sched/wait: Document waitqueue_active()
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
006cdf02 686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
9d89c257 687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 688}
7ea241af
YD
689
690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 692#else
540247fb 693void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
694{
695}
696#endif
697
bf0f6f24 698/*
9dbdb155 699 * Update the current task's runtime statistics.
bf0f6f24 700 */
b7cc0896 701static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 702{
429d43bc 703 struct sched_entity *curr = cfs_rq->curr;
78becc27 704 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 705 u64 delta_exec;
bf0f6f24
IM
706
707 if (unlikely(!curr))
708 return;
709
9dbdb155
PZ
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
34f28ecd 712 return;
bf0f6f24 713
8ebc91d9 714 curr->exec_start = now;
d842de87 715
9dbdb155
PZ
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
d842de87
SV
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
6e998916
SG
736static void update_curr_fair(struct rq *rq)
737{
738 update_curr(cfs_rq_of(&rq->curr->se));
739}
740
bf0f6f24 741static inline void
5870db5b 742update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 743{
78becc27 744 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
745}
746
bf0f6f24
IM
747/*
748 * Task is being enqueued - update stats:
749 */
d2417e5a 750static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 751{
bf0f6f24
IM
752 /*
753 * Are we enqueueing a waiting task? (for current tasks
754 * a dequeue/enqueue event is a NOP)
755 */
429d43bc 756 if (se != cfs_rq->curr)
5870db5b 757 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
758}
759
bf0f6f24 760static void
9ef0a961 761update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 762{
41acab88 763 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 764 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
765 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
766 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
768#ifdef CONFIG_SCHEDSTATS
769 if (entity_is_task(se)) {
770 trace_sched_stat_wait(task_of(se),
78becc27 771 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
772 }
773#endif
41acab88 774 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
775}
776
777static inline void
19b6a2e3 778update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 779{
bf0f6f24
IM
780 /*
781 * Mark the end of the wait period if dequeueing a
782 * waiting task:
783 */
429d43bc 784 if (se != cfs_rq->curr)
9ef0a961 785 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
786}
787
788/*
789 * We are picking a new current task - update its stats:
790 */
791static inline void
79303e9e 792update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
793{
794 /*
795 * We are starting a new run period:
796 */
78becc27 797 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
798}
799
bf0f6f24
IM
800/**************************************************
801 * Scheduling class queueing methods:
802 */
803
cbee9f88
PZ
804#ifdef CONFIG_NUMA_BALANCING
805/*
598f0ec0
MG
806 * Approximate time to scan a full NUMA task in ms. The task scan period is
807 * calculated based on the tasks virtual memory size and
808 * numa_balancing_scan_size.
cbee9f88 809 */
598f0ec0
MG
810unsigned int sysctl_numa_balancing_scan_period_min = 1000;
811unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
812
813/* Portion of address space to scan in MB */
814unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 815
4b96a29b
PZ
816/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
817unsigned int sysctl_numa_balancing_scan_delay = 1000;
818
598f0ec0
MG
819static unsigned int task_nr_scan_windows(struct task_struct *p)
820{
821 unsigned long rss = 0;
822 unsigned long nr_scan_pages;
823
824 /*
825 * Calculations based on RSS as non-present and empty pages are skipped
826 * by the PTE scanner and NUMA hinting faults should be trapped based
827 * on resident pages
828 */
829 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
830 rss = get_mm_rss(p->mm);
831 if (!rss)
832 rss = nr_scan_pages;
833
834 rss = round_up(rss, nr_scan_pages);
835 return rss / nr_scan_pages;
836}
837
838/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
839#define MAX_SCAN_WINDOW 2560
840
841static unsigned int task_scan_min(struct task_struct *p)
842{
316c1608 843 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
844 unsigned int scan, floor;
845 unsigned int windows = 1;
846
64192658
KT
847 if (scan_size < MAX_SCAN_WINDOW)
848 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
849 floor = 1000 / windows;
850
851 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
852 return max_t(unsigned int, floor, scan);
853}
854
855static unsigned int task_scan_max(struct task_struct *p)
856{
857 unsigned int smin = task_scan_min(p);
858 unsigned int smax;
859
860 /* Watch for min being lower than max due to floor calculations */
861 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
862 return max(smin, smax);
863}
864
0ec8aa00
PZ
865static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
866{
867 rq->nr_numa_running += (p->numa_preferred_nid != -1);
868 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
869}
870
871static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
872{
873 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
874 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
875}
876
8c8a743c
PZ
877struct numa_group {
878 atomic_t refcount;
879
880 spinlock_t lock; /* nr_tasks, tasks */
881 int nr_tasks;
e29cf08b 882 pid_t gid;
8c8a743c
PZ
883
884 struct rcu_head rcu;
20e07dea 885 nodemask_t active_nodes;
989348b5 886 unsigned long total_faults;
7e2703e6
RR
887 /*
888 * Faults_cpu is used to decide whether memory should move
889 * towards the CPU. As a consequence, these stats are weighted
890 * more by CPU use than by memory faults.
891 */
50ec8a40 892 unsigned long *faults_cpu;
989348b5 893 unsigned long faults[0];
8c8a743c
PZ
894};
895
be1e4e76
RR
896/* Shared or private faults. */
897#define NR_NUMA_HINT_FAULT_TYPES 2
898
899/* Memory and CPU locality */
900#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
901
902/* Averaged statistics, and temporary buffers. */
903#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
904
e29cf08b
MG
905pid_t task_numa_group_id(struct task_struct *p)
906{
907 return p->numa_group ? p->numa_group->gid : 0;
908}
909
44dba3d5
IM
910/*
911 * The averaged statistics, shared & private, memory & cpu,
912 * occupy the first half of the array. The second half of the
913 * array is for current counters, which are averaged into the
914 * first set by task_numa_placement.
915 */
916static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 917{
44dba3d5 918 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
919}
920
921static inline unsigned long task_faults(struct task_struct *p, int nid)
922{
44dba3d5 923 if (!p->numa_faults)
ac8e895b
MG
924 return 0;
925
44dba3d5
IM
926 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
927 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
928}
929
83e1d2cd
MG
930static inline unsigned long group_faults(struct task_struct *p, int nid)
931{
932 if (!p->numa_group)
933 return 0;
934
44dba3d5
IM
935 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
936 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
937}
938
20e07dea
RR
939static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
940{
44dba3d5
IM
941 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
942 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
943}
944
6c6b1193
RR
945/* Handle placement on systems where not all nodes are directly connected. */
946static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
947 int maxdist, bool task)
948{
949 unsigned long score = 0;
950 int node;
951
952 /*
953 * All nodes are directly connected, and the same distance
954 * from each other. No need for fancy placement algorithms.
955 */
956 if (sched_numa_topology_type == NUMA_DIRECT)
957 return 0;
958
959 /*
960 * This code is called for each node, introducing N^2 complexity,
961 * which should be ok given the number of nodes rarely exceeds 8.
962 */
963 for_each_online_node(node) {
964 unsigned long faults;
965 int dist = node_distance(nid, node);
966
967 /*
968 * The furthest away nodes in the system are not interesting
969 * for placement; nid was already counted.
970 */
971 if (dist == sched_max_numa_distance || node == nid)
972 continue;
973
974 /*
975 * On systems with a backplane NUMA topology, compare groups
976 * of nodes, and move tasks towards the group with the most
977 * memory accesses. When comparing two nodes at distance
978 * "hoplimit", only nodes closer by than "hoplimit" are part
979 * of each group. Skip other nodes.
980 */
981 if (sched_numa_topology_type == NUMA_BACKPLANE &&
982 dist > maxdist)
983 continue;
984
985 /* Add up the faults from nearby nodes. */
986 if (task)
987 faults = task_faults(p, node);
988 else
989 faults = group_faults(p, node);
990
991 /*
992 * On systems with a glueless mesh NUMA topology, there are
993 * no fixed "groups of nodes". Instead, nodes that are not
994 * directly connected bounce traffic through intermediate
995 * nodes; a numa_group can occupy any set of nodes.
996 * The further away a node is, the less the faults count.
997 * This seems to result in good task placement.
998 */
999 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1000 faults *= (sched_max_numa_distance - dist);
1001 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1002 }
1003
1004 score += faults;
1005 }
1006
1007 return score;
1008}
1009
83e1d2cd
MG
1010/*
1011 * These return the fraction of accesses done by a particular task, or
1012 * task group, on a particular numa node. The group weight is given a
1013 * larger multiplier, in order to group tasks together that are almost
1014 * evenly spread out between numa nodes.
1015 */
7bd95320
RR
1016static inline unsigned long task_weight(struct task_struct *p, int nid,
1017 int dist)
83e1d2cd 1018{
7bd95320 1019 unsigned long faults, total_faults;
83e1d2cd 1020
44dba3d5 1021 if (!p->numa_faults)
83e1d2cd
MG
1022 return 0;
1023
1024 total_faults = p->total_numa_faults;
1025
1026 if (!total_faults)
1027 return 0;
1028
7bd95320 1029 faults = task_faults(p, nid);
6c6b1193
RR
1030 faults += score_nearby_nodes(p, nid, dist, true);
1031
7bd95320 1032 return 1000 * faults / total_faults;
83e1d2cd
MG
1033}
1034
7bd95320
RR
1035static inline unsigned long group_weight(struct task_struct *p, int nid,
1036 int dist)
83e1d2cd 1037{
7bd95320
RR
1038 unsigned long faults, total_faults;
1039
1040 if (!p->numa_group)
1041 return 0;
1042
1043 total_faults = p->numa_group->total_faults;
1044
1045 if (!total_faults)
83e1d2cd
MG
1046 return 0;
1047
7bd95320 1048 faults = group_faults(p, nid);
6c6b1193
RR
1049 faults += score_nearby_nodes(p, nid, dist, false);
1050
7bd95320 1051 return 1000 * faults / total_faults;
83e1d2cd
MG
1052}
1053
10f39042
RR
1054bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1055 int src_nid, int dst_cpu)
1056{
1057 struct numa_group *ng = p->numa_group;
1058 int dst_nid = cpu_to_node(dst_cpu);
1059 int last_cpupid, this_cpupid;
1060
1061 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1062
1063 /*
1064 * Multi-stage node selection is used in conjunction with a periodic
1065 * migration fault to build a temporal task<->page relation. By using
1066 * a two-stage filter we remove short/unlikely relations.
1067 *
1068 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1069 * a task's usage of a particular page (n_p) per total usage of this
1070 * page (n_t) (in a given time-span) to a probability.
1071 *
1072 * Our periodic faults will sample this probability and getting the
1073 * same result twice in a row, given these samples are fully
1074 * independent, is then given by P(n)^2, provided our sample period
1075 * is sufficiently short compared to the usage pattern.
1076 *
1077 * This quadric squishes small probabilities, making it less likely we
1078 * act on an unlikely task<->page relation.
1079 */
1080 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1081 if (!cpupid_pid_unset(last_cpupid) &&
1082 cpupid_to_nid(last_cpupid) != dst_nid)
1083 return false;
1084
1085 /* Always allow migrate on private faults */
1086 if (cpupid_match_pid(p, last_cpupid))
1087 return true;
1088
1089 /* A shared fault, but p->numa_group has not been set up yet. */
1090 if (!ng)
1091 return true;
1092
1093 /*
1094 * Do not migrate if the destination is not a node that
1095 * is actively used by this numa group.
1096 */
1097 if (!node_isset(dst_nid, ng->active_nodes))
1098 return false;
1099
1100 /*
1101 * Source is a node that is not actively used by this
1102 * numa group, while the destination is. Migrate.
1103 */
1104 if (!node_isset(src_nid, ng->active_nodes))
1105 return true;
1106
1107 /*
1108 * Both source and destination are nodes in active
1109 * use by this numa group. Maximize memory bandwidth
1110 * by migrating from more heavily used groups, to less
1111 * heavily used ones, spreading the load around.
1112 * Use a 1/4 hysteresis to avoid spurious page movement.
1113 */
1114 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1115}
1116
e6628d5b 1117static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1118static unsigned long source_load(int cpu, int type);
1119static unsigned long target_load(int cpu, int type);
ced549fa 1120static unsigned long capacity_of(int cpu);
58d081b5
MG
1121static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1122
fb13c7ee 1123/* Cached statistics for all CPUs within a node */
58d081b5 1124struct numa_stats {
fb13c7ee 1125 unsigned long nr_running;
58d081b5 1126 unsigned long load;
fb13c7ee
MG
1127
1128 /* Total compute capacity of CPUs on a node */
5ef20ca1 1129 unsigned long compute_capacity;
fb13c7ee
MG
1130
1131 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1132 unsigned long task_capacity;
1b6a7495 1133 int has_free_capacity;
58d081b5 1134};
e6628d5b 1135
fb13c7ee
MG
1136/*
1137 * XXX borrowed from update_sg_lb_stats
1138 */
1139static void update_numa_stats(struct numa_stats *ns, int nid)
1140{
83d7f242
RR
1141 int smt, cpu, cpus = 0;
1142 unsigned long capacity;
fb13c7ee
MG
1143
1144 memset(ns, 0, sizeof(*ns));
1145 for_each_cpu(cpu, cpumask_of_node(nid)) {
1146 struct rq *rq = cpu_rq(cpu);
1147
1148 ns->nr_running += rq->nr_running;
1149 ns->load += weighted_cpuload(cpu);
ced549fa 1150 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1151
1152 cpus++;
fb13c7ee
MG
1153 }
1154
5eca82a9
PZ
1155 /*
1156 * If we raced with hotplug and there are no CPUs left in our mask
1157 * the @ns structure is NULL'ed and task_numa_compare() will
1158 * not find this node attractive.
1159 *
1b6a7495
NP
1160 * We'll either bail at !has_free_capacity, or we'll detect a huge
1161 * imbalance and bail there.
5eca82a9
PZ
1162 */
1163 if (!cpus)
1164 return;
1165
83d7f242
RR
1166 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1167 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1168 capacity = cpus / smt; /* cores */
1169
1170 ns->task_capacity = min_t(unsigned, capacity,
1171 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1172 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1173}
1174
58d081b5
MG
1175struct task_numa_env {
1176 struct task_struct *p;
e6628d5b 1177
58d081b5
MG
1178 int src_cpu, src_nid;
1179 int dst_cpu, dst_nid;
e6628d5b 1180
58d081b5 1181 struct numa_stats src_stats, dst_stats;
e6628d5b 1182
40ea2b42 1183 int imbalance_pct;
7bd95320 1184 int dist;
fb13c7ee
MG
1185
1186 struct task_struct *best_task;
1187 long best_imp;
58d081b5
MG
1188 int best_cpu;
1189};
1190
fb13c7ee
MG
1191static void task_numa_assign(struct task_numa_env *env,
1192 struct task_struct *p, long imp)
1193{
1194 if (env->best_task)
1195 put_task_struct(env->best_task);
1196 if (p)
1197 get_task_struct(p);
1198
1199 env->best_task = p;
1200 env->best_imp = imp;
1201 env->best_cpu = env->dst_cpu;
1202}
1203
28a21745 1204static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1205 struct task_numa_env *env)
1206{
e4991b24
RR
1207 long imb, old_imb;
1208 long orig_src_load, orig_dst_load;
28a21745
RR
1209 long src_capacity, dst_capacity;
1210
1211 /*
1212 * The load is corrected for the CPU capacity available on each node.
