Merge remote-tracking branches 'spi/fix/ep93xx', 'spi/fix/rockchip', 'spi/fix/sunxi...
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
2b8c41da
YD
693/*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718void post_init_entity_util_avg(struct sched_entity *se)
719{
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
172895e6 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736}
737
7ea241af
YD
738static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
739static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 740#else
540247fb 741void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
742{
743}
2b8c41da
YD
744void post_init_entity_util_avg(struct sched_entity *se)
745{
746}
a75cdaa9
AS
747#endif
748
bf0f6f24 749/*
9dbdb155 750 * Update the current task's runtime statistics.
bf0f6f24 751 */
b7cc0896 752static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 753{
429d43bc 754 struct sched_entity *curr = cfs_rq->curr;
78becc27 755 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 756 u64 delta_exec;
bf0f6f24
IM
757
758 if (unlikely(!curr))
759 return;
760
9dbdb155
PZ
761 delta_exec = now - curr->exec_start;
762 if (unlikely((s64)delta_exec <= 0))
34f28ecd 763 return;
bf0f6f24 764
8ebc91d9 765 curr->exec_start = now;
d842de87 766
9dbdb155
PZ
767 schedstat_set(curr->statistics.exec_max,
768 max(delta_exec, curr->statistics.exec_max));
769
770 curr->sum_exec_runtime += delta_exec;
771 schedstat_add(cfs_rq, exec_clock, delta_exec);
772
773 curr->vruntime += calc_delta_fair(delta_exec, curr);
774 update_min_vruntime(cfs_rq);
775
d842de87
SV
776 if (entity_is_task(curr)) {
777 struct task_struct *curtask = task_of(curr);
778
f977bb49 779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 780 cpuacct_charge(curtask, delta_exec);
f06febc9 781 account_group_exec_runtime(curtask, delta_exec);
d842de87 782 }
ec12cb7f
PT
783
784 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
785}
786
6e998916
SG
787static void update_curr_fair(struct rq *rq)
788{
789 update_curr(cfs_rq_of(&rq->curr->se));
790}
791
3ea94de1 792#ifdef CONFIG_SCHEDSTATS
bf0f6f24 793static inline void
5870db5b 794update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 795{
3ea94de1
JP
796 u64 wait_start = rq_clock(rq_of(cfs_rq));
797
798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
799 likely(wait_start > se->statistics.wait_start))
800 wait_start -= se->statistics.wait_start;
801
802 se->statistics.wait_start = wait_start;
bf0f6f24
IM
803}
804
3ea94de1
JP
805static void
806update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
807{
808 struct task_struct *p;
cb251765
MG
809 u64 delta;
810
811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
812
813 if (entity_is_task(se)) {
814 p = task_of(se);
815 if (task_on_rq_migrating(p)) {
816 /*
817 * Preserve migrating task's wait time so wait_start
818 * time stamp can be adjusted to accumulate wait time
819 * prior to migration.
820 */
821 se->statistics.wait_start = delta;
822 return;
823 }
824 trace_sched_stat_wait(p, delta);
825 }
826
827 se->statistics.wait_max = max(se->statistics.wait_max, delta);
828 se->statistics.wait_count++;
829 se->statistics.wait_sum += delta;
830 se->statistics.wait_start = 0;
831}
3ea94de1 832
bf0f6f24
IM
833/*
834 * Task is being enqueued - update stats:
835 */
cb251765
MG
836static inline void
837update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 838{
bf0f6f24
IM
839 /*
840 * Are we enqueueing a waiting task? (for current tasks
841 * a dequeue/enqueue event is a NOP)
842 */
429d43bc 843 if (se != cfs_rq->curr)
5870db5b 844 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
845}
846
bf0f6f24 847static inline void
cb251765 848update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 849{
bf0f6f24
IM
850 /*
851 * Mark the end of the wait period if dequeueing a
852 * waiting task:
853 */
429d43bc 854 if (se != cfs_rq->curr)
9ef0a961 855 update_stats_wait_end(cfs_rq, se);
cb251765
MG
856
857 if (flags & DEQUEUE_SLEEP) {
858 if (entity_is_task(se)) {
859 struct task_struct *tsk = task_of(se);
860
861 if (tsk->state & TASK_INTERRUPTIBLE)
862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
863 if (tsk->state & TASK_UNINTERRUPTIBLE)
864 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
865 }
866 }
867
868}
869#else
870static inline void
871update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
872{
873}
874
875static inline void
876update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
877{
878}
879
880static inline void
881update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
882{
883}
884
885static inline void
886update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
887{
bf0f6f24 888}
cb251765 889#endif
bf0f6f24
IM
890
891/*
892 * We are picking a new current task - update its stats:
893 */
894static inline void
79303e9e 895update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
896{
897 /*
898 * We are starting a new run period:
899 */
78becc27 900 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
901}
902
bf0f6f24
IM
903/**************************************************
904 * Scheduling class queueing methods:
905 */
906
cbee9f88
PZ
907#ifdef CONFIG_NUMA_BALANCING
908/*
598f0ec0
MG
909 * Approximate time to scan a full NUMA task in ms. The task scan period is
910 * calculated based on the tasks virtual memory size and
911 * numa_balancing_scan_size.
cbee9f88 912 */
598f0ec0
MG
913unsigned int sysctl_numa_balancing_scan_period_min = 1000;
914unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
915
916/* Portion of address space to scan in MB */
917unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 918
4b96a29b
PZ
919/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
920unsigned int sysctl_numa_balancing_scan_delay = 1000;
921
598f0ec0
MG
922static unsigned int task_nr_scan_windows(struct task_struct *p)
923{
924 unsigned long rss = 0;
925 unsigned long nr_scan_pages;
926
927 /*
928 * Calculations based on RSS as non-present and empty pages are skipped
929 * by the PTE scanner and NUMA hinting faults should be trapped based
930 * on resident pages
931 */
932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
933 rss = get_mm_rss(p->mm);
934 if (!rss)
935 rss = nr_scan_pages;
936
937 rss = round_up(rss, nr_scan_pages);
938 return rss / nr_scan_pages;
939}
940
941/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
942#define MAX_SCAN_WINDOW 2560
943
944static unsigned int task_scan_min(struct task_struct *p)
945{
316c1608 946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
947 unsigned int scan, floor;
948 unsigned int windows = 1;
949
64192658
KT
950 if (scan_size < MAX_SCAN_WINDOW)
951 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
952 floor = 1000 / windows;
953
954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
955 return max_t(unsigned int, floor, scan);
956}
957
958static unsigned int task_scan_max(struct task_struct *p)
959{
960 unsigned int smin = task_scan_min(p);
961 unsigned int smax;
962
963 /* Watch for min being lower than max due to floor calculations */
964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
965 return max(smin, smax);
966}
967
0ec8aa00
PZ
968static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
969{
970 rq->nr_numa_running += (p->numa_preferred_nid != -1);
971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
972}
973
974static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
975{
976 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
978}
979
8c8a743c
PZ
980struct numa_group {
981 atomic_t refcount;
982
983 spinlock_t lock; /* nr_tasks, tasks */
984 int nr_tasks;
e29cf08b 985 pid_t gid;
4142c3eb 986 int active_nodes;
8c8a743c
PZ
987
988 struct rcu_head rcu;
989348b5 989 unsigned long total_faults;
4142c3eb 990 unsigned long max_faults_cpu;
7e2703e6
RR
991 /*
992 * Faults_cpu is used to decide whether memory should move
993 * towards the CPU. As a consequence, these stats are weighted
994 * more by CPU use than by memory faults.
995 */
50ec8a40 996 unsigned long *faults_cpu;
989348b5 997 unsigned long faults[0];
8c8a743c
PZ
998};
999
be1e4e76
RR
1000/* Shared or private faults. */
1001#define NR_NUMA_HINT_FAULT_TYPES 2
1002
1003/* Memory and CPU locality */
1004#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1005
1006/* Averaged statistics, and temporary buffers. */
1007#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1008
e29cf08b
MG
1009pid_t task_numa_group_id(struct task_struct *p)
1010{
1011 return p->numa_group ? p->numa_group->gid : 0;
1012}
1013
44dba3d5
IM
1014/*
1015 * The averaged statistics, shared & private, memory & cpu,
1016 * occupy the first half of the array. The second half of the
1017 * array is for current counters, which are averaged into the
1018 * first set by task_numa_placement.
1019 */
1020static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1021{
44dba3d5 1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1023}
1024
1025static inline unsigned long task_faults(struct task_struct *p, int nid)
1026{
44dba3d5 1027 if (!p->numa_faults)
ac8e895b
MG
1028 return 0;
1029
44dba3d5
IM
1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1032}
1033
83e1d2cd
MG
1034static inline unsigned long group_faults(struct task_struct *p, int nid)
1035{
1036 if (!p->numa_group)
1037 return 0;
1038
44dba3d5
IM
1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1041}
1042
20e07dea
RR
1043static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1044{
44dba3d5
IM
1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1047}
1048
4142c3eb
RR
1049/*
1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1051 * considered part of a numa group's pseudo-interleaving set. Migrations
1052 * between these nodes are slowed down, to allow things to settle down.
1053 */
1054#define ACTIVE_NODE_FRACTION 3
1055
1056static bool numa_is_active_node(int nid, struct numa_group *ng)
1057{
1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1059}
1060
6c6b1193
RR
1061/* Handle placement on systems where not all nodes are directly connected. */
1062static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1063 int maxdist, bool task)
1064{
1065 unsigned long score = 0;
1066 int node;
1067
1068 /*
1069 * All nodes are directly connected, and the same distance
1070 * from each other. No need for fancy placement algorithms.
1071 */
1072 if (sched_numa_topology_type == NUMA_DIRECT)
1073 return 0;
1074
1075 /*
1076 * This code is called for each node, introducing N^2 complexity,
1077 * which should be ok given the number of nodes rarely exceeds 8.
1078 */
1079 for_each_online_node(node) {
1080 unsigned long faults;
1081 int dist = node_distance(nid, node);
1082
1083 /*
1084 * The furthest away nodes in the system are not interesting
1085 * for placement; nid was already counted.
1086 */
1087 if (dist == sched_max_numa_distance || node == nid)
1088 continue;
1089
1090 /*
1091 * On systems with a backplane NUMA topology, compare groups
1092 * of nodes, and move tasks towards the group with the most
1093 * memory accesses. When comparing two nodes at distance
1094 * "hoplimit", only nodes closer by than "hoplimit" are part
1095 * of each group. Skip other nodes.
1096 */
1097 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1098 dist > maxdist)
1099 continue;
1100
1101 /* Add up the faults from nearby nodes. */
1102 if (task)
1103 faults = task_faults(p, node);
1104 else
1105 faults = group_faults(p, node);
1106
1107 /*
1108 * On systems with a glueless mesh NUMA topology, there are
1109 * no fixed "groups of nodes". Instead, nodes that are not
1110 * directly connected bounce traffic through intermediate
1111 * nodes; a numa_group can occupy any set of nodes.
1112 * The further away a node is, the less the faults count.
1113 * This seems to result in good task placement.
1114 */
1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1116 faults *= (sched_max_numa_distance - dist);
1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1118 }
1119
1120 score += faults;
1121 }
1122
1123 return score;
1124}
1125
83e1d2cd
MG
1126/*
1127 * These return the fraction of accesses done by a particular task, or
1128 * task group, on a particular numa node. The group weight is given a
1129 * larger multiplier, in order to group tasks together that are almost
1130 * evenly spread out between numa nodes.
1131 */
7bd95320
RR
1132static inline unsigned long task_weight(struct task_struct *p, int nid,
1133 int dist)
83e1d2cd 1134{
7bd95320 1135 unsigned long faults, total_faults;
83e1d2cd 1136
44dba3d5 1137 if (!p->numa_faults)
83e1d2cd
MG
1138 return 0;
1139
1140 total_faults = p->total_numa_faults;
1141
1142 if (!total_faults)
1143 return 0;
1144
7bd95320 1145 faults = task_faults(p, nid);
6c6b1193
RR
1146 faults += score_nearby_nodes(p, nid, dist, true);
1147
7bd95320 1148 return 1000 * faults / total_faults;
83e1d2cd
MG
1149}
1150
7bd95320
RR
1151static inline unsigned long group_weight(struct task_struct *p, int nid,
1152 int dist)
83e1d2cd 1153{
7bd95320
RR
1154 unsigned long faults, total_faults;
1155
1156 if (!p->numa_group)
1157 return 0;
1158
1159 total_faults = p->numa_group->total_faults;
1160
1161 if (!total_faults)
83e1d2cd
MG
1162 return 0;
1163
7bd95320 1164 faults = group_faults(p, nid);
6c6b1193
RR
1165 faults += score_nearby_nodes(p, nid, dist, false);
1166
7bd95320 1167 return 1000 * faults / total_faults;
83e1d2cd
MG
1168}
1169
10f39042
RR
1170bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1171 int src_nid, int dst_cpu)
1172{
1173 struct numa_group *ng = p->numa_group;
1174 int dst_nid = cpu_to_node(dst_cpu);
1175 int last_cpupid, this_cpupid;
1176
1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1178
1179 /*
1180 * Multi-stage node selection is used in conjunction with a periodic
1181 * migration fault to build a temporal task<->page relation. By using
1182 * a two-stage filter we remove short/unlikely relations.
1183 *
1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1185 * a task's usage of a particular page (n_p) per total usage of this
1186 * page (n_t) (in a given time-span) to a probability.
1187 *
1188 * Our periodic faults will sample this probability and getting the
1189 * same result twice in a row, given these samples are fully
1190 * independent, is then given by P(n)^2, provided our sample period
1191 * is sufficiently short compared to the usage pattern.
1192 *
1193 * This quadric squishes small probabilities, making it less likely we
1194 * act on an unlikely task<->page relation.
1195 */
1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1197 if (!cpupid_pid_unset(last_cpupid) &&
1198 cpupid_to_nid(last_cpupid) != dst_nid)
1199 return false;
1200
1201 /* Always allow migrate on private faults */
1202 if (cpupid_match_pid(p, last_cpupid))
1203 return true;
1204
1205 /* A shared fault, but p->numa_group has not been set up yet. */
1206 if (!ng)
1207 return true;
1208
1209 /*
4142c3eb
RR
1210 * Destination node is much more heavily used than the source
1211 * node? Allow migration.
10f39042 1212 */
4142c3eb
RR
1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1214 ACTIVE_NODE_FRACTION)
10f39042
RR
1215 return true;
1216
1217 /*
4142c3eb
RR
1218 * Distribute memory according to CPU & memory use on each node,
1219 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1220 *
1221 * faults_cpu(dst) 3 faults_cpu(src)
1222 * --------------- * - > ---------------
1223 * faults_mem(dst) 4 faults_mem(src)
10f39042 1224 */
4142c3eb
RR
1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1227}
1228
e6628d5b 1229static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1230static unsigned long source_load(int cpu, int type);
1231static unsigned long target_load(int cpu, int type);
ced549fa 1232static unsigned long capacity_of(int cpu);
58d081b5
MG
1233static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1234
fb13c7ee 1235/* Cached statistics for all CPUs within a node */
58d081b5 1236struct numa_stats {
fb13c7ee 1237 unsigned long nr_running;
58d081b5 1238 unsigned long load;
fb13c7ee
MG
1239
1240 /* Total compute capacity of CPUs on a node */
5ef20ca1 1241 unsigned long compute_capacity;
fb13c7ee
MG
1242
1243 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1244 unsigned long task_capacity;
1b6a7495 1245 int has_free_capacity;
58d081b5 1246};
e6628d5b 1247
fb13c7ee
MG
1248/*
1249 * XXX borrowed from update_sg_lb_stats
1250 */
1251static void update_numa_stats(struct numa_stats *ns, int nid)
1252{
83d7f242
RR
1253 int smt, cpu, cpus = 0;
1254 unsigned long capacity;
fb13c7ee
MG
1255
1256 memset(ns, 0, sizeof(*ns));
1257 for_each_cpu(cpu, cpumask_of_node(nid)) {
1258 struct rq *rq = cpu_rq(cpu);
1259
1260 ns->nr_running += rq->nr_running;
1261 ns->load += weighted_cpuload(cpu);
ced549fa 1262 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1263
1264 cpus++;
fb13c7ee
MG
1265 }
1266
5eca82a9
PZ
1267 /*
1268 * If we raced with hotplug and there are no CPUs left in our mask
1269 * the @ns structure is NULL'ed and task_numa_compare() will
1270 * not find this node attractive.
1271 *
1b6a7495
NP
1272 * We'll either bail at !has_free_capacity, or we'll detect a huge
1273 * imbalance and bail there.
5eca82a9
PZ
1274 */
1275 if (!cpus)
1276 return;
1277
83d7f242
RR
1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1280 capacity = cpus / smt; /* cores */
1281
1282 ns->task_capacity = min_t(unsigned, capacity,
1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1285}
1286
58d081b5
MG
1287struct task_numa_env {
1288 struct task_struct *p;
e6628d5b 1289
58d081b5
MG
1290 int src_cpu, src_nid;
1291 int dst_cpu, dst_nid;
e6628d5b 1292
58d081b5 1293 struct numa_stats src_stats, dst_stats;
e6628d5b 1294
40ea2b42 1295 int imbalance_pct;
7bd95320 1296 int dist;
fb13c7ee
MG
1297
1298 struct task_struct *best_task;
1299 long best_imp;
58d081b5
MG
1300 int best_cpu;
1301};
1302
fb13c7ee
MG
1303static void task_numa_assign(struct task_numa_env *env,
1304 struct task_struct *p, long imp)
1305{
1306 if (env->best_task)
1307 put_task_struct(env->best_task);
fb13c7ee
MG
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312}
1313
28a21745 1314static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1315 struct task_numa_env *env)
1316{
e4991b24
RR
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
28a21745
RR
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1330
1331 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
e63da036
RR
1334
1335 /* Is the difference below the threshold? */
e4991b24
RR
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
e4991b24 1343 * Compare it with the old imbalance.
e63da036 1344 */
28a21745 1345 orig_src_load = env->src_stats.load;
e4991b24 1346 orig_dst_load = env->dst_stats.load;
28a21745 1347
e4991b24
RR
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
e63da036 1350
e4991b24
RR
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
e63da036
RR
1356}
1357
fb13c7ee
MG
1358/*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
887c290e
RR
1364static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
fb13c7ee
MG
1366{
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
28a21745 1370 long src_load, dst_load;
fb13c7ee 1371 long load;
1c5d3eb3 1372 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1373 long moveimp = imp;
7bd95320 1374 int dist = env->dist;
1dff76b9 1375 bool assigned = false;
fb13c7ee
MG
1376
1377 rcu_read_lock();
1effd9f1
KT
1378
1379 raw_spin_lock_irq(&dst_rq->lock);
1380 cur = dst_rq->curr;
1381 /*
1dff76b9 1382 * No need to move the exiting task or idle task.
1effd9f1
KT
1383 */
1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1385 cur = NULL;
1dff76b9
GG
1386 else {
1387 /*
1388 * The task_struct must be protected here to protect the
1389 * p->numa_faults access in the task_weight since the
1390 * numa_faults could already be freed in the following path:
1391 * finish_task_switch()
1392 * --> put_task_struct()
1393 * --> __put_task_struct()
1394 * --> task_numa_free()
1395 */
1396 get_task_struct(cur);
1397 }
1398
1effd9f1 1399 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1400
7af68335
PZ
1401 /*
1402 * Because we have preemption enabled we can get migrated around and
1403 * end try selecting ourselves (current == env->p) as a swap candidate.
1404 */
1405 if (cur == env->p)
1406 goto unlock;
1407
fb13c7ee
MG
1408 /*
1409 * "imp" is the fault differential for the source task between the
1410 * source and destination node. Calculate the total differential for
1411 * the source task and potential destination task. The more negative
1412 * the value is, the more rmeote accesses that would be expected to
1413 * be incurred if the tasks were swapped.
1414 */
1415 if (cur) {
1416 /* Skip this swap candidate if cannot move to the source cpu */
1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1418 goto unlock;
1419
887c290e
RR
1420 /*
1421 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1422 * in any group then look only at task weights.
887c290e 1423 */
ca28aa53 1424 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1425 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1426 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1427 /*
1428 * Add some hysteresis to prevent swapping the
1429 * tasks within a group over tiny differences.
1430 */
1431 if (cur->numa_group)
1432 imp -= imp/16;
887c290e 1433 } else {
ca28aa53
RR
1434 /*
1435 * Compare the group weights. If a task is all by
1436 * itself (not part of a group), use the task weight
1437 * instead.
1438 */
ca28aa53 1439 if (cur->numa_group)
7bd95320
RR
1440 imp += group_weight(cur, env->src_nid, dist) -
1441 group_weight(cur, env->dst_nid, dist);
ca28aa53 1442 else
7bd95320
RR
1443 imp += task_weight(cur, env->src_nid, dist) -
1444 task_weight(cur, env->dst_nid, dist);
887c290e 1445 }
fb13c7ee
MG
1446 }
1447
0132c3e1 1448 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1449 goto unlock;
1450
1451 if (!cur) {
1452 /* Is there capacity at our destination? */
b932c03c 1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1454 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1455 goto unlock;
1456
1457 goto balance;
1458 }
1459
1460 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1461 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1462 dst_rq->nr_running == 1)
fb13c7ee
MG
1463 goto assign;
1464
1465 /*
1466 * In the overloaded case, try and keep the load balanced.
1467 */
1468balance:
e720fff6
PZ
1469 load = task_h_load(env->p);
1470 dst_load = env->dst_stats.load + load;
1471 src_load = env->src_stats.load - load;
fb13c7ee 1472
0132c3e1
RR
1473 if (moveimp > imp && moveimp > env->best_imp) {
1474 /*
1475 * If the improvement from just moving env->p direction is
1476 * better than swapping tasks around, check if a move is
1477 * possible. Store a slightly smaller score than moveimp,
1478 * so an actually idle CPU will win.
1479 */
1480 if (!load_too_imbalanced(src_load, dst_load, env)) {
1481 imp = moveimp - 1;
1dff76b9 1482 put_task_struct(cur);
0132c3e1
RR
1483 cur = NULL;
1484 goto assign;
1485 }
1486 }
1487
1488 if (imp <= env->best_imp)
1489 goto unlock;
1490
fb13c7ee 1491 if (cur) {
e720fff6
PZ
1492 load = task_h_load(cur);
1493 dst_load -= load;
1494 src_load += load;
fb13c7ee
MG
1495 }
1496
28a21745 1497 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1498 goto unlock;
1499
ba7e5a27
RR
1500 /*
1501 * One idle CPU per node is evaluated for a task numa move.
1502 * Call select_idle_sibling to maybe find a better one.
1503 */
1504 if (!cur)
1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1506
fb13c7ee 1507assign:
1dff76b9 1508 assigned = true;
fb13c7ee
MG
1509 task_numa_assign(env, cur, imp);
1510unlock:
1511 rcu_read_unlock();
1dff76b9
GG
1512 /*
1513 * The dst_rq->curr isn't assigned. The protection for task_struct is
1514 * finished.
1515 */
1516 if (cur && !assigned)
1517 put_task_struct(cur);
fb13c7ee
MG
1518}
1519
887c290e
RR
1520static void task_numa_find_cpu(struct task_numa_env *env,
1521 long taskimp, long groupimp)
2c8a50aa
MG
1522{
1523 int cpu;
1524
1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1526 /* Skip this CPU if the source task cannot migrate */
1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1528 continue;
1529
1530 env->dst_cpu = cpu;
887c290e 1531 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1532 }
1533}
1534
6f9aad0b
RR
1535/* Only move tasks to a NUMA node less busy than the current node. */
1536static bool numa_has_capacity(struct task_numa_env *env)
1537{
1538 struct numa_stats *src = &env->src_stats;
1539 struct numa_stats *dst = &env->dst_stats;
1540
1541 if (src->has_free_capacity && !dst->has_free_capacity)
1542 return false;
1543
1544 /*
1545 * Only consider a task move if the source has a higher load
1546 * than the destination, corrected for CPU capacity on each node.
1547 *
1548 * src->load dst->load
1549 * --------------------- vs ---------------------
1550 * src->compute_capacity dst->compute_capacity
1551 */
44dcb04f
SD
1552 if (src->load * dst->compute_capacity * env->imbalance_pct >
1553
1554 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1555 return true;
1556
1557 return false;
1558}
1559
58d081b5
MG
1560static int task_numa_migrate(struct task_struct *p)
1561{
58d081b5
MG
1562 struct task_numa_env env = {
1563 .p = p,
fb13c7ee 1564
58d081b5 1565 .src_cpu = task_cpu(p),
b32e86b4 1566 .src_nid = task_node(p),
fb13c7ee
MG
1567
1568 .imbalance_pct = 112,
1569
1570 .best_task = NULL,
1571 .best_imp = 0,
4142c3eb 1572 .best_cpu = -1,
58d081b5
MG
1573 };
1574 struct sched_domain *sd;
887c290e 1575 unsigned long taskweight, groupweight;
7bd95320 1576 int nid, ret, dist;
887c290e 1577 long taskimp, groupimp;
e6628d5b 1578
58d081b5 1579 /*
fb13c7ee
MG
1580 * Pick the lowest SD_NUMA domain, as that would have the smallest
1581 * imbalance and would be the first to start moving tasks about.
1582 *
1583 * And we want to avoid any moving of tasks about, as that would create
1584 * random movement of tasks -- counter the numa conditions we're trying
1585 * to satisfy here.
58d081b5
MG
1586 */
1587 rcu_read_lock();
fb13c7ee 1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1589 if (sd)
1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1591 rcu_read_unlock();
1592
46a73e8a
RR
1593 /*
1594 * Cpusets can break the scheduler domain tree into smaller
1595 * balance domains, some of which do not cross NUMA boundaries.
1596 * Tasks that are "trapped" in such domains cannot be migrated
1597 * elsewhere, so there is no point in (re)trying.
1598 */
1599 if (unlikely(!sd)) {
de1b301a 1600 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1601 return -EINVAL;
1602 }
1603
2c8a50aa 1604 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1606 taskweight = task_weight(p, env.src_nid, dist);
1607 groupweight = group_weight(p, env.src_nid, dist);
1608 update_numa_stats(&env.src_stats, env.src_nid);
1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1611 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1612
a43455a1 1613 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1614 if (numa_has_capacity(&env))
1615 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1616
9de05d48
RR
1617 /*
1618 * Look at other nodes in these cases:
1619 * - there is no space available on the preferred_nid
1620 * - the task is part of a numa_group that is interleaved across
1621 * multiple NUMA nodes; in order to better consolidate the group,
1622 * we need to check other locations.
1623 */
4142c3eb 1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1625 for_each_online_node(nid) {
1626 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1627 continue;
58d081b5 1628
7bd95320 1629 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1630 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1631 dist != env.dist) {
1632 taskweight = task_weight(p, env.src_nid, dist);
1633 groupweight = group_weight(p, env.src_nid, dist);
1634 }
7bd95320 1635
83e1d2cd 1636 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1637 taskimp = task_weight(p, nid, dist) - taskweight;
1638 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1639 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1640 continue;
1641
7bd95320 1642 env.dist = dist;
2c8a50aa
MG
1643 env.dst_nid = nid;
1644 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1645 if (numa_has_capacity(&env))
1646 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1647 }
1648 }
1649
68d1b02a
RR
1650 /*
1651 * If the task is part of a workload that spans multiple NUMA nodes,
1652 * and is migrating into one of the workload's active nodes, remember
1653 * this node as the task's preferred numa node, so the workload can
1654 * settle down.
1655 * A task that migrated to a second choice node will be better off
1656 * trying for a better one later. Do not set the preferred node here.
1657 */
db015dae 1658 if (p->numa_group) {
4142c3eb
RR
1659 struct numa_group *ng = p->numa_group;
1660
db015dae
RR
1661 if (env.best_cpu == -1)
1662 nid = env.src_nid;
1663 else
1664 nid = env.dst_nid;
1665
4142c3eb 1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1667 sched_setnuma(p, env.dst_nid);
1668 }
1669
1670 /* No better CPU than the current one was found. */
1671 if (env.best_cpu == -1)
1672 return -EAGAIN;
0ec8aa00 1673
04bb2f94
RR
1674 /*
1675 * Reset the scan period if the task is being rescheduled on an
1676 * alternative node to recheck if the tasks is now properly placed.
1677 */
1678 p->numa_scan_period = task_scan_min(p);
1679
fb13c7ee 1680 if (env.best_task == NULL) {
286549dc
MG
1681 ret = migrate_task_to(p, env.best_cpu);
1682 if (ret != 0)
1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1684 return ret;
1685 }
1686
1687 ret = migrate_swap(p, env.best_task);
286549dc
MG
1688 if (ret != 0)
1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1690 put_task_struct(env.best_task);
1691 return ret;
e6628d5b
MG
1692}
1693
6b9a7460
MG
1694/* Attempt to migrate a task to a CPU on the preferred node. */
1695static void numa_migrate_preferred(struct task_struct *p)
1696{
5085e2a3
RR
1697 unsigned long interval = HZ;
1698
2739d3ee 1699 /* This task has no NUMA fault statistics yet */
44dba3d5 1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1701 return;
1702
2739d3ee 1703 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1705 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1706
1707 /* Success if task is already running on preferred CPU */
de1b301a 1708 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1709 return;
1710
1711 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1712 task_numa_migrate(p);
6b9a7460
MG
1713}
1714
20e07dea 1715/*
4142c3eb 1716 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1717 * tracking the nodes from which NUMA hinting faults are triggered. This can
1718 * be different from the set of nodes where the workload's memory is currently
1719 * located.
20e07dea 1720 */
4142c3eb 1721static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1722{
1723 unsigned long faults, max_faults = 0;
4142c3eb 1724 int nid, active_nodes = 0;
20e07dea
RR
1725
1726 for_each_online_node(nid) {
1727 faults = group_faults_cpu(numa_group, nid);
1728 if (faults > max_faults)
1729 max_faults = faults;
1730 }
1731
1732 for_each_online_node(nid) {
1733 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1734 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1735 active_nodes++;
20e07dea 1736 }
4142c3eb
RR
1737
1738 numa_group->max_faults_cpu = max_faults;
1739 numa_group->active_nodes = active_nodes;
20e07dea
RR
1740}
1741
04bb2f94
RR
1742/*
1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1744 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1745 * period will be for the next scan window. If local/(local+remote) ratio is
1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1747 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1748 */
1749#define NUMA_PERIOD_SLOTS 10
a22b4b01 1750#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1751
1752/*
1753 * Increase the scan period (slow down scanning) if the majority of
1754 * our memory is already on our local node, or if the majority of
1755 * the page accesses are shared with other processes.
1756 * Otherwise, decrease the scan period.
1757 */
1758static void update_task_scan_period(struct task_struct *p,
1759 unsigned long shared, unsigned long private)
1760{
1761 unsigned int period_slot;
1762 int ratio;
1763 int diff;
1764
1765 unsigned long remote = p->numa_faults_locality[0];
1766 unsigned long local = p->numa_faults_locality[1];
1767
1768 /*
1769 * If there were no record hinting faults then either the task is
1770 * completely idle or all activity is areas that are not of interest
074c2381
MG
1771 * to automatic numa balancing. Related to that, if there were failed
1772 * migration then it implies we are migrating too quickly or the local
1773 * node is overloaded. In either case, scan slower
04bb2f94 1774 */
074c2381 1775 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1776 p->numa_scan_period = min(p->numa_scan_period_max,
1777 p->numa_scan_period << 1);
1778
1779 p->mm->numa_next_scan = jiffies +
1780 msecs_to_jiffies(p->numa_scan_period);
1781
1782 return;
1783 }
1784
1785 /*
1786 * Prepare to scale scan period relative to the current period.
