sched/numa: Fix NULL pointer dereference in task_numa_migrate()
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
a4c2f00f 238
bf0f6f24
IM
239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
62160e3f 243#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 244
62160e3f 245/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
62160e3f 248 return cfs_rq->rq;
bf0f6f24
IM
249}
250
62160e3f
IM
251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
bf0f6f24 253
8f48894f
PZ
254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
b758149c
PZ
262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
aff3e498
PT
283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
9ee474f5 285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
9ee474f5 305 /* We should have no load, but we need to update last_decay. */
aff3e498 306 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
b758149c
PZ
318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
464b7527
PZ
337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
8f48894f
PZ
380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
bf0f6f24 386
62160e3f
IM
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
390}
391
392#define entity_is_task(se) 1
393
b758149c
PZ
394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
bf0f6f24 396
b758149c 397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 398{
b758149c 399 return &task_rq(p)->cfs;
bf0f6f24
IM
400}
401
b758149c
PZ
402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
3d4b47b4
PZ
416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
b758149c
PZ
424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
464b7527
PZ
438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
b758149c
PZ
443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
6c16a6dc
PZ
445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
1bf08230 452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 453{
1bf08230 454 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 455 if (delta > 0)
1bf08230 456 max_vruntime = vruntime;
02e0431a 457
1bf08230 458 return max_vruntime;
02e0431a
PZ
459}
460
0702e3eb 461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
54fdc581
FC
470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
1af5f730
PZ
476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
e17036da 488 if (!cfs_rq->curr)
1af5f730
PZ
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
1bf08230 494 /* ensure we never gain time by being placed backwards. */
1af5f730 495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
1af5f730
PZ
500}
501
bf0f6f24
IM
502/*
503 * Enqueue an entity into the rb-tree:
504 */
0702e3eb 505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
bf0f6f24
IM
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
2bd2d6f2 522 if (entity_before(se, entry)) {
bf0f6f24
IM
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
1af5f730 534 if (leftmost)
57cb499d 535 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
539}
540
0702e3eb 541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 542{
3fe69747
PZ
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
3fe69747
PZ
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
3fe69747 548 }
e9acbff6 549
bf0f6f24 550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
551}
552
029632fb 553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 554{
f4b6755f
PZ
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
561}
562
ac53db59
RR
563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
029632fb 574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 575{
7eee3e67 576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 577
70eee74b
BS
578 if (!last)
579 return NULL;
7eee3e67
IM
580
581 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
582}
583
bf0f6f24
IM
584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
acb4a848 588int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 589 void __user *buffer, size_t *lenp,
b2be5e96
PZ
590 loff_t *ppos)
591{
8d65af78 592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 593 int factor = get_update_sysctl_factor();
b2be5e96
PZ
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
acb4a848
CE
601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
606#undef WRT_SYSCTL
607
b2be5e96
PZ
608 return 0;
609}
610#endif
647e7cac 611
a7be37ac 612/*
f9c0b095 613 * delta /= w
a7be37ac
PZ
614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
f9c0b095
PZ
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
620
621 return delta;
622}
623
647e7cac
IM
624/*
625 * The idea is to set a period in which each task runs once.
626 *
532b1858 627 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
4d78e7b6
PZ
632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
b2be5e96 635 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
636
637 if (unlikely(nr_running > nr_latency)) {
4bf0b771 638 period = sysctl_sched_min_granularity;
4d78e7b6 639 period *= nr_running;
4d78e7b6
PZ
640 }
641
642 return period;
643}
644
647e7cac
IM
645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
f9c0b095 649 * s = p*P[w/rw]
647e7cac 650 */
6d0f0ebd 651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 652{
0a582440 653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 654
0a582440 655 for_each_sched_entity(se) {
6272d68c 656 struct load_weight *load;
3104bf03 657 struct load_weight lw;
6272d68c
LM
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
f9c0b095 661
0a582440 662 if (unlikely(!se->on_rq)) {
3104bf03 663 lw = cfs_rq->load;
0a582440
MG
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
bf0f6f24
IM
671}
672
647e7cac 673/*
660cc00f 674 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 675 *
f9c0b095 676 * vs = s/w
647e7cac 677 */
f9c0b095 678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 679{
f9c0b095 680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
681}
682
a75cdaa9 683#ifdef CONFIG_SMP
fb13c7ee
MG
684static unsigned long task_h_load(struct task_struct *p);
685
a75cdaa9
AS
686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
bf0f6f24
IM
705/*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
8ebc91d9
IM
710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
bf0f6f24 712{
bbdba7c0 713 unsigned long delta_exec_weighted;
bf0f6f24 714
41acab88
LDM
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
717
718 curr->sum_exec_runtime += delta_exec;
7a62eabc 719 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 721
e9acbff6 722 curr->vruntime += delta_exec_weighted;
1af5f730 723 update_min_vruntime(cfs_rq);
bf0f6f24
IM
724}
725
b7cc0896 726static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 727{
429d43bc 728 struct sched_entity *curr = cfs_rq->curr;
78becc27 729 u64 now = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
8ebc91d9 740 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
741 if (!delta_exec)
742 return;
bf0f6f24 743
8ebc91d9
IM
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
d842de87
SV
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
f977bb49 750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 751 cpuacct_charge(curtask, delta_exec);
f06febc9 752 account_group_exec_runtime(curtask, delta_exec);
d842de87 753 }
ec12cb7f
PT
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
756}
757
758static inline void
5870db5b 759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 760{
78becc27 761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
762}
763
bf0f6f24
IM
764/*
765 * Task is being enqueued - update stats:
766 */
d2417e5a 767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 768{
bf0f6f24
IM
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
429d43bc 773 if (se != cfs_rq->curr)
5870db5b 774 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
775}
776
bf0f6f24 777static void
9ef0a961 778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
41acab88 780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
78becc27 788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
789 }
790#endif
41acab88 791 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
792}
793
794static inline void
19b6a2e3 795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 796{
bf0f6f24
IM
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
429d43bc 801 if (se != cfs_rq->curr)
9ef0a961 802 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
79303e9e 809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
810{
811 /*
812 * We are starting a new run period:
813 */
78becc27 814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
815}
816
bf0f6f24
IM
817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
cbee9f88
PZ
821#ifdef CONFIG_NUMA_BALANCING
822/*
598f0ec0
MG
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
cbee9f88 826 */
598f0ec0
MG
827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 832
4b96a29b
PZ
833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
de1c9ce6
RR
836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
598f0ec0
MG
844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
3a7053b3
MG
889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
6fe6b2d6 896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 897
0ec8aa00
PZ
898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
8c8a743c
PZ
910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
e29cf08b 915 pid_t gid;
8c8a743c
PZ
916 struct list_head task_list;
917
918 struct rcu_head rcu;
989348b5
MG
919 unsigned long total_faults;
920 unsigned long faults[0];
8c8a743c
PZ
921};
922
e29cf08b
MG
923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
ac8e895b
MG
928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
83e1d2cd
MG
942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
989348b5 947 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
83e1d2cd
MG
948}
949
950/*
951 * These return the fraction of accesses done by a particular task, or
952 * task group, on a particular numa node. The group weight is given a
953 * larger multiplier, in order to group tasks together that are almost
954 * evenly spread out between numa nodes.
955 */
956static inline unsigned long task_weight(struct task_struct *p, int nid)
957{
958 unsigned long total_faults;
959
960 if (!p->numa_faults)
961 return 0;
962
963 total_faults = p->total_numa_faults;
964
965 if (!total_faults)
966 return 0;
967
968 return 1000 * task_faults(p, nid) / total_faults;
969}
970
971static inline unsigned long group_weight(struct task_struct *p, int nid)
972{
989348b5 973 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
974 return 0;
975
989348b5 976 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
977}
978
e6628d5b 979static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
980static unsigned long source_load(int cpu, int type);
981static unsigned long target_load(int cpu, int type);
982static unsigned long power_of(int cpu);
983static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
984
fb13c7ee 985/* Cached statistics for all CPUs within a node */
58d081b5 986struct numa_stats {
fb13c7ee 987 unsigned long nr_running;
58d081b5 988 unsigned long load;
fb13c7ee
MG
989
990 /* Total compute capacity of CPUs on a node */
991 unsigned long power;
992
993 /* Approximate capacity in terms of runnable tasks on a node */
994 unsigned long capacity;
995 int has_capacity;
58d081b5 996};
e6628d5b 997
fb13c7ee
MG
998/*
999 * XXX borrowed from update_sg_lb_stats
1000 */
1001static void update_numa_stats(struct numa_stats *ns, int nid)
1002{
1003 int cpu;
1004
1005 memset(ns, 0, sizeof(*ns));
1006 for_each_cpu(cpu, cpumask_of_node(nid)) {
1007 struct rq *rq = cpu_rq(cpu);
1008
1009 ns->nr_running += rq->nr_running;
1010 ns->load += weighted_cpuload(cpu);
1011 ns->power += power_of(cpu);
1012 }
1013
1014 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1015 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1016 ns->has_capacity = (ns->nr_running < ns->capacity);
1017}
1018
58d081b5
MG
1019struct task_numa_env {
1020 struct task_struct *p;
e6628d5b 1021
58d081b5
MG
1022 int src_cpu, src_nid;
1023 int dst_cpu, dst_nid;
e6628d5b 1024
58d081b5 1025 struct numa_stats src_stats, dst_stats;
e6628d5b 1026
fb13c7ee
MG
1027 int imbalance_pct, idx;
1028
1029 struct task_struct *best_task;
1030 long best_imp;
58d081b5
MG
1031 int best_cpu;
1032};
1033
fb13c7ee
MG
1034static void task_numa_assign(struct task_numa_env *env,
1035 struct task_struct *p, long imp)
1036{
1037 if (env->best_task)
1038 put_task_struct(env->best_task);
1039 if (p)
1040 get_task_struct(p);
1041
1042 env->best_task = p;
1043 env->best_imp = imp;
1044 env->best_cpu = env->dst_cpu;
1045}
1046
1047/*
1048 * This checks if the overall compute and NUMA accesses of the system would
1049 * be improved if the source tasks was migrated to the target dst_cpu taking
1050 * into account that it might be best if task running on the dst_cpu should
1051 * be exchanged with the source task
1052 */
887c290e
RR
1053static void task_numa_compare(struct task_numa_env *env,
1054 long taskimp, long groupimp)
fb13c7ee
MG
1055{
1056 struct rq *src_rq = cpu_rq(env->src_cpu);
1057 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1058 struct task_struct *cur;
1059 long dst_load, src_load;
1060 long load;
887c290e 1061 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1062
1063 rcu_read_lock();
1064 cur = ACCESS_ONCE(dst_rq->curr);
1065 if (cur->pid == 0) /* idle */
1066 cur = NULL;
1067
1068 /*
1069 * "imp" is the fault differential for the source task between the
1070 * source and destination node. Calculate the total differential for
1071 * the source task and potential destination task. The more negative
1072 * the value is, the more rmeote accesses that would be expected to
1073 * be incurred if the tasks were swapped.
1074 */
1075 if (cur) {
1076 /* Skip this swap candidate if cannot move to the source cpu */
1077 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1078 goto unlock;
1079
887c290e
RR
1080 /*
1081 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1082 * in any group then look only at task weights.
887c290e 1083 */
ca28aa53 1084 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1085 imp = taskimp + task_weight(cur, env->src_nid) -
1086 task_weight(cur, env->dst_nid);
ca28aa53
RR
1087 /*
1088 * Add some hysteresis to prevent swapping the
1089 * tasks within a group over tiny differences.
1090 */
1091 if (cur->numa_group)
1092 imp -= imp/16;
887c290e 1093 } else {
ca28aa53
RR
1094 /*
1095 * Compare the group weights. If a task is all by
1096 * itself (not part of a group), use the task weight
1097 * instead.
1098 */
1099 if (env->p->numa_group)
1100 imp = groupimp;
1101 else
1102 imp = taskimp;
1103
1104 if (cur->numa_group)
1105 imp += group_weight(cur, env->src_nid) -
1106 group_weight(cur, env->dst_nid);
1107 else
1108 imp += task_weight(cur, env->src_nid) -
1109 task_weight(cur, env->dst_nid);
887c290e 1110 }
fb13c7ee
MG
1111 }
1112
1113 if (imp < env->best_imp)
1114 goto unlock;
1115
1116 if (!cur) {
1117 /* Is there capacity at our destination? */
1118 if (env->src_stats.has_capacity &&
1119 !env->dst_stats.has_capacity)
1120 goto unlock;
1121
1122 goto balance;
1123 }
1124
1125 /* Balance doesn't matter much if we're running a task per cpu */
1126 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1127 goto assign;
1128
1129 /*
1130 * In the overloaded case, try and keep the load balanced.
1131 */
1132balance:
1133 dst_load = env->dst_stats.load;
1134 src_load = env->src_stats.load;
1135
1136 /* XXX missing power terms */
1137 load = task_h_load(env->p);
1138 dst_load += load;
1139 src_load -= load;
1140
1141 if (cur) {
1142 load = task_h_load(cur);
1143 dst_load -= load;
1144 src_load += load;
1145 }
1146
1147 /* make src_load the smaller */
1148 if (dst_load < src_load)
1149 swap(dst_load, src_load);
1150
1151 if (src_load * env->imbalance_pct < dst_load * 100)
1152 goto unlock;
1153
1154assign:
1155 task_numa_assign(env, cur, imp);
1156unlock:
1157 rcu_read_unlock();
1158}
1159
887c290e
RR
1160static void task_numa_find_cpu(struct task_numa_env *env,
1161 long taskimp, long groupimp)
2c8a50aa
MG
1162{
1163 int cpu;
1164
1165 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1166 /* Skip this CPU if the source task cannot migrate */
1167 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1168 continue;
1169
1170 env->dst_cpu = cpu;
887c290e 1171 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1172 }
1173}
1174
58d081b5
MG
1175static int task_numa_migrate(struct task_struct *p)
1176{
58d081b5
MG
1177 struct task_numa_env env = {
1178 .p = p,
fb13c7ee 1179
58d081b5 1180 .src_cpu = task_cpu(p),
b32e86b4 1181 .src_nid = task_node(p),
fb13c7ee
MG
1182
1183 .imbalance_pct = 112,
1184
1185 .best_task = NULL,
1186 .best_imp = 0,
1187 .best_cpu = -1
58d081b5
MG
1188 };
1189 struct sched_domain *sd;
887c290e 1190 unsigned long taskweight, groupweight;
2c8a50aa 1191 int nid, ret;
887c290e 1192 long taskimp, groupimp;
e6628d5b 1193
58d081b5 1194 /*
fb13c7ee
MG
1195 * Pick the lowest SD_NUMA domain, as that would have the smallest
1196 * imbalance and would be the first to start moving tasks about.
1197 *
1198 * And we want to avoid any moving of tasks about, as that would create
1199 * random movement of tasks -- counter the numa conditions we're trying
1200 * to satisfy here.
58d081b5
MG
1201 */
1202 rcu_read_lock();
fb13c7ee 1203 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1204 if (sd)
1205 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1206 rcu_read_unlock();
1207
46a73e8a
RR
1208 /*
1209 * Cpusets can break the scheduler domain tree into smaller
1210 * balance domains, some of which do not cross NUMA boundaries.
1211 * Tasks that are "trapped" in such domains cannot be migrated
1212 * elsewhere, so there is no point in (re)trying.
1213 */
1214 if (unlikely(!sd)) {
1215 p->numa_preferred_nid = cpu_to_node(task_cpu(p));
1216 return -EINVAL;
1217 }
1218
887c290e
RR
1219 taskweight = task_weight(p, env.src_nid);
1220 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1221 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1222 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1223 taskimp = task_weight(p, env.dst_nid) - taskweight;
1224 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1225 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1226
e1dda8a7
RR
1227 /* If the preferred nid has capacity, try to use it. */
1228 if (env.dst_stats.has_capacity)
887c290e 1229 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1230
1231 /* No space available on the preferred nid. Look elsewhere. */
1232 if (env.best_cpu == -1) {
2c8a50aa
MG
1233 for_each_online_node(nid) {
1234 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1235 continue;
58d081b5 1236
83e1d2cd 1237 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1238 taskimp = task_weight(p, nid) - taskweight;
1239 groupimp = group_weight(p, nid) - groupweight;
1240 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1241 continue;
1242
2c8a50aa
MG
1243 env.dst_nid = nid;
1244 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1245 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1246 }
1247 }
1248
fb13c7ee
MG
1249 /* No better CPU than the current one was found. */
1250 if (env.best_cpu == -1)
1251 return -EAGAIN;
1252
0ec8aa00
PZ
1253 sched_setnuma(p, env.dst_nid);
1254
04bb2f94
RR
1255 /*
1256 * Reset the scan period if the task is being rescheduled on an
1257 * alternative node to recheck if the tasks is now properly placed.
1258 */
1259 p->numa_scan_period = task_scan_min(p);
1260
fb13c7ee
MG
1261 if (env.best_task == NULL) {
1262 int ret = migrate_task_to(p, env.best_cpu);
1263 return ret;
1264 }
1265
1266 ret = migrate_swap(p, env.best_task);
1267 put_task_struct(env.best_task);
1268 return ret;
e6628d5b
MG
1269}
1270
6b9a7460
MG
1271/* Attempt to migrate a task to a CPU on the preferred node. */
1272static void numa_migrate_preferred(struct task_struct *p)
1273{
2739d3ee
RR
1274 /* This task has no NUMA fault statistics yet */
1275 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1276 return;
1277
2739d3ee
RR
1278 /* Periodically retry migrating the task to the preferred node */
1279 p->numa_migrate_retry = jiffies + HZ;
1280
1281 /* Success if task is already running on preferred CPU */
1282 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
6b9a7460
MG
1283 return;
1284
1285 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1286 task_numa_migrate(p);
6b9a7460
MG
1287}
1288
04bb2f94
RR
1289/*
1290 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1291 * increments. The more local the fault statistics are, the higher the scan
1292 * period will be for the next scan window. If local/remote ratio is below
1293 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1294 * scan period will decrease
1295 */
1296#define NUMA_PERIOD_SLOTS 10
1297#define NUMA_PERIOD_THRESHOLD 3
1298
1299/*
1300 * Increase the scan period (slow down scanning) if the majority of
1301 * our memory is already on our local node, or if the majority of
1302 * the page accesses are shared with other processes.
1303 * Otherwise, decrease the scan period.
1304 */
1305static void update_task_scan_period(struct task_struct *p,
1306 unsigned long shared, unsigned long private)
1307{
1308 unsigned int period_slot;
1309 int ratio;
1310 int diff;
1311
1312 unsigned long remote = p->numa_faults_locality[0];
1313 unsigned long local = p->numa_faults_locality[1];
1314
1315 /*
1316 * If there were no record hinting faults then either the task is
1317 * completely idle or all activity is areas that are not of interest
1318 * to automatic numa balancing. Scan slower
1319 */
1320 if (local + shared == 0) {
1321 p->numa_scan_period = min(p->numa_scan_period_max,
1322 p->numa_scan_period << 1);
1323
1324 p->mm->numa_next_scan = jiffies +
1325 msecs_to_jiffies(p->numa_scan_period);
1326
1327 return;
1328 }
1329
1330 /*
1331 * Prepare to scale scan period relative to the current period.
1332 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1333 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1334 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1335 */
1336 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1337 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1338 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1339 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1340 if (!slot)
1341 slot = 1;
1342 diff = slot * period_slot;
1343 } else {
1344 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1345
1346 /*
1347 * Scale scan rate increases based on sharing. There is an
1348 * inverse relationship between the degree of sharing and
1349 * the adjustment made to the scanning period. Broadly
1350 * speaking the intent is that there is little point
1351 * scanning faster if shared accesses dominate as it may
1352 * simply bounce migrations uselessly
1353 */
1354 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1355 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1356 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1357 }
1358
1359 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1360 task_scan_min(p), task_scan_max(p));
1361 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1362}
1363
cbee9f88
PZ
1364static void task_numa_placement(struct task_struct *p)
1365{
83e1d2cd
MG
1366 int seq, nid, max_nid = -1, max_group_nid = -1;
1367 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1368 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1369 spinlock_t *group_lock = NULL;
cbee9f88 1370
2832bc19 1371 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1372 if (p->numa_scan_seq == seq)
1373 return;
1374 p->numa_scan_seq = seq;
598f0ec0 1375 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1376
7dbd13ed
MG
1377 /* If the task is part of a group prevent parallel updates to group stats */
1378 if (p->numa_group) {
1379 group_lock = &p->numa_group->lock;
1380 spin_lock(group_lock);
1381 }
1382
688b7585
MG
1383 /* Find the node with the highest number of faults */
1384 for_each_online_node(nid) {
83e1d2cd 1385 unsigned long faults = 0, group_faults = 0;
ac8e895b 1386 int priv, i;
745d6147 1387
ac8e895b 1388 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1389 long diff;
1390
ac8e895b 1391 i = task_faults_idx(nid, priv);
8c8a743c 1392 diff = -p->numa_faults[i];
745d6147 1393
ac8e895b
MG
1394 /* Decay existing window, copy faults since last scan */
1395 p->numa_faults[i] >>= 1;
1396 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1397 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1398 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1399
1400 faults += p->numa_faults[i];
8c8a743c 1401 diff += p->numa_faults[i];
83e1d2cd 1402 p->total_numa_faults += diff;
8c8a743c
PZ
1403 if (p->numa_group) {
1404 /* safe because we can only change our own group */
989348b5
MG
1405 p->numa_group->faults[i] += diff;
1406 p->numa_group->total_faults += diff;
1407 group_faults += p->numa_group->faults[i];
8c8a743c 1408 }
ac8e895b
MG
1409 }
1410
688b7585
MG
1411 if (faults > max_faults) {
1412 max_faults = faults;
1413 max_nid = nid;
1414 }
83e1d2cd
MG
1415
1416 if (group_faults > max_group_faults) {
1417 max_group_faults = group_faults;
1418 max_group_nid = nid;
1419 }
1420 }
1421
04bb2f94
RR
1422 update_task_scan_period(p, fault_types[0], fault_types[1]);
1423
7dbd13ed
MG
1424 if (p->numa_group) {
1425 /*
1426 * If the preferred task and group nids are different,
1427 * iterate over the nodes again to find the best place.
1428 */
1429 if (max_nid != max_group_nid) {
1430 unsigned long weight, max_weight = 0;
1431
1432 for_each_online_node(nid) {
1433 weight = task_weight(p, nid) + group_weight(p, nid);
1434 if (weight > max_weight) {
1435 max_weight = weight;
1436 max_nid = nid;
1437 }
83e1d2cd
MG
1438 }
1439 }
7dbd13ed
MG
1440
1441 spin_unlock(group_lock);
688b7585
MG
1442 }
1443
6b9a7460 1444 /* Preferred node as the node with the most faults */
3a7053b3 1445 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1446 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1447 sched_setnuma(p, max_nid);
6b9a7460 1448 numa_migrate_preferred(p);
3a7053b3 1449 }
cbee9f88
PZ
1450}
1451
8c8a743c
PZ
1452static inline int get_numa_group(struct numa_group *grp)
1453{
1454 return atomic_inc_not_zero(&grp->refcount);
1455}
1456
1457static inline void put_numa_group(struct numa_group *grp)
1458{
1459 if (atomic_dec_and_test(&grp->refcount))
1460 kfree_rcu(grp, rcu);
1461}
1462
3e6a9418
MG
1463static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1464 int *priv)
8c8a743c
PZ
1465{
1466 struct numa_group *grp, *my_grp;
1467 struct task_struct *tsk;
1468 bool join = false;
1469 int cpu = cpupid_to_cpu(cpupid);
1470 int i;
1471
1472 if (unlikely(!p->numa_group)) {
1473 unsigned int size = sizeof(struct numa_group) +
989348b5 1474 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1475
1476 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1477 if (!grp)
1478 return;
1479
1480 atomic_set(&grp->refcount, 1);
1481 spin_lock_init(&grp->lock);
1482 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1483 grp->gid = p->pid;
8c8a743c
PZ
1484
1485 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1486 grp->faults[i] = p->numa_faults[i];
8c8a743c 1487
989348b5 1488 grp->total_faults = p->total_numa_faults;
83e1d2cd 1489
8c8a743c
PZ
1490 list_add(&p->numa_entry, &grp->task_list);
1491 grp->nr_tasks++;
1492 rcu_assign_pointer(p->numa_group, grp);
1493 }
1494
1495 rcu_read_lock();
1496 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1497
1498 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1499 goto no_join;
8c8a743c
PZ
1500
1501 grp = rcu_dereference(tsk->numa_group);
1502 if (!grp)
3354781a 1503 goto no_join;
8c8a743c
PZ
1504
1505 my_grp = p->numa_group;
1506 if (grp == my_grp)
3354781a 1507 goto no_join;
8c8a743c
PZ
1508
1509 /*
1510 * Only join the other group if its bigger; if we're the bigger group,
1511 * the other task will join us.
1512 */
1513 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1514 goto no_join;
8c8a743c
PZ
1515
1516 /*
1517 * Tie-break on the grp address.
