sched/fair: Move cpufreq hook to update_cfs_rq_load_avg()
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
2b8c41da
YD
693/*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718void post_init_entity_util_avg(struct sched_entity *se)
719{
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
722 long cap = (long)(scale_load_down(SCHED_LOAD_SCALE) - cfs_rq->avg.util_avg) / 2;
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736}
737
7ea241af
YD
738static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
739static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 740#else
540247fb 741void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
742{
743}
2b8c41da
YD
744void post_init_entity_util_avg(struct sched_entity *se)
745{
746}
a75cdaa9
AS
747#endif
748
bf0f6f24 749/*
9dbdb155 750 * Update the current task's runtime statistics.
bf0f6f24 751 */
b7cc0896 752static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 753{
429d43bc 754 struct sched_entity *curr = cfs_rq->curr;
78becc27 755 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 756 u64 delta_exec;
bf0f6f24
IM
757
758 if (unlikely(!curr))
759 return;
760
9dbdb155
PZ
761 delta_exec = now - curr->exec_start;
762 if (unlikely((s64)delta_exec <= 0))
34f28ecd 763 return;
bf0f6f24 764
8ebc91d9 765 curr->exec_start = now;
d842de87 766
9dbdb155
PZ
767 schedstat_set(curr->statistics.exec_max,
768 max(delta_exec, curr->statistics.exec_max));
769
770 curr->sum_exec_runtime += delta_exec;
771 schedstat_add(cfs_rq, exec_clock, delta_exec);
772
773 curr->vruntime += calc_delta_fair(delta_exec, curr);
774 update_min_vruntime(cfs_rq);
775
d842de87
SV
776 if (entity_is_task(curr)) {
777 struct task_struct *curtask = task_of(curr);
778
f977bb49 779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 780 cpuacct_charge(curtask, delta_exec);
f06febc9 781 account_group_exec_runtime(curtask, delta_exec);
d842de87 782 }
ec12cb7f
PT
783
784 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
785}
786
6e998916
SG
787static void update_curr_fair(struct rq *rq)
788{
789 update_curr(cfs_rq_of(&rq->curr->se));
790}
791
3ea94de1 792#ifdef CONFIG_SCHEDSTATS
bf0f6f24 793static inline void
5870db5b 794update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 795{
3ea94de1
JP
796 u64 wait_start = rq_clock(rq_of(cfs_rq));
797
798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
799 likely(wait_start > se->statistics.wait_start))
800 wait_start -= se->statistics.wait_start;
801
802 se->statistics.wait_start = wait_start;
bf0f6f24
IM
803}
804
3ea94de1
JP
805static void
806update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
807{
808 struct task_struct *p;
cb251765
MG
809 u64 delta;
810
811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
812
813 if (entity_is_task(se)) {
814 p = task_of(se);
815 if (task_on_rq_migrating(p)) {
816 /*
817 * Preserve migrating task's wait time so wait_start
818 * time stamp can be adjusted to accumulate wait time
819 * prior to migration.
820 */
821 se->statistics.wait_start = delta;
822 return;
823 }
824 trace_sched_stat_wait(p, delta);
825 }
826
827 se->statistics.wait_max = max(se->statistics.wait_max, delta);
828 se->statistics.wait_count++;
829 se->statistics.wait_sum += delta;
830 se->statistics.wait_start = 0;
831}
3ea94de1 832
bf0f6f24
IM
833/*
834 * Task is being enqueued - update stats:
835 */
cb251765
MG
836static inline void
837update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 838{
bf0f6f24
IM
839 /*
840 * Are we enqueueing a waiting task? (for current tasks
841 * a dequeue/enqueue event is a NOP)
842 */
429d43bc 843 if (se != cfs_rq->curr)
5870db5b 844 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
845}
846
bf0f6f24 847static inline void
cb251765 848update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 849{
bf0f6f24
IM
850 /*
851 * Mark the end of the wait period if dequeueing a
852 * waiting task:
853 */
429d43bc 854 if (se != cfs_rq->curr)
9ef0a961 855 update_stats_wait_end(cfs_rq, se);
cb251765
MG
856
857 if (flags & DEQUEUE_SLEEP) {
858 if (entity_is_task(se)) {
859 struct task_struct *tsk = task_of(se);
860
861 if (tsk->state & TASK_INTERRUPTIBLE)
862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
863 if (tsk->state & TASK_UNINTERRUPTIBLE)
864 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
865 }
866 }
867
868}
869#else
870static inline void
871update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
872{
873}
874
875static inline void
876update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877{
878}
879
880static inline void
881update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
882{
883}
884
885static inline void
886update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
887{
bf0f6f24 888}
cb251765 889#endif
bf0f6f24
IM
890
891/*
892 * We are picking a new current task - update its stats:
893 */
894static inline void
79303e9e 895update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
896{
897 /*
898 * We are starting a new run period:
899 */
78becc27 900 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
901}
902
bf0f6f24
IM
903/**************************************************
904 * Scheduling class queueing methods:
905 */
906
cbee9f88
PZ
907#ifdef CONFIG_NUMA_BALANCING
908/*
598f0ec0
MG
909 * Approximate time to scan a full NUMA task in ms. The task scan period is
910 * calculated based on the tasks virtual memory size and
911 * numa_balancing_scan_size.
cbee9f88 912 */
598f0ec0
MG
913unsigned int sysctl_numa_balancing_scan_period_min = 1000;
914unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
915
916/* Portion of address space to scan in MB */
917unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 918
4b96a29b
PZ
919/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
920unsigned int sysctl_numa_balancing_scan_delay = 1000;
921
598f0ec0
MG
922static unsigned int task_nr_scan_windows(struct task_struct *p)
923{
924 unsigned long rss = 0;
925 unsigned long nr_scan_pages;
926
927 /*
928 * Calculations based on RSS as non-present and empty pages are skipped
929 * by the PTE scanner and NUMA hinting faults should be trapped based
930 * on resident pages
931 */
932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
933 rss = get_mm_rss(p->mm);
934 if (!rss)
935 rss = nr_scan_pages;
936
937 rss = round_up(rss, nr_scan_pages);
938 return rss / nr_scan_pages;
939}
940
941/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
942#define MAX_SCAN_WINDOW 2560
943
944static unsigned int task_scan_min(struct task_struct *p)
945{
316c1608 946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
947 unsigned int scan, floor;
948 unsigned int windows = 1;
949
64192658
KT
950 if (scan_size < MAX_SCAN_WINDOW)
951 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
952 floor = 1000 / windows;
953
954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
955 return max_t(unsigned int, floor, scan);
956}
957
958static unsigned int task_scan_max(struct task_struct *p)
959{
960 unsigned int smin = task_scan_min(p);
961 unsigned int smax;
962
963 /* Watch for min being lower than max due to floor calculations */
964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
965 return max(smin, smax);
966}
967
0ec8aa00
PZ
968static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
969{
970 rq->nr_numa_running += (p->numa_preferred_nid != -1);
971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
972}
973
974static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
975{
976 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
978}
979
8c8a743c
PZ
980struct numa_group {
981 atomic_t refcount;
982
983 spinlock_t lock; /* nr_tasks, tasks */
984 int nr_tasks;
e29cf08b 985 pid_t gid;
4142c3eb 986 int active_nodes;
8c8a743c
PZ
987
988 struct rcu_head rcu;
989348b5 989 unsigned long total_faults;
4142c3eb 990 unsigned long max_faults_cpu;
7e2703e6
RR
991 /*
992 * Faults_cpu is used to decide whether memory should move
993 * towards the CPU. As a consequence, these stats are weighted
994 * more by CPU use than by memory faults.
995 */
50ec8a40 996 unsigned long *faults_cpu;
989348b5 997 unsigned long faults[0];
8c8a743c
PZ
998};
999
be1e4e76
RR
1000/* Shared or private faults. */
1001#define NR_NUMA_HINT_FAULT_TYPES 2
1002
1003/* Memory and CPU locality */
1004#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1005
1006/* Averaged statistics, and temporary buffers. */
1007#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1008
e29cf08b
MG
1009pid_t task_numa_group_id(struct task_struct *p)
1010{
1011 return p->numa_group ? p->numa_group->gid : 0;
1012}
1013
44dba3d5
IM
1014/*
1015 * The averaged statistics, shared & private, memory & cpu,
1016 * occupy the first half of the array. The second half of the
1017 * array is for current counters, which are averaged into the
1018 * first set by task_numa_placement.
1019 */
1020static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1021{
44dba3d5 1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1023}
1024
1025static inline unsigned long task_faults(struct task_struct *p, int nid)
1026{
44dba3d5 1027 if (!p->numa_faults)
ac8e895b
MG
1028 return 0;
1029
44dba3d5
IM
1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1032}
1033
83e1d2cd
MG
1034static inline unsigned long group_faults(struct task_struct *p, int nid)
1035{
1036 if (!p->numa_group)
1037 return 0;
1038
44dba3d5
IM
1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1041}
1042
20e07dea
RR
1043static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1044{
44dba3d5
IM
1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1047}
1048
4142c3eb
RR
1049/*
1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1051 * considered part of a numa group's pseudo-interleaving set. Migrations
1052 * between these nodes are slowed down, to allow things to settle down.
1053 */
1054#define ACTIVE_NODE_FRACTION 3
1055
1056static bool numa_is_active_node(int nid, struct numa_group *ng)
1057{
1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1059}
1060
6c6b1193
RR
1061/* Handle placement on systems where not all nodes are directly connected. */
1062static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1063 int maxdist, bool task)
1064{
1065 unsigned long score = 0;
1066 int node;
1067
1068 /*
1069 * All nodes are directly connected, and the same distance
1070 * from each other. No need for fancy placement algorithms.
1071 */
1072 if (sched_numa_topology_type == NUMA_DIRECT)
1073 return 0;
1074
1075 /*
1076 * This code is called for each node, introducing N^2 complexity,
1077 * which should be ok given the number of nodes rarely exceeds 8.
1078 */
1079 for_each_online_node(node) {
1080 unsigned long faults;
1081 int dist = node_distance(nid, node);
1082
1083 /*
1084 * The furthest away nodes in the system are not interesting
1085 * for placement; nid was already counted.
1086 */
1087 if (dist == sched_max_numa_distance || node == nid)
1088 continue;
1089
1090 /*
1091 * On systems with a backplane NUMA topology, compare groups
1092 * of nodes, and move tasks towards the group with the most
1093 * memory accesses. When comparing two nodes at distance
1094 * "hoplimit", only nodes closer by than "hoplimit" are part
1095 * of each group. Skip other nodes.
1096 */
1097 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1098 dist > maxdist)
1099 continue;
1100
1101 /* Add up the faults from nearby nodes. */
1102 if (task)
1103 faults = task_faults(p, node);
1104 else
1105 faults = group_faults(p, node);
1106
1107 /*
1108 * On systems with a glueless mesh NUMA topology, there are
1109 * no fixed "groups of nodes". Instead, nodes that are not
1110 * directly connected bounce traffic through intermediate
1111 * nodes; a numa_group can occupy any set of nodes.
1112 * The further away a node is, the less the faults count.
1113 * This seems to result in good task placement.
1114 */
1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1116 faults *= (sched_max_numa_distance - dist);
1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1118 }
1119
1120 score += faults;
1121 }
1122
1123 return score;
1124}
1125
83e1d2cd
MG
1126/*
1127 * These return the fraction of accesses done by a particular task, or
1128 * task group, on a particular numa node. The group weight is given a
1129 * larger multiplier, in order to group tasks together that are almost
1130 * evenly spread out between numa nodes.
1131 */
7bd95320
RR
1132static inline unsigned long task_weight(struct task_struct *p, int nid,
1133 int dist)
83e1d2cd 1134{
7bd95320 1135 unsigned long faults, total_faults;
83e1d2cd 1136
44dba3d5 1137 if (!p->numa_faults)
83e1d2cd
MG
1138 return 0;
1139
1140 total_faults = p->total_numa_faults;
1141
1142 if (!total_faults)
1143 return 0;
1144
7bd95320 1145 faults = task_faults(p, nid);
6c6b1193
RR
1146 faults += score_nearby_nodes(p, nid, dist, true);
1147
7bd95320 1148 return 1000 * faults / total_faults;
83e1d2cd
MG
1149}
1150
7bd95320
RR
1151static inline unsigned long group_weight(struct task_struct *p, int nid,
1152 int dist)
83e1d2cd 1153{
7bd95320
RR
1154 unsigned long faults, total_faults;
1155
1156 if (!p->numa_group)
1157 return 0;
1158
1159 total_faults = p->numa_group->total_faults;
1160
1161 if (!total_faults)
83e1d2cd
MG
1162 return 0;
1163
7bd95320 1164 faults = group_faults(p, nid);
6c6b1193
RR
1165 faults += score_nearby_nodes(p, nid, dist, false);
1166
7bd95320 1167 return 1000 * faults / total_faults;
83e1d2cd
MG
1168}
1169
10f39042
RR
1170bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1171 int src_nid, int dst_cpu)
1172{
1173 struct numa_group *ng = p->numa_group;
1174 int dst_nid = cpu_to_node(dst_cpu);
1175 int last_cpupid, this_cpupid;
1176
1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1178
1179 /*
1180 * Multi-stage node selection is used in conjunction with a periodic
1181 * migration fault to build a temporal task<->page relation. By using
1182 * a two-stage filter we remove short/unlikely relations.
1183 *
1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1185 * a task's usage of a particular page (n_p) per total usage of this
1186 * page (n_t) (in a given time-span) to a probability.
1187 *
1188 * Our periodic faults will sample this probability and getting the
1189 * same result twice in a row, given these samples are fully
1190 * independent, is then given by P(n)^2, provided our sample period
1191 * is sufficiently short compared to the usage pattern.
1192 *
1193 * This quadric squishes small probabilities, making it less likely we
1194 * act on an unlikely task<->page relation.
1195 */
1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1197 if (!cpupid_pid_unset(last_cpupid) &&
1198 cpupid_to_nid(last_cpupid) != dst_nid)
1199 return false;
1200
1201 /* Always allow migrate on private faults */
1202 if (cpupid_match_pid(p, last_cpupid))
1203 return true;
1204
1205 /* A shared fault, but p->numa_group has not been set up yet. */
1206 if (!ng)
1207 return true;
1208
1209 /*
4142c3eb
RR
1210 * Destination node is much more heavily used than the source
1211 * node? Allow migration.
10f39042 1212 */
4142c3eb
RR
1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1214 ACTIVE_NODE_FRACTION)
10f39042
RR
1215 return true;
1216
1217 /*
4142c3eb
RR
1218 * Distribute memory according to CPU & memory use on each node,
1219 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1220 *
1221 * faults_cpu(dst) 3 faults_cpu(src)
1222 * --------------- * - > ---------------
1223 * faults_mem(dst) 4 faults_mem(src)
10f39042 1224 */
4142c3eb
RR
1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1227}
1228
e6628d5b 1229static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1230static unsigned long source_load(int cpu, int type);
1231static unsigned long target_load(int cpu, int type);
ced549fa 1232static unsigned long capacity_of(int cpu);
58d081b5
MG
1233static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1234
fb13c7ee 1235/* Cached statistics for all CPUs within a node */
58d081b5 1236struct numa_stats {
fb13c7ee 1237 unsigned long nr_running;
58d081b5 1238 unsigned long load;
fb13c7ee
MG
1239
1240 /* Total compute capacity of CPUs on a node */
5ef20ca1 1241 unsigned long compute_capacity;
fb13c7ee
MG
1242
1243 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1244 unsigned long task_capacity;
1b6a7495 1245 int has_free_capacity;
58d081b5 1246};
e6628d5b 1247
fb13c7ee
MG
1248/*
1249 * XXX borrowed from update_sg_lb_stats
1250 */
1251static void update_numa_stats(struct numa_stats *ns, int nid)
1252{
83d7f242
RR
1253 int smt, cpu, cpus = 0;
1254 unsigned long capacity;
fb13c7ee
MG
1255
1256 memset(ns, 0, sizeof(*ns));
1257 for_each_cpu(cpu, cpumask_of_node(nid)) {
1258 struct rq *rq = cpu_rq(cpu);
1259
1260 ns->nr_running += rq->nr_running;
1261 ns->load += weighted_cpuload(cpu);
ced549fa 1262 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1263
1264 cpus++;
fb13c7ee
MG
1265 }
1266
5eca82a9
PZ
1267 /*
1268 * If we raced with hotplug and there are no CPUs left in our mask
1269 * the @ns structure is NULL'ed and task_numa_compare() will
1270 * not find this node attractive.
1271 *
1b6a7495
NP
1272 * We'll either bail at !has_free_capacity, or we'll detect a huge
1273 * imbalance and bail there.
5eca82a9
PZ
1274 */
1275 if (!cpus)
1276 return;
1277
83d7f242
RR
1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1280 capacity = cpus / smt; /* cores */
1281
1282 ns->task_capacity = min_t(unsigned, capacity,
1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1285}
1286
58d081b5
MG
1287struct task_numa_env {
1288 struct task_struct *p;
e6628d5b 1289
58d081b5
MG
1290 int src_cpu, src_nid;
1291 int dst_cpu, dst_nid;
e6628d5b 1292
58d081b5 1293 struct numa_stats src_stats, dst_stats;
e6628d5b 1294
40ea2b42 1295 int imbalance_pct;
7bd95320 1296 int dist;
fb13c7ee
MG
1297
1298 struct task_struct *best_task;
1299 long best_imp;
58d081b5
MG
1300 int best_cpu;
1301};
1302
fb13c7ee
MG
1303static void task_numa_assign(struct task_numa_env *env,
1304 struct task_struct *p, long imp)
1305{
1306 if (env->best_task)
1307 put_task_struct(env->best_task);
fb13c7ee
MG
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312}
1313
28a21745 1314static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1315 struct task_numa_env *env)
1316{
e4991b24
RR
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
28a21745
RR
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1330
1331 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
e63da036
RR
1334
1335 /* Is the difference below the threshold? */
e4991b24
RR
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
e4991b24 1343 * Compare it with the old imbalance.
e63da036 1344 */
28a21745 1345 orig_src_load = env->src_stats.load;
e4991b24 1346 orig_dst_load = env->dst_stats.load;
28a21745 1347
e4991b24
RR
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
e63da036 1350
e4991b24
RR
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
e63da036
RR
1356}
1357
fb13c7ee
MG
1358/*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
887c290e
RR
1364static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
fb13c7ee
MG
1366{
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
28a21745 1370 long src_load, dst_load;
fb13c7ee 1371 long load;
1c5d3eb3 1372 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1373 long moveimp = imp;
7bd95320 1374 int dist = env->dist;
1dff76b9 1375 bool assigned = false;
fb13c7ee
MG
1376
1377 rcu_read_lock();
1effd9f1
KT
1378
1379 raw_spin_lock_irq(&dst_rq->lock);
1380 cur = dst_rq->curr;
1381 /*
1dff76b9 1382 * No need to move the exiting task or idle task.
1effd9f1
KT
1383 */
1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1385 cur = NULL;
1dff76b9
GG
1386 else {
1387 /*
1388 * The task_struct must be protected here to protect the
1389 * p->numa_faults access in the task_weight since the
1390 * numa_faults could already be freed in the following path:
1391 * finish_task_switch()
1392 * --> put_task_struct()
1393 * --> __put_task_struct()
1394 * --> task_numa_free()
1395 */
1396 get_task_struct(cur);
1397 }
1398
1effd9f1 1399 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1400
7af68335
PZ
1401 /*
1402 * Because we have preemption enabled we can get migrated around and
1403 * end try selecting ourselves (current == env->p) as a swap candidate.
1404 */
1405 if (cur == env->p)
1406 goto unlock;
1407
fb13c7ee
MG
1408 /*
1409 * "imp" is the fault differential for the source task between the
1410 * source and destination node. Calculate the total differential for
1411 * the source task and potential destination task. The more negative
1412 * the value is, the more rmeote accesses that would be expected to
1413 * be incurred if the tasks were swapped.
1414 */
1415 if (cur) {
1416 /* Skip this swap candidate if cannot move to the source cpu */
1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1418 goto unlock;
1419
887c290e
RR
1420 /*
1421 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1422 * in any group then look only at task weights.
887c290e 1423 */
ca28aa53 1424 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1425 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1426 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1427 /*
1428 * Add some hysteresis to prevent swapping the
1429 * tasks within a group over tiny differences.
1430 */
1431 if (cur->numa_group)
1432 imp -= imp/16;
887c290e 1433 } else {
ca28aa53
RR
1434 /*
1435 * Compare the group weights. If a task is all by
1436 * itself (not part of a group), use the task weight
1437 * instead.
1438 */
ca28aa53 1439 if (cur->numa_group)
7bd95320
RR
1440 imp += group_weight(cur, env->src_nid, dist) -
1441 group_weight(cur, env->dst_nid, dist);
ca28aa53 1442 else
7bd95320
RR
1443 imp += task_weight(cur, env->src_nid, dist) -
1444 task_weight(cur, env->dst_nid, dist);
887c290e 1445 }
fb13c7ee
MG
1446 }
1447
0132c3e1 1448 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1449 goto unlock;
1450
1451 if (!cur) {
1452 /* Is there capacity at our destination? */
b932c03c 1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1454 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1455 goto unlock;
1456
1457 goto balance;
1458 }
1459
1460 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1461 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1462 dst_rq->nr_running == 1)
fb13c7ee
MG
1463 goto assign;
1464
1465 /*
1466 * In the overloaded case, try and keep the load balanced.
1467 */
1468balance:
e720fff6
PZ
1469 load = task_h_load(env->p);
1470 dst_load = env->dst_stats.load + load;
1471 src_load = env->src_stats.load - load;
fb13c7ee 1472
0132c3e1
RR
1473 if (moveimp > imp && moveimp > env->best_imp) {
1474 /*
1475 * If the improvement from just moving env->p direction is
1476 * better than swapping tasks around, check if a move is
1477 * possible. Store a slightly smaller score than moveimp,
1478 * so an actually idle CPU will win.
1479 */
1480 if (!load_too_imbalanced(src_load, dst_load, env)) {
1481 imp = moveimp - 1;
1dff76b9 1482 put_task_struct(cur);
0132c3e1
RR
1483 cur = NULL;
1484 goto assign;
1485 }
1486 }
1487
1488 if (imp <= env->best_imp)
1489 goto unlock;
1490
fb13c7ee 1491 if (cur) {
e720fff6
PZ
1492 load = task_h_load(cur);
1493 dst_load -= load;
1494 src_load += load;
fb13c7ee
MG
1495 }
1496
28a21745 1497 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1498 goto unlock;
1499
ba7e5a27
RR
1500 /*
1501 * One idle CPU per node is evaluated for a task numa move.
1502 * Call select_idle_sibling to maybe find a better one.
1503 */
1504 if (!cur)
1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1506
fb13c7ee 1507assign:
1dff76b9 1508 assigned = true;
fb13c7ee
MG
1509 task_numa_assign(env, cur, imp);
1510unlock:
1511 rcu_read_unlock();
1dff76b9
GG
1512 /*
1513 * The dst_rq->curr isn't assigned. The protection for task_struct is
1514 * finished.
1515 */
1516 if (cur && !assigned)
1517 put_task_struct(cur);
fb13c7ee
MG
1518}
1519
887c290e
RR
1520static void task_numa_find_cpu(struct task_numa_env *env,
1521 long taskimp, long groupimp)
2c8a50aa
MG
1522{
1523 int cpu;
1524
1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1526 /* Skip this CPU if the source task cannot migrate */
1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1528 continue;
1529
1530 env->dst_cpu = cpu;
887c290e 1531 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1532 }
1533}
1534
6f9aad0b
RR
1535/* Only move tasks to a NUMA node less busy than the current node. */
1536static bool numa_has_capacity(struct task_numa_env *env)
1537{
1538 struct numa_stats *src = &env->src_stats;
1539 struct numa_stats *dst = &env->dst_stats;
1540
1541 if (src->has_free_capacity && !dst->has_free_capacity)
1542 return false;
1543
1544 /*
1545 * Only consider a task move if the source has a higher load
1546 * than the destination, corrected for CPU capacity on each node.
1547 *
1548 * src->load dst->load
1549 * --------------------- vs ---------------------
1550 * src->compute_capacity dst->compute_capacity
1551 */
44dcb04f
SD
1552 if (src->load * dst->compute_capacity * env->imbalance_pct >
1553
1554 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1555 return true;
1556
1557 return false;
1558}
1559
58d081b5
MG
1560static int task_numa_migrate(struct task_struct *p)
1561{
58d081b5
MG
1562 struct task_numa_env env = {
1563 .p = p,
fb13c7ee 1564
58d081b5 1565 .src_cpu = task_cpu(p),
b32e86b4 1566 .src_nid = task_node(p),
fb13c7ee
MG
1567
1568 .imbalance_pct = 112,
1569
1570 .best_task = NULL,
1571 .best_imp = 0,
4142c3eb 1572 .best_cpu = -1,
58d081b5
MG
1573 };
1574 struct sched_domain *sd;
887c290e 1575 unsigned long taskweight, groupweight;
7bd95320 1576 int nid, ret, dist;
887c290e 1577 long taskimp, groupimp;
e6628d5b 1578
58d081b5 1579 /*
fb13c7ee
MG
1580 * Pick the lowest SD_NUMA domain, as that would have the smallest
1581 * imbalance and would be the first to start moving tasks about.
1582 *
1583 * And we want to avoid any moving of tasks about, as that would create
1584 * random movement of tasks -- counter the numa conditions we're trying
1585 * to satisfy here.
58d081b5
MG
1586 */
1587 rcu_read_lock();
fb13c7ee 1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1589 if (sd)
1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1591 rcu_read_unlock();
1592
46a73e8a
RR
1593 /*
1594 * Cpusets can break the scheduler domain tree into smaller
1595 * balance domains, some of which do not cross NUMA boundaries.
1596 * Tasks that are "trapped" in such domains cannot be migrated
1597 * elsewhere, so there is no point in (re)trying.
1598 */
1599 if (unlikely(!sd)) {
de1b301a 1600 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1601 return -EINVAL;
1602 }
1603
2c8a50aa 1604 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1606 taskweight = task_weight(p, env.src_nid, dist);
1607 groupweight = group_weight(p, env.src_nid, dist);
1608 update_numa_stats(&env.src_stats, env.src_nid);
1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1611 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1612
a43455a1 1613 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1614 if (numa_has_capacity(&env))
1615 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1616
9de05d48
RR
1617 /*
1618 * Look at other nodes in these cases:
1619 * - there is no space available on the preferred_nid
1620 * - the task is part of a numa_group that is interleaved across
1621 * multiple NUMA nodes; in order to better consolidate the group,
1622 * we need to check other locations.
1623 */
4142c3eb 1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1625 for_each_online_node(nid) {
1626 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1627 continue;
58d081b5 1628
7bd95320 1629 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1630 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1631 dist != env.dist) {
1632 taskweight = task_weight(p, env.src_nid, dist);
1633 groupweight = group_weight(p, env.src_nid, dist);
1634 }
7bd95320 1635
83e1d2cd 1636 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1637 taskimp = task_weight(p, nid, dist) - taskweight;
1638 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1639 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1640 continue;
1641
7bd95320 1642 env.dist = dist;
2c8a50aa
MG
1643 env.dst_nid = nid;
1644 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1645 if (numa_has_capacity(&env))
1646 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1647 }
1648 }
1649
68d1b02a
RR
1650 /*
1651 * If the task is part of a workload that spans multiple NUMA nodes,
1652 * and is migrating into one of the workload's active nodes, remember
1653 * this node as the task's preferred numa node, so the workload can
1654 * settle down.
1655 * A task that migrated to a second choice node will be better off
1656 * trying for a better one later. Do not set the preferred node here.
1657 */
db015dae 1658 if (p->numa_group) {
4142c3eb
RR
1659 struct numa_group *ng = p->numa_group;
1660
db015dae
RR
1661 if (env.best_cpu == -1)
1662 nid = env.src_nid;
1663 else
1664 nid = env.dst_nid;
1665
4142c3eb 1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1667 sched_setnuma(p, env.dst_nid);
1668 }
1669
1670 /* No better CPU than the current one was found. */
1671 if (env.best_cpu == -1)
1672 return -EAGAIN;
0ec8aa00 1673
04bb2f94
RR
1674 /*
1675 * Reset the scan period if the task is being rescheduled on an
1676 * alternative node to recheck if the tasks is now properly placed.
1677 */
1678 p->numa_scan_period = task_scan_min(p);
1679
fb13c7ee 1680 if (env.best_task == NULL) {
286549dc
MG
1681 ret = migrate_task_to(p, env.best_cpu);
1682 if (ret != 0)
1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1684 return ret;
1685 }
1686
1687 ret = migrate_swap(p, env.best_task);
286549dc
MG
1688 if (ret != 0)
1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1690 put_task_struct(env.best_task);
1691 return ret;
e6628d5b
MG
1692}
1693
6b9a7460
MG
1694/* Attempt to migrate a task to a CPU on the preferred node. */
1695static void numa_migrate_preferred(struct task_struct *p)
1696{
5085e2a3
RR
1697 unsigned long interval = HZ;
1698
2739d3ee 1699 /* This task has no NUMA fault statistics yet */
44dba3d5 1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1701 return;
1702
2739d3ee 1703 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1705 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1706
1707 /* Success if task is already running on preferred CPU */
de1b301a 1708 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1709 return;
1710
1711 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1712 task_numa_migrate(p);
6b9a7460
MG
1713}
1714
20e07dea 1715/*
4142c3eb 1716 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1717 * tracking the nodes from which NUMA hinting faults are triggered. This can
1718 * be different from the set of nodes where the workload's memory is currently
1719 * located.
20e07dea 1720 */
4142c3eb 1721static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1722{
1723 unsigned long faults, max_faults = 0;
4142c3eb 1724 int nid, active_nodes = 0;
20e07dea
RR
1725
1726 for_each_online_node(nid) {
1727 faults = group_faults_cpu(numa_group, nid);
1728 if (faults > max_faults)
1729 max_faults = faults;
1730 }
1731
1732 for_each_online_node(nid) {
1733 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1734 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1735 active_nodes++;
20e07dea 1736 }
4142c3eb
RR
1737
1738 numa_group->max_faults_cpu = max_faults;
1739 numa_group->active_nodes = active_nodes;
20e07dea
RR
1740}
1741
04bb2f94
RR
1742/*
1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1744 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1745 * period will be for the next scan window. If local/(local+remote) ratio is
1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1747 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1748 */
1749#define NUMA_PERIOD_SLOTS 10
a22b4b01 1750#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1751
1752/*
1753 * Increase the scan period (slow down scanning) if the majority of
1754 * our memory is already on our local node, or if the majority of
1755 * the page accesses are shared with other processes.
1756 * Otherwise, decrease the scan period.
