sched: numa: Fix build error if CONFIG_NUMA_BALANCING && !CONFIG_TRANSPARENT_HUGEPAGE
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
029632fb
PZ
116/*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125static int get_update_sysctl_factor(void)
126{
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144}
145
146static void update_sysctl(void)
147{
148 unsigned int factor = get_update_sysctl_factor();
149
150#define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155#undef SET_SYSCTL
156}
157
158void sched_init_granularity(void)
159{
160 update_sysctl();
161}
162
163#if BITS_PER_LONG == 32
164# define WMULT_CONST (~0UL)
165#else
166# define WMULT_CONST (1UL << 32)
167#endif
168
169#define WMULT_SHIFT 32
170
171/*
172 * Shift right and round:
173 */
174#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176/*
177 * delta *= weight / lw
178 */
179static unsigned long
180calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182{
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216}
217
218
219const struct sched_class fair_sched_class;
a4c2f00f 220
bf0f6f24
IM
221/**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
62160e3f 225#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 226
62160e3f 227/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
228static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229{
62160e3f 230 return cfs_rq->rq;
bf0f6f24
IM
231}
232
62160e3f
IM
233/* An entity is a task if it doesn't "own" a runqueue */
234#define entity_is_task(se) (!se->my_q)
bf0f6f24 235
8f48894f
PZ
236static inline struct task_struct *task_of(struct sched_entity *se)
237{
238#ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240#endif
241 return container_of(se, struct task_struct, se);
242}
243
b758149c
PZ
244/* Walk up scheduling entities hierarchy */
245#define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249{
250 return p->se.cfs_rq;
251}
252
253/* runqueue on which this entity is (to be) queued */
254static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255{
256 return se->cfs_rq;
257}
258
259/* runqueue "owned" by this group */
260static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261{
262 return grp->my_q;
263}
264
aff3e498
PT
265static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 int force_update);
9ee474f5 267
3d4b47b4
PZ
268static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269{
270 if (!cfs_rq->on_list) {
67e86250
PT
271 /*
272 * Ensure we either appear before our parent (if already
273 * enqueued) or force our parent to appear after us when it is
274 * enqueued. The fact that we always enqueue bottom-up
275 * reduces this to two cases.
276 */
277 if (cfs_rq->tg->parent &&
278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 } else {
282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 283 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 284 }
3d4b47b4
PZ
285
286 cfs_rq->on_list = 1;
9ee474f5 287 /* We should have no load, but we need to update last_decay. */
aff3e498 288 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
289 }
290}
291
292static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293{
294 if (cfs_rq->on_list) {
295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 cfs_rq->on_list = 0;
297 }
298}
299
b758149c
PZ
300/* Iterate thr' all leaf cfs_rq's on a runqueue */
301#define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304/* Do the two (enqueued) entities belong to the same group ? */
305static inline int
306is_same_group(struct sched_entity *se, struct sched_entity *pse)
307{
308 if (se->cfs_rq == pse->cfs_rq)
309 return 1;
310
311 return 0;
312}
313
314static inline struct sched_entity *parent_entity(struct sched_entity *se)
315{
316 return se->parent;
317}
318
464b7527
PZ
319/* return depth at which a sched entity is present in the hierarchy */
320static inline int depth_se(struct sched_entity *se)
321{
322 int depth = 0;
323
324 for_each_sched_entity(se)
325 depth++;
326
327 return depth;
328}
329
330static void
331find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332{
333 int se_depth, pse_depth;
334
335 /*
336 * preemption test can be made between sibling entities who are in the
337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 * both tasks until we find their ancestors who are siblings of common
339 * parent.
340 */
341
342 /* First walk up until both entities are at same depth */
343 se_depth = depth_se(*se);
344 pse_depth = depth_se(*pse);
345
346 while (se_depth > pse_depth) {
347 se_depth--;
348 *se = parent_entity(*se);
349 }
350
351 while (pse_depth > se_depth) {
352 pse_depth--;
353 *pse = parent_entity(*pse);
354 }
355
356 while (!is_same_group(*se, *pse)) {
357 *se = parent_entity(*se);
358 *pse = parent_entity(*pse);
359 }
360}
361
8f48894f
PZ
362#else /* !CONFIG_FAIR_GROUP_SCHED */
363
364static inline struct task_struct *task_of(struct sched_entity *se)
365{
366 return container_of(se, struct task_struct, se);
367}
bf0f6f24 368
62160e3f
IM
369static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370{
371 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
372}
373
374#define entity_is_task(se) 1
375
b758149c
PZ
376#define for_each_sched_entity(se) \
377 for (; se; se = NULL)
bf0f6f24 378
b758149c 379static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 380{
b758149c 381 return &task_rq(p)->cfs;
bf0f6f24
IM
382}
383
b758149c
PZ
384static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385{
386 struct task_struct *p = task_of(se);
387 struct rq *rq = task_rq(p);
388
389 return &rq->cfs;
390}
391
392/* runqueue "owned" by this group */
393static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394{
395 return NULL;
396}
397
3d4b47b4
PZ
398static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399{
400}
401
402static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403{
404}
405
b758149c
PZ
406#define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409static inline int
410is_same_group(struct sched_entity *se, struct sched_entity *pse)
411{
412 return 1;
413}
414
415static inline struct sched_entity *parent_entity(struct sched_entity *se)
416{
417 return NULL;
418}
419
464b7527
PZ
420static inline void
421find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422{
423}
424
b758149c
PZ
425#endif /* CONFIG_FAIR_GROUP_SCHED */
426
6c16a6dc
PZ
427static __always_inline
428void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
429
430/**************************************************************
431 * Scheduling class tree data structure manipulation methods:
432 */
433
0702e3eb 434static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 435{
368059a9
PZ
436 s64 delta = (s64)(vruntime - min_vruntime);
437 if (delta > 0)
02e0431a
PZ
438 min_vruntime = vruntime;
439
440 return min_vruntime;
441}
442
0702e3eb 443static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
444{
445 s64 delta = (s64)(vruntime - min_vruntime);
446 if (delta < 0)
447 min_vruntime = vruntime;
448
449 return min_vruntime;
450}
451
54fdc581
FC
452static inline int entity_before(struct sched_entity *a,
453 struct sched_entity *b)
454{
455 return (s64)(a->vruntime - b->vruntime) < 0;
456}
457
1af5f730
PZ
458static void update_min_vruntime(struct cfs_rq *cfs_rq)
459{
460 u64 vruntime = cfs_rq->min_vruntime;
461
462 if (cfs_rq->curr)
463 vruntime = cfs_rq->curr->vruntime;
464
465 if (cfs_rq->rb_leftmost) {
466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 struct sched_entity,
468 run_node);
469
e17036da 470 if (!cfs_rq->curr)
1af5f730
PZ
471 vruntime = se->vruntime;
472 else
473 vruntime = min_vruntime(vruntime, se->vruntime);
474 }
475
476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 574 int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac
PZ
595 */
596static inline unsigned long
597calc_delta_fair(unsigned long delta, struct sched_entity *se)
598{
f9c0b095
PZ
599 if (unlikely(se->load.weight != NICE_0_LOAD))
600 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
601
602 return delta;
603}
604
647e7cac
IM
605/*
606 * The idea is to set a period in which each task runs once.
607 *
532b1858 608 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
609 * this period because otherwise the slices get too small.
610 *
611 * p = (nr <= nl) ? l : l*nr/nl
612 */
4d78e7b6
PZ
613static u64 __sched_period(unsigned long nr_running)
614{
615 u64 period = sysctl_sched_latency;
b2be5e96 616 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
617
618 if (unlikely(nr_running > nr_latency)) {
4bf0b771 619 period = sysctl_sched_min_granularity;
4d78e7b6 620 period *= nr_running;
4d78e7b6
PZ
621 }
622
623 return period;
624}
625
647e7cac
IM
626/*
627 * We calculate the wall-time slice from the period by taking a part
628 * proportional to the weight.
629 *
f9c0b095 630 * s = p*P[w/rw]
647e7cac 631 */
6d0f0ebd 632static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 633{
0a582440 634 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 635
0a582440 636 for_each_sched_entity(se) {
6272d68c 637 struct load_weight *load;
3104bf03 638 struct load_weight lw;
6272d68c
LM
639
640 cfs_rq = cfs_rq_of(se);
641 load = &cfs_rq->load;
f9c0b095 642
0a582440 643 if (unlikely(!se->on_rq)) {
3104bf03 644 lw = cfs_rq->load;
0a582440
MG
645
646 update_load_add(&lw, se->load.weight);
647 load = &lw;
648 }
649 slice = calc_delta_mine(slice, se->load.weight, load);
650 }
651 return slice;
bf0f6f24
IM
652}
653
647e7cac 654/*
ac884dec 655 * We calculate the vruntime slice of a to be inserted task
647e7cac 656 *
f9c0b095 657 * vs = s/w
647e7cac 658 */
f9c0b095 659static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 660{
f9c0b095 661 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
662}
663
bf0f6f24
IM
664/*
665 * Update the current task's runtime statistics. Skip current tasks that
666 * are not in our scheduling class.
667 */
668static inline void
8ebc91d9
IM
669__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
670 unsigned long delta_exec)
bf0f6f24 671{
bbdba7c0 672 unsigned long delta_exec_weighted;
bf0f6f24 673
41acab88
LDM
674 schedstat_set(curr->statistics.exec_max,
675 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
676
677 curr->sum_exec_runtime += delta_exec;
7a62eabc 678 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 679 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 680
e9acbff6 681 curr->vruntime += delta_exec_weighted;
1af5f730 682 update_min_vruntime(cfs_rq);
bf0f6f24
IM
683}
684
b7cc0896 685static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 686{
429d43bc 687 struct sched_entity *curr = cfs_rq->curr;
305e6835 688 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
689 unsigned long delta_exec;
690
691 if (unlikely(!curr))
692 return;
693
694 /*
695 * Get the amount of time the current task was running
696 * since the last time we changed load (this cannot
697 * overflow on 32 bits):
698 */
8ebc91d9 699 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
700 if (!delta_exec)
701 return;
bf0f6f24 702
8ebc91d9
IM
703 __update_curr(cfs_rq, curr, delta_exec);
704 curr->exec_start = now;
d842de87
SV
705
706 if (entity_is_task(curr)) {
707 struct task_struct *curtask = task_of(curr);
708
f977bb49 709 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 710 cpuacct_charge(curtask, delta_exec);
f06febc9 711 account_group_exec_runtime(curtask, delta_exec);
d842de87 712 }
ec12cb7f
PT
713
714 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
715}
716
717static inline void
5870db5b 718update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 719{
41acab88 720 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
721}
722
bf0f6f24
IM
723/*
724 * Task is being enqueued - update stats:
725 */
d2417e5a 726static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 727{
bf0f6f24
IM
728 /*
729 * Are we enqueueing a waiting task? (for current tasks
730 * a dequeue/enqueue event is a NOP)
731 */
429d43bc 732 if (se != cfs_rq->curr)
5870db5b 733 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
734}
735
bf0f6f24 736static void
9ef0a961 737update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 738{
41acab88
LDM
739 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
740 rq_of(cfs_rq)->clock - se->statistics.wait_start));
741 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
742 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
743 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
744#ifdef CONFIG_SCHEDSTATS
745 if (entity_is_task(se)) {
746 trace_sched_stat_wait(task_of(se),
41acab88 747 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
748 }
749#endif
41acab88 750 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
751}
752
753static inline void
19b6a2e3 754update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 755{
bf0f6f24
IM
756 /*
757 * Mark the end of the wait period if dequeueing a
758 * waiting task:
759 */
429d43bc 760 if (se != cfs_rq->curr)
9ef0a961 761 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
762}
763
764/*
765 * We are picking a new current task - update its stats:
766 */
767static inline void
79303e9e 768update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
769{
770 /*
771 * We are starting a new run period:
772 */
305e6835 773 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
774}
775
bf0f6f24
IM
776/**************************************************
777 * Scheduling class queueing methods:
778 */
779
cbee9f88
PZ
780#ifdef CONFIG_NUMA_BALANCING
781/*
6e5fb223 782 * numa task sample period in ms
cbee9f88 783 */
6e5fb223 784unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
785unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
786unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
787
788/* Portion of address space to scan in MB */
789unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 790
4b96a29b
PZ
791/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
792unsigned int sysctl_numa_balancing_scan_delay = 1000;
793
cbee9f88
PZ
794static void task_numa_placement(struct task_struct *p)
795{
796 int seq = ACCESS_ONCE(p->mm->numa_scan_seq);
797
798 if (p->numa_scan_seq == seq)
799 return;
800 p->numa_scan_seq = seq;
801
802 /* FIXME: Scheduling placement policy hints go here */
803}
804
805/*
806 * Got a PROT_NONE fault for a page on @node.
807 */
b8593bfd 808void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
809{
810 struct task_struct *p = current;
811
1a687c2e
MG
812 if (!sched_feat_numa(NUMA))
813 return;
814
cbee9f88
PZ
815 /* FIXME: Allocate task-specific structure for placement policy here */
816
fb003b80 817 /*
b8593bfd
MG
818 * If pages are properly placed (did not migrate) then scan slower.
819 * This is reset periodically in case of phase changes
fb003b80 820 */
b8593bfd
MG
821 if (!migrated)
822 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
823 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 824
cbee9f88
PZ
825 task_numa_placement(p);
826}
827
6e5fb223
PZ
828static void reset_ptenuma_scan(struct task_struct *p)
829{
830 ACCESS_ONCE(p->mm->numa_scan_seq)++;
831 p->mm->numa_scan_offset = 0;
832}
833
cbee9f88
PZ
834/*
835 * The expensive part of numa migration is done from task_work context.
836 * Triggered from task_tick_numa().
837 */
838void task_numa_work(struct callback_head *work)
839{
840 unsigned long migrate, next_scan, now = jiffies;
841 struct task_struct *p = current;
842 struct mm_struct *mm = p->mm;
6e5fb223 843 struct vm_area_struct *vma;
9f40604c
MG
844 unsigned long start, end;
845 long pages;
cbee9f88
PZ
846
847 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
848
849 work->next = work; /* protect against double add */
850 /*
851 * Who cares about NUMA placement when they're dying.
852 *
853 * NOTE: make sure not to dereference p->mm before this check,
854 * exit_task_work() happens _after_ exit_mm() so we could be called
855 * without p->mm even though we still had it when we enqueued this
856 * work.
857 */
858 if (p->flags & PF_EXITING)
859 return;
860
5bca2303
MG
861 /*
862 * We do not care about task placement until a task runs on a node
863 * other than the first one used by the address space. This is
864 * largely because migrations are driven by what CPU the task
865 * is running on. If it's never scheduled on another node, it'll
866 * not migrate so why bother trapping the fault.
867 */
868 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
869 mm->first_nid = numa_node_id();
870 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
871 /* Are we running on a new node yet? */
872 if (numa_node_id() == mm->first_nid &&
873 !sched_feat_numa(NUMA_FORCE))
874 return;
875
876 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
877 }
878
b8593bfd
MG
879 /*
880 * Reset the scan period if enough time has gone by. Objective is that
881 * scanning will be reduced if pages are properly placed. As tasks
882 * can enter different phases this needs to be re-examined. Lacking
883 * proper tracking of reference behaviour, this blunt hammer is used.
884 */
885 migrate = mm->numa_next_reset;
886 if (time_after(now, migrate)) {
887 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
888 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
889 xchg(&mm->numa_next_reset, next_scan);
890 }
891
cbee9f88
PZ
892 /*
893 * Enforce maximal scan/migration frequency..
894 */
895 migrate = mm->numa_next_scan;
896 if (time_before(now, migrate))
897 return;
898
899 if (p->numa_scan_period == 0)
900 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
901
fb003b80 902 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
903 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
904 return;
905
e14808b4
MG
906 /*
907 * Do not set pte_numa if the current running node is rate-limited.
908 * This loses statistics on the fault but if we are unwilling to
909 * migrate to this node, it is less likely we can do useful work
910 */
911 if (migrate_ratelimited(numa_node_id()))
912 return;
913
9f40604c
MG
914 start = mm->numa_scan_offset;
915 pages = sysctl_numa_balancing_scan_size;
916 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
917 if (!pages)
918 return;
cbee9f88 919
6e5fb223 920 down_read(&mm->mmap_sem);
9f40604c 921 vma = find_vma(mm, start);
6e5fb223
PZ
922 if (!vma) {
923 reset_ptenuma_scan(p);
9f40604c 924 start = 0;
6e5fb223
PZ
925 vma = mm->mmap;
926 }
9f40604c 927 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
928 if (!vma_migratable(vma))
929 continue;
930
931 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 932 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
933 continue;
934
9f40604c
MG
935 do {
936 start = max(start, vma->vm_start);
937 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
938 end = min(end, vma->vm_end);
939 pages -= change_prot_numa(vma, start, end);
6e5fb223 940
9f40604c
MG
941 start = end;
942 if (pages <= 0)
943 goto out;
944 } while (end != vma->vm_end);
cbee9f88 945 }
6e5fb223 946
9f40604c 947out:
6e5fb223
PZ
948 /*
949 * It is possible to reach the end of the VMA list but the last few VMAs are
950 * not guaranteed to the vma_migratable. If they are not, we would find the
951 * !migratable VMA on the next scan but not reset the scanner to the start
952 * so check it now.
953 */
954 if (vma)
9f40604c 955 mm->numa_scan_offset = start;
6e5fb223
PZ
956 else
957 reset_ptenuma_scan(p);
958 up_read(&mm->mmap_sem);
cbee9f88
PZ
959}
960
961/*
962 * Drive the periodic memory faults..
963 */
964void task_tick_numa(struct rq *rq, struct task_struct *curr)
965{
966 struct callback_head *work = &curr->numa_work;
967 u64 period, now;
968
969 /*
970 * We don't care about NUMA placement if we don't have memory.
971 */
972 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
973 return;
974
975 /*
976 * Using runtime rather than walltime has the dual advantage that
977 * we (mostly) drive the selection from busy threads and that the
978 * task needs to have done some actual work before we bother with
979 * NUMA placement.
980 */
981 now = curr->se.sum_exec_runtime;
982 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
983
984 if (now - curr->node_stamp > period) {
4b96a29b
PZ
985 if (!curr->node_stamp)
986 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
987 curr->node_stamp = now;
988
989 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
990 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
991 task_work_add(curr, work, true);
992 }
993 }
994}
995#else
996static void task_tick_numa(struct rq *rq, struct task_struct *curr)
997{
998}
999#endif /* CONFIG_NUMA_BALANCING */
1000
30cfdcfc
DA
1001static void
1002account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1003{
1004 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1005 if (!parent_entity(se))
029632fb 1006 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1007#ifdef CONFIG_SMP
1008 if (entity_is_task(se))
eb95308e 1009 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1010#endif
30cfdcfc 1011 cfs_rq->nr_running++;
30cfdcfc
DA
1012}
1013
1014static void
1015account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1016{
1017 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1018 if (!parent_entity(se))
029632fb 1019 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1020 if (entity_is_task(se))
b87f1724 1021 list_del_init(&se->group_node);
30cfdcfc 1022 cfs_rq->nr_running--;
30cfdcfc
DA
1023}
1024
3ff6dcac
YZ
1025#ifdef CONFIG_FAIR_GROUP_SCHED
1026# ifdef CONFIG_SMP
cf5f0acf
PZ
1027static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1028{
1029 long tg_weight;
1030
1031 /*
1032 * Use this CPU's actual weight instead of the last load_contribution
1033 * to gain a more accurate current total weight. See
1034 * update_cfs_rq_load_contribution().
1035 */
82958366
PT
1036 tg_weight = atomic64_read(&tg->load_avg);
1037 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1038 tg_weight += cfs_rq->load.weight;
1039
1040 return tg_weight;
1041}
1042
6d5ab293 1043static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1044{
cf5f0acf 1045 long tg_weight, load, shares;
3ff6dcac 1046
cf5f0acf 1047 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1048 load = cfs_rq->load.weight;
3ff6dcac 1049
3ff6dcac 1050 shares = (tg->shares * load);
cf5f0acf
PZ
1051 if (tg_weight)
1052 shares /= tg_weight;
3ff6dcac
YZ
1053
1054 if (shares < MIN_SHARES)
1055 shares = MIN_SHARES;
1056 if (shares > tg->shares)
1057 shares = tg->shares;
1058
1059 return shares;
1060}
3ff6dcac 1061# else /* CONFIG_SMP */
6d5ab293 1062static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1063{
1064 return tg->shares;
1065}
3ff6dcac 1066# endif /* CONFIG_SMP */
2069dd75
PZ
1067static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1068 unsigned long weight)
1069{
19e5eebb
PT
1070 if (se->on_rq) {
1071 /* commit outstanding execution time */
1072 if (cfs_rq->curr == se)
1073 update_curr(cfs_rq);
2069dd75 1074 account_entity_dequeue(cfs_rq, se);
19e5eebb 1075 }
2069dd75
PZ
1076
1077 update_load_set(&se->load, weight);
1078
1079 if (se->on_rq)
1080 account_entity_enqueue(cfs_rq, se);
1081}
1082
82958366
PT
1083static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1084
6d5ab293 1085static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1086{
1087 struct task_group *tg;
1088 struct sched_entity *se;
3ff6dcac 1089 long shares;
2069dd75 1090
2069dd75
PZ
1091 tg = cfs_rq->tg;
1092 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1093 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1094 return;
3ff6dcac
YZ
1095#ifndef CONFIG_SMP
1096 if (likely(se->load.weight == tg->shares))
1097 return;
1098#endif
6d5ab293 1099 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1100
1101 reweight_entity(cfs_rq_of(se), se, shares);
1102}
1103#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1104static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1105{
1106}
1107#endif /* CONFIG_FAIR_GROUP_SCHED */
1108
f4e26b12
PT
1109/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1110#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
5b51f2f8
PT
1111/*
1112 * We choose a half-life close to 1 scheduling period.
1113 * Note: The tables below are dependent on this value.
1114 */
1115#define LOAD_AVG_PERIOD 32
1116#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1117#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1118
1119/* Precomputed fixed inverse multiplies for multiplication by y^n */
1120static const u32 runnable_avg_yN_inv[] = {
1121 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1122 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1123 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1124 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1125 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1126 0x85aac367, 0x82cd8698,
1127};
1128
1129/*
1130 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1131 * over-estimates when re-combining.