1518 */
1519 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1520 goto no_join;
8c8a743c 1521
dabe1d99
RR
1522 /* Always join threads in the same process. */
1523 if (tsk->mm == current->mm)
1524 join = true;
1525
1526 /* Simple filter to avoid false positives due to PID collisions */
1527 if (flags & TNF_SHARED)
1528 join = true;
8c8a743c 1529
3e6a9418
MG
1530 /* Update priv based on whether false sharing was detected */
1531 *priv = !join;
1532
dabe1d99 1533 if (join && !get_numa_group(grp))
3354781a 1534 goto no_join;
8c8a743c 1535
8c8a743c
PZ
1536 rcu_read_unlock();
1537
1538 if (!join)
1539 return;
1540
989348b5
MG
1541 double_lock(&my_grp->lock, &grp->lock);
1542
8c8a743c 1543 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1544 my_grp->faults[i] -= p->numa_faults[i];
1545 grp->faults[i] += p->numa_faults[i];
8c8a743c 1546 }
989348b5
MG
1547 my_grp->total_faults -= p->total_numa_faults;
1548 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1549
1550 list_move(&p->numa_entry, &grp->task_list);
1551 my_grp->nr_tasks--;
1552 grp->nr_tasks++;
1553
1554 spin_unlock(&my_grp->lock);
1555 spin_unlock(&grp->lock);
1556
1557 rcu_assign_pointer(p->numa_group, grp);
1558
1559 put_numa_group(my_grp);
3354781a
PZ
1560 return;
1561
1562no_join:
1563 rcu_read_unlock();
1564 return;
8c8a743c
PZ
1565}
1566
1567void task_numa_free(struct task_struct *p)
1568{
1569 struct numa_group *grp = p->numa_group;
1570 int i;
82727018 1571 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1572
1573 if (grp) {
989348b5 1574 spin_lock(&grp->lock);
8c8a743c 1575 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1576 grp->faults[i] -= p->numa_faults[i];
1577 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1578
8c8a743c
PZ
1579 list_del(&p->numa_entry);
1580 grp->nr_tasks--;
1581 spin_unlock(&grp->lock);
1582 rcu_assign_pointer(p->numa_group, NULL);
1583 put_numa_group(grp);
1584 }
1585
82727018
RR
1586 p->numa_faults = NULL;
1587 p->numa_faults_buffer = NULL;
1588 kfree(numa_faults);
8c8a743c
PZ
1589}
1590
cbee9f88
PZ
1591/*
1592 * Got a PROT_NONE fault for a page on @node.
1593 */
6688cc05 1594void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1595{
1596 struct task_struct *p = current;
6688cc05 1597 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1598 int priv;
cbee9f88 1599
10e84b97 1600 if (!numabalancing_enabled)
1a687c2e
MG
1601 return;
1602
9ff1d9ff
MG
1603 /* for example, ksmd faulting in a user's mm */
1604 if (!p->mm)
1605 return;
1606
82727018
RR
1607 /* Do not worry about placement if exiting */
1608 if (p->state == TASK_DEAD)
1609 return;
1610
f809ca9a
MG
1611 /* Allocate buffer to track faults on a per-node basis */
1612 if (unlikely(!p->numa_faults)) {
ac8e895b 1613 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1614
745d6147
MG
1615 /* numa_faults and numa_faults_buffer share the allocation */
1616 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1617 if (!p->numa_faults)
1618 return;
745d6147
MG
1619
1620 BUG_ON(p->numa_faults_buffer);
ac8e895b 1621 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1622 p->total_numa_faults = 0;
04bb2f94 1623 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1624 }
cbee9f88 1625
8c8a743c
PZ
1626 /*
1627 * First accesses are treated as private, otherwise consider accesses
1628 * to be private if the accessing pid has not changed
1629 */
1630 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1631 priv = 1;
1632 } else {
1633 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1634 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1635 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1636 }
1637
cbee9f88 1638 task_numa_placement(p);
f809ca9a 1639
2739d3ee
RR
1640 /*
1641 * Retry task to preferred node migration periodically, in case it
1642 * case it previously failed, or the scheduler moved us.
1643 */
1644 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1645 numa_migrate_preferred(p);
1646
b32e86b4
IM
1647 if (migrated)
1648 p->numa_pages_migrated += pages;
1649
ac8e895b 1650 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1651 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1652}
1653
6e5fb223
PZ
1654static void reset_ptenuma_scan(struct task_struct *p)
1655{
1656 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1657 p->mm->numa_scan_offset = 0;
1658}
1659
cbee9f88
PZ
1660/*
1661 * The expensive part of numa migration is done from task_work context.
1662 * Triggered from task_tick_numa().
1663 */
1664void task_numa_work(struct callback_head *work)
1665{
1666 unsigned long migrate, next_scan, now = jiffies;
1667 struct task_struct *p = current;
1668 struct mm_struct *mm = p->mm;
6e5fb223 1669 struct vm_area_struct *vma;
9f40604c 1670 unsigned long start, end;
598f0ec0 1671 unsigned long nr_pte_updates = 0;
9f40604c 1672 long pages;
cbee9f88
PZ
1673
1674 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1675
1676 work->next = work; /* protect against double add */
1677 /*
1678 * Who cares about NUMA placement when they're dying.
1679 *
1680 * NOTE: make sure not to dereference p->mm before this check,
1681 * exit_task_work() happens _after_ exit_mm() so we could be called
1682 * without p->mm even though we still had it when we enqueued this
1683 * work.
1684 */
1685 if (p->flags & PF_EXITING)
1686 return;
1687
930aa174 1688 if (!mm->numa_next_scan) {
7e8d16b6
MG
1689 mm->numa_next_scan = now +
1690 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1691 }
1692
cbee9f88
PZ
1693 /*
1694 * Enforce maximal scan/migration frequency..
1695 */
1696 migrate = mm->numa_next_scan;
1697 if (time_before(now, migrate))
1698 return;
1699
598f0ec0
MG
1700 if (p->numa_scan_period == 0) {
1701 p->numa_scan_period_max = task_scan_max(p);
1702 p->numa_scan_period = task_scan_min(p);
1703 }
cbee9f88 1704
fb003b80 1705 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1706 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1707 return;
1708
19a78d11
PZ
1709 /*
1710 * Delay this task enough that another task of this mm will likely win
1711 * the next time around.
1712 */
1713 p->node_stamp += 2 * TICK_NSEC;
1714
9f40604c
MG
1715 start = mm->numa_scan_offset;
1716 pages = sysctl_numa_balancing_scan_size;
1717 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1718 if (!pages)
1719 return;
cbee9f88 1720
6e5fb223 1721 down_read(&mm->mmap_sem);
9f40604c 1722 vma = find_vma(mm, start);
6e5fb223
PZ
1723 if (!vma) {
1724 reset_ptenuma_scan(p);
9f40604c 1725 start = 0;
6e5fb223
PZ
1726 vma = mm->mmap;
1727 }
9f40604c 1728 for (; vma; vma = vma->vm_next) {
fc314724 1729 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1730 continue;
1731
4591ce4f
MG
1732 /*
1733 * Shared library pages mapped by multiple processes are not
1734 * migrated as it is expected they are cache replicated. Avoid
1735 * hinting faults in read-only file-backed mappings or the vdso
1736 * as migrating the pages will be of marginal benefit.
1737 */
1738 if (!vma->vm_mm ||
1739 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1740 continue;
1741
9f40604c
MG
1742 do {
1743 start = max(start, vma->vm_start);
1744 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1745 end = min(end, vma->vm_end);
598f0ec0
MG
1746 nr_pte_updates += change_prot_numa(vma, start, end);
1747
1748 /*
1749 * Scan sysctl_numa_balancing_scan_size but ensure that
1750 * at least one PTE is updated so that unused virtual
1751 * address space is quickly skipped.
1752 */
1753 if (nr_pte_updates)
1754 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1755
9f40604c
MG
1756 start = end;
1757 if (pages <= 0)
1758 goto out;
1759 } while (end != vma->vm_end);
cbee9f88 1760 }
6e5fb223 1761
9f40604c 1762out:
6e5fb223 1763 /*
c69307d5
PZ
1764 * It is possible to reach the end of the VMA list but the last few
1765 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1766 * would find the !migratable VMA on the next scan but not reset the
1767 * scanner to the start so check it now.
6e5fb223
PZ
1768 */
1769 if (vma)
9f40604c 1770 mm->numa_scan_offset = start;
6e5fb223
PZ
1771 else
1772 reset_ptenuma_scan(p);
1773 up_read(&mm->mmap_sem);
cbee9f88
PZ
1774}
1775
1776/*
1777 * Drive the periodic memory faults..
1778 */
1779void task_tick_numa(struct rq *rq, struct task_struct *curr)
1780{
1781 struct callback_head *work = &curr->numa_work;
1782 u64 period, now;
1783
1784 /*
1785 * We don't care about NUMA placement if we don't have memory.
1786 */
1787 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1788 return;
1789
1790 /*
1791 * Using runtime rather than walltime has the dual advantage that
1792 * we (mostly) drive the selection from busy threads and that the
1793 * task needs to have done some actual work before we bother with
1794 * NUMA placement.
1795 */
1796 now = curr->se.sum_exec_runtime;
1797 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1798
1799 if (now - curr->node_stamp > period) {
4b96a29b 1800 if (!curr->node_stamp)
598f0ec0 1801 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1802 curr->node_stamp += period;
cbee9f88
PZ
1803
1804 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1805 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1806 task_work_add(curr, work, true);
1807 }
1808 }
1809}
1810#else
1811static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1812{
1813}
0ec8aa00
PZ
1814
1815static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1816{
1817}
1818
1819static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1820{
1821}
cbee9f88
PZ
1822#endif /* CONFIG_NUMA_BALANCING */
1823
30cfdcfc
DA
1824static void
1825account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1826{
1827 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1828 if (!parent_entity(se))
029632fb 1829 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1830#ifdef CONFIG_SMP
0ec8aa00
PZ
1831 if (entity_is_task(se)) {
1832 struct rq *rq = rq_of(cfs_rq);
1833
1834 account_numa_enqueue(rq, task_of(se));
1835 list_add(&se->group_node, &rq->cfs_tasks);
1836 }
367456c7 1837#endif
30cfdcfc 1838 cfs_rq->nr_running++;
30cfdcfc
DA
1839}
1840
1841static void
1842account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1843{
1844 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1845 if (!parent_entity(se))
029632fb 1846 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1847 if (entity_is_task(se)) {
1848 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1849 list_del_init(&se->group_node);
0ec8aa00 1850 }
30cfdcfc 1851 cfs_rq->nr_running--;
30cfdcfc
DA
1852}
1853
3ff6dcac
YZ
1854#ifdef CONFIG_FAIR_GROUP_SCHED
1855# ifdef CONFIG_SMP
cf5f0acf
PZ
1856static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1857{
1858 long tg_weight;
1859
1860 /*
1861 * Use this CPU's actual weight instead of the last load_contribution
1862 * to gain a more accurate current total weight. See
1863 * update_cfs_rq_load_contribution().
1864 */
bf5b986e 1865 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1866 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1867 tg_weight += cfs_rq->load.weight;
1868
1869 return tg_weight;
1870}
1871
6d5ab293 1872static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1873{
cf5f0acf 1874 long tg_weight, load, shares;
3ff6dcac 1875
cf5f0acf 1876 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1877 load = cfs_rq->load.weight;
3ff6dcac 1878
3ff6dcac 1879 shares = (tg->shares * load);
cf5f0acf
PZ
1880 if (tg_weight)
1881 shares /= tg_weight;
3ff6dcac
YZ
1882
1883 if (shares < MIN_SHARES)
1884 shares = MIN_SHARES;
1885 if (shares > tg->shares)
1886 shares = tg->shares;
1887
1888 return shares;
1889}
3ff6dcac 1890# else /* CONFIG_SMP */
6d5ab293 1891static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1892{
1893 return tg->shares;
1894}
3ff6dcac 1895# endif /* CONFIG_SMP */
2069dd75
PZ
1896static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1897 unsigned long weight)
1898{
19e5eebb
PT
1899 if (se->on_rq) {
1900 /* commit outstanding execution time */
1901 if (cfs_rq->curr == se)
1902 update_curr(cfs_rq);
2069dd75 1903 account_entity_dequeue(cfs_rq, se);
19e5eebb 1904 }
2069dd75
PZ
1905
1906 update_load_set(&se->load, weight);
1907
1908 if (se->on_rq)
1909 account_entity_enqueue(cfs_rq, se);
1910}
1911
82958366
PT
1912static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1913
6d5ab293 1914static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1915{
1916 struct task_group *tg;
1917 struct sched_entity *se;
3ff6dcac 1918 long shares;
2069dd75 1919
2069dd75
PZ
1920 tg = cfs_rq->tg;
1921 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1922 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1923 return;
3ff6dcac
YZ
1924#ifndef CONFIG_SMP
1925 if (likely(se->load.weight == tg->shares))
1926 return;
1927#endif
6d5ab293 1928 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1929
1930 reweight_entity(cfs_rq_of(se), se, shares);
1931}
1932#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1933static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1934{
1935}
1936#endif /* CONFIG_FAIR_GROUP_SCHED */
1937
141965c7 1938#ifdef CONFIG_SMP
5b51f2f8
PT
1939/*
1940 * We choose a half-life close to 1 scheduling period.
1941 * Note: The tables below are dependent on this value.
1942 */
1943#define LOAD_AVG_PERIOD 32
1944#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1945#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1946
1947/* Precomputed fixed inverse multiplies for multiplication by y^n */
1948static const u32 runnable_avg_yN_inv[] = {
1949 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1950 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1951 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1952 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1953 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1954 0x85aac367, 0x82cd8698,
1955};
1956
1957/*
1958 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1959 * over-estimates when re-combining.
1960 */
1961static const u32 runnable_avg_yN_sum[] = {
1962 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1963 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1964 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1965};
1966
9d85f21c
PT
1967/*
1968 * Approximate:
1969 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1970 */
1971static __always_inline u64 decay_load(u64 val, u64 n)
1972{
5b51f2f8
PT
1973 unsigned int local_n;
1974
1975 if (!n)
1976 return val;
1977 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1978 return 0;
1979
1980 /* after bounds checking we can collapse to 32-bit */
1981 local_n = n;
1982
1983 /*
1984 * As y^PERIOD = 1/2, we can combine
1985 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1986 * With a look-up table which covers k^n (n<PERIOD)
1987 *
1988 * To achieve constant time decay_load.
1989 */
1990 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1991 val >>= local_n / LOAD_AVG_PERIOD;
1992 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1993 }
1994
5b51f2f8
PT
1995 val *= runnable_avg_yN_inv[local_n];
1996 /* We don't use SRR here since we always want to round down. */
1997 return val >> 32;
1998}
1999
2000/*
2001 * For updates fully spanning n periods, the contribution to runnable
2002 * average will be: \Sum 1024*y^n
2003 *
2004 * We can compute this reasonably efficiently by combining:
2005 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2006 */
2007static u32 __compute_runnable_contrib(u64 n)
2008{
2009 u32 contrib = 0;
2010
2011 if (likely(n <= LOAD_AVG_PERIOD))
2012 return runnable_avg_yN_sum[n];
2013 else if (unlikely(n >= LOAD_AVG_MAX_N))
2014 return LOAD_AVG_MAX;
2015
2016 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2017 do {
2018 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2019 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2020
2021 n -= LOAD_AVG_PERIOD;
2022 } while (n > LOAD_AVG_PERIOD);
2023
2024 contrib = decay_load(contrib, n);
2025 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2026}
2027
2028/*
2029 * We can represent the historical contribution to runnable average as the
2030 * coefficients of a geometric series. To do this we sub-divide our runnable
2031 * history into segments of approximately 1ms (1024us); label the segment that
2032 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2033 *
2034 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2035 * p0 p1 p2
2036 * (now) (~1ms ago) (~2ms ago)
2037 *
2038 * Let u_i denote the fraction of p_i that the entity was runnable.
2039 *
2040 * We then designate the fractions u_i as our co-efficients, yielding the
2041 * following representation of historical load:
2042 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2043 *
2044 * We choose y based on the with of a reasonably scheduling period, fixing:
2045 * y^32 = 0.5
2046 *
2047 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2048 * approximately half as much as the contribution to load within the last ms
2049 * (u_0).
2050 *
2051 * When a period "rolls over" and we have new u_0`, multiplying the previous
2052 * sum again by y is sufficient to update:
2053 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2054 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2055 */
2056static __always_inline int __update_entity_runnable_avg(u64 now,
2057 struct sched_avg *sa,
2058 int runnable)
2059{
5b51f2f8
PT
2060 u64 delta, periods;
2061 u32 runnable_contrib;
9d85f21c
PT
2062 int delta_w, decayed = 0;
2063
2064 delta = now - sa->last_runnable_update;
2065 /*
2066 * This should only happen when time goes backwards, which it
2067 * unfortunately does during sched clock init when we swap over to TSC.
2068 */
2069 if ((s64)delta < 0) {
2070 sa->last_runnable_update = now;
2071 return 0;
2072 }
2073
2074 /*
2075 * Use 1024ns as the unit of measurement since it's a reasonable
2076 * approximation of 1us and fast to compute.
2077 */
2078 delta >>= 10;
2079 if (!delta)
2080 return 0;
2081 sa->last_runnable_update = now;
2082
2083 /* delta_w is the amount already accumulated against our next period */
2084 delta_w = sa->runnable_avg_period % 1024;
2085 if (delta + delta_w >= 1024) {
2086 /* period roll-over */
2087 decayed = 1;
2088
2089 /*
2090 * Now that we know we're crossing a period boundary, figure
2091 * out how much from delta we need to complete the current
2092 * period and accrue it.
2093 */
2094 delta_w = 1024 - delta_w;
5b51f2f8
PT
2095 if (runnable)
2096 sa->runnable_avg_sum += delta_w;
2097 sa->runnable_avg_period += delta_w;
2098
2099 delta -= delta_w;
2100
2101 /* Figure out how many additional periods this update spans */
2102 periods = delta / 1024;
2103 delta %= 1024;
2104
2105 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2106 periods + 1);
2107 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2108 periods + 1);
2109
2110 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2111 runnable_contrib = __compute_runnable_contrib(periods);
2112 if (runnable)
2113 sa->runnable_avg_sum += runnable_contrib;
2114 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2115 }
2116
2117 /* Remainder of delta accrued against u_0` */
2118 if (runnable)
2119 sa->runnable_avg_sum += delta;
2120 sa->runnable_avg_period += delta;
2121
2122 return decayed;
2123}
2124
9ee474f5 2125/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2126static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2127{
2128 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2129 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2130
2131 decays -= se->avg.decay_count;
2132 if (!decays)
aff3e498 2133 return 0;
9ee474f5
PT
2134
2135 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2136 se->avg.decay_count = 0;
aff3e498
PT
2137
2138 return decays;
9ee474f5
PT
2139}
2140
c566e8e9
PT
2141#ifdef CONFIG_FAIR_GROUP_SCHED
2142static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2143 int force_update)
2144{
2145 struct task_group *tg = cfs_rq->tg;
bf5b986e 2146 long tg_contrib;
c566e8e9
PT
2147
2148 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2149 tg_contrib -= cfs_rq->tg_load_contrib;
2150
bf5b986e
AS
2151 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2152 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2153 cfs_rq->tg_load_contrib += tg_contrib;
2154 }
2155}
8165e145 2156
bb17f655
PT
2157/*
2158 * Aggregate cfs_rq runnable averages into an equivalent task_group
2159 * representation for computing load contributions.
2160 */
2161static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2162 struct cfs_rq *cfs_rq)
2163{
2164 struct task_group *tg = cfs_rq->tg;
2165 long contrib;
2166
2167 /* The fraction of a cpu used by this cfs_rq */
2168 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2169 sa->runnable_avg_period + 1);
2170 contrib -= cfs_rq->tg_runnable_contrib;
2171
2172 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2173 atomic_add(contrib, &tg->runnable_avg);
2174 cfs_rq->tg_runnable_contrib += contrib;
2175 }
2176}
2177
8165e145
PT
2178static inline void __update_group_entity_contrib(struct sched_entity *se)
2179{
2180 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2181 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2182 int runnable_avg;
2183
8165e145
PT
2184 u64 contrib;
2185
2186 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2187 se->avg.load_avg_contrib = div_u64(contrib,
2188 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2189
2190 /*
2191 * For group entities we need to compute a correction term in the case
2192 * that they are consuming <1 cpu so that we would contribute the same
2193 * load as a task of equal weight.
2194 *
2195 * Explicitly co-ordinating this measurement would be expensive, but
2196 * fortunately the sum of each cpus contribution forms a usable
2197 * lower-bound on the true value.
2198 *
2199 * Consider the aggregate of 2 contributions. Either they are disjoint
2200 * (and the sum represents true value) or they are disjoint and we are
2201 * understating by the aggregate of their overlap.
2202 *
2203 * Extending this to N cpus, for a given overlap, the maximum amount we
2204 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2205 * cpus that overlap for this interval and w_i is the interval width.
2206 *
2207 * On a small machine; the first term is well-bounded which bounds the
2208 * total error since w_i is a subset of the period. Whereas on a
2209 * larger machine, while this first term can be larger, if w_i is the
2210 * of consequential size guaranteed to see n_i*w_i quickly converge to
2211 * our upper bound of 1-cpu.
2212 */
2213 runnable_avg = atomic_read(&tg->runnable_avg);
2214 if (runnable_avg < NICE_0_LOAD) {
2215 se->avg.load_avg_contrib *= runnable_avg;
2216 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2217 }
8165e145 2218}
c566e8e9
PT
2219#else
2220static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2221 int force_update) {}
bb17f655
PT
2222static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2223 struct cfs_rq *cfs_rq) {}
8165e145 2224static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2225#endif
2226
8165e145
PT
2227static inline void __update_task_entity_contrib(struct sched_entity *se)
2228{
2229 u32 contrib;
2230
2231 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2232 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2233 contrib /= (se->avg.runnable_avg_period + 1);
2234 se->avg.load_avg_contrib = scale_load(contrib);
2235}
2236
2dac754e
PT
2237/* Compute the current contribution to load_avg by se, return any delta */
2238static long __update_entity_load_avg_contrib(struct sched_entity *se)
2239{
2240 long old_contrib = se->avg.load_avg_contrib;
2241
8165e145
PT
2242 if (entity_is_task(se)) {
2243 __update_task_entity_contrib(se);
2244 } else {
bb17f655 2245 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2246 __update_group_entity_contrib(se);
2247 }
2dac754e
PT
2248
2249 return se->avg.load_avg_contrib - old_contrib;
2250}
2251
9ee474f5
PT
2252static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2253 long load_contrib)
2254{
2255 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2256 cfs_rq->blocked_load_avg -= load_contrib;
2257 else
2258 cfs_rq->blocked_load_avg = 0;
2259}
2260
f1b17280
PT
2261static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2262
9d85f21c 2263/* Update a sched_entity's runnable average */
9ee474f5
PT
2264static inline void update_entity_load_avg(struct sched_entity *se,
2265 int update_cfs_rq)
9d85f21c 2266{
2dac754e
PT
2267 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2268 long contrib_delta;
f1b17280 2269 u64 now;
2dac754e 2270
f1b17280
PT
2271 /*
2272 * For a group entity we need to use their owned cfs_rq_clock_task() in
2273 * case they are the parent of a throttled hierarchy.
2274 */
2275 if (entity_is_task(se))
2276 now = cfs_rq_clock_task(cfs_rq);
2277 else
2278 now = cfs_rq_clock_task(group_cfs_rq(se));
2279
2280 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2281 return;
2282
2283 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2284
2285 if (!update_cfs_rq)
2286 return;
2287
2dac754e
PT
2288 if (se->on_rq)
2289 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2290 else
2291 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2292}
2293
2294/*
2295 * Decay the load contributed by all blocked children and account this so that
2296 * their contribution may appropriately discounted when they wake up.
2297 */
aff3e498 2298static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2299{
f1b17280 2300 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2301 u64 decays;
2302
2303 decays = now - cfs_rq->last_decay;
aff3e498 2304 if (!decays && !force_update)
9ee474f5
PT
2305 return;
2306
2509940f
AS
2307 if (atomic_long_read(&cfs_rq->removed_load)) {
2308 unsigned long removed_load;
2309 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2310 subtract_blocked_load_contrib(cfs_rq, removed_load);
2311 }
9ee474f5 2312
aff3e498
PT
2313 if (decays) {
2314 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2315 decays);
2316 atomic64_add(decays, &cfs_rq->decay_counter);
2317 cfs_rq->last_decay = now;
2318 }
c566e8e9
PT
2319
2320 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2321}
18bf2805
BS
2322
2323static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2324{
78becc27 2325 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2326 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2327}
2dac754e
PT
2328
2329/* Add the load generated by se into cfs_rq's child load-average */
2330static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2331 struct sched_entity *se,
2332 int wakeup)
2dac754e 2333{
aff3e498
PT
2334 /*
2335 * We track migrations using entity decay_count <= 0, on a wake-up
2336 * migration we use a negative decay count to track the remote decays
2337 * accumulated while sleeping.
a75cdaa9
AS
2338 *
2339 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2340 * are seen by enqueue_entity_load_avg() as a migration with an already
2341 * constructed load_avg_contrib.
aff3e498
PT
2342 */
2343 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2344 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2345 if (se->avg.decay_count) {
2346 /*
2347 * In a wake-up migration we have to approximate the
2348 * time sleeping. This is because we can't synchronize
2349 * clock_task between the two cpus, and it is not
2350 * guaranteed to be read-safe. Instead, we can
2351 * approximate this using our carried decays, which are
2352 * explicitly atomically readable.
2353 */
2354 se->avg.last_runnable_update -= (-se->avg.decay_count)
2355 << 20;
2356 update_entity_load_avg(se, 0);
2357 /* Indicate that we're now synchronized and on-rq */
2358 se->avg.decay_count = 0;
2359 }
9ee474f5
PT
2360 wakeup = 0;
2361 } else {
282cf499
AS
2362 /*
2363 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2364 * would have made count negative); we must be careful to avoid
2365 * double-accounting blocked time after synchronizing decays.
2366 */
2367 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2368 << 20;
9ee474f5
PT
2369 }
2370
aff3e498
PT
2371 /* migrated tasks did not contribute to our blocked load */
2372 if (wakeup) {
9ee474f5 2373 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2374 update_entity_load_avg(se, 0);
2375 }
9ee474f5 2376
2dac754e 2377 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2378 /* we force update consideration on load-balancer moves */
2379 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2380}
2381
9ee474f5
PT
2382/*
2383 * Remove se's load from this cfs_rq child load-average, if the entity is
2384 * transitioning to a blocked state we track its projected decay using
2385 * blocked_load_avg.
