Merge remote-tracking branches 'asoc/topic/tas571x', 'asoc/topic/tlv320aic31xx',...
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
2b8c41da
YD
693/*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718void post_init_entity_util_avg(struct sched_entity *se)
719{
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
172895e6 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736}
737
a75cdaa9 738#else
540247fb 739void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
740{
741}
2b8c41da
YD
742void post_init_entity_util_avg(struct sched_entity *se)
743{
744}
a75cdaa9
AS
745#endif
746
bf0f6f24 747/*
9dbdb155 748 * Update the current task's runtime statistics.
bf0f6f24 749 */
b7cc0896 750static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 751{
429d43bc 752 struct sched_entity *curr = cfs_rq->curr;
78becc27 753 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 754 u64 delta_exec;
bf0f6f24
IM
755
756 if (unlikely(!curr))
757 return;
758
9dbdb155
PZ
759 delta_exec = now - curr->exec_start;
760 if (unlikely((s64)delta_exec <= 0))
34f28ecd 761 return;
bf0f6f24 762
8ebc91d9 763 curr->exec_start = now;
d842de87 764
9dbdb155
PZ
765 schedstat_set(curr->statistics.exec_max,
766 max(delta_exec, curr->statistics.exec_max));
767
768 curr->sum_exec_runtime += delta_exec;
769 schedstat_add(cfs_rq, exec_clock, delta_exec);
770
771 curr->vruntime += calc_delta_fair(delta_exec, curr);
772 update_min_vruntime(cfs_rq);
773
d842de87
SV
774 if (entity_is_task(curr)) {
775 struct task_struct *curtask = task_of(curr);
776
f977bb49 777 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 778 cpuacct_charge(curtask, delta_exec);
f06febc9 779 account_group_exec_runtime(curtask, delta_exec);
d842de87 780 }
ec12cb7f
PT
781
782 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
783}
784
6e998916
SG
785static void update_curr_fair(struct rq *rq)
786{
787 update_curr(cfs_rq_of(&rq->curr->se));
788}
789
3ea94de1 790#ifdef CONFIG_SCHEDSTATS
bf0f6f24 791static inline void
5870db5b 792update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 793{
3ea94de1
JP
794 u64 wait_start = rq_clock(rq_of(cfs_rq));
795
796 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
797 likely(wait_start > se->statistics.wait_start))
798 wait_start -= se->statistics.wait_start;
799
800 se->statistics.wait_start = wait_start;
bf0f6f24
IM
801}
802
3ea94de1
JP
803static void
804update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
805{
806 struct task_struct *p;
cb251765
MG
807 u64 delta;
808
809 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
810
811 if (entity_is_task(se)) {
812 p = task_of(se);
813 if (task_on_rq_migrating(p)) {
814 /*
815 * Preserve migrating task's wait time so wait_start
816 * time stamp can be adjusted to accumulate wait time
817 * prior to migration.
818 */
819 se->statistics.wait_start = delta;
820 return;
821 }
822 trace_sched_stat_wait(p, delta);
823 }
824
825 se->statistics.wait_max = max(se->statistics.wait_max, delta);
826 se->statistics.wait_count++;
827 se->statistics.wait_sum += delta;
828 se->statistics.wait_start = 0;
829}
3ea94de1 830
bf0f6f24
IM
831/*
832 * Task is being enqueued - update stats:
833 */
cb251765
MG
834static inline void
835update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 836{
bf0f6f24
IM
837 /*
838 * Are we enqueueing a waiting task? (for current tasks
839 * a dequeue/enqueue event is a NOP)
840 */
429d43bc 841 if (se != cfs_rq->curr)
5870db5b 842 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
843}
844
bf0f6f24 845static inline void
cb251765 846update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 847{
bf0f6f24
IM
848 /*
849 * Mark the end of the wait period if dequeueing a
850 * waiting task:
851 */
429d43bc 852 if (se != cfs_rq->curr)
9ef0a961 853 update_stats_wait_end(cfs_rq, se);
cb251765
MG
854
855 if (flags & DEQUEUE_SLEEP) {
856 if (entity_is_task(se)) {
857 struct task_struct *tsk = task_of(se);
858
859 if (tsk->state & TASK_INTERRUPTIBLE)
860 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
861 if (tsk->state & TASK_UNINTERRUPTIBLE)
862 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
863 }
864 }
865
866}
867#else
868static inline void
869update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
870{
871}
872
873static inline void
874update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
875{
876}
877
878static inline void
879update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
880{
881}
882
883static inline void
884update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
885{
bf0f6f24 886}
cb251765 887#endif
bf0f6f24
IM
888
889/*
890 * We are picking a new current task - update its stats:
891 */
892static inline void
79303e9e 893update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
894{
895 /*
896 * We are starting a new run period:
897 */
78becc27 898 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
899}
900
bf0f6f24
IM
901/**************************************************
902 * Scheduling class queueing methods:
903 */
904
cbee9f88
PZ
905#ifdef CONFIG_NUMA_BALANCING
906/*
598f0ec0
MG
907 * Approximate time to scan a full NUMA task in ms. The task scan period is
908 * calculated based on the tasks virtual memory size and
909 * numa_balancing_scan_size.
cbee9f88 910 */
598f0ec0
MG
911unsigned int sysctl_numa_balancing_scan_period_min = 1000;
912unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
913
914/* Portion of address space to scan in MB */
915unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 916
4b96a29b
PZ
917/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
918unsigned int sysctl_numa_balancing_scan_delay = 1000;
919
598f0ec0
MG
920static unsigned int task_nr_scan_windows(struct task_struct *p)
921{
922 unsigned long rss = 0;
923 unsigned long nr_scan_pages;
924
925 /*
926 * Calculations based on RSS as non-present and empty pages are skipped
927 * by the PTE scanner and NUMA hinting faults should be trapped based
928 * on resident pages
929 */
930 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
931 rss = get_mm_rss(p->mm);
932 if (!rss)
933 rss = nr_scan_pages;
934
935 rss = round_up(rss, nr_scan_pages);
936 return rss / nr_scan_pages;
937}
938
939/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
940#define MAX_SCAN_WINDOW 2560
941
942static unsigned int task_scan_min(struct task_struct *p)
943{
316c1608 944 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
945 unsigned int scan, floor;
946 unsigned int windows = 1;
947
64192658
KT
948 if (scan_size < MAX_SCAN_WINDOW)
949 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
950 floor = 1000 / windows;
951
952 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
953 return max_t(unsigned int, floor, scan);
954}
955
956static unsigned int task_scan_max(struct task_struct *p)
957{
958 unsigned int smin = task_scan_min(p);
959 unsigned int smax;
960
961 /* Watch for min being lower than max due to floor calculations */
962 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
963 return max(smin, smax);
964}
965
0ec8aa00
PZ
966static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
967{
968 rq->nr_numa_running += (p->numa_preferred_nid != -1);
969 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
970}
971
972static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
973{
974 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
975 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
976}
977
8c8a743c
PZ
978struct numa_group {
979 atomic_t refcount;
980
981 spinlock_t lock; /* nr_tasks, tasks */
982 int nr_tasks;
e29cf08b 983 pid_t gid;
4142c3eb 984 int active_nodes;
8c8a743c
PZ
985
986 struct rcu_head rcu;
989348b5 987 unsigned long total_faults;
4142c3eb 988 unsigned long max_faults_cpu;
7e2703e6
RR
989 /*
990 * Faults_cpu is used to decide whether memory should move
991 * towards the CPU. As a consequence, these stats are weighted
992 * more by CPU use than by memory faults.
993 */
50ec8a40 994 unsigned long *faults_cpu;
989348b5 995 unsigned long faults[0];
8c8a743c
PZ
996};
997
be1e4e76
RR
998/* Shared or private faults. */
999#define NR_NUMA_HINT_FAULT_TYPES 2
1000
1001/* Memory and CPU locality */
1002#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1003
1004/* Averaged statistics, and temporary buffers. */
1005#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1006
e29cf08b
MG
1007pid_t task_numa_group_id(struct task_struct *p)
1008{
1009 return p->numa_group ? p->numa_group->gid : 0;
1010}
1011
44dba3d5
IM
1012/*
1013 * The averaged statistics, shared & private, memory & cpu,
1014 * occupy the first half of the array. The second half of the
1015 * array is for current counters, which are averaged into the
1016 * first set by task_numa_placement.
1017 */
1018static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1019{
44dba3d5 1020 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1021}
1022
1023static inline unsigned long task_faults(struct task_struct *p, int nid)
1024{
44dba3d5 1025 if (!p->numa_faults)
ac8e895b
MG
1026 return 0;
1027
44dba3d5
IM
1028 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1029 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1030}
1031
83e1d2cd
MG
1032static inline unsigned long group_faults(struct task_struct *p, int nid)
1033{
1034 if (!p->numa_group)
1035 return 0;
1036
44dba3d5
IM
1037 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1038 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1039}
1040
20e07dea
RR
1041static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1042{
44dba3d5
IM
1043 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1044 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1045}
1046
4142c3eb
RR
1047/*
1048 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1049 * considered part of a numa group's pseudo-interleaving set. Migrations
1050 * between these nodes are slowed down, to allow things to settle down.
1051 */
1052#define ACTIVE_NODE_FRACTION 3
1053
1054static bool numa_is_active_node(int nid, struct numa_group *ng)
1055{
1056 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1057}
1058
6c6b1193
RR
1059/* Handle placement on systems where not all nodes are directly connected. */
1060static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1061 int maxdist, bool task)
1062{
1063 unsigned long score = 0;
1064 int node;
1065
1066 /*
1067 * All nodes are directly connected, and the same distance
1068 * from each other. No need for fancy placement algorithms.
1069 */
1070 if (sched_numa_topology_type == NUMA_DIRECT)
1071 return 0;
1072
1073 /*
1074 * This code is called for each node, introducing N^2 complexity,
1075 * which should be ok given the number of nodes rarely exceeds 8.
1076 */
1077 for_each_online_node(node) {
1078 unsigned long faults;
1079 int dist = node_distance(nid, node);
1080
1081 /*
1082 * The furthest away nodes in the system are not interesting
1083 * for placement; nid was already counted.
1084 */
1085 if (dist == sched_max_numa_distance || node == nid)
1086 continue;
1087
1088 /*
1089 * On systems with a backplane NUMA topology, compare groups
1090 * of nodes, and move tasks towards the group with the most
1091 * memory accesses. When comparing two nodes at distance
1092 * "hoplimit", only nodes closer by than "hoplimit" are part
1093 * of each group. Skip other nodes.
1094 */
1095 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1096 dist > maxdist)
1097 continue;
1098
1099 /* Add up the faults from nearby nodes. */
1100 if (task)
1101 faults = task_faults(p, node);
1102 else
1103 faults = group_faults(p, node);
1104
1105 /*
1106 * On systems with a glueless mesh NUMA topology, there are
1107 * no fixed "groups of nodes". Instead, nodes that are not
1108 * directly connected bounce traffic through intermediate
1109 * nodes; a numa_group can occupy any set of nodes.
1110 * The further away a node is, the less the faults count.
1111 * This seems to result in good task placement.
1112 */
1113 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1114 faults *= (sched_max_numa_distance - dist);
1115 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1116 }
1117
1118 score += faults;
1119 }
1120
1121 return score;
1122}
1123
83e1d2cd
MG
1124/*
1125 * These return the fraction of accesses done by a particular task, or
1126 * task group, on a particular numa node. The group weight is given a
1127 * larger multiplier, in order to group tasks together that are almost
1128 * evenly spread out between numa nodes.
1129 */
7bd95320
RR
1130static inline unsigned long task_weight(struct task_struct *p, int nid,
1131 int dist)
83e1d2cd 1132{
7bd95320 1133 unsigned long faults, total_faults;
83e1d2cd 1134
44dba3d5 1135 if (!p->numa_faults)
83e1d2cd
MG
1136 return 0;
1137
1138 total_faults = p->total_numa_faults;
1139
1140 if (!total_faults)
1141 return 0;
1142
7bd95320 1143 faults = task_faults(p, nid);
6c6b1193
RR
1144 faults += score_nearby_nodes(p, nid, dist, true);
1145
7bd95320 1146 return 1000 * faults / total_faults;
83e1d2cd
MG
1147}
1148
7bd95320
RR
1149static inline unsigned long group_weight(struct task_struct *p, int nid,
1150 int dist)
83e1d2cd 1151{
7bd95320
RR
1152 unsigned long faults, total_faults;
1153
1154 if (!p->numa_group)
1155 return 0;
1156
1157 total_faults = p->numa_group->total_faults;
1158
1159 if (!total_faults)
83e1d2cd
MG
1160 return 0;
1161
7bd95320 1162 faults = group_faults(p, nid);
6c6b1193
RR
1163 faults += score_nearby_nodes(p, nid, dist, false);
1164
7bd95320 1165 return 1000 * faults / total_faults;
83e1d2cd
MG
1166}
1167
10f39042
RR
1168bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1169 int src_nid, int dst_cpu)
1170{
1171 struct numa_group *ng = p->numa_group;
1172 int dst_nid = cpu_to_node(dst_cpu);
1173 int last_cpupid, this_cpupid;
1174
1175 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1176
1177 /*
1178 * Multi-stage node selection is used in conjunction with a periodic
1179 * migration fault to build a temporal task<->page relation. By using
1180 * a two-stage filter we remove short/unlikely relations.
1181 *
1182 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1183 * a task's usage of a particular page (n_p) per total usage of this
1184 * page (n_t) (in a given time-span) to a probability.
1185 *
1186 * Our periodic faults will sample this probability and getting the
1187 * same result twice in a row, given these samples are fully
1188 * independent, is then given by P(n)^2, provided our sample period
1189 * is sufficiently short compared to the usage pattern.
1190 *
1191 * This quadric squishes small probabilities, making it less likely we
1192 * act on an unlikely task<->page relation.
1193 */
1194 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1195 if (!cpupid_pid_unset(last_cpupid) &&
1196 cpupid_to_nid(last_cpupid) != dst_nid)
1197 return false;
1198
1199 /* Always allow migrate on private faults */
1200 if (cpupid_match_pid(p, last_cpupid))
1201 return true;
1202
1203 /* A shared fault, but p->numa_group has not been set up yet. */
1204 if (!ng)
1205 return true;
1206
1207 /*
4142c3eb
RR
1208 * Destination node is much more heavily used than the source
1209 * node? Allow migration.
10f39042 1210 */
4142c3eb
RR
1211 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1212 ACTIVE_NODE_FRACTION)
10f39042
RR
1213 return true;
1214
1215 /*
4142c3eb
RR
1216 * Distribute memory according to CPU & memory use on each node,
1217 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1218 *
1219 * faults_cpu(dst) 3 faults_cpu(src)
1220 * --------------- * - > ---------------
1221 * faults_mem(dst) 4 faults_mem(src)
10f39042 1222 */
4142c3eb
RR
1223 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1224 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1225}
1226
e6628d5b 1227static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1228static unsigned long source_load(int cpu, int type);
1229static unsigned long target_load(int cpu, int type);
ced549fa 1230static unsigned long capacity_of(int cpu);
58d081b5
MG
1231static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1232
fb13c7ee 1233/* Cached statistics for all CPUs within a node */
58d081b5 1234struct numa_stats {
fb13c7ee 1235 unsigned long nr_running;
58d081b5 1236 unsigned long load;
fb13c7ee
MG
1237
1238 /* Total compute capacity of CPUs on a node */
5ef20ca1 1239 unsigned long compute_capacity;
fb13c7ee
MG
1240
1241 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1242 unsigned long task_capacity;
1b6a7495 1243 int has_free_capacity;
58d081b5 1244};
e6628d5b 1245
fb13c7ee
MG
1246/*
1247 * XXX borrowed from update_sg_lb_stats
1248 */
1249static void update_numa_stats(struct numa_stats *ns, int nid)
1250{
83d7f242
RR
1251 int smt, cpu, cpus = 0;
1252 unsigned long capacity;
fb13c7ee
MG
1253
1254 memset(ns, 0, sizeof(*ns));
1255 for_each_cpu(cpu, cpumask_of_node(nid)) {
1256 struct rq *rq = cpu_rq(cpu);
1257
1258 ns->nr_running += rq->nr_running;
1259 ns->load += weighted_cpuload(cpu);
ced549fa 1260 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1261
1262 cpus++;
fb13c7ee
MG
1263 }
1264
5eca82a9
PZ
1265 /*
1266 * If we raced with hotplug and there are no CPUs left in our mask
1267 * the @ns structure is NULL'ed and task_numa_compare() will
1268 * not find this node attractive.
1269 *
1b6a7495
NP
1270 * We'll either bail at !has_free_capacity, or we'll detect a huge
1271 * imbalance and bail there.
5eca82a9
PZ
1272 */
1273 if (!cpus)
1274 return;
1275
83d7f242
RR
1276 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1277 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1278 capacity = cpus / smt; /* cores */
1279
1280 ns->task_capacity = min_t(unsigned, capacity,
1281 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1282 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1283}
1284
58d081b5
MG
1285struct task_numa_env {
1286 struct task_struct *p;
e6628d5b 1287
58d081b5
MG
1288 int src_cpu, src_nid;
1289 int dst_cpu, dst_nid;
e6628d5b 1290
58d081b5 1291 struct numa_stats src_stats, dst_stats;
e6628d5b 1292
40ea2b42 1293 int imbalance_pct;
7bd95320 1294 int dist;
fb13c7ee
MG
1295
1296 struct task_struct *best_task;
1297 long best_imp;
58d081b5
MG
1298 int best_cpu;
1299};
1300
fb13c7ee
MG
1301static void task_numa_assign(struct task_numa_env *env,
1302 struct task_struct *p, long imp)
1303{
1304 if (env->best_task)
1305 put_task_struct(env->best_task);
fb13c7ee
MG
1306
1307 env->best_task = p;
1308 env->best_imp = imp;
1309 env->best_cpu = env->dst_cpu;
1310}
1311
28a21745 1312static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1313 struct task_numa_env *env)
1314{
e4991b24
RR
1315 long imb, old_imb;
1316 long orig_src_load, orig_dst_load;
28a21745
RR
1317 long src_capacity, dst_capacity;
1318
1319 /*
1320 * The load is corrected for the CPU capacity available on each node.
1321 *
1322 * src_load dst_load
1323 * ------------ vs ---------
1324 * src_capacity dst_capacity
1325 */
1326 src_capacity = env->src_stats.compute_capacity;
1327 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1328
1329 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1330 if (dst_load < src_load)
1331 swap(dst_load, src_load);
e63da036
RR
1332
1333 /* Is the difference below the threshold? */
e4991b24
RR
1334 imb = dst_load * src_capacity * 100 -
1335 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1336 if (imb <= 0)
1337 return false;
1338
1339 /*
1340 * The imbalance is above the allowed threshold.
e4991b24 1341 * Compare it with the old imbalance.
e63da036 1342 */
28a21745 1343 orig_src_load = env->src_stats.load;
e4991b24 1344 orig_dst_load = env->dst_stats.load;
28a21745 1345
e4991b24
RR
1346 if (orig_dst_load < orig_src_load)
1347 swap(orig_dst_load, orig_src_load);
e63da036 1348
e4991b24
RR
1349 old_imb = orig_dst_load * src_capacity * 100 -
1350 orig_src_load * dst_capacity * env->imbalance_pct;
1351
1352 /* Would this change make things worse? */
1353 return (imb > old_imb);
e63da036
RR
1354}
1355
fb13c7ee
MG
1356/*
1357 * This checks if the overall compute and NUMA accesses of the system would
1358 * be improved if the source tasks was migrated to the target dst_cpu taking
1359 * into account that it might be best if task running on the dst_cpu should
1360 * be exchanged with the source task
1361 */
887c290e
RR
1362static void task_numa_compare(struct task_numa_env *env,
1363 long taskimp, long groupimp)
fb13c7ee
MG
1364{
1365 struct rq *src_rq = cpu_rq(env->src_cpu);
1366 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1367 struct task_struct *cur;
28a21745 1368 long src_load, dst_load;
fb13c7ee 1369 long load;
1c5d3eb3 1370 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1371 long moveimp = imp;
7bd95320 1372 int dist = env->dist;
1dff76b9 1373 bool assigned = false;
fb13c7ee
MG
1374
1375 rcu_read_lock();
1effd9f1
KT
1376
1377 raw_spin_lock_irq(&dst_rq->lock);
1378 cur = dst_rq->curr;
1379 /*
1dff76b9 1380 * No need to move the exiting task or idle task.
1effd9f1
KT
1381 */
1382 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1383 cur = NULL;
1dff76b9
GG
1384 else {
1385 /*
1386 * The task_struct must be protected here to protect the
1387 * p->numa_faults access in the task_weight since the
1388 * numa_faults could already be freed in the following path:
1389 * finish_task_switch()
1390 * --> put_task_struct()
1391 * --> __put_task_struct()
1392 * --> task_numa_free()
1393 */
1394 get_task_struct(cur);
1395 }
1396
1effd9f1 1397 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1398
7af68335
PZ
1399 /*
1400 * Because we have preemption enabled we can get migrated around and
1401 * end try selecting ourselves (current == env->p) as a swap candidate.
1402 */
1403 if (cur == env->p)
1404 goto unlock;
1405
fb13c7ee
MG
1406 /*
1407 * "imp" is the fault differential for the source task between the
1408 * source and destination node. Calculate the total differential for
1409 * the source task and potential destination task. The more negative
1410 * the value is, the more rmeote accesses that would be expected to
1411 * be incurred if the tasks were swapped.
1412 */
1413 if (cur) {
1414 /* Skip this swap candidate if cannot move to the source cpu */
1415 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1416 goto unlock;
1417
887c290e
RR
1418 /*
1419 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1420 * in any group then look only at task weights.
887c290e 1421 */
ca28aa53 1422 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1423 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1424 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1425 /*
1426 * Add some hysteresis to prevent swapping the
1427 * tasks within a group over tiny differences.
1428 */
1429 if (cur->numa_group)
1430 imp -= imp/16;
887c290e 1431 } else {
ca28aa53
RR
1432 /*
1433 * Compare the group weights. If a task is all by
1434 * itself (not part of a group), use the task weight
1435 * instead.
1436 */
ca28aa53 1437 if (cur->numa_group)
7bd95320
RR
1438 imp += group_weight(cur, env->src_nid, dist) -
1439 group_weight(cur, env->dst_nid, dist);
ca28aa53 1440 else
7bd95320
RR
1441 imp += task_weight(cur, env->src_nid, dist) -
1442 task_weight(cur, env->dst_nid, dist);
887c290e 1443 }
fb13c7ee
MG
1444 }
1445
0132c3e1 1446 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1447 goto unlock;
1448
1449 if (!cur) {
1450 /* Is there capacity at our destination? */
b932c03c 1451 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1452 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1453 goto unlock;
1454
1455 goto balance;
1456 }
1457
1458 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1459 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1460 dst_rq->nr_running == 1)
fb13c7ee
MG
1461 goto assign;
1462
1463 /*
1464 * In the overloaded case, try and keep the load balanced.
1465 */
1466balance:
e720fff6
PZ
1467 load = task_h_load(env->p);
1468 dst_load = env->dst_stats.load + load;
1469 src_load = env->src_stats.load - load;
fb13c7ee 1470
0132c3e1
RR
1471 if (moveimp > imp && moveimp > env->best_imp) {
1472 /*
1473 * If the improvement from just moving env->p direction is
1474 * better than swapping tasks around, check if a move is
1475 * possible. Store a slightly smaller score than moveimp,
1476 * so an actually idle CPU will win.
1477 */
1478 if (!load_too_imbalanced(src_load, dst_load, env)) {
1479 imp = moveimp - 1;
1dff76b9 1480 put_task_struct(cur);
0132c3e1
RR
1481 cur = NULL;
1482 goto assign;
1483 }
1484 }
1485
1486 if (imp <= env->best_imp)
1487 goto unlock;
1488
fb13c7ee 1489 if (cur) {
e720fff6
PZ
1490 load = task_h_load(cur);
1491 dst_load -= load;
1492 src_load += load;
fb13c7ee
MG
1493 }
1494
28a21745 1495 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1496 goto unlock;
1497
ba7e5a27
RR
1498 /*
1499 * One idle CPU per node is evaluated for a task numa move.
1500 * Call select_idle_sibling to maybe find a better one.
1501 */
1502 if (!cur)
1503 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1504
fb13c7ee 1505assign:
1dff76b9 1506 assigned = true;
fb13c7ee
MG
1507 task_numa_assign(env, cur, imp);
1508unlock:
1509 rcu_read_unlock();
1dff76b9
GG
1510 /*
1511 * The dst_rq->curr isn't assigned. The protection for task_struct is
1512 * finished.
1513 */
1514 if (cur && !assigned)
1515 put_task_struct(cur);
fb13c7ee
MG
1516}
1517
887c290e
RR
1518static void task_numa_find_cpu(struct task_numa_env *env,
1519 long taskimp, long groupimp)
2c8a50aa
MG
1520{
1521 int cpu;
1522
1523 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1524 /* Skip this CPU if the source task cannot migrate */
1525 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1526 continue;
1527
1528 env->dst_cpu = cpu;
887c290e 1529 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1530 }
1531}
1532
6f9aad0b
RR
1533/* Only move tasks to a NUMA node less busy than the current node. */
1534static bool numa_has_capacity(struct task_numa_env *env)
1535{
1536 struct numa_stats *src = &env->src_stats;
1537 struct numa_stats *dst = &env->dst_stats;
1538
1539 if (src->has_free_capacity && !dst->has_free_capacity)
1540 return false;
1541
1542 /*
1543 * Only consider a task move if the source has a higher load
1544 * than the destination, corrected for CPU capacity on each node.
1545 *
1546 * src->load dst->load
1547 * --------------------- vs ---------------------
1548 * src->compute_capacity dst->compute_capacity
1549 */
44dcb04f
SD
1550 if (src->load * dst->compute_capacity * env->imbalance_pct >
1551
1552 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1553 return true;
1554
1555 return false;
1556}
1557
58d081b5
MG
1558static int task_numa_migrate(struct task_struct *p)
1559{
58d081b5
MG
1560 struct task_numa_env env = {
1561 .p = p,
fb13c7ee 1562
58d081b5 1563 .src_cpu = task_cpu(p),
b32e86b4 1564 .src_nid = task_node(p),
fb13c7ee
MG
1565
1566 .imbalance_pct = 112,
1567
1568 .best_task = NULL,
1569 .best_imp = 0,
4142c3eb 1570 .best_cpu = -1,
58d081b5
MG
1571 };
1572 struct sched_domain *sd;
887c290e 1573 unsigned long taskweight, groupweight;
7bd95320 1574 int nid, ret, dist;
887c290e 1575 long taskimp, groupimp;
e6628d5b 1576
58d081b5 1577 /*
fb13c7ee
MG
1578 * Pick the lowest SD_NUMA domain, as that would have the smallest
1579 * imbalance and would be the first to start moving tasks about.
1580 *
1581 * And we want to avoid any moving of tasks about, as that would create
1582 * random movement of tasks -- counter the numa conditions we're trying
1583 * to satisfy here.
58d081b5
MG
1584 */
1585 rcu_read_lock();
fb13c7ee 1586 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1587 if (sd)
1588 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1589 rcu_read_unlock();
1590
46a73e8a
RR
1591 /*
1592 * Cpusets can break the scheduler domain tree into smaller
1593 * balance domains, some of which do not cross NUMA boundaries.
1594 * Tasks that are "trapped" in such domains cannot be migrated
1595 * elsewhere, so there is no point in (re)trying.
1596 */
1597 if (unlikely(!sd)) {
de1b301a 1598 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1599 return -EINVAL;
1600 }
1601
2c8a50aa 1602 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1603 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1604 taskweight = task_weight(p, env.src_nid, dist);
1605 groupweight = group_weight(p, env.src_nid, dist);
1606 update_numa_stats(&env.src_stats, env.src_nid);
1607 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1608 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1609 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1610
a43455a1 1611 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1612 if (numa_has_capacity(&env))
1613 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1614
9de05d48
RR
1615 /*
1616 * Look at other nodes in these cases:
1617 * - there is no space available on the preferred_nid
1618 * - the task is part of a numa_group that is interleaved across
1619 * multiple NUMA nodes; in order to better consolidate the group,
1620 * we need to check other locations.
1621 */
4142c3eb 1622 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1623 for_each_online_node(nid) {
1624 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1625 continue;
58d081b5 1626
7bd95320 1627 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1628 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1629 dist != env.dist) {
1630 taskweight = task_weight(p, env.src_nid, dist);
1631 groupweight = group_weight(p, env.src_nid, dist);
1632 }
7bd95320 1633
83e1d2cd 1634 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1635 taskimp = task_weight(p, nid, dist) - taskweight;
1636 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1637 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1638 continue;
1639
7bd95320 1640 env.dist = dist;
2c8a50aa
MG
1641 env.dst_nid = nid;
1642 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1643 if (numa_has_capacity(&env))
1644 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1645 }
1646 }
1647
68d1b02a
RR
1648 /*
1649 * If the task is part of a workload that spans multiple NUMA nodes,
1650 * and is migrating into one of the workload's active nodes, remember
1651 * this node as the task's preferred numa node, so the workload can
1652 * settle down.
1653 * A task that migrated to a second choice node will be better off
1654 * trying for a better one later. Do not set the preferred node here.
1655 */
db015dae 1656 if (p->numa_group) {
4142c3eb
RR
1657 struct numa_group *ng = p->numa_group;
1658
db015dae
RR
1659 if (env.best_cpu == -1)
1660 nid = env.src_nid;
1661 else
1662 nid = env.dst_nid;
1663
4142c3eb 1664 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1665 sched_setnuma(p, env.dst_nid);
1666 }
1667
1668 /* No better CPU than the current one was found. */
1669 if (env.best_cpu == -1)
1670 return -EAGAIN;
0ec8aa00 1671
04bb2f94
RR
1672 /*
1673 * Reset the scan period if the task is being rescheduled on an
1674 * alternative node to recheck if the tasks is now properly placed.
1675 */
1676 p->numa_scan_period = task_scan_min(p);
1677
fb13c7ee 1678 if (env.best_task == NULL) {
286549dc
MG
1679 ret = migrate_task_to(p, env.best_cpu);
1680 if (ret != 0)
1681 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1682 return ret;
1683 }
1684
1685 ret = migrate_swap(p, env.best_task);
286549dc
MG
1686 if (ret != 0)
1687 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1688 put_task_struct(env.best_task);
1689 return ret;
e6628d5b
MG
1690}
1691
6b9a7460
MG
1692/* Attempt to migrate a task to a CPU on the preferred node. */
1693static void numa_migrate_preferred(struct task_struct *p)
1694{
5085e2a3
RR
1695 unsigned long interval = HZ;
1696
2739d3ee 1697 /* This task has no NUMA fault statistics yet */
44dba3d5 1698 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1699 return;
1700
2739d3ee 1701 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1702 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1703 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1704
1705 /* Success if task is already running on preferred CPU */
de1b301a 1706 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1707 return;
1708
1709 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1710 task_numa_migrate(p);
6b9a7460
MG
1711}
1712
20e07dea 1713/*
4142c3eb 1714 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1715 * tracking the nodes from which NUMA hinting faults are triggered. This can
1716 * be different from the set of nodes where the workload's memory is currently
1717 * located.
20e07dea 1718 */
4142c3eb 1719static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1720{
1721 unsigned long faults, max_faults = 0;
4142c3eb 1722 int nid, active_nodes = 0;
20e07dea
RR
1723
1724 for_each_online_node(nid) {
1725 faults = group_faults_cpu(numa_group, nid);
1726 if (faults > max_faults)
1727 max_faults = faults;
1728 }
1729
1730 for_each_online_node(nid) {
1731 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1732 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1733 active_nodes++;
20e07dea 1734 }
4142c3eb
RR
1735
1736 numa_group->max_faults_cpu = max_faults;
1737 numa_group->active_nodes = active_nodes;
20e07dea
RR
1738}
1739
04bb2f94
RR
1740/*
1741 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1742 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1743 * period will be for the next scan window. If local/(local+remote) ratio is
1744 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1745 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1746 */
1747#define NUMA_PERIOD_SLOTS 10
a22b4b01 1748#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1749
1750/*
1751 * Increase the scan period (slow down scanning) if the majority of
1752 * our memory is already on our local node, or if the majority of
1753 * the page accesses are shared with other processes.