1757 */
1758static void update_task_scan_period(struct task_struct *p,
1759 unsigned long shared, unsigned long private)
1760{
1761 unsigned int period_slot;
1762 int ratio;
1763 int diff;
1764
1765 unsigned long remote = p->numa_faults_locality[0];
1766 unsigned long local = p->numa_faults_locality[1];
1767
1768 /*
1769 * If there were no record hinting faults then either the task is
1770 * completely idle or all activity is areas that are not of interest
074c2381
MG
1771 * to automatic numa balancing. Related to that, if there were failed
1772 * migration then it implies we are migrating too quickly or the local
1773 * node is overloaded. In either case, scan slower
04bb2f94 1774 */
074c2381 1775 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1776 p->numa_scan_period = min(p->numa_scan_period_max,
1777 p->numa_scan_period << 1);
1778
1779 p->mm->numa_next_scan = jiffies +
1780 msecs_to_jiffies(p->numa_scan_period);
1781
1782 return;
1783 }
1784
1785 /*
1786 * Prepare to scale scan period relative to the current period.
1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1790 */
1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1793 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1794 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1795 if (!slot)
1796 slot = 1;
1797 diff = slot * period_slot;
1798 } else {
1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1800
1801 /*
1802 * Scale scan rate increases based on sharing. There is an
1803 * inverse relationship between the degree of sharing and
1804 * the adjustment made to the scanning period. Broadly
1805 * speaking the intent is that there is little point
1806 * scanning faster if shared accesses dominate as it may
1807 * simply bounce migrations uselessly
1808 */
2847c90e 1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1811 }
1812
1813 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1814 task_scan_min(p), task_scan_max(p));
1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1816}
1817
7e2703e6
RR
1818/*
1819 * Get the fraction of time the task has been running since the last
1820 * NUMA placement cycle. The scheduler keeps similar statistics, but
1821 * decays those on a 32ms period, which is orders of magnitude off
1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1823 * stats only if the task is so new there are no NUMA statistics yet.
1824 */
1825static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1826{
1827 u64 runtime, delta, now;
1828 /* Use the start of this time slice to avoid calculations. */
1829 now = p->se.exec_start;
1830 runtime = p->se.sum_exec_runtime;
1831
1832 if (p->last_task_numa_placement) {
1833 delta = runtime - p->last_sum_exec_runtime;
1834 *period = now - p->last_task_numa_placement;
1835 } else {
9d89c257
YD
1836 delta = p->se.avg.load_sum / p->se.load.weight;
1837 *period = LOAD_AVG_MAX;
7e2703e6
RR
1838 }
1839
1840 p->last_sum_exec_runtime = runtime;
1841 p->last_task_numa_placement = now;
1842
1843 return delta;
1844}
1845
54009416
RR
1846/*
1847 * Determine the preferred nid for a task in a numa_group. This needs to
1848 * be done in a way that produces consistent results with group_weight,
1849 * otherwise workloads might not converge.
1850 */
1851static int preferred_group_nid(struct task_struct *p, int nid)
1852{
1853 nodemask_t nodes;
1854 int dist;
1855
1856 /* Direct connections between all NUMA nodes. */
1857 if (sched_numa_topology_type == NUMA_DIRECT)
1858 return nid;
1859
1860 /*
1861 * On a system with glueless mesh NUMA topology, group_weight
1862 * scores nodes according to the number of NUMA hinting faults on
1863 * both the node itself, and on nearby nodes.
1864 */
1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1866 unsigned long score, max_score = 0;
1867 int node, max_node = nid;
1868
1869 dist = sched_max_numa_distance;
1870
1871 for_each_online_node(node) {
1872 score = group_weight(p, node, dist);
1873 if (score > max_score) {
1874 max_score = score;
1875 max_node = node;
1876 }
1877 }
1878 return max_node;
1879 }
1880
1881 /*
1882 * Finding the preferred nid in a system with NUMA backplane
1883 * interconnect topology is more involved. The goal is to locate
1884 * tasks from numa_groups near each other in the system, and
1885 * untangle workloads from different sides of the system. This requires
1886 * searching down the hierarchy of node groups, recursively searching
1887 * inside the highest scoring group of nodes. The nodemask tricks
1888 * keep the complexity of the search down.
1889 */
1890 nodes = node_online_map;
1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1892 unsigned long max_faults = 0;
81907478 1893 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1894 int a, b;
1895
1896 /* Are there nodes at this distance from each other? */
1897 if (!find_numa_distance(dist))
1898 continue;
1899
1900 for_each_node_mask(a, nodes) {
1901 unsigned long faults = 0;
1902 nodemask_t this_group;
1903 nodes_clear(this_group);
1904
1905 /* Sum group's NUMA faults; includes a==b case. */
1906 for_each_node_mask(b, nodes) {
1907 if (node_distance(a, b) < dist) {
1908 faults += group_faults(p, b);
1909 node_set(b, this_group);
1910 node_clear(b, nodes);
1911 }
1912 }
1913
1914 /* Remember the top group. */
1915 if (faults > max_faults) {
1916 max_faults = faults;
1917 max_group = this_group;
1918 /*
1919 * subtle: at the smallest distance there is
1920 * just one node left in each "group", the
1921 * winner is the preferred nid.
1922 */
1923 nid = a;
1924 }
1925 }
1926 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1927 if (!max_faults)
1928 break;
54009416
RR
1929 nodes = max_group;
1930 }
1931 return nid;
1932}
1933
cbee9f88
PZ
1934static void task_numa_placement(struct task_struct *p)
1935{
83e1d2cd
MG
1936 int seq, nid, max_nid = -1, max_group_nid = -1;
1937 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1938 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1939 unsigned long total_faults;
1940 u64 runtime, period;
7dbd13ed 1941 spinlock_t *group_lock = NULL;
cbee9f88 1942
7e5a2c17
JL
1943 /*
1944 * The p->mm->numa_scan_seq field gets updated without
1945 * exclusive access. Use READ_ONCE() here to ensure
1946 * that the field is read in a single access:
1947 */
316c1608 1948 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1949 if (p->numa_scan_seq == seq)
1950 return;
1951 p->numa_scan_seq = seq;
598f0ec0 1952 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1953
7e2703e6
RR
1954 total_faults = p->numa_faults_locality[0] +
1955 p->numa_faults_locality[1];
1956 runtime = numa_get_avg_runtime(p, &period);
1957
7dbd13ed
MG
1958 /* If the task is part of a group prevent parallel updates to group stats */
1959 if (p->numa_group) {
1960 group_lock = &p->numa_group->lock;
60e69eed 1961 spin_lock_irq(group_lock);
7dbd13ed
MG
1962 }
1963
688b7585
MG
1964 /* Find the node with the highest number of faults */
1965 for_each_online_node(nid) {
44dba3d5
IM
1966 /* Keep track of the offsets in numa_faults array */
1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1968 unsigned long faults = 0, group_faults = 0;
44dba3d5 1969 int priv;
745d6147 1970
be1e4e76 1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1972 long diff, f_diff, f_weight;
8c8a743c 1973
44dba3d5
IM
1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1978
ac8e895b 1979 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1981 fault_types[priv] += p->numa_faults[membuf_idx];
1982 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1983
7e2703e6
RR
1984 /*
1985 * Normalize the faults_from, so all tasks in a group
1986 * count according to CPU use, instead of by the raw
1987 * number of faults. Tasks with little runtime have
1988 * little over-all impact on throughput, and thus their
1989 * faults are less important.
1990 */
1991 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1993 (total_faults + 1);
44dba3d5
IM
1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1995 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1996
44dba3d5
IM
1997 p->numa_faults[mem_idx] += diff;
1998 p->numa_faults[cpu_idx] += f_diff;
1999 faults += p->numa_faults[mem_idx];
83e1d2cd 2000 p->total_numa_faults += diff;
8c8a743c 2001 if (p->numa_group) {
44dba3d5
IM
2002 /*
2003 * safe because we can only change our own group
2004 *
2005 * mem_idx represents the offset for a given
2006 * nid and priv in a specific region because it
2007 * is at the beginning of the numa_faults array.
2008 */
2009 p->numa_group->faults[mem_idx] += diff;
2010 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2011 p->numa_group->total_faults += diff;
44dba3d5 2012 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2013 }
ac8e895b
MG
2014 }
2015
688b7585
MG
2016 if (faults > max_faults) {
2017 max_faults = faults;
2018 max_nid = nid;
2019 }
83e1d2cd
MG
2020
2021 if (group_faults > max_group_faults) {
2022 max_group_faults = group_faults;
2023 max_group_nid = nid;
2024 }
2025 }
2026
04bb2f94
RR
2027 update_task_scan_period(p, fault_types[0], fault_types[1]);
2028
7dbd13ed 2029 if (p->numa_group) {
4142c3eb 2030 numa_group_count_active_nodes(p->numa_group);
60e69eed 2031 spin_unlock_irq(group_lock);
54009416 2032 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2033 }
2034
bb97fc31
RR
2035 if (max_faults) {
2036 /* Set the new preferred node */
2037 if (max_nid != p->numa_preferred_nid)
2038 sched_setnuma(p, max_nid);
2039
2040 if (task_node(p) != p->numa_preferred_nid)
2041 numa_migrate_preferred(p);
3a7053b3 2042 }
cbee9f88
PZ
2043}
2044
8c8a743c
PZ
2045static inline int get_numa_group(struct numa_group *grp)
2046{
2047 return atomic_inc_not_zero(&grp->refcount);
2048}
2049
2050static inline void put_numa_group(struct numa_group *grp)
2051{
2052 if (atomic_dec_and_test(&grp->refcount))
2053 kfree_rcu(grp, rcu);
2054}
2055
3e6a9418
MG
2056static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2057 int *priv)
8c8a743c
PZ
2058{
2059 struct numa_group *grp, *my_grp;
2060 struct task_struct *tsk;
2061 bool join = false;
2062 int cpu = cpupid_to_cpu(cpupid);
2063 int i;
2064
2065 if (unlikely(!p->numa_group)) {
2066 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2067 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2068
2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2070 if (!grp)
2071 return;
2072
2073 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2074 grp->active_nodes = 1;
2075 grp->max_faults_cpu = 0;
8c8a743c 2076 spin_lock_init(&grp->lock);
e29cf08b 2077 grp->gid = p->pid;
50ec8a40 2078 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2080 nr_node_ids;
8c8a743c 2081
be1e4e76 2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2083 grp->faults[i] = p->numa_faults[i];
8c8a743c 2084
989348b5 2085 grp->total_faults = p->total_numa_faults;
83e1d2cd 2086
8c8a743c
PZ
2087 grp->nr_tasks++;
2088 rcu_assign_pointer(p->numa_group, grp);
2089 }
2090
2091 rcu_read_lock();
316c1608 2092 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2093
2094 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2095 goto no_join;
8c8a743c
PZ
2096
2097 grp = rcu_dereference(tsk->numa_group);
2098 if (!grp)
3354781a 2099 goto no_join;
8c8a743c
PZ
2100
2101 my_grp = p->numa_group;
2102 if (grp == my_grp)
3354781a 2103 goto no_join;
8c8a743c
PZ
2104
2105 /*
2106 * Only join the other group if its bigger; if we're the bigger group,
2107 * the other task will join us.
2108 */
2109 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2110 goto no_join;
8c8a743c
PZ
2111
2112 /*
2113 * Tie-break on the grp address.
2114 */
2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2116 goto no_join;
8c8a743c 2117
dabe1d99
RR
2118 /* Always join threads in the same process. */
2119 if (tsk->mm == current->mm)
2120 join = true;
2121
2122 /* Simple filter to avoid false positives due to PID collisions */
2123 if (flags & TNF_SHARED)
2124 join = true;
8c8a743c 2125
3e6a9418
MG
2126 /* Update priv based on whether false sharing was detected */
2127 *priv = !join;
2128
dabe1d99 2129 if (join && !get_numa_group(grp))
3354781a 2130 goto no_join;
8c8a743c 2131
8c8a743c
PZ
2132 rcu_read_unlock();
2133
2134 if (!join)
2135 return;
2136
60e69eed
MG
2137 BUG_ON(irqs_disabled());
2138 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2139
be1e4e76 2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2141 my_grp->faults[i] -= p->numa_faults[i];
2142 grp->faults[i] += p->numa_faults[i];
8c8a743c 2143 }
989348b5
MG
2144 my_grp->total_faults -= p->total_numa_faults;
2145 grp->total_faults += p->total_numa_faults;
8c8a743c 2146
8c8a743c
PZ
2147 my_grp->nr_tasks--;
2148 grp->nr_tasks++;
2149
2150 spin_unlock(&my_grp->lock);
60e69eed 2151 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2152
2153 rcu_assign_pointer(p->numa_group, grp);
2154
2155 put_numa_group(my_grp);
3354781a
PZ
2156 return;
2157
2158no_join:
2159 rcu_read_unlock();
2160 return;
8c8a743c
PZ
2161}
2162
2163void task_numa_free(struct task_struct *p)
2164{
2165 struct numa_group *grp = p->numa_group;
44dba3d5 2166 void *numa_faults = p->numa_faults;
e9dd685c
SR
2167 unsigned long flags;
2168 int i;
8c8a743c
PZ
2169
2170 if (grp) {
e9dd685c 2171 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2173 grp->faults[i] -= p->numa_faults[i];
989348b5 2174 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2175
8c8a743c 2176 grp->nr_tasks--;
e9dd685c 2177 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2178 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2179 put_numa_group(grp);
2180 }
2181
44dba3d5 2182 p->numa_faults = NULL;
82727018 2183 kfree(numa_faults);
8c8a743c
PZ
2184}
2185
cbee9f88
PZ
2186/*
2187 * Got a PROT_NONE fault for a page on @node.
2188 */
58b46da3 2189void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2190{
2191 struct task_struct *p = current;
6688cc05 2192 bool migrated = flags & TNF_MIGRATED;
58b46da3 2193 int cpu_node = task_node(current);
792568ec 2194 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2195 struct numa_group *ng;
ac8e895b 2196 int priv;
cbee9f88 2197
2a595721 2198 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2199 return;
2200
9ff1d9ff
MG
2201 /* for example, ksmd faulting in a user's mm */
2202 if (!p->mm)
2203 return;
2204
f809ca9a 2205 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2206 if (unlikely(!p->numa_faults)) {
2207 int size = sizeof(*p->numa_faults) *
be1e4e76 2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2209
44dba3d5
IM
2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2211 if (!p->numa_faults)
f809ca9a 2212 return;
745d6147 2213
83e1d2cd 2214 p->total_numa_faults = 0;
04bb2f94 2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2216 }
cbee9f88 2217
8c8a743c
PZ
2218 /*
2219 * First accesses are treated as private, otherwise consider accesses
2220 * to be private if the accessing pid has not changed
2221 */
2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2223 priv = 1;
2224 } else {
2225 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2226 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2227 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2228 }
2229
792568ec
RR
2230 /*
2231 * If a workload spans multiple NUMA nodes, a shared fault that
2232 * occurs wholly within the set of nodes that the workload is
2233 * actively using should be counted as local. This allows the
2234 * scan rate to slow down when a workload has settled down.
2235 */
4142c3eb
RR
2236 ng = p->numa_group;
2237 if (!priv && !local && ng && ng->active_nodes > 1 &&
2238 numa_is_active_node(cpu_node, ng) &&
2239 numa_is_active_node(mem_node, ng))
792568ec
RR
2240 local = 1;
2241
cbee9f88 2242 task_numa_placement(p);
f809ca9a 2243
2739d3ee
RR
2244 /*
2245 * Retry task to preferred node migration periodically, in case it
2246 * case it previously failed, or the scheduler moved us.
2247 */
2248 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2249 numa_migrate_preferred(p);
2250
b32e86b4
IM
2251 if (migrated)
2252 p->numa_pages_migrated += pages;
074c2381
MG
2253 if (flags & TNF_MIGRATE_FAIL)
2254 p->numa_faults_locality[2] += pages;
b32e86b4 2255
44dba3d5
IM
2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2258 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2259}
2260
6e5fb223
PZ
2261static void reset_ptenuma_scan(struct task_struct *p)
2262{
7e5a2c17
JL
2263 /*
2264 * We only did a read acquisition of the mmap sem, so
2265 * p->mm->numa_scan_seq is written to without exclusive access
2266 * and the update is not guaranteed to be atomic. That's not
2267 * much of an issue though, since this is just used for
2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2269 * expensive, to avoid any form of compiler optimizations:
2270 */
316c1608 2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2272 p->mm->numa_scan_offset = 0;
2273}
2274
cbee9f88
PZ
2275/*
2276 * The expensive part of numa migration is done from task_work context.
2277 * Triggered from task_tick_numa().
2278 */
2279void task_numa_work(struct callback_head *work)
2280{
2281 unsigned long migrate, next_scan, now = jiffies;
2282 struct task_struct *p = current;
2283 struct mm_struct *mm = p->mm;
51170840 2284 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2285 struct vm_area_struct *vma;
9f40604c 2286 unsigned long start, end;
598f0ec0 2287 unsigned long nr_pte_updates = 0;
4620f8c1 2288 long pages, virtpages;
cbee9f88
PZ
2289
2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2291
2292 work->next = work; /* protect against double add */
2293 /*
2294 * Who cares about NUMA placement when they're dying.
2295 *
2296 * NOTE: make sure not to dereference p->mm before this check,
2297 * exit_task_work() happens _after_ exit_mm() so we could be called
2298 * without p->mm even though we still had it when we enqueued this
2299 * work.
2300 */
2301 if (p->flags & PF_EXITING)
2302 return;
2303
930aa174 2304 if (!mm->numa_next_scan) {
7e8d16b6
MG
2305 mm->numa_next_scan = now +
2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2307 }
2308
cbee9f88
PZ
2309 /*
2310 * Enforce maximal scan/migration frequency..
2311 */
2312 migrate = mm->numa_next_scan;
2313 if (time_before(now, migrate))
2314 return;
2315
598f0ec0
MG
2316 if (p->numa_scan_period == 0) {
2317 p->numa_scan_period_max = task_scan_max(p);
2318 p->numa_scan_period = task_scan_min(p);
2319 }
cbee9f88 2320
fb003b80 2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2323 return;
2324
19a78d11
PZ
2325 /*
2326 * Delay this task enough that another task of this mm will likely win
2327 * the next time around.
2328 */
2329 p->node_stamp += 2 * TICK_NSEC;
2330
9f40604c
MG
2331 start = mm->numa_scan_offset;
2332 pages = sysctl_numa_balancing_scan_size;
2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2334 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2335 if (!pages)
2336 return;
cbee9f88 2337
4620f8c1 2338
6e5fb223 2339 down_read(&mm->mmap_sem);
9f40604c 2340 vma = find_vma(mm, start);
6e5fb223
PZ
2341 if (!vma) {
2342 reset_ptenuma_scan(p);
9f40604c 2343 start = 0;
6e5fb223
PZ
2344 vma = mm->mmap;
2345 }
9f40604c 2346 for (; vma; vma = vma->vm_next) {
6b79c57b 2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2349 continue;
6b79c57b 2350 }
6e5fb223 2351
4591ce4f
MG
2352 /*
2353 * Shared library pages mapped by multiple processes are not
2354 * migrated as it is expected they are cache replicated. Avoid
2355 * hinting faults in read-only file-backed mappings or the vdso
2356 * as migrating the pages will be of marginal benefit.
2357 */
2358 if (!vma->vm_mm ||
2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2360 continue;
2361
3c67f474
MG
2362 /*
2363 * Skip inaccessible VMAs to avoid any confusion between
2364 * PROT_NONE and NUMA hinting ptes
2365 */
2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2367 continue;
4591ce4f 2368
9f40604c
MG
2369 do {
2370 start = max(start, vma->vm_start);
2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2372 end = min(end, vma->vm_end);
4620f8c1 2373 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2374
2375 /*
4620f8c1
RR
2376 * Try to scan sysctl_numa_balancing_size worth of
2377 * hpages that have at least one present PTE that
2378 * is not already pte-numa. If the VMA contains
2379 * areas that are unused or already full of prot_numa
2380 * PTEs, scan up to virtpages, to skip through those
2381 * areas faster.
598f0ec0
MG
2382 */
2383 if (nr_pte_updates)
2384 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2385 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2386
9f40604c 2387 start = end;
4620f8c1 2388 if (pages <= 0 || virtpages <= 0)
9f40604c 2389 goto out;
3cf1962c
RR
2390
2391 cond_resched();
9f40604c 2392 } while (end != vma->vm_end);
cbee9f88 2393 }
6e5fb223 2394
9f40604c 2395out:
6e5fb223 2396 /*
c69307d5
PZ
2397 * It is possible to reach the end of the VMA list but the last few
2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2399 * would find the !migratable VMA on the next scan but not reset the
2400 * scanner to the start so check it now.
6e5fb223
PZ
2401 */
2402 if (vma)
9f40604c 2403 mm->numa_scan_offset = start;
6e5fb223
PZ
2404 else
2405 reset_ptenuma_scan(p);
2406 up_read(&mm->mmap_sem);
51170840
RR
2407
2408 /*
2409 * Make sure tasks use at least 32x as much time to run other code
2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2411 * Usually update_task_scan_period slows down scanning enough; on an
2412 * overloaded system we need to limit overhead on a per task basis.
2413 */
2414 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2415 u64 diff = p->se.sum_exec_runtime - runtime;
2416 p->node_stamp += 32 * diff;
2417 }
cbee9f88
PZ
2418}
2419
2420/*
2421 * Drive the periodic memory faults..
2422 */
2423void task_tick_numa(struct rq *rq, struct task_struct *curr)
2424{
2425 struct callback_head *work = &curr->numa_work;
2426 u64 period, now;
2427
2428 /*
2429 * We don't care about NUMA placement if we don't have memory.
2430 */
2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2432 return;
2433
2434 /*
2435 * Using runtime rather than walltime has the dual advantage that
2436 * we (mostly) drive the selection from busy threads and that the
2437 * task needs to have done some actual work before we bother with
2438 * NUMA placement.
2439 */
2440 now = curr->se.sum_exec_runtime;
2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2442
25b3e5a3 2443 if (now > curr->node_stamp + period) {
4b96a29b 2444 if (!curr->node_stamp)
598f0ec0 2445 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2446 curr->node_stamp += period;
cbee9f88
PZ
2447
2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2450 task_work_add(curr, work, true);
2451 }
2452 }
2453}
2454#else
2455static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2456{
2457}
0ec8aa00
PZ
2458
2459static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2460{
2461}
2462
2463static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2464{
2465}
cbee9f88
PZ
2466#endif /* CONFIG_NUMA_BALANCING */
2467
30cfdcfc
DA
2468static void
2469account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2470{
2471 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2472 if (!parent_entity(se))
029632fb 2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2474#ifdef CONFIG_SMP
0ec8aa00
PZ
2475 if (entity_is_task(se)) {
2476 struct rq *rq = rq_of(cfs_rq);
2477
2478 account_numa_enqueue(rq, task_of(se));
2479 list_add(&se->group_node, &rq->cfs_tasks);
2480 }
367456c7 2481#endif
30cfdcfc 2482 cfs_rq->nr_running++;
30cfdcfc
DA
2483}
2484
2485static void
2486account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487{
2488 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2489 if (!parent_entity(se))
029632fb 2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2491#ifdef CONFIG_SMP
0ec8aa00
PZ
2492 if (entity_is_task(se)) {
2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2494 list_del_init(&se->group_node);
0ec8aa00 2495 }
bfdb198c 2496#endif
30cfdcfc 2497 cfs_rq->nr_running--;
30cfdcfc
DA
2498}
2499
3ff6dcac
YZ
2500#ifdef CONFIG_FAIR_GROUP_SCHED
2501# ifdef CONFIG_SMP
cf5f0acf
PZ
2502static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2503{
2504 long tg_weight;
2505
2506 /*
9d89c257
YD
2507 * Use this CPU's real-time load instead of the last load contribution
2508 * as the updating of the contribution is delayed, and we will use the
2509 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2510 */
bf5b986e 2511 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2512 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2513 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2514
2515 return tg_weight;
2516}
2517
6d5ab293 2518static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2519{
cf5f0acf 2520 long tg_weight, load, shares;
3ff6dcac 2521
cf5f0acf 2522 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2523 load = cfs_rq->load.weight;
3ff6dcac 2524
3ff6dcac 2525 shares = (tg->shares * load);
cf5f0acf
PZ
2526 if (tg_weight)
2527 shares /= tg_weight;
3ff6dcac
YZ
2528
2529 if (shares < MIN_SHARES)
2530 shares = MIN_SHARES;
2531 if (shares > tg->shares)
2532 shares = tg->shares;
2533
2534 return shares;
2535}
3ff6dcac 2536# else /* CONFIG_SMP */
6d5ab293 2537static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2538{
2539 return tg->shares;
2540}
3ff6dcac 2541# endif /* CONFIG_SMP */
2069dd75
PZ
2542static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544{
19e5eebb
PT
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2069dd75 2549 account_entity_dequeue(cfs_rq, se);
19e5eebb 2550 }
2069dd75
PZ
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556}
2557
82958366
PT
2558static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
6d5ab293 2560static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2561{
2562 struct task_group *tg;
2563 struct sched_entity *se;
3ff6dcac 2564 long shares;
2069dd75 2565
2069dd75
PZ
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2568 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2569 return;
3ff6dcac
YZ
2570#ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573#endif
6d5ab293 2574 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577}
2578#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2579static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2580{
2581}
2582#endif /* CONFIG_FAIR_GROUP_SCHED */
2583
141965c7 2584#ifdef CONFIG_SMP
5b51f2f8
PT
2585/* Precomputed fixed inverse multiplies for multiplication by y^n */
2586static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593};
2594
2595/*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603};
2604
9d85f21c
PT
2605/*
2606 * Approximate:
2607 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2608 */
2609static __always_inline u64 decay_load(u64 val, u64 n)
2610{
5b51f2f8
PT
2611 unsigned int local_n;
2612
2613 if (!n)
2614 return val;
2615 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2616 return 0;
2617
2618 /* after bounds checking we can collapse to 32-bit */
2619 local_n = n;
2620
2621 /*
2622 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2623 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2624 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2625 *
2626 * To achieve constant time decay_load.
2627 */
2628 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2629 val >>= local_n / LOAD_AVG_PERIOD;
2630 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2631 }
2632
9d89c257
YD
2633 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2634 return val;
5b51f2f8
PT
2635}
2636
2637/*
2638 * For updates fully spanning n periods, the contribution to runnable
2639 * average will be: \Sum 1024*y^n
2640 *
2641 * We can compute this reasonably efficiently by combining:
2642 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2643 */
2644static u32 __compute_runnable_contrib(u64 n)
2645{
2646 u32 contrib = 0;
2647
2648 if (likely(n <= LOAD_AVG_PERIOD))
2649 return runnable_avg_yN_sum[n];
2650 else if (unlikely(n >= LOAD_AVG_MAX_N))
2651 return LOAD_AVG_MAX;
2652
2653 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2654 do {
2655 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2656 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2657
2658 n -= LOAD_AVG_PERIOD;
2659 } while (n > LOAD_AVG_PERIOD);
2660
2661 contrib = decay_load(contrib, n);
2662 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2663}
2664
006cdf02
PZ
2665#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2666#error "load tracking assumes 2^10 as unit"
2667#endif
2668
54a21385 2669#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2670
9d85f21c
PT
2671/*
2672 * We can represent the historical contribution to runnable average as the
2673 * coefficients of a geometric series. To do this we sub-divide our runnable
2674 * history into segments of approximately 1ms (1024us); label the segment that
2675 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2676 *
2677 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2678 * p0 p1 p2
2679 * (now) (~1ms ago) (~2ms ago)
2680 *
2681 * Let u_i denote the fraction of p_i that the entity was runnable.
2682 *
2683 * We then designate the fractions u_i as our co-efficients, yielding the
2684 * following representation of historical load:
2685 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2686 *
2687 * We choose y based on the with of a reasonably scheduling period, fixing:
2688 * y^32 = 0.5
2689 *
2690 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2691 * approximately half as much as the contribution to load within the last ms
2692 * (u_0).
2693 *
2694 * When a period "rolls over" and we have new u_0`, multiplying the previous
2695 * sum again by y is sufficient to update:
2696 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2697 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2698 */
9d89c257
YD
2699static __always_inline int
2700__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2701 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2702{
e0f5f3af 2703 u64 delta, scaled_delta, periods;
9d89c257 2704 u32 contrib;
6115c793 2705 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2706 unsigned long scale_freq, scale_cpu;
9d85f21c 2707
9d89c257 2708 delta = now - sa->last_update_time;
9d85f21c
PT
2709 /*
2710 * This should only happen when time goes backwards, which it
2711 * unfortunately does during sched clock init when we swap over to TSC.
2712 */
2713 if ((s64)delta < 0) {
9d89c257 2714 sa->last_update_time = now;
9d85f21c
PT
2715 return 0;
2716 }
2717
2718 /*
2719 * Use 1024ns as the unit of measurement since it's a reasonable
2720 * approximation of 1us and fast to compute.
2721 */
2722 delta >>= 10;
2723 if (!delta)
2724 return 0;
9d89c257 2725 sa->last_update_time = now;
9d85f21c 2726
6f2b0452
DE
2727 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2728 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2729
9d85f21c 2730 /* delta_w is the amount already accumulated against our next period */
9d89c257 2731 delta_w = sa->period_contrib;
9d85f21c 2732 if (delta + delta_w >= 1024) {
9d85f21c
PT
2733 decayed = 1;
2734
9d89c257
YD
2735 /* how much left for next period will start over, we don't know yet */
2736 sa->period_contrib = 0;
2737
9d85f21c
PT
2738 /*
2739 * Now that we know we're crossing a period boundary, figure
2740 * out how much from delta we need to complete the current
2741 * period and accrue it.
2742 */
2743 delta_w = 1024 - delta_w;
54a21385 2744 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2745 if (weight) {
e0f5f3af
DE
2746 sa->load_sum += weight * scaled_delta_w;
2747 if (cfs_rq) {
2748 cfs_rq->runnable_load_sum +=
2749 weight * scaled_delta_w;
2750 }
13962234 2751 }
36ee28e4 2752 if (running)
006cdf02 2753 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2754
2755 delta -= delta_w;
2756
2757 /* Figure out how many additional periods this update spans */
2758 periods = delta / 1024;
2759 delta %= 1024;
2760
9d89c257 2761 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2762 if (cfs_rq) {
2763 cfs_rq->runnable_load_sum =
2764 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2765 }
9d89c257 2766 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2767
2768 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2769 contrib = __compute_runnable_contrib(periods);
54a21385 2770 contrib = cap_scale(contrib, scale_freq);
13962234 2771 if (weight) {
9d89c257 2772 sa->load_sum += weight * contrib;
13962234
YD
2773 if (cfs_rq)
2774 cfs_rq->runnable_load_sum += weight * contrib;
2775 }
36ee28e4 2776 if (running)
006cdf02 2777 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2778 }
2779
2780 /* Remainder of delta accrued against u_0` */
54a21385 2781 scaled_delta = cap_scale(delta, scale_freq);
13962234 2782 if (weight) {
e0f5f3af 2783 sa->load_sum += weight * scaled_delta;
13962234 2784 if (cfs_rq)
e0f5f3af 2785 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2786 }
36ee28e4 2787 if (running)
006cdf02 2788 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2789
9d89c257 2790 sa->period_contrib += delta;
9ee474f5 2791
9d89c257
YD
2792 if (decayed) {
2793 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2794 if (cfs_rq) {
2795 cfs_rq->runnable_load_avg =
2796 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2797 }
006cdf02 2798 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2799 }
aff3e498 2800
9d89c257 2801 return decayed;
9ee474f5
PT
2802}
2803
c566e8e9 2804#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2805/*
9d89c257
YD
2806 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2807 * and effective_load (which is not done because it is too costly).
bb17f655 2808 */
9d89c257 2809static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2810{
9d89c257 2811 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2812
aa0b7ae0
WL
2813 /*
2814 * No need to update load_avg for root_task_group as it is not used.