2386 */
2dac754e 2387static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2388 struct sched_entity *se,
2389 int sleep)
2dac754e 2390{
9ee474f5 2391 update_entity_load_avg(se, 1);
aff3e498
PT
2392 /* we force update consideration on load-balancer moves */
2393 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2394
2dac754e 2395 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2396 if (sleep) {
2397 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2398 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2399 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2400}
642dbc39
VG
2401
2402/*
2403 * Update the rq's load with the elapsed running time before entering
2404 * idle. if the last scheduled task is not a CFS task, idle_enter will
2405 * be the only way to update the runnable statistic.
2406 */
2407void idle_enter_fair(struct rq *this_rq)
2408{
2409 update_rq_runnable_avg(this_rq, 1);
2410}
2411
2412/*
2413 * Update the rq's load with the elapsed idle time before a task is
2414 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2415 * be the only way to update the runnable statistic.
2416 */
2417void idle_exit_fair(struct rq *this_rq)
2418{
2419 update_rq_runnable_avg(this_rq, 0);
2420}
2421
9d85f21c 2422#else
9ee474f5
PT
2423static inline void update_entity_load_avg(struct sched_entity *se,
2424 int update_cfs_rq) {}
18bf2805 2425static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2426static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2427 struct sched_entity *se,
2428 int wakeup) {}
2dac754e 2429static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2430 struct sched_entity *se,
2431 int sleep) {}
aff3e498
PT
2432static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2433 int force_update) {}
9d85f21c
PT
2434#endif
2435
2396af69 2436static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2437{
bf0f6f24 2438#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2439 struct task_struct *tsk = NULL;
2440
2441 if (entity_is_task(se))
2442 tsk = task_of(se);
2443
41acab88 2444 if (se->statistics.sleep_start) {
78becc27 2445 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2446
2447 if ((s64)delta < 0)
2448 delta = 0;
2449
41acab88
LDM
2450 if (unlikely(delta > se->statistics.sleep_max))
2451 se->statistics.sleep_max = delta;
bf0f6f24 2452
8c79a045 2453 se->statistics.sleep_start = 0;
41acab88 2454 se->statistics.sum_sleep_runtime += delta;
9745512c 2455
768d0c27 2456 if (tsk) {
e414314c 2457 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2458 trace_sched_stat_sleep(tsk, delta);
2459 }
bf0f6f24 2460 }
41acab88 2461 if (se->statistics.block_start) {
78becc27 2462 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2463
2464 if ((s64)delta < 0)
2465 delta = 0;
2466
41acab88
LDM
2467 if (unlikely(delta > se->statistics.block_max))
2468 se->statistics.block_max = delta;
bf0f6f24 2469
8c79a045 2470 se->statistics.block_start = 0;
41acab88 2471 se->statistics.sum_sleep_runtime += delta;
30084fbd 2472
e414314c 2473 if (tsk) {
8f0dfc34 2474 if (tsk->in_iowait) {
41acab88
LDM
2475 se->statistics.iowait_sum += delta;
2476 se->statistics.iowait_count++;
768d0c27 2477 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2478 }
2479
b781a602
AV
2480 trace_sched_stat_blocked(tsk, delta);
2481
e414314c
PZ
2482 /*
2483 * Blocking time is in units of nanosecs, so shift by
2484 * 20 to get a milliseconds-range estimation of the
2485 * amount of time that the task spent sleeping:
2486 */
2487 if (unlikely(prof_on == SLEEP_PROFILING)) {
2488 profile_hits(SLEEP_PROFILING,
2489 (void *)get_wchan(tsk),
2490 delta >> 20);
2491 }
2492 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2493 }
bf0f6f24
IM
2494 }
2495#endif
2496}
2497
ddc97297
PZ
2498static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2499{
2500#ifdef CONFIG_SCHED_DEBUG
2501 s64 d = se->vruntime - cfs_rq->min_vruntime;
2502
2503 if (d < 0)
2504 d = -d;
2505
2506 if (d > 3*sysctl_sched_latency)
2507 schedstat_inc(cfs_rq, nr_spread_over);
2508#endif
2509}
2510
aeb73b04
PZ
2511static void
2512place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2513{
1af5f730 2514 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2515
2cb8600e
PZ
2516 /*
2517 * The 'current' period is already promised to the current tasks,
2518 * however the extra weight of the new task will slow them down a
2519 * little, place the new task so that it fits in the slot that
2520 * stays open at the end.
2521 */
94dfb5e7 2522 if (initial && sched_feat(START_DEBIT))
f9c0b095 2523 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2524
a2e7a7eb 2525 /* sleeps up to a single latency don't count. */
5ca9880c 2526 if (!initial) {
a2e7a7eb 2527 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2528
a2e7a7eb
MG
2529 /*
2530 * Halve their sleep time's effect, to allow
2531 * for a gentler effect of sleepers:
2532 */
2533 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2534 thresh >>= 1;
51e0304c 2535
a2e7a7eb 2536 vruntime -= thresh;
aeb73b04
PZ
2537 }
2538
b5d9d734 2539 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2540 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2541}
2542
d3d9dc33
PT
2543static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2544
bf0f6f24 2545static void
88ec22d3 2546enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2547{
88ec22d3
PZ
2548 /*
2549 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2550 * through calling update_curr().
88ec22d3 2551 */
371fd7e7 2552 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2553 se->vruntime += cfs_rq->min_vruntime;
2554
bf0f6f24 2555 /*
a2a2d680 2556 * Update run-time statistics of the 'current'.
bf0f6f24 2557 */
b7cc0896 2558 update_curr(cfs_rq);
f269ae04 2559 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2560 account_entity_enqueue(cfs_rq, se);
2561 update_cfs_shares(cfs_rq);
bf0f6f24 2562
88ec22d3 2563 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2564 place_entity(cfs_rq, se, 0);
2396af69 2565 enqueue_sleeper(cfs_rq, se);
e9acbff6 2566 }
bf0f6f24 2567
d2417e5a 2568 update_stats_enqueue(cfs_rq, se);
ddc97297 2569 check_spread(cfs_rq, se);
83b699ed
SV
2570 if (se != cfs_rq->curr)
2571 __enqueue_entity(cfs_rq, se);
2069dd75 2572 se->on_rq = 1;
3d4b47b4 2573
d3d9dc33 2574 if (cfs_rq->nr_running == 1) {
3d4b47b4 2575 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2576 check_enqueue_throttle(cfs_rq);
2577 }
bf0f6f24
IM
2578}
2579
2c13c919 2580static void __clear_buddies_last(struct sched_entity *se)
2002c695 2581{
2c13c919
RR
2582 for_each_sched_entity(se) {
2583 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2584 if (cfs_rq->last == se)
2585 cfs_rq->last = NULL;
2586 else
2587 break;
2588 }
2589}
2002c695 2590
2c13c919
RR
2591static void __clear_buddies_next(struct sched_entity *se)
2592{
2593 for_each_sched_entity(se) {
2594 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2595 if (cfs_rq->next == se)
2596 cfs_rq->next = NULL;
2597 else
2598 break;
2599 }
2002c695
PZ
2600}
2601
ac53db59
RR
2602static void __clear_buddies_skip(struct sched_entity *se)
2603{
2604 for_each_sched_entity(se) {
2605 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2606 if (cfs_rq->skip == se)
2607 cfs_rq->skip = NULL;
2608 else
2609 break;
2610 }
2611}
2612
a571bbea
PZ
2613static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2614{
2c13c919
RR
2615 if (cfs_rq->last == se)
2616 __clear_buddies_last(se);
2617
2618 if (cfs_rq->next == se)
2619 __clear_buddies_next(se);
ac53db59
RR
2620
2621 if (cfs_rq->skip == se)
2622 __clear_buddies_skip(se);
a571bbea
PZ
2623}
2624
6c16a6dc 2625static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2626
bf0f6f24 2627static void
371fd7e7 2628dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2629{
a2a2d680
DA
2630 /*
2631 * Update run-time statistics of the 'current'.
2632 */
2633 update_curr(cfs_rq);
17bc14b7 2634 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2635
19b6a2e3 2636 update_stats_dequeue(cfs_rq, se);
371fd7e7 2637 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2638#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2639 if (entity_is_task(se)) {
2640 struct task_struct *tsk = task_of(se);
2641
2642 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2643 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2644 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2645 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2646 }
db36cc7d 2647#endif
67e9fb2a
PZ
2648 }
2649
2002c695 2650 clear_buddies(cfs_rq, se);
4793241b 2651
83b699ed 2652 if (se != cfs_rq->curr)
30cfdcfc 2653 __dequeue_entity(cfs_rq, se);
17bc14b7 2654 se->on_rq = 0;
30cfdcfc 2655 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2656
2657 /*
2658 * Normalize the entity after updating the min_vruntime because the
2659 * update can refer to the ->curr item and we need to reflect this
2660 * movement in our normalized position.
2661 */
371fd7e7 2662 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2663 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2664
d8b4986d
PT
2665 /* return excess runtime on last dequeue */
2666 return_cfs_rq_runtime(cfs_rq);
2667
1e876231 2668 update_min_vruntime(cfs_rq);
17bc14b7 2669 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2670}
2671
2672/*
2673 * Preempt the current task with a newly woken task if needed:
2674 */
7c92e54f 2675static void
2e09bf55 2676check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2677{
11697830 2678 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2679 struct sched_entity *se;
2680 s64 delta;
11697830 2681
6d0f0ebd 2682 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2683 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2684 if (delta_exec > ideal_runtime) {
bf0f6f24 2685 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2686 /*
2687 * The current task ran long enough, ensure it doesn't get
2688 * re-elected due to buddy favours.
2689 */
2690 clear_buddies(cfs_rq, curr);
f685ceac
MG
2691 return;
2692 }
2693
2694 /*
2695 * Ensure that a task that missed wakeup preemption by a
2696 * narrow margin doesn't have to wait for a full slice.
2697 * This also mitigates buddy induced latencies under load.
2698 */
f685ceac
MG
2699 if (delta_exec < sysctl_sched_min_granularity)
2700 return;
2701
f4cfb33e
WX
2702 se = __pick_first_entity(cfs_rq);
2703 delta = curr->vruntime - se->vruntime;
f685ceac 2704
f4cfb33e
WX
2705 if (delta < 0)
2706 return;
d7d82944 2707
f4cfb33e
WX
2708 if (delta > ideal_runtime)
2709 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2710}
2711
83b699ed 2712static void
8494f412 2713set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2714{
83b699ed
SV
2715 /* 'current' is not kept within the tree. */
2716 if (se->on_rq) {
2717 /*
2718 * Any task has to be enqueued before it get to execute on
2719 * a CPU. So account for the time it spent waiting on the
2720 * runqueue.
2721 */
2722 update_stats_wait_end(cfs_rq, se);
2723 __dequeue_entity(cfs_rq, se);
2724 }
2725
79303e9e 2726 update_stats_curr_start(cfs_rq, se);
429d43bc 2727 cfs_rq->curr = se;
eba1ed4b
IM
2728#ifdef CONFIG_SCHEDSTATS
2729 /*
2730 * Track our maximum slice length, if the CPU's load is at
2731 * least twice that of our own weight (i.e. dont track it
2732 * when there are only lesser-weight tasks around):
2733 */
495eca49 2734 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2735 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2736 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2737 }
2738#endif
4a55b450 2739 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2740}
2741
3f3a4904
PZ
2742static int
2743wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2744
ac53db59
RR
2745/*
2746 * Pick the next process, keeping these things in mind, in this order:
2747 * 1) keep things fair between processes/task groups
2748 * 2) pick the "next" process, since someone really wants that to run
2749 * 3) pick the "last" process, for cache locality
2750 * 4) do not run the "skip" process, if something else is available
2751 */
f4b6755f 2752static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2753{
ac53db59 2754 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2755 struct sched_entity *left = se;
f4b6755f 2756
ac53db59
RR
2757 /*
2758 * Avoid running the skip buddy, if running something else can
2759 * be done without getting too unfair.
2760 */
2761 if (cfs_rq->skip == se) {
2762 struct sched_entity *second = __pick_next_entity(se);
2763 if (second && wakeup_preempt_entity(second, left) < 1)
2764 se = second;
2765 }
aa2ac252 2766
f685ceac
MG
2767 /*
2768 * Prefer last buddy, try to return the CPU to a preempted task.
2769 */
2770 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2771 se = cfs_rq->last;
2772
ac53db59
RR
2773 /*
2774 * Someone really wants this to run. If it's not unfair, run it.
2775 */
2776 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2777 se = cfs_rq->next;
2778
f685ceac 2779 clear_buddies(cfs_rq, se);
4793241b
PZ
2780
2781 return se;
aa2ac252
PZ
2782}
2783
d3d9dc33
PT
2784static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2785
ab6cde26 2786static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2787{
2788 /*
2789 * If still on the runqueue then deactivate_task()
2790 * was not called and update_curr() has to be done:
2791 */
2792 if (prev->on_rq)
b7cc0896 2793 update_curr(cfs_rq);
bf0f6f24 2794
d3d9dc33
PT
2795 /* throttle cfs_rqs exceeding runtime */
2796 check_cfs_rq_runtime(cfs_rq);
2797
ddc97297 2798 check_spread(cfs_rq, prev);
30cfdcfc 2799 if (prev->on_rq) {
5870db5b 2800 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2801 /* Put 'current' back into the tree. */
2802 __enqueue_entity(cfs_rq, prev);
9d85f21c 2803 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2804 update_entity_load_avg(prev, 1);
30cfdcfc 2805 }
429d43bc 2806 cfs_rq->curr = NULL;
bf0f6f24
IM
2807}
2808
8f4d37ec
PZ
2809static void
2810entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2811{
bf0f6f24 2812 /*
30cfdcfc 2813 * Update run-time statistics of the 'current'.
bf0f6f24 2814 */
30cfdcfc 2815 update_curr(cfs_rq);
bf0f6f24 2816
9d85f21c
PT
2817 /*
2818 * Ensure that runnable average is periodically updated.
2819 */
9ee474f5 2820 update_entity_load_avg(curr, 1);
aff3e498 2821 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2822 update_cfs_shares(cfs_rq);
9d85f21c 2823
8f4d37ec
PZ
2824#ifdef CONFIG_SCHED_HRTICK
2825 /*
2826 * queued ticks are scheduled to match the slice, so don't bother
2827 * validating it and just reschedule.
2828 */
983ed7a6
HH
2829 if (queued) {
2830 resched_task(rq_of(cfs_rq)->curr);
2831 return;
2832 }
8f4d37ec
PZ
2833 /*
2834 * don't let the period tick interfere with the hrtick preemption
2835 */
2836 if (!sched_feat(DOUBLE_TICK) &&
2837 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2838 return;
2839#endif
2840
2c2efaed 2841 if (cfs_rq->nr_running > 1)
2e09bf55 2842 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2843}
2844
ab84d31e
PT
2845
2846/**************************************************
2847 * CFS bandwidth control machinery
2848 */
2849
2850#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2851
2852#ifdef HAVE_JUMP_LABEL
c5905afb 2853static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2854
2855static inline bool cfs_bandwidth_used(void)
2856{
c5905afb 2857 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2858}
2859
1ee14e6c 2860void cfs_bandwidth_usage_inc(void)
029632fb 2861{
1ee14e6c
BS
2862 static_key_slow_inc(&__cfs_bandwidth_used);
2863}
2864
2865void cfs_bandwidth_usage_dec(void)
2866{
2867 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2868}
2869#else /* HAVE_JUMP_LABEL */
2870static bool cfs_bandwidth_used(void)
2871{
2872 return true;
2873}
2874
1ee14e6c
BS
2875void cfs_bandwidth_usage_inc(void) {}
2876void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2877#endif /* HAVE_JUMP_LABEL */
2878
ab84d31e
PT
2879/*
2880 * default period for cfs group bandwidth.
2881 * default: 0.1s, units: nanoseconds
2882 */
2883static inline u64 default_cfs_period(void)
2884{
2885 return 100000000ULL;
2886}
ec12cb7f
PT
2887
2888static inline u64 sched_cfs_bandwidth_slice(void)
2889{
2890 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2891}
2892
a9cf55b2
PT
2893/*
2894 * Replenish runtime according to assigned quota and update expiration time.
2895 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2896 * additional synchronization around rq->lock.
2897 *
2898 * requires cfs_b->lock
2899 */
029632fb 2900void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2901{
2902 u64 now;
2903
2904 if (cfs_b->quota == RUNTIME_INF)
2905 return;
2906
2907 now = sched_clock_cpu(smp_processor_id());
2908 cfs_b->runtime = cfs_b->quota;
2909 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2910}
2911
029632fb
PZ
2912static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2913{
2914 return &tg->cfs_bandwidth;
2915}
2916
f1b17280
PT
2917/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2918static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2919{
2920 if (unlikely(cfs_rq->throttle_count))
2921 return cfs_rq->throttled_clock_task;
2922
78becc27 2923 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2924}
2925
85dac906
PT
2926/* returns 0 on failure to allocate runtime */
2927static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2928{
2929 struct task_group *tg = cfs_rq->tg;
2930 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2931 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2932
2933 /* note: this is a positive sum as runtime_remaining <= 0 */
2934 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2935
2936 raw_spin_lock(&cfs_b->lock);
2937 if (cfs_b->quota == RUNTIME_INF)
2938 amount = min_amount;
58088ad0 2939 else {
a9cf55b2
PT
2940 /*
2941 * If the bandwidth pool has become inactive, then at least one
2942 * period must have elapsed since the last consumption.
2943 * Refresh the global state and ensure bandwidth timer becomes
2944 * active.
2945 */
2946 if (!cfs_b->timer_active) {
2947 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2948 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2949 }
58088ad0
PT
2950
2951 if (cfs_b->runtime > 0) {
2952 amount = min(cfs_b->runtime, min_amount);
2953 cfs_b->runtime -= amount;
2954 cfs_b->idle = 0;
2955 }
ec12cb7f 2956 }
a9cf55b2 2957 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2958 raw_spin_unlock(&cfs_b->lock);
2959
2960 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2961 /*
2962 * we may have advanced our local expiration to account for allowed
2963 * spread between our sched_clock and the one on which runtime was
2964 * issued.
2965 */
2966 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2967 cfs_rq->runtime_expires = expires;
85dac906
PT
2968
2969 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2970}
2971
a9cf55b2
PT
2972/*
2973 * Note: This depends on the synchronization provided by sched_clock and the
2974 * fact that rq->clock snapshots this value.
2975 */
2976static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2977{
a9cf55b2 2978 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2979
2980 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2981 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2982 return;
2983
a9cf55b2
PT
2984 if (cfs_rq->runtime_remaining < 0)
2985 return;
2986
2987 /*
2988 * If the local deadline has passed we have to consider the
2989 * possibility that our sched_clock is 'fast' and the global deadline
2990 * has not truly expired.
2991 *
2992 * Fortunately we can check determine whether this the case by checking
2993 * whether the global deadline has advanced.
2994 */
2995
2996 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2997 /* extend local deadline, drift is bounded above by 2 ticks */
2998 cfs_rq->runtime_expires += TICK_NSEC;
2999 } else {
3000 /* global deadline is ahead, expiration has passed */
3001 cfs_rq->runtime_remaining = 0;
3002 }
3003}
3004
3005static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3006 unsigned long delta_exec)
3007{
3008 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3009 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3010 expire_cfs_rq_runtime(cfs_rq);
3011
3012 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3013 return;
3014
85dac906
PT
3015 /*
3016 * if we're unable to extend our runtime we resched so that the active
3017 * hierarchy can be throttled
3018 */
3019 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3020 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3021}
3022
6c16a6dc
PZ
3023static __always_inline
3024void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 3025{
56f570e5 3026 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3027 return;
3028
3029 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3030}
3031
85dac906
PT
3032static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3033{
56f570e5 3034 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3035}
3036
64660c86
PT
3037/* check whether cfs_rq, or any parent, is throttled */
3038static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3039{
56f570e5 3040 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3041}
3042
3043/*
3044 * Ensure that neither of the group entities corresponding to src_cpu or
3045 * dest_cpu are members of a throttled hierarchy when performing group
3046 * load-balance operations.
3047 */
3048static inline int throttled_lb_pair(struct task_group *tg,
3049 int src_cpu, int dest_cpu)
3050{
3051 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3052
3053 src_cfs_rq = tg->cfs_rq[src_cpu];
3054 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3055
3056 return throttled_hierarchy(src_cfs_rq) ||
3057 throttled_hierarchy(dest_cfs_rq);
3058}
3059
3060/* updated child weight may affect parent so we have to do this bottom up */
3061static int tg_unthrottle_up(struct task_group *tg, void *data)
3062{
3063 struct rq *rq = data;
3064 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3065
3066 cfs_rq->throttle_count--;
3067#ifdef CONFIG_SMP
3068 if (!cfs_rq->throttle_count) {
f1b17280 3069 /* adjust cfs_rq_clock_task() */
78becc27 3070 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3071 cfs_rq->throttled_clock_task;
64660c86
PT
3072 }
3073#endif
3074
3075 return 0;
3076}
3077
3078static int tg_throttle_down(struct task_group *tg, void *data)
3079{
3080 struct rq *rq = data;
3081 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3082
82958366
PT
3083 /* group is entering throttled state, stop time */
3084 if (!cfs_rq->throttle_count)
78becc27 3085 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3086 cfs_rq->throttle_count++;
3087
3088 return 0;
3089}
3090
d3d9dc33 3091static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3092{
3093 struct rq *rq = rq_of(cfs_rq);
3094 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3095 struct sched_entity *se;
3096 long task_delta, dequeue = 1;
3097
3098 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3099
f1b17280 3100 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3101 rcu_read_lock();
3102 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3103 rcu_read_unlock();
85dac906
PT
3104
3105 task_delta = cfs_rq->h_nr_running;
3106 for_each_sched_entity(se) {
3107 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3108 /* throttled entity or throttle-on-deactivate */
3109 if (!se->on_rq)
3110 break;
3111
3112 if (dequeue)
3113 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3114 qcfs_rq->h_nr_running -= task_delta;
3115
3116 if (qcfs_rq->load.weight)
3117 dequeue = 0;
3118 }
3119
3120 if (!se)
3121 rq->nr_running -= task_delta;
3122
3123 cfs_rq->throttled = 1;
78becc27 3124 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3125 raw_spin_lock(&cfs_b->lock);
3126 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3127 if (!cfs_b->timer_active)
3128 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3129 raw_spin_unlock(&cfs_b->lock);
3130}
3131
029632fb 3132void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3133{
3134 struct rq *rq = rq_of(cfs_rq);
3135 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3136 struct sched_entity *se;
3137 int enqueue = 1;
3138 long task_delta;
3139
22b958d8 3140 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3141
3142 cfs_rq->throttled = 0;
1a55af2e
FW
3143
3144 update_rq_clock(rq);
3145
671fd9da 3146 raw_spin_lock(&cfs_b->lock);
78becc27 3147 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3148 list_del_rcu(&cfs_rq->throttled_list);
3149 raw_spin_unlock(&cfs_b->lock);
3150
64660c86
PT
3151 /* update hierarchical throttle state */
3152 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3153
671fd9da
PT
3154 if (!cfs_rq->load.weight)
3155 return;
3156
3157 task_delta = cfs_rq->h_nr_running;
3158 for_each_sched_entity(se) {
3159 if (se->on_rq)
3160 enqueue = 0;
3161
3162 cfs_rq = cfs_rq_of(se);
3163 if (enqueue)
3164 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3165 cfs_rq->h_nr_running += task_delta;
3166
3167 if (cfs_rq_throttled(cfs_rq))
3168 break;
3169 }
3170
3171 if (!se)
3172 rq->nr_running += task_delta;
3173
3174 /* determine whether we need to wake up potentially idle cpu */
3175 if (rq->curr == rq->idle && rq->cfs.nr_running)
3176 resched_task(rq->curr);
3177}
3178
3179static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3180 u64 remaining, u64 expires)
3181{
3182 struct cfs_rq *cfs_rq;
3183 u64 runtime = remaining;
3184
3185 rcu_read_lock();
3186 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3187 throttled_list) {
3188 struct rq *rq = rq_of(cfs_rq);
3189
3190 raw_spin_lock(&rq->lock);
3191 if (!cfs_rq_throttled(cfs_rq))
3192 goto next;
3193
3194 runtime = -cfs_rq->runtime_remaining + 1;
3195 if (runtime > remaining)
3196 runtime = remaining;
3197 remaining -= runtime;
3198
3199 cfs_rq->runtime_remaining += runtime;
3200 cfs_rq->runtime_expires = expires;
3201
3202 /* we check whether we're throttled above */
3203 if (cfs_rq->runtime_remaining > 0)
3204 unthrottle_cfs_rq(cfs_rq);
3205
3206next:
3207 raw_spin_unlock(&rq->lock);
3208
3209 if (!remaining)
3210 break;
3211 }
3212 rcu_read_unlock();
3213
3214 return remaining;
3215}
3216
58088ad0
PT
3217/*
3218 * Responsible for refilling a task_group's bandwidth and unthrottling its
3219 * cfs_rqs as appropriate. If there has been no activity within the last
3220 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3221 * used to track this state.
3222 */
3223static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3224{
671fd9da
PT
3225 u64 runtime, runtime_expires;
3226 int idle = 1, throttled;
58088ad0
PT
3227
3228 raw_spin_lock(&cfs_b->lock);
3229 /* no need to continue the timer with no bandwidth constraint */
3230 if (cfs_b->quota == RUNTIME_INF)
3231 goto out_unlock;
3232
671fd9da
PT
3233 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3234 /* idle depends on !throttled (for the case of a large deficit) */
3235 idle = cfs_b->idle && !throttled;
e8da1b18 3236 cfs_b->nr_periods += overrun;
671fd9da 3237
a9cf55b2
PT
3238 /* if we're going inactive then everything else can be deferred */
3239 if (idle)
3240 goto out_unlock;
3241
927b54fc
BS
3242 /*
3243 * if we have relooped after returning idle once, we need to update our
3244 * status as actually running, so that other cpus doing
3245 * __start_cfs_bandwidth will stop trying to cancel us.