1754 * Otherwise, decrease the scan period.
1755 */
1756static void update_task_scan_period(struct task_struct *p,
1757 unsigned long shared, unsigned long private)
1758{
1759 unsigned int period_slot;
1760 int ratio;
1761 int diff;
1762
1763 unsigned long remote = p->numa_faults_locality[0];
1764 unsigned long local = p->numa_faults_locality[1];
1765
1766 /*
1767 * If there were no record hinting faults then either the task is
1768 * completely idle or all activity is areas that are not of interest
074c2381
MG
1769 * to automatic numa balancing. Related to that, if there were failed
1770 * migration then it implies we are migrating too quickly or the local
1771 * node is overloaded. In either case, scan slower
04bb2f94 1772 */
074c2381 1773 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1774 p->numa_scan_period = min(p->numa_scan_period_max,
1775 p->numa_scan_period << 1);
1776
1777 p->mm->numa_next_scan = jiffies +
1778 msecs_to_jiffies(p->numa_scan_period);
1779
1780 return;
1781 }
1782
1783 /*
1784 * Prepare to scale scan period relative to the current period.
1785 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1786 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1787 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1788 */
1789 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1790 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1791 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1792 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1793 if (!slot)
1794 slot = 1;
1795 diff = slot * period_slot;
1796 } else {
1797 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1798
1799 /*
1800 * Scale scan rate increases based on sharing. There is an
1801 * inverse relationship between the degree of sharing and
1802 * the adjustment made to the scanning period. Broadly
1803 * speaking the intent is that there is little point
1804 * scanning faster if shared accesses dominate as it may
1805 * simply bounce migrations uselessly
1806 */
2847c90e 1807 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1808 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1809 }
1810
1811 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1812 task_scan_min(p), task_scan_max(p));
1813 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1814}
1815
7e2703e6
RR
1816/*
1817 * Get the fraction of time the task has been running since the last
1818 * NUMA placement cycle. The scheduler keeps similar statistics, but
1819 * decays those on a 32ms period, which is orders of magnitude off
1820 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1821 * stats only if the task is so new there are no NUMA statistics yet.
1822 */
1823static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1824{
1825 u64 runtime, delta, now;
1826 /* Use the start of this time slice to avoid calculations. */
1827 now = p->se.exec_start;
1828 runtime = p->se.sum_exec_runtime;
1829
1830 if (p->last_task_numa_placement) {
1831 delta = runtime - p->last_sum_exec_runtime;
1832 *period = now - p->last_task_numa_placement;
1833 } else {
9d89c257
YD
1834 delta = p->se.avg.load_sum / p->se.load.weight;
1835 *period = LOAD_AVG_MAX;
7e2703e6
RR
1836 }
1837
1838 p->last_sum_exec_runtime = runtime;
1839 p->last_task_numa_placement = now;
1840
1841 return delta;
1842}
1843
54009416
RR
1844/*
1845 * Determine the preferred nid for a task in a numa_group. This needs to
1846 * be done in a way that produces consistent results with group_weight,
1847 * otherwise workloads might not converge.
1848 */
1849static int preferred_group_nid(struct task_struct *p, int nid)
1850{
1851 nodemask_t nodes;
1852 int dist;
1853
1854 /* Direct connections between all NUMA nodes. */
1855 if (sched_numa_topology_type == NUMA_DIRECT)
1856 return nid;
1857
1858 /*
1859 * On a system with glueless mesh NUMA topology, group_weight
1860 * scores nodes according to the number of NUMA hinting faults on
1861 * both the node itself, and on nearby nodes.
1862 */
1863 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1864 unsigned long score, max_score = 0;
1865 int node, max_node = nid;
1866
1867 dist = sched_max_numa_distance;
1868
1869 for_each_online_node(node) {
1870 score = group_weight(p, node, dist);
1871 if (score > max_score) {
1872 max_score = score;
1873 max_node = node;
1874 }
1875 }
1876 return max_node;
1877 }
1878
1879 /*
1880 * Finding the preferred nid in a system with NUMA backplane
1881 * interconnect topology is more involved. The goal is to locate
1882 * tasks from numa_groups near each other in the system, and
1883 * untangle workloads from different sides of the system. This requires
1884 * searching down the hierarchy of node groups, recursively searching
1885 * inside the highest scoring group of nodes. The nodemask tricks
1886 * keep the complexity of the search down.
1887 */
1888 nodes = node_online_map;
1889 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1890 unsigned long max_faults = 0;
81907478 1891 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1892 int a, b;
1893
1894 /* Are there nodes at this distance from each other? */
1895 if (!find_numa_distance(dist))
1896 continue;
1897
1898 for_each_node_mask(a, nodes) {
1899 unsigned long faults = 0;
1900 nodemask_t this_group;
1901 nodes_clear(this_group);
1902
1903 /* Sum group's NUMA faults; includes a==b case. */
1904 for_each_node_mask(b, nodes) {
1905 if (node_distance(a, b) < dist) {
1906 faults += group_faults(p, b);
1907 node_set(b, this_group);
1908 node_clear(b, nodes);
1909 }
1910 }
1911
1912 /* Remember the top group. */
1913 if (faults > max_faults) {
1914 max_faults = faults;
1915 max_group = this_group;
1916 /*
1917 * subtle: at the smallest distance there is
1918 * just one node left in each "group", the
1919 * winner is the preferred nid.
1920 */
1921 nid = a;
1922 }
1923 }
1924 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1925 if (!max_faults)
1926 break;
54009416
RR
1927 nodes = max_group;
1928 }
1929 return nid;
1930}
1931
cbee9f88
PZ
1932static void task_numa_placement(struct task_struct *p)
1933{
83e1d2cd
MG
1934 int seq, nid, max_nid = -1, max_group_nid = -1;
1935 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1936 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1937 unsigned long total_faults;
1938 u64 runtime, period;
7dbd13ed 1939 spinlock_t *group_lock = NULL;
cbee9f88 1940
7e5a2c17
JL
1941 /*
1942 * The p->mm->numa_scan_seq field gets updated without
1943 * exclusive access. Use READ_ONCE() here to ensure
1944 * that the field is read in a single access:
1945 */
316c1608 1946 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1947 if (p->numa_scan_seq == seq)
1948 return;
1949 p->numa_scan_seq = seq;
598f0ec0 1950 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1951
7e2703e6
RR
1952 total_faults = p->numa_faults_locality[0] +
1953 p->numa_faults_locality[1];
1954 runtime = numa_get_avg_runtime(p, &period);
1955
7dbd13ed
MG
1956 /* If the task is part of a group prevent parallel updates to group stats */
1957 if (p->numa_group) {
1958 group_lock = &p->numa_group->lock;
60e69eed 1959 spin_lock_irq(group_lock);
7dbd13ed
MG
1960 }
1961
688b7585
MG
1962 /* Find the node with the highest number of faults */
1963 for_each_online_node(nid) {
44dba3d5
IM
1964 /* Keep track of the offsets in numa_faults array */
1965 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1966 unsigned long faults = 0, group_faults = 0;
44dba3d5 1967 int priv;
745d6147 1968
be1e4e76 1969 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1970 long diff, f_diff, f_weight;
8c8a743c 1971
44dba3d5
IM
1972 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1973 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1974 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1975 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1976
ac8e895b 1977 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1978 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1979 fault_types[priv] += p->numa_faults[membuf_idx];
1980 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1981
7e2703e6
RR
1982 /*
1983 * Normalize the faults_from, so all tasks in a group
1984 * count according to CPU use, instead of by the raw
1985 * number of faults. Tasks with little runtime have
1986 * little over-all impact on throughput, and thus their
1987 * faults are less important.
1988 */
1989 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1990 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1991 (total_faults + 1);
44dba3d5
IM
1992 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1993 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1994
44dba3d5
IM
1995 p->numa_faults[mem_idx] += diff;
1996 p->numa_faults[cpu_idx] += f_diff;
1997 faults += p->numa_faults[mem_idx];
83e1d2cd 1998 p->total_numa_faults += diff;
8c8a743c 1999 if (p->numa_group) {
44dba3d5
IM
2000 /*
2001 * safe because we can only change our own group
2002 *
2003 * mem_idx represents the offset for a given
2004 * nid and priv in a specific region because it
2005 * is at the beginning of the numa_faults array.
2006 */
2007 p->numa_group->faults[mem_idx] += diff;
2008 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2009 p->numa_group->total_faults += diff;
44dba3d5 2010 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2011 }
ac8e895b
MG
2012 }
2013
688b7585
MG
2014 if (faults > max_faults) {
2015 max_faults = faults;
2016 max_nid = nid;
2017 }
83e1d2cd
MG
2018
2019 if (group_faults > max_group_faults) {
2020 max_group_faults = group_faults;
2021 max_group_nid = nid;
2022 }
2023 }
2024
04bb2f94
RR
2025 update_task_scan_period(p, fault_types[0], fault_types[1]);
2026
7dbd13ed 2027 if (p->numa_group) {
4142c3eb 2028 numa_group_count_active_nodes(p->numa_group);
60e69eed 2029 spin_unlock_irq(group_lock);
54009416 2030 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2031 }
2032
bb97fc31
RR
2033 if (max_faults) {
2034 /* Set the new preferred node */
2035 if (max_nid != p->numa_preferred_nid)
2036 sched_setnuma(p, max_nid);
2037
2038 if (task_node(p) != p->numa_preferred_nid)
2039 numa_migrate_preferred(p);
3a7053b3 2040 }
cbee9f88
PZ
2041}
2042
8c8a743c
PZ
2043static inline int get_numa_group(struct numa_group *grp)
2044{
2045 return atomic_inc_not_zero(&grp->refcount);
2046}
2047
2048static inline void put_numa_group(struct numa_group *grp)
2049{
2050 if (atomic_dec_and_test(&grp->refcount))
2051 kfree_rcu(grp, rcu);
2052}
2053
3e6a9418
MG
2054static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2055 int *priv)
8c8a743c
PZ
2056{
2057 struct numa_group *grp, *my_grp;
2058 struct task_struct *tsk;
2059 bool join = false;
2060 int cpu = cpupid_to_cpu(cpupid);
2061 int i;
2062
2063 if (unlikely(!p->numa_group)) {
2064 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2065 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2066
2067 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2068 if (!grp)
2069 return;
2070
2071 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2072 grp->active_nodes = 1;
2073 grp->max_faults_cpu = 0;
8c8a743c 2074 spin_lock_init(&grp->lock);
e29cf08b 2075 grp->gid = p->pid;
50ec8a40 2076 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2077 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2078 nr_node_ids;
8c8a743c 2079
be1e4e76 2080 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2081 grp->faults[i] = p->numa_faults[i];
8c8a743c 2082
989348b5 2083 grp->total_faults = p->total_numa_faults;
83e1d2cd 2084
8c8a743c
PZ
2085 grp->nr_tasks++;
2086 rcu_assign_pointer(p->numa_group, grp);
2087 }
2088
2089 rcu_read_lock();
316c1608 2090 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2091
2092 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2093 goto no_join;
8c8a743c
PZ
2094
2095 grp = rcu_dereference(tsk->numa_group);
2096 if (!grp)
3354781a 2097 goto no_join;
8c8a743c
PZ
2098
2099 my_grp = p->numa_group;
2100 if (grp == my_grp)
3354781a 2101 goto no_join;
8c8a743c
PZ
2102
2103 /*
2104 * Only join the other group if its bigger; if we're the bigger group,
2105 * the other task will join us.
2106 */
2107 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2108 goto no_join;
8c8a743c
PZ
2109
2110 /*
2111 * Tie-break on the grp address.
2112 */
2113 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2114 goto no_join;
8c8a743c 2115
dabe1d99
RR
2116 /* Always join threads in the same process. */
2117 if (tsk->mm == current->mm)
2118 join = true;
2119
2120 /* Simple filter to avoid false positives due to PID collisions */
2121 if (flags & TNF_SHARED)
2122 join = true;
8c8a743c 2123
3e6a9418
MG
2124 /* Update priv based on whether false sharing was detected */
2125 *priv = !join;
2126
dabe1d99 2127 if (join && !get_numa_group(grp))
3354781a 2128 goto no_join;
8c8a743c 2129
8c8a743c
PZ
2130 rcu_read_unlock();
2131
2132 if (!join)
2133 return;
2134
60e69eed
MG
2135 BUG_ON(irqs_disabled());
2136 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2137
be1e4e76 2138 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2139 my_grp->faults[i] -= p->numa_faults[i];
2140 grp->faults[i] += p->numa_faults[i];
8c8a743c 2141 }
989348b5
MG
2142 my_grp->total_faults -= p->total_numa_faults;
2143 grp->total_faults += p->total_numa_faults;
8c8a743c 2144
8c8a743c
PZ
2145 my_grp->nr_tasks--;
2146 grp->nr_tasks++;
2147
2148 spin_unlock(&my_grp->lock);
60e69eed 2149 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2150
2151 rcu_assign_pointer(p->numa_group, grp);
2152
2153 put_numa_group(my_grp);
3354781a
PZ
2154 return;
2155
2156no_join:
2157 rcu_read_unlock();
2158 return;
8c8a743c
PZ
2159}
2160
2161void task_numa_free(struct task_struct *p)
2162{
2163 struct numa_group *grp = p->numa_group;
44dba3d5 2164 void *numa_faults = p->numa_faults;
e9dd685c
SR
2165 unsigned long flags;
2166 int i;
8c8a743c
PZ
2167
2168 if (grp) {
e9dd685c 2169 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2170 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2171 grp->faults[i] -= p->numa_faults[i];
989348b5 2172 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2173
8c8a743c 2174 grp->nr_tasks--;
e9dd685c 2175 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2176 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2177 put_numa_group(grp);
2178 }
2179
44dba3d5 2180 p->numa_faults = NULL;
82727018 2181 kfree(numa_faults);
8c8a743c
PZ
2182}
2183
cbee9f88
PZ
2184/*
2185 * Got a PROT_NONE fault for a page on @node.
2186 */
58b46da3 2187void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2188{
2189 struct task_struct *p = current;
6688cc05 2190 bool migrated = flags & TNF_MIGRATED;
58b46da3 2191 int cpu_node = task_node(current);
792568ec 2192 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2193 struct numa_group *ng;
ac8e895b 2194 int priv;
cbee9f88 2195
2a595721 2196 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2197 return;
2198
9ff1d9ff
MG
2199 /* for example, ksmd faulting in a user's mm */
2200 if (!p->mm)
2201 return;
2202
f809ca9a 2203 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2204 if (unlikely(!p->numa_faults)) {
2205 int size = sizeof(*p->numa_faults) *
be1e4e76 2206 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2207
44dba3d5
IM
2208 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2209 if (!p->numa_faults)
f809ca9a 2210 return;
745d6147 2211
83e1d2cd 2212 p->total_numa_faults = 0;
04bb2f94 2213 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2214 }
cbee9f88 2215
8c8a743c
PZ
2216 /*
2217 * First accesses are treated as private, otherwise consider accesses
2218 * to be private if the accessing pid has not changed
2219 */
2220 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2221 priv = 1;
2222 } else {
2223 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2224 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2225 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2226 }
2227
792568ec
RR
2228 /*
2229 * If a workload spans multiple NUMA nodes, a shared fault that
2230 * occurs wholly within the set of nodes that the workload is
2231 * actively using should be counted as local. This allows the
2232 * scan rate to slow down when a workload has settled down.
2233 */
4142c3eb
RR
2234 ng = p->numa_group;
2235 if (!priv && !local && ng && ng->active_nodes > 1 &&
2236 numa_is_active_node(cpu_node, ng) &&
2237 numa_is_active_node(mem_node, ng))
792568ec
RR
2238 local = 1;
2239
cbee9f88 2240 task_numa_placement(p);
f809ca9a 2241
2739d3ee
RR
2242 /*
2243 * Retry task to preferred node migration periodically, in case it
2244 * case it previously failed, or the scheduler moved us.
2245 */
2246 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2247 numa_migrate_preferred(p);
2248
b32e86b4
IM
2249 if (migrated)
2250 p->numa_pages_migrated += pages;
074c2381
MG
2251 if (flags & TNF_MIGRATE_FAIL)
2252 p->numa_faults_locality[2] += pages;
b32e86b4 2253
44dba3d5
IM
2254 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2255 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2256 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2257}
2258
6e5fb223
PZ
2259static void reset_ptenuma_scan(struct task_struct *p)
2260{
7e5a2c17
JL
2261 /*
2262 * We only did a read acquisition of the mmap sem, so
2263 * p->mm->numa_scan_seq is written to without exclusive access
2264 * and the update is not guaranteed to be atomic. That's not
2265 * much of an issue though, since this is just used for
2266 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2267 * expensive, to avoid any form of compiler optimizations:
2268 */
316c1608 2269 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2270 p->mm->numa_scan_offset = 0;
2271}
2272
cbee9f88
PZ
2273/*
2274 * The expensive part of numa migration is done from task_work context.
2275 * Triggered from task_tick_numa().
2276 */
2277void task_numa_work(struct callback_head *work)
2278{
2279 unsigned long migrate, next_scan, now = jiffies;
2280 struct task_struct *p = current;
2281 struct mm_struct *mm = p->mm;
51170840 2282 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2283 struct vm_area_struct *vma;
9f40604c 2284 unsigned long start, end;
598f0ec0 2285 unsigned long nr_pte_updates = 0;
4620f8c1 2286 long pages, virtpages;
cbee9f88
PZ
2287
2288 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2289
2290 work->next = work; /* protect against double add */
2291 /*
2292 * Who cares about NUMA placement when they're dying.
2293 *
2294 * NOTE: make sure not to dereference p->mm before this check,
2295 * exit_task_work() happens _after_ exit_mm() so we could be called
2296 * without p->mm even though we still had it when we enqueued this
2297 * work.
2298 */
2299 if (p->flags & PF_EXITING)
2300 return;
2301
930aa174 2302 if (!mm->numa_next_scan) {
7e8d16b6
MG
2303 mm->numa_next_scan = now +
2304 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2305 }
2306
cbee9f88
PZ
2307 /*
2308 * Enforce maximal scan/migration frequency..
2309 */
2310 migrate = mm->numa_next_scan;
2311 if (time_before(now, migrate))
2312 return;
2313
598f0ec0
MG
2314 if (p->numa_scan_period == 0) {
2315 p->numa_scan_period_max = task_scan_max(p);
2316 p->numa_scan_period = task_scan_min(p);
2317 }
cbee9f88 2318
fb003b80 2319 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2320 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2321 return;
2322
19a78d11
PZ
2323 /*
2324 * Delay this task enough that another task of this mm will likely win
2325 * the next time around.
2326 */
2327 p->node_stamp += 2 * TICK_NSEC;
2328
9f40604c
MG
2329 start = mm->numa_scan_offset;
2330 pages = sysctl_numa_balancing_scan_size;
2331 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2332 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2333 if (!pages)
2334 return;
cbee9f88 2335
4620f8c1 2336
6e5fb223 2337 down_read(&mm->mmap_sem);
9f40604c 2338 vma = find_vma(mm, start);
6e5fb223
PZ
2339 if (!vma) {
2340 reset_ptenuma_scan(p);
9f40604c 2341 start = 0;
6e5fb223
PZ
2342 vma = mm->mmap;
2343 }
9f40604c 2344 for (; vma; vma = vma->vm_next) {
6b79c57b 2345 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2346 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2347 continue;
6b79c57b 2348 }
6e5fb223 2349
4591ce4f
MG
2350 /*
2351 * Shared library pages mapped by multiple processes are not
2352 * migrated as it is expected they are cache replicated. Avoid
2353 * hinting faults in read-only file-backed mappings or the vdso
2354 * as migrating the pages will be of marginal benefit.
2355 */
2356 if (!vma->vm_mm ||
2357 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2358 continue;
2359
3c67f474
MG
2360 /*
2361 * Skip inaccessible VMAs to avoid any confusion between
2362 * PROT_NONE and NUMA hinting ptes
2363 */
2364 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2365 continue;
4591ce4f 2366
9f40604c
MG
2367 do {
2368 start = max(start, vma->vm_start);
2369 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2370 end = min(end, vma->vm_end);
4620f8c1 2371 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2372
2373 /*
4620f8c1
RR
2374 * Try to scan sysctl_numa_balancing_size worth of
2375 * hpages that have at least one present PTE that
2376 * is not already pte-numa. If the VMA contains
2377 * areas that are unused or already full of prot_numa
2378 * PTEs, scan up to virtpages, to skip through those
2379 * areas faster.
598f0ec0
MG
2380 */
2381 if (nr_pte_updates)
2382 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2383 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2384
9f40604c 2385 start = end;
4620f8c1 2386 if (pages <= 0 || virtpages <= 0)
9f40604c 2387 goto out;
3cf1962c
RR
2388
2389 cond_resched();
9f40604c 2390 } while (end != vma->vm_end);
cbee9f88 2391 }
6e5fb223 2392
9f40604c 2393out:
6e5fb223 2394 /*
c69307d5
PZ
2395 * It is possible to reach the end of the VMA list but the last few
2396 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2397 * would find the !migratable VMA on the next scan but not reset the
2398 * scanner to the start so check it now.
6e5fb223
PZ
2399 */
2400 if (vma)
9f40604c 2401 mm->numa_scan_offset = start;
6e5fb223
PZ
2402 else
2403 reset_ptenuma_scan(p);
2404 up_read(&mm->mmap_sem);
51170840
RR
2405
2406 /*
2407 * Make sure tasks use at least 32x as much time to run other code
2408 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2409 * Usually update_task_scan_period slows down scanning enough; on an
2410 * overloaded system we need to limit overhead on a per task basis.
2411 */
2412 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2413 u64 diff = p->se.sum_exec_runtime - runtime;
2414 p->node_stamp += 32 * diff;
2415 }
cbee9f88
PZ
2416}
2417
2418/*
2419 * Drive the periodic memory faults..
2420 */
2421void task_tick_numa(struct rq *rq, struct task_struct *curr)
2422{
2423 struct callback_head *work = &curr->numa_work;
2424 u64 period, now;
2425
2426 /*
2427 * We don't care about NUMA placement if we don't have memory.
2428 */
2429 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2430 return;
2431
2432 /*
2433 * Using runtime rather than walltime has the dual advantage that
2434 * we (mostly) drive the selection from busy threads and that the
2435 * task needs to have done some actual work before we bother with
2436 * NUMA placement.
2437 */
2438 now = curr->se.sum_exec_runtime;
2439 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2440
25b3e5a3 2441 if (now > curr->node_stamp + period) {
4b96a29b 2442 if (!curr->node_stamp)
598f0ec0 2443 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2444 curr->node_stamp += period;
cbee9f88
PZ
2445
2446 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2447 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2448 task_work_add(curr, work, true);
2449 }
2450 }
2451}
2452#else
2453static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2454{
2455}
0ec8aa00
PZ
2456
2457static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2458{
2459}
2460
2461static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2462{
2463}
cbee9f88
PZ
2464#endif /* CONFIG_NUMA_BALANCING */
2465
30cfdcfc
DA
2466static void
2467account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2468{
2469 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2470 if (!parent_entity(se))
029632fb 2471 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2472#ifdef CONFIG_SMP
0ec8aa00
PZ
2473 if (entity_is_task(se)) {
2474 struct rq *rq = rq_of(cfs_rq);
2475
2476 account_numa_enqueue(rq, task_of(se));
2477 list_add(&se->group_node, &rq->cfs_tasks);
2478 }
367456c7 2479#endif
30cfdcfc 2480 cfs_rq->nr_running++;
30cfdcfc
DA
2481}
2482
2483static void
2484account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2485{
2486 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2487 if (!parent_entity(se))
029632fb 2488 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2489#ifdef CONFIG_SMP
0ec8aa00
PZ
2490 if (entity_is_task(se)) {
2491 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2492 list_del_init(&se->group_node);
0ec8aa00 2493 }
bfdb198c 2494#endif
30cfdcfc 2495 cfs_rq->nr_running--;
30cfdcfc
DA
2496}
2497
3ff6dcac
YZ
2498#ifdef CONFIG_FAIR_GROUP_SCHED
2499# ifdef CONFIG_SMP
ea1dc6fc 2500static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2501{
ea1dc6fc 2502 long tg_weight, load, shares;
cf5f0acf
PZ
2503
2504 /*
ea1dc6fc
PZ
2505 * This really should be: cfs_rq->avg.load_avg, but instead we use
2506 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2507 * the shares for small weight interactive tasks.
cf5f0acf 2508 */
ea1dc6fc 2509 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2510
ea1dc6fc 2511 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2512
ea1dc6fc
PZ
2513 /* Ensure tg_weight >= load */
2514 tg_weight -= cfs_rq->tg_load_avg_contrib;
2515 tg_weight += load;
3ff6dcac 2516
3ff6dcac 2517 shares = (tg->shares * load);
cf5f0acf
PZ
2518 if (tg_weight)
2519 shares /= tg_weight;
3ff6dcac
YZ
2520
2521 if (shares < MIN_SHARES)
2522 shares = MIN_SHARES;
2523 if (shares > tg->shares)
2524 shares = tg->shares;
2525
2526 return shares;
2527}
3ff6dcac 2528# else /* CONFIG_SMP */
6d5ab293 2529static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2530{
2531 return tg->shares;
2532}
3ff6dcac 2533# endif /* CONFIG_SMP */
ea1dc6fc 2534
2069dd75
PZ
2535static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2536 unsigned long weight)
2537{
19e5eebb
PT
2538 if (se->on_rq) {
2539 /* commit outstanding execution time */
2540 if (cfs_rq->curr == se)
2541 update_curr(cfs_rq);
2069dd75 2542 account_entity_dequeue(cfs_rq, se);
19e5eebb 2543 }
2069dd75
PZ
2544
2545 update_load_set(&se->load, weight);
2546
2547 if (se->on_rq)
2548 account_entity_enqueue(cfs_rq, se);
2549}
2550
82958366
PT
2551static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2552
6d5ab293 2553static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2554{
2555 struct task_group *tg;
2556 struct sched_entity *se;
3ff6dcac 2557 long shares;
2069dd75 2558
2069dd75
PZ
2559 tg = cfs_rq->tg;
2560 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2561 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2562 return;
3ff6dcac
YZ
2563#ifndef CONFIG_SMP
2564 if (likely(se->load.weight == tg->shares))
2565 return;
2566#endif
6d5ab293 2567 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2568
2569 reweight_entity(cfs_rq_of(se), se, shares);
2570}
2571#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2572static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2573{
2574}
2575#endif /* CONFIG_FAIR_GROUP_SCHED */
2576
141965c7 2577#ifdef CONFIG_SMP
5b51f2f8
PT
2578/* Precomputed fixed inverse multiplies for multiplication by y^n */
2579static const u32 runnable_avg_yN_inv[] = {
2580 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2581 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2582 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2583 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2584 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2585 0x85aac367, 0x82cd8698,
2586};
2587
2588/*
2589 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2590 * over-estimates when re-combining.
2591 */
2592static const u32 runnable_avg_yN_sum[] = {
2593 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2594 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2595 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2596};
2597
7b20b916
YD
2598/*
2599 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2600 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2601 * were generated:
2602 */
2603static const u32 __accumulated_sum_N32[] = {
2604 0, 23371, 35056, 40899, 43820, 45281,
2605 46011, 46376, 46559, 46650, 46696, 46719,
2606};
2607
9d85f21c
PT
2608/*
2609 * Approximate:
2610 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2611 */
2612static __always_inline u64 decay_load(u64 val, u64 n)
2613{
5b51f2f8
PT
2614 unsigned int local_n;
2615
2616 if (!n)
2617 return val;
2618 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2619 return 0;
2620
2621 /* after bounds checking we can collapse to 32-bit */
2622 local_n = n;
2623
2624 /*
2625 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2626 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2627 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2628 *
2629 * To achieve constant time decay_load.
2630 */
2631 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2632 val >>= local_n / LOAD_AVG_PERIOD;
2633 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2634 }
2635
9d89c257
YD
2636 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2637 return val;
5b51f2f8
PT
2638}
2639
2640/*
2641 * For updates fully spanning n periods, the contribution to runnable
2642 * average will be: \Sum 1024*y^n
2643 *
2644 * We can compute this reasonably efficiently by combining:
2645 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2646 */
2647static u32 __compute_runnable_contrib(u64 n)
2648{
2649 u32 contrib = 0;
2650
2651 if (likely(n <= LOAD_AVG_PERIOD))
2652 return runnable_avg_yN_sum[n];
2653 else if (unlikely(n >= LOAD_AVG_MAX_N))
2654 return LOAD_AVG_MAX;
2655
7b20b916
YD
2656 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2657 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2658 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2659 contrib = decay_load(contrib, n);
2660 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2661}
2662
54a21385 2663#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2664
9d85f21c
PT
2665/*
2666 * We can represent the historical contribution to runnable average as the
2667 * coefficients of a geometric series. To do this we sub-divide our runnable
2668 * history into segments of approximately 1ms (1024us); label the segment that
2669 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2670 *
2671 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2672 * p0 p1 p2
2673 * (now) (~1ms ago) (~2ms ago)
2674 *
2675 * Let u_i denote the fraction of p_i that the entity was runnable.
2676 *
2677 * We then designate the fractions u_i as our co-efficients, yielding the
2678 * following representation of historical load:
2679 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2680 *
2681 * We choose y based on the with of a reasonably scheduling period, fixing:
2682 * y^32 = 0.5
2683 *
2684 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2685 * approximately half as much as the contribution to load within the last ms
2686 * (u_0).
2687 *
2688 * When a period "rolls over" and we have new u_0`, multiplying the previous
2689 * sum again by y is sufficient to update:
2690 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2691 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2692 */
9d89c257
YD
2693static __always_inline int
2694__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2695 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2696{
e0f5f3af 2697 u64 delta, scaled_delta, periods;
9d89c257 2698 u32 contrib;
6115c793 2699 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2700 unsigned long scale_freq, scale_cpu;
9d85f21c 2701
9d89c257 2702 delta = now - sa->last_update_time;
9d85f21c
PT
2703 /*
2704 * This should only happen when time goes backwards, which it
2705 * unfortunately does during sched clock init when we swap over to TSC.
2706 */
2707 if ((s64)delta < 0) {
9d89c257 2708 sa->last_update_time = now;
9d85f21c
PT
2709 return 0;
2710 }
2711
2712 /*
2713 * Use 1024ns as the unit of measurement since it's a reasonable
2714 * approximation of 1us and fast to compute.
2715 */
2716 delta >>= 10;
2717 if (!delta)
2718 return 0;
9d89c257 2719 sa->last_update_time = now;
9d85f21c 2720
6f2b0452
DE
2721 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2722 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2723
9d85f21c 2724 /* delta_w is the amount already accumulated against our next period */
9d89c257 2725 delta_w = sa->period_contrib;
9d85f21c 2726 if (delta + delta_w >= 1024) {
9d85f21c
PT
2727 decayed = 1;
2728
9d89c257
YD
2729 /* how much left for next period will start over, we don't know yet */
2730 sa->period_contrib = 0;
2731
9d85f21c
PT
2732 /*
2733 * Now that we know we're crossing a period boundary, figure
2734 * out how much from delta we need to complete the current
2735 * period and accrue it.