1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1790 */
1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1793 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1794 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1795 if (!slot)
1796 slot = 1;
1797 diff = slot * period_slot;
1798 } else {
1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1800
1801 /*
1802 * Scale scan rate increases based on sharing. There is an
1803 * inverse relationship between the degree of sharing and
1804 * the adjustment made to the scanning period. Broadly
1805 * speaking the intent is that there is little point
1806 * scanning faster if shared accesses dominate as it may
1807 * simply bounce migrations uselessly
1808 */
2847c90e 1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1811 }
1812
1813 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1814 task_scan_min(p), task_scan_max(p));
1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1816}
1817
7e2703e6
RR
1818/*
1819 * Get the fraction of time the task has been running since the last
1820 * NUMA placement cycle. The scheduler keeps similar statistics, but
1821 * decays those on a 32ms period, which is orders of magnitude off
1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1823 * stats only if the task is so new there are no NUMA statistics yet.
1824 */
1825static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1826{
1827 u64 runtime, delta, now;
1828 /* Use the start of this time slice to avoid calculations. */
1829 now = p->se.exec_start;
1830 runtime = p->se.sum_exec_runtime;
1831
1832 if (p->last_task_numa_placement) {
1833 delta = runtime - p->last_sum_exec_runtime;
1834 *period = now - p->last_task_numa_placement;
1835 } else {
9d89c257
YD
1836 delta = p->se.avg.load_sum / p->se.load.weight;
1837 *period = LOAD_AVG_MAX;
7e2703e6
RR
1838 }
1839
1840 p->last_sum_exec_runtime = runtime;
1841 p->last_task_numa_placement = now;
1842
1843 return delta;
1844}
1845
54009416
RR
1846/*
1847 * Determine the preferred nid for a task in a numa_group. This needs to
1848 * be done in a way that produces consistent results with group_weight,
1849 * otherwise workloads might not converge.
1850 */
1851static int preferred_group_nid(struct task_struct *p, int nid)
1852{
1853 nodemask_t nodes;
1854 int dist;
1855
1856 /* Direct connections between all NUMA nodes. */
1857 if (sched_numa_topology_type == NUMA_DIRECT)
1858 return nid;
1859
1860 /*
1861 * On a system with glueless mesh NUMA topology, group_weight
1862 * scores nodes according to the number of NUMA hinting faults on
1863 * both the node itself, and on nearby nodes.
1864 */
1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1866 unsigned long score, max_score = 0;
1867 int node, max_node = nid;
1868
1869 dist = sched_max_numa_distance;
1870
1871 for_each_online_node(node) {
1872 score = group_weight(p, node, dist);
1873 if (score > max_score) {
1874 max_score = score;
1875 max_node = node;
1876 }
1877 }
1878 return max_node;
1879 }
1880
1881 /*
1882 * Finding the preferred nid in a system with NUMA backplane
1883 * interconnect topology is more involved. The goal is to locate
1884 * tasks from numa_groups near each other in the system, and
1885 * untangle workloads from different sides of the system. This requires
1886 * searching down the hierarchy of node groups, recursively searching
1887 * inside the highest scoring group of nodes. The nodemask tricks
1888 * keep the complexity of the search down.
1889 */
1890 nodes = node_online_map;
1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1892 unsigned long max_faults = 0;
81907478 1893 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1894 int a, b;
1895
1896 /* Are there nodes at this distance from each other? */
1897 if (!find_numa_distance(dist))
1898 continue;
1899
1900 for_each_node_mask(a, nodes) {
1901 unsigned long faults = 0;
1902 nodemask_t this_group;
1903 nodes_clear(this_group);
1904
1905 /* Sum group's NUMA faults; includes a==b case. */
1906 for_each_node_mask(b, nodes) {
1907 if (node_distance(a, b) < dist) {
1908 faults += group_faults(p, b);
1909 node_set(b, this_group);
1910 node_clear(b, nodes);
1911 }
1912 }
1913
1914 /* Remember the top group. */
1915 if (faults > max_faults) {
1916 max_faults = faults;
1917 max_group = this_group;
1918 /*
1919 * subtle: at the smallest distance there is
1920 * just one node left in each "group", the
1921 * winner is the preferred nid.
1922 */
1923 nid = a;
1924 }
1925 }
1926 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1927 if (!max_faults)
1928 break;
54009416
RR
1929 nodes = max_group;
1930 }
1931 return nid;
1932}
1933
cbee9f88
PZ
1934static void task_numa_placement(struct task_struct *p)
1935{
83e1d2cd
MG
1936 int seq, nid, max_nid = -1, max_group_nid = -1;
1937 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1938 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1939 unsigned long total_faults;
1940 u64 runtime, period;
7dbd13ed 1941 spinlock_t *group_lock = NULL;
cbee9f88 1942
7e5a2c17
JL
1943 /*
1944 * The p->mm->numa_scan_seq field gets updated without
1945 * exclusive access. Use READ_ONCE() here to ensure
1946 * that the field is read in a single access:
1947 */
316c1608 1948 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1949 if (p->numa_scan_seq == seq)
1950 return;
1951 p->numa_scan_seq = seq;
598f0ec0 1952 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1953
7e2703e6
RR
1954 total_faults = p->numa_faults_locality[0] +
1955 p->numa_faults_locality[1];
1956 runtime = numa_get_avg_runtime(p, &period);
1957
7dbd13ed
MG
1958 /* If the task is part of a group prevent parallel updates to group stats */
1959 if (p->numa_group) {
1960 group_lock = &p->numa_group->lock;
60e69eed 1961 spin_lock_irq(group_lock);
7dbd13ed
MG
1962 }
1963
688b7585
MG
1964 /* Find the node with the highest number of faults */
1965 for_each_online_node(nid) {
44dba3d5
IM
1966 /* Keep track of the offsets in numa_faults array */
1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1968 unsigned long faults = 0, group_faults = 0;
44dba3d5 1969 int priv;
745d6147 1970
be1e4e76 1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1972 long diff, f_diff, f_weight;
8c8a743c 1973
44dba3d5
IM
1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1978
ac8e895b 1979 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1981 fault_types[priv] += p->numa_faults[membuf_idx];
1982 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1983
7e2703e6
RR
1984 /*
1985 * Normalize the faults_from, so all tasks in a group
1986 * count according to CPU use, instead of by the raw
1987 * number of faults. Tasks with little runtime have
1988 * little over-all impact on throughput, and thus their
1989 * faults are less important.
1990 */
1991 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1993 (total_faults + 1);
44dba3d5
IM
1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1995 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1996
44dba3d5
IM
1997 p->numa_faults[mem_idx] += diff;
1998 p->numa_faults[cpu_idx] += f_diff;
1999 faults += p->numa_faults[mem_idx];
83e1d2cd 2000 p->total_numa_faults += diff;
8c8a743c 2001 if (p->numa_group) {
44dba3d5
IM
2002 /*
2003 * safe because we can only change our own group
2004 *
2005 * mem_idx represents the offset for a given
2006 * nid and priv in a specific region because it
2007 * is at the beginning of the numa_faults array.
2008 */
2009 p->numa_group->faults[mem_idx] += diff;
2010 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2011 p->numa_group->total_faults += diff;
44dba3d5 2012 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2013 }
ac8e895b
MG
2014 }
2015
688b7585
MG
2016 if (faults > max_faults) {
2017 max_faults = faults;
2018 max_nid = nid;
2019 }
83e1d2cd
MG
2020
2021 if (group_faults > max_group_faults) {
2022 max_group_faults = group_faults;
2023 max_group_nid = nid;
2024 }
2025 }
2026
04bb2f94
RR
2027 update_task_scan_period(p, fault_types[0], fault_types[1]);
2028
7dbd13ed 2029 if (p->numa_group) {
4142c3eb 2030 numa_group_count_active_nodes(p->numa_group);
60e69eed 2031 spin_unlock_irq(group_lock);
54009416 2032 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2033 }
2034
bb97fc31
RR
2035 if (max_faults) {
2036 /* Set the new preferred node */
2037 if (max_nid != p->numa_preferred_nid)
2038 sched_setnuma(p, max_nid);
2039
2040 if (task_node(p) != p->numa_preferred_nid)
2041 numa_migrate_preferred(p);
3a7053b3 2042 }
cbee9f88
PZ
2043}
2044
8c8a743c
PZ
2045static inline int get_numa_group(struct numa_group *grp)
2046{
2047 return atomic_inc_not_zero(&grp->refcount);
2048}
2049
2050static inline void put_numa_group(struct numa_group *grp)
2051{
2052 if (atomic_dec_and_test(&grp->refcount))
2053 kfree_rcu(grp, rcu);
2054}
2055
3e6a9418
MG
2056static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2057 int *priv)
8c8a743c
PZ
2058{
2059 struct numa_group *grp, *my_grp;
2060 struct task_struct *tsk;
2061 bool join = false;
2062 int cpu = cpupid_to_cpu(cpupid);
2063 int i;
2064
2065 if (unlikely(!p->numa_group)) {
2066 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2067 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2068
2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2070 if (!grp)
2071 return;
2072
2073 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2074 grp->active_nodes = 1;
2075 grp->max_faults_cpu = 0;
8c8a743c 2076 spin_lock_init(&grp->lock);
e29cf08b 2077 grp->gid = p->pid;
50ec8a40 2078 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2080 nr_node_ids;
8c8a743c 2081
be1e4e76 2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2083 grp->faults[i] = p->numa_faults[i];
8c8a743c 2084
989348b5 2085 grp->total_faults = p->total_numa_faults;
83e1d2cd 2086
8c8a743c
PZ
2087 grp->nr_tasks++;
2088 rcu_assign_pointer(p->numa_group, grp);
2089 }
2090
2091 rcu_read_lock();
316c1608 2092 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2093
2094 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2095 goto no_join;
8c8a743c
PZ
2096
2097 grp = rcu_dereference(tsk->numa_group);
2098 if (!grp)
3354781a 2099 goto no_join;
8c8a743c
PZ
2100
2101 my_grp = p->numa_group;
2102 if (grp == my_grp)
3354781a 2103 goto no_join;
8c8a743c
PZ
2104
2105 /*
2106 * Only join the other group if its bigger; if we're the bigger group,
2107 * the other task will join us.
2108 */
2109 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2110 goto no_join;
8c8a743c
PZ
2111
2112 /*
2113 * Tie-break on the grp address.
2114 */
2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2116 goto no_join;
8c8a743c 2117
dabe1d99
RR
2118 /* Always join threads in the same process. */
2119 if (tsk->mm == current->mm)
2120 join = true;
2121
2122 /* Simple filter to avoid false positives due to PID collisions */
2123 if (flags & TNF_SHARED)
2124 join = true;
8c8a743c 2125
3e6a9418
MG
2126 /* Update priv based on whether false sharing was detected */
2127 *priv = !join;
2128
dabe1d99 2129 if (join && !get_numa_group(grp))
3354781a 2130 goto no_join;
8c8a743c 2131
8c8a743c
PZ
2132 rcu_read_unlock();
2133
2134 if (!join)
2135 return;
2136
60e69eed
MG
2137 BUG_ON(irqs_disabled());
2138 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2139
be1e4e76 2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2141 my_grp->faults[i] -= p->numa_faults[i];
2142 grp->faults[i] += p->numa_faults[i];
8c8a743c 2143 }
989348b5
MG
2144 my_grp->total_faults -= p->total_numa_faults;
2145 grp->total_faults += p->total_numa_faults;
8c8a743c 2146
8c8a743c
PZ
2147 my_grp->nr_tasks--;
2148 grp->nr_tasks++;
2149
2150 spin_unlock(&my_grp->lock);
60e69eed 2151 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2152
2153 rcu_assign_pointer(p->numa_group, grp);
2154
2155 put_numa_group(my_grp);
3354781a
PZ
2156 return;
2157
2158no_join:
2159 rcu_read_unlock();
2160 return;
8c8a743c
PZ
2161}
2162
2163void task_numa_free(struct task_struct *p)
2164{
2165 struct numa_group *grp = p->numa_group;
44dba3d5 2166 void *numa_faults = p->numa_faults;
e9dd685c
SR
2167 unsigned long flags;
2168 int i;
8c8a743c
PZ
2169
2170 if (grp) {
e9dd685c 2171 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2173 grp->faults[i] -= p->numa_faults[i];
989348b5 2174 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2175
8c8a743c 2176 grp->nr_tasks--;
e9dd685c 2177 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2178 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2179 put_numa_group(grp);
2180 }
2181
44dba3d5 2182 p->numa_faults = NULL;
82727018 2183 kfree(numa_faults);
8c8a743c
PZ
2184}
2185
cbee9f88
PZ
2186/*
2187 * Got a PROT_NONE fault for a page on @node.
2188 */
58b46da3 2189void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2190{
2191 struct task_struct *p = current;
6688cc05 2192 bool migrated = flags & TNF_MIGRATED;
58b46da3 2193 int cpu_node = task_node(current);
792568ec 2194 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2195 struct numa_group *ng;
ac8e895b 2196 int priv;
cbee9f88 2197
2a595721 2198 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2199 return;
2200
9ff1d9ff
MG
2201 /* for example, ksmd faulting in a user's mm */
2202 if (!p->mm)
2203 return;
2204
f809ca9a 2205 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2206 if (unlikely(!p->numa_faults)) {
2207 int size = sizeof(*p->numa_faults) *
be1e4e76 2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2209
44dba3d5
IM
2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2211 if (!p->numa_faults)
f809ca9a 2212 return;
745d6147 2213
83e1d2cd 2214 p->total_numa_faults = 0;
04bb2f94 2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2216 }
cbee9f88 2217
8c8a743c
PZ
2218 /*
2219 * First accesses are treated as private, otherwise consider accesses
2220 * to be private if the accessing pid has not changed
2221 */
2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2223 priv = 1;
2224 } else {
2225 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2226 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2227 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2228 }
2229
792568ec
RR
2230 /*
2231 * If a workload spans multiple NUMA nodes, a shared fault that
2232 * occurs wholly within the set of nodes that the workload is
2233 * actively using should be counted as local. This allows the
2234 * scan rate to slow down when a workload has settled down.
2235 */
4142c3eb
RR
2236 ng = p->numa_group;
2237 if (!priv && !local && ng && ng->active_nodes > 1 &&
2238 numa_is_active_node(cpu_node, ng) &&
2239 numa_is_active_node(mem_node, ng))
792568ec
RR
2240 local = 1;
2241
cbee9f88 2242 task_numa_placement(p);
f809ca9a 2243
2739d3ee
RR
2244 /*
2245 * Retry task to preferred node migration periodically, in case it
2246 * case it previously failed, or the scheduler moved us.
2247 */
2248 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2249 numa_migrate_preferred(p);
2250
b32e86b4
IM
2251 if (migrated)
2252 p->numa_pages_migrated += pages;
074c2381
MG
2253 if (flags & TNF_MIGRATE_FAIL)
2254 p->numa_faults_locality[2] += pages;
b32e86b4 2255
44dba3d5
IM
2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2258 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2259}
2260
6e5fb223
PZ
2261static void reset_ptenuma_scan(struct task_struct *p)
2262{
7e5a2c17
JL
2263 /*
2264 * We only did a read acquisition of the mmap sem, so
2265 * p->mm->numa_scan_seq is written to without exclusive access
2266 * and the update is not guaranteed to be atomic. That's not
2267 * much of an issue though, since this is just used for
2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2269 * expensive, to avoid any form of compiler optimizations:
2270 */
316c1608 2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2272 p->mm->numa_scan_offset = 0;
2273}
2274
cbee9f88
PZ
2275/*
2276 * The expensive part of numa migration is done from task_work context.
2277 * Triggered from task_tick_numa().
2278 */
2279void task_numa_work(struct callback_head *work)
2280{
2281 unsigned long migrate, next_scan, now = jiffies;
2282 struct task_struct *p = current;
2283 struct mm_struct *mm = p->mm;
51170840 2284 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2285 struct vm_area_struct *vma;
9f40604c 2286 unsigned long start, end;
598f0ec0 2287 unsigned long nr_pte_updates = 0;
4620f8c1 2288 long pages, virtpages;
cbee9f88
PZ
2289
2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2291
2292 work->next = work; /* protect against double add */
2293 /*
2294 * Who cares about NUMA placement when they're dying.
2295 *
2296 * NOTE: make sure not to dereference p->mm before this check,
2297 * exit_task_work() happens _after_ exit_mm() so we could be called
2298 * without p->mm even though we still had it when we enqueued this
2299 * work.
2300 */
2301 if (p->flags & PF_EXITING)
2302 return;
2303
930aa174 2304 if (!mm->numa_next_scan) {
7e8d16b6
MG
2305 mm->numa_next_scan = now +
2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2307 }
2308
cbee9f88
PZ
2309 /*
2310 * Enforce maximal scan/migration frequency..
2311 */
2312 migrate = mm->numa_next_scan;
2313 if (time_before(now, migrate))
2314 return;
2315
598f0ec0
MG
2316 if (p->numa_scan_period == 0) {
2317 p->numa_scan_period_max = task_scan_max(p);
2318 p->numa_scan_period = task_scan_min(p);
2319 }
cbee9f88 2320
fb003b80 2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2323 return;
2324
19a78d11
PZ
2325 /*
2326 * Delay this task enough that another task of this mm will likely win
2327 * the next time around.
2328 */
2329 p->node_stamp += 2 * TICK_NSEC;
2330
9f40604c
MG
2331 start = mm->numa_scan_offset;
2332 pages = sysctl_numa_balancing_scan_size;
2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2334 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2335 if (!pages)
2336 return;
cbee9f88 2337
4620f8c1 2338
6e5fb223 2339 down_read(&mm->mmap_sem);
9f40604c 2340 vma = find_vma(mm, start);
6e5fb223
PZ
2341 if (!vma) {
2342 reset_ptenuma_scan(p);
9f40604c 2343 start = 0;
6e5fb223
PZ
2344 vma = mm->mmap;
2345 }
9f40604c 2346 for (; vma; vma = vma->vm_next) {
6b79c57b 2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2349 continue;
6b79c57b 2350 }
6e5fb223 2351
4591ce4f
MG
2352 /*
2353 * Shared library pages mapped by multiple processes are not
2354 * migrated as it is expected they are cache replicated. Avoid
2355 * hinting faults in read-only file-backed mappings or the vdso
2356 * as migrating the pages will be of marginal benefit.
2357 */
2358 if (!vma->vm_mm ||
2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2360 continue;
2361
3c67f474
MG
2362 /*
2363 * Skip inaccessible VMAs to avoid any confusion between
2364 * PROT_NONE and NUMA hinting ptes
2365 */
2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2367 continue;
4591ce4f 2368
9f40604c
MG
2369 do {
2370 start = max(start, vma->vm_start);
2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2372 end = min(end, vma->vm_end);
4620f8c1 2373 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2374
2375 /*
4620f8c1
RR
2376 * Try to scan sysctl_numa_balancing_size worth of
2377 * hpages that have at least one present PTE that
2378 * is not already pte-numa. If the VMA contains
2379 * areas that are unused or already full of prot_numa
2380 * PTEs, scan up to virtpages, to skip through those
2381 * areas faster.
598f0ec0
MG
2382 */
2383 if (nr_pte_updates)
2384 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2385 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2386
9f40604c 2387 start = end;
4620f8c1 2388 if (pages <= 0 || virtpages <= 0)
9f40604c 2389 goto out;
3cf1962c
RR
2390
2391 cond_resched();
9f40604c 2392 } while (end != vma->vm_end);
cbee9f88 2393 }
6e5fb223 2394
9f40604c 2395out:
6e5fb223 2396 /*
c69307d5
PZ
2397 * It is possible to reach the end of the VMA list but the last few
2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2399 * would find the !migratable VMA on the next scan but not reset the
2400 * scanner to the start so check it now.
6e5fb223
PZ
2401 */
2402 if (vma)
9f40604c 2403 mm->numa_scan_offset = start;
6e5fb223
PZ
2404 else
2405 reset_ptenuma_scan(p);
2406 up_read(&mm->mmap_sem);
51170840
RR
2407
2408 /*
2409 * Make sure tasks use at least 32x as much time to run other code
2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2411 * Usually update_task_scan_period slows down scanning enough; on an
2412 * overloaded system we need to limit overhead on a per task basis.
2413 */
2414 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2415 u64 diff = p->se.sum_exec_runtime - runtime;
2416 p->node_stamp += 32 * diff;
2417 }
cbee9f88
PZ
2418}
2419
2420/*
2421 * Drive the periodic memory faults..
2422 */
2423void task_tick_numa(struct rq *rq, struct task_struct *curr)
2424{
2425 struct callback_head *work = &curr->numa_work;
2426 u64 period, now;
2427
2428 /*
2429 * We don't care about NUMA placement if we don't have memory.
2430 */
2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2432 return;
2433
2434 /*
2435 * Using runtime rather than walltime has the dual advantage that
2436 * we (mostly) drive the selection from busy threads and that the
2437 * task needs to have done some actual work before we bother with
2438 * NUMA placement.
2439 */
2440 now = curr->se.sum_exec_runtime;
2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2442
25b3e5a3 2443 if (now > curr->node_stamp + period) {
4b96a29b 2444 if (!curr->node_stamp)
598f0ec0 2445 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2446 curr->node_stamp += period;
cbee9f88
PZ
2447
2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2450 task_work_add(curr, work, true);
2451 }
2452 }
2453}
2454#else
2455static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2456{
2457}
0ec8aa00
PZ
2458
2459static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2460{
2461}
2462
2463static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2464{
2465}
cbee9f88
PZ
2466#endif /* CONFIG_NUMA_BALANCING */
2467
30cfdcfc
DA
2468static void
2469account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2470{
2471 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2472 if (!parent_entity(se))
029632fb 2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2474#ifdef CONFIG_SMP
0ec8aa00
PZ
2475 if (entity_is_task(se)) {
2476 struct rq *rq = rq_of(cfs_rq);
2477
2478 account_numa_enqueue(rq, task_of(se));
2479 list_add(&se->group_node, &rq->cfs_tasks);
2480 }
367456c7 2481#endif
30cfdcfc 2482 cfs_rq->nr_running++;
30cfdcfc
DA
2483}
2484
2485static void
2486account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2487{
2488 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2489 if (!parent_entity(se))
029632fb 2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2491#ifdef CONFIG_SMP
0ec8aa00
PZ
2492 if (entity_is_task(se)) {
2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2494 list_del_init(&se->group_node);
0ec8aa00 2495 }
bfdb198c 2496#endif
30cfdcfc 2497 cfs_rq->nr_running--;
30cfdcfc
DA
2498}
2499
3ff6dcac
YZ
2500#ifdef CONFIG_FAIR_GROUP_SCHED
2501# ifdef CONFIG_SMP
cf5f0acf
PZ
2502static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2503{
2504 long tg_weight;
2505
2506 /*
9d89c257
YD
2507 * Use this CPU's real-time load instead of the last load contribution
2508 * as the updating of the contribution is delayed, and we will use the
2509 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2510 */
bf5b986e 2511 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2512 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2513 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2514
2515 return tg_weight;
2516}
2517
6d5ab293 2518static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2519{
cf5f0acf 2520 long tg_weight, load, shares;
3ff6dcac 2521
cf5f0acf 2522 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2523 load = cfs_rq->load.weight;
3ff6dcac 2524
3ff6dcac 2525 shares = (tg->shares * load);
cf5f0acf
PZ
2526 if (tg_weight)
2527 shares /= tg_weight;
3ff6dcac
YZ
2528
2529 if (shares < MIN_SHARES)
2530 shares = MIN_SHARES;
2531 if (shares > tg->shares)
2532 shares = tg->shares;
2533
2534 return shares;
2535}
3ff6dcac 2536# else /* CONFIG_SMP */
6d5ab293 2537static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2538{
2539 return tg->shares;
2540}
3ff6dcac 2541# endif /* CONFIG_SMP */
2069dd75
PZ
2542static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2543 unsigned long weight)
2544{
19e5eebb
PT
2545 if (se->on_rq) {
2546 /* commit outstanding execution time */
2547 if (cfs_rq->curr == se)
2548 update_curr(cfs_rq);
2069dd75 2549 account_entity_dequeue(cfs_rq, se);
19e5eebb 2550 }
2069dd75
PZ
2551
2552 update_load_set(&se->load, weight);
2553
2554 if (se->on_rq)
2555 account_entity_enqueue(cfs_rq, se);
2556}
2557
82958366
PT
2558static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2559
6d5ab293 2560static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2561{
2562 struct task_group *tg;
2563 struct sched_entity *se;
3ff6dcac 2564 long shares;
2069dd75 2565
2069dd75
PZ
2566 tg = cfs_rq->tg;
2567 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2568 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2569 return;
3ff6dcac
YZ
2570#ifndef CONFIG_SMP
2571 if (likely(se->load.weight == tg->shares))
2572 return;
2573#endif
6d5ab293 2574 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2575
2576 reweight_entity(cfs_rq_of(se), se, shares);
2577}
2578#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2579static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2580{
2581}
2582#endif /* CONFIG_FAIR_GROUP_SCHED */
2583
141965c7 2584#ifdef CONFIG_SMP
5b51f2f8
PT
2585/* Precomputed fixed inverse multiplies for multiplication by y^n */
2586static const u32 runnable_avg_yN_inv[] = {
2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2592 0x85aac367, 0x82cd8698,
2593};
2594
2595/*
2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2597 * over-estimates when re-combining.
2598 */
2599static const u32 runnable_avg_yN_sum[] = {
2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2603};
2604
7b20b916
YD
2605/*
2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2608 * were generated:
2609 */
2610static const u32 __accumulated_sum_N32[] = {
2611 0, 23371, 35056, 40899, 43820, 45281,
2612 46011, 46376, 46559, 46650, 46696, 46719,
2613};
2614
9d85f21c
PT
2615/*
2616 * Approximate:
2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2618 */
2619static __always_inline u64 decay_load(u64 val, u64 n)
2620{
5b51f2f8
PT
2621 unsigned int local_n;
2622
2623 if (!n)
2624 return val;
2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2626 return 0;
2627
2628 /* after bounds checking we can collapse to 32-bit */
2629 local_n = n;
2630
2631 /*
2632 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2634 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2635 *
2636 * To achieve constant time decay_load.
2637 */
2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2639 val >>= local_n / LOAD_AVG_PERIOD;
2640 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2641 }
2642
9d89c257
YD
2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2644 return val;
5b51f2f8
PT
2645}
2646
2647/*
2648 * For updates fully spanning n periods, the contribution to runnable
2649 * average will be: \Sum 1024*y^n
2650 *
2651 * We can compute this reasonably efficiently by combining:
2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2653 */
2654static u32 __compute_runnable_contrib(u64 n)
2655{
2656 u32 contrib = 0;
2657
2658 if (likely(n <= LOAD_AVG_PERIOD))
2659 return runnable_avg_yN_sum[n];
2660 else if (unlikely(n >= LOAD_AVG_MAX_N))
2661 return LOAD_AVG_MAX;
2662
7b20b916
YD
2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2665 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2666 contrib = decay_load(contrib, n);
2667 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2668}
2669
54a21385 2670#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2671
9d85f21c
PT
2672/*
2673 * We can represent the historical contribution to runnable average as the
2674 * coefficients of a geometric series. To do this we sub-divide our runnable
2675 * history into segments of approximately 1ms (1024us); label the segment that
2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2677 *
2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2679 * p0 p1 p2
2680 * (now) (~1ms ago) (~2ms ago)
2681 *
2682 * Let u_i denote the fraction of p_i that the entity was runnable.
2683 *
2684 * We then designate the fractions u_i as our co-efficients, yielding the
2685 * following representation of historical load:
2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2687 *
2688 * We choose y based on the with of a reasonably scheduling period, fixing:
2689 * y^32 = 0.5
2690 *
2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2692 * approximately half as much as the contribution to load within the last ms
2693 * (u_0).
2694 *
2695 * When a period "rolls over" and we have new u_0`, multiplying the previous
2696 * sum again by y is sufficient to update:
2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2699 */
9d89c257
YD
2700static __always_inline int
2701__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2702 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2703{
e0f5f3af 2704 u64 delta, scaled_delta, periods;
9d89c257 2705 u32 contrib;
6115c793 2706 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2707 unsigned long scale_freq, scale_cpu;
9d85f21c 2708
9d89c257 2709 delta = now - sa->last_update_time;
9d85f21c
PT
2710 /*
2711 * This should only happen when time goes backwards, which it
2712 * unfortunately does during sched clock init when we swap over to TSC.
2713 */
2714 if ((s64)delta < 0) {
9d89c257 2715 sa->last_update_time = now;
9d85f21c
PT
2716 return 0;
2717 }
2718
2719 /*
2720 * Use 1024ns as the unit of measurement since it's a reasonable
2721 * approximation of 1us and fast to compute.
2722 */
2723 delta >>= 10;
2724 if (!delta)
2725 return 0;
9d89c257 2726 sa->last_update_time = now;
9d85f21c 2727
6f2b0452
DE
2728 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2730
9d85f21c 2731 /* delta_w is the amount already accumulated against our next period */
9d89c257 2732 delta_w = sa->period_contrib;
9d85f21c 2733 if (delta + delta_w >= 1024) {
9d85f21c
PT
2734 decayed = 1;
2735
9d89c257
YD
2736 /* how much left for next period will start over, we don't know yet */
2737 sa->period_contrib = 0;
2738
9d85f21c
PT
2739 /*
2740 * Now that we know we're crossing a period boundary, figure
2741 * out how much from delta we need to complete the current
2742 * period and accrue it.
2743 */
2744 delta_w = 1024 - delta_w;
54a21385 2745 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2746 if (weight) {
e0f5f3af
DE
2747 sa->load_sum += weight * scaled_delta_w;
2748 if (cfs_rq) {
2749 cfs_rq->runnable_load_sum +=
2750 weight * scaled_delta_w;
2751 }
13962234 2752 }
36ee28e4 2753 if (running)
006cdf02 2754 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2755
2756 delta -= delta_w;
2757
2758 /* Figure out how many additional periods this update spans */
2759 periods = delta / 1024;
2760 delta %= 1024;
2761
9d89c257 2762 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2763 if (cfs_rq) {
2764 cfs_rq->runnable_load_sum =
2765 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2766 }
9d89c257 2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2768
2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2770 contrib = __compute_runnable_contrib(periods);
54a21385 2771 contrib = cap_scale(contrib, scale_freq);
13962234 2772 if (weight) {
9d89c257 2773 sa->load_sum += weight * contrib;
13962234
YD
2774 if (cfs_rq)
2775 cfs_rq->runnable_load_sum += weight * contrib;
2776 }
36ee28e4 2777 if (running)
006cdf02 2778 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2779 }
2780
2781 /* Remainder of delta accrued against u_0` */
54a21385 2782 scaled_delta = cap_scale(delta, scale_freq);
13962234 2783 if (weight) {
e0f5f3af 2784 sa->load_sum += weight * scaled_delta;
13962234 2785 if (cfs_rq)
e0f5f3af 2786 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2787 }
36ee28e4 2788 if (running)
006cdf02 2789 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2790
9d89c257 2791 sa->period_contrib += delta;
9ee474f5 2792
9d89c257
YD
2793 if (decayed) {
2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2795 if (cfs_rq) {
2796 cfs_rq->runnable_load_avg =
2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2798 }
006cdf02 2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2800 }
aff3e498 2801
9d89c257 2802 return decayed;
9ee474f5
PT
2803}
2804
c566e8e9 2805#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2806/*
9d89c257
YD
2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2808 * and effective_load (which is not done because it is too costly).
bb17f655 2809 */
9d89c257 2810static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2811{
9d89c257 2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2813
aa0b7ae0
WL
2814 /*
2815 * No need to update load_avg for root_task_group as it is not used.