3246 */
3247 cfs_b->timer_active = 1;
3248
a9cf55b2
PT
3249 __refill_cfs_bandwidth_runtime(cfs_b);
3250
671fd9da
PT
3251 if (!throttled) {
3252 /* mark as potentially idle for the upcoming period */
3253 cfs_b->idle = 1;
3254 goto out_unlock;
3255 }
3256
e8da1b18
NR
3257 /* account preceding periods in which throttling occurred */
3258 cfs_b->nr_throttled += overrun;
3259
671fd9da
PT
3260 /*
3261 * There are throttled entities so we must first use the new bandwidth
3262 * to unthrottle them before making it generally available. This
3263 * ensures that all existing debts will be paid before a new cfs_rq is
3264 * allowed to run.
3265 */
3266 runtime = cfs_b->runtime;
3267 runtime_expires = cfs_b->runtime_expires;
3268 cfs_b->runtime = 0;
3269
3270 /*
3271 * This check is repeated as we are holding onto the new bandwidth
3272 * while we unthrottle. This can potentially race with an unthrottled
3273 * group trying to acquire new bandwidth from the global pool.
3274 */
3275 while (throttled && runtime > 0) {
3276 raw_spin_unlock(&cfs_b->lock);
3277 /* we can't nest cfs_b->lock while distributing bandwidth */
3278 runtime = distribute_cfs_runtime(cfs_b, runtime,
3279 runtime_expires);
3280 raw_spin_lock(&cfs_b->lock);
3281
3282 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3283 }
58088ad0 3284
671fd9da
PT
3285 /* return (any) remaining runtime */
3286 cfs_b->runtime = runtime;
3287 /*
3288 * While we are ensured activity in the period following an
3289 * unthrottle, this also covers the case in which the new bandwidth is
3290 * insufficient to cover the existing bandwidth deficit. (Forcing the
3291 * timer to remain active while there are any throttled entities.)
3292 */
3293 cfs_b->idle = 0;
58088ad0
PT
3294out_unlock:
3295 if (idle)
3296 cfs_b->timer_active = 0;
3297 raw_spin_unlock(&cfs_b->lock);
3298
3299 return idle;
3300}
d3d9dc33 3301
d8b4986d
PT
3302/* a cfs_rq won't donate quota below this amount */
3303static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3304/* minimum remaining period time to redistribute slack quota */
3305static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3306/* how long we wait to gather additional slack before distributing */
3307static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3308
db06e78c
BS
3309/*
3310 * Are we near the end of the current quota period?
3311 *
3312 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3313 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3314 * migrate_hrtimers, base is never cleared, so we are fine.
3315 */
d8b4986d
PT
3316static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3317{
3318 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3319 u64 remaining;
3320
3321 /* if the call-back is running a quota refresh is already occurring */
3322 if (hrtimer_callback_running(refresh_timer))
3323 return 1;
3324
3325 /* is a quota refresh about to occur? */
3326 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3327 if (remaining < min_expire)
3328 return 1;
3329
3330 return 0;
3331}
3332
3333static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3334{
3335 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3336
3337 /* if there's a quota refresh soon don't bother with slack */
3338 if (runtime_refresh_within(cfs_b, min_left))
3339 return;
3340
3341 start_bandwidth_timer(&cfs_b->slack_timer,
3342 ns_to_ktime(cfs_bandwidth_slack_period));
3343}
3344
3345/* we know any runtime found here is valid as update_curr() precedes return */
3346static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3347{
3348 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3349 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3350
3351 if (slack_runtime <= 0)
3352 return;
3353
3354 raw_spin_lock(&cfs_b->lock);
3355 if (cfs_b->quota != RUNTIME_INF &&
3356 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3357 cfs_b->runtime += slack_runtime;
3358
3359 /* we are under rq->lock, defer unthrottling using a timer */
3360 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3361 !list_empty(&cfs_b->throttled_cfs_rq))
3362 start_cfs_slack_bandwidth(cfs_b);
3363 }
3364 raw_spin_unlock(&cfs_b->lock);
3365
3366 /* even if it's not valid for return we don't want to try again */
3367 cfs_rq->runtime_remaining -= slack_runtime;
3368}
3369
3370static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3371{
56f570e5
PT
3372 if (!cfs_bandwidth_used())
3373 return;
3374
fccfdc6f 3375 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3376 return;
3377
3378 __return_cfs_rq_runtime(cfs_rq);
3379}
3380
3381/*
3382 * This is done with a timer (instead of inline with bandwidth return) since
3383 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3384 */
3385static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3386{
3387 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3388 u64 expires;
3389
3390 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3391 raw_spin_lock(&cfs_b->lock);
3392 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3393 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3394 return;
db06e78c 3395 }
d8b4986d 3396
d8b4986d
PT
3397 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3398 runtime = cfs_b->runtime;
3399 cfs_b->runtime = 0;
3400 }
3401 expires = cfs_b->runtime_expires;
3402 raw_spin_unlock(&cfs_b->lock);
3403
3404 if (!runtime)
3405 return;
3406
3407 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3408
3409 raw_spin_lock(&cfs_b->lock);
3410 if (expires == cfs_b->runtime_expires)
3411 cfs_b->runtime = runtime;
3412 raw_spin_unlock(&cfs_b->lock);
3413}
3414
d3d9dc33
PT
3415/*
3416 * When a group wakes up we want to make sure that its quota is not already
3417 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3418 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3419 */
3420static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3421{
56f570e5
PT
3422 if (!cfs_bandwidth_used())
3423 return;
3424
d3d9dc33
PT
3425 /* an active group must be handled by the update_curr()->put() path */
3426 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3427 return;
3428
3429 /* ensure the group is not already throttled */
3430 if (cfs_rq_throttled(cfs_rq))
3431 return;
3432
3433 /* update runtime allocation */
3434 account_cfs_rq_runtime(cfs_rq, 0);
3435 if (cfs_rq->runtime_remaining <= 0)
3436 throttle_cfs_rq(cfs_rq);
3437}
3438
3439/* conditionally throttle active cfs_rq's from put_prev_entity() */
3440static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3441{
56f570e5
PT
3442 if (!cfs_bandwidth_used())
3443 return;
3444
d3d9dc33
PT
3445 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3446 return;
3447
3448 /*
3449 * it's possible for a throttled entity to be forced into a running
3450 * state (e.g. set_curr_task), in this case we're finished.
3451 */
3452 if (cfs_rq_throttled(cfs_rq))
3453 return;
3454
3455 throttle_cfs_rq(cfs_rq);
3456}
029632fb 3457
029632fb
PZ
3458static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3459{
3460 struct cfs_bandwidth *cfs_b =
3461 container_of(timer, struct cfs_bandwidth, slack_timer);
3462 do_sched_cfs_slack_timer(cfs_b);
3463
3464 return HRTIMER_NORESTART;
3465}
3466
3467static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3468{
3469 struct cfs_bandwidth *cfs_b =
3470 container_of(timer, struct cfs_bandwidth, period_timer);
3471 ktime_t now;
3472 int overrun;
3473 int idle = 0;
3474
3475 for (;;) {
3476 now = hrtimer_cb_get_time(timer);
3477 overrun = hrtimer_forward(timer, now, cfs_b->period);
3478
3479 if (!overrun)
3480 break;
3481
3482 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3483 }
3484
3485 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3486}
3487
3488void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3489{
3490 raw_spin_lock_init(&cfs_b->lock);
3491 cfs_b->runtime = 0;
3492 cfs_b->quota = RUNTIME_INF;
3493 cfs_b->period = ns_to_ktime(default_cfs_period());
3494
3495 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3496 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3497 cfs_b->period_timer.function = sched_cfs_period_timer;
3498 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3499 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3500}
3501
3502static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3503{
3504 cfs_rq->runtime_enabled = 0;
3505 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3506}
3507
3508/* requires cfs_b->lock, may release to reprogram timer */
3509void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3510{
3511 /*
3512 * The timer may be active because we're trying to set a new bandwidth
3513 * period or because we're racing with the tear-down path
3514 * (timer_active==0 becomes visible before the hrtimer call-back
3515 * terminates). In either case we ensure that it's re-programmed
3516 */
927b54fc
BS
3517 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3518 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3519 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3520 raw_spin_unlock(&cfs_b->lock);
927b54fc 3521 cpu_relax();
029632fb
PZ
3522 raw_spin_lock(&cfs_b->lock);
3523 /* if someone else restarted the timer then we're done */
3524 if (cfs_b->timer_active)
3525 return;
3526 }
3527
3528 cfs_b->timer_active = 1;
3529 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3530}
3531
3532static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3533{
3534 hrtimer_cancel(&cfs_b->period_timer);
3535 hrtimer_cancel(&cfs_b->slack_timer);
3536}
3537
38dc3348 3538static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3539{
3540 struct cfs_rq *cfs_rq;
3541
3542 for_each_leaf_cfs_rq(rq, cfs_rq) {
3543 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3544
3545 if (!cfs_rq->runtime_enabled)
3546 continue;
3547
3548 /*
3549 * clock_task is not advancing so we just need to make sure
3550 * there's some valid quota amount
3551 */
3552 cfs_rq->runtime_remaining = cfs_b->quota;
3553 if (cfs_rq_throttled(cfs_rq))
3554 unthrottle_cfs_rq(cfs_rq);
3555 }
3556}
3557
3558#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3559static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3560{
78becc27 3561 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3562}
3563
3564static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3565 unsigned long delta_exec) {}
d3d9dc33
PT
3566static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3567static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3568static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3569
3570static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3571{
3572 return 0;
3573}
64660c86
PT
3574
3575static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3576{
3577 return 0;
3578}
3579
3580static inline int throttled_lb_pair(struct task_group *tg,
3581 int src_cpu, int dest_cpu)
3582{
3583 return 0;
3584}
029632fb
PZ
3585
3586void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3587
3588#ifdef CONFIG_FAIR_GROUP_SCHED
3589static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3590#endif
3591
029632fb
PZ
3592static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3593{
3594 return NULL;
3595}
3596static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3597static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3598
3599#endif /* CONFIG_CFS_BANDWIDTH */
3600
bf0f6f24
IM
3601/**************************************************
3602 * CFS operations on tasks:
3603 */
3604
8f4d37ec
PZ
3605#ifdef CONFIG_SCHED_HRTICK
3606static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3607{
8f4d37ec
PZ
3608 struct sched_entity *se = &p->se;
3609 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3610
3611 WARN_ON(task_rq(p) != rq);
3612
b39e66ea 3613 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3614 u64 slice = sched_slice(cfs_rq, se);
3615 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3616 s64 delta = slice - ran;
3617
3618 if (delta < 0) {
3619 if (rq->curr == p)
3620 resched_task(p);
3621 return;
3622 }
3623
3624 /*
3625 * Don't schedule slices shorter than 10000ns, that just
3626 * doesn't make sense. Rely on vruntime for fairness.
3627 */
31656519 3628 if (rq->curr != p)
157124c1 3629 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3630
31656519 3631 hrtick_start(rq, delta);
8f4d37ec
PZ
3632 }
3633}
a4c2f00f
PZ
3634
3635/*
3636 * called from enqueue/dequeue and updates the hrtick when the
3637 * current task is from our class and nr_running is low enough
3638 * to matter.
3639 */
3640static void hrtick_update(struct rq *rq)
3641{
3642 struct task_struct *curr = rq->curr;
3643
b39e66ea 3644 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3645 return;
3646
3647 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3648 hrtick_start_fair(rq, curr);
3649}
55e12e5e 3650#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3651static inline void
3652hrtick_start_fair(struct rq *rq, struct task_struct *p)
3653{
3654}
a4c2f00f
PZ
3655
3656static inline void hrtick_update(struct rq *rq)
3657{
3658}
8f4d37ec
PZ
3659#endif
3660
bf0f6f24
IM
3661/*
3662 * The enqueue_task method is called before nr_running is
3663 * increased. Here we update the fair scheduling stats and
3664 * then put the task into the rbtree:
3665 */
ea87bb78 3666static void
371fd7e7 3667enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3668{
3669 struct cfs_rq *cfs_rq;
62fb1851 3670 struct sched_entity *se = &p->se;
bf0f6f24
IM
3671
3672 for_each_sched_entity(se) {
62fb1851 3673 if (se->on_rq)
bf0f6f24
IM
3674 break;
3675 cfs_rq = cfs_rq_of(se);
88ec22d3 3676 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3677
3678 /*
3679 * end evaluation on encountering a throttled cfs_rq
3680 *
3681 * note: in the case of encountering a throttled cfs_rq we will
3682 * post the final h_nr_running increment below.
3683 */
3684 if (cfs_rq_throttled(cfs_rq))
3685 break;
953bfcd1 3686 cfs_rq->h_nr_running++;
85dac906 3687
88ec22d3 3688 flags = ENQUEUE_WAKEUP;
bf0f6f24 3689 }
8f4d37ec 3690
2069dd75 3691 for_each_sched_entity(se) {
0f317143 3692 cfs_rq = cfs_rq_of(se);
953bfcd1 3693 cfs_rq->h_nr_running++;
2069dd75 3694
85dac906
PT
3695 if (cfs_rq_throttled(cfs_rq))
3696 break;
3697
17bc14b7 3698 update_cfs_shares(cfs_rq);
9ee474f5 3699 update_entity_load_avg(se, 1);
2069dd75
PZ
3700 }
3701
18bf2805
BS
3702 if (!se) {
3703 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3704 inc_nr_running(rq);
18bf2805 3705 }
a4c2f00f 3706 hrtick_update(rq);
bf0f6f24
IM
3707}
3708
2f36825b
VP
3709static void set_next_buddy(struct sched_entity *se);
3710
bf0f6f24
IM
3711/*
3712 * The dequeue_task method is called before nr_running is
3713 * decreased. We remove the task from the rbtree and
3714 * update the fair scheduling stats:
3715 */
371fd7e7 3716static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3717{
3718 struct cfs_rq *cfs_rq;
62fb1851 3719 struct sched_entity *se = &p->se;
2f36825b 3720 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3721
3722 for_each_sched_entity(se) {
3723 cfs_rq = cfs_rq_of(se);
371fd7e7 3724 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3725
3726 /*
3727 * end evaluation on encountering a throttled cfs_rq
3728 *
3729 * note: in the case of encountering a throttled cfs_rq we will
3730 * post the final h_nr_running decrement below.
3731 */
3732 if (cfs_rq_throttled(cfs_rq))
3733 break;
953bfcd1 3734 cfs_rq->h_nr_running--;
2069dd75 3735
bf0f6f24 3736 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3737 if (cfs_rq->load.weight) {
3738 /*
3739 * Bias pick_next to pick a task from this cfs_rq, as
3740 * p is sleeping when it is within its sched_slice.
3741 */
3742 if (task_sleep && parent_entity(se))
3743 set_next_buddy(parent_entity(se));
9598c82d
PT
3744
3745 /* avoid re-evaluating load for this entity */
3746 se = parent_entity(se);
bf0f6f24 3747 break;
2f36825b 3748 }
371fd7e7 3749 flags |= DEQUEUE_SLEEP;
bf0f6f24 3750 }
8f4d37ec 3751
2069dd75 3752 for_each_sched_entity(se) {
0f317143 3753 cfs_rq = cfs_rq_of(se);
953bfcd1 3754 cfs_rq->h_nr_running--;
2069dd75 3755
85dac906
PT
3756 if (cfs_rq_throttled(cfs_rq))
3757 break;
3758
17bc14b7 3759 update_cfs_shares(cfs_rq);
9ee474f5 3760 update_entity_load_avg(se, 1);
2069dd75
PZ
3761 }
3762
18bf2805 3763 if (!se) {
85dac906 3764 dec_nr_running(rq);
18bf2805
BS
3765 update_rq_runnable_avg(rq, 1);
3766 }
a4c2f00f 3767 hrtick_update(rq);
bf0f6f24
IM
3768}
3769
e7693a36 3770#ifdef CONFIG_SMP
029632fb
PZ
3771/* Used instead of source_load when we know the type == 0 */
3772static unsigned long weighted_cpuload(const int cpu)
3773{
b92486cb 3774 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3775}
3776
3777/*
3778 * Return a low guess at the load of a migration-source cpu weighted
3779 * according to the scheduling class and "nice" value.
3780 *
3781 * We want to under-estimate the load of migration sources, to
3782 * balance conservatively.
3783 */
3784static unsigned long source_load(int cpu, int type)
3785{
3786 struct rq *rq = cpu_rq(cpu);
3787 unsigned long total = weighted_cpuload(cpu);
3788
3789 if (type == 0 || !sched_feat(LB_BIAS))
3790 return total;
3791
3792 return min(rq->cpu_load[type-1], total);
3793}
3794
3795/*
3796 * Return a high guess at the load of a migration-target cpu weighted
3797 * according to the scheduling class and "nice" value.
3798 */
3799static unsigned long target_load(int cpu, int type)
3800{
3801 struct rq *rq = cpu_rq(cpu);
3802 unsigned long total = weighted_cpuload(cpu);
3803
3804 if (type == 0 || !sched_feat(LB_BIAS))
3805 return total;
3806
3807 return max(rq->cpu_load[type-1], total);
3808}
3809
3810static unsigned long power_of(int cpu)
3811{
3812 return cpu_rq(cpu)->cpu_power;
3813}
3814
3815static unsigned long cpu_avg_load_per_task(int cpu)
3816{
3817 struct rq *rq = cpu_rq(cpu);
3818 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3819 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3820
3821 if (nr_running)
b92486cb 3822 return load_avg / nr_running;
029632fb
PZ
3823
3824 return 0;
3825}
3826
62470419
MW
3827static void record_wakee(struct task_struct *p)
3828{
3829 /*
3830 * Rough decay (wiping) for cost saving, don't worry
3831 * about the boundary, really active task won't care
3832 * about the loss.
3833 */
3834 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3835 current->wakee_flips = 0;
3836 current->wakee_flip_decay_ts = jiffies;
3837 }
3838
3839 if (current->last_wakee != p) {
3840 current->last_wakee = p;
3841 current->wakee_flips++;
3842 }
3843}
098fb9db 3844
74f8e4b2 3845static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3846{
3847 struct sched_entity *se = &p->se;
3848 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3849 u64 min_vruntime;
3850
3851#ifndef CONFIG_64BIT
3852 u64 min_vruntime_copy;
88ec22d3 3853
3fe1698b
PZ
3854 do {
3855 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3856 smp_rmb();
3857 min_vruntime = cfs_rq->min_vruntime;
3858 } while (min_vruntime != min_vruntime_copy);
3859#else
3860 min_vruntime = cfs_rq->min_vruntime;
3861#endif
88ec22d3 3862
3fe1698b 3863 se->vruntime -= min_vruntime;
62470419 3864 record_wakee(p);
88ec22d3
PZ
3865}
3866
bb3469ac 3867#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3868/*
3869 * effective_load() calculates the load change as seen from the root_task_group
3870 *
3871 * Adding load to a group doesn't make a group heavier, but can cause movement
3872 * of group shares between cpus. Assuming the shares were perfectly aligned one
3873 * can calculate the shift in shares.
cf5f0acf
PZ
3874 *
3875 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3876 * on this @cpu and results in a total addition (subtraction) of @wg to the
3877 * total group weight.
3878 *
3879 * Given a runqueue weight distribution (rw_i) we can compute a shares
3880 * distribution (s_i) using:
3881 *
3882 * s_i = rw_i / \Sum rw_j (1)
3883 *
3884 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3885 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3886 * shares distribution (s_i):
3887 *
3888 * rw_i = { 2, 4, 1, 0 }
3889 * s_i = { 2/7, 4/7, 1/7, 0 }
3890 *
3891 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3892 * task used to run on and the CPU the waker is running on), we need to
3893 * compute the effect of waking a task on either CPU and, in case of a sync
3894 * wakeup, compute the effect of the current task going to sleep.
3895 *
3896 * So for a change of @wl to the local @cpu with an overall group weight change
3897 * of @wl we can compute the new shares distribution (s'_i) using:
3898 *
3899 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3900 *
3901 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3902 * differences in waking a task to CPU 0. The additional task changes the
3903 * weight and shares distributions like:
3904 *
3905 * rw'_i = { 3, 4, 1, 0 }
3906 * s'_i = { 3/8, 4/8, 1/8, 0 }
3907 *
3908 * We can then compute the difference in effective weight by using:
3909 *
3910 * dw_i = S * (s'_i - s_i) (3)
3911 *
3912 * Where 'S' is the group weight as seen by its parent.
3913 *
3914 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3915 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3916 * 4/7) times the weight of the group.
f5bfb7d9 3917 */
2069dd75 3918static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3919{
4be9daaa 3920 struct sched_entity *se = tg->se[cpu];
f1d239f7 3921
58d081b5 3922 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3923 return wl;
3924
4be9daaa 3925 for_each_sched_entity(se) {
cf5f0acf 3926 long w, W;
4be9daaa 3927
977dda7c 3928 tg = se->my_q->tg;
bb3469ac 3929
cf5f0acf
PZ
3930 /*
3931 * W = @wg + \Sum rw_j
3932 */
3933 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3934
cf5f0acf
PZ
3935 /*
3936 * w = rw_i + @wl
3937 */
3938 w = se->my_q->load.weight + wl;
940959e9 3939
cf5f0acf
PZ
3940 /*
3941 * wl = S * s'_i; see (2)
3942 */
3943 if (W > 0 && w < W)
3944 wl = (w * tg->shares) / W;
977dda7c
PT
3945 else
3946 wl = tg->shares;
940959e9 3947
cf5f0acf
PZ
3948 /*
3949 * Per the above, wl is the new se->load.weight value; since
3950 * those are clipped to [MIN_SHARES, ...) do so now. See
3951 * calc_cfs_shares().
3952 */
977dda7c
PT
3953 if (wl < MIN_SHARES)
3954 wl = MIN_SHARES;
cf5f0acf
PZ
3955
3956 /*
3957 * wl = dw_i = S * (s'_i - s_i); see (3)
3958 */
977dda7c 3959 wl -= se->load.weight;
cf5f0acf
PZ
3960
3961 /*
3962 * Recursively apply this logic to all parent groups to compute
3963 * the final effective load change on the root group. Since
3964 * only the @tg group gets extra weight, all parent groups can
3965 * only redistribute existing shares. @wl is the shift in shares
3966 * resulting from this level per the above.
3967 */
4be9daaa 3968 wg = 0;
4be9daaa 3969 }
bb3469ac 3970
4be9daaa 3971 return wl;
bb3469ac
PZ
3972}
3973#else
4be9daaa 3974
58d081b5 3975static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3976{
83378269 3977 return wl;
bb3469ac 3978}
4be9daaa 3979
bb3469ac
PZ
3980#endif
3981
62470419
MW
3982static int wake_wide(struct task_struct *p)
3983{
7d9ffa89 3984 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3985
3986 /*
3987 * Yeah, it's the switching-frequency, could means many wakee or
3988 * rapidly switch, use factor here will just help to automatically
3989 * adjust the loose-degree, so bigger node will lead to more pull.
3990 */
3991 if (p->wakee_flips > factor) {
3992 /*
3993 * wakee is somewhat hot, it needs certain amount of cpu
3994 * resource, so if waker is far more hot, prefer to leave
3995 * it alone.
3996 */
3997 if (current->wakee_flips > (factor * p->wakee_flips))
3998 return 1;
3999 }
4000
4001 return 0;
4002}
4003
c88d5910 4004static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4005{
e37b6a7b 4006 s64 this_load, load;
c88d5910 4007 int idx, this_cpu, prev_cpu;
098fb9db 4008 unsigned long tl_per_task;
c88d5910 4009 struct task_group *tg;
83378269 4010 unsigned long weight;
b3137bc8 4011 int balanced;
098fb9db 4012
62470419
MW
4013 /*
4014 * If we wake multiple tasks be careful to not bounce
4015 * ourselves around too much.
4016 */
4017 if (wake_wide(p))
4018 return 0;
4019
c88d5910
PZ
4020 idx = sd->wake_idx;
4021 this_cpu = smp_processor_id();
4022 prev_cpu = task_cpu(p);
4023 load = source_load(prev_cpu, idx);
4024 this_load = target_load(this_cpu, idx);
098fb9db 4025
b3137bc8
MG
4026 /*
4027 * If sync wakeup then subtract the (maximum possible)
4028 * effect of the currently running task from the load
4029 * of the current CPU:
4030 */
83378269
PZ
4031 if (sync) {
4032 tg = task_group(current);
4033 weight = current->se.load.weight;
4034
c88d5910 4035 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4036 load += effective_load(tg, prev_cpu, 0, -weight);
4037 }
b3137bc8 4038
83378269
PZ
4039 tg = task_group(p);
4040 weight = p->se.load.weight;
b3137bc8 4041
71a29aa7
PZ
4042 /*
4043 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4044 * due to the sync cause above having dropped this_load to 0, we'll
4045 * always have an imbalance, but there's really nothing you can do
4046 * about that, so that's good too.
71a29aa7
PZ
4047 *
4048 * Otherwise check if either cpus are near enough in load to allow this
4049 * task to be woken on this_cpu.
4050 */
e37b6a7b
PT
4051 if (this_load > 0) {
4052 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4053
4054 this_eff_load = 100;
4055 this_eff_load *= power_of(prev_cpu);
4056 this_eff_load *= this_load +
4057 effective_load(tg, this_cpu, weight, weight);
4058
4059 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4060 prev_eff_load *= power_of(this_cpu);
4061 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4062
4063 balanced = this_eff_load <= prev_eff_load;
4064 } else
4065 balanced = true;
b3137bc8 4066
098fb9db 4067 /*
4ae7d5ce
IM
4068 * If the currently running task will sleep within
4069 * a reasonable amount of time then attract this newly
4070 * woken task:
098fb9db 4071 */
2fb7635c
PZ
4072 if (sync && balanced)
4073 return 1;
098fb9db 4074
41acab88 4075 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4076 tl_per_task = cpu_avg_load_per_task(this_cpu);
4077
c88d5910
PZ
4078 if (balanced ||
4079 (this_load <= load &&
4080 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4081 /*
4082 * This domain has SD_WAKE_AFFINE and
4083 * p is cache cold in this domain, and
4084 * there is no bad imbalance.