1132 */
1133static const u32 runnable_avg_yN_sum[] = {
1134 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1135 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1136 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1137};
1138
9d85f21c
PT
1139/*
1140 * Approximate:
1141 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1142 */
1143static __always_inline u64 decay_load(u64 val, u64 n)
1144{
5b51f2f8
PT
1145 unsigned int local_n;
1146
1147 if (!n)
1148 return val;
1149 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1150 return 0;
1151
1152 /* after bounds checking we can collapse to 32-bit */
1153 local_n = n;
1154
1155 /*
1156 * As y^PERIOD = 1/2, we can combine
1157 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1158 * With a look-up table which covers k^n (n<PERIOD)
1159 *
1160 * To achieve constant time decay_load.
1161 */
1162 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1163 val >>= local_n / LOAD_AVG_PERIOD;
1164 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1165 }
1166
5b51f2f8
PT
1167 val *= runnable_avg_yN_inv[local_n];
1168 /* We don't use SRR here since we always want to round down. */
1169 return val >> 32;
1170}
1171
1172/*
1173 * For updates fully spanning n periods, the contribution to runnable
1174 * average will be: \Sum 1024*y^n
1175 *
1176 * We can compute this reasonably efficiently by combining:
1177 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1178 */
1179static u32 __compute_runnable_contrib(u64 n)
1180{
1181 u32 contrib = 0;
1182
1183 if (likely(n <= LOAD_AVG_PERIOD))
1184 return runnable_avg_yN_sum[n];
1185 else if (unlikely(n >= LOAD_AVG_MAX_N))
1186 return LOAD_AVG_MAX;
1187
1188 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1189 do {
1190 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1191 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1192
1193 n -= LOAD_AVG_PERIOD;
1194 } while (n > LOAD_AVG_PERIOD);
1195
1196 contrib = decay_load(contrib, n);
1197 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1198}
1199
1200/*
1201 * We can represent the historical contribution to runnable average as the
1202 * coefficients of a geometric series. To do this we sub-divide our runnable
1203 * history into segments of approximately 1ms (1024us); label the segment that
1204 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1205 *
1206 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1207 * p0 p1 p2
1208 * (now) (~1ms ago) (~2ms ago)
1209 *
1210 * Let u_i denote the fraction of p_i that the entity was runnable.
1211 *
1212 * We then designate the fractions u_i as our co-efficients, yielding the
1213 * following representation of historical load:
1214 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1215 *
1216 * We choose y based on the with of a reasonably scheduling period, fixing:
1217 * y^32 = 0.5
1218 *
1219 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1220 * approximately half as much as the contribution to load within the last ms
1221 * (u_0).
1222 *
1223 * When a period "rolls over" and we have new u_0`, multiplying the previous
1224 * sum again by y is sufficient to update:
1225 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1226 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1227 */
1228static __always_inline int __update_entity_runnable_avg(u64 now,
1229 struct sched_avg *sa,
1230 int runnable)
1231{
5b51f2f8
PT
1232 u64 delta, periods;
1233 u32 runnable_contrib;
9d85f21c
PT
1234 int delta_w, decayed = 0;
1235
1236 delta = now - sa->last_runnable_update;
1237 /*
1238 * This should only happen when time goes backwards, which it
1239 * unfortunately does during sched clock init when we swap over to TSC.
1240 */
1241 if ((s64)delta < 0) {
1242 sa->last_runnable_update = now;
1243 return 0;
1244 }
1245
1246 /*
1247 * Use 1024ns as the unit of measurement since it's a reasonable
1248 * approximation of 1us and fast to compute.
1249 */
1250 delta >>= 10;
1251 if (!delta)
1252 return 0;
1253 sa->last_runnable_update = now;
1254
1255 /* delta_w is the amount already accumulated against our next period */
1256 delta_w = sa->runnable_avg_period % 1024;
1257 if (delta + delta_w >= 1024) {
1258 /* period roll-over */
1259 decayed = 1;
1260
1261 /*
1262 * Now that we know we're crossing a period boundary, figure
1263 * out how much from delta we need to complete the current
1264 * period and accrue it.
1265 */
1266 delta_w = 1024 - delta_w;
5b51f2f8
PT
1267 if (runnable)
1268 sa->runnable_avg_sum += delta_w;
1269 sa->runnable_avg_period += delta_w;
1270
1271 delta -= delta_w;
1272
1273 /* Figure out how many additional periods this update spans */
1274 periods = delta / 1024;
1275 delta %= 1024;
1276
1277 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1278 periods + 1);
1279 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1280 periods + 1);
1281
1282 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1283 runnable_contrib = __compute_runnable_contrib(periods);
1284 if (runnable)
1285 sa->runnable_avg_sum += runnable_contrib;
1286 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1287 }
1288
1289 /* Remainder of delta accrued against u_0` */
1290 if (runnable)
1291 sa->runnable_avg_sum += delta;
1292 sa->runnable_avg_period += delta;
1293
1294 return decayed;
1295}
1296
9ee474f5 1297/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1298static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1299{
1300 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1301 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1302
1303 decays -= se->avg.decay_count;
1304 if (!decays)
aff3e498 1305 return 0;
9ee474f5
PT
1306
1307 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1308 se->avg.decay_count = 0;
aff3e498
PT
1309
1310 return decays;
9ee474f5
PT
1311}
1312
c566e8e9
PT
1313#ifdef CONFIG_FAIR_GROUP_SCHED
1314static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1315 int force_update)
1316{
1317 struct task_group *tg = cfs_rq->tg;
1318 s64 tg_contrib;
1319
1320 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1321 tg_contrib -= cfs_rq->tg_load_contrib;
1322
1323 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1324 atomic64_add(tg_contrib, &tg->load_avg);
1325 cfs_rq->tg_load_contrib += tg_contrib;
1326 }
1327}
8165e145 1328
bb17f655
PT
1329/*
1330 * Aggregate cfs_rq runnable averages into an equivalent task_group
1331 * representation for computing load contributions.
1332 */
1333static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1334 struct cfs_rq *cfs_rq)
1335{
1336 struct task_group *tg = cfs_rq->tg;
1337 long contrib;
1338
1339 /* The fraction of a cpu used by this cfs_rq */
1340 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1341 sa->runnable_avg_period + 1);
1342 contrib -= cfs_rq->tg_runnable_contrib;
1343
1344 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1345 atomic_add(contrib, &tg->runnable_avg);
1346 cfs_rq->tg_runnable_contrib += contrib;
1347 }
1348}
1349
8165e145
PT
1350static inline void __update_group_entity_contrib(struct sched_entity *se)
1351{
1352 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1353 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1354 int runnable_avg;
1355
8165e145
PT
1356 u64 contrib;
1357
1358 contrib = cfs_rq->tg_load_contrib * tg->shares;
1359 se->avg.load_avg_contrib = div64_u64(contrib,
1360 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1361
1362 /*
1363 * For group entities we need to compute a correction term in the case
1364 * that they are consuming <1 cpu so that we would contribute the same
1365 * load as a task of equal weight.
1366 *
1367 * Explicitly co-ordinating this measurement would be expensive, but
1368 * fortunately the sum of each cpus contribution forms a usable
1369 * lower-bound on the true value.
1370 *
1371 * Consider the aggregate of 2 contributions. Either they are disjoint
1372 * (and the sum represents true value) or they are disjoint and we are
1373 * understating by the aggregate of their overlap.
1374 *
1375 * Extending this to N cpus, for a given overlap, the maximum amount we
1376 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1377 * cpus that overlap for this interval and w_i is the interval width.
1378 *
1379 * On a small machine; the first term is well-bounded which bounds the
1380 * total error since w_i is a subset of the period. Whereas on a
1381 * larger machine, while this first term can be larger, if w_i is the
1382 * of consequential size guaranteed to see n_i*w_i quickly converge to
1383 * our upper bound of 1-cpu.
1384 */
1385 runnable_avg = atomic_read(&tg->runnable_avg);
1386 if (runnable_avg < NICE_0_LOAD) {
1387 se->avg.load_avg_contrib *= runnable_avg;
1388 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1389 }
8165e145 1390}
c566e8e9
PT
1391#else
1392static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1393 int force_update) {}
bb17f655
PT
1394static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1395 struct cfs_rq *cfs_rq) {}
8165e145 1396static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1397#endif
1398
8165e145
PT
1399static inline void __update_task_entity_contrib(struct sched_entity *se)
1400{
1401 u32 contrib;
1402
1403 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1404 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1405 contrib /= (se->avg.runnable_avg_period + 1);
1406 se->avg.load_avg_contrib = scale_load(contrib);
1407}
1408
2dac754e
PT
1409/* Compute the current contribution to load_avg by se, return any delta */
1410static long __update_entity_load_avg_contrib(struct sched_entity *se)
1411{
1412 long old_contrib = se->avg.load_avg_contrib;
1413
8165e145
PT
1414 if (entity_is_task(se)) {
1415 __update_task_entity_contrib(se);
1416 } else {
bb17f655 1417 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1418 __update_group_entity_contrib(se);
1419 }
2dac754e
PT
1420
1421 return se->avg.load_avg_contrib - old_contrib;
1422}
1423
9ee474f5
PT
1424static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1425 long load_contrib)
1426{
1427 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1428 cfs_rq->blocked_load_avg -= load_contrib;
1429 else
1430 cfs_rq->blocked_load_avg = 0;
1431}
1432
f1b17280
PT
1433static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1434
9d85f21c 1435/* Update a sched_entity's runnable average */
9ee474f5
PT
1436static inline void update_entity_load_avg(struct sched_entity *se,
1437 int update_cfs_rq)
9d85f21c 1438{
2dac754e
PT
1439 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1440 long contrib_delta;
f1b17280 1441 u64 now;
2dac754e 1442
f1b17280
PT
1443 /*
1444 * For a group entity we need to use their owned cfs_rq_clock_task() in
1445 * case they are the parent of a throttled hierarchy.
1446 */
1447 if (entity_is_task(se))
1448 now = cfs_rq_clock_task(cfs_rq);
1449 else
1450 now = cfs_rq_clock_task(group_cfs_rq(se));
1451
1452 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1453 return;
1454
1455 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1456
1457 if (!update_cfs_rq)
1458 return;
1459
2dac754e
PT
1460 if (se->on_rq)
1461 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1462 else
1463 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1464}
1465
1466/*
1467 * Decay the load contributed by all blocked children and account this so that
1468 * their contribution may appropriately discounted when they wake up.
1469 */
aff3e498 1470static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1471{
f1b17280 1472 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1473 u64 decays;
1474
1475 decays = now - cfs_rq->last_decay;
aff3e498 1476 if (!decays && !force_update)
9ee474f5
PT
1477 return;
1478
aff3e498
PT
1479 if (atomic64_read(&cfs_rq->removed_load)) {
1480 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1481 subtract_blocked_load_contrib(cfs_rq, removed_load);
1482 }
9ee474f5 1483
aff3e498
PT
1484 if (decays) {
1485 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1486 decays);
1487 atomic64_add(decays, &cfs_rq->decay_counter);
1488 cfs_rq->last_decay = now;
1489 }
c566e8e9
PT
1490
1491 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1492}
18bf2805
BS
1493
1494static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1495{
1496 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
bb17f655 1497 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1498}
2dac754e
PT
1499
1500/* Add the load generated by se into cfs_rq's child load-average */
1501static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1502 struct sched_entity *se,
1503 int wakeup)
2dac754e 1504{
aff3e498
PT
1505 /*
1506 * We track migrations using entity decay_count <= 0, on a wake-up
1507 * migration we use a negative decay count to track the remote decays
1508 * accumulated while sleeping.
1509 */
1510 if (unlikely(se->avg.decay_count <= 0)) {
9ee474f5 1511 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
aff3e498
PT
1512 if (se->avg.decay_count) {
1513 /*
1514 * In a wake-up migration we have to approximate the
1515 * time sleeping. This is because we can't synchronize
1516 * clock_task between the two cpus, and it is not
1517 * guaranteed to be read-safe. Instead, we can
1518 * approximate this using our carried decays, which are
1519 * explicitly atomically readable.
1520 */
1521 se->avg.last_runnable_update -= (-se->avg.decay_count)
1522 << 20;
1523 update_entity_load_avg(se, 0);
1524 /* Indicate that we're now synchronized and on-rq */
1525 se->avg.decay_count = 0;
1526 }
9ee474f5
PT
1527 wakeup = 0;
1528 } else {
1529 __synchronize_entity_decay(se);
1530 }
1531
aff3e498
PT
1532 /* migrated tasks did not contribute to our blocked load */
1533 if (wakeup) {
9ee474f5 1534 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1535 update_entity_load_avg(se, 0);
1536 }
9ee474f5 1537
2dac754e 1538 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1539 /* we force update consideration on load-balancer moves */
1540 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1541}
1542
9ee474f5
PT
1543/*
1544 * Remove se's load from this cfs_rq child load-average, if the entity is
1545 * transitioning to a blocked state we track its projected decay using
1546 * blocked_load_avg.
1547 */
2dac754e 1548static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1549 struct sched_entity *se,
1550 int sleep)
2dac754e 1551{
9ee474f5 1552 update_entity_load_avg(se, 1);
aff3e498
PT
1553 /* we force update consideration on load-balancer moves */
1554 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1555
2dac754e 1556 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1557 if (sleep) {
1558 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1559 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1560 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1561}
9d85f21c 1562#else
9ee474f5
PT
1563static inline void update_entity_load_avg(struct sched_entity *se,
1564 int update_cfs_rq) {}
18bf2805 1565static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1566static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1567 struct sched_entity *se,
1568 int wakeup) {}
2dac754e 1569static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1570 struct sched_entity *se,
1571 int sleep) {}
aff3e498
PT
1572static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1573 int force_update) {}
9d85f21c
PT
1574#endif
1575
2396af69 1576static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1577{
bf0f6f24 1578#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1579 struct task_struct *tsk = NULL;
1580
1581 if (entity_is_task(se))
1582 tsk = task_of(se);
1583
41acab88
LDM
1584 if (se->statistics.sleep_start) {
1585 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1586
1587 if ((s64)delta < 0)
1588 delta = 0;
1589
41acab88
LDM
1590 if (unlikely(delta > se->statistics.sleep_max))
1591 se->statistics.sleep_max = delta;
bf0f6f24 1592
8c79a045 1593 se->statistics.sleep_start = 0;
41acab88 1594 se->statistics.sum_sleep_runtime += delta;
9745512c 1595
768d0c27 1596 if (tsk) {
e414314c 1597 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1598 trace_sched_stat_sleep(tsk, delta);
1599 }
bf0f6f24 1600 }
41acab88
LDM
1601 if (se->statistics.block_start) {
1602 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1603
1604 if ((s64)delta < 0)
1605 delta = 0;
1606
41acab88
LDM
1607 if (unlikely(delta > se->statistics.block_max))
1608 se->statistics.block_max = delta;
bf0f6f24 1609
8c79a045 1610 se->statistics.block_start = 0;
41acab88 1611 se->statistics.sum_sleep_runtime += delta;
30084fbd 1612
e414314c 1613 if (tsk) {
8f0dfc34 1614 if (tsk->in_iowait) {
41acab88
LDM
1615 se->statistics.iowait_sum += delta;
1616 se->statistics.iowait_count++;
768d0c27 1617 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1618 }
1619
b781a602
AV
1620 trace_sched_stat_blocked(tsk, delta);
1621
e414314c
PZ
1622 /*
1623 * Blocking time is in units of nanosecs, so shift by
1624 * 20 to get a milliseconds-range estimation of the
1625 * amount of time that the task spent sleeping:
1626 */
1627 if (unlikely(prof_on == SLEEP_PROFILING)) {
1628 profile_hits(SLEEP_PROFILING,
1629 (void *)get_wchan(tsk),
1630 delta >> 20);
1631 }
1632 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1633 }
bf0f6f24
IM
1634 }
1635#endif
1636}
1637
ddc97297
PZ
1638static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1639{
1640#ifdef CONFIG_SCHED_DEBUG
1641 s64 d = se->vruntime - cfs_rq->min_vruntime;
1642
1643 if (d < 0)
1644 d = -d;
1645
1646 if (d > 3*sysctl_sched_latency)
1647 schedstat_inc(cfs_rq, nr_spread_over);
1648#endif
1649}
1650
aeb73b04
PZ
1651static void
1652place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1653{
1af5f730 1654 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1655
2cb8600e
PZ
1656 /*
1657 * The 'current' period is already promised to the current tasks,
1658 * however the extra weight of the new task will slow them down a
1659 * little, place the new task so that it fits in the slot that
1660 * stays open at the end.
1661 */
94dfb5e7 1662 if (initial && sched_feat(START_DEBIT))
f9c0b095 1663 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1664
a2e7a7eb 1665 /* sleeps up to a single latency don't count. */
5ca9880c 1666 if (!initial) {
a2e7a7eb 1667 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1668
a2e7a7eb
MG
1669 /*
1670 * Halve their sleep time's effect, to allow
1671 * for a gentler effect of sleepers:
1672 */
1673 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1674 thresh >>= 1;
51e0304c 1675
a2e7a7eb 1676 vruntime -= thresh;
aeb73b04
PZ
1677 }
1678
b5d9d734
MG
1679 /* ensure we never gain time by being placed backwards. */
1680 vruntime = max_vruntime(se->vruntime, vruntime);
1681
67e9fb2a 1682 se->vruntime = vruntime;
aeb73b04
PZ
1683}
1684
d3d9dc33
PT
1685static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1686
bf0f6f24 1687static void
88ec22d3 1688enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1689{
88ec22d3
PZ
1690 /*
1691 * Update the normalized vruntime before updating min_vruntime
1692 * through callig update_curr().
1693 */
371fd7e7 1694 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1695 se->vruntime += cfs_rq->min_vruntime;
1696
bf0f6f24 1697 /*
a2a2d680 1698 * Update run-time statistics of the 'current'.
bf0f6f24 1699 */
b7cc0896 1700 update_curr(cfs_rq);
f269ae04 1701 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1702 account_entity_enqueue(cfs_rq, se);
1703 update_cfs_shares(cfs_rq);
bf0f6f24 1704
88ec22d3 1705 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1706 place_entity(cfs_rq, se, 0);
2396af69 1707 enqueue_sleeper(cfs_rq, se);
e9acbff6 1708 }
bf0f6f24 1709
d2417e5a 1710 update_stats_enqueue(cfs_rq, se);
ddc97297 1711 check_spread(cfs_rq, se);
83b699ed
SV
1712 if (se != cfs_rq->curr)
1713 __enqueue_entity(cfs_rq, se);
2069dd75 1714 se->on_rq = 1;
3d4b47b4 1715
d3d9dc33 1716 if (cfs_rq->nr_running == 1) {
3d4b47b4 1717 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1718 check_enqueue_throttle(cfs_rq);
1719 }
bf0f6f24
IM
1720}
1721
2c13c919 1722static void __clear_buddies_last(struct sched_entity *se)
2002c695 1723{
2c13c919
RR
1724 for_each_sched_entity(se) {
1725 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1726 if (cfs_rq->last == se)
1727 cfs_rq->last = NULL;
1728 else
1729 break;
1730 }
1731}
2002c695 1732
2c13c919
RR
1733static void __clear_buddies_next(struct sched_entity *se)
1734{
1735 for_each_sched_entity(se) {
1736 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1737 if (cfs_rq->next == se)
1738 cfs_rq->next = NULL;
1739 else
1740 break;
1741 }
2002c695
PZ
1742}
1743
ac53db59
RR
1744static void __clear_buddies_skip(struct sched_entity *se)
1745{
1746 for_each_sched_entity(se) {
1747 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1748 if (cfs_rq->skip == se)
1749 cfs_rq->skip = NULL;
1750 else
1751 break;
1752 }
1753}
1754
a571bbea
PZ
1755static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1756{
2c13c919
RR
1757 if (cfs_rq->last == se)
1758 __clear_buddies_last(se);
1759
1760 if (cfs_rq->next == se)
1761 __clear_buddies_next(se);
ac53db59
RR
1762
1763 if (cfs_rq->skip == se)
1764 __clear_buddies_skip(se);
a571bbea
PZ
1765}
1766
6c16a6dc 1767static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1768
bf0f6f24 1769static void
371fd7e7 1770dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1771{
a2a2d680
DA
1772 /*
1773 * Update run-time statistics of the 'current'.
1774 */
1775 update_curr(cfs_rq);
17bc14b7 1776 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1777
19b6a2e3 1778 update_stats_dequeue(cfs_rq, se);
371fd7e7 1779 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1780#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1781 if (entity_is_task(se)) {
1782 struct task_struct *tsk = task_of(se);
1783
1784 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1785 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1786 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1787 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1788 }
db36cc7d 1789#endif
67e9fb2a
PZ
1790 }
1791
2002c695 1792 clear_buddies(cfs_rq, se);
4793241b 1793
83b699ed 1794 if (se != cfs_rq->curr)
30cfdcfc 1795 __dequeue_entity(cfs_rq, se);
17bc14b7 1796 se->on_rq = 0;
30cfdcfc 1797 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1798
1799 /*
1800 * Normalize the entity after updating the min_vruntime because the
1801 * update can refer to the ->curr item and we need to reflect this
1802 * movement in our normalized position.
1803 */
371fd7e7 1804 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1805 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1806
d8b4986d
PT
1807 /* return excess runtime on last dequeue */
1808 return_cfs_rq_runtime(cfs_rq);
1809
1e876231 1810 update_min_vruntime(cfs_rq);
17bc14b7 1811 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1812}
1813
1814/*
1815 * Preempt the current task with a newly woken task if needed:
1816 */
7c92e54f 1817static void
2e09bf55 1818check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1819{
11697830 1820 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1821 struct sched_entity *se;
1822 s64 delta;
11697830 1823
6d0f0ebd 1824 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1825 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1826 if (delta_exec > ideal_runtime) {
bf0f6f24 1827 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1828 /*
1829 * The current task ran long enough, ensure it doesn't get
1830 * re-elected due to buddy favours.
1831 */
1832 clear_buddies(cfs_rq, curr);
f685ceac
MG
1833 return;
1834 }
1835
1836 /*
1837 * Ensure that a task that missed wakeup preemption by a
1838 * narrow margin doesn't have to wait for a full slice.
1839 * This also mitigates buddy induced latencies under load.
1840 */
f685ceac
MG
1841 if (delta_exec < sysctl_sched_min_granularity)
1842 return;
1843
f4cfb33e
WX
1844 se = __pick_first_entity(cfs_rq);
1845 delta = curr->vruntime - se->vruntime;
f685ceac 1846
f4cfb33e
WX
1847 if (delta < 0)
1848 return;
d7d82944 1849
f4cfb33e
WX
1850 if (delta > ideal_runtime)
1851 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1852}
1853
83b699ed 1854static void
8494f412 1855set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1856{
83b699ed
SV
1857 /* 'current' is not kept within the tree. */
1858 if (se->on_rq) {
1859 /*
1860 * Any task has to be enqueued before it get to execute on
1861 * a CPU. So account for the time it spent waiting on the
1862 * runqueue.