2816 */
2817 if (cfs_rq->tg == &root_task_group)
2818 return;
2819
9d89c257
YD
2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2821 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2823 }
8165e145 2824}
f5f9739d 2825
ad936d86
BP
2826/*
2827 * Called within set_task_rq() right before setting a task's cpu. The
2828 * caller only guarantees p->pi_lock is held; no other assumptions,
2829 * including the state of rq->lock, should be made.
2830 */
2831void set_task_rq_fair(struct sched_entity *se,
2832 struct cfs_rq *prev, struct cfs_rq *next)
2833{
2834 if (!sched_feat(ATTACH_AGE_LOAD))
2835 return;
2836
2837 /*
2838 * We are supposed to update the task to "current" time, then its up to
2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2840 * getting what current time is, so simply throw away the out-of-date
2841 * time. This will result in the wakee task is less decayed, but giving
2842 * the wakee more load sounds not bad.
2843 */
2844 if (se->avg.last_update_time && prev) {
2845 u64 p_last_update_time;
2846 u64 n_last_update_time;
2847
2848#ifndef CONFIG_64BIT
2849 u64 p_last_update_time_copy;
2850 u64 n_last_update_time_copy;
2851
2852 do {
2853 p_last_update_time_copy = prev->load_last_update_time_copy;
2854 n_last_update_time_copy = next->load_last_update_time_copy;
2855
2856 smp_rmb();
2857
2858 p_last_update_time = prev->avg.last_update_time;
2859 n_last_update_time = next->avg.last_update_time;
2860
2861 } while (p_last_update_time != p_last_update_time_copy ||
2862 n_last_update_time != n_last_update_time_copy);
2863#else
2864 p_last_update_time = prev->avg.last_update_time;
2865 n_last_update_time = next->avg.last_update_time;
2866#endif
2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2868 &se->avg, 0, 0, NULL);
2869 se->avg.last_update_time = n_last_update_time;
2870 }
2871}
6e83125c 2872#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2873static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2874#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2875
9d89c257 2876static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2877
a2c6c91f
SM
2878static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2879{
2880 struct rq *rq = rq_of(cfs_rq);
2881 int cpu = cpu_of(rq);
2882
2883 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2884 unsigned long max = rq->cpu_capacity_orig;
2885
2886 /*
2887 * There are a few boundary cases this might miss but it should
2888 * get called often enough that that should (hopefully) not be
2889 * a real problem -- added to that it only calls on the local
2890 * CPU, so if we enqueue remotely we'll miss an update, but
2891 * the next tick/schedule should update.
2892 *
2893 * It will not get called when we go idle, because the idle
2894 * thread is a different class (!fair), nor will the utilization
2895 * number include things like RT tasks.
2896 *
2897 * As is, the util number is not freq-invariant (we'd have to
2898 * implement arch_scale_freq_capacity() for that).
2899 *
2900 * See cpu_util().
2901 */
2902 cpufreq_update_util(rq_clock(rq),
2903 min(cfs_rq->avg.util_avg, max), max);
2904 }
2905}
2906
89741892
PZ
2907/*
2908 * Unsigned subtract and clamp on underflow.
2909 *
2910 * Explicitly do a load-store to ensure the intermediate value never hits
2911 * memory. This allows lockless observations without ever seeing the negative
2912 * values.
2913 */
2914#define sub_positive(_ptr, _val) do { \
2915 typeof(_ptr) ptr = (_ptr); \
2916 typeof(*ptr) val = (_val); \
2917 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2918 res = var - val; \
2919 if (res > var) \
2920 res = 0; \
2921 WRITE_ONCE(*ptr, res); \
2922} while (0)
2923
9d89c257 2924/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
a2c6c91f
SM
2925static inline int
2926update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2927{
9d89c257 2928 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2929 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2930
9d89c257 2931 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2932 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
2933 sub_positive(&sa->load_avg, r);
2934 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 2935 removed_load = 1;
8165e145 2936 }
2dac754e 2937
9d89c257
YD
2938 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2939 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
2940 sub_positive(&sa->util_avg, r);
2941 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 2942 removed_util = 1;
9d89c257 2943 }
36ee28e4 2944
a2c6c91f 2945 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2946 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2947
9d89c257
YD
2948#ifndef CONFIG_64BIT
2949 smp_wmb();
2950 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2951#endif
36ee28e4 2952
a2c6c91f
SM
2953 if (update_freq && (decayed || removed_util))
2954 cfs_rq_util_change(cfs_rq);
21e96f88 2955
41e0d37f 2956 return decayed || removed_load;
21e96f88
SM
2957}
2958
2959/* Update task and its cfs_rq load average */
2960static inline void update_load_avg(struct sched_entity *se, int update_tg)
2961{
2962 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2963 u64 now = cfs_rq_clock_task(cfs_rq);
2964 struct rq *rq = rq_of(cfs_rq);
2965 int cpu = cpu_of(rq);
2966
2967 /*
2968 * Track task load average for carrying it to new CPU after migrated, and
2969 * track group sched_entity load average for task_h_load calc in migration
2970 */
2971 __update_load_avg(now, cpu, &se->avg,
2972 se->on_rq * scale_load_down(se->load.weight),
2973 cfs_rq->curr == se, NULL);
2974
a2c6c91f 2975 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2976 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2977}
2978
a05e8c51
BP
2979static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2980{
a9280514
PZ
2981 if (!sched_feat(ATTACH_AGE_LOAD))
2982 goto skip_aging;
2983
6efdb105
BP
2984 /*
2985 * If we got migrated (either between CPUs or between cgroups) we'll
2986 * have aged the average right before clearing @last_update_time.
2987 */
2988 if (se->avg.last_update_time) {
2989 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2990 &se->avg, 0, 0, NULL);
2991
2992 /*
2993 * XXX: we could have just aged the entire load away if we've been
2994 * absent from the fair class for too long.
2995 */
2996 }
2997
a9280514 2998skip_aging:
a05e8c51
BP
2999 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3000 cfs_rq->avg.load_avg += se->avg.load_avg;
3001 cfs_rq->avg.load_sum += se->avg.load_sum;
3002 cfs_rq->avg.util_avg += se->avg.util_avg;
3003 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3004
3005 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3006}
3007
3008static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3009{
3010 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3011 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3012 cfs_rq->curr == se, NULL);
3013
89741892
PZ
3014 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3015 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3016 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3017 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3018
3019 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3020}
3021
9d89c257
YD
3022/* Add the load generated by se into cfs_rq's load average */
3023static inline void
3024enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3025{
9d89c257
YD
3026 struct sched_avg *sa = &se->avg;
3027 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3028 int migrated, decayed;
9ee474f5 3029
a05e8c51
BP
3030 migrated = !sa->last_update_time;
3031 if (!migrated) {
9d89c257 3032 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3033 se->on_rq * scale_load_down(se->load.weight),
3034 cfs_rq->curr == se, NULL);
aff3e498 3035 }
c566e8e9 3036
a2c6c91f 3037 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3038
13962234
YD
3039 cfs_rq->runnable_load_avg += sa->load_avg;
3040 cfs_rq->runnable_load_sum += sa->load_sum;
3041
a05e8c51
BP
3042 if (migrated)
3043 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3044
9d89c257
YD
3045 if (decayed || migrated)
3046 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3047}
3048
13962234
YD
3049/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3050static inline void
3051dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3052{
3053 update_load_avg(se, 1);
3054
3055 cfs_rq->runnable_load_avg =
3056 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3057 cfs_rq->runnable_load_sum =
a05e8c51 3058 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3059}
3060
9d89c257 3061#ifndef CONFIG_64BIT
0905f04e
YD
3062static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3063{
9d89c257 3064 u64 last_update_time_copy;
0905f04e 3065 u64 last_update_time;
9ee474f5 3066
9d89c257
YD
3067 do {
3068 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3069 smp_rmb();
3070 last_update_time = cfs_rq->avg.last_update_time;
3071 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3072
3073 return last_update_time;
3074}
9d89c257 3075#else
0905f04e
YD
3076static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3077{
3078 return cfs_rq->avg.last_update_time;
3079}
9d89c257
YD
3080#endif
3081
0905f04e
YD
3082/*
3083 * Task first catches up with cfs_rq, and then subtract
3084 * itself from the cfs_rq (task must be off the queue now).
3085 */
3086void remove_entity_load_avg(struct sched_entity *se)
3087{
3088 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3089 u64 last_update_time;
3090
3091 /*
3092 * Newly created task or never used group entity should not be removed
3093 * from its (source) cfs_rq
3094 */
3095 if (se->avg.last_update_time == 0)
3096 return;
3097
3098 last_update_time = cfs_rq_last_update_time(cfs_rq);
3099
13962234 3100 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3101 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3102 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3103}
642dbc39 3104
7ea241af
YD
3105static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3106{
3107 return cfs_rq->runnable_load_avg;
3108}
3109
3110static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3111{
3112 return cfs_rq->avg.load_avg;
3113}
3114
6e83125c
PZ
3115static int idle_balance(struct rq *this_rq);
3116
38033c37
PZ
3117#else /* CONFIG_SMP */
3118
536bd00c
RW
3119static inline void update_load_avg(struct sched_entity *se, int not_used)
3120{
3121 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3122 struct rq *rq = rq_of(cfs_rq);
3123
3124 cpufreq_trigger_update(rq_clock(rq));
3125}
3126
9d89c257
YD
3127static inline void
3128enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3129static inline void
3130dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3131static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3132
a05e8c51
BP
3133static inline void
3134attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3135static inline void
3136detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3137
6e83125c
PZ
3138static inline int idle_balance(struct rq *rq)
3139{
3140 return 0;
3141}
3142
38033c37 3143#endif /* CONFIG_SMP */
9d85f21c 3144
2396af69 3145static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3146{
bf0f6f24 3147#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3148 struct task_struct *tsk = NULL;
3149
3150 if (entity_is_task(se))
3151 tsk = task_of(se);
3152
41acab88 3153 if (se->statistics.sleep_start) {
78becc27 3154 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3155
3156 if ((s64)delta < 0)
3157 delta = 0;
3158
41acab88
LDM
3159 if (unlikely(delta > se->statistics.sleep_max))
3160 se->statistics.sleep_max = delta;
bf0f6f24 3161
8c79a045 3162 se->statistics.sleep_start = 0;
41acab88 3163 se->statistics.sum_sleep_runtime += delta;
9745512c 3164
768d0c27 3165 if (tsk) {
e414314c 3166 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3167 trace_sched_stat_sleep(tsk, delta);
3168 }
bf0f6f24 3169 }
41acab88 3170 if (se->statistics.block_start) {
78becc27 3171 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3172
3173 if ((s64)delta < 0)
3174 delta = 0;
3175
41acab88
LDM
3176 if (unlikely(delta > se->statistics.block_max))
3177 se->statistics.block_max = delta;
bf0f6f24 3178
8c79a045 3179 se->statistics.block_start = 0;
41acab88 3180 se->statistics.sum_sleep_runtime += delta;
30084fbd 3181
e414314c 3182 if (tsk) {
8f0dfc34 3183 if (tsk->in_iowait) {
41acab88
LDM
3184 se->statistics.iowait_sum += delta;
3185 se->statistics.iowait_count++;
768d0c27 3186 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3187 }
3188
b781a602
AV
3189 trace_sched_stat_blocked(tsk, delta);
3190
e414314c
PZ
3191 /*
3192 * Blocking time is in units of nanosecs, so shift by
3193 * 20 to get a milliseconds-range estimation of the
3194 * amount of time that the task spent sleeping:
3195 */
3196 if (unlikely(prof_on == SLEEP_PROFILING)) {
3197 profile_hits(SLEEP_PROFILING,
3198 (void *)get_wchan(tsk),
3199 delta >> 20);
3200 }
3201 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3202 }
bf0f6f24
IM
3203 }
3204#endif
3205}
3206
ddc97297
PZ
3207static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3208{
3209#ifdef CONFIG_SCHED_DEBUG
3210 s64 d = se->vruntime - cfs_rq->min_vruntime;
3211
3212 if (d < 0)
3213 d = -d;
3214
3215 if (d > 3*sysctl_sched_latency)
3216 schedstat_inc(cfs_rq, nr_spread_over);
3217#endif
3218}
3219
aeb73b04
PZ
3220static void
3221place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3222{
1af5f730 3223 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3224
2cb8600e
PZ
3225 /*
3226 * The 'current' period is already promised to the current tasks,
3227 * however the extra weight of the new task will slow them down a
3228 * little, place the new task so that it fits in the slot that
3229 * stays open at the end.
3230 */
94dfb5e7 3231 if (initial && sched_feat(START_DEBIT))
f9c0b095 3232 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3233
a2e7a7eb 3234 /* sleeps up to a single latency don't count. */
5ca9880c 3235 if (!initial) {
a2e7a7eb 3236 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3237
a2e7a7eb
MG
3238 /*
3239 * Halve their sleep time's effect, to allow
3240 * for a gentler effect of sleepers:
3241 */
3242 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3243 thresh >>= 1;
51e0304c 3244
a2e7a7eb 3245 vruntime -= thresh;
aeb73b04
PZ
3246 }
3247
b5d9d734 3248 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3249 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3250}
3251
d3d9dc33
PT
3252static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3253
cb251765
MG
3254static inline void check_schedstat_required(void)
3255{
3256#ifdef CONFIG_SCHEDSTATS
3257 if (schedstat_enabled())
3258 return;
3259
3260 /* Force schedstat enabled if a dependent tracepoint is active */
3261 if (trace_sched_stat_wait_enabled() ||
3262 trace_sched_stat_sleep_enabled() ||
3263 trace_sched_stat_iowait_enabled() ||
3264 trace_sched_stat_blocked_enabled() ||
3265 trace_sched_stat_runtime_enabled()) {
eda8dca5 3266 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3267 "stat_blocked and stat_runtime require the "
3268 "kernel parameter schedstats=enabled or "
3269 "kernel.sched_schedstats=1\n");
3270 }
3271#endif
3272}
3273
b5179ac7
PZ
3274
3275/*
3276 * MIGRATION
3277 *
3278 * dequeue
3279 * update_curr()
3280 * update_min_vruntime()
3281 * vruntime -= min_vruntime
3282 *
3283 * enqueue
3284 * update_curr()
3285 * update_min_vruntime()
3286 * vruntime += min_vruntime
3287 *
3288 * this way the vruntime transition between RQs is done when both
3289 * min_vruntime are up-to-date.
3290 *
3291 * WAKEUP (remote)
3292 *
59efa0ba 3293 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3294 * vruntime -= min_vruntime
3295 *
3296 * enqueue
3297 * update_curr()
3298 * update_min_vruntime()
3299 * vruntime += min_vruntime
3300 *
3301 * this way we don't have the most up-to-date min_vruntime on the originating
3302 * CPU and an up-to-date min_vruntime on the destination CPU.
3303 */
3304
bf0f6f24 3305static void
88ec22d3 3306enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3307{
2f950354
PZ
3308 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3309 bool curr = cfs_rq->curr == se;
3310
88ec22d3 3311 /*
2f950354
PZ
3312 * If we're the current task, we must renormalise before calling
3313 * update_curr().
88ec22d3 3314 */
2f950354 3315 if (renorm && curr)
88ec22d3
PZ
3316 se->vruntime += cfs_rq->min_vruntime;
3317
2f950354
PZ
3318 update_curr(cfs_rq);
3319
bf0f6f24 3320 /*
2f950354
PZ
3321 * Otherwise, renormalise after, such that we're placed at the current
3322 * moment in time, instead of some random moment in the past. Being
3323 * placed in the past could significantly boost this task to the
3324 * fairness detriment of existing tasks.
bf0f6f24 3325 */
2f950354
PZ
3326 if (renorm && !curr)
3327 se->vruntime += cfs_rq->min_vruntime;
3328
9d89c257 3329 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3330 account_entity_enqueue(cfs_rq, se);
3331 update_cfs_shares(cfs_rq);
bf0f6f24 3332
88ec22d3 3333 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3334 place_entity(cfs_rq, se, 0);
cb251765
MG
3335 if (schedstat_enabled())
3336 enqueue_sleeper(cfs_rq, se);
e9acbff6 3337 }
bf0f6f24 3338
cb251765
MG
3339 check_schedstat_required();
3340 if (schedstat_enabled()) {
3341 update_stats_enqueue(cfs_rq, se);
3342 check_spread(cfs_rq, se);
3343 }
2f950354 3344 if (!curr)
83b699ed 3345 __enqueue_entity(cfs_rq, se);
2069dd75 3346 se->on_rq = 1;
3d4b47b4 3347
d3d9dc33 3348 if (cfs_rq->nr_running == 1) {
3d4b47b4 3349 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3350 check_enqueue_throttle(cfs_rq);
3351 }
bf0f6f24
IM
3352}
3353
2c13c919 3354static void __clear_buddies_last(struct sched_entity *se)
2002c695 3355{
2c13c919
RR
3356 for_each_sched_entity(se) {
3357 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3358 if (cfs_rq->last != se)
2c13c919 3359 break;
f1044799
PZ
3360
3361 cfs_rq->last = NULL;
2c13c919
RR
3362 }
3363}
2002c695 3364
2c13c919
RR
3365static void __clear_buddies_next(struct sched_entity *se)
3366{
3367 for_each_sched_entity(se) {
3368 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3369 if (cfs_rq->next != se)
2c13c919 3370 break;
f1044799
PZ
3371
3372 cfs_rq->next = NULL;
2c13c919 3373 }
2002c695
PZ
3374}
3375
ac53db59
RR
3376static void __clear_buddies_skip(struct sched_entity *se)
3377{
3378 for_each_sched_entity(se) {
3379 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3380 if (cfs_rq->skip != se)
ac53db59 3381 break;
f1044799
PZ
3382
3383 cfs_rq->skip = NULL;
ac53db59
RR
3384 }
3385}
3386
a571bbea
PZ
3387static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3388{
2c13c919
RR
3389 if (cfs_rq->last == se)
3390 __clear_buddies_last(se);
3391
3392 if (cfs_rq->next == se)
3393 __clear_buddies_next(se);
ac53db59
RR
3394
3395 if (cfs_rq->skip == se)
3396 __clear_buddies_skip(se);
a571bbea
PZ
3397}
3398
6c16a6dc 3399static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3400
bf0f6f24 3401static void
371fd7e7 3402dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3403{
a2a2d680
DA
3404 /*
3405 * Update run-time statistics of the 'current'.
3406 */
3407 update_curr(cfs_rq);
13962234 3408 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3409
cb251765
MG
3410 if (schedstat_enabled())
3411 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3412
2002c695 3413 clear_buddies(cfs_rq, se);
4793241b 3414
83b699ed 3415 if (se != cfs_rq->curr)
30cfdcfc 3416 __dequeue_entity(cfs_rq, se);
17bc14b7 3417 se->on_rq = 0;
30cfdcfc 3418 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3419
3420 /*
3421 * Normalize the entity after updating the min_vruntime because the
3422 * update can refer to the ->curr item and we need to reflect this
3423 * movement in our normalized position.
3424 */
371fd7e7 3425 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3426 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3427
d8b4986d
PT
3428 /* return excess runtime on last dequeue */
3429 return_cfs_rq_runtime(cfs_rq);
3430
1e876231 3431 update_min_vruntime(cfs_rq);
17bc14b7 3432 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3433}
3434
3435/*
3436 * Preempt the current task with a newly woken task if needed:
3437 */
7c92e54f 3438static void
2e09bf55 3439check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3440{
11697830 3441 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3442 struct sched_entity *se;
3443 s64 delta;
11697830 3444
6d0f0ebd 3445 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3446 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3447 if (delta_exec > ideal_runtime) {
8875125e 3448 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3449 /*
3450 * The current task ran long enough, ensure it doesn't get
3451 * re-elected due to buddy favours.
3452 */
3453 clear_buddies(cfs_rq, curr);
f685ceac
MG
3454 return;
3455 }
3456
3457 /*
3458 * Ensure that a task that missed wakeup preemption by a
3459 * narrow margin doesn't have to wait for a full slice.
3460 * This also mitigates buddy induced latencies under load.
3461 */
f685ceac
MG
3462 if (delta_exec < sysctl_sched_min_granularity)
3463 return;
3464
f4cfb33e
WX
3465 se = __pick_first_entity(cfs_rq);
3466 delta = curr->vruntime - se->vruntime;
f685ceac 3467
f4cfb33e
WX
3468 if (delta < 0)
3469 return;
d7d82944 3470
f4cfb33e 3471 if (delta > ideal_runtime)
8875125e 3472 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3473}
3474
83b699ed 3475static void
8494f412 3476set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3477{
83b699ed
SV
3478 /* 'current' is not kept within the tree. */
3479 if (se->on_rq) {
3480 /*
3481 * Any task has to be enqueued before it get to execute on
3482 * a CPU. So account for the time it spent waiting on the
3483 * runqueue.
3484 */
cb251765
MG
3485 if (schedstat_enabled())
3486 update_stats_wait_end(cfs_rq, se);
83b699ed 3487 __dequeue_entity(cfs_rq, se);
9d89c257 3488 update_load_avg(se, 1);
83b699ed
SV
3489 }
3490
79303e9e 3491 update_stats_curr_start(cfs_rq, se);
429d43bc 3492 cfs_rq->curr = se;
eba1ed4b
IM
3493#ifdef CONFIG_SCHEDSTATS
3494 /*
3495 * Track our maximum slice length, if the CPU's load is at
3496 * least twice that of our own weight (i.e. dont track it
3497 * when there are only lesser-weight tasks around):
3498 */
cb251765 3499 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3500 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3501 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3502 }
3503#endif
4a55b450 3504 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3505}
3506
3f3a4904
PZ
3507static int
3508wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3509
ac53db59
RR
3510/*
3511 * Pick the next process, keeping these things in mind, in this order:
3512 * 1) keep things fair between processes/task groups
3513 * 2) pick the "next" process, since someone really wants that to run
3514 * 3) pick the "last" process, for cache locality
3515 * 4) do not run the "skip" process, if something else is available
3516 */
678d5718
PZ
3517static struct sched_entity *
3518pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3519{
678d5718
PZ
3520 struct sched_entity *left = __pick_first_entity(cfs_rq);
3521 struct sched_entity *se;
3522
3523 /*
3524 * If curr is set we have to see if its left of the leftmost entity
3525 * still in the tree, provided there was anything in the tree at all.
3526 */
3527 if (!left || (curr && entity_before(curr, left)))
3528 left = curr;
3529
3530 se = left; /* ideally we run the leftmost entity */
f4b6755f 3531
ac53db59
RR
3532 /*
3533 * Avoid running the skip buddy, if running something else can
3534 * be done without getting too unfair.
3535 */
3536 if (cfs_rq->skip == se) {
678d5718
PZ
3537 struct sched_entity *second;
3538
3539 if (se == curr) {
3540 second = __pick_first_entity(cfs_rq);
3541 } else {
3542 second = __pick_next_entity(se);
3543 if (!second || (curr && entity_before(curr, second)))
3544 second = curr;
3545 }
3546
ac53db59
RR
3547 if (second && wakeup_preempt_entity(second, left) < 1)
3548 se = second;
3549 }
aa2ac252 3550
f685ceac
MG
3551 /*
3552 * Prefer last buddy, try to return the CPU to a preempted task.
3553 */
3554 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3555 se = cfs_rq->last;
3556
ac53db59
RR
3557 /*
3558 * Someone really wants this to run. If it's not unfair, run it.
3559 */
3560 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3561 se = cfs_rq->next;
3562
f685ceac 3563 clear_buddies(cfs_rq, se);
4793241b
PZ
3564
3565 return se;
aa2ac252
PZ
3566}
3567
678d5718 3568static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3569
ab6cde26 3570static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3571{
3572 /*
3573 * If still on the runqueue then deactivate_task()
3574 * was not called and update_curr() has to be done:
3575 */
3576 if (prev->on_rq)
b7cc0896 3577 update_curr(cfs_rq);
bf0f6f24 3578
d3d9dc33
PT
3579 /* throttle cfs_rqs exceeding runtime */
3580 check_cfs_rq_runtime(cfs_rq);
3581
cb251765
MG
3582 if (schedstat_enabled()) {
3583 check_spread(cfs_rq, prev);
3584 if (prev->on_rq)
3585 update_stats_wait_start(cfs_rq, prev);
3586 }
3587
30cfdcfc 3588 if (prev->on_rq) {
30cfdcfc
DA
3589 /* Put 'current' back into the tree. */
3590 __enqueue_entity(cfs_rq, prev);
9d85f21c 3591 /* in !on_rq case, update occurred at dequeue */
9d89c257 3592 update_load_avg(prev, 0);
30cfdcfc 3593 }
429d43bc 3594 cfs_rq->curr = NULL;
bf0f6f24
IM
3595}
3596
8f4d37ec
PZ
3597static void
3598entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3599{
bf0f6f24 3600 /*
30cfdcfc 3601 * Update run-time statistics of the 'current'.
bf0f6f24 3602 */
30cfdcfc 3603 update_curr(cfs_rq);
bf0f6f24 3604
9d85f21c
PT
3605 /*
3606 * Ensure that runnable average is periodically updated.
3607 */
9d89c257 3608 update_load_avg(curr, 1);
bf0bd948 3609 update_cfs_shares(cfs_rq);
9d85f21c 3610
8f4d37ec
PZ
3611#ifdef CONFIG_SCHED_HRTICK
3612 /*
3613 * queued ticks are scheduled to match the slice, so don't bother
3614 * validating it and just reschedule.
3615 */
983ed7a6 3616 if (queued) {
8875125e 3617 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3618 return;
3619 }
8f4d37ec
PZ
3620 /*
3621 * don't let the period tick interfere with the hrtick preemption
3622 */
3623 if (!sched_feat(DOUBLE_TICK) &&
3624 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3625 return;
3626#endif
3627
2c2efaed 3628 if (cfs_rq->nr_running > 1)
2e09bf55 3629 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3630}
3631
ab84d31e
PT
3632
3633/**************************************************
3634 * CFS bandwidth control machinery
3635 */
3636
3637#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3638
3639#ifdef HAVE_JUMP_LABEL
c5905afb 3640static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3641
3642static inline bool cfs_bandwidth_used(void)
3643{
c5905afb 3644 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3645}
3646
1ee14e6c 3647void cfs_bandwidth_usage_inc(void)
029632fb 3648{
1ee14e6c
BS
3649 static_key_slow_inc(&__cfs_bandwidth_used);
3650}
3651
3652void cfs_bandwidth_usage_dec(void)
3653{
3654 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3655}
3656#else /* HAVE_JUMP_LABEL */
3657static bool cfs_bandwidth_used(void)
3658{
3659 return true;
3660}
3661
1ee14e6c
BS
3662void cfs_bandwidth_usage_inc(void) {}
3663void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3664#endif /* HAVE_JUMP_LABEL */
3665
ab84d31e
PT
3666/*
3667 * default period for cfs group bandwidth.
3668 * default: 0.1s, units: nanoseconds
3669 */
3670static inline u64 default_cfs_period(void)
3671{
3672 return 100000000ULL;
3673}
ec12cb7f
PT
3674
3675static inline u64 sched_cfs_bandwidth_slice(void)
3676{
3677 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3678}
3679
a9cf55b2
PT
3680/*
3681 * Replenish runtime according to assigned quota and update expiration time.
3682 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3683 * additional synchronization around rq->lock.
3684 *
3685 * requires cfs_b->lock
3686 */
029632fb 3687void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3688{
3689 u64 now;
3690
3691 if (cfs_b->quota == RUNTIME_INF)
3692 return;
3693
3694 now = sched_clock_cpu(smp_processor_id());
3695 cfs_b->runtime = cfs_b->quota;
3696 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3697}
3698
029632fb
PZ
3699static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3700{
3701 return &tg->cfs_bandwidth;
3702}
3703
f1b17280
PT
3704/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3705static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3706{
3707 if (unlikely(cfs_rq->throttle_count))
3708 return cfs_rq->throttled_clock_task;
3709
78becc27 3710 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3711}
3712
85dac906
PT
3713/* returns 0 on failure to allocate runtime */
3714static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3715{
3716 struct task_group *tg = cfs_rq->tg;
3717 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3718 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3719
3720 /* note: this is a positive sum as runtime_remaining <= 0 */
3721 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3722
3723 raw_spin_lock(&cfs_b->lock);
3724 if (cfs_b->quota == RUNTIME_INF)
3725 amount = min_amount;
58088ad0 3726 else {
77a4d1a1 3727 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3728
3729 if (cfs_b->runtime > 0) {
3730 amount = min(cfs_b->runtime, min_amount);
3731 cfs_b->runtime -= amount;
3732 cfs_b->idle = 0;
3733 }
ec12cb7f 3734 }
a9cf55b2 3735 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3736 raw_spin_unlock(&cfs_b->lock);
3737
3738 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3739 /*
3740 * we may have advanced our local expiration to account for allowed
3741 * spread between our sched_clock and the one on which runtime was
3742 * issued.
3743 */
3744 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3745 cfs_rq->runtime_expires = expires;
85dac906
PT
3746
3747 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3748}
3749
a9cf55b2
PT
3750/*
3751 * Note: This depends on the synchronization provided by sched_clock and the
3752 * fact that rq->clock snapshots this value.
3753 */
3754static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3755{
a9cf55b2 3756 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3757
3758 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3759 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3760 return;
3761
a9cf55b2
PT
3762 if (cfs_rq->runtime_remaining < 0)
3763 return;
3764
3765 /*
3766 * If the local deadline has passed we have to consider the
3767 * possibility that our sched_clock is 'fast' and the global deadline
3768 * has not truly expired.
3769 *
3770 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3771 * whether the global deadline has advanced. It is valid to compare
3772 * cfs_b->runtime_expires without any locks since we only care about
3773 * exact equality, so a partial write will still work.
a9cf55b2
PT
3774 */
3775
51f2176d 3776 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3777 /* extend local deadline, drift is bounded above by 2 ticks */
3778 cfs_rq->runtime_expires += TICK_NSEC;
3779 } else {
3780 /* global deadline is ahead, expiration has passed */
3781 cfs_rq->runtime_remaining = 0;
3782 }
3783}
3784
9dbdb155 3785static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3786{
3787 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3788 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3789 expire_cfs_rq_runtime(cfs_rq);
3790
3791 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3792 return;
3793
85dac906
PT
3794 /*
3795 * if we're unable to extend our runtime we resched so that the active
3796 * hierarchy can be throttled
3797 */
3798 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3799 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3800}
3801
6c16a6dc 3802static __always_inline
9dbdb155 3803void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3804{
56f570e5 3805 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3806 return;
3807
3808 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3809}
3810
85dac906
PT
3811static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3812{
56f570e5 3813 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3814}
3815
64660c86
PT
3816/* check whether cfs_rq, or any parent, is throttled */
3817static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3818{
56f570e5 3819 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3820}
3821
3822/*
3823 * Ensure that neither of the group entities corresponding to src_cpu or
3824 * dest_cpu are members of a throttled hierarchy when performing group
3825 * load-balance operations.