4085 */
c88d5910 4086 schedstat_inc(sd, ttwu_move_affine);
41acab88 4087 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4088
4089 return 1;
4090 }
4091 return 0;
4092}
4093
aaee1203
PZ
4094/*
4095 * find_idlest_group finds and returns the least busy CPU group within the
4096 * domain.
4097 */
4098static struct sched_group *
78e7ed53 4099find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 4100 int this_cpu, int load_idx)
e7693a36 4101{
b3bd3de6 4102 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4103 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 4104 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4105
aaee1203
PZ
4106 do {
4107 unsigned long load, avg_load;
4108 int local_group;
4109 int i;
e7693a36 4110
aaee1203
PZ
4111 /* Skip over this group if it has no CPUs allowed */
4112 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4113 tsk_cpus_allowed(p)))
aaee1203
PZ
4114 continue;
4115
4116 local_group = cpumask_test_cpu(this_cpu,
4117 sched_group_cpus(group));
4118
4119 /* Tally up the load of all CPUs in the group */
4120 avg_load = 0;
4121
4122 for_each_cpu(i, sched_group_cpus(group)) {
4123 /* Bias balancing toward cpus of our domain */
4124 if (local_group)
4125 load = source_load(i, load_idx);
4126 else
4127 load = target_load(i, load_idx);
4128
4129 avg_load += load;
4130 }
4131
4132 /* Adjust by relative CPU power of the group */
9c3f75cb 4133 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4134
4135 if (local_group) {
4136 this_load = avg_load;
aaee1203
PZ
4137 } else if (avg_load < min_load) {
4138 min_load = avg_load;
4139 idlest = group;
4140 }
4141 } while (group = group->next, group != sd->groups);
4142
4143 if (!idlest || 100*this_load < imbalance*min_load)
4144 return NULL;
4145 return idlest;
4146}
4147
4148/*
4149 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4150 */
4151static int
4152find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4153{
4154 unsigned long load, min_load = ULONG_MAX;
4155 int idlest = -1;
4156 int i;
4157
4158 /* Traverse only the allowed CPUs */
fa17b507 4159 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4160 load = weighted_cpuload(i);
4161
4162 if (load < min_load || (load == min_load && i == this_cpu)) {
4163 min_load = load;
4164 idlest = i;
e7693a36
GH
4165 }
4166 }
4167
aaee1203
PZ
4168 return idlest;
4169}
e7693a36 4170
a50bde51
PZ
4171/*
4172 * Try and locate an idle CPU in the sched_domain.
4173 */
99bd5e2f 4174static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4175{
99bd5e2f 4176 struct sched_domain *sd;
37407ea7 4177 struct sched_group *sg;
e0a79f52 4178 int i = task_cpu(p);
a50bde51 4179
e0a79f52
MG
4180 if (idle_cpu(target))
4181 return target;
99bd5e2f
SS
4182
4183 /*
e0a79f52 4184 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4185 */
e0a79f52
MG
4186 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4187 return i;
a50bde51
PZ
4188
4189 /*
37407ea7 4190 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4191 */
518cd623 4192 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4193 for_each_lower_domain(sd) {
37407ea7
LT
4194 sg = sd->groups;
4195 do {
4196 if (!cpumask_intersects(sched_group_cpus(sg),
4197 tsk_cpus_allowed(p)))
4198 goto next;
4199
4200 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4201 if (i == target || !idle_cpu(i))
37407ea7
LT
4202 goto next;
4203 }
970e1789 4204
37407ea7
LT
4205 target = cpumask_first_and(sched_group_cpus(sg),
4206 tsk_cpus_allowed(p));
4207 goto done;
4208next:
4209 sg = sg->next;
4210 } while (sg != sd->groups);
4211 }
4212done:
a50bde51
PZ
4213 return target;
4214}
4215
aaee1203
PZ
4216/*
4217 * sched_balance_self: balance the current task (running on cpu) in domains
4218 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4219 * SD_BALANCE_EXEC.
4220 *
4221 * Balance, ie. select the least loaded group.
4222 *
4223 * Returns the target CPU number, or the same CPU if no balancing is needed.
4224 *
4225 * preempt must be disabled.
4226 */
0017d735 4227static int
ac66f547 4228select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4229{
29cd8bae 4230 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4231 int cpu = smp_processor_id();
c88d5910 4232 int new_cpu = cpu;
99bd5e2f 4233 int want_affine = 0;
5158f4e4 4234 int sync = wake_flags & WF_SYNC;
c88d5910 4235
29baa747 4236 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4237 return prev_cpu;
4238
0763a660 4239 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4240 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4241 want_affine = 1;
4242 new_cpu = prev_cpu;
4243 }
aaee1203 4244
dce840a0 4245 rcu_read_lock();
aaee1203 4246 for_each_domain(cpu, tmp) {
e4f42888
PZ
4247 if (!(tmp->flags & SD_LOAD_BALANCE))
4248 continue;
4249
fe3bcfe1 4250 /*
99bd5e2f
SS
4251 * If both cpu and prev_cpu are part of this domain,
4252 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4253 */
99bd5e2f
SS
4254 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4255 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4256 affine_sd = tmp;
29cd8bae 4257 break;
f03542a7 4258 }
29cd8bae 4259
f03542a7 4260 if (tmp->flags & sd_flag)
29cd8bae
PZ
4261 sd = tmp;
4262 }
4263
8b911acd 4264 if (affine_sd) {
f03542a7 4265 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4266 prev_cpu = cpu;
4267
4268 new_cpu = select_idle_sibling(p, prev_cpu);
4269 goto unlock;
8b911acd 4270 }
e7693a36 4271
aaee1203 4272 while (sd) {
5158f4e4 4273 int load_idx = sd->forkexec_idx;
aaee1203 4274 struct sched_group *group;
c88d5910 4275 int weight;
098fb9db 4276
0763a660 4277 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4278 sd = sd->child;
4279 continue;
4280 }
098fb9db 4281
5158f4e4
PZ
4282 if (sd_flag & SD_BALANCE_WAKE)
4283 load_idx = sd->wake_idx;
098fb9db 4284
5158f4e4 4285 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4286 if (!group) {
4287 sd = sd->child;
4288 continue;
4289 }
4ae7d5ce 4290
d7c33c49 4291 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4292 if (new_cpu == -1 || new_cpu == cpu) {
4293 /* Now try balancing at a lower domain level of cpu */
4294 sd = sd->child;
4295 continue;
e7693a36 4296 }
aaee1203
PZ
4297
4298 /* Now try balancing at a lower domain level of new_cpu */
4299 cpu = new_cpu;
669c55e9 4300 weight = sd->span_weight;
aaee1203
PZ
4301 sd = NULL;
4302 for_each_domain(cpu, tmp) {
669c55e9 4303 if (weight <= tmp->span_weight)
aaee1203 4304 break;
0763a660 4305 if (tmp->flags & sd_flag)
aaee1203
PZ
4306 sd = tmp;
4307 }
4308 /* while loop will break here if sd == NULL */
e7693a36 4309 }
dce840a0
PZ
4310unlock:
4311 rcu_read_unlock();
e7693a36 4312
c88d5910 4313 return new_cpu;
e7693a36 4314}
0a74bef8
PT
4315
4316/*
4317 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4318 * cfs_rq_of(p) references at time of call are still valid and identify the
4319 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4320 * other assumptions, including the state of rq->lock, should be made.
4321 */
4322static void
4323migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4324{
aff3e498
PT
4325 struct sched_entity *se = &p->se;
4326 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4327
4328 /*
4329 * Load tracking: accumulate removed load so that it can be processed
4330 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4331 * to blocked load iff they have a positive decay-count. It can never
4332 * be negative here since on-rq tasks have decay-count == 0.
4333 */
4334 if (se->avg.decay_count) {
4335 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4336 atomic_long_add(se->avg.load_avg_contrib,
4337 &cfs_rq->removed_load);
aff3e498 4338 }
0a74bef8 4339}
e7693a36
GH
4340#endif /* CONFIG_SMP */
4341
e52fb7c0
PZ
4342static unsigned long
4343wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4344{
4345 unsigned long gran = sysctl_sched_wakeup_granularity;
4346
4347 /*
e52fb7c0
PZ
4348 * Since its curr running now, convert the gran from real-time
4349 * to virtual-time in his units.
13814d42
MG
4350 *
4351 * By using 'se' instead of 'curr' we penalize light tasks, so
4352 * they get preempted easier. That is, if 'se' < 'curr' then
4353 * the resulting gran will be larger, therefore penalizing the
4354 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4355 * be smaller, again penalizing the lighter task.
4356 *
4357 * This is especially important for buddies when the leftmost
4358 * task is higher priority than the buddy.
0bbd3336 4359 */
f4ad9bd2 4360 return calc_delta_fair(gran, se);
0bbd3336
PZ
4361}
4362
464b7527
PZ
4363/*
4364 * Should 'se' preempt 'curr'.
4365 *
4366 * |s1
4367 * |s2
4368 * |s3
4369 * g
4370 * |<--->|c
4371 *
4372 * w(c, s1) = -1
4373 * w(c, s2) = 0
4374 * w(c, s3) = 1
4375 *
4376 */
4377static int
4378wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4379{
4380 s64 gran, vdiff = curr->vruntime - se->vruntime;
4381
4382 if (vdiff <= 0)
4383 return -1;
4384
e52fb7c0 4385 gran = wakeup_gran(curr, se);
464b7527
PZ
4386 if (vdiff > gran)
4387 return 1;
4388
4389 return 0;
4390}
4391
02479099
PZ
4392static void set_last_buddy(struct sched_entity *se)
4393{
69c80f3e
VP
4394 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4395 return;
4396
4397 for_each_sched_entity(se)
4398 cfs_rq_of(se)->last = se;
02479099
PZ
4399}
4400
4401static void set_next_buddy(struct sched_entity *se)
4402{
69c80f3e
VP
4403 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4404 return;
4405
4406 for_each_sched_entity(se)
4407 cfs_rq_of(se)->next = se;
02479099
PZ
4408}
4409
ac53db59
RR
4410static void set_skip_buddy(struct sched_entity *se)
4411{
69c80f3e
VP
4412 for_each_sched_entity(se)
4413 cfs_rq_of(se)->skip = se;
ac53db59
RR
4414}
4415
bf0f6f24
IM
4416/*
4417 * Preempt the current task with a newly woken task if needed:
4418 */
5a9b86f6 4419static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4420{
4421 struct task_struct *curr = rq->curr;
8651a86c 4422 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4423 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4424 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4425 int next_buddy_marked = 0;
bf0f6f24 4426
4ae7d5ce
IM
4427 if (unlikely(se == pse))
4428 return;
4429
5238cdd3 4430 /*
ddcdf6e7 4431 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4432 * unconditionally check_prempt_curr() after an enqueue (which may have
4433 * lead to a throttle). This both saves work and prevents false
4434 * next-buddy nomination below.
4435 */
4436 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4437 return;
4438
2f36825b 4439 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4440 set_next_buddy(pse);
2f36825b
VP
4441 next_buddy_marked = 1;
4442 }
57fdc26d 4443
aec0a514
BR
4444 /*
4445 * We can come here with TIF_NEED_RESCHED already set from new task
4446 * wake up path.
5238cdd3
PT
4447 *
4448 * Note: this also catches the edge-case of curr being in a throttled
4449 * group (e.g. via set_curr_task), since update_curr() (in the
4450 * enqueue of curr) will have resulted in resched being set. This
4451 * prevents us from potentially nominating it as a false LAST_BUDDY
4452 * below.
aec0a514
BR
4453 */
4454 if (test_tsk_need_resched(curr))
4455 return;
4456
a2f5c9ab
DH
4457 /* Idle tasks are by definition preempted by non-idle tasks. */
4458 if (unlikely(curr->policy == SCHED_IDLE) &&
4459 likely(p->policy != SCHED_IDLE))
4460 goto preempt;
4461
91c234b4 4462 /*
a2f5c9ab
DH
4463 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4464 * is driven by the tick):
91c234b4 4465 */
8ed92e51 4466 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4467 return;
bf0f6f24 4468
464b7527 4469 find_matching_se(&se, &pse);
9bbd7374 4470 update_curr(cfs_rq_of(se));
002f128b 4471 BUG_ON(!pse);
2f36825b
VP
4472 if (wakeup_preempt_entity(se, pse) == 1) {
4473 /*
4474 * Bias pick_next to pick the sched entity that is
4475 * triggering this preemption.
4476 */
4477 if (!next_buddy_marked)
4478 set_next_buddy(pse);
3a7e73a2 4479 goto preempt;
2f36825b 4480 }
464b7527 4481
3a7e73a2 4482 return;
a65ac745 4483
3a7e73a2
PZ
4484preempt:
4485 resched_task(curr);
4486 /*
4487 * Only set the backward buddy when the current task is still
4488 * on the rq. This can happen when a wakeup gets interleaved
4489 * with schedule on the ->pre_schedule() or idle_balance()
4490 * point, either of which can * drop the rq lock.
4491 *
4492 * Also, during early boot the idle thread is in the fair class,
4493 * for obvious reasons its a bad idea to schedule back to it.
4494 */
4495 if (unlikely(!se->on_rq || curr == rq->idle))
4496 return;
4497
4498 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4499 set_last_buddy(se);
bf0f6f24
IM
4500}
4501
fb8d4724 4502static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4503{
8f4d37ec 4504 struct task_struct *p;
bf0f6f24
IM
4505 struct cfs_rq *cfs_rq = &rq->cfs;
4506 struct sched_entity *se;
4507
36ace27e 4508 if (!cfs_rq->nr_running)
bf0f6f24
IM
4509 return NULL;
4510
4511 do {
9948f4b2 4512 se = pick_next_entity(cfs_rq);
f4b6755f 4513 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4514 cfs_rq = group_cfs_rq(se);
4515 } while (cfs_rq);
4516
8f4d37ec 4517 p = task_of(se);
b39e66ea
MG
4518 if (hrtick_enabled(rq))
4519 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4520
4521 return p;
bf0f6f24
IM
4522}
4523
4524/*
4525 * Account for a descheduled task:
4526 */
31ee529c 4527static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4528{
4529 struct sched_entity *se = &prev->se;
4530 struct cfs_rq *cfs_rq;
4531
4532 for_each_sched_entity(se) {
4533 cfs_rq = cfs_rq_of(se);
ab6cde26 4534 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4535 }
4536}
4537
ac53db59
RR
4538/*
4539 * sched_yield() is very simple
4540 *
4541 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4542 */
4543static void yield_task_fair(struct rq *rq)
4544{
4545 struct task_struct *curr = rq->curr;
4546 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4547 struct sched_entity *se = &curr->se;
4548
4549 /*
4550 * Are we the only task in the tree?
4551 */
4552 if (unlikely(rq->nr_running == 1))
4553 return;
4554
4555 clear_buddies(cfs_rq, se);
4556
4557 if (curr->policy != SCHED_BATCH) {
4558 update_rq_clock(rq);
4559 /*
4560 * Update run-time statistics of the 'current'.
4561 */
4562 update_curr(cfs_rq);
916671c0
MG
4563 /*
4564 * Tell update_rq_clock() that we've just updated,
4565 * so we don't do microscopic update in schedule()
4566 * and double the fastpath cost.
4567 */
4568 rq->skip_clock_update = 1;
ac53db59
RR
4569 }
4570
4571 set_skip_buddy(se);
4572}
4573
d95f4122
MG
4574static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4575{
4576 struct sched_entity *se = &p->se;
4577
5238cdd3
PT
4578 /* throttled hierarchies are not runnable */
4579 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4580 return false;
4581
4582 /* Tell the scheduler that we'd really like pse to run next. */
4583 set_next_buddy(se);
4584
d95f4122
MG
4585 yield_task_fair(rq);
4586
4587 return true;
4588}
4589
681f3e68 4590#ifdef CONFIG_SMP
bf0f6f24 4591/**************************************************
e9c84cb8
PZ
4592 * Fair scheduling class load-balancing methods.
4593 *
4594 * BASICS
4595 *
4596 * The purpose of load-balancing is to achieve the same basic fairness the
4597 * per-cpu scheduler provides, namely provide a proportional amount of compute
4598 * time to each task. This is expressed in the following equation:
4599 *
4600 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4601 *
4602 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4603 * W_i,0 is defined as:
4604 *
4605 * W_i,0 = \Sum_j w_i,j (2)
4606 *
4607 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4608 * is derived from the nice value as per prio_to_weight[].
4609 *
4610 * The weight average is an exponential decay average of the instantaneous
4611 * weight:
4612 *
4613 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4614 *
4615 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4616 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4617 * can also include other factors [XXX].
4618 *
4619 * To achieve this balance we define a measure of imbalance which follows
4620 * directly from (1):
4621 *
4622 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4623 *
4624 * We them move tasks around to minimize the imbalance. In the continuous
4625 * function space it is obvious this converges, in the discrete case we get
4626 * a few fun cases generally called infeasible weight scenarios.
4627 *
4628 * [XXX expand on:
4629 * - infeasible weights;
4630 * - local vs global optima in the discrete case. ]
4631 *
4632 *
4633 * SCHED DOMAINS
4634 *
4635 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4636 * for all i,j solution, we create a tree of cpus that follows the hardware
4637 * topology where each level pairs two lower groups (or better). This results
4638 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4639 * tree to only the first of the previous level and we decrease the frequency
4640 * of load-balance at each level inv. proportional to the number of cpus in
4641 * the groups.
4642 *
4643 * This yields:
4644 *
4645 * log_2 n 1 n
4646 * \Sum { --- * --- * 2^i } = O(n) (5)
4647 * i = 0 2^i 2^i
4648 * `- size of each group
4649 * | | `- number of cpus doing load-balance
4650 * | `- freq
4651 * `- sum over all levels
4652 *
4653 * Coupled with a limit on how many tasks we can migrate every balance pass,
4654 * this makes (5) the runtime complexity of the balancer.
4655 *
4656 * An important property here is that each CPU is still (indirectly) connected
4657 * to every other cpu in at most O(log n) steps:
4658 *
4659 * The adjacency matrix of the resulting graph is given by:
4660 *
4661 * log_2 n
4662 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4663 * k = 0
4664 *
4665 * And you'll find that:
4666 *
4667 * A^(log_2 n)_i,j != 0 for all i,j (7)
4668 *
4669 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4670 * The task movement gives a factor of O(m), giving a convergence complexity
4671 * of:
4672 *
4673 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4674 *
4675 *
4676 * WORK CONSERVING
4677 *
4678 * In order to avoid CPUs going idle while there's still work to do, new idle
4679 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4680 * tree itself instead of relying on other CPUs to bring it work.
4681 *
4682 * This adds some complexity to both (5) and (8) but it reduces the total idle
4683 * time.
4684 *
4685 * [XXX more?]
4686 *
4687 *
4688 * CGROUPS
4689 *
4690 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4691 *
4692 * s_k,i
4693 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4694 * S_k
4695 *
4696 * Where
4697 *
4698 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4699 *
4700 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4701 *
4702 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4703 * property.
4704 *
4705 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4706 * rewrite all of this once again.]
4707 */
bf0f6f24 4708
ed387b78
HS
4709static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4710
0ec8aa00
PZ
4711enum fbq_type { regular, remote, all };
4712
ddcdf6e7 4713#define LBF_ALL_PINNED 0x01
367456c7 4714#define LBF_NEED_BREAK 0x02
6263322c
PZ
4715#define LBF_DST_PINNED 0x04
4716#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4717
4718struct lb_env {
4719 struct sched_domain *sd;
4720
ddcdf6e7 4721 struct rq *src_rq;
85c1e7da 4722 int src_cpu;
ddcdf6e7
PZ
4723
4724 int dst_cpu;
4725 struct rq *dst_rq;
4726
88b8dac0
SV
4727 struct cpumask *dst_grpmask;
4728 int new_dst_cpu;
ddcdf6e7 4729 enum cpu_idle_type idle;
bd939f45 4730 long imbalance;
b9403130
MW
4731 /* The set of CPUs under consideration for load-balancing */
4732 struct cpumask *cpus;
4733
ddcdf6e7 4734 unsigned int flags;
367456c7
PZ
4735
4736 unsigned int loop;
4737 unsigned int loop_break;
4738 unsigned int loop_max;
0ec8aa00
PZ
4739
4740 enum fbq_type fbq_type;
ddcdf6e7
PZ
4741};
4742
1e3c88bd 4743/*
ddcdf6e7 4744 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4745 * Both runqueues must be locked.
4746 */
ddcdf6e7 4747static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4748{
ddcdf6e7
PZ
4749 deactivate_task(env->src_rq, p, 0);
4750 set_task_cpu(p, env->dst_cpu);
4751 activate_task(env->dst_rq, p, 0);
4752 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4753}
4754
029632fb
PZ
4755/*
4756 * Is this task likely cache-hot:
4757 */
4758static int
4759task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4760{
4761 s64 delta;
4762
4763 if (p->sched_class != &fair_sched_class)
4764 return 0;
4765
4766 if (unlikely(p->policy == SCHED_IDLE))
4767 return 0;
4768
4769 /*
4770 * Buddy candidates are cache hot:
4771 */
4772 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4773 (&p->se == cfs_rq_of(&p->se)->next ||
4774 &p->se == cfs_rq_of(&p->se)->last))
4775 return 1;
4776
4777 if (sysctl_sched_migration_cost == -1)
4778 return 1;
4779 if (sysctl_sched_migration_cost == 0)
4780 return 0;
4781
4782 delta = now - p->se.exec_start;
4783
4784 return delta < (s64)sysctl_sched_migration_cost;
4785}
4786
3a7053b3
MG
4787#ifdef CONFIG_NUMA_BALANCING
4788/* Returns true if the destination node has incurred more faults */
4789static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4790{
4791 int src_nid, dst_nid;
4792
4793 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4794 !(env->sd->flags & SD_NUMA)) {
4795 return false;
4796 }
4797
4798 src_nid = cpu_to_node(env->src_cpu);
4799 dst_nid = cpu_to_node(env->dst_cpu);
4800
83e1d2cd 4801 if (src_nid == dst_nid)
3a7053b3
MG
4802 return false;
4803
83e1d2cd
MG
4804 /* Always encourage migration to the preferred node. */
4805 if (dst_nid == p->numa_preferred_nid)
4806 return true;
4807
887c290e
RR
4808 /* If both task and group weight improve, this move is a winner. */
4809 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4810 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4811 return true;
4812
4813 return false;
4814}
7a0f3083
MG
4815
4816
4817static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4818{
4819 int src_nid, dst_nid;
4820
4821 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4822 return false;
4823
4824 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4825 return false;
4826
4827 src_nid = cpu_to_node(env->src_cpu);
4828 dst_nid = cpu_to_node(env->dst_cpu);
4829
83e1d2cd 4830 if (src_nid == dst_nid)
7a0f3083
MG
4831 return false;
4832
83e1d2cd
MG
4833 /* Migrating away from the preferred node is always bad. */
4834 if (src_nid == p->numa_preferred_nid)
4835 return true;
4836
887c290e
RR
4837 /* If either task or group weight get worse, don't do it. */
4838 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4839 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4840 return true;
4841
4842 return false;
4843}
4844
3a7053b3
MG
4845#else
4846static inline bool migrate_improves_locality(struct task_struct *p,
4847 struct lb_env *env)
4848{
4849 return false;
4850}
7a0f3083
MG
4851
4852static inline bool migrate_degrades_locality(struct task_struct *p,
4853 struct lb_env *env)
4854{
4855 return false;
4856}
3a7053b3
MG
4857#endif
4858
1e3c88bd
PZ
4859/*
4860 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4861 */
4862static
8e45cb54 4863int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4864{
4865 int tsk_cache_hot = 0;
4866 /*
4867 * We do not migrate tasks that are:
d3198084 4868 * 1) throttled_lb_pair, or
1e3c88bd 4869 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4870 * 3) running (obviously), or
4871 * 4) are cache-hot on their current CPU.
1e3c88bd 4872 */
d3198084
JK
4873 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4874 return 0;
4875
ddcdf6e7 4876 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4877 int cpu;
88b8dac0 4878
41acab88 4879 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4880
6263322c
PZ
4881 env->flags |= LBF_SOME_PINNED;
4882
88b8dac0
SV
4883 /*
4884 * Remember if this task can be migrated to any other cpu in
4885 * our sched_group. We may want to revisit it if we couldn't
4886 * meet load balance goals by pulling other tasks on src_cpu.
4887 *
4888 * Also avoid computing new_dst_cpu if we have already computed
4889 * one in current iteration.
4890 */
6263322c 4891 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4892 return 0;
4893
e02e60c1
JK
4894 /* Prevent to re-select dst_cpu via env's cpus */
4895 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4896 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4897 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4898 env->new_dst_cpu = cpu;
4899 break;
4900 }
88b8dac0 4901 }
e02e60c1 4902
1e3c88bd
PZ
4903 return 0;
4904 }
88b8dac0
SV
4905
4906 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4907 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4908
ddcdf6e7 4909 if (task_running(env->src_rq, p)) {
41acab88 4910 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4911 return 0;
4912 }
4913
4914 /*
4915 * Aggressive migration if:
3a7053b3
MG
4916 * 1) destination numa is preferred
4917 * 2) task is cache cold, or
4918 * 3) too many balance attempts have failed.