2736 */
2737 delta_w = 1024 - delta_w;
54a21385 2738 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2739 if (weight) {
e0f5f3af
DE
2740 sa->load_sum += weight * scaled_delta_w;
2741 if (cfs_rq) {
2742 cfs_rq->runnable_load_sum +=
2743 weight * scaled_delta_w;
2744 }
13962234 2745 }
36ee28e4 2746 if (running)
006cdf02 2747 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2748
2749 delta -= delta_w;
2750
2751 /* Figure out how many additional periods this update spans */
2752 periods = delta / 1024;
2753 delta %= 1024;
2754
9d89c257 2755 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2756 if (cfs_rq) {
2757 cfs_rq->runnable_load_sum =
2758 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2759 }
9d89c257 2760 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2761
2762 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2763 contrib = __compute_runnable_contrib(periods);
54a21385 2764 contrib = cap_scale(contrib, scale_freq);
13962234 2765 if (weight) {
9d89c257 2766 sa->load_sum += weight * contrib;
13962234
YD
2767 if (cfs_rq)
2768 cfs_rq->runnable_load_sum += weight * contrib;
2769 }
36ee28e4 2770 if (running)
006cdf02 2771 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2772 }
2773
2774 /* Remainder of delta accrued against u_0` */
54a21385 2775 scaled_delta = cap_scale(delta, scale_freq);
13962234 2776 if (weight) {
e0f5f3af 2777 sa->load_sum += weight * scaled_delta;
13962234 2778 if (cfs_rq)
e0f5f3af 2779 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2780 }
36ee28e4 2781 if (running)
006cdf02 2782 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2783
9d89c257 2784 sa->period_contrib += delta;
9ee474f5 2785
9d89c257
YD
2786 if (decayed) {
2787 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2788 if (cfs_rq) {
2789 cfs_rq->runnable_load_avg =
2790 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2791 }
006cdf02 2792 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2793 }
aff3e498 2794
9d89c257 2795 return decayed;
9ee474f5
PT
2796}
2797
c566e8e9 2798#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2799/*
9d89c257
YD
2800 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2801 * and effective_load (which is not done because it is too costly).
bb17f655 2802 */
9d89c257 2803static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2804{
9d89c257 2805 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2806
aa0b7ae0
WL
2807 /*
2808 * No need to update load_avg for root_task_group as it is not used.
2809 */
2810 if (cfs_rq->tg == &root_task_group)
2811 return;
2812
9d89c257
YD
2813 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2814 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2815 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2816 }
8165e145 2817}
f5f9739d 2818
ad936d86
BP
2819/*
2820 * Called within set_task_rq() right before setting a task's cpu. The
2821 * caller only guarantees p->pi_lock is held; no other assumptions,
2822 * including the state of rq->lock, should be made.
2823 */
2824void set_task_rq_fair(struct sched_entity *se,
2825 struct cfs_rq *prev, struct cfs_rq *next)
2826{
2827 if (!sched_feat(ATTACH_AGE_LOAD))
2828 return;
2829
2830 /*
2831 * We are supposed to update the task to "current" time, then its up to
2832 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2833 * getting what current time is, so simply throw away the out-of-date
2834 * time. This will result in the wakee task is less decayed, but giving
2835 * the wakee more load sounds not bad.
2836 */
2837 if (se->avg.last_update_time && prev) {
2838 u64 p_last_update_time;
2839 u64 n_last_update_time;
2840
2841#ifndef CONFIG_64BIT
2842 u64 p_last_update_time_copy;
2843 u64 n_last_update_time_copy;
2844
2845 do {
2846 p_last_update_time_copy = prev->load_last_update_time_copy;
2847 n_last_update_time_copy = next->load_last_update_time_copy;
2848
2849 smp_rmb();
2850
2851 p_last_update_time = prev->avg.last_update_time;
2852 n_last_update_time = next->avg.last_update_time;
2853
2854 } while (p_last_update_time != p_last_update_time_copy ||
2855 n_last_update_time != n_last_update_time_copy);
2856#else
2857 p_last_update_time = prev->avg.last_update_time;
2858 n_last_update_time = next->avg.last_update_time;
2859#endif
2860 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2861 &se->avg, 0, 0, NULL);
2862 se->avg.last_update_time = n_last_update_time;
2863 }
2864}
6e83125c 2865#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2866static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2867#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2868
9d89c257 2869static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2870
a2c6c91f
SM
2871static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2872{
2873 struct rq *rq = rq_of(cfs_rq);
2874 int cpu = cpu_of(rq);
2875
2876 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2877 unsigned long max = rq->cpu_capacity_orig;
2878
2879 /*
2880 * There are a few boundary cases this might miss but it should
2881 * get called often enough that that should (hopefully) not be
2882 * a real problem -- added to that it only calls on the local
2883 * CPU, so if we enqueue remotely we'll miss an update, but
2884 * the next tick/schedule should update.
2885 *
2886 * It will not get called when we go idle, because the idle
2887 * thread is a different class (!fair), nor will the utilization
2888 * number include things like RT tasks.
2889 *
2890 * As is, the util number is not freq-invariant (we'd have to
2891 * implement arch_scale_freq_capacity() for that).
2892 *
2893 * See cpu_util().
2894 */
2895 cpufreq_update_util(rq_clock(rq),
2896 min(cfs_rq->avg.util_avg, max), max);
2897 }
2898}
2899
89741892
PZ
2900/*
2901 * Unsigned subtract and clamp on underflow.
2902 *
2903 * Explicitly do a load-store to ensure the intermediate value never hits
2904 * memory. This allows lockless observations without ever seeing the negative
2905 * values.
2906 */
2907#define sub_positive(_ptr, _val) do { \
2908 typeof(_ptr) ptr = (_ptr); \
2909 typeof(*ptr) val = (_val); \
2910 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2911 res = var - val; \
2912 if (res > var) \
2913 res = 0; \
2914 WRITE_ONCE(*ptr, res); \
2915} while (0)
2916
9d89c257 2917/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
a2c6c91f
SM
2918static inline int
2919update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2920{
9d89c257 2921 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2922 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2923
9d89c257 2924 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2925 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
2926 sub_positive(&sa->load_avg, r);
2927 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 2928 removed_load = 1;
8165e145 2929 }
2dac754e 2930
9d89c257
YD
2931 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2932 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
2933 sub_positive(&sa->util_avg, r);
2934 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 2935 removed_util = 1;
9d89c257 2936 }
36ee28e4 2937
a2c6c91f 2938 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2939 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2940
9d89c257
YD
2941#ifndef CONFIG_64BIT
2942 smp_wmb();
2943 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2944#endif
36ee28e4 2945
a2c6c91f
SM
2946 if (update_freq && (decayed || removed_util))
2947 cfs_rq_util_change(cfs_rq);
21e96f88 2948
41e0d37f 2949 return decayed || removed_load;
21e96f88
SM
2950}
2951
2952/* Update task and its cfs_rq load average */
2953static inline void update_load_avg(struct sched_entity *se, int update_tg)
2954{
2955 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2956 u64 now = cfs_rq_clock_task(cfs_rq);
2957 struct rq *rq = rq_of(cfs_rq);
2958 int cpu = cpu_of(rq);
2959
2960 /*
2961 * Track task load average for carrying it to new CPU after migrated, and
2962 * track group sched_entity load average for task_h_load calc in migration
2963 */
2964 __update_load_avg(now, cpu, &se->avg,
2965 se->on_rq * scale_load_down(se->load.weight),
2966 cfs_rq->curr == se, NULL);
2967
a2c6c91f 2968 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2969 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2970}
2971
a05e8c51
BP
2972static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2973{
a9280514
PZ
2974 if (!sched_feat(ATTACH_AGE_LOAD))
2975 goto skip_aging;
2976
6efdb105
BP
2977 /*
2978 * If we got migrated (either between CPUs or between cgroups) we'll
2979 * have aged the average right before clearing @last_update_time.
2980 */
2981 if (se->avg.last_update_time) {
2982 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2983 &se->avg, 0, 0, NULL);
2984
2985 /*
2986 * XXX: we could have just aged the entire load away if we've been
2987 * absent from the fair class for too long.
2988 */
2989 }
2990
a9280514 2991skip_aging:
a05e8c51
BP
2992 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2993 cfs_rq->avg.load_avg += se->avg.load_avg;
2994 cfs_rq->avg.load_sum += se->avg.load_sum;
2995 cfs_rq->avg.util_avg += se->avg.util_avg;
2996 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
2997
2998 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2999}
3000
3001static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002{
3003 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3004 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3005 cfs_rq->curr == se, NULL);
3006
89741892
PZ
3007 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3008 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3009 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3010 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3011
3012 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3013}
3014
9d89c257
YD
3015/* Add the load generated by se into cfs_rq's load average */
3016static inline void
3017enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3018{
9d89c257
YD
3019 struct sched_avg *sa = &se->avg;
3020 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3021 int migrated, decayed;
9ee474f5 3022
a05e8c51
BP
3023 migrated = !sa->last_update_time;
3024 if (!migrated) {
9d89c257 3025 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3026 se->on_rq * scale_load_down(se->load.weight),
3027 cfs_rq->curr == se, NULL);
aff3e498 3028 }
c566e8e9 3029
a2c6c91f 3030 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3031
13962234
YD
3032 cfs_rq->runnable_load_avg += sa->load_avg;
3033 cfs_rq->runnable_load_sum += sa->load_sum;
3034
a05e8c51
BP
3035 if (migrated)
3036 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3037
9d89c257
YD
3038 if (decayed || migrated)
3039 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3040}
3041
13962234
YD
3042/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3043static inline void
3044dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3045{
3046 update_load_avg(se, 1);
3047
3048 cfs_rq->runnable_load_avg =
3049 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3050 cfs_rq->runnable_load_sum =
a05e8c51 3051 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3052}
3053
9d89c257 3054#ifndef CONFIG_64BIT
0905f04e
YD
3055static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3056{
9d89c257 3057 u64 last_update_time_copy;
0905f04e 3058 u64 last_update_time;
9ee474f5 3059
9d89c257
YD
3060 do {
3061 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3062 smp_rmb();
3063 last_update_time = cfs_rq->avg.last_update_time;
3064 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3065
3066 return last_update_time;
3067}
9d89c257 3068#else
0905f04e
YD
3069static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3070{
3071 return cfs_rq->avg.last_update_time;
3072}
9d89c257
YD
3073#endif
3074
0905f04e
YD
3075/*
3076 * Task first catches up with cfs_rq, and then subtract
3077 * itself from the cfs_rq (task must be off the queue now).
3078 */
3079void remove_entity_load_avg(struct sched_entity *se)
3080{
3081 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3082 u64 last_update_time;
3083
3084 /*
3085 * Newly created task or never used group entity should not be removed
3086 * from its (source) cfs_rq
3087 */
3088 if (se->avg.last_update_time == 0)
3089 return;
3090
3091 last_update_time = cfs_rq_last_update_time(cfs_rq);
3092
13962234 3093 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3094 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3095 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3096}
642dbc39 3097
7ea241af
YD
3098static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3099{
3100 return cfs_rq->runnable_load_avg;
3101}
3102
3103static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3104{
3105 return cfs_rq->avg.load_avg;
3106}
3107
6e83125c
PZ
3108static int idle_balance(struct rq *this_rq);
3109
38033c37
PZ
3110#else /* CONFIG_SMP */
3111
536bd00c
RW
3112static inline void update_load_avg(struct sched_entity *se, int not_used)
3113{
3114 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3115 struct rq *rq = rq_of(cfs_rq);
3116
3117 cpufreq_trigger_update(rq_clock(rq));
3118}
3119
9d89c257
YD
3120static inline void
3121enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3122static inline void
3123dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3124static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3125
a05e8c51
BP
3126static inline void
3127attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3128static inline void
3129detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3130
6e83125c
PZ
3131static inline int idle_balance(struct rq *rq)
3132{
3133 return 0;
3134}
3135
38033c37 3136#endif /* CONFIG_SMP */
9d85f21c 3137
2396af69 3138static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3139{
bf0f6f24 3140#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3141 struct task_struct *tsk = NULL;
3142
3143 if (entity_is_task(se))
3144 tsk = task_of(se);
3145
41acab88 3146 if (se->statistics.sleep_start) {
78becc27 3147 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3148
3149 if ((s64)delta < 0)
3150 delta = 0;
3151
41acab88
LDM
3152 if (unlikely(delta > se->statistics.sleep_max))
3153 se->statistics.sleep_max = delta;
bf0f6f24 3154
8c79a045 3155 se->statistics.sleep_start = 0;
41acab88 3156 se->statistics.sum_sleep_runtime += delta;
9745512c 3157
768d0c27 3158 if (tsk) {
e414314c 3159 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3160 trace_sched_stat_sleep(tsk, delta);
3161 }
bf0f6f24 3162 }
41acab88 3163 if (se->statistics.block_start) {
78becc27 3164 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3165
3166 if ((s64)delta < 0)
3167 delta = 0;
3168
41acab88
LDM
3169 if (unlikely(delta > se->statistics.block_max))
3170 se->statistics.block_max = delta;
bf0f6f24 3171
8c79a045 3172 se->statistics.block_start = 0;
41acab88 3173 se->statistics.sum_sleep_runtime += delta;
30084fbd 3174
e414314c 3175 if (tsk) {
8f0dfc34 3176 if (tsk->in_iowait) {
41acab88
LDM
3177 se->statistics.iowait_sum += delta;
3178 se->statistics.iowait_count++;
768d0c27 3179 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3180 }
3181
b781a602
AV
3182 trace_sched_stat_blocked(tsk, delta);
3183
e414314c
PZ
3184 /*
3185 * Blocking time is in units of nanosecs, so shift by
3186 * 20 to get a milliseconds-range estimation of the
3187 * amount of time that the task spent sleeping:
3188 */
3189 if (unlikely(prof_on == SLEEP_PROFILING)) {
3190 profile_hits(SLEEP_PROFILING,
3191 (void *)get_wchan(tsk),
3192 delta >> 20);
3193 }
3194 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3195 }
bf0f6f24
IM
3196 }
3197#endif
3198}
3199
ddc97297
PZ
3200static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3201{
3202#ifdef CONFIG_SCHED_DEBUG
3203 s64 d = se->vruntime - cfs_rq->min_vruntime;
3204
3205 if (d < 0)
3206 d = -d;
3207
3208 if (d > 3*sysctl_sched_latency)
3209 schedstat_inc(cfs_rq, nr_spread_over);
3210#endif
3211}
3212
aeb73b04
PZ
3213static void
3214place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3215{
1af5f730 3216 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3217
2cb8600e
PZ
3218 /*
3219 * The 'current' period is already promised to the current tasks,
3220 * however the extra weight of the new task will slow them down a
3221 * little, place the new task so that it fits in the slot that
3222 * stays open at the end.
3223 */
94dfb5e7 3224 if (initial && sched_feat(START_DEBIT))
f9c0b095 3225 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3226
a2e7a7eb 3227 /* sleeps up to a single latency don't count. */
5ca9880c 3228 if (!initial) {
a2e7a7eb 3229 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3230
a2e7a7eb
MG
3231 /*
3232 * Halve their sleep time's effect, to allow
3233 * for a gentler effect of sleepers:
3234 */
3235 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3236 thresh >>= 1;
51e0304c 3237
a2e7a7eb 3238 vruntime -= thresh;
aeb73b04
PZ
3239 }
3240
b5d9d734 3241 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3242 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3243}
3244
d3d9dc33
PT
3245static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3246
cb251765
MG
3247static inline void check_schedstat_required(void)
3248{
3249#ifdef CONFIG_SCHEDSTATS
3250 if (schedstat_enabled())
3251 return;
3252
3253 /* Force schedstat enabled if a dependent tracepoint is active */
3254 if (trace_sched_stat_wait_enabled() ||
3255 trace_sched_stat_sleep_enabled() ||
3256 trace_sched_stat_iowait_enabled() ||
3257 trace_sched_stat_blocked_enabled() ||
3258 trace_sched_stat_runtime_enabled()) {
eda8dca5 3259 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3260 "stat_blocked and stat_runtime require the "
3261 "kernel parameter schedstats=enabled or "
3262 "kernel.sched_schedstats=1\n");
3263 }
3264#endif
3265}
3266
b5179ac7
PZ
3267
3268/*
3269 * MIGRATION
3270 *
3271 * dequeue
3272 * update_curr()
3273 * update_min_vruntime()
3274 * vruntime -= min_vruntime
3275 *
3276 * enqueue
3277 * update_curr()
3278 * update_min_vruntime()
3279 * vruntime += min_vruntime
3280 *
3281 * this way the vruntime transition between RQs is done when both
3282 * min_vruntime are up-to-date.
3283 *
3284 * WAKEUP (remote)
3285 *
59efa0ba 3286 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3287 * vruntime -= min_vruntime
3288 *
3289 * enqueue
3290 * update_curr()
3291 * update_min_vruntime()
3292 * vruntime += min_vruntime
3293 *
3294 * this way we don't have the most up-to-date min_vruntime on the originating
3295 * CPU and an up-to-date min_vruntime on the destination CPU.
3296 */
3297
bf0f6f24 3298static void
88ec22d3 3299enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3300{
2f950354
PZ
3301 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3302 bool curr = cfs_rq->curr == se;
3303
88ec22d3 3304 /*
2f950354
PZ
3305 * If we're the current task, we must renormalise before calling
3306 * update_curr().
88ec22d3 3307 */
2f950354 3308 if (renorm && curr)
88ec22d3
PZ
3309 se->vruntime += cfs_rq->min_vruntime;
3310
2f950354
PZ
3311 update_curr(cfs_rq);
3312
bf0f6f24 3313 /*
2f950354
PZ
3314 * Otherwise, renormalise after, such that we're placed at the current
3315 * moment in time, instead of some random moment in the past. Being
3316 * placed in the past could significantly boost this task to the
3317 * fairness detriment of existing tasks.
bf0f6f24 3318 */
2f950354
PZ
3319 if (renorm && !curr)
3320 se->vruntime += cfs_rq->min_vruntime;
3321
9d89c257 3322 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3323 account_entity_enqueue(cfs_rq, se);
3324 update_cfs_shares(cfs_rq);
bf0f6f24 3325
88ec22d3 3326 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3327 place_entity(cfs_rq, se, 0);
cb251765
MG
3328 if (schedstat_enabled())
3329 enqueue_sleeper(cfs_rq, se);
e9acbff6 3330 }
bf0f6f24 3331
cb251765
MG
3332 check_schedstat_required();
3333 if (schedstat_enabled()) {
3334 update_stats_enqueue(cfs_rq, se);
3335 check_spread(cfs_rq, se);
3336 }
2f950354 3337 if (!curr)
83b699ed 3338 __enqueue_entity(cfs_rq, se);
2069dd75 3339 se->on_rq = 1;
3d4b47b4 3340
d3d9dc33 3341 if (cfs_rq->nr_running == 1) {
3d4b47b4 3342 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3343 check_enqueue_throttle(cfs_rq);
3344 }
bf0f6f24
IM
3345}
3346
2c13c919 3347static void __clear_buddies_last(struct sched_entity *se)
2002c695 3348{
2c13c919
RR
3349 for_each_sched_entity(se) {
3350 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3351 if (cfs_rq->last != se)
2c13c919 3352 break;
f1044799
PZ
3353
3354 cfs_rq->last = NULL;
2c13c919
RR
3355 }
3356}
2002c695 3357
2c13c919
RR
3358static void __clear_buddies_next(struct sched_entity *se)
3359{
3360 for_each_sched_entity(se) {
3361 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3362 if (cfs_rq->next != se)
2c13c919 3363 break;
f1044799
PZ
3364
3365 cfs_rq->next = NULL;
2c13c919 3366 }
2002c695
PZ
3367}
3368
ac53db59
RR
3369static void __clear_buddies_skip(struct sched_entity *se)
3370{
3371 for_each_sched_entity(se) {
3372 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3373 if (cfs_rq->skip != se)
ac53db59 3374 break;
f1044799
PZ
3375
3376 cfs_rq->skip = NULL;
ac53db59
RR
3377 }
3378}
3379
a571bbea
PZ
3380static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3381{
2c13c919
RR
3382 if (cfs_rq->last == se)
3383 __clear_buddies_last(se);
3384
3385 if (cfs_rq->next == se)
3386 __clear_buddies_next(se);
ac53db59
RR
3387
3388 if (cfs_rq->skip == se)
3389 __clear_buddies_skip(se);
a571bbea
PZ
3390}
3391
6c16a6dc 3392static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3393
bf0f6f24 3394static void
371fd7e7 3395dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3396{
a2a2d680
DA
3397 /*
3398 * Update run-time statistics of the 'current'.
3399 */
3400 update_curr(cfs_rq);
13962234 3401 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3402
cb251765
MG
3403 if (schedstat_enabled())
3404 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3405
2002c695 3406 clear_buddies(cfs_rq, se);
4793241b 3407
83b699ed 3408 if (se != cfs_rq->curr)
30cfdcfc 3409 __dequeue_entity(cfs_rq, se);
17bc14b7 3410 se->on_rq = 0;
30cfdcfc 3411 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3412
3413 /*
3414 * Normalize the entity after updating the min_vruntime because the
3415 * update can refer to the ->curr item and we need to reflect this
3416 * movement in our normalized position.
3417 */
371fd7e7 3418 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3419 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3420
d8b4986d
PT
3421 /* return excess runtime on last dequeue */
3422 return_cfs_rq_runtime(cfs_rq);
3423
1e876231 3424 update_min_vruntime(cfs_rq);
17bc14b7 3425 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3426}
3427
3428/*
3429 * Preempt the current task with a newly woken task if needed:
3430 */
7c92e54f 3431static void
2e09bf55 3432check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3433{
11697830 3434 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3435 struct sched_entity *se;
3436 s64 delta;
11697830 3437
6d0f0ebd 3438 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3439 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3440 if (delta_exec > ideal_runtime) {
8875125e 3441 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3442 /*
3443 * The current task ran long enough, ensure it doesn't get
3444 * re-elected due to buddy favours.
3445 */
3446 clear_buddies(cfs_rq, curr);
f685ceac
MG
3447 return;
3448 }
3449
3450 /*
3451 * Ensure that a task that missed wakeup preemption by a
3452 * narrow margin doesn't have to wait for a full slice.
3453 * This also mitigates buddy induced latencies under load.
3454 */
f685ceac
MG
3455 if (delta_exec < sysctl_sched_min_granularity)
3456 return;
3457
f4cfb33e
WX
3458 se = __pick_first_entity(cfs_rq);
3459 delta = curr->vruntime - se->vruntime;
f685ceac 3460
f4cfb33e
WX
3461 if (delta < 0)
3462 return;
d7d82944 3463
f4cfb33e 3464 if (delta > ideal_runtime)
8875125e 3465 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3466}
3467
83b699ed 3468static void
8494f412 3469set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3470{
83b699ed
SV
3471 /* 'current' is not kept within the tree. */
3472 if (se->on_rq) {
3473 /*
3474 * Any task has to be enqueued before it get to execute on
3475 * a CPU. So account for the time it spent waiting on the
3476 * runqueue.
3477 */
cb251765
MG
3478 if (schedstat_enabled())
3479 update_stats_wait_end(cfs_rq, se);
83b699ed 3480 __dequeue_entity(cfs_rq, se);
9d89c257 3481 update_load_avg(se, 1);
83b699ed
SV
3482 }
3483
79303e9e 3484 update_stats_curr_start(cfs_rq, se);
429d43bc 3485 cfs_rq->curr = se;
eba1ed4b
IM
3486#ifdef CONFIG_SCHEDSTATS
3487 /*
3488 * Track our maximum slice length, if the CPU's load is at
3489 * least twice that of our own weight (i.e. dont track it
3490 * when there are only lesser-weight tasks around):
3491 */
cb251765 3492 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3493 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3494 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3495 }
3496#endif
4a55b450 3497 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3498}
3499
3f3a4904
PZ
3500static int
3501wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3502
ac53db59
RR
3503/*
3504 * Pick the next process, keeping these things in mind, in this order:
3505 * 1) keep things fair between processes/task groups
3506 * 2) pick the "next" process, since someone really wants that to run
3507 * 3) pick the "last" process, for cache locality
3508 * 4) do not run the "skip" process, if something else is available
3509 */
678d5718
PZ
3510static struct sched_entity *
3511pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3512{
678d5718
PZ
3513 struct sched_entity *left = __pick_first_entity(cfs_rq);
3514 struct sched_entity *se;
3515
3516 /*
3517 * If curr is set we have to see if its left of the leftmost entity
3518 * still in the tree, provided there was anything in the tree at all.
3519 */
3520 if (!left || (curr && entity_before(curr, left)))
3521 left = curr;
3522
3523 se = left; /* ideally we run the leftmost entity */
f4b6755f 3524
ac53db59
RR
3525 /*
3526 * Avoid running the skip buddy, if running something else can
3527 * be done without getting too unfair.
3528 */
3529 if (cfs_rq->skip == se) {
678d5718
PZ
3530 struct sched_entity *second;
3531
3532 if (se == curr) {
3533 second = __pick_first_entity(cfs_rq);
3534 } else {
3535 second = __pick_next_entity(se);
3536 if (!second || (curr && entity_before(curr, second)))
3537 second = curr;
3538 }
3539
ac53db59
RR
3540 if (second && wakeup_preempt_entity(second, left) < 1)
3541 se = second;
3542 }
aa2ac252 3543
f685ceac
MG
3544 /*
3545 * Prefer last buddy, try to return the CPU to a preempted task.
3546 */
3547 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3548 se = cfs_rq->last;
3549
ac53db59
RR
3550 /*
3551 * Someone really wants this to run. If it's not unfair, run it.
3552 */
3553 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3554 se = cfs_rq->next;
3555
f685ceac 3556 clear_buddies(cfs_rq, se);
4793241b
PZ
3557
3558 return se;
aa2ac252
PZ
3559}
3560
678d5718 3561static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3562
ab6cde26 3563static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3564{
3565 /*
3566 * If still on the runqueue then deactivate_task()
3567 * was not called and update_curr() has to be done:
3568 */
3569 if (prev->on_rq)
b7cc0896 3570 update_curr(cfs_rq);
bf0f6f24 3571
d3d9dc33
PT
3572 /* throttle cfs_rqs exceeding runtime */
3573 check_cfs_rq_runtime(cfs_rq);
3574
cb251765
MG
3575 if (schedstat_enabled()) {
3576 check_spread(cfs_rq, prev);
3577 if (prev->on_rq)
3578 update_stats_wait_start(cfs_rq, prev);
3579 }
3580
30cfdcfc 3581 if (prev->on_rq) {
30cfdcfc
DA
3582 /* Put 'current' back into the tree. */
3583 __enqueue_entity(cfs_rq, prev);
9d85f21c 3584 /* in !on_rq case, update occurred at dequeue */
9d89c257 3585 update_load_avg(prev, 0);
30cfdcfc 3586 }
429d43bc 3587 cfs_rq->curr = NULL;
bf0f6f24
IM
3588}
3589
8f4d37ec
PZ
3590static void
3591entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3592{
bf0f6f24 3593 /*
30cfdcfc 3594 * Update run-time statistics of the 'current'.
bf0f6f24 3595 */
30cfdcfc 3596 update_curr(cfs_rq);
bf0f6f24 3597
9d85f21c
PT
3598 /*
3599 * Ensure that runnable average is periodically updated.
3600 */
9d89c257 3601 update_load_avg(curr, 1);
bf0bd948 3602 update_cfs_shares(cfs_rq);
9d85f21c 3603
8f4d37ec
PZ
3604#ifdef CONFIG_SCHED_HRTICK
3605 /*
3606 * queued ticks are scheduled to match the slice, so don't bother
3607 * validating it and just reschedule.
3608 */
983ed7a6 3609 if (queued) {
8875125e 3610 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3611 return;
3612 }
8f4d37ec
PZ
3613 /*
3614 * don't let the period tick interfere with the hrtick preemption
3615 */
3616 if (!sched_feat(DOUBLE_TICK) &&
3617 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3618 return;
3619#endif
3620
2c2efaed 3621 if (cfs_rq->nr_running > 1)
2e09bf55 3622 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3623}
3624
ab84d31e
PT
3625
3626/**************************************************
3627 * CFS bandwidth control machinery
3628 */
3629
3630#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3631
3632#ifdef HAVE_JUMP_LABEL
c5905afb 3633static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3634
3635static inline bool cfs_bandwidth_used(void)
3636{
c5905afb 3637 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3638}
3639
1ee14e6c 3640void cfs_bandwidth_usage_inc(void)
029632fb 3641{
1ee14e6c
BS
3642 static_key_slow_inc(&__cfs_bandwidth_used);
3643}
3644
3645void cfs_bandwidth_usage_dec(void)
3646{
3647 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3648}
3649#else /* HAVE_JUMP_LABEL */
3650static bool cfs_bandwidth_used(void)
3651{
3652 return true;
3653}
3654
1ee14e6c
BS
3655void cfs_bandwidth_usage_inc(void) {}
3656void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3657#endif /* HAVE_JUMP_LABEL */
3658
ab84d31e
PT
3659/*
3660 * default period for cfs group bandwidth.
3661 * default: 0.1s, units: nanoseconds
3662 */
3663static inline u64 default_cfs_period(void)
3664{
3665 return 100000000ULL;
3666}
ec12cb7f
PT
3667
3668static inline u64 sched_cfs_bandwidth_slice(void)
3669{
3670 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3671}
3672
a9cf55b2
PT
3673/*
3674 * Replenish runtime according to assigned quota and update expiration time.
3675 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3676 * additional synchronization around rq->lock.
3677 *
3678 * requires cfs_b->lock
3679 */
029632fb 3680void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3681{
3682 u64 now;
3683
3684 if (cfs_b->quota == RUNTIME_INF)
3685 return;
3686
3687 now = sched_clock_cpu(smp_processor_id());
3688 cfs_b->runtime = cfs_b->quota;
3689 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3690}
3691
029632fb
PZ
3692static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3693{
3694 return &tg->cfs_bandwidth;
3695}
3696
f1b17280
PT
3697/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3698static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3699{
3700 if (unlikely(cfs_rq->throttle_count))
3701 return cfs_rq->throttled_clock_task;
3702
78becc27 3703 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3704}
3705
85dac906
PT
3706/* returns 0 on failure to allocate runtime */
3707static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3708{
3709 struct task_group *tg = cfs_rq->tg;
3710 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3711 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3712
3713 /* note: this is a positive sum as runtime_remaining <= 0 */
3714 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3715
3716 raw_spin_lock(&cfs_b->lock);
3717 if (cfs_b->quota == RUNTIME_INF)
3718 amount = min_amount;
58088ad0 3719 else {
77a4d1a1 3720 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3721
3722 if (cfs_b->runtime > 0) {
3723 amount = min(cfs_b->runtime, min_amount);
3724 cfs_b->runtime -= amount;
3725 cfs_b->idle = 0;
3726 }
ec12cb7f 3727 }
a9cf55b2 3728 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3729 raw_spin_unlock(&cfs_b->lock);
3730
3731 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3732 /*
3733 * we may have advanced our local expiration to account for allowed
3734 * spread between our sched_clock and the one on which runtime was
3735 * issued.
3736 */
3737 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3738 cfs_rq->runtime_expires = expires;
85dac906
PT
3739
3740 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3741}
3742
a9cf55b2
PT
3743/*
3744 * Note: This depends on the synchronization provided by sched_clock and the
3745 * fact that rq->clock snapshots this value.
3746 */
3747static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3748{
a9cf55b2 3749 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3750
3751 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3752 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3753 return;
3754
a9cf55b2
PT
3755 if (cfs_rq->runtime_remaining < 0)
3756 return;
3757
3758 /*
3759 * If the local deadline has passed we have to consider the
3760 * possibility that our sched_clock is 'fast' and the global deadline
3761 * has not truly expired.
3762 *
3763 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3764 * whether the global deadline has advanced. It is valid to compare
3765 * cfs_b->runtime_expires without any locks since we only care about
3766 * exact equality, so a partial write will still work.
a9cf55b2
PT
3767 */
3768
51f2176d 3769 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3770 /* extend local deadline, drift is bounded above by 2 ticks */
3771 cfs_rq->runtime_expires += TICK_NSEC;
3772 } else {
3773 /* global deadline is ahead, expiration has passed */
3774 cfs_rq->runtime_remaining = 0;
3775 }
3776}
3777
9dbdb155 3778static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3779{
3780 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3781 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3782 expire_cfs_rq_runtime(cfs_rq);
3783
3784 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3785 return;
3786
85dac906
PT
3787 /*
3788 * if we're unable to extend our runtime we resched so that the active
3789 * hierarchy can be throttled
3790 */
3791 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3792 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3793}
3794
6c16a6dc 3795static __always_inline
9dbdb155 3796void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3797{
56f570e5 3798 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3799 return;
3800
3801 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3802}
3803
85dac906
PT
3804static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3805{
56f570e5 3806 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3807}
3808
64660c86
PT
3809/* check whether cfs_rq, or any parent, is throttled */
3810static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3811{
56f570e5 3812 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3813}
3814
3815/*
3816 * Ensure that neither of the group entities corresponding to src_cpu or
3817 * dest_cpu are members of a throttled hierarchy when performing group
3818 * load-balance operations.