3826 */
3827static inline int throttled_lb_pair(struct task_group *tg,
3828 int src_cpu, int dest_cpu)
3829{
3830 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3831
3832 src_cfs_rq = tg->cfs_rq[src_cpu];
3833 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3834
3835 return throttled_hierarchy(src_cfs_rq) ||
3836 throttled_hierarchy(dest_cfs_rq);
3837}
3838
3839/* updated child weight may affect parent so we have to do this bottom up */
3840static int tg_unthrottle_up(struct task_group *tg, void *data)
3841{
3842 struct rq *rq = data;
3843 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3844
3845 cfs_rq->throttle_count--;
3846#ifdef CONFIG_SMP
3847 if (!cfs_rq->throttle_count) {
f1b17280 3848 /* adjust cfs_rq_clock_task() */
78becc27 3849 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3850 cfs_rq->throttled_clock_task;
64660c86
PT
3851 }
3852#endif
3853
3854 return 0;
3855}
3856
3857static int tg_throttle_down(struct task_group *tg, void *data)
3858{
3859 struct rq *rq = data;
3860 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3861
82958366
PT
3862 /* group is entering throttled state, stop time */
3863 if (!cfs_rq->throttle_count)
78becc27 3864 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3865 cfs_rq->throttle_count++;
3866
3867 return 0;
3868}
3869
d3d9dc33 3870static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3871{
3872 struct rq *rq = rq_of(cfs_rq);
3873 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3874 struct sched_entity *se;
3875 long task_delta, dequeue = 1;
77a4d1a1 3876 bool empty;
85dac906
PT
3877
3878 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3879
f1b17280 3880 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3881 rcu_read_lock();
3882 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3883 rcu_read_unlock();
85dac906
PT
3884
3885 task_delta = cfs_rq->h_nr_running;
3886 for_each_sched_entity(se) {
3887 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3888 /* throttled entity or throttle-on-deactivate */
3889 if (!se->on_rq)
3890 break;
3891
3892 if (dequeue)
3893 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3894 qcfs_rq->h_nr_running -= task_delta;
3895
3896 if (qcfs_rq->load.weight)
3897 dequeue = 0;
3898 }
3899
3900 if (!se)
72465447 3901 sub_nr_running(rq, task_delta);
85dac906
PT
3902
3903 cfs_rq->throttled = 1;
78becc27 3904 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3905 raw_spin_lock(&cfs_b->lock);
d49db342 3906 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3907
c06f04c7
BS
3908 /*
3909 * Add to the _head_ of the list, so that an already-started
3910 * distribute_cfs_runtime will not see us
3911 */
3912 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3913
3914 /*
3915 * If we're the first throttled task, make sure the bandwidth
3916 * timer is running.
3917 */
3918 if (empty)
3919 start_cfs_bandwidth(cfs_b);
3920
85dac906
PT
3921 raw_spin_unlock(&cfs_b->lock);
3922}
3923
029632fb 3924void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3925{
3926 struct rq *rq = rq_of(cfs_rq);
3927 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3928 struct sched_entity *se;
3929 int enqueue = 1;
3930 long task_delta;
3931
22b958d8 3932 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3933
3934 cfs_rq->throttled = 0;
1a55af2e
FW
3935
3936 update_rq_clock(rq);
3937
671fd9da 3938 raw_spin_lock(&cfs_b->lock);
78becc27 3939 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3940 list_del_rcu(&cfs_rq->throttled_list);
3941 raw_spin_unlock(&cfs_b->lock);
3942
64660c86
PT
3943 /* update hierarchical throttle state */
3944 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3945
671fd9da
PT
3946 if (!cfs_rq->load.weight)
3947 return;
3948
3949 task_delta = cfs_rq->h_nr_running;
3950 for_each_sched_entity(se) {
3951 if (se->on_rq)
3952 enqueue = 0;
3953
3954 cfs_rq = cfs_rq_of(se);
3955 if (enqueue)
3956 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3957 cfs_rq->h_nr_running += task_delta;
3958
3959 if (cfs_rq_throttled(cfs_rq))
3960 break;
3961 }
3962
3963 if (!se)
72465447 3964 add_nr_running(rq, task_delta);
671fd9da
PT
3965
3966 /* determine whether we need to wake up potentially idle cpu */
3967 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3968 resched_curr(rq);
671fd9da
PT
3969}
3970
3971static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3972 u64 remaining, u64 expires)
3973{
3974 struct cfs_rq *cfs_rq;
c06f04c7
BS
3975 u64 runtime;
3976 u64 starting_runtime = remaining;
671fd9da
PT
3977
3978 rcu_read_lock();
3979 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3980 throttled_list) {
3981 struct rq *rq = rq_of(cfs_rq);
3982
3983 raw_spin_lock(&rq->lock);
3984 if (!cfs_rq_throttled(cfs_rq))
3985 goto next;
3986
3987 runtime = -cfs_rq->runtime_remaining + 1;
3988 if (runtime > remaining)
3989 runtime = remaining;
3990 remaining -= runtime;
3991
3992 cfs_rq->runtime_remaining += runtime;
3993 cfs_rq->runtime_expires = expires;
3994
3995 /* we check whether we're throttled above */
3996 if (cfs_rq->runtime_remaining > 0)
3997 unthrottle_cfs_rq(cfs_rq);
3998
3999next:
4000 raw_spin_unlock(&rq->lock);
4001
4002 if (!remaining)
4003 break;
4004 }
4005 rcu_read_unlock();
4006
c06f04c7 4007 return starting_runtime - remaining;
671fd9da
PT
4008}
4009
58088ad0
PT
4010/*
4011 * Responsible for refilling a task_group's bandwidth and unthrottling its
4012 * cfs_rqs as appropriate. If there has been no activity within the last
4013 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4014 * used to track this state.
4015 */
4016static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4017{
671fd9da 4018 u64 runtime, runtime_expires;
51f2176d 4019 int throttled;
58088ad0 4020
58088ad0
PT
4021 /* no need to continue the timer with no bandwidth constraint */
4022 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4023 goto out_deactivate;
58088ad0 4024
671fd9da 4025 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4026 cfs_b->nr_periods += overrun;
671fd9da 4027
51f2176d
BS
4028 /*
4029 * idle depends on !throttled (for the case of a large deficit), and if
4030 * we're going inactive then everything else can be deferred
4031 */
4032 if (cfs_b->idle && !throttled)
4033 goto out_deactivate;
a9cf55b2
PT
4034
4035 __refill_cfs_bandwidth_runtime(cfs_b);
4036
671fd9da
PT
4037 if (!throttled) {
4038 /* mark as potentially idle for the upcoming period */
4039 cfs_b->idle = 1;
51f2176d 4040 return 0;
671fd9da
PT
4041 }
4042
e8da1b18
NR
4043 /* account preceding periods in which throttling occurred */
4044 cfs_b->nr_throttled += overrun;
4045
671fd9da 4046 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4047
4048 /*
c06f04c7
BS
4049 * This check is repeated as we are holding onto the new bandwidth while
4050 * we unthrottle. This can potentially race with an unthrottled group
4051 * trying to acquire new bandwidth from the global pool. This can result
4052 * in us over-using our runtime if it is all used during this loop, but
4053 * only by limited amounts in that extreme case.
671fd9da 4054 */
c06f04c7
BS
4055 while (throttled && cfs_b->runtime > 0) {
4056 runtime = cfs_b->runtime;
671fd9da
PT
4057 raw_spin_unlock(&cfs_b->lock);
4058 /* we can't nest cfs_b->lock while distributing bandwidth */
4059 runtime = distribute_cfs_runtime(cfs_b, runtime,
4060 runtime_expires);
4061 raw_spin_lock(&cfs_b->lock);
4062
4063 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4064
4065 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4066 }
58088ad0 4067
671fd9da
PT
4068 /*
4069 * While we are ensured activity in the period following an
4070 * unthrottle, this also covers the case in which the new bandwidth is
4071 * insufficient to cover the existing bandwidth deficit. (Forcing the
4072 * timer to remain active while there are any throttled entities.)
4073 */
4074 cfs_b->idle = 0;
58088ad0 4075
51f2176d
BS
4076 return 0;
4077
4078out_deactivate:
51f2176d 4079 return 1;
58088ad0 4080}
d3d9dc33 4081
d8b4986d
PT
4082/* a cfs_rq won't donate quota below this amount */
4083static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4084/* minimum remaining period time to redistribute slack quota */
4085static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4086/* how long we wait to gather additional slack before distributing */
4087static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4088
db06e78c
BS
4089/*
4090 * Are we near the end of the current quota period?
4091 *
4092 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4093 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4094 * migrate_hrtimers, base is never cleared, so we are fine.
4095 */
d8b4986d
PT
4096static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4097{
4098 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4099 u64 remaining;
4100
4101 /* if the call-back is running a quota refresh is already occurring */
4102 if (hrtimer_callback_running(refresh_timer))
4103 return 1;
4104
4105 /* is a quota refresh about to occur? */
4106 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4107 if (remaining < min_expire)
4108 return 1;
4109
4110 return 0;
4111}
4112
4113static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4114{
4115 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4116
4117 /* if there's a quota refresh soon don't bother with slack */
4118 if (runtime_refresh_within(cfs_b, min_left))
4119 return;
4120
4cfafd30
PZ
4121 hrtimer_start(&cfs_b->slack_timer,
4122 ns_to_ktime(cfs_bandwidth_slack_period),
4123 HRTIMER_MODE_REL);
d8b4986d
PT
4124}
4125
4126/* we know any runtime found here is valid as update_curr() precedes return */
4127static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4128{
4129 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4130 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4131
4132 if (slack_runtime <= 0)
4133 return;
4134
4135 raw_spin_lock(&cfs_b->lock);
4136 if (cfs_b->quota != RUNTIME_INF &&
4137 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4138 cfs_b->runtime += slack_runtime;
4139
4140 /* we are under rq->lock, defer unthrottling using a timer */
4141 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4142 !list_empty(&cfs_b->throttled_cfs_rq))
4143 start_cfs_slack_bandwidth(cfs_b);
4144 }
4145 raw_spin_unlock(&cfs_b->lock);
4146
4147 /* even if it's not valid for return we don't want to try again */
4148 cfs_rq->runtime_remaining -= slack_runtime;
4149}
4150
4151static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4152{
56f570e5
PT
4153 if (!cfs_bandwidth_used())
4154 return;
4155
fccfdc6f 4156 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4157 return;
4158
4159 __return_cfs_rq_runtime(cfs_rq);
4160}
4161
4162/*
4163 * This is done with a timer (instead of inline with bandwidth return) since
4164 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4165 */
4166static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4167{
4168 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4169 u64 expires;
4170
4171 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4172 raw_spin_lock(&cfs_b->lock);
4173 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4174 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4175 return;
db06e78c 4176 }
d8b4986d 4177
c06f04c7 4178 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4179 runtime = cfs_b->runtime;
c06f04c7 4180
d8b4986d
PT
4181 expires = cfs_b->runtime_expires;
4182 raw_spin_unlock(&cfs_b->lock);
4183
4184 if (!runtime)
4185 return;
4186
4187 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4188
4189 raw_spin_lock(&cfs_b->lock);
4190 if (expires == cfs_b->runtime_expires)
c06f04c7 4191 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4192 raw_spin_unlock(&cfs_b->lock);
4193}
4194
d3d9dc33
PT
4195/*
4196 * When a group wakes up we want to make sure that its quota is not already
4197 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4198 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4199 */
4200static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4201{
56f570e5
PT
4202 if (!cfs_bandwidth_used())
4203 return;
4204
094f4691
KK
4205 /* Synchronize hierarchical throttle counter: */
4206 if (unlikely(!cfs_rq->throttle_uptodate)) {
4207 struct rq *rq = rq_of(cfs_rq);
4208 struct cfs_rq *pcfs_rq;
4209 struct task_group *tg;
4210
4211 cfs_rq->throttle_uptodate = 1;
4212
4213 /* Get closest up-to-date node, because leaves go first: */
4214 for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
4215 pcfs_rq = tg->cfs_rq[cpu_of(rq)];
4216 if (pcfs_rq->throttle_uptodate)
4217 break;
4218 }
4219 if (tg) {
4220 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4221 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4222 }
4223 }
4224
d3d9dc33
PT
4225 /* an active group must be handled by the update_curr()->put() path */
4226 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4227 return;
4228
4229 /* ensure the group is not already throttled */
4230 if (cfs_rq_throttled(cfs_rq))
4231 return;
4232
4233 /* update runtime allocation */
4234 account_cfs_rq_runtime(cfs_rq, 0);
4235 if (cfs_rq->runtime_remaining <= 0)
4236 throttle_cfs_rq(cfs_rq);
4237}
4238
4239/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4240static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4241{
56f570e5 4242 if (!cfs_bandwidth_used())
678d5718 4243 return false;
56f570e5 4244
d3d9dc33 4245 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4246 return false;
d3d9dc33
PT
4247
4248 /*
4249 * it's possible for a throttled entity to be forced into a running
4250 * state (e.g. set_curr_task), in this case we're finished.
4251 */
4252 if (cfs_rq_throttled(cfs_rq))
678d5718 4253 return true;
d3d9dc33
PT
4254
4255 throttle_cfs_rq(cfs_rq);
678d5718 4256 return true;
d3d9dc33 4257}
029632fb 4258
029632fb
PZ
4259static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4260{
4261 struct cfs_bandwidth *cfs_b =
4262 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4263
029632fb
PZ
4264 do_sched_cfs_slack_timer(cfs_b);
4265
4266 return HRTIMER_NORESTART;
4267}
4268
4269static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4270{
4271 struct cfs_bandwidth *cfs_b =
4272 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4273 int overrun;
4274 int idle = 0;
4275
51f2176d 4276 raw_spin_lock(&cfs_b->lock);
029632fb 4277 for (;;) {
77a4d1a1 4278 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4279 if (!overrun)
4280 break;
4281
4282 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4283 }
4cfafd30
PZ
4284 if (idle)
4285 cfs_b->period_active = 0;
51f2176d 4286 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4287
4288 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4289}
4290
4291void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4292{
4293 raw_spin_lock_init(&cfs_b->lock);
4294 cfs_b->runtime = 0;
4295 cfs_b->quota = RUNTIME_INF;
4296 cfs_b->period = ns_to_ktime(default_cfs_period());
4297
4298 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4299 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4300 cfs_b->period_timer.function = sched_cfs_period_timer;
4301 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4302 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4303}
4304
4305static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4306{
4307 cfs_rq->runtime_enabled = 0;
4308 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4309}
4310
77a4d1a1 4311void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4312{
4cfafd30 4313 lockdep_assert_held(&cfs_b->lock);
029632fb 4314
4cfafd30
PZ
4315 if (!cfs_b->period_active) {
4316 cfs_b->period_active = 1;
4317 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4318 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4319 }
029632fb
PZ
4320}
4321
4322static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4323{
7f1a169b
TH
4324 /* init_cfs_bandwidth() was not called */
4325 if (!cfs_b->throttled_cfs_rq.next)
4326 return;
4327
029632fb
PZ
4328 hrtimer_cancel(&cfs_b->period_timer);
4329 hrtimer_cancel(&cfs_b->slack_timer);
4330}
4331
0e59bdae
KT
4332static void __maybe_unused update_runtime_enabled(struct rq *rq)
4333{
4334 struct cfs_rq *cfs_rq;
4335
4336 for_each_leaf_cfs_rq(rq, cfs_rq) {
4337 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4338
4339 raw_spin_lock(&cfs_b->lock);
4340 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4341 raw_spin_unlock(&cfs_b->lock);
4342 }
4343}
4344
38dc3348 4345static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4346{
4347 struct cfs_rq *cfs_rq;
4348
4349 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4350 if (!cfs_rq->runtime_enabled)
4351 continue;
4352
4353 /*
4354 * clock_task is not advancing so we just need to make sure
4355 * there's some valid quota amount
4356 */
51f2176d 4357 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4358 /*
4359 * Offline rq is schedulable till cpu is completely disabled
4360 * in take_cpu_down(), so we prevent new cfs throttling here.
4361 */
4362 cfs_rq->runtime_enabled = 0;
4363
029632fb
PZ
4364 if (cfs_rq_throttled(cfs_rq))
4365 unthrottle_cfs_rq(cfs_rq);
4366 }
4367}
4368
4369#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4370static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4371{
78becc27 4372 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4373}
4374
9dbdb155 4375static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4376static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4377static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4378static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4379
4380static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4381{
4382 return 0;
4383}
64660c86
PT
4384
4385static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4386{
4387 return 0;
4388}
4389
4390static inline int throttled_lb_pair(struct task_group *tg,
4391 int src_cpu, int dest_cpu)
4392{
4393 return 0;
4394}
029632fb
PZ
4395
4396void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4397
4398#ifdef CONFIG_FAIR_GROUP_SCHED
4399static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4400#endif
4401
029632fb
PZ
4402static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4403{
4404 return NULL;
4405}
4406static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4407static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4408static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4409
4410#endif /* CONFIG_CFS_BANDWIDTH */
4411
bf0f6f24
IM
4412/**************************************************
4413 * CFS operations on tasks:
4414 */
4415
8f4d37ec
PZ
4416#ifdef CONFIG_SCHED_HRTICK
4417static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4418{
8f4d37ec
PZ
4419 struct sched_entity *se = &p->se;
4420 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4421
4422 WARN_ON(task_rq(p) != rq);
4423
b39e66ea 4424 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4425 u64 slice = sched_slice(cfs_rq, se);
4426 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4427 s64 delta = slice - ran;
4428
4429 if (delta < 0) {
4430 if (rq->curr == p)
8875125e 4431 resched_curr(rq);
8f4d37ec
PZ
4432 return;
4433 }
31656519 4434 hrtick_start(rq, delta);
8f4d37ec
PZ
4435 }
4436}
a4c2f00f
PZ
4437
4438/*
4439 * called from enqueue/dequeue and updates the hrtick when the
4440 * current task is from our class and nr_running is low enough
4441 * to matter.
4442 */
4443static void hrtick_update(struct rq *rq)
4444{
4445 struct task_struct *curr = rq->curr;
4446
b39e66ea 4447 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4448 return;
4449
4450 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4451 hrtick_start_fair(rq, curr);
4452}
55e12e5e 4453#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4454static inline void
4455hrtick_start_fair(struct rq *rq, struct task_struct *p)
4456{
4457}
a4c2f00f
PZ
4458
4459static inline void hrtick_update(struct rq *rq)
4460{
4461}
8f4d37ec
PZ
4462#endif
4463
bf0f6f24
IM
4464/*
4465 * The enqueue_task method is called before nr_running is
4466 * increased. Here we update the fair scheduling stats and
4467 * then put the task into the rbtree:
4468 */
ea87bb78 4469static void
371fd7e7 4470enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4471{
4472 struct cfs_rq *cfs_rq;
62fb1851 4473 struct sched_entity *se = &p->se;
bf0f6f24
IM
4474
4475 for_each_sched_entity(se) {
62fb1851 4476 if (se->on_rq)
bf0f6f24
IM
4477 break;
4478 cfs_rq = cfs_rq_of(se);
88ec22d3 4479 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4480
4481 /*
4482 * end evaluation on encountering a throttled cfs_rq
4483 *
4484 * note: in the case of encountering a throttled cfs_rq we will
4485 * post the final h_nr_running increment below.
4486 */
4487 if (cfs_rq_throttled(cfs_rq))
4488 break;
953bfcd1 4489 cfs_rq->h_nr_running++;
85dac906 4490
88ec22d3 4491 flags = ENQUEUE_WAKEUP;
bf0f6f24 4492 }
8f4d37ec 4493
2069dd75 4494 for_each_sched_entity(se) {
0f317143 4495 cfs_rq = cfs_rq_of(se);
953bfcd1 4496 cfs_rq->h_nr_running++;
2069dd75 4497
85dac906
PT
4498 if (cfs_rq_throttled(cfs_rq))
4499 break;
4500
9d89c257 4501 update_load_avg(se, 1);
17bc14b7 4502 update_cfs_shares(cfs_rq);
2069dd75
PZ
4503 }
4504
cd126afe 4505 if (!se)
72465447 4506 add_nr_running(rq, 1);
cd126afe 4507
a4c2f00f 4508 hrtick_update(rq);
bf0f6f24
IM
4509}
4510
2f36825b
VP
4511static void set_next_buddy(struct sched_entity *se);
4512
bf0f6f24
IM
4513/*
4514 * The dequeue_task method is called before nr_running is
4515 * decreased. We remove the task from the rbtree and
4516 * update the fair scheduling stats:
4517 */
371fd7e7 4518static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4519{
4520 struct cfs_rq *cfs_rq;
62fb1851 4521 struct sched_entity *se = &p->se;
2f36825b 4522 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4523
4524 for_each_sched_entity(se) {
4525 cfs_rq = cfs_rq_of(se);
371fd7e7 4526 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4527
4528 /*
4529 * end evaluation on encountering a throttled cfs_rq
4530 *
4531 * note: in the case of encountering a throttled cfs_rq we will
4532 * post the final h_nr_running decrement below.
4533 */
4534 if (cfs_rq_throttled(cfs_rq))
4535 break;
953bfcd1 4536 cfs_rq->h_nr_running--;
2069dd75 4537
bf0f6f24 4538 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4539 if (cfs_rq->load.weight) {
754bd598
KK
4540 /* Avoid re-evaluating load for this entity: */
4541 se = parent_entity(se);
2f36825b
VP
4542 /*
4543 * Bias pick_next to pick a task from this cfs_rq, as
4544 * p is sleeping when it is within its sched_slice.
4545 */
754bd598
KK
4546 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4547 set_next_buddy(se);
bf0f6f24 4548 break;
2f36825b 4549 }
371fd7e7 4550 flags |= DEQUEUE_SLEEP;
bf0f6f24 4551 }
8f4d37ec 4552
2069dd75 4553 for_each_sched_entity(se) {
0f317143 4554 cfs_rq = cfs_rq_of(se);
953bfcd1 4555 cfs_rq->h_nr_running--;
2069dd75 4556
85dac906
PT
4557 if (cfs_rq_throttled(cfs_rq))
4558 break;
4559
9d89c257 4560 update_load_avg(se, 1);
17bc14b7 4561 update_cfs_shares(cfs_rq);
2069dd75
PZ
4562 }
4563
cd126afe 4564 if (!se)
72465447 4565 sub_nr_running(rq, 1);
cd126afe 4566
a4c2f00f 4567 hrtick_update(rq);
bf0f6f24
IM
4568}
4569
e7693a36 4570#ifdef CONFIG_SMP
9fd81dd5 4571#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4572/*
4573 * per rq 'load' arrray crap; XXX kill this.
4574 */
4575
4576/*
d937cdc5 4577 * The exact cpuload calculated at every tick would be:
3289bdb4 4578 *
d937cdc5
PZ
4579 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4580 *
4581 * If a cpu misses updates for n ticks (as it was idle) and update gets
4582 * called on the n+1-th tick when cpu may be busy, then we have:
4583 *
4584 * load_n = (1 - 1/2^i)^n * load_0
4585 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4586 *
4587 * decay_load_missed() below does efficient calculation of
3289bdb4 4588 *
d937cdc5
PZ
4589 * load' = (1 - 1/2^i)^n * load
4590 *
4591 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4592 * This allows us to precompute the above in said factors, thereby allowing the
4593 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4594 * fixed_power_int())
3289bdb4 4595 *
d937cdc5 4596 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4597 */
4598#define DEGRADE_SHIFT 7
d937cdc5
PZ
4599
4600static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4601static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4602 { 0, 0, 0, 0, 0, 0, 0, 0 },
4603 { 64, 32, 8, 0, 0, 0, 0, 0 },
4604 { 96, 72, 40, 12, 1, 0, 0, 0 },
4605 { 112, 98, 75, 43, 15, 1, 0, 0 },
4606 { 120, 112, 98, 76, 45, 16, 2, 0 }
4607};
3289bdb4
PZ
4608
4609/*
4610 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4611 * would be when CPU is idle and so we just decay the old load without
4612 * adding any new load.
4613 */
4614static unsigned long
4615decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4616{
4617 int j = 0;
4618
4619 if (!missed_updates)
4620 return load;
4621
4622 if (missed_updates >= degrade_zero_ticks[idx])
4623 return 0;
4624
4625 if (idx == 1)
4626 return load >> missed_updates;
4627
4628 while (missed_updates) {
4629 if (missed_updates % 2)
4630 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4631
4632 missed_updates >>= 1;
4633 j++;
4634 }
4635 return load;
4636}
9fd81dd5 4637#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4638
59543275 4639/**
cee1afce 4640 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4641 * @this_rq: The rq to update statistics for
4642 * @this_load: The current load
4643 * @pending_updates: The number of missed updates
59543275 4644 *
3289bdb4 4645 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4646 * scheduler tick (TICK_NSEC).
4647 *
4648 * This function computes a decaying average:
4649 *
4650 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4651 *
4652 * Because of NOHZ it might not get called on every tick which gives need for
4653 * the @pending_updates argument.
4654 *
4655 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4656 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4657 * = A * (A * load[i]_n-2 + B) + B
4658 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4659 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4660 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4661 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4662 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4663 *
4664 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4665 * any change in load would have resulted in the tick being turned back on.
4666 *
4667 * For regular NOHZ, this reduces to:
4668 *
4669 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4670 *
4671 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4672 * term.
3289bdb4 4673 */
1f41906a
FW
4674static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4675 unsigned long pending_updates)
3289bdb4 4676{
9fd81dd5 4677 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4678 int i, scale;
4679
4680 this_rq->nr_load_updates++;
4681
4682 /* Update our load: */
4683 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4684 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4685 unsigned long old_load, new_load;
4686
4687 /* scale is effectively 1 << i now, and >> i divides by scale */
4688
7400d3bb 4689 old_load = this_rq->cpu_load[i];
9fd81dd5 4690#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4691 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4692 if (tickless_load) {
4693 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4694 /*
4695 * old_load can never be a negative value because a
4696 * decayed tickless_load cannot be greater than the
4697 * original tickless_load.
4698 */
4699 old_load += tickless_load;
4700 }
9fd81dd5 4701#endif
3289bdb4
PZ
4702 new_load = this_load;
4703 /*
4704 * Round up the averaging division if load is increasing. This
4705 * prevents us from getting stuck on 9 if the load is 10, for
4706 * example.
4707 */
4708 if (new_load > old_load)
4709 new_load += scale - 1;
4710
4711 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4712 }
4713
4714 sched_avg_update(this_rq);
4715}
4716
7ea241af
YD
4717/* Used instead of source_load when we know the type == 0 */
4718static unsigned long weighted_cpuload(const int cpu)
4719{
4720 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4721}
4722
3289bdb4 4723#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4724/*
4725 * There is no sane way to deal with nohz on smp when using jiffies because the
4726 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4727 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4728 *
4729 * Therefore we need to avoid the delta approach from the regular tick when
4730 * possible since that would seriously skew the load calculation. This is why we
4731 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4732 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4733 * loop exit, nohz_idle_balance, nohz full exit...)
4734 *
4735 * This means we might still be one tick off for nohz periods.
4736 */
4737
4738static void cpu_load_update_nohz(struct rq *this_rq,
4739 unsigned long curr_jiffies,
4740 unsigned long load)
be68a682
FW
4741{
4742 unsigned long pending_updates;
4743
4744 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4745 if (pending_updates) {
4746 this_rq->last_load_update_tick = curr_jiffies;
4747 /*
4748 * In the regular NOHZ case, we were idle, this means load 0.
4749 * In the NOHZ_FULL case, we were non-idle, we should consider
4750 * its weighted load.
4751 */
1f41906a 4752 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4753 }
4754}
4755
3289bdb4
PZ
4756/*
4757 * Called from nohz_idle_balance() to update the load ratings before doing the
4758 * idle balance.
4759 */
cee1afce 4760static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4761{
3289bdb4
PZ
4762 /*
4763 * bail if there's load or we're actually up-to-date.
4764 */
be68a682 4765 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4766 return;
4767
1f41906a 4768 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4769}
4770
4771/*
1f41906a
FW
4772 * Record CPU load on nohz entry so we know the tickless load to account
4773 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4774 * than other cpu_load[idx] but it should be fine as cpu_load readers
4775 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4776 */
1f41906a 4777void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4778{
4779 struct rq *this_rq = this_rq();
1f41906a
FW
4780
4781 /*
4782 * This is all lockless but should be fine. If weighted_cpuload changes
4783 * concurrently we'll exit nohz. And cpu_load write can race with
4784 * cpu_load_update_idle() but both updater would be writing the same.
4785 */
4786 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4787}
4788
4789/*
4790 * Account the tickless load in the end of a nohz frame.
4791 */
4792void cpu_load_update_nohz_stop(void)
4793{
316c1608 4794 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4795 struct rq *this_rq = this_rq();
4796 unsigned long load;
3289bdb4
PZ
4797
4798 if (curr_jiffies == this_rq->last_load_update_tick)
4799 return;
4800
1f41906a 4801 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4802 raw_spin_lock(&this_rq->lock);
b52fad2d 4803 update_rq_clock(this_rq);
1f41906a 4804 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4805 raw_spin_unlock(&this_rq->lock);
4806}
1f41906a
FW
4807#else /* !CONFIG_NO_HZ_COMMON */
4808static inline void cpu_load_update_nohz(struct rq *this_rq,
4809 unsigned long curr_jiffies,
4810 unsigned long load) { }
4811#endif /* CONFIG_NO_HZ_COMMON */
4812
4813static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4814{
9fd81dd5 4815#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4816 /* See the mess around cpu_load_update_nohz(). */
4817 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4818#endif
1f41906a
FW
4819 cpu_load_update(this_rq, load, 1);
4820}
3289bdb4
PZ
4821
4822/*
4823 * Called from scheduler_tick()
4824 */
cee1afce 4825void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4826{
7ea241af 4827 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4828
4829 if (tick_nohz_tick_stopped())
4830 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4831 else
4832 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4833}
4834
029632fb
PZ
4835/*
4836 * Return a low guess at the load of a migration-source cpu weighted
4837 * according to the scheduling class and "nice" value.
4838 *
4839 * We want to under-estimate the load of migration sources, to
4840 * balance conservatively.
4841 */
4842static unsigned long source_load(int cpu, int type)
4843{
4844 struct rq *rq = cpu_rq(cpu);
4845 unsigned long total = weighted_cpuload(cpu);
4846
4847 if (type == 0 || !sched_feat(LB_BIAS))
4848 return total;
4849
4850 return min(rq->cpu_load[type-1], total);
4851}
4852
4853/*
4854 * Return a high guess at the load of a migration-target cpu weighted
4855 * according to the scheduling class and "nice" value.
4856 */
4857static unsigned long target_load(int cpu, int type)
4858{
4859 struct rq *rq = cpu_rq(cpu);
4860 unsigned long total = weighted_cpuload(cpu);
4861
4862 if (type == 0 || !sched_feat(LB_BIAS))
4863 return total;
4864
4865 return max(rq->cpu_load[type-1], total);
4866}
4867
ced549fa 4868static unsigned long capacity_of(int cpu)
029632fb 4869{
ced549fa 4870 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4871}
4872
ca6d75e6
VG
4873static unsigned long capacity_orig_of(int cpu)
4874{
4875 return cpu_rq(cpu)->cpu_capacity_orig;
4876}
4877
029632fb
PZ
4878static unsigned long cpu_avg_load_per_task(int cpu)
4879{
4880 struct rq *rq = cpu_rq(cpu);
316c1608 4881 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4882 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4883
4884 if (nr_running)
b92486cb 4885 return load_avg / nr_running;
029632fb
PZ
4886
4887 return 0;
4888}
4889
bb3469ac 4890#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4891/*
4892 * effective_load() calculates the load change as seen from the root_task_group
4893 *
4894 * Adding load to a group doesn't make a group heavier, but can cause movement
4895 * of group shares between cpus. Assuming the shares were perfectly aligned one
4896 * can calculate the shift in shares.
cf5f0acf
PZ
4897 *
4898 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4899 * on this @cpu and results in a total addition (subtraction) of @wg to the
4900 * total group weight.