1213 *
1214 * src_load dst_load
1215 * ------------ vs ---------
1216 * src_capacity dst_capacity
1217 */
1218 src_capacity = env->src_stats.compute_capacity;
1219 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1220
1221 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1222 if (dst_load < src_load)
1223 swap(dst_load, src_load);
e63da036
RR
1224
1225 /* Is the difference below the threshold? */
e4991b24
RR
1226 imb = dst_load * src_capacity * 100 -
1227 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1228 if (imb <= 0)
1229 return false;
1230
1231 /*
1232 * The imbalance is above the allowed threshold.
e4991b24 1233 * Compare it with the old imbalance.
e63da036 1234 */
28a21745 1235 orig_src_load = env->src_stats.load;
e4991b24 1236 orig_dst_load = env->dst_stats.load;
28a21745 1237
e4991b24
RR
1238 if (orig_dst_load < orig_src_load)
1239 swap(orig_dst_load, orig_src_load);
e63da036 1240
e4991b24
RR
1241 old_imb = orig_dst_load * src_capacity * 100 -
1242 orig_src_load * dst_capacity * env->imbalance_pct;
1243
1244 /* Would this change make things worse? */
1245 return (imb > old_imb);
e63da036
RR
1246}
1247
fb13c7ee
MG
1248/*
1249 * This checks if the overall compute and NUMA accesses of the system would
1250 * be improved if the source tasks was migrated to the target dst_cpu taking
1251 * into account that it might be best if task running on the dst_cpu should
1252 * be exchanged with the source task
1253 */
887c290e
RR
1254static void task_numa_compare(struct task_numa_env *env,
1255 long taskimp, long groupimp)
fb13c7ee
MG
1256{
1257 struct rq *src_rq = cpu_rq(env->src_cpu);
1258 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1259 struct task_struct *cur;
28a21745 1260 long src_load, dst_load;
fb13c7ee 1261 long load;
1c5d3eb3 1262 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1263 long moveimp = imp;
7bd95320 1264 int dist = env->dist;
fb13c7ee
MG
1265
1266 rcu_read_lock();
1effd9f1
KT
1267
1268 raw_spin_lock_irq(&dst_rq->lock);
1269 cur = dst_rq->curr;
1270 /*
1271 * No need to move the exiting task, and this ensures that ->curr
1272 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1273 * is safe under RCU read lock.
1274 * Note that rcu_read_lock() itself can't protect from the final
1275 * put_task_struct() after the last schedule().
1276 */
1277 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1278 cur = NULL;
1effd9f1 1279 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1280
7af68335
PZ
1281 /*
1282 * Because we have preemption enabled we can get migrated around and
1283 * end try selecting ourselves (current == env->p) as a swap candidate.
1284 */
1285 if (cur == env->p)
1286 goto unlock;
1287
fb13c7ee
MG
1288 /*
1289 * "imp" is the fault differential for the source task between the
1290 * source and destination node. Calculate the total differential for
1291 * the source task and potential destination task. The more negative
1292 * the value is, the more rmeote accesses that would be expected to
1293 * be incurred if the tasks were swapped.
1294 */
1295 if (cur) {
1296 /* Skip this swap candidate if cannot move to the source cpu */
1297 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1298 goto unlock;
1299
887c290e
RR
1300 /*
1301 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1302 * in any group then look only at task weights.
887c290e 1303 */
ca28aa53 1304 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1305 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1306 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1307 /*
1308 * Add some hysteresis to prevent swapping the
1309 * tasks within a group over tiny differences.
1310 */
1311 if (cur->numa_group)
1312 imp -= imp/16;
887c290e 1313 } else {
ca28aa53
RR
1314 /*
1315 * Compare the group weights. If a task is all by
1316 * itself (not part of a group), use the task weight
1317 * instead.
1318 */
ca28aa53 1319 if (cur->numa_group)
7bd95320
RR
1320 imp += group_weight(cur, env->src_nid, dist) -
1321 group_weight(cur, env->dst_nid, dist);
ca28aa53 1322 else
7bd95320
RR
1323 imp += task_weight(cur, env->src_nid, dist) -
1324 task_weight(cur, env->dst_nid, dist);
887c290e 1325 }
fb13c7ee
MG
1326 }
1327
0132c3e1 1328 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1329 goto unlock;
1330
1331 if (!cur) {
1332 /* Is there capacity at our destination? */
b932c03c 1333 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1334 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1335 goto unlock;
1336
1337 goto balance;
1338 }
1339
1340 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1341 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1342 dst_rq->nr_running == 1)
fb13c7ee
MG
1343 goto assign;
1344
1345 /*
1346 * In the overloaded case, try and keep the load balanced.
1347 */
1348balance:
e720fff6
PZ
1349 load = task_h_load(env->p);
1350 dst_load = env->dst_stats.load + load;
1351 src_load = env->src_stats.load - load;
fb13c7ee 1352
0132c3e1
RR
1353 if (moveimp > imp && moveimp > env->best_imp) {
1354 /*
1355 * If the improvement from just moving env->p direction is
1356 * better than swapping tasks around, check if a move is
1357 * possible. Store a slightly smaller score than moveimp,
1358 * so an actually idle CPU will win.
1359 */
1360 if (!load_too_imbalanced(src_load, dst_load, env)) {
1361 imp = moveimp - 1;
1362 cur = NULL;
1363 goto assign;
1364 }
1365 }
1366
1367 if (imp <= env->best_imp)
1368 goto unlock;
1369
fb13c7ee 1370 if (cur) {
e720fff6
PZ
1371 load = task_h_load(cur);
1372 dst_load -= load;
1373 src_load += load;
fb13c7ee
MG
1374 }
1375
28a21745 1376 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1377 goto unlock;
1378
ba7e5a27
RR
1379 /*
1380 * One idle CPU per node is evaluated for a task numa move.
1381 * Call select_idle_sibling to maybe find a better one.
1382 */
1383 if (!cur)
1384 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1385
fb13c7ee
MG
1386assign:
1387 task_numa_assign(env, cur, imp);
1388unlock:
1389 rcu_read_unlock();
1390}
1391
887c290e
RR
1392static void task_numa_find_cpu(struct task_numa_env *env,
1393 long taskimp, long groupimp)
2c8a50aa
MG
1394{
1395 int cpu;
1396
1397 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1398 /* Skip this CPU if the source task cannot migrate */
1399 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1400 continue;
1401
1402 env->dst_cpu = cpu;
887c290e 1403 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1404 }
1405}
1406
6f9aad0b
RR
1407/* Only move tasks to a NUMA node less busy than the current node. */
1408static bool numa_has_capacity(struct task_numa_env *env)
1409{
1410 struct numa_stats *src = &env->src_stats;
1411 struct numa_stats *dst = &env->dst_stats;
1412
1413 if (src->has_free_capacity && !dst->has_free_capacity)
1414 return false;
1415
1416 /*
1417 * Only consider a task move if the source has a higher load
1418 * than the destination, corrected for CPU capacity on each node.
1419 *
1420 * src->load dst->load
1421 * --------------------- vs ---------------------
1422 * src->compute_capacity dst->compute_capacity
1423 */
44dcb04f
SD
1424 if (src->load * dst->compute_capacity * env->imbalance_pct >
1425
1426 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1427 return true;
1428
1429 return false;
1430}
1431
58d081b5
MG
1432static int task_numa_migrate(struct task_struct *p)
1433{
58d081b5
MG
1434 struct task_numa_env env = {
1435 .p = p,
fb13c7ee 1436
58d081b5 1437 .src_cpu = task_cpu(p),
b32e86b4 1438 .src_nid = task_node(p),
fb13c7ee
MG
1439
1440 .imbalance_pct = 112,
1441
1442 .best_task = NULL,
1443 .best_imp = 0,
1444 .best_cpu = -1
58d081b5
MG
1445 };
1446 struct sched_domain *sd;
887c290e 1447 unsigned long taskweight, groupweight;
7bd95320 1448 int nid, ret, dist;
887c290e 1449 long taskimp, groupimp;
e6628d5b 1450
58d081b5 1451 /*
fb13c7ee
MG
1452 * Pick the lowest SD_NUMA domain, as that would have the smallest
1453 * imbalance and would be the first to start moving tasks about.
1454 *
1455 * And we want to avoid any moving of tasks about, as that would create
1456 * random movement of tasks -- counter the numa conditions we're trying
1457 * to satisfy here.
58d081b5
MG
1458 */
1459 rcu_read_lock();
fb13c7ee 1460 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1461 if (sd)
1462 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1463 rcu_read_unlock();
1464
46a73e8a
RR
1465 /*
1466 * Cpusets can break the scheduler domain tree into smaller
1467 * balance domains, some of which do not cross NUMA boundaries.
1468 * Tasks that are "trapped" in such domains cannot be migrated
1469 * elsewhere, so there is no point in (re)trying.
1470 */
1471 if (unlikely(!sd)) {
de1b301a 1472 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1473 return -EINVAL;
1474 }
1475
2c8a50aa 1476 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1477 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1478 taskweight = task_weight(p, env.src_nid, dist);
1479 groupweight = group_weight(p, env.src_nid, dist);
1480 update_numa_stats(&env.src_stats, env.src_nid);
1481 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1482 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1483 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1484
a43455a1 1485 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1486 if (numa_has_capacity(&env))
1487 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1488
9de05d48
RR
1489 /*
1490 * Look at other nodes in these cases:
1491 * - there is no space available on the preferred_nid
1492 * - the task is part of a numa_group that is interleaved across
1493 * multiple NUMA nodes; in order to better consolidate the group,
1494 * we need to check other locations.
1495 */
1496 if (env.best_cpu == -1 || (p->numa_group &&
1497 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1498 for_each_online_node(nid) {
1499 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1500 continue;
58d081b5 1501
7bd95320 1502 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1503 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1504 dist != env.dist) {
1505 taskweight = task_weight(p, env.src_nid, dist);
1506 groupweight = group_weight(p, env.src_nid, dist);
1507 }
7bd95320 1508
83e1d2cd 1509 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1510 taskimp = task_weight(p, nid, dist) - taskweight;
1511 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1512 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1513 continue;
1514
7bd95320 1515 env.dist = dist;
2c8a50aa
MG
1516 env.dst_nid = nid;
1517 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1518 if (numa_has_capacity(&env))
1519 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1520 }
1521 }
1522
68d1b02a
RR
1523 /*
1524 * If the task is part of a workload that spans multiple NUMA nodes,
1525 * and is migrating into one of the workload's active nodes, remember
1526 * this node as the task's preferred numa node, so the workload can
1527 * settle down.
1528 * A task that migrated to a second choice node will be better off
1529 * trying for a better one later. Do not set the preferred node here.
1530 */
db015dae
RR
1531 if (p->numa_group) {
1532 if (env.best_cpu == -1)
1533 nid = env.src_nid;
1534 else
1535 nid = env.dst_nid;
1536
1537 if (node_isset(nid, p->numa_group->active_nodes))
1538 sched_setnuma(p, env.dst_nid);
1539 }
1540
1541 /* No better CPU than the current one was found. */
1542 if (env.best_cpu == -1)
1543 return -EAGAIN;
0ec8aa00 1544
04bb2f94
RR
1545 /*
1546 * Reset the scan period if the task is being rescheduled on an
1547 * alternative node to recheck if the tasks is now properly placed.
1548 */
1549 p->numa_scan_period = task_scan_min(p);
1550
fb13c7ee 1551 if (env.best_task == NULL) {
286549dc
MG
1552 ret = migrate_task_to(p, env.best_cpu);
1553 if (ret != 0)
1554 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1555 return ret;
1556 }
1557
1558 ret = migrate_swap(p, env.best_task);
286549dc
MG
1559 if (ret != 0)
1560 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1561 put_task_struct(env.best_task);
1562 return ret;
e6628d5b
MG
1563}
1564
6b9a7460
MG
1565/* Attempt to migrate a task to a CPU on the preferred node. */
1566static void numa_migrate_preferred(struct task_struct *p)
1567{
5085e2a3
RR
1568 unsigned long interval = HZ;
1569
2739d3ee 1570 /* This task has no NUMA fault statistics yet */
44dba3d5 1571 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1572 return;
1573
2739d3ee 1574 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1575 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1576 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1577
1578 /* Success if task is already running on preferred CPU */
de1b301a 1579 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1580 return;
1581
1582 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1583 task_numa_migrate(p);
6b9a7460
MG
1584}
1585
20e07dea
RR
1586/*
1587 * Find the nodes on which the workload is actively running. We do this by
1588 * tracking the nodes from which NUMA hinting faults are triggered. This can
1589 * be different from the set of nodes where the workload's memory is currently
1590 * located.
1591 *
1592 * The bitmask is used to make smarter decisions on when to do NUMA page
1593 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1594 * are added when they cause over 6/16 of the maximum number of faults, but
1595 * only removed when they drop below 3/16.
1596 */
1597static void update_numa_active_node_mask(struct numa_group *numa_group)
1598{
1599 unsigned long faults, max_faults = 0;
1600 int nid;
1601
1602 for_each_online_node(nid) {
1603 faults = group_faults_cpu(numa_group, nid);
1604 if (faults > max_faults)
1605 max_faults = faults;
1606 }
1607
1608 for_each_online_node(nid) {
1609 faults = group_faults_cpu(numa_group, nid);
1610 if (!node_isset(nid, numa_group->active_nodes)) {
1611 if (faults > max_faults * 6 / 16)
1612 node_set(nid, numa_group->active_nodes);
1613 } else if (faults < max_faults * 3 / 16)
1614 node_clear(nid, numa_group->active_nodes);
1615 }
1616}
1617
04bb2f94
RR
1618/*
1619 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1620 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1621 * period will be for the next scan window. If local/(local+remote) ratio is
1622 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1623 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1624 */
1625#define NUMA_PERIOD_SLOTS 10
a22b4b01 1626#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1627
1628/*
1629 * Increase the scan period (slow down scanning) if the majority of
1630 * our memory is already on our local node, or if the majority of
1631 * the page accesses are shared with other processes.
1632 * Otherwise, decrease the scan period.
1633 */
1634static void update_task_scan_period(struct task_struct *p,
1635 unsigned long shared, unsigned long private)
1636{
1637 unsigned int period_slot;
1638 int ratio;
1639 int diff;
1640
1641 unsigned long remote = p->numa_faults_locality[0];
1642 unsigned long local = p->numa_faults_locality[1];
1643
1644 /*
1645 * If there were no record hinting faults then either the task is
1646 * completely idle or all activity is areas that are not of interest
074c2381
MG
1647 * to automatic numa balancing. Related to that, if there were failed
1648 * migration then it implies we are migrating too quickly or the local
1649 * node is overloaded. In either case, scan slower
04bb2f94 1650 */
074c2381 1651 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1652 p->numa_scan_period = min(p->numa_scan_period_max,
1653 p->numa_scan_period << 1);
1654
1655 p->mm->numa_next_scan = jiffies +
1656 msecs_to_jiffies(p->numa_scan_period);
1657
1658 return;
1659 }
1660
1661 /*
1662 * Prepare to scale scan period relative to the current period.