2815 */
2816 if (cfs_rq->tg == &root_task_group)
2817 return;
2818
9d89c257
YD
2819 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2820 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2821 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2822 }
8165e145 2823}
f5f9739d 2824
ad936d86
BP
2825/*
2826 * Called within set_task_rq() right before setting a task's cpu. The
2827 * caller only guarantees p->pi_lock is held; no other assumptions,
2828 * including the state of rq->lock, should be made.
2829 */
2830void set_task_rq_fair(struct sched_entity *se,
2831 struct cfs_rq *prev, struct cfs_rq *next)
2832{
2833 if (!sched_feat(ATTACH_AGE_LOAD))
2834 return;
2835
2836 /*
2837 * We are supposed to update the task to "current" time, then its up to
2838 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2839 * getting what current time is, so simply throw away the out-of-date
2840 * time. This will result in the wakee task is less decayed, but giving
2841 * the wakee more load sounds not bad.
2842 */
2843 if (se->avg.last_update_time && prev) {
2844 u64 p_last_update_time;
2845 u64 n_last_update_time;
2846
2847#ifndef CONFIG_64BIT
2848 u64 p_last_update_time_copy;
2849 u64 n_last_update_time_copy;
2850
2851 do {
2852 p_last_update_time_copy = prev->load_last_update_time_copy;
2853 n_last_update_time_copy = next->load_last_update_time_copy;
2854
2855 smp_rmb();
2856
2857 p_last_update_time = prev->avg.last_update_time;
2858 n_last_update_time = next->avg.last_update_time;
2859
2860 } while (p_last_update_time != p_last_update_time_copy ||
2861 n_last_update_time != n_last_update_time_copy);
2862#else
2863 p_last_update_time = prev->avg.last_update_time;
2864 n_last_update_time = next->avg.last_update_time;
2865#endif
2866 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2867 &se->avg, 0, 0, NULL);
2868 se->avg.last_update_time = n_last_update_time;
2869 }
2870}
6e83125c 2871#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2872static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2873#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2874
9d89c257 2875static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2876
9d89c257
YD
2877/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2878static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2879{
9d89c257 2880 struct sched_avg *sa = &cfs_rq->avg;
21e96f88 2881 struct rq *rq = rq_of(cfs_rq);
3e386d56 2882 int decayed, removed = 0;
21e96f88 2883 int cpu = cpu_of(rq);
2dac754e 2884
9d89c257 2885 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2886 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2887 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2888 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
3e386d56 2889 removed = 1;
8165e145 2890 }
2dac754e 2891
9d89c257
YD
2892 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2893 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2894 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2895 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2896 }
36ee28e4 2897
21e96f88 2898 decayed = __update_load_avg(now, cpu, sa,
13962234 2899 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2900
9d89c257
YD
2901#ifndef CONFIG_64BIT
2902 smp_wmb();
2903 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2904#endif
36ee28e4 2905
34e2c555
RW
2906 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2907 unsigned long max = rq->cpu_capacity_orig;
2908
2909 /*
2910 * There are a few boundary cases this might miss but it should
2911 * get called often enough that that should (hopefully) not be
2912 * a real problem -- added to that it only calls on the local
2913 * CPU, so if we enqueue remotely we'll miss an update, but
2914 * the next tick/schedule should update.
2915 *
2916 * It will not get called when we go idle, because the idle
2917 * thread is a different class (!fair), nor will the utilization
2918 * number include things like RT tasks.
2919 *
2920 * As is, the util number is not freq-invariant (we'd have to
2921 * implement arch_scale_freq_capacity() for that).
2922 *
2923 * See cpu_util().
2924 */
2925 cpufreq_update_util(rq_clock(rq),
21e96f88 2926 min(sa->util_avg, max), max);
34e2c555 2927 }
21e96f88
SM
2928
2929 return decayed || removed;
2930}
2931
2932/* Update task and its cfs_rq load average */
2933static inline void update_load_avg(struct sched_entity *se, int update_tg)
2934{
2935 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2936 u64 now = cfs_rq_clock_task(cfs_rq);
2937 struct rq *rq = rq_of(cfs_rq);
2938 int cpu = cpu_of(rq);
2939
2940 /*
2941 * Track task load average for carrying it to new CPU after migrated, and
2942 * track group sched_entity load average for task_h_load calc in migration
2943 */
2944 __update_load_avg(now, cpu, &se->avg,
2945 se->on_rq * scale_load_down(se->load.weight),
2946 cfs_rq->curr == se, NULL);
2947
2948 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2949 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2950}
2951
a05e8c51
BP
2952static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2953{
a9280514
PZ
2954 if (!sched_feat(ATTACH_AGE_LOAD))
2955 goto skip_aging;
2956
6efdb105
BP
2957 /*
2958 * If we got migrated (either between CPUs or between cgroups) we'll
2959 * have aged the average right before clearing @last_update_time.
2960 */
2961 if (se->avg.last_update_time) {
2962 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2963 &se->avg, 0, 0, NULL);
2964
2965 /*
2966 * XXX: we could have just aged the entire load away if we've been
2967 * absent from the fair class for too long.
2968 */
2969 }
2970
a9280514 2971skip_aging:
a05e8c51
BP
2972 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2973 cfs_rq->avg.load_avg += se->avg.load_avg;
2974 cfs_rq->avg.load_sum += se->avg.load_sum;
2975 cfs_rq->avg.util_avg += se->avg.util_avg;
2976 cfs_rq->avg.util_sum += se->avg.util_sum;
2977}
2978
2979static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2980{
2981 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2982 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2983 cfs_rq->curr == se, NULL);
2984
2985 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2986 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2987 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2988 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2989}
2990
9d89c257
YD
2991/* Add the load generated by se into cfs_rq's load average */
2992static inline void
2993enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2994{
9d89c257
YD
2995 struct sched_avg *sa = &se->avg;
2996 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2997 int migrated, decayed;
9ee474f5 2998
a05e8c51
BP
2999 migrated = !sa->last_update_time;
3000 if (!migrated) {
9d89c257 3001 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3002 se->on_rq * scale_load_down(se->load.weight),
3003 cfs_rq->curr == se, NULL);
aff3e498 3004 }
c566e8e9 3005
9d89c257 3006 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 3007
13962234
YD
3008 cfs_rq->runnable_load_avg += sa->load_avg;
3009 cfs_rq->runnable_load_sum += sa->load_sum;
3010
a05e8c51
BP
3011 if (migrated)
3012 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3013
9d89c257
YD
3014 if (decayed || migrated)
3015 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3016}
3017
13962234
YD
3018/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3019static inline void
3020dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3021{
3022 update_load_avg(se, 1);
3023
3024 cfs_rq->runnable_load_avg =
3025 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3026 cfs_rq->runnable_load_sum =
a05e8c51 3027 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3028}
3029
9d89c257 3030#ifndef CONFIG_64BIT
0905f04e
YD
3031static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3032{
9d89c257 3033 u64 last_update_time_copy;
0905f04e 3034 u64 last_update_time;
9ee474f5 3035
9d89c257
YD
3036 do {
3037 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3038 smp_rmb();
3039 last_update_time = cfs_rq->avg.last_update_time;
3040 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3041
3042 return last_update_time;
3043}
9d89c257 3044#else
0905f04e
YD
3045static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3046{
3047 return cfs_rq->avg.last_update_time;
3048}
9d89c257
YD
3049#endif
3050
0905f04e
YD
3051/*
3052 * Task first catches up with cfs_rq, and then subtract
3053 * itself from the cfs_rq (task must be off the queue now).
3054 */
3055void remove_entity_load_avg(struct sched_entity *se)
3056{
3057 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3058 u64 last_update_time;
3059
3060 /*
3061 * Newly created task or never used group entity should not be removed
3062 * from its (source) cfs_rq
3063 */
3064 if (se->avg.last_update_time == 0)
3065 return;
3066
3067 last_update_time = cfs_rq_last_update_time(cfs_rq);
3068
13962234 3069 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3070 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3071 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3072}
642dbc39 3073
7ea241af
YD
3074static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3075{
3076 return cfs_rq->runnable_load_avg;
3077}
3078
3079static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3080{
3081 return cfs_rq->avg.load_avg;
3082}
3083
6e83125c
PZ
3084static int idle_balance(struct rq *this_rq);
3085
38033c37
PZ
3086#else /* CONFIG_SMP */
3087
9d89c257
YD
3088static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3089static inline void
3090enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3091static inline void
3092dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3093static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3094
a05e8c51
BP
3095static inline void
3096attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3097static inline void
3098detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3099
6e83125c
PZ
3100static inline int idle_balance(struct rq *rq)
3101{
3102 return 0;
3103}
3104
38033c37 3105#endif /* CONFIG_SMP */
9d85f21c 3106
2396af69 3107static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3108{
bf0f6f24 3109#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3110 struct task_struct *tsk = NULL;
3111
3112 if (entity_is_task(se))
3113 tsk = task_of(se);
3114
41acab88 3115 if (se->statistics.sleep_start) {
78becc27 3116 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3117
3118 if ((s64)delta < 0)
3119 delta = 0;
3120
41acab88
LDM
3121 if (unlikely(delta > se->statistics.sleep_max))
3122 se->statistics.sleep_max = delta;
bf0f6f24 3123
8c79a045 3124 se->statistics.sleep_start = 0;
41acab88 3125 se->statistics.sum_sleep_runtime += delta;
9745512c 3126
768d0c27 3127 if (tsk) {
e414314c 3128 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3129 trace_sched_stat_sleep(tsk, delta);
3130 }
bf0f6f24 3131 }
41acab88 3132 if (se->statistics.block_start) {
78becc27 3133 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3134
3135 if ((s64)delta < 0)
3136 delta = 0;
3137
41acab88
LDM
3138 if (unlikely(delta > se->statistics.block_max))
3139 se->statistics.block_max = delta;
bf0f6f24 3140
8c79a045 3141 se->statistics.block_start = 0;
41acab88 3142 se->statistics.sum_sleep_runtime += delta;
30084fbd 3143
e414314c 3144 if (tsk) {
8f0dfc34 3145 if (tsk->in_iowait) {
41acab88
LDM
3146 se->statistics.iowait_sum += delta;
3147 se->statistics.iowait_count++;
768d0c27 3148 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3149 }
3150
b781a602
AV
3151 trace_sched_stat_blocked(tsk, delta);
3152
e414314c
PZ
3153 /*
3154 * Blocking time is in units of nanosecs, so shift by
3155 * 20 to get a milliseconds-range estimation of the
3156 * amount of time that the task spent sleeping:
3157 */
3158 if (unlikely(prof_on == SLEEP_PROFILING)) {
3159 profile_hits(SLEEP_PROFILING,
3160 (void *)get_wchan(tsk),
3161 delta >> 20);
3162 }
3163 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3164 }
bf0f6f24
IM
3165 }
3166#endif
3167}
3168
ddc97297
PZ
3169static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3170{
3171#ifdef CONFIG_SCHED_DEBUG
3172 s64 d = se->vruntime - cfs_rq->min_vruntime;
3173
3174 if (d < 0)
3175 d = -d;
3176
3177 if (d > 3*sysctl_sched_latency)
3178 schedstat_inc(cfs_rq, nr_spread_over);
3179#endif
3180}
3181
aeb73b04
PZ
3182static void
3183place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3184{
1af5f730 3185 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3186
2cb8600e
PZ
3187 /*
3188 * The 'current' period is already promised to the current tasks,
3189 * however the extra weight of the new task will slow them down a
3190 * little, place the new task so that it fits in the slot that
3191 * stays open at the end.
3192 */
94dfb5e7 3193 if (initial && sched_feat(START_DEBIT))
f9c0b095 3194 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3195
a2e7a7eb 3196 /* sleeps up to a single latency don't count. */
5ca9880c 3197 if (!initial) {
a2e7a7eb 3198 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3199
a2e7a7eb
MG
3200 /*
3201 * Halve their sleep time's effect, to allow
3202 * for a gentler effect of sleepers:
3203 */
3204 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3205 thresh >>= 1;
51e0304c 3206
a2e7a7eb 3207 vruntime -= thresh;
aeb73b04
PZ
3208 }
3209
b5d9d734 3210 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3211 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3212}
3213
d3d9dc33
PT
3214static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3215
cb251765
MG
3216static inline void check_schedstat_required(void)
3217{
3218#ifdef CONFIG_SCHEDSTATS
3219 if (schedstat_enabled())
3220 return;
3221
3222 /* Force schedstat enabled if a dependent tracepoint is active */
3223 if (trace_sched_stat_wait_enabled() ||
3224 trace_sched_stat_sleep_enabled() ||
3225 trace_sched_stat_iowait_enabled() ||
3226 trace_sched_stat_blocked_enabled() ||
3227 trace_sched_stat_runtime_enabled()) {
3228 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3229 "stat_blocked and stat_runtime require the "
3230 "kernel parameter schedstats=enabled or "
3231 "kernel.sched_schedstats=1\n");
3232 }
3233#endif
3234}
3235
bf0f6f24 3236static void
88ec22d3 3237enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3238{
3a47d512
PZ
3239 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING);
3240 bool curr = cfs_rq->curr == se;
3241
88ec22d3 3242 /*
3a47d512
PZ
3243 * If we're the current task, we must renormalise before calling
3244 * update_curr().
88ec22d3 3245 */
3a47d512 3246 if (renorm && curr)
88ec22d3
PZ
3247 se->vruntime += cfs_rq->min_vruntime;
3248
3a47d512
PZ
3249 update_curr(cfs_rq);
3250
bf0f6f24 3251 /*
3a47d512
PZ
3252 * Otherwise, renormalise after, such that we're placed at the current
3253 * moment in time, instead of some random moment in the past.
bf0f6f24 3254 */
3a47d512
PZ
3255 if (renorm && !curr)
3256 se->vruntime += cfs_rq->min_vruntime;
3257
9d89c257 3258 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3259 account_entity_enqueue(cfs_rq, se);
3260 update_cfs_shares(cfs_rq);
bf0f6f24 3261
88ec22d3 3262 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3263 place_entity(cfs_rq, se, 0);
cb251765
MG
3264 if (schedstat_enabled())
3265 enqueue_sleeper(cfs_rq, se);
e9acbff6 3266 }
bf0f6f24 3267
cb251765
MG
3268 check_schedstat_required();
3269 if (schedstat_enabled()) {
3270 update_stats_enqueue(cfs_rq, se);
3271 check_spread(cfs_rq, se);
3272 }
3a47d512 3273 if (!curr)
83b699ed 3274 __enqueue_entity(cfs_rq, se);
2069dd75 3275 se->on_rq = 1;
3d4b47b4 3276
d3d9dc33 3277 if (cfs_rq->nr_running == 1) {
3d4b47b4 3278 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3279 check_enqueue_throttle(cfs_rq);
3280 }
bf0f6f24
IM
3281}
3282
2c13c919 3283static void __clear_buddies_last(struct sched_entity *se)
2002c695 3284{
2c13c919
RR
3285 for_each_sched_entity(se) {
3286 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3287 if (cfs_rq->last != se)
2c13c919 3288 break;
f1044799
PZ
3289
3290 cfs_rq->last = NULL;
2c13c919
RR
3291 }
3292}
2002c695 3293
2c13c919
RR
3294static void __clear_buddies_next(struct sched_entity *se)
3295{
3296 for_each_sched_entity(se) {
3297 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3298 if (cfs_rq->next != se)
2c13c919 3299 break;
f1044799
PZ
3300
3301 cfs_rq->next = NULL;
2c13c919 3302 }
2002c695
PZ
3303}
3304
ac53db59
RR
3305static void __clear_buddies_skip(struct sched_entity *se)
3306{
3307 for_each_sched_entity(se) {
3308 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3309 if (cfs_rq->skip != se)
ac53db59 3310 break;
f1044799
PZ
3311
3312 cfs_rq->skip = NULL;
ac53db59
RR
3313 }
3314}
3315
a571bbea
PZ
3316static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3317{
2c13c919
RR
3318 if (cfs_rq->last == se)
3319 __clear_buddies_last(se);
3320
3321 if (cfs_rq->next == se)
3322 __clear_buddies_next(se);
ac53db59
RR
3323
3324 if (cfs_rq->skip == se)
3325 __clear_buddies_skip(se);
a571bbea
PZ
3326}
3327
6c16a6dc 3328static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3329
bf0f6f24 3330static void
371fd7e7 3331dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3332{
a2a2d680
DA
3333 /*
3334 * Update run-time statistics of the 'current'.
3335 */
3336 update_curr(cfs_rq);
13962234 3337 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3338
cb251765
MG
3339 if (schedstat_enabled())
3340 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3341
2002c695 3342 clear_buddies(cfs_rq, se);
4793241b 3343
83b699ed 3344 if (se != cfs_rq->curr)
30cfdcfc 3345 __dequeue_entity(cfs_rq, se);
17bc14b7 3346 se->on_rq = 0;
30cfdcfc 3347 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3348
3349 /*
3350 * Normalize the entity after updating the min_vruntime because the
3351 * update can refer to the ->curr item and we need to reflect this
3352 * movement in our normalized position.
3353 */
371fd7e7 3354 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3355 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3356
d8b4986d
PT
3357 /* return excess runtime on last dequeue */
3358 return_cfs_rq_runtime(cfs_rq);
3359
1e876231 3360 update_min_vruntime(cfs_rq);
17bc14b7 3361 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3362}
3363
3364/*
3365 * Preempt the current task with a newly woken task if needed:
3366 */
7c92e54f 3367static void
2e09bf55 3368check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3369{
11697830 3370 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3371 struct sched_entity *se;
3372 s64 delta;
11697830 3373
6d0f0ebd 3374 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3375 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3376 if (delta_exec > ideal_runtime) {
8875125e 3377 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3378 /*
3379 * The current task ran long enough, ensure it doesn't get
3380 * re-elected due to buddy favours.
3381 */
3382 clear_buddies(cfs_rq, curr);
f685ceac
MG
3383 return;
3384 }
3385
3386 /*
3387 * Ensure that a task that missed wakeup preemption by a
3388 * narrow margin doesn't have to wait for a full slice.
3389 * This also mitigates buddy induced latencies under load.
3390 */
f685ceac
MG
3391 if (delta_exec < sysctl_sched_min_granularity)
3392 return;
3393
f4cfb33e
WX
3394 se = __pick_first_entity(cfs_rq);
3395 delta = curr->vruntime - se->vruntime;
f685ceac 3396
f4cfb33e
WX
3397 if (delta < 0)
3398 return;
d7d82944 3399
f4cfb33e 3400 if (delta > ideal_runtime)
8875125e 3401 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3402}
3403
83b699ed 3404static void
8494f412 3405set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3406{
83b699ed
SV
3407 /* 'current' is not kept within the tree. */
3408 if (se->on_rq) {
3409 /*
3410 * Any task has to be enqueued before it get to execute on
3411 * a CPU. So account for the time it spent waiting on the
3412 * runqueue.
3413 */
cb251765
MG
3414 if (schedstat_enabled())
3415 update_stats_wait_end(cfs_rq, se);
83b699ed 3416 __dequeue_entity(cfs_rq, se);
9d89c257 3417 update_load_avg(se, 1);
83b699ed
SV
3418 }
3419
79303e9e 3420 update_stats_curr_start(cfs_rq, se);
429d43bc 3421 cfs_rq->curr = se;
eba1ed4b
IM
3422#ifdef CONFIG_SCHEDSTATS
3423 /*
3424 * Track our maximum slice length, if the CPU's load is at
3425 * least twice that of our own weight (i.e. dont track it
3426 * when there are only lesser-weight tasks around):
3427 */
cb251765 3428 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3429 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3430 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3431 }
3432#endif
4a55b450 3433 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3434}
3435
3f3a4904
PZ
3436static int
3437wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3438
ac53db59
RR
3439/*
3440 * Pick the next process, keeping these things in mind, in this order:
3441 * 1) keep things fair between processes/task groups
3442 * 2) pick the "next" process, since someone really wants that to run
3443 * 3) pick the "last" process, for cache locality
3444 * 4) do not run the "skip" process, if something else is available
3445 */
678d5718
PZ
3446static struct sched_entity *
3447pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3448{
678d5718
PZ
3449 struct sched_entity *left = __pick_first_entity(cfs_rq);
3450 struct sched_entity *se;
3451
3452 /*
3453 * If curr is set we have to see if its left of the leftmost entity
3454 * still in the tree, provided there was anything in the tree at all.
3455 */
3456 if (!left || (curr && entity_before(curr, left)))
3457 left = curr;
3458
3459 se = left; /* ideally we run the leftmost entity */
f4b6755f 3460
ac53db59
RR
3461 /*
3462 * Avoid running the skip buddy, if running something else can
3463 * be done without getting too unfair.
3464 */
3465 if (cfs_rq->skip == se) {
678d5718
PZ
3466 struct sched_entity *second;
3467
3468 if (se == curr) {
3469 second = __pick_first_entity(cfs_rq);
3470 } else {
3471 second = __pick_next_entity(se);
3472 if (!second || (curr && entity_before(curr, second)))
3473 second = curr;
3474 }
3475
ac53db59
RR
3476 if (second && wakeup_preempt_entity(second, left) < 1)
3477 se = second;
3478 }
aa2ac252 3479
f685ceac
MG
3480 /*
3481 * Prefer last buddy, try to return the CPU to a preempted task.
3482 */
3483 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3484 se = cfs_rq->last;
3485
ac53db59
RR
3486 /*
3487 * Someone really wants this to run. If it's not unfair, run it.
3488 */
3489 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3490 se = cfs_rq->next;
3491
f685ceac 3492 clear_buddies(cfs_rq, se);
4793241b
PZ
3493
3494 return se;
aa2ac252
PZ
3495}
3496
678d5718 3497static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3498
ab6cde26 3499static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3500{
3501 /*
3502 * If still on the runqueue then deactivate_task()
3503 * was not called and update_curr() has to be done:
3504 */
3505 if (prev->on_rq)
b7cc0896 3506 update_curr(cfs_rq);
bf0f6f24 3507
d3d9dc33
PT
3508 /* throttle cfs_rqs exceeding runtime */
3509 check_cfs_rq_runtime(cfs_rq);
3510
cb251765
MG
3511 if (schedstat_enabled()) {
3512 check_spread(cfs_rq, prev);
3513 if (prev->on_rq)
3514 update_stats_wait_start(cfs_rq, prev);
3515 }
3516
30cfdcfc 3517 if (prev->on_rq) {
30cfdcfc
DA
3518 /* Put 'current' back into the tree. */
3519 __enqueue_entity(cfs_rq, prev);
9d85f21c 3520 /* in !on_rq case, update occurred at dequeue */
9d89c257 3521 update_load_avg(prev, 0);
30cfdcfc 3522 }
429d43bc 3523 cfs_rq->curr = NULL;
bf0f6f24
IM
3524}
3525
8f4d37ec
PZ
3526static void
3527entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3528{
bf0f6f24 3529 /*
30cfdcfc 3530 * Update run-time statistics of the 'current'.
bf0f6f24 3531 */
30cfdcfc 3532 update_curr(cfs_rq);
bf0f6f24 3533
9d85f21c
PT
3534 /*
3535 * Ensure that runnable average is periodically updated.
3536 */
9d89c257 3537 update_load_avg(curr, 1);
bf0bd948 3538 update_cfs_shares(cfs_rq);
9d85f21c 3539
8f4d37ec
PZ
3540#ifdef CONFIG_SCHED_HRTICK
3541 /*
3542 * queued ticks are scheduled to match the slice, so don't bother
3543 * validating it and just reschedule.
3544 */
983ed7a6 3545 if (queued) {
8875125e 3546 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3547 return;
3548 }
8f4d37ec
PZ
3549 /*
3550 * don't let the period tick interfere with the hrtick preemption
3551 */
3552 if (!sched_feat(DOUBLE_TICK) &&
3553 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3554 return;
3555#endif
3556
2c2efaed 3557 if (cfs_rq->nr_running > 1)
2e09bf55 3558 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3559}
3560
ab84d31e
PT
3561
3562/**************************************************
3563 * CFS bandwidth control machinery
3564 */
3565
3566#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3567
3568#ifdef HAVE_JUMP_LABEL
c5905afb 3569static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3570
3571static inline bool cfs_bandwidth_used(void)
3572{
c5905afb 3573 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3574}
3575
1ee14e6c 3576void cfs_bandwidth_usage_inc(void)
029632fb 3577{
1ee14e6c
BS
3578 static_key_slow_inc(&__cfs_bandwidth_used);
3579}
3580
3581void cfs_bandwidth_usage_dec(void)
3582{
3583 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3584}
3585#else /* HAVE_JUMP_LABEL */
3586static bool cfs_bandwidth_used(void)
3587{
3588 return true;
3589}
3590
1ee14e6c
BS
3591void cfs_bandwidth_usage_inc(void) {}
3592void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3593#endif /* HAVE_JUMP_LABEL */
3594
ab84d31e
PT
3595/*
3596 * default period for cfs group bandwidth.
3597 * default: 0.1s, units: nanoseconds
3598 */
3599static inline u64 default_cfs_period(void)
3600{
3601 return 100000000ULL;
3602}
ec12cb7f
PT
3603
3604static inline u64 sched_cfs_bandwidth_slice(void)
3605{
3606 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3607}
3608
a9cf55b2
PT
3609/*
3610 * Replenish runtime according to assigned quota and update expiration time.
3611 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3612 * additional synchronization around rq->lock.
3613 *
3614 * requires cfs_b->lock
3615 */
029632fb 3616void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3617{
3618 u64 now;
3619
3620 if (cfs_b->quota == RUNTIME_INF)
3621 return;
3622
3623 now = sched_clock_cpu(smp_processor_id());
3624 cfs_b->runtime = cfs_b->quota;
3625 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3626}
3627
029632fb
PZ
3628static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3629{
3630 return &tg->cfs_bandwidth;
3631}
3632
f1b17280
PT
3633/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3634static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3635{
3636 if (unlikely(cfs_rq->throttle_count))
3637 return cfs_rq->throttled_clock_task;
3638
78becc27 3639 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3640}
3641
85dac906
PT
3642/* returns 0 on failure to allocate runtime */
3643static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3644{
3645 struct task_group *tg = cfs_rq->tg;
3646 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3647 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3648
3649 /* note: this is a positive sum as runtime_remaining <= 0 */
3650 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3651
3652 raw_spin_lock(&cfs_b->lock);
3653 if (cfs_b->quota == RUNTIME_INF)
3654 amount = min_amount;
58088ad0 3655 else {
77a4d1a1 3656 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3657
3658 if (cfs_b->runtime > 0) {
3659 amount = min(cfs_b->runtime, min_amount);
3660 cfs_b->runtime -= amount;
3661 cfs_b->idle = 0;
3662 }
ec12cb7f 3663 }
a9cf55b2 3664 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3665 raw_spin_unlock(&cfs_b->lock);
3666
3667 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3668 /*
3669 * we may have advanced our local expiration to account for allowed
3670 * spread between our sched_clock and the one on which runtime was
3671 * issued.
3672 */
3673 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3674 cfs_rq->runtime_expires = expires;
85dac906
PT
3675
3676 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3677}
3678
a9cf55b2
PT
3679/*
3680 * Note: This depends on the synchronization provided by sched_clock and the
3681 * fact that rq->clock snapshots this value.
3682 */
3683static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3684{
a9cf55b2 3685 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3686
3687 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3688 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3689 return;
3690
a9cf55b2
PT
3691 if (cfs_rq->runtime_remaining < 0)
3692 return;
3693
3694 /*
3695 * If the local deadline has passed we have to consider the
3696 * possibility that our sched_clock is 'fast' and the global deadline
3697 * has not truly expired.
3698 *
3699 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3700 * whether the global deadline has advanced. It is valid to compare
3701 * cfs_b->runtime_expires without any locks since we only care about
3702 * exact equality, so a partial write will still work.
a9cf55b2
PT
3703 */
3704
51f2176d 3705 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3706 /* extend local deadline, drift is bounded above by 2 ticks */
3707 cfs_rq->runtime_expires += TICK_NSEC;
3708 } else {
3709 /* global deadline is ahead, expiration has passed */
3710 cfs_rq->runtime_remaining = 0;
3711 }
3712}
3713
9dbdb155 3714static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3715{
3716 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3717 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3718 expire_cfs_rq_runtime(cfs_rq);
3719
3720 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3721 return;
3722
85dac906
PT
3723 /*
3724 * if we're unable to extend our runtime we resched so that the active
3725 * hierarchy can be throttled
3726 */
3727 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3728 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3729}
3730
6c16a6dc 3731static __always_inline
9dbdb155 3732void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3733{
56f570e5 3734 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3735 return;
3736
3737 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3738}
3739
85dac906
PT
3740static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3741{
56f570e5 3742 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3743}
3744
64660c86
PT
3745/* check whether cfs_rq, or any parent, is throttled */
3746static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3747{
56f570e5 3748 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3749}
3750
3751/*
3752 * Ensure that neither of the group entities corresponding to src_cpu or
3753 * dest_cpu are members of a throttled hierarchy when performing group
3754 * load-balance operations.
3755 */
3756static inline int throttled_lb_pair(struct task_group *tg,
3757 int src_cpu, int dest_cpu)
3758{
3759 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3760
3761 src_cfs_rq = tg->cfs_rq[src_cpu];
3762 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3763
3764 return throttled_hierarchy(src_cfs_rq) ||
3765 throttled_hierarchy(dest_cfs_rq);
3766}
3767
3768/* updated child weight may affect parent so we have to do this bottom up */
3769static int tg_unthrottle_up(struct task_group *tg, void *data)
3770{
3771 struct rq *rq = data;
3772 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3773
3774 cfs_rq->throttle_count--;
3775#ifdef CONFIG_SMP
3776 if (!cfs_rq->throttle_count) {
f1b17280 3777 /* adjust cfs_rq_clock_task() */
78becc27 3778 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3779 cfs_rq->throttled_clock_task;
64660c86
PT
3780 }
3781#endif
3782
3783 return 0;
3784}
3785
3786static int tg_throttle_down(struct task_group *tg, void *data)
3787{
3788 struct rq *rq = data;
3789 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3790
82958366
PT
3791 /* group is entering throttled state, stop time */
3792 if (!cfs_rq->throttle_count)
78becc27 3793 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3794 cfs_rq->throttle_count++;
3795
3796 return 0;
3797}
3798
d3d9dc33 3799static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3800{
3801 struct rq *rq = rq_of(cfs_rq);
3802 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3803 struct sched_entity *se;
3804 long task_delta, dequeue = 1;
77a4d1a1 3805 bool empty;
85dac906
PT
3806
3807 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3808
f1b17280 3809 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3810 rcu_read_lock();
3811 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3812 rcu_read_unlock();
85dac906
PT
3813
3814 task_delta = cfs_rq->h_nr_running;
3815 for_each_sched_entity(se) {
3816 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3817 /* throttled entity or throttle-on-deactivate */
3818 if (!se->on_rq)
3819 break;
3820
3821 if (dequeue)
3822 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3823 qcfs_rq->h_nr_running -= task_delta;
3824
3825 if (qcfs_rq->load.weight)
3826 dequeue = 0;
3827 }
3828
3829 if (!se)
72465447 3830 sub_nr_running(rq, task_delta);
85dac906
PT
3831
3832 cfs_rq->throttled = 1;
78becc27 3833 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3834 raw_spin_lock(&cfs_b->lock);
d49db342 3835 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3836
c06f04c7
BS
3837 /*
3838 * Add to the _head_ of the list, so that an already-started
3839 * distribute_cfs_runtime will not see us
3840 */
3841 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3842
3843 /*
3844 * If we're the first throttled task, make sure the bandwidth
3845 * timer is running.