4901 *
4902 * Given a runqueue weight distribution (rw_i) we can compute a shares
4903 * distribution (s_i) using:
4904 *
4905 * s_i = rw_i / \Sum rw_j (1)
4906 *
4907 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4908 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4909 * shares distribution (s_i):
4910 *
4911 * rw_i = { 2, 4, 1, 0 }
4912 * s_i = { 2/7, 4/7, 1/7, 0 }
4913 *
4914 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4915 * task used to run on and the CPU the waker is running on), we need to
4916 * compute the effect of waking a task on either CPU and, in case of a sync
4917 * wakeup, compute the effect of the current task going to sleep.
4918 *
4919 * So for a change of @wl to the local @cpu with an overall group weight change
4920 * of @wl we can compute the new shares distribution (s'_i) using:
4921 *
4922 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4923 *
4924 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4925 * differences in waking a task to CPU 0. The additional task changes the
4926 * weight and shares distributions like:
4927 *
4928 * rw'_i = { 3, 4, 1, 0 }
4929 * s'_i = { 3/8, 4/8, 1/8, 0 }
4930 *
4931 * We can then compute the difference in effective weight by using:
4932 *
4933 * dw_i = S * (s'_i - s_i) (3)
4934 *
4935 * Where 'S' is the group weight as seen by its parent.
4936 *
4937 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4938 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4939 * 4/7) times the weight of the group.
f5bfb7d9 4940 */
2069dd75 4941static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4942{
4be9daaa 4943 struct sched_entity *se = tg->se[cpu];
f1d239f7 4944
9722c2da 4945 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4946 return wl;
4947
4be9daaa 4948 for_each_sched_entity(se) {
cf5f0acf 4949 long w, W;
4be9daaa 4950
977dda7c 4951 tg = se->my_q->tg;
bb3469ac 4952
cf5f0acf
PZ
4953 /*
4954 * W = @wg + \Sum rw_j
4955 */
4956 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4957
cf5f0acf
PZ
4958 /*
4959 * w = rw_i + @wl
4960 */
7ea241af 4961 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4962
cf5f0acf
PZ
4963 /*
4964 * wl = S * s'_i; see (2)
4965 */
4966 if (W > 0 && w < W)
32a8df4e 4967 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4968 else
4969 wl = tg->shares;
940959e9 4970
cf5f0acf
PZ
4971 /*
4972 * Per the above, wl is the new se->load.weight value; since
4973 * those are clipped to [MIN_SHARES, ...) do so now. See
4974 * calc_cfs_shares().
4975 */
977dda7c
PT
4976 if (wl < MIN_SHARES)
4977 wl = MIN_SHARES;
cf5f0acf
PZ
4978
4979 /*
4980 * wl = dw_i = S * (s'_i - s_i); see (3)
4981 */
9d89c257 4982 wl -= se->avg.load_avg;
cf5f0acf
PZ
4983
4984 /*
4985 * Recursively apply this logic to all parent groups to compute
4986 * the final effective load change on the root group. Since
4987 * only the @tg group gets extra weight, all parent groups can
4988 * only redistribute existing shares. @wl is the shift in shares
4989 * resulting from this level per the above.
4990 */
4be9daaa 4991 wg = 0;
4be9daaa 4992 }
bb3469ac 4993
4be9daaa 4994 return wl;
bb3469ac
PZ
4995}
4996#else
4be9daaa 4997
58d081b5 4998static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4999{
83378269 5000 return wl;
bb3469ac 5001}
4be9daaa 5002
bb3469ac
PZ
5003#endif
5004
c58d25f3
PZ
5005static void record_wakee(struct task_struct *p)
5006{
5007 /*
5008 * Only decay a single time; tasks that have less then 1 wakeup per
5009 * jiffy will not have built up many flips.
5010 */
5011 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5012 current->wakee_flips >>= 1;
5013 current->wakee_flip_decay_ts = jiffies;
5014 }
5015
5016 if (current->last_wakee != p) {
5017 current->last_wakee = p;
5018 current->wakee_flips++;
5019 }
5020}
5021
63b0e9ed
MG
5022/*
5023 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5024 *
63b0e9ed 5025 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5026 * at a frequency roughly N times higher than one of its wakees.
5027 *
5028 * In order to determine whether we should let the load spread vs consolidating
5029 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5030 * partner, and a factor of lls_size higher frequency in the other.
5031 *
5032 * With both conditions met, we can be relatively sure that the relationship is
5033 * non-monogamous, with partner count exceeding socket size.
5034 *
5035 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5036 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5037 * socket size.
63b0e9ed 5038 */
62470419
MW
5039static int wake_wide(struct task_struct *p)
5040{
63b0e9ed
MG
5041 unsigned int master = current->wakee_flips;
5042 unsigned int slave = p->wakee_flips;
7d9ffa89 5043 int factor = this_cpu_read(sd_llc_size);
62470419 5044
63b0e9ed
MG
5045 if (master < slave)
5046 swap(master, slave);
5047 if (slave < factor || master < slave * factor)
5048 return 0;
5049 return 1;
62470419
MW
5050}
5051
c88d5910 5052static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 5053{
e37b6a7b 5054 s64 this_load, load;
bd61c98f 5055 s64 this_eff_load, prev_eff_load;
c88d5910 5056 int idx, this_cpu, prev_cpu;
c88d5910 5057 struct task_group *tg;
83378269 5058 unsigned long weight;
b3137bc8 5059 int balanced;
098fb9db 5060
c88d5910
PZ
5061 idx = sd->wake_idx;
5062 this_cpu = smp_processor_id();
5063 prev_cpu = task_cpu(p);
5064 load = source_load(prev_cpu, idx);
5065 this_load = target_load(this_cpu, idx);
098fb9db 5066
b3137bc8
MG
5067 /*
5068 * If sync wakeup then subtract the (maximum possible)
5069 * effect of the currently running task from the load
5070 * of the current CPU:
5071 */
83378269
PZ
5072 if (sync) {
5073 tg = task_group(current);
9d89c257 5074 weight = current->se.avg.load_avg;
83378269 5075
c88d5910 5076 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5077 load += effective_load(tg, prev_cpu, 0, -weight);
5078 }
b3137bc8 5079
83378269 5080 tg = task_group(p);
9d89c257 5081 weight = p->se.avg.load_avg;
b3137bc8 5082
71a29aa7
PZ
5083 /*
5084 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5085 * due to the sync cause above having dropped this_load to 0, we'll
5086 * always have an imbalance, but there's really nothing you can do
5087 * about that, so that's good too.
71a29aa7
PZ
5088 *
5089 * Otherwise check if either cpus are near enough in load to allow this
5090 * task to be woken on this_cpu.
5091 */
bd61c98f
VG
5092 this_eff_load = 100;
5093 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5094
bd61c98f
VG
5095 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5096 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5097
bd61c98f 5098 if (this_load > 0) {
e51fd5e2
PZ
5099 this_eff_load *= this_load +
5100 effective_load(tg, this_cpu, weight, weight);
5101
e51fd5e2 5102 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5103 }
e51fd5e2 5104
bd61c98f 5105 balanced = this_eff_load <= prev_eff_load;
098fb9db 5106
41acab88 5107 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5108
05bfb65f
VG
5109 if (!balanced)
5110 return 0;
098fb9db 5111
05bfb65f
VG
5112 schedstat_inc(sd, ttwu_move_affine);
5113 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5114
5115 return 1;
098fb9db
IM
5116}
5117
aaee1203
PZ
5118/*
5119 * find_idlest_group finds and returns the least busy CPU group within the
5120 * domain.
5121 */
5122static struct sched_group *
78e7ed53 5123find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5124 int this_cpu, int sd_flag)
e7693a36 5125{
b3bd3de6 5126 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5127 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5128 int load_idx = sd->forkexec_idx;
aaee1203 5129 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5130
c44f2a02
VG
5131 if (sd_flag & SD_BALANCE_WAKE)
5132 load_idx = sd->wake_idx;
5133
aaee1203
PZ
5134 do {
5135 unsigned long load, avg_load;
5136 int local_group;
5137 int i;
e7693a36 5138
aaee1203
PZ
5139 /* Skip over this group if it has no CPUs allowed */
5140 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5141 tsk_cpus_allowed(p)))
aaee1203
PZ
5142 continue;
5143
5144 local_group = cpumask_test_cpu(this_cpu,
5145 sched_group_cpus(group));
5146
5147 /* Tally up the load of all CPUs in the group */
5148 avg_load = 0;
5149
5150 for_each_cpu(i, sched_group_cpus(group)) {
5151 /* Bias balancing toward cpus of our domain */
5152 if (local_group)
5153 load = source_load(i, load_idx);
5154 else
5155 load = target_load(i, load_idx);
5156
5157 avg_load += load;
5158 }
5159
63b2ca30 5160 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5161 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5162
5163 if (local_group) {
5164 this_load = avg_load;
aaee1203
PZ
5165 } else if (avg_load < min_load) {
5166 min_load = avg_load;
5167 idlest = group;
5168 }
5169 } while (group = group->next, group != sd->groups);
5170
5171 if (!idlest || 100*this_load < imbalance*min_load)
5172 return NULL;
5173 return idlest;
5174}
5175
5176/*
5177 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5178 */
5179static int
5180find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5181{
5182 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5183 unsigned int min_exit_latency = UINT_MAX;
5184 u64 latest_idle_timestamp = 0;
5185 int least_loaded_cpu = this_cpu;
5186 int shallowest_idle_cpu = -1;
aaee1203
PZ
5187 int i;
5188
5189 /* Traverse only the allowed CPUs */
fa17b507 5190 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5191 if (idle_cpu(i)) {
5192 struct rq *rq = cpu_rq(i);
5193 struct cpuidle_state *idle = idle_get_state(rq);
5194 if (idle && idle->exit_latency < min_exit_latency) {
5195 /*
5196 * We give priority to a CPU whose idle state
5197 * has the smallest exit latency irrespective
5198 * of any idle timestamp.
5199 */
5200 min_exit_latency = idle->exit_latency;
5201 latest_idle_timestamp = rq->idle_stamp;
5202 shallowest_idle_cpu = i;
5203 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5204 rq->idle_stamp > latest_idle_timestamp) {
5205 /*
5206 * If equal or no active idle state, then
5207 * the most recently idled CPU might have
5208 * a warmer cache.
5209 */
5210 latest_idle_timestamp = rq->idle_stamp;
5211 shallowest_idle_cpu = i;
5212 }
9f96742a 5213 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5214 load = weighted_cpuload(i);
5215 if (load < min_load || (load == min_load && i == this_cpu)) {
5216 min_load = load;
5217 least_loaded_cpu = i;
5218 }
e7693a36
GH
5219 }
5220 }
5221
83a0a96a 5222 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5223}
e7693a36 5224
a50bde51
PZ
5225/*
5226 * Try and locate an idle CPU in the sched_domain.
5227 */
99bd5e2f 5228static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5229{
99bd5e2f 5230 struct sched_domain *sd;
37407ea7 5231 struct sched_group *sg;
e0a79f52 5232 int i = task_cpu(p);
a50bde51 5233
e0a79f52
MG
5234 if (idle_cpu(target))
5235 return target;
99bd5e2f
SS
5236
5237 /*
e0a79f52 5238 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5239 */
e0a79f52
MG
5240 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5241 return i;
a50bde51
PZ
5242
5243 /*
d4335581
MF
5244 * Otherwise, iterate the domains and find an eligible idle cpu.
5245 *
5246 * A completely idle sched group at higher domains is more
5247 * desirable than an idle group at a lower level, because lower
5248 * domains have smaller groups and usually share hardware
5249 * resources which causes tasks to contend on them, e.g. x86
5250 * hyperthread siblings in the lowest domain (SMT) can contend
5251 * on the shared cpu pipeline.
5252 *
5253 * However, while we prefer idle groups at higher domains
5254 * finding an idle cpu at the lowest domain is still better than
5255 * returning 'target', which we've already established, isn't
5256 * idle.
a50bde51 5257 */
518cd623 5258 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5259 for_each_lower_domain(sd) {
37407ea7
LT
5260 sg = sd->groups;
5261 do {
5262 if (!cpumask_intersects(sched_group_cpus(sg),
5263 tsk_cpus_allowed(p)))
5264 goto next;
5265
d4335581 5266 /* Ensure the entire group is idle */
37407ea7 5267 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5268 if (i == target || !idle_cpu(i))
37407ea7
LT
5269 goto next;
5270 }
970e1789 5271
d4335581
MF
5272 /*
5273 * It doesn't matter which cpu we pick, the
5274 * whole group is idle.
5275 */
37407ea7
LT
5276 target = cpumask_first_and(sched_group_cpus(sg),
5277 tsk_cpus_allowed(p));
5278 goto done;
5279next:
5280 sg = sg->next;
5281 } while (sg != sd->groups);
5282 }
5283done:
a50bde51
PZ
5284 return target;
5285}
231678b7 5286
8bb5b00c 5287/*
9e91d61d 5288 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5289 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5290 * compare the utilization with the capacity of the CPU that is available for
5291 * CFS task (ie cpu_capacity).
231678b7
DE
5292 *
5293 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5294 * recent utilization of currently non-runnable tasks on a CPU. It represents
5295 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5296 * capacity_orig is the cpu_capacity available at the highest frequency
5297 * (arch_scale_freq_capacity()).
5298 * The utilization of a CPU converges towards a sum equal to or less than the
5299 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5300 * the running time on this CPU scaled by capacity_curr.
5301 *
5302 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5303 * higher than capacity_orig because of unfortunate rounding in
5304 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5305 * the average stabilizes with the new running time. We need to check that the
5306 * utilization stays within the range of [0..capacity_orig] and cap it if
5307 * necessary. Without utilization capping, a group could be seen as overloaded
5308 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5309 * available capacity. We allow utilization to overshoot capacity_curr (but not
5310 * capacity_orig) as it useful for predicting the capacity required after task
5311 * migrations (scheduler-driven DVFS).
8bb5b00c 5312 */
9e91d61d 5313static int cpu_util(int cpu)
8bb5b00c 5314{
9e91d61d 5315 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5316 unsigned long capacity = capacity_orig_of(cpu);
5317
231678b7 5318 return (util >= capacity) ? capacity : util;
8bb5b00c 5319}
a50bde51 5320
aaee1203 5321/*
de91b9cb
MR
5322 * select_task_rq_fair: Select target runqueue for the waking task in domains
5323 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5324 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5325 *
de91b9cb
MR
5326 * Balances load by selecting the idlest cpu in the idlest group, or under
5327 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5328 *
de91b9cb 5329 * Returns the target cpu number.
aaee1203
PZ
5330 *
5331 * preempt must be disabled.
5332 */
0017d735 5333static int
ac66f547 5334select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5335{
29cd8bae 5336 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5337 int cpu = smp_processor_id();
63b0e9ed 5338 int new_cpu = prev_cpu;
99bd5e2f 5339 int want_affine = 0;
5158f4e4 5340 int sync = wake_flags & WF_SYNC;
c88d5910 5341
c58d25f3
PZ
5342 if (sd_flag & SD_BALANCE_WAKE) {
5343 record_wakee(p);
63b0e9ed 5344 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5345 }
aaee1203 5346
dce840a0 5347 rcu_read_lock();
aaee1203 5348 for_each_domain(cpu, tmp) {
e4f42888 5349 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5350 break;
e4f42888 5351
fe3bcfe1 5352 /*
99bd5e2f
SS
5353 * If both cpu and prev_cpu are part of this domain,
5354 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5355 */
99bd5e2f
SS
5356 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5357 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5358 affine_sd = tmp;
29cd8bae 5359 break;
f03542a7 5360 }
29cd8bae 5361
f03542a7 5362 if (tmp->flags & sd_flag)
29cd8bae 5363 sd = tmp;
63b0e9ed
MG
5364 else if (!want_affine)
5365 break;
29cd8bae
PZ
5366 }
5367
63b0e9ed
MG
5368 if (affine_sd) {
5369 sd = NULL; /* Prefer wake_affine over balance flags */
5370 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5371 new_cpu = cpu;
8b911acd 5372 }
e7693a36 5373
63b0e9ed
MG
5374 if (!sd) {
5375 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5376 new_cpu = select_idle_sibling(p, new_cpu);
5377
5378 } else while (sd) {
aaee1203 5379 struct sched_group *group;
c88d5910 5380 int weight;
098fb9db 5381
0763a660 5382 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5383 sd = sd->child;
5384 continue;
5385 }
098fb9db 5386
c44f2a02 5387 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5388 if (!group) {
5389 sd = sd->child;
5390 continue;
5391 }
4ae7d5ce 5392
d7c33c49 5393 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5394 if (new_cpu == -1 || new_cpu == cpu) {
5395 /* Now try balancing at a lower domain level of cpu */
5396 sd = sd->child;
5397 continue;
e7693a36 5398 }
aaee1203
PZ
5399
5400 /* Now try balancing at a lower domain level of new_cpu */
5401 cpu = new_cpu;
669c55e9 5402 weight = sd->span_weight;
aaee1203
PZ
5403 sd = NULL;
5404 for_each_domain(cpu, tmp) {
669c55e9 5405 if (weight <= tmp->span_weight)
aaee1203 5406 break;
0763a660 5407 if (tmp->flags & sd_flag)
aaee1203
PZ
5408 sd = tmp;
5409 }
5410 /* while loop will break here if sd == NULL */
e7693a36 5411 }
dce840a0 5412 rcu_read_unlock();
e7693a36 5413
c88d5910 5414 return new_cpu;
e7693a36 5415}
0a74bef8
PT
5416
5417/*
5418 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5419 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5420 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5421 */
5a4fd036 5422static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5423{
59efa0ba
PZ
5424 /*
5425 * As blocked tasks retain absolute vruntime the migration needs to
5426 * deal with this by subtracting the old and adding the new
5427 * min_vruntime -- the latter is done by enqueue_entity() when placing
5428 * the task on the new runqueue.
5429 */
5430 if (p->state == TASK_WAKING) {
5431 struct sched_entity *se = &p->se;
5432 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5433 u64 min_vruntime;
5434
5435#ifndef CONFIG_64BIT
5436 u64 min_vruntime_copy;
5437
5438 do {
5439 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5440 smp_rmb();
5441 min_vruntime = cfs_rq->min_vruntime;
5442 } while (min_vruntime != min_vruntime_copy);
5443#else
5444 min_vruntime = cfs_rq->min_vruntime;
5445#endif
5446
5447 se->vruntime -= min_vruntime;
5448 }
5449
aff3e498 5450 /*
9d89c257
YD
5451 * We are supposed to update the task to "current" time, then its up to date
5452 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5453 * what current time is, so simply throw away the out-of-date time. This
5454 * will result in the wakee task is less decayed, but giving the wakee more
5455 * load sounds not bad.
aff3e498 5456 */
9d89c257
YD
5457 remove_entity_load_avg(&p->se);
5458
5459 /* Tell new CPU we are migrated */
5460 p->se.avg.last_update_time = 0;
3944a927
BS
5461
5462 /* We have migrated, no longer consider this task hot */
9d89c257 5463 p->se.exec_start = 0;
0a74bef8 5464}
12695578
YD
5465
5466static void task_dead_fair(struct task_struct *p)
5467{
5468 remove_entity_load_avg(&p->se);
5469}
e7693a36
GH
5470#endif /* CONFIG_SMP */
5471
e52fb7c0
PZ
5472static unsigned long
5473wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5474{
5475 unsigned long gran = sysctl_sched_wakeup_granularity;
5476
5477 /*
e52fb7c0
PZ
5478 * Since its curr running now, convert the gran from real-time
5479 * to virtual-time in his units.
13814d42
MG
5480 *
5481 * By using 'se' instead of 'curr' we penalize light tasks, so
5482 * they get preempted easier. That is, if 'se' < 'curr' then
5483 * the resulting gran will be larger, therefore penalizing the
5484 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5485 * be smaller, again penalizing the lighter task.
5486 *
5487 * This is especially important for buddies when the leftmost
5488 * task is higher priority than the buddy.
0bbd3336 5489 */
f4ad9bd2 5490 return calc_delta_fair(gran, se);
0bbd3336
PZ
5491}
5492
464b7527
PZ
5493/*
5494 * Should 'se' preempt 'curr'.
5495 *
5496 * |s1
5497 * |s2
5498 * |s3
5499 * g
5500 * |<--->|c
5501 *
5502 * w(c, s1) = -1
5503 * w(c, s2) = 0
5504 * w(c, s3) = 1
5505 *
5506 */
5507static int
5508wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5509{
5510 s64 gran, vdiff = curr->vruntime - se->vruntime;
5511
5512 if (vdiff <= 0)
5513 return -1;
5514
e52fb7c0 5515 gran = wakeup_gran(curr, se);
464b7527
PZ
5516 if (vdiff > gran)
5517 return 1;
5518
5519 return 0;
5520}
5521
02479099
PZ
5522static void set_last_buddy(struct sched_entity *se)
5523{
69c80f3e
VP
5524 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5525 return;
5526
5527 for_each_sched_entity(se)
5528 cfs_rq_of(se)->last = se;
02479099
PZ
5529}
5530
5531static void set_next_buddy(struct sched_entity *se)
5532{
69c80f3e
VP
5533 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5534 return;
5535
5536 for_each_sched_entity(se)
5537 cfs_rq_of(se)->next = se;
02479099
PZ
5538}
5539
ac53db59
RR
5540static void set_skip_buddy(struct sched_entity *se)
5541{
69c80f3e
VP
5542 for_each_sched_entity(se)
5543 cfs_rq_of(se)->skip = se;
ac53db59
RR
5544}
5545
bf0f6f24
IM
5546/*
5547 * Preempt the current task with a newly woken task if needed:
5548 */
5a9b86f6 5549static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5550{
5551 struct task_struct *curr = rq->curr;
8651a86c 5552 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5553 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5554 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5555 int next_buddy_marked = 0;
bf0f6f24 5556
4ae7d5ce
IM
5557 if (unlikely(se == pse))
5558 return;
5559
5238cdd3 5560 /*
163122b7 5561 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5562 * unconditionally check_prempt_curr() after an enqueue (which may have
5563 * lead to a throttle). This both saves work and prevents false
5564 * next-buddy nomination below.
5565 */
5566 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5567 return;
5568
2f36825b 5569 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5570 set_next_buddy(pse);
2f36825b
VP
5571 next_buddy_marked = 1;
5572 }
57fdc26d 5573
aec0a514
BR
5574 /*
5575 * We can come here with TIF_NEED_RESCHED already set from new task
5576 * wake up path.
5238cdd3
PT
5577 *
5578 * Note: this also catches the edge-case of curr being in a throttled
5579 * group (e.g. via set_curr_task), since update_curr() (in the
5580 * enqueue of curr) will have resulted in resched being set. This
5581 * prevents us from potentially nominating it as a false LAST_BUDDY
5582 * below.
aec0a514
BR
5583 */
5584 if (test_tsk_need_resched(curr))
5585 return;
5586
a2f5c9ab
DH
5587 /* Idle tasks are by definition preempted by non-idle tasks. */
5588 if (unlikely(curr->policy == SCHED_IDLE) &&
5589 likely(p->policy != SCHED_IDLE))
5590 goto preempt;
5591
91c234b4 5592 /*
a2f5c9ab
DH
5593 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5594 * is driven by the tick):
91c234b4 5595 */
8ed92e51 5596 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5597 return;
bf0f6f24 5598
464b7527 5599 find_matching_se(&se, &pse);
9bbd7374 5600 update_curr(cfs_rq_of(se));
002f128b 5601 BUG_ON(!pse);
2f36825b
VP
5602 if (wakeup_preempt_entity(se, pse) == 1) {
5603 /*
5604 * Bias pick_next to pick the sched entity that is
5605 * triggering this preemption.
5606 */
5607 if (!next_buddy_marked)
5608 set_next_buddy(pse);
3a7e73a2 5609 goto preempt;
2f36825b 5610 }
464b7527 5611
3a7e73a2 5612 return;
a65ac745 5613
3a7e73a2 5614preempt:
8875125e 5615 resched_curr(rq);
3a7e73a2
PZ
5616 /*
5617 * Only set the backward buddy when the current task is still
5618 * on the rq. This can happen when a wakeup gets interleaved
5619 * with schedule on the ->pre_schedule() or idle_balance()
5620 * point, either of which can * drop the rq lock.
5621 *
5622 * Also, during early boot the idle thread is in the fair class,
5623 * for obvious reasons its a bad idea to schedule back to it.
5624 */
5625 if (unlikely(!se->on_rq || curr == rq->idle))
5626 return;
5627
5628 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5629 set_last_buddy(se);
bf0f6f24
IM
5630}
5631
606dba2e 5632static struct task_struct *
e7904a28 5633pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5634{
5635 struct cfs_rq *cfs_rq = &rq->cfs;
5636 struct sched_entity *se;
678d5718 5637 struct task_struct *p;
37e117c0 5638 int new_tasks;
678d5718 5639
6e83125c 5640again:
678d5718
PZ
5641#ifdef CONFIG_FAIR_GROUP_SCHED
5642 if (!cfs_rq->nr_running)
38033c37 5643 goto idle;
678d5718 5644
3f1d2a31 5645 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5646 goto simple;
5647
5648 /*
5649 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5650 * likely that a next task is from the same cgroup as the current.
5651 *
5652 * Therefore attempt to avoid putting and setting the entire cgroup
5653 * hierarchy, only change the part that actually changes.
5654 */
5655
5656 do {
5657 struct sched_entity *curr = cfs_rq->curr;
5658
5659 /*
5660 * Since we got here without doing put_prev_entity() we also
5661 * have to consider cfs_rq->curr. If it is still a runnable
5662 * entity, update_curr() will update its vruntime, otherwise
5663 * forget we've ever seen it.
5664 */
54d27365
BS
5665 if (curr) {
5666 if (curr->on_rq)
5667 update_curr(cfs_rq);
5668 else
5669 curr = NULL;
678d5718 5670
54d27365
BS
5671 /*
5672 * This call to check_cfs_rq_runtime() will do the
5673 * throttle and dequeue its entity in the parent(s).
5674 * Therefore the 'simple' nr_running test will indeed
5675 * be correct.
5676 */
5677 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5678 goto simple;
5679 }
678d5718
PZ
5680
5681 se = pick_next_entity(cfs_rq, curr);
5682 cfs_rq = group_cfs_rq(se);
5683 } while (cfs_rq);
5684
5685 p = task_of(se);
5686
5687 /*
5688 * Since we haven't yet done put_prev_entity and if the selected task
5689 * is a different task than we started out with, try and touch the
5690 * least amount of cfs_rqs.
5691 */
5692 if (prev != p) {
5693 struct sched_entity *pse = &prev->se;
5694
5695 while (!(cfs_rq = is_same_group(se, pse))) {
5696 int se_depth = se->depth;
5697 int pse_depth = pse->depth;
5698
5699 if (se_depth <= pse_depth) {
5700 put_prev_entity(cfs_rq_of(pse), pse);
5701 pse = parent_entity(pse);
5702 }
5703 if (se_depth >= pse_depth) {
5704 set_next_entity(cfs_rq_of(se), se);
5705 se = parent_entity(se);
5706 }
5707 }
5708
5709 put_prev_entity(cfs_rq, pse);
5710 set_next_entity(cfs_rq, se);
5711 }
5712
5713 if (hrtick_enabled(rq))
5714 hrtick_start_fair(rq, p);
5715
5716 return p;
5717simple:
5718 cfs_rq = &rq->cfs;
5719#endif
bf0f6f24 5720
36ace27e 5721 if (!cfs_rq->nr_running)
38033c37 5722 goto idle;
bf0f6f24 5723
3f1d2a31 5724 put_prev_task(rq, prev);
606dba2e 5725
bf0f6f24 5726 do {
678d5718 5727 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5728 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5729 cfs_rq = group_cfs_rq(se);
5730 } while (cfs_rq);
5731
8f4d37ec 5732 p = task_of(se);
678d5718 5733
b39e66ea
MG
5734 if (hrtick_enabled(rq))
5735 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5736
5737 return p;
38033c37
PZ
5738
5739idle:
cbce1a68
PZ
5740 /*
5741 * This is OK, because current is on_cpu, which avoids it being picked
5742 * for load-balance and preemption/IRQs are still disabled avoiding
5743 * further scheduler activity on it and we're being very careful to
5744 * re-start the picking loop.
5745 */
e7904a28 5746 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5747 new_tasks = idle_balance(rq);
e7904a28 5748 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5749 /*
5750 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5751 * possible for any higher priority task to appear. In that case we
5752 * must re-start the pick_next_entity() loop.
5753 */
e4aa358b 5754 if (new_tasks < 0)
37e117c0
PZ
5755 return RETRY_TASK;
5756
e4aa358b 5757 if (new_tasks > 0)
38033c37 5758 goto again;
38033c37
PZ
5759
5760 return NULL;
bf0f6f24
IM
5761}
5762
5763/*
5764 * Account for a descheduled task:
5765 */
31ee529c 5766static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5767{
5768 struct sched_entity *se = &prev->se;
5769 struct cfs_rq *cfs_rq;
5770
5771 for_each_sched_entity(se) {
5772 cfs_rq = cfs_rq_of(se);
ab6cde26 5773 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5774 }
5775}
5776
ac53db59
RR
5777/*
5778 * sched_yield() is very simple
5779 *
5780 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5781 */
5782static void yield_task_fair(struct rq *rq)
5783{
5784 struct task_struct *curr = rq->curr;
5785 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5786 struct sched_entity *se = &curr->se;
5787
5788 /*
5789 * Are we the only task in the tree?
5790 */
5791 if (unlikely(rq->nr_running == 1))
5792 return;
5793
5794 clear_buddies(cfs_rq, se);
5795
5796 if (curr->policy != SCHED_BATCH) {
5797 update_rq_clock(rq);
5798 /*
5799 * Update run-time statistics of the 'current'.
5800 */
5801 update_curr(cfs_rq);
916671c0
MG
5802 /*
5803 * Tell update_rq_clock() that we've just updated,
5804 * so we don't do microscopic update in schedule()
5805 * and double the fastpath cost.
5806 */
9edfbfed 5807 rq_clock_skip_update(rq, true);
ac53db59
RR
5808 }
5809
5810 set_skip_buddy(se);
5811}
5812
d95f4122
MG
5813static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5814{
5815 struct sched_entity *se = &p->se;
5816
5238cdd3
PT
5817 /* throttled hierarchies are not runnable */
5818 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5819 return false;
5820
5821 /* Tell the scheduler that we'd really like pse to run next. */
5822 set_next_buddy(se);
5823
d95f4122
MG
5824 yield_task_fair(rq);
5825
5826 return true;
5827}
5828
681f3e68 5829#ifdef CONFIG_SMP
bf0f6f24 5830/**************************************************
e9c84cb8
PZ
5831 * Fair scheduling class load-balancing methods.
5832 *
5833 * BASICS
5834 *
5835 * The purpose of load-balancing is to achieve the same basic fairness the
5836 * per-cpu scheduler provides, namely provide a proportional amount of compute
5837 * time to each task. This is expressed in the following equation:
5838 *
5839 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5840 *
5841 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5842 * W_i,0 is defined as:
5843 *
5844 * W_i,0 = \Sum_j w_i,j (2)
5845 *
5846 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5847 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5848 *
5849 * The weight average is an exponential decay average of the instantaneous
5850 * weight:
5851 *
5852 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5853 *
ced549fa 5854 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5855 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5856 * can also include other factors [XXX].
5857 *
5858 * To achieve this balance we define a measure of imbalance which follows
5859 * directly from (1):
5860 *
ced549fa 5861 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5862 *
5863 * We them move tasks around to minimize the imbalance. In the continuous
5864 * function space it is obvious this converges, in the discrete case we get
5865 * a few fun cases generally called infeasible weight scenarios.