1663 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1664 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1665 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1666 */
1667 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1668 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1669 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1670 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1671 if (!slot)
1672 slot = 1;
1673 diff = slot * period_slot;
1674 } else {
1675 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1676
1677 /*
1678 * Scale scan rate increases based on sharing. There is an
1679 * inverse relationship between the degree of sharing and
1680 * the adjustment made to the scanning period. Broadly
1681 * speaking the intent is that there is little point
1682 * scanning faster if shared accesses dominate as it may
1683 * simply bounce migrations uselessly
1684 */
2847c90e 1685 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1686 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1687 }
1688
1689 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1690 task_scan_min(p), task_scan_max(p));
1691 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1692}
1693
7e2703e6
RR
1694/*
1695 * Get the fraction of time the task has been running since the last
1696 * NUMA placement cycle. The scheduler keeps similar statistics, but
1697 * decays those on a 32ms period, which is orders of magnitude off
1698 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1699 * stats only if the task is so new there are no NUMA statistics yet.
1700 */
1701static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1702{
1703 u64 runtime, delta, now;
1704 /* Use the start of this time slice to avoid calculations. */
1705 now = p->se.exec_start;
1706 runtime = p->se.sum_exec_runtime;
1707
1708 if (p->last_task_numa_placement) {
1709 delta = runtime - p->last_sum_exec_runtime;
1710 *period = now - p->last_task_numa_placement;
1711 } else {
9d89c257
YD
1712 delta = p->se.avg.load_sum / p->se.load.weight;
1713 *period = LOAD_AVG_MAX;
7e2703e6
RR
1714 }
1715
1716 p->last_sum_exec_runtime = runtime;
1717 p->last_task_numa_placement = now;
1718
1719 return delta;
1720}
1721
54009416
RR
1722/*
1723 * Determine the preferred nid for a task in a numa_group. This needs to
1724 * be done in a way that produces consistent results with group_weight,
1725 * otherwise workloads might not converge.
1726 */
1727static int preferred_group_nid(struct task_struct *p, int nid)
1728{
1729 nodemask_t nodes;
1730 int dist;
1731
1732 /* Direct connections between all NUMA nodes. */
1733 if (sched_numa_topology_type == NUMA_DIRECT)
1734 return nid;
1735
1736 /*
1737 * On a system with glueless mesh NUMA topology, group_weight
1738 * scores nodes according to the number of NUMA hinting faults on
1739 * both the node itself, and on nearby nodes.
1740 */
1741 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1742 unsigned long score, max_score = 0;
1743 int node, max_node = nid;
1744
1745 dist = sched_max_numa_distance;
1746
1747 for_each_online_node(node) {
1748 score = group_weight(p, node, dist);
1749 if (score > max_score) {
1750 max_score = score;
1751 max_node = node;
1752 }
1753 }
1754 return max_node;
1755 }
1756
1757 /*
1758 * Finding the preferred nid in a system with NUMA backplane
1759 * interconnect topology is more involved. The goal is to locate
1760 * tasks from numa_groups near each other in the system, and
1761 * untangle workloads from different sides of the system. This requires
1762 * searching down the hierarchy of node groups, recursively searching
1763 * inside the highest scoring group of nodes. The nodemask tricks
1764 * keep the complexity of the search down.
1765 */
1766 nodes = node_online_map;
1767 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1768 unsigned long max_faults = 0;
81907478 1769 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1770 int a, b;
1771
1772 /* Are there nodes at this distance from each other? */
1773 if (!find_numa_distance(dist))
1774 continue;
1775
1776 for_each_node_mask(a, nodes) {
1777 unsigned long faults = 0;
1778 nodemask_t this_group;
1779 nodes_clear(this_group);
1780
1781 /* Sum group's NUMA faults; includes a==b case. */
1782 for_each_node_mask(b, nodes) {
1783 if (node_distance(a, b) < dist) {
1784 faults += group_faults(p, b);
1785 node_set(b, this_group);
1786 node_clear(b, nodes);
1787 }
1788 }
1789
1790 /* Remember the top group. */
1791 if (faults > max_faults) {
1792 max_faults = faults;
1793 max_group = this_group;
1794 /*
1795 * subtle: at the smallest distance there is
1796 * just one node left in each "group", the
1797 * winner is the preferred nid.
1798 */
1799 nid = a;
1800 }
1801 }
1802 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1803 if (!max_faults)
1804 break;
54009416
RR
1805 nodes = max_group;
1806 }
1807 return nid;
1808}
1809
cbee9f88
PZ
1810static void task_numa_placement(struct task_struct *p)
1811{
83e1d2cd
MG
1812 int seq, nid, max_nid = -1, max_group_nid = -1;
1813 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1814 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1815 unsigned long total_faults;
1816 u64 runtime, period;
7dbd13ed 1817 spinlock_t *group_lock = NULL;
cbee9f88 1818
7e5a2c17
JL
1819 /*
1820 * The p->mm->numa_scan_seq field gets updated without
1821 * exclusive access. Use READ_ONCE() here to ensure
1822 * that the field is read in a single access:
1823 */
316c1608 1824 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1825 if (p->numa_scan_seq == seq)
1826 return;
1827 p->numa_scan_seq = seq;
598f0ec0 1828 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1829
7e2703e6
RR
1830 total_faults = p->numa_faults_locality[0] +
1831 p->numa_faults_locality[1];
1832 runtime = numa_get_avg_runtime(p, &period);
1833
7dbd13ed
MG
1834 /* If the task is part of a group prevent parallel updates to group stats */
1835 if (p->numa_group) {
1836 group_lock = &p->numa_group->lock;
60e69eed 1837 spin_lock_irq(group_lock);
7dbd13ed
MG
1838 }
1839
688b7585
MG
1840 /* Find the node with the highest number of faults */
1841 for_each_online_node(nid) {
44dba3d5
IM
1842 /* Keep track of the offsets in numa_faults array */
1843 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1844 unsigned long faults = 0, group_faults = 0;
44dba3d5 1845 int priv;
745d6147 1846
be1e4e76 1847 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1848 long diff, f_diff, f_weight;
8c8a743c 1849
44dba3d5
IM
1850 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1851 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1852 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1853 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1854
ac8e895b 1855 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1856 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1857 fault_types[priv] += p->numa_faults[membuf_idx];
1858 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1859
7e2703e6
RR
1860 /*
1861 * Normalize the faults_from, so all tasks in a group
1862 * count according to CPU use, instead of by the raw
1863 * number of faults. Tasks with little runtime have
1864 * little over-all impact on throughput, and thus their
1865 * faults are less important.
1866 */
1867 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1868 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1869 (total_faults + 1);
44dba3d5
IM
1870 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1871 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1872
44dba3d5
IM
1873 p->numa_faults[mem_idx] += diff;
1874 p->numa_faults[cpu_idx] += f_diff;
1875 faults += p->numa_faults[mem_idx];
83e1d2cd 1876 p->total_numa_faults += diff;
8c8a743c 1877 if (p->numa_group) {
44dba3d5
IM
1878 /*
1879 * safe because we can only change our own group
1880 *
1881 * mem_idx represents the offset for a given
1882 * nid and priv in a specific region because it
1883 * is at the beginning of the numa_faults array.
1884 */
1885 p->numa_group->faults[mem_idx] += diff;
1886 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1887 p->numa_group->total_faults += diff;
44dba3d5 1888 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1889 }
ac8e895b
MG
1890 }
1891
688b7585
MG
1892 if (faults > max_faults) {
1893 max_faults = faults;
1894 max_nid = nid;
1895 }
83e1d2cd
MG
1896
1897 if (group_faults > max_group_faults) {
1898 max_group_faults = group_faults;
1899 max_group_nid = nid;
1900 }
1901 }
1902
04bb2f94
RR
1903 update_task_scan_period(p, fault_types[0], fault_types[1]);
1904
7dbd13ed 1905 if (p->numa_group) {
20e07dea 1906 update_numa_active_node_mask(p->numa_group);
60e69eed 1907 spin_unlock_irq(group_lock);
54009416 1908 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1909 }
1910
bb97fc31
RR
1911 if (max_faults) {
1912 /* Set the new preferred node */
1913 if (max_nid != p->numa_preferred_nid)
1914 sched_setnuma(p, max_nid);
1915
1916 if (task_node(p) != p->numa_preferred_nid)
1917 numa_migrate_preferred(p);
3a7053b3 1918 }
cbee9f88
PZ
1919}
1920
8c8a743c
PZ
1921static inline int get_numa_group(struct numa_group *grp)
1922{
1923 return atomic_inc_not_zero(&grp->refcount);
1924}
1925
1926static inline void put_numa_group(struct numa_group *grp)
1927{
1928 if (atomic_dec_and_test(&grp->refcount))
1929 kfree_rcu(grp, rcu);
1930}
1931
3e6a9418
MG
1932static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1933 int *priv)
8c8a743c
PZ
1934{
1935 struct numa_group *grp, *my_grp;
1936 struct task_struct *tsk;
1937 bool join = false;
1938 int cpu = cpupid_to_cpu(cpupid);
1939 int i;
1940
1941 if (unlikely(!p->numa_group)) {
1942 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1943 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1944
1945 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1946 if (!grp)
1947 return;
1948
1949 atomic_set(&grp->refcount, 1);
1950 spin_lock_init(&grp->lock);
e29cf08b 1951 grp->gid = p->pid;
50ec8a40 1952 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1953 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1954 nr_node_ids;
8c8a743c 1955
20e07dea
RR
1956 node_set(task_node(current), grp->active_nodes);
1957
be1e4e76 1958 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1959 grp->faults[i] = p->numa_faults[i];
8c8a743c 1960
989348b5 1961 grp->total_faults = p->total_numa_faults;
83e1d2cd 1962
8c8a743c
PZ
1963 grp->nr_tasks++;
1964 rcu_assign_pointer(p->numa_group, grp);
1965 }
1966
1967 rcu_read_lock();
316c1608 1968 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
1969
1970 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1971 goto no_join;
8c8a743c
PZ
1972
1973 grp = rcu_dereference(tsk->numa_group);
1974 if (!grp)
3354781a 1975 goto no_join;
8c8a743c
PZ
1976
1977 my_grp = p->numa_group;
1978 if (grp == my_grp)
3354781a 1979 goto no_join;
8c8a743c
PZ
1980
1981 /*
1982 * Only join the other group if its bigger; if we're the bigger group,
1983 * the other task will join us.
1984 */
1985 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1986 goto no_join;
8c8a743c
PZ
1987
1988 /*
1989 * Tie-break on the grp address.
1990 */
1991 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1992 goto no_join;
8c8a743c 1993
dabe1d99
RR
1994 /* Always join threads in the same process. */
1995 if (tsk->mm == current->mm)
1996 join = true;
1997
1998 /* Simple filter to avoid false positives due to PID collisions */
1999 if (flags & TNF_SHARED)
2000 join = true;
8c8a743c 2001
3e6a9418
MG
2002 /* Update priv based on whether false sharing was detected */
2003 *priv = !join;
2004
dabe1d99 2005 if (join && !get_numa_group(grp))
3354781a 2006 goto no_join;
8c8a743c 2007
8c8a743c
PZ
2008 rcu_read_unlock();
2009
2010 if (!join)
2011 return;
2012
60e69eed
MG
2013 BUG_ON(irqs_disabled());
2014 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2015
be1e4e76 2016 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2017 my_grp->faults[i] -= p->numa_faults[i];
2018 grp->faults[i] += p->numa_faults[i];
8c8a743c 2019 }
989348b5
MG
2020 my_grp->total_faults -= p->total_numa_faults;
2021 grp->total_faults += p->total_numa_faults;
8c8a743c 2022
8c8a743c
PZ
2023 my_grp->nr_tasks--;
2024 grp->nr_tasks++;
2025
2026 spin_unlock(&my_grp->lock);
60e69eed 2027 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2028
2029 rcu_assign_pointer(p->numa_group, grp);
2030
2031 put_numa_group(my_grp);
3354781a
PZ
2032 return;
2033
2034no_join:
2035 rcu_read_unlock();
2036 return;
8c8a743c
PZ
2037}
2038
2039void task_numa_free(struct task_struct *p)
2040{
2041 struct numa_group *grp = p->numa_group;
44dba3d5 2042 void *numa_faults = p->numa_faults;
e9dd685c
SR
2043 unsigned long flags;
2044 int i;
8c8a743c
PZ
2045
2046 if (grp) {
e9dd685c 2047 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2048 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2049 grp->faults[i] -= p->numa_faults[i];
989348b5 2050 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2051
8c8a743c 2052 grp->nr_tasks--;
e9dd685c 2053 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2054 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2055 put_numa_group(grp);
2056 }
2057
44dba3d5 2058 p->numa_faults = NULL;
82727018 2059 kfree(numa_faults);
8c8a743c
PZ
2060}
2061
cbee9f88
PZ
2062/*
2063 * Got a PROT_NONE fault for a page on @node.
2064 */
58b46da3 2065void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2066{
2067 struct task_struct *p = current;
6688cc05 2068 bool migrated = flags & TNF_MIGRATED;
58b46da3 2069 int cpu_node = task_node(current);
792568ec 2070 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2071 int priv;
cbee9f88 2072
2a595721 2073 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2074 return;
2075
9ff1d9ff
MG
2076 /* for example, ksmd faulting in a user's mm */
2077 if (!p->mm)
2078 return;
2079
f809ca9a 2080 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2081 if (unlikely(!p->numa_faults)) {
2082 int size = sizeof(*p->numa_faults) *
be1e4e76 2083 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2084
44dba3d5
IM
2085 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2086 if (!p->numa_faults)
f809ca9a 2087 return;
745d6147 2088
83e1d2cd 2089 p->total_numa_faults = 0;
04bb2f94 2090 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2091 }
cbee9f88 2092
8c8a743c
PZ
2093 /*
2094 * First accesses are treated as private, otherwise consider accesses
2095 * to be private if the accessing pid has not changed
2096 */
2097 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2098 priv = 1;
2099 } else {
2100 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2101 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2102 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2103 }
2104
792568ec
RR
2105 /*
2106 * If a workload spans multiple NUMA nodes, a shared fault that
2107 * occurs wholly within the set of nodes that the workload is
2108 * actively using should be counted as local. This allows the
2109 * scan rate to slow down when a workload has settled down.
2110 */
2111 if (!priv && !local && p->numa_group &&
2112 node_isset(cpu_node, p->numa_group->active_nodes) &&
2113 node_isset(mem_node, p->numa_group->active_nodes))
2114 local = 1;
2115
cbee9f88 2116 task_numa_placement(p);
f809ca9a 2117
2739d3ee
RR
2118 /*
2119 * Retry task to preferred node migration periodically, in case it
2120 * case it previously failed, or the scheduler moved us.