1863 */
1864 update_stats_wait_end(cfs_rq, se);
1865 __dequeue_entity(cfs_rq, se);
1866 }
1867
79303e9e 1868 update_stats_curr_start(cfs_rq, se);
429d43bc 1869 cfs_rq->curr = se;
eba1ed4b
IM
1870#ifdef CONFIG_SCHEDSTATS
1871 /*
1872 * Track our maximum slice length, if the CPU's load is at
1873 * least twice that of our own weight (i.e. dont track it
1874 * when there are only lesser-weight tasks around):
1875 */
495eca49 1876 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1877 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1878 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1879 }
1880#endif
4a55b450 1881 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1882}
1883
3f3a4904
PZ
1884static int
1885wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1886
ac53db59
RR
1887/*
1888 * Pick the next process, keeping these things in mind, in this order:
1889 * 1) keep things fair between processes/task groups
1890 * 2) pick the "next" process, since someone really wants that to run
1891 * 3) pick the "last" process, for cache locality
1892 * 4) do not run the "skip" process, if something else is available
1893 */
f4b6755f 1894static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1895{
ac53db59 1896 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1897 struct sched_entity *left = se;
f4b6755f 1898
ac53db59
RR
1899 /*
1900 * Avoid running the skip buddy, if running something else can
1901 * be done without getting too unfair.
1902 */
1903 if (cfs_rq->skip == se) {
1904 struct sched_entity *second = __pick_next_entity(se);
1905 if (second && wakeup_preempt_entity(second, left) < 1)
1906 se = second;
1907 }
aa2ac252 1908
f685ceac
MG
1909 /*
1910 * Prefer last buddy, try to return the CPU to a preempted task.
1911 */
1912 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1913 se = cfs_rq->last;
1914
ac53db59
RR
1915 /*
1916 * Someone really wants this to run. If it's not unfair, run it.
1917 */
1918 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1919 se = cfs_rq->next;
1920
f685ceac 1921 clear_buddies(cfs_rq, se);
4793241b
PZ
1922
1923 return se;
aa2ac252
PZ
1924}
1925
d3d9dc33
PT
1926static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1927
ab6cde26 1928static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1929{
1930 /*
1931 * If still on the runqueue then deactivate_task()
1932 * was not called and update_curr() has to be done:
1933 */
1934 if (prev->on_rq)
b7cc0896 1935 update_curr(cfs_rq);
bf0f6f24 1936
d3d9dc33
PT
1937 /* throttle cfs_rqs exceeding runtime */
1938 check_cfs_rq_runtime(cfs_rq);
1939
ddc97297 1940 check_spread(cfs_rq, prev);
30cfdcfc 1941 if (prev->on_rq) {
5870db5b 1942 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1943 /* Put 'current' back into the tree. */
1944 __enqueue_entity(cfs_rq, prev);
9d85f21c 1945 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1946 update_entity_load_avg(prev, 1);
30cfdcfc 1947 }
429d43bc 1948 cfs_rq->curr = NULL;
bf0f6f24
IM
1949}
1950
8f4d37ec
PZ
1951static void
1952entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1953{
bf0f6f24 1954 /*
30cfdcfc 1955 * Update run-time statistics of the 'current'.
bf0f6f24 1956 */
30cfdcfc 1957 update_curr(cfs_rq);
bf0f6f24 1958
9d85f21c
PT
1959 /*
1960 * Ensure that runnable average is periodically updated.
1961 */
9ee474f5 1962 update_entity_load_avg(curr, 1);
aff3e498 1963 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 1964
8f4d37ec
PZ
1965#ifdef CONFIG_SCHED_HRTICK
1966 /*
1967 * queued ticks are scheduled to match the slice, so don't bother
1968 * validating it and just reschedule.
1969 */
983ed7a6
HH
1970 if (queued) {
1971 resched_task(rq_of(cfs_rq)->curr);
1972 return;
1973 }
8f4d37ec
PZ
1974 /*
1975 * don't let the period tick interfere with the hrtick preemption
1976 */
1977 if (!sched_feat(DOUBLE_TICK) &&
1978 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1979 return;
1980#endif
1981
2c2efaed 1982 if (cfs_rq->nr_running > 1)
2e09bf55 1983 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1984}
1985
ab84d31e
PT
1986
1987/**************************************************
1988 * CFS bandwidth control machinery
1989 */
1990
1991#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1992
1993#ifdef HAVE_JUMP_LABEL
c5905afb 1994static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1995
1996static inline bool cfs_bandwidth_used(void)
1997{
c5905afb 1998 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
1999}
2000
2001void account_cfs_bandwidth_used(int enabled, int was_enabled)
2002{
2003 /* only need to count groups transitioning between enabled/!enabled */
2004 if (enabled && !was_enabled)
c5905afb 2005 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2006 else if (!enabled && was_enabled)
c5905afb 2007 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2008}
2009#else /* HAVE_JUMP_LABEL */
2010static bool cfs_bandwidth_used(void)
2011{
2012 return true;
2013}
2014
2015void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2016#endif /* HAVE_JUMP_LABEL */
2017
ab84d31e
PT
2018/*
2019 * default period for cfs group bandwidth.
2020 * default: 0.1s, units: nanoseconds
2021 */
2022static inline u64 default_cfs_period(void)
2023{
2024 return 100000000ULL;
2025}
ec12cb7f
PT
2026
2027static inline u64 sched_cfs_bandwidth_slice(void)
2028{
2029 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2030}
2031
a9cf55b2
PT
2032/*
2033 * Replenish runtime according to assigned quota and update expiration time.
2034 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2035 * additional synchronization around rq->lock.
2036 *
2037 * requires cfs_b->lock
2038 */
029632fb 2039void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2040{
2041 u64 now;
2042
2043 if (cfs_b->quota == RUNTIME_INF)
2044 return;
2045
2046 now = sched_clock_cpu(smp_processor_id());
2047 cfs_b->runtime = cfs_b->quota;
2048 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2049}
2050
029632fb
PZ
2051static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2052{
2053 return &tg->cfs_bandwidth;
2054}
2055
f1b17280
PT
2056/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2057static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2058{
2059 if (unlikely(cfs_rq->throttle_count))
2060 return cfs_rq->throttled_clock_task;
2061
2062 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2063}
2064
85dac906
PT
2065/* returns 0 on failure to allocate runtime */
2066static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2067{
2068 struct task_group *tg = cfs_rq->tg;
2069 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2070 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2071
2072 /* note: this is a positive sum as runtime_remaining <= 0 */
2073 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2074
2075 raw_spin_lock(&cfs_b->lock);
2076 if (cfs_b->quota == RUNTIME_INF)
2077 amount = min_amount;
58088ad0 2078 else {
a9cf55b2
PT
2079 /*
2080 * If the bandwidth pool has become inactive, then at least one
2081 * period must have elapsed since the last consumption.
2082 * Refresh the global state and ensure bandwidth timer becomes
2083 * active.
2084 */
2085 if (!cfs_b->timer_active) {
2086 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2087 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2088 }
58088ad0
PT
2089
2090 if (cfs_b->runtime > 0) {
2091 amount = min(cfs_b->runtime, min_amount);
2092 cfs_b->runtime -= amount;
2093 cfs_b->idle = 0;
2094 }
ec12cb7f 2095 }
a9cf55b2 2096 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2097 raw_spin_unlock(&cfs_b->lock);
2098
2099 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2100 /*
2101 * we may have advanced our local expiration to account for allowed
2102 * spread between our sched_clock and the one on which runtime was
2103 * issued.
2104 */
2105 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2106 cfs_rq->runtime_expires = expires;
85dac906
PT
2107
2108 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2109}
2110
a9cf55b2
PT
2111/*
2112 * Note: This depends on the synchronization provided by sched_clock and the
2113 * fact that rq->clock snapshots this value.
2114 */
2115static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2116{
a9cf55b2
PT
2117 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2118 struct rq *rq = rq_of(cfs_rq);
2119
2120 /* if the deadline is ahead of our clock, nothing to do */
2121 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2122 return;
2123
a9cf55b2
PT
2124 if (cfs_rq->runtime_remaining < 0)
2125 return;
2126
2127 /*
2128 * If the local deadline has passed we have to consider the
2129 * possibility that our sched_clock is 'fast' and the global deadline
2130 * has not truly expired.
2131 *
2132 * Fortunately we can check determine whether this the case by checking
2133 * whether the global deadline has advanced.
2134 */
2135
2136 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2137 /* extend local deadline, drift is bounded above by 2 ticks */
2138 cfs_rq->runtime_expires += TICK_NSEC;
2139 } else {
2140 /* global deadline is ahead, expiration has passed */
2141 cfs_rq->runtime_remaining = 0;
2142 }
2143}
2144
2145static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2146 unsigned long delta_exec)
2147{
2148 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2149 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2150 expire_cfs_rq_runtime(cfs_rq);
2151
2152 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2153 return;
2154
85dac906
PT
2155 /*
2156 * if we're unable to extend our runtime we resched so that the active
2157 * hierarchy can be throttled
2158 */
2159 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2160 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2161}
2162
6c16a6dc
PZ
2163static __always_inline
2164void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2165{
56f570e5 2166 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2167 return;
2168
2169 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2170}
2171
85dac906
PT
2172static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2173{
56f570e5 2174 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2175}
2176
64660c86
PT
2177/* check whether cfs_rq, or any parent, is throttled */
2178static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2179{
56f570e5 2180 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2181}
2182
2183/*
2184 * Ensure that neither of the group entities corresponding to src_cpu or
2185 * dest_cpu are members of a throttled hierarchy when performing group
2186 * load-balance operations.
2187 */
2188static inline int throttled_lb_pair(struct task_group *tg,
2189 int src_cpu, int dest_cpu)
2190{
2191 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2192
2193 src_cfs_rq = tg->cfs_rq[src_cpu];
2194 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2195
2196 return throttled_hierarchy(src_cfs_rq) ||
2197 throttled_hierarchy(dest_cfs_rq);
2198}
2199
2200/* updated child weight may affect parent so we have to do this bottom up */
2201static int tg_unthrottle_up(struct task_group *tg, void *data)
2202{
2203 struct rq *rq = data;
2204 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2205
2206 cfs_rq->throttle_count--;
2207#ifdef CONFIG_SMP
2208 if (!cfs_rq->throttle_count) {
f1b17280
PT
2209 /* adjust cfs_rq_clock_task() */
2210 cfs_rq->throttled_clock_task_time += rq->clock_task -
2211 cfs_rq->throttled_clock_task;
64660c86
PT
2212 }
2213#endif
2214
2215 return 0;
2216}
2217
2218static int tg_throttle_down(struct task_group *tg, void *data)
2219{
2220 struct rq *rq = data;
2221 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2222
82958366
PT
2223 /* group is entering throttled state, stop time */
2224 if (!cfs_rq->throttle_count)
f1b17280 2225 cfs_rq->throttled_clock_task = rq->clock_task;
64660c86
PT
2226 cfs_rq->throttle_count++;
2227
2228 return 0;
2229}
2230
d3d9dc33 2231static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2232{
2233 struct rq *rq = rq_of(cfs_rq);
2234 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2235 struct sched_entity *se;
2236 long task_delta, dequeue = 1;
2237
2238 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2239
f1b17280 2240 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2241 rcu_read_lock();
2242 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2243 rcu_read_unlock();
85dac906
PT
2244
2245 task_delta = cfs_rq->h_nr_running;
2246 for_each_sched_entity(se) {
2247 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2248 /* throttled entity or throttle-on-deactivate */
2249 if (!se->on_rq)
2250 break;
2251
2252 if (dequeue)
2253 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2254 qcfs_rq->h_nr_running -= task_delta;
2255
2256 if (qcfs_rq->load.weight)
2257 dequeue = 0;
2258 }
2259
2260 if (!se)
2261 rq->nr_running -= task_delta;
2262
2263 cfs_rq->throttled = 1;
f1b17280 2264 cfs_rq->throttled_clock = rq->clock;
85dac906
PT
2265 raw_spin_lock(&cfs_b->lock);
2266 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2267 raw_spin_unlock(&cfs_b->lock);
2268}
2269
029632fb 2270void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2271{
2272 struct rq *rq = rq_of(cfs_rq);
2273 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2274 struct sched_entity *se;
2275 int enqueue = 1;
2276 long task_delta;
2277
2278 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2279
2280 cfs_rq->throttled = 0;
2281 raw_spin_lock(&cfs_b->lock);
f1b17280 2282 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
671fd9da
PT
2283 list_del_rcu(&cfs_rq->throttled_list);
2284 raw_spin_unlock(&cfs_b->lock);
2285
64660c86
PT
2286 update_rq_clock(rq);
2287 /* update hierarchical throttle state */
2288 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2289
671fd9da
PT
2290 if (!cfs_rq->load.weight)
2291 return;
2292
2293 task_delta = cfs_rq->h_nr_running;
2294 for_each_sched_entity(se) {
2295 if (se->on_rq)
2296 enqueue = 0;
2297
2298 cfs_rq = cfs_rq_of(se);
2299 if (enqueue)
2300 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2301 cfs_rq->h_nr_running += task_delta;
2302
2303 if (cfs_rq_throttled(cfs_rq))
2304 break;
2305 }
2306
2307 if (!se)
2308 rq->nr_running += task_delta;
2309
2310 /* determine whether we need to wake up potentially idle cpu */
2311 if (rq->curr == rq->idle && rq->cfs.nr_running)
2312 resched_task(rq->curr);
2313}
2314
2315static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2316 u64 remaining, u64 expires)
2317{
2318 struct cfs_rq *cfs_rq;
2319 u64 runtime = remaining;
2320
2321 rcu_read_lock();
2322 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2323 throttled_list) {
2324 struct rq *rq = rq_of(cfs_rq);
2325
2326 raw_spin_lock(&rq->lock);
2327 if (!cfs_rq_throttled(cfs_rq))
2328 goto next;
2329
2330 runtime = -cfs_rq->runtime_remaining + 1;
2331 if (runtime > remaining)
2332 runtime = remaining;
2333 remaining -= runtime;
2334
2335 cfs_rq->runtime_remaining += runtime;
2336 cfs_rq->runtime_expires = expires;
2337
2338 /* we check whether we're throttled above */
2339 if (cfs_rq->runtime_remaining > 0)
2340 unthrottle_cfs_rq(cfs_rq);
2341
2342next:
2343 raw_spin_unlock(&rq->lock);
2344
2345 if (!remaining)
2346 break;
2347 }
2348 rcu_read_unlock();
2349
2350 return remaining;
2351}
2352
58088ad0
PT
2353/*
2354 * Responsible for refilling a task_group's bandwidth and unthrottling its
2355 * cfs_rqs as appropriate. If there has been no activity within the last
2356 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2357 * used to track this state.
2358 */
2359static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2360{
671fd9da
PT
2361 u64 runtime, runtime_expires;
2362 int idle = 1, throttled;
58088ad0
PT
2363
2364 raw_spin_lock(&cfs_b->lock);
2365 /* no need to continue the timer with no bandwidth constraint */
2366 if (cfs_b->quota == RUNTIME_INF)
2367 goto out_unlock;
2368
671fd9da
PT
2369 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2370 /* idle depends on !throttled (for the case of a large deficit) */
2371 idle = cfs_b->idle && !throttled;
e8da1b18 2372 cfs_b->nr_periods += overrun;
671fd9da 2373
a9cf55b2
PT
2374 /* if we're going inactive then everything else can be deferred */
2375 if (idle)
2376 goto out_unlock;
2377
2378 __refill_cfs_bandwidth_runtime(cfs_b);
2379
671fd9da
PT
2380 if (!throttled) {
2381 /* mark as potentially idle for the upcoming period */
2382 cfs_b->idle = 1;
2383 goto out_unlock;
2384 }
2385
e8da1b18
NR
2386 /* account preceding periods in which throttling occurred */
2387 cfs_b->nr_throttled += overrun;
2388
671fd9da
PT
2389 /*
2390 * There are throttled entities so we must first use the new bandwidth
2391 * to unthrottle them before making it generally available. This
2392 * ensures that all existing debts will be paid before a new cfs_rq is
2393 * allowed to run.
2394 */
2395 runtime = cfs_b->runtime;
2396 runtime_expires = cfs_b->runtime_expires;
2397 cfs_b->runtime = 0;
2398
2399 /*
2400 * This check is repeated as we are holding onto the new bandwidth
2401 * while we unthrottle. This can potentially race with an unthrottled
2402 * group trying to acquire new bandwidth from the global pool.
2403 */
2404 while (throttled && runtime > 0) {
2405 raw_spin_unlock(&cfs_b->lock);
2406 /* we can't nest cfs_b->lock while distributing bandwidth */
2407 runtime = distribute_cfs_runtime(cfs_b, runtime,
2408 runtime_expires);
2409 raw_spin_lock(&cfs_b->lock);
2410
2411 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2412 }
58088ad0 2413
671fd9da
PT
2414 /* return (any) remaining runtime */
2415 cfs_b->runtime = runtime;
2416 /*
2417 * While we are ensured activity in the period following an
2418 * unthrottle, this also covers the case in which the new bandwidth is
2419 * insufficient to cover the existing bandwidth deficit. (Forcing the
2420 * timer to remain active while there are any throttled entities.)
2421 */
2422 cfs_b->idle = 0;
58088ad0
PT
2423out_unlock:
2424 if (idle)
2425 cfs_b->timer_active = 0;
2426 raw_spin_unlock(&cfs_b->lock);
2427
2428 return idle;
2429}
d3d9dc33 2430
d8b4986d
PT
2431/* a cfs_rq won't donate quota below this amount */
2432static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2433/* minimum remaining period time to redistribute slack quota */
2434static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2435/* how long we wait to gather additional slack before distributing */
2436static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2437
2438/* are we near the end of the current quota period? */
2439static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2440{
2441 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2442 u64 remaining;
2443
2444 /* if the call-back is running a quota refresh is already occurring */
2445 if (hrtimer_callback_running(refresh_timer))
2446 return 1;
2447
2448 /* is a quota refresh about to occur? */
2449 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2450 if (remaining < min_expire)
2451 return 1;
2452
2453 return 0;
2454}
2455
2456static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2457{
2458 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2459
2460 /* if there's a quota refresh soon don't bother with slack */
2461 if (runtime_refresh_within(cfs_b, min_left))
2462 return;
2463
2464 start_bandwidth_timer(&cfs_b->slack_timer,
2465 ns_to_ktime(cfs_bandwidth_slack_period));
2466}
2467
2468/* we know any runtime found here is valid as update_curr() precedes return */
2469static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2470{
2471 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2472 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2473
2474 if (slack_runtime <= 0)
2475 return;
2476
2477 raw_spin_lock(&cfs_b->lock);
2478 if (cfs_b->quota != RUNTIME_INF &&
2479 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2480 cfs_b->runtime += slack_runtime;
2481
2482 /* we are under rq->lock, defer unthrottling using a timer */
2483 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2484 !list_empty(&cfs_b->throttled_cfs_rq))
2485 start_cfs_slack_bandwidth(cfs_b);
2486 }
2487 raw_spin_unlock(&cfs_b->lock);
2488
2489 /* even if it's not valid for return we don't want to try again */
2490 cfs_rq->runtime_remaining -= slack_runtime;
2491}
2492
2493static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2494{
56f570e5
PT
2495 if (!cfs_bandwidth_used())
2496 return;
2497
fccfdc6f 2498 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2499 return;
2500
2501 __return_cfs_rq_runtime(cfs_rq);
2502}
2503
2504/*
2505 * This is done with a timer (instead of inline with bandwidth return) since
2506 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2507 */
2508static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2509{
2510 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2511 u64 expires;
2512
2513 /* confirm we're still not at a refresh boundary */
2514 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2515 return;
2516
2517 raw_spin_lock(&cfs_b->lock);
2518 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2519 runtime = cfs_b->runtime;
2520 cfs_b->runtime = 0;
2521 }
2522 expires = cfs_b->runtime_expires;
2523 raw_spin_unlock(&cfs_b->lock);
2524
2525 if (!runtime)
2526 return;
2527
2528 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2529
2530 raw_spin_lock(&cfs_b->lock);
2531 if (expires == cfs_b->runtime_expires)
2532 cfs_b->runtime = runtime;
2533 raw_spin_unlock(&cfs_b->lock);
2534}
2535
d3d9dc33
PT
2536/*
2537 * When a group wakes up we want to make sure that its quota is not already
2538 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2539 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2540 */
2541static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2542{
56f570e5
PT
2543 if (!cfs_bandwidth_used())
2544 return;
2545
d3d9dc33
PT
2546 /* an active group must be handled by the update_curr()->put() path */
2547 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2548 return;
2549
2550 /* ensure the group is not already throttled */
2551 if (cfs_rq_throttled(cfs_rq))
2552 return;
2553
2554 /* update runtime allocation */
2555 account_cfs_rq_runtime(cfs_rq, 0);
2556 if (cfs_rq->runtime_remaining <= 0)
2557 throttle_cfs_rq(cfs_rq);
2558}
2559
2560/* conditionally throttle active cfs_rq's from put_prev_entity() */
2561static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2562{
56f570e5
PT
2563 if (!cfs_bandwidth_used())
2564 return;
2565
d3d9dc33
PT
2566 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2567 return;
2568
2569 /*
2570 * it's possible for a throttled entity to be forced into a running
2571 * state (e.g. set_curr_task), in this case we're finished.