3846 */
3847 if (empty)
3848 start_cfs_bandwidth(cfs_b);
3849
85dac906
PT
3850 raw_spin_unlock(&cfs_b->lock);
3851}
3852
029632fb 3853void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3854{
3855 struct rq *rq = rq_of(cfs_rq);
3856 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3857 struct sched_entity *se;
3858 int enqueue = 1;
3859 long task_delta;
3860
22b958d8 3861 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3862
3863 cfs_rq->throttled = 0;
1a55af2e
FW
3864
3865 update_rq_clock(rq);
3866
671fd9da 3867 raw_spin_lock(&cfs_b->lock);
78becc27 3868 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3869 list_del_rcu(&cfs_rq->throttled_list);
3870 raw_spin_unlock(&cfs_b->lock);
3871
64660c86
PT
3872 /* update hierarchical throttle state */
3873 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3874
671fd9da
PT
3875 if (!cfs_rq->load.weight)
3876 return;
3877
3878 task_delta = cfs_rq->h_nr_running;
3879 for_each_sched_entity(se) {
3880 if (se->on_rq)
3881 enqueue = 0;
3882
3883 cfs_rq = cfs_rq_of(se);
3884 if (enqueue)
3885 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3886 cfs_rq->h_nr_running += task_delta;
3887
3888 if (cfs_rq_throttled(cfs_rq))
3889 break;
3890 }
3891
3892 if (!se)
72465447 3893 add_nr_running(rq, task_delta);
671fd9da
PT
3894
3895 /* determine whether we need to wake up potentially idle cpu */
3896 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3897 resched_curr(rq);
671fd9da
PT
3898}
3899
3900static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3901 u64 remaining, u64 expires)
3902{
3903 struct cfs_rq *cfs_rq;
c06f04c7
BS
3904 u64 runtime;
3905 u64 starting_runtime = remaining;
671fd9da
PT
3906
3907 rcu_read_lock();
3908 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3909 throttled_list) {
3910 struct rq *rq = rq_of(cfs_rq);
3911
3912 raw_spin_lock(&rq->lock);
3913 if (!cfs_rq_throttled(cfs_rq))
3914 goto next;
3915
3916 runtime = -cfs_rq->runtime_remaining + 1;
3917 if (runtime > remaining)
3918 runtime = remaining;
3919 remaining -= runtime;
3920
3921 cfs_rq->runtime_remaining += runtime;
3922 cfs_rq->runtime_expires = expires;
3923
3924 /* we check whether we're throttled above */
3925 if (cfs_rq->runtime_remaining > 0)
3926 unthrottle_cfs_rq(cfs_rq);
3927
3928next:
3929 raw_spin_unlock(&rq->lock);
3930
3931 if (!remaining)
3932 break;
3933 }
3934 rcu_read_unlock();
3935
c06f04c7 3936 return starting_runtime - remaining;
671fd9da
PT
3937}
3938
58088ad0
PT
3939/*
3940 * Responsible for refilling a task_group's bandwidth and unthrottling its
3941 * cfs_rqs as appropriate. If there has been no activity within the last
3942 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3943 * used to track this state.
3944 */
3945static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3946{
671fd9da 3947 u64 runtime, runtime_expires;
51f2176d 3948 int throttled;
58088ad0 3949
58088ad0
PT
3950 /* no need to continue the timer with no bandwidth constraint */
3951 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3952 goto out_deactivate;
58088ad0 3953
671fd9da 3954 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3955 cfs_b->nr_periods += overrun;
671fd9da 3956
51f2176d
BS
3957 /*
3958 * idle depends on !throttled (for the case of a large deficit), and if
3959 * we're going inactive then everything else can be deferred
3960 */
3961 if (cfs_b->idle && !throttled)
3962 goto out_deactivate;
a9cf55b2
PT
3963
3964 __refill_cfs_bandwidth_runtime(cfs_b);
3965
671fd9da
PT
3966 if (!throttled) {
3967 /* mark as potentially idle for the upcoming period */
3968 cfs_b->idle = 1;
51f2176d 3969 return 0;
671fd9da
PT
3970 }
3971
e8da1b18
NR
3972 /* account preceding periods in which throttling occurred */
3973 cfs_b->nr_throttled += overrun;
3974
671fd9da 3975 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3976
3977 /*
c06f04c7
BS
3978 * This check is repeated as we are holding onto the new bandwidth while
3979 * we unthrottle. This can potentially race with an unthrottled group
3980 * trying to acquire new bandwidth from the global pool. This can result
3981 * in us over-using our runtime if it is all used during this loop, but
3982 * only by limited amounts in that extreme case.
671fd9da 3983 */
c06f04c7
BS
3984 while (throttled && cfs_b->runtime > 0) {
3985 runtime = cfs_b->runtime;
671fd9da
PT
3986 raw_spin_unlock(&cfs_b->lock);
3987 /* we can't nest cfs_b->lock while distributing bandwidth */
3988 runtime = distribute_cfs_runtime(cfs_b, runtime,
3989 runtime_expires);
3990 raw_spin_lock(&cfs_b->lock);
3991
3992 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3993
3994 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3995 }
58088ad0 3996
671fd9da
PT
3997 /*
3998 * While we are ensured activity in the period following an
3999 * unthrottle, this also covers the case in which the new bandwidth is
4000 * insufficient to cover the existing bandwidth deficit. (Forcing the
4001 * timer to remain active while there are any throttled entities.)
4002 */
4003 cfs_b->idle = 0;
58088ad0 4004
51f2176d
BS
4005 return 0;
4006
4007out_deactivate:
51f2176d 4008 return 1;
58088ad0 4009}
d3d9dc33 4010
d8b4986d
PT
4011/* a cfs_rq won't donate quota below this amount */
4012static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4013/* minimum remaining period time to redistribute slack quota */
4014static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4015/* how long we wait to gather additional slack before distributing */
4016static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4017
db06e78c
BS
4018/*
4019 * Are we near the end of the current quota period?
4020 *
4021 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4022 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4023 * migrate_hrtimers, base is never cleared, so we are fine.
4024 */
d8b4986d
PT
4025static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4026{
4027 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4028 u64 remaining;
4029
4030 /* if the call-back is running a quota refresh is already occurring */
4031 if (hrtimer_callback_running(refresh_timer))
4032 return 1;
4033
4034 /* is a quota refresh about to occur? */
4035 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4036 if (remaining < min_expire)
4037 return 1;
4038
4039 return 0;
4040}
4041
4042static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4043{
4044 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4045
4046 /* if there's a quota refresh soon don't bother with slack */
4047 if (runtime_refresh_within(cfs_b, min_left))
4048 return;
4049
4cfafd30
PZ
4050 hrtimer_start(&cfs_b->slack_timer,
4051 ns_to_ktime(cfs_bandwidth_slack_period),
4052 HRTIMER_MODE_REL);
d8b4986d
PT
4053}
4054
4055/* we know any runtime found here is valid as update_curr() precedes return */
4056static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4057{
4058 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4059 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4060
4061 if (slack_runtime <= 0)
4062 return;
4063
4064 raw_spin_lock(&cfs_b->lock);
4065 if (cfs_b->quota != RUNTIME_INF &&
4066 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4067 cfs_b->runtime += slack_runtime;
4068
4069 /* we are under rq->lock, defer unthrottling using a timer */
4070 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4071 !list_empty(&cfs_b->throttled_cfs_rq))
4072 start_cfs_slack_bandwidth(cfs_b);
4073 }
4074 raw_spin_unlock(&cfs_b->lock);
4075
4076 /* even if it's not valid for return we don't want to try again */
4077 cfs_rq->runtime_remaining -= slack_runtime;
4078}
4079
4080static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4081{
56f570e5
PT
4082 if (!cfs_bandwidth_used())
4083 return;
4084
fccfdc6f 4085 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4086 return;
4087
4088 __return_cfs_rq_runtime(cfs_rq);
4089}
4090
4091/*
4092 * This is done with a timer (instead of inline with bandwidth return) since
4093 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4094 */
4095static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4096{
4097 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4098 u64 expires;
4099
4100 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4101 raw_spin_lock(&cfs_b->lock);
4102 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4103 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4104 return;
db06e78c 4105 }
d8b4986d 4106
c06f04c7 4107 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4108 runtime = cfs_b->runtime;
c06f04c7 4109
d8b4986d
PT
4110 expires = cfs_b->runtime_expires;
4111 raw_spin_unlock(&cfs_b->lock);
4112
4113 if (!runtime)
4114 return;
4115
4116 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4117
4118 raw_spin_lock(&cfs_b->lock);
4119 if (expires == cfs_b->runtime_expires)
c06f04c7 4120 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4121 raw_spin_unlock(&cfs_b->lock);
4122}
4123
d3d9dc33
PT
4124/*
4125 * When a group wakes up we want to make sure that its quota is not already
4126 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4127 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4128 */
4129static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4130{
56f570e5
PT
4131 if (!cfs_bandwidth_used())
4132 return;
4133
d3d9dc33
PT
4134 /* an active group must be handled by the update_curr()->put() path */
4135 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4136 return;
4137
4138 /* ensure the group is not already throttled */
4139 if (cfs_rq_throttled(cfs_rq))
4140 return;
4141
4142 /* update runtime allocation */
4143 account_cfs_rq_runtime(cfs_rq, 0);
4144 if (cfs_rq->runtime_remaining <= 0)
4145 throttle_cfs_rq(cfs_rq);
4146}
4147
4148/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4149static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4150{
56f570e5 4151 if (!cfs_bandwidth_used())
678d5718 4152 return false;
56f570e5 4153
d3d9dc33 4154 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4155 return false;
d3d9dc33
PT
4156
4157 /*
4158 * it's possible for a throttled entity to be forced into a running
4159 * state (e.g. set_curr_task), in this case we're finished.
4160 */
4161 if (cfs_rq_throttled(cfs_rq))
678d5718 4162 return true;
d3d9dc33
PT
4163
4164 throttle_cfs_rq(cfs_rq);
678d5718 4165 return true;
d3d9dc33 4166}
029632fb 4167
029632fb
PZ
4168static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4169{
4170 struct cfs_bandwidth *cfs_b =
4171 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4172
029632fb
PZ
4173 do_sched_cfs_slack_timer(cfs_b);
4174
4175 return HRTIMER_NORESTART;
4176}
4177
4178static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4179{
4180 struct cfs_bandwidth *cfs_b =
4181 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4182 int overrun;
4183 int idle = 0;
4184
51f2176d 4185 raw_spin_lock(&cfs_b->lock);
029632fb 4186 for (;;) {
77a4d1a1 4187 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4188 if (!overrun)
4189 break;
4190
4191 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4192 }
4cfafd30
PZ
4193 if (idle)
4194 cfs_b->period_active = 0;
51f2176d 4195 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4196
4197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4198}
4199
4200void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4201{
4202 raw_spin_lock_init(&cfs_b->lock);
4203 cfs_b->runtime = 0;
4204 cfs_b->quota = RUNTIME_INF;
4205 cfs_b->period = ns_to_ktime(default_cfs_period());
4206
4207 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4208 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4209 cfs_b->period_timer.function = sched_cfs_period_timer;
4210 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4211 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4212}
4213
4214static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4215{
4216 cfs_rq->runtime_enabled = 0;
4217 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4218}
4219
77a4d1a1 4220void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4221{
4cfafd30 4222 lockdep_assert_held(&cfs_b->lock);
029632fb 4223
4cfafd30
PZ
4224 if (!cfs_b->period_active) {
4225 cfs_b->period_active = 1;
4226 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4227 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4228 }
029632fb
PZ
4229}
4230
4231static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4232{
7f1a169b
TH
4233 /* init_cfs_bandwidth() was not called */
4234 if (!cfs_b->throttled_cfs_rq.next)
4235 return;
4236
029632fb
PZ
4237 hrtimer_cancel(&cfs_b->period_timer);
4238 hrtimer_cancel(&cfs_b->slack_timer);
4239}
4240
0e59bdae
KT
4241static void __maybe_unused update_runtime_enabled(struct rq *rq)
4242{
4243 struct cfs_rq *cfs_rq;
4244
4245 for_each_leaf_cfs_rq(rq, cfs_rq) {
4246 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4247
4248 raw_spin_lock(&cfs_b->lock);
4249 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4250 raw_spin_unlock(&cfs_b->lock);
4251 }
4252}
4253
38dc3348 4254static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4255{
4256 struct cfs_rq *cfs_rq;
4257
4258 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4259 if (!cfs_rq->runtime_enabled)
4260 continue;
4261
4262 /*
4263 * clock_task is not advancing so we just need to make sure
4264 * there's some valid quota amount
4265 */
51f2176d 4266 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4267 /*
4268 * Offline rq is schedulable till cpu is completely disabled
4269 * in take_cpu_down(), so we prevent new cfs throttling here.
4270 */
4271 cfs_rq->runtime_enabled = 0;
4272
029632fb
PZ
4273 if (cfs_rq_throttled(cfs_rq))
4274 unthrottle_cfs_rq(cfs_rq);
4275 }
4276}
4277
4278#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4279static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4280{
78becc27 4281 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4282}
4283
9dbdb155 4284static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4285static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4286static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4287static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4288
4289static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4290{
4291 return 0;
4292}
64660c86
PT
4293
4294static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4295{
4296 return 0;
4297}
4298
4299static inline int throttled_lb_pair(struct task_group *tg,
4300 int src_cpu, int dest_cpu)
4301{
4302 return 0;
4303}
029632fb
PZ
4304
4305void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4306
4307#ifdef CONFIG_FAIR_GROUP_SCHED
4308static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4309#endif
4310
029632fb
PZ
4311static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4312{
4313 return NULL;
4314}
4315static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4316static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4317static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4318
4319#endif /* CONFIG_CFS_BANDWIDTH */
4320
bf0f6f24
IM
4321/**************************************************
4322 * CFS operations on tasks:
4323 */
4324
8f4d37ec
PZ
4325#ifdef CONFIG_SCHED_HRTICK
4326static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4327{
8f4d37ec
PZ
4328 struct sched_entity *se = &p->se;
4329 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4330
4331 WARN_ON(task_rq(p) != rq);
4332
b39e66ea 4333 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4334 u64 slice = sched_slice(cfs_rq, se);
4335 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4336 s64 delta = slice - ran;
4337
4338 if (delta < 0) {
4339 if (rq->curr == p)
8875125e 4340 resched_curr(rq);
8f4d37ec
PZ
4341 return;
4342 }
31656519 4343 hrtick_start(rq, delta);
8f4d37ec
PZ
4344 }
4345}
a4c2f00f
PZ
4346
4347/*
4348 * called from enqueue/dequeue and updates the hrtick when the
4349 * current task is from our class and nr_running is low enough
4350 * to matter.
4351 */
4352static void hrtick_update(struct rq *rq)
4353{
4354 struct task_struct *curr = rq->curr;
4355
b39e66ea 4356 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4357 return;
4358
4359 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4360 hrtick_start_fair(rq, curr);
4361}
55e12e5e 4362#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4363static inline void
4364hrtick_start_fair(struct rq *rq, struct task_struct *p)
4365{
4366}
a4c2f00f
PZ
4367
4368static inline void hrtick_update(struct rq *rq)
4369{
4370}
8f4d37ec
PZ
4371#endif
4372
bf0f6f24
IM
4373/*
4374 * The enqueue_task method is called before nr_running is
4375 * increased. Here we update the fair scheduling stats and
4376 * then put the task into the rbtree:
4377 */
ea87bb78 4378static void
371fd7e7 4379enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4380{
4381 struct cfs_rq *cfs_rq;
62fb1851 4382 struct sched_entity *se = &p->se;
bf0f6f24
IM
4383
4384 for_each_sched_entity(se) {
62fb1851 4385 if (se->on_rq)
bf0f6f24
IM
4386 break;
4387 cfs_rq = cfs_rq_of(se);
88ec22d3 4388 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4389
4390 /*
4391 * end evaluation on encountering a throttled cfs_rq
4392 *
4393 * note: in the case of encountering a throttled cfs_rq we will
4394 * post the final h_nr_running increment below.
4395 */
4396 if (cfs_rq_throttled(cfs_rq))
4397 break;
953bfcd1 4398 cfs_rq->h_nr_running++;
85dac906 4399
88ec22d3 4400 flags = ENQUEUE_WAKEUP;
bf0f6f24 4401 }
8f4d37ec 4402
2069dd75 4403 for_each_sched_entity(se) {
0f317143 4404 cfs_rq = cfs_rq_of(se);
953bfcd1 4405 cfs_rq->h_nr_running++;
2069dd75 4406
85dac906
PT
4407 if (cfs_rq_throttled(cfs_rq))
4408 break;
4409
9d89c257 4410 update_load_avg(se, 1);
17bc14b7 4411 update_cfs_shares(cfs_rq);
2069dd75
PZ
4412 }
4413
cd126afe 4414 if (!se)
72465447 4415 add_nr_running(rq, 1);
cd126afe 4416
a4c2f00f 4417 hrtick_update(rq);
bf0f6f24
IM
4418}
4419
2f36825b
VP
4420static void set_next_buddy(struct sched_entity *se);
4421
bf0f6f24
IM
4422/*
4423 * The dequeue_task method is called before nr_running is
4424 * decreased. We remove the task from the rbtree and
4425 * update the fair scheduling stats:
4426 */
371fd7e7 4427static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4428{
4429 struct cfs_rq *cfs_rq;
62fb1851 4430 struct sched_entity *se = &p->se;
2f36825b 4431 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4432
4433 for_each_sched_entity(se) {
4434 cfs_rq = cfs_rq_of(se);
371fd7e7 4435 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4436
4437 /*
4438 * end evaluation on encountering a throttled cfs_rq
4439 *
4440 * note: in the case of encountering a throttled cfs_rq we will
4441 * post the final h_nr_running decrement below.
4442 */
4443 if (cfs_rq_throttled(cfs_rq))
4444 break;
953bfcd1 4445 cfs_rq->h_nr_running--;
2069dd75 4446
bf0f6f24 4447 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4448 if (cfs_rq->load.weight) {
4449 /*
4450 * Bias pick_next to pick a task from this cfs_rq, as
4451 * p is sleeping when it is within its sched_slice.
4452 */
4453 if (task_sleep && parent_entity(se))
4454 set_next_buddy(parent_entity(se));
9598c82d
PT
4455
4456 /* avoid re-evaluating load for this entity */
4457 se = parent_entity(se);
bf0f6f24 4458 break;
2f36825b 4459 }
371fd7e7 4460 flags |= DEQUEUE_SLEEP;
bf0f6f24 4461 }
8f4d37ec 4462
2069dd75 4463 for_each_sched_entity(se) {
0f317143 4464 cfs_rq = cfs_rq_of(se);
953bfcd1 4465 cfs_rq->h_nr_running--;
2069dd75 4466
85dac906
PT
4467 if (cfs_rq_throttled(cfs_rq))
4468 break;
4469
9d89c257 4470 update_load_avg(se, 1);
17bc14b7 4471 update_cfs_shares(cfs_rq);
2069dd75
PZ
4472 }
4473
cd126afe 4474 if (!se)
72465447 4475 sub_nr_running(rq, 1);
cd126afe 4476
a4c2f00f 4477 hrtick_update(rq);
bf0f6f24
IM
4478}
4479
e7693a36 4480#ifdef CONFIG_SMP
3289bdb4
PZ
4481
4482/*
4483 * per rq 'load' arrray crap; XXX kill this.
4484 */
4485
4486/*
d937cdc5 4487 * The exact cpuload calculated at every tick would be:
3289bdb4 4488 *
d937cdc5
PZ
4489 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4490 *
4491 * If a cpu misses updates for n ticks (as it was idle) and update gets
4492 * called on the n+1-th tick when cpu may be busy, then we have:
4493 *
4494 * load_n = (1 - 1/2^i)^n * load_0
4495 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4496 *
4497 * decay_load_missed() below does efficient calculation of
3289bdb4 4498 *
d937cdc5
PZ
4499 * load' = (1 - 1/2^i)^n * load
4500 *
4501 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4502 * This allows us to precompute the above in said factors, thereby allowing the
4503 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4504 * fixed_power_int())
3289bdb4 4505 *
d937cdc5 4506 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4507 */
4508#define DEGRADE_SHIFT 7
d937cdc5
PZ
4509
4510static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4511static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4512 { 0, 0, 0, 0, 0, 0, 0, 0 },
4513 { 64, 32, 8, 0, 0, 0, 0, 0 },
4514 { 96, 72, 40, 12, 1, 0, 0, 0 },
4515 { 112, 98, 75, 43, 15, 1, 0, 0 },
4516 { 120, 112, 98, 76, 45, 16, 2, 0 }
4517};
3289bdb4
PZ
4518
4519/*
4520 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4521 * would be when CPU is idle and so we just decay the old load without
4522 * adding any new load.
4523 */
4524static unsigned long
4525decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4526{
4527 int j = 0;
4528
4529 if (!missed_updates)
4530 return load;
4531
4532 if (missed_updates >= degrade_zero_ticks[idx])
4533 return 0;
4534
4535 if (idx == 1)
4536 return load >> missed_updates;
4537
4538 while (missed_updates) {
4539 if (missed_updates % 2)
4540 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4541
4542 missed_updates >>= 1;
4543 j++;
4544 }
4545 return load;
4546}
4547
59543275
BP
4548/**
4549 * __update_cpu_load - update the rq->cpu_load[] statistics
4550 * @this_rq: The rq to update statistics for
4551 * @this_load: The current load
4552 * @pending_updates: The number of missed updates
4553 * @active: !0 for NOHZ_FULL
4554 *
3289bdb4 4555 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4556 * scheduler tick (TICK_NSEC).
4557 *
4558 * This function computes a decaying average:
4559 *
4560 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4561 *
4562 * Because of NOHZ it might not get called on every tick which gives need for
4563 * the @pending_updates argument.
4564 *
4565 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4566 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4567 * = A * (A * load[i]_n-2 + B) + B
4568 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4569 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4570 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4571 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4572 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4573 *
4574 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4575 * any change in load would have resulted in the tick being turned back on.
4576 *
4577 * For regular NOHZ, this reduces to:
4578 *
4579 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4580 *
4581 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4582 * term. See the @active paramter.
3289bdb4
PZ
4583 */
4584static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
59543275 4585 unsigned long pending_updates, int active)
3289bdb4 4586{
59543275 4587 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
3289bdb4
PZ
4588 int i, scale;
4589
4590 this_rq->nr_load_updates++;
4591
4592 /* Update our load: */
4593 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4594 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4595 unsigned long old_load, new_load;
4596
4597 /* scale is effectively 1 << i now, and >> i divides by scale */
4598
7400d3bb 4599 old_load = this_rq->cpu_load[i];
3289bdb4 4600 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4601 if (tickless_load) {
4602 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4603 /*
4604 * old_load can never be a negative value because a
4605 * decayed tickless_load cannot be greater than the
4606 * original tickless_load.
4607 */
4608 old_load += tickless_load;
4609 }
3289bdb4
PZ
4610 new_load = this_load;
4611 /*
4612 * Round up the averaging division if load is increasing. This
4613 * prevents us from getting stuck on 9 if the load is 10, for
4614 * example.
4615 */
4616 if (new_load > old_load)
4617 new_load += scale - 1;
4618
4619 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4620 }
4621
4622 sched_avg_update(this_rq);
4623}
4624
7ea241af
YD
4625/* Used instead of source_load when we know the type == 0 */
4626static unsigned long weighted_cpuload(const int cpu)
4627{
4628 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4629}
4630
3289bdb4 4631#ifdef CONFIG_NO_HZ_COMMON
be68a682
FW
4632static void __update_cpu_load_nohz(struct rq *this_rq,
4633 unsigned long curr_jiffies,
4634 unsigned long load,
4635 int active)
4636{
4637 unsigned long pending_updates;
4638
4639 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4640 if (pending_updates) {
4641 this_rq->last_load_update_tick = curr_jiffies;
4642 /*
4643 * In the regular NOHZ case, we were idle, this means load 0.
4644 * In the NOHZ_FULL case, we were non-idle, we should consider
4645 * its weighted load.
4646 */
4647 __update_cpu_load(this_rq, load, pending_updates, active);
4648 }
4649}
4650
3289bdb4
PZ
4651/*
4652 * There is no sane way to deal with nohz on smp when using jiffies because the
4653 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4654 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4655 *
4656 * Therefore we cannot use the delta approach from the regular tick since that
4657 * would seriously skew the load calculation. However we'll make do for those
4658 * updates happening while idle (nohz_idle_balance) or coming out of idle
4659 * (tick_nohz_idle_exit).
4660 *
4661 * This means we might still be one tick off for nohz periods.
4662 */
4663
4664/*
4665 * Called from nohz_idle_balance() to update the load ratings before doing the
4666 * idle balance.
4667 */
be68a682 4668static void update_cpu_load_idle(struct rq *this_rq)
3289bdb4 4669{
3289bdb4
PZ
4670 /*
4671 * bail if there's load or we're actually up-to-date.
4672 */
be68a682 4673 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4674 return;
4675
be68a682 4676 __update_cpu_load_nohz(this_rq, READ_ONCE(jiffies), 0, 0);
3289bdb4
PZ
4677}
4678
4679/*
4680 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4681 */
525705d1 4682void update_cpu_load_nohz(int active)
3289bdb4
PZ
4683{
4684 struct rq *this_rq = this_rq();
316c1608 4685 unsigned long curr_jiffies = READ_ONCE(jiffies);
525705d1 4686 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
3289bdb4
PZ
4687
4688 if (curr_jiffies == this_rq->last_load_update_tick)
4689 return;
4690
4691 raw_spin_lock(&this_rq->lock);
be68a682 4692 __update_cpu_load_nohz(this_rq, curr_jiffies, load, active);
3289bdb4
PZ
4693 raw_spin_unlock(&this_rq->lock);
4694}
4695#endif /* CONFIG_NO_HZ */
4696
4697/*
4698 * Called from scheduler_tick()
4699 */
4700void update_cpu_load_active(struct rq *this_rq)
4701{
7ea241af 4702 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4703 /*
be68a682 4704 * See the mess around update_cpu_load_idle() / update_cpu_load_nohz().
3289bdb4
PZ
4705 */
4706 this_rq->last_load_update_tick = jiffies;
59543275 4707 __update_cpu_load(this_rq, load, 1, 1);
3289bdb4
PZ
4708}
4709
029632fb
PZ
4710/*
4711 * Return a low guess at the load of a migration-source cpu weighted
4712 * according to the scheduling class and "nice" value.
4713 *
4714 * We want to under-estimate the load of migration sources, to
4715 * balance conservatively.
4716 */
4717static unsigned long source_load(int cpu, int type)
4718{
4719 struct rq *rq = cpu_rq(cpu);
4720 unsigned long total = weighted_cpuload(cpu);
4721
4722 if (type == 0 || !sched_feat(LB_BIAS))
4723 return total;
4724
4725 return min(rq->cpu_load[type-1], total);
4726}
4727
4728/*
4729 * Return a high guess at the load of a migration-target cpu weighted
4730 * according to the scheduling class and "nice" value.
4731 */
4732static unsigned long target_load(int cpu, int type)
4733{
4734 struct rq *rq = cpu_rq(cpu);
4735 unsigned long total = weighted_cpuload(cpu);
4736
4737 if (type == 0 || !sched_feat(LB_BIAS))
4738 return total;
4739
4740 return max(rq->cpu_load[type-1], total);
4741}
4742
ced549fa 4743static unsigned long capacity_of(int cpu)
029632fb 4744{
ced549fa 4745 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4746}
4747
ca6d75e6
VG
4748static unsigned long capacity_orig_of(int cpu)
4749{
4750 return cpu_rq(cpu)->cpu_capacity_orig;
4751}
4752
029632fb
PZ
4753static unsigned long cpu_avg_load_per_task(int cpu)
4754{
4755 struct rq *rq = cpu_rq(cpu);
316c1608 4756 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4757 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4758
4759 if (nr_running)
b92486cb 4760 return load_avg / nr_running;
029632fb
PZ
4761
4762 return 0;
4763}
4764
62470419
MW
4765static void record_wakee(struct task_struct *p)
4766{
4767 /*
4768 * Rough decay (wiping) for cost saving, don't worry
4769 * about the boundary, really active task won't care
4770 * about the loss.
4771 */
2538d960 4772 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4773 current->wakee_flips >>= 1;
62470419
MW
4774 current->wakee_flip_decay_ts = jiffies;
4775 }
4776
4777 if (current->last_wakee != p) {
4778 current->last_wakee = p;
4779 current->wakee_flips++;
4780 }
4781}
098fb9db 4782
74f8e4b2 4783static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4784{
4785 struct sched_entity *se = &p->se;
4786 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4787 u64 min_vruntime;
4788
4789#ifndef CONFIG_64BIT
4790 u64 min_vruntime_copy;
88ec22d3 4791
3fe1698b
PZ
4792 do {
4793 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4794 smp_rmb();
4795 min_vruntime = cfs_rq->min_vruntime;
4796 } while (min_vruntime != min_vruntime_copy);
4797#else
4798 min_vruntime = cfs_rq->min_vruntime;
4799#endif
88ec22d3 4800
3fe1698b 4801 se->vruntime -= min_vruntime;
62470419 4802 record_wakee(p);
88ec22d3
PZ
4803}
4804
bb3469ac 4805#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4806/*
4807 * effective_load() calculates the load change as seen from the root_task_group
4808 *
4809 * Adding load to a group doesn't make a group heavier, but can cause movement
4810 * of group shares between cpus. Assuming the shares were perfectly aligned one
4811 * can calculate the shift in shares.
cf5f0acf
PZ
4812 *
4813 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4814 * on this @cpu and results in a total addition (subtraction) of @wg to the
4815 * total group weight.
4816 *
4817 * Given a runqueue weight distribution (rw_i) we can compute a shares
4818 * distribution (s_i) using:
4819 *
4820 * s_i = rw_i / \Sum rw_j (1)
4821 *
4822 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4823 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4824 * shares distribution (s_i):
4825 *
4826 * rw_i = { 2, 4, 1, 0 }
4827 * s_i = { 2/7, 4/7, 1/7, 0 }
4828 *
4829 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4830 * task used to run on and the CPU the waker is running on), we need to
4831 * compute the effect of waking a task on either CPU and, in case of a sync
4832 * wakeup, compute the effect of the current task going to sleep.