2121 */
2122 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2123 numa_migrate_preferred(p);
2124
b32e86b4
IM
2125 if (migrated)
2126 p->numa_pages_migrated += pages;
074c2381
MG
2127 if (flags & TNF_MIGRATE_FAIL)
2128 p->numa_faults_locality[2] += pages;
b32e86b4 2129
44dba3d5
IM
2130 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2131 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2132 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2133}
2134
6e5fb223
PZ
2135static void reset_ptenuma_scan(struct task_struct *p)
2136{
7e5a2c17
JL
2137 /*
2138 * We only did a read acquisition of the mmap sem, so
2139 * p->mm->numa_scan_seq is written to without exclusive access
2140 * and the update is not guaranteed to be atomic. That's not
2141 * much of an issue though, since this is just used for
2142 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2143 * expensive, to avoid any form of compiler optimizations:
2144 */
316c1608 2145 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2146 p->mm->numa_scan_offset = 0;
2147}
2148
cbee9f88
PZ
2149/*
2150 * The expensive part of numa migration is done from task_work context.
2151 * Triggered from task_tick_numa().
2152 */
2153void task_numa_work(struct callback_head *work)
2154{
2155 unsigned long migrate, next_scan, now = jiffies;
2156 struct task_struct *p = current;
2157 struct mm_struct *mm = p->mm;
6e5fb223 2158 struct vm_area_struct *vma;
9f40604c 2159 unsigned long start, end;
598f0ec0 2160 unsigned long nr_pte_updates = 0;
4620f8c1 2161 long pages, virtpages;
cbee9f88
PZ
2162
2163 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2164
2165 work->next = work; /* protect against double add */
2166 /*
2167 * Who cares about NUMA placement when they're dying.
2168 *
2169 * NOTE: make sure not to dereference p->mm before this check,
2170 * exit_task_work() happens _after_ exit_mm() so we could be called
2171 * without p->mm even though we still had it when we enqueued this
2172 * work.
2173 */
2174 if (p->flags & PF_EXITING)
2175 return;
2176
930aa174 2177 if (!mm->numa_next_scan) {
7e8d16b6
MG
2178 mm->numa_next_scan = now +
2179 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2180 }
2181
cbee9f88
PZ
2182 /*
2183 * Enforce maximal scan/migration frequency..
2184 */
2185 migrate = mm->numa_next_scan;
2186 if (time_before(now, migrate))
2187 return;
2188
598f0ec0
MG
2189 if (p->numa_scan_period == 0) {
2190 p->numa_scan_period_max = task_scan_max(p);
2191 p->numa_scan_period = task_scan_min(p);
2192 }
cbee9f88 2193
fb003b80 2194 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2195 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2196 return;
2197
19a78d11
PZ
2198 /*
2199 * Delay this task enough that another task of this mm will likely win
2200 * the next time around.
2201 */
2202 p->node_stamp += 2 * TICK_NSEC;
2203
9f40604c
MG
2204 start = mm->numa_scan_offset;
2205 pages = sysctl_numa_balancing_scan_size;
2206 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2207 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2208 if (!pages)
2209 return;
cbee9f88 2210
4620f8c1 2211
6e5fb223 2212 down_read(&mm->mmap_sem);
9f40604c 2213 vma = find_vma(mm, start);
6e5fb223
PZ
2214 if (!vma) {
2215 reset_ptenuma_scan(p);
9f40604c 2216 start = 0;
6e5fb223
PZ
2217 vma = mm->mmap;
2218 }
9f40604c 2219 for (; vma; vma = vma->vm_next) {
6b79c57b 2220 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2221 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2222 continue;
6b79c57b 2223 }
6e5fb223 2224
4591ce4f
MG
2225 /*
2226 * Shared library pages mapped by multiple processes are not
2227 * migrated as it is expected they are cache replicated. Avoid
2228 * hinting faults in read-only file-backed mappings or the vdso
2229 * as migrating the pages will be of marginal benefit.
2230 */
2231 if (!vma->vm_mm ||
2232 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2233 continue;
2234
3c67f474
MG
2235 /*
2236 * Skip inaccessible VMAs to avoid any confusion between
2237 * PROT_NONE and NUMA hinting ptes
2238 */
2239 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2240 continue;
4591ce4f 2241
9f40604c
MG
2242 do {
2243 start = max(start, vma->vm_start);
2244 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2245 end = min(end, vma->vm_end);
4620f8c1 2246 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2247
2248 /*
4620f8c1
RR
2249 * Try to scan sysctl_numa_balancing_size worth of
2250 * hpages that have at least one present PTE that
2251 * is not already pte-numa. If the VMA contains
2252 * areas that are unused or already full of prot_numa
2253 * PTEs, scan up to virtpages, to skip through those
2254 * areas faster.
598f0ec0
MG
2255 */
2256 if (nr_pte_updates)
2257 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2258 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2259
9f40604c 2260 start = end;
4620f8c1 2261 if (pages <= 0 || virtpages <= 0)
9f40604c 2262 goto out;
3cf1962c
RR
2263
2264 cond_resched();
9f40604c 2265 } while (end != vma->vm_end);
cbee9f88 2266 }
6e5fb223 2267
9f40604c 2268out:
6e5fb223 2269 /*
c69307d5
PZ
2270 * It is possible to reach the end of the VMA list but the last few
2271 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2272 * would find the !migratable VMA on the next scan but not reset the
2273 * scanner to the start so check it now.
6e5fb223
PZ
2274 */
2275 if (vma)
9f40604c 2276 mm->numa_scan_offset = start;
6e5fb223
PZ
2277 else
2278 reset_ptenuma_scan(p);
2279 up_read(&mm->mmap_sem);
cbee9f88
PZ
2280}
2281
2282/*
2283 * Drive the periodic memory faults..
2284 */
2285void task_tick_numa(struct rq *rq, struct task_struct *curr)
2286{
2287 struct callback_head *work = &curr->numa_work;
2288 u64 period, now;
2289
2290 /*
2291 * We don't care about NUMA placement if we don't have memory.
2292 */
2293 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2294 return;
2295
2296 /*
2297 * Using runtime rather than walltime has the dual advantage that
2298 * we (mostly) drive the selection from busy threads and that the
2299 * task needs to have done some actual work before we bother with
2300 * NUMA placement.
2301 */
2302 now = curr->se.sum_exec_runtime;
2303 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2304
25b3e5a3 2305 if (now > curr->node_stamp + period) {
4b96a29b 2306 if (!curr->node_stamp)
598f0ec0 2307 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2308 curr->node_stamp += period;
cbee9f88
PZ
2309
2310 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2311 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2312 task_work_add(curr, work, true);
2313 }
2314 }
2315}
2316#else
2317static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2318{
2319}
0ec8aa00
PZ
2320
2321static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2322{
2323}
2324
2325static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2326{
2327}
cbee9f88
PZ
2328#endif /* CONFIG_NUMA_BALANCING */
2329
30cfdcfc
DA
2330static void
2331account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2332{
2333 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2334 if (!parent_entity(se))
029632fb 2335 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2336#ifdef CONFIG_SMP
0ec8aa00
PZ
2337 if (entity_is_task(se)) {
2338 struct rq *rq = rq_of(cfs_rq);
2339
2340 account_numa_enqueue(rq, task_of(se));
2341 list_add(&se->group_node, &rq->cfs_tasks);
2342 }
367456c7 2343#endif
30cfdcfc 2344 cfs_rq->nr_running++;
30cfdcfc
DA
2345}
2346
2347static void
2348account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2349{
2350 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2351 if (!parent_entity(se))
029632fb 2352 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2353 if (entity_is_task(se)) {
2354 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2355 list_del_init(&se->group_node);
0ec8aa00 2356 }
30cfdcfc 2357 cfs_rq->nr_running--;
30cfdcfc
DA
2358}
2359
3ff6dcac
YZ
2360#ifdef CONFIG_FAIR_GROUP_SCHED
2361# ifdef CONFIG_SMP
cf5f0acf
PZ
2362static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2363{
2364 long tg_weight;
2365
2366 /*
9d89c257
YD
2367 * Use this CPU's real-time load instead of the last load contribution
2368 * as the updating of the contribution is delayed, and we will use the
2369 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2370 */
bf5b986e 2371 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2372 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2373 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2374
2375 return tg_weight;
2376}
2377
6d5ab293 2378static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2379{
cf5f0acf 2380 long tg_weight, load, shares;
3ff6dcac 2381
cf5f0acf 2382 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2383 load = cfs_rq->load.weight;
3ff6dcac 2384
3ff6dcac 2385 shares = (tg->shares * load);
cf5f0acf
PZ
2386 if (tg_weight)
2387 shares /= tg_weight;
3ff6dcac
YZ
2388
2389 if (shares < MIN_SHARES)
2390 shares = MIN_SHARES;
2391 if (shares > tg->shares)
2392 shares = tg->shares;
2393
2394 return shares;
2395}
3ff6dcac 2396# else /* CONFIG_SMP */
6d5ab293 2397static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2398{
2399 return tg->shares;
2400}
3ff6dcac 2401# endif /* CONFIG_SMP */
2069dd75
PZ
2402static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2403 unsigned long weight)
2404{
19e5eebb
PT
2405 if (se->on_rq) {
2406 /* commit outstanding execution time */
2407 if (cfs_rq->curr == se)
2408 update_curr(cfs_rq);
2069dd75 2409 account_entity_dequeue(cfs_rq, se);
19e5eebb 2410 }
2069dd75
PZ
2411
2412 update_load_set(&se->load, weight);
2413
2414 if (se->on_rq)
2415 account_entity_enqueue(cfs_rq, se);
2416}
2417
82958366
PT
2418static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2419
6d5ab293 2420static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2421{
2422 struct task_group *tg;
2423 struct sched_entity *se;
3ff6dcac 2424 long shares;
2069dd75 2425
2069dd75
PZ
2426 tg = cfs_rq->tg;
2427 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2428 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2429 return;
3ff6dcac
YZ
2430#ifndef CONFIG_SMP
2431 if (likely(se->load.weight == tg->shares))
2432 return;
2433#endif
6d5ab293 2434 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2435
2436 reweight_entity(cfs_rq_of(se), se, shares);
2437}
2438#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2439static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2440{
2441}
2442#endif /* CONFIG_FAIR_GROUP_SCHED */
2443
141965c7 2444#ifdef CONFIG_SMP
5b51f2f8
PT
2445/* Precomputed fixed inverse multiplies for multiplication by y^n */
2446static const u32 runnable_avg_yN_inv[] = {
2447 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2448 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2449 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2450 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2451 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2452 0x85aac367, 0x82cd8698,
2453};
2454
2455/*
2456 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2457 * over-estimates when re-combining.
2458 */
2459static const u32 runnable_avg_yN_sum[] = {
2460 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2461 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2462 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2463};
2464
9d85f21c
PT
2465/*
2466 * Approximate:
2467 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2468 */
2469static __always_inline u64 decay_load(u64 val, u64 n)
2470{
5b51f2f8
PT
2471 unsigned int local_n;
2472
2473 if (!n)
2474 return val;
2475 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2476 return 0;
2477
2478 /* after bounds checking we can collapse to 32-bit */
2479 local_n = n;
2480
2481 /*
2482 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2483 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2484 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2485 *
2486 * To achieve constant time decay_load.
2487 */
2488 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2489 val >>= local_n / LOAD_AVG_PERIOD;
2490 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2491 }
2492
9d89c257
YD
2493 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2494 return val;
5b51f2f8
PT
2495}
2496
2497/*
2498 * For updates fully spanning n periods, the contribution to runnable
2499 * average will be: \Sum 1024*y^n
2500 *
2501 * We can compute this reasonably efficiently by combining:
2502 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2503 */
2504static u32 __compute_runnable_contrib(u64 n)
2505{
2506 u32 contrib = 0;
2507
2508 if (likely(n <= LOAD_AVG_PERIOD))
2509 return runnable_avg_yN_sum[n];
2510 else if (unlikely(n >= LOAD_AVG_MAX_N))
2511 return LOAD_AVG_MAX;
2512
2513 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2514 do {
2515 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2516 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2517
2518 n -= LOAD_AVG_PERIOD;
2519 } while (n > LOAD_AVG_PERIOD);
2520
2521 contrib = decay_load(contrib, n);
2522 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2523}
2524
006cdf02
PZ
2525#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2526#error "load tracking assumes 2^10 as unit"
2527#endif
2528
54a21385 2529#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2530
9d85f21c
PT
2531/*
2532 * We can represent the historical contribution to runnable average as the
2533 * coefficients of a geometric series. To do this we sub-divide our runnable
2534 * history into segments of approximately 1ms (1024us); label the segment that
2535 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2536 *
2537 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2538 * p0 p1 p2
2539 * (now) (~1ms ago) (~2ms ago)
2540 *
2541 * Let u_i denote the fraction of p_i that the entity was runnable.
2542 *
2543 * We then designate the fractions u_i as our co-efficients, yielding the
2544 * following representation of historical load:
2545 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2546 *
2547 * We choose y based on the with of a reasonably scheduling period, fixing:
2548 * y^32 = 0.5
2549 *
2550 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2551 * approximately half as much as the contribution to load within the last ms
2552 * (u_0).
2553 *
2554 * When a period "rolls over" and we have new u_0`, multiplying the previous
2555 * sum again by y is sufficient to update:
2556 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2557 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2558 */
9d89c257
YD
2559static __always_inline int
2560__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2561 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2562{
e0f5f3af 2563 u64 delta, scaled_delta, periods;
9d89c257 2564 u32 contrib;
6115c793 2565 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2566 unsigned long scale_freq, scale_cpu;
9d85f21c 2567
9d89c257 2568 delta = now - sa->last_update_time;
9d85f21c
PT
2569 /*
2570 * This should only happen when time goes backwards, which it
2571 * unfortunately does during sched clock init when we swap over to TSC.
2572 */
2573 if ((s64)delta < 0) {
9d89c257 2574 sa->last_update_time = now;
9d85f21c
PT
2575 return 0;
2576 }
2577
2578 /*
2579 * Use 1024ns as the unit of measurement since it's a reasonable
2580 * approximation of 1us and fast to compute.
2581 */
2582 delta >>= 10;
2583 if (!delta)
2584 return 0;
9d89c257 2585 sa->last_update_time = now;
9d85f21c 2586
6f2b0452
DE
2587 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2588 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2589
9d85f21c 2590 /* delta_w is the amount already accumulated against our next period */
9d89c257 2591 delta_w = sa->period_contrib;
9d85f21c 2592 if (delta + delta_w >= 1024) {
9d85f21c
PT
2593 decayed = 1;
2594
9d89c257
YD
2595 /* how much left for next period will start over, we don't know yet */
2596 sa->period_contrib = 0;
2597
9d85f21c
PT
2598 /*
2599 * Now that we know we're crossing a period boundary, figure
2600 * out how much from delta we need to complete the current
2601 * period and accrue it.