5866 *
5867 * [XXX expand on:
5868 * - infeasible weights;
5869 * - local vs global optima in the discrete case. ]
5870 *
5871 *
5872 * SCHED DOMAINS
5873 *
5874 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5875 * for all i,j solution, we create a tree of cpus that follows the hardware
5876 * topology where each level pairs two lower groups (or better). This results
5877 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5878 * tree to only the first of the previous level and we decrease the frequency
5879 * of load-balance at each level inv. proportional to the number of cpus in
5880 * the groups.
5881 *
5882 * This yields:
5883 *
5884 * log_2 n 1 n
5885 * \Sum { --- * --- * 2^i } = O(n) (5)
5886 * i = 0 2^i 2^i
5887 * `- size of each group
5888 * | | `- number of cpus doing load-balance
5889 * | `- freq
5890 * `- sum over all levels
5891 *
5892 * Coupled with a limit on how many tasks we can migrate every balance pass,
5893 * this makes (5) the runtime complexity of the balancer.
5894 *
5895 * An important property here is that each CPU is still (indirectly) connected
5896 * to every other cpu in at most O(log n) steps:
5897 *
5898 * The adjacency matrix of the resulting graph is given by:
5899 *
5900 * log_2 n
5901 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5902 * k = 0
5903 *
5904 * And you'll find that:
5905 *
5906 * A^(log_2 n)_i,j != 0 for all i,j (7)
5907 *
5908 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5909 * The task movement gives a factor of O(m), giving a convergence complexity
5910 * of:
5911 *
5912 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5913 *
5914 *
5915 * WORK CONSERVING
5916 *
5917 * In order to avoid CPUs going idle while there's still work to do, new idle
5918 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5919 * tree itself instead of relying on other CPUs to bring it work.
5920 *
5921 * This adds some complexity to both (5) and (8) but it reduces the total idle
5922 * time.
5923 *
5924 * [XXX more?]
5925 *
5926 *
5927 * CGROUPS
5928 *
5929 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5930 *
5931 * s_k,i
5932 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5933 * S_k
5934 *
5935 * Where
5936 *
5937 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5938 *
5939 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5940 *
5941 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5942 * property.
5943 *
5944 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5945 * rewrite all of this once again.]
5946 */
bf0f6f24 5947
ed387b78
HS
5948static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5949
0ec8aa00
PZ
5950enum fbq_type { regular, remote, all };
5951
ddcdf6e7 5952#define LBF_ALL_PINNED 0x01
367456c7 5953#define LBF_NEED_BREAK 0x02
6263322c
PZ
5954#define LBF_DST_PINNED 0x04
5955#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5956
5957struct lb_env {
5958 struct sched_domain *sd;
5959
ddcdf6e7 5960 struct rq *src_rq;
85c1e7da 5961 int src_cpu;
ddcdf6e7
PZ
5962
5963 int dst_cpu;
5964 struct rq *dst_rq;
5965
88b8dac0
SV
5966 struct cpumask *dst_grpmask;
5967 int new_dst_cpu;
ddcdf6e7 5968 enum cpu_idle_type idle;
bd939f45 5969 long imbalance;
b9403130
MW
5970 /* The set of CPUs under consideration for load-balancing */
5971 struct cpumask *cpus;
5972
ddcdf6e7 5973 unsigned int flags;
367456c7
PZ
5974
5975 unsigned int loop;
5976 unsigned int loop_break;
5977 unsigned int loop_max;
0ec8aa00
PZ
5978
5979 enum fbq_type fbq_type;
163122b7 5980 struct list_head tasks;
ddcdf6e7
PZ
5981};
5982
029632fb
PZ
5983/*
5984 * Is this task likely cache-hot:
5985 */
5d5e2b1b 5986static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5987{
5988 s64 delta;
5989
e5673f28
KT
5990 lockdep_assert_held(&env->src_rq->lock);
5991
029632fb
PZ
5992 if (p->sched_class != &fair_sched_class)
5993 return 0;
5994
5995 if (unlikely(p->policy == SCHED_IDLE))
5996 return 0;
5997
5998 /*
5999 * Buddy candidates are cache hot:
6000 */
5d5e2b1b 6001 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6002 (&p->se == cfs_rq_of(&p->se)->next ||
6003 &p->se == cfs_rq_of(&p->se)->last))
6004 return 1;
6005
6006 if (sysctl_sched_migration_cost == -1)
6007 return 1;
6008 if (sysctl_sched_migration_cost == 0)
6009 return 0;
6010
5d5e2b1b 6011 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6012
6013 return delta < (s64)sysctl_sched_migration_cost;
6014}
6015
3a7053b3 6016#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6017/*
2a1ed24c
SD
6018 * Returns 1, if task migration degrades locality
6019 * Returns 0, if task migration improves locality i.e migration preferred.
6020 * Returns -1, if task migration is not affected by locality.
c1ceac62 6021 */
2a1ed24c 6022static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6023{
b1ad065e 6024 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6025 unsigned long src_faults, dst_faults;
3a7053b3
MG
6026 int src_nid, dst_nid;
6027
2a595721 6028 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6029 return -1;
6030
c3b9bc5b 6031 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6032 return -1;
7a0f3083
MG
6033
6034 src_nid = cpu_to_node(env->src_cpu);
6035 dst_nid = cpu_to_node(env->dst_cpu);
6036
83e1d2cd 6037 if (src_nid == dst_nid)
2a1ed24c 6038 return -1;
7a0f3083 6039
2a1ed24c
SD
6040 /* Migrating away from the preferred node is always bad. */
6041 if (src_nid == p->numa_preferred_nid) {
6042 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6043 return 1;
6044 else
6045 return -1;
6046 }
b1ad065e 6047
c1ceac62
RR
6048 /* Encourage migration to the preferred node. */
6049 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6050 return 0;
b1ad065e 6051
c1ceac62
RR
6052 if (numa_group) {
6053 src_faults = group_faults(p, src_nid);
6054 dst_faults = group_faults(p, dst_nid);
6055 } else {
6056 src_faults = task_faults(p, src_nid);
6057 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6058 }
6059
c1ceac62 6060 return dst_faults < src_faults;
7a0f3083
MG
6061}
6062
3a7053b3 6063#else
2a1ed24c 6064static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6065 struct lb_env *env)
6066{
2a1ed24c 6067 return -1;
7a0f3083 6068}
3a7053b3
MG
6069#endif
6070
1e3c88bd
PZ
6071/*
6072 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6073 */
6074static
8e45cb54 6075int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6076{
2a1ed24c 6077 int tsk_cache_hot;
e5673f28
KT
6078
6079 lockdep_assert_held(&env->src_rq->lock);
6080
1e3c88bd
PZ
6081 /*
6082 * We do not migrate tasks that are:
d3198084 6083 * 1) throttled_lb_pair, or
1e3c88bd 6084 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6085 * 3) running (obviously), or
6086 * 4) are cache-hot on their current CPU.
1e3c88bd 6087 */
d3198084
JK
6088 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6089 return 0;
6090
ddcdf6e7 6091 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6092 int cpu;
88b8dac0 6093
41acab88 6094 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6095
6263322c
PZ
6096 env->flags |= LBF_SOME_PINNED;
6097
88b8dac0
SV
6098 /*
6099 * Remember if this task can be migrated to any other cpu in
6100 * our sched_group. We may want to revisit it if we couldn't
6101 * meet load balance goals by pulling other tasks on src_cpu.
6102 *
6103 * Also avoid computing new_dst_cpu if we have already computed
6104 * one in current iteration.
6105 */
6263322c 6106 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6107 return 0;
6108
e02e60c1
JK
6109 /* Prevent to re-select dst_cpu via env's cpus */
6110 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6111 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6112 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6113 env->new_dst_cpu = cpu;
6114 break;
6115 }
88b8dac0 6116 }
e02e60c1 6117
1e3c88bd
PZ
6118 return 0;
6119 }
88b8dac0
SV
6120
6121 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6122 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6123
ddcdf6e7 6124 if (task_running(env->src_rq, p)) {
41acab88 6125 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6126 return 0;
6127 }
6128
6129 /*
6130 * Aggressive migration if:
3a7053b3
MG
6131 * 1) destination numa is preferred
6132 * 2) task is cache cold, or
6133 * 3) too many balance attempts have failed.
1e3c88bd 6134 */
2a1ed24c
SD
6135 tsk_cache_hot = migrate_degrades_locality(p, env);
6136 if (tsk_cache_hot == -1)
6137 tsk_cache_hot = task_hot(p, env);
3a7053b3 6138
2a1ed24c 6139 if (tsk_cache_hot <= 0 ||
7a96c231 6140 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6141 if (tsk_cache_hot == 1) {
3a7053b3
MG
6142 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6143 schedstat_inc(p, se.statistics.nr_forced_migrations);
6144 }
1e3c88bd
PZ
6145 return 1;
6146 }
6147
4e2dcb73
ZH
6148 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6149 return 0;
1e3c88bd
PZ
6150}
6151
897c395f 6152/*
163122b7
KT
6153 * detach_task() -- detach the task for the migration specified in env
6154 */
6155static void detach_task(struct task_struct *p, struct lb_env *env)
6156{
6157 lockdep_assert_held(&env->src_rq->lock);
6158
163122b7 6159 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6160 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6161 set_task_cpu(p, env->dst_cpu);
6162}
6163
897c395f 6164/*
e5673f28 6165 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6166 * part of active balancing operations within "domain".
897c395f 6167 *
e5673f28 6168 * Returns a task if successful and NULL otherwise.
897c395f 6169 */
e5673f28 6170static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6171{
6172 struct task_struct *p, *n;
897c395f 6173
e5673f28
KT
6174 lockdep_assert_held(&env->src_rq->lock);
6175
367456c7 6176 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6177 if (!can_migrate_task(p, env))
6178 continue;
897c395f 6179
163122b7 6180 detach_task(p, env);
e5673f28 6181
367456c7 6182 /*
e5673f28 6183 * Right now, this is only the second place where
163122b7 6184 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6185 * so we can safely collect stats here rather than
163122b7 6186 * inside detach_tasks().
367456c7
PZ
6187 */
6188 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6189 return p;
897c395f 6190 }
e5673f28 6191 return NULL;
897c395f
PZ
6192}
6193
eb95308e
PZ
6194static const unsigned int sched_nr_migrate_break = 32;
6195
5d6523eb 6196/*
163122b7
KT
6197 * detach_tasks() -- tries to detach up to imbalance weighted load from
6198 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6199 *
163122b7 6200 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6201 */
163122b7 6202static int detach_tasks(struct lb_env *env)
1e3c88bd 6203{
5d6523eb
PZ
6204 struct list_head *tasks = &env->src_rq->cfs_tasks;
6205 struct task_struct *p;
367456c7 6206 unsigned long load;
163122b7
KT
6207 int detached = 0;
6208
6209 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6210
bd939f45 6211 if (env->imbalance <= 0)
5d6523eb 6212 return 0;
1e3c88bd 6213
5d6523eb 6214 while (!list_empty(tasks)) {
985d3a4c
YD
6215 /*
6216 * We don't want to steal all, otherwise we may be treated likewise,
6217 * which could at worst lead to a livelock crash.
6218 */
6219 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6220 break;
6221
5d6523eb 6222 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6223
367456c7
PZ
6224 env->loop++;
6225 /* We've more or less seen every task there is, call it quits */
5d6523eb 6226 if (env->loop > env->loop_max)
367456c7 6227 break;
5d6523eb
PZ
6228
6229 /* take a breather every nr_migrate tasks */
367456c7 6230 if (env->loop > env->loop_break) {
eb95308e 6231 env->loop_break += sched_nr_migrate_break;
8e45cb54 6232 env->flags |= LBF_NEED_BREAK;
ee00e66f 6233 break;
a195f004 6234 }
1e3c88bd 6235
d3198084 6236 if (!can_migrate_task(p, env))
367456c7
PZ
6237 goto next;
6238
6239 load = task_h_load(p);
5d6523eb 6240
eb95308e 6241 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6242 goto next;
6243
bd939f45 6244 if ((load / 2) > env->imbalance)
367456c7 6245 goto next;
1e3c88bd 6246
163122b7
KT
6247 detach_task(p, env);
6248 list_add(&p->se.group_node, &env->tasks);
6249
6250 detached++;
bd939f45 6251 env->imbalance -= load;
1e3c88bd
PZ
6252
6253#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6254 /*
6255 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6256 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6257 * the critical section.
6258 */
5d6523eb 6259 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6260 break;
1e3c88bd
PZ
6261#endif
6262
ee00e66f
PZ
6263 /*
6264 * We only want to steal up to the prescribed amount of
6265 * weighted load.
6266 */
bd939f45 6267 if (env->imbalance <= 0)
ee00e66f 6268 break;
367456c7
PZ
6269
6270 continue;
6271next:
5d6523eb 6272 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6273 }
5d6523eb 6274
1e3c88bd 6275 /*
163122b7
KT
6276 * Right now, this is one of only two places we collect this stat
6277 * so we can safely collect detach_one_task() stats here rather
6278 * than inside detach_one_task().
1e3c88bd 6279 */
163122b7 6280 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6281
163122b7
KT
6282 return detached;
6283}
6284
6285/*
6286 * attach_task() -- attach the task detached by detach_task() to its new rq.
6287 */
6288static void attach_task(struct rq *rq, struct task_struct *p)
6289{
6290 lockdep_assert_held(&rq->lock);
6291
6292 BUG_ON(task_rq(p) != rq);
163122b7 6293 activate_task(rq, p, 0);
3ea94de1 6294 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6295 check_preempt_curr(rq, p, 0);
6296}
6297
6298/*
6299 * attach_one_task() -- attaches the task returned from detach_one_task() to
6300 * its new rq.
6301 */
6302static void attach_one_task(struct rq *rq, struct task_struct *p)
6303{
6304 raw_spin_lock(&rq->lock);
6305 attach_task(rq, p);
6306 raw_spin_unlock(&rq->lock);
6307}
6308
6309/*
6310 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6311 * new rq.
6312 */
6313static void attach_tasks(struct lb_env *env)
6314{
6315 struct list_head *tasks = &env->tasks;
6316 struct task_struct *p;
6317
6318 raw_spin_lock(&env->dst_rq->lock);
6319
6320 while (!list_empty(tasks)) {
6321 p = list_first_entry(tasks, struct task_struct, se.group_node);
6322 list_del_init(&p->se.group_node);
1e3c88bd 6323
163122b7
KT
6324 attach_task(env->dst_rq, p);
6325 }
6326
6327 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6328}
6329
230059de 6330#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6331static void update_blocked_averages(int cpu)
9e3081ca 6332{
9e3081ca 6333 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6334 struct cfs_rq *cfs_rq;
6335 unsigned long flags;
9e3081ca 6336
48a16753
PT
6337 raw_spin_lock_irqsave(&rq->lock, flags);
6338 update_rq_clock(rq);
9d89c257 6339
9763b67f
PZ
6340 /*
6341 * Iterates the task_group tree in a bottom up fashion, see
6342 * list_add_leaf_cfs_rq() for details.
6343 */
64660c86 6344 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6345 /* throttled entities do not contribute to load */
6346 if (throttled_hierarchy(cfs_rq))
6347 continue;
48a16753 6348
a2c6c91f 6349 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6350 update_tg_load_avg(cfs_rq, 0);
6351 }
48a16753 6352 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6353}
6354
9763b67f 6355/*
68520796 6356 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6357 * This needs to be done in a top-down fashion because the load of a child
6358 * group is a fraction of its parents load.
6359 */
68520796 6360static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6361{
68520796
VD
6362 struct rq *rq = rq_of(cfs_rq);
6363 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6364 unsigned long now = jiffies;
68520796 6365 unsigned long load;
a35b6466 6366
68520796 6367 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6368 return;
6369
68520796
VD
6370 cfs_rq->h_load_next = NULL;
6371 for_each_sched_entity(se) {
6372 cfs_rq = cfs_rq_of(se);
6373 cfs_rq->h_load_next = se;
6374 if (cfs_rq->last_h_load_update == now)
6375 break;
6376 }
a35b6466 6377
68520796 6378 if (!se) {
7ea241af 6379 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6380 cfs_rq->last_h_load_update = now;
6381 }
6382
6383 while ((se = cfs_rq->h_load_next) != NULL) {
6384 load = cfs_rq->h_load;
7ea241af
YD
6385 load = div64_ul(load * se->avg.load_avg,
6386 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6387 cfs_rq = group_cfs_rq(se);
6388 cfs_rq->h_load = load;
6389 cfs_rq->last_h_load_update = now;
6390 }
9763b67f
PZ
6391}
6392
367456c7 6393static unsigned long task_h_load(struct task_struct *p)
230059de 6394{
367456c7 6395 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6396
68520796 6397 update_cfs_rq_h_load(cfs_rq);
9d89c257 6398 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6399 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6400}
6401#else
48a16753 6402static inline void update_blocked_averages(int cpu)
9e3081ca 6403{
6c1d47c0
VG
6404 struct rq *rq = cpu_rq(cpu);
6405 struct cfs_rq *cfs_rq = &rq->cfs;
6406 unsigned long flags;
6407
6408 raw_spin_lock_irqsave(&rq->lock, flags);
6409 update_rq_clock(rq);
a2c6c91f 6410 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6411 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6412}
6413
367456c7 6414static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6415{
9d89c257 6416 return p->se.avg.load_avg;
1e3c88bd 6417}
230059de 6418#endif
1e3c88bd 6419
1e3c88bd 6420/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6421
6422enum group_type {
6423 group_other = 0,
6424 group_imbalanced,
6425 group_overloaded,
6426};
6427
1e3c88bd
PZ
6428/*
6429 * sg_lb_stats - stats of a sched_group required for load_balancing
6430 */
6431struct sg_lb_stats {
6432 unsigned long avg_load; /*Avg load across the CPUs of the group */
6433 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6434 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6435 unsigned long load_per_task;
63b2ca30 6436 unsigned long group_capacity;
9e91d61d 6437 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6438 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6439 unsigned int idle_cpus;
6440 unsigned int group_weight;
caeb178c 6441 enum group_type group_type;
ea67821b 6442 int group_no_capacity;
0ec8aa00
PZ
6443#ifdef CONFIG_NUMA_BALANCING
6444 unsigned int nr_numa_running;
6445 unsigned int nr_preferred_running;
6446#endif
1e3c88bd
PZ
6447};
6448
56cf515b
JK
6449/*
6450 * sd_lb_stats - Structure to store the statistics of a sched_domain
6451 * during load balancing.
6452 */
6453struct sd_lb_stats {
6454 struct sched_group *busiest; /* Busiest group in this sd */
6455 struct sched_group *local; /* Local group in this sd */
6456 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6457 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6458 unsigned long avg_load; /* Average load across all groups in sd */
6459
56cf515b 6460 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6461 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6462};
6463
147c5fc2
PZ
6464static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6465{
6466 /*
6467 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6468 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6469 * We must however clear busiest_stat::avg_load because
6470 * update_sd_pick_busiest() reads this before assignment.
6471 */
6472 *sds = (struct sd_lb_stats){
6473 .busiest = NULL,
6474 .local = NULL,
6475 .total_load = 0UL,
63b2ca30 6476 .total_capacity = 0UL,
147c5fc2
PZ
6477 .busiest_stat = {
6478 .avg_load = 0UL,
caeb178c
RR
6479 .sum_nr_running = 0,
6480 .group_type = group_other,
147c5fc2
PZ
6481 },
6482 };
6483}
6484
1e3c88bd
PZ
6485/**
6486 * get_sd_load_idx - Obtain the load index for a given sched domain.
6487 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6488 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6489 *
6490 * Return: The load index.
1e3c88bd
PZ
6491 */
6492static inline int get_sd_load_idx(struct sched_domain *sd,
6493 enum cpu_idle_type idle)
6494{
6495 int load_idx;
6496
6497 switch (idle) {
6498 case CPU_NOT_IDLE:
6499 load_idx = sd->busy_idx;
6500 break;
6501
6502 case CPU_NEWLY_IDLE:
6503 load_idx = sd->newidle_idx;
6504 break;
6505 default:
6506 load_idx = sd->idle_idx;
6507 break;
6508 }
6509
6510 return load_idx;
6511}
6512
ced549fa 6513static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6514{
6515 struct rq *rq = cpu_rq(cpu);
b5b4860d 6516 u64 total, used, age_stamp, avg;
cadefd3d 6517 s64 delta;
1e3c88bd 6518
b654f7de
PZ
6519 /*
6520 * Since we're reading these variables without serialization make sure
6521 * we read them once before doing sanity checks on them.
6522 */
316c1608
JL
6523 age_stamp = READ_ONCE(rq->age_stamp);
6524 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6525 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6526
cadefd3d
PZ
6527 if (unlikely(delta < 0))
6528 delta = 0;
6529
6530 total = sched_avg_period() + delta;
aa483808 6531
b5b4860d 6532 used = div_u64(avg, total);
1e3c88bd 6533
b5b4860d
VG
6534 if (likely(used < SCHED_CAPACITY_SCALE))
6535 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6536
b5b4860d 6537 return 1;
1e3c88bd
PZ
6538}
6539
ced549fa 6540static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6541{
8cd5601c 6542 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6543 struct sched_group *sdg = sd->groups;
6544
ca6d75e6 6545 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6546
ced549fa 6547 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6548 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6549
ced549fa
NP
6550 if (!capacity)
6551 capacity = 1;
1e3c88bd 6552
ced549fa
NP
6553 cpu_rq(cpu)->cpu_capacity = capacity;
6554 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6555}
6556
63b2ca30 6557void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6558{
6559 struct sched_domain *child = sd->child;
6560 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6561 unsigned long capacity;
4ec4412e
VG
6562 unsigned long interval;
6563
6564 interval = msecs_to_jiffies(sd->balance_interval);
6565 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6566 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6567
6568 if (!child) {
ced549fa 6569 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6570 return;
6571 }
6572
dc7ff76e 6573 capacity = 0;
1e3c88bd 6574
74a5ce20
PZ
6575 if (child->flags & SD_OVERLAP) {
6576 /*
6577 * SD_OVERLAP domains cannot assume that child groups
6578 * span the current group.
6579 */
6580
863bffc8 6581 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6582 struct sched_group_capacity *sgc;
9abf24d4 6583 struct rq *rq = cpu_rq(cpu);
863bffc8 6584
9abf24d4 6585 /*
63b2ca30 6586 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6587 * gets here before we've attached the domains to the
6588 * runqueues.
6589 *
ced549fa
NP
6590 * Use capacity_of(), which is set irrespective of domains
6591 * in update_cpu_capacity().
9abf24d4 6592 *
dc7ff76e 6593 * This avoids capacity from being 0 and
9abf24d4 6594 * causing divide-by-zero issues on boot.
9abf24d4
SD
6595 */
6596 if (unlikely(!rq->sd)) {
ced549fa 6597 capacity += capacity_of(cpu);
9abf24d4
SD
6598 continue;
6599 }
863bffc8 6600
63b2ca30 6601 sgc = rq->sd->groups->sgc;
63b2ca30 6602 capacity += sgc->capacity;
863bffc8 6603 }
74a5ce20
PZ
6604 } else {
6605 /*
6606 * !SD_OVERLAP domains can assume that child groups
6607 * span the current group.
6608 */
6609
6610 group = child->groups;
6611 do {
63b2ca30 6612 capacity += group->sgc->capacity;
74a5ce20
PZ
6613 group = group->next;
6614 } while (group != child->groups);
6615 }
1e3c88bd 6616
63b2ca30 6617 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6618}
6619
9d5efe05 6620/*
ea67821b
VG
6621 * Check whether the capacity of the rq has been noticeably reduced by side
6622 * activity. The imbalance_pct is used for the threshold.
6623 * Return true is the capacity is reduced
9d5efe05
SV
6624 */
6625static inline int
ea67821b 6626check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6627{
ea67821b
VG
6628 return ((rq->cpu_capacity * sd->imbalance_pct) <
6629 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6630}
6631
30ce5dab
PZ
6632/*
6633 * Group imbalance indicates (and tries to solve) the problem where balancing
6634 * groups is inadequate due to tsk_cpus_allowed() constraints.
6635 *
6636 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6637 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6638 * Something like:
6639 *
6640 * { 0 1 2 3 } { 4 5 6 7 }
6641 * * * * *
6642 *
6643 * If we were to balance group-wise we'd place two tasks in the first group and
6644 * two tasks in the second group. Clearly this is undesired as it will overload
6645 * cpu 3 and leave one of the cpus in the second group unused.
6646 *
6647 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6648 * by noticing the lower domain failed to reach balance and had difficulty
6649 * moving tasks due to affinity constraints.
30ce5dab
PZ
6650 *
6651 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6652 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6653 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6654 * to create an effective group imbalance.
6655 *
6656 * This is a somewhat tricky proposition since the next run might not find the
6657 * group imbalance and decide the groups need to be balanced again. A most
6658 * subtle and fragile situation.
6659 */
6660
6263322c 6661static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6662{
63b2ca30 6663 return group->sgc->imbalance;
30ce5dab
PZ
6664}
6665
b37d9316 6666/*
ea67821b
VG
6667 * group_has_capacity returns true if the group has spare capacity that could
6668 * be used by some tasks.
6669 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6670 * smaller than the number of CPUs or if the utilization is lower than the
6671 * available capacity for CFS tasks.
ea67821b
VG
6672 * For the latter, we use a threshold to stabilize the state, to take into
6673 * account the variance of the tasks' load and to return true if the available
6674 * capacity in meaningful for the load balancer.
6675 * As an example, an available capacity of 1% can appear but it doesn't make
6676 * any benefit for the load balance.
b37d9316 6677 */
ea67821b
VG
6678static inline bool
6679group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6680{
ea67821b
VG
6681 if (sgs->sum_nr_running < sgs->group_weight)
6682 return true;
c61037e9 6683
ea67821b 6684 if ((sgs->group_capacity * 100) >
9e91d61d 6685 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6686 return true;
b37d9316 6687
ea67821b
VG
6688 return false;
6689}
6690
6691/*
6692 * group_is_overloaded returns true if the group has more tasks than it can
6693 * handle.
6694 * group_is_overloaded is not equals to !group_has_capacity because a group
6695 * with the exact right number of tasks, has no more spare capacity but is not
6696 * overloaded so both group_has_capacity and group_is_overloaded return
6697 * false.
6698 */
6699static inline bool
6700group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6701{
6702 if (sgs->sum_nr_running <= sgs->group_weight)
6703 return false;
b37d9316 6704
ea67821b 6705 if ((sgs->group_capacity * 100) <
9e91d61d 6706 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6707 return true;
b37d9316 6708
ea67821b 6709 return false;
b37d9316
PZ
6710}
6711
79a89f92
LY
6712static inline enum
6713group_type group_classify(struct sched_group *group,
6714 struct sg_lb_stats *sgs)
caeb178c 6715{
ea67821b 6716 if (sgs->group_no_capacity)
caeb178c
RR
6717 return group_overloaded;
6718
6719 if (sg_imbalanced(group))
6720 return group_imbalanced;
6721
6722 return group_other;
6723}
6724
1e3c88bd
PZ
6725/**
6726 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6727 * @env: The load balancing environment.
1e3c88bd 6728 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6729 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6730 * @local_group: Does group contain this_cpu.
1e3c88bd 6731 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6732 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6733 */
bd939f45
PZ
6734static inline void update_sg_lb_stats(struct lb_env *env,
6735 struct sched_group *group, int load_idx,
4486edd1
TC
6736 int local_group, struct sg_lb_stats *sgs,
6737 bool *overload)
1e3c88bd 6738{
30ce5dab 6739 unsigned long load;
a426f99c 6740 int i, nr_running;
1e3c88bd 6741
b72ff13c
PZ
6742 memset(sgs, 0, sizeof(*sgs));
6743
b9403130 6744 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6745 struct rq *rq = cpu_rq(i);
6746
1e3c88bd 6747 /* Bias balancing toward cpus of our domain */
6263322c 6748 if (local_group)
04f733b4 6749 load = target_load(i, load_idx);
6263322c 6750 else
1e3c88bd 6751 load = source_load(i, load_idx);
1e3c88bd
PZ
6752
6753 sgs->group_load += load;
9e91d61d 6754 sgs->group_util += cpu_util(i);
65fdac08 6755 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6756
a426f99c
WL
6757 nr_running = rq->nr_running;
6758 if (nr_running > 1)
4486edd1
TC
6759 *overload = true;
6760
0ec8aa00
PZ
6761#ifdef CONFIG_NUMA_BALANCING
6762 sgs->nr_numa_running += rq->nr_numa_running;
6763 sgs->nr_preferred_running += rq->nr_preferred_running;
6764#endif
1e3c88bd 6765 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6766 /*
6767 * No need to call idle_cpu() if nr_running is not 0
6768 */
6769 if (!nr_running && idle_cpu(i))
aae6d3dd 6770 sgs->idle_cpus++;
1e3c88bd
PZ
6771 }
6772
63b2ca30
NP
6773 /* Adjust by relative CPU capacity of the group */
6774 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6775 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6776
dd5feea1 6777 if (sgs->sum_nr_running)
38d0f770 6778 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6779
aae6d3dd 6780 sgs->group_weight = group->group_weight;
b37d9316 6781
ea67821b 6782 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6783 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6784}
6785
532cb4c4
MN
6786/**
6787 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6788 * @env: The load balancing environment.
532cb4c4
MN
6789 * @sds: sched_domain statistics
6790 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6791 * @sgs: sched_group statistics
532cb4c4
MN
6792 *
6793 * Determine if @sg is a busier group than the previously selected
6794 * busiest group.
e69f6186
YB
6795 *
6796 * Return: %true if @sg is a busier group than the previously selected
6797 * busiest group. %false otherwise.
532cb4c4 6798 */
bd939f45 6799static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6800 struct sd_lb_stats *sds,
6801 struct sched_group *sg,
bd939f45 6802 struct sg_lb_stats *sgs)
532cb4c4 6803{
caeb178c 6804 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6805
caeb178c 6806 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6807 return true;
6808
caeb178c
RR
6809 if (sgs->group_type < busiest->group_type)
6810 return false;
6811
6812 if (sgs->avg_load <= busiest->avg_load)
6813 return false;
6814
6815 /* This is the busiest node in its class. */
6816 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6817 return true;
6818
1f621e02
SD
6819 /* No ASYM_PACKING if target cpu is already busy */
6820 if (env->idle == CPU_NOT_IDLE)
6821 return true;
532cb4c4
MN
6822 /*
6823 * ASYM_PACKING needs to move all the work to the lowest
6824 * numbered CPUs in the group, therefore mark all groups
6825 * higher than ourself as busy.
6826 */
caeb178c 6827 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6828 if (!sds->busiest)
6829 return true;
6830
1f621e02
SD
6831 /* Prefer to move from highest possible cpu's work */
6832 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6833 return true;
6834 }
6835
6836 return false;
6837}
6838
0ec8aa00
PZ
6839#ifdef CONFIG_NUMA_BALANCING
6840static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6841{
6842 if (sgs->sum_nr_running > sgs->nr_numa_running)
6843 return regular;
6844 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6845 return remote;
6846 return all;
6847}
6848
6849static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6850{
6851 if (rq->nr_running > rq->nr_numa_running)
6852 return regular;
6853 if (rq->nr_running > rq->nr_preferred_running)
6854 return remote;
6855 return all;
6856}
6857#else
6858static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6859{
6860 return all;
6861}
6862
6863static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6864{
6865 return regular;
6866}
6867#endif /* CONFIG_NUMA_BALANCING */
6868
1e3c88bd 6869/**
461819ac 6870 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6871 * @env: The load balancing environment.
1e3c88bd
PZ
6872 * @sds: variable to hold the statistics for this sched_domain.