3819 */
3820static inline int throttled_lb_pair(struct task_group *tg,
3821 int src_cpu, int dest_cpu)
3822{
3823 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3824
3825 src_cfs_rq = tg->cfs_rq[src_cpu];
3826 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3827
3828 return throttled_hierarchy(src_cfs_rq) ||
3829 throttled_hierarchy(dest_cfs_rq);
3830}
3831
3832/* updated child weight may affect parent so we have to do this bottom up */
3833static int tg_unthrottle_up(struct task_group *tg, void *data)
3834{
3835 struct rq *rq = data;
3836 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3837
3838 cfs_rq->throttle_count--;
3839#ifdef CONFIG_SMP
3840 if (!cfs_rq->throttle_count) {
f1b17280 3841 /* adjust cfs_rq_clock_task() */
78becc27 3842 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3843 cfs_rq->throttled_clock_task;
64660c86
PT
3844 }
3845#endif
3846
3847 return 0;
3848}
3849
3850static int tg_throttle_down(struct task_group *tg, void *data)
3851{
3852 struct rq *rq = data;
3853 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3854
82958366
PT
3855 /* group is entering throttled state, stop time */
3856 if (!cfs_rq->throttle_count)
78becc27 3857 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3858 cfs_rq->throttle_count++;
3859
3860 return 0;
3861}
3862
d3d9dc33 3863static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3864{
3865 struct rq *rq = rq_of(cfs_rq);
3866 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3867 struct sched_entity *se;
3868 long task_delta, dequeue = 1;
77a4d1a1 3869 bool empty;
85dac906
PT
3870
3871 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3872
f1b17280 3873 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3874 rcu_read_lock();
3875 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3876 rcu_read_unlock();
85dac906
PT
3877
3878 task_delta = cfs_rq->h_nr_running;
3879 for_each_sched_entity(se) {
3880 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3881 /* throttled entity or throttle-on-deactivate */
3882 if (!se->on_rq)
3883 break;
3884
3885 if (dequeue)
3886 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3887 qcfs_rq->h_nr_running -= task_delta;
3888
3889 if (qcfs_rq->load.weight)
3890 dequeue = 0;
3891 }
3892
3893 if (!se)
72465447 3894 sub_nr_running(rq, task_delta);
85dac906
PT
3895
3896 cfs_rq->throttled = 1;
78becc27 3897 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3898 raw_spin_lock(&cfs_b->lock);
d49db342 3899 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3900
c06f04c7
BS
3901 /*
3902 * Add to the _head_ of the list, so that an already-started
3903 * distribute_cfs_runtime will not see us
3904 */
3905 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3906
3907 /*
3908 * If we're the first throttled task, make sure the bandwidth
3909 * timer is running.
3910 */
3911 if (empty)
3912 start_cfs_bandwidth(cfs_b);
3913
85dac906
PT
3914 raw_spin_unlock(&cfs_b->lock);
3915}
3916
029632fb 3917void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3918{
3919 struct rq *rq = rq_of(cfs_rq);
3920 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3921 struct sched_entity *se;
3922 int enqueue = 1;
3923 long task_delta;
3924
22b958d8 3925 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3926
3927 cfs_rq->throttled = 0;
1a55af2e
FW
3928
3929 update_rq_clock(rq);
3930
671fd9da 3931 raw_spin_lock(&cfs_b->lock);
78becc27 3932 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3933 list_del_rcu(&cfs_rq->throttled_list);
3934 raw_spin_unlock(&cfs_b->lock);
3935
64660c86
PT
3936 /* update hierarchical throttle state */
3937 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3938
671fd9da
PT
3939 if (!cfs_rq->load.weight)
3940 return;
3941
3942 task_delta = cfs_rq->h_nr_running;
3943 for_each_sched_entity(se) {
3944 if (se->on_rq)
3945 enqueue = 0;
3946
3947 cfs_rq = cfs_rq_of(se);
3948 if (enqueue)
3949 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3950 cfs_rq->h_nr_running += task_delta;
3951
3952 if (cfs_rq_throttled(cfs_rq))
3953 break;
3954 }
3955
3956 if (!se)
72465447 3957 add_nr_running(rq, task_delta);
671fd9da
PT
3958
3959 /* determine whether we need to wake up potentially idle cpu */
3960 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3961 resched_curr(rq);
671fd9da
PT
3962}
3963
3964static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3965 u64 remaining, u64 expires)
3966{
3967 struct cfs_rq *cfs_rq;
c06f04c7
BS
3968 u64 runtime;
3969 u64 starting_runtime = remaining;
671fd9da
PT
3970
3971 rcu_read_lock();
3972 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3973 throttled_list) {
3974 struct rq *rq = rq_of(cfs_rq);
3975
3976 raw_spin_lock(&rq->lock);
3977 if (!cfs_rq_throttled(cfs_rq))
3978 goto next;
3979
3980 runtime = -cfs_rq->runtime_remaining + 1;
3981 if (runtime > remaining)
3982 runtime = remaining;
3983 remaining -= runtime;
3984
3985 cfs_rq->runtime_remaining += runtime;
3986 cfs_rq->runtime_expires = expires;
3987
3988 /* we check whether we're throttled above */
3989 if (cfs_rq->runtime_remaining > 0)
3990 unthrottle_cfs_rq(cfs_rq);
3991
3992next:
3993 raw_spin_unlock(&rq->lock);
3994
3995 if (!remaining)
3996 break;
3997 }
3998 rcu_read_unlock();
3999
c06f04c7 4000 return starting_runtime - remaining;
671fd9da
PT
4001}
4002
58088ad0
PT
4003/*
4004 * Responsible for refilling a task_group's bandwidth and unthrottling its
4005 * cfs_rqs as appropriate. If there has been no activity within the last
4006 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4007 * used to track this state.
4008 */
4009static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4010{
671fd9da 4011 u64 runtime, runtime_expires;
51f2176d 4012 int throttled;
58088ad0 4013
58088ad0
PT
4014 /* no need to continue the timer with no bandwidth constraint */
4015 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4016 goto out_deactivate;
58088ad0 4017
671fd9da 4018 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4019 cfs_b->nr_periods += overrun;
671fd9da 4020
51f2176d
BS
4021 /*
4022 * idle depends on !throttled (for the case of a large deficit), and if
4023 * we're going inactive then everything else can be deferred
4024 */
4025 if (cfs_b->idle && !throttled)
4026 goto out_deactivate;
a9cf55b2
PT
4027
4028 __refill_cfs_bandwidth_runtime(cfs_b);
4029
671fd9da
PT
4030 if (!throttled) {
4031 /* mark as potentially idle for the upcoming period */
4032 cfs_b->idle = 1;
51f2176d 4033 return 0;
671fd9da
PT
4034 }
4035
e8da1b18
NR
4036 /* account preceding periods in which throttling occurred */
4037 cfs_b->nr_throttled += overrun;
4038
671fd9da 4039 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4040
4041 /*
c06f04c7
BS
4042 * This check is repeated as we are holding onto the new bandwidth while
4043 * we unthrottle. This can potentially race with an unthrottled group
4044 * trying to acquire new bandwidth from the global pool. This can result
4045 * in us over-using our runtime if it is all used during this loop, but
4046 * only by limited amounts in that extreme case.
671fd9da 4047 */
c06f04c7
BS
4048 while (throttled && cfs_b->runtime > 0) {
4049 runtime = cfs_b->runtime;
671fd9da
PT
4050 raw_spin_unlock(&cfs_b->lock);
4051 /* we can't nest cfs_b->lock while distributing bandwidth */
4052 runtime = distribute_cfs_runtime(cfs_b, runtime,
4053 runtime_expires);
4054 raw_spin_lock(&cfs_b->lock);
4055
4056 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4057
4058 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4059 }
58088ad0 4060
671fd9da
PT
4061 /*
4062 * While we are ensured activity in the period following an
4063 * unthrottle, this also covers the case in which the new bandwidth is
4064 * insufficient to cover the existing bandwidth deficit. (Forcing the
4065 * timer to remain active while there are any throttled entities.)
4066 */
4067 cfs_b->idle = 0;
58088ad0 4068
51f2176d
BS
4069 return 0;
4070
4071out_deactivate:
51f2176d 4072 return 1;
58088ad0 4073}
d3d9dc33 4074
d8b4986d
PT
4075/* a cfs_rq won't donate quota below this amount */
4076static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4077/* minimum remaining period time to redistribute slack quota */
4078static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4079/* how long we wait to gather additional slack before distributing */
4080static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4081
db06e78c
BS
4082/*
4083 * Are we near the end of the current quota period?
4084 *
4085 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4086 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4087 * migrate_hrtimers, base is never cleared, so we are fine.
4088 */
d8b4986d
PT
4089static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4090{
4091 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4092 u64 remaining;
4093
4094 /* if the call-back is running a quota refresh is already occurring */
4095 if (hrtimer_callback_running(refresh_timer))
4096 return 1;
4097
4098 /* is a quota refresh about to occur? */
4099 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4100 if (remaining < min_expire)
4101 return 1;
4102
4103 return 0;
4104}
4105
4106static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4107{
4108 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4109
4110 /* if there's a quota refresh soon don't bother with slack */
4111 if (runtime_refresh_within(cfs_b, min_left))
4112 return;
4113
4cfafd30
PZ
4114 hrtimer_start(&cfs_b->slack_timer,
4115 ns_to_ktime(cfs_bandwidth_slack_period),
4116 HRTIMER_MODE_REL);
d8b4986d
PT
4117}
4118
4119/* we know any runtime found here is valid as update_curr() precedes return */
4120static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4121{
4122 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4123 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4124
4125 if (slack_runtime <= 0)
4126 return;
4127
4128 raw_spin_lock(&cfs_b->lock);
4129 if (cfs_b->quota != RUNTIME_INF &&
4130 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4131 cfs_b->runtime += slack_runtime;
4132
4133 /* we are under rq->lock, defer unthrottling using a timer */
4134 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4135 !list_empty(&cfs_b->throttled_cfs_rq))
4136 start_cfs_slack_bandwidth(cfs_b);
4137 }
4138 raw_spin_unlock(&cfs_b->lock);
4139
4140 /* even if it's not valid for return we don't want to try again */
4141 cfs_rq->runtime_remaining -= slack_runtime;
4142}
4143
4144static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4145{
56f570e5
PT
4146 if (!cfs_bandwidth_used())
4147 return;
4148
fccfdc6f 4149 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4150 return;
4151
4152 __return_cfs_rq_runtime(cfs_rq);
4153}
4154
4155/*
4156 * This is done with a timer (instead of inline with bandwidth return) since
4157 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4158 */
4159static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4160{
4161 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4162 u64 expires;
4163
4164 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4165 raw_spin_lock(&cfs_b->lock);
4166 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4167 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4168 return;
db06e78c 4169 }
d8b4986d 4170
c06f04c7 4171 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4172 runtime = cfs_b->runtime;
c06f04c7 4173
d8b4986d
PT
4174 expires = cfs_b->runtime_expires;
4175 raw_spin_unlock(&cfs_b->lock);
4176
4177 if (!runtime)
4178 return;
4179
4180 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4181
4182 raw_spin_lock(&cfs_b->lock);
4183 if (expires == cfs_b->runtime_expires)
c06f04c7 4184 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4185 raw_spin_unlock(&cfs_b->lock);
4186}
4187
d3d9dc33
PT
4188/*
4189 * When a group wakes up we want to make sure that its quota is not already
4190 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4191 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4192 */
4193static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4194{
56f570e5
PT
4195 if (!cfs_bandwidth_used())
4196 return;
4197
094f4691
KK
4198 /* Synchronize hierarchical throttle counter: */
4199 if (unlikely(!cfs_rq->throttle_uptodate)) {
4200 struct rq *rq = rq_of(cfs_rq);
4201 struct cfs_rq *pcfs_rq;
4202 struct task_group *tg;
4203
4204 cfs_rq->throttle_uptodate = 1;
4205
4206 /* Get closest up-to-date node, because leaves go first: */
4207 for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
4208 pcfs_rq = tg->cfs_rq[cpu_of(rq)];
4209 if (pcfs_rq->throttle_uptodate)
4210 break;
4211 }
4212 if (tg) {
4213 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4214 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4215 }
4216 }
4217
d3d9dc33
PT
4218 /* an active group must be handled by the update_curr()->put() path */
4219 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4220 return;
4221
4222 /* ensure the group is not already throttled */
4223 if (cfs_rq_throttled(cfs_rq))
4224 return;
4225
4226 /* update runtime allocation */
4227 account_cfs_rq_runtime(cfs_rq, 0);
4228 if (cfs_rq->runtime_remaining <= 0)
4229 throttle_cfs_rq(cfs_rq);
4230}
4231
4232/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4233static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4234{
56f570e5 4235 if (!cfs_bandwidth_used())
678d5718 4236 return false;
56f570e5 4237
d3d9dc33 4238 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4239 return false;
d3d9dc33
PT
4240
4241 /*
4242 * it's possible for a throttled entity to be forced into a running
4243 * state (e.g. set_curr_task), in this case we're finished.
4244 */
4245 if (cfs_rq_throttled(cfs_rq))
678d5718 4246 return true;
d3d9dc33
PT
4247
4248 throttle_cfs_rq(cfs_rq);
678d5718 4249 return true;
d3d9dc33 4250}
029632fb 4251
029632fb
PZ
4252static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4253{
4254 struct cfs_bandwidth *cfs_b =
4255 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4256
029632fb
PZ
4257 do_sched_cfs_slack_timer(cfs_b);
4258
4259 return HRTIMER_NORESTART;
4260}
4261
4262static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4263{
4264 struct cfs_bandwidth *cfs_b =
4265 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4266 int overrun;
4267 int idle = 0;
4268
51f2176d 4269 raw_spin_lock(&cfs_b->lock);
029632fb 4270 for (;;) {
77a4d1a1 4271 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4272 if (!overrun)
4273 break;
4274
4275 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4276 }
4cfafd30
PZ
4277 if (idle)
4278 cfs_b->period_active = 0;
51f2176d 4279 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4280
4281 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4282}
4283
4284void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4285{
4286 raw_spin_lock_init(&cfs_b->lock);
4287 cfs_b->runtime = 0;
4288 cfs_b->quota = RUNTIME_INF;
4289 cfs_b->period = ns_to_ktime(default_cfs_period());
4290
4291 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4292 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4293 cfs_b->period_timer.function = sched_cfs_period_timer;
4294 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4295 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4296}
4297
4298static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4299{
4300 cfs_rq->runtime_enabled = 0;
4301 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4302}
4303
77a4d1a1 4304void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4305{
4cfafd30 4306 lockdep_assert_held(&cfs_b->lock);
029632fb 4307
4cfafd30
PZ
4308 if (!cfs_b->period_active) {
4309 cfs_b->period_active = 1;
4310 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4311 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4312 }
029632fb
PZ
4313}
4314
4315static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4316{
7f1a169b
TH
4317 /* init_cfs_bandwidth() was not called */
4318 if (!cfs_b->throttled_cfs_rq.next)
4319 return;
4320
029632fb
PZ
4321 hrtimer_cancel(&cfs_b->period_timer);
4322 hrtimer_cancel(&cfs_b->slack_timer);
4323}
4324
0e59bdae
KT
4325static void __maybe_unused update_runtime_enabled(struct rq *rq)
4326{
4327 struct cfs_rq *cfs_rq;
4328
4329 for_each_leaf_cfs_rq(rq, cfs_rq) {
4330 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4331
4332 raw_spin_lock(&cfs_b->lock);
4333 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4334 raw_spin_unlock(&cfs_b->lock);
4335 }
4336}
4337
38dc3348 4338static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4339{
4340 struct cfs_rq *cfs_rq;
4341
4342 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4343 if (!cfs_rq->runtime_enabled)
4344 continue;
4345
4346 /*
4347 * clock_task is not advancing so we just need to make sure
4348 * there's some valid quota amount
4349 */
51f2176d 4350 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4351 /*
4352 * Offline rq is schedulable till cpu is completely disabled
4353 * in take_cpu_down(), so we prevent new cfs throttling here.
4354 */
4355 cfs_rq->runtime_enabled = 0;
4356
029632fb
PZ
4357 if (cfs_rq_throttled(cfs_rq))
4358 unthrottle_cfs_rq(cfs_rq);
4359 }
4360}
4361
4362#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4363static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4364{
78becc27 4365 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4366}
4367
9dbdb155 4368static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4369static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4370static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4371static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4372
4373static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4374{
4375 return 0;
4376}
64660c86
PT
4377
4378static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4379{
4380 return 0;
4381}
4382
4383static inline int throttled_lb_pair(struct task_group *tg,
4384 int src_cpu, int dest_cpu)
4385{
4386 return 0;
4387}
029632fb
PZ
4388
4389void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4390
4391#ifdef CONFIG_FAIR_GROUP_SCHED
4392static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4393#endif
4394
029632fb
PZ
4395static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4396{
4397 return NULL;
4398}
4399static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4400static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4401static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4402
4403#endif /* CONFIG_CFS_BANDWIDTH */
4404
bf0f6f24
IM
4405/**************************************************
4406 * CFS operations on tasks:
4407 */
4408
8f4d37ec
PZ
4409#ifdef CONFIG_SCHED_HRTICK
4410static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4411{
8f4d37ec
PZ
4412 struct sched_entity *se = &p->se;
4413 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4414
4415 WARN_ON(task_rq(p) != rq);
4416
b39e66ea 4417 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4418 u64 slice = sched_slice(cfs_rq, se);
4419 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4420 s64 delta = slice - ran;
4421
4422 if (delta < 0) {
4423 if (rq->curr == p)
8875125e 4424 resched_curr(rq);
8f4d37ec
PZ
4425 return;
4426 }
31656519 4427 hrtick_start(rq, delta);
8f4d37ec
PZ
4428 }
4429}
a4c2f00f
PZ
4430
4431/*
4432 * called from enqueue/dequeue and updates the hrtick when the
4433 * current task is from our class and nr_running is low enough
4434 * to matter.
4435 */
4436static void hrtick_update(struct rq *rq)
4437{
4438 struct task_struct *curr = rq->curr;
4439
b39e66ea 4440 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4441 return;
4442
4443 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4444 hrtick_start_fair(rq, curr);
4445}
55e12e5e 4446#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4447static inline void
4448hrtick_start_fair(struct rq *rq, struct task_struct *p)
4449{
4450}
a4c2f00f
PZ
4451
4452static inline void hrtick_update(struct rq *rq)
4453{
4454}
8f4d37ec
PZ
4455#endif
4456
bf0f6f24
IM
4457/*
4458 * The enqueue_task method is called before nr_running is
4459 * increased. Here we update the fair scheduling stats and
4460 * then put the task into the rbtree:
4461 */
ea87bb78 4462static void
371fd7e7 4463enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4464{
4465 struct cfs_rq *cfs_rq;
62fb1851 4466 struct sched_entity *se = &p->se;
bf0f6f24
IM
4467
4468 for_each_sched_entity(se) {
62fb1851 4469 if (se->on_rq)
bf0f6f24
IM
4470 break;
4471 cfs_rq = cfs_rq_of(se);
88ec22d3 4472 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4473
4474 /*
4475 * end evaluation on encountering a throttled cfs_rq
4476 *
4477 * note: in the case of encountering a throttled cfs_rq we will
4478 * post the final h_nr_running increment below.
4479 */
4480 if (cfs_rq_throttled(cfs_rq))
4481 break;
953bfcd1 4482 cfs_rq->h_nr_running++;
85dac906 4483
88ec22d3 4484 flags = ENQUEUE_WAKEUP;
bf0f6f24 4485 }
8f4d37ec 4486
2069dd75 4487 for_each_sched_entity(se) {
0f317143 4488 cfs_rq = cfs_rq_of(se);
953bfcd1 4489 cfs_rq->h_nr_running++;
2069dd75 4490
85dac906
PT
4491 if (cfs_rq_throttled(cfs_rq))
4492 break;
4493
9d89c257 4494 update_load_avg(se, 1);
17bc14b7 4495 update_cfs_shares(cfs_rq);
2069dd75
PZ
4496 }
4497
cd126afe 4498 if (!se)
72465447 4499 add_nr_running(rq, 1);
cd126afe 4500
a4c2f00f 4501 hrtick_update(rq);
bf0f6f24
IM
4502}
4503
2f36825b
VP
4504static void set_next_buddy(struct sched_entity *se);
4505
bf0f6f24
IM
4506/*
4507 * The dequeue_task method is called before nr_running is
4508 * decreased. We remove the task from the rbtree and
4509 * update the fair scheduling stats:
4510 */
371fd7e7 4511static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4512{
4513 struct cfs_rq *cfs_rq;
62fb1851 4514 struct sched_entity *se = &p->se;
2f36825b 4515 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4516
4517 for_each_sched_entity(se) {
4518 cfs_rq = cfs_rq_of(se);
371fd7e7 4519 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4520
4521 /*
4522 * end evaluation on encountering a throttled cfs_rq
4523 *
4524 * note: in the case of encountering a throttled cfs_rq we will
4525 * post the final h_nr_running decrement below.
4526 */
4527 if (cfs_rq_throttled(cfs_rq))
4528 break;
953bfcd1 4529 cfs_rq->h_nr_running--;
2069dd75 4530
bf0f6f24 4531 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4532 if (cfs_rq->load.weight) {
754bd598
KK
4533 /* Avoid re-evaluating load for this entity: */
4534 se = parent_entity(se);
2f36825b
VP
4535 /*
4536 * Bias pick_next to pick a task from this cfs_rq, as
4537 * p is sleeping when it is within its sched_slice.
4538 */
754bd598
KK
4539 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4540 set_next_buddy(se);
bf0f6f24 4541 break;
2f36825b 4542 }
371fd7e7 4543 flags |= DEQUEUE_SLEEP;
bf0f6f24 4544 }
8f4d37ec 4545
2069dd75 4546 for_each_sched_entity(se) {
0f317143 4547 cfs_rq = cfs_rq_of(se);
953bfcd1 4548 cfs_rq->h_nr_running--;
2069dd75 4549
85dac906
PT
4550 if (cfs_rq_throttled(cfs_rq))
4551 break;
4552
9d89c257 4553 update_load_avg(se, 1);
17bc14b7 4554 update_cfs_shares(cfs_rq);
2069dd75
PZ
4555 }
4556
cd126afe 4557 if (!se)
72465447 4558 sub_nr_running(rq, 1);
cd126afe 4559
a4c2f00f 4560 hrtick_update(rq);
bf0f6f24
IM
4561}
4562
e7693a36 4563#ifdef CONFIG_SMP
9fd81dd5 4564#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4565/*
4566 * per rq 'load' arrray crap; XXX kill this.
4567 */
4568
4569/*
d937cdc5 4570 * The exact cpuload calculated at every tick would be:
3289bdb4 4571 *
d937cdc5
PZ
4572 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4573 *
4574 * If a cpu misses updates for n ticks (as it was idle) and update gets
4575 * called on the n+1-th tick when cpu may be busy, then we have:
4576 *
4577 * load_n = (1 - 1/2^i)^n * load_0
4578 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4579 *
4580 * decay_load_missed() below does efficient calculation of
3289bdb4 4581 *
d937cdc5
PZ
4582 * load' = (1 - 1/2^i)^n * load
4583 *
4584 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4585 * This allows us to precompute the above in said factors, thereby allowing the
4586 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4587 * fixed_power_int())
3289bdb4 4588 *
d937cdc5 4589 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4590 */
4591#define DEGRADE_SHIFT 7
d937cdc5
PZ
4592
4593static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4594static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4595 { 0, 0, 0, 0, 0, 0, 0, 0 },
4596 { 64, 32, 8, 0, 0, 0, 0, 0 },
4597 { 96, 72, 40, 12, 1, 0, 0, 0 },
4598 { 112, 98, 75, 43, 15, 1, 0, 0 },
4599 { 120, 112, 98, 76, 45, 16, 2, 0 }
4600};
3289bdb4
PZ
4601
4602/*
4603 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4604 * would be when CPU is idle and so we just decay the old load without
4605 * adding any new load.
4606 */
4607static unsigned long
4608decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4609{
4610 int j = 0;
4611
4612 if (!missed_updates)
4613 return load;
4614
4615 if (missed_updates >= degrade_zero_ticks[idx])
4616 return 0;
4617
4618 if (idx == 1)
4619 return load >> missed_updates;
4620
4621 while (missed_updates) {
4622 if (missed_updates % 2)
4623 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4624
4625 missed_updates >>= 1;
4626 j++;
4627 }
4628 return load;
4629}
9fd81dd5 4630#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4631
59543275 4632/**
cee1afce 4633 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4634 * @this_rq: The rq to update statistics for
4635 * @this_load: The current load
4636 * @pending_updates: The number of missed updates
59543275 4637 *
3289bdb4 4638 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4639 * scheduler tick (TICK_NSEC).
4640 *
4641 * This function computes a decaying average:
4642 *
4643 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4644 *
4645 * Because of NOHZ it might not get called on every tick which gives need for
4646 * the @pending_updates argument.
4647 *
4648 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4649 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4650 * = A * (A * load[i]_n-2 + B) + B
4651 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4652 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4653 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4654 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4655 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4656 *
4657 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4658 * any change in load would have resulted in the tick being turned back on.
4659 *
4660 * For regular NOHZ, this reduces to:
4661 *
4662 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4663 *
4664 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4665 * term.
3289bdb4 4666 */
1f41906a
FW
4667static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4668 unsigned long pending_updates)
3289bdb4 4669{
9fd81dd5 4670 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4671 int i, scale;
4672
4673 this_rq->nr_load_updates++;
4674
4675 /* Update our load: */
4676 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4677 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4678 unsigned long old_load, new_load;
4679
4680 /* scale is effectively 1 << i now, and >> i divides by scale */
4681
7400d3bb 4682 old_load = this_rq->cpu_load[i];
9fd81dd5 4683#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4684 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4685 if (tickless_load) {
4686 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4687 /*
4688 * old_load can never be a negative value because a
4689 * decayed tickless_load cannot be greater than the
4690 * original tickless_load.
4691 */
4692 old_load += tickless_load;
4693 }
9fd81dd5 4694#endif
3289bdb4
PZ
4695 new_load = this_load;
4696 /*
4697 * Round up the averaging division if load is increasing. This
4698 * prevents us from getting stuck on 9 if the load is 10, for
4699 * example.
4700 */
4701 if (new_load > old_load)
4702 new_load += scale - 1;
4703
4704 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4705 }
4706
4707 sched_avg_update(this_rq);
4708}
4709
7ea241af
YD
4710/* Used instead of source_load when we know the type == 0 */
4711static unsigned long weighted_cpuload(const int cpu)
4712{
4713 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4714}
4715
3289bdb4 4716#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4717/*
4718 * There is no sane way to deal with nohz on smp when using jiffies because the
4719 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4720 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4721 *
4722 * Therefore we need to avoid the delta approach from the regular tick when
4723 * possible since that would seriously skew the load calculation. This is why we
4724 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4725 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4726 * loop exit, nohz_idle_balance, nohz full exit...)
4727 *
4728 * This means we might still be one tick off for nohz periods.
4729 */
4730
4731static void cpu_load_update_nohz(struct rq *this_rq,
4732 unsigned long curr_jiffies,
4733 unsigned long load)
be68a682
FW
4734{
4735 unsigned long pending_updates;
4736
4737 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4738 if (pending_updates) {
4739 this_rq->last_load_update_tick = curr_jiffies;
4740 /*
4741 * In the regular NOHZ case, we were idle, this means load 0.
4742 * In the NOHZ_FULL case, we were non-idle, we should consider
4743 * its weighted load.
4744 */
1f41906a 4745 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4746 }
4747}
4748
3289bdb4
PZ
4749/*
4750 * Called from nohz_idle_balance() to update the load ratings before doing the
4751 * idle balance.
4752 */
cee1afce 4753static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4754{
3289bdb4
PZ
4755 /*
4756 * bail if there's load or we're actually up-to-date.
4757 */
be68a682 4758 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4759 return;
4760
1f41906a 4761 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4762}
4763
4764/*
1f41906a
FW
4765 * Record CPU load on nohz entry so we know the tickless load to account
4766 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4767 * than other cpu_load[idx] but it should be fine as cpu_load readers
4768 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4769 */
1f41906a 4770void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4771{
4772 struct rq *this_rq = this_rq();
1f41906a
FW
4773
4774 /*
4775 * This is all lockless but should be fine. If weighted_cpuload changes
4776 * concurrently we'll exit nohz. And cpu_load write can race with
4777 * cpu_load_update_idle() but both updater would be writing the same.
4778 */
4779 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4780}
4781
4782/*
4783 * Account the tickless load in the end of a nohz frame.
4784 */
4785void cpu_load_update_nohz_stop(void)
4786{
316c1608 4787 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4788 struct rq *this_rq = this_rq();
4789 unsigned long load;
3289bdb4
PZ
4790
4791 if (curr_jiffies == this_rq->last_load_update_tick)
4792 return;
4793
1f41906a 4794 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4795 raw_spin_lock(&this_rq->lock);
b52fad2d 4796 update_rq_clock(this_rq);
1f41906a 4797 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4798 raw_spin_unlock(&this_rq->lock);
4799}
1f41906a
FW
4800#else /* !CONFIG_NO_HZ_COMMON */
4801static inline void cpu_load_update_nohz(struct rq *this_rq,
4802 unsigned long curr_jiffies,
4803 unsigned long load) { }
4804#endif /* CONFIG_NO_HZ_COMMON */
4805
4806static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4807{
9fd81dd5 4808#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4809 /* See the mess around cpu_load_update_nohz(). */
4810 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4811#endif
1f41906a
FW
4812 cpu_load_update(this_rq, load, 1);
4813}
3289bdb4
PZ
4814
4815/*
4816 * Called from scheduler_tick()
4817 */
cee1afce 4818void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4819{
7ea241af 4820 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4821
4822 if (tick_nohz_tick_stopped())
4823 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4824 else
4825 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4826}
4827
029632fb
PZ
4828/*
4829 * Return a low guess at the load of a migration-source cpu weighted
4830 * according to the scheduling class and "nice" value.
4831 *
4832 * We want to under-estimate the load of migration sources, to
4833 * balance conservatively.
4834 */
4835static unsigned long source_load(int cpu, int type)
4836{
4837 struct rq *rq = cpu_rq(cpu);
4838 unsigned long total = weighted_cpuload(cpu);
4839
4840 if (type == 0 || !sched_feat(LB_BIAS))
4841 return total;
4842
4843 return min(rq->cpu_load[type-1], total);
4844}
4845
4846/*
4847 * Return a high guess at the load of a migration-target cpu weighted
4848 * according to the scheduling class and "nice" value.