2602 */
2603 delta_w = 1024 - delta_w;
54a21385 2604 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2605 if (weight) {
e0f5f3af
DE
2606 sa->load_sum += weight * scaled_delta_w;
2607 if (cfs_rq) {
2608 cfs_rq->runnable_load_sum +=
2609 weight * scaled_delta_w;
2610 }
13962234 2611 }
36ee28e4 2612 if (running)
006cdf02 2613 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2614
2615 delta -= delta_w;
2616
2617 /* Figure out how many additional periods this update spans */
2618 periods = delta / 1024;
2619 delta %= 1024;
2620
9d89c257 2621 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2622 if (cfs_rq) {
2623 cfs_rq->runnable_load_sum =
2624 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2625 }
9d89c257 2626 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2627
2628 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2629 contrib = __compute_runnable_contrib(periods);
54a21385 2630 contrib = cap_scale(contrib, scale_freq);
13962234 2631 if (weight) {
9d89c257 2632 sa->load_sum += weight * contrib;
13962234
YD
2633 if (cfs_rq)
2634 cfs_rq->runnable_load_sum += weight * contrib;
2635 }
36ee28e4 2636 if (running)
006cdf02 2637 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2638 }
2639
2640 /* Remainder of delta accrued against u_0` */
54a21385 2641 scaled_delta = cap_scale(delta, scale_freq);
13962234 2642 if (weight) {
e0f5f3af 2643 sa->load_sum += weight * scaled_delta;
13962234 2644 if (cfs_rq)
e0f5f3af 2645 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2646 }
36ee28e4 2647 if (running)
006cdf02 2648 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2649
9d89c257 2650 sa->period_contrib += delta;
9ee474f5 2651
9d89c257
YD
2652 if (decayed) {
2653 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2654 if (cfs_rq) {
2655 cfs_rq->runnable_load_avg =
2656 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2657 }
006cdf02 2658 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2659 }
aff3e498 2660
9d89c257 2661 return decayed;
9ee474f5
PT
2662}
2663
c566e8e9 2664#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2665/*
9d89c257
YD
2666 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2667 * and effective_load (which is not done because it is too costly).
bb17f655 2668 */
9d89c257 2669static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2670{
9d89c257 2671 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2672
9d89c257
YD
2673 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2674 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2675 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2676 }
8165e145 2677}
f5f9739d 2678
6e83125c 2679#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2680static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2681#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2682
9d89c257 2683static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2684
9d89c257
YD
2685/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2686static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2687{
9d89c257 2688 struct sched_avg *sa = &cfs_rq->avg;
3e386d56 2689 int decayed, removed = 0;
2dac754e 2690
9d89c257
YD
2691 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2692 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2693 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2694 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
3e386d56 2695 removed = 1;
8165e145 2696 }
2dac754e 2697
9d89c257
YD
2698 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2699 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2700 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2701 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2702 }
36ee28e4 2703
9d89c257 2704 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2705 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2706
9d89c257
YD
2707#ifndef CONFIG_64BIT
2708 smp_wmb();
2709 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2710#endif
36ee28e4 2711
3e386d56 2712 return decayed || removed;
9ee474f5
PT
2713}
2714
9d89c257
YD
2715/* Update task and its cfs_rq load average */
2716static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2717{
2dac754e 2718 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2719 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2720 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2721
f1b17280 2722 /*
9d89c257
YD
2723 * Track task load average for carrying it to new CPU after migrated, and
2724 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2725 */
9d89c257 2726 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2727 se->on_rq * scale_load_down(se->load.weight),
2728 cfs_rq->curr == se, NULL);
f1b17280 2729
9d89c257
YD
2730 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2731 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2732}
2733
a05e8c51
BP
2734static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2735{
a9280514
PZ
2736 if (!sched_feat(ATTACH_AGE_LOAD))
2737 goto skip_aging;
2738
6efdb105
BP
2739 /*
2740 * If we got migrated (either between CPUs or between cgroups) we'll
2741 * have aged the average right before clearing @last_update_time.
2742 */
2743 if (se->avg.last_update_time) {
2744 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2745 &se->avg, 0, 0, NULL);
2746
2747 /*
2748 * XXX: we could have just aged the entire load away if we've been
2749 * absent from the fair class for too long.
2750 */
2751 }
2752
a9280514 2753skip_aging:
a05e8c51
BP
2754 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2755 cfs_rq->avg.load_avg += se->avg.load_avg;
2756 cfs_rq->avg.load_sum += se->avg.load_sum;
2757 cfs_rq->avg.util_avg += se->avg.util_avg;
2758 cfs_rq->avg.util_sum += se->avg.util_sum;
2759}
2760
2761static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2762{
2763 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2764 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2765 cfs_rq->curr == se, NULL);
2766
2767 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2768 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2769 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2770 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2771}
2772
9d89c257
YD
2773/* Add the load generated by se into cfs_rq's load average */
2774static inline void
2775enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2776{
9d89c257
YD
2777 struct sched_avg *sa = &se->avg;
2778 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2779 int migrated, decayed;
9ee474f5 2780
a05e8c51
BP
2781 migrated = !sa->last_update_time;
2782 if (!migrated) {
9d89c257 2783 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2784 se->on_rq * scale_load_down(se->load.weight),
2785 cfs_rq->curr == se, NULL);
aff3e498 2786 }
c566e8e9 2787
9d89c257 2788 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2789
13962234
YD
2790 cfs_rq->runnable_load_avg += sa->load_avg;
2791 cfs_rq->runnable_load_sum += sa->load_sum;
2792
a05e8c51
BP
2793 if (migrated)
2794 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2795
9d89c257
YD
2796 if (decayed || migrated)
2797 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2798}
2799
13962234
YD
2800/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2801static inline void
2802dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2803{
2804 update_load_avg(se, 1);
2805
2806 cfs_rq->runnable_load_avg =
2807 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2808 cfs_rq->runnable_load_sum =
a05e8c51 2809 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2810}
2811
9ee474f5 2812/*
9d89c257
YD
2813 * Task first catches up with cfs_rq, and then subtract
2814 * itself from the cfs_rq (task must be off the queue now).
9ee474f5 2815 */
9d89c257 2816void remove_entity_load_avg(struct sched_entity *se)
2dac754e 2817{
9d89c257
YD
2818 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2819 u64 last_update_time;
2820
2821#ifndef CONFIG_64BIT
2822 u64 last_update_time_copy;
9ee474f5 2823
9d89c257
YD
2824 do {
2825 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2826 smp_rmb();
2827 last_update_time = cfs_rq->avg.last_update_time;
2828 } while (last_update_time != last_update_time_copy);
2829#else
2830 last_update_time = cfs_rq->avg.last_update_time;
2831#endif
2832
13962234 2833 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2834 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2835 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2836}
642dbc39 2837
7ea241af
YD
2838static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2839{
2840 return cfs_rq->runnable_load_avg;
2841}
2842
2843static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2844{
2845 return cfs_rq->avg.load_avg;
2846}
2847
6e83125c
PZ
2848static int idle_balance(struct rq *this_rq);
2849
38033c37
PZ
2850#else /* CONFIG_SMP */
2851
9d89c257
YD
2852static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2853static inline void
2854enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
2855static inline void
2856dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 2857static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 2858
a05e8c51
BP
2859static inline void
2860attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2861static inline void
2862detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2863
6e83125c
PZ
2864static inline int idle_balance(struct rq *rq)
2865{
2866 return 0;
2867}
2868
38033c37 2869#endif /* CONFIG_SMP */
9d85f21c 2870
2396af69 2871static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2872{
bf0f6f24 2873#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2874 struct task_struct *tsk = NULL;
2875
2876 if (entity_is_task(se))
2877 tsk = task_of(se);
2878
41acab88 2879 if (se->statistics.sleep_start) {
78becc27 2880 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2881
2882 if ((s64)delta < 0)
2883 delta = 0;
2884
41acab88
LDM
2885 if (unlikely(delta > se->statistics.sleep_max))
2886 se->statistics.sleep_max = delta;
bf0f6f24 2887
8c79a045 2888 se->statistics.sleep_start = 0;
41acab88 2889 se->statistics.sum_sleep_runtime += delta;
9745512c 2890
768d0c27 2891 if (tsk) {
e414314c 2892 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2893 trace_sched_stat_sleep(tsk, delta);
2894 }
bf0f6f24 2895 }
41acab88 2896 if (se->statistics.block_start) {
78becc27 2897 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2898
2899 if ((s64)delta < 0)
2900 delta = 0;
2901
41acab88
LDM
2902 if (unlikely(delta > se->statistics.block_max))
2903 se->statistics.block_max = delta;
bf0f6f24 2904
8c79a045 2905 se->statistics.block_start = 0;
41acab88 2906 se->statistics.sum_sleep_runtime += delta;
30084fbd 2907
e414314c 2908 if (tsk) {
8f0dfc34 2909 if (tsk->in_iowait) {
41acab88
LDM
2910 se->statistics.iowait_sum += delta;
2911 se->statistics.iowait_count++;
768d0c27 2912 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2913 }
2914
b781a602
AV
2915 trace_sched_stat_blocked(tsk, delta);
2916
e414314c
PZ
2917 /*
2918 * Blocking time is in units of nanosecs, so shift by
2919 * 20 to get a milliseconds-range estimation of the
2920 * amount of time that the task spent sleeping:
2921 */
2922 if (unlikely(prof_on == SLEEP_PROFILING)) {
2923 profile_hits(SLEEP_PROFILING,
2924 (void *)get_wchan(tsk),
2925 delta >> 20);
2926 }
2927 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2928 }
bf0f6f24
IM
2929 }
2930#endif
2931}
2932
ddc97297
PZ
2933static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2934{
2935#ifdef CONFIG_SCHED_DEBUG
2936 s64 d = se->vruntime - cfs_rq->min_vruntime;
2937
2938 if (d < 0)
2939 d = -d;
2940
2941 if (d > 3*sysctl_sched_latency)
2942 schedstat_inc(cfs_rq, nr_spread_over);
2943#endif
2944}
2945
aeb73b04
PZ
2946static void
2947place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2948{
1af5f730 2949 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2950
2cb8600e
PZ
2951 /*
2952 * The 'current' period is already promised to the current tasks,
2953 * however the extra weight of the new task will slow them down a
2954 * little, place the new task so that it fits in the slot that
2955 * stays open at the end.
2956 */
94dfb5e7 2957 if (initial && sched_feat(START_DEBIT))
f9c0b095 2958 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2959
a2e7a7eb 2960 /* sleeps up to a single latency don't count. */
5ca9880c 2961 if (!initial) {
a2e7a7eb 2962 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2963
a2e7a7eb
MG
2964 /*
2965 * Halve their sleep time's effect, to allow
2966 * for a gentler effect of sleepers:
2967 */
2968 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2969 thresh >>= 1;
51e0304c 2970
a2e7a7eb 2971 vruntime -= thresh;
aeb73b04
PZ
2972 }
2973
b5d9d734 2974 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2975 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2976}
2977
d3d9dc33
PT
2978static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2979
bf0f6f24 2980static void
88ec22d3 2981enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2982{
88ec22d3
PZ
2983 /*
2984 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2985 * through calling update_curr().
88ec22d3 2986 */
371fd7e7 2987 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2988 se->vruntime += cfs_rq->min_vruntime;
2989
bf0f6f24 2990 /*
a2a2d680 2991 * Update run-time statistics of the 'current'.
bf0f6f24 2992 */
b7cc0896 2993 update_curr(cfs_rq);
9d89c257 2994 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
2995 account_entity_enqueue(cfs_rq, se);
2996 update_cfs_shares(cfs_rq);
bf0f6f24 2997
88ec22d3 2998 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2999 place_entity(cfs_rq, se, 0);
2396af69 3000 enqueue_sleeper(cfs_rq, se);
e9acbff6 3001 }
bf0f6f24 3002
d2417e5a 3003 update_stats_enqueue(cfs_rq, se);
ddc97297 3004 check_spread(cfs_rq, se);
83b699ed
SV
3005 if (se != cfs_rq->curr)
3006 __enqueue_entity(cfs_rq, se);
2069dd75 3007 se->on_rq = 1;
3d4b47b4 3008
d3d9dc33 3009 if (cfs_rq->nr_running == 1) {
3d4b47b4 3010 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3011 check_enqueue_throttle(cfs_rq);
3012 }
bf0f6f24
IM
3013}
3014
2c13c919 3015static void __clear_buddies_last(struct sched_entity *se)
2002c695 3016{
2c13c919
RR
3017 for_each_sched_entity(se) {
3018 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3019 if (cfs_rq->last != se)
2c13c919 3020 break;
f1044799
PZ
3021
3022 cfs_rq->last = NULL;
2c13c919
RR
3023 }
3024}
2002c695 3025
2c13c919
RR
3026static void __clear_buddies_next(struct sched_entity *se)
3027{
3028 for_each_sched_entity(se) {
3029 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3030 if (cfs_rq->next != se)
2c13c919 3031 break;
f1044799
PZ
3032
3033 cfs_rq->next = NULL;
2c13c919 3034 }
2002c695
PZ
3035}
3036
ac53db59
RR
3037static void __clear_buddies_skip(struct sched_entity *se)
3038{
3039 for_each_sched_entity(se) {
3040 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3041 if (cfs_rq->skip != se)
ac53db59 3042 break;
f1044799
PZ
3043
3044 cfs_rq->skip = NULL;
ac53db59
RR
3045 }
3046}
3047
a571bbea
PZ
3048static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3049{
2c13c919
RR
3050 if (cfs_rq->last == se)
3051 __clear_buddies_last(se);
3052
3053 if (cfs_rq->next == se)
3054 __clear_buddies_next(se);
ac53db59
RR
3055
3056 if (cfs_rq->skip == se)
3057 __clear_buddies_skip(se);
a571bbea
PZ
3058}
3059
6c16a6dc 3060static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3061
bf0f6f24 3062static void
371fd7e7 3063dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3064{
a2a2d680
DA
3065 /*
3066 * Update run-time statistics of the 'current'.
3067 */
3068 update_curr(cfs_rq);
13962234 3069 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3070
19b6a2e3 3071 update_stats_dequeue(cfs_rq, se);
371fd7e7 3072 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3073#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3074 if (entity_is_task(se)) {
3075 struct task_struct *tsk = task_of(se);
3076
3077 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3078 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3079 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3080 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3081 }
db36cc7d 3082#endif
67e9fb2a
PZ
3083 }
3084
2002c695 3085 clear_buddies(cfs_rq, se);
4793241b 3086
83b699ed 3087 if (se != cfs_rq->curr)
30cfdcfc 3088 __dequeue_entity(cfs_rq, se);
17bc14b7 3089 se->on_rq = 0;
30cfdcfc 3090 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3091
3092 /*
3093 * Normalize the entity after updating the min_vruntime because the
3094 * update can refer to the ->curr item and we need to reflect this
3095 * movement in our normalized position.