4833 *
4834 * So for a change of @wl to the local @cpu with an overall group weight change
4835 * of @wl we can compute the new shares distribution (s'_i) using:
4836 *
4837 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4838 *
4839 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4840 * differences in waking a task to CPU 0. The additional task changes the
4841 * weight and shares distributions like:
4842 *
4843 * rw'_i = { 3, 4, 1, 0 }
4844 * s'_i = { 3/8, 4/8, 1/8, 0 }
4845 *
4846 * We can then compute the difference in effective weight by using:
4847 *
4848 * dw_i = S * (s'_i - s_i) (3)
4849 *
4850 * Where 'S' is the group weight as seen by its parent.
4851 *
4852 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4853 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4854 * 4/7) times the weight of the group.
f5bfb7d9 4855 */
2069dd75 4856static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4857{
4be9daaa 4858 struct sched_entity *se = tg->se[cpu];
f1d239f7 4859
9722c2da 4860 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4861 return wl;
4862
4be9daaa 4863 for_each_sched_entity(se) {
cf5f0acf 4864 long w, W;
4be9daaa 4865
977dda7c 4866 tg = se->my_q->tg;
bb3469ac 4867
cf5f0acf
PZ
4868 /*
4869 * W = @wg + \Sum rw_j
4870 */
4871 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4872
cf5f0acf
PZ
4873 /*
4874 * w = rw_i + @wl
4875 */
7ea241af 4876 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4877
cf5f0acf
PZ
4878 /*
4879 * wl = S * s'_i; see (2)
4880 */
4881 if (W > 0 && w < W)
32a8df4e 4882 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4883 else
4884 wl = tg->shares;
940959e9 4885
cf5f0acf
PZ
4886 /*
4887 * Per the above, wl is the new se->load.weight value; since
4888 * those are clipped to [MIN_SHARES, ...) do so now. See
4889 * calc_cfs_shares().
4890 */
977dda7c
PT
4891 if (wl < MIN_SHARES)
4892 wl = MIN_SHARES;
cf5f0acf
PZ
4893
4894 /*
4895 * wl = dw_i = S * (s'_i - s_i); see (3)
4896 */
9d89c257 4897 wl -= se->avg.load_avg;
cf5f0acf
PZ
4898
4899 /*
4900 * Recursively apply this logic to all parent groups to compute
4901 * the final effective load change on the root group. Since
4902 * only the @tg group gets extra weight, all parent groups can
4903 * only redistribute existing shares. @wl is the shift in shares
4904 * resulting from this level per the above.
4905 */
4be9daaa 4906 wg = 0;
4be9daaa 4907 }
bb3469ac 4908
4be9daaa 4909 return wl;
bb3469ac
PZ
4910}
4911#else
4be9daaa 4912
58d081b5 4913static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4914{
83378269 4915 return wl;
bb3469ac 4916}
4be9daaa 4917
bb3469ac
PZ
4918#endif
4919
63b0e9ed
MG
4920/*
4921 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4922 * A waker of many should wake a different task than the one last awakened
4923 * at a frequency roughly N times higher than one of its wakees. In order
4924 * to determine whether we should let the load spread vs consolodating to
4925 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4926 * partner, and a factor of lls_size higher frequency in the other. With
4927 * both conditions met, we can be relatively sure that the relationship is
4928 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4929 * being client/server, worker/dispatcher, interrupt source or whatever is
4930 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4931 */
62470419
MW
4932static int wake_wide(struct task_struct *p)
4933{
63b0e9ed
MG
4934 unsigned int master = current->wakee_flips;
4935 unsigned int slave = p->wakee_flips;
7d9ffa89 4936 int factor = this_cpu_read(sd_llc_size);
62470419 4937
63b0e9ed
MG
4938 if (master < slave)
4939 swap(master, slave);
4940 if (slave < factor || master < slave * factor)
4941 return 0;
4942 return 1;
62470419
MW
4943}
4944
c88d5910 4945static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4946{
e37b6a7b 4947 s64 this_load, load;
bd61c98f 4948 s64 this_eff_load, prev_eff_load;
c88d5910 4949 int idx, this_cpu, prev_cpu;
c88d5910 4950 struct task_group *tg;
83378269 4951 unsigned long weight;
b3137bc8 4952 int balanced;
098fb9db 4953
c88d5910
PZ
4954 idx = sd->wake_idx;
4955 this_cpu = smp_processor_id();
4956 prev_cpu = task_cpu(p);
4957 load = source_load(prev_cpu, idx);
4958 this_load = target_load(this_cpu, idx);
098fb9db 4959
b3137bc8
MG
4960 /*
4961 * If sync wakeup then subtract the (maximum possible)
4962 * effect of the currently running task from the load
4963 * of the current CPU:
4964 */
83378269
PZ
4965 if (sync) {
4966 tg = task_group(current);
9d89c257 4967 weight = current->se.avg.load_avg;
83378269 4968
c88d5910 4969 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4970 load += effective_load(tg, prev_cpu, 0, -weight);
4971 }
b3137bc8 4972
83378269 4973 tg = task_group(p);
9d89c257 4974 weight = p->se.avg.load_avg;
b3137bc8 4975
71a29aa7
PZ
4976 /*
4977 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4978 * due to the sync cause above having dropped this_load to 0, we'll
4979 * always have an imbalance, but there's really nothing you can do
4980 * about that, so that's good too.
71a29aa7
PZ
4981 *
4982 * Otherwise check if either cpus are near enough in load to allow this
4983 * task to be woken on this_cpu.
4984 */
bd61c98f
VG
4985 this_eff_load = 100;
4986 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4987
bd61c98f
VG
4988 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4989 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4990
bd61c98f 4991 if (this_load > 0) {
e51fd5e2
PZ
4992 this_eff_load *= this_load +
4993 effective_load(tg, this_cpu, weight, weight);
4994
e51fd5e2 4995 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4996 }
e51fd5e2 4997
bd61c98f 4998 balanced = this_eff_load <= prev_eff_load;
098fb9db 4999
41acab88 5000 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5001
05bfb65f
VG
5002 if (!balanced)
5003 return 0;
098fb9db 5004
05bfb65f
VG
5005 schedstat_inc(sd, ttwu_move_affine);
5006 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5007
5008 return 1;
098fb9db
IM
5009}
5010
aaee1203
PZ
5011/*
5012 * find_idlest_group finds and returns the least busy CPU group within the
5013 * domain.
5014 */
5015static struct sched_group *
78e7ed53 5016find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5017 int this_cpu, int sd_flag)
e7693a36 5018{
b3bd3de6 5019 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5020 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5021 int load_idx = sd->forkexec_idx;
aaee1203 5022 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5023
c44f2a02
VG
5024 if (sd_flag & SD_BALANCE_WAKE)
5025 load_idx = sd->wake_idx;
5026
aaee1203
PZ
5027 do {
5028 unsigned long load, avg_load;
5029 int local_group;
5030 int i;
e7693a36 5031
aaee1203
PZ
5032 /* Skip over this group if it has no CPUs allowed */
5033 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5034 tsk_cpus_allowed(p)))
aaee1203
PZ
5035 continue;
5036
5037 local_group = cpumask_test_cpu(this_cpu,
5038 sched_group_cpus(group));
5039
5040 /* Tally up the load of all CPUs in the group */
5041 avg_load = 0;
5042
5043 for_each_cpu(i, sched_group_cpus(group)) {
5044 /* Bias balancing toward cpus of our domain */
5045 if (local_group)
5046 load = source_load(i, load_idx);
5047 else
5048 load = target_load(i, load_idx);
5049
5050 avg_load += load;
5051 }
5052
63b2ca30 5053 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5054 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5055
5056 if (local_group) {
5057 this_load = avg_load;
aaee1203
PZ
5058 } else if (avg_load < min_load) {
5059 min_load = avg_load;
5060 idlest = group;
5061 }
5062 } while (group = group->next, group != sd->groups);
5063
5064 if (!idlest || 100*this_load < imbalance*min_load)
5065 return NULL;
5066 return idlest;
5067}
5068
5069/*
5070 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5071 */
5072static int
5073find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5074{
5075 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5076 unsigned int min_exit_latency = UINT_MAX;
5077 u64 latest_idle_timestamp = 0;
5078 int least_loaded_cpu = this_cpu;
5079 int shallowest_idle_cpu = -1;
aaee1203
PZ
5080 int i;
5081
5082 /* Traverse only the allowed CPUs */
fa17b507 5083 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5084 if (idle_cpu(i)) {
5085 struct rq *rq = cpu_rq(i);
5086 struct cpuidle_state *idle = idle_get_state(rq);
5087 if (idle && idle->exit_latency < min_exit_latency) {
5088 /*
5089 * We give priority to a CPU whose idle state
5090 * has the smallest exit latency irrespective
5091 * of any idle timestamp.
5092 */
5093 min_exit_latency = idle->exit_latency;
5094 latest_idle_timestamp = rq->idle_stamp;
5095 shallowest_idle_cpu = i;
5096 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5097 rq->idle_stamp > latest_idle_timestamp) {
5098 /*
5099 * If equal or no active idle state, then
5100 * the most recently idled CPU might have
5101 * a warmer cache.
5102 */
5103 latest_idle_timestamp = rq->idle_stamp;
5104 shallowest_idle_cpu = i;
5105 }
9f96742a 5106 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5107 load = weighted_cpuload(i);
5108 if (load < min_load || (load == min_load && i == this_cpu)) {
5109 min_load = load;
5110 least_loaded_cpu = i;
5111 }
e7693a36
GH
5112 }
5113 }
5114
83a0a96a 5115 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5116}
e7693a36 5117
a50bde51
PZ
5118/*
5119 * Try and locate an idle CPU in the sched_domain.
5120 */
99bd5e2f 5121static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5122{
99bd5e2f 5123 struct sched_domain *sd;
37407ea7 5124 struct sched_group *sg;
e0a79f52 5125 int i = task_cpu(p);
a50bde51 5126
e0a79f52
MG
5127 if (idle_cpu(target))
5128 return target;
99bd5e2f
SS
5129
5130 /*
e0a79f52 5131 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5132 */
e0a79f52
MG
5133 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5134 return i;
a50bde51
PZ
5135
5136 /*
d4335581
MF
5137 * Otherwise, iterate the domains and find an eligible idle cpu.
5138 *
5139 * A completely idle sched group at higher domains is more
5140 * desirable than an idle group at a lower level, because lower
5141 * domains have smaller groups and usually share hardware
5142 * resources which causes tasks to contend on them, e.g. x86
5143 * hyperthread siblings in the lowest domain (SMT) can contend
5144 * on the shared cpu pipeline.
5145 *
5146 * However, while we prefer idle groups at higher domains
5147 * finding an idle cpu at the lowest domain is still better than
5148 * returning 'target', which we've already established, isn't
5149 * idle.
a50bde51 5150 */
518cd623 5151 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5152 for_each_lower_domain(sd) {
37407ea7
LT
5153 sg = sd->groups;
5154 do {
5155 if (!cpumask_intersects(sched_group_cpus(sg),
5156 tsk_cpus_allowed(p)))
5157 goto next;
5158
d4335581 5159 /* Ensure the entire group is idle */
37407ea7 5160 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5161 if (i == target || !idle_cpu(i))
37407ea7
LT
5162 goto next;
5163 }
970e1789 5164
d4335581
MF
5165 /*
5166 * It doesn't matter which cpu we pick, the
5167 * whole group is idle.
5168 */
37407ea7
LT
5169 target = cpumask_first_and(sched_group_cpus(sg),
5170 tsk_cpus_allowed(p));
5171 goto done;
5172next:
5173 sg = sg->next;
5174 } while (sg != sd->groups);
5175 }
5176done:
a50bde51
PZ
5177 return target;
5178}
231678b7 5179
8bb5b00c 5180/*
9e91d61d 5181 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5182 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5183 * compare the utilization with the capacity of the CPU that is available for
5184 * CFS task (ie cpu_capacity).
231678b7
DE
5185 *
5186 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5187 * recent utilization of currently non-runnable tasks on a CPU. It represents
5188 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5189 * capacity_orig is the cpu_capacity available at the highest frequency
5190 * (arch_scale_freq_capacity()).
5191 * The utilization of a CPU converges towards a sum equal to or less than the
5192 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5193 * the running time on this CPU scaled by capacity_curr.
5194 *
5195 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5196 * higher than capacity_orig because of unfortunate rounding in
5197 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5198 * the average stabilizes with the new running time. We need to check that the
5199 * utilization stays within the range of [0..capacity_orig] and cap it if
5200 * necessary. Without utilization capping, a group could be seen as overloaded
5201 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5202 * available capacity. We allow utilization to overshoot capacity_curr (but not
5203 * capacity_orig) as it useful for predicting the capacity required after task
5204 * migrations (scheduler-driven DVFS).
8bb5b00c 5205 */
9e91d61d 5206static int cpu_util(int cpu)
8bb5b00c 5207{
9e91d61d 5208 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5209 unsigned long capacity = capacity_orig_of(cpu);
5210
231678b7 5211 return (util >= capacity) ? capacity : util;
8bb5b00c 5212}
a50bde51 5213
aaee1203 5214/*
de91b9cb
MR
5215 * select_task_rq_fair: Select target runqueue for the waking task in domains
5216 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5217 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5218 *
de91b9cb
MR
5219 * Balances load by selecting the idlest cpu in the idlest group, or under
5220 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5221 *
de91b9cb 5222 * Returns the target cpu number.
aaee1203
PZ
5223 *
5224 * preempt must be disabled.
5225 */
0017d735 5226static int
ac66f547 5227select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5228{
29cd8bae 5229 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5230 int cpu = smp_processor_id();
63b0e9ed 5231 int new_cpu = prev_cpu;
99bd5e2f 5232 int want_affine = 0;
5158f4e4 5233 int sync = wake_flags & WF_SYNC;
c88d5910 5234
a8edd075 5235 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5236 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5237
dce840a0 5238 rcu_read_lock();
aaee1203 5239 for_each_domain(cpu, tmp) {
e4f42888 5240 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5241 break;
e4f42888 5242
fe3bcfe1 5243 /*
99bd5e2f
SS
5244 * If both cpu and prev_cpu are part of this domain,
5245 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5246 */
99bd5e2f
SS
5247 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5248 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5249 affine_sd = tmp;
29cd8bae 5250 break;
f03542a7 5251 }
29cd8bae 5252
f03542a7 5253 if (tmp->flags & sd_flag)
29cd8bae 5254 sd = tmp;
63b0e9ed
MG
5255 else if (!want_affine)
5256 break;
29cd8bae
PZ
5257 }
5258
63b0e9ed
MG
5259 if (affine_sd) {
5260 sd = NULL; /* Prefer wake_affine over balance flags */
5261 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5262 new_cpu = cpu;
8b911acd 5263 }
e7693a36 5264
63b0e9ed
MG
5265 if (!sd) {
5266 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5267 new_cpu = select_idle_sibling(p, new_cpu);
5268
5269 } else while (sd) {
aaee1203 5270 struct sched_group *group;
c88d5910 5271 int weight;
098fb9db 5272
0763a660 5273 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5274 sd = sd->child;
5275 continue;
5276 }
098fb9db 5277
c44f2a02 5278 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5279 if (!group) {
5280 sd = sd->child;
5281 continue;
5282 }
4ae7d5ce 5283
d7c33c49 5284 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5285 if (new_cpu == -1 || new_cpu == cpu) {
5286 /* Now try balancing at a lower domain level of cpu */
5287 sd = sd->child;
5288 continue;
e7693a36 5289 }
aaee1203
PZ
5290
5291 /* Now try balancing at a lower domain level of new_cpu */
5292 cpu = new_cpu;
669c55e9 5293 weight = sd->span_weight;
aaee1203
PZ
5294 sd = NULL;
5295 for_each_domain(cpu, tmp) {
669c55e9 5296 if (weight <= tmp->span_weight)
aaee1203 5297 break;
0763a660 5298 if (tmp->flags & sd_flag)
aaee1203
PZ
5299 sd = tmp;
5300 }
5301 /* while loop will break here if sd == NULL */
e7693a36 5302 }
dce840a0 5303 rcu_read_unlock();
e7693a36 5304
c88d5910 5305 return new_cpu;
e7693a36 5306}
0a74bef8
PT
5307
5308/*
5309 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5310 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5311 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5312 */
5a4fd036 5313static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5314{
aff3e498 5315 /*
9d89c257
YD
5316 * We are supposed to update the task to "current" time, then its up to date
5317 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5318 * what current time is, so simply throw away the out-of-date time. This
5319 * will result in the wakee task is less decayed, but giving the wakee more
5320 * load sounds not bad.
aff3e498 5321 */
9d89c257
YD
5322 remove_entity_load_avg(&p->se);
5323
5324 /* Tell new CPU we are migrated */
5325 p->se.avg.last_update_time = 0;
3944a927
BS
5326
5327 /* We have migrated, no longer consider this task hot */
9d89c257 5328 p->se.exec_start = 0;
0a74bef8 5329}
12695578
YD
5330
5331static void task_dead_fair(struct task_struct *p)
5332{
5333 remove_entity_load_avg(&p->se);
5334}
e7693a36
GH
5335#endif /* CONFIG_SMP */
5336
e52fb7c0
PZ
5337static unsigned long
5338wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5339{
5340 unsigned long gran = sysctl_sched_wakeup_granularity;
5341
5342 /*
e52fb7c0
PZ
5343 * Since its curr running now, convert the gran from real-time
5344 * to virtual-time in his units.
13814d42
MG
5345 *
5346 * By using 'se' instead of 'curr' we penalize light tasks, so
5347 * they get preempted easier. That is, if 'se' < 'curr' then
5348 * the resulting gran will be larger, therefore penalizing the
5349 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5350 * be smaller, again penalizing the lighter task.
5351 *
5352 * This is especially important for buddies when the leftmost
5353 * task is higher priority than the buddy.
0bbd3336 5354 */
f4ad9bd2 5355 return calc_delta_fair(gran, se);
0bbd3336
PZ
5356}
5357
464b7527
PZ
5358/*
5359 * Should 'se' preempt 'curr'.
5360 *
5361 * |s1
5362 * |s2
5363 * |s3
5364 * g
5365 * |<--->|c
5366 *
5367 * w(c, s1) = -1
5368 * w(c, s2) = 0
5369 * w(c, s3) = 1
5370 *
5371 */
5372static int
5373wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5374{
5375 s64 gran, vdiff = curr->vruntime - se->vruntime;
5376
5377 if (vdiff <= 0)
5378 return -1;
5379
e52fb7c0 5380 gran = wakeup_gran(curr, se);
464b7527
PZ
5381 if (vdiff > gran)
5382 return 1;
5383
5384 return 0;
5385}
5386
02479099
PZ
5387static void set_last_buddy(struct sched_entity *se)
5388{
69c80f3e
VP
5389 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5390 return;
5391
5392 for_each_sched_entity(se)
5393 cfs_rq_of(se)->last = se;
02479099
PZ
5394}
5395
5396static void set_next_buddy(struct sched_entity *se)
5397{
69c80f3e
VP
5398 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5399 return;
5400
5401 for_each_sched_entity(se)
5402 cfs_rq_of(se)->next = se;
02479099
PZ
5403}
5404
ac53db59
RR
5405static void set_skip_buddy(struct sched_entity *se)
5406{
69c80f3e
VP
5407 for_each_sched_entity(se)
5408 cfs_rq_of(se)->skip = se;
ac53db59
RR
5409}
5410
bf0f6f24
IM
5411/*
5412 * Preempt the current task with a newly woken task if needed:
5413 */
5a9b86f6 5414static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5415{
5416 struct task_struct *curr = rq->curr;
8651a86c 5417 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5418 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5419 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5420 int next_buddy_marked = 0;
bf0f6f24 5421
4ae7d5ce
IM
5422 if (unlikely(se == pse))
5423 return;
5424
5238cdd3 5425 /*
163122b7 5426 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5427 * unconditionally check_prempt_curr() after an enqueue (which may have
5428 * lead to a throttle). This both saves work and prevents false
5429 * next-buddy nomination below.
5430 */
5431 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5432 return;
5433
2f36825b 5434 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5435 set_next_buddy(pse);
2f36825b
VP
5436 next_buddy_marked = 1;
5437 }
57fdc26d 5438
aec0a514
BR
5439 /*
5440 * We can come here with TIF_NEED_RESCHED already set from new task
5441 * wake up path.
5238cdd3
PT
5442 *
5443 * Note: this also catches the edge-case of curr being in a throttled
5444 * group (e.g. via set_curr_task), since update_curr() (in the
5445 * enqueue of curr) will have resulted in resched being set. This
5446 * prevents us from potentially nominating it as a false LAST_BUDDY
5447 * below.
aec0a514
BR
5448 */
5449 if (test_tsk_need_resched(curr))
5450 return;
5451
a2f5c9ab
DH
5452 /* Idle tasks are by definition preempted by non-idle tasks. */
5453 if (unlikely(curr->policy == SCHED_IDLE) &&
5454 likely(p->policy != SCHED_IDLE))
5455 goto preempt;
5456
91c234b4 5457 /*
a2f5c9ab
DH
5458 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5459 * is driven by the tick):
91c234b4 5460 */
8ed92e51 5461 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5462 return;
bf0f6f24 5463
464b7527 5464 find_matching_se(&se, &pse);
9bbd7374 5465 update_curr(cfs_rq_of(se));
002f128b 5466 BUG_ON(!pse);
2f36825b
VP
5467 if (wakeup_preempt_entity(se, pse) == 1) {
5468 /*
5469 * Bias pick_next to pick the sched entity that is
5470 * triggering this preemption.
5471 */
5472 if (!next_buddy_marked)
5473 set_next_buddy(pse);
3a7e73a2 5474 goto preempt;
2f36825b 5475 }
464b7527 5476
3a7e73a2 5477 return;
a65ac745 5478
3a7e73a2 5479preempt:
8875125e 5480 resched_curr(rq);
3a7e73a2
PZ
5481 /*
5482 * Only set the backward buddy when the current task is still
5483 * on the rq. This can happen when a wakeup gets interleaved
5484 * with schedule on the ->pre_schedule() or idle_balance()
5485 * point, either of which can * drop the rq lock.
5486 *
5487 * Also, during early boot the idle thread is in the fair class,
5488 * for obvious reasons its a bad idea to schedule back to it.
5489 */
5490 if (unlikely(!se->on_rq || curr == rq->idle))
5491 return;
5492
5493 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5494 set_last_buddy(se);
bf0f6f24
IM
5495}
5496
606dba2e
PZ
5497static struct task_struct *
5498pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5499{
5500 struct cfs_rq *cfs_rq = &rq->cfs;
5501 struct sched_entity *se;
678d5718 5502 struct task_struct *p;
37e117c0 5503 int new_tasks;
678d5718 5504
6e83125c 5505again:
678d5718
PZ
5506#ifdef CONFIG_FAIR_GROUP_SCHED
5507 if (!cfs_rq->nr_running)
38033c37 5508 goto idle;
678d5718 5509
3f1d2a31 5510 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5511 goto simple;
5512
5513 /*
5514 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5515 * likely that a next task is from the same cgroup as the current.
5516 *
5517 * Therefore attempt to avoid putting and setting the entire cgroup
5518 * hierarchy, only change the part that actually changes.
5519 */
5520
5521 do {
5522 struct sched_entity *curr = cfs_rq->curr;
5523
5524 /*
5525 * Since we got here without doing put_prev_entity() we also
5526 * have to consider cfs_rq->curr. If it is still a runnable
5527 * entity, update_curr() will update its vruntime, otherwise
5528 * forget we've ever seen it.
5529 */
54d27365
BS
5530 if (curr) {
5531 if (curr->on_rq)
5532 update_curr(cfs_rq);
5533 else
5534 curr = NULL;
678d5718 5535
54d27365
BS
5536 /*
5537 * This call to check_cfs_rq_runtime() will do the
5538 * throttle and dequeue its entity in the parent(s).
5539 * Therefore the 'simple' nr_running test will indeed
5540 * be correct.
5541 */
5542 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5543 goto simple;
5544 }
678d5718
PZ
5545
5546 se = pick_next_entity(cfs_rq, curr);
5547 cfs_rq = group_cfs_rq(se);
5548 } while (cfs_rq);
5549
5550 p = task_of(se);
5551
5552 /*
5553 * Since we haven't yet done put_prev_entity and if the selected task
5554 * is a different task than we started out with, try and touch the
5555 * least amount of cfs_rqs.
5556 */
5557 if (prev != p) {
5558 struct sched_entity *pse = &prev->se;
5559
5560 while (!(cfs_rq = is_same_group(se, pse))) {
5561 int se_depth = se->depth;
5562 int pse_depth = pse->depth;
5563
5564 if (se_depth <= pse_depth) {
5565 put_prev_entity(cfs_rq_of(pse), pse);
5566 pse = parent_entity(pse);
5567 }
5568 if (se_depth >= pse_depth) {
5569 set_next_entity(cfs_rq_of(se), se);
5570 se = parent_entity(se);
5571 }
5572 }
5573
5574 put_prev_entity(cfs_rq, pse);
5575 set_next_entity(cfs_rq, se);
5576 }
5577
5578 if (hrtick_enabled(rq))
5579 hrtick_start_fair(rq, p);
5580
5581 return p;
5582simple:
5583 cfs_rq = &rq->cfs;
5584#endif
bf0f6f24 5585
36ace27e 5586 if (!cfs_rq->nr_running)
38033c37 5587 goto idle;
bf0f6f24 5588
3f1d2a31 5589 put_prev_task(rq, prev);
606dba2e 5590
bf0f6f24 5591 do {
678d5718 5592 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5593 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5594 cfs_rq = group_cfs_rq(se);
5595 } while (cfs_rq);
5596
8f4d37ec 5597 p = task_of(se);
678d5718 5598
b39e66ea
MG
5599 if (hrtick_enabled(rq))
5600 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5601
5602 return p;
38033c37
PZ
5603
5604idle:
cbce1a68
PZ
5605 /*
5606 * This is OK, because current is on_cpu, which avoids it being picked
5607 * for load-balance and preemption/IRQs are still disabled avoiding
5608 * further scheduler activity on it and we're being very careful to
5609 * re-start the picking loop.
5610 */
5611 lockdep_unpin_lock(&rq->lock);
e4aa358b 5612 new_tasks = idle_balance(rq);
cbce1a68 5613 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5614 /*
5615 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5616 * possible for any higher priority task to appear. In that case we
5617 * must re-start the pick_next_entity() loop.
5618 */
e4aa358b 5619 if (new_tasks < 0)
37e117c0
PZ
5620 return RETRY_TASK;
5621
e4aa358b 5622 if (new_tasks > 0)
38033c37 5623 goto again;
38033c37
PZ
5624
5625 return NULL;
bf0f6f24
IM
5626}
5627
5628/*
5629 * Account for a descheduled task:
5630 */
31ee529c 5631static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5632{
5633 struct sched_entity *se = &prev->se;
5634 struct cfs_rq *cfs_rq;
5635
5636 for_each_sched_entity(se) {
5637 cfs_rq = cfs_rq_of(se);
ab6cde26 5638 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5639 }
5640}
5641
ac53db59
RR
5642/*
5643 * sched_yield() is very simple
5644 *
5645 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5646 */
5647static void yield_task_fair(struct rq *rq)
5648{
5649 struct task_struct *curr = rq->curr;
5650 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5651 struct sched_entity *se = &curr->se;
5652
5653 /*
5654 * Are we the only task in the tree?
5655 */
5656 if (unlikely(rq->nr_running == 1))
5657 return;
5658
5659 clear_buddies(cfs_rq, se);
5660
5661 if (curr->policy != SCHED_BATCH) {
5662 update_rq_clock(rq);
5663 /*
5664 * Update run-time statistics of the 'current'.
5665 */
5666 update_curr(cfs_rq);
916671c0
MG
5667 /*
5668 * Tell update_rq_clock() that we've just updated,
5669 * so we don't do microscopic update in schedule()
5670 * and double the fastpath cost.
5671 */
9edfbfed 5672 rq_clock_skip_update(rq, true);
ac53db59
RR
5673 }
5674
5675 set_skip_buddy(se);
5676}
5677
d95f4122
MG
5678static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5679{
5680 struct sched_entity *se = &p->se;
5681
5238cdd3
PT
5682 /* throttled hierarchies are not runnable */
5683 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5684 return false;
5685
5686 /* Tell the scheduler that we'd really like pse to run next. */
5687 set_next_buddy(se);
5688
d95f4122
MG
5689 yield_task_fair(rq);
5690
5691 return true;
5692}
5693
681f3e68 5694#ifdef CONFIG_SMP
bf0f6f24 5695/**************************************************
e9c84cb8
PZ
5696 * Fair scheduling class load-balancing methods.
5697 *
5698 * BASICS
5699 *
5700 * The purpose of load-balancing is to achieve the same basic fairness the
5701 * per-cpu scheduler provides, namely provide a proportional amount of compute
5702 * time to each task. This is expressed in the following equation:
5703 *
5704 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5705 *
5706 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5707 * W_i,0 is defined as:
5708 *
5709 * W_i,0 = \Sum_j w_i,j (2)
5710 *
5711 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5712 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5713 *
5714 * The weight average is an exponential decay average of the instantaneous
5715 * weight:
5716 *
5717 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5718 *
ced549fa 5719 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5720 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5721 * can also include other factors [XXX].
5722 *
5723 * To achieve this balance we define a measure of imbalance which follows
5724 * directly from (1):
5725 *
ced549fa 5726 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5727 *
5728 * We them move tasks around to minimize the imbalance. In the continuous
5729 * function space it is obvious this converges, in the discrete case we get
5730 * a few fun cases generally called infeasible weight scenarios.
5731 *
5732 * [XXX expand on:
5733 * - infeasible weights;
5734 * - local vs global optima in the discrete case. ]
5735 *
5736 *
5737 * SCHED DOMAINS
5738 *
5739 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5740 * for all i,j solution, we create a tree of cpus that follows the hardware
5741 * topology where each level pairs two lower groups (or better). This results
5742 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5743 * tree to only the first of the previous level and we decrease the frequency
5744 * of load-balance at each level inv. proportional to the number of cpus in
5745 * the groups.
5746 *
5747 * This yields:
5748 *
5749 * log_2 n 1 n
5750 * \Sum { --- * --- * 2^i } = O(n) (5)
5751 * i = 0 2^i 2^i
5752 * `- size of each group
5753 * | | `- number of cpus doing load-balance
5754 * | `- freq
5755 * `- sum over all levels
5756 *
5757 * Coupled with a limit on how many tasks we can migrate every balance pass,
5758 * this makes (5) the runtime complexity of the balancer.
5759 *
5760 * An important property here is that each CPU is still (indirectly) connected
5761 * to every other cpu in at most O(log n) steps:
5762 *
5763 * The adjacency matrix of the resulting graph is given by:
5764 *
5765 * log_2 n
5766 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5767 * k = 0
5768 *
5769 * And you'll find that:
5770 *
5771 * A^(log_2 n)_i,j != 0 for all i,j (7)
5772 *
5773 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5774 * The task movement gives a factor of O(m), giving a convergence complexity
5775 * of:
5776 *
5777 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5778 *
5779 *
5780 * WORK CONSERVING
5781 *
5782 * In order to avoid CPUs going idle while there's still work to do, new idle
5783 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5784 * tree itself instead of relying on other CPUs to bring it work.
5785 *
5786 * This adds some complexity to both (5) and (8) but it reduces the total idle
5787 * time.
5788 *
5789 * [XXX more?]