4849 */
4850static unsigned long target_load(int cpu, int type)
4851{
4852 struct rq *rq = cpu_rq(cpu);
4853 unsigned long total = weighted_cpuload(cpu);
4854
4855 if (type == 0 || !sched_feat(LB_BIAS))
4856 return total;
4857
4858 return max(rq->cpu_load[type-1], total);
4859}
4860
ced549fa 4861static unsigned long capacity_of(int cpu)
029632fb 4862{
ced549fa 4863 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4864}
4865
ca6d75e6
VG
4866static unsigned long capacity_orig_of(int cpu)
4867{
4868 return cpu_rq(cpu)->cpu_capacity_orig;
4869}
4870
029632fb
PZ
4871static unsigned long cpu_avg_load_per_task(int cpu)
4872{
4873 struct rq *rq = cpu_rq(cpu);
316c1608 4874 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4875 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4876
4877 if (nr_running)
b92486cb 4878 return load_avg / nr_running;
029632fb
PZ
4879
4880 return 0;
4881}
4882
bb3469ac 4883#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4884/*
4885 * effective_load() calculates the load change as seen from the root_task_group
4886 *
4887 * Adding load to a group doesn't make a group heavier, but can cause movement
4888 * of group shares between cpus. Assuming the shares were perfectly aligned one
4889 * can calculate the shift in shares.
cf5f0acf
PZ
4890 *
4891 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4892 * on this @cpu and results in a total addition (subtraction) of @wg to the
4893 * total group weight.
4894 *
4895 * Given a runqueue weight distribution (rw_i) we can compute a shares
4896 * distribution (s_i) using:
4897 *
4898 * s_i = rw_i / \Sum rw_j (1)
4899 *
4900 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4901 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4902 * shares distribution (s_i):
4903 *
4904 * rw_i = { 2, 4, 1, 0 }
4905 * s_i = { 2/7, 4/7, 1/7, 0 }
4906 *
4907 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4908 * task used to run on and the CPU the waker is running on), we need to
4909 * compute the effect of waking a task on either CPU and, in case of a sync
4910 * wakeup, compute the effect of the current task going to sleep.
4911 *
4912 * So for a change of @wl to the local @cpu with an overall group weight change
4913 * of @wl we can compute the new shares distribution (s'_i) using:
4914 *
4915 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4916 *
4917 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4918 * differences in waking a task to CPU 0. The additional task changes the
4919 * weight and shares distributions like:
4920 *
4921 * rw'_i = { 3, 4, 1, 0 }
4922 * s'_i = { 3/8, 4/8, 1/8, 0 }
4923 *
4924 * We can then compute the difference in effective weight by using:
4925 *
4926 * dw_i = S * (s'_i - s_i) (3)
4927 *
4928 * Where 'S' is the group weight as seen by its parent.
4929 *
4930 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4931 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4932 * 4/7) times the weight of the group.
f5bfb7d9 4933 */
2069dd75 4934static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4935{
4be9daaa 4936 struct sched_entity *se = tg->se[cpu];
f1d239f7 4937
9722c2da 4938 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4939 return wl;
4940
4be9daaa 4941 for_each_sched_entity(se) {
7dd49125
PZ
4942 struct cfs_rq *cfs_rq = se->my_q;
4943 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 4944
7dd49125 4945 tg = cfs_rq->tg;
bb3469ac 4946
cf5f0acf
PZ
4947 /*
4948 * W = @wg + \Sum rw_j
4949 */
7dd49125
PZ
4950 W = wg + atomic_long_read(&tg->load_avg);
4951
4952 /* Ensure \Sum rw_j >= rw_i */
4953 W -= cfs_rq->tg_load_avg_contrib;
4954 W += w;
4be9daaa 4955
cf5f0acf
PZ
4956 /*
4957 * w = rw_i + @wl
4958 */
7dd49125 4959 w += wl;
940959e9 4960
cf5f0acf
PZ
4961 /*
4962 * wl = S * s'_i; see (2)
4963 */
4964 if (W > 0 && w < W)
32a8df4e 4965 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4966 else
4967 wl = tg->shares;
940959e9 4968
cf5f0acf
PZ
4969 /*
4970 * Per the above, wl is the new se->load.weight value; since
4971 * those are clipped to [MIN_SHARES, ...) do so now. See
4972 * calc_cfs_shares().
4973 */
977dda7c
PT
4974 if (wl < MIN_SHARES)
4975 wl = MIN_SHARES;
cf5f0acf
PZ
4976
4977 /*
4978 * wl = dw_i = S * (s'_i - s_i); see (3)
4979 */
9d89c257 4980 wl -= se->avg.load_avg;
cf5f0acf
PZ
4981
4982 /*
4983 * Recursively apply this logic to all parent groups to compute
4984 * the final effective load change on the root group. Since
4985 * only the @tg group gets extra weight, all parent groups can
4986 * only redistribute existing shares. @wl is the shift in shares
4987 * resulting from this level per the above.
4988 */
4be9daaa 4989 wg = 0;
4be9daaa 4990 }
bb3469ac 4991
4be9daaa 4992 return wl;
bb3469ac
PZ
4993}
4994#else
4be9daaa 4995
58d081b5 4996static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4997{
83378269 4998 return wl;
bb3469ac 4999}
4be9daaa 5000
bb3469ac
PZ
5001#endif
5002
c58d25f3
PZ
5003static void record_wakee(struct task_struct *p)
5004{
5005 /*
5006 * Only decay a single time; tasks that have less then 1 wakeup per
5007 * jiffy will not have built up many flips.
5008 */
5009 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5010 current->wakee_flips >>= 1;
5011 current->wakee_flip_decay_ts = jiffies;
5012 }
5013
5014 if (current->last_wakee != p) {
5015 current->last_wakee = p;
5016 current->wakee_flips++;
5017 }
5018}
5019
63b0e9ed
MG
5020/*
5021 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5022 *
63b0e9ed 5023 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5024 * at a frequency roughly N times higher than one of its wakees.
5025 *
5026 * In order to determine whether we should let the load spread vs consolidating
5027 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5028 * partner, and a factor of lls_size higher frequency in the other.
5029 *
5030 * With both conditions met, we can be relatively sure that the relationship is
5031 * non-monogamous, with partner count exceeding socket size.
5032 *
5033 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5034 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5035 * socket size.
63b0e9ed 5036 */
62470419
MW
5037static int wake_wide(struct task_struct *p)
5038{
63b0e9ed
MG
5039 unsigned int master = current->wakee_flips;
5040 unsigned int slave = p->wakee_flips;
7d9ffa89 5041 int factor = this_cpu_read(sd_llc_size);
62470419 5042
63b0e9ed
MG
5043 if (master < slave)
5044 swap(master, slave);
5045 if (slave < factor || master < slave * factor)
5046 return 0;
5047 return 1;
62470419
MW
5048}
5049
c88d5910 5050static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 5051{
e37b6a7b 5052 s64 this_load, load;
bd61c98f 5053 s64 this_eff_load, prev_eff_load;
c88d5910 5054 int idx, this_cpu, prev_cpu;
c88d5910 5055 struct task_group *tg;
83378269 5056 unsigned long weight;
b3137bc8 5057 int balanced;
098fb9db 5058
c88d5910
PZ
5059 idx = sd->wake_idx;
5060 this_cpu = smp_processor_id();
5061 prev_cpu = task_cpu(p);
5062 load = source_load(prev_cpu, idx);
5063 this_load = target_load(this_cpu, idx);
098fb9db 5064
b3137bc8
MG
5065 /*
5066 * If sync wakeup then subtract the (maximum possible)
5067 * effect of the currently running task from the load
5068 * of the current CPU:
5069 */
83378269
PZ
5070 if (sync) {
5071 tg = task_group(current);
9d89c257 5072 weight = current->se.avg.load_avg;
83378269 5073
c88d5910 5074 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5075 load += effective_load(tg, prev_cpu, 0, -weight);
5076 }
b3137bc8 5077
83378269 5078 tg = task_group(p);
9d89c257 5079 weight = p->se.avg.load_avg;
b3137bc8 5080
71a29aa7
PZ
5081 /*
5082 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5083 * due to the sync cause above having dropped this_load to 0, we'll
5084 * always have an imbalance, but there's really nothing you can do
5085 * about that, so that's good too.
71a29aa7
PZ
5086 *
5087 * Otherwise check if either cpus are near enough in load to allow this
5088 * task to be woken on this_cpu.
5089 */
bd61c98f
VG
5090 this_eff_load = 100;
5091 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5092
bd61c98f
VG
5093 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5094 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5095
bd61c98f 5096 if (this_load > 0) {
e51fd5e2
PZ
5097 this_eff_load *= this_load +
5098 effective_load(tg, this_cpu, weight, weight);
5099
e51fd5e2 5100 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5101 }
e51fd5e2 5102
bd61c98f 5103 balanced = this_eff_load <= prev_eff_load;
098fb9db 5104
41acab88 5105 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5106
05bfb65f
VG
5107 if (!balanced)
5108 return 0;
098fb9db 5109
05bfb65f
VG
5110 schedstat_inc(sd, ttwu_move_affine);
5111 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5112
5113 return 1;
098fb9db
IM
5114}
5115
aaee1203
PZ
5116/*
5117 * find_idlest_group finds and returns the least busy CPU group within the
5118 * domain.
5119 */
5120static struct sched_group *
78e7ed53 5121find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5122 int this_cpu, int sd_flag)
e7693a36 5123{
b3bd3de6 5124 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5125 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5126 int load_idx = sd->forkexec_idx;
aaee1203 5127 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5128
c44f2a02
VG
5129 if (sd_flag & SD_BALANCE_WAKE)
5130 load_idx = sd->wake_idx;
5131
aaee1203
PZ
5132 do {
5133 unsigned long load, avg_load;
5134 int local_group;
5135 int i;
e7693a36 5136
aaee1203
PZ
5137 /* Skip over this group if it has no CPUs allowed */
5138 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5139 tsk_cpus_allowed(p)))
aaee1203
PZ
5140 continue;
5141
5142 local_group = cpumask_test_cpu(this_cpu,
5143 sched_group_cpus(group));
5144
5145 /* Tally up the load of all CPUs in the group */
5146 avg_load = 0;
5147
5148 for_each_cpu(i, sched_group_cpus(group)) {
5149 /* Bias balancing toward cpus of our domain */
5150 if (local_group)
5151 load = source_load(i, load_idx);
5152 else
5153 load = target_load(i, load_idx);
5154
5155 avg_load += load;
5156 }
5157
63b2ca30 5158 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5159 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5160
5161 if (local_group) {
5162 this_load = avg_load;
aaee1203
PZ
5163 } else if (avg_load < min_load) {
5164 min_load = avg_load;
5165 idlest = group;
5166 }
5167 } while (group = group->next, group != sd->groups);
5168
5169 if (!idlest || 100*this_load < imbalance*min_load)
5170 return NULL;
5171 return idlest;
5172}
5173
5174/*
5175 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5176 */
5177static int
5178find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5179{
5180 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5181 unsigned int min_exit_latency = UINT_MAX;
5182 u64 latest_idle_timestamp = 0;
5183 int least_loaded_cpu = this_cpu;
5184 int shallowest_idle_cpu = -1;
aaee1203
PZ
5185 int i;
5186
5187 /* Traverse only the allowed CPUs */
fa17b507 5188 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5189 if (idle_cpu(i)) {
5190 struct rq *rq = cpu_rq(i);
5191 struct cpuidle_state *idle = idle_get_state(rq);
5192 if (idle && idle->exit_latency < min_exit_latency) {
5193 /*
5194 * We give priority to a CPU whose idle state
5195 * has the smallest exit latency irrespective
5196 * of any idle timestamp.
5197 */
5198 min_exit_latency = idle->exit_latency;
5199 latest_idle_timestamp = rq->idle_stamp;
5200 shallowest_idle_cpu = i;
5201 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5202 rq->idle_stamp > latest_idle_timestamp) {
5203 /*
5204 * If equal or no active idle state, then
5205 * the most recently idled CPU might have
5206 * a warmer cache.
5207 */
5208 latest_idle_timestamp = rq->idle_stamp;
5209 shallowest_idle_cpu = i;
5210 }
9f96742a 5211 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5212 load = weighted_cpuload(i);
5213 if (load < min_load || (load == min_load && i == this_cpu)) {
5214 min_load = load;
5215 least_loaded_cpu = i;
5216 }
e7693a36
GH
5217 }
5218 }
5219
83a0a96a 5220 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5221}
e7693a36 5222
a50bde51
PZ
5223/*
5224 * Try and locate an idle CPU in the sched_domain.
5225 */
99bd5e2f 5226static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5227{
99bd5e2f 5228 struct sched_domain *sd;
37407ea7 5229 struct sched_group *sg;
e0a79f52 5230 int i = task_cpu(p);
a50bde51 5231
e0a79f52
MG
5232 if (idle_cpu(target))
5233 return target;
99bd5e2f
SS
5234
5235 /*
e0a79f52 5236 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5237 */
e0a79f52
MG
5238 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5239 return i;
a50bde51
PZ
5240
5241 /*
d4335581
MF
5242 * Otherwise, iterate the domains and find an eligible idle cpu.
5243 *
5244 * A completely idle sched group at higher domains is more
5245 * desirable than an idle group at a lower level, because lower
5246 * domains have smaller groups and usually share hardware
5247 * resources which causes tasks to contend on them, e.g. x86
5248 * hyperthread siblings in the lowest domain (SMT) can contend
5249 * on the shared cpu pipeline.
5250 *
5251 * However, while we prefer idle groups at higher domains
5252 * finding an idle cpu at the lowest domain is still better than
5253 * returning 'target', which we've already established, isn't
5254 * idle.
a50bde51 5255 */
518cd623 5256 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5257 for_each_lower_domain(sd) {
37407ea7
LT
5258 sg = sd->groups;
5259 do {
5260 if (!cpumask_intersects(sched_group_cpus(sg),
5261 tsk_cpus_allowed(p)))
5262 goto next;
5263
d4335581 5264 /* Ensure the entire group is idle */
37407ea7 5265 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5266 if (i == target || !idle_cpu(i))
37407ea7
LT
5267 goto next;
5268 }
970e1789 5269
d4335581
MF
5270 /*
5271 * It doesn't matter which cpu we pick, the
5272 * whole group is idle.
5273 */
37407ea7
LT
5274 target = cpumask_first_and(sched_group_cpus(sg),
5275 tsk_cpus_allowed(p));
5276 goto done;
5277next:
5278 sg = sg->next;
5279 } while (sg != sd->groups);
5280 }
5281done:
a50bde51
PZ
5282 return target;
5283}
231678b7 5284
8bb5b00c 5285/*
9e91d61d 5286 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5287 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5288 * compare the utilization with the capacity of the CPU that is available for
5289 * CFS task (ie cpu_capacity).
231678b7
DE
5290 *
5291 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5292 * recent utilization of currently non-runnable tasks on a CPU. It represents
5293 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5294 * capacity_orig is the cpu_capacity available at the highest frequency
5295 * (arch_scale_freq_capacity()).
5296 * The utilization of a CPU converges towards a sum equal to or less than the
5297 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5298 * the running time on this CPU scaled by capacity_curr.
5299 *
5300 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5301 * higher than capacity_orig because of unfortunate rounding in
5302 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5303 * the average stabilizes with the new running time. We need to check that the
5304 * utilization stays within the range of [0..capacity_orig] and cap it if
5305 * necessary. Without utilization capping, a group could be seen as overloaded
5306 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5307 * available capacity. We allow utilization to overshoot capacity_curr (but not
5308 * capacity_orig) as it useful for predicting the capacity required after task
5309 * migrations (scheduler-driven DVFS).
8bb5b00c 5310 */
9e91d61d 5311static int cpu_util(int cpu)
8bb5b00c 5312{
9e91d61d 5313 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5314 unsigned long capacity = capacity_orig_of(cpu);
5315
231678b7 5316 return (util >= capacity) ? capacity : util;
8bb5b00c 5317}
a50bde51 5318
aaee1203 5319/*
de91b9cb
MR
5320 * select_task_rq_fair: Select target runqueue for the waking task in domains
5321 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5322 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5323 *
de91b9cb
MR
5324 * Balances load by selecting the idlest cpu in the idlest group, or under
5325 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5326 *
de91b9cb 5327 * Returns the target cpu number.
aaee1203
PZ
5328 *
5329 * preempt must be disabled.
5330 */
0017d735 5331static int
ac66f547 5332select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5333{
29cd8bae 5334 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5335 int cpu = smp_processor_id();
63b0e9ed 5336 int new_cpu = prev_cpu;
99bd5e2f 5337 int want_affine = 0;
5158f4e4 5338 int sync = wake_flags & WF_SYNC;
c88d5910 5339
c58d25f3
PZ
5340 if (sd_flag & SD_BALANCE_WAKE) {
5341 record_wakee(p);
63b0e9ed 5342 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5343 }
aaee1203 5344
dce840a0 5345 rcu_read_lock();
aaee1203 5346 for_each_domain(cpu, tmp) {
e4f42888 5347 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5348 break;
e4f42888 5349
fe3bcfe1 5350 /*
99bd5e2f
SS
5351 * If both cpu and prev_cpu are part of this domain,
5352 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5353 */
99bd5e2f
SS
5354 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5355 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5356 affine_sd = tmp;
29cd8bae 5357 break;
f03542a7 5358 }
29cd8bae 5359
f03542a7 5360 if (tmp->flags & sd_flag)
29cd8bae 5361 sd = tmp;
63b0e9ed
MG
5362 else if (!want_affine)
5363 break;
29cd8bae
PZ
5364 }
5365
63b0e9ed
MG
5366 if (affine_sd) {
5367 sd = NULL; /* Prefer wake_affine over balance flags */
5368 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5369 new_cpu = cpu;
8b911acd 5370 }
e7693a36 5371
63b0e9ed
MG
5372 if (!sd) {
5373 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5374 new_cpu = select_idle_sibling(p, new_cpu);
5375
5376 } else while (sd) {
aaee1203 5377 struct sched_group *group;
c88d5910 5378 int weight;
098fb9db 5379
0763a660 5380 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5381 sd = sd->child;
5382 continue;
5383 }
098fb9db 5384
c44f2a02 5385 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5386 if (!group) {
5387 sd = sd->child;
5388 continue;
5389 }
4ae7d5ce 5390
d7c33c49 5391 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5392 if (new_cpu == -1 || new_cpu == cpu) {
5393 /* Now try balancing at a lower domain level of cpu */
5394 sd = sd->child;
5395 continue;
e7693a36 5396 }
aaee1203
PZ
5397
5398 /* Now try balancing at a lower domain level of new_cpu */
5399 cpu = new_cpu;
669c55e9 5400 weight = sd->span_weight;
aaee1203
PZ
5401 sd = NULL;
5402 for_each_domain(cpu, tmp) {
669c55e9 5403 if (weight <= tmp->span_weight)
aaee1203 5404 break;
0763a660 5405 if (tmp->flags & sd_flag)
aaee1203
PZ
5406 sd = tmp;
5407 }
5408 /* while loop will break here if sd == NULL */
e7693a36 5409 }
dce840a0 5410 rcu_read_unlock();
e7693a36 5411
c88d5910 5412 return new_cpu;
e7693a36 5413}
0a74bef8
PT
5414
5415/*
5416 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5417 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5418 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5419 */
5a4fd036 5420static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5421{
59efa0ba
PZ
5422 /*
5423 * As blocked tasks retain absolute vruntime the migration needs to
5424 * deal with this by subtracting the old and adding the new
5425 * min_vruntime -- the latter is done by enqueue_entity() when placing
5426 * the task on the new runqueue.
5427 */
5428 if (p->state == TASK_WAKING) {
5429 struct sched_entity *se = &p->se;
5430 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5431 u64 min_vruntime;
5432
5433#ifndef CONFIG_64BIT
5434 u64 min_vruntime_copy;
5435
5436 do {
5437 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5438 smp_rmb();
5439 min_vruntime = cfs_rq->min_vruntime;
5440 } while (min_vruntime != min_vruntime_copy);
5441#else
5442 min_vruntime = cfs_rq->min_vruntime;
5443#endif
5444
5445 se->vruntime -= min_vruntime;
5446 }
5447
aff3e498 5448 /*
9d89c257
YD
5449 * We are supposed to update the task to "current" time, then its up to date
5450 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5451 * what current time is, so simply throw away the out-of-date time. This
5452 * will result in the wakee task is less decayed, but giving the wakee more
5453 * load sounds not bad.
aff3e498 5454 */
9d89c257
YD
5455 remove_entity_load_avg(&p->se);
5456
5457 /* Tell new CPU we are migrated */
5458 p->se.avg.last_update_time = 0;
3944a927
BS
5459
5460 /* We have migrated, no longer consider this task hot */
9d89c257 5461 p->se.exec_start = 0;
0a74bef8 5462}
12695578
YD
5463
5464static void task_dead_fair(struct task_struct *p)
5465{
5466 remove_entity_load_avg(&p->se);
5467}
e7693a36
GH
5468#endif /* CONFIG_SMP */
5469
e52fb7c0
PZ
5470static unsigned long
5471wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5472{
5473 unsigned long gran = sysctl_sched_wakeup_granularity;
5474
5475 /*
e52fb7c0
PZ
5476 * Since its curr running now, convert the gran from real-time
5477 * to virtual-time in his units.
13814d42
MG
5478 *
5479 * By using 'se' instead of 'curr' we penalize light tasks, so
5480 * they get preempted easier. That is, if 'se' < 'curr' then
5481 * the resulting gran will be larger, therefore penalizing the
5482 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5483 * be smaller, again penalizing the lighter task.
5484 *
5485 * This is especially important for buddies when the leftmost
5486 * task is higher priority than the buddy.
0bbd3336 5487 */
f4ad9bd2 5488 return calc_delta_fair(gran, se);
0bbd3336
PZ
5489}
5490
464b7527
PZ
5491/*
5492 * Should 'se' preempt 'curr'.
5493 *
5494 * |s1
5495 * |s2
5496 * |s3
5497 * g
5498 * |<--->|c
5499 *
5500 * w(c, s1) = -1
5501 * w(c, s2) = 0
5502 * w(c, s3) = 1
5503 *
5504 */
5505static int
5506wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5507{
5508 s64 gran, vdiff = curr->vruntime - se->vruntime;
5509
5510 if (vdiff <= 0)
5511 return -1;
5512
e52fb7c0 5513 gran = wakeup_gran(curr, se);
464b7527
PZ
5514 if (vdiff > gran)
5515 return 1;
5516
5517 return 0;
5518}
5519
02479099
PZ
5520static void set_last_buddy(struct sched_entity *se)
5521{
69c80f3e
VP
5522 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5523 return;
5524
5525 for_each_sched_entity(se)
5526 cfs_rq_of(se)->last = se;
02479099
PZ
5527}
5528
5529static void set_next_buddy(struct sched_entity *se)
5530{
69c80f3e
VP
5531 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5532 return;
5533
5534 for_each_sched_entity(se)
5535 cfs_rq_of(se)->next = se;
02479099
PZ
5536}
5537
ac53db59
RR
5538static void set_skip_buddy(struct sched_entity *se)
5539{
69c80f3e
VP
5540 for_each_sched_entity(se)
5541 cfs_rq_of(se)->skip = se;
ac53db59
RR
5542}
5543
bf0f6f24
IM
5544/*
5545 * Preempt the current task with a newly woken task if needed:
5546 */
5a9b86f6 5547static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5548{
5549 struct task_struct *curr = rq->curr;
8651a86c 5550 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5551 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5552 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5553 int next_buddy_marked = 0;
bf0f6f24 5554
4ae7d5ce
IM
5555 if (unlikely(se == pse))
5556 return;
5557
5238cdd3 5558 /*
163122b7 5559 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5560 * unconditionally check_prempt_curr() after an enqueue (which may have
5561 * lead to a throttle). This both saves work and prevents false
5562 * next-buddy nomination below.
5563 */
5564 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5565 return;
5566
2f36825b 5567 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5568 set_next_buddy(pse);
2f36825b
VP
5569 next_buddy_marked = 1;
5570 }
57fdc26d 5571
aec0a514
BR
5572 /*
5573 * We can come here with TIF_NEED_RESCHED already set from new task
5574 * wake up path.
5238cdd3
PT
5575 *
5576 * Note: this also catches the edge-case of curr being in a throttled
5577 * group (e.g. via set_curr_task), since update_curr() (in the
5578 * enqueue of curr) will have resulted in resched being set. This
5579 * prevents us from potentially nominating it as a false LAST_BUDDY
5580 * below.
aec0a514
BR
5581 */
5582 if (test_tsk_need_resched(curr))
5583 return;
5584
a2f5c9ab
DH
5585 /* Idle tasks are by definition preempted by non-idle tasks. */
5586 if (unlikely(curr->policy == SCHED_IDLE) &&
5587 likely(p->policy != SCHED_IDLE))
5588 goto preempt;
5589
91c234b4 5590 /*
a2f5c9ab
DH
5591 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5592 * is driven by the tick):
91c234b4 5593 */
8ed92e51 5594 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5595 return;
bf0f6f24 5596
464b7527 5597 find_matching_se(&se, &pse);
9bbd7374 5598 update_curr(cfs_rq_of(se));
002f128b 5599 BUG_ON(!pse);
2f36825b
VP
5600 if (wakeup_preempt_entity(se, pse) == 1) {
5601 /*
5602 * Bias pick_next to pick the sched entity that is
5603 * triggering this preemption.
5604 */
5605 if (!next_buddy_marked)
5606 set_next_buddy(pse);
3a7e73a2 5607 goto preempt;
2f36825b 5608 }
464b7527 5609
3a7e73a2 5610 return;
a65ac745 5611
3a7e73a2 5612preempt:
8875125e 5613 resched_curr(rq);
3a7e73a2
PZ
5614 /*
5615 * Only set the backward buddy when the current task is still
5616 * on the rq. This can happen when a wakeup gets interleaved
5617 * with schedule on the ->pre_schedule() or idle_balance()
5618 * point, either of which can * drop the rq lock.
5619 *
5620 * Also, during early boot the idle thread is in the fair class,
5621 * for obvious reasons its a bad idea to schedule back to it.
5622 */
5623 if (unlikely(!se->on_rq || curr == rq->idle))
5624 return;
5625
5626 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5627 set_last_buddy(se);
bf0f6f24
IM
5628}
5629
606dba2e 5630static struct task_struct *
e7904a28 5631pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5632{
5633 struct cfs_rq *cfs_rq = &rq->cfs;
5634 struct sched_entity *se;
678d5718 5635 struct task_struct *p;
37e117c0 5636 int new_tasks;
678d5718 5637
6e83125c 5638again:
678d5718
PZ
5639#ifdef CONFIG_FAIR_GROUP_SCHED
5640 if (!cfs_rq->nr_running)
38033c37 5641 goto idle;
678d5718 5642
3f1d2a31 5643 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5644 goto simple;
5645
5646 /*
5647 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5648 * likely that a next task is from the same cgroup as the current.
5649 *
5650 * Therefore attempt to avoid putting and setting the entire cgroup
5651 * hierarchy, only change the part that actually changes.
5652 */
5653
5654 do {
5655 struct sched_entity *curr = cfs_rq->curr;
5656
5657 /*
5658 * Since we got here without doing put_prev_entity() we also
5659 * have to consider cfs_rq->curr. If it is still a runnable
5660 * entity, update_curr() will update its vruntime, otherwise
5661 * forget we've ever seen it.
5662 */
54d27365
BS
5663 if (curr) {
5664 if (curr->on_rq)
5665 update_curr(cfs_rq);
5666 else
5667 curr = NULL;
678d5718 5668
54d27365
BS
5669 /*
5670 * This call to check_cfs_rq_runtime() will do the
5671 * throttle and dequeue its entity in the parent(s).
5672 * Therefore the 'simple' nr_running test will indeed
5673 * be correct.
5674 */
5675 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5676 goto simple;
5677 }
678d5718
PZ
5678
5679 se = pick_next_entity(cfs_rq, curr);
5680 cfs_rq = group_cfs_rq(se);
5681 } while (cfs_rq);
5682
5683 p = task_of(se);
5684
5685 /*
5686 * Since we haven't yet done put_prev_entity and if the selected task
5687 * is a different task than we started out with, try and touch the
5688 * least amount of cfs_rqs.
5689 */
5690 if (prev != p) {
5691 struct sched_entity *pse = &prev->se;
5692
5693 while (!(cfs_rq = is_same_group(se, pse))) {
5694 int se_depth = se->depth;
5695 int pse_depth = pse->depth;
5696
5697 if (se_depth <= pse_depth) {
5698 put_prev_entity(cfs_rq_of(pse), pse);
5699 pse = parent_entity(pse);
5700 }
5701 if (se_depth >= pse_depth) {
5702 set_next_entity(cfs_rq_of(se), se);
5703 se = parent_entity(se);
5704 }
5705 }
5706
5707 put_prev_entity(cfs_rq, pse);
5708 set_next_entity(cfs_rq, se);
5709 }
5710
5711 if (hrtick_enabled(rq))
5712 hrtick_start_fair(rq, p);
5713
5714 return p;
5715simple:
5716 cfs_rq = &rq->cfs;
5717#endif
bf0f6f24 5718
36ace27e 5719 if (!cfs_rq->nr_running)
38033c37 5720 goto idle;
bf0f6f24 5721
3f1d2a31 5722 put_prev_task(rq, prev);
606dba2e 5723
bf0f6f24 5724 do {
678d5718 5725 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5726 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5727 cfs_rq = group_cfs_rq(se);
5728 } while (cfs_rq);
5729
8f4d37ec 5730 p = task_of(se);
678d5718 5731
b39e66ea
MG
5732 if (hrtick_enabled(rq))
5733 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5734
5735 return p;
38033c37
PZ
5736
5737idle:
cbce1a68
PZ
5738 /*
5739 * This is OK, because current is on_cpu, which avoids it being picked
5740 * for load-balance and preemption/IRQs are still disabled avoiding
5741 * further scheduler activity on it and we're being very careful to
5742 * re-start the picking loop.
5743 */
e7904a28 5744 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5745 new_tasks = idle_balance(rq);
e7904a28 5746 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5747 /*
5748 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5749 * possible for any higher priority task to appear. In that case we
5750 * must re-start the pick_next_entity() loop.
5751 */
e4aa358b 5752 if (new_tasks < 0)
37e117c0
PZ
5753 return RETRY_TASK;
5754
e4aa358b 5755 if (new_tasks > 0)
38033c37 5756 goto again;
38033c37
PZ
5757
5758 return NULL;
bf0f6f24
IM
5759}
5760
5761/*
5762 * Account for a descheduled task:
5763 */
31ee529c 5764static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5765{
5766 struct sched_entity *se = &prev->se;
5767 struct cfs_rq *cfs_rq;
5768
5769 for_each_sched_entity(se) {
5770 cfs_rq = cfs_rq_of(se);
ab6cde26 5771 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5772 }
5773}
5774
ac53db59
RR
5775/*
5776 * sched_yield() is very simple
5777 *
5778 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5779 */
5780static void yield_task_fair(struct rq *rq)
5781{
5782 struct task_struct *curr = rq->curr;
5783 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5784 struct sched_entity *se = &curr->se;
5785
5786 /*
5787 * Are we the only task in the tree?
5788 */
5789 if (unlikely(rq->nr_running == 1))
5790 return;
5791
5792 clear_buddies(cfs_rq, se);
5793
5794 if (curr->policy != SCHED_BATCH) {
5795 update_rq_clock(rq);
5796 /*
5797 * Update run-time statistics of the 'current'.
5798 */
5799 update_curr(cfs_rq);
916671c0
MG
5800 /*
5801 * Tell update_rq_clock() that we've just updated,
5802 * so we don't do microscopic update in schedule()
5803 * and double the fastpath cost.
5804 */
9edfbfed 5805 rq_clock_skip_update(rq, true);
ac53db59
RR
5806 }
5807
5808 set_skip_buddy(se);
5809}
5810
d95f4122
MG
5811static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5812{
5813 struct sched_entity *se = &p->se;
5814
5238cdd3
PT
5815 /* throttled hierarchies are not runnable */
5816 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5817 return false;
5818
5819 /* Tell the scheduler that we'd really like pse to run next. */
5820 set_next_buddy(se);
5821
d95f4122
MG
5822 yield_task_fair(rq);
5823
5824 return true;
5825}
5826
681f3e68 5827#ifdef CONFIG_SMP
bf0f6f24 5828/**************************************************
e9c84cb8
PZ
5829 * Fair scheduling class load-balancing methods.