3096 */
371fd7e7 3097 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3098 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3099
d8b4986d
PT
3100 /* return excess runtime on last dequeue */
3101 return_cfs_rq_runtime(cfs_rq);
3102
1e876231 3103 update_min_vruntime(cfs_rq);
17bc14b7 3104 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3105}
3106
3107/*
3108 * Preempt the current task with a newly woken task if needed:
3109 */
7c92e54f 3110static void
2e09bf55 3111check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3112{
11697830 3113 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3114 struct sched_entity *se;
3115 s64 delta;
11697830 3116
6d0f0ebd 3117 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3118 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3119 if (delta_exec > ideal_runtime) {
8875125e 3120 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3121 /*
3122 * The current task ran long enough, ensure it doesn't get
3123 * re-elected due to buddy favours.
3124 */
3125 clear_buddies(cfs_rq, curr);
f685ceac
MG
3126 return;
3127 }
3128
3129 /*
3130 * Ensure that a task that missed wakeup preemption by a
3131 * narrow margin doesn't have to wait for a full slice.
3132 * This also mitigates buddy induced latencies under load.
3133 */
f685ceac
MG
3134 if (delta_exec < sysctl_sched_min_granularity)
3135 return;
3136
f4cfb33e
WX
3137 se = __pick_first_entity(cfs_rq);
3138 delta = curr->vruntime - se->vruntime;
f685ceac 3139
f4cfb33e
WX
3140 if (delta < 0)
3141 return;
d7d82944 3142
f4cfb33e 3143 if (delta > ideal_runtime)
8875125e 3144 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3145}
3146
83b699ed 3147static void
8494f412 3148set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3149{
83b699ed
SV
3150 /* 'current' is not kept within the tree. */
3151 if (se->on_rq) {
3152 /*
3153 * Any task has to be enqueued before it get to execute on
3154 * a CPU. So account for the time it spent waiting on the
3155 * runqueue.
3156 */
3157 update_stats_wait_end(cfs_rq, se);
3158 __dequeue_entity(cfs_rq, se);
9d89c257 3159 update_load_avg(se, 1);
83b699ed
SV
3160 }
3161
79303e9e 3162 update_stats_curr_start(cfs_rq, se);
429d43bc 3163 cfs_rq->curr = se;
eba1ed4b
IM
3164#ifdef CONFIG_SCHEDSTATS
3165 /*
3166 * Track our maximum slice length, if the CPU's load is at
3167 * least twice that of our own weight (i.e. dont track it
3168 * when there are only lesser-weight tasks around):
3169 */
495eca49 3170 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3171 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3172 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3173 }
3174#endif
4a55b450 3175 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3176}
3177
3f3a4904
PZ
3178static int
3179wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3180
ac53db59
RR
3181/*
3182 * Pick the next process, keeping these things in mind, in this order:
3183 * 1) keep things fair between processes/task groups
3184 * 2) pick the "next" process, since someone really wants that to run
3185 * 3) pick the "last" process, for cache locality
3186 * 4) do not run the "skip" process, if something else is available
3187 */
678d5718
PZ
3188static struct sched_entity *
3189pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3190{
678d5718
PZ
3191 struct sched_entity *left = __pick_first_entity(cfs_rq);
3192 struct sched_entity *se;
3193
3194 /*
3195 * If curr is set we have to see if its left of the leftmost entity
3196 * still in the tree, provided there was anything in the tree at all.
3197 */
3198 if (!left || (curr && entity_before(curr, left)))
3199 left = curr;
3200
3201 se = left; /* ideally we run the leftmost entity */
f4b6755f 3202
ac53db59
RR
3203 /*
3204 * Avoid running the skip buddy, if running something else can
3205 * be done without getting too unfair.
3206 */
3207 if (cfs_rq->skip == se) {
678d5718
PZ
3208 struct sched_entity *second;
3209
3210 if (se == curr) {
3211 second = __pick_first_entity(cfs_rq);
3212 } else {
3213 second = __pick_next_entity(se);
3214 if (!second || (curr && entity_before(curr, second)))
3215 second = curr;
3216 }
3217
ac53db59
RR
3218 if (second && wakeup_preempt_entity(second, left) < 1)
3219 se = second;
3220 }
aa2ac252 3221
f685ceac
MG
3222 /*
3223 * Prefer last buddy, try to return the CPU to a preempted task.
3224 */
3225 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3226 se = cfs_rq->last;
3227
ac53db59
RR
3228 /*
3229 * Someone really wants this to run. If it's not unfair, run it.
3230 */
3231 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3232 se = cfs_rq->next;
3233
f685ceac 3234 clear_buddies(cfs_rq, se);
4793241b
PZ
3235
3236 return se;
aa2ac252
PZ
3237}
3238
678d5718 3239static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3240
ab6cde26 3241static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3242{
3243 /*
3244 * If still on the runqueue then deactivate_task()
3245 * was not called and update_curr() has to be done:
3246 */
3247 if (prev->on_rq)
b7cc0896 3248 update_curr(cfs_rq);
bf0f6f24 3249
d3d9dc33
PT
3250 /* throttle cfs_rqs exceeding runtime */
3251 check_cfs_rq_runtime(cfs_rq);
3252
ddc97297 3253 check_spread(cfs_rq, prev);
30cfdcfc 3254 if (prev->on_rq) {
5870db5b 3255 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3256 /* Put 'current' back into the tree. */
3257 __enqueue_entity(cfs_rq, prev);
9d85f21c 3258 /* in !on_rq case, update occurred at dequeue */
9d89c257 3259 update_load_avg(prev, 0);
30cfdcfc 3260 }
429d43bc 3261 cfs_rq->curr = NULL;
bf0f6f24
IM
3262}
3263
8f4d37ec
PZ
3264static void
3265entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3266{
bf0f6f24 3267 /*
30cfdcfc 3268 * Update run-time statistics of the 'current'.
bf0f6f24 3269 */
30cfdcfc 3270 update_curr(cfs_rq);
bf0f6f24 3271
9d85f21c
PT
3272 /*
3273 * Ensure that runnable average is periodically updated.
3274 */
9d89c257 3275 update_load_avg(curr, 1);
bf0bd948 3276 update_cfs_shares(cfs_rq);
9d85f21c 3277
8f4d37ec
PZ
3278#ifdef CONFIG_SCHED_HRTICK
3279 /*
3280 * queued ticks are scheduled to match the slice, so don't bother
3281 * validating it and just reschedule.
3282 */
983ed7a6 3283 if (queued) {
8875125e 3284 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3285 return;
3286 }
8f4d37ec
PZ
3287 /*
3288 * don't let the period tick interfere with the hrtick preemption
3289 */
3290 if (!sched_feat(DOUBLE_TICK) &&
3291 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3292 return;
3293#endif
3294
2c2efaed 3295 if (cfs_rq->nr_running > 1)
2e09bf55 3296 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3297}
3298
ab84d31e
PT
3299
3300/**************************************************
3301 * CFS bandwidth control machinery
3302 */
3303
3304#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3305
3306#ifdef HAVE_JUMP_LABEL
c5905afb 3307static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3308
3309static inline bool cfs_bandwidth_used(void)
3310{
c5905afb 3311 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3312}
3313
1ee14e6c 3314void cfs_bandwidth_usage_inc(void)
029632fb 3315{
1ee14e6c
BS
3316 static_key_slow_inc(&__cfs_bandwidth_used);
3317}
3318
3319void cfs_bandwidth_usage_dec(void)
3320{
3321 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3322}
3323#else /* HAVE_JUMP_LABEL */
3324static bool cfs_bandwidth_used(void)
3325{
3326 return true;
3327}
3328
1ee14e6c
BS
3329void cfs_bandwidth_usage_inc(void) {}
3330void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3331#endif /* HAVE_JUMP_LABEL */
3332
ab84d31e
PT
3333/*
3334 * default period for cfs group bandwidth.
3335 * default: 0.1s, units: nanoseconds
3336 */
3337static inline u64 default_cfs_period(void)
3338{
3339 return 100000000ULL;
3340}
ec12cb7f
PT
3341
3342static inline u64 sched_cfs_bandwidth_slice(void)
3343{
3344 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3345}
3346
a9cf55b2
PT
3347/*
3348 * Replenish runtime according to assigned quota and update expiration time.
3349 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3350 * additional synchronization around rq->lock.
3351 *
3352 * requires cfs_b->lock
3353 */
029632fb 3354void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3355{
3356 u64 now;
3357
3358 if (cfs_b->quota == RUNTIME_INF)
3359 return;
3360
3361 now = sched_clock_cpu(smp_processor_id());
3362 cfs_b->runtime = cfs_b->quota;
3363 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3364}
3365
029632fb
PZ
3366static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3367{
3368 return &tg->cfs_bandwidth;
3369}
3370
f1b17280
PT
3371/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3372static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3373{
3374 if (unlikely(cfs_rq->throttle_count))
3375 return cfs_rq->throttled_clock_task;
3376
78becc27 3377 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3378}
3379
85dac906
PT
3380/* returns 0 on failure to allocate runtime */
3381static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3382{
3383 struct task_group *tg = cfs_rq->tg;
3384 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3385 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3386
3387 /* note: this is a positive sum as runtime_remaining <= 0 */
3388 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3389
3390 raw_spin_lock(&cfs_b->lock);
3391 if (cfs_b->quota == RUNTIME_INF)
3392 amount = min_amount;
58088ad0 3393 else {
77a4d1a1 3394 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3395
3396 if (cfs_b->runtime > 0) {
3397 amount = min(cfs_b->runtime, min_amount);
3398 cfs_b->runtime -= amount;
3399 cfs_b->idle = 0;
3400 }
ec12cb7f 3401 }
a9cf55b2 3402 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3403 raw_spin_unlock(&cfs_b->lock);
3404
3405 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3406 /*
3407 * we may have advanced our local expiration to account for allowed
3408 * spread between our sched_clock and the one on which runtime was
3409 * issued.
3410 */
3411 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3412 cfs_rq->runtime_expires = expires;
85dac906
PT
3413
3414 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3415}
3416
a9cf55b2
PT
3417/*
3418 * Note: This depends on the synchronization provided by sched_clock and the
3419 * fact that rq->clock snapshots this value.
3420 */
3421static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3422{
a9cf55b2 3423 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3424
3425 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3426 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3427 return;
3428
a9cf55b2
PT
3429 if (cfs_rq->runtime_remaining < 0)
3430 return;
3431
3432 /*
3433 * If the local deadline has passed we have to consider the
3434 * possibility that our sched_clock is 'fast' and the global deadline
3435 * has not truly expired.
3436 *
3437 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3438 * whether the global deadline has advanced. It is valid to compare
3439 * cfs_b->runtime_expires without any locks since we only care about
3440 * exact equality, so a partial write will still work.
a9cf55b2
PT
3441 */
3442
51f2176d 3443 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3444 /* extend local deadline, drift is bounded above by 2 ticks */
3445 cfs_rq->runtime_expires += TICK_NSEC;
3446 } else {
3447 /* global deadline is ahead, expiration has passed */
3448 cfs_rq->runtime_remaining = 0;
3449 }
3450}
3451
9dbdb155 3452static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3453{
3454 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3455 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3456 expire_cfs_rq_runtime(cfs_rq);
3457
3458 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3459 return;
3460
85dac906
PT
3461 /*
3462 * if we're unable to extend our runtime we resched so that the active
3463 * hierarchy can be throttled
3464 */
3465 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3466 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3467}
3468
6c16a6dc 3469static __always_inline
9dbdb155 3470void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3471{
56f570e5 3472 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3473 return;
3474
3475 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3476}
3477
85dac906
PT
3478static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3479{
56f570e5 3480 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3481}
3482
64660c86
PT
3483/* check whether cfs_rq, or any parent, is throttled */
3484static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3485{
56f570e5 3486 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3487}
3488
3489/*
3490 * Ensure that neither of the group entities corresponding to src_cpu or
3491 * dest_cpu are members of a throttled hierarchy when performing group
3492 * load-balance operations.
3493 */
3494static inline int throttled_lb_pair(struct task_group *tg,
3495 int src_cpu, int dest_cpu)
3496{
3497 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3498
3499 src_cfs_rq = tg->cfs_rq[src_cpu];
3500 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3501
3502 return throttled_hierarchy(src_cfs_rq) ||
3503 throttled_hierarchy(dest_cfs_rq);
3504}
3505
3506/* updated child weight may affect parent so we have to do this bottom up */
3507static int tg_unthrottle_up(struct task_group *tg, void *data)
3508{
3509 struct rq *rq = data;
3510 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3511
3512 cfs_rq->throttle_count--;
3513#ifdef CONFIG_SMP
3514 if (!cfs_rq->throttle_count) {
f1b17280 3515 /* adjust cfs_rq_clock_task() */
78becc27 3516 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3517 cfs_rq->throttled_clock_task;
64660c86
PT
3518 }
3519#endif
3520
3521 return 0;
3522}
3523
3524static int tg_throttle_down(struct task_group *tg, void *data)
3525{
3526 struct rq *rq = data;
3527 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3528
82958366
PT
3529 /* group is entering throttled state, stop time */
3530 if (!cfs_rq->throttle_count)
78becc27 3531 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3532 cfs_rq->throttle_count++;
3533
3534 return 0;
3535}
3536
d3d9dc33 3537static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3538{
3539 struct rq *rq = rq_of(cfs_rq);
3540 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3541 struct sched_entity *se;
3542 long task_delta, dequeue = 1;
77a4d1a1 3543 bool empty;
85dac906
PT
3544
3545 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3546
f1b17280 3547 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3548 rcu_read_lock();
3549 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3550 rcu_read_unlock();
85dac906
PT
3551
3552 task_delta = cfs_rq->h_nr_running;
3553 for_each_sched_entity(se) {
3554 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3555 /* throttled entity or throttle-on-deactivate */
3556 if (!se->on_rq)
3557 break;
3558
3559 if (dequeue)
3560 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3561 qcfs_rq->h_nr_running -= task_delta;
3562
3563 if (qcfs_rq->load.weight)
3564 dequeue = 0;
3565 }
3566
3567 if (!se)
72465447 3568 sub_nr_running(rq, task_delta);
85dac906
PT
3569
3570 cfs_rq->throttled = 1;
78becc27 3571 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3572 raw_spin_lock(&cfs_b->lock);
d49db342 3573 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3574
c06f04c7
BS
3575 /*
3576 * Add to the _head_ of the list, so that an already-started
3577 * distribute_cfs_runtime will not see us
3578 */
3579 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3580
3581 /*
3582 * If we're the first throttled task, make sure the bandwidth
3583 * timer is running.
