766 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7767
7768 for_each_possible_cpu(i) {
7769 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7770 GFP_KERNEL, cpu_to_node(i));
7771 if (!cfs_rq)
7772 goto err;
7773
7774 se = kzalloc_node(sizeof(struct sched_entity),
7775 GFP_KERNEL, cpu_to_node(i));
7776 if (!se)
7777 goto err_free_rq;
7778
7779 init_cfs_rq(cfs_rq);
7780 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7781 }
7782
7783 return 1;
7784
7785err_free_rq:
7786 kfree(cfs_rq);
7787err:
7788 return 0;
7789}
7790
7791void unregister_fair_sched_group(struct task_group *tg, int cpu)
7792{
7793 struct rq *rq = cpu_rq(cpu);
7794 unsigned long flags;
7795
7796 /*
7797 * Only empty task groups can be destroyed; so we can speculatively
7798 * check on_list without danger of it being re-added.
7799 */
7800 if (!tg->cfs_rq[cpu]->on_list)
7801 return;
7802
7803 raw_spin_lock_irqsave(&rq->lock, flags);
7804 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7805 raw_spin_unlock_irqrestore(&rq->lock, flags);
7806}
7807
7808void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7809 struct sched_entity *se, int cpu,
7810 struct sched_entity *parent)
7811{
7812 struct rq *rq = cpu_rq(cpu);
7813
7814 cfs_rq->tg = tg;
7815 cfs_rq->rq = rq;
029632fb
PZ
7816 init_cfs_rq_runtime(cfs_rq);
7817
7818 tg->cfs_rq[cpu] = cfs_rq;
7819 tg->se[cpu] = se;
7820
7821 /* se could be NULL for root_task_group */
7822 if (!se)
7823 return;
7824
fed14d45 7825 if (!parent) {
029632fb 7826 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7827 se->depth = 0;
7828 } else {
029632fb 7829 se->cfs_rq = parent->my_q;
fed14d45
PZ
7830 se->depth = parent->depth + 1;
7831 }
029632fb
PZ
7832
7833 se->my_q = cfs_rq;
0ac9b1c2
PT
7834 /* guarantee group entities always have weight */
7835 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7836 se->parent = parent;
7837}
7838
7839static DEFINE_MUTEX(shares_mutex);
7840
7841int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7842{
7843 int i;
7844 unsigned long flags;
7845
7846 /*
7847 * We can't change the weight of the root cgroup.
7848 */
7849 if (!tg->se[0])
7850 return -EINVAL;
7851
7852 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7853
7854 mutex_lock(&shares_mutex);
7855 if (tg->shares == shares)
7856 goto done;
7857
7858 tg->shares = shares;
7859 for_each_possible_cpu(i) {
7860 struct rq *rq = cpu_rq(i);
7861 struct sched_entity *se;
7862
7863 se = tg->se[i];
7864 /* Propagate contribution to hierarchy */
7865 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7866
7867 /* Possible calls to update_curr() need rq clock */
7868 update_rq_clock(rq);
17bc14b7 7869 for_each_sched_entity(se)
029632fb
PZ
7870 update_cfs_shares(group_cfs_rq(se));
7871 raw_spin_unlock_irqrestore(&rq->lock, flags);
7872 }
7873
7874done:
7875 mutex_unlock(&shares_mutex);
7876 return 0;
7877}
7878#else /* CONFIG_FAIR_GROUP_SCHED */
7879
7880void free_fair_sched_group(struct task_group *tg) { }
7881
7882int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7883{
7884 return 1;
7885}
7886
7887void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7888
7889#endif /* CONFIG_FAIR_GROUP_SCHED */
7890
810b3817 7891
6d686f45 7892static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7893{
7894 struct sched_entity *se = &task->se;
0d721cea
PW
7895 unsigned int rr_interval = 0;
7896
7897 /*
7898 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7899 * idle runqueue:
7900 */
0d721cea 7901 if (rq->cfs.load.weight)
a59f4e07 7902 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7903
7904 return rr_interval;
7905}
7906
bf0f6f24
IM
7907/*
7908 * All the scheduling class methods:
7909 */
029632fb 7910const struct sched_class fair_sched_class = {
5522d5d5 7911 .next = &idle_sched_class,
bf0f6f24
IM
7912 .enqueue_task = enqueue_task_fair,
7913 .dequeue_task = dequeue_task_fair,
7914 .yield_task = yield_task_fair,
d95f4122 7915 .yield_to_task = yield_to_task_fair,
bf0f6f24 7916
2e09bf55 7917 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7918
7919 .pick_next_task = pick_next_task_fair,
7920 .put_prev_task = put_prev_task_fair,
7921
681f3e68 7922#ifdef CONFIG_SMP
4ce72a2c 7923 .select_task_rq = select_task_rq_fair,
0a74bef8 7924 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7925
0bcdcf28
CE
7926 .rq_online = rq_online_fair,
7927 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7928
7929 .task_waking = task_waking_fair,
681f3e68 7930#endif
bf0f6f24 7931
83b699ed 7932 .set_curr_task = set_curr_task_fair,
bf0f6f24 7933 .task_tick = task_tick_fair,
cd29fe6f 7934 .task_fork = task_fork_fair,
cb469845
SR
7935
7936 .prio_changed = prio_changed_fair,
da7a735e 7937 .switched_from = switched_from_fair,
cb469845 7938 .switched_to = switched_to_fair,
810b3817 7939
0d721cea
PW
7940 .get_rr_interval = get_rr_interval_fair,
7941
810b3817 7942#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7943 .task_move_group = task_move_group_fair,
810b3817 7944#endif
bf0f6f24
IM
7945};
7946
7947#ifdef CONFIG_SCHED_DEBUG
029632fb 7948void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7949{
bf0f6f24
IM
7950 struct cfs_rq *cfs_rq;
7951
5973e5b9 7952 rcu_read_lock();
c3b64f1e 7953 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7954 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7955 rcu_read_unlock();
bf0f6f24
IM
7956}
7957#endif
029632fb
PZ
7958
7959__init void init_sched_fair_class(void)
7960{
7961#ifdef CONFIG_SMP
7962 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7963
3451d024 7964#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7965 nohz.next_balance = jiffies;
029632fb 7966 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7967 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7968#endif
7969#endif /* SMP */
7970
7971}
This page took 1.115831 seconds and 5 git commands to generate.