5830 *
5831 * BASICS
5832 *
5833 * The purpose of load-balancing is to achieve the same basic fairness the
5834 * per-cpu scheduler provides, namely provide a proportional amount of compute
5835 * time to each task. This is expressed in the following equation:
5836 *
5837 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5838 *
5839 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5840 * W_i,0 is defined as:
5841 *
5842 * W_i,0 = \Sum_j w_i,j (2)
5843 *
5844 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5845 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5846 *
5847 * The weight average is an exponential decay average of the instantaneous
5848 * weight:
5849 *
5850 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5851 *
ced549fa 5852 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5853 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5854 * can also include other factors [XXX].
5855 *
5856 * To achieve this balance we define a measure of imbalance which follows
5857 * directly from (1):
5858 *
ced549fa 5859 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5860 *
5861 * We them move tasks around to minimize the imbalance. In the continuous
5862 * function space it is obvious this converges, in the discrete case we get
5863 * a few fun cases generally called infeasible weight scenarios.
5864 *
5865 * [XXX expand on:
5866 * - infeasible weights;
5867 * - local vs global optima in the discrete case. ]
5868 *
5869 *
5870 * SCHED DOMAINS
5871 *
5872 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5873 * for all i,j solution, we create a tree of cpus that follows the hardware
5874 * topology where each level pairs two lower groups (or better). This results
5875 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5876 * tree to only the first of the previous level and we decrease the frequency
5877 * of load-balance at each level inv. proportional to the number of cpus in
5878 * the groups.
5879 *
5880 * This yields:
5881 *
5882 * log_2 n 1 n
5883 * \Sum { --- * --- * 2^i } = O(n) (5)
5884 * i = 0 2^i 2^i
5885 * `- size of each group
5886 * | | `- number of cpus doing load-balance
5887 * | `- freq
5888 * `- sum over all levels
5889 *
5890 * Coupled with a limit on how many tasks we can migrate every balance pass,
5891 * this makes (5) the runtime complexity of the balancer.
5892 *
5893 * An important property here is that each CPU is still (indirectly) connected
5894 * to every other cpu in at most O(log n) steps:
5895 *
5896 * The adjacency matrix of the resulting graph is given by:
5897 *
5898 * log_2 n
5899 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5900 * k = 0
5901 *
5902 * And you'll find that:
5903 *
5904 * A^(log_2 n)_i,j != 0 for all i,j (7)
5905 *
5906 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5907 * The task movement gives a factor of O(m), giving a convergence complexity
5908 * of:
5909 *
5910 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5911 *
5912 *
5913 * WORK CONSERVING
5914 *
5915 * In order to avoid CPUs going idle while there's still work to do, new idle
5916 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5917 * tree itself instead of relying on other CPUs to bring it work.
5918 *
5919 * This adds some complexity to both (5) and (8) but it reduces the total idle
5920 * time.
5921 *
5922 * [XXX more?]
5923 *
5924 *
5925 * CGROUPS
5926 *
5927 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5928 *
5929 * s_k,i
5930 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5931 * S_k
5932 *
5933 * Where
5934 *
5935 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5936 *
5937 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5938 *
5939 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5940 * property.
5941 *
5942 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5943 * rewrite all of this once again.]
5944 */
bf0f6f24 5945
ed387b78
HS
5946static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5947
0ec8aa00
PZ
5948enum fbq_type { regular, remote, all };
5949
ddcdf6e7 5950#define LBF_ALL_PINNED 0x01
367456c7 5951#define LBF_NEED_BREAK 0x02
6263322c
PZ
5952#define LBF_DST_PINNED 0x04
5953#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5954
5955struct lb_env {
5956 struct sched_domain *sd;
5957
ddcdf6e7 5958 struct rq *src_rq;
85c1e7da 5959 int src_cpu;
ddcdf6e7
PZ
5960
5961 int dst_cpu;
5962 struct rq *dst_rq;
5963
88b8dac0
SV
5964 struct cpumask *dst_grpmask;
5965 int new_dst_cpu;
ddcdf6e7 5966 enum cpu_idle_type idle;
bd939f45 5967 long imbalance;
b9403130
MW
5968 /* The set of CPUs under consideration for load-balancing */
5969 struct cpumask *cpus;
5970
ddcdf6e7 5971 unsigned int flags;
367456c7
PZ
5972
5973 unsigned int loop;
5974 unsigned int loop_break;
5975 unsigned int loop_max;
0ec8aa00
PZ
5976
5977 enum fbq_type fbq_type;
163122b7 5978 struct list_head tasks;
ddcdf6e7
PZ
5979};
5980
029632fb
PZ
5981/*
5982 * Is this task likely cache-hot:
5983 */
5d5e2b1b 5984static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5985{
5986 s64 delta;
5987
e5673f28
KT
5988 lockdep_assert_held(&env->src_rq->lock);
5989
029632fb
PZ
5990 if (p->sched_class != &fair_sched_class)
5991 return 0;
5992
5993 if (unlikely(p->policy == SCHED_IDLE))
5994 return 0;
5995
5996 /*
5997 * Buddy candidates are cache hot:
5998 */
5d5e2b1b 5999 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6000 (&p->se == cfs_rq_of(&p->se)->next ||
6001 &p->se == cfs_rq_of(&p->se)->last))
6002 return 1;
6003
6004 if (sysctl_sched_migration_cost == -1)
6005 return 1;
6006 if (sysctl_sched_migration_cost == 0)
6007 return 0;
6008
5d5e2b1b 6009 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6010
6011 return delta < (s64)sysctl_sched_migration_cost;
6012}
6013
3a7053b3 6014#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6015/*
2a1ed24c
SD
6016 * Returns 1, if task migration degrades locality
6017 * Returns 0, if task migration improves locality i.e migration preferred.
6018 * Returns -1, if task migration is not affected by locality.
c1ceac62 6019 */
2a1ed24c 6020static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6021{
b1ad065e 6022 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6023 unsigned long src_faults, dst_faults;
3a7053b3
MG
6024 int src_nid, dst_nid;
6025
2a595721 6026 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6027 return -1;
6028
c3b9bc5b 6029 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6030 return -1;
7a0f3083
MG
6031
6032 src_nid = cpu_to_node(env->src_cpu);
6033 dst_nid = cpu_to_node(env->dst_cpu);
6034
83e1d2cd 6035 if (src_nid == dst_nid)
2a1ed24c 6036 return -1;
7a0f3083 6037
2a1ed24c
SD
6038 /* Migrating away from the preferred node is always bad. */
6039 if (src_nid == p->numa_preferred_nid) {
6040 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6041 return 1;
6042 else
6043 return -1;
6044 }
b1ad065e 6045
c1ceac62
RR
6046 /* Encourage migration to the preferred node. */
6047 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6048 return 0;
b1ad065e 6049
c1ceac62
RR
6050 if (numa_group) {
6051 src_faults = group_faults(p, src_nid);
6052 dst_faults = group_faults(p, dst_nid);
6053 } else {
6054 src_faults = task_faults(p, src_nid);
6055 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6056 }
6057
c1ceac62 6058 return dst_faults < src_faults;
7a0f3083
MG
6059}
6060
3a7053b3 6061#else
2a1ed24c 6062static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6063 struct lb_env *env)
6064{
2a1ed24c 6065 return -1;
7a0f3083 6066}
3a7053b3
MG
6067#endif
6068
1e3c88bd
PZ
6069/*
6070 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6071 */
6072static
8e45cb54 6073int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6074{
2a1ed24c 6075 int tsk_cache_hot;
e5673f28
KT
6076
6077 lockdep_assert_held(&env->src_rq->lock);
6078
1e3c88bd
PZ
6079 /*
6080 * We do not migrate tasks that are:
d3198084 6081 * 1) throttled_lb_pair, or
1e3c88bd 6082 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6083 * 3) running (obviously), or
6084 * 4) are cache-hot on their current CPU.
1e3c88bd 6085 */
d3198084
JK
6086 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6087 return 0;
6088
ddcdf6e7 6089 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6090 int cpu;
88b8dac0 6091
41acab88 6092 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6093
6263322c
PZ
6094 env->flags |= LBF_SOME_PINNED;
6095
88b8dac0
SV
6096 /*
6097 * Remember if this task can be migrated to any other cpu in
6098 * our sched_group. We may want to revisit it if we couldn't
6099 * meet load balance goals by pulling other tasks on src_cpu.
6100 *
6101 * Also avoid computing new_dst_cpu if we have already computed
6102 * one in current iteration.
6103 */
6263322c 6104 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6105 return 0;
6106
e02e60c1
JK
6107 /* Prevent to re-select dst_cpu via env's cpus */
6108 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6109 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6110 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6111 env->new_dst_cpu = cpu;
6112 break;
6113 }
88b8dac0 6114 }
e02e60c1 6115
1e3c88bd
PZ
6116 return 0;
6117 }
88b8dac0
SV
6118
6119 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6120 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6121
ddcdf6e7 6122 if (task_running(env->src_rq, p)) {
41acab88 6123 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6124 return 0;
6125 }
6126
6127 /*
6128 * Aggressive migration if:
3a7053b3
MG
6129 * 1) destination numa is preferred
6130 * 2) task is cache cold, or
6131 * 3) too many balance attempts have failed.
1e3c88bd 6132 */
2a1ed24c
SD
6133 tsk_cache_hot = migrate_degrades_locality(p, env);
6134 if (tsk_cache_hot == -1)
6135 tsk_cache_hot = task_hot(p, env);
3a7053b3 6136
2a1ed24c 6137 if (tsk_cache_hot <= 0 ||
7a96c231 6138 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6139 if (tsk_cache_hot == 1) {
3a7053b3
MG
6140 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6141 schedstat_inc(p, se.statistics.nr_forced_migrations);
6142 }
1e3c88bd
PZ
6143 return 1;
6144 }
6145
4e2dcb73
ZH
6146 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6147 return 0;
1e3c88bd
PZ
6148}
6149
897c395f 6150/*
163122b7
KT
6151 * detach_task() -- detach the task for the migration specified in env
6152 */
6153static void detach_task(struct task_struct *p, struct lb_env *env)
6154{
6155 lockdep_assert_held(&env->src_rq->lock);
6156
163122b7 6157 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6158 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6159 set_task_cpu(p, env->dst_cpu);
6160}
6161
897c395f 6162/*
e5673f28 6163 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6164 * part of active balancing operations within "domain".
897c395f 6165 *
e5673f28 6166 * Returns a task if successful and NULL otherwise.
897c395f 6167 */
e5673f28 6168static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6169{
6170 struct task_struct *p, *n;
897c395f 6171
e5673f28
KT
6172 lockdep_assert_held(&env->src_rq->lock);
6173
367456c7 6174 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6175 if (!can_migrate_task(p, env))
6176 continue;
897c395f 6177
163122b7 6178 detach_task(p, env);
e5673f28 6179
367456c7 6180 /*
e5673f28 6181 * Right now, this is only the second place where
163122b7 6182 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6183 * so we can safely collect stats here rather than
163122b7 6184 * inside detach_tasks().
367456c7
PZ
6185 */
6186 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6187 return p;
897c395f 6188 }
e5673f28 6189 return NULL;
897c395f
PZ
6190}
6191
eb95308e
PZ
6192static const unsigned int sched_nr_migrate_break = 32;
6193
5d6523eb 6194/*
163122b7
KT
6195 * detach_tasks() -- tries to detach up to imbalance weighted load from
6196 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6197 *
163122b7 6198 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6199 */
163122b7 6200static int detach_tasks(struct lb_env *env)
1e3c88bd 6201{
5d6523eb
PZ
6202 struct list_head *tasks = &env->src_rq->cfs_tasks;
6203 struct task_struct *p;
367456c7 6204 unsigned long load;
163122b7
KT
6205 int detached = 0;
6206
6207 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6208
bd939f45 6209 if (env->imbalance <= 0)
5d6523eb 6210 return 0;
1e3c88bd 6211
5d6523eb 6212 while (!list_empty(tasks)) {
985d3a4c
YD
6213 /*
6214 * We don't want to steal all, otherwise we may be treated likewise,
6215 * which could at worst lead to a livelock crash.
6216 */
6217 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6218 break;
6219
5d6523eb 6220 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6221
367456c7
PZ
6222 env->loop++;
6223 /* We've more or less seen every task there is, call it quits */
5d6523eb 6224 if (env->loop > env->loop_max)
367456c7 6225 break;
5d6523eb
PZ
6226
6227 /* take a breather every nr_migrate tasks */
367456c7 6228 if (env->loop > env->loop_break) {
eb95308e 6229 env->loop_break += sched_nr_migrate_break;
8e45cb54 6230 env->flags |= LBF_NEED_BREAK;
ee00e66f 6231 break;
a195f004 6232 }
1e3c88bd 6233
d3198084 6234 if (!can_migrate_task(p, env))
367456c7
PZ
6235 goto next;
6236
6237 load = task_h_load(p);
5d6523eb 6238
eb95308e 6239 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6240 goto next;
6241
bd939f45 6242 if ((load / 2) > env->imbalance)
367456c7 6243 goto next;
1e3c88bd 6244
163122b7
KT
6245 detach_task(p, env);
6246 list_add(&p->se.group_node, &env->tasks);
6247
6248 detached++;
bd939f45 6249 env->imbalance -= load;
1e3c88bd
PZ
6250
6251#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6252 /*
6253 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6254 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6255 * the critical section.
6256 */
5d6523eb 6257 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6258 break;
1e3c88bd
PZ
6259#endif
6260
ee00e66f
PZ
6261 /*
6262 * We only want to steal up to the prescribed amount of
6263 * weighted load.
6264 */
bd939f45 6265 if (env->imbalance <= 0)
ee00e66f 6266 break;
367456c7
PZ
6267
6268 continue;
6269next:
5d6523eb 6270 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6271 }
5d6523eb 6272
1e3c88bd 6273 /*
163122b7
KT
6274 * Right now, this is one of only two places we collect this stat
6275 * so we can safely collect detach_one_task() stats here rather
6276 * than inside detach_one_task().
1e3c88bd 6277 */
163122b7 6278 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6279
163122b7
KT
6280 return detached;
6281}
6282
6283/*
6284 * attach_task() -- attach the task detached by detach_task() to its new rq.
6285 */
6286static void attach_task(struct rq *rq, struct task_struct *p)
6287{
6288 lockdep_assert_held(&rq->lock);
6289
6290 BUG_ON(task_rq(p) != rq);
163122b7 6291 activate_task(rq, p, 0);
3ea94de1 6292 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6293 check_preempt_curr(rq, p, 0);
6294}
6295
6296/*
6297 * attach_one_task() -- attaches the task returned from detach_one_task() to
6298 * its new rq.
6299 */
6300static void attach_one_task(struct rq *rq, struct task_struct *p)
6301{
6302 raw_spin_lock(&rq->lock);
6303 attach_task(rq, p);
6304 raw_spin_unlock(&rq->lock);
6305}
6306
6307/*
6308 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6309 * new rq.
6310 */
6311static void attach_tasks(struct lb_env *env)
6312{
6313 struct list_head *tasks = &env->tasks;
6314 struct task_struct *p;
6315
6316 raw_spin_lock(&env->dst_rq->lock);
6317
6318 while (!list_empty(tasks)) {
6319 p = list_first_entry(tasks, struct task_struct, se.group_node);
6320 list_del_init(&p->se.group_node);
1e3c88bd 6321
163122b7
KT
6322 attach_task(env->dst_rq, p);
6323 }
6324
6325 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6326}
6327
230059de 6328#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6329static void update_blocked_averages(int cpu)
9e3081ca 6330{
9e3081ca 6331 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6332 struct cfs_rq *cfs_rq;
6333 unsigned long flags;
9e3081ca 6334
48a16753
PT
6335 raw_spin_lock_irqsave(&rq->lock, flags);
6336 update_rq_clock(rq);
9d89c257 6337
9763b67f
PZ
6338 /*
6339 * Iterates the task_group tree in a bottom up fashion, see
6340 * list_add_leaf_cfs_rq() for details.
6341 */
64660c86 6342 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6343 /* throttled entities do not contribute to load */
6344 if (throttled_hierarchy(cfs_rq))
6345 continue;
48a16753 6346
a2c6c91f 6347 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6348 update_tg_load_avg(cfs_rq, 0);
6349 }
48a16753 6350 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6351}
6352
9763b67f 6353/*
68520796 6354 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6355 * This needs to be done in a top-down fashion because the load of a child
6356 * group is a fraction of its parents load.
6357 */
68520796 6358static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6359{
68520796
VD
6360 struct rq *rq = rq_of(cfs_rq);
6361 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6362 unsigned long now = jiffies;
68520796 6363 unsigned long load;
a35b6466 6364
68520796 6365 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6366 return;
6367
68520796
VD
6368 cfs_rq->h_load_next = NULL;
6369 for_each_sched_entity(se) {
6370 cfs_rq = cfs_rq_of(se);
6371 cfs_rq->h_load_next = se;
6372 if (cfs_rq->last_h_load_update == now)
6373 break;
6374 }
a35b6466 6375
68520796 6376 if (!se) {
7ea241af 6377 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6378 cfs_rq->last_h_load_update = now;
6379 }
6380
6381 while ((se = cfs_rq->h_load_next) != NULL) {
6382 load = cfs_rq->h_load;
7ea241af
YD
6383 load = div64_ul(load * se->avg.load_avg,
6384 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6385 cfs_rq = group_cfs_rq(se);
6386 cfs_rq->h_load = load;
6387 cfs_rq->last_h_load_update = now;
6388 }
9763b67f
PZ
6389}
6390
367456c7 6391static unsigned long task_h_load(struct task_struct *p)
230059de 6392{
367456c7 6393 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6394
68520796 6395 update_cfs_rq_h_load(cfs_rq);
9d89c257 6396 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6397 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6398}
6399#else
48a16753 6400static inline void update_blocked_averages(int cpu)
9e3081ca 6401{
6c1d47c0
VG
6402 struct rq *rq = cpu_rq(cpu);
6403 struct cfs_rq *cfs_rq = &rq->cfs;
6404 unsigned long flags;
6405
6406 raw_spin_lock_irqsave(&rq->lock, flags);
6407 update_rq_clock(rq);
a2c6c91f 6408 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6409 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6410}
6411
367456c7 6412static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6413{
9d89c257 6414 return p->se.avg.load_avg;
1e3c88bd 6415}
230059de 6416#endif
1e3c88bd 6417
1e3c88bd 6418/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6419
6420enum group_type {
6421 group_other = 0,
6422 group_imbalanced,
6423 group_overloaded,
6424};
6425
1e3c88bd
PZ
6426/*
6427 * sg_lb_stats - stats of a sched_group required for load_balancing
6428 */
6429struct sg_lb_stats {
6430 unsigned long avg_load; /*Avg load across the CPUs of the group */
6431 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6432 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6433 unsigned long load_per_task;
63b2ca30 6434 unsigned long group_capacity;
9e91d61d 6435 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6436 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6437 unsigned int idle_cpus;
6438 unsigned int group_weight;
caeb178c 6439 enum group_type group_type;
ea67821b 6440 int group_no_capacity;
0ec8aa00
PZ
6441#ifdef CONFIG_NUMA_BALANCING
6442 unsigned int nr_numa_running;
6443 unsigned int nr_preferred_running;
6444#endif
1e3c88bd
PZ
6445};
6446
56cf515b
JK
6447/*
6448 * sd_lb_stats - Structure to store the statistics of a sched_domain
6449 * during load balancing.
6450 */
6451struct sd_lb_stats {
6452 struct sched_group *busiest; /* Busiest group in this sd */
6453 struct sched_group *local; /* Local group in this sd */
6454 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6455 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6456 unsigned long avg_load; /* Average load across all groups in sd */
6457
56cf515b 6458 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6459 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6460};
6461
147c5fc2
PZ
6462static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6463{
6464 /*
6465 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6466 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6467 * We must however clear busiest_stat::avg_load because
6468 * update_sd_pick_busiest() reads this before assignment.
6469 */
6470 *sds = (struct sd_lb_stats){
6471 .busiest = NULL,
6472 .local = NULL,
6473 .total_load = 0UL,
63b2ca30 6474 .total_capacity = 0UL,
147c5fc2
PZ
6475 .busiest_stat = {
6476 .avg_load = 0UL,
caeb178c
RR
6477 .sum_nr_running = 0,
6478 .group_type = group_other,
147c5fc2
PZ
6479 },
6480 };
6481}
6482
1e3c88bd
PZ
6483/**
6484 * get_sd_load_idx - Obtain the load index for a given sched domain.
6485 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6486 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6487 *
6488 * Return: The load index.
1e3c88bd
PZ
6489 */
6490static inline int get_sd_load_idx(struct sched_domain *sd,
6491 enum cpu_idle_type idle)
6492{
6493 int load_idx;
6494
6495 switch (idle) {
6496 case CPU_NOT_IDLE:
6497 load_idx = sd->busy_idx;
6498 break;
6499
6500 case CPU_NEWLY_IDLE:
6501 load_idx = sd->newidle_idx;
6502 break;
6503 default:
6504 load_idx = sd->idle_idx;
6505 break;
6506 }
6507
6508 return load_idx;
6509}
6510
ced549fa 6511static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6512{
6513 struct rq *rq = cpu_rq(cpu);
b5b4860d 6514 u64 total, used, age_stamp, avg;
cadefd3d 6515 s64 delta;
1e3c88bd 6516
b654f7de
PZ
6517 /*
6518 * Since we're reading these variables without serialization make sure
6519 * we read them once before doing sanity checks on them.
6520 */
316c1608
JL
6521 age_stamp = READ_ONCE(rq->age_stamp);
6522 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6523 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6524
cadefd3d
PZ
6525 if (unlikely(delta < 0))
6526 delta = 0;
6527
6528 total = sched_avg_period() + delta;
aa483808 6529
b5b4860d 6530 used = div_u64(avg, total);
1e3c88bd 6531
b5b4860d
VG
6532 if (likely(used < SCHED_CAPACITY_SCALE))
6533 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6534
b5b4860d 6535 return 1;
1e3c88bd
PZ
6536}
6537
ced549fa 6538static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6539{
8cd5601c 6540 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6541 struct sched_group *sdg = sd->groups;
6542
ca6d75e6 6543 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6544
ced549fa 6545 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6546 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6547
ced549fa
NP
6548 if (!capacity)
6549 capacity = 1;
1e3c88bd 6550
ced549fa
NP
6551 cpu_rq(cpu)->cpu_capacity = capacity;
6552 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6553}
6554
63b2ca30 6555void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6556{
6557 struct sched_domain *child = sd->child;
6558 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6559 unsigned long capacity;
4ec4412e
VG
6560 unsigned long interval;
6561
6562 interval = msecs_to_jiffies(sd->balance_interval);
6563 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6564 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6565
6566 if (!child) {
ced549fa 6567 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6568 return;
6569 }
6570
dc7ff76e 6571 capacity = 0;
1e3c88bd 6572
74a5ce20
PZ
6573 if (child->flags & SD_OVERLAP) {
6574 /*
6575 * SD_OVERLAP domains cannot assume that child groups
6576 * span the current group.
6577 */
6578
863bffc8 6579 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6580 struct sched_group_capacity *sgc;
9abf24d4 6581 struct rq *rq = cpu_rq(cpu);
863bffc8 6582
9abf24d4 6583 /*
63b2ca30 6584 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6585 * gets here before we've attached the domains to the
6586 * runqueues.
6587 *
ced549fa
NP
6588 * Use capacity_of(), which is set irrespective of domains
6589 * in update_cpu_capacity().
9abf24d4 6590 *
dc7ff76e 6591 * This avoids capacity from being 0 and
9abf24d4 6592 * causing divide-by-zero issues on boot.
9abf24d4
SD
6593 */
6594 if (unlikely(!rq->sd)) {
ced549fa 6595 capacity += capacity_of(cpu);
9abf24d4
SD
6596 continue;
6597 }
863bffc8 6598
63b2ca30 6599 sgc = rq->sd->groups->sgc;
63b2ca30 6600 capacity += sgc->capacity;
863bffc8 6601 }
74a5ce20
PZ
6602 } else {
6603 /*
6604 * !SD_OVERLAP domains can assume that child groups
6605 * span the current group.
6606 */
6607
6608 group = child->groups;
6609 do {
63b2ca30 6610 capacity += group->sgc->capacity;
74a5ce20
PZ
6611 group = group->next;
6612 } while (group != child->groups);
6613 }
1e3c88bd 6614
63b2ca30 6615 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6616}
6617
9d5efe05 6618/*
ea67821b
VG
6619 * Check whether the capacity of the rq has been noticeably reduced by side
6620 * activity. The imbalance_pct is used for the threshold.
6621 * Return true is the capacity is reduced
9d5efe05
SV
6622 */
6623static inline int
ea67821b 6624check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6625{
ea67821b
VG
6626 return ((rq->cpu_capacity * sd->imbalance_pct) <
6627 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6628}
6629
30ce5dab
PZ
6630/*
6631 * Group imbalance indicates (and tries to solve) the problem where balancing
6632 * groups is inadequate due to tsk_cpus_allowed() constraints.
6633 *
6634 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6635 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6636 * Something like:
6637 *
6638 * { 0 1 2 3 } { 4 5 6 7 }
6639 * * * * *
6640 *
6641 * If we were to balance group-wise we'd place two tasks in the first group and
6642 * two tasks in the second group. Clearly this is undesired as it will overload
6643 * cpu 3 and leave one of the cpus in the second group unused.
6644 *
6645 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6646 * by noticing the lower domain failed to reach balance and had difficulty
6647 * moving tasks due to affinity constraints.
30ce5dab
PZ
6648 *
6649 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6650 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6651 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6652 * to create an effective group imbalance.
6653 *
6654 * This is a somewhat tricky proposition since the next run might not find the
6655 * group imbalance and decide the groups need to be balanced again. A most
6656 * subtle and fragile situation.
6657 */
6658
6263322c 6659static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6660{
63b2ca30 6661 return group->sgc->imbalance;
30ce5dab
PZ
6662}
6663
b37d9316 6664/*
ea67821b
VG
6665 * group_has_capacity returns true if the group has spare capacity that could
6666 * be used by some tasks.
6667 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6668 * smaller than the number of CPUs or if the utilization is lower than the
6669 * available capacity for CFS tasks.
ea67821b
VG
6670 * For the latter, we use a threshold to stabilize the state, to take into
6671 * account the variance of the tasks' load and to return true if the available
6672 * capacity in meaningful for the load balancer.
6673 * As an example, an available capacity of 1% can appear but it doesn't make
6674 * any benefit for the load balance.
b37d9316 6675 */
ea67821b
VG
6676static inline bool
6677group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6678{
ea67821b
VG
6679 if (sgs->sum_nr_running < sgs->group_weight)
6680 return true;
c61037e9 6681
ea67821b 6682 if ((sgs->group_capacity * 100) >
9e91d61d 6683 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6684 return true;
b37d9316 6685
ea67821b
VG
6686 return false;
6687}
6688
6689/*
6690 * group_is_overloaded returns true if the group has more tasks than it can
6691 * handle.
6692 * group_is_overloaded is not equals to !group_has_capacity because a group
6693 * with the exact right number of tasks, has no more spare capacity but is not
6694 * overloaded so both group_has_capacity and group_is_overloaded return
6695 * false.
6696 */
6697static inline bool
6698group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6699{
6700 if (sgs->sum_nr_running <= sgs->group_weight)
6701 return false;
b37d9316 6702
ea67821b 6703 if ((sgs->group_capacity * 100) <
9e91d61d 6704 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6705 return true;
b37d9316 6706
ea67821b 6707 return false;
b37d9316
PZ
6708}
6709
79a89f92
LY
6710static inline enum
6711group_type group_classify(struct sched_group *group,
6712 struct sg_lb_stats *sgs)
caeb178c 6713{
ea67821b 6714 if (sgs->group_no_capacity)
caeb178c
RR
6715 return group_overloaded;
6716
6717 if (sg_imbalanced(group))
6718 return group_imbalanced;
6719
6720 return group_other;
6721}
6722
1e3c88bd
PZ
6723/**
6724 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6725 * @env: The load balancing environment.
1e3c88bd 6726 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6727 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6728 * @local_group: Does group contain this_cpu.
1e3c88bd 6729 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6730 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6731 */
bd939f45
PZ
6732static inline void update_sg_lb_stats(struct lb_env *env,
6733 struct sched_group *group, int load_idx,
4486edd1
TC
6734 int local_group, struct sg_lb_stats *sgs,
6735 bool *overload)
1e3c88bd 6736{
30ce5dab 6737 unsigned long load;
a426f99c 6738 int i, nr_running;
1e3c88bd 6739
b72ff13c
PZ
6740 memset(sgs, 0, sizeof(*sgs));
6741
b9403130 6742 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6743 struct rq *rq = cpu_rq(i);
6744
1e3c88bd 6745 /* Bias balancing toward cpus of our domain */
6263322c 6746 if (local_group)
04f733b4 6747 load = target_load(i, load_idx);
6263322c 6748 else
1e3c88bd 6749 load = source_load(i, load_idx);
1e3c88bd
PZ
6750
6751 sgs->group_load += load;
9e91d61d 6752 sgs->group_util += cpu_util(i);
65fdac08 6753 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6754
a426f99c
WL
6755 nr_running = rq->nr_running;
6756 if (nr_running > 1)
4486edd1
TC
6757 *overload = true;
6758
0ec8aa00
PZ
6759#ifdef CONFIG_NUMA_BALANCING
6760 sgs->nr_numa_running += rq->nr_numa_running;
6761 sgs->nr_preferred_running += rq->nr_preferred_running;
6762#endif
1e3c88bd 6763 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6764 /*
6765 * No need to call idle_cpu() if nr_running is not 0
6766 */
6767 if (!nr_running && idle_cpu(i))
aae6d3dd 6768 sgs->idle_cpus++;
1e3c88bd
PZ
6769 }
6770
63b2ca30
NP
6771 /* Adjust by relative CPU capacity of the group */
6772 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6773 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6774
dd5feea1 6775 if (sgs->sum_nr_running)
38d0f770 6776 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6777
aae6d3dd 6778 sgs->group_weight = group->group_weight;
b37d9316 6779
ea67821b 6780 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6781 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6782}
6783
532cb4c4
MN
6784/**
6785 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6786 * @env: The load balancing environment.
532cb4c4
MN
6787 * @sds: sched_domain statistics
6788 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6789 * @sgs: sched_group statistics
532cb4c4
MN
6790 *
6791 * Determine if @sg is a busier group than the previously selected
6792 * busiest group.
e69f6186
YB
6793 *
6794 * Return: %true if @sg is a busier group than the previously selected
6795 * busiest group. %false otherwise.
532cb4c4 6796 */
bd939f45 6797static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6798 struct sd_lb_stats *sds,
6799 struct sched_group *sg,
bd939f45 6800 struct sg_lb_stats *sgs)
532cb4c4 6801{
caeb178c 6802 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6803
caeb178c 6804 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6805 return true;
6806
caeb178c
RR
6807 if (sgs->group_type < busiest->group_type)
6808 return false;
6809
6810 if (sgs->avg_load <= busiest->avg_load)
6811 return false;
6812
6813 /* This is the busiest node in its class. */
6814 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6815 return true;
6816
1f621e02
SD
6817 /* No ASYM_PACKING if target cpu is already busy */
6818 if (env->idle == CPU_NOT_IDLE)
6819 return true;
532cb4c4
MN
6820 /*
6821 * ASYM_PACKING needs to move all the work to the lowest
6822 * numbered CPUs in the group, therefore mark all groups
6823 * higher than ourself as busy.
6824 */
caeb178c 6825 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6826 if (!sds->busiest)
6827 return true;
6828
1f621e02
SD
6829 /* Prefer to move from highest possible cpu's work */
6830 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6831 return true;
6832 }
6833
6834 return false;
6835}
6836
0ec8aa00
PZ
6837#ifdef CONFIG_NUMA_BALANCING
6838static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6839{
6840 if (sgs->sum_nr_running > sgs->nr_numa_running)
6841 return regular;
6842 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6843 return remote;
6844 return all;
6845}
6846
6847static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6848{
6849 if (rq->nr_running > rq->nr_numa_running)
6850 return regular;
6851 if (rq->nr_running > rq->nr_preferred_running)
6852 return remote;
6853 return all;
6854}
6855#else
6856static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6857{
6858 return all;
6859}
6860
6861static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6862{
6863 return regular;
6864}
6865#endif /* CONFIG_NUMA_BALANCING */
6866
1e3c88bd 6867/**
461819ac 6868 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6869 * @env: The load balancing environment.