3584 */
3585 if (empty)
3586 start_cfs_bandwidth(cfs_b);
3587
85dac906
PT
3588 raw_spin_unlock(&cfs_b->lock);
3589}
3590
029632fb 3591void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3592{
3593 struct rq *rq = rq_of(cfs_rq);
3594 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3595 struct sched_entity *se;
3596 int enqueue = 1;
3597 long task_delta;
3598
22b958d8 3599 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3600
3601 cfs_rq->throttled = 0;
1a55af2e
FW
3602
3603 update_rq_clock(rq);
3604
671fd9da 3605 raw_spin_lock(&cfs_b->lock);
78becc27 3606 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3607 list_del_rcu(&cfs_rq->throttled_list);
3608 raw_spin_unlock(&cfs_b->lock);
3609
64660c86
PT
3610 /* update hierarchical throttle state */
3611 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3612
671fd9da
PT
3613 if (!cfs_rq->load.weight)
3614 return;
3615
3616 task_delta = cfs_rq->h_nr_running;
3617 for_each_sched_entity(se) {
3618 if (se->on_rq)
3619 enqueue = 0;
3620
3621 cfs_rq = cfs_rq_of(se);
3622 if (enqueue)
3623 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3624 cfs_rq->h_nr_running += task_delta;
3625
3626 if (cfs_rq_throttled(cfs_rq))
3627 break;
3628 }
3629
3630 if (!se)
72465447 3631 add_nr_running(rq, task_delta);
671fd9da
PT
3632
3633 /* determine whether we need to wake up potentially idle cpu */
3634 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3635 resched_curr(rq);
671fd9da
PT
3636}
3637
3638static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3639 u64 remaining, u64 expires)
3640{
3641 struct cfs_rq *cfs_rq;
c06f04c7
BS
3642 u64 runtime;
3643 u64 starting_runtime = remaining;
671fd9da
PT
3644
3645 rcu_read_lock();
3646 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3647 throttled_list) {
3648 struct rq *rq = rq_of(cfs_rq);
3649
3650 raw_spin_lock(&rq->lock);
3651 if (!cfs_rq_throttled(cfs_rq))
3652 goto next;
3653
3654 runtime = -cfs_rq->runtime_remaining + 1;
3655 if (runtime > remaining)
3656 runtime = remaining;
3657 remaining -= runtime;
3658
3659 cfs_rq->runtime_remaining += runtime;
3660 cfs_rq->runtime_expires = expires;
3661
3662 /* we check whether we're throttled above */
3663 if (cfs_rq->runtime_remaining > 0)
3664 unthrottle_cfs_rq(cfs_rq);
3665
3666next:
3667 raw_spin_unlock(&rq->lock);
3668
3669 if (!remaining)
3670 break;
3671 }
3672 rcu_read_unlock();
3673
c06f04c7 3674 return starting_runtime - remaining;
671fd9da
PT
3675}
3676
58088ad0
PT
3677/*
3678 * Responsible for refilling a task_group's bandwidth and unthrottling its
3679 * cfs_rqs as appropriate. If there has been no activity within the last
3680 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3681 * used to track this state.
3682 */
3683static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3684{
671fd9da 3685 u64 runtime, runtime_expires;
51f2176d 3686 int throttled;
58088ad0 3687
58088ad0
PT
3688 /* no need to continue the timer with no bandwidth constraint */
3689 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3690 goto out_deactivate;
58088ad0 3691
671fd9da 3692 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3693 cfs_b->nr_periods += overrun;
671fd9da 3694
51f2176d
BS
3695 /*
3696 * idle depends on !throttled (for the case of a large deficit), and if
3697 * we're going inactive then everything else can be deferred
3698 */
3699 if (cfs_b->idle && !throttled)
3700 goto out_deactivate;
a9cf55b2
PT
3701
3702 __refill_cfs_bandwidth_runtime(cfs_b);
3703
671fd9da
PT
3704 if (!throttled) {
3705 /* mark as potentially idle for the upcoming period */
3706 cfs_b->idle = 1;
51f2176d 3707 return 0;
671fd9da
PT
3708 }
3709
e8da1b18
NR
3710 /* account preceding periods in which throttling occurred */
3711 cfs_b->nr_throttled += overrun;
3712
671fd9da 3713 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3714
3715 /*
c06f04c7
BS
3716 * This check is repeated as we are holding onto the new bandwidth while
3717 * we unthrottle. This can potentially race with an unthrottled group
3718 * trying to acquire new bandwidth from the global pool. This can result
3719 * in us over-using our runtime if it is all used during this loop, but
3720 * only by limited amounts in that extreme case.
671fd9da 3721 */
c06f04c7
BS
3722 while (throttled && cfs_b->runtime > 0) {
3723 runtime = cfs_b->runtime;
671fd9da
PT
3724 raw_spin_unlock(&cfs_b->lock);
3725 /* we can't nest cfs_b->lock while distributing bandwidth */
3726 runtime = distribute_cfs_runtime(cfs_b, runtime,
3727 runtime_expires);
3728 raw_spin_lock(&cfs_b->lock);
3729
3730 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3731
3732 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3733 }
58088ad0 3734
671fd9da
PT
3735 /*
3736 * While we are ensured activity in the period following an
3737 * unthrottle, this also covers the case in which the new bandwidth is
3738 * insufficient to cover the existing bandwidth deficit. (Forcing the
3739 * timer to remain active while there are any throttled entities.)
3740 */
3741 cfs_b->idle = 0;
58088ad0 3742
51f2176d
BS
3743 return 0;
3744
3745out_deactivate:
51f2176d 3746 return 1;
58088ad0 3747}
d3d9dc33 3748
d8b4986d
PT
3749/* a cfs_rq won't donate quota below this amount */
3750static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3751/* minimum remaining period time to redistribute slack quota */
3752static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3753/* how long we wait to gather additional slack before distributing */
3754static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3755
db06e78c
BS
3756/*
3757 * Are we near the end of the current quota period?
3758 *
3759 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3760 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3761 * migrate_hrtimers, base is never cleared, so we are fine.
3762 */
d8b4986d
PT
3763static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3764{
3765 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3766 u64 remaining;
3767
3768 /* if the call-back is running a quota refresh is already occurring */
3769 if (hrtimer_callback_running(refresh_timer))
3770 return 1;
3771
3772 /* is a quota refresh about to occur? */
3773 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3774 if (remaining < min_expire)
3775 return 1;
3776
3777 return 0;
3778}
3779
3780static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3781{
3782 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3783
3784 /* if there's a quota refresh soon don't bother with slack */
3785 if (runtime_refresh_within(cfs_b, min_left))
3786 return;
3787
4cfafd30
PZ
3788 hrtimer_start(&cfs_b->slack_timer,
3789 ns_to_ktime(cfs_bandwidth_slack_period),
3790 HRTIMER_MODE_REL);
d8b4986d
PT
3791}
3792
3793/* we know any runtime found here is valid as update_curr() precedes return */
3794static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3795{
3796 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3797 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3798
3799 if (slack_runtime <= 0)
3800 return;
3801
3802 raw_spin_lock(&cfs_b->lock);
3803 if (cfs_b->quota != RUNTIME_INF &&
3804 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3805 cfs_b->runtime += slack_runtime;
3806
3807 /* we are under rq->lock, defer unthrottling using a timer */
3808 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3809 !list_empty(&cfs_b->throttled_cfs_rq))
3810 start_cfs_slack_bandwidth(cfs_b);
3811 }
3812 raw_spin_unlock(&cfs_b->lock);
3813
3814 /* even if it's not valid for return we don't want to try again */
3815 cfs_rq->runtime_remaining -= slack_runtime;
3816}
3817
3818static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3819{
56f570e5
PT
3820 if (!cfs_bandwidth_used())
3821 return;
3822
fccfdc6f 3823 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3824 return;
3825
3826 __return_cfs_rq_runtime(cfs_rq);
3827}
3828
3829/*
3830 * This is done with a timer (instead of inline with bandwidth return) since
3831 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3832 */
3833static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3834{
3835 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3836 u64 expires;
3837
3838 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3839 raw_spin_lock(&cfs_b->lock);
3840 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3841 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3842 return;
db06e78c 3843 }
d8b4986d 3844
c06f04c7 3845 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3846 runtime = cfs_b->runtime;
c06f04c7 3847
d8b4986d
PT
3848 expires = cfs_b->runtime_expires;
3849 raw_spin_unlock(&cfs_b->lock);
3850
3851 if (!runtime)
3852 return;
3853
3854 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3855
3856 raw_spin_lock(&cfs_b->lock);
3857 if (expires == cfs_b->runtime_expires)
c06f04c7 3858 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3859 raw_spin_unlock(&cfs_b->lock);
3860}
3861
d3d9dc33
PT
3862/*
3863 * When a group wakes up we want to make sure that its quota is not already
3864 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3865 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3866 */
3867static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3868{
56f570e5
PT
3869 if (!cfs_bandwidth_used())
3870 return;
3871
d3d9dc33
PT
3872 /* an active group must be handled by the update_curr()->put() path */
3873 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3874 return;
3875
3876 /* ensure the group is not already throttled */
3877 if (cfs_rq_throttled(cfs_rq))
3878 return;
3879
3880 /* update runtime allocation */
3881 account_cfs_rq_runtime(cfs_rq, 0);
3882 if (cfs_rq->runtime_remaining <= 0)
3883 throttle_cfs_rq(cfs_rq);
3884}
3885
3886/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3887static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3888{
56f570e5 3889 if (!cfs_bandwidth_used())
678d5718 3890 return false;
56f570e5 3891
d3d9dc33 3892 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3893 return false;
d3d9dc33
PT
3894
3895 /*
3896 * it's possible for a throttled entity to be forced into a running
3897 * state (e.g. set_curr_task), in this case we're finished.
3898 */
3899 if (cfs_rq_throttled(cfs_rq))
678d5718 3900 return true;
d3d9dc33
PT
3901
3902 throttle_cfs_rq(cfs_rq);
678d5718 3903 return true;
d3d9dc33 3904}
029632fb 3905
029632fb
PZ
3906static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3907{
3908 struct cfs_bandwidth *cfs_b =
3909 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 3910
029632fb
PZ
3911 do_sched_cfs_slack_timer(cfs_b);
3912
3913 return HRTIMER_NORESTART;
3914}
3915
3916static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3917{
3918 struct cfs_bandwidth *cfs_b =
3919 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
3920 int overrun;
3921 int idle = 0;
3922
51f2176d 3923 raw_spin_lock(&cfs_b->lock);
029632fb 3924 for (;;) {
77a4d1a1 3925 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
3926 if (!overrun)
3927 break;
3928
3929 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3930 }
4cfafd30
PZ
3931 if (idle)
3932 cfs_b->period_active = 0;
51f2176d 3933 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3934
3935 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3936}
3937
3938void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3939{
3940 raw_spin_lock_init(&cfs_b->lock);
3941 cfs_b->runtime = 0;
3942 cfs_b->quota = RUNTIME_INF;
3943 cfs_b->period = ns_to_ktime(default_cfs_period());
3944
3945 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 3946 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
3947 cfs_b->period_timer.function = sched_cfs_period_timer;
3948 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3949 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3950}
3951
3952static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3953{
3954 cfs_rq->runtime_enabled = 0;
3955 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3956}
3957
77a4d1a1 3958void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 3959{
4cfafd30 3960 lockdep_assert_held(&cfs_b->lock);
029632fb 3961
4cfafd30
PZ
3962 if (!cfs_b->period_active) {
3963 cfs_b->period_active = 1;
3964 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
3965 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
3966 }
029632fb
PZ
3967}
3968
3969static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3970{
7f1a169b
TH
3971 /* init_cfs_bandwidth() was not called */
3972 if (!cfs_b->throttled_cfs_rq.next)
3973 return;
3974
029632fb
PZ
3975 hrtimer_cancel(&cfs_b->period_timer);
3976 hrtimer_cancel(&cfs_b->slack_timer);
3977}
3978
0e59bdae
KT
3979static void __maybe_unused update_runtime_enabled(struct rq *rq)
3980{
3981 struct cfs_rq *cfs_rq;
3982
3983 for_each_leaf_cfs_rq(rq, cfs_rq) {
3984 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3985
3986 raw_spin_lock(&cfs_b->lock);
3987 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3988 raw_spin_unlock(&cfs_b->lock);
3989 }
3990}
3991
38dc3348 3992static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3993{
3994 struct cfs_rq *cfs_rq;
3995
3996 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3997 if (!cfs_rq->runtime_enabled)
3998 continue;
3999
4000 /*
4001 * clock_task is not advancing so we just need to make sure
4002 * there's some valid quota amount
4003 */
51f2176d 4004 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4005 /*
4006 * Offline rq is schedulable till cpu is completely disabled
4007 * in take_cpu_down(), so we prevent new cfs throttling here.
4008 */
4009 cfs_rq->runtime_enabled = 0;
4010
029632fb
PZ
4011 if (cfs_rq_throttled(cfs_rq))
4012 unthrottle_cfs_rq(cfs_rq);
4013 }
4014}
4015
4016#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4017static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4018{
78becc27 4019 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4020}
4021
9dbdb155 4022static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4023static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4024static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4025static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4026
4027static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4028{
4029 return 0;
4030}
64660c86
PT
4031
4032static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4033{
4034 return 0;
4035}
4036
4037static inline int throttled_lb_pair(struct task_group *tg,
4038 int src_cpu, int dest_cpu)
4039{
4040 return 0;
4041}
029632fb
PZ
4042
4043void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4044
4045#ifdef CONFIG_FAIR_GROUP_SCHED
4046static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4047#endif
4048
029632fb
PZ
4049static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4050{
4051 return NULL;
4052}
4053static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4054static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4055static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4056
4057#endif /* CONFIG_CFS_BANDWIDTH */
4058
bf0f6f24
IM
4059/**************************************************
4060 * CFS operations on tasks:
4061 */
4062
8f4d37ec
PZ
4063#ifdef CONFIG_SCHED_HRTICK
4064static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4065{
8f4d37ec
PZ
4066 struct sched_entity *se = &p->se;
4067 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4068
4069 WARN_ON(task_rq(p) != rq);
4070
b39e66ea 4071 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4072 u64 slice = sched_slice(cfs_rq, se);
4073 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4074 s64 delta = slice - ran;
4075
4076 if (delta < 0) {
4077 if (rq->curr == p)
8875125e 4078 resched_curr(rq);
8f4d37ec
PZ
4079 return;
4080 }
31656519 4081 hrtick_start(rq, delta);
8f4d37ec
PZ
4082 }
4083}
a4c2f00f
PZ
4084
4085/*
4086 * called from enqueue/dequeue and updates the hrtick when the
4087 * current task is from our class and nr_running is low enough
4088 * to matter.
4089 */
4090static void hrtick_update(struct rq *rq)
4091{
4092 struct task_struct *curr = rq->curr;
4093
b39e66ea 4094 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4095 return;
4096
4097 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4098 hrtick_start_fair(rq, curr);
4099}
55e12e5e 4100#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4101static inline void
4102hrtick_start_fair(struct rq *rq, struct task_struct *p)
4103{
4104}
a4c2f00f
PZ
4105
4106static inline void hrtick_update(struct rq *rq)
4107{
4108}
8f4d37ec
PZ
4109#endif
4110
bf0f6f24
IM
4111/*
4112 * The enqueue_task method is called before nr_running is
4113 * increased. Here we update the fair scheduling stats and
4114 * then put the task into the rbtree:
4115 */
ea87bb78 4116static void
371fd7e7 4117enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4118{
4119 struct cfs_rq *cfs_rq;
62fb1851 4120 struct sched_entity *se = &p->se;
bf0f6f24
IM
4121
4122 for_each_sched_entity(se) {
62fb1851 4123 if (se->on_rq)
bf0f6f24
IM
4124 break;
4125 cfs_rq = cfs_rq_of(se);
88ec22d3 4126 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4127
4128 /*
4129 * end evaluation on encountering a throttled cfs_rq
4130 *
4131 * note: in the case of encountering a throttled cfs_rq we will
4132 * post the final h_nr_running increment below.