2572 */
2573 if (cfs_rq_throttled(cfs_rq))
2574 return;
2575
2576 throttle_cfs_rq(cfs_rq);
2577}
029632fb
PZ
2578
2579static inline u64 default_cfs_period(void);
2580static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2581static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2582
2583static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2584{
2585 struct cfs_bandwidth *cfs_b =
2586 container_of(timer, struct cfs_bandwidth, slack_timer);
2587 do_sched_cfs_slack_timer(cfs_b);
2588
2589 return HRTIMER_NORESTART;
2590}
2591
2592static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2593{
2594 struct cfs_bandwidth *cfs_b =
2595 container_of(timer, struct cfs_bandwidth, period_timer);
2596 ktime_t now;
2597 int overrun;
2598 int idle = 0;
2599
2600 for (;;) {
2601 now = hrtimer_cb_get_time(timer);
2602 overrun = hrtimer_forward(timer, now, cfs_b->period);
2603
2604 if (!overrun)
2605 break;
2606
2607 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2608 }
2609
2610 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2611}
2612
2613void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2614{
2615 raw_spin_lock_init(&cfs_b->lock);
2616 cfs_b->runtime = 0;
2617 cfs_b->quota = RUNTIME_INF;
2618 cfs_b->period = ns_to_ktime(default_cfs_period());
2619
2620 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2621 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2622 cfs_b->period_timer.function = sched_cfs_period_timer;
2623 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2624 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2625}
2626
2627static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2628{
2629 cfs_rq->runtime_enabled = 0;
2630 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2631}
2632
2633/* requires cfs_b->lock, may release to reprogram timer */
2634void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2635{
2636 /*
2637 * The timer may be active because we're trying to set a new bandwidth
2638 * period or because we're racing with the tear-down path
2639 * (timer_active==0 becomes visible before the hrtimer call-back
2640 * terminates). In either case we ensure that it's re-programmed
2641 */
2642 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2643 raw_spin_unlock(&cfs_b->lock);
2644 /* ensure cfs_b->lock is available while we wait */
2645 hrtimer_cancel(&cfs_b->period_timer);
2646
2647 raw_spin_lock(&cfs_b->lock);
2648 /* if someone else restarted the timer then we're done */
2649 if (cfs_b->timer_active)
2650 return;
2651 }
2652
2653 cfs_b->timer_active = 1;
2654 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2655}
2656
2657static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2658{
2659 hrtimer_cancel(&cfs_b->period_timer);
2660 hrtimer_cancel(&cfs_b->slack_timer);
2661}
2662
a4c96ae3 2663static void unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2664{
2665 struct cfs_rq *cfs_rq;
2666
2667 for_each_leaf_cfs_rq(rq, cfs_rq) {
2668 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2669
2670 if (!cfs_rq->runtime_enabled)
2671 continue;
2672
2673 /*
2674 * clock_task is not advancing so we just need to make sure
2675 * there's some valid quota amount
2676 */
2677 cfs_rq->runtime_remaining = cfs_b->quota;
2678 if (cfs_rq_throttled(cfs_rq))
2679 unthrottle_cfs_rq(cfs_rq);
2680 }
2681}
2682
2683#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2684static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2685{
2686 return rq_of(cfs_rq)->clock_task;
2687}
2688
2689static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2690 unsigned long delta_exec) {}
d3d9dc33
PT
2691static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2692static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2693static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2694
2695static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2696{
2697 return 0;
2698}
64660c86
PT
2699
2700static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2701{
2702 return 0;
2703}
2704
2705static inline int throttled_lb_pair(struct task_group *tg,
2706 int src_cpu, int dest_cpu)
2707{
2708 return 0;
2709}
029632fb
PZ
2710
2711void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2712
2713#ifdef CONFIG_FAIR_GROUP_SCHED
2714static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2715#endif
2716
029632fb
PZ
2717static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2718{
2719 return NULL;
2720}
2721static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2722static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2723
2724#endif /* CONFIG_CFS_BANDWIDTH */
2725
bf0f6f24
IM
2726/**************************************************
2727 * CFS operations on tasks:
2728 */
2729
8f4d37ec
PZ
2730#ifdef CONFIG_SCHED_HRTICK
2731static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2732{
8f4d37ec
PZ
2733 struct sched_entity *se = &p->se;
2734 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2735
2736 WARN_ON(task_rq(p) != rq);
2737
b39e66ea 2738 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2739 u64 slice = sched_slice(cfs_rq, se);
2740 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2741 s64 delta = slice - ran;
2742
2743 if (delta < 0) {
2744 if (rq->curr == p)
2745 resched_task(p);
2746 return;
2747 }
2748
2749 /*
2750 * Don't schedule slices shorter than 10000ns, that just
2751 * doesn't make sense. Rely on vruntime for fairness.
2752 */
31656519 2753 if (rq->curr != p)
157124c1 2754 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2755
31656519 2756 hrtick_start(rq, delta);
8f4d37ec
PZ
2757 }
2758}
a4c2f00f
PZ
2759
2760/*
2761 * called from enqueue/dequeue and updates the hrtick when the
2762 * current task is from our class and nr_running is low enough
2763 * to matter.
2764 */
2765static void hrtick_update(struct rq *rq)
2766{
2767 struct task_struct *curr = rq->curr;
2768
b39e66ea 2769 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2770 return;
2771
2772 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2773 hrtick_start_fair(rq, curr);
2774}
55e12e5e 2775#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2776static inline void
2777hrtick_start_fair(struct rq *rq, struct task_struct *p)
2778{
2779}
a4c2f00f
PZ
2780
2781static inline void hrtick_update(struct rq *rq)
2782{
2783}
8f4d37ec
PZ
2784#endif
2785
bf0f6f24
IM
2786/*
2787 * The enqueue_task method is called before nr_running is
2788 * increased. Here we update the fair scheduling stats and
2789 * then put the task into the rbtree:
2790 */
ea87bb78 2791static void
371fd7e7 2792enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2793{
2794 struct cfs_rq *cfs_rq;
62fb1851 2795 struct sched_entity *se = &p->se;
bf0f6f24
IM
2796
2797 for_each_sched_entity(se) {
62fb1851 2798 if (se->on_rq)
bf0f6f24
IM
2799 break;
2800 cfs_rq = cfs_rq_of(se);
88ec22d3 2801 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2802
2803 /*
2804 * end evaluation on encountering a throttled cfs_rq
2805 *
2806 * note: in the case of encountering a throttled cfs_rq we will
2807 * post the final h_nr_running increment below.
2808 */
2809 if (cfs_rq_throttled(cfs_rq))
2810 break;
953bfcd1 2811 cfs_rq->h_nr_running++;
85dac906 2812
88ec22d3 2813 flags = ENQUEUE_WAKEUP;
bf0f6f24 2814 }
8f4d37ec 2815
2069dd75 2816 for_each_sched_entity(se) {
0f317143 2817 cfs_rq = cfs_rq_of(se);
953bfcd1 2818 cfs_rq->h_nr_running++;
2069dd75 2819
85dac906
PT
2820 if (cfs_rq_throttled(cfs_rq))
2821 break;
2822
17bc14b7 2823 update_cfs_shares(cfs_rq);
9ee474f5 2824 update_entity_load_avg(se, 1);
2069dd75
PZ
2825 }
2826
18bf2805
BS
2827 if (!se) {
2828 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2829 inc_nr_running(rq);
18bf2805 2830 }
a4c2f00f 2831 hrtick_update(rq);
bf0f6f24
IM
2832}
2833
2f36825b
VP
2834static void set_next_buddy(struct sched_entity *se);
2835
bf0f6f24
IM
2836/*
2837 * The dequeue_task method is called before nr_running is
2838 * decreased. We remove the task from the rbtree and
2839 * update the fair scheduling stats:
2840 */
371fd7e7 2841static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2842{
2843 struct cfs_rq *cfs_rq;
62fb1851 2844 struct sched_entity *se = &p->se;
2f36825b 2845 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2846
2847 for_each_sched_entity(se) {
2848 cfs_rq = cfs_rq_of(se);
371fd7e7 2849 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2850
2851 /*
2852 * end evaluation on encountering a throttled cfs_rq
2853 *
2854 * note: in the case of encountering a throttled cfs_rq we will
2855 * post the final h_nr_running decrement below.
2856 */
2857 if (cfs_rq_throttled(cfs_rq))
2858 break;
953bfcd1 2859 cfs_rq->h_nr_running--;
2069dd75 2860
bf0f6f24 2861 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2862 if (cfs_rq->load.weight) {
2863 /*
2864 * Bias pick_next to pick a task from this cfs_rq, as
2865 * p is sleeping when it is within its sched_slice.
2866 */
2867 if (task_sleep && parent_entity(se))
2868 set_next_buddy(parent_entity(se));
9598c82d
PT
2869
2870 /* avoid re-evaluating load for this entity */
2871 se = parent_entity(se);
bf0f6f24 2872 break;
2f36825b 2873 }
371fd7e7 2874 flags |= DEQUEUE_SLEEP;
bf0f6f24 2875 }
8f4d37ec 2876
2069dd75 2877 for_each_sched_entity(se) {
0f317143 2878 cfs_rq = cfs_rq_of(se);
953bfcd1 2879 cfs_rq->h_nr_running--;
2069dd75 2880
85dac906
PT
2881 if (cfs_rq_throttled(cfs_rq))
2882 break;
2883
17bc14b7 2884 update_cfs_shares(cfs_rq);
9ee474f5 2885 update_entity_load_avg(se, 1);
2069dd75
PZ
2886 }
2887
18bf2805 2888 if (!se) {
85dac906 2889 dec_nr_running(rq);
18bf2805
BS
2890 update_rq_runnable_avg(rq, 1);
2891 }
a4c2f00f 2892 hrtick_update(rq);
bf0f6f24
IM
2893}
2894
e7693a36 2895#ifdef CONFIG_SMP
029632fb
PZ
2896/* Used instead of source_load when we know the type == 0 */
2897static unsigned long weighted_cpuload(const int cpu)
2898{
2899 return cpu_rq(cpu)->load.weight;
2900}
2901
2902/*
2903 * Return a low guess at the load of a migration-source cpu weighted
2904 * according to the scheduling class and "nice" value.
2905 *
2906 * We want to under-estimate the load of migration sources, to
2907 * balance conservatively.
2908 */
2909static unsigned long source_load(int cpu, int type)
2910{
2911 struct rq *rq = cpu_rq(cpu);
2912 unsigned long total = weighted_cpuload(cpu);
2913
2914 if (type == 0 || !sched_feat(LB_BIAS))
2915 return total;
2916
2917 return min(rq->cpu_load[type-1], total);
2918}
2919
2920/*
2921 * Return a high guess at the load of a migration-target cpu weighted
2922 * according to the scheduling class and "nice" value.
2923 */
2924static unsigned long target_load(int cpu, int type)
2925{
2926 struct rq *rq = cpu_rq(cpu);
2927 unsigned long total = weighted_cpuload(cpu);
2928
2929 if (type == 0 || !sched_feat(LB_BIAS))
2930 return total;
2931
2932 return max(rq->cpu_load[type-1], total);
2933}
2934
2935static unsigned long power_of(int cpu)
2936{
2937 return cpu_rq(cpu)->cpu_power;
2938}
2939
2940static unsigned long cpu_avg_load_per_task(int cpu)
2941{
2942 struct rq *rq = cpu_rq(cpu);
2943 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2944
2945 if (nr_running)
2946 return rq->load.weight / nr_running;
2947
2948 return 0;
2949}
2950
098fb9db 2951
74f8e4b2 2952static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2953{
2954 struct sched_entity *se = &p->se;
2955 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2956 u64 min_vruntime;
2957
2958#ifndef CONFIG_64BIT
2959 u64 min_vruntime_copy;
88ec22d3 2960
3fe1698b
PZ
2961 do {
2962 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2963 smp_rmb();
2964 min_vruntime = cfs_rq->min_vruntime;
2965 } while (min_vruntime != min_vruntime_copy);
2966#else
2967 min_vruntime = cfs_rq->min_vruntime;
2968#endif
88ec22d3 2969
3fe1698b 2970 se->vruntime -= min_vruntime;
88ec22d3
PZ
2971}
2972
bb3469ac 2973#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2974/*
2975 * effective_load() calculates the load change as seen from the root_task_group
2976 *
2977 * Adding load to a group doesn't make a group heavier, but can cause movement
2978 * of group shares between cpus. Assuming the shares were perfectly aligned one
2979 * can calculate the shift in shares.
cf5f0acf
PZ
2980 *
2981 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2982 * on this @cpu and results in a total addition (subtraction) of @wg to the
2983 * total group weight.
2984 *
2985 * Given a runqueue weight distribution (rw_i) we can compute a shares
2986 * distribution (s_i) using:
2987 *
2988 * s_i = rw_i / \Sum rw_j (1)
2989 *
2990 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2991 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2992 * shares distribution (s_i):
2993 *
2994 * rw_i = { 2, 4, 1, 0 }
2995 * s_i = { 2/7, 4/7, 1/7, 0 }
2996 *
2997 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2998 * task used to run on and the CPU the waker is running on), we need to
2999 * compute the effect of waking a task on either CPU and, in case of a sync
3000 * wakeup, compute the effect of the current task going to sleep.
3001 *
3002 * So for a change of @wl to the local @cpu with an overall group weight change
3003 * of @wl we can compute the new shares distribution (s'_i) using:
3004 *
3005 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3006 *
3007 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3008 * differences in waking a task to CPU 0. The additional task changes the
3009 * weight and shares distributions like:
3010 *
3011 * rw'_i = { 3, 4, 1, 0 }
3012 * s'_i = { 3/8, 4/8, 1/8, 0 }
3013 *
3014 * We can then compute the difference in effective weight by using:
3015 *
3016 * dw_i = S * (s'_i - s_i) (3)
3017 *
3018 * Where 'S' is the group weight as seen by its parent.
3019 *
3020 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3021 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3022 * 4/7) times the weight of the group.
f5bfb7d9 3023 */
2069dd75 3024static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3025{
4be9daaa 3026 struct sched_entity *se = tg->se[cpu];
f1d239f7 3027
cf5f0acf 3028 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3029 return wl;
3030
4be9daaa 3031 for_each_sched_entity(se) {
cf5f0acf 3032 long w, W;
4be9daaa 3033
977dda7c 3034 tg = se->my_q->tg;
bb3469ac 3035
cf5f0acf
PZ
3036 /*
3037 * W = @wg + \Sum rw_j
3038 */
3039 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3040
cf5f0acf
PZ
3041 /*
3042 * w = rw_i + @wl
3043 */
3044 w = se->my_q->load.weight + wl;
940959e9 3045
cf5f0acf
PZ
3046 /*
3047 * wl = S * s'_i; see (2)
3048 */
3049 if (W > 0 && w < W)
3050 wl = (w * tg->shares) / W;
977dda7c
PT
3051 else
3052 wl = tg->shares;
940959e9 3053
cf5f0acf
PZ
3054 /*
3055 * Per the above, wl is the new se->load.weight value; since
3056 * those are clipped to [MIN_SHARES, ...) do so now. See
3057 * calc_cfs_shares().
3058 */
977dda7c
PT
3059 if (wl < MIN_SHARES)
3060 wl = MIN_SHARES;
cf5f0acf
PZ
3061
3062 /*
3063 * wl = dw_i = S * (s'_i - s_i); see (3)
3064 */
977dda7c 3065 wl -= se->load.weight;
cf5f0acf
PZ
3066
3067 /*
3068 * Recursively apply this logic to all parent groups to compute
3069 * the final effective load change on the root group. Since
3070 * only the @tg group gets extra weight, all parent groups can
3071 * only redistribute existing shares. @wl is the shift in shares
3072 * resulting from this level per the above.
3073 */
4be9daaa 3074 wg = 0;
4be9daaa 3075 }
bb3469ac 3076
4be9daaa 3077 return wl;
bb3469ac
PZ
3078}
3079#else
4be9daaa 3080
83378269
PZ
3081static inline unsigned long effective_load(struct task_group *tg, int cpu,
3082 unsigned long wl, unsigned long wg)
4be9daaa 3083{
83378269 3084 return wl;
bb3469ac 3085}
4be9daaa 3086
bb3469ac
PZ
3087#endif
3088
c88d5910 3089static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3090{
e37b6a7b 3091 s64 this_load, load;
c88d5910 3092 int idx, this_cpu, prev_cpu;
098fb9db 3093 unsigned long tl_per_task;
c88d5910 3094 struct task_group *tg;
83378269 3095 unsigned long weight;
b3137bc8 3096 int balanced;
098fb9db 3097
c88d5910
PZ
3098 idx = sd->wake_idx;
3099 this_cpu = smp_processor_id();
3100 prev_cpu = task_cpu(p);
3101 load = source_load(prev_cpu, idx);
3102 this_load = target_load(this_cpu, idx);
098fb9db 3103
b3137bc8
MG
3104 /*
3105 * If sync wakeup then subtract the (maximum possible)
3106 * effect of the currently running task from the load
3107 * of the current CPU:
3108 */
83378269
PZ
3109 if (sync) {
3110 tg = task_group(current);
3111 weight = current->se.load.weight;
3112
c88d5910 3113 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3114 load += effective_load(tg, prev_cpu, 0, -weight);
3115 }
b3137bc8 3116
83378269
PZ
3117 tg = task_group(p);
3118 weight = p->se.load.weight;
b3137bc8 3119
71a29aa7
PZ
3120 /*
3121 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3122 * due to the sync cause above having dropped this_load to 0, we'll
3123 * always have an imbalance, but there's really nothing you can do
3124 * about that, so that's good too.
71a29aa7
PZ
3125 *
3126 * Otherwise check if either cpus are near enough in load to allow this
3127 * task to be woken on this_cpu.
3128 */
e37b6a7b
PT
3129 if (this_load > 0) {
3130 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3131
3132 this_eff_load = 100;
3133 this_eff_load *= power_of(prev_cpu);
3134 this_eff_load *= this_load +
3135 effective_load(tg, this_cpu, weight, weight);
3136
3137 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3138 prev_eff_load *= power_of(this_cpu);
3139 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3140
3141 balanced = this_eff_load <= prev_eff_load;
3142 } else
3143 balanced = true;
b3137bc8 3144
098fb9db 3145 /*
4ae7d5ce
IM
3146 * If the currently running task will sleep within
3147 * a reasonable amount of time then attract this newly
3148 * woken task:
098fb9db 3149 */
2fb7635c
PZ
3150 if (sync && balanced)
3151 return 1;
098fb9db 3152
41acab88 3153 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3154 tl_per_task = cpu_avg_load_per_task(this_cpu);
3155
c88d5910
PZ
3156 if (balanced ||
3157 (this_load <= load &&
3158 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3159 /*
3160 * This domain has SD_WAKE_AFFINE and
3161 * p is cache cold in this domain, and
3162 * there is no bad imbalance.
3163 */
c88d5910 3164 schedstat_inc(sd, ttwu_move_affine);
41acab88 3165 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3166
3167 return 1;
3168 }
3169 return 0;
3170}
3171
aaee1203
PZ
3172/*
3173 * find_idlest_group finds and returns the least busy CPU group within the
3174 * domain.
3175 */
3176static struct sched_group *
78e7ed53 3177find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3178 int this_cpu, int load_idx)
e7693a36 3179{
b3bd3de6 3180 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3181 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3182 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3183
aaee1203
PZ
3184 do {
3185 unsigned long load, avg_load;
3186 int local_group;
3187 int i;
e7693a36 3188
aaee1203
PZ
3189 /* Skip over this group if it has no CPUs allowed */
3190 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3191 tsk_cpus_allowed(p)))
aaee1203
PZ
3192 continue;
3193
3194 local_group = cpumask_test_cpu(this_cpu,
3195 sched_group_cpus(group));
3196
3197 /* Tally up the load of all CPUs in the group */
3198 avg_load = 0;
3199
3200 for_each_cpu(i, sched_group_cpus(group)) {
3201 /* Bias balancing toward cpus of our domain */
3202 if (local_group)
3203 load = source_load(i, load_idx);
3204 else
3205 load = target_load(i, load_idx);
3206
3207 avg_load += load;
3208 }
3209
3210 /* Adjust by relative CPU power of the group */
9c3f75cb 3211 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3212
3213 if (local_group) {
3214 this_load = avg_load;
aaee1203
PZ
3215 } else if (avg_load < min_load) {
3216 min_load = avg_load;
3217 idlest = group;
3218 }
3219 } while (group = group->next, group != sd->groups);
3220
3221 if (!idlest || 100*this_load < imbalance*min_load)
3222 return NULL;
3223 return idlest;
3224}
3225
3226/*
3227 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3228 */
3229static int
3230find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3231{
3232 unsigned long load, min_load = ULONG_MAX;
3233 int idlest = -1;
3234 int i;
3235
3236 /* Traverse only the allowed CPUs */
fa17b507 3237 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3238 load = weighted_cpuload(i);
3239
3240 if (load < min_load || (load == min_load && i == this_cpu)) {
3241 min_load = load;
3242 idlest = i;
e7693a36
GH
3243 }
3244 }
3245
aaee1203
PZ
3246 return idlest;
3247}
e7693a36 3248
a50bde51
PZ
3249/*
3250 * Try and locate an idle CPU in the sched_domain.
3251 */
99bd5e2f 3252static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
3253{
3254 int cpu = smp_processor_id();
3255 int prev_cpu = task_cpu(p);
99bd5e2f 3256 struct sched_domain *sd;
37407ea7
LT
3257 struct sched_group *sg;
3258 int i;
a50bde51
PZ
3259
3260 /*
99bd5e2f
SS
3261 * If the task is going to be woken-up on this cpu and if it is
3262 * already idle, then it is the right target.
a50bde51 3263 */
99bd5e2f
SS
3264 if (target == cpu && idle_cpu(cpu))
3265 return cpu;
3266
3267 /*
3268 * If the task is going to be woken-up on the cpu where it previously
3269 * ran and if it is currently idle, then it the right target.
3270 */
3271 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 3272 return prev_cpu;
a50bde51
PZ
3273
3274 /*
37407ea7 3275 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3276 */
518cd623 3277 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3278 for_each_lower_domain(sd) {
37407ea7
LT
3279 sg = sd->groups;
3280 do {
3281 if (!cpumask_intersects(sched_group_cpus(sg),
3282 tsk_cpus_allowed(p)))
3283 goto next;
3284
3285 for_each_cpu(i, sched_group_cpus(sg)) {
3286 if (!idle_cpu(i))
3287 goto next;
3288 }
970e1789 3289
37407ea7
LT
3290 target = cpumask_first_and(sched_group_cpus(sg),
3291 tsk_cpus_allowed(p));
3292 goto done;
3293next:
3294 sg = sg->next;
3295 } while (sg != sd->groups);
3296 }
3297done:
a50bde51
PZ
3298 return target;
3299}
3300
aaee1203
PZ
3301/*
3302 * sched_balance_self: balance the current task (running on cpu) in domains
3303 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3304 * SD_BALANCE_EXEC.
3305 *
3306 * Balance, ie. select the least loaded group.
3307 *
3308 * Returns the target CPU number, or the same CPU if no balancing is needed.
3309 *
3310 * preempt must be disabled.