1e3c88bd
PZ
6870 * @sds: variable to hold the statistics for this sched_domain.
6871 */
0ec8aa00 6872static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6873{
bd939f45
PZ
6874 struct sched_domain *child = env->sd->child;
6875 struct sched_group *sg = env->sd->groups;
56cf515b 6876 struct sg_lb_stats tmp_sgs;
1e3c88bd 6877 int load_idx, prefer_sibling = 0;
4486edd1 6878 bool overload = false;
1e3c88bd
PZ
6879
6880 if (child && child->flags & SD_PREFER_SIBLING)
6881 prefer_sibling = 1;
6882
bd939f45 6883 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6884
6885 do {
56cf515b 6886 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6887 int local_group;
6888
bd939f45 6889 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6890 if (local_group) {
6891 sds->local = sg;
6892 sgs = &sds->local_stat;
b72ff13c
PZ
6893
6894 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6895 time_after_eq(jiffies, sg->sgc->next_update))
6896 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6897 }
1e3c88bd 6898
4486edd1
TC
6899 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6900 &overload);
1e3c88bd 6901
b72ff13c
PZ
6902 if (local_group)
6903 goto next_group;
6904
1e3c88bd
PZ
6905 /*
6906 * In case the child domain prefers tasks go to siblings
ea67821b 6907 * first, lower the sg capacity so that we'll try
75dd321d
NR
6908 * and move all the excess tasks away. We lower the capacity
6909 * of a group only if the local group has the capacity to fit
ea67821b
VG
6910 * these excess tasks. The extra check prevents the case where
6911 * you always pull from the heaviest group when it is already
6912 * under-utilized (possible with a large weight task outweighs
6913 * the tasks on the system).
1e3c88bd 6914 */
b72ff13c 6915 if (prefer_sibling && sds->local &&
ea67821b
VG
6916 group_has_capacity(env, &sds->local_stat) &&
6917 (sgs->sum_nr_running > 1)) {
6918 sgs->group_no_capacity = 1;
79a89f92 6919 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6920 }
1e3c88bd 6921
b72ff13c 6922 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6923 sds->busiest = sg;
56cf515b 6924 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6925 }
6926
b72ff13c
PZ
6927next_group:
6928 /* Now, start updating sd_lb_stats */
6929 sds->total_load += sgs->group_load;
63b2ca30 6930 sds->total_capacity += sgs->group_capacity;
b72ff13c 6931
532cb4c4 6932 sg = sg->next;
bd939f45 6933 } while (sg != env->sd->groups);
0ec8aa00
PZ
6934
6935 if (env->sd->flags & SD_NUMA)
6936 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6937
6938 if (!env->sd->parent) {
6939 /* update overload indicator if we are at root domain */
6940 if (env->dst_rq->rd->overload != overload)
6941 env->dst_rq->rd->overload = overload;
6942 }
6943
532cb4c4
MN
6944}
6945
532cb4c4
MN
6946/**
6947 * check_asym_packing - Check to see if the group is packed into the
6948 * sched doman.
6949 *
6950 * This is primarily intended to used at the sibling level. Some
6951 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6952 * case of POWER7, it can move to lower SMT modes only when higher
6953 * threads are idle. When in lower SMT modes, the threads will
6954 * perform better since they share less core resources. Hence when we
6955 * have idle threads, we want them to be the higher ones.
6956 *
6957 * This packing function is run on idle threads. It checks to see if
6958 * the busiest CPU in this domain (core in the P7 case) has a higher
6959 * CPU number than the packing function is being run on. Here we are
6960 * assuming lower CPU number will be equivalent to lower a SMT thread
6961 * number.
6962 *
e69f6186 6963 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6964 * this CPU. The amount of the imbalance is returned in *imbalance.
6965 *
cd96891d 6966 * @env: The load balancing environment.
532cb4c4 6967 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6968 */
bd939f45 6969static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6970{
6971 int busiest_cpu;
6972
bd939f45 6973 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6974 return 0;
6975
1f621e02
SD
6976 if (env->idle == CPU_NOT_IDLE)
6977 return 0;
6978
532cb4c4
MN
6979 if (!sds->busiest)
6980 return 0;
6981
6982 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6983 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6984 return 0;
6985
bd939f45 6986 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6987 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6988 SCHED_CAPACITY_SCALE);
bd939f45 6989
532cb4c4 6990 return 1;
1e3c88bd
PZ
6991}
6992
6993/**
6994 * fix_small_imbalance - Calculate the minor imbalance that exists
6995 * amongst the groups of a sched_domain, during
6996 * load balancing.
cd96891d 6997 * @env: The load balancing environment.
1e3c88bd 6998 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6999 */
bd939f45
PZ
7000static inline
7001void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7002{
63b2ca30 7003 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7004 unsigned int imbn = 2;
dd5feea1 7005 unsigned long scaled_busy_load_per_task;
56cf515b 7006 struct sg_lb_stats *local, *busiest;
1e3c88bd 7007
56cf515b
JK
7008 local = &sds->local_stat;
7009 busiest = &sds->busiest_stat;
1e3c88bd 7010
56cf515b
JK
7011 if (!local->sum_nr_running)
7012 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7013 else if (busiest->load_per_task > local->load_per_task)
7014 imbn = 1;
dd5feea1 7015
56cf515b 7016 scaled_busy_load_per_task =
ca8ce3d0 7017 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7018 busiest->group_capacity;
56cf515b 7019
3029ede3
VD
7020 if (busiest->avg_load + scaled_busy_load_per_task >=
7021 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7022 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7023 return;
7024 }
7025
7026 /*
7027 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7028 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7029 * moving them.
7030 */
7031
63b2ca30 7032 capa_now += busiest->group_capacity *
56cf515b 7033 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7034 capa_now += local->group_capacity *
56cf515b 7035 min(local->load_per_task, local->avg_load);
ca8ce3d0 7036 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7037
7038 /* Amount of load we'd subtract */
a2cd4260 7039 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7040 capa_move += busiest->group_capacity *
56cf515b 7041 min(busiest->load_per_task,
a2cd4260 7042 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7043 }
1e3c88bd
PZ
7044
7045 /* Amount of load we'd add */
63b2ca30 7046 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7047 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7048 tmp = (busiest->avg_load * busiest->group_capacity) /
7049 local->group_capacity;
56cf515b 7050 } else {
ca8ce3d0 7051 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7052 local->group_capacity;
56cf515b 7053 }
63b2ca30 7054 capa_move += local->group_capacity *
3ae11c90 7055 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7056 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7057
7058 /* Move if we gain throughput */
63b2ca30 7059 if (capa_move > capa_now)
56cf515b 7060 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7061}
7062
7063/**
7064 * calculate_imbalance - Calculate the amount of imbalance present within the
7065 * groups of a given sched_domain during load balance.
bd939f45 7066 * @env: load balance environment
1e3c88bd 7067 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7068 */
bd939f45 7069static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7070{
dd5feea1 7071 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7072 struct sg_lb_stats *local, *busiest;
7073
7074 local = &sds->local_stat;
56cf515b 7075 busiest = &sds->busiest_stat;
dd5feea1 7076
caeb178c 7077 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7078 /*
7079 * In the group_imb case we cannot rely on group-wide averages
7080 * to ensure cpu-load equilibrium, look at wider averages. XXX
7081 */
56cf515b
JK
7082 busiest->load_per_task =
7083 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7084 }
7085
1e3c88bd 7086 /*
885e542c
DE
7087 * Avg load of busiest sg can be less and avg load of local sg can
7088 * be greater than avg load across all sgs of sd because avg load
7089 * factors in sg capacity and sgs with smaller group_type are
7090 * skipped when updating the busiest sg:
1e3c88bd 7091 */
b1885550
VD
7092 if (busiest->avg_load <= sds->avg_load ||
7093 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7094 env->imbalance = 0;
7095 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7096 }
7097
9a5d9ba6
PZ
7098 /*
7099 * If there aren't any idle cpus, avoid creating some.
7100 */
7101 if (busiest->group_type == group_overloaded &&
7102 local->group_type == group_overloaded) {
1be0eb2a 7103 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7104 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7105 load_above_capacity -= busiest->group_capacity;
cfa10334
MR
7106 load_above_capacity *= NICE_0_LOAD;
7107 load_above_capacity /= busiest->group_capacity;
7108 } else
ea67821b 7109 load_above_capacity = ~0UL;
dd5feea1
SS
7110 }
7111
7112 /*
7113 * We're trying to get all the cpus to the average_load, so we don't
7114 * want to push ourselves above the average load, nor do we wish to
7115 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7116 * we also don't want to reduce the group load below the group
7117 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7118 */
30ce5dab 7119 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7120
7121 /* How much load to actually move to equalise the imbalance */
56cf515b 7122 env->imbalance = min(
63b2ca30
NP
7123 max_pull * busiest->group_capacity,
7124 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7125 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7126
7127 /*
7128 * if *imbalance is less than the average load per runnable task
25985edc 7129 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7130 * a think about bumping its value to force at least one task to be
7131 * moved
7132 */
56cf515b 7133 if (env->imbalance < busiest->load_per_task)
bd939f45 7134 return fix_small_imbalance(env, sds);
1e3c88bd 7135}
fab47622 7136
1e3c88bd
PZ
7137/******* find_busiest_group() helpers end here *********************/
7138
7139/**
7140 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7141 * if there is an imbalance.
1e3c88bd
PZ
7142 *
7143 * Also calculates the amount of weighted load which should be moved
7144 * to restore balance.
7145 *
cd96891d 7146 * @env: The load balancing environment.
1e3c88bd 7147 *
e69f6186 7148 * Return: - The busiest group if imbalance exists.
1e3c88bd 7149 */
56cf515b 7150static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7151{
56cf515b 7152 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7153 struct sd_lb_stats sds;
7154
147c5fc2 7155 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7156
7157 /*
7158 * Compute the various statistics relavent for load balancing at
7159 * this level.
7160 */
23f0d209 7161 update_sd_lb_stats(env, &sds);
56cf515b
JK
7162 local = &sds.local_stat;
7163 busiest = &sds.busiest_stat;
1e3c88bd 7164
ea67821b 7165 /* ASYM feature bypasses nice load balance check */
1f621e02 7166 if (check_asym_packing(env, &sds))
532cb4c4
MN
7167 return sds.busiest;
7168
cc57aa8f 7169 /* There is no busy sibling group to pull tasks from */
56cf515b 7170 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7171 goto out_balanced;
7172
ca8ce3d0
NP
7173 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7174 / sds.total_capacity;
b0432d8f 7175
866ab43e
PZ
7176 /*
7177 * If the busiest group is imbalanced the below checks don't
30ce5dab 7178 * work because they assume all things are equal, which typically
866ab43e
PZ
7179 * isn't true due to cpus_allowed constraints and the like.
7180 */
caeb178c 7181 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7182 goto force_balance;
7183
cc57aa8f 7184 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7185 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7186 busiest->group_no_capacity)
fab47622
NR
7187 goto force_balance;
7188
cc57aa8f 7189 /*
9c58c79a 7190 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7191 * don't try and pull any tasks.
7192 */
56cf515b 7193 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7194 goto out_balanced;
7195
cc57aa8f
PZ
7196 /*
7197 * Don't pull any tasks if this group is already above the domain
7198 * average load.
7199 */
56cf515b 7200 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7201 goto out_balanced;
7202
bd939f45 7203 if (env->idle == CPU_IDLE) {
aae6d3dd 7204 /*
43f4d666
VG
7205 * This cpu is idle. If the busiest group is not overloaded
7206 * and there is no imbalance between this and busiest group
7207 * wrt idle cpus, it is balanced. The imbalance becomes
7208 * significant if the diff is greater than 1 otherwise we
7209 * might end up to just move the imbalance on another group
aae6d3dd 7210 */
43f4d666
VG
7211 if ((busiest->group_type != group_overloaded) &&
7212 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7213 goto out_balanced;
c186fafe
PZ
7214 } else {
7215 /*
7216 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7217 * imbalance_pct to be conservative.
7218 */
56cf515b
JK
7219 if (100 * busiest->avg_load <=
7220 env->sd->imbalance_pct * local->avg_load)
c186fafe 7221 goto out_balanced;
aae6d3dd 7222 }
1e3c88bd 7223
fab47622 7224force_balance:
1e3c88bd 7225 /* Looks like there is an imbalance. Compute it */
bd939f45 7226 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7227 return sds.busiest;
7228
7229out_balanced:
bd939f45 7230 env->imbalance = 0;
1e3c88bd
PZ
7231 return NULL;
7232}
7233
7234/*
7235 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7236 */
bd939f45 7237static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7238 struct sched_group *group)
1e3c88bd
PZ
7239{
7240 struct rq *busiest = NULL, *rq;
ced549fa 7241 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7242 int i;
7243
6906a408 7244 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7245 unsigned long capacity, wl;
0ec8aa00
PZ
7246 enum fbq_type rt;
7247
7248 rq = cpu_rq(i);
7249 rt = fbq_classify_rq(rq);
1e3c88bd 7250
0ec8aa00
PZ
7251 /*
7252 * We classify groups/runqueues into three groups:
7253 * - regular: there are !numa tasks
7254 * - remote: there are numa tasks that run on the 'wrong' node
7255 * - all: there is no distinction
7256 *
7257 * In order to avoid migrating ideally placed numa tasks,
7258 * ignore those when there's better options.
7259 *
7260 * If we ignore the actual busiest queue to migrate another
7261 * task, the next balance pass can still reduce the busiest
7262 * queue by moving tasks around inside the node.
7263 *
7264 * If we cannot move enough load due to this classification
7265 * the next pass will adjust the group classification and
7266 * allow migration of more tasks.
7267 *
7268 * Both cases only affect the total convergence complexity.
7269 */
7270 if (rt > env->fbq_type)
7271 continue;
7272
ced549fa 7273 capacity = capacity_of(i);
9d5efe05 7274
6e40f5bb 7275 wl = weighted_cpuload(i);
1e3c88bd 7276
6e40f5bb
TG
7277 /*
7278 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7279 * which is not scaled with the cpu capacity.
6e40f5bb 7280 */
ea67821b
VG
7281
7282 if (rq->nr_running == 1 && wl > env->imbalance &&
7283 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7284 continue;
7285
6e40f5bb
TG
7286 /*
7287 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7288 * the weighted_cpuload() scaled with the cpu capacity, so
7289 * that the load can be moved away from the cpu that is
7290 * potentially running at a lower capacity.
95a79b80 7291 *
ced549fa 7292 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7293 * multiplication to rid ourselves of the division works out
ced549fa
NP
7294 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7295 * our previous maximum.
6e40f5bb 7296 */
ced549fa 7297 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7298 busiest_load = wl;
ced549fa 7299 busiest_capacity = capacity;
1e3c88bd
PZ
7300 busiest = rq;
7301 }
7302 }
7303
7304 return busiest;
7305}
7306
7307/*
7308 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7309 * so long as it is large enough.
7310 */
7311#define MAX_PINNED_INTERVAL 512
7312
7313/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7314DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7315
bd939f45 7316static int need_active_balance(struct lb_env *env)
1af3ed3d 7317{
bd939f45
PZ
7318 struct sched_domain *sd = env->sd;
7319
7320 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7321
7322 /*
7323 * ASYM_PACKING needs to force migrate tasks from busy but
7324 * higher numbered CPUs in order to pack all tasks in the
7325 * lowest numbered CPUs.
7326 */
bd939f45 7327 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7328 return 1;
1af3ed3d
PZ
7329 }
7330
1aaf90a4
VG
7331 /*
7332 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7333 * It's worth migrating the task if the src_cpu's capacity is reduced
7334 * because of other sched_class or IRQs if more capacity stays
7335 * available on dst_cpu.
7336 */
7337 if ((env->idle != CPU_NOT_IDLE) &&
7338 (env->src_rq->cfs.h_nr_running == 1)) {
7339 if ((check_cpu_capacity(env->src_rq, sd)) &&
7340 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7341 return 1;
7342 }
7343
1af3ed3d
PZ
7344 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7345}
7346
969c7921
TH
7347static int active_load_balance_cpu_stop(void *data);
7348
23f0d209
JK
7349static int should_we_balance(struct lb_env *env)
7350{
7351 struct sched_group *sg = env->sd->groups;
7352 struct cpumask *sg_cpus, *sg_mask;
7353 int cpu, balance_cpu = -1;
7354
7355 /*
7356 * In the newly idle case, we will allow all the cpu's
7357 * to do the newly idle load balance.
7358 */
7359 if (env->idle == CPU_NEWLY_IDLE)
7360 return 1;
7361
7362 sg_cpus = sched_group_cpus(sg);
7363 sg_mask = sched_group_mask(sg);
7364 /* Try to find first idle cpu */
7365 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7366 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7367 continue;
7368
7369 balance_cpu = cpu;
7370 break;
7371 }
7372
7373 if (balance_cpu == -1)
7374 balance_cpu = group_balance_cpu(sg);
7375
7376 /*
7377 * First idle cpu or the first cpu(busiest) in this sched group
7378 * is eligible for doing load balancing at this and above domains.
7379 */
b0cff9d8 7380 return balance_cpu == env->dst_cpu;
23f0d209
JK
7381}
7382
1e3c88bd
PZ
7383/*
7384 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7385 * tasks if there is an imbalance.
7386 */
7387static int load_balance(int this_cpu, struct rq *this_rq,
7388 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7389 int *continue_balancing)
1e3c88bd 7390{
88b8dac0 7391 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7392 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7393 struct sched_group *group;
1e3c88bd
PZ
7394 struct rq *busiest;
7395 unsigned long flags;
4ba29684 7396 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7397
8e45cb54
PZ
7398 struct lb_env env = {
7399 .sd = sd,
ddcdf6e7
PZ
7400 .dst_cpu = this_cpu,
7401 .dst_rq = this_rq,
88b8dac0 7402 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7403 .idle = idle,
eb95308e 7404 .loop_break = sched_nr_migrate_break,
b9403130 7405 .cpus = cpus,
0ec8aa00 7406 .fbq_type = all,
163122b7 7407 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7408 };
7409
cfc03118
JK
7410 /*
7411 * For NEWLY_IDLE load_balancing, we don't need to consider
7412 * other cpus in our group
7413 */
e02e60c1 7414 if (idle == CPU_NEWLY_IDLE)
cfc03118 7415 env.dst_grpmask = NULL;
cfc03118 7416
1e3c88bd
PZ
7417 cpumask_copy(cpus, cpu_active_mask);
7418
1e3c88bd
PZ
7419 schedstat_inc(sd, lb_count[idle]);
7420
7421redo:
23f0d209
JK
7422 if (!should_we_balance(&env)) {
7423 *continue_balancing = 0;
1e3c88bd 7424 goto out_balanced;
23f0d209 7425 }
1e3c88bd 7426
23f0d209 7427 group = find_busiest_group(&env);
1e3c88bd
PZ
7428 if (!group) {
7429 schedstat_inc(sd, lb_nobusyg[idle]);
7430 goto out_balanced;
7431 }
7432
b9403130 7433 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7434 if (!busiest) {
7435 schedstat_inc(sd, lb_nobusyq[idle]);
7436 goto out_balanced;
7437 }
7438
78feefc5 7439 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7440
bd939f45 7441 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7442
1aaf90a4
VG
7443 env.src_cpu = busiest->cpu;
7444 env.src_rq = busiest;
7445
1e3c88bd
PZ
7446 ld_moved = 0;
7447 if (busiest->nr_running > 1) {
7448 /*
7449 * Attempt to move tasks. If find_busiest_group has found
7450 * an imbalance but busiest->nr_running <= 1, the group is
7451 * still unbalanced. ld_moved simply stays zero, so it is
7452 * correctly treated as an imbalance.
7453 */
8e45cb54 7454 env.flags |= LBF_ALL_PINNED;
c82513e5 7455 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7456
5d6523eb 7457more_balance:
163122b7 7458 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7459
7460 /*
7461 * cur_ld_moved - load moved in current iteration
7462 * ld_moved - cumulative load moved across iterations
7463 */
163122b7 7464 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7465
7466 /*
163122b7
KT
7467 * We've detached some tasks from busiest_rq. Every
7468 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7469 * unlock busiest->lock, and we are able to be sure
7470 * that nobody can manipulate the tasks in parallel.
7471 * See task_rq_lock() family for the details.
1e3c88bd 7472 */
163122b7
KT
7473
7474 raw_spin_unlock(&busiest->lock);
7475
7476 if (cur_ld_moved) {
7477 attach_tasks(&env);
7478 ld_moved += cur_ld_moved;
7479 }
7480
1e3c88bd 7481 local_irq_restore(flags);
88b8dac0 7482
f1cd0858
JK
7483 if (env.flags & LBF_NEED_BREAK) {
7484 env.flags &= ~LBF_NEED_BREAK;
7485 goto more_balance;
7486 }
7487
88b8dac0
SV
7488 /*
7489 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7490 * us and move them to an alternate dst_cpu in our sched_group
7491 * where they can run. The upper limit on how many times we
7492 * iterate on same src_cpu is dependent on number of cpus in our
7493 * sched_group.
7494 *
7495 * This changes load balance semantics a bit on who can move
7496 * load to a given_cpu. In addition to the given_cpu itself
7497 * (or a ilb_cpu acting on its behalf where given_cpu is
7498 * nohz-idle), we now have balance_cpu in a position to move
7499 * load to given_cpu. In rare situations, this may cause
7500 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7501 * _independently_ and at _same_ time to move some load to
7502 * given_cpu) causing exceess load to be moved to given_cpu.
7503 * This however should not happen so much in practice and
7504 * moreover subsequent load balance cycles should correct the
7505 * excess load moved.
7506 */
6263322c 7507 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7508
7aff2e3a
VD
7509 /* Prevent to re-select dst_cpu via env's cpus */
7510 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7511
78feefc5 7512 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7513 env.dst_cpu = env.new_dst_cpu;
6263322c 7514 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7515 env.loop = 0;
7516 env.loop_break = sched_nr_migrate_break;
e02e60c1 7517
88b8dac0
SV
7518 /*
7519 * Go back to "more_balance" rather than "redo" since we
7520 * need to continue with same src_cpu.
7521 */
7522 goto more_balance;
7523 }
1e3c88bd 7524
6263322c
PZ
7525 /*
7526 * We failed to reach balance because of affinity.
7527 */
7528 if (sd_parent) {
63b2ca30 7529 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7530
afdeee05 7531 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7532 *group_imbalance = 1;
6263322c
PZ
7533 }
7534
1e3c88bd 7535 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7536 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7537 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7538 if (!cpumask_empty(cpus)) {
7539 env.loop = 0;
7540 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7541 goto redo;
bbf18b19 7542 }
afdeee05 7543 goto out_all_pinned;
1e3c88bd
PZ
7544 }
7545 }
7546
7547 if (!ld_moved) {
7548 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7549 /*
7550 * Increment the failure counter only on periodic balance.
7551 * We do not want newidle balance, which can be very
7552 * frequent, pollute the failure counter causing
7553 * excessive cache_hot migrations and active balances.
7554 */
7555 if (idle != CPU_NEWLY_IDLE)
7556 sd->nr_balance_failed++;
1e3c88bd 7557
bd939f45 7558 if (need_active_balance(&env)) {
1e3c88bd
PZ
7559 raw_spin_lock_irqsave(&busiest->lock, flags);
7560
969c7921
TH
7561 /* don't kick the active_load_balance_cpu_stop,
7562 * if the curr task on busiest cpu can't be
7563 * moved to this_cpu
1e3c88bd
PZ
7564 */
7565 if (!cpumask_test_cpu(this_cpu,
fa17b507 7566 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7567 raw_spin_unlock_irqrestore(&busiest->lock,
7568 flags);
8e45cb54 7569 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7570 goto out_one_pinned;
7571 }
7572
969c7921
TH
7573 /*
7574 * ->active_balance synchronizes accesses to
7575 * ->active_balance_work. Once set, it's cleared
7576 * only after active load balance is finished.
7577 */
1e3c88bd
PZ
7578 if (!busiest->active_balance) {
7579 busiest->active_balance = 1;
7580 busiest->push_cpu = this_cpu;
7581 active_balance = 1;
7582 }
7583 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7584
bd939f45 7585 if (active_balance) {
969c7921
TH
7586 stop_one_cpu_nowait(cpu_of(busiest),
7587 active_load_balance_cpu_stop, busiest,
7588 &busiest->active_balance_work);
bd939f45 7589 }
1e3c88bd 7590
d02c0711 7591 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7592 sd->nr_balance_failed = sd->cache_nice_tries+1;
7593 }
7594 } else
7595 sd->nr_balance_failed = 0;
7596
7597 if (likely(!active_balance)) {
7598 /* We were unbalanced, so reset the balancing interval */
7599 sd->balance_interval = sd->min_interval;
7600 } else {
7601 /*
7602 * If we've begun active balancing, start to back off. This
7603 * case may not be covered by the all_pinned logic if there
7604 * is only 1 task on the busy runqueue (because we don't call
163122b7 7605 * detach_tasks).
1e3c88bd
PZ
7606 */
7607 if (sd->balance_interval < sd->max_interval)
7608 sd->balance_interval *= 2;
7609 }
7610
1e3c88bd
PZ
7611 goto out;
7612
7613out_balanced:
afdeee05
VG
7614 /*
7615 * We reach balance although we may have faced some affinity
7616 * constraints. Clear the imbalance flag if it was set.
7617 */
7618 if (sd_parent) {
7619 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7620
7621 if (*group_imbalance)
7622 *group_imbalance = 0;
7623 }
7624
7625out_all_pinned:
7626 /*
7627 * We reach balance because all tasks are pinned at this level so
7628 * we can't migrate them. Let the imbalance flag set so parent level
7629 * can try to migrate them.
7630 */
1e3c88bd
PZ
7631 schedstat_inc(sd, lb_balanced[idle]);
7632
7633 sd->nr_balance_failed = 0;
7634
7635out_one_pinned:
7636 /* tune up the balancing interval */
8e45cb54 7637 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7638 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7639 (sd->balance_interval < sd->max_interval))
7640 sd->balance_interval *= 2;
7641
46e49b38 7642 ld_moved = 0;
1e3c88bd 7643out:
1e3c88bd
PZ
7644 return ld_moved;
7645}
7646
52a08ef1
JL
7647static inline unsigned long
7648get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7649{
7650 unsigned long interval = sd->balance_interval;
7651
7652 if (cpu_busy)
7653 interval *= sd->busy_factor;
7654
7655 /* scale ms to jiffies */
7656 interval = msecs_to_jiffies(interval);
7657 interval = clamp(interval, 1UL, max_load_balance_interval);
7658
7659 return interval;
7660}
7661
7662static inline void
7663update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7664{
7665 unsigned long interval, next;
7666
7667 interval = get_sd_balance_interval(sd, cpu_busy);
7668 next = sd->last_balance + interval;
7669
7670 if (time_after(*next_balance, next))
7671 *next_balance = next;
7672}
7673
1e3c88bd
PZ
7674/*
7675 * idle_balance is called by schedule() if this_cpu is about to become
7676 * idle. Attempts to pull tasks from other CPUs.
7677 */
6e83125c 7678static int idle_balance(struct rq *this_rq)
1e3c88bd 7679{
52a08ef1
JL
7680 unsigned long next_balance = jiffies + HZ;
7681 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7682 struct sched_domain *sd;
7683 int pulled_task = 0;
9bd721c5 7684 u64 curr_cost = 0;
1e3c88bd 7685
6e83125c
PZ
7686 /*
7687 * We must set idle_stamp _before_ calling idle_balance(), such that we
7688 * measure the duration of idle_balance() as idle time.
7689 */
7690 this_rq->idle_stamp = rq_clock(this_rq);
7691
4486edd1
TC
7692 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7693 !this_rq->rd->overload) {
52a08ef1
JL
7694 rcu_read_lock();
7695 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7696 if (sd)
7697 update_next_balance(sd, 0, &next_balance);
7698 rcu_read_unlock();
7699
6e83125c 7700 goto out;
52a08ef1 7701 }
1e3c88bd 7702
f492e12e
PZ
7703 raw_spin_unlock(&this_rq->lock);
7704
48a16753 7705 update_blocked_averages(this_cpu);
dce840a0 7706 rcu_read_lock();
1e3c88bd 7707 for_each_domain(this_cpu, sd) {
23f0d209 7708 int continue_balancing = 1;
9bd721c5 7709 u64 t0, domain_cost;
1e3c88bd
PZ
7710
7711 if (!(sd->flags & SD_LOAD_BALANCE))
7712 continue;
7713
52a08ef1
JL
7714 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7715 update_next_balance(sd, 0, &next_balance);
9bd721c5 7716 break;
52a08ef1 7717 }
9bd721c5 7718
f492e12e 7719 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7720 t0 = sched_clock_cpu(this_cpu);
7721
f492e12e 7722 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7723 sd, CPU_NEWLY_IDLE,
7724 &continue_balancing);
9bd721c5
JL
7725
7726 domain_cost = sched_clock_cpu(this_cpu) - t0;
7727 if (domain_cost > sd->max_newidle_lb_cost)
7728 sd->max_newidle_lb_cost = domain_cost;
7729
7730 curr_cost += domain_cost;
f492e12e 7731 }
1e3c88bd 7732
52a08ef1 7733 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7734
7735 /*
7736 * Stop searching for tasks to pull if there are
7737 * now runnable tasks on this rq.
7738 */
7739 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7740 break;
1e3c88bd 7741 }
dce840a0 7742 rcu_read_unlock();
f492e12e
PZ
7743
7744 raw_spin_lock(&this_rq->lock);
7745
0e5b5337
JL
7746 if (curr_cost > this_rq->max_idle_balance_cost)
7747 this_rq->max_idle_balance_cost = curr_cost;
7748
e5fc6611 7749 /*
0e5b5337
JL
7750 * While browsing the domains, we released the rq lock, a task could
7751 * have been enqueued in the meantime. Since we're not going idle,
7752 * pretend we pulled a task.
e5fc6611 7753 */
0e5b5337 7754 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7755 pulled_task = 1;
e5fc6611 7756
52a08ef1
JL
7757out:
7758 /* Move the next balance forward */
7759 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7760 this_rq->next_balance = next_balance;
9bd721c5 7761
e4aa358b 7762 /* Is there a task of a high priority class? */
46383648 7763 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7764 pulled_task = -1;
7765
38c6ade2 7766 if (pulled_task)
6e83125c
PZ
7767 this_rq->idle_stamp = 0;
7768
3c4017c1 7769 return pulled_task;
1e3c88bd
PZ
7770}
7771
7772/*
969c7921
TH
7773 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7774 * running tasks off the busiest CPU onto idle CPUs. It requires at
7775 * least 1 task to be running on each physical CPU where possible, and
7776 * avoids physical / logical imbalances.
1e3c88bd 7777 */
969c7921 7778static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7779{
969c7921
TH
7780 struct rq *busiest_rq = data;
7781 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7782 int target_cpu = busiest_rq->push_cpu;
969c7921 7783 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7784 struct sched_domain *sd;
e5673f28 7785 struct task_struct *p = NULL;
969c7921
TH
7786
7787 raw_spin_lock_irq(&busiest_rq->lock);
7788
7789 /* make sure the requested cpu hasn't gone down in the meantime */
7790 if (unlikely(busiest_cpu != smp_processor_id() ||
7791 !busiest_rq->active_balance))
7792 goto out_unlock;
1e3c88bd
PZ
7793
7794 /* Is there any task to move? */
7795 if (busiest_rq->nr_running <= 1)
969c7921 7796 goto out_unlock;
1e3c88bd
PZ
7797
7798 /*
7799 * This condition is "impossible", if it occurs
7800 * we need to fix it. Originally reported by
7801 * Bjorn Helgaas on a 128-cpu setup.