5790 *
5791 *
5792 * CGROUPS
5793 *
5794 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5795 *
5796 * s_k,i
5797 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5798 * S_k
5799 *
5800 * Where
5801 *
5802 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5803 *
5804 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5805 *
5806 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5807 * property.
5808 *
5809 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5810 * rewrite all of this once again.]
5811 */
bf0f6f24 5812
ed387b78
HS
5813static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5814
0ec8aa00
PZ
5815enum fbq_type { regular, remote, all };
5816
ddcdf6e7 5817#define LBF_ALL_PINNED 0x01
367456c7 5818#define LBF_NEED_BREAK 0x02
6263322c
PZ
5819#define LBF_DST_PINNED 0x04
5820#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5821
5822struct lb_env {
5823 struct sched_domain *sd;
5824
ddcdf6e7 5825 struct rq *src_rq;
85c1e7da 5826 int src_cpu;
ddcdf6e7
PZ
5827
5828 int dst_cpu;
5829 struct rq *dst_rq;
5830
88b8dac0
SV
5831 struct cpumask *dst_grpmask;
5832 int new_dst_cpu;
ddcdf6e7 5833 enum cpu_idle_type idle;
bd939f45 5834 long imbalance;
b9403130
MW
5835 /* The set of CPUs under consideration for load-balancing */
5836 struct cpumask *cpus;
5837
ddcdf6e7 5838 unsigned int flags;
367456c7
PZ
5839
5840 unsigned int loop;
5841 unsigned int loop_break;
5842 unsigned int loop_max;
0ec8aa00
PZ
5843
5844 enum fbq_type fbq_type;
163122b7 5845 struct list_head tasks;
ddcdf6e7
PZ
5846};
5847
029632fb
PZ
5848/*
5849 * Is this task likely cache-hot:
5850 */
5d5e2b1b 5851static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5852{
5853 s64 delta;
5854
e5673f28
KT
5855 lockdep_assert_held(&env->src_rq->lock);
5856
029632fb
PZ
5857 if (p->sched_class != &fair_sched_class)
5858 return 0;
5859
5860 if (unlikely(p->policy == SCHED_IDLE))
5861 return 0;
5862
5863 /*
5864 * Buddy candidates are cache hot:
5865 */
5d5e2b1b 5866 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5867 (&p->se == cfs_rq_of(&p->se)->next ||
5868 &p->se == cfs_rq_of(&p->se)->last))
5869 return 1;
5870
5871 if (sysctl_sched_migration_cost == -1)
5872 return 1;
5873 if (sysctl_sched_migration_cost == 0)
5874 return 0;
5875
5d5e2b1b 5876 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5877
5878 return delta < (s64)sysctl_sched_migration_cost;
5879}
5880
3a7053b3 5881#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5882/*
2a1ed24c
SD
5883 * Returns 1, if task migration degrades locality
5884 * Returns 0, if task migration improves locality i.e migration preferred.
5885 * Returns -1, if task migration is not affected by locality.
c1ceac62 5886 */
2a1ed24c 5887static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5888{
b1ad065e 5889 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5890 unsigned long src_faults, dst_faults;
3a7053b3
MG
5891 int src_nid, dst_nid;
5892
2a595721 5893 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5894 return -1;
5895
c3b9bc5b 5896 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5897 return -1;
7a0f3083
MG
5898
5899 src_nid = cpu_to_node(env->src_cpu);
5900 dst_nid = cpu_to_node(env->dst_cpu);
5901
83e1d2cd 5902 if (src_nid == dst_nid)
2a1ed24c 5903 return -1;
7a0f3083 5904
2a1ed24c
SD
5905 /* Migrating away from the preferred node is always bad. */
5906 if (src_nid == p->numa_preferred_nid) {
5907 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5908 return 1;
5909 else
5910 return -1;
5911 }
b1ad065e 5912
c1ceac62
RR
5913 /* Encourage migration to the preferred node. */
5914 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5915 return 0;
b1ad065e 5916
c1ceac62
RR
5917 if (numa_group) {
5918 src_faults = group_faults(p, src_nid);
5919 dst_faults = group_faults(p, dst_nid);
5920 } else {
5921 src_faults = task_faults(p, src_nid);
5922 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5923 }
5924
c1ceac62 5925 return dst_faults < src_faults;
7a0f3083
MG
5926}
5927
3a7053b3 5928#else
2a1ed24c 5929static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5930 struct lb_env *env)
5931{
2a1ed24c 5932 return -1;
7a0f3083 5933}
3a7053b3
MG
5934#endif
5935
1e3c88bd
PZ
5936/*
5937 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5938 */
5939static
8e45cb54 5940int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5941{
2a1ed24c 5942 int tsk_cache_hot;
e5673f28
KT
5943
5944 lockdep_assert_held(&env->src_rq->lock);
5945
1e3c88bd
PZ
5946 /*
5947 * We do not migrate tasks that are:
d3198084 5948 * 1) throttled_lb_pair, or
1e3c88bd 5949 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5950 * 3) running (obviously), or
5951 * 4) are cache-hot on their current CPU.
1e3c88bd 5952 */
d3198084
JK
5953 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5954 return 0;
5955
ddcdf6e7 5956 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5957 int cpu;
88b8dac0 5958
41acab88 5959 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5960
6263322c
PZ
5961 env->flags |= LBF_SOME_PINNED;
5962
88b8dac0
SV
5963 /*
5964 * Remember if this task can be migrated to any other cpu in
5965 * our sched_group. We may want to revisit it if we couldn't
5966 * meet load balance goals by pulling other tasks on src_cpu.
5967 *
5968 * Also avoid computing new_dst_cpu if we have already computed
5969 * one in current iteration.
5970 */
6263322c 5971 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5972 return 0;
5973
e02e60c1
JK
5974 /* Prevent to re-select dst_cpu via env's cpus */
5975 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5976 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5977 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5978 env->new_dst_cpu = cpu;
5979 break;
5980 }
88b8dac0 5981 }
e02e60c1 5982
1e3c88bd
PZ
5983 return 0;
5984 }
88b8dac0
SV
5985
5986 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5987 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5988
ddcdf6e7 5989 if (task_running(env->src_rq, p)) {
41acab88 5990 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5991 return 0;
5992 }
5993
5994 /*
5995 * Aggressive migration if:
3a7053b3
MG
5996 * 1) destination numa is preferred
5997 * 2) task is cache cold, or
5998 * 3) too many balance attempts have failed.
1e3c88bd 5999 */
2a1ed24c
SD
6000 tsk_cache_hot = migrate_degrades_locality(p, env);
6001 if (tsk_cache_hot == -1)
6002 tsk_cache_hot = task_hot(p, env);
3a7053b3 6003
2a1ed24c 6004 if (tsk_cache_hot <= 0 ||
7a96c231 6005 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6006 if (tsk_cache_hot == 1) {
3a7053b3
MG
6007 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6008 schedstat_inc(p, se.statistics.nr_forced_migrations);
6009 }
1e3c88bd
PZ
6010 return 1;
6011 }
6012
4e2dcb73
ZH
6013 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6014 return 0;
1e3c88bd
PZ
6015}
6016
897c395f 6017/*
163122b7
KT
6018 * detach_task() -- detach the task for the migration specified in env
6019 */
6020static void detach_task(struct task_struct *p, struct lb_env *env)
6021{
6022 lockdep_assert_held(&env->src_rq->lock);
6023
163122b7 6024 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6025 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6026 set_task_cpu(p, env->dst_cpu);
6027}
6028
897c395f 6029/*
e5673f28 6030 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6031 * part of active balancing operations within "domain".
897c395f 6032 *
e5673f28 6033 * Returns a task if successful and NULL otherwise.
897c395f 6034 */
e5673f28 6035static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6036{
6037 struct task_struct *p, *n;
897c395f 6038
e5673f28
KT
6039 lockdep_assert_held(&env->src_rq->lock);
6040
367456c7 6041 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6042 if (!can_migrate_task(p, env))
6043 continue;
897c395f 6044
163122b7 6045 detach_task(p, env);
e5673f28 6046
367456c7 6047 /*
e5673f28 6048 * Right now, this is only the second place where
163122b7 6049 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6050 * so we can safely collect stats here rather than
163122b7 6051 * inside detach_tasks().
367456c7
PZ
6052 */
6053 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6054 return p;
897c395f 6055 }
e5673f28 6056 return NULL;
897c395f
PZ
6057}
6058
eb95308e
PZ
6059static const unsigned int sched_nr_migrate_break = 32;
6060
5d6523eb 6061/*
163122b7
KT
6062 * detach_tasks() -- tries to detach up to imbalance weighted load from
6063 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6064 *
163122b7 6065 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6066 */
163122b7 6067static int detach_tasks(struct lb_env *env)
1e3c88bd 6068{
5d6523eb
PZ
6069 struct list_head *tasks = &env->src_rq->cfs_tasks;
6070 struct task_struct *p;
367456c7 6071 unsigned long load;
163122b7
KT
6072 int detached = 0;
6073
6074 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6075
bd939f45 6076 if (env->imbalance <= 0)
5d6523eb 6077 return 0;
1e3c88bd 6078
5d6523eb 6079 while (!list_empty(tasks)) {
985d3a4c
YD
6080 /*
6081 * We don't want to steal all, otherwise we may be treated likewise,
6082 * which could at worst lead to a livelock crash.
6083 */
6084 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6085 break;
6086
5d6523eb 6087 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6088
367456c7
PZ
6089 env->loop++;
6090 /* We've more or less seen every task there is, call it quits */
5d6523eb 6091 if (env->loop > env->loop_max)
367456c7 6092 break;
5d6523eb
PZ
6093
6094 /* take a breather every nr_migrate tasks */
367456c7 6095 if (env->loop > env->loop_break) {
eb95308e 6096 env->loop_break += sched_nr_migrate_break;
8e45cb54 6097 env->flags |= LBF_NEED_BREAK;
ee00e66f 6098 break;
a195f004 6099 }
1e3c88bd 6100
d3198084 6101 if (!can_migrate_task(p, env))
367456c7
PZ
6102 goto next;
6103
6104 load = task_h_load(p);
5d6523eb 6105
eb95308e 6106 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6107 goto next;
6108
bd939f45 6109 if ((load / 2) > env->imbalance)
367456c7 6110 goto next;
1e3c88bd 6111
163122b7
KT
6112 detach_task(p, env);
6113 list_add(&p->se.group_node, &env->tasks);
6114
6115 detached++;
bd939f45 6116 env->imbalance -= load;
1e3c88bd
PZ
6117
6118#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6119 /*
6120 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6121 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6122 * the critical section.
6123 */
5d6523eb 6124 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6125 break;
1e3c88bd
PZ
6126#endif
6127
ee00e66f
PZ
6128 /*
6129 * We only want to steal up to the prescribed amount of
6130 * weighted load.
6131 */
bd939f45 6132 if (env->imbalance <= 0)
ee00e66f 6133 break;
367456c7
PZ
6134
6135 continue;
6136next:
5d6523eb 6137 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6138 }
5d6523eb 6139
1e3c88bd 6140 /*
163122b7
KT
6141 * Right now, this is one of only two places we collect this stat
6142 * so we can safely collect detach_one_task() stats here rather
6143 * than inside detach_one_task().
1e3c88bd 6144 */
163122b7 6145 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6146
163122b7
KT
6147 return detached;
6148}
6149
6150/*
6151 * attach_task() -- attach the task detached by detach_task() to its new rq.
6152 */
6153static void attach_task(struct rq *rq, struct task_struct *p)
6154{
6155 lockdep_assert_held(&rq->lock);
6156
6157 BUG_ON(task_rq(p) != rq);
163122b7 6158 activate_task(rq, p, 0);
3ea94de1 6159 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6160 check_preempt_curr(rq, p, 0);
6161}
6162
6163/*
6164 * attach_one_task() -- attaches the task returned from detach_one_task() to
6165 * its new rq.
6166 */
6167static void attach_one_task(struct rq *rq, struct task_struct *p)
6168{
6169 raw_spin_lock(&rq->lock);
6170 attach_task(rq, p);
6171 raw_spin_unlock(&rq->lock);
6172}
6173
6174/*
6175 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6176 * new rq.
6177 */
6178static void attach_tasks(struct lb_env *env)
6179{
6180 struct list_head *tasks = &env->tasks;
6181 struct task_struct *p;
6182
6183 raw_spin_lock(&env->dst_rq->lock);
6184
6185 while (!list_empty(tasks)) {
6186 p = list_first_entry(tasks, struct task_struct, se.group_node);
6187 list_del_init(&p->se.group_node);
1e3c88bd 6188
163122b7
KT
6189 attach_task(env->dst_rq, p);
6190 }
6191
6192 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6193}
6194
230059de 6195#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6196static void update_blocked_averages(int cpu)
9e3081ca 6197{
9e3081ca 6198 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6199 struct cfs_rq *cfs_rq;
6200 unsigned long flags;
9e3081ca 6201
48a16753
PT
6202 raw_spin_lock_irqsave(&rq->lock, flags);
6203 update_rq_clock(rq);
9d89c257 6204
9763b67f
PZ
6205 /*
6206 * Iterates the task_group tree in a bottom up fashion, see
6207 * list_add_leaf_cfs_rq() for details.
6208 */
64660c86 6209 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6210 /* throttled entities do not contribute to load */
6211 if (throttled_hierarchy(cfs_rq))
6212 continue;
48a16753 6213
9d89c257
YD
6214 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6215 update_tg_load_avg(cfs_rq, 0);
6216 }
48a16753 6217 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6218}
6219
9763b67f 6220/*
68520796 6221 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6222 * This needs to be done in a top-down fashion because the load of a child
6223 * group is a fraction of its parents load.
6224 */
68520796 6225static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6226{
68520796
VD
6227 struct rq *rq = rq_of(cfs_rq);
6228 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6229 unsigned long now = jiffies;
68520796 6230 unsigned long load;
a35b6466 6231
68520796 6232 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6233 return;
6234
68520796
VD
6235 cfs_rq->h_load_next = NULL;
6236 for_each_sched_entity(se) {
6237 cfs_rq = cfs_rq_of(se);
6238 cfs_rq->h_load_next = se;
6239 if (cfs_rq->last_h_load_update == now)
6240 break;
6241 }
a35b6466 6242
68520796 6243 if (!se) {
7ea241af 6244 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6245 cfs_rq->last_h_load_update = now;
6246 }
6247
6248 while ((se = cfs_rq->h_load_next) != NULL) {
6249 load = cfs_rq->h_load;
7ea241af
YD
6250 load = div64_ul(load * se->avg.load_avg,
6251 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6252 cfs_rq = group_cfs_rq(se);
6253 cfs_rq->h_load = load;
6254 cfs_rq->last_h_load_update = now;
6255 }
9763b67f
PZ
6256}
6257
367456c7 6258static unsigned long task_h_load(struct task_struct *p)
230059de 6259{
367456c7 6260 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6261
68520796 6262 update_cfs_rq_h_load(cfs_rq);
9d89c257 6263 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6264 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6265}
6266#else
48a16753 6267static inline void update_blocked_averages(int cpu)
9e3081ca 6268{
6c1d47c0
VG
6269 struct rq *rq = cpu_rq(cpu);
6270 struct cfs_rq *cfs_rq = &rq->cfs;
6271 unsigned long flags;
6272
6273 raw_spin_lock_irqsave(&rq->lock, flags);
6274 update_rq_clock(rq);
6275 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6276 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6277}
6278
367456c7 6279static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6280{
9d89c257 6281 return p->se.avg.load_avg;
1e3c88bd 6282}
230059de 6283#endif
1e3c88bd 6284
1e3c88bd 6285/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6286
6287enum group_type {
6288 group_other = 0,
6289 group_imbalanced,
6290 group_overloaded,
6291};
6292
1e3c88bd
PZ
6293/*
6294 * sg_lb_stats - stats of a sched_group required for load_balancing
6295 */
6296struct sg_lb_stats {
6297 unsigned long avg_load; /*Avg load across the CPUs of the group */
6298 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6299 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6300 unsigned long load_per_task;
63b2ca30 6301 unsigned long group_capacity;
9e91d61d 6302 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6303 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6304 unsigned int idle_cpus;
6305 unsigned int group_weight;
caeb178c 6306 enum group_type group_type;
ea67821b 6307 int group_no_capacity;
0ec8aa00
PZ
6308#ifdef CONFIG_NUMA_BALANCING
6309 unsigned int nr_numa_running;
6310 unsigned int nr_preferred_running;
6311#endif
1e3c88bd
PZ
6312};
6313
56cf515b
JK
6314/*
6315 * sd_lb_stats - Structure to store the statistics of a sched_domain
6316 * during load balancing.
6317 */
6318struct sd_lb_stats {
6319 struct sched_group *busiest; /* Busiest group in this sd */
6320 struct sched_group *local; /* Local group in this sd */
6321 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6322 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6323 unsigned long avg_load; /* Average load across all groups in sd */
6324
56cf515b 6325 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6326 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6327};
6328
147c5fc2
PZ
6329static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6330{
6331 /*
6332 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6333 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6334 * We must however clear busiest_stat::avg_load because
6335 * update_sd_pick_busiest() reads this before assignment.
6336 */
6337 *sds = (struct sd_lb_stats){
6338 .busiest = NULL,
6339 .local = NULL,
6340 .total_load = 0UL,
63b2ca30 6341 .total_capacity = 0UL,
147c5fc2
PZ
6342 .busiest_stat = {
6343 .avg_load = 0UL,
caeb178c
RR
6344 .sum_nr_running = 0,
6345 .group_type = group_other,
147c5fc2
PZ
6346 },
6347 };
6348}
6349
1e3c88bd
PZ
6350/**
6351 * get_sd_load_idx - Obtain the load index for a given sched domain.
6352 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6353 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6354 *
6355 * Return: The load index.
1e3c88bd
PZ
6356 */
6357static inline int get_sd_load_idx(struct sched_domain *sd,
6358 enum cpu_idle_type idle)
6359{
6360 int load_idx;
6361
6362 switch (idle) {
6363 case CPU_NOT_IDLE:
6364 load_idx = sd->busy_idx;
6365 break;
6366
6367 case CPU_NEWLY_IDLE:
6368 load_idx = sd->newidle_idx;
6369 break;
6370 default:
6371 load_idx = sd->idle_idx;
6372 break;
6373 }
6374
6375 return load_idx;
6376}
6377
ced549fa 6378static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6379{
6380 struct rq *rq = cpu_rq(cpu);
b5b4860d 6381 u64 total, used, age_stamp, avg;
cadefd3d 6382 s64 delta;
1e3c88bd 6383
b654f7de
PZ
6384 /*
6385 * Since we're reading these variables without serialization make sure
6386 * we read them once before doing sanity checks on them.
6387 */
316c1608
JL
6388 age_stamp = READ_ONCE(rq->age_stamp);
6389 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6390 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6391
cadefd3d
PZ
6392 if (unlikely(delta < 0))
6393 delta = 0;
6394
6395 total = sched_avg_period() + delta;
aa483808 6396
b5b4860d 6397 used = div_u64(avg, total);
1e3c88bd 6398
b5b4860d
VG
6399 if (likely(used < SCHED_CAPACITY_SCALE))
6400 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6401
b5b4860d 6402 return 1;
1e3c88bd
PZ
6403}
6404
ced549fa 6405static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6406{
8cd5601c 6407 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6408 struct sched_group *sdg = sd->groups;
6409
ca6d75e6 6410 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6411
ced549fa 6412 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6413 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6414
ced549fa
NP
6415 if (!capacity)
6416 capacity = 1;
1e3c88bd 6417
ced549fa
NP
6418 cpu_rq(cpu)->cpu_capacity = capacity;
6419 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6420}
6421
63b2ca30 6422void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6423{
6424 struct sched_domain *child = sd->child;
6425 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6426 unsigned long capacity;
4ec4412e
VG
6427 unsigned long interval;
6428
6429 interval = msecs_to_jiffies(sd->balance_interval);
6430 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6431 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6432
6433 if (!child) {
ced549fa 6434 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6435 return;
6436 }
6437
dc7ff76e 6438 capacity = 0;
1e3c88bd 6439
74a5ce20
PZ
6440 if (child->flags & SD_OVERLAP) {
6441 /*
6442 * SD_OVERLAP domains cannot assume that child groups
6443 * span the current group.
6444 */
6445
863bffc8 6446 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6447 struct sched_group_capacity *sgc;
9abf24d4 6448 struct rq *rq = cpu_rq(cpu);
863bffc8 6449
9abf24d4 6450 /*
63b2ca30 6451 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6452 * gets here before we've attached the domains to the
6453 * runqueues.
6454 *
ced549fa
NP
6455 * Use capacity_of(), which is set irrespective of domains
6456 * in update_cpu_capacity().
9abf24d4 6457 *
dc7ff76e 6458 * This avoids capacity from being 0 and
9abf24d4 6459 * causing divide-by-zero issues on boot.
9abf24d4
SD
6460 */
6461 if (unlikely(!rq->sd)) {
ced549fa 6462 capacity += capacity_of(cpu);
9abf24d4
SD
6463 continue;
6464 }
863bffc8 6465
63b2ca30 6466 sgc = rq->sd->groups->sgc;
63b2ca30 6467 capacity += sgc->capacity;
863bffc8 6468 }
74a5ce20
PZ
6469 } else {
6470 /*
6471 * !SD_OVERLAP domains can assume that child groups
6472 * span the current group.
6473 */
6474
6475 group = child->groups;
6476 do {
63b2ca30 6477 capacity += group->sgc->capacity;
74a5ce20
PZ
6478 group = group->next;
6479 } while (group != child->groups);
6480 }
1e3c88bd 6481
63b2ca30 6482 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6483}
6484
9d5efe05 6485/*
ea67821b
VG
6486 * Check whether the capacity of the rq has been noticeably reduced by side
6487 * activity. The imbalance_pct is used for the threshold.
6488 * Return true is the capacity is reduced
9d5efe05
SV
6489 */
6490static inline int
ea67821b 6491check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6492{
ea67821b
VG
6493 return ((rq->cpu_capacity * sd->imbalance_pct) <
6494 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6495}
6496
30ce5dab
PZ
6497/*
6498 * Group imbalance indicates (and tries to solve) the problem where balancing
6499 * groups is inadequate due to tsk_cpus_allowed() constraints.
6500 *
6501 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6502 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6503 * Something like:
6504 *
6505 * { 0 1 2 3 } { 4 5 6 7 }
6506 * * * * *
6507 *
6508 * If we were to balance group-wise we'd place two tasks in the first group and
6509 * two tasks in the second group. Clearly this is undesired as it will overload
6510 * cpu 3 and leave one of the cpus in the second group unused.
6511 *
6512 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6513 * by noticing the lower domain failed to reach balance and had difficulty
6514 * moving tasks due to affinity constraints.
30ce5dab
PZ
6515 *
6516 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6517 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6518 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6519 * to create an effective group imbalance.
6520 *
6521 * This is a somewhat tricky proposition since the next run might not find the
6522 * group imbalance and decide the groups need to be balanced again. A most
6523 * subtle and fragile situation.
6524 */
6525
6263322c 6526static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6527{
63b2ca30 6528 return group->sgc->imbalance;
30ce5dab
PZ
6529}
6530
b37d9316 6531/*
ea67821b
VG
6532 * group_has_capacity returns true if the group has spare capacity that could
6533 * be used by some tasks.
6534 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6535 * smaller than the number of CPUs or if the utilization is lower than the
6536 * available capacity for CFS tasks.
ea67821b
VG
6537 * For the latter, we use a threshold to stabilize the state, to take into
6538 * account the variance of the tasks' load and to return true if the available
6539 * capacity in meaningful for the load balancer.
6540 * As an example, an available capacity of 1% can appear but it doesn't make
6541 * any benefit for the load balance.
b37d9316 6542 */
ea67821b
VG
6543static inline bool
6544group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6545{
ea67821b
VG
6546 if (sgs->sum_nr_running < sgs->group_weight)
6547 return true;
c61037e9 6548
ea67821b 6549 if ((sgs->group_capacity * 100) >
9e91d61d 6550 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6551 return true;
b37d9316 6552
ea67821b
VG
6553 return false;
6554}
6555
6556/*
6557 * group_is_overloaded returns true if the group has more tasks than it can
6558 * handle.
6559 * group_is_overloaded is not equals to !group_has_capacity because a group
6560 * with the exact right number of tasks, has no more spare capacity but is not
6561 * overloaded so both group_has_capacity and group_is_overloaded return
6562 * false.
6563 */
6564static inline bool
6565group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6566{
6567 if (sgs->sum_nr_running <= sgs->group_weight)
6568 return false;
b37d9316 6569
ea67821b 6570 if ((sgs->group_capacity * 100) <
9e91d61d 6571 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6572 return true;
b37d9316 6573
ea67821b 6574 return false;
b37d9316
PZ
6575}
6576
79a89f92
LY
6577static inline enum
6578group_type group_classify(struct sched_group *group,
6579 struct sg_lb_stats *sgs)
caeb178c 6580{
ea67821b 6581 if (sgs->group_no_capacity)
caeb178c
RR
6582 return group_overloaded;
6583
6584 if (sg_imbalanced(group))
6585 return group_imbalanced;
6586
6587 return group_other;
6588}
6589
1e3c88bd
PZ
6590/**
6591 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6592 * @env: The load balancing environment.
1e3c88bd 6593 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6594 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6595 * @local_group: Does group contain this_cpu.
1e3c88bd 6596 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6597 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6598 */
bd939f45
PZ
6599static inline void update_sg_lb_stats(struct lb_env *env,
6600 struct sched_group *group, int load_idx,
4486edd1
TC
6601 int local_group, struct sg_lb_stats *sgs,
6602 bool *overload)
1e3c88bd 6603{
30ce5dab 6604 unsigned long load;
a426f99c 6605 int i, nr_running;
1e3c88bd 6606
b72ff13c
PZ
6607 memset(sgs, 0, sizeof(*sgs));
6608
b9403130 6609 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6610 struct rq *rq = cpu_rq(i);
6611
1e3c88bd 6612 /* Bias balancing toward cpus of our domain */
6263322c 6613 if (local_group)
04f733b4 6614 load = target_load(i, load_idx);
6263322c 6615 else
1e3c88bd 6616 load = source_load(i, load_idx);
1e3c88bd
PZ
6617
6618 sgs->group_load += load;
9e91d61d 6619 sgs->group_util += cpu_util(i);
65fdac08 6620 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6621
a426f99c
WL
6622 nr_running = rq->nr_running;
6623 if (nr_running > 1)
4486edd1
TC
6624 *overload = true;
6625
0ec8aa00
PZ
6626#ifdef CONFIG_NUMA_BALANCING
6627 sgs->nr_numa_running += rq->nr_numa_running;
6628 sgs->nr_preferred_running += rq->nr_preferred_running;
6629#endif
1e3c88bd 6630 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6631 /*
6632 * No need to call idle_cpu() if nr_running is not 0
6633 */
6634 if (!nr_running && idle_cpu(i))
aae6d3dd 6635 sgs->idle_cpus++;
1e3c88bd
PZ
6636 }
6637
63b2ca30
NP
6638 /* Adjust by relative CPU capacity of the group */
6639 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6640 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6641
dd5feea1 6642 if (sgs->sum_nr_running)
38d0f770 6643 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6644
aae6d3dd 6645 sgs->group_weight = group->group_weight;
b37d9316 6646
ea67821b 6647 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6648 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6649}
6650
532cb4c4
MN
6651/**
6652 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6653 * @env: The load balancing environment.
532cb4c4
MN
6654 * @sds: sched_domain statistics
6655 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6656 * @sgs: sched_group statistics
532cb4c4
MN
6657 *
6658 * Determine if @sg is a busier group than the previously selected
6659 * busiest group.
e69f6186
YB
6660 *
6661 * Return: %true if @sg is a busier group than the previously selected
6662 * busiest group. %false otherwise.
532cb4c4 6663 */
bd939f45 6664static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6665 struct sd_lb_stats *sds,
6666 struct sched_group *sg,
bd939f45 6667 struct sg_lb_stats *sgs)
532cb4c4 6668{
caeb178c 6669 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6670
caeb178c 6671 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6672 return true;
6673
caeb178c
RR
6674 if (sgs->group_type < busiest->group_type)
6675 return false;
6676
6677 if (sgs->avg_load <= busiest->avg_load)
6678 return false;
6679
6680 /* This is the busiest node in its class. */
6681 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6682 return true;
6683
1f621e02
SD
6684 /* No ASYM_PACKING if target cpu is already busy */
6685 if (env->idle == CPU_NOT_IDLE)
6686 return true;
532cb4c4
MN
6687 /*
6688 * ASYM_PACKING needs to move all the work to the lowest
6689 * numbered CPUs in the group, therefore mark all groups
6690 * higher than ourself as busy.
6691 */
caeb178c 6692 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6693 if (!sds->busiest)
6694 return true;
6695
1f621e02
SD
6696 /* Prefer to move from highest possible cpu's work */
6697 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6698 return true;
6699 }
6700
6701 return false;
6702}
6703
0ec8aa00
PZ
6704#ifdef CONFIG_NUMA_BALANCING
6705static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6706{
6707 if (sgs->sum_nr_running > sgs->nr_numa_running)
6708 return regular;
6709 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6710 return remote;
6711 return all;
6712}
6713
6714static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6715{
6716 if (rq->nr_running > rq->nr_numa_running)
6717 return regular;
6718 if (rq->nr_running > rq->nr_preferred_running)
6719 return remote;
6720 return all;
6721}
6722#else
6723static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6724{
6725 return all;
6726}
6727
6728static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6729{
6730 return regular;
6731}
6732#endif /* CONFIG_NUMA_BALANCING */
6733
1e3c88bd 6734/**
461819ac 6735 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6736 * @env: The load balancing environment.
1e3c88bd
PZ
6737 * @sds: variable to hold the statistics for this sched_domain.
6738 */
0ec8aa00 6739static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6740{
bd939f45
PZ
6741 struct sched_domain *child = env->sd->child;
6742 struct sched_group *sg = env->sd->groups;
56cf515b 6743 struct sg_lb_stats tmp_sgs;
1e3c88bd 6744 int load_idx, prefer_sibling = 0;
4486edd1 6745 bool overload = false;
1e3c88bd
PZ
6746
6747 if (child && child->flags & SD_PREFER_SIBLING)
6748 prefer_sibling = 1;
6749
bd939f45 6750 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6751
6752 do {
56cf515b 6753 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6754 int local_group;
6755
bd939f45 6756 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6757 if (local_group) {
6758 sds->local = sg;
6759 sgs = &sds->local_stat;
b72ff13c
PZ
6760
6761 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6762 time_after_eq(jiffies, sg->sgc->next_update))
6763 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6764 }
1e3c88bd 6765
4486edd1
TC
6766 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6767 &overload);
1e3c88bd 6768
b72ff13c
PZ
6769 if (local_group)
6770 goto next_group;
6771
1e3c88bd
PZ
6772 /*
6773 * In case the child domain prefers tasks go to siblings
ea67821b 6774 * first, lower the sg capacity so that we'll try
75dd321d
NR
6775 * and move all the excess tasks away. We lower the capacity
6776 * of a group only if the local group has the capacity to fit
ea67821b
VG
6777 * these excess tasks. The extra check prevents the case where
6778 * you always pull from the heaviest group when it is already
6779 * under-utilized (possible with a large weight task outweighs
6780 * the tasks on the system).