3311 */
0017d735 3312static int
7608dec2 3313select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3314{
29cd8bae 3315 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3316 int cpu = smp_processor_id();
3317 int prev_cpu = task_cpu(p);
3318 int new_cpu = cpu;
99bd5e2f 3319 int want_affine = 0;
5158f4e4 3320 int sync = wake_flags & WF_SYNC;
c88d5910 3321
29baa747 3322 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3323 return prev_cpu;
3324
0763a660 3325 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3326 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3327 want_affine = 1;
3328 new_cpu = prev_cpu;
3329 }
aaee1203 3330
dce840a0 3331 rcu_read_lock();
aaee1203 3332 for_each_domain(cpu, tmp) {
e4f42888
PZ
3333 if (!(tmp->flags & SD_LOAD_BALANCE))
3334 continue;
3335
fe3bcfe1 3336 /*
99bd5e2f
SS
3337 * If both cpu and prev_cpu are part of this domain,
3338 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3339 */
99bd5e2f
SS
3340 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3341 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3342 affine_sd = tmp;
29cd8bae 3343 break;
f03542a7 3344 }
29cd8bae 3345
f03542a7 3346 if (tmp->flags & sd_flag)
29cd8bae
PZ
3347 sd = tmp;
3348 }
3349
8b911acd 3350 if (affine_sd) {
f03542a7 3351 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3352 prev_cpu = cpu;
3353
3354 new_cpu = select_idle_sibling(p, prev_cpu);
3355 goto unlock;
8b911acd 3356 }
e7693a36 3357
aaee1203 3358 while (sd) {
5158f4e4 3359 int load_idx = sd->forkexec_idx;
aaee1203 3360 struct sched_group *group;
c88d5910 3361 int weight;
098fb9db 3362
0763a660 3363 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3364 sd = sd->child;
3365 continue;
3366 }
098fb9db 3367
5158f4e4
PZ
3368 if (sd_flag & SD_BALANCE_WAKE)
3369 load_idx = sd->wake_idx;
098fb9db 3370
5158f4e4 3371 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3372 if (!group) {
3373 sd = sd->child;
3374 continue;
3375 }
4ae7d5ce 3376
d7c33c49 3377 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3378 if (new_cpu == -1 || new_cpu == cpu) {
3379 /* Now try balancing at a lower domain level of cpu */
3380 sd = sd->child;
3381 continue;
e7693a36 3382 }
aaee1203
PZ
3383
3384 /* Now try balancing at a lower domain level of new_cpu */
3385 cpu = new_cpu;
669c55e9 3386 weight = sd->span_weight;
aaee1203
PZ
3387 sd = NULL;
3388 for_each_domain(cpu, tmp) {
669c55e9 3389 if (weight <= tmp->span_weight)
aaee1203 3390 break;
0763a660 3391 if (tmp->flags & sd_flag)
aaee1203
PZ
3392 sd = tmp;
3393 }
3394 /* while loop will break here if sd == NULL */
e7693a36 3395 }
dce840a0
PZ
3396unlock:
3397 rcu_read_unlock();
e7693a36 3398
c88d5910 3399 return new_cpu;
e7693a36 3400}
0a74bef8 3401
f4e26b12
PT
3402/*
3403 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3404 * removed when useful for applications beyond shares distribution (e.g.
3405 * load-balance).
3406 */
3407#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8
PT
3408/*
3409 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3410 * cfs_rq_of(p) references at time of call are still valid and identify the
3411 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3412 * other assumptions, including the state of rq->lock, should be made.
3413 */
3414static void
3415migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3416{
aff3e498
PT
3417 struct sched_entity *se = &p->se;
3418 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3419
3420 /*
3421 * Load tracking: accumulate removed load so that it can be processed
3422 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3423 * to blocked load iff they have a positive decay-count. It can never
3424 * be negative here since on-rq tasks have decay-count == 0.
3425 */
3426 if (se->avg.decay_count) {
3427 se->avg.decay_count = -__synchronize_entity_decay(se);
3428 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3429 }
0a74bef8 3430}
f4e26b12 3431#endif
e7693a36
GH
3432#endif /* CONFIG_SMP */
3433
e52fb7c0
PZ
3434static unsigned long
3435wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3436{
3437 unsigned long gran = sysctl_sched_wakeup_granularity;
3438
3439 /*
e52fb7c0
PZ
3440 * Since its curr running now, convert the gran from real-time
3441 * to virtual-time in his units.
13814d42
MG
3442 *
3443 * By using 'se' instead of 'curr' we penalize light tasks, so
3444 * they get preempted easier. That is, if 'se' < 'curr' then
3445 * the resulting gran will be larger, therefore penalizing the
3446 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3447 * be smaller, again penalizing the lighter task.
3448 *
3449 * This is especially important for buddies when the leftmost
3450 * task is higher priority than the buddy.
0bbd3336 3451 */
f4ad9bd2 3452 return calc_delta_fair(gran, se);
0bbd3336
PZ
3453}
3454
464b7527
PZ
3455/*
3456 * Should 'se' preempt 'curr'.
3457 *
3458 * |s1
3459 * |s2
3460 * |s3
3461 * g
3462 * |<--->|c
3463 *
3464 * w(c, s1) = -1
3465 * w(c, s2) = 0
3466 * w(c, s3) = 1
3467 *
3468 */
3469static int
3470wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3471{
3472 s64 gran, vdiff = curr->vruntime - se->vruntime;
3473
3474 if (vdiff <= 0)
3475 return -1;
3476
e52fb7c0 3477 gran = wakeup_gran(curr, se);
464b7527
PZ
3478 if (vdiff > gran)
3479 return 1;
3480
3481 return 0;
3482}
3483
02479099
PZ
3484static void set_last_buddy(struct sched_entity *se)
3485{
69c80f3e
VP
3486 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3487 return;
3488
3489 for_each_sched_entity(se)
3490 cfs_rq_of(se)->last = se;
02479099
PZ
3491}
3492
3493static void set_next_buddy(struct sched_entity *se)
3494{
69c80f3e
VP
3495 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3496 return;
3497
3498 for_each_sched_entity(se)
3499 cfs_rq_of(se)->next = se;
02479099
PZ
3500}
3501
ac53db59
RR
3502static void set_skip_buddy(struct sched_entity *se)
3503{
69c80f3e
VP
3504 for_each_sched_entity(se)
3505 cfs_rq_of(se)->skip = se;
ac53db59
RR
3506}
3507
bf0f6f24
IM
3508/*
3509 * Preempt the current task with a newly woken task if needed:
3510 */
5a9b86f6 3511static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3512{
3513 struct task_struct *curr = rq->curr;
8651a86c 3514 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3515 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3516 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3517 int next_buddy_marked = 0;
bf0f6f24 3518
4ae7d5ce
IM
3519 if (unlikely(se == pse))
3520 return;
3521
5238cdd3 3522 /*
ddcdf6e7 3523 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3524 * unconditionally check_prempt_curr() after an enqueue (which may have
3525 * lead to a throttle). This both saves work and prevents false
3526 * next-buddy nomination below.
3527 */
3528 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3529 return;
3530
2f36825b 3531 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3532 set_next_buddy(pse);
2f36825b
VP
3533 next_buddy_marked = 1;
3534 }
57fdc26d 3535
aec0a514
BR
3536 /*
3537 * We can come here with TIF_NEED_RESCHED already set from new task
3538 * wake up path.
5238cdd3
PT
3539 *
3540 * Note: this also catches the edge-case of curr being in a throttled
3541 * group (e.g. via set_curr_task), since update_curr() (in the
3542 * enqueue of curr) will have resulted in resched being set. This
3543 * prevents us from potentially nominating it as a false LAST_BUDDY
3544 * below.
aec0a514
BR
3545 */
3546 if (test_tsk_need_resched(curr))
3547 return;
3548
a2f5c9ab
DH
3549 /* Idle tasks are by definition preempted by non-idle tasks. */
3550 if (unlikely(curr->policy == SCHED_IDLE) &&
3551 likely(p->policy != SCHED_IDLE))
3552 goto preempt;
3553
91c234b4 3554 /*
a2f5c9ab
DH
3555 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3556 * is driven by the tick):
91c234b4 3557 */
8ed92e51 3558 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3559 return;
bf0f6f24 3560
464b7527 3561 find_matching_se(&se, &pse);
9bbd7374 3562 update_curr(cfs_rq_of(se));
002f128b 3563 BUG_ON(!pse);
2f36825b
VP
3564 if (wakeup_preempt_entity(se, pse) == 1) {
3565 /*
3566 * Bias pick_next to pick the sched entity that is
3567 * triggering this preemption.
3568 */
3569 if (!next_buddy_marked)
3570 set_next_buddy(pse);
3a7e73a2 3571 goto preempt;
2f36825b 3572 }
464b7527 3573
3a7e73a2 3574 return;
a65ac745 3575
3a7e73a2
PZ
3576preempt:
3577 resched_task(curr);
3578 /*
3579 * Only set the backward buddy when the current task is still
3580 * on the rq. This can happen when a wakeup gets interleaved
3581 * with schedule on the ->pre_schedule() or idle_balance()
3582 * point, either of which can * drop the rq lock.
3583 *
3584 * Also, during early boot the idle thread is in the fair class,
3585 * for obvious reasons its a bad idea to schedule back to it.
3586 */
3587 if (unlikely(!se->on_rq || curr == rq->idle))
3588 return;
3589
3590 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3591 set_last_buddy(se);
bf0f6f24
IM
3592}
3593
fb8d4724 3594static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3595{
8f4d37ec 3596 struct task_struct *p;
bf0f6f24
IM
3597 struct cfs_rq *cfs_rq = &rq->cfs;
3598 struct sched_entity *se;
3599
36ace27e 3600 if (!cfs_rq->nr_running)
bf0f6f24
IM
3601 return NULL;
3602
3603 do {
9948f4b2 3604 se = pick_next_entity(cfs_rq);
f4b6755f 3605 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3606 cfs_rq = group_cfs_rq(se);
3607 } while (cfs_rq);
3608
8f4d37ec 3609 p = task_of(se);
b39e66ea
MG
3610 if (hrtick_enabled(rq))
3611 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3612
3613 return p;
bf0f6f24
IM
3614}
3615
3616/*
3617 * Account for a descheduled task:
3618 */
31ee529c 3619static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3620{
3621 struct sched_entity *se = &prev->se;
3622 struct cfs_rq *cfs_rq;
3623
3624 for_each_sched_entity(se) {
3625 cfs_rq = cfs_rq_of(se);
ab6cde26 3626 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3627 }
3628}
3629
ac53db59
RR
3630/*
3631 * sched_yield() is very simple
3632 *
3633 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3634 */
3635static void yield_task_fair(struct rq *rq)
3636{
3637 struct task_struct *curr = rq->curr;
3638 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3639 struct sched_entity *se = &curr->se;
3640
3641 /*
3642 * Are we the only task in the tree?
3643 */
3644 if (unlikely(rq->nr_running == 1))
3645 return;
3646
3647 clear_buddies(cfs_rq, se);
3648
3649 if (curr->policy != SCHED_BATCH) {
3650 update_rq_clock(rq);
3651 /*
3652 * Update run-time statistics of the 'current'.
3653 */
3654 update_curr(cfs_rq);
916671c0
MG
3655 /*
3656 * Tell update_rq_clock() that we've just updated,
3657 * so we don't do microscopic update in schedule()
3658 * and double the fastpath cost.
3659 */
3660 rq->skip_clock_update = 1;
ac53db59
RR
3661 }
3662
3663 set_skip_buddy(se);
3664}
3665
d95f4122
MG
3666static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3667{
3668 struct sched_entity *se = &p->se;
3669
5238cdd3
PT
3670 /* throttled hierarchies are not runnable */
3671 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3672 return false;
3673
3674 /* Tell the scheduler that we'd really like pse to run next. */
3675 set_next_buddy(se);
3676
d95f4122
MG
3677 yield_task_fair(rq);
3678
3679 return true;
3680}
3681
681f3e68 3682#ifdef CONFIG_SMP
bf0f6f24 3683/**************************************************
e9c84cb8
PZ
3684 * Fair scheduling class load-balancing methods.
3685 *
3686 * BASICS
3687 *
3688 * The purpose of load-balancing is to achieve the same basic fairness the
3689 * per-cpu scheduler provides, namely provide a proportional amount of compute
3690 * time to each task. This is expressed in the following equation:
3691 *
3692 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3693 *
3694 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3695 * W_i,0 is defined as:
3696 *
3697 * W_i,0 = \Sum_j w_i,j (2)
3698 *
3699 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3700 * is derived from the nice value as per prio_to_weight[].
3701 *
3702 * The weight average is an exponential decay average of the instantaneous
3703 * weight:
3704 *
3705 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3706 *
3707 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3708 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3709 * can also include other factors [XXX].
3710 *
3711 * To achieve this balance we define a measure of imbalance which follows
3712 * directly from (1):
3713 *
3714 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3715 *
3716 * We them move tasks around to minimize the imbalance. In the continuous
3717 * function space it is obvious this converges, in the discrete case we get
3718 * a few fun cases generally called infeasible weight scenarios.
3719 *
3720 * [XXX expand on:
3721 * - infeasible weights;
3722 * - local vs global optima in the discrete case. ]
3723 *
3724 *
3725 * SCHED DOMAINS
3726 *
3727 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3728 * for all i,j solution, we create a tree of cpus that follows the hardware
3729 * topology where each level pairs two lower groups (or better). This results
3730 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3731 * tree to only the first of the previous level and we decrease the frequency
3732 * of load-balance at each level inv. proportional to the number of cpus in
3733 * the groups.
3734 *
3735 * This yields:
3736 *
3737 * log_2 n 1 n
3738 * \Sum { --- * --- * 2^i } = O(n) (5)
3739 * i = 0 2^i 2^i
3740 * `- size of each group
3741 * | | `- number of cpus doing load-balance
3742 * | `- freq
3743 * `- sum over all levels
3744 *
3745 * Coupled with a limit on how many tasks we can migrate every balance pass,
3746 * this makes (5) the runtime complexity of the balancer.
3747 *
3748 * An important property here is that each CPU is still (indirectly) connected
3749 * to every other cpu in at most O(log n) steps:
3750 *
3751 * The adjacency matrix of the resulting graph is given by:
3752 *
3753 * log_2 n
3754 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3755 * k = 0
3756 *
3757 * And you'll find that:
3758 *
3759 * A^(log_2 n)_i,j != 0 for all i,j (7)
3760 *
3761 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3762 * The task movement gives a factor of O(m), giving a convergence complexity
3763 * of:
3764 *
3765 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3766 *
3767 *
3768 * WORK CONSERVING
3769 *
3770 * In order to avoid CPUs going idle while there's still work to do, new idle
3771 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3772 * tree itself instead of relying on other CPUs to bring it work.
3773 *
3774 * This adds some complexity to both (5) and (8) but it reduces the total idle
3775 * time.
3776 *
3777 * [XXX more?]
3778 *
3779 *
3780 * CGROUPS
3781 *
3782 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3783 *
3784 * s_k,i
3785 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3786 * S_k
3787 *
3788 * Where
3789 *
3790 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3791 *
3792 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3793 *
3794 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3795 * property.
3796 *
3797 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3798 * rewrite all of this once again.]
3799 */
bf0f6f24 3800
ed387b78
HS
3801static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3802
ddcdf6e7 3803#define LBF_ALL_PINNED 0x01
367456c7 3804#define LBF_NEED_BREAK 0x02
88b8dac0 3805#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3806
3807struct lb_env {
3808 struct sched_domain *sd;
3809
ddcdf6e7 3810 struct rq *src_rq;
85c1e7da 3811 int src_cpu;
ddcdf6e7
PZ
3812
3813 int dst_cpu;
3814 struct rq *dst_rq;
3815
88b8dac0
SV
3816 struct cpumask *dst_grpmask;
3817 int new_dst_cpu;
ddcdf6e7 3818 enum cpu_idle_type idle;
bd939f45 3819 long imbalance;
b9403130
MW
3820 /* The set of CPUs under consideration for load-balancing */
3821 struct cpumask *cpus;
3822
ddcdf6e7 3823 unsigned int flags;
367456c7
PZ
3824
3825 unsigned int loop;
3826 unsigned int loop_break;
3827 unsigned int loop_max;
ddcdf6e7
PZ
3828};
3829
1e3c88bd 3830/*
ddcdf6e7 3831 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3832 * Both runqueues must be locked.
3833 */
ddcdf6e7 3834static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3835{
ddcdf6e7
PZ
3836 deactivate_task(env->src_rq, p, 0);
3837 set_task_cpu(p, env->dst_cpu);
3838 activate_task(env->dst_rq, p, 0);
3839 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3840}
3841
029632fb
PZ
3842/*
3843 * Is this task likely cache-hot:
3844 */
3845static int
3846task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3847{
3848 s64 delta;
3849
3850 if (p->sched_class != &fair_sched_class)
3851 return 0;
3852
3853 if (unlikely(p->policy == SCHED_IDLE))
3854 return 0;
3855
3856 /*
3857 * Buddy candidates are cache hot:
3858 */
3859 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3860 (&p->se == cfs_rq_of(&p->se)->next ||
3861 &p->se == cfs_rq_of(&p->se)->last))
3862 return 1;
3863
3864 if (sysctl_sched_migration_cost == -1)
3865 return 1;
3866 if (sysctl_sched_migration_cost == 0)
3867 return 0;
3868
3869 delta = now - p->se.exec_start;
3870
3871 return delta < (s64)sysctl_sched_migration_cost;
3872}
3873
1e3c88bd
PZ
3874/*
3875 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3876 */
3877static
8e45cb54 3878int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3879{
3880 int tsk_cache_hot = 0;
3881 /*
3882 * We do not migrate tasks that are:
3883 * 1) running (obviously), or
3884 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3885 * 3) are cache-hot on their current CPU.
3886 */
ddcdf6e7 3887 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3888 int new_dst_cpu;
3889
41acab88 3890 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3891
3892 /*
3893 * Remember if this task can be migrated to any other cpu in
3894 * our sched_group. We may want to revisit it if we couldn't
3895 * meet load balance goals by pulling other tasks on src_cpu.
3896 *
3897 * Also avoid computing new_dst_cpu if we have already computed
3898 * one in current iteration.
3899 */
3900 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3901 return 0;
3902
3903 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3904 tsk_cpus_allowed(p));
3905 if (new_dst_cpu < nr_cpu_ids) {
3906 env->flags |= LBF_SOME_PINNED;
3907 env->new_dst_cpu = new_dst_cpu;
3908 }
1e3c88bd
PZ
3909 return 0;
3910 }
88b8dac0
SV
3911
3912 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3913 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3914
ddcdf6e7 3915 if (task_running(env->src_rq, p)) {
41acab88 3916 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3917 return 0;
3918 }
3919
3920 /*
3921 * Aggressive migration if:
3922 * 1) task is cache cold, or
3923 * 2) too many balance attempts have failed.
3924 */
3925
ddcdf6e7 3926 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3927 if (!tsk_cache_hot ||
8e45cb54 3928 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3929#ifdef CONFIG_SCHEDSTATS
3930 if (tsk_cache_hot) {
8e45cb54 3931 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3932 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3933 }
3934#endif
3935 return 1;
3936 }
3937
3938 if (tsk_cache_hot) {
41acab88 3939 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3940 return 0;
3941 }
3942 return 1;
3943}
3944
897c395f
PZ
3945/*
3946 * move_one_task tries to move exactly one task from busiest to this_rq, as
3947 * part of active balancing operations within "domain".
3948 * Returns 1 if successful and 0 otherwise.
3949 *
3950 * Called with both runqueues locked.
3951 */
8e45cb54 3952static int move_one_task(struct lb_env *env)
897c395f
PZ
3953{
3954 struct task_struct *p, *n;
897c395f 3955
367456c7
PZ
3956 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3957 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3958 continue;
897c395f 3959
367456c7
PZ
3960 if (!can_migrate_task(p, env))
3961 continue;
897c395f 3962
367456c7
PZ
3963 move_task(p, env);
3964 /*
3965 * Right now, this is only the second place move_task()
3966 * is called, so we can safely collect move_task()
3967 * stats here rather than inside move_task().
3968 */
3969 schedstat_inc(env->sd, lb_gained[env->idle]);
3970 return 1;
897c395f 3971 }
897c395f
PZ
3972 return 0;
3973}
3974
367456c7
PZ
3975static unsigned long task_h_load(struct task_struct *p);
3976
eb95308e
PZ
3977static const unsigned int sched_nr_migrate_break = 32;
3978
5d6523eb 3979/*
bd939f45 3980 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3981 * this_rq, as part of a balancing operation within domain "sd".
3982 * Returns 1 if successful and 0 otherwise.
3983 *
3984 * Called with both runqueues locked.
3985 */
3986static int move_tasks(struct lb_env *env)
1e3c88bd 3987{
5d6523eb
PZ
3988 struct list_head *tasks = &env->src_rq->cfs_tasks;
3989 struct task_struct *p;
367456c7
PZ
3990 unsigned long load;
3991 int pulled = 0;
1e3c88bd 3992
bd939f45 3993 if (env->imbalance <= 0)
5d6523eb 3994 return 0;
1e3c88bd 3995
5d6523eb
PZ
3996 while (!list_empty(tasks)) {
3997 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 3998
367456c7
PZ
3999 env->loop++;
4000 /* We've more or less seen every task there is, call it quits */
5d6523eb 4001 if (env->loop > env->loop_max)
367456c7 4002 break;
5d6523eb
PZ
4003
4004 /* take a breather every nr_migrate tasks */
367456c7 4005 if (env->loop > env->loop_break) {
eb95308e 4006 env->loop_break += sched_nr_migrate_break;
8e45cb54 4007 env->flags |= LBF_NEED_BREAK;
ee00e66f 4008 break;
a195f004 4009 }
1e3c88bd 4010
5d6523eb 4011 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
4012 goto next;
4013
4014 load = task_h_load(p);
5d6523eb 4015
eb95308e 4016 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4017 goto next;
4018
bd939f45 4019 if ((load / 2) > env->imbalance)
367456c7 4020 goto next;
1e3c88bd 4021
367456c7
PZ
4022 if (!can_migrate_task(p, env))
4023 goto next;
1e3c88bd 4024
ddcdf6e7 4025 move_task(p, env);
ee00e66f 4026 pulled++;
bd939f45 4027 env->imbalance -= load;
1e3c88bd
PZ
4028
4029#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4030 /*
4031 * NEWIDLE balancing is a source of latency, so preemptible
4032 * kernels will stop after the first task is pulled to minimize
4033 * the critical section.
4034 */
5d6523eb 4035 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4036 break;
1e3c88bd
PZ
4037#endif
4038
ee00e66f
PZ
4039 /*
4040 * We only want to steal up to the prescribed amount of
4041 * weighted load.