6873 */
0ec8aa00 6874static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6875{
bd939f45
PZ
6876 struct sched_domain *child = env->sd->child;
6877 struct sched_group *sg = env->sd->groups;
56cf515b 6878 struct sg_lb_stats tmp_sgs;
1e3c88bd 6879 int load_idx, prefer_sibling = 0;
4486edd1 6880 bool overload = false;
1e3c88bd
PZ
6881
6882 if (child && child->flags & SD_PREFER_SIBLING)
6883 prefer_sibling = 1;
6884
bd939f45 6885 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6886
6887 do {
56cf515b 6888 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6889 int local_group;
6890
bd939f45 6891 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6892 if (local_group) {
6893 sds->local = sg;
6894 sgs = &sds->local_stat;
b72ff13c
PZ
6895
6896 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6897 time_after_eq(jiffies, sg->sgc->next_update))
6898 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6899 }
1e3c88bd 6900
4486edd1
TC
6901 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6902 &overload);
1e3c88bd 6903
b72ff13c
PZ
6904 if (local_group)
6905 goto next_group;
6906
1e3c88bd
PZ
6907 /*
6908 * In case the child domain prefers tasks go to siblings
ea67821b 6909 * first, lower the sg capacity so that we'll try
75dd321d
NR
6910 * and move all the excess tasks away. We lower the capacity
6911 * of a group only if the local group has the capacity to fit
ea67821b
VG
6912 * these excess tasks. The extra check prevents the case where
6913 * you always pull from the heaviest group when it is already
6914 * under-utilized (possible with a large weight task outweighs
6915 * the tasks on the system).
1e3c88bd 6916 */
b72ff13c 6917 if (prefer_sibling && sds->local &&
ea67821b
VG
6918 group_has_capacity(env, &sds->local_stat) &&
6919 (sgs->sum_nr_running > 1)) {
6920 sgs->group_no_capacity = 1;
79a89f92 6921 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6922 }
1e3c88bd 6923
b72ff13c 6924 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6925 sds->busiest = sg;
56cf515b 6926 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6927 }
6928
b72ff13c
PZ
6929next_group:
6930 /* Now, start updating sd_lb_stats */
6931 sds->total_load += sgs->group_load;
63b2ca30 6932 sds->total_capacity += sgs->group_capacity;
b72ff13c 6933
532cb4c4 6934 sg = sg->next;
bd939f45 6935 } while (sg != env->sd->groups);
0ec8aa00
PZ
6936
6937 if (env->sd->flags & SD_NUMA)
6938 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6939
6940 if (!env->sd->parent) {
6941 /* update overload indicator if we are at root domain */
6942 if (env->dst_rq->rd->overload != overload)
6943 env->dst_rq->rd->overload = overload;
6944 }
6945
532cb4c4
MN
6946}
6947
532cb4c4
MN
6948/**
6949 * check_asym_packing - Check to see if the group is packed into the
6950 * sched doman.
6951 *
6952 * This is primarily intended to used at the sibling level. Some
6953 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6954 * case of POWER7, it can move to lower SMT modes only when higher
6955 * threads are idle. When in lower SMT modes, the threads will
6956 * perform better since they share less core resources. Hence when we
6957 * have idle threads, we want them to be the higher ones.
6958 *
6959 * This packing function is run on idle threads. It checks to see if
6960 * the busiest CPU in this domain (core in the P7 case) has a higher
6961 * CPU number than the packing function is being run on. Here we are
6962 * assuming lower CPU number will be equivalent to lower a SMT thread
6963 * number.
6964 *
e69f6186 6965 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6966 * this CPU. The amount of the imbalance is returned in *imbalance.
6967 *
cd96891d 6968 * @env: The load balancing environment.
532cb4c4 6969 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6970 */
bd939f45 6971static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6972{
6973 int busiest_cpu;
6974
bd939f45 6975 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6976 return 0;
6977
1f621e02
SD
6978 if (env->idle == CPU_NOT_IDLE)
6979 return 0;
6980
532cb4c4
MN
6981 if (!sds->busiest)
6982 return 0;
6983
6984 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6985 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6986 return 0;
6987
bd939f45 6988 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6989 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6990 SCHED_CAPACITY_SCALE);
bd939f45 6991
532cb4c4 6992 return 1;
1e3c88bd
PZ
6993}
6994
6995/**
6996 * fix_small_imbalance - Calculate the minor imbalance that exists
6997 * amongst the groups of a sched_domain, during
6998 * load balancing.
cd96891d 6999 * @env: The load balancing environment.
1e3c88bd 7000 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7001 */
bd939f45
PZ
7002static inline
7003void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7004{
63b2ca30 7005 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7006 unsigned int imbn = 2;
dd5feea1 7007 unsigned long scaled_busy_load_per_task;
56cf515b 7008 struct sg_lb_stats *local, *busiest;
1e3c88bd 7009
56cf515b
JK
7010 local = &sds->local_stat;
7011 busiest = &sds->busiest_stat;
1e3c88bd 7012
56cf515b
JK
7013 if (!local->sum_nr_running)
7014 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7015 else if (busiest->load_per_task > local->load_per_task)
7016 imbn = 1;
dd5feea1 7017
56cf515b 7018 scaled_busy_load_per_task =
ca8ce3d0 7019 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7020 busiest->group_capacity;
56cf515b 7021
3029ede3
VD
7022 if (busiest->avg_load + scaled_busy_load_per_task >=
7023 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7024 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7025 return;
7026 }
7027
7028 /*
7029 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7030 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7031 * moving them.
7032 */
7033
63b2ca30 7034 capa_now += busiest->group_capacity *
56cf515b 7035 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7036 capa_now += local->group_capacity *
56cf515b 7037 min(local->load_per_task, local->avg_load);
ca8ce3d0 7038 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7039
7040 /* Amount of load we'd subtract */
a2cd4260 7041 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7042 capa_move += busiest->group_capacity *
56cf515b 7043 min(busiest->load_per_task,
a2cd4260 7044 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7045 }
1e3c88bd
PZ
7046
7047 /* Amount of load we'd add */
63b2ca30 7048 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7049 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7050 tmp = (busiest->avg_load * busiest->group_capacity) /
7051 local->group_capacity;
56cf515b 7052 } else {
ca8ce3d0 7053 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7054 local->group_capacity;
56cf515b 7055 }
63b2ca30 7056 capa_move += local->group_capacity *
3ae11c90 7057 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7058 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7059
7060 /* Move if we gain throughput */
63b2ca30 7061 if (capa_move > capa_now)
56cf515b 7062 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7063}
7064
7065/**
7066 * calculate_imbalance - Calculate the amount of imbalance present within the
7067 * groups of a given sched_domain during load balance.
bd939f45 7068 * @env: load balance environment
1e3c88bd 7069 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7070 */
bd939f45 7071static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7072{
dd5feea1 7073 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7074 struct sg_lb_stats *local, *busiest;
7075
7076 local = &sds->local_stat;
56cf515b 7077 busiest = &sds->busiest_stat;
dd5feea1 7078
caeb178c 7079 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7080 /*
7081 * In the group_imb case we cannot rely on group-wide averages
7082 * to ensure cpu-load equilibrium, look at wider averages. XXX
7083 */
56cf515b
JK
7084 busiest->load_per_task =
7085 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7086 }
7087
1e3c88bd 7088 /*
885e542c
DE
7089 * Avg load of busiest sg can be less and avg load of local sg can
7090 * be greater than avg load across all sgs of sd because avg load
7091 * factors in sg capacity and sgs with smaller group_type are
7092 * skipped when updating the busiest sg:
1e3c88bd 7093 */
b1885550
VD
7094 if (busiest->avg_load <= sds->avg_load ||
7095 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7096 env->imbalance = 0;
7097 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7098 }
7099
9a5d9ba6
PZ
7100 /*
7101 * If there aren't any idle cpus, avoid creating some.
7102 */
7103 if (busiest->group_type == group_overloaded &&
7104 local->group_type == group_overloaded) {
1be0eb2a 7105 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7106 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7107 load_above_capacity -= busiest->group_capacity;
cfa10334
MR
7108 load_above_capacity *= NICE_0_LOAD;
7109 load_above_capacity /= busiest->group_capacity;
7110 } else
ea67821b 7111 load_above_capacity = ~0UL;
dd5feea1
SS
7112 }
7113
7114 /*
7115 * We're trying to get all the cpus to the average_load, so we don't
7116 * want to push ourselves above the average load, nor do we wish to
7117 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7118 * we also don't want to reduce the group load below the group
7119 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7120 */
30ce5dab 7121 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7122
7123 /* How much load to actually move to equalise the imbalance */
56cf515b 7124 env->imbalance = min(
63b2ca30
NP
7125 max_pull * busiest->group_capacity,
7126 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7127 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7128
7129 /*
7130 * if *imbalance is less than the average load per runnable task
25985edc 7131 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7132 * a think about bumping its value to force at least one task to be
7133 * moved
7134 */
56cf515b 7135 if (env->imbalance < busiest->load_per_task)
bd939f45 7136 return fix_small_imbalance(env, sds);
1e3c88bd 7137}
fab47622 7138
1e3c88bd
PZ
7139/******* find_busiest_group() helpers end here *********************/
7140
7141/**
7142 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7143 * if there is an imbalance.
1e3c88bd
PZ
7144 *
7145 * Also calculates the amount of weighted load which should be moved
7146 * to restore balance.
7147 *
cd96891d 7148 * @env: The load balancing environment.
1e3c88bd 7149 *
e69f6186 7150 * Return: - The busiest group if imbalance exists.
1e3c88bd 7151 */
56cf515b 7152static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7153{
56cf515b 7154 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7155 struct sd_lb_stats sds;
7156
147c5fc2 7157 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7158
7159 /*
7160 * Compute the various statistics relavent for load balancing at
7161 * this level.
7162 */
23f0d209 7163 update_sd_lb_stats(env, &sds);
56cf515b
JK
7164 local = &sds.local_stat;
7165 busiest = &sds.busiest_stat;
1e3c88bd 7166
ea67821b 7167 /* ASYM feature bypasses nice load balance check */
1f621e02 7168 if (check_asym_packing(env, &sds))
532cb4c4
MN
7169 return sds.busiest;
7170
cc57aa8f 7171 /* There is no busy sibling group to pull tasks from */
56cf515b 7172 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7173 goto out_balanced;
7174
ca8ce3d0
NP
7175 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7176 / sds.total_capacity;
b0432d8f 7177
866ab43e
PZ
7178 /*
7179 * If the busiest group is imbalanced the below checks don't
30ce5dab 7180 * work because they assume all things are equal, which typically
866ab43e
PZ
7181 * isn't true due to cpus_allowed constraints and the like.
7182 */
caeb178c 7183 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7184 goto force_balance;
7185
cc57aa8f 7186 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7187 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7188 busiest->group_no_capacity)
fab47622
NR
7189 goto force_balance;
7190
cc57aa8f 7191 /*
9c58c79a 7192 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7193 * don't try and pull any tasks.
7194 */
56cf515b 7195 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7196 goto out_balanced;
7197
cc57aa8f
PZ
7198 /*
7199 * Don't pull any tasks if this group is already above the domain
7200 * average load.
7201 */
56cf515b 7202 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7203 goto out_balanced;
7204
bd939f45 7205 if (env->idle == CPU_IDLE) {
aae6d3dd 7206 /*
43f4d666
VG
7207 * This cpu is idle. If the busiest group is not overloaded
7208 * and there is no imbalance between this and busiest group
7209 * wrt idle cpus, it is balanced. The imbalance becomes
7210 * significant if the diff is greater than 1 otherwise we
7211 * might end up to just move the imbalance on another group
aae6d3dd 7212 */
43f4d666
VG
7213 if ((busiest->group_type != group_overloaded) &&
7214 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7215 goto out_balanced;
c186fafe
PZ
7216 } else {
7217 /*
7218 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7219 * imbalance_pct to be conservative.
7220 */
56cf515b
JK
7221 if (100 * busiest->avg_load <=
7222 env->sd->imbalance_pct * local->avg_load)
c186fafe 7223 goto out_balanced;
aae6d3dd 7224 }
1e3c88bd 7225
fab47622 7226force_balance:
1e3c88bd 7227 /* Looks like there is an imbalance. Compute it */
bd939f45 7228 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7229 return sds.busiest;
7230
7231out_balanced:
bd939f45 7232 env->imbalance = 0;
1e3c88bd
PZ
7233 return NULL;
7234}
7235
7236/*
7237 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7238 */
bd939f45 7239static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7240 struct sched_group *group)
1e3c88bd
PZ
7241{
7242 struct rq *busiest = NULL, *rq;
ced549fa 7243 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7244 int i;
7245
6906a408 7246 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7247 unsigned long capacity, wl;
0ec8aa00
PZ
7248 enum fbq_type rt;
7249
7250 rq = cpu_rq(i);
7251 rt = fbq_classify_rq(rq);
1e3c88bd 7252
0ec8aa00
PZ
7253 /*
7254 * We classify groups/runqueues into three groups:
7255 * - regular: there are !numa tasks
7256 * - remote: there are numa tasks that run on the 'wrong' node
7257 * - all: there is no distinction
7258 *
7259 * In order to avoid migrating ideally placed numa tasks,
7260 * ignore those when there's better options.
7261 *
7262 * If we ignore the actual busiest queue to migrate another
7263 * task, the next balance pass can still reduce the busiest
7264 * queue by moving tasks around inside the node.
7265 *
7266 * If we cannot move enough load due to this classification
7267 * the next pass will adjust the group classification and
7268 * allow migration of more tasks.
7269 *
7270 * Both cases only affect the total convergence complexity.
7271 */
7272 if (rt > env->fbq_type)
7273 continue;
7274
ced549fa 7275 capacity = capacity_of(i);
9d5efe05 7276
6e40f5bb 7277 wl = weighted_cpuload(i);
1e3c88bd 7278
6e40f5bb
TG
7279 /*
7280 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7281 * which is not scaled with the cpu capacity.
6e40f5bb 7282 */
ea67821b
VG
7283
7284 if (rq->nr_running == 1 && wl > env->imbalance &&
7285 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7286 continue;
7287
6e40f5bb
TG
7288 /*
7289 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7290 * the weighted_cpuload() scaled with the cpu capacity, so
7291 * that the load can be moved away from the cpu that is
7292 * potentially running at a lower capacity.
95a79b80 7293 *
ced549fa 7294 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7295 * multiplication to rid ourselves of the division works out
ced549fa
NP
7296 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7297 * our previous maximum.
6e40f5bb 7298 */
ced549fa 7299 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7300 busiest_load = wl;
ced549fa 7301 busiest_capacity = capacity;
1e3c88bd
PZ
7302 busiest = rq;
7303 }
7304 }
7305
7306 return busiest;
7307}
7308
7309/*
7310 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7311 * so long as it is large enough.
7312 */
7313#define MAX_PINNED_INTERVAL 512
7314
7315/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7316DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7317
bd939f45 7318static int need_active_balance(struct lb_env *env)
1af3ed3d 7319{
bd939f45
PZ
7320 struct sched_domain *sd = env->sd;
7321
7322 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7323
7324 /*
7325 * ASYM_PACKING needs to force migrate tasks from busy but
7326 * higher numbered CPUs in order to pack all tasks in the
7327 * lowest numbered CPUs.
7328 */
bd939f45 7329 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7330 return 1;
1af3ed3d
PZ
7331 }
7332
1aaf90a4
VG
7333 /*
7334 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7335 * It's worth migrating the task if the src_cpu's capacity is reduced
7336 * because of other sched_class or IRQs if more capacity stays
7337 * available on dst_cpu.
7338 */
7339 if ((env->idle != CPU_NOT_IDLE) &&
7340 (env->src_rq->cfs.h_nr_running == 1)) {
7341 if ((check_cpu_capacity(env->src_rq, sd)) &&
7342 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7343 return 1;
7344 }
7345
1af3ed3d
PZ
7346 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7347}
7348
969c7921
TH
7349static int active_load_balance_cpu_stop(void *data);
7350
23f0d209
JK
7351static int should_we_balance(struct lb_env *env)
7352{
7353 struct sched_group *sg = env->sd->groups;
7354 struct cpumask *sg_cpus, *sg_mask;
7355 int cpu, balance_cpu = -1;
7356
7357 /*
7358 * In the newly idle case, we will allow all the cpu's
7359 * to do the newly idle load balance.
7360 */
7361 if (env->idle == CPU_NEWLY_IDLE)
7362 return 1;
7363
7364 sg_cpus = sched_group_cpus(sg);
7365 sg_mask = sched_group_mask(sg);
7366 /* Try to find first idle cpu */
7367 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7368 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7369 continue;
7370
7371 balance_cpu = cpu;
7372 break;
7373 }
7374
7375 if (balance_cpu == -1)
7376 balance_cpu = group_balance_cpu(sg);
7377
7378 /*
7379 * First idle cpu or the first cpu(busiest) in this sched group
7380 * is eligible for doing load balancing at this and above domains.
7381 */
b0cff9d8 7382 return balance_cpu == env->dst_cpu;
23f0d209
JK
7383}
7384
1e3c88bd
PZ
7385/*
7386 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7387 * tasks if there is an imbalance.
7388 */
7389static int load_balance(int this_cpu, struct rq *this_rq,
7390 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7391 int *continue_balancing)
1e3c88bd 7392{
88b8dac0 7393 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7394 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7395 struct sched_group *group;
1e3c88bd
PZ
7396 struct rq *busiest;
7397 unsigned long flags;
4ba29684 7398 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7399
8e45cb54
PZ
7400 struct lb_env env = {
7401 .sd = sd,
ddcdf6e7
PZ
7402 .dst_cpu = this_cpu,
7403 .dst_rq = this_rq,
88b8dac0 7404 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7405 .idle = idle,
eb95308e 7406 .loop_break = sched_nr_migrate_break,
b9403130 7407 .cpus = cpus,
0ec8aa00 7408 .fbq_type = all,
163122b7 7409 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7410 };
7411
cfc03118
JK
7412 /*
7413 * For NEWLY_IDLE load_balancing, we don't need to consider
7414 * other cpus in our group
7415 */
e02e60c1 7416 if (idle == CPU_NEWLY_IDLE)
cfc03118 7417 env.dst_grpmask = NULL;
cfc03118 7418
1e3c88bd
PZ
7419 cpumask_copy(cpus, cpu_active_mask);
7420
1e3c88bd
PZ
7421 schedstat_inc(sd, lb_count[idle]);
7422
7423redo:
23f0d209
JK
7424 if (!should_we_balance(&env)) {
7425 *continue_balancing = 0;
1e3c88bd 7426 goto out_balanced;
23f0d209 7427 }
1e3c88bd 7428
23f0d209 7429 group = find_busiest_group(&env);
1e3c88bd
PZ
7430 if (!group) {
7431 schedstat_inc(sd, lb_nobusyg[idle]);
7432 goto out_balanced;
7433 }
7434
b9403130 7435 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7436 if (!busiest) {
7437 schedstat_inc(sd, lb_nobusyq[idle]);
7438 goto out_balanced;
7439 }
7440
78feefc5 7441 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7442
bd939f45 7443 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7444
1aaf90a4
VG
7445 env.src_cpu = busiest->cpu;
7446 env.src_rq = busiest;
7447
1e3c88bd
PZ
7448 ld_moved = 0;
7449 if (busiest->nr_running > 1) {
7450 /*
7451 * Attempt to move tasks. If find_busiest_group has found
7452 * an imbalance but busiest->nr_running <= 1, the group is
7453 * still unbalanced. ld_moved simply stays zero, so it is
7454 * correctly treated as an imbalance.
7455 */
8e45cb54 7456 env.flags |= LBF_ALL_PINNED;
c82513e5 7457 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7458
5d6523eb 7459more_balance:
163122b7 7460 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7461
7462 /*
7463 * cur_ld_moved - load moved in current iteration
7464 * ld_moved - cumulative load moved across iterations
7465 */
163122b7 7466 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7467
7468 /*
163122b7
KT
7469 * We've detached some tasks from busiest_rq. Every
7470 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7471 * unlock busiest->lock, and we are able to be sure
7472 * that nobody can manipulate the tasks in parallel.
7473 * See task_rq_lock() family for the details.
1e3c88bd 7474 */
163122b7
KT
7475
7476 raw_spin_unlock(&busiest->lock);
7477
7478 if (cur_ld_moved) {
7479 attach_tasks(&env);
7480 ld_moved += cur_ld_moved;
7481 }
7482
1e3c88bd 7483 local_irq_restore(flags);
88b8dac0 7484
f1cd0858
JK
7485 if (env.flags & LBF_NEED_BREAK) {
7486 env.flags &= ~LBF_NEED_BREAK;
7487 goto more_balance;
7488 }
7489
88b8dac0
SV
7490 /*
7491 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7492 * us and move them to an alternate dst_cpu in our sched_group
7493 * where they can run. The upper limit on how many times we
7494 * iterate on same src_cpu is dependent on number of cpus in our
7495 * sched_group.
7496 *
7497 * This changes load balance semantics a bit on who can move
7498 * load to a given_cpu. In addition to the given_cpu itself
7499 * (or a ilb_cpu acting on its behalf where given_cpu is
7500 * nohz-idle), we now have balance_cpu in a position to move
7501 * load to given_cpu. In rare situations, this may cause
7502 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7503 * _independently_ and at _same_ time to move some load to
7504 * given_cpu) causing exceess load to be moved to given_cpu.
7505 * This however should not happen so much in practice and
7506 * moreover subsequent load balance cycles should correct the
7507 * excess load moved.
7508 */
6263322c 7509 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7510
7aff2e3a
VD
7511 /* Prevent to re-select dst_cpu via env's cpus */
7512 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7513
78feefc5 7514 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7515 env.dst_cpu = env.new_dst_cpu;
6263322c 7516 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7517 env.loop = 0;
7518 env.loop_break = sched_nr_migrate_break;
e02e60c1 7519
88b8dac0
SV
7520 /*
7521 * Go back to "more_balance" rather than "redo" since we
7522 * need to continue with same src_cpu.
7523 */
7524 goto more_balance;
7525 }
1e3c88bd 7526
6263322c
PZ
7527 /*
7528 * We failed to reach balance because of affinity.
7529 */
7530 if (sd_parent) {
63b2ca30 7531 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7532
afdeee05 7533 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7534 *group_imbalance = 1;
6263322c
PZ
7535 }
7536
1e3c88bd 7537 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7538 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7539 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7540 if (!cpumask_empty(cpus)) {
7541 env.loop = 0;
7542 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7543 goto redo;
bbf18b19 7544 }
afdeee05 7545 goto out_all_pinned;
1e3c88bd
PZ
7546 }
7547 }
7548
7549 if (!ld_moved) {
7550 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7551 /*
7552 * Increment the failure counter only on periodic balance.
7553 * We do not want newidle balance, which can be very
7554 * frequent, pollute the failure counter causing
7555 * excessive cache_hot migrations and active balances.
7556 */
7557 if (idle != CPU_NEWLY_IDLE)
7558 sd->nr_balance_failed++;
1e3c88bd 7559
bd939f45 7560 if (need_active_balance(&env)) {
1e3c88bd
PZ
7561 raw_spin_lock_irqsave(&busiest->lock, flags);
7562
969c7921
TH
7563 /* don't kick the active_load_balance_cpu_stop,
7564 * if the curr task on busiest cpu can't be
7565 * moved to this_cpu
1e3c88bd
PZ
7566 */
7567 if (!cpumask_test_cpu(this_cpu,
fa17b507 7568 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7569 raw_spin_unlock_irqrestore(&busiest->lock,
7570 flags);
8e45cb54 7571 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7572 goto out_one_pinned;
7573 }
7574
969c7921
TH
7575 /*
7576 * ->active_balance synchronizes accesses to
7577 * ->active_balance_work. Once set, it's cleared
7578 * only after active load balance is finished.
7579 */
1e3c88bd
PZ
7580 if (!busiest->active_balance) {
7581 busiest->active_balance = 1;
7582 busiest->push_cpu = this_cpu;
7583 active_balance = 1;
7584 }
7585 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7586
bd939f45 7587 if (active_balance) {
969c7921
TH
7588 stop_one_cpu_nowait(cpu_of(busiest),
7589 active_load_balance_cpu_stop, busiest,
7590 &busiest->active_balance_work);
bd939f45 7591 }
1e3c88bd 7592
d02c0711 7593 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7594 sd->nr_balance_failed = sd->cache_nice_tries+1;
7595 }
7596 } else
7597 sd->nr_balance_failed = 0;
7598
7599 if (likely(!active_balance)) {
7600 /* We were unbalanced, so reset the balancing interval */
7601 sd->balance_interval = sd->min_interval;
7602 } else {
7603 /*
7604 * If we've begun active balancing, start to back off. This
7605 * case may not be covered by the all_pinned logic if there
7606 * is only 1 task on the busy runqueue (because we don't call
163122b7 7607 * detach_tasks).
1e3c88bd
PZ
7608 */
7609 if (sd->balance_interval < sd->max_interval)
7610 sd->balance_interval *= 2;
7611 }
7612
1e3c88bd
PZ
7613 goto out;
7614
7615out_balanced:
afdeee05
VG
7616 /*
7617 * We reach balance although we may have faced some affinity
7618 * constraints. Clear the imbalance flag if it was set.
7619 */
7620 if (sd_parent) {
7621 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7622
7623 if (*group_imbalance)
7624 *group_imbalance = 0;
7625 }
7626
7627out_all_pinned:
7628 /*
7629 * We reach balance because all tasks are pinned at this level so
7630 * we can't migrate them. Let the imbalance flag set so parent level
7631 * can try to migrate them.
7632 */
1e3c88bd
PZ
7633 schedstat_inc(sd, lb_balanced[idle]);
7634
7635 sd->nr_balance_failed = 0;
7636
7637out_one_pinned:
7638 /* tune up the balancing interval */
8e45cb54 7639 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7640 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7641 (sd->balance_interval < sd->max_interval))
7642 sd->balance_interval *= 2;
7643
46e49b38 7644 ld_moved = 0;
1e3c88bd 7645out:
1e3c88bd
PZ
7646 return ld_moved;
7647}
7648
52a08ef1
JL
7649static inline unsigned long
7650get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7651{
7652 unsigned long interval = sd->balance_interval;
7653
7654 if (cpu_busy)
7655 interval *= sd->busy_factor;
7656
7657 /* scale ms to jiffies */
7658 interval = msecs_to_jiffies(interval);
7659 interval = clamp(interval, 1UL, max_load_balance_interval);
7660
7661 return interval;
7662}
7663
7664static inline void
7665update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7666{
7667 unsigned long interval, next;
7668
7669 interval = get_sd_balance_interval(sd, cpu_busy);
7670 next = sd->last_balance + interval;
7671
7672 if (time_after(*next_balance, next))
7673 *next_balance = next;
7674}
7675
1e3c88bd
PZ
7676/*
7677 * idle_balance is called by schedule() if this_cpu is about to become
7678 * idle. Attempts to pull tasks from other CPUs.
7679 */
6e83125c 7680static int idle_balance(struct rq *this_rq)
1e3c88bd 7681{
52a08ef1
JL
7682 unsigned long next_balance = jiffies + HZ;
7683 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7684 struct sched_domain *sd;
7685 int pulled_task = 0;
9bd721c5 7686 u64 curr_cost = 0;
1e3c88bd 7687
6e83125c
PZ
7688 /*
7689 * We must set idle_stamp _before_ calling idle_balance(), such that we
7690 * measure the duration of idle_balance() as idle time.
7691 */
7692 this_rq->idle_stamp = rq_clock(this_rq);
7693
4486edd1
TC
7694 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7695 !this_rq->rd->overload) {
52a08ef1
JL
7696 rcu_read_lock();
7697 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7698 if (sd)
7699 update_next_balance(sd, 0, &next_balance);
7700 rcu_read_unlock();
7701
6e83125c 7702 goto out;
52a08ef1 7703 }
1e3c88bd 7704
f492e12e
PZ
7705 raw_spin_unlock(&this_rq->lock);
7706
48a16753 7707 update_blocked_averages(this_cpu);
dce840a0 7708 rcu_read_lock();
1e3c88bd 7709 for_each_domain(this_cpu, sd) {
23f0d209 7710 int continue_balancing = 1;
9bd721c5 7711 u64 t0, domain_cost;
1e3c88bd
PZ
7712
7713 if (!(sd->flags & SD_LOAD_BALANCE))
7714 continue;
7715
52a08ef1
JL
7716 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7717 update_next_balance(sd, 0, &next_balance);
9bd721c5 7718 break;
52a08ef1 7719 }
9bd721c5 7720
f492e12e 7721 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7722 t0 = sched_clock_cpu(this_cpu);
7723
f492e12e 7724 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7725 sd, CPU_NEWLY_IDLE,
7726 &continue_balancing);
9bd721c5
JL
7727
7728 domain_cost = sched_clock_cpu(this_cpu) - t0;
7729 if (domain_cost > sd->max_newidle_lb_cost)
7730 sd->max_newidle_lb_cost = domain_cost;
7731
7732 curr_cost += domain_cost;
f492e12e 7733 }
1e3c88bd 7734
52a08ef1 7735 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7736
7737 /*
7738 * Stop searching for tasks to pull if there are
7739 * now runnable tasks on this rq.
7740 */
7741 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7742 break;
1e3c88bd 7743 }
dce840a0 7744 rcu_read_unlock();
f492e12e
PZ
7745
7746 raw_spin_lock(&this_rq->lock);
7747
0e5b5337
JL
7748 if (curr_cost > this_rq->max_idle_balance_cost)
7749 this_rq->max_idle_balance_cost = curr_cost;
7750
e5fc6611 7751 /*
0e5b5337
JL
7752 * While browsing the domains, we released the rq lock, a task could
7753 * have been enqueued in the meantime. Since we're not going idle,
7754 * pretend we pulled a task.
e5fc6611 7755 */
0e5b5337 7756 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7757 pulled_task = 1;
e5fc6611 7758
52a08ef1
JL
7759out:
7760 /* Move the next balance forward */
7761 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7762 this_rq->next_balance = next_balance;
9bd721c5 7763
e4aa358b 7764 /* Is there a task of a high priority class? */
46383648 7765 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7766 pulled_task = -1;
7767
38c6ade2 7768 if (pulled_task)
6e83125c
PZ
7769 this_rq->idle_stamp = 0;
7770
3c4017c1 7771 return pulled_task;
1e3c88bd
PZ
7772}
7773
7774/*
969c7921
TH
7775 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7776 * running tasks off the busiest CPU onto idle CPUs. It requires at
7777 * least 1 task to be running on each physical CPU where possible, and
7778 * avoids physical / logical imbalances.
1e3c88bd 7779 */
969c7921 7780static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7781{
969c7921
TH
7782 struct rq *busiest_rq = data;
7783 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7784 int target_cpu = busiest_rq->push_cpu;
969c7921 7785 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7786 struct sched_domain *sd;
e5673f28 7787 struct task_struct *p = NULL;
969c7921
TH
7788
7789 raw_spin_lock_irq(&busiest_rq->lock);
7790
7791 /* make sure the requested cpu hasn't gone down in the meantime */
7792 if (unlikely(busiest_cpu != smp_processor_id() ||
7793 !busiest_rq->active_balance))
7794 goto out_unlock;
1e3c88bd
PZ
7795
7796 /* Is there any task to move? */
7797 if (busiest_rq->nr_running <= 1)
969c7921 7798 goto out_unlock;
1e3c88bd
PZ
7799
7800 /*
7801 * This condition is "impossible", if it occurs
7802 * we need to fix it. Originally reported by
7803 * Bjorn Helgaas on a 128-cpu setup.