1e3c88bd 6781 */
b72ff13c 6782 if (prefer_sibling && sds->local &&
ea67821b
VG
6783 group_has_capacity(env, &sds->local_stat) &&
6784 (sgs->sum_nr_running > 1)) {
6785 sgs->group_no_capacity = 1;
79a89f92 6786 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6787 }
1e3c88bd 6788
b72ff13c 6789 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6790 sds->busiest = sg;
56cf515b 6791 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6792 }
6793
b72ff13c
PZ
6794next_group:
6795 /* Now, start updating sd_lb_stats */
6796 sds->total_load += sgs->group_load;
63b2ca30 6797 sds->total_capacity += sgs->group_capacity;
b72ff13c 6798
532cb4c4 6799 sg = sg->next;
bd939f45 6800 } while (sg != env->sd->groups);
0ec8aa00
PZ
6801
6802 if (env->sd->flags & SD_NUMA)
6803 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6804
6805 if (!env->sd->parent) {
6806 /* update overload indicator if we are at root domain */
6807 if (env->dst_rq->rd->overload != overload)
6808 env->dst_rq->rd->overload = overload;
6809 }
6810
532cb4c4
MN
6811}
6812
532cb4c4
MN
6813/**
6814 * check_asym_packing - Check to see if the group is packed into the
6815 * sched doman.
6816 *
6817 * This is primarily intended to used at the sibling level. Some
6818 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6819 * case of POWER7, it can move to lower SMT modes only when higher
6820 * threads are idle. When in lower SMT modes, the threads will
6821 * perform better since they share less core resources. Hence when we
6822 * have idle threads, we want them to be the higher ones.
6823 *
6824 * This packing function is run on idle threads. It checks to see if
6825 * the busiest CPU in this domain (core in the P7 case) has a higher
6826 * CPU number than the packing function is being run on. Here we are
6827 * assuming lower CPU number will be equivalent to lower a SMT thread
6828 * number.
6829 *
e69f6186 6830 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6831 * this CPU. The amount of the imbalance is returned in *imbalance.
6832 *
cd96891d 6833 * @env: The load balancing environment.
532cb4c4 6834 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6835 */
bd939f45 6836static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6837{
6838 int busiest_cpu;
6839
bd939f45 6840 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6841 return 0;
6842
1f621e02
SD
6843 if (env->idle == CPU_NOT_IDLE)
6844 return 0;
6845
532cb4c4
MN
6846 if (!sds->busiest)
6847 return 0;
6848
6849 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6850 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6851 return 0;
6852
bd939f45 6853 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6854 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6855 SCHED_CAPACITY_SCALE);
bd939f45 6856
532cb4c4 6857 return 1;
1e3c88bd
PZ
6858}
6859
6860/**
6861 * fix_small_imbalance - Calculate the minor imbalance that exists
6862 * amongst the groups of a sched_domain, during
6863 * load balancing.
cd96891d 6864 * @env: The load balancing environment.
1e3c88bd 6865 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6866 */
bd939f45
PZ
6867static inline
6868void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6869{
63b2ca30 6870 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6871 unsigned int imbn = 2;
dd5feea1 6872 unsigned long scaled_busy_load_per_task;
56cf515b 6873 struct sg_lb_stats *local, *busiest;
1e3c88bd 6874
56cf515b
JK
6875 local = &sds->local_stat;
6876 busiest = &sds->busiest_stat;
1e3c88bd 6877
56cf515b
JK
6878 if (!local->sum_nr_running)
6879 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6880 else if (busiest->load_per_task > local->load_per_task)
6881 imbn = 1;
dd5feea1 6882
56cf515b 6883 scaled_busy_load_per_task =
ca8ce3d0 6884 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6885 busiest->group_capacity;
56cf515b 6886
3029ede3
VD
6887 if (busiest->avg_load + scaled_busy_load_per_task >=
6888 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6889 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6890 return;
6891 }
6892
6893 /*
6894 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6895 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6896 * moving them.
6897 */
6898
63b2ca30 6899 capa_now += busiest->group_capacity *
56cf515b 6900 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6901 capa_now += local->group_capacity *
56cf515b 6902 min(local->load_per_task, local->avg_load);
ca8ce3d0 6903 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6904
6905 /* Amount of load we'd subtract */
a2cd4260 6906 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6907 capa_move += busiest->group_capacity *
56cf515b 6908 min(busiest->load_per_task,
a2cd4260 6909 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6910 }
1e3c88bd
PZ
6911
6912 /* Amount of load we'd add */
63b2ca30 6913 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6914 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6915 tmp = (busiest->avg_load * busiest->group_capacity) /
6916 local->group_capacity;
56cf515b 6917 } else {
ca8ce3d0 6918 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6919 local->group_capacity;
56cf515b 6920 }
63b2ca30 6921 capa_move += local->group_capacity *
3ae11c90 6922 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6923 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6924
6925 /* Move if we gain throughput */
63b2ca30 6926 if (capa_move > capa_now)
56cf515b 6927 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6928}
6929
6930/**
6931 * calculate_imbalance - Calculate the amount of imbalance present within the
6932 * groups of a given sched_domain during load balance.
bd939f45 6933 * @env: load balance environment
1e3c88bd 6934 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6935 */
bd939f45 6936static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6937{
dd5feea1 6938 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6939 struct sg_lb_stats *local, *busiest;
6940
6941 local = &sds->local_stat;
56cf515b 6942 busiest = &sds->busiest_stat;
dd5feea1 6943
caeb178c 6944 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6945 /*
6946 * In the group_imb case we cannot rely on group-wide averages
6947 * to ensure cpu-load equilibrium, look at wider averages. XXX
6948 */
56cf515b
JK
6949 busiest->load_per_task =
6950 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6951 }
6952
1e3c88bd
PZ
6953 /*
6954 * In the presence of smp nice balancing, certain scenarios can have
6955 * max load less than avg load(as we skip the groups at or below
ced549fa 6956 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6957 */
b1885550
VD
6958 if (busiest->avg_load <= sds->avg_load ||
6959 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6960 env->imbalance = 0;
6961 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6962 }
6963
9a5d9ba6
PZ
6964 /*
6965 * If there aren't any idle cpus, avoid creating some.
6966 */
6967 if (busiest->group_type == group_overloaded &&
6968 local->group_type == group_overloaded) {
ea67821b
VG
6969 load_above_capacity = busiest->sum_nr_running *
6970 SCHED_LOAD_SCALE;
6971 if (load_above_capacity > busiest->group_capacity)
6972 load_above_capacity -= busiest->group_capacity;
6973 else
6974 load_above_capacity = ~0UL;
dd5feea1
SS
6975 }
6976
6977 /*
6978 * We're trying to get all the cpus to the average_load, so we don't
6979 * want to push ourselves above the average load, nor do we wish to
6980 * reduce the max loaded cpu below the average load. At the same time,
6981 * we also don't want to reduce the group load below the group capacity
6982 * (so that we can implement power-savings policies etc). Thus we look
6983 * for the minimum possible imbalance.
dd5feea1 6984 */
30ce5dab 6985 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6986
6987 /* How much load to actually move to equalise the imbalance */
56cf515b 6988 env->imbalance = min(
63b2ca30
NP
6989 max_pull * busiest->group_capacity,
6990 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6991 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6992
6993 /*
6994 * if *imbalance is less than the average load per runnable task
25985edc 6995 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6996 * a think about bumping its value to force at least one task to be
6997 * moved
6998 */
56cf515b 6999 if (env->imbalance < busiest->load_per_task)
bd939f45 7000 return fix_small_imbalance(env, sds);
1e3c88bd 7001}
fab47622 7002
1e3c88bd
PZ
7003/******* find_busiest_group() helpers end here *********************/
7004
7005/**
7006 * find_busiest_group - Returns the busiest group within the sched_domain
7007 * if there is an imbalance. If there isn't an imbalance, and
7008 * the user has opted for power-savings, it returns a group whose
7009 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
7010 * such a group exists.
7011 *
7012 * Also calculates the amount of weighted load which should be moved
7013 * to restore balance.
7014 *
cd96891d 7015 * @env: The load balancing environment.
1e3c88bd 7016 *
e69f6186 7017 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
7018 * - If no imbalance and user has opted for power-savings balance,
7019 * return the least loaded group whose CPUs can be
7020 * put to idle by rebalancing its tasks onto our group.
7021 */
56cf515b 7022static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7023{
56cf515b 7024 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7025 struct sd_lb_stats sds;
7026
147c5fc2 7027 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7028
7029 /*
7030 * Compute the various statistics relavent for load balancing at
7031 * this level.
7032 */
23f0d209 7033 update_sd_lb_stats(env, &sds);
56cf515b
JK
7034 local = &sds.local_stat;
7035 busiest = &sds.busiest_stat;
1e3c88bd 7036
ea67821b 7037 /* ASYM feature bypasses nice load balance check */
1f621e02 7038 if (check_asym_packing(env, &sds))
532cb4c4
MN
7039 return sds.busiest;
7040
cc57aa8f 7041 /* There is no busy sibling group to pull tasks from */
56cf515b 7042 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7043 goto out_balanced;
7044
ca8ce3d0
NP
7045 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7046 / sds.total_capacity;
b0432d8f 7047
866ab43e
PZ
7048 /*
7049 * If the busiest group is imbalanced the below checks don't
30ce5dab 7050 * work because they assume all things are equal, which typically
866ab43e
PZ
7051 * isn't true due to cpus_allowed constraints and the like.
7052 */
caeb178c 7053 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7054 goto force_balance;
7055
cc57aa8f 7056 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7057 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7058 busiest->group_no_capacity)
fab47622
NR
7059 goto force_balance;
7060
cc57aa8f 7061 /*
9c58c79a 7062 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7063 * don't try and pull any tasks.
7064 */
56cf515b 7065 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7066 goto out_balanced;
7067
cc57aa8f
PZ
7068 /*
7069 * Don't pull any tasks if this group is already above the domain
7070 * average load.
7071 */
56cf515b 7072 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7073 goto out_balanced;
7074
bd939f45 7075 if (env->idle == CPU_IDLE) {
aae6d3dd 7076 /*
43f4d666
VG
7077 * This cpu is idle. If the busiest group is not overloaded
7078 * and there is no imbalance between this and busiest group
7079 * wrt idle cpus, it is balanced. The imbalance becomes
7080 * significant if the diff is greater than 1 otherwise we
7081 * might end up to just move the imbalance on another group
aae6d3dd 7082 */
43f4d666
VG
7083 if ((busiest->group_type != group_overloaded) &&
7084 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7085 goto out_balanced;
c186fafe
PZ
7086 } else {
7087 /*
7088 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7089 * imbalance_pct to be conservative.
7090 */
56cf515b
JK
7091 if (100 * busiest->avg_load <=
7092 env->sd->imbalance_pct * local->avg_load)
c186fafe 7093 goto out_balanced;
aae6d3dd 7094 }
1e3c88bd 7095
fab47622 7096force_balance:
1e3c88bd 7097 /* Looks like there is an imbalance. Compute it */
bd939f45 7098 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7099 return sds.busiest;
7100
7101out_balanced:
bd939f45 7102 env->imbalance = 0;
1e3c88bd
PZ
7103 return NULL;
7104}
7105
7106/*
7107 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7108 */
bd939f45 7109static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7110 struct sched_group *group)
1e3c88bd
PZ
7111{
7112 struct rq *busiest = NULL, *rq;
ced549fa 7113 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7114 int i;
7115
6906a408 7116 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7117 unsigned long capacity, wl;
0ec8aa00
PZ
7118 enum fbq_type rt;
7119
7120 rq = cpu_rq(i);
7121 rt = fbq_classify_rq(rq);
1e3c88bd 7122
0ec8aa00
PZ
7123 /*
7124 * We classify groups/runqueues into three groups:
7125 * - regular: there are !numa tasks
7126 * - remote: there are numa tasks that run on the 'wrong' node
7127 * - all: there is no distinction
7128 *
7129 * In order to avoid migrating ideally placed numa tasks,
7130 * ignore those when there's better options.
7131 *
7132 * If we ignore the actual busiest queue to migrate another
7133 * task, the next balance pass can still reduce the busiest
7134 * queue by moving tasks around inside the node.
7135 *
7136 * If we cannot move enough load due to this classification
7137 * the next pass will adjust the group classification and
7138 * allow migration of more tasks.
7139 *
7140 * Both cases only affect the total convergence complexity.
7141 */
7142 if (rt > env->fbq_type)
7143 continue;
7144
ced549fa 7145 capacity = capacity_of(i);
9d5efe05 7146
6e40f5bb 7147 wl = weighted_cpuload(i);
1e3c88bd 7148
6e40f5bb
TG
7149 /*
7150 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7151 * which is not scaled with the cpu capacity.
6e40f5bb 7152 */
ea67821b
VG
7153
7154 if (rq->nr_running == 1 && wl > env->imbalance &&
7155 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7156 continue;
7157
6e40f5bb
TG
7158 /*
7159 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7160 * the weighted_cpuload() scaled with the cpu capacity, so
7161 * that the load can be moved away from the cpu that is
7162 * potentially running at a lower capacity.
95a79b80 7163 *
ced549fa 7164 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7165 * multiplication to rid ourselves of the division works out
ced549fa
NP
7166 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7167 * our previous maximum.
6e40f5bb 7168 */
ced549fa 7169 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7170 busiest_load = wl;
ced549fa 7171 busiest_capacity = capacity;
1e3c88bd
PZ
7172 busiest = rq;
7173 }
7174 }
7175
7176 return busiest;
7177}
7178
7179/*
7180 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7181 * so long as it is large enough.
7182 */
7183#define MAX_PINNED_INTERVAL 512
7184
7185/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7186DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7187
bd939f45 7188static int need_active_balance(struct lb_env *env)
1af3ed3d 7189{
bd939f45
PZ
7190 struct sched_domain *sd = env->sd;
7191
7192 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7193
7194 /*
7195 * ASYM_PACKING needs to force migrate tasks from busy but
7196 * higher numbered CPUs in order to pack all tasks in the
7197 * lowest numbered CPUs.
7198 */
bd939f45 7199 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7200 return 1;
1af3ed3d
PZ
7201 }
7202
1aaf90a4
VG
7203 /*
7204 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7205 * It's worth migrating the task if the src_cpu's capacity is reduced
7206 * because of other sched_class or IRQs if more capacity stays
7207 * available on dst_cpu.
7208 */
7209 if ((env->idle != CPU_NOT_IDLE) &&
7210 (env->src_rq->cfs.h_nr_running == 1)) {
7211 if ((check_cpu_capacity(env->src_rq, sd)) &&
7212 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7213 return 1;
7214 }
7215
1af3ed3d
PZ
7216 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7217}
7218
969c7921
TH
7219static int active_load_balance_cpu_stop(void *data);
7220
23f0d209
JK
7221static int should_we_balance(struct lb_env *env)
7222{
7223 struct sched_group *sg = env->sd->groups;
7224 struct cpumask *sg_cpus, *sg_mask;
7225 int cpu, balance_cpu = -1;
7226
7227 /*
7228 * In the newly idle case, we will allow all the cpu's
7229 * to do the newly idle load balance.
7230 */
7231 if (env->idle == CPU_NEWLY_IDLE)
7232 return 1;
7233
7234 sg_cpus = sched_group_cpus(sg);
7235 sg_mask = sched_group_mask(sg);
7236 /* Try to find first idle cpu */
7237 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7238 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7239 continue;
7240
7241 balance_cpu = cpu;
7242 break;
7243 }
7244
7245 if (balance_cpu == -1)
7246 balance_cpu = group_balance_cpu(sg);
7247
7248 /*
7249 * First idle cpu or the first cpu(busiest) in this sched group
7250 * is eligible for doing load balancing at this and above domains.
7251 */
b0cff9d8 7252 return balance_cpu == env->dst_cpu;
23f0d209
JK
7253}
7254
1e3c88bd
PZ
7255/*
7256 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7257 * tasks if there is an imbalance.
7258 */
7259static int load_balance(int this_cpu, struct rq *this_rq,
7260 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7261 int *continue_balancing)
1e3c88bd 7262{
88b8dac0 7263 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7264 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7265 struct sched_group *group;
1e3c88bd
PZ
7266 struct rq *busiest;
7267 unsigned long flags;
4ba29684 7268 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7269
8e45cb54
PZ
7270 struct lb_env env = {
7271 .sd = sd,
ddcdf6e7
PZ
7272 .dst_cpu = this_cpu,
7273 .dst_rq = this_rq,
88b8dac0 7274 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7275 .idle = idle,
eb95308e 7276 .loop_break = sched_nr_migrate_break,
b9403130 7277 .cpus = cpus,
0ec8aa00 7278 .fbq_type = all,
163122b7 7279 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7280 };
7281
cfc03118
JK
7282 /*
7283 * For NEWLY_IDLE load_balancing, we don't need to consider
7284 * other cpus in our group
7285 */
e02e60c1 7286 if (idle == CPU_NEWLY_IDLE)
cfc03118 7287 env.dst_grpmask = NULL;
cfc03118 7288
1e3c88bd
PZ
7289 cpumask_copy(cpus, cpu_active_mask);
7290
1e3c88bd
PZ
7291 schedstat_inc(sd, lb_count[idle]);
7292
7293redo:
23f0d209
JK
7294 if (!should_we_balance(&env)) {
7295 *continue_balancing = 0;
1e3c88bd 7296 goto out_balanced;
23f0d209 7297 }
1e3c88bd 7298
23f0d209 7299 group = find_busiest_group(&env);
1e3c88bd
PZ
7300 if (!group) {
7301 schedstat_inc(sd, lb_nobusyg[idle]);
7302 goto out_balanced;
7303 }
7304
b9403130 7305 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7306 if (!busiest) {
7307 schedstat_inc(sd, lb_nobusyq[idle]);
7308 goto out_balanced;
7309 }
7310
78feefc5 7311 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7312
bd939f45 7313 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7314
1aaf90a4
VG
7315 env.src_cpu = busiest->cpu;
7316 env.src_rq = busiest;
7317
1e3c88bd
PZ
7318 ld_moved = 0;
7319 if (busiest->nr_running > 1) {
7320 /*
7321 * Attempt to move tasks. If find_busiest_group has found
7322 * an imbalance but busiest->nr_running <= 1, the group is
7323 * still unbalanced. ld_moved simply stays zero, so it is
7324 * correctly treated as an imbalance.
7325 */
8e45cb54 7326 env.flags |= LBF_ALL_PINNED;
c82513e5 7327 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7328
5d6523eb 7329more_balance:
163122b7 7330 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7331
7332 /*
7333 * cur_ld_moved - load moved in current iteration
7334 * ld_moved - cumulative load moved across iterations
7335 */
163122b7 7336 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7337
7338 /*
163122b7
KT
7339 * We've detached some tasks from busiest_rq. Every
7340 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7341 * unlock busiest->lock, and we are able to be sure
7342 * that nobody can manipulate the tasks in parallel.
7343 * See task_rq_lock() family for the details.
1e3c88bd 7344 */
163122b7
KT
7345
7346 raw_spin_unlock(&busiest->lock);
7347
7348 if (cur_ld_moved) {
7349 attach_tasks(&env);
7350 ld_moved += cur_ld_moved;
7351 }
7352
1e3c88bd 7353 local_irq_restore(flags);
88b8dac0 7354
f1cd0858
JK
7355 if (env.flags & LBF_NEED_BREAK) {
7356 env.flags &= ~LBF_NEED_BREAK;
7357 goto more_balance;
7358 }
7359
88b8dac0
SV
7360 /*
7361 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7362 * us and move them to an alternate dst_cpu in our sched_group
7363 * where they can run. The upper limit on how many times we
7364 * iterate on same src_cpu is dependent on number of cpus in our
7365 * sched_group.
7366 *
7367 * This changes load balance semantics a bit on who can move
7368 * load to a given_cpu. In addition to the given_cpu itself
7369 * (or a ilb_cpu acting on its behalf where given_cpu is
7370 * nohz-idle), we now have balance_cpu in a position to move
7371 * load to given_cpu. In rare situations, this may cause
7372 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7373 * _independently_ and at _same_ time to move some load to
7374 * given_cpu) causing exceess load to be moved to given_cpu.
7375 * This however should not happen so much in practice and
7376 * moreover subsequent load balance cycles should correct the
7377 * excess load moved.
7378 */
6263322c 7379 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7380
7aff2e3a
VD
7381 /* Prevent to re-select dst_cpu via env's cpus */
7382 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7383
78feefc5 7384 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7385 env.dst_cpu = env.new_dst_cpu;
6263322c 7386 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7387 env.loop = 0;
7388 env.loop_break = sched_nr_migrate_break;
e02e60c1 7389
88b8dac0
SV
7390 /*
7391 * Go back to "more_balance" rather than "redo" since we
7392 * need to continue with same src_cpu.
7393 */
7394 goto more_balance;
7395 }
1e3c88bd 7396
6263322c
PZ
7397 /*
7398 * We failed to reach balance because of affinity.
7399 */
7400 if (sd_parent) {
63b2ca30 7401 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7402
afdeee05 7403 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7404 *group_imbalance = 1;
6263322c
PZ
7405 }
7406
1e3c88bd 7407 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7408 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7409 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7410 if (!cpumask_empty(cpus)) {
7411 env.loop = 0;
7412 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7413 goto redo;
bbf18b19 7414 }
afdeee05 7415 goto out_all_pinned;
1e3c88bd
PZ
7416 }
7417 }
7418
7419 if (!ld_moved) {
7420 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7421 /*
7422 * Increment the failure counter only on periodic balance.
7423 * We do not want newidle balance, which can be very
7424 * frequent, pollute the failure counter causing
7425 * excessive cache_hot migrations and active balances.
7426 */
7427 if (idle != CPU_NEWLY_IDLE)
7428 sd->nr_balance_failed++;
1e3c88bd 7429
bd939f45 7430 if (need_active_balance(&env)) {
1e3c88bd
PZ
7431 raw_spin_lock_irqsave(&busiest->lock, flags);
7432
969c7921
TH
7433 /* don't kick the active_load_balance_cpu_stop,
7434 * if the curr task on busiest cpu can't be
7435 * moved to this_cpu
1e3c88bd
PZ
7436 */
7437 if (!cpumask_test_cpu(this_cpu,
fa17b507 7438 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7439 raw_spin_unlock_irqrestore(&busiest->lock,
7440 flags);
8e45cb54 7441 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7442 goto out_one_pinned;
7443 }
7444
969c7921
TH
7445 /*
7446 * ->active_balance synchronizes accesses to
7447 * ->active_balance_work. Once set, it's cleared
7448 * only after active load balance is finished.
7449 */
1e3c88bd
PZ
7450 if (!busiest->active_balance) {
7451 busiest->active_balance = 1;
7452 busiest->push_cpu = this_cpu;
7453 active_balance = 1;
7454 }
7455 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7456
bd939f45 7457 if (active_balance) {
969c7921
TH
7458 stop_one_cpu_nowait(cpu_of(busiest),
7459 active_load_balance_cpu_stop, busiest,
7460 &busiest->active_balance_work);
bd939f45 7461 }
1e3c88bd 7462
d02c0711 7463 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7464 sd->nr_balance_failed = sd->cache_nice_tries+1;
7465 }
7466 } else
7467 sd->nr_balance_failed = 0;
7468
7469 if (likely(!active_balance)) {
7470 /* We were unbalanced, so reset the balancing interval */
7471 sd->balance_interval = sd->min_interval;
7472 } else {
7473 /*
7474 * If we've begun active balancing, start to back off. This
7475 * case may not be covered by the all_pinned logic if there
7476 * is only 1 task on the busy runqueue (because we don't call
163122b7 7477 * detach_tasks).
1e3c88bd
PZ
7478 */
7479 if (sd->balance_interval < sd->max_interval)
7480 sd->balance_interval *= 2;
7481 }
7482
1e3c88bd
PZ
7483 goto out;
7484
7485out_balanced:
afdeee05
VG
7486 /*
7487 * We reach balance although we may have faced some affinity
7488 * constraints. Clear the imbalance flag if it was set.
7489 */
7490 if (sd_parent) {
7491 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7492
7493 if (*group_imbalance)
7494 *group_imbalance = 0;
7495 }
7496
7497out_all_pinned:
7498 /*
7499 * We reach balance because all tasks are pinned at this level so
7500 * we can't migrate them. Let the imbalance flag set so parent level
7501 * can try to migrate them.
7502 */
1e3c88bd
PZ
7503 schedstat_inc(sd, lb_balanced[idle]);
7504
7505 sd->nr_balance_failed = 0;
7506
7507out_one_pinned:
7508 /* tune up the balancing interval */
8e45cb54 7509 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7510 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7511 (sd->balance_interval < sd->max_interval))
7512 sd->balance_interval *= 2;
7513
46e49b38 7514 ld_moved = 0;
1e3c88bd 7515out:
1e3c88bd
PZ
7516 return ld_moved;
7517}
7518
52a08ef1
JL
7519static inline unsigned long
7520get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7521{
7522 unsigned long interval = sd->balance_interval;
7523
7524 if (cpu_busy)
7525 interval *= sd->busy_factor;
7526
7527 /* scale ms to jiffies */
7528 interval = msecs_to_jiffies(interval);
7529 interval = clamp(interval, 1UL, max_load_balance_interval);
7530
7531 return interval;
7532}
7533
7534static inline void
7535update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7536{
7537 unsigned long interval, next;
7538
7539 interval = get_sd_balance_interval(sd, cpu_busy);
7540 next = sd->last_balance + interval;
7541
7542 if (time_after(*next_balance, next))
7543 *next_balance = next;
7544}
7545
1e3c88bd
PZ
7546/*
7547 * idle_balance is called by schedule() if this_cpu is about to become
7548 * idle. Attempts to pull tasks from other CPUs.
7549 */
6e83125c 7550static int idle_balance(struct rq *this_rq)
1e3c88bd 7551{
52a08ef1
JL
7552 unsigned long next_balance = jiffies + HZ;
7553 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7554 struct sched_domain *sd;
7555 int pulled_task = 0;
9bd721c5 7556 u64 curr_cost = 0;
1e3c88bd 7557
6e83125c
PZ
7558 /*
7559 * We must set idle_stamp _before_ calling idle_balance(), such that we
7560 * measure the duration of idle_balance() as idle time.
7561 */
7562 this_rq->idle_stamp = rq_clock(this_rq);
7563
4486edd1
TC
7564 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7565 !this_rq->rd->overload) {
52a08ef1
JL
7566 rcu_read_lock();
7567 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7568 if (sd)
7569 update_next_balance(sd, 0, &next_balance);
7570 rcu_read_unlock();
7571
6e83125c 7572 goto out;
52a08ef1 7573 }
1e3c88bd 7574
f492e12e
PZ
7575 raw_spin_unlock(&this_rq->lock);
7576
48a16753 7577 update_blocked_averages(this_cpu);
dce840a0 7578 rcu_read_lock();
1e3c88bd 7579 for_each_domain(this_cpu, sd) {
23f0d209 7580 int continue_balancing = 1;
9bd721c5 7581 u64 t0, domain_cost;
1e3c88bd
PZ
7582
7583 if (!(sd->flags & SD_LOAD_BALANCE))
7584 continue;
7585
52a08ef1
JL
7586 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7587 update_next_balance(sd, 0, &next_balance);
9bd721c5 7588 break;
52a08ef1 7589 }
9bd721c5 7590
f492e12e 7591 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7592 t0 = sched_clock_cpu(this_cpu);
7593
f492e12e 7594 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7595 sd, CPU_NEWLY_IDLE,
7596 &continue_balancing);
9bd721c5
JL
7597
7598 domain_cost = sched_clock_cpu(this_cpu) - t0;
7599 if (domain_cost > sd->max_newidle_lb_cost)
7600 sd->max_newidle_lb_cost = domain_cost;
7601
7602 curr_cost += domain_cost;
f492e12e 7603 }
1e3c88bd 7604
52a08ef1 7605 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7606
7607 /*
7608 * Stop searching for tasks to pull if there are
7609 * now runnable tasks on this rq.
7610 */
7611 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7612 break;
1e3c88bd 7613 }
dce840a0 7614 rcu_read_unlock();
f492e12e
PZ
7615
7616 raw_spin_lock(&this_rq->lock);
7617
0e5b5337
JL
7618 if (curr_cost > this_rq->max_idle_balance_cost)
7619 this_rq->max_idle_balance_cost = curr_cost;
7620
e5fc6611 7621 /*
0e5b5337
JL
7622 * While browsing the domains, we released the rq lock, a task could
7623 * have been enqueued in the meantime. Since we're not going idle,
7624 * pretend we pulled a task.
e5fc6611 7625 */
0e5b5337 7626 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7627 pulled_task = 1;
e5fc6611 7628
52a08ef1
JL
7629out:
7630 /* Move the next balance forward */
7631 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7632 this_rq->next_balance = next_balance;
9bd721c5 7633
e4aa358b 7634 /* Is there a task of a high priority class? */
46383648 7635 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7636 pulled_task = -1;
7637
38c6ade2 7638 if (pulled_task)
6e83125c
PZ
7639 this_rq->idle_stamp = 0;
7640
3c4017c1 7641 return pulled_task;
1e3c88bd
PZ
7642}
7643
7644/*
969c7921
TH
7645 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7646 * running tasks off the busiest CPU onto idle CPUs. It requires at
7647 * least 1 task to be running on each physical CPU where possible, and
7648 * avoids physical / logical imbalances.
1e3c88bd 7649 */
969c7921 7650static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7651{
969c7921
TH
7652 struct rq *busiest_rq = data;
7653 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7654 int target_cpu = busiest_rq->push_cpu;
969c7921 7655 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7656 struct sched_domain *sd;
e5673f28 7657 struct task_struct *p = NULL;
969c7921
TH
7658
7659 raw_spin_lock_irq(&busiest_rq->lock);
7660
7661 /* make sure the requested cpu hasn't gone down in the meantime */
7662 if (unlikely(busiest_cpu != smp_processor_id() ||
7663 !busiest_rq->active_balance))
7664 goto out_unlock;
1e3c88bd
PZ
7665
7666 /* Is there any task to move? */
7667 if (busiest_rq->nr_running <= 1)
969c7921 7668 goto out_unlock;
1e3c88bd
PZ
7669
7670 /*
7671 * This condition is "impossible", if it occurs
7672 * we need to fix it. Originally reported by
7673 * Bjorn Helgaas on a 128-cpu setup.