1e3c88bd 4919 */
78becc27 4920 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4921 if (!tsk_cache_hot)
4922 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4923
4924 if (migrate_improves_locality(p, env)) {
4925#ifdef CONFIG_SCHEDSTATS
4926 if (tsk_cache_hot) {
4927 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4928 schedstat_inc(p, se.statistics.nr_forced_migrations);
4929 }
4930#endif
4931 return 1;
4932 }
4933
1e3c88bd 4934 if (!tsk_cache_hot ||
8e45cb54 4935 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4936
1e3c88bd 4937 if (tsk_cache_hot) {
8e45cb54 4938 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4939 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4940 }
4e2dcb73 4941
1e3c88bd
PZ
4942 return 1;
4943 }
4944
4e2dcb73
ZH
4945 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4946 return 0;
1e3c88bd
PZ
4947}
4948
897c395f
PZ
4949/*
4950 * move_one_task tries to move exactly one task from busiest to this_rq, as
4951 * part of active balancing operations within "domain".
4952 * Returns 1 if successful and 0 otherwise.
4953 *
4954 * Called with both runqueues locked.
4955 */
8e45cb54 4956static int move_one_task(struct lb_env *env)
897c395f
PZ
4957{
4958 struct task_struct *p, *n;
897c395f 4959
367456c7 4960 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4961 if (!can_migrate_task(p, env))
4962 continue;
897c395f 4963
367456c7
PZ
4964 move_task(p, env);
4965 /*
4966 * Right now, this is only the second place move_task()
4967 * is called, so we can safely collect move_task()
4968 * stats here rather than inside move_task().
4969 */
4970 schedstat_inc(env->sd, lb_gained[env->idle]);
4971 return 1;
897c395f 4972 }
897c395f
PZ
4973 return 0;
4974}
4975
eb95308e
PZ
4976static const unsigned int sched_nr_migrate_break = 32;
4977
5d6523eb 4978/*
bd939f45 4979 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4980 * this_rq, as part of a balancing operation within domain "sd".
4981 * Returns 1 if successful and 0 otherwise.
4982 *
4983 * Called with both runqueues locked.
4984 */
4985static int move_tasks(struct lb_env *env)
1e3c88bd 4986{
5d6523eb
PZ
4987 struct list_head *tasks = &env->src_rq->cfs_tasks;
4988 struct task_struct *p;
367456c7
PZ
4989 unsigned long load;
4990 int pulled = 0;
1e3c88bd 4991
bd939f45 4992 if (env->imbalance <= 0)
5d6523eb 4993 return 0;
1e3c88bd 4994
5d6523eb
PZ
4995 while (!list_empty(tasks)) {
4996 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4997
367456c7
PZ
4998 env->loop++;
4999 /* We've more or less seen every task there is, call it quits */
5d6523eb 5000 if (env->loop > env->loop_max)
367456c7 5001 break;
5d6523eb
PZ
5002
5003 /* take a breather every nr_migrate tasks */
367456c7 5004 if (env->loop > env->loop_break) {
eb95308e 5005 env->loop_break += sched_nr_migrate_break;
8e45cb54 5006 env->flags |= LBF_NEED_BREAK;
ee00e66f 5007 break;
a195f004 5008 }
1e3c88bd 5009
d3198084 5010 if (!can_migrate_task(p, env))
367456c7
PZ
5011 goto next;
5012
5013 load = task_h_load(p);
5d6523eb 5014
eb95308e 5015 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5016 goto next;
5017
bd939f45 5018 if ((load / 2) > env->imbalance)
367456c7 5019 goto next;
1e3c88bd 5020
ddcdf6e7 5021 move_task(p, env);
ee00e66f 5022 pulled++;
bd939f45 5023 env->imbalance -= load;
1e3c88bd
PZ
5024
5025#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5026 /*
5027 * NEWIDLE balancing is a source of latency, so preemptible
5028 * kernels will stop after the first task is pulled to minimize
5029 * the critical section.
5030 */
5d6523eb 5031 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5032 break;
1e3c88bd
PZ
5033#endif
5034
ee00e66f
PZ
5035 /*
5036 * We only want to steal up to the prescribed amount of
5037 * weighted load.
5038 */
bd939f45 5039 if (env->imbalance <= 0)
ee00e66f 5040 break;
367456c7
PZ
5041
5042 continue;
5043next:
5d6523eb 5044 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5045 }
5d6523eb 5046
1e3c88bd 5047 /*
ddcdf6e7
PZ
5048 * Right now, this is one of only two places move_task() is called,
5049 * so we can safely collect move_task() stats here rather than
5050 * inside move_task().
1e3c88bd 5051 */
8e45cb54 5052 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5053
5d6523eb 5054 return pulled;
1e3c88bd
PZ
5055}
5056
230059de 5057#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5058/*
5059 * update tg->load_weight by folding this cpu's load_avg
5060 */
48a16753 5061static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5062{
48a16753
PT
5063 struct sched_entity *se = tg->se[cpu];
5064 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5065
48a16753
PT
5066 /* throttled entities do not contribute to load */
5067 if (throttled_hierarchy(cfs_rq))
5068 return;
9e3081ca 5069
aff3e498 5070 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5071
82958366
PT
5072 if (se) {
5073 update_entity_load_avg(se, 1);
5074 /*
5075 * We pivot on our runnable average having decayed to zero for
5076 * list removal. This generally implies that all our children
5077 * have also been removed (modulo rounding error or bandwidth
5078 * control); however, such cases are rare and we can fix these
5079 * at enqueue.
5080 *
5081 * TODO: fix up out-of-order children on enqueue.
5082 */
5083 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5084 list_del_leaf_cfs_rq(cfs_rq);
5085 } else {
48a16753 5086 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5087 update_rq_runnable_avg(rq, rq->nr_running);
5088 }
9e3081ca
PZ
5089}
5090
48a16753 5091static void update_blocked_averages(int cpu)
9e3081ca 5092{
9e3081ca 5093 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5094 struct cfs_rq *cfs_rq;
5095 unsigned long flags;
9e3081ca 5096
48a16753
PT
5097 raw_spin_lock_irqsave(&rq->lock, flags);
5098 update_rq_clock(rq);
9763b67f
PZ
5099 /*
5100 * Iterates the task_group tree in a bottom up fashion, see
5101 * list_add_leaf_cfs_rq() for details.
5102 */
64660c86 5103 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5104 /*
5105 * Note: We may want to consider periodically releasing
5106 * rq->lock about these updates so that creating many task
5107 * groups does not result in continually extending hold time.
5108 */
5109 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5110 }
48a16753
PT
5111
5112 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5113}
5114
9763b67f 5115/*
68520796 5116 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5117 * This needs to be done in a top-down fashion because the load of a child
5118 * group is a fraction of its parents load.
5119 */
68520796 5120static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5121{
68520796
VD
5122 struct rq *rq = rq_of(cfs_rq);
5123 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5124 unsigned long now = jiffies;
68520796 5125 unsigned long load;
a35b6466 5126
68520796 5127 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5128 return;
5129
68520796
VD
5130 cfs_rq->h_load_next = NULL;
5131 for_each_sched_entity(se) {
5132 cfs_rq = cfs_rq_of(se);
5133 cfs_rq->h_load_next = se;
5134 if (cfs_rq->last_h_load_update == now)
5135 break;
5136 }
a35b6466 5137
68520796 5138 if (!se) {
7e3115ef 5139 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5140 cfs_rq->last_h_load_update = now;
5141 }
5142
5143 while ((se = cfs_rq->h_load_next) != NULL) {
5144 load = cfs_rq->h_load;
5145 load = div64_ul(load * se->avg.load_avg_contrib,
5146 cfs_rq->runnable_load_avg + 1);
5147 cfs_rq = group_cfs_rq(se);
5148 cfs_rq->h_load = load;
5149 cfs_rq->last_h_load_update = now;
5150 }
9763b67f
PZ
5151}
5152
367456c7 5153static unsigned long task_h_load(struct task_struct *p)
230059de 5154{
367456c7 5155 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5156
68520796 5157 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5158 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5159 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5160}
5161#else
48a16753 5162static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5163{
5164}
5165
367456c7 5166static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5167{
a003a25b 5168 return p->se.avg.load_avg_contrib;
1e3c88bd 5169}
230059de 5170#endif
1e3c88bd 5171
1e3c88bd 5172/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5173/*
5174 * sg_lb_stats - stats of a sched_group required for load_balancing
5175 */
5176struct sg_lb_stats {
5177 unsigned long avg_load; /*Avg load across the CPUs of the group */
5178 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5179 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5180 unsigned long load_per_task;
3ae11c90 5181 unsigned long group_power;
147c5fc2
PZ
5182 unsigned int sum_nr_running; /* Nr tasks running in the group */
5183 unsigned int group_capacity;
5184 unsigned int idle_cpus;
5185 unsigned int group_weight;
1e3c88bd 5186 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5187 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5188#ifdef CONFIG_NUMA_BALANCING
5189 unsigned int nr_numa_running;
5190 unsigned int nr_preferred_running;
5191#endif
1e3c88bd
PZ
5192};
5193
56cf515b
JK
5194/*
5195 * sd_lb_stats - Structure to store the statistics of a sched_domain
5196 * during load balancing.
5197 */
5198struct sd_lb_stats {
5199 struct sched_group *busiest; /* Busiest group in this sd */
5200 struct sched_group *local; /* Local group in this sd */
5201 unsigned long total_load; /* Total load of all groups in sd */
5202 unsigned long total_pwr; /* Total power of all groups in sd */
5203 unsigned long avg_load; /* Average load across all groups in sd */
5204
56cf515b 5205 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5206 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5207};
5208
147c5fc2
PZ
5209static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5210{
5211 /*
5212 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5213 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5214 * We must however clear busiest_stat::avg_load because
5215 * update_sd_pick_busiest() reads this before assignment.
5216 */
5217 *sds = (struct sd_lb_stats){
5218 .busiest = NULL,
5219 .local = NULL,
5220 .total_load = 0UL,
5221 .total_pwr = 0UL,
5222 .busiest_stat = {
5223 .avg_load = 0UL,
5224 },
5225 };
5226}
5227
1e3c88bd
PZ
5228/**
5229 * get_sd_load_idx - Obtain the load index for a given sched domain.
5230 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5231 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5232 *
5233 * Return: The load index.
1e3c88bd
PZ
5234 */
5235static inline int get_sd_load_idx(struct sched_domain *sd,
5236 enum cpu_idle_type idle)
5237{
5238 int load_idx;
5239
5240 switch (idle) {
5241 case CPU_NOT_IDLE:
5242 load_idx = sd->busy_idx;
5243 break;
5244
5245 case CPU_NEWLY_IDLE:
5246 load_idx = sd->newidle_idx;
5247 break;
5248 default:
5249 load_idx = sd->idle_idx;
5250 break;
5251 }
5252
5253 return load_idx;
5254}
5255
15f803c9 5256static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5257{
1399fa78 5258 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5259}
5260
5261unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5262{
5263 return default_scale_freq_power(sd, cpu);
5264}
5265
15f803c9 5266static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5267{
669c55e9 5268 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5269 unsigned long smt_gain = sd->smt_gain;
5270
5271 smt_gain /= weight;
5272
5273 return smt_gain;
5274}
5275
5276unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5277{
5278 return default_scale_smt_power(sd, cpu);
5279}
5280
15f803c9 5281static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5282{
5283 struct rq *rq = cpu_rq(cpu);
b654f7de 5284 u64 total, available, age_stamp, avg;
1e3c88bd 5285
b654f7de
PZ
5286 /*
5287 * Since we're reading these variables without serialization make sure
5288 * we read them once before doing sanity checks on them.
5289 */
5290 age_stamp = ACCESS_ONCE(rq->age_stamp);
5291 avg = ACCESS_ONCE(rq->rt_avg);
5292
78becc27 5293 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5294
b654f7de 5295 if (unlikely(total < avg)) {
aa483808
VP
5296 /* Ensures that power won't end up being negative */
5297 available = 0;
5298 } else {
b654f7de 5299 available = total - avg;
aa483808 5300 }
1e3c88bd 5301
1399fa78
NR
5302 if (unlikely((s64)total < SCHED_POWER_SCALE))
5303 total = SCHED_POWER_SCALE;
1e3c88bd 5304
1399fa78 5305 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5306
5307 return div_u64(available, total);
5308}
5309
5310static void update_cpu_power(struct sched_domain *sd, int cpu)
5311{
669c55e9 5312 unsigned long weight = sd->span_weight;
1399fa78 5313 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5314 struct sched_group *sdg = sd->groups;
5315
1e3c88bd
PZ
5316 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5317 if (sched_feat(ARCH_POWER))
5318 power *= arch_scale_smt_power(sd, cpu);
5319 else
5320 power *= default_scale_smt_power(sd, cpu);
5321
1399fa78 5322 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5323 }
5324
9c3f75cb 5325 sdg->sgp->power_orig = power;
9d5efe05
SV
5326
5327 if (sched_feat(ARCH_POWER))
5328 power *= arch_scale_freq_power(sd, cpu);
5329 else
5330 power *= default_scale_freq_power(sd, cpu);
5331
1399fa78 5332 power >>= SCHED_POWER_SHIFT;
9d5efe05 5333
1e3c88bd 5334 power *= scale_rt_power(cpu);
1399fa78 5335 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5336
5337 if (!power)
5338 power = 1;
5339
e51fd5e2 5340 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5341 sdg->sgp->power = power;
1e3c88bd
PZ
5342}
5343
029632fb 5344void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5345{
5346 struct sched_domain *child = sd->child;
5347 struct sched_group *group, *sdg = sd->groups;
863bffc8 5348 unsigned long power, power_orig;
4ec4412e
VG
5349 unsigned long interval;
5350
5351 interval = msecs_to_jiffies(sd->balance_interval);
5352 interval = clamp(interval, 1UL, max_load_balance_interval);
5353 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5354
5355 if (!child) {
5356 update_cpu_power(sd, cpu);
5357 return;
5358 }
5359
863bffc8 5360 power_orig = power = 0;
1e3c88bd 5361
74a5ce20
PZ
5362 if (child->flags & SD_OVERLAP) {
5363 /*
5364 * SD_OVERLAP domains cannot assume that child groups
5365 * span the current group.
5366 */
5367
863bffc8
PZ
5368 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5369 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5370
5371 power_orig += sg->sgp->power_orig;
5372 power += sg->sgp->power;
5373 }
74a5ce20
PZ
5374 } else {
5375 /*
5376 * !SD_OVERLAP domains can assume that child groups
5377 * span the current group.
5378 */
5379
5380 group = child->groups;
5381 do {
863bffc8 5382 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5383 power += group->sgp->power;
5384 group = group->next;
5385 } while (group != child->groups);
5386 }
1e3c88bd 5387
863bffc8
PZ
5388 sdg->sgp->power_orig = power_orig;
5389 sdg->sgp->power = power;
1e3c88bd
PZ
5390}
5391
9d5efe05
SV
5392/*
5393 * Try and fix up capacity for tiny siblings, this is needed when
5394 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5395 * which on its own isn't powerful enough.
5396 *
5397 * See update_sd_pick_busiest() and check_asym_packing().
5398 */
5399static inline int
5400fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5401{
5402 /*
1399fa78 5403 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5404 */
a6c75f2f 5405 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5406 return 0;
5407
5408 /*
5409 * If ~90% of the cpu_power is still there, we're good.
5410 */
9c3f75cb 5411 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5412 return 1;
5413
5414 return 0;
5415}
5416
30ce5dab
PZ
5417/*
5418 * Group imbalance indicates (and tries to solve) the problem where balancing
5419 * groups is inadequate due to tsk_cpus_allowed() constraints.
5420 *
5421 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5422 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5423 * Something like:
5424 *
5425 * { 0 1 2 3 } { 4 5 6 7 }
5426 * * * * *
5427 *
5428 * If we were to balance group-wise we'd place two tasks in the first group and
5429 * two tasks in the second group. Clearly this is undesired as it will overload
5430 * cpu 3 and leave one of the cpus in the second group unused.
5431 *
5432 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5433 * by noticing the lower domain failed to reach balance and had difficulty
5434 * moving tasks due to affinity constraints.
30ce5dab
PZ
5435 *
5436 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5437 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5438 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5439 * to create an effective group imbalance.
5440 *
5441 * This is a somewhat tricky proposition since the next run might not find the
5442 * group imbalance and decide the groups need to be balanced again. A most
5443 * subtle and fragile situation.
5444 */
5445
6263322c 5446static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5447{
6263322c 5448 return group->sgp->imbalance;
30ce5dab
PZ
5449}
5450
b37d9316
PZ
5451/*
5452 * Compute the group capacity.
5453 *
c61037e9
PZ
5454 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5455 * first dividing out the smt factor and computing the actual number of cores
5456 * and limit power unit capacity with that.
b37d9316
PZ
5457 */
5458static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5459{
c61037e9
PZ
5460 unsigned int capacity, smt, cpus;
5461 unsigned int power, power_orig;
5462
5463 power = group->sgp->power;
5464 power_orig = group->sgp->power_orig;
5465 cpus = group->group_weight;
b37d9316 5466
c61037e9
PZ
5467 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5468 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5469 capacity = cpus / smt; /* cores */
b37d9316 5470
c61037e9 5471 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5472 if (!capacity)
5473 capacity = fix_small_capacity(env->sd, group);
5474
5475 return capacity;
5476}
5477
1e3c88bd
PZ
5478/**
5479 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5480 * @env: The load balancing environment.
1e3c88bd 5481 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5482 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5483 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5484 * @sgs: variable to hold the statistics for this group.
5485 */
bd939f45
PZ
5486static inline void update_sg_lb_stats(struct lb_env *env,
5487 struct sched_group *group, int load_idx,
23f0d209 5488 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5489{
30ce5dab
PZ
5490 unsigned long nr_running;
5491 unsigned long load;
bd939f45 5492 int i;
1e3c88bd 5493
b72ff13c
PZ
5494 memset(sgs, 0, sizeof(*sgs));
5495
b9403130 5496 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5497 struct rq *rq = cpu_rq(i);
5498
e44bc5c5
PZ
5499 nr_running = rq->nr_running;
5500
1e3c88bd 5501 /* Bias balancing toward cpus of our domain */
6263322c 5502 if (local_group)
04f733b4 5503 load = target_load(i, load_idx);
6263322c 5504 else
1e3c88bd 5505 load = source_load(i, load_idx);
1e3c88bd
PZ
5506
5507 sgs->group_load += load;
e44bc5c5 5508 sgs->sum_nr_running += nr_running;
0ec8aa00
PZ
5509#ifdef CONFIG_NUMA_BALANCING
5510 sgs->nr_numa_running += rq->nr_numa_running;
5511 sgs->nr_preferred_running += rq->nr_preferred_running;
5512#endif
1e3c88bd 5513 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5514 if (idle_cpu(i))
5515 sgs->idle_cpus++;
1e3c88bd
PZ
5516 }
5517
1e3c88bd 5518 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5519 sgs->group_power = group->sgp->power;
5520 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5521
dd5feea1 5522 if (sgs->sum_nr_running)
38d0f770 5523 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5524
aae6d3dd 5525 sgs->group_weight = group->group_weight;
fab47622 5526
b37d9316
PZ
5527 sgs->group_imb = sg_imbalanced(group);
5528 sgs->group_capacity = sg_capacity(env, group);
5529
fab47622
NR
5530 if (sgs->group_capacity > sgs->sum_nr_running)
5531 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5532}
5533
532cb4c4
MN
5534/**
5535 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5536 * @env: The load balancing environment.
532cb4c4
MN
5537 * @sds: sched_domain statistics
5538 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5539 * @sgs: sched_group statistics
532cb4c4
MN
5540 *
5541 * Determine if @sg is a busier group than the previously selected
5542 * busiest group.
e69f6186
YB
5543 *
5544 * Return: %true if @sg is a busier group than the previously selected
5545 * busiest group. %false otherwise.
532cb4c4 5546 */
bd939f45 5547static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5548 struct sd_lb_stats *sds,
5549 struct sched_group *sg,
bd939f45 5550 struct sg_lb_stats *sgs)
532cb4c4 5551{
56cf515b 5552 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5553 return false;
5554
5555 if (sgs->sum_nr_running > sgs->group_capacity)
5556 return true;
5557
5558 if (sgs->group_imb)
5559 return true;
5560
5561 /*
5562 * ASYM_PACKING needs to move all the work to the lowest
5563 * numbered CPUs in the group, therefore mark all groups
5564 * higher than ourself as busy.
5565 */
bd939f45
PZ
5566 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5567 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5568 if (!sds->busiest)
5569 return true;
5570
5571 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5572 return true;
5573 }
5574
5575 return false;
5576}
5577
0ec8aa00
PZ
5578#ifdef CONFIG_NUMA_BALANCING
5579static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5580{
5581 if (sgs->sum_nr_running > sgs->nr_numa_running)
5582 return regular;
5583 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5584 return remote;
5585 return all;
5586}
5587
5588static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5589{
5590 if (rq->nr_running > rq->nr_numa_running)
5591 return regular;
5592 if (rq->nr_running > rq->nr_preferred_running)
5593 return remote;
5594 return all;
5595}
5596#else
5597static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5598{
5599 return all;
5600}
5601
5602static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5603{
5604 return regular;
5605}
5606#endif /* CONFIG_NUMA_BALANCING */
5607
1e3c88bd 5608/**
461819ac 5609 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5610 * @env: The load balancing environment.
1e3c88bd
PZ
5611 * @sds: variable to hold the statistics for this sched_domain.
5612 */
0ec8aa00 5613static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5614{
bd939f45
PZ
5615 struct sched_domain *child = env->sd->child;
5616 struct sched_group *sg = env->sd->groups;
56cf515b 5617 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5618 int load_idx, prefer_sibling = 0;
5619
5620 if (child && child->flags & SD_PREFER_SIBLING)
5621 prefer_sibling = 1;
5622
bd939f45 5623 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5624
5625 do {
56cf515b 5626 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5627 int local_group;
5628
bd939f45 5629 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5630 if (local_group) {
5631 sds->local = sg;
5632 sgs = &sds->local_stat;
b72ff13c
PZ
5633
5634 if (env->idle != CPU_NEWLY_IDLE ||
5635 time_after_eq(jiffies, sg->sgp->next_update))
5636 update_group_power(env->sd, env->dst_cpu);
56cf515b 5637 }
1e3c88bd 5638
56cf515b 5639 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5640
b72ff13c
PZ
5641 if (local_group)
5642 goto next_group;
5643
1e3c88bd
PZ
5644 /*
5645 * In case the child domain prefers tasks go to siblings
532cb4c4 5646 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5647 * and move all the excess tasks away. We lower the capacity
5648 * of a group only if the local group has the capacity to fit
5649 * these excess tasks, i.e. nr_running < group_capacity. The
5650 * extra check prevents the case where you always pull from the
5651 * heaviest group when it is already under-utilized (possible
5652 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5653 */
b72ff13c
PZ
5654 if (prefer_sibling && sds->local &&
5655 sds->local_stat.group_has_capacity)
147c5fc2 5656 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5657
b72ff13c 5658 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5659 sds->busiest = sg;
56cf515b 5660 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5661 }
5662
b72ff13c
PZ
5663next_group:
5664 /* Now, start updating sd_lb_stats */
5665 sds->total_load += sgs->group_load;
5666 sds->total_pwr += sgs->group_power;
5667
532cb4c4 5668 sg = sg->next;
bd939f45 5669 } while (sg != env->sd->groups);
0ec8aa00
PZ
5670
5671 if (env->sd->flags & SD_NUMA)
5672 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5673}
5674
532cb4c4
MN
5675/**
5676 * check_asym_packing - Check to see if the group is packed into the
5677 * sched doman.
5678 *
5679 * This is primarily intended to used at the sibling level. Some
5680 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5681 * case of POWER7, it can move to lower SMT modes only when higher
5682 * threads are idle. When in lower SMT modes, the threads will
5683 * perform better since they share less core resources. Hence when we
5684 * have idle threads, we want them to be the higher ones.
5685 *
5686 * This packing function is run on idle threads. It checks to see if
5687 * the busiest CPU in this domain (core in the P7 case) has a higher
5688 * CPU number than the packing function is being run on. Here we are
5689 * assuming lower CPU number will be equivalent to lower a SMT thread
5690 * number.
5691 *
e69f6186 5692 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5693 * this CPU. The amount of the imbalance is returned in *imbalance.
5694 *
cd96891d 5695 * @env: The load balancing environment.
532cb4c4 5696 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5697 */
bd939f45 5698static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5699{
5700 int busiest_cpu;
5701
bd939f45 5702 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5703 return 0;
5704
5705 if (!sds->busiest)
5706 return 0;
5707
5708 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5709 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5710 return 0;
5711
bd939f45 5712 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5713 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5714 SCHED_POWER_SCALE);
bd939f45 5715
532cb4c4 5716 return 1;
1e3c88bd
PZ
5717}
5718
5719/**
5720 * fix_small_imbalance - Calculate the minor imbalance that exists
5721 * amongst the groups of a sched_domain, during
5722 * load balancing.
cd96891d 5723 * @env: The load balancing environment.
1e3c88bd 5724 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5725 */
bd939f45
PZ
5726static inline
5727void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5728{
5729 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5730 unsigned int imbn = 2;
dd5feea1 5731 unsigned long scaled_busy_load_per_task;
56cf515b 5732 struct sg_lb_stats *local, *busiest;
1e3c88bd 5733
56cf515b
JK
5734 local = &sds->local_stat;
5735 busiest = &sds->busiest_stat;
1e3c88bd 5736
56cf515b
JK
5737 if (!local->sum_nr_running)
5738 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5739 else if (busiest->load_per_task > local->load_per_task)
5740 imbn = 1;
dd5feea1 5741
56cf515b
JK
5742 scaled_busy_load_per_task =
5743 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5744 busiest->group_power;
56cf515b 5745
3029ede3
VD
5746 if (busiest->avg_load + scaled_busy_load_per_task >=
5747 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5748 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5749 return;
5750 }
5751
5752 /*
5753 * OK, we don't have enough imbalance to justify moving tasks,
5754 * however we may be able to increase total CPU power used by
5755 * moving them.