7804 */
7805 BUG_ON(busiest_rq == target_rq);
7806
1e3c88bd 7807 /* Search for an sd spanning us and the target CPU. */
dce840a0 7808 rcu_read_lock();
1e3c88bd
PZ
7809 for_each_domain(target_cpu, sd) {
7810 if ((sd->flags & SD_LOAD_BALANCE) &&
7811 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7812 break;
7813 }
7814
7815 if (likely(sd)) {
8e45cb54
PZ
7816 struct lb_env env = {
7817 .sd = sd,
ddcdf6e7
PZ
7818 .dst_cpu = target_cpu,
7819 .dst_rq = target_rq,
7820 .src_cpu = busiest_rq->cpu,
7821 .src_rq = busiest_rq,
8e45cb54
PZ
7822 .idle = CPU_IDLE,
7823 };
7824
1e3c88bd
PZ
7825 schedstat_inc(sd, alb_count);
7826
e5673f28 7827 p = detach_one_task(&env);
d02c0711 7828 if (p) {
1e3c88bd 7829 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7830 /* Active balancing done, reset the failure counter. */
7831 sd->nr_balance_failed = 0;
7832 } else {
1e3c88bd 7833 schedstat_inc(sd, alb_failed);
d02c0711 7834 }
1e3c88bd 7835 }
dce840a0 7836 rcu_read_unlock();
969c7921
TH
7837out_unlock:
7838 busiest_rq->active_balance = 0;
e5673f28
KT
7839 raw_spin_unlock(&busiest_rq->lock);
7840
7841 if (p)
7842 attach_one_task(target_rq, p);
7843
7844 local_irq_enable();
7845
969c7921 7846 return 0;
1e3c88bd
PZ
7847}
7848
d987fc7f
MG
7849static inline int on_null_domain(struct rq *rq)
7850{
7851 return unlikely(!rcu_dereference_sched(rq->sd));
7852}
7853
3451d024 7854#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7855/*
7856 * idle load balancing details
83cd4fe2
VP
7857 * - When one of the busy CPUs notice that there may be an idle rebalancing
7858 * needed, they will kick the idle load balancer, which then does idle
7859 * load balancing for all the idle CPUs.
7860 */
1e3c88bd 7861static struct {
83cd4fe2 7862 cpumask_var_t idle_cpus_mask;
0b005cf5 7863 atomic_t nr_cpus;
83cd4fe2
VP
7864 unsigned long next_balance; /* in jiffy units */
7865} nohz ____cacheline_aligned;
1e3c88bd 7866
3dd0337d 7867static inline int find_new_ilb(void)
1e3c88bd 7868{
0b005cf5 7869 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7870
786d6dc7
SS
7871 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7872 return ilb;
7873
7874 return nr_cpu_ids;
1e3c88bd 7875}
1e3c88bd 7876
83cd4fe2
VP
7877/*
7878 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7879 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7880 * CPU (if there is one).
7881 */
0aeeeeba 7882static void nohz_balancer_kick(void)
83cd4fe2
VP
7883{
7884 int ilb_cpu;
7885
7886 nohz.next_balance++;
7887
3dd0337d 7888 ilb_cpu = find_new_ilb();
83cd4fe2 7889
0b005cf5
SS
7890 if (ilb_cpu >= nr_cpu_ids)
7891 return;
83cd4fe2 7892
cd490c5b 7893 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7894 return;
7895 /*
7896 * Use smp_send_reschedule() instead of resched_cpu().
7897 * This way we generate a sched IPI on the target cpu which
7898 * is idle. And the softirq performing nohz idle load balance
7899 * will be run before returning from the IPI.
7900 */
7901 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7902 return;
7903}
7904
20a5c8cc 7905void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7906{
7907 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7908 /*
7909 * Completely isolated CPUs don't ever set, so we must test.
7910 */
7911 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7912 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7913 atomic_dec(&nohz.nr_cpus);
7914 }
71325960
SS
7915 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7916 }
7917}
7918
69e1e811
SS
7919static inline void set_cpu_sd_state_busy(void)
7920{
7921 struct sched_domain *sd;
37dc6b50 7922 int cpu = smp_processor_id();
69e1e811 7923
69e1e811 7924 rcu_read_lock();
37dc6b50 7925 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7926
7927 if (!sd || !sd->nohz_idle)
7928 goto unlock;
7929 sd->nohz_idle = 0;
7930
63b2ca30 7931 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7932unlock:
69e1e811
SS
7933 rcu_read_unlock();
7934}
7935
7936void set_cpu_sd_state_idle(void)
7937{
7938 struct sched_domain *sd;
37dc6b50 7939 int cpu = smp_processor_id();
69e1e811 7940
69e1e811 7941 rcu_read_lock();
37dc6b50 7942 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7943
7944 if (!sd || sd->nohz_idle)
7945 goto unlock;
7946 sd->nohz_idle = 1;
7947
63b2ca30 7948 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7949unlock:
69e1e811
SS
7950 rcu_read_unlock();
7951}
7952
1e3c88bd 7953/*
c1cc017c 7954 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7955 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7956 */
c1cc017c 7957void nohz_balance_enter_idle(int cpu)
1e3c88bd 7958{
71325960
SS
7959 /*
7960 * If this cpu is going down, then nothing needs to be done.
7961 */
7962 if (!cpu_active(cpu))
7963 return;
7964
c1cc017c
AS
7965 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7966 return;
1e3c88bd 7967
d987fc7f
MG
7968 /*
7969 * If we're a completely isolated CPU, we don't play.
7970 */
7971 if (on_null_domain(cpu_rq(cpu)))
7972 return;
7973
c1cc017c
AS
7974 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7975 atomic_inc(&nohz.nr_cpus);
7976 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
7977}
7978#endif
7979
7980static DEFINE_SPINLOCK(balancing);
7981
49c022e6
PZ
7982/*
7983 * Scale the max load_balance interval with the number of CPUs in the system.
7984 * This trades load-balance latency on larger machines for less cross talk.
7985 */
029632fb 7986void update_max_interval(void)
49c022e6
PZ
7987{
7988 max_load_balance_interval = HZ*num_online_cpus()/10;
7989}
7990
1e3c88bd
PZ
7991/*
7992 * It checks each scheduling domain to see if it is due to be balanced,
7993 * and initiates a balancing operation if so.
7994 *
b9b0853a 7995 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7996 */
f7ed0a89 7997static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7998{
23f0d209 7999 int continue_balancing = 1;
f7ed0a89 8000 int cpu = rq->cpu;
1e3c88bd 8001 unsigned long interval;
04f733b4 8002 struct sched_domain *sd;
1e3c88bd
PZ
8003 /* Earliest time when we have to do rebalance again */
8004 unsigned long next_balance = jiffies + 60*HZ;
8005 int update_next_balance = 0;
f48627e6
JL
8006 int need_serialize, need_decay = 0;
8007 u64 max_cost = 0;
1e3c88bd 8008
48a16753 8009 update_blocked_averages(cpu);
2069dd75 8010
dce840a0 8011 rcu_read_lock();
1e3c88bd 8012 for_each_domain(cpu, sd) {
f48627e6
JL
8013 /*
8014 * Decay the newidle max times here because this is a regular
8015 * visit to all the domains. Decay ~1% per second.
8016 */
8017 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8018 sd->max_newidle_lb_cost =
8019 (sd->max_newidle_lb_cost * 253) / 256;
8020 sd->next_decay_max_lb_cost = jiffies + HZ;
8021 need_decay = 1;
8022 }
8023 max_cost += sd->max_newidle_lb_cost;
8024
1e3c88bd
PZ
8025 if (!(sd->flags & SD_LOAD_BALANCE))
8026 continue;
8027
f48627e6
JL
8028 /*
8029 * Stop the load balance at this level. There is another
8030 * CPU in our sched group which is doing load balancing more
8031 * actively.
8032 */
8033 if (!continue_balancing) {
8034 if (need_decay)
8035 continue;
8036 break;
8037 }
8038
52a08ef1 8039 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8040
8041 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8042 if (need_serialize) {
8043 if (!spin_trylock(&balancing))
8044 goto out;
8045 }
8046
8047 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8048 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8049 /*
6263322c 8050 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8051 * env->dst_cpu, so we can't know our idle
8052 * state even if we migrated tasks. Update it.
1e3c88bd 8053 */
de5eb2dd 8054 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8055 }
8056 sd->last_balance = jiffies;
52a08ef1 8057 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8058 }
8059 if (need_serialize)
8060 spin_unlock(&balancing);
8061out:
8062 if (time_after(next_balance, sd->last_balance + interval)) {
8063 next_balance = sd->last_balance + interval;
8064 update_next_balance = 1;
8065 }
f48627e6
JL
8066 }
8067 if (need_decay) {
1e3c88bd 8068 /*
f48627e6
JL
8069 * Ensure the rq-wide value also decays but keep it at a
8070 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8071 */
f48627e6
JL
8072 rq->max_idle_balance_cost =
8073 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8074 }
dce840a0 8075 rcu_read_unlock();
1e3c88bd
PZ
8076
8077 /*
8078 * next_balance will be updated only when there is a need.
8079 * When the cpu is attached to null domain for ex, it will not be
8080 * updated.
8081 */
c5afb6a8 8082 if (likely(update_next_balance)) {
1e3c88bd 8083 rq->next_balance = next_balance;
c5afb6a8
VG
8084
8085#ifdef CONFIG_NO_HZ_COMMON
8086 /*
8087 * If this CPU has been elected to perform the nohz idle
8088 * balance. Other idle CPUs have already rebalanced with
8089 * nohz_idle_balance() and nohz.next_balance has been
8090 * updated accordingly. This CPU is now running the idle load
8091 * balance for itself and we need to update the
8092 * nohz.next_balance accordingly.
8093 */
8094 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8095 nohz.next_balance = rq->next_balance;
8096#endif
8097 }
1e3c88bd
PZ
8098}
8099
3451d024 8100#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8101/*
3451d024 8102 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8103 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8104 */
208cb16b 8105static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8106{
208cb16b 8107 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8108 struct rq *rq;
8109 int balance_cpu;
c5afb6a8
VG
8110 /* Earliest time when we have to do rebalance again */
8111 unsigned long next_balance = jiffies + 60*HZ;
8112 int update_next_balance = 0;
83cd4fe2 8113
1c792db7
SS
8114 if (idle != CPU_IDLE ||
8115 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8116 goto end;
83cd4fe2
VP
8117
8118 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8119 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8120 continue;
8121
8122 /*
8123 * If this cpu gets work to do, stop the load balancing
8124 * work being done for other cpus. Next load
8125 * balancing owner will pick it up.
8126 */
1c792db7 8127 if (need_resched())
83cd4fe2 8128 break;
83cd4fe2 8129
5ed4f1d9
VG
8130 rq = cpu_rq(balance_cpu);
8131
ed61bbc6
TC
8132 /*
8133 * If time for next balance is due,
8134 * do the balance.
8135 */
8136 if (time_after_eq(jiffies, rq->next_balance)) {
8137 raw_spin_lock_irq(&rq->lock);
8138 update_rq_clock(rq);
cee1afce 8139 cpu_load_update_idle(rq);
ed61bbc6
TC
8140 raw_spin_unlock_irq(&rq->lock);
8141 rebalance_domains(rq, CPU_IDLE);
8142 }
83cd4fe2 8143
c5afb6a8
VG
8144 if (time_after(next_balance, rq->next_balance)) {
8145 next_balance = rq->next_balance;
8146 update_next_balance = 1;
8147 }
83cd4fe2 8148 }
c5afb6a8
VG
8149
8150 /*
8151 * next_balance will be updated only when there is a need.
8152 * When the CPU is attached to null domain for ex, it will not be
8153 * updated.
8154 */
8155 if (likely(update_next_balance))
8156 nohz.next_balance = next_balance;
1c792db7
SS
8157end:
8158 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8159}
8160
8161/*
0b005cf5 8162 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8163 * of an idle cpu in the system.
0b005cf5 8164 * - This rq has more than one task.
1aaf90a4
VG
8165 * - This rq has at least one CFS task and the capacity of the CPU is
8166 * significantly reduced because of RT tasks or IRQs.
8167 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8168 * multiple busy cpu.
0b005cf5
SS
8169 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8170 * domain span are idle.
83cd4fe2 8171 */
1aaf90a4 8172static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8173{
8174 unsigned long now = jiffies;
0b005cf5 8175 struct sched_domain *sd;
63b2ca30 8176 struct sched_group_capacity *sgc;
4a725627 8177 int nr_busy, cpu = rq->cpu;
1aaf90a4 8178 bool kick = false;
83cd4fe2 8179
4a725627 8180 if (unlikely(rq->idle_balance))
1aaf90a4 8181 return false;
83cd4fe2 8182
1c792db7
SS
8183 /*
8184 * We may be recently in ticked or tickless idle mode. At the first
8185 * busy tick after returning from idle, we will update the busy stats.
8186 */
69e1e811 8187 set_cpu_sd_state_busy();
c1cc017c 8188 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8189
8190 /*
8191 * None are in tickless mode and hence no need for NOHZ idle load
8192 * balancing.
8193 */
8194 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8195 return false;
1c792db7
SS
8196
8197 if (time_before(now, nohz.next_balance))
1aaf90a4 8198 return false;
83cd4fe2 8199
0b005cf5 8200 if (rq->nr_running >= 2)
1aaf90a4 8201 return true;
83cd4fe2 8202
067491b7 8203 rcu_read_lock();
37dc6b50 8204 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8205 if (sd) {
63b2ca30
NP
8206 sgc = sd->groups->sgc;
8207 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8208
1aaf90a4
VG
8209 if (nr_busy > 1) {
8210 kick = true;
8211 goto unlock;
8212 }
8213
83cd4fe2 8214 }
37dc6b50 8215
1aaf90a4
VG
8216 sd = rcu_dereference(rq->sd);
8217 if (sd) {
8218 if ((rq->cfs.h_nr_running >= 1) &&
8219 check_cpu_capacity(rq, sd)) {
8220 kick = true;
8221 goto unlock;
8222 }
8223 }
37dc6b50 8224
1aaf90a4 8225 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8226 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8227 sched_domain_span(sd)) < cpu)) {
8228 kick = true;
8229 goto unlock;
8230 }
067491b7 8231
1aaf90a4 8232unlock:
067491b7 8233 rcu_read_unlock();
1aaf90a4 8234 return kick;
83cd4fe2
VP
8235}
8236#else
208cb16b 8237static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8238#endif
8239
8240/*
8241 * run_rebalance_domains is triggered when needed from the scheduler tick.
8242 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8243 */
1e3c88bd
PZ
8244static void run_rebalance_domains(struct softirq_action *h)
8245{
208cb16b 8246 struct rq *this_rq = this_rq();
6eb57e0d 8247 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8248 CPU_IDLE : CPU_NOT_IDLE;
8249
1e3c88bd 8250 /*
83cd4fe2 8251 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8252 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8253 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8254 * give the idle cpus a chance to load balance. Else we may
8255 * load balance only within the local sched_domain hierarchy
8256 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8257 */
208cb16b 8258 nohz_idle_balance(this_rq, idle);
d4573c3e 8259 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8260}
8261
1e3c88bd
PZ
8262/*
8263 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8264 */
7caff66f 8265void trigger_load_balance(struct rq *rq)
1e3c88bd 8266{
1e3c88bd 8267 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8268 if (unlikely(on_null_domain(rq)))
8269 return;
8270
8271 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8272 raise_softirq(SCHED_SOFTIRQ);
3451d024 8273#ifdef CONFIG_NO_HZ_COMMON
c726099e 8274 if (nohz_kick_needed(rq))
0aeeeeba 8275 nohz_balancer_kick();
83cd4fe2 8276#endif
1e3c88bd
PZ
8277}
8278
0bcdcf28
CE
8279static void rq_online_fair(struct rq *rq)
8280{
8281 update_sysctl();
0e59bdae
KT
8282
8283 update_runtime_enabled(rq);
0bcdcf28
CE
8284}
8285
8286static void rq_offline_fair(struct rq *rq)
8287{
8288 update_sysctl();
a4c96ae3
PB
8289
8290 /* Ensure any throttled groups are reachable by pick_next_task */
8291 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8292}
8293
55e12e5e 8294#endif /* CONFIG_SMP */
e1d1484f 8295
bf0f6f24
IM
8296/*
8297 * scheduler tick hitting a task of our scheduling class:
8298 */
8f4d37ec 8299static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8300{
8301 struct cfs_rq *cfs_rq;
8302 struct sched_entity *se = &curr->se;
8303
8304 for_each_sched_entity(se) {
8305 cfs_rq = cfs_rq_of(se);
8f4d37ec 8306 entity_tick(cfs_rq, se, queued);
bf0f6f24 8307 }
18bf2805 8308
b52da86e 8309 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8310 task_tick_numa(rq, curr);
bf0f6f24
IM
8311}
8312
8313/*
cd29fe6f
PZ
8314 * called on fork with the child task as argument from the parent's context
8315 * - child not yet on the tasklist
8316 * - preemption disabled
bf0f6f24 8317 */
cd29fe6f 8318static void task_fork_fair(struct task_struct *p)
bf0f6f24 8319{
4fc420c9
DN
8320 struct cfs_rq *cfs_rq;
8321 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8322 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8323 struct rq *rq = this_rq();
8324 unsigned long flags;
8325
05fa785c 8326 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8327
861d034e
PZ
8328 update_rq_clock(rq);
8329
4fc420c9
DN
8330 cfs_rq = task_cfs_rq(current);
8331 curr = cfs_rq->curr;
8332
6c9a27f5
DN
8333 /*
8334 * Not only the cpu but also the task_group of the parent might have
8335 * been changed after parent->se.parent,cfs_rq were copied to
8336 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8337 * of child point to valid ones.
8338 */
8339 rcu_read_lock();
8340 __set_task_cpu(p, this_cpu);
8341 rcu_read_unlock();
bf0f6f24 8342
7109c442 8343 update_curr(cfs_rq);
cd29fe6f 8344
b5d9d734
MG
8345 if (curr)
8346 se->vruntime = curr->vruntime;
aeb73b04 8347 place_entity(cfs_rq, se, 1);
4d78e7b6 8348
cd29fe6f 8349 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8350 /*
edcb60a3
IM
8351 * Upon rescheduling, sched_class::put_prev_task() will place
8352 * 'current' within the tree based on its new key value.
8353 */
4d78e7b6 8354 swap(curr->vruntime, se->vruntime);
8875125e 8355 resched_curr(rq);
4d78e7b6 8356 }
bf0f6f24 8357
88ec22d3
PZ
8358 se->vruntime -= cfs_rq->min_vruntime;
8359
05fa785c 8360 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8361}
8362
cb469845
SR
8363/*
8364 * Priority of the task has changed. Check to see if we preempt
8365 * the current task.
8366 */
da7a735e
PZ
8367static void
8368prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8369{
da0c1e65 8370 if (!task_on_rq_queued(p))
da7a735e
PZ
8371 return;
8372
cb469845
SR
8373 /*
8374 * Reschedule if we are currently running on this runqueue and
8375 * our priority decreased, or if we are not currently running on
8376 * this runqueue and our priority is higher than the current's
8377 */
da7a735e 8378 if (rq->curr == p) {
cb469845 8379 if (p->prio > oldprio)
8875125e 8380 resched_curr(rq);
cb469845 8381 } else
15afe09b 8382 check_preempt_curr(rq, p, 0);
cb469845
SR
8383}
8384
daa59407 8385static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8386{
8387 struct sched_entity *se = &p->se;
da7a735e
PZ
8388
8389 /*
daa59407
BP
8390 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8391 * the dequeue_entity(.flags=0) will already have normalized the
8392 * vruntime.
8393 */
8394 if (p->on_rq)
8395 return true;
8396
8397 /*
8398 * When !on_rq, vruntime of the task has usually NOT been normalized.
8399 * But there are some cases where it has already been normalized:
da7a735e 8400 *
daa59407
BP
8401 * - A forked child which is waiting for being woken up by
8402 * wake_up_new_task().
8403 * - A task which has been woken up by try_to_wake_up() and
8404 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8405 */
daa59407
BP
8406 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8407 return true;
8408
8409 return false;
8410}
8411
8412static void detach_task_cfs_rq(struct task_struct *p)
8413{
8414 struct sched_entity *se = &p->se;
8415 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8416
8417 if (!vruntime_normalized(p)) {
da7a735e
PZ
8418 /*
8419 * Fix up our vruntime so that the current sleep doesn't
8420 * cause 'unlimited' sleep bonus.
8421 */
8422 place_entity(cfs_rq, se, 0);
8423 se->vruntime -= cfs_rq->min_vruntime;
8424 }
9ee474f5 8425
9d89c257 8426 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8427 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8428}
8429
daa59407 8430static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8431{
f36c019c 8432 struct sched_entity *se = &p->se;
daa59407 8433 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8434
8435#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8436 /*
8437 * Since the real-depth could have been changed (only FAIR
8438 * class maintain depth value), reset depth properly.
8439 */
8440 se->depth = se->parent ? se->parent->depth + 1 : 0;
8441#endif
7855a35a 8442
6efdb105 8443 /* Synchronize task with its cfs_rq */
daa59407
BP
8444 attach_entity_load_avg(cfs_rq, se);
8445
8446 if (!vruntime_normalized(p))
8447 se->vruntime += cfs_rq->min_vruntime;
8448}
6efdb105 8449
daa59407
BP
8450static void switched_from_fair(struct rq *rq, struct task_struct *p)
8451{
8452 detach_task_cfs_rq(p);
8453}
8454
8455static void switched_to_fair(struct rq *rq, struct task_struct *p)
8456{
8457 attach_task_cfs_rq(p);
7855a35a 8458
daa59407 8459 if (task_on_rq_queued(p)) {
7855a35a 8460 /*
daa59407
BP
8461 * We were most likely switched from sched_rt, so
8462 * kick off the schedule if running, otherwise just see
8463 * if we can still preempt the current task.
7855a35a 8464 */
daa59407
BP
8465 if (rq->curr == p)
8466 resched_curr(rq);
8467 else
8468 check_preempt_curr(rq, p, 0);
7855a35a 8469 }
cb469845
SR
8470}
8471
83b699ed
SV
8472/* Account for a task changing its policy or group.
8473 *
8474 * This routine is mostly called to set cfs_rq->curr field when a task
8475 * migrates between groups/classes.
8476 */
8477static void set_curr_task_fair(struct rq *rq)
8478{
8479 struct sched_entity *se = &rq->curr->se;
8480
ec12cb7f
PT
8481 for_each_sched_entity(se) {
8482 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8483
8484 set_next_entity(cfs_rq, se);
8485 /* ensure bandwidth has been allocated on our new cfs_rq */
8486 account_cfs_rq_runtime(cfs_rq, 0);
8487 }
83b699ed
SV
8488}
8489
029632fb
PZ
8490void init_cfs_rq(struct cfs_rq *cfs_rq)
8491{
8492 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8493 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8494#ifndef CONFIG_64BIT
8495 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8496#endif
141965c7 8497#ifdef CONFIG_SMP
9d89c257
YD
8498 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8499 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8500#endif
029632fb
PZ
8501}
8502
810b3817 8503#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8504static void task_move_group_fair(struct task_struct *p)
810b3817 8505{
daa59407 8506 detach_task_cfs_rq(p);
b2b5ce02 8507 set_task_rq(p, task_cpu(p));
6efdb105
BP
8508
8509#ifdef CONFIG_SMP
8510 /* Tell se's cfs_rq has been changed -- migrated */
8511 p->se.avg.last_update_time = 0;
8512#endif
daa59407 8513 attach_task_cfs_rq(p);
810b3817 8514}
029632fb
PZ
8515
8516void free_fair_sched_group(struct task_group *tg)
8517{
8518 int i;
8519
8520 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8521
8522 for_each_possible_cpu(i) {
8523 if (tg->cfs_rq)
8524 kfree(tg->cfs_rq[i]);
6fe1f348 8525 if (tg->se)
029632fb
PZ
8526 kfree(tg->se[i]);
8527 }
8528
8529 kfree(tg->cfs_rq);
8530 kfree(tg->se);
8531}
8532
8533int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8534{
029632fb 8535 struct sched_entity *se;
b7fa30c9
PZ
8536 struct cfs_rq *cfs_rq;
8537 struct rq *rq;
029632fb
PZ
8538 int i;
8539
8540 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8541 if (!tg->cfs_rq)
8542 goto err;
8543 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8544 if (!tg->se)
8545 goto err;
8546
8547 tg->shares = NICE_0_LOAD;
8548
8549 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8550
8551 for_each_possible_cpu(i) {
b7fa30c9
PZ
8552 rq = cpu_rq(i);
8553
029632fb
PZ
8554 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8555 GFP_KERNEL, cpu_to_node(i));
8556 if (!cfs_rq)
8557 goto err;
8558
8559 se = kzalloc_node(sizeof(struct sched_entity),
8560 GFP_KERNEL, cpu_to_node(i));
8561 if (!se)
8562 goto err_free_rq;
8563
8564 init_cfs_rq(cfs_rq);
8565 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8566 init_entity_runnable_average(se);
b7fa30c9
PZ
8567
8568 raw_spin_lock_irq(&rq->lock);
2b8c41da 8569 post_init_entity_util_avg(se);
b7fa30c9 8570 raw_spin_unlock_irq(&rq->lock);
029632fb
PZ
8571 }
8572
8573 return 1;
8574
8575err_free_rq:
8576 kfree(cfs_rq);
8577err:
8578 return 0;
8579}
8580
6fe1f348 8581void unregister_fair_sched_group(struct task_group *tg)
029632fb 8582{
029632fb 8583 unsigned long flags;
6fe1f348
PZ
8584 struct rq *rq;
8585 int cpu;
029632fb 8586
6fe1f348
PZ
8587 for_each_possible_cpu(cpu) {
8588 if (tg->se[cpu])
8589 remove_entity_load_avg(tg->se[cpu]);
029632fb 8590
6fe1f348
PZ
8591 /*
8592 * Only empty task groups can be destroyed; so we can speculatively
8593 * check on_list without danger of it being re-added.
8594 */
8595 if (!tg->cfs_rq[cpu]->on_list)
8596 continue;
8597
8598 rq = cpu_rq(cpu);
8599
8600 raw_spin_lock_irqsave(&rq->lock, flags);
8601 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8602 raw_spin_unlock_irqrestore(&rq->lock, flags);
8603 }
029632fb
PZ
8604}
8605
8606void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8607 struct sched_entity *se, int cpu,
8608 struct sched_entity *parent)
8609{
8610 struct rq *rq = cpu_rq(cpu);
8611
8612 cfs_rq->tg = tg;
8613 cfs_rq->rq = rq;
029632fb
PZ
8614 init_cfs_rq_runtime(cfs_rq);
8615
8616 tg->cfs_rq[cpu] = cfs_rq;
8617 tg->se[cpu] = se;
8618
8619 /* se could be NULL for root_task_group */
8620 if (!se)
8621 return;
8622
fed14d45 8623 if (!parent) {
029632fb 8624 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8625 se->depth = 0;
8626 } else {
029632fb 8627 se->cfs_rq = parent->my_q;
fed14d45
PZ
8628 se->depth = parent->depth + 1;
8629 }
029632fb
PZ
8630
8631 se->my_q = cfs_rq;
0ac9b1c2
PT
8632 /* guarantee group entities always have weight */
8633 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8634 se->parent = parent;
8635}
8636
8637static DEFINE_MUTEX(shares_mutex);
8638
8639int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8640{
8641 int i;
8642 unsigned long flags;
8643
8644 /*
8645 * We can't change the weight of the root cgroup.
8646 */
8647 if (!tg->se[0])
8648 return -EINVAL;
8649
8650 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8651
8652 mutex_lock(&shares_mutex);
8653 if (tg->shares == shares)
8654 goto done;
8655
8656 tg->shares = shares;
8657 for_each_possible_cpu(i) {
8658 struct rq *rq = cpu_rq(i);
8659 struct sched_entity *se;
8660
8661 se = tg->se[i];
8662 /* Propagate contribution to hierarchy */
8663 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8664
8665 /* Possible calls to update_curr() need rq clock */
8666 update_rq_clock(rq);
17bc14b7 8667 for_each_sched_entity(se)
029632fb
PZ
8668 update_cfs_shares(group_cfs_rq(se));
8669 raw_spin_unlock_irqrestore(&rq->lock, flags);
8670 }
8671
8672done:
8673 mutex_unlock(&shares_mutex);
8674 return 0;
8675}
8676#else /* CONFIG_FAIR_GROUP_SCHED */
8677
8678void free_fair_sched_group(struct task_group *tg) { }
8679
8680int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8681{
8682 return 1;
8683}
8684
6fe1f348 8685void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8686
8687#endif /* CONFIG_FAIR_GROUP_SCHED */
8688
810b3817 8689
6d686f45 8690static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8691{
8692 struct sched_entity *se = &task->se;
0d721cea
PW
8693 unsigned int rr_interval = 0;
8694
8695 /*
8696 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8697 * idle runqueue:
8698 */
0d721cea 8699 if (rq->cfs.load.weight)
a59f4e07 8700 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8701
8702 return rr_interval;
8703}
8704
bf0f6f24
IM
8705/*
8706 * All the scheduling class methods:
8707 */
029632fb 8708const struct sched_class fair_sched_class = {
5522d5d5 8709 .next = &idle_sched_class,
bf0f6f24
IM
8710 .enqueue_task = enqueue_task_fair,
8711 .dequeue_task = dequeue_task_fair,
8712 .yield_task = yield_task_fair,
d95f4122 8713 .yield_to_task = yield_to_task_fair,
bf0f6f24 8714
2e09bf55 8715 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8716
8717 .pick_next_task = pick_next_task_fair,
8718 .put_prev_task = put_prev_task_fair,
8719
681f3e68 8720#ifdef CONFIG_SMP
4ce72a2c 8721 .select_task_rq = select_task_rq_fair,
0a74bef8 8722 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8723
0bcdcf28
CE
8724 .rq_online = rq_online_fair,
8725 .rq_offline = rq_offline_fair,
88ec22d3 8726
12695578 8727 .task_dead = task_dead_fair,
c5b28038 8728 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8729#endif
bf0f6f24 8730
83b699ed 8731 .set_curr_task = set_curr_task_fair,
bf0f6f24 8732 .task_tick = task_tick_fair,
cd29fe6f 8733 .task_fork = task_fork_fair,
cb469845
SR
8734
8735 .prio_changed = prio_changed_fair,
da7a735e 8736 .switched_from = switched_from_fair,
cb469845 8737 .switched_to = switched_to_fair,
810b3817 8738
0d721cea
PW
8739 .get_rr_interval = get_rr_interval_fair,
8740
6e998916
SG
8741 .update_curr = update_curr_fair,
8742
810b3817 8743#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8744 .task_move_group = task_move_group_fair,
810b3817 8745#endif
bf0f6f24
IM
8746};
8747
8748#ifdef CONFIG_SCHED_DEBUG
029632fb 8749void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8750{
bf0f6f24
IM
8751 struct cfs_rq *cfs_rq;
8752
5973e5b9 8753 rcu_read_lock();
c3b64f1e 8754 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8755 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8756 rcu_read_unlock();
bf0f6f24 8757}
397f2378
SD
8758
8759#ifdef CONFIG_NUMA_BALANCING
8760void show_numa_stats(struct task_struct *p, struct seq_file *m)
8761{
8762 int node;
8763 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8764
8765 for_each_online_node(node) {
8766 if (p->numa_faults) {
8767 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8768 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8769 }
8770 if (p->numa_group) {
8771 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8772 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8773 }
8774 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8775 }
8776}
8777#endif /* CONFIG_NUMA_BALANCING */
8778#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8779
8780__init void init_sched_fair_class(void)
8781{
8782#ifdef CONFIG_SMP
8783 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8784
3451d024 8785#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8786 nohz.next_balance = jiffies;
029632fb 8787 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8788#endif
8789#endif /* SMP */
8790
8791}
This page took 1.295048 seconds and 5 git commands to generate.