7674 */
7675 BUG_ON(busiest_rq == target_rq);
7676
1e3c88bd 7677 /* Search for an sd spanning us and the target CPU. */
dce840a0 7678 rcu_read_lock();
1e3c88bd
PZ
7679 for_each_domain(target_cpu, sd) {
7680 if ((sd->flags & SD_LOAD_BALANCE) &&
7681 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7682 break;
7683 }
7684
7685 if (likely(sd)) {
8e45cb54
PZ
7686 struct lb_env env = {
7687 .sd = sd,
ddcdf6e7
PZ
7688 .dst_cpu = target_cpu,
7689 .dst_rq = target_rq,
7690 .src_cpu = busiest_rq->cpu,
7691 .src_rq = busiest_rq,
8e45cb54
PZ
7692 .idle = CPU_IDLE,
7693 };
7694
1e3c88bd
PZ
7695 schedstat_inc(sd, alb_count);
7696
e5673f28 7697 p = detach_one_task(&env);
d02c0711 7698 if (p) {
1e3c88bd 7699 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7700 /* Active balancing done, reset the failure counter. */
7701 sd->nr_balance_failed = 0;
7702 } else {
1e3c88bd 7703 schedstat_inc(sd, alb_failed);
d02c0711 7704 }
1e3c88bd 7705 }
dce840a0 7706 rcu_read_unlock();
969c7921
TH
7707out_unlock:
7708 busiest_rq->active_balance = 0;
e5673f28
KT
7709 raw_spin_unlock(&busiest_rq->lock);
7710
7711 if (p)
7712 attach_one_task(target_rq, p);
7713
7714 local_irq_enable();
7715
969c7921 7716 return 0;
1e3c88bd
PZ
7717}
7718
d987fc7f
MG
7719static inline int on_null_domain(struct rq *rq)
7720{
7721 return unlikely(!rcu_dereference_sched(rq->sd));
7722}
7723
3451d024 7724#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7725/*
7726 * idle load balancing details
83cd4fe2
VP
7727 * - When one of the busy CPUs notice that there may be an idle rebalancing
7728 * needed, they will kick the idle load balancer, which then does idle
7729 * load balancing for all the idle CPUs.
7730 */
1e3c88bd 7731static struct {
83cd4fe2 7732 cpumask_var_t idle_cpus_mask;
0b005cf5 7733 atomic_t nr_cpus;
83cd4fe2
VP
7734 unsigned long next_balance; /* in jiffy units */
7735} nohz ____cacheline_aligned;
1e3c88bd 7736
3dd0337d 7737static inline int find_new_ilb(void)
1e3c88bd 7738{
0b005cf5 7739 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7740
786d6dc7
SS
7741 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7742 return ilb;
7743
7744 return nr_cpu_ids;
1e3c88bd 7745}
1e3c88bd 7746
83cd4fe2
VP
7747/*
7748 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7749 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7750 * CPU (if there is one).
7751 */
0aeeeeba 7752static void nohz_balancer_kick(void)
83cd4fe2
VP
7753{
7754 int ilb_cpu;
7755
7756 nohz.next_balance++;
7757
3dd0337d 7758 ilb_cpu = find_new_ilb();
83cd4fe2 7759
0b005cf5
SS
7760 if (ilb_cpu >= nr_cpu_ids)
7761 return;
83cd4fe2 7762
cd490c5b 7763 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7764 return;
7765 /*
7766 * Use smp_send_reschedule() instead of resched_cpu().
7767 * This way we generate a sched IPI on the target cpu which
7768 * is idle. And the softirq performing nohz idle load balance
7769 * will be run before returning from the IPI.
7770 */
7771 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7772 return;
7773}
7774
c1cc017c 7775static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7776{
7777 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7778 /*
7779 * Completely isolated CPUs don't ever set, so we must test.
7780 */
7781 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7782 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7783 atomic_dec(&nohz.nr_cpus);
7784 }
71325960
SS
7785 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7786 }
7787}
7788
69e1e811
SS
7789static inline void set_cpu_sd_state_busy(void)
7790{
7791 struct sched_domain *sd;
37dc6b50 7792 int cpu = smp_processor_id();
69e1e811 7793
69e1e811 7794 rcu_read_lock();
37dc6b50 7795 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7796
7797 if (!sd || !sd->nohz_idle)
7798 goto unlock;
7799 sd->nohz_idle = 0;
7800
63b2ca30 7801 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7802unlock:
69e1e811
SS
7803 rcu_read_unlock();
7804}
7805
7806void set_cpu_sd_state_idle(void)
7807{
7808 struct sched_domain *sd;
37dc6b50 7809 int cpu = smp_processor_id();
69e1e811 7810
69e1e811 7811 rcu_read_lock();
37dc6b50 7812 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7813
7814 if (!sd || sd->nohz_idle)
7815 goto unlock;
7816 sd->nohz_idle = 1;
7817
63b2ca30 7818 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7819unlock:
69e1e811
SS
7820 rcu_read_unlock();
7821}
7822
1e3c88bd 7823/*
c1cc017c 7824 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7825 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7826 */
c1cc017c 7827void nohz_balance_enter_idle(int cpu)
1e3c88bd 7828{
71325960
SS
7829 /*
7830 * If this cpu is going down, then nothing needs to be done.
7831 */
7832 if (!cpu_active(cpu))
7833 return;
7834
c1cc017c
AS
7835 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7836 return;
1e3c88bd 7837
d987fc7f
MG
7838 /*
7839 * If we're a completely isolated CPU, we don't play.
7840 */
7841 if (on_null_domain(cpu_rq(cpu)))
7842 return;
7843
c1cc017c
AS
7844 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7845 atomic_inc(&nohz.nr_cpus);
7846 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7847}
71325960 7848
0db0628d 7849static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7850 unsigned long action, void *hcpu)
7851{
7852 switch (action & ~CPU_TASKS_FROZEN) {
7853 case CPU_DYING:
c1cc017c 7854 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7855 return NOTIFY_OK;
7856 default:
7857 return NOTIFY_DONE;
7858 }
7859}
1e3c88bd
PZ
7860#endif
7861
7862static DEFINE_SPINLOCK(balancing);
7863
49c022e6
PZ
7864/*
7865 * Scale the max load_balance interval with the number of CPUs in the system.
7866 * This trades load-balance latency on larger machines for less cross talk.
7867 */
029632fb 7868void update_max_interval(void)
49c022e6
PZ
7869{
7870 max_load_balance_interval = HZ*num_online_cpus()/10;
7871}
7872
1e3c88bd
PZ
7873/*
7874 * It checks each scheduling domain to see if it is due to be balanced,
7875 * and initiates a balancing operation if so.
7876 *
b9b0853a 7877 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7878 */
f7ed0a89 7879static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7880{
23f0d209 7881 int continue_balancing = 1;
f7ed0a89 7882 int cpu = rq->cpu;
1e3c88bd 7883 unsigned long interval;
04f733b4 7884 struct sched_domain *sd;
1e3c88bd
PZ
7885 /* Earliest time when we have to do rebalance again */
7886 unsigned long next_balance = jiffies + 60*HZ;
7887 int update_next_balance = 0;
f48627e6
JL
7888 int need_serialize, need_decay = 0;
7889 u64 max_cost = 0;
1e3c88bd 7890
48a16753 7891 update_blocked_averages(cpu);
2069dd75 7892
dce840a0 7893 rcu_read_lock();
1e3c88bd 7894 for_each_domain(cpu, sd) {
f48627e6
JL
7895 /*
7896 * Decay the newidle max times here because this is a regular
7897 * visit to all the domains. Decay ~1% per second.
7898 */
7899 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7900 sd->max_newidle_lb_cost =
7901 (sd->max_newidle_lb_cost * 253) / 256;
7902 sd->next_decay_max_lb_cost = jiffies + HZ;
7903 need_decay = 1;
7904 }
7905 max_cost += sd->max_newidle_lb_cost;
7906
1e3c88bd
PZ
7907 if (!(sd->flags & SD_LOAD_BALANCE))
7908 continue;
7909
f48627e6
JL
7910 /*
7911 * Stop the load balance at this level. There is another
7912 * CPU in our sched group which is doing load balancing more
7913 * actively.
7914 */
7915 if (!continue_balancing) {
7916 if (need_decay)
7917 continue;
7918 break;
7919 }
7920
52a08ef1 7921 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7922
7923 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7924 if (need_serialize) {
7925 if (!spin_trylock(&balancing))
7926 goto out;
7927 }
7928
7929 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7930 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7931 /*
6263322c 7932 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7933 * env->dst_cpu, so we can't know our idle
7934 * state even if we migrated tasks. Update it.
1e3c88bd 7935 */
de5eb2dd 7936 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7937 }
7938 sd->last_balance = jiffies;
52a08ef1 7939 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7940 }
7941 if (need_serialize)
7942 spin_unlock(&balancing);
7943out:
7944 if (time_after(next_balance, sd->last_balance + interval)) {
7945 next_balance = sd->last_balance + interval;
7946 update_next_balance = 1;
7947 }
f48627e6
JL
7948 }
7949 if (need_decay) {
1e3c88bd 7950 /*
f48627e6
JL
7951 * Ensure the rq-wide value also decays but keep it at a
7952 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7953 */
f48627e6
JL
7954 rq->max_idle_balance_cost =
7955 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7956 }
dce840a0 7957 rcu_read_unlock();
1e3c88bd
PZ
7958
7959 /*
7960 * next_balance will be updated only when there is a need.
7961 * When the cpu is attached to null domain for ex, it will not be
7962 * updated.
7963 */
c5afb6a8 7964 if (likely(update_next_balance)) {
1e3c88bd 7965 rq->next_balance = next_balance;
c5afb6a8
VG
7966
7967#ifdef CONFIG_NO_HZ_COMMON
7968 /*
7969 * If this CPU has been elected to perform the nohz idle
7970 * balance. Other idle CPUs have already rebalanced with
7971 * nohz_idle_balance() and nohz.next_balance has been
7972 * updated accordingly. This CPU is now running the idle load
7973 * balance for itself and we need to update the
7974 * nohz.next_balance accordingly.
7975 */
7976 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7977 nohz.next_balance = rq->next_balance;
7978#endif
7979 }
1e3c88bd
PZ
7980}
7981
3451d024 7982#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7983/*
3451d024 7984 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7985 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7986 */
208cb16b 7987static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7988{
208cb16b 7989 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7990 struct rq *rq;
7991 int balance_cpu;
c5afb6a8
VG
7992 /* Earliest time when we have to do rebalance again */
7993 unsigned long next_balance = jiffies + 60*HZ;
7994 int update_next_balance = 0;
83cd4fe2 7995
1c792db7
SS
7996 if (idle != CPU_IDLE ||
7997 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7998 goto end;
83cd4fe2
VP
7999
8000 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8001 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8002 continue;
8003
8004 /*
8005 * If this cpu gets work to do, stop the load balancing
8006 * work being done for other cpus. Next load
8007 * balancing owner will pick it up.
8008 */
1c792db7 8009 if (need_resched())
83cd4fe2 8010 break;
83cd4fe2 8011
5ed4f1d9
VG
8012 rq = cpu_rq(balance_cpu);
8013
ed61bbc6
TC
8014 /*
8015 * If time for next balance is due,
8016 * do the balance.
8017 */
8018 if (time_after_eq(jiffies, rq->next_balance)) {
8019 raw_spin_lock_irq(&rq->lock);
8020 update_rq_clock(rq);
be68a682 8021 update_cpu_load_idle(rq);
ed61bbc6
TC
8022 raw_spin_unlock_irq(&rq->lock);
8023 rebalance_domains(rq, CPU_IDLE);
8024 }
83cd4fe2 8025
c5afb6a8
VG
8026 if (time_after(next_balance, rq->next_balance)) {
8027 next_balance = rq->next_balance;
8028 update_next_balance = 1;
8029 }
83cd4fe2 8030 }
c5afb6a8
VG
8031
8032 /*
8033 * next_balance will be updated only when there is a need.
8034 * When the CPU is attached to null domain for ex, it will not be
8035 * updated.
8036 */
8037 if (likely(update_next_balance))
8038 nohz.next_balance = next_balance;
1c792db7
SS
8039end:
8040 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8041}
8042
8043/*
0b005cf5 8044 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8045 * of an idle cpu in the system.
0b005cf5 8046 * - This rq has more than one task.
1aaf90a4
VG
8047 * - This rq has at least one CFS task and the capacity of the CPU is
8048 * significantly reduced because of RT tasks or IRQs.
8049 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8050 * multiple busy cpu.
0b005cf5
SS
8051 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8052 * domain span are idle.
83cd4fe2 8053 */
1aaf90a4 8054static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8055{
8056 unsigned long now = jiffies;
0b005cf5 8057 struct sched_domain *sd;
63b2ca30 8058 struct sched_group_capacity *sgc;
4a725627 8059 int nr_busy, cpu = rq->cpu;
1aaf90a4 8060 bool kick = false;
83cd4fe2 8061
4a725627 8062 if (unlikely(rq->idle_balance))
1aaf90a4 8063 return false;
83cd4fe2 8064
1c792db7
SS
8065 /*
8066 * We may be recently in ticked or tickless idle mode. At the first
8067 * busy tick after returning from idle, we will update the busy stats.
8068 */
69e1e811 8069 set_cpu_sd_state_busy();
c1cc017c 8070 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8071
8072 /*
8073 * None are in tickless mode and hence no need for NOHZ idle load
8074 * balancing.
8075 */
8076 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8077 return false;
1c792db7
SS
8078
8079 if (time_before(now, nohz.next_balance))
1aaf90a4 8080 return false;
83cd4fe2 8081
0b005cf5 8082 if (rq->nr_running >= 2)
1aaf90a4 8083 return true;
83cd4fe2 8084
067491b7 8085 rcu_read_lock();
37dc6b50 8086 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8087 if (sd) {
63b2ca30
NP
8088 sgc = sd->groups->sgc;
8089 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8090
1aaf90a4
VG
8091 if (nr_busy > 1) {
8092 kick = true;
8093 goto unlock;
8094 }
8095
83cd4fe2 8096 }
37dc6b50 8097
1aaf90a4
VG
8098 sd = rcu_dereference(rq->sd);
8099 if (sd) {
8100 if ((rq->cfs.h_nr_running >= 1) &&
8101 check_cpu_capacity(rq, sd)) {
8102 kick = true;
8103 goto unlock;
8104 }
8105 }
37dc6b50 8106
1aaf90a4 8107 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8108 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8109 sched_domain_span(sd)) < cpu)) {
8110 kick = true;
8111 goto unlock;
8112 }
067491b7 8113
1aaf90a4 8114unlock:
067491b7 8115 rcu_read_unlock();
1aaf90a4 8116 return kick;
83cd4fe2
VP
8117}
8118#else
208cb16b 8119static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8120#endif
8121
8122/*
8123 * run_rebalance_domains is triggered when needed from the scheduler tick.
8124 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8125 */
1e3c88bd
PZ
8126static void run_rebalance_domains(struct softirq_action *h)
8127{
208cb16b 8128 struct rq *this_rq = this_rq();
6eb57e0d 8129 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8130 CPU_IDLE : CPU_NOT_IDLE;
8131
1e3c88bd 8132 /*
83cd4fe2 8133 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8134 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8135 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8136 * give the idle cpus a chance to load balance. Else we may
8137 * load balance only within the local sched_domain hierarchy
8138 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8139 */
208cb16b 8140 nohz_idle_balance(this_rq, idle);
d4573c3e 8141 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8142}
8143
1e3c88bd
PZ
8144/*
8145 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8146 */
7caff66f 8147void trigger_load_balance(struct rq *rq)
1e3c88bd 8148{
1e3c88bd 8149 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8150 if (unlikely(on_null_domain(rq)))
8151 return;
8152
8153 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8154 raise_softirq(SCHED_SOFTIRQ);
3451d024 8155#ifdef CONFIG_NO_HZ_COMMON
c726099e 8156 if (nohz_kick_needed(rq))
0aeeeeba 8157 nohz_balancer_kick();
83cd4fe2 8158#endif
1e3c88bd
PZ
8159}
8160
0bcdcf28
CE
8161static void rq_online_fair(struct rq *rq)
8162{
8163 update_sysctl();
0e59bdae
KT
8164
8165 update_runtime_enabled(rq);
0bcdcf28
CE
8166}
8167
8168static void rq_offline_fair(struct rq *rq)
8169{
8170 update_sysctl();
a4c96ae3
PB
8171
8172 /* Ensure any throttled groups are reachable by pick_next_task */
8173 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8174}
8175
55e12e5e 8176#endif /* CONFIG_SMP */
e1d1484f 8177
bf0f6f24
IM
8178/*
8179 * scheduler tick hitting a task of our scheduling class:
8180 */
8f4d37ec 8181static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8182{
8183 struct cfs_rq *cfs_rq;
8184 struct sched_entity *se = &curr->se;
8185
8186 for_each_sched_entity(se) {
8187 cfs_rq = cfs_rq_of(se);
8f4d37ec 8188 entity_tick(cfs_rq, se, queued);
bf0f6f24 8189 }
18bf2805 8190
b52da86e 8191 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8192 task_tick_numa(rq, curr);
bf0f6f24
IM
8193}
8194
8195/*
cd29fe6f
PZ
8196 * called on fork with the child task as argument from the parent's context
8197 * - child not yet on the tasklist
8198 * - preemption disabled
bf0f6f24 8199 */
cd29fe6f 8200static void task_fork_fair(struct task_struct *p)
bf0f6f24 8201{
4fc420c9
DN
8202 struct cfs_rq *cfs_rq;
8203 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8204 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8205 struct rq *rq = this_rq();
8206 unsigned long flags;
8207
05fa785c 8208 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8209
861d034e
PZ
8210 update_rq_clock(rq);
8211
4fc420c9
DN
8212 cfs_rq = task_cfs_rq(current);
8213 curr = cfs_rq->curr;
8214
6c9a27f5
DN
8215 /*
8216 * Not only the cpu but also the task_group of the parent might have
8217 * been changed after parent->se.parent,cfs_rq were copied to
8218 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8219 * of child point to valid ones.
8220 */
8221 rcu_read_lock();
8222 __set_task_cpu(p, this_cpu);
8223 rcu_read_unlock();
bf0f6f24 8224
7109c442 8225 update_curr(cfs_rq);
cd29fe6f 8226
b5d9d734
MG
8227 if (curr)
8228 se->vruntime = curr->vruntime;
aeb73b04 8229 place_entity(cfs_rq, se, 1);
4d78e7b6 8230
cd29fe6f 8231 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8232 /*
edcb60a3
IM
8233 * Upon rescheduling, sched_class::put_prev_task() will place
8234 * 'current' within the tree based on its new key value.
8235 */
4d78e7b6 8236 swap(curr->vruntime, se->vruntime);
8875125e 8237 resched_curr(rq);
4d78e7b6 8238 }
bf0f6f24 8239
88ec22d3
PZ
8240 se->vruntime -= cfs_rq->min_vruntime;
8241
05fa785c 8242 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8243}
8244
cb469845
SR
8245/*
8246 * Priority of the task has changed. Check to see if we preempt
8247 * the current task.
8248 */
da7a735e
PZ
8249static void
8250prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8251{
da0c1e65 8252 if (!task_on_rq_queued(p))
da7a735e
PZ
8253 return;
8254
cb469845
SR
8255 /*
8256 * Reschedule if we are currently running on this runqueue and
8257 * our priority decreased, or if we are not currently running on
8258 * this runqueue and our priority is higher than the current's
8259 */
da7a735e 8260 if (rq->curr == p) {
cb469845 8261 if (p->prio > oldprio)
8875125e 8262 resched_curr(rq);
cb469845 8263 } else
15afe09b 8264 check_preempt_curr(rq, p, 0);
cb469845
SR
8265}
8266
daa59407 8267static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8268{
8269 struct sched_entity *se = &p->se;
da7a735e
PZ
8270
8271 /*
daa59407
BP
8272 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8273 * the dequeue_entity(.flags=0) will already have normalized the
8274 * vruntime.
8275 */
8276 if (p->on_rq)
8277 return true;
8278
8279 /*
8280 * When !on_rq, vruntime of the task has usually NOT been normalized.
8281 * But there are some cases where it has already been normalized:
da7a735e 8282 *
daa59407
BP
8283 * - A forked child which is waiting for being woken up by
8284 * wake_up_new_task().
8285 * - A task which has been woken up by try_to_wake_up() and
8286 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8287 */
daa59407
BP
8288 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8289 return true;
8290
8291 return false;
8292}
8293
8294static void detach_task_cfs_rq(struct task_struct *p)
8295{
8296 struct sched_entity *se = &p->se;
8297 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8298
8299 if (!vruntime_normalized(p)) {
da7a735e
PZ
8300 /*
8301 * Fix up our vruntime so that the current sleep doesn't
8302 * cause 'unlimited' sleep bonus.
8303 */
8304 place_entity(cfs_rq, se, 0);
8305 se->vruntime -= cfs_rq->min_vruntime;
8306 }
9ee474f5 8307
9d89c257 8308 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8309 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8310}
8311
daa59407 8312static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8313{
f36c019c 8314 struct sched_entity *se = &p->se;
daa59407 8315 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8316
8317#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8318 /*
8319 * Since the real-depth could have been changed (only FAIR
8320 * class maintain depth value), reset depth properly.
8321 */
8322 se->depth = se->parent ? se->parent->depth + 1 : 0;
8323#endif
7855a35a 8324
6efdb105 8325 /* Synchronize task with its cfs_rq */
daa59407
BP
8326 attach_entity_load_avg(cfs_rq, se);
8327
8328 if (!vruntime_normalized(p))
8329 se->vruntime += cfs_rq->min_vruntime;
8330}
6efdb105 8331
daa59407
BP
8332static void switched_from_fair(struct rq *rq, struct task_struct *p)
8333{
8334 detach_task_cfs_rq(p);
8335}
8336
8337static void switched_to_fair(struct rq *rq, struct task_struct *p)
8338{
8339 attach_task_cfs_rq(p);
7855a35a 8340
daa59407 8341 if (task_on_rq_queued(p)) {
7855a35a 8342 /*
daa59407
BP
8343 * We were most likely switched from sched_rt, so
8344 * kick off the schedule if running, otherwise just see
8345 * if we can still preempt the current task.
7855a35a 8346 */
daa59407
BP
8347 if (rq->curr == p)
8348 resched_curr(rq);
8349 else
8350 check_preempt_curr(rq, p, 0);
7855a35a 8351 }
cb469845
SR
8352}
8353
83b699ed
SV
8354/* Account for a task changing its policy or group.
8355 *
8356 * This routine is mostly called to set cfs_rq->curr field when a task
8357 * migrates between groups/classes.
8358 */
8359static void set_curr_task_fair(struct rq *rq)
8360{
8361 struct sched_entity *se = &rq->curr->se;
8362
ec12cb7f
PT
8363 for_each_sched_entity(se) {
8364 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8365
8366 set_next_entity(cfs_rq, se);
8367 /* ensure bandwidth has been allocated on our new cfs_rq */
8368 account_cfs_rq_runtime(cfs_rq, 0);
8369 }
83b699ed
SV
8370}
8371
029632fb
PZ
8372void init_cfs_rq(struct cfs_rq *cfs_rq)
8373{
8374 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8375 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8376#ifndef CONFIG_64BIT
8377 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8378#endif
141965c7 8379#ifdef CONFIG_SMP
9d89c257
YD
8380 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8381 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8382#endif
029632fb
PZ
8383}
8384
810b3817 8385#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8386static void task_move_group_fair(struct task_struct *p)
810b3817 8387{
daa59407 8388 detach_task_cfs_rq(p);
b2b5ce02 8389 set_task_rq(p, task_cpu(p));
6efdb105
BP
8390
8391#ifdef CONFIG_SMP
8392 /* Tell se's cfs_rq has been changed -- migrated */
8393 p->se.avg.last_update_time = 0;
8394#endif
daa59407 8395 attach_task_cfs_rq(p);
810b3817 8396}
029632fb
PZ
8397
8398void free_fair_sched_group(struct task_group *tg)
8399{
8400 int i;
8401
8402 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8403
8404 for_each_possible_cpu(i) {
8405 if (tg->cfs_rq)
8406 kfree(tg->cfs_rq[i]);
6fe1f348 8407 if (tg->se)
029632fb
PZ
8408 kfree(tg->se[i]);
8409 }
8410
8411 kfree(tg->cfs_rq);
8412 kfree(tg->se);
8413}
8414
8415int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8416{
8417 struct cfs_rq *cfs_rq;
8418 struct sched_entity *se;
8419 int i;
8420
8421 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8422 if (!tg->cfs_rq)
8423 goto err;
8424 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8425 if (!tg->se)
8426 goto err;
8427
8428 tg->shares = NICE_0_LOAD;
8429
8430 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8431
8432 for_each_possible_cpu(i) {
8433 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8434 GFP_KERNEL, cpu_to_node(i));
8435 if (!cfs_rq)
8436 goto err;
8437
8438 se = kzalloc_node(sizeof(struct sched_entity),
8439 GFP_KERNEL, cpu_to_node(i));
8440 if (!se)
8441 goto err_free_rq;
8442
8443 init_cfs_rq(cfs_rq);
8444 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8445 init_entity_runnable_average(se);
2b8c41da 8446 post_init_entity_util_avg(se);
029632fb
PZ
8447 }
8448
8449 return 1;
8450
8451err_free_rq:
8452 kfree(cfs_rq);
8453err:
8454 return 0;
8455}
8456
6fe1f348 8457void unregister_fair_sched_group(struct task_group *tg)
029632fb 8458{
029632fb 8459 unsigned long flags;
6fe1f348
PZ
8460 struct rq *rq;
8461 int cpu;
029632fb 8462
6fe1f348
PZ
8463 for_each_possible_cpu(cpu) {
8464 if (tg->se[cpu])
8465 remove_entity_load_avg(tg->se[cpu]);
029632fb 8466
6fe1f348
PZ
8467 /*
8468 * Only empty task groups can be destroyed; so we can speculatively
8469 * check on_list without danger of it being re-added.
8470 */
8471 if (!tg->cfs_rq[cpu]->on_list)
8472 continue;
8473
8474 rq = cpu_rq(cpu);
8475
8476 raw_spin_lock_irqsave(&rq->lock, flags);
8477 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8478 raw_spin_unlock_irqrestore(&rq->lock, flags);
8479 }
029632fb
PZ
8480}
8481
8482void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8483 struct sched_entity *se, int cpu,
8484 struct sched_entity *parent)
8485{
8486 struct rq *rq = cpu_rq(cpu);
8487
8488 cfs_rq->tg = tg;
8489 cfs_rq->rq = rq;
029632fb
PZ
8490 init_cfs_rq_runtime(cfs_rq);
8491
8492 tg->cfs_rq[cpu] = cfs_rq;
8493 tg->se[cpu] = se;
8494
8495 /* se could be NULL for root_task_group */
8496 if (!se)
8497 return;
8498
fed14d45 8499 if (!parent) {
029632fb 8500 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8501 se->depth = 0;
8502 } else {
029632fb 8503 se->cfs_rq = parent->my_q;
fed14d45
PZ
8504 se->depth = parent->depth + 1;
8505 }
029632fb
PZ
8506
8507 se->my_q = cfs_rq;
0ac9b1c2
PT
8508 /* guarantee group entities always have weight */
8509 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8510 se->parent = parent;
8511}
8512
8513static DEFINE_MUTEX(shares_mutex);
8514
8515int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8516{
8517 int i;
8518 unsigned long flags;
8519
8520 /*
8521 * We can't change the weight of the root cgroup.
8522 */
8523 if (!tg->se[0])
8524 return -EINVAL;
8525
8526 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8527
8528 mutex_lock(&shares_mutex);
8529 if (tg->shares == shares)
8530 goto done;
8531
8532 tg->shares = shares;
8533 for_each_possible_cpu(i) {
8534 struct rq *rq = cpu_rq(i);
8535 struct sched_entity *se;
8536
8537 se = tg->se[i];
8538 /* Propagate contribution to hierarchy */
8539 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8540
8541 /* Possible calls to update_curr() need rq clock */
8542 update_rq_clock(rq);
17bc14b7 8543 for_each_sched_entity(se)
029632fb
PZ
8544 update_cfs_shares(group_cfs_rq(se));
8545 raw_spin_unlock_irqrestore(&rq->lock, flags);
8546 }
8547
8548done:
8549 mutex_unlock(&shares_mutex);
8550 return 0;
8551}
8552#else /* CONFIG_FAIR_GROUP_SCHED */
8553
8554void free_fair_sched_group(struct task_group *tg) { }
8555
8556int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8557{
8558 return 1;
8559}
8560
6fe1f348 8561void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8562
8563#endif /* CONFIG_FAIR_GROUP_SCHED */
8564
810b3817 8565
6d686f45 8566static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8567{
8568 struct sched_entity *se = &task->se;
0d721cea
PW
8569 unsigned int rr_interval = 0;
8570
8571 /*
8572 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8573 * idle runqueue:
8574 */
0d721cea 8575 if (rq->cfs.load.weight)
a59f4e07 8576 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8577
8578 return rr_interval;
8579}
8580
bf0f6f24
IM
8581/*
8582 * All the scheduling class methods:
8583 */
029632fb 8584const struct sched_class fair_sched_class = {
5522d5d5 8585 .next = &idle_sched_class,
bf0f6f24
IM
8586 .enqueue_task = enqueue_task_fair,
8587 .dequeue_task = dequeue_task_fair,
8588 .yield_task = yield_task_fair,
d95f4122 8589 .yield_to_task = yield_to_task_fair,
bf0f6f24 8590
2e09bf55 8591 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8592
8593 .pick_next_task = pick_next_task_fair,
8594 .put_prev_task = put_prev_task_fair,
8595
681f3e68 8596#ifdef CONFIG_SMP
4ce72a2c 8597 .select_task_rq = select_task_rq_fair,
0a74bef8 8598 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8599
0bcdcf28
CE
8600 .rq_online = rq_online_fair,
8601 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8602
8603 .task_waking = task_waking_fair,
12695578 8604 .task_dead = task_dead_fair,
c5b28038 8605 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8606#endif
bf0f6f24 8607
83b699ed 8608 .set_curr_task = set_curr_task_fair,
bf0f6f24 8609 .task_tick = task_tick_fair,
cd29fe6f 8610 .task_fork = task_fork_fair,
cb469845
SR
8611
8612 .prio_changed = prio_changed_fair,
da7a735e 8613 .switched_from = switched_from_fair,
cb469845 8614 .switched_to = switched_to_fair,
810b3817 8615
0d721cea
PW
8616 .get_rr_interval = get_rr_interval_fair,
8617
6e998916
SG
8618 .update_curr = update_curr_fair,
8619
810b3817 8620#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8621 .task_move_group = task_move_group_fair,
810b3817 8622#endif
bf0f6f24
IM
8623};
8624
8625#ifdef CONFIG_SCHED_DEBUG
029632fb 8626void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8627{
bf0f6f24
IM
8628 struct cfs_rq *cfs_rq;
8629
5973e5b9 8630 rcu_read_lock();
c3b64f1e 8631 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8632 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8633 rcu_read_unlock();
bf0f6f24 8634}
397f2378
SD
8635
8636#ifdef CONFIG_NUMA_BALANCING
8637void show_numa_stats(struct task_struct *p, struct seq_file *m)
8638{
8639 int node;
8640 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8641
8642 for_each_online_node(node) {
8643 if (p->numa_faults) {
8644 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8645 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8646 }
8647 if (p->numa_group) {
8648 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8649 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8650 }
8651 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8652 }
8653}
8654#endif /* CONFIG_NUMA_BALANCING */
8655#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8656
8657__init void init_sched_fair_class(void)
8658{
8659#ifdef CONFIG_SMP
8660 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8661
3451d024 8662#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8663 nohz.next_balance = jiffies;
029632fb 8664 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8665 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8666#endif
8667#endif /* SMP */
8668
8669}
This page took 1.350172 seconds and 5 git commands to generate.