5756 */
5757
3ae11c90 5758 pwr_now += busiest->group_power *
56cf515b 5759 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5760 pwr_now += local->group_power *
56cf515b 5761 min(local->load_per_task, local->avg_load);
1399fa78 5762 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5763
5764 /* Amount of load we'd subtract */
56cf515b 5765 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5766 busiest->group_power;
56cf515b 5767 if (busiest->avg_load > tmp) {
3ae11c90 5768 pwr_move += busiest->group_power *
56cf515b
JK
5769 min(busiest->load_per_task,
5770 busiest->avg_load - tmp);
5771 }
1e3c88bd
PZ
5772
5773 /* Amount of load we'd add */
3ae11c90 5774 if (busiest->avg_load * busiest->group_power <
56cf515b 5775 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5776 tmp = (busiest->avg_load * busiest->group_power) /
5777 local->group_power;
56cf515b
JK
5778 } else {
5779 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5780 local->group_power;
56cf515b 5781 }
3ae11c90
PZ
5782 pwr_move += local->group_power *
5783 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5784 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5785
5786 /* Move if we gain throughput */
5787 if (pwr_move > pwr_now)
56cf515b 5788 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5789}
5790
5791/**
5792 * calculate_imbalance - Calculate the amount of imbalance present within the
5793 * groups of a given sched_domain during load balance.
bd939f45 5794 * @env: load balance environment
1e3c88bd 5795 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5796 */
bd939f45 5797static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5798{
dd5feea1 5799 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5800 struct sg_lb_stats *local, *busiest;
5801
5802 local = &sds->local_stat;
56cf515b 5803 busiest = &sds->busiest_stat;
dd5feea1 5804
56cf515b 5805 if (busiest->group_imb) {
30ce5dab
PZ
5806 /*
5807 * In the group_imb case we cannot rely on group-wide averages
5808 * to ensure cpu-load equilibrium, look at wider averages. XXX
5809 */
56cf515b
JK
5810 busiest->load_per_task =
5811 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5812 }
5813
1e3c88bd
PZ
5814 /*
5815 * In the presence of smp nice balancing, certain scenarios can have
5816 * max load less than avg load(as we skip the groups at or below
5817 * its cpu_power, while calculating max_load..)
5818 */
b1885550
VD
5819 if (busiest->avg_load <= sds->avg_load ||
5820 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5821 env->imbalance = 0;
5822 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5823 }
5824
56cf515b 5825 if (!busiest->group_imb) {
dd5feea1
SS
5826 /*
5827 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5828 * Except of course for the group_imb case, since then we might
5829 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5830 */
56cf515b
JK
5831 load_above_capacity =
5832 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5833
1399fa78 5834 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5835 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5836 }
5837
5838 /*
5839 * We're trying to get all the cpus to the average_load, so we don't
5840 * want to push ourselves above the average load, nor do we wish to
5841 * reduce the max loaded cpu below the average load. At the same time,
5842 * we also don't want to reduce the group load below the group capacity
5843 * (so that we can implement power-savings policies etc). Thus we look
5844 * for the minimum possible imbalance.
dd5feea1 5845 */
30ce5dab 5846 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5847
5848 /* How much load to actually move to equalise the imbalance */
56cf515b 5849 env->imbalance = min(
3ae11c90
PZ
5850 max_pull * busiest->group_power,
5851 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5852 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5853
5854 /*
5855 * if *imbalance is less than the average load per runnable task
25985edc 5856 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5857 * a think about bumping its value to force at least one task to be
5858 * moved
5859 */
56cf515b 5860 if (env->imbalance < busiest->load_per_task)
bd939f45 5861 return fix_small_imbalance(env, sds);
1e3c88bd 5862}
fab47622 5863
1e3c88bd
PZ
5864/******* find_busiest_group() helpers end here *********************/
5865
5866/**
5867 * find_busiest_group - Returns the busiest group within the sched_domain
5868 * if there is an imbalance. If there isn't an imbalance, and
5869 * the user has opted for power-savings, it returns a group whose
5870 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5871 * such a group exists.
5872 *
5873 * Also calculates the amount of weighted load which should be moved
5874 * to restore balance.
5875 *
cd96891d 5876 * @env: The load balancing environment.
1e3c88bd 5877 *
e69f6186 5878 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5879 * - If no imbalance and user has opted for power-savings balance,
5880 * return the least loaded group whose CPUs can be
5881 * put to idle by rebalancing its tasks onto our group.
5882 */
56cf515b 5883static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5884{
56cf515b 5885 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5886 struct sd_lb_stats sds;
5887
147c5fc2 5888 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5889
5890 /*
5891 * Compute the various statistics relavent for load balancing at
5892 * this level.
5893 */
23f0d209 5894 update_sd_lb_stats(env, &sds);
56cf515b
JK
5895 local = &sds.local_stat;
5896 busiest = &sds.busiest_stat;
1e3c88bd 5897
bd939f45
PZ
5898 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5899 check_asym_packing(env, &sds))
532cb4c4
MN
5900 return sds.busiest;
5901
cc57aa8f 5902 /* There is no busy sibling group to pull tasks from */
56cf515b 5903 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5904 goto out_balanced;
5905
1399fa78 5906 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5907
866ab43e
PZ
5908 /*
5909 * If the busiest group is imbalanced the below checks don't
30ce5dab 5910 * work because they assume all things are equal, which typically
866ab43e
PZ
5911 * isn't true due to cpus_allowed constraints and the like.
5912 */
56cf515b 5913 if (busiest->group_imb)
866ab43e
PZ
5914 goto force_balance;
5915
cc57aa8f 5916 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5917 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5918 !busiest->group_has_capacity)
fab47622
NR
5919 goto force_balance;
5920
cc57aa8f
PZ
5921 /*
5922 * If the local group is more busy than the selected busiest group
5923 * don't try and pull any tasks.
5924 */
56cf515b 5925 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5926 goto out_balanced;
5927
cc57aa8f
PZ
5928 /*
5929 * Don't pull any tasks if this group is already above the domain
5930 * average load.
5931 */
56cf515b 5932 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5933 goto out_balanced;
5934
bd939f45 5935 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5936 /*
5937 * This cpu is idle. If the busiest group load doesn't
5938 * have more tasks than the number of available cpu's and
5939 * there is no imbalance between this and busiest group
5940 * wrt to idle cpu's, it is balanced.
5941 */
56cf515b
JK
5942 if ((local->idle_cpus < busiest->idle_cpus) &&
5943 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5944 goto out_balanced;
c186fafe
PZ
5945 } else {
5946 /*
5947 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5948 * imbalance_pct to be conservative.
5949 */
56cf515b
JK
5950 if (100 * busiest->avg_load <=
5951 env->sd->imbalance_pct * local->avg_load)
c186fafe 5952 goto out_balanced;
aae6d3dd 5953 }
1e3c88bd 5954
fab47622 5955force_balance:
1e3c88bd 5956 /* Looks like there is an imbalance. Compute it */
bd939f45 5957 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5958 return sds.busiest;
5959
5960out_balanced:
bd939f45 5961 env->imbalance = 0;
1e3c88bd
PZ
5962 return NULL;
5963}
5964
5965/*
5966 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5967 */
bd939f45 5968static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5969 struct sched_group *group)
1e3c88bd
PZ
5970{
5971 struct rq *busiest = NULL, *rq;
95a79b80 5972 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5973 int i;
5974
6906a408 5975 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5976 unsigned long power, capacity, wl;
5977 enum fbq_type rt;
5978
5979 rq = cpu_rq(i);
5980 rt = fbq_classify_rq(rq);
1e3c88bd 5981
0ec8aa00
PZ
5982 /*
5983 * We classify groups/runqueues into three groups:
5984 * - regular: there are !numa tasks
5985 * - remote: there are numa tasks that run on the 'wrong' node
5986 * - all: there is no distinction
5987 *
5988 * In order to avoid migrating ideally placed numa tasks,
5989 * ignore those when there's better options.
5990 *
5991 * If we ignore the actual busiest queue to migrate another
5992 * task, the next balance pass can still reduce the busiest
5993 * queue by moving tasks around inside the node.
5994 *
5995 * If we cannot move enough load due to this classification
5996 * the next pass will adjust the group classification and
5997 * allow migration of more tasks.
5998 *
5999 * Both cases only affect the total convergence complexity.
6000 */
6001 if (rt > env->fbq_type)
6002 continue;
6003
6004 power = power_of(i);
6005 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6006 if (!capacity)
bd939f45 6007 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6008
6e40f5bb 6009 wl = weighted_cpuload(i);
1e3c88bd 6010
6e40f5bb
TG
6011 /*
6012 * When comparing with imbalance, use weighted_cpuload()
6013 * which is not scaled with the cpu power.
6014 */
bd939f45 6015 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6016 continue;
6017
6e40f5bb
TG
6018 /*
6019 * For the load comparisons with the other cpu's, consider
6020 * the weighted_cpuload() scaled with the cpu power, so that
6021 * the load can be moved away from the cpu that is potentially
6022 * running at a lower capacity.
95a79b80
JK
6023 *
6024 * Thus we're looking for max(wl_i / power_i), crosswise
6025 * multiplication to rid ourselves of the division works out
6026 * to: wl_i * power_j > wl_j * power_i; where j is our
6027 * previous maximum.
6e40f5bb 6028 */
95a79b80
JK
6029 if (wl * busiest_power > busiest_load * power) {
6030 busiest_load = wl;
6031 busiest_power = power;
1e3c88bd
PZ
6032 busiest = rq;
6033 }
6034 }
6035
6036 return busiest;
6037}
6038
6039/*
6040 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6041 * so long as it is large enough.
6042 */
6043#define MAX_PINNED_INTERVAL 512
6044
6045/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6046DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6047
bd939f45 6048static int need_active_balance(struct lb_env *env)
1af3ed3d 6049{
bd939f45
PZ
6050 struct sched_domain *sd = env->sd;
6051
6052 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6053
6054 /*
6055 * ASYM_PACKING needs to force migrate tasks from busy but
6056 * higher numbered CPUs in order to pack all tasks in the
6057 * lowest numbered CPUs.
6058 */
bd939f45 6059 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6060 return 1;
1af3ed3d
PZ
6061 }
6062
6063 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6064}
6065
969c7921
TH
6066static int active_load_balance_cpu_stop(void *data);
6067
23f0d209
JK
6068static int should_we_balance(struct lb_env *env)
6069{
6070 struct sched_group *sg = env->sd->groups;
6071 struct cpumask *sg_cpus, *sg_mask;
6072 int cpu, balance_cpu = -1;
6073
6074 /*
6075 * In the newly idle case, we will allow all the cpu's
6076 * to do the newly idle load balance.
6077 */
6078 if (env->idle == CPU_NEWLY_IDLE)
6079 return 1;
6080
6081 sg_cpus = sched_group_cpus(sg);
6082 sg_mask = sched_group_mask(sg);
6083 /* Try to find first idle cpu */
6084 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6085 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6086 continue;
6087
6088 balance_cpu = cpu;
6089 break;
6090 }
6091
6092 if (balance_cpu == -1)
6093 balance_cpu = group_balance_cpu(sg);
6094
6095 /*
6096 * First idle cpu or the first cpu(busiest) in this sched group
6097 * is eligible for doing load balancing at this and above domains.
6098 */
b0cff9d8 6099 return balance_cpu == env->dst_cpu;
23f0d209
JK
6100}
6101
1e3c88bd
PZ
6102/*
6103 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6104 * tasks if there is an imbalance.
6105 */
6106static int load_balance(int this_cpu, struct rq *this_rq,
6107 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6108 int *continue_balancing)
1e3c88bd 6109{
88b8dac0 6110 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6111 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6112 struct sched_group *group;
1e3c88bd
PZ
6113 struct rq *busiest;
6114 unsigned long flags;
e6252c3e 6115 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6116
8e45cb54
PZ
6117 struct lb_env env = {
6118 .sd = sd,
ddcdf6e7
PZ
6119 .dst_cpu = this_cpu,
6120 .dst_rq = this_rq,
88b8dac0 6121 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6122 .idle = idle,
eb95308e 6123 .loop_break = sched_nr_migrate_break,
b9403130 6124 .cpus = cpus,
0ec8aa00 6125 .fbq_type = all,
8e45cb54
PZ
6126 };
6127
cfc03118
JK
6128 /*
6129 * For NEWLY_IDLE load_balancing, we don't need to consider
6130 * other cpus in our group
6131 */
e02e60c1 6132 if (idle == CPU_NEWLY_IDLE)
cfc03118 6133 env.dst_grpmask = NULL;
cfc03118 6134
1e3c88bd
PZ
6135 cpumask_copy(cpus, cpu_active_mask);
6136
1e3c88bd
PZ
6137 schedstat_inc(sd, lb_count[idle]);
6138
6139redo:
23f0d209
JK
6140 if (!should_we_balance(&env)) {
6141 *continue_balancing = 0;
1e3c88bd 6142 goto out_balanced;
23f0d209 6143 }
1e3c88bd 6144
23f0d209 6145 group = find_busiest_group(&env);
1e3c88bd
PZ
6146 if (!group) {
6147 schedstat_inc(sd, lb_nobusyg[idle]);
6148 goto out_balanced;
6149 }
6150
b9403130 6151 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6152 if (!busiest) {
6153 schedstat_inc(sd, lb_nobusyq[idle]);
6154 goto out_balanced;
6155 }
6156
78feefc5 6157 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6158
bd939f45 6159 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6160
6161 ld_moved = 0;
6162 if (busiest->nr_running > 1) {
6163 /*
6164 * Attempt to move tasks. If find_busiest_group has found
6165 * an imbalance but busiest->nr_running <= 1, the group is
6166 * still unbalanced. ld_moved simply stays zero, so it is
6167 * correctly treated as an imbalance.
6168 */
8e45cb54 6169 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6170 env.src_cpu = busiest->cpu;
6171 env.src_rq = busiest;
6172 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6173
5d6523eb 6174more_balance:
1e3c88bd 6175 local_irq_save(flags);
78feefc5 6176 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6177
6178 /*
6179 * cur_ld_moved - load moved in current iteration
6180 * ld_moved - cumulative load moved across iterations
6181 */
6182 cur_ld_moved = move_tasks(&env);
6183 ld_moved += cur_ld_moved;
78feefc5 6184 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6185 local_irq_restore(flags);
6186
6187 /*
6188 * some other cpu did the load balance for us.
6189 */
88b8dac0
SV
6190 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6191 resched_cpu(env.dst_cpu);
6192
f1cd0858
JK
6193 if (env.flags & LBF_NEED_BREAK) {
6194 env.flags &= ~LBF_NEED_BREAK;
6195 goto more_balance;
6196 }
6197
88b8dac0
SV
6198 /*
6199 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6200 * us and move them to an alternate dst_cpu in our sched_group
6201 * where they can run. The upper limit on how many times we
6202 * iterate on same src_cpu is dependent on number of cpus in our
6203 * sched_group.
6204 *
6205 * This changes load balance semantics a bit on who can move
6206 * load to a given_cpu. In addition to the given_cpu itself
6207 * (or a ilb_cpu acting on its behalf where given_cpu is
6208 * nohz-idle), we now have balance_cpu in a position to move
6209 * load to given_cpu. In rare situations, this may cause
6210 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6211 * _independently_ and at _same_ time to move some load to
6212 * given_cpu) causing exceess load to be moved to given_cpu.
6213 * This however should not happen so much in practice and
6214 * moreover subsequent load balance cycles should correct the
6215 * excess load moved.
6216 */
6263322c 6217 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6218
7aff2e3a
VD
6219 /* Prevent to re-select dst_cpu via env's cpus */
6220 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6221
78feefc5 6222 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6223 env.dst_cpu = env.new_dst_cpu;
6263322c 6224 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6225 env.loop = 0;
6226 env.loop_break = sched_nr_migrate_break;
e02e60c1 6227
88b8dac0
SV
6228 /*
6229 * Go back to "more_balance" rather than "redo" since we
6230 * need to continue with same src_cpu.
6231 */
6232 goto more_balance;
6233 }
1e3c88bd 6234
6263322c
PZ
6235 /*
6236 * We failed to reach balance because of affinity.
6237 */
6238 if (sd_parent) {
6239 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6240
6241 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6242 *group_imbalance = 1;
6243 } else if (*group_imbalance)
6244 *group_imbalance = 0;
6245 }
6246
1e3c88bd 6247 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6248 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6249 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6250 if (!cpumask_empty(cpus)) {
6251 env.loop = 0;
6252 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6253 goto redo;
bbf18b19 6254 }
1e3c88bd
PZ
6255 goto out_balanced;
6256 }
6257 }
6258
6259 if (!ld_moved) {
6260 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6261 /*
6262 * Increment the failure counter only on periodic balance.
6263 * We do not want newidle balance, which can be very
6264 * frequent, pollute the failure counter causing
6265 * excessive cache_hot migrations and active balances.
6266 */
6267 if (idle != CPU_NEWLY_IDLE)
6268 sd->nr_balance_failed++;
1e3c88bd 6269
bd939f45 6270 if (need_active_balance(&env)) {
1e3c88bd
PZ
6271 raw_spin_lock_irqsave(&busiest->lock, flags);
6272
969c7921
TH
6273 /* don't kick the active_load_balance_cpu_stop,
6274 * if the curr task on busiest cpu can't be
6275 * moved to this_cpu
1e3c88bd
PZ
6276 */
6277 if (!cpumask_test_cpu(this_cpu,
fa17b507 6278 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6279 raw_spin_unlock_irqrestore(&busiest->lock,
6280 flags);
8e45cb54 6281 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6282 goto out_one_pinned;
6283 }
6284
969c7921
TH
6285 /*
6286 * ->active_balance synchronizes accesses to
6287 * ->active_balance_work. Once set, it's cleared
6288 * only after active load balance is finished.
6289 */
1e3c88bd
PZ
6290 if (!busiest->active_balance) {
6291 busiest->active_balance = 1;
6292 busiest->push_cpu = this_cpu;
6293 active_balance = 1;
6294 }
6295 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6296
bd939f45 6297 if (active_balance) {
969c7921
TH
6298 stop_one_cpu_nowait(cpu_of(busiest),
6299 active_load_balance_cpu_stop, busiest,
6300 &busiest->active_balance_work);
bd939f45 6301 }
1e3c88bd
PZ
6302
6303 /*
6304 * We've kicked active balancing, reset the failure
6305 * counter.
6306 */
6307 sd->nr_balance_failed = sd->cache_nice_tries+1;
6308 }
6309 } else
6310 sd->nr_balance_failed = 0;
6311
6312 if (likely(!active_balance)) {
6313 /* We were unbalanced, so reset the balancing interval */
6314 sd->balance_interval = sd->min_interval;
6315 } else {
6316 /*
6317 * If we've begun active balancing, start to back off. This
6318 * case may not be covered by the all_pinned logic if there
6319 * is only 1 task on the busy runqueue (because we don't call
6320 * move_tasks).
6321 */
6322 if (sd->balance_interval < sd->max_interval)
6323 sd->balance_interval *= 2;
6324 }
6325
1e3c88bd
PZ
6326 goto out;
6327
6328out_balanced:
6329 schedstat_inc(sd, lb_balanced[idle]);
6330
6331 sd->nr_balance_failed = 0;
6332
6333out_one_pinned:
6334 /* tune up the balancing interval */
8e45cb54 6335 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6336 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6337 (sd->balance_interval < sd->max_interval))
6338 sd->balance_interval *= 2;
6339
46e49b38 6340 ld_moved = 0;
1e3c88bd 6341out:
1e3c88bd
PZ
6342 return ld_moved;
6343}
6344
1e3c88bd
PZ
6345/*
6346 * idle_balance is called by schedule() if this_cpu is about to become
6347 * idle. Attempts to pull tasks from other CPUs.
6348 */
029632fb 6349void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6350{
6351 struct sched_domain *sd;
6352 int pulled_task = 0;
6353 unsigned long next_balance = jiffies + HZ;
9bd721c5 6354 u64 curr_cost = 0;
1e3c88bd 6355
78becc27 6356 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6357
6358 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6359 return;
6360
f492e12e
PZ
6361 /*
6362 * Drop the rq->lock, but keep IRQ/preempt disabled.
6363 */
6364 raw_spin_unlock(&this_rq->lock);
6365
48a16753 6366 update_blocked_averages(this_cpu);
dce840a0 6367 rcu_read_lock();
1e3c88bd
PZ
6368 for_each_domain(this_cpu, sd) {
6369 unsigned long interval;
23f0d209 6370 int continue_balancing = 1;
9bd721c5 6371 u64 t0, domain_cost;
1e3c88bd
PZ
6372
6373 if (!(sd->flags & SD_LOAD_BALANCE))
6374 continue;
6375
9bd721c5
JL
6376 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6377 break;
6378
f492e12e 6379 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6380 t0 = sched_clock_cpu(this_cpu);
6381
1e3c88bd 6382 /* If we've pulled tasks over stop searching: */
f492e12e 6383 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6384 sd, CPU_NEWLY_IDLE,
6385 &continue_balancing);
9bd721c5
JL
6386
6387 domain_cost = sched_clock_cpu(this_cpu) - t0;
6388 if (domain_cost > sd->max_newidle_lb_cost)
6389 sd->max_newidle_lb_cost = domain_cost;
6390
6391 curr_cost += domain_cost;
f492e12e 6392 }
1e3c88bd
PZ
6393
6394 interval = msecs_to_jiffies(sd->balance_interval);
6395 if (time_after(next_balance, sd->last_balance + interval))
6396 next_balance = sd->last_balance + interval;
d5ad140b
NR
6397 if (pulled_task) {
6398 this_rq->idle_stamp = 0;
1e3c88bd 6399 break;
d5ad140b 6400 }
1e3c88bd 6401 }
dce840a0 6402 rcu_read_unlock();
f492e12e
PZ
6403
6404 raw_spin_lock(&this_rq->lock);
6405
1e3c88bd
PZ
6406 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6407 /*
6408 * We are going idle. next_balance may be set based on
6409 * a busy processor. So reset next_balance.
6410 */
6411 this_rq->next_balance = next_balance;
6412 }
9bd721c5
JL
6413
6414 if (curr_cost > this_rq->max_idle_balance_cost)
6415 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6416}
6417
6418/*
969c7921
TH
6419 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6420 * running tasks off the busiest CPU onto idle CPUs. It requires at
6421 * least 1 task to be running on each physical CPU where possible, and
6422 * avoids physical / logical imbalances.
1e3c88bd 6423 */
969c7921 6424static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6425{
969c7921
TH
6426 struct rq *busiest_rq = data;
6427 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6428 int target_cpu = busiest_rq->push_cpu;
969c7921 6429 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6430 struct sched_domain *sd;
969c7921
TH
6431
6432 raw_spin_lock_irq(&busiest_rq->lock);
6433
6434 /* make sure the requested cpu hasn't gone down in the meantime */
6435 if (unlikely(busiest_cpu != smp_processor_id() ||
6436 !busiest_rq->active_balance))
6437 goto out_unlock;
1e3c88bd
PZ
6438
6439 /* Is there any task to move? */
6440 if (busiest_rq->nr_running <= 1)
969c7921 6441 goto out_unlock;
1e3c88bd
PZ
6442
6443 /*
6444 * This condition is "impossible", if it occurs
6445 * we need to fix it. Originally reported by
6446 * Bjorn Helgaas on a 128-cpu setup.
6447 */
6448 BUG_ON(busiest_rq == target_rq);
6449
6450 /* move a task from busiest_rq to target_rq */
6451 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6452
6453 /* Search for an sd spanning us and the target CPU. */
dce840a0 6454 rcu_read_lock();
1e3c88bd
PZ
6455 for_each_domain(target_cpu, sd) {
6456 if ((sd->flags & SD_LOAD_BALANCE) &&
6457 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6458 break;
6459 }
6460
6461 if (likely(sd)) {
8e45cb54
PZ
6462 struct lb_env env = {
6463 .sd = sd,
ddcdf6e7
PZ
6464 .dst_cpu = target_cpu,
6465 .dst_rq = target_rq,
6466 .src_cpu = busiest_rq->cpu,
6467 .src_rq = busiest_rq,
8e45cb54
PZ
6468 .idle = CPU_IDLE,
6469 };
6470
1e3c88bd
PZ
6471 schedstat_inc(sd, alb_count);
6472
8e45cb54 6473 if (move_one_task(&env))
1e3c88bd
PZ
6474 schedstat_inc(sd, alb_pushed);
6475 else
6476 schedstat_inc(sd, alb_failed);
6477 }
dce840a0 6478 rcu_read_unlock();
1e3c88bd 6479 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6480out_unlock:
6481 busiest_rq->active_balance = 0;
6482 raw_spin_unlock_irq(&busiest_rq->lock);
6483 return 0;
1e3c88bd
PZ
6484}
6485
3451d024 6486#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6487/*
6488 * idle load balancing details
83cd4fe2
VP
6489 * - When one of the busy CPUs notice that there may be an idle rebalancing
6490 * needed, they will kick the idle load balancer, which then does idle
6491 * load balancing for all the idle CPUs.
6492 */
1e3c88bd 6493static struct {
83cd4fe2 6494 cpumask_var_t idle_cpus_mask;
0b005cf5 6495 atomic_t nr_cpus;
83cd4fe2
VP
6496 unsigned long next_balance; /* in jiffy units */
6497} nohz ____cacheline_aligned;
1e3c88bd 6498
8e7fbcbc 6499static inline int find_new_ilb(int call_cpu)
1e3c88bd 6500{
0b005cf5 6501 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6502
786d6dc7
SS
6503 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6504 return ilb;
6505
6506 return nr_cpu_ids;
1e3c88bd 6507}
1e3c88bd 6508
83cd4fe2
VP
6509/*
6510 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6511 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6512 * CPU (if there is one).
6513 */
6514static void nohz_balancer_kick(int cpu)
6515{
6516 int ilb_cpu;
6517
6518 nohz.next_balance++;
6519
0b005cf5 6520 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6521
0b005cf5
SS
6522 if (ilb_cpu >= nr_cpu_ids)
6523 return;
83cd4fe2 6524
cd490c5b 6525 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6526 return;
6527 /*
6528 * Use smp_send_reschedule() instead of resched_cpu().