4042 */
bd939f45 4043 if (env->imbalance <= 0)
ee00e66f 4044 break;
367456c7
PZ
4045
4046 continue;
4047next:
5d6523eb 4048 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4049 }
5d6523eb 4050
1e3c88bd 4051 /*
ddcdf6e7
PZ
4052 * Right now, this is one of only two places move_task() is called,
4053 * so we can safely collect move_task() stats here rather than
4054 * inside move_task().
1e3c88bd 4055 */
8e45cb54 4056 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4057
5d6523eb 4058 return pulled;
1e3c88bd
PZ
4059}
4060
230059de 4061#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4062/*
4063 * update tg->load_weight by folding this cpu's load_avg
4064 */
48a16753 4065static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4066{
48a16753
PT
4067 struct sched_entity *se = tg->se[cpu];
4068 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4069
48a16753
PT
4070 /* throttled entities do not contribute to load */
4071 if (throttled_hierarchy(cfs_rq))
4072 return;
9e3081ca 4073
aff3e498 4074 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4075
82958366
PT
4076 if (se) {
4077 update_entity_load_avg(se, 1);
4078 /*
4079 * We pivot on our runnable average having decayed to zero for
4080 * list removal. This generally implies that all our children
4081 * have also been removed (modulo rounding error or bandwidth
4082 * control); however, such cases are rare and we can fix these
4083 * at enqueue.
4084 *
4085 * TODO: fix up out-of-order children on enqueue.
4086 */
4087 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4088 list_del_leaf_cfs_rq(cfs_rq);
4089 } else {
48a16753 4090 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4091 update_rq_runnable_avg(rq, rq->nr_running);
4092 }
9e3081ca
PZ
4093}
4094
48a16753 4095static void update_blocked_averages(int cpu)
9e3081ca 4096{
9e3081ca 4097 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4098 struct cfs_rq *cfs_rq;
4099 unsigned long flags;
9e3081ca 4100
48a16753
PT
4101 raw_spin_lock_irqsave(&rq->lock, flags);
4102 update_rq_clock(rq);
9763b67f
PZ
4103 /*
4104 * Iterates the task_group tree in a bottom up fashion, see
4105 * list_add_leaf_cfs_rq() for details.
4106 */
64660c86 4107 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4108 /*
4109 * Note: We may want to consider periodically releasing
4110 * rq->lock about these updates so that creating many task
4111 * groups does not result in continually extending hold time.
4112 */
4113 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4114 }
48a16753
PT
4115
4116 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4117}
4118
9763b67f
PZ
4119/*
4120 * Compute the cpu's hierarchical load factor for each task group.
4121 * This needs to be done in a top-down fashion because the load of a child
4122 * group is a fraction of its parents load.
4123 */
4124static int tg_load_down(struct task_group *tg, void *data)
4125{
4126 unsigned long load;
4127 long cpu = (long)data;
4128
4129 if (!tg->parent) {
4130 load = cpu_rq(cpu)->load.weight;
4131 } else {
4132 load = tg->parent->cfs_rq[cpu]->h_load;
4133 load *= tg->se[cpu]->load.weight;
4134 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4135 }
4136
4137 tg->cfs_rq[cpu]->h_load = load;
4138
4139 return 0;
4140}
4141
4142static void update_h_load(long cpu)
4143{
a35b6466
PZ
4144 struct rq *rq = cpu_rq(cpu);
4145 unsigned long now = jiffies;
4146
4147 if (rq->h_load_throttle == now)
4148 return;
4149
4150 rq->h_load_throttle = now;
4151
367456c7 4152 rcu_read_lock();
9763b67f 4153 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4154 rcu_read_unlock();
9763b67f
PZ
4155}
4156
367456c7 4157static unsigned long task_h_load(struct task_struct *p)
230059de 4158{
367456c7
PZ
4159 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4160 unsigned long load;
230059de 4161
367456c7
PZ
4162 load = p->se.load.weight;
4163 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 4164
367456c7 4165 return load;
230059de
PZ
4166}
4167#else
48a16753 4168static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4169{
4170}
4171
367456c7 4172static inline void update_h_load(long cpu)
230059de 4173{
230059de 4174}
230059de 4175
367456c7 4176static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4177{
367456c7 4178 return p->se.load.weight;
1e3c88bd 4179}
230059de 4180#endif
1e3c88bd 4181
1e3c88bd
PZ
4182/********** Helpers for find_busiest_group ************************/
4183/*
4184 * sd_lb_stats - Structure to store the statistics of a sched_domain
4185 * during load balancing.
4186 */
4187struct sd_lb_stats {
4188 struct sched_group *busiest; /* Busiest group in this sd */
4189 struct sched_group *this; /* Local group in this sd */
4190 unsigned long total_load; /* Total load of all groups in sd */
4191 unsigned long total_pwr; /* Total power of all groups in sd */
4192 unsigned long avg_load; /* Average load across all groups in sd */
4193
4194 /** Statistics of this group */
4195 unsigned long this_load;
4196 unsigned long this_load_per_task;
4197 unsigned long this_nr_running;
fab47622 4198 unsigned long this_has_capacity;
aae6d3dd 4199 unsigned int this_idle_cpus;
1e3c88bd
PZ
4200
4201 /* Statistics of the busiest group */
aae6d3dd 4202 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4203 unsigned long max_load;
4204 unsigned long busiest_load_per_task;
4205 unsigned long busiest_nr_running;
dd5feea1 4206 unsigned long busiest_group_capacity;
fab47622 4207 unsigned long busiest_has_capacity;
aae6d3dd 4208 unsigned int busiest_group_weight;
1e3c88bd
PZ
4209
4210 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4211};
4212
4213/*
4214 * sg_lb_stats - stats of a sched_group required for load_balancing
4215 */
4216struct sg_lb_stats {
4217 unsigned long avg_load; /*Avg load across the CPUs of the group */
4218 unsigned long group_load; /* Total load over the CPUs of the group */
4219 unsigned long sum_nr_running; /* Nr tasks running in the group */
4220 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4221 unsigned long group_capacity;
aae6d3dd
SS
4222 unsigned long idle_cpus;
4223 unsigned long group_weight;
1e3c88bd 4224 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4225 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4226};
4227
1e3c88bd
PZ
4228/**
4229 * get_sd_load_idx - Obtain the load index for a given sched domain.
4230 * @sd: The sched_domain whose load_idx is to be obtained.
4231 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4232 */
4233static inline int get_sd_load_idx(struct sched_domain *sd,
4234 enum cpu_idle_type idle)
4235{
4236 int load_idx;
4237
4238 switch (idle) {
4239 case CPU_NOT_IDLE:
4240 load_idx = sd->busy_idx;
4241 break;
4242
4243 case CPU_NEWLY_IDLE:
4244 load_idx = sd->newidle_idx;
4245 break;
4246 default:
4247 load_idx = sd->idle_idx;
4248 break;
4249 }
4250
4251 return load_idx;
4252}
4253
1e3c88bd
PZ
4254unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4255{
1399fa78 4256 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4257}
4258
4259unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4260{
4261 return default_scale_freq_power(sd, cpu);
4262}
4263
4264unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4265{
669c55e9 4266 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4267 unsigned long smt_gain = sd->smt_gain;
4268
4269 smt_gain /= weight;
4270
4271 return smt_gain;
4272}
4273
4274unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4275{
4276 return default_scale_smt_power(sd, cpu);
4277}
4278
4279unsigned long scale_rt_power(int cpu)
4280{
4281 struct rq *rq = cpu_rq(cpu);
b654f7de 4282 u64 total, available, age_stamp, avg;
1e3c88bd 4283
b654f7de
PZ
4284 /*
4285 * Since we're reading these variables without serialization make sure
4286 * we read them once before doing sanity checks on them.
4287 */
4288 age_stamp = ACCESS_ONCE(rq->age_stamp);
4289 avg = ACCESS_ONCE(rq->rt_avg);
4290
4291 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 4292
b654f7de 4293 if (unlikely(total < avg)) {
aa483808
VP
4294 /* Ensures that power won't end up being negative */
4295 available = 0;
4296 } else {
b654f7de 4297 available = total - avg;
aa483808 4298 }
1e3c88bd 4299
1399fa78
NR
4300 if (unlikely((s64)total < SCHED_POWER_SCALE))
4301 total = SCHED_POWER_SCALE;
1e3c88bd 4302
1399fa78 4303 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4304
4305 return div_u64(available, total);
4306}
4307
4308static void update_cpu_power(struct sched_domain *sd, int cpu)
4309{
669c55e9 4310 unsigned long weight = sd->span_weight;
1399fa78 4311 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4312 struct sched_group *sdg = sd->groups;
4313
1e3c88bd
PZ
4314 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4315 if (sched_feat(ARCH_POWER))
4316 power *= arch_scale_smt_power(sd, cpu);
4317 else
4318 power *= default_scale_smt_power(sd, cpu);
4319
1399fa78 4320 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4321 }
4322
9c3f75cb 4323 sdg->sgp->power_orig = power;
9d5efe05
SV
4324
4325 if (sched_feat(ARCH_POWER))
4326 power *= arch_scale_freq_power(sd, cpu);
4327 else
4328 power *= default_scale_freq_power(sd, cpu);
4329
1399fa78 4330 power >>= SCHED_POWER_SHIFT;
9d5efe05 4331
1e3c88bd 4332 power *= scale_rt_power(cpu);
1399fa78 4333 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4334
4335 if (!power)
4336 power = 1;
4337
e51fd5e2 4338 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4339 sdg->sgp->power = power;
1e3c88bd
PZ
4340}
4341
029632fb 4342void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4343{
4344 struct sched_domain *child = sd->child;
4345 struct sched_group *group, *sdg = sd->groups;
4346 unsigned long power;
4ec4412e
VG
4347 unsigned long interval;
4348
4349 interval = msecs_to_jiffies(sd->balance_interval);
4350 interval = clamp(interval, 1UL, max_load_balance_interval);
4351 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4352
4353 if (!child) {
4354 update_cpu_power(sd, cpu);
4355 return;
4356 }
4357
4358 power = 0;
4359
74a5ce20
PZ
4360 if (child->flags & SD_OVERLAP) {
4361 /*
4362 * SD_OVERLAP domains cannot assume that child groups
4363 * span the current group.
4364 */
4365
4366 for_each_cpu(cpu, sched_group_cpus(sdg))
4367 power += power_of(cpu);
4368 } else {
4369 /*
4370 * !SD_OVERLAP domains can assume that child groups
4371 * span the current group.
4372 */
4373
4374 group = child->groups;
4375 do {
4376 power += group->sgp->power;
4377 group = group->next;
4378 } while (group != child->groups);
4379 }
1e3c88bd 4380
c3decf0d 4381 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4382}
4383
9d5efe05
SV
4384/*
4385 * Try and fix up capacity for tiny siblings, this is needed when
4386 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4387 * which on its own isn't powerful enough.
4388 *
4389 * See update_sd_pick_busiest() and check_asym_packing().
4390 */
4391static inline int
4392fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4393{
4394 /*
1399fa78 4395 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4396 */
a6c75f2f 4397 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4398 return 0;
4399
4400 /*
4401 * If ~90% of the cpu_power is still there, we're good.
4402 */
9c3f75cb 4403 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4404 return 1;
4405
4406 return 0;
4407}
4408
1e3c88bd
PZ
4409/**
4410 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4411 * @env: The load balancing environment.
1e3c88bd 4412 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4413 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4414 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4415 * @balance: Should we balance.
4416 * @sgs: variable to hold the statistics for this group.
4417 */
bd939f45
PZ
4418static inline void update_sg_lb_stats(struct lb_env *env,
4419 struct sched_group *group, int load_idx,
b9403130 4420 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4421{
e44bc5c5
PZ
4422 unsigned long nr_running, max_nr_running, min_nr_running;
4423 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4424 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4425 unsigned long avg_load_per_task = 0;
bd939f45 4426 int i;
1e3c88bd 4427
871e35bc 4428 if (local_group)
c1174876 4429 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4430
4431 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4432 max_cpu_load = 0;
4433 min_cpu_load = ~0UL;
2582f0eb 4434 max_nr_running = 0;
e44bc5c5 4435 min_nr_running = ~0UL;
1e3c88bd 4436
b9403130 4437 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4438 struct rq *rq = cpu_rq(i);
4439
e44bc5c5
PZ
4440 nr_running = rq->nr_running;
4441
1e3c88bd
PZ
4442 /* Bias balancing toward cpus of our domain */
4443 if (local_group) {
c1174876
PZ
4444 if (idle_cpu(i) && !first_idle_cpu &&
4445 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4446 first_idle_cpu = 1;
1e3c88bd
PZ
4447 balance_cpu = i;
4448 }
04f733b4
PZ
4449
4450 load = target_load(i, load_idx);
1e3c88bd
PZ
4451 } else {
4452 load = source_load(i, load_idx);
e44bc5c5 4453 if (load > max_cpu_load)
1e3c88bd
PZ
4454 max_cpu_load = load;
4455 if (min_cpu_load > load)
4456 min_cpu_load = load;
e44bc5c5
PZ
4457
4458 if (nr_running > max_nr_running)
4459 max_nr_running = nr_running;
4460 if (min_nr_running > nr_running)
4461 min_nr_running = nr_running;
1e3c88bd
PZ
4462 }
4463
4464 sgs->group_load += load;
e44bc5c5 4465 sgs->sum_nr_running += nr_running;
1e3c88bd 4466 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4467 if (idle_cpu(i))
4468 sgs->idle_cpus++;
1e3c88bd
PZ
4469 }
4470
4471 /*
4472 * First idle cpu or the first cpu(busiest) in this sched group
4473 * is eligible for doing load balancing at this and above
4474 * domains. In the newly idle case, we will allow all the cpu's
4475 * to do the newly idle load balance.
4476 */
4ec4412e 4477 if (local_group) {
bd939f45 4478 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4479 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4480 *balance = 0;
4481 return;
4482 }
bd939f45 4483 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4484 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4485 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4486 }
4487
4488 /* Adjust by relative CPU power of the group */
9c3f75cb 4489 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4490
1e3c88bd
PZ
4491 /*
4492 * Consider the group unbalanced when the imbalance is larger
866ab43e 4493 * than the average weight of a task.
1e3c88bd
PZ
4494 *
4495 * APZ: with cgroup the avg task weight can vary wildly and
4496 * might not be a suitable number - should we keep a
4497 * normalized nr_running number somewhere that negates
4498 * the hierarchy?
4499 */
dd5feea1
SS
4500 if (sgs->sum_nr_running)
4501 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4502
e44bc5c5
PZ
4503 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4504 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4505 sgs->group_imb = 1;
4506
9c3f75cb 4507 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4508 SCHED_POWER_SCALE);
9d5efe05 4509 if (!sgs->group_capacity)
bd939f45 4510 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4511 sgs->group_weight = group->group_weight;
fab47622
NR
4512
4513 if (sgs->group_capacity > sgs->sum_nr_running)
4514 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4515}
4516
532cb4c4
MN
4517/**
4518 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4519 * @env: The load balancing environment.
532cb4c4
MN
4520 * @sds: sched_domain statistics
4521 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4522 * @sgs: sched_group statistics
532cb4c4
MN
4523 *
4524 * Determine if @sg is a busier group than the previously selected
4525 * busiest group.
4526 */
bd939f45 4527static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4528 struct sd_lb_stats *sds,
4529 struct sched_group *sg,
bd939f45 4530 struct sg_lb_stats *sgs)
532cb4c4
MN
4531{
4532 if (sgs->avg_load <= sds->max_load)
4533 return false;
4534
4535 if (sgs->sum_nr_running > sgs->group_capacity)
4536 return true;
4537
4538 if (sgs->group_imb)
4539 return true;
4540
4541 /*
4542 * ASYM_PACKING needs to move all the work to the lowest
4543 * numbered CPUs in the group, therefore mark all groups
4544 * higher than ourself as busy.
4545 */
bd939f45
PZ
4546 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4547 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4548 if (!sds->busiest)
4549 return true;
4550
4551 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4552 return true;
4553 }
4554
4555 return false;
4556}
4557
1e3c88bd 4558/**
461819ac 4559 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4560 * @env: The load balancing environment.
1e3c88bd
PZ
4561 * @balance: Should we balance.
4562 * @sds: variable to hold the statistics for this sched_domain.
4563 */
bd939f45 4564static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4565 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4566{
bd939f45
PZ
4567 struct sched_domain *child = env->sd->child;
4568 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4569 struct sg_lb_stats sgs;
4570 int load_idx, prefer_sibling = 0;
4571
4572 if (child && child->flags & SD_PREFER_SIBLING)
4573 prefer_sibling = 1;
4574
bd939f45 4575 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4576
4577 do {
4578 int local_group;
4579
bd939f45 4580 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4581 memset(&sgs, 0, sizeof(sgs));
b9403130 4582 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4583
8f190fb3 4584 if (local_group && !(*balance))
1e3c88bd
PZ
4585 return;
4586
4587 sds->total_load += sgs.group_load;
9c3f75cb 4588 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4589
4590 /*
4591 * In case the child domain prefers tasks go to siblings
532cb4c4 4592 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4593 * and move all the excess tasks away. We lower the capacity
4594 * of a group only if the local group has the capacity to fit
4595 * these excess tasks, i.e. nr_running < group_capacity. The
4596 * extra check prevents the case where you always pull from the
4597 * heaviest group when it is already under-utilized (possible
4598 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4599 */
75dd321d 4600 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4601 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4602
4603 if (local_group) {
4604 sds->this_load = sgs.avg_load;
532cb4c4 4605 sds->this = sg;
1e3c88bd
PZ
4606 sds->this_nr_running = sgs.sum_nr_running;
4607 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4608 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4609 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4610 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4611 sds->max_load = sgs.avg_load;
532cb4c4 4612 sds->busiest = sg;
1e3c88bd 4613 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4614 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4615 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4616 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4617 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4618 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4619 sds->group_imb = sgs.group_imb;
4620 }
4621
532cb4c4 4622 sg = sg->next;
bd939f45 4623 } while (sg != env->sd->groups);
532cb4c4
MN
4624}
4625
532cb4c4
MN
4626/**
4627 * check_asym_packing - Check to see if the group is packed into the
4628 * sched doman.
4629 *
4630 * This is primarily intended to used at the sibling level. Some
4631 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4632 * case of POWER7, it can move to lower SMT modes only when higher
4633 * threads are idle. When in lower SMT modes, the threads will
4634 * perform better since they share less core resources. Hence when we
4635 * have idle threads, we want them to be the higher ones.
4636 *
4637 * This packing function is run on idle threads. It checks to see if
4638 * the busiest CPU in this domain (core in the P7 case) has a higher
4639 * CPU number than the packing function is being run on. Here we are
4640 * assuming lower CPU number will be equivalent to lower a SMT thread
4641 * number.
4642 *
b6b12294
MN
4643 * Returns 1 when packing is required and a task should be moved to
4644 * this CPU. The amount of the imbalance is returned in *imbalance.
4645 *
cd96891d 4646 * @env: The load balancing environment.
532cb4c4 4647 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4648 */
bd939f45 4649static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4650{
4651 int busiest_cpu;
4652
bd939f45 4653 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4654 return 0;
4655
4656 if (!sds->busiest)
4657 return 0;
4658
4659 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4660 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4661 return 0;
4662
bd939f45
PZ
4663 env->imbalance = DIV_ROUND_CLOSEST(
4664 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4665
532cb4c4 4666 return 1;
1e3c88bd
PZ
4667}
4668
4669/**
4670 * fix_small_imbalance - Calculate the minor imbalance that exists
4671 * amongst the groups of a sched_domain, during
4672 * load balancing.
cd96891d 4673 * @env: The load balancing environment.
1e3c88bd 4674 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4675 */
bd939f45
PZ
4676static inline
4677void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4678{
4679 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4680 unsigned int imbn = 2;
dd5feea1 4681 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4682
4683 if (sds->this_nr_running) {
4684 sds->this_load_per_task /= sds->this_nr_running;
4685 if (sds->busiest_load_per_task >
4686 sds->this_load_per_task)
4687 imbn = 1;
bd939f45 4688 } else {
1e3c88bd 4689 sds->this_load_per_task =
bd939f45
PZ
4690 cpu_avg_load_per_task(env->dst_cpu);
4691 }
1e3c88bd 4692
dd5feea1 4693 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4694 * SCHED_POWER_SCALE;
9c3f75cb 4695 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4696
4697 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4698 (scaled_busy_load_per_task * imbn)) {
bd939f45 4699 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4700 return;
4701 }
4702
4703 /*
4704 * OK, we don't have enough imbalance to justify moving tasks,
4705 * however we may be able to increase total CPU power used by
4706 * moving them.
4707 */
4708
9c3f75cb 4709 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4710 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4711 pwr_now += sds->this->sgp->power *
1e3c88bd 4712 min(sds->this_load_per_task, sds->this_load);
1399fa78 4713 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4714
4715 /* Amount of load we'd subtract */
1399fa78 4716 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4717 sds->busiest->sgp->power;
1e3c88bd 4718 if (sds->max_load > tmp)
9c3f75cb 4719 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4720 min(sds->busiest_load_per_task, sds->max_load - tmp);
4721
4722 /* Amount of load we'd add */
9c3f75cb 4723 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4724 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4725 tmp = (sds->max_load * sds->busiest->sgp->power) /
4726 sds->this->sgp->power;
1e3c88bd 4727 else
1399fa78 4728 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4729 sds->this->sgp->power;
4730 pwr_move += sds->this->sgp->power *
1e3c88bd 4731 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4732 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4733
4734 /* Move if we gain throughput */
4735 if (pwr_move > pwr_now)
bd939f45 4736 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4737}
4738
4739/**
4740 * calculate_imbalance - Calculate the amount of imbalance present within the
4741 * groups of a given sched_domain during load balance.
bd939f45 4742 * @env: load balance environment
1e3c88bd 4743 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4744 */
bd939f45 4745static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4746{
dd5feea1
SS
4747 unsigned long max_pull, load_above_capacity = ~0UL;
4748
4749 sds->busiest_load_per_task /= sds->busiest_nr_running;
4750 if (sds->group_imb) {
4751 sds->busiest_load_per_task =
4752 min(sds->busiest_load_per_task, sds->avg_load);
4753 }
4754
1e3c88bd
PZ
4755 /*
4756 * In the presence of smp nice balancing, certain scenarios can have
4757 * max load less than avg load(as we skip the groups at or below
4758 * its cpu_power, while calculating max_load..)
4759 */
4760 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4761 env->imbalance = 0;
4762 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4763 }
4764
dd5feea1
SS
4765 if (!sds->group_imb) {
4766 /*
4767 * Don't want to pull so many tasks that a group would go idle.