7802 */
7803 BUG_ON(busiest_rq == target_rq);
7804
1e3c88bd 7805 /* Search for an sd spanning us and the target CPU. */
dce840a0 7806 rcu_read_lock();
1e3c88bd
PZ
7807 for_each_domain(target_cpu, sd) {
7808 if ((sd->flags & SD_LOAD_BALANCE) &&
7809 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7810 break;
7811 }
7812
7813 if (likely(sd)) {
8e45cb54
PZ
7814 struct lb_env env = {
7815 .sd = sd,
ddcdf6e7
PZ
7816 .dst_cpu = target_cpu,
7817 .dst_rq = target_rq,
7818 .src_cpu = busiest_rq->cpu,
7819 .src_rq = busiest_rq,
8e45cb54
PZ
7820 .idle = CPU_IDLE,
7821 };
7822
1e3c88bd
PZ
7823 schedstat_inc(sd, alb_count);
7824
e5673f28 7825 p = detach_one_task(&env);
d02c0711 7826 if (p) {
1e3c88bd 7827 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7828 /* Active balancing done, reset the failure counter. */
7829 sd->nr_balance_failed = 0;
7830 } else {
1e3c88bd 7831 schedstat_inc(sd, alb_failed);
d02c0711 7832 }
1e3c88bd 7833 }
dce840a0 7834 rcu_read_unlock();
969c7921
TH
7835out_unlock:
7836 busiest_rq->active_balance = 0;
e5673f28
KT
7837 raw_spin_unlock(&busiest_rq->lock);
7838
7839 if (p)
7840 attach_one_task(target_rq, p);
7841
7842 local_irq_enable();
7843
969c7921 7844 return 0;
1e3c88bd
PZ
7845}
7846
d987fc7f
MG
7847static inline int on_null_domain(struct rq *rq)
7848{
7849 return unlikely(!rcu_dereference_sched(rq->sd));
7850}
7851
3451d024 7852#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7853/*
7854 * idle load balancing details
83cd4fe2
VP
7855 * - When one of the busy CPUs notice that there may be an idle rebalancing
7856 * needed, they will kick the idle load balancer, which then does idle
7857 * load balancing for all the idle CPUs.
7858 */
1e3c88bd 7859static struct {
83cd4fe2 7860 cpumask_var_t idle_cpus_mask;
0b005cf5 7861 atomic_t nr_cpus;
83cd4fe2
VP
7862 unsigned long next_balance; /* in jiffy units */
7863} nohz ____cacheline_aligned;
1e3c88bd 7864
3dd0337d 7865static inline int find_new_ilb(void)
1e3c88bd 7866{
0b005cf5 7867 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7868
786d6dc7
SS
7869 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7870 return ilb;
7871
7872 return nr_cpu_ids;
1e3c88bd 7873}
1e3c88bd 7874
83cd4fe2
VP
7875/*
7876 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7877 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7878 * CPU (if there is one).
7879 */
0aeeeeba 7880static void nohz_balancer_kick(void)
83cd4fe2
VP
7881{
7882 int ilb_cpu;
7883
7884 nohz.next_balance++;
7885
3dd0337d 7886 ilb_cpu = find_new_ilb();
83cd4fe2 7887
0b005cf5
SS
7888 if (ilb_cpu >= nr_cpu_ids)
7889 return;
83cd4fe2 7890
cd490c5b 7891 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7892 return;
7893 /*
7894 * Use smp_send_reschedule() instead of resched_cpu().
7895 * This way we generate a sched IPI on the target cpu which
7896 * is idle. And the softirq performing nohz idle load balance
7897 * will be run before returning from the IPI.
7898 */
7899 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7900 return;
7901}
7902
20a5c8cc 7903void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7904{
7905 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7906 /*
7907 * Completely isolated CPUs don't ever set, so we must test.
7908 */
7909 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7910 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7911 atomic_dec(&nohz.nr_cpus);
7912 }
71325960
SS
7913 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7914 }
7915}
7916
69e1e811
SS
7917static inline void set_cpu_sd_state_busy(void)
7918{
7919 struct sched_domain *sd;
37dc6b50 7920 int cpu = smp_processor_id();
69e1e811 7921
69e1e811 7922 rcu_read_lock();
37dc6b50 7923 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7924
7925 if (!sd || !sd->nohz_idle)
7926 goto unlock;
7927 sd->nohz_idle = 0;
7928
63b2ca30 7929 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7930unlock:
69e1e811
SS
7931 rcu_read_unlock();
7932}
7933
7934void set_cpu_sd_state_idle(void)
7935{
7936 struct sched_domain *sd;
37dc6b50 7937 int cpu = smp_processor_id();
69e1e811 7938
69e1e811 7939 rcu_read_lock();
37dc6b50 7940 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7941
7942 if (!sd || sd->nohz_idle)
7943 goto unlock;
7944 sd->nohz_idle = 1;
7945
63b2ca30 7946 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7947unlock:
69e1e811
SS
7948 rcu_read_unlock();
7949}
7950
1e3c88bd 7951/*
c1cc017c 7952 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7953 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7954 */
c1cc017c 7955void nohz_balance_enter_idle(int cpu)
1e3c88bd 7956{
71325960
SS
7957 /*
7958 * If this cpu is going down, then nothing needs to be done.
7959 */
7960 if (!cpu_active(cpu))
7961 return;
7962
c1cc017c
AS
7963 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7964 return;
1e3c88bd 7965
d987fc7f
MG
7966 /*
7967 * If we're a completely isolated CPU, we don't play.
7968 */
7969 if (on_null_domain(cpu_rq(cpu)))
7970 return;
7971
c1cc017c
AS
7972 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7973 atomic_inc(&nohz.nr_cpus);
7974 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
7975}
7976#endif
7977
7978static DEFINE_SPINLOCK(balancing);
7979
49c022e6
PZ
7980/*
7981 * Scale the max load_balance interval with the number of CPUs in the system.
7982 * This trades load-balance latency on larger machines for less cross talk.
7983 */
029632fb 7984void update_max_interval(void)
49c022e6
PZ
7985{
7986 max_load_balance_interval = HZ*num_online_cpus()/10;
7987}
7988
1e3c88bd
PZ
7989/*
7990 * It checks each scheduling domain to see if it is due to be balanced,
7991 * and initiates a balancing operation if so.
7992 *
b9b0853a 7993 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7994 */
f7ed0a89 7995static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7996{
23f0d209 7997 int continue_balancing = 1;
f7ed0a89 7998 int cpu = rq->cpu;
1e3c88bd 7999 unsigned long interval;
04f733b4 8000 struct sched_domain *sd;
1e3c88bd
PZ
8001 /* Earliest time when we have to do rebalance again */
8002 unsigned long next_balance = jiffies + 60*HZ;
8003 int update_next_balance = 0;
f48627e6
JL
8004 int need_serialize, need_decay = 0;
8005 u64 max_cost = 0;
1e3c88bd 8006
48a16753 8007 update_blocked_averages(cpu);
2069dd75 8008
dce840a0 8009 rcu_read_lock();
1e3c88bd 8010 for_each_domain(cpu, sd) {
f48627e6
JL
8011 /*
8012 * Decay the newidle max times here because this is a regular
8013 * visit to all the domains. Decay ~1% per second.
8014 */
8015 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8016 sd->max_newidle_lb_cost =
8017 (sd->max_newidle_lb_cost * 253) / 256;
8018 sd->next_decay_max_lb_cost = jiffies + HZ;
8019 need_decay = 1;
8020 }
8021 max_cost += sd->max_newidle_lb_cost;
8022
1e3c88bd
PZ
8023 if (!(sd->flags & SD_LOAD_BALANCE))
8024 continue;
8025
f48627e6
JL
8026 /*
8027 * Stop the load balance at this level. There is another
8028 * CPU in our sched group which is doing load balancing more
8029 * actively.
8030 */
8031 if (!continue_balancing) {
8032 if (need_decay)
8033 continue;
8034 break;
8035 }
8036
52a08ef1 8037 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8038
8039 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8040 if (need_serialize) {
8041 if (!spin_trylock(&balancing))
8042 goto out;
8043 }
8044
8045 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8046 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8047 /*
6263322c 8048 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8049 * env->dst_cpu, so we can't know our idle
8050 * state even if we migrated tasks. Update it.
1e3c88bd 8051 */
de5eb2dd 8052 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8053 }
8054 sd->last_balance = jiffies;
52a08ef1 8055 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8056 }
8057 if (need_serialize)
8058 spin_unlock(&balancing);
8059out:
8060 if (time_after(next_balance, sd->last_balance + interval)) {
8061 next_balance = sd->last_balance + interval;
8062 update_next_balance = 1;
8063 }
f48627e6
JL
8064 }
8065 if (need_decay) {
1e3c88bd 8066 /*
f48627e6
JL
8067 * Ensure the rq-wide value also decays but keep it at a
8068 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8069 */
f48627e6
JL
8070 rq->max_idle_balance_cost =
8071 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8072 }
dce840a0 8073 rcu_read_unlock();
1e3c88bd
PZ
8074
8075 /*
8076 * next_balance will be updated only when there is a need.
8077 * When the cpu is attached to null domain for ex, it will not be
8078 * updated.
8079 */
c5afb6a8 8080 if (likely(update_next_balance)) {
1e3c88bd 8081 rq->next_balance = next_balance;
c5afb6a8
VG
8082
8083#ifdef CONFIG_NO_HZ_COMMON
8084 /*
8085 * If this CPU has been elected to perform the nohz idle
8086 * balance. Other idle CPUs have already rebalanced with
8087 * nohz_idle_balance() and nohz.next_balance has been
8088 * updated accordingly. This CPU is now running the idle load
8089 * balance for itself and we need to update the
8090 * nohz.next_balance accordingly.
8091 */
8092 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8093 nohz.next_balance = rq->next_balance;
8094#endif
8095 }
1e3c88bd
PZ
8096}
8097
3451d024 8098#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8099/*
3451d024 8100 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8101 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8102 */
208cb16b 8103static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8104{
208cb16b 8105 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8106 struct rq *rq;
8107 int balance_cpu;
c5afb6a8
VG
8108 /* Earliest time when we have to do rebalance again */
8109 unsigned long next_balance = jiffies + 60*HZ;
8110 int update_next_balance = 0;
83cd4fe2 8111
1c792db7
SS
8112 if (idle != CPU_IDLE ||
8113 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8114 goto end;
83cd4fe2
VP
8115
8116 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8117 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8118 continue;
8119
8120 /*
8121 * If this cpu gets work to do, stop the load balancing
8122 * work being done for other cpus. Next load
8123 * balancing owner will pick it up.
8124 */
1c792db7 8125 if (need_resched())
83cd4fe2 8126 break;
83cd4fe2 8127
5ed4f1d9
VG
8128 rq = cpu_rq(balance_cpu);
8129
ed61bbc6
TC
8130 /*
8131 * If time for next balance is due,
8132 * do the balance.
8133 */
8134 if (time_after_eq(jiffies, rq->next_balance)) {
8135 raw_spin_lock_irq(&rq->lock);
8136 update_rq_clock(rq);
cee1afce 8137 cpu_load_update_idle(rq);
ed61bbc6
TC
8138 raw_spin_unlock_irq(&rq->lock);
8139 rebalance_domains(rq, CPU_IDLE);
8140 }
83cd4fe2 8141
c5afb6a8
VG
8142 if (time_after(next_balance, rq->next_balance)) {
8143 next_balance = rq->next_balance;
8144 update_next_balance = 1;
8145 }
83cd4fe2 8146 }
c5afb6a8
VG
8147
8148 /*
8149 * next_balance will be updated only when there is a need.
8150 * When the CPU is attached to null domain for ex, it will not be
8151 * updated.
8152 */
8153 if (likely(update_next_balance))
8154 nohz.next_balance = next_balance;
1c792db7
SS
8155end:
8156 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8157}
8158
8159/*
0b005cf5 8160 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8161 * of an idle cpu in the system.
0b005cf5 8162 * - This rq has more than one task.
1aaf90a4
VG
8163 * - This rq has at least one CFS task and the capacity of the CPU is
8164 * significantly reduced because of RT tasks or IRQs.
8165 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8166 * multiple busy cpu.
0b005cf5
SS
8167 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8168 * domain span are idle.
83cd4fe2 8169 */
1aaf90a4 8170static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8171{
8172 unsigned long now = jiffies;
0b005cf5 8173 struct sched_domain *sd;
63b2ca30 8174 struct sched_group_capacity *sgc;
4a725627 8175 int nr_busy, cpu = rq->cpu;
1aaf90a4 8176 bool kick = false;
83cd4fe2 8177
4a725627 8178 if (unlikely(rq->idle_balance))
1aaf90a4 8179 return false;
83cd4fe2 8180
1c792db7
SS
8181 /*
8182 * We may be recently in ticked or tickless idle mode. At the first
8183 * busy tick after returning from idle, we will update the busy stats.
8184 */
69e1e811 8185 set_cpu_sd_state_busy();
c1cc017c 8186 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8187
8188 /*
8189 * None are in tickless mode and hence no need for NOHZ idle load
8190 * balancing.
8191 */
8192 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8193 return false;
1c792db7
SS
8194
8195 if (time_before(now, nohz.next_balance))
1aaf90a4 8196 return false;
83cd4fe2 8197
0b005cf5 8198 if (rq->nr_running >= 2)
1aaf90a4 8199 return true;
83cd4fe2 8200
067491b7 8201 rcu_read_lock();
37dc6b50 8202 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8203 if (sd) {
63b2ca30
NP
8204 sgc = sd->groups->sgc;
8205 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8206
1aaf90a4
VG
8207 if (nr_busy > 1) {
8208 kick = true;
8209 goto unlock;
8210 }
8211
83cd4fe2 8212 }
37dc6b50 8213
1aaf90a4
VG
8214 sd = rcu_dereference(rq->sd);
8215 if (sd) {
8216 if ((rq->cfs.h_nr_running >= 1) &&
8217 check_cpu_capacity(rq, sd)) {
8218 kick = true;
8219 goto unlock;
8220 }
8221 }
37dc6b50 8222
1aaf90a4 8223 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8224 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8225 sched_domain_span(sd)) < cpu)) {
8226 kick = true;
8227 goto unlock;
8228 }
067491b7 8229
1aaf90a4 8230unlock:
067491b7 8231 rcu_read_unlock();
1aaf90a4 8232 return kick;
83cd4fe2
VP
8233}
8234#else
208cb16b 8235static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8236#endif
8237
8238/*
8239 * run_rebalance_domains is triggered when needed from the scheduler tick.
8240 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8241 */
1e3c88bd
PZ
8242static void run_rebalance_domains(struct softirq_action *h)
8243{
208cb16b 8244 struct rq *this_rq = this_rq();
6eb57e0d 8245 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8246 CPU_IDLE : CPU_NOT_IDLE;
8247
1e3c88bd 8248 /*
83cd4fe2 8249 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8250 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8251 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8252 * give the idle cpus a chance to load balance. Else we may
8253 * load balance only within the local sched_domain hierarchy
8254 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8255 */
208cb16b 8256 nohz_idle_balance(this_rq, idle);
d4573c3e 8257 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8258}
8259
1e3c88bd
PZ
8260/*
8261 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8262 */
7caff66f 8263void trigger_load_balance(struct rq *rq)
1e3c88bd 8264{
1e3c88bd 8265 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8266 if (unlikely(on_null_domain(rq)))
8267 return;
8268
8269 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8270 raise_softirq(SCHED_SOFTIRQ);
3451d024 8271#ifdef CONFIG_NO_HZ_COMMON
c726099e 8272 if (nohz_kick_needed(rq))
0aeeeeba 8273 nohz_balancer_kick();
83cd4fe2 8274#endif
1e3c88bd
PZ
8275}
8276
0bcdcf28
CE
8277static void rq_online_fair(struct rq *rq)
8278{
8279 update_sysctl();
0e59bdae
KT
8280
8281 update_runtime_enabled(rq);
0bcdcf28
CE
8282}
8283
8284static void rq_offline_fair(struct rq *rq)
8285{
8286 update_sysctl();
a4c96ae3
PB
8287
8288 /* Ensure any throttled groups are reachable by pick_next_task */
8289 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8290}
8291
55e12e5e 8292#endif /* CONFIG_SMP */
e1d1484f 8293
bf0f6f24
IM
8294/*
8295 * scheduler tick hitting a task of our scheduling class:
8296 */
8f4d37ec 8297static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8298{
8299 struct cfs_rq *cfs_rq;
8300 struct sched_entity *se = &curr->se;
8301
8302 for_each_sched_entity(se) {
8303 cfs_rq = cfs_rq_of(se);
8f4d37ec 8304 entity_tick(cfs_rq, se, queued);
bf0f6f24 8305 }
18bf2805 8306
b52da86e 8307 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8308 task_tick_numa(rq, curr);
bf0f6f24
IM
8309}
8310
8311/*
cd29fe6f
PZ
8312 * called on fork with the child task as argument from the parent's context
8313 * - child not yet on the tasklist
8314 * - preemption disabled
bf0f6f24 8315 */
cd29fe6f 8316static void task_fork_fair(struct task_struct *p)
bf0f6f24 8317{
4fc420c9
DN
8318 struct cfs_rq *cfs_rq;
8319 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8320 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8321 struct rq *rq = this_rq();
8322 unsigned long flags;
8323
05fa785c 8324 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8325
861d034e
PZ
8326 update_rq_clock(rq);
8327
4fc420c9
DN
8328 cfs_rq = task_cfs_rq(current);
8329 curr = cfs_rq->curr;
8330
6c9a27f5
DN
8331 /*
8332 * Not only the cpu but also the task_group of the parent might have
8333 * been changed after parent->se.parent,cfs_rq were copied to
8334 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8335 * of child point to valid ones.
8336 */
8337 rcu_read_lock();
8338 __set_task_cpu(p, this_cpu);
8339 rcu_read_unlock();
bf0f6f24 8340
7109c442 8341 update_curr(cfs_rq);
cd29fe6f 8342
b5d9d734
MG
8343 if (curr)
8344 se->vruntime = curr->vruntime;
aeb73b04 8345 place_entity(cfs_rq, se, 1);
4d78e7b6 8346
cd29fe6f 8347 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8348 /*
edcb60a3
IM
8349 * Upon rescheduling, sched_class::put_prev_task() will place
8350 * 'current' within the tree based on its new key value.
8351 */
4d78e7b6 8352 swap(curr->vruntime, se->vruntime);
8875125e 8353 resched_curr(rq);
4d78e7b6 8354 }
bf0f6f24 8355
88ec22d3
PZ
8356 se->vruntime -= cfs_rq->min_vruntime;
8357
05fa785c 8358 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8359}
8360
cb469845
SR
8361/*
8362 * Priority of the task has changed. Check to see if we preempt
8363 * the current task.
8364 */
da7a735e
PZ
8365static void
8366prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8367{
da0c1e65 8368 if (!task_on_rq_queued(p))
da7a735e
PZ
8369 return;
8370
cb469845
SR
8371 /*
8372 * Reschedule if we are currently running on this runqueue and
8373 * our priority decreased, or if we are not currently running on
8374 * this runqueue and our priority is higher than the current's
8375 */
da7a735e 8376 if (rq->curr == p) {
cb469845 8377 if (p->prio > oldprio)
8875125e 8378 resched_curr(rq);
cb469845 8379 } else
15afe09b 8380 check_preempt_curr(rq, p, 0);
cb469845
SR
8381}
8382
daa59407 8383static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8384{
8385 struct sched_entity *se = &p->se;
da7a735e
PZ
8386
8387 /*
daa59407
BP
8388 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8389 * the dequeue_entity(.flags=0) will already have normalized the
8390 * vruntime.
8391 */
8392 if (p->on_rq)
8393 return true;
8394
8395 /*
8396 * When !on_rq, vruntime of the task has usually NOT been normalized.
8397 * But there are some cases where it has already been normalized:
da7a735e 8398 *
daa59407
BP
8399 * - A forked child which is waiting for being woken up by
8400 * wake_up_new_task().
8401 * - A task which has been woken up by try_to_wake_up() and
8402 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8403 */
daa59407
BP
8404 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8405 return true;
8406
8407 return false;
8408}
8409
8410static void detach_task_cfs_rq(struct task_struct *p)
8411{
8412 struct sched_entity *se = &p->se;
8413 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8414
8415 if (!vruntime_normalized(p)) {
da7a735e
PZ
8416 /*
8417 * Fix up our vruntime so that the current sleep doesn't
8418 * cause 'unlimited' sleep bonus.
8419 */
8420 place_entity(cfs_rq, se, 0);
8421 se->vruntime -= cfs_rq->min_vruntime;
8422 }
9ee474f5 8423
9d89c257 8424 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8425 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8426}
8427
daa59407 8428static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8429{
f36c019c 8430 struct sched_entity *se = &p->se;
daa59407 8431 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8432
8433#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8434 /*
8435 * Since the real-depth could have been changed (only FAIR
8436 * class maintain depth value), reset depth properly.
8437 */
8438 se->depth = se->parent ? se->parent->depth + 1 : 0;
8439#endif
7855a35a 8440
6efdb105 8441 /* Synchronize task with its cfs_rq */
daa59407
BP
8442 attach_entity_load_avg(cfs_rq, se);
8443
8444 if (!vruntime_normalized(p))
8445 se->vruntime += cfs_rq->min_vruntime;
8446}
6efdb105 8447
daa59407
BP
8448static void switched_from_fair(struct rq *rq, struct task_struct *p)
8449{
8450 detach_task_cfs_rq(p);
8451}
8452
8453static void switched_to_fair(struct rq *rq, struct task_struct *p)
8454{
8455 attach_task_cfs_rq(p);
7855a35a 8456
daa59407 8457 if (task_on_rq_queued(p)) {
7855a35a 8458 /*
daa59407
BP
8459 * We were most likely switched from sched_rt, so
8460 * kick off the schedule if running, otherwise just see
8461 * if we can still preempt the current task.
7855a35a 8462 */
daa59407
BP
8463 if (rq->curr == p)
8464 resched_curr(rq);
8465 else
8466 check_preempt_curr(rq, p, 0);
7855a35a 8467 }
cb469845
SR
8468}
8469
83b699ed
SV
8470/* Account for a task changing its policy or group.
8471 *
8472 * This routine is mostly called to set cfs_rq->curr field when a task
8473 * migrates between groups/classes.
8474 */
8475static void set_curr_task_fair(struct rq *rq)
8476{
8477 struct sched_entity *se = &rq->curr->se;
8478
ec12cb7f
PT
8479 for_each_sched_entity(se) {
8480 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8481
8482 set_next_entity(cfs_rq, se);
8483 /* ensure bandwidth has been allocated on our new cfs_rq */
8484 account_cfs_rq_runtime(cfs_rq, 0);
8485 }
83b699ed
SV
8486}
8487
029632fb
PZ
8488void init_cfs_rq(struct cfs_rq *cfs_rq)
8489{
8490 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8491 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8492#ifndef CONFIG_64BIT
8493 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8494#endif
141965c7 8495#ifdef CONFIG_SMP
9d89c257
YD
8496 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8497 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8498#endif
029632fb
PZ
8499}
8500
810b3817 8501#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8502static void task_move_group_fair(struct task_struct *p)
810b3817 8503{
daa59407 8504 detach_task_cfs_rq(p);
b2b5ce02 8505 set_task_rq(p, task_cpu(p));
6efdb105
BP
8506
8507#ifdef CONFIG_SMP
8508 /* Tell se's cfs_rq has been changed -- migrated */
8509 p->se.avg.last_update_time = 0;
8510#endif
daa59407 8511 attach_task_cfs_rq(p);
810b3817 8512}
029632fb
PZ
8513
8514void free_fair_sched_group(struct task_group *tg)
8515{
8516 int i;
8517
8518 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8519
8520 for_each_possible_cpu(i) {
8521 if (tg->cfs_rq)
8522 kfree(tg->cfs_rq[i]);
6fe1f348 8523 if (tg->se)
029632fb
PZ
8524 kfree(tg->se[i]);
8525 }
8526
8527 kfree(tg->cfs_rq);
8528 kfree(tg->se);
8529}
8530
8531int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8532{
029632fb 8533 struct sched_entity *se;
b7fa30c9
PZ
8534 struct cfs_rq *cfs_rq;
8535 struct rq *rq;
029632fb
PZ
8536 int i;
8537
8538 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8539 if (!tg->cfs_rq)
8540 goto err;
8541 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8542 if (!tg->se)
8543 goto err;
8544
8545 tg->shares = NICE_0_LOAD;
8546
8547 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8548
8549 for_each_possible_cpu(i) {
b7fa30c9
PZ
8550 rq = cpu_rq(i);
8551
029632fb
PZ
8552 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8553 GFP_KERNEL, cpu_to_node(i));
8554 if (!cfs_rq)
8555 goto err;
8556
8557 se = kzalloc_node(sizeof(struct sched_entity),
8558 GFP_KERNEL, cpu_to_node(i));
8559 if (!se)
8560 goto err_free_rq;
8561
8562 init_cfs_rq(cfs_rq);
8563 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8564 init_entity_runnable_average(se);
b7fa30c9
PZ
8565
8566 raw_spin_lock_irq(&rq->lock);
2b8c41da 8567 post_init_entity_util_avg(se);
b7fa30c9 8568 raw_spin_unlock_irq(&rq->lock);
029632fb
PZ
8569 }
8570
8571 return 1;
8572
8573err_free_rq:
8574 kfree(cfs_rq);
8575err:
8576 return 0;
8577}
8578
6fe1f348 8579void unregister_fair_sched_group(struct task_group *tg)
029632fb 8580{
029632fb 8581 unsigned long flags;
6fe1f348
PZ
8582 struct rq *rq;
8583 int cpu;
029632fb 8584
6fe1f348
PZ
8585 for_each_possible_cpu(cpu) {
8586 if (tg->se[cpu])
8587 remove_entity_load_avg(tg->se[cpu]);
029632fb 8588
6fe1f348
PZ
8589 /*
8590 * Only empty task groups can be destroyed; so we can speculatively
8591 * check on_list without danger of it being re-added.
8592 */
8593 if (!tg->cfs_rq[cpu]->on_list)
8594 continue;
8595
8596 rq = cpu_rq(cpu);
8597
8598 raw_spin_lock_irqsave(&rq->lock, flags);
8599 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8600 raw_spin_unlock_irqrestore(&rq->lock, flags);
8601 }
029632fb
PZ
8602}
8603
8604void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8605 struct sched_entity *se, int cpu,
8606 struct sched_entity *parent)
8607{
8608 struct rq *rq = cpu_rq(cpu);
8609
8610 cfs_rq->tg = tg;
8611 cfs_rq->rq = rq;
029632fb
PZ
8612 init_cfs_rq_runtime(cfs_rq);
8613
8614 tg->cfs_rq[cpu] = cfs_rq;
8615 tg->se[cpu] = se;
8616
8617 /* se could be NULL for root_task_group */
8618 if (!se)
8619 return;
8620
fed14d45 8621 if (!parent) {
029632fb 8622 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8623 se->depth = 0;
8624 } else {
029632fb 8625 se->cfs_rq = parent->my_q;
fed14d45
PZ
8626 se->depth = parent->depth + 1;
8627 }
029632fb
PZ
8628
8629 se->my_q = cfs_rq;
0ac9b1c2
PT
8630 /* guarantee group entities always have weight */
8631 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8632 se->parent = parent;
8633}
8634
8635static DEFINE_MUTEX(shares_mutex);
8636
8637int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8638{
8639 int i;
8640 unsigned long flags;
8641
8642 /*
8643 * We can't change the weight of the root cgroup.
8644 */
8645 if (!tg->se[0])
8646 return -EINVAL;
8647
8648 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8649
8650 mutex_lock(&shares_mutex);
8651 if (tg->shares == shares)
8652 goto done;
8653
8654 tg->shares = shares;
8655 for_each_possible_cpu(i) {
8656 struct rq *rq = cpu_rq(i);
8657 struct sched_entity *se;
8658
8659 se = tg->se[i];
8660 /* Propagate contribution to hierarchy */
8661 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8662
8663 /* Possible calls to update_curr() need rq clock */
8664 update_rq_clock(rq);
17bc14b7 8665 for_each_sched_entity(se)
029632fb
PZ
8666 update_cfs_shares(group_cfs_rq(se));
8667 raw_spin_unlock_irqrestore(&rq->lock, flags);
8668 }
8669
8670done:
8671 mutex_unlock(&shares_mutex);
8672 return 0;
8673}
8674#else /* CONFIG_FAIR_GROUP_SCHED */
8675
8676void free_fair_sched_group(struct task_group *tg) { }
8677
8678int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8679{
8680 return 1;
8681}
8682
6fe1f348 8683void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8684
8685#endif /* CONFIG_FAIR_GROUP_SCHED */
8686
810b3817 8687
6d686f45 8688static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8689{
8690 struct sched_entity *se = &task->se;
0d721cea
PW
8691 unsigned int rr_interval = 0;
8692
8693 /*
8694 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8695 * idle runqueue:
8696 */
0d721cea 8697 if (rq->cfs.load.weight)
a59f4e07 8698 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8699
8700 return rr_interval;
8701}
8702
bf0f6f24
IM
8703/*
8704 * All the scheduling class methods:
8705 */
029632fb 8706const struct sched_class fair_sched_class = {
5522d5d5 8707 .next = &idle_sched_class,
bf0f6f24
IM
8708 .enqueue_task = enqueue_task_fair,
8709 .dequeue_task = dequeue_task_fair,
8710 .yield_task = yield_task_fair,
d95f4122 8711 .yield_to_task = yield_to_task_fair,
bf0f6f24 8712
2e09bf55 8713 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8714
8715 .pick_next_task = pick_next_task_fair,
8716 .put_prev_task = put_prev_task_fair,
8717
681f3e68 8718#ifdef CONFIG_SMP
4ce72a2c 8719 .select_task_rq = select_task_rq_fair,
0a74bef8 8720 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8721
0bcdcf28
CE
8722 .rq_online = rq_online_fair,
8723 .rq_offline = rq_offline_fair,
88ec22d3 8724
12695578 8725 .task_dead = task_dead_fair,
c5b28038 8726 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8727#endif
bf0f6f24 8728
83b699ed 8729 .set_curr_task = set_curr_task_fair,
bf0f6f24 8730 .task_tick = task_tick_fair,
cd29fe6f 8731 .task_fork = task_fork_fair,
cb469845
SR
8732
8733 .prio_changed = prio_changed_fair,
da7a735e 8734 .switched_from = switched_from_fair,
cb469845 8735 .switched_to = switched_to_fair,
810b3817 8736
0d721cea
PW
8737 .get_rr_interval = get_rr_interval_fair,
8738
6e998916
SG
8739 .update_curr = update_curr_fair,
8740
810b3817 8741#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8742 .task_move_group = task_move_group_fair,
810b3817 8743#endif
bf0f6f24
IM
8744};
8745
8746#ifdef CONFIG_SCHED_DEBUG
029632fb 8747void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8748{
bf0f6f24
IM
8749 struct cfs_rq *cfs_rq;
8750
5973e5b9 8751 rcu_read_lock();
c3b64f1e 8752 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8753 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8754 rcu_read_unlock();
bf0f6f24 8755}
397f2378
SD
8756
8757#ifdef CONFIG_NUMA_BALANCING
8758void show_numa_stats(struct task_struct *p, struct seq_file *m)
8759{
8760 int node;
8761 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8762
8763 for_each_online_node(node) {
8764 if (p->numa_faults) {
8765 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8766 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8767 }
8768 if (p->numa_group) {
8769 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8770 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8771 }
8772 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8773 }
8774}
8775#endif /* CONFIG_NUMA_BALANCING */
8776#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8777
8778__init void init_sched_fair_class(void)
8779{
8780#ifdef CONFIG_SMP
8781 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8782
3451d024 8783#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8784 nohz.next_balance = jiffies;
029632fb 8785 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8786#endif
8787#endif /* SMP */
8788
8789}
This page took 1.247754 seconds and 5 git commands to generate.