6529 * This way we generate a sched IPI on the target cpu which
6530 * is idle. And the softirq performing nohz idle load balance
6531 * will be run before returning from the IPI.
6532 */
6533 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6534 return;
6535}
6536
c1cc017c 6537static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6538{
6539 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6540 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6541 atomic_dec(&nohz.nr_cpus);
6542 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6543 }
6544}
6545
69e1e811
SS
6546static inline void set_cpu_sd_state_busy(void)
6547{
6548 struct sched_domain *sd;
37dc6b50 6549 int cpu = smp_processor_id();
69e1e811 6550
69e1e811 6551 rcu_read_lock();
37dc6b50 6552 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6553
6554 if (!sd || !sd->nohz_idle)
6555 goto unlock;
6556 sd->nohz_idle = 0;
6557
37dc6b50 6558 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6559unlock:
69e1e811
SS
6560 rcu_read_unlock();
6561}
6562
6563void set_cpu_sd_state_idle(void)
6564{
6565 struct sched_domain *sd;
37dc6b50 6566 int cpu = smp_processor_id();
69e1e811 6567
69e1e811 6568 rcu_read_lock();
37dc6b50 6569 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6570
6571 if (!sd || sd->nohz_idle)
6572 goto unlock;
6573 sd->nohz_idle = 1;
6574
37dc6b50 6575 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6576unlock:
69e1e811
SS
6577 rcu_read_unlock();
6578}
6579
1e3c88bd 6580/*
c1cc017c 6581 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6582 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6583 */
c1cc017c 6584void nohz_balance_enter_idle(int cpu)
1e3c88bd 6585{
71325960
SS
6586 /*
6587 * If this cpu is going down, then nothing needs to be done.
6588 */
6589 if (!cpu_active(cpu))
6590 return;
6591
c1cc017c
AS
6592 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6593 return;
1e3c88bd 6594
c1cc017c
AS
6595 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6596 atomic_inc(&nohz.nr_cpus);
6597 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6598}
71325960 6599
0db0628d 6600static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6601 unsigned long action, void *hcpu)
6602{
6603 switch (action & ~CPU_TASKS_FROZEN) {
6604 case CPU_DYING:
c1cc017c 6605 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6606 return NOTIFY_OK;
6607 default:
6608 return NOTIFY_DONE;
6609 }
6610}
1e3c88bd
PZ
6611#endif
6612
6613static DEFINE_SPINLOCK(balancing);
6614
49c022e6
PZ
6615/*
6616 * Scale the max load_balance interval with the number of CPUs in the system.
6617 * This trades load-balance latency on larger machines for less cross talk.
6618 */
029632fb 6619void update_max_interval(void)
49c022e6
PZ
6620{
6621 max_load_balance_interval = HZ*num_online_cpus()/10;
6622}
6623
1e3c88bd
PZ
6624/*
6625 * It checks each scheduling domain to see if it is due to be balanced,
6626 * and initiates a balancing operation if so.
6627 *
b9b0853a 6628 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6629 */
6630static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6631{
23f0d209 6632 int continue_balancing = 1;
1e3c88bd
PZ
6633 struct rq *rq = cpu_rq(cpu);
6634 unsigned long interval;
04f733b4 6635 struct sched_domain *sd;
1e3c88bd
PZ
6636 /* Earliest time when we have to do rebalance again */
6637 unsigned long next_balance = jiffies + 60*HZ;
6638 int update_next_balance = 0;
f48627e6
JL
6639 int need_serialize, need_decay = 0;
6640 u64 max_cost = 0;
1e3c88bd 6641
48a16753 6642 update_blocked_averages(cpu);
2069dd75 6643
dce840a0 6644 rcu_read_lock();
1e3c88bd 6645 for_each_domain(cpu, sd) {
f48627e6
JL
6646 /*
6647 * Decay the newidle max times here because this is a regular
6648 * visit to all the domains. Decay ~1% per second.
6649 */
6650 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6651 sd->max_newidle_lb_cost =
6652 (sd->max_newidle_lb_cost * 253) / 256;
6653 sd->next_decay_max_lb_cost = jiffies + HZ;
6654 need_decay = 1;
6655 }
6656 max_cost += sd->max_newidle_lb_cost;
6657
1e3c88bd
PZ
6658 if (!(sd->flags & SD_LOAD_BALANCE))
6659 continue;
6660
f48627e6
JL
6661 /*
6662 * Stop the load balance at this level. There is another
6663 * CPU in our sched group which is doing load balancing more
6664 * actively.
6665 */
6666 if (!continue_balancing) {
6667 if (need_decay)
6668 continue;
6669 break;
6670 }
6671
1e3c88bd
PZ
6672 interval = sd->balance_interval;
6673 if (idle != CPU_IDLE)
6674 interval *= sd->busy_factor;
6675
6676 /* scale ms to jiffies */
6677 interval = msecs_to_jiffies(interval);
49c022e6 6678 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6679
6680 need_serialize = sd->flags & SD_SERIALIZE;
6681
6682 if (need_serialize) {
6683 if (!spin_trylock(&balancing))
6684 goto out;
6685 }
6686
6687 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6688 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6689 /*
6263322c 6690 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6691 * env->dst_cpu, so we can't know our idle
6692 * state even if we migrated tasks. Update it.
1e3c88bd 6693 */
de5eb2dd 6694 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6695 }
6696 sd->last_balance = jiffies;
6697 }
6698 if (need_serialize)
6699 spin_unlock(&balancing);
6700out:
6701 if (time_after(next_balance, sd->last_balance + interval)) {
6702 next_balance = sd->last_balance + interval;
6703 update_next_balance = 1;
6704 }
f48627e6
JL
6705 }
6706 if (need_decay) {
1e3c88bd 6707 /*
f48627e6
JL
6708 * Ensure the rq-wide value also decays but keep it at a
6709 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6710 */
f48627e6
JL
6711 rq->max_idle_balance_cost =
6712 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6713 }
dce840a0 6714 rcu_read_unlock();
1e3c88bd
PZ
6715
6716 /*
6717 * next_balance will be updated only when there is a need.
6718 * When the cpu is attached to null domain for ex, it will not be
6719 * updated.
6720 */
6721 if (likely(update_next_balance))
6722 rq->next_balance = next_balance;
6723}
6724
3451d024 6725#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6726/*
3451d024 6727 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6728 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6729 */
83cd4fe2
VP
6730static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6731{
6732 struct rq *this_rq = cpu_rq(this_cpu);
6733 struct rq *rq;
6734 int balance_cpu;
6735
1c792db7
SS
6736 if (idle != CPU_IDLE ||
6737 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6738 goto end;
83cd4fe2
VP
6739
6740 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6741 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6742 continue;
6743
6744 /*
6745 * If this cpu gets work to do, stop the load balancing
6746 * work being done for other cpus. Next load
6747 * balancing owner will pick it up.
6748 */
1c792db7 6749 if (need_resched())
83cd4fe2 6750 break;
83cd4fe2 6751
5ed4f1d9
VG
6752 rq = cpu_rq(balance_cpu);
6753
6754 raw_spin_lock_irq(&rq->lock);
6755 update_rq_clock(rq);
6756 update_idle_cpu_load(rq);
6757 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6758
6759 rebalance_domains(balance_cpu, CPU_IDLE);
6760
83cd4fe2
VP
6761 if (time_after(this_rq->next_balance, rq->next_balance))
6762 this_rq->next_balance = rq->next_balance;
6763 }
6764 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6765end:
6766 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6767}
6768
6769/*
0b005cf5
SS
6770 * Current heuristic for kicking the idle load balancer in the presence
6771 * of an idle cpu is the system.
6772 * - This rq has more than one task.
6773 * - At any scheduler domain level, this cpu's scheduler group has multiple
6774 * busy cpu's exceeding the group's power.
6775 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6776 * domain span are idle.
83cd4fe2
VP
6777 */
6778static inline int nohz_kick_needed(struct rq *rq, int cpu)
6779{
6780 unsigned long now = jiffies;
0b005cf5 6781 struct sched_domain *sd;
37dc6b50
PM
6782 struct sched_group_power *sgp;
6783 int nr_busy;
83cd4fe2 6784
1c792db7 6785 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6786 return 0;
6787
1c792db7
SS
6788 /*
6789 * We may be recently in ticked or tickless idle mode. At the first
6790 * busy tick after returning from idle, we will update the busy stats.
6791 */
69e1e811 6792 set_cpu_sd_state_busy();
c1cc017c 6793 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6794
6795 /*
6796 * None are in tickless mode and hence no need for NOHZ idle load
6797 * balancing.
6798 */
6799 if (likely(!atomic_read(&nohz.nr_cpus)))
6800 return 0;
1c792db7
SS
6801
6802 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6803 return 0;
6804
0b005cf5
SS
6805 if (rq->nr_running >= 2)
6806 goto need_kick;
83cd4fe2 6807
067491b7 6808 rcu_read_lock();
37dc6b50 6809 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 6810
37dc6b50
PM
6811 if (sd) {
6812 sgp = sd->groups->sgp;
6813 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 6814
37dc6b50 6815 if (nr_busy > 1)
067491b7 6816 goto need_kick_unlock;
83cd4fe2 6817 }
37dc6b50
PM
6818
6819 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6820
6821 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6822 sched_domain_span(sd)) < cpu))
6823 goto need_kick_unlock;
6824
067491b7 6825 rcu_read_unlock();
83cd4fe2 6826 return 0;
067491b7
PZ
6827
6828need_kick_unlock:
6829 rcu_read_unlock();
0b005cf5
SS
6830need_kick:
6831 return 1;
83cd4fe2
VP
6832}
6833#else
6834static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6835#endif
6836
6837/*
6838 * run_rebalance_domains is triggered when needed from the scheduler tick.
6839 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6840 */
1e3c88bd
PZ
6841static void run_rebalance_domains(struct softirq_action *h)
6842{
6843 int this_cpu = smp_processor_id();
6844 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6845 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6846 CPU_IDLE : CPU_NOT_IDLE;
6847
6848 rebalance_domains(this_cpu, idle);
6849
1e3c88bd 6850 /*
83cd4fe2 6851 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6852 * balancing on behalf of the other idle cpus whose ticks are
6853 * stopped.
6854 */
83cd4fe2 6855 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6856}
6857
6858static inline int on_null_domain(int cpu)
6859{
90a6501f 6860 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6861}
6862
6863/*
6864 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6865 */
029632fb 6866void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6867{
1e3c88bd
PZ
6868 /* Don't need to rebalance while attached to NULL domain */
6869 if (time_after_eq(jiffies, rq->next_balance) &&
6870 likely(!on_null_domain(cpu)))
6871 raise_softirq(SCHED_SOFTIRQ);
3451d024 6872#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6873 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6874 nohz_balancer_kick(cpu);
6875#endif
1e3c88bd
PZ
6876}
6877
0bcdcf28
CE
6878static void rq_online_fair(struct rq *rq)
6879{
6880 update_sysctl();
6881}
6882
6883static void rq_offline_fair(struct rq *rq)
6884{
6885 update_sysctl();
a4c96ae3
PB
6886
6887 /* Ensure any throttled groups are reachable by pick_next_task */
6888 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6889}
6890
55e12e5e 6891#endif /* CONFIG_SMP */
e1d1484f 6892
bf0f6f24
IM
6893/*
6894 * scheduler tick hitting a task of our scheduling class:
6895 */
8f4d37ec 6896static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6897{
6898 struct cfs_rq *cfs_rq;
6899 struct sched_entity *se = &curr->se;
6900
6901 for_each_sched_entity(se) {
6902 cfs_rq = cfs_rq_of(se);
8f4d37ec 6903 entity_tick(cfs_rq, se, queued);
bf0f6f24 6904 }
18bf2805 6905
10e84b97 6906 if (numabalancing_enabled)
cbee9f88 6907 task_tick_numa(rq, curr);
3d59eebc 6908
18bf2805 6909 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6910}
6911
6912/*
cd29fe6f
PZ
6913 * called on fork with the child task as argument from the parent's context
6914 * - child not yet on the tasklist
6915 * - preemption disabled
bf0f6f24 6916 */
cd29fe6f 6917static void task_fork_fair(struct task_struct *p)
bf0f6f24 6918{
4fc420c9
DN
6919 struct cfs_rq *cfs_rq;
6920 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6921 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6922 struct rq *rq = this_rq();
6923 unsigned long flags;
6924
05fa785c 6925 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6926
861d034e
PZ
6927 update_rq_clock(rq);
6928
4fc420c9
DN
6929 cfs_rq = task_cfs_rq(current);
6930 curr = cfs_rq->curr;
6931
6c9a27f5
DN
6932 /*
6933 * Not only the cpu but also the task_group of the parent might have
6934 * been changed after parent->se.parent,cfs_rq were copied to
6935 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6936 * of child point to valid ones.
6937 */
6938 rcu_read_lock();
6939 __set_task_cpu(p, this_cpu);
6940 rcu_read_unlock();
bf0f6f24 6941
7109c442 6942 update_curr(cfs_rq);
cd29fe6f 6943
b5d9d734
MG
6944 if (curr)
6945 se->vruntime = curr->vruntime;
aeb73b04 6946 place_entity(cfs_rq, se, 1);
4d78e7b6 6947
cd29fe6f 6948 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6949 /*
edcb60a3
IM
6950 * Upon rescheduling, sched_class::put_prev_task() will place
6951 * 'current' within the tree based on its new key value.
6952 */
4d78e7b6 6953 swap(curr->vruntime, se->vruntime);
aec0a514 6954 resched_task(rq->curr);
4d78e7b6 6955 }
bf0f6f24 6956
88ec22d3
PZ
6957 se->vruntime -= cfs_rq->min_vruntime;
6958
05fa785c 6959 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6960}
6961
cb469845
SR
6962/*
6963 * Priority of the task has changed. Check to see if we preempt
6964 * the current task.
6965 */
da7a735e
PZ
6966static void
6967prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6968{
da7a735e
PZ
6969 if (!p->se.on_rq)
6970 return;
6971
cb469845
SR
6972 /*
6973 * Reschedule if we are currently running on this runqueue and
6974 * our priority decreased, or if we are not currently running on
6975 * this runqueue and our priority is higher than the current's
6976 */
da7a735e 6977 if (rq->curr == p) {
cb469845
SR
6978 if (p->prio > oldprio)
6979 resched_task(rq->curr);
6980 } else
15afe09b 6981 check_preempt_curr(rq, p, 0);
cb469845
SR
6982}
6983
da7a735e
PZ
6984static void switched_from_fair(struct rq *rq, struct task_struct *p)
6985{
6986 struct sched_entity *se = &p->se;
6987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6988
6989 /*
6990 * Ensure the task's vruntime is normalized, so that when its
6991 * switched back to the fair class the enqueue_entity(.flags=0) will
6992 * do the right thing.
6993 *
6994 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6995 * have normalized the vruntime, if it was !on_rq, then only when
6996 * the task is sleeping will it still have non-normalized vruntime.
6997 */
6998 if (!se->on_rq && p->state != TASK_RUNNING) {
6999 /*
7000 * Fix up our vruntime so that the current sleep doesn't
7001 * cause 'unlimited' sleep bonus.
7002 */
7003 place_entity(cfs_rq, se, 0);
7004 se->vruntime -= cfs_rq->min_vruntime;
7005 }
9ee474f5 7006
141965c7 7007#ifdef CONFIG_SMP
9ee474f5
PT
7008 /*
7009 * Remove our load from contribution when we leave sched_fair
7010 * and ensure we don't carry in an old decay_count if we
7011 * switch back.
7012 */
87e3c8ae
KT
7013 if (se->avg.decay_count) {
7014 __synchronize_entity_decay(se);
7015 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7016 }
7017#endif
da7a735e
PZ
7018}
7019
cb469845
SR
7020/*
7021 * We switched to the sched_fair class.
7022 */
da7a735e 7023static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7024{
da7a735e
PZ
7025 if (!p->se.on_rq)
7026 return;
7027
cb469845
SR
7028 /*
7029 * We were most likely switched from sched_rt, so
7030 * kick off the schedule if running, otherwise just see
7031 * if we can still preempt the current task.
7032 */
da7a735e 7033 if (rq->curr == p)
cb469845
SR
7034 resched_task(rq->curr);
7035 else
15afe09b 7036 check_preempt_curr(rq, p, 0);
cb469845
SR
7037}
7038
83b699ed
SV
7039/* Account for a task changing its policy or group.
7040 *
7041 * This routine is mostly called to set cfs_rq->curr field when a task
7042 * migrates between groups/classes.
7043 */
7044static void set_curr_task_fair(struct rq *rq)
7045{
7046 struct sched_entity *se = &rq->curr->se;
7047
ec12cb7f
PT
7048 for_each_sched_entity(se) {
7049 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7050
7051 set_next_entity(cfs_rq, se);
7052 /* ensure bandwidth has been allocated on our new cfs_rq */
7053 account_cfs_rq_runtime(cfs_rq, 0);
7054 }
83b699ed
SV
7055}
7056
029632fb
PZ
7057void init_cfs_rq(struct cfs_rq *cfs_rq)
7058{
7059 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7060 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7061#ifndef CONFIG_64BIT
7062 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7063#endif
141965c7 7064#ifdef CONFIG_SMP
9ee474f5 7065 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7066 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7067#endif
029632fb
PZ
7068}
7069
810b3817 7070#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7071static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7072{
aff3e498 7073 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7074 /*
7075 * If the task was not on the rq at the time of this cgroup movement
7076 * it must have been asleep, sleeping tasks keep their ->vruntime
7077 * absolute on their old rq until wakeup (needed for the fair sleeper
7078 * bonus in place_entity()).
7079 *
7080 * If it was on the rq, we've just 'preempted' it, which does convert
7081 * ->vruntime to a relative base.
7082 *
7083 * Make sure both cases convert their relative position when migrating
7084 * to another cgroup's rq. This does somewhat interfere with the
7085 * fair sleeper stuff for the first placement, but who cares.
7086 */
7ceff013
DN
7087 /*
7088 * When !on_rq, vruntime of the task has usually NOT been normalized.
7089 * But there are some cases where it has already been normalized:
7090 *
7091 * - Moving a forked child which is waiting for being woken up by
7092 * wake_up_new_task().
62af3783
DN
7093 * - Moving a task which has been woken up by try_to_wake_up() and
7094 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7095 *
7096 * To prevent boost or penalty in the new cfs_rq caused by delta
7097 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7098 */
62af3783 7099 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7100 on_rq = 1;
7101
b2b5ce02
PZ
7102 if (!on_rq)
7103 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7104 set_task_rq(p, task_cpu(p));
aff3e498
PT
7105 if (!on_rq) {
7106 cfs_rq = cfs_rq_of(&p->se);
7107 p->se.vruntime += cfs_rq->min_vruntime;
7108#ifdef CONFIG_SMP
7109 /*
7110 * migrate_task_rq_fair() will have removed our previous
7111 * contribution, but we must synchronize for ongoing future
7112 * decay.
7113 */
7114 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7115 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7116#endif
7117 }
810b3817 7118}
029632fb
PZ
7119
7120void free_fair_sched_group(struct task_group *tg)
7121{
7122 int i;
7123
7124 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7125
7126 for_each_possible_cpu(i) {
7127 if (tg->cfs_rq)
7128 kfree(tg->cfs_rq[i]);
7129 if (tg->se)
7130 kfree(tg->se[i]);
7131 }
7132
7133 kfree(tg->cfs_rq);
7134 kfree(tg->se);
7135}
7136
7137int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7138{
7139 struct cfs_rq *cfs_rq;
7140 struct sched_entity *se;
7141 int i;
7142
7143 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7144 if (!tg->cfs_rq)
7145 goto err;
7146 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7147 if (!tg->se)
7148 goto err;
7149
7150 tg->shares = NICE_0_LOAD;
7151
7152 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7153
7154 for_each_possible_cpu(i) {
7155 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7156 GFP_KERNEL, cpu_to_node(i));
7157 if (!cfs_rq)
7158 goto err;
7159
7160 se = kzalloc_node(sizeof(struct sched_entity),
7161 GFP_KERNEL, cpu_to_node(i));
7162 if (!se)
7163 goto err_free_rq;
7164
7165 init_cfs_rq(cfs_rq);
7166 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7167 }
7168
7169 return 1;
7170
7171err_free_rq:
7172 kfree(cfs_rq);
7173err:
7174 return 0;
7175}
7176
7177void unregister_fair_sched_group(struct task_group *tg, int cpu)
7178{
7179 struct rq *rq = cpu_rq(cpu);
7180 unsigned long flags;
7181
7182 /*
7183 * Only empty task groups can be destroyed; so we can speculatively
7184 * check on_list without danger of it being re-added.
7185 */
7186 if (!tg->cfs_rq[cpu]->on_list)
7187 return;
7188
7189 raw_spin_lock_irqsave(&rq->lock, flags);
7190 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7191 raw_spin_unlock_irqrestore(&rq->lock, flags);
7192}
7193
7194void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7195 struct sched_entity *se, int cpu,
7196 struct sched_entity *parent)
7197{
7198 struct rq *rq = cpu_rq(cpu);
7199
7200 cfs_rq->tg = tg;
7201 cfs_rq->rq = rq;
029632fb
PZ
7202 init_cfs_rq_runtime(cfs_rq);
7203
7204 tg->cfs_rq[cpu] = cfs_rq;
7205 tg->se[cpu] = se;
7206
7207 /* se could be NULL for root_task_group */
7208 if (!se)
7209 return;
7210
7211 if (!parent)
7212 se->cfs_rq = &rq->cfs;
7213 else
7214 se->cfs_rq = parent->my_q;
7215
7216 se->my_q = cfs_rq;
0ac9b1c2
PT
7217 /* guarantee group entities always have weight */
7218 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7219 se->parent = parent;
7220}
7221
7222static DEFINE_MUTEX(shares_mutex);
7223
7224int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7225{
7226 int i;
7227 unsigned long flags;
7228
7229 /*
7230 * We can't change the weight of the root cgroup.
7231 */
7232 if (!tg->se[0])
7233 return -EINVAL;
7234
7235 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7236
7237 mutex_lock(&shares_mutex);
7238 if (tg->shares == shares)
7239 goto done;
7240
7241 tg->shares = shares;
7242 for_each_possible_cpu(i) {
7243 struct rq *rq = cpu_rq(i);
7244 struct sched_entity *se;
7245
7246 se = tg->se[i];
7247 /* Propagate contribution to hierarchy */
7248 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7249
7250 /* Possible calls to update_curr() need rq clock */
7251 update_rq_clock(rq);
17bc14b7 7252 for_each_sched_entity(se)
029632fb
PZ
7253 update_cfs_shares(group_cfs_rq(se));
7254 raw_spin_unlock_irqrestore(&rq->lock, flags);
7255 }
7256
7257done:
7258 mutex_unlock(&shares_mutex);
7259 return 0;
7260}
7261#else /* CONFIG_FAIR_GROUP_SCHED */
7262
7263void free_fair_sched_group(struct task_group *tg) { }
7264
7265int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7266{
7267 return 1;
7268}
7269
7270void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7271
7272#endif /* CONFIG_FAIR_GROUP_SCHED */
7273
810b3817 7274
6d686f45 7275static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7276{
7277 struct sched_entity *se = &task->se;
0d721cea
PW
7278 unsigned int rr_interval = 0;
7279
7280 /*
7281 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7282 * idle runqueue:
7283 */
0d721cea 7284 if (rq->cfs.load.weight)
a59f4e07 7285 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7286
7287 return rr_interval;
7288}
7289
bf0f6f24
IM
7290/*
7291 * All the scheduling class methods:
7292 */
029632fb 7293const struct sched_class fair_sched_class = {
5522d5d5 7294 .next = &idle_sched_class,
bf0f6f24
IM
7295 .enqueue_task = enqueue_task_fair,
7296 .dequeue_task = dequeue_task_fair,
7297 .yield_task = yield_task_fair,
d95f4122 7298 .yield_to_task = yield_to_task_fair,
bf0f6f24 7299
2e09bf55 7300 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7301
7302 .pick_next_task = pick_next_task_fair,
7303 .put_prev_task = put_prev_task_fair,
7304
681f3e68 7305#ifdef CONFIG_SMP
4ce72a2c 7306 .select_task_rq = select_task_rq_fair,
0a74bef8 7307 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7308
0bcdcf28
CE
7309 .rq_online = rq_online_fair,
7310 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7311
7312 .task_waking = task_waking_fair,
681f3e68 7313#endif
bf0f6f24 7314
83b699ed 7315 .set_curr_task = set_curr_task_fair,
bf0f6f24 7316 .task_tick = task_tick_fair,
cd29fe6f 7317 .task_fork = task_fork_fair,
cb469845
SR
7318
7319 .prio_changed = prio_changed_fair,
da7a735e 7320 .switched_from = switched_from_fair,
cb469845 7321 .switched_to = switched_to_fair,
810b3817 7322
0d721cea
PW
7323 .get_rr_interval = get_rr_interval_fair,
7324
810b3817 7325#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7326 .task_move_group = task_move_group_fair,
810b3817 7327#endif
bf0f6f24
IM
7328};
7329
7330#ifdef CONFIG_SCHED_DEBUG
029632fb 7331void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7332{
bf0f6f24
IM
7333 struct cfs_rq *cfs_rq;
7334
5973e5b9 7335 rcu_read_lock();
c3b64f1e 7336 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7337 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7338 rcu_read_unlock();
bf0f6f24
IM
7339}
7340#endif
029632fb
PZ
7341
7342__init void init_sched_fair_class(void)
7343{
7344#ifdef CONFIG_SMP
7345 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7346
3451d024 7347#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7348 nohz.next_balance = jiffies;
029632fb 7349 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7350 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7351#endif
7352#endif /* SMP */
7353
7354}
This page took 0.956161 seconds and 5 git commands to generate.