4768 */
4769 load_above_capacity = (sds->busiest_nr_running -
4770 sds->busiest_group_capacity);
4771
1399fa78 4772 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4773
9c3f75cb 4774 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4775 }
4776
4777 /*
4778 * We're trying to get all the cpus to the average_load, so we don't
4779 * want to push ourselves above the average load, nor do we wish to
4780 * reduce the max loaded cpu below the average load. At the same time,
4781 * we also don't want to reduce the group load below the group capacity
4782 * (so that we can implement power-savings policies etc). Thus we look
4783 * for the minimum possible imbalance.
4784 * Be careful of negative numbers as they'll appear as very large values
4785 * with unsigned longs.
4786 */
4787 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4788
4789 /* How much load to actually move to equalise the imbalance */
bd939f45 4790 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4791 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4792 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4793
4794 /*
4795 * if *imbalance is less than the average load per runnable task
25985edc 4796 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4797 * a think about bumping its value to force at least one task to be
4798 * moved
4799 */
bd939f45
PZ
4800 if (env->imbalance < sds->busiest_load_per_task)
4801 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4802
4803}
fab47622 4804
1e3c88bd
PZ
4805/******* find_busiest_group() helpers end here *********************/
4806
4807/**
4808 * find_busiest_group - Returns the busiest group within the sched_domain
4809 * if there is an imbalance. If there isn't an imbalance, and
4810 * the user has opted for power-savings, it returns a group whose
4811 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4812 * such a group exists.
4813 *
4814 * Also calculates the amount of weighted load which should be moved
4815 * to restore balance.
4816 *
cd96891d 4817 * @env: The load balancing environment.
1e3c88bd
PZ
4818 * @balance: Pointer to a variable indicating if this_cpu
4819 * is the appropriate cpu to perform load balancing at this_level.
4820 *
4821 * Returns: - the busiest group if imbalance exists.
4822 * - If no imbalance and user has opted for power-savings balance,
4823 * return the least loaded group whose CPUs can be
4824 * put to idle by rebalancing its tasks onto our group.
4825 */
4826static struct sched_group *
b9403130 4827find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4828{
4829 struct sd_lb_stats sds;
4830
4831 memset(&sds, 0, sizeof(sds));
4832
4833 /*
4834 * Compute the various statistics relavent for load balancing at
4835 * this level.
4836 */
b9403130 4837 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4838
cc57aa8f
PZ
4839 /*
4840 * this_cpu is not the appropriate cpu to perform load balancing at
4841 * this level.
1e3c88bd 4842 */
8f190fb3 4843 if (!(*balance))
1e3c88bd
PZ
4844 goto ret;
4845
bd939f45
PZ
4846 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4847 check_asym_packing(env, &sds))
532cb4c4
MN
4848 return sds.busiest;
4849
cc57aa8f 4850 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4851 if (!sds.busiest || sds.busiest_nr_running == 0)
4852 goto out_balanced;
4853
1399fa78 4854 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4855
866ab43e
PZ
4856 /*
4857 * If the busiest group is imbalanced the below checks don't
4858 * work because they assumes all things are equal, which typically
4859 * isn't true due to cpus_allowed constraints and the like.
4860 */
4861 if (sds.group_imb)
4862 goto force_balance;
4863
cc57aa8f 4864 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4865 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4866 !sds.busiest_has_capacity)
4867 goto force_balance;
4868
cc57aa8f
PZ
4869 /*
4870 * If the local group is more busy than the selected busiest group
4871 * don't try and pull any tasks.
4872 */
1e3c88bd
PZ
4873 if (sds.this_load >= sds.max_load)
4874 goto out_balanced;
4875
cc57aa8f
PZ
4876 /*
4877 * Don't pull any tasks if this group is already above the domain
4878 * average load.
4879 */
1e3c88bd
PZ
4880 if (sds.this_load >= sds.avg_load)
4881 goto out_balanced;
4882
bd939f45 4883 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4884 /*
4885 * This cpu is idle. If the busiest group load doesn't
4886 * have more tasks than the number of available cpu's and
4887 * there is no imbalance between this and busiest group
4888 * wrt to idle cpu's, it is balanced.
4889 */
c186fafe 4890 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4891 sds.busiest_nr_running <= sds.busiest_group_weight)
4892 goto out_balanced;
c186fafe
PZ
4893 } else {
4894 /*
4895 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4896 * imbalance_pct to be conservative.
4897 */
bd939f45 4898 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4899 goto out_balanced;
aae6d3dd 4900 }
1e3c88bd 4901
fab47622 4902force_balance:
1e3c88bd 4903 /* Looks like there is an imbalance. Compute it */
bd939f45 4904 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4905 return sds.busiest;
4906
4907out_balanced:
1e3c88bd 4908ret:
bd939f45 4909 env->imbalance = 0;
1e3c88bd
PZ
4910 return NULL;
4911}
4912
4913/*
4914 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4915 */
bd939f45 4916static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4917 struct sched_group *group)
1e3c88bd
PZ
4918{
4919 struct rq *busiest = NULL, *rq;
4920 unsigned long max_load = 0;
4921 int i;
4922
4923 for_each_cpu(i, sched_group_cpus(group)) {
4924 unsigned long power = power_of(i);
1399fa78
NR
4925 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4926 SCHED_POWER_SCALE);
1e3c88bd
PZ
4927 unsigned long wl;
4928
9d5efe05 4929 if (!capacity)
bd939f45 4930 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4931
b9403130 4932 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4933 continue;
4934
4935 rq = cpu_rq(i);
6e40f5bb 4936 wl = weighted_cpuload(i);
1e3c88bd 4937
6e40f5bb
TG
4938 /*
4939 * When comparing with imbalance, use weighted_cpuload()
4940 * which is not scaled with the cpu power.
4941 */
bd939f45 4942 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4943 continue;
4944
6e40f5bb
TG
4945 /*
4946 * For the load comparisons with the other cpu's, consider
4947 * the weighted_cpuload() scaled with the cpu power, so that
4948 * the load can be moved away from the cpu that is potentially
4949 * running at a lower capacity.
4950 */
1399fa78 4951 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4952
1e3c88bd
PZ
4953 if (wl > max_load) {
4954 max_load = wl;
4955 busiest = rq;
4956 }
4957 }
4958
4959 return busiest;
4960}
4961
4962/*
4963 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4964 * so long as it is large enough.
4965 */
4966#define MAX_PINNED_INTERVAL 512
4967
4968/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4969DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4970
bd939f45 4971static int need_active_balance(struct lb_env *env)
1af3ed3d 4972{
bd939f45
PZ
4973 struct sched_domain *sd = env->sd;
4974
4975 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4976
4977 /*
4978 * ASYM_PACKING needs to force migrate tasks from busy but
4979 * higher numbered CPUs in order to pack all tasks in the
4980 * lowest numbered CPUs.
4981 */
bd939f45 4982 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4983 return 1;
1af3ed3d
PZ
4984 }
4985
4986 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4987}
4988
969c7921
TH
4989static int active_load_balance_cpu_stop(void *data);
4990
1e3c88bd
PZ
4991/*
4992 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4993 * tasks if there is an imbalance.
4994 */
4995static int load_balance(int this_cpu, struct rq *this_rq,
4996 struct sched_domain *sd, enum cpu_idle_type idle,
4997 int *balance)
4998{
88b8dac0
SV
4999 int ld_moved, cur_ld_moved, active_balance = 0;
5000 int lb_iterations, max_lb_iterations;
1e3c88bd 5001 struct sched_group *group;
1e3c88bd
PZ
5002 struct rq *busiest;
5003 unsigned long flags;
5004 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5005
8e45cb54
PZ
5006 struct lb_env env = {
5007 .sd = sd,
ddcdf6e7
PZ
5008 .dst_cpu = this_cpu,
5009 .dst_rq = this_rq,
88b8dac0 5010 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5011 .idle = idle,
eb95308e 5012 .loop_break = sched_nr_migrate_break,
b9403130 5013 .cpus = cpus,
8e45cb54
PZ
5014 };
5015
1e3c88bd 5016 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 5017 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 5018
1e3c88bd
PZ
5019 schedstat_inc(sd, lb_count[idle]);
5020
5021redo:
b9403130 5022 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
5023
5024 if (*balance == 0)
5025 goto out_balanced;
5026
5027 if (!group) {
5028 schedstat_inc(sd, lb_nobusyg[idle]);
5029 goto out_balanced;
5030 }
5031
b9403130 5032 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5033 if (!busiest) {
5034 schedstat_inc(sd, lb_nobusyq[idle]);
5035 goto out_balanced;
5036 }
5037
78feefc5 5038 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5039
bd939f45 5040 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5041
5042 ld_moved = 0;
88b8dac0 5043 lb_iterations = 1;
1e3c88bd
PZ
5044 if (busiest->nr_running > 1) {
5045 /*
5046 * Attempt to move tasks. If find_busiest_group has found
5047 * an imbalance but busiest->nr_running <= 1, the group is
5048 * still unbalanced. ld_moved simply stays zero, so it is
5049 * correctly treated as an imbalance.
5050 */
8e45cb54 5051 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5052 env.src_cpu = busiest->cpu;
5053 env.src_rq = busiest;
5054 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5055
a35b6466 5056 update_h_load(env.src_cpu);
5d6523eb 5057more_balance:
1e3c88bd 5058 local_irq_save(flags);
78feefc5 5059 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5060
5061 /*
5062 * cur_ld_moved - load moved in current iteration
5063 * ld_moved - cumulative load moved across iterations
5064 */
5065 cur_ld_moved = move_tasks(&env);
5066 ld_moved += cur_ld_moved;
78feefc5 5067 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5068 local_irq_restore(flags);
5069
5d6523eb
PZ
5070 if (env.flags & LBF_NEED_BREAK) {
5071 env.flags &= ~LBF_NEED_BREAK;
5072 goto more_balance;
5073 }
5074
1e3c88bd
PZ
5075 /*
5076 * some other cpu did the load balance for us.
5077 */
88b8dac0
SV
5078 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5079 resched_cpu(env.dst_cpu);
5080
5081 /*
5082 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5083 * us and move them to an alternate dst_cpu in our sched_group
5084 * where they can run. The upper limit on how many times we
5085 * iterate on same src_cpu is dependent on number of cpus in our
5086 * sched_group.
5087 *
5088 * This changes load balance semantics a bit on who can move
5089 * load to a given_cpu. In addition to the given_cpu itself
5090 * (or a ilb_cpu acting on its behalf where given_cpu is
5091 * nohz-idle), we now have balance_cpu in a position to move
5092 * load to given_cpu. In rare situations, this may cause
5093 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5094 * _independently_ and at _same_ time to move some load to
5095 * given_cpu) causing exceess load to be moved to given_cpu.
5096 * This however should not happen so much in practice and
5097 * moreover subsequent load balance cycles should correct the
5098 * excess load moved.
5099 */
5100 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
5101 lb_iterations++ < max_lb_iterations) {
5102
78feefc5 5103 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5104 env.dst_cpu = env.new_dst_cpu;
5105 env.flags &= ~LBF_SOME_PINNED;
5106 env.loop = 0;
5107 env.loop_break = sched_nr_migrate_break;
5108 /*
5109 * Go back to "more_balance" rather than "redo" since we
5110 * need to continue with same src_cpu.
5111 */
5112 goto more_balance;
5113 }
1e3c88bd
PZ
5114
5115 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5116 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5117 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5118 if (!cpumask_empty(cpus)) {
5119 env.loop = 0;
5120 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5121 goto redo;
bbf18b19 5122 }
1e3c88bd
PZ
5123 goto out_balanced;
5124 }
5125 }
5126
5127 if (!ld_moved) {
5128 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5129 /*
5130 * Increment the failure counter only on periodic balance.
5131 * We do not want newidle balance, which can be very
5132 * frequent, pollute the failure counter causing
5133 * excessive cache_hot migrations and active balances.
5134 */
5135 if (idle != CPU_NEWLY_IDLE)
5136 sd->nr_balance_failed++;
1e3c88bd 5137
bd939f45 5138 if (need_active_balance(&env)) {
1e3c88bd
PZ
5139 raw_spin_lock_irqsave(&busiest->lock, flags);
5140
969c7921
TH
5141 /* don't kick the active_load_balance_cpu_stop,
5142 * if the curr task on busiest cpu can't be
5143 * moved to this_cpu
1e3c88bd
PZ
5144 */
5145 if (!cpumask_test_cpu(this_cpu,
fa17b507 5146 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5147 raw_spin_unlock_irqrestore(&busiest->lock,
5148 flags);
8e45cb54 5149 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5150 goto out_one_pinned;
5151 }
5152
969c7921
TH
5153 /*
5154 * ->active_balance synchronizes accesses to
5155 * ->active_balance_work. Once set, it's cleared
5156 * only after active load balance is finished.
5157 */
1e3c88bd
PZ
5158 if (!busiest->active_balance) {
5159 busiest->active_balance = 1;
5160 busiest->push_cpu = this_cpu;
5161 active_balance = 1;
5162 }
5163 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5164
bd939f45 5165 if (active_balance) {
969c7921
TH
5166 stop_one_cpu_nowait(cpu_of(busiest),
5167 active_load_balance_cpu_stop, busiest,
5168 &busiest->active_balance_work);
bd939f45 5169 }
1e3c88bd
PZ
5170
5171 /*
5172 * We've kicked active balancing, reset the failure
5173 * counter.
5174 */
5175 sd->nr_balance_failed = sd->cache_nice_tries+1;
5176 }
5177 } else
5178 sd->nr_balance_failed = 0;
5179
5180 if (likely(!active_balance)) {
5181 /* We were unbalanced, so reset the balancing interval */
5182 sd->balance_interval = sd->min_interval;
5183 } else {
5184 /*
5185 * If we've begun active balancing, start to back off. This
5186 * case may not be covered by the all_pinned logic if there
5187 * is only 1 task on the busy runqueue (because we don't call
5188 * move_tasks).
5189 */
5190 if (sd->balance_interval < sd->max_interval)
5191 sd->balance_interval *= 2;
5192 }
5193
1e3c88bd
PZ
5194 goto out;
5195
5196out_balanced:
5197 schedstat_inc(sd, lb_balanced[idle]);
5198
5199 sd->nr_balance_failed = 0;
5200
5201out_one_pinned:
5202 /* tune up the balancing interval */
8e45cb54 5203 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5204 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5205 (sd->balance_interval < sd->max_interval))
5206 sd->balance_interval *= 2;
5207
46e49b38 5208 ld_moved = 0;
1e3c88bd 5209out:
1e3c88bd
PZ
5210 return ld_moved;
5211}
5212
1e3c88bd
PZ
5213/*
5214 * idle_balance is called by schedule() if this_cpu is about to become
5215 * idle. Attempts to pull tasks from other CPUs.
5216 */
029632fb 5217void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5218{
5219 struct sched_domain *sd;
5220 int pulled_task = 0;
5221 unsigned long next_balance = jiffies + HZ;
5222
5223 this_rq->idle_stamp = this_rq->clock;
5224
5225 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5226 return;
5227
18bf2805
BS
5228 update_rq_runnable_avg(this_rq, 1);
5229
f492e12e
PZ
5230 /*
5231 * Drop the rq->lock, but keep IRQ/preempt disabled.
5232 */
5233 raw_spin_unlock(&this_rq->lock);
5234
48a16753 5235 update_blocked_averages(this_cpu);
dce840a0 5236 rcu_read_lock();
1e3c88bd
PZ
5237 for_each_domain(this_cpu, sd) {
5238 unsigned long interval;
f492e12e 5239 int balance = 1;
1e3c88bd
PZ
5240
5241 if (!(sd->flags & SD_LOAD_BALANCE))
5242 continue;
5243
f492e12e 5244 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5245 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5246 pulled_task = load_balance(this_cpu, this_rq,
5247 sd, CPU_NEWLY_IDLE, &balance);
5248 }
1e3c88bd
PZ
5249
5250 interval = msecs_to_jiffies(sd->balance_interval);
5251 if (time_after(next_balance, sd->last_balance + interval))
5252 next_balance = sd->last_balance + interval;
d5ad140b
NR
5253 if (pulled_task) {
5254 this_rq->idle_stamp = 0;
1e3c88bd 5255 break;
d5ad140b 5256 }
1e3c88bd 5257 }
dce840a0 5258 rcu_read_unlock();
f492e12e
PZ
5259
5260 raw_spin_lock(&this_rq->lock);
5261
1e3c88bd
PZ
5262 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5263 /*
5264 * We are going idle. next_balance may be set based on
5265 * a busy processor. So reset next_balance.
5266 */
5267 this_rq->next_balance = next_balance;
5268 }
5269}
5270
5271/*
969c7921
TH
5272 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5273 * running tasks off the busiest CPU onto idle CPUs. It requires at
5274 * least 1 task to be running on each physical CPU where possible, and
5275 * avoids physical / logical imbalances.
1e3c88bd 5276 */
969c7921 5277static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5278{
969c7921
TH
5279 struct rq *busiest_rq = data;
5280 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5281 int target_cpu = busiest_rq->push_cpu;
969c7921 5282 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5283 struct sched_domain *sd;
969c7921
TH
5284
5285 raw_spin_lock_irq(&busiest_rq->lock);
5286
5287 /* make sure the requested cpu hasn't gone down in the meantime */
5288 if (unlikely(busiest_cpu != smp_processor_id() ||
5289 !busiest_rq->active_balance))
5290 goto out_unlock;
1e3c88bd
PZ
5291
5292 /* Is there any task to move? */
5293 if (busiest_rq->nr_running <= 1)
969c7921 5294 goto out_unlock;
1e3c88bd
PZ
5295
5296 /*
5297 * This condition is "impossible", if it occurs
5298 * we need to fix it. Originally reported by
5299 * Bjorn Helgaas on a 128-cpu setup.
5300 */
5301 BUG_ON(busiest_rq == target_rq);
5302
5303 /* move a task from busiest_rq to target_rq */
5304 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5305
5306 /* Search for an sd spanning us and the target CPU. */
dce840a0 5307 rcu_read_lock();
1e3c88bd
PZ
5308 for_each_domain(target_cpu, sd) {
5309 if ((sd->flags & SD_LOAD_BALANCE) &&
5310 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5311 break;
5312 }
5313
5314 if (likely(sd)) {
8e45cb54
PZ
5315 struct lb_env env = {
5316 .sd = sd,
ddcdf6e7
PZ
5317 .dst_cpu = target_cpu,
5318 .dst_rq = target_rq,
5319 .src_cpu = busiest_rq->cpu,
5320 .src_rq = busiest_rq,
8e45cb54
PZ
5321 .idle = CPU_IDLE,
5322 };
5323
1e3c88bd
PZ
5324 schedstat_inc(sd, alb_count);
5325
8e45cb54 5326 if (move_one_task(&env))
1e3c88bd
PZ
5327 schedstat_inc(sd, alb_pushed);
5328 else
5329 schedstat_inc(sd, alb_failed);
5330 }
dce840a0 5331 rcu_read_unlock();
1e3c88bd 5332 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5333out_unlock:
5334 busiest_rq->active_balance = 0;
5335 raw_spin_unlock_irq(&busiest_rq->lock);
5336 return 0;
1e3c88bd
PZ
5337}
5338
5339#ifdef CONFIG_NO_HZ
83cd4fe2
VP
5340/*
5341 * idle load balancing details
83cd4fe2
VP
5342 * - When one of the busy CPUs notice that there may be an idle rebalancing
5343 * needed, they will kick the idle load balancer, which then does idle
5344 * load balancing for all the idle CPUs.
5345 */
1e3c88bd 5346static struct {
83cd4fe2 5347 cpumask_var_t idle_cpus_mask;
0b005cf5 5348 atomic_t nr_cpus;
83cd4fe2
VP
5349 unsigned long next_balance; /* in jiffy units */
5350} nohz ____cacheline_aligned;
1e3c88bd 5351
8e7fbcbc 5352static inline int find_new_ilb(int call_cpu)
1e3c88bd 5353{
0b005cf5 5354 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5355
786d6dc7
SS
5356 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5357 return ilb;
5358
5359 return nr_cpu_ids;
1e3c88bd 5360}
1e3c88bd 5361
83cd4fe2
VP
5362/*
5363 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5364 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5365 * CPU (if there is one).
5366 */
5367static void nohz_balancer_kick(int cpu)
5368{
5369 int ilb_cpu;
5370
5371 nohz.next_balance++;
5372
0b005cf5 5373 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5374
0b005cf5
SS
5375 if (ilb_cpu >= nr_cpu_ids)
5376 return;
83cd4fe2 5377
cd490c5b 5378 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5379 return;
5380 /*
5381 * Use smp_send_reschedule() instead of resched_cpu().
5382 * This way we generate a sched IPI on the target cpu which
5383 * is idle. And the softirq performing nohz idle load balance
5384 * will be run before returning from the IPI.
5385 */
5386 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5387 return;
5388}
5389
c1cc017c 5390static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5391{
5392 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5393 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5394 atomic_dec(&nohz.nr_cpus);
5395 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5396 }
5397}
5398
69e1e811
SS
5399static inline void set_cpu_sd_state_busy(void)
5400{
5401 struct sched_domain *sd;
5402 int cpu = smp_processor_id();
5403
5404 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5405 return;
5406 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5407
5408 rcu_read_lock();
5409 for_each_domain(cpu, sd)
5410 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5411 rcu_read_unlock();
5412}
5413
5414void set_cpu_sd_state_idle(void)
5415{
5416 struct sched_domain *sd;
5417 int cpu = smp_processor_id();
5418
5419 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5420 return;
5421 set_bit(NOHZ_IDLE, nohz_flags(cpu));
5422
5423 rcu_read_lock();
5424 for_each_domain(cpu, sd)
5425 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5426 rcu_read_unlock();
5427}
5428
1e3c88bd 5429/*
c1cc017c 5430 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5431 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5432 */
c1cc017c 5433void nohz_balance_enter_idle(int cpu)
1e3c88bd 5434{
71325960
SS
5435 /*
5436 * If this cpu is going down, then nothing needs to be done.
5437 */
5438 if (!cpu_active(cpu))
5439 return;
5440
c1cc017c
AS
5441 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5442 return;
1e3c88bd 5443
c1cc017c
AS
5444 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5445 atomic_inc(&nohz.nr_cpus);
5446 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5447}
71325960
SS
5448
5449static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5450 unsigned long action, void *hcpu)
5451{
5452 switch (action & ~CPU_TASKS_FROZEN) {
5453 case CPU_DYING:
c1cc017c 5454 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5455 return NOTIFY_OK;
5456 default:
5457 return NOTIFY_DONE;
5458 }
5459}
1e3c88bd
PZ
5460#endif
5461
5462static DEFINE_SPINLOCK(balancing);
5463
49c022e6
PZ
5464/*
5465 * Scale the max load_balance interval with the number of CPUs in the system.
5466 * This trades load-balance latency on larger machines for less cross talk.
5467 */
029632fb 5468void update_max_interval(void)
49c022e6
PZ
5469{
5470 max_load_balance_interval = HZ*num_online_cpus()/10;
5471}
5472
1e3c88bd
PZ
5473/*
5474 * It checks each scheduling domain to see if it is due to be balanced,
5475 * and initiates a balancing operation if so.
5476 *
5477 * Balancing parameters are set up in arch_init_sched_domains.
5478 */
5479static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5480{
5481 int balance = 1;
5482 struct rq *rq = cpu_rq(cpu);
5483 unsigned long interval;
04f733b4 5484 struct sched_domain *sd;
1e3c88bd
PZ
5485 /* Earliest time when we have to do rebalance again */
5486 unsigned long next_balance = jiffies + 60*HZ;
5487 int update_next_balance = 0;
5488 int need_serialize;
5489
48a16753 5490 update_blocked_averages(cpu);
2069dd75 5491
dce840a0 5492 rcu_read_lock();
1e3c88bd
PZ
5493 for_each_domain(cpu, sd) {
5494 if (!(sd->flags & SD_LOAD_BALANCE))
5495 continue;
5496
5497 interval = sd->balance_interval;
5498 if (idle != CPU_IDLE)
5499 interval *= sd->busy_factor;
5500
5501 /* scale ms to jiffies */
5502 interval = msecs_to_jiffies(interval);
49c022e6 5503 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5504
5505 need_serialize = sd->flags & SD_SERIALIZE;
5506
5507 if (need_serialize) {
5508 if (!spin_trylock(&balancing))
5509 goto out;
5510 }
5511
5512 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5513 if (load_balance(cpu, rq, sd, idle, &balance)) {
5514 /*
5515 * We've pulled tasks over so either we're no
c186fafe 5516 * longer idle.
1e3c88bd
PZ
5517 */
5518 idle = CPU_NOT_IDLE;
5519 }
5520 sd->last_balance = jiffies;
5521 }
5522 if (need_serialize)
5523 spin_unlock(&balancing);
5524out:
5525 if (time_after(next_balance, sd->last_balance + interval)) {
5526 next_balance = sd->last_balance + interval;
5527 update_next_balance = 1;
5528 }
5529
5530 /*
5531 * Stop the load balance at this level. There is another
5532 * CPU in our sched group which is doing load balancing more
5533 * actively.
5534 */
5535 if (!balance)
5536 break;
5537 }
dce840a0 5538 rcu_read_unlock();
1e3c88bd
PZ
5539
5540 /*
5541 * next_balance will be updated only when there is a need.
5542 * When the cpu is attached to null domain for ex, it will not be
5543 * updated.
5544 */
5545 if (likely(update_next_balance))
5546 rq->next_balance = next_balance;
5547}
5548
83cd4fe2 5549#ifdef CONFIG_NO_HZ
1e3c88bd 5550/*
83cd4fe2 5551 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5552 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5553 */
83cd4fe2
VP
5554static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5555{
5556 struct rq *this_rq = cpu_rq(this_cpu);
5557 struct rq *rq;
5558 int balance_cpu;
5559
1c792db7
SS
5560 if (idle != CPU_IDLE ||
5561 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5562 goto end;
83cd4fe2
VP
5563
5564 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5565 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5566 continue;
5567
5568 /*
5569 * If this cpu gets work to do, stop the load balancing
5570 * work being done for other cpus. Next load
5571 * balancing owner will pick it up.
5572 */
1c792db7 5573 if (need_resched())
83cd4fe2 5574 break;
83cd4fe2 5575
5ed4f1d9
VG
5576 rq = cpu_rq(balance_cpu);
5577
5578 raw_spin_lock_irq(&rq->lock);
5579 update_rq_clock(rq);
5580 update_idle_cpu_load(rq);
5581 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5582
5583 rebalance_domains(balance_cpu, CPU_IDLE);
5584
83cd4fe2
VP
5585 if (time_after(this_rq->next_balance, rq->next_balance))
5586 this_rq->next_balance = rq->next_balance;
5587 }
5588 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5589end:
5590 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5591}
5592
5593/*
0b005cf5
SS
5594 * Current heuristic for kicking the idle load balancer in the presence
5595 * of an idle cpu is the system.
5596 * - This rq has more than one task.
5597 * - At any scheduler domain level, this cpu's scheduler group has multiple
5598 * busy cpu's exceeding the group's power.
5599 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5600 * domain span are idle.
83cd4fe2
VP
5601 */
5602static inline int nohz_kick_needed(struct rq *rq, int cpu)
5603{
5604 unsigned long now = jiffies;
0b005cf5 5605 struct sched_domain *sd;
83cd4fe2 5606
1c792db7 5607 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5608 return 0;
5609
1c792db7
SS
5610 /*
5611 * We may be recently in ticked or tickless idle mode. At the first
5612 * busy tick after returning from idle, we will update the busy stats.
5613 */
69e1e811 5614 set_cpu_sd_state_busy();
c1cc017c 5615 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5616
5617 /*
5618 * None are in tickless mode and hence no need for NOHZ idle load
5619 * balancing.
5620 */
5621 if (likely(!atomic_read(&nohz.nr_cpus)))
5622 return 0;
1c792db7
SS
5623
5624 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5625 return 0;
5626
0b005cf5
SS
5627 if (rq->nr_running >= 2)
5628 goto need_kick;
83cd4fe2 5629
067491b7 5630 rcu_read_lock();
0b005cf5
SS
5631 for_each_domain(cpu, sd) {
5632 struct sched_group *sg = sd->groups;
5633 struct sched_group_power *sgp = sg->sgp;
5634 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5635
0b005cf5 5636 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5637 goto need_kick_unlock;
0b005cf5
SS
5638
5639 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5640 && (cpumask_first_and(nohz.idle_cpus_mask,
5641 sched_domain_span(sd)) < cpu))
067491b7 5642 goto need_kick_unlock;
0b005cf5
SS
5643
5644 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5645 break;
83cd4fe2 5646 }
067491b7 5647 rcu_read_unlock();
83cd4fe2 5648 return 0;
067491b7
PZ
5649
5650need_kick_unlock:
5651 rcu_read_unlock();
0b005cf5
SS
5652need_kick:
5653 return 1;
83cd4fe2
VP
5654}
5655#else
5656static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5657#endif
5658
5659/*
5660 * run_rebalance_domains is triggered when needed from the scheduler tick.
5661 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5662 */
1e3c88bd
PZ
5663static void run_rebalance_domains(struct softirq_action *h)
5664{
5665 int this_cpu = smp_processor_id();
5666 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5667 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5668 CPU_IDLE : CPU_NOT_IDLE;
5669
5670 rebalance_domains(this_cpu, idle);
5671
1e3c88bd 5672 /*
83cd4fe2 5673 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5674 * balancing on behalf of the other idle cpus whose ticks are
5675 * stopped.
5676 */
83cd4fe2 5677 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5678}
5679
5680static inline int on_null_domain(int cpu)
5681{
90a6501f 5682 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5683}
5684
5685/*
5686 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5687 */
029632fb 5688void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5689{
1e3c88bd
PZ
5690 /* Don't need to rebalance while attached to NULL domain */
5691 if (time_after_eq(jiffies, rq->next_balance) &&
5692 likely(!on_null_domain(cpu)))
5693 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5694#ifdef CONFIG_NO_HZ
1c792db7 5695 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5696 nohz_balancer_kick(cpu);
5697#endif
1e3c88bd
PZ
5698}
5699
0bcdcf28
CE
5700static void rq_online_fair(struct rq *rq)
5701{
5702 update_sysctl();
5703}
5704
5705static void rq_offline_fair(struct rq *rq)
5706{
5707 update_sysctl();
a4c96ae3
PB
5708
5709 /* Ensure any throttled groups are reachable by pick_next_task */
5710 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5711}
5712
55e12e5e 5713#endif /* CONFIG_SMP */
e1d1484f 5714
bf0f6f24
IM
5715/*
5716 * scheduler tick hitting a task of our scheduling class:
5717 */
8f4d37ec 5718static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5719{
5720 struct cfs_rq *cfs_rq;
5721 struct sched_entity *se = &curr->se;
5722
5723 for_each_sched_entity(se) {
5724 cfs_rq = cfs_rq_of(se);
8f4d37ec 5725 entity_tick(cfs_rq, se, queued);
bf0f6f24 5726 }
18bf2805 5727
cbee9f88
PZ
5728 if (sched_feat_numa(NUMA))
5729 task_tick_numa(rq, curr);
3d59eebc 5730
18bf2805 5731 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5732}
5733
5734/*
cd29fe6f
PZ
5735 * called on fork with the child task as argument from the parent's context
5736 * - child not yet on the tasklist
5737 * - preemption disabled
bf0f6f24 5738 */
cd29fe6f 5739static void task_fork_fair(struct task_struct *p)
bf0f6f24 5740{
4fc420c9
DN
5741 struct cfs_rq *cfs_rq;
5742 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5743 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5744 struct rq *rq = this_rq();
5745 unsigned long flags;
5746
05fa785c 5747 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5748
861d034e
PZ
5749 update_rq_clock(rq);
5750
4fc420c9
DN
5751 cfs_rq = task_cfs_rq(current);
5752 curr = cfs_rq->curr;
5753
b0a0f667
PM
5754 if (unlikely(task_cpu(p) != this_cpu)) {
5755 rcu_read_lock();
cd29fe6f 5756 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5757 rcu_read_unlock();
5758 }
bf0f6f24 5759
7109c442 5760 update_curr(cfs_rq);
cd29fe6f 5761
b5d9d734
MG
5762 if (curr)
5763 se->vruntime = curr->vruntime;
aeb73b04 5764 place_entity(cfs_rq, se, 1);
4d78e7b6 5765
cd29fe6f 5766 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5767 /*
edcb60a3
IM
5768 * Upon rescheduling, sched_class::put_prev_task() will place
5769 * 'current' within the tree based on its new key value.
5770 */
4d78e7b6 5771 swap(curr->vruntime, se->vruntime);
aec0a514 5772 resched_task(rq->curr);
4d78e7b6 5773 }
bf0f6f24 5774
88ec22d3
PZ
5775 se->vruntime -= cfs_rq->min_vruntime;
5776
05fa785c 5777 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5778}
5779
cb469845
SR
5780/*
5781 * Priority of the task has changed. Check to see if we preempt
5782 * the current task.
5783 */
da7a735e
PZ
5784static void
5785prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5786{
da7a735e
PZ
5787 if (!p->se.on_rq)
5788 return;
5789
cb469845
SR
5790 /*
5791 * Reschedule if we are currently running on this runqueue and
5792 * our priority decreased, or if we are not currently running on
5793 * this runqueue and our priority is higher than the current's
5794 */
da7a735e 5795 if (rq->curr == p) {
cb469845
SR
5796 if (p->prio > oldprio)
5797 resched_task(rq->curr);
5798 } else
15afe09b 5799 check_preempt_curr(rq, p, 0);
cb469845
SR
5800}
5801
da7a735e
PZ
5802static void switched_from_fair(struct rq *rq, struct task_struct *p)
5803{
5804 struct sched_entity *se = &p->se;
5805 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5806
5807 /*
5808 * Ensure the task's vruntime is normalized, so that when its
5809 * switched back to the fair class the enqueue_entity(.flags=0) will
5810 * do the right thing.
5811 *
5812 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5813 * have normalized the vruntime, if it was !on_rq, then only when
5814 * the task is sleeping will it still have non-normalized vruntime.
5815 */
5816 if (!se->on_rq && p->state != TASK_RUNNING) {
5817 /*
5818 * Fix up our vruntime so that the current sleep doesn't
5819 * cause 'unlimited' sleep bonus.
5820 */
5821 place_entity(cfs_rq, se, 0);
5822 se->vruntime -= cfs_rq->min_vruntime;
5823 }
9ee474f5
PT
5824
5825#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5826 /*
5827 * Remove our load from contribution when we leave sched_fair
5828 * and ensure we don't carry in an old decay_count if we
5829 * switch back.
5830 */
5831 if (p->se.avg.decay_count) {
5832 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5833 __synchronize_entity_decay(&p->se);
5834 subtract_blocked_load_contrib(cfs_rq,
5835 p->se.avg.load_avg_contrib);
5836 }
5837#endif
da7a735e
PZ
5838}
5839
cb469845
SR
5840/*
5841 * We switched to the sched_fair class.
5842 */
da7a735e 5843static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5844{
da7a735e
PZ
5845 if (!p->se.on_rq)
5846 return;
5847
cb469845
SR
5848 /*
5849 * We were most likely switched from sched_rt, so
5850 * kick off the schedule if running, otherwise just see
5851 * if we can still preempt the current task.
5852 */
da7a735e 5853 if (rq->curr == p)
cb469845
SR
5854 resched_task(rq->curr);
5855 else
15afe09b 5856 check_preempt_curr(rq, p, 0);
cb469845
SR
5857}
5858
83b699ed
SV
5859/* Account for a task changing its policy or group.
5860 *
5861 * This routine is mostly called to set cfs_rq->curr field when a task
5862 * migrates between groups/classes.
5863 */
5864static void set_curr_task_fair(struct rq *rq)
5865{
5866 struct sched_entity *se = &rq->curr->se;
5867
ec12cb7f
PT
5868 for_each_sched_entity(se) {
5869 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5870
5871 set_next_entity(cfs_rq, se);
5872 /* ensure bandwidth has been allocated on our new cfs_rq */
5873 account_cfs_rq_runtime(cfs_rq, 0);
5874 }
83b699ed
SV
5875}
5876
029632fb
PZ
5877void init_cfs_rq(struct cfs_rq *cfs_rq)
5878{
5879 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5880 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5881#ifndef CONFIG_64BIT
5882 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5883#endif
9ee474f5
PT
5884#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5885 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5886 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5887#endif
029632fb
PZ
5888}
5889
810b3817 5890#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5891static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5892{
aff3e498 5893 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5894 /*
5895 * If the task was not on the rq at the time of this cgroup movement
5896 * it must have been asleep, sleeping tasks keep their ->vruntime
5897 * absolute on their old rq until wakeup (needed for the fair sleeper
5898 * bonus in place_entity()).
5899 *
5900 * If it was on the rq, we've just 'preempted' it, which does convert
5901 * ->vruntime to a relative base.
5902 *
5903 * Make sure both cases convert their relative position when migrating
5904 * to another cgroup's rq. This does somewhat interfere with the
5905 * fair sleeper stuff for the first placement, but who cares.
5906 */
7ceff013
DN
5907 /*
5908 * When !on_rq, vruntime of the task has usually NOT been normalized.
5909 * But there are some cases where it has already been normalized:
5910 *
5911 * - Moving a forked child which is waiting for being woken up by
5912 * wake_up_new_task().
62af3783
DN
5913 * - Moving a task which has been woken up by try_to_wake_up() and
5914 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5915 *
5916 * To prevent boost or penalty in the new cfs_rq caused by delta
5917 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5918 */
62af3783 5919 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5920 on_rq = 1;
5921
b2b5ce02
PZ
5922 if (!on_rq)
5923 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5924 set_task_rq(p, task_cpu(p));
aff3e498
PT
5925 if (!on_rq) {
5926 cfs_rq = cfs_rq_of(&p->se);
5927 p->se.vruntime += cfs_rq->min_vruntime;
5928#ifdef CONFIG_SMP
5929 /*
5930 * migrate_task_rq_fair() will have removed our previous
5931 * contribution, but we must synchronize for ongoing future
5932 * decay.
5933 */
5934 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5935 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5936#endif
5937 }
810b3817 5938}
029632fb
PZ
5939
5940void free_fair_sched_group(struct task_group *tg)
5941{
5942 int i;
5943
5944 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5945
5946 for_each_possible_cpu(i) {
5947 if (tg->cfs_rq)
5948 kfree(tg->cfs_rq[i]);
5949 if (tg->se)
5950 kfree(tg->se[i]);
5951 }
5952
5953 kfree(tg->cfs_rq);
5954 kfree(tg->se);
5955}
5956
5957int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5958{
5959 struct cfs_rq *cfs_rq;
5960 struct sched_entity *se;
5961 int i;
5962
5963 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5964 if (!tg->cfs_rq)
5965 goto err;
5966 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5967 if (!tg->se)
5968 goto err;
5969
5970 tg->shares = NICE_0_LOAD;
5971
5972 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5973
5974 for_each_possible_cpu(i) {
5975 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5976 GFP_KERNEL, cpu_to_node(i));
5977 if (!cfs_rq)
5978 goto err;
5979
5980 se = kzalloc_node(sizeof(struct sched_entity),
5981 GFP_KERNEL, cpu_to_node(i));
5982 if (!se)
5983 goto err_free_rq;
5984
5985 init_cfs_rq(cfs_rq);
5986 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5987 }
5988
5989 return 1;
5990
5991err_free_rq:
5992 kfree(cfs_rq);
5993err:
5994 return 0;
5995}
5996
5997void unregister_fair_sched_group(struct task_group *tg, int cpu)
5998{
5999 struct rq *rq = cpu_rq(cpu);
6000 unsigned long flags;
6001
6002 /*
6003 * Only empty task groups can be destroyed; so we can speculatively
6004 * check on_list without danger of it being re-added.
6005 */
6006 if (!tg->cfs_rq[cpu]->on_list)
6007 return;
6008
6009 raw_spin_lock_irqsave(&rq->lock, flags);
6010 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6011 raw_spin_unlock_irqrestore(&rq->lock, flags);
6012}
6013
6014void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6015 struct sched_entity *se, int cpu,
6016 struct sched_entity *parent)
6017{
6018 struct rq *rq = cpu_rq(cpu);
6019
6020 cfs_rq->tg = tg;
6021 cfs_rq->rq = rq;
029632fb
PZ
6022 init_cfs_rq_runtime(cfs_rq);
6023
6024 tg->cfs_rq[cpu] = cfs_rq;
6025 tg->se[cpu] = se;
6026
6027 /* se could be NULL for root_task_group */
6028 if (!se)
6029 return;
6030
6031 if (!parent)
6032 se->cfs_rq = &rq->cfs;
6033 else
6034 se->cfs_rq = parent->my_q;
6035
6036 se->my_q = cfs_rq;
6037 update_load_set(&se->load, 0);
6038 se->parent = parent;
6039}
6040
6041static DEFINE_MUTEX(shares_mutex);
6042
6043int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6044{
6045 int i;
6046 unsigned long flags;
6047
6048 /*
6049 * We can't change the weight of the root cgroup.
6050 */
6051 if (!tg->se[0])
6052 return -EINVAL;
6053
6054 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6055
6056 mutex_lock(&shares_mutex);
6057 if (tg->shares == shares)
6058 goto done;
6059
6060 tg->shares = shares;
6061 for_each_possible_cpu(i) {
6062 struct rq *rq = cpu_rq(i);
6063 struct sched_entity *se;
6064
6065 se = tg->se[i];
6066 /* Propagate contribution to hierarchy */
6067 raw_spin_lock_irqsave(&rq->lock, flags);
17bc14b7 6068 for_each_sched_entity(se)
029632fb
PZ
6069 update_cfs_shares(group_cfs_rq(se));
6070 raw_spin_unlock_irqrestore(&rq->lock, flags);
6071 }
6072
6073done:
6074 mutex_unlock(&shares_mutex);
6075 return 0;
6076}
6077#else /* CONFIG_FAIR_GROUP_SCHED */
6078
6079void free_fair_sched_group(struct task_group *tg) { }
6080
6081int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6082{
6083 return 1;
6084}
6085
6086void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6087
6088#endif /* CONFIG_FAIR_GROUP_SCHED */
6089
810b3817 6090
6d686f45 6091static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6092{
6093 struct sched_entity *se = &task->se;
0d721cea
PW
6094 unsigned int rr_interval = 0;
6095
6096 /*
6097 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6098 * idle runqueue:
6099 */
0d721cea
PW
6100 if (rq->cfs.load.weight)
6101 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
6102
6103 return rr_interval;
6104}
6105
bf0f6f24
IM
6106/*
6107 * All the scheduling class methods:
6108 */
029632fb 6109const struct sched_class fair_sched_class = {
5522d5d5 6110 .next = &idle_sched_class,
bf0f6f24
IM
6111 .enqueue_task = enqueue_task_fair,
6112 .dequeue_task = dequeue_task_fair,
6113 .yield_task = yield_task_fair,
d95f4122 6114 .yield_to_task = yield_to_task_fair,
bf0f6f24 6115
2e09bf55 6116 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6117
6118 .pick_next_task = pick_next_task_fair,
6119 .put_prev_task = put_prev_task_fair,
6120
681f3e68 6121#ifdef CONFIG_SMP
4ce72a2c 6122 .select_task_rq = select_task_rq_fair,
f4e26b12 6123#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8 6124 .migrate_task_rq = migrate_task_rq_fair,
f4e26b12 6125#endif
0bcdcf28
CE
6126 .rq_online = rq_online_fair,
6127 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6128
6129 .task_waking = task_waking_fair,
681f3e68 6130#endif
bf0f6f24 6131
83b699ed 6132 .set_curr_task = set_curr_task_fair,
bf0f6f24 6133 .task_tick = task_tick_fair,
cd29fe6f 6134 .task_fork = task_fork_fair,
cb469845
SR
6135
6136 .prio_changed = prio_changed_fair,
da7a735e 6137 .switched_from = switched_from_fair,
cb469845 6138 .switched_to = switched_to_fair,
810b3817 6139
0d721cea
PW
6140 .get_rr_interval = get_rr_interval_fair,
6141
810b3817 6142#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6143 .task_move_group = task_move_group_fair,
810b3817 6144#endif
bf0f6f24
IM
6145};
6146
6147#ifdef CONFIG_SCHED_DEBUG
029632fb 6148void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6149{
bf0f6f24
IM
6150 struct cfs_rq *cfs_rq;
6151
5973e5b9 6152 rcu_read_lock();
c3b64f1e 6153 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6154 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6155 rcu_read_unlock();
bf0f6f24
IM
6156}
6157#endif
029632fb
PZ
6158
6159__init void init_sched_fair_class(void)
6160{
6161#ifdef CONFIG_SMP
6162 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6163
6164#ifdef CONFIG_NO_HZ
554cecaf 6165 nohz.next_balance = jiffies;
029632fb 6166 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6167 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6168#endif
6169#endif /* SMP */
6170
6171}
This page took 0.870081 seconds and 5 git commands to generate.