4133 */
4134 if (cfs_rq_throttled(cfs_rq))
4135 break;
953bfcd1 4136 cfs_rq->h_nr_running++;
85dac906 4137
88ec22d3 4138 flags = ENQUEUE_WAKEUP;
bf0f6f24 4139 }
8f4d37ec 4140
2069dd75 4141 for_each_sched_entity(se) {
0f317143 4142 cfs_rq = cfs_rq_of(se);
953bfcd1 4143 cfs_rq->h_nr_running++;
2069dd75 4144
85dac906
PT
4145 if (cfs_rq_throttled(cfs_rq))
4146 break;
4147
9d89c257 4148 update_load_avg(se, 1);
17bc14b7 4149 update_cfs_shares(cfs_rq);
2069dd75
PZ
4150 }
4151
cd126afe 4152 if (!se)
72465447 4153 add_nr_running(rq, 1);
cd126afe 4154
a4c2f00f 4155 hrtick_update(rq);
bf0f6f24
IM
4156}
4157
2f36825b
VP
4158static void set_next_buddy(struct sched_entity *se);
4159
bf0f6f24
IM
4160/*
4161 * The dequeue_task method is called before nr_running is
4162 * decreased. We remove the task from the rbtree and
4163 * update the fair scheduling stats:
4164 */
371fd7e7 4165static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4166{
4167 struct cfs_rq *cfs_rq;
62fb1851 4168 struct sched_entity *se = &p->se;
2f36825b 4169 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4170
4171 for_each_sched_entity(se) {
4172 cfs_rq = cfs_rq_of(se);
371fd7e7 4173 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4174
4175 /*
4176 * end evaluation on encountering a throttled cfs_rq
4177 *
4178 * note: in the case of encountering a throttled cfs_rq we will
4179 * post the final h_nr_running decrement below.
4180 */
4181 if (cfs_rq_throttled(cfs_rq))
4182 break;
953bfcd1 4183 cfs_rq->h_nr_running--;
2069dd75 4184
bf0f6f24 4185 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4186 if (cfs_rq->load.weight) {
4187 /*
4188 * Bias pick_next to pick a task from this cfs_rq, as
4189 * p is sleeping when it is within its sched_slice.
4190 */
4191 if (task_sleep && parent_entity(se))
4192 set_next_buddy(parent_entity(se));
9598c82d
PT
4193
4194 /* avoid re-evaluating load for this entity */
4195 se = parent_entity(se);
bf0f6f24 4196 break;
2f36825b 4197 }
371fd7e7 4198 flags |= DEQUEUE_SLEEP;
bf0f6f24 4199 }
8f4d37ec 4200
2069dd75 4201 for_each_sched_entity(se) {
0f317143 4202 cfs_rq = cfs_rq_of(se);
953bfcd1 4203 cfs_rq->h_nr_running--;
2069dd75 4204
85dac906
PT
4205 if (cfs_rq_throttled(cfs_rq))
4206 break;
4207
9d89c257 4208 update_load_avg(se, 1);
17bc14b7 4209 update_cfs_shares(cfs_rq);
2069dd75
PZ
4210 }
4211
cd126afe 4212 if (!se)
72465447 4213 sub_nr_running(rq, 1);
cd126afe 4214
a4c2f00f 4215 hrtick_update(rq);
bf0f6f24
IM
4216}
4217
e7693a36 4218#ifdef CONFIG_SMP
3289bdb4
PZ
4219
4220/*
4221 * per rq 'load' arrray crap; XXX kill this.
4222 */
4223
4224/*
4225 * The exact cpuload at various idx values, calculated at every tick would be
4226 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
4227 *
4228 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
4229 * on nth tick when cpu may be busy, then we have:
4230 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4231 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
4232 *
4233 * decay_load_missed() below does efficient calculation of
4234 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
4235 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
4236 *
4237 * The calculation is approximated on a 128 point scale.
4238 * degrade_zero_ticks is the number of ticks after which load at any
4239 * particular idx is approximated to be zero.
4240 * degrade_factor is a precomputed table, a row for each load idx.
4241 * Each column corresponds to degradation factor for a power of two ticks,
4242 * based on 128 point scale.
4243 * Example:
4244 * row 2, col 3 (=12) says that the degradation at load idx 2 after
4245 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
4246 *
4247 * With this power of 2 load factors, we can degrade the load n times
4248 * by looking at 1 bits in n and doing as many mult/shift instead of
4249 * n mult/shifts needed by the exact degradation.
4250 */
4251#define DEGRADE_SHIFT 7
4252static const unsigned char
4253 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4254static const unsigned char
4255 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4256 {0, 0, 0, 0, 0, 0, 0, 0},
4257 {64, 32, 8, 0, 0, 0, 0, 0},
4258 {96, 72, 40, 12, 1, 0, 0},
4259 {112, 98, 75, 43, 15, 1, 0},
4260 {120, 112, 98, 76, 45, 16, 2} };
4261
4262/*
4263 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4264 * would be when CPU is idle and so we just decay the old load without
4265 * adding any new load.
4266 */
4267static unsigned long
4268decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4269{
4270 int j = 0;
4271
4272 if (!missed_updates)
4273 return load;
4274
4275 if (missed_updates >= degrade_zero_ticks[idx])
4276 return 0;
4277
4278 if (idx == 1)
4279 return load >> missed_updates;
4280
4281 while (missed_updates) {
4282 if (missed_updates % 2)
4283 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4284
4285 missed_updates >>= 1;
4286 j++;
4287 }
4288 return load;
4289}
4290
4291/*
4292 * Update rq->cpu_load[] statistics. This function is usually called every
4293 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4294 * every tick. We fix it up based on jiffies.
4295 */
4296static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4297 unsigned long pending_updates)
4298{
4299 int i, scale;
4300
4301 this_rq->nr_load_updates++;
4302
4303 /* Update our load: */
4304 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4305 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4306 unsigned long old_load, new_load;
4307
4308 /* scale is effectively 1 << i now, and >> i divides by scale */
4309
4310 old_load = this_rq->cpu_load[i];
4311 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4312 new_load = this_load;
4313 /*
4314 * Round up the averaging division if load is increasing. This
4315 * prevents us from getting stuck on 9 if the load is 10, for
4316 * example.
4317 */
4318 if (new_load > old_load)
4319 new_load += scale - 1;
4320
4321 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4322 }
4323
4324 sched_avg_update(this_rq);
4325}
4326
7ea241af
YD
4327/* Used instead of source_load when we know the type == 0 */
4328static unsigned long weighted_cpuload(const int cpu)
4329{
4330 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4331}
4332
3289bdb4
PZ
4333#ifdef CONFIG_NO_HZ_COMMON
4334/*
4335 * There is no sane way to deal with nohz on smp when using jiffies because the
4336 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4337 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4338 *
4339 * Therefore we cannot use the delta approach from the regular tick since that
4340 * would seriously skew the load calculation. However we'll make do for those
4341 * updates happening while idle (nohz_idle_balance) or coming out of idle
4342 * (tick_nohz_idle_exit).
4343 *
4344 * This means we might still be one tick off for nohz periods.
4345 */
4346
4347/*
4348 * Called from nohz_idle_balance() to update the load ratings before doing the
4349 * idle balance.
4350 */
4351static void update_idle_cpu_load(struct rq *this_rq)
4352{
316c1608 4353 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4354 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4355 unsigned long pending_updates;
4356
4357 /*
4358 * bail if there's load or we're actually up-to-date.
4359 */
4360 if (load || curr_jiffies == this_rq->last_load_update_tick)
4361 return;
4362
4363 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4364 this_rq->last_load_update_tick = curr_jiffies;
4365
4366 __update_cpu_load(this_rq, load, pending_updates);
4367}
4368
4369/*
4370 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4371 */
4372void update_cpu_load_nohz(void)
4373{
4374 struct rq *this_rq = this_rq();
316c1608 4375 unsigned long curr_jiffies = READ_ONCE(jiffies);
3289bdb4
PZ
4376 unsigned long pending_updates;
4377
4378 if (curr_jiffies == this_rq->last_load_update_tick)
4379 return;
4380
4381 raw_spin_lock(&this_rq->lock);
4382 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4383 if (pending_updates) {
4384 this_rq->last_load_update_tick = curr_jiffies;
4385 /*
4386 * We were idle, this means load 0, the current load might be
4387 * !0 due to remote wakeups and the sort.
4388 */
4389 __update_cpu_load(this_rq, 0, pending_updates);
4390 }
4391 raw_spin_unlock(&this_rq->lock);
4392}
4393#endif /* CONFIG_NO_HZ */
4394
4395/*
4396 * Called from scheduler_tick()
4397 */
4398void update_cpu_load_active(struct rq *this_rq)
4399{
7ea241af 4400 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4401 /*
4402 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4403 */
4404 this_rq->last_load_update_tick = jiffies;
4405 __update_cpu_load(this_rq, load, 1);
4406}
4407
029632fb
PZ
4408/*
4409 * Return a low guess at the load of a migration-source cpu weighted
4410 * according to the scheduling class and "nice" value.
4411 *
4412 * We want to under-estimate the load of migration sources, to
4413 * balance conservatively.
4414 */
4415static unsigned long source_load(int cpu, int type)
4416{
4417 struct rq *rq = cpu_rq(cpu);
4418 unsigned long total = weighted_cpuload(cpu);
4419
4420 if (type == 0 || !sched_feat(LB_BIAS))
4421 return total;
4422
4423 return min(rq->cpu_load[type-1], total);
4424}
4425
4426/*
4427 * Return a high guess at the load of a migration-target cpu weighted
4428 * according to the scheduling class and "nice" value.
4429 */
4430static unsigned long target_load(int cpu, int type)
4431{
4432 struct rq *rq = cpu_rq(cpu);
4433 unsigned long total = weighted_cpuload(cpu);
4434
4435 if (type == 0 || !sched_feat(LB_BIAS))
4436 return total;
4437
4438 return max(rq->cpu_load[type-1], total);
4439}
4440
ced549fa 4441static unsigned long capacity_of(int cpu)
029632fb 4442{
ced549fa 4443 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4444}
4445
ca6d75e6
VG
4446static unsigned long capacity_orig_of(int cpu)
4447{
4448 return cpu_rq(cpu)->cpu_capacity_orig;
4449}
4450
029632fb
PZ
4451static unsigned long cpu_avg_load_per_task(int cpu)
4452{
4453 struct rq *rq = cpu_rq(cpu);
316c1608 4454 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4455 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4456
4457 if (nr_running)
b92486cb 4458 return load_avg / nr_running;
029632fb
PZ
4459
4460 return 0;
4461}
4462
62470419
MW
4463static void record_wakee(struct task_struct *p)
4464{
4465 /*
4466 * Rough decay (wiping) for cost saving, don't worry
4467 * about the boundary, really active task won't care
4468 * about the loss.
4469 */
2538d960 4470 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4471 current->wakee_flips >>= 1;
62470419
MW
4472 current->wakee_flip_decay_ts = jiffies;
4473 }
4474
4475 if (current->last_wakee != p) {
4476 current->last_wakee = p;
4477 current->wakee_flips++;
4478 }
4479}
098fb9db 4480
74f8e4b2 4481static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4482{
4483 struct sched_entity *se = &p->se;
4484 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4485 u64 min_vruntime;
4486
4487#ifndef CONFIG_64BIT
4488 u64 min_vruntime_copy;
88ec22d3 4489
3fe1698b
PZ
4490 do {
4491 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4492 smp_rmb();
4493 min_vruntime = cfs_rq->min_vruntime;
4494 } while (min_vruntime != min_vruntime_copy);
4495#else
4496 min_vruntime = cfs_rq->min_vruntime;
4497#endif
88ec22d3 4498
3fe1698b 4499 se->vruntime -= min_vruntime;
62470419 4500 record_wakee(p);
88ec22d3
PZ
4501}
4502
bb3469ac 4503#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4504/*
4505 * effective_load() calculates the load change as seen from the root_task_group
4506 *
4507 * Adding load to a group doesn't make a group heavier, but can cause movement
4508 * of group shares between cpus. Assuming the shares were perfectly aligned one
4509 * can calculate the shift in shares.
cf5f0acf
PZ
4510 *
4511 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4512 * on this @cpu and results in a total addition (subtraction) of @wg to the
4513 * total group weight.
4514 *
4515 * Given a runqueue weight distribution (rw_i) we can compute a shares
4516 * distribution (s_i) using:
4517 *
4518 * s_i = rw_i / \Sum rw_j (1)
4519 *
4520 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4521 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4522 * shares distribution (s_i):
4523 *
4524 * rw_i = { 2, 4, 1, 0 }
4525 * s_i = { 2/7, 4/7, 1/7, 0 }
4526 *
4527 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4528 * task used to run on and the CPU the waker is running on), we need to
4529 * compute the effect of waking a task on either CPU and, in case of a sync
4530 * wakeup, compute the effect of the current task going to sleep.
4531 *
4532 * So for a change of @wl to the local @cpu with an overall group weight change
4533 * of @wl we can compute the new shares distribution (s'_i) using:
4534 *
4535 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4536 *
4537 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4538 * differences in waking a task to CPU 0. The additional task changes the
4539 * weight and shares distributions like:
4540 *
4541 * rw'_i = { 3, 4, 1, 0 }
4542 * s'_i = { 3/8, 4/8, 1/8, 0 }
4543 *
4544 * We can then compute the difference in effective weight by using:
4545 *
4546 * dw_i = S * (s'_i - s_i) (3)
4547 *
4548 * Where 'S' is the group weight as seen by its parent.
4549 *
4550 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4551 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4552 * 4/7) times the weight of the group.
f5bfb7d9 4553 */
2069dd75 4554static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4555{
4be9daaa 4556 struct sched_entity *se = tg->se[cpu];
f1d239f7 4557
9722c2da 4558 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4559 return wl;
4560
4be9daaa 4561 for_each_sched_entity(se) {
cf5f0acf 4562 long w, W;
4be9daaa 4563
977dda7c 4564 tg = se->my_q->tg;
bb3469ac 4565
cf5f0acf
PZ
4566 /*
4567 * W = @wg + \Sum rw_j
4568 */
4569 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4570
cf5f0acf
PZ
4571 /*
4572 * w = rw_i + @wl
4573 */
7ea241af 4574 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4575
cf5f0acf
PZ
4576 /*
4577 * wl = S * s'_i; see (2)
4578 */
4579 if (W > 0 && w < W)
32a8df4e 4580 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4581 else
4582 wl = tg->shares;
940959e9 4583
cf5f0acf
PZ
4584 /*
4585 * Per the above, wl is the new se->load.weight value; since
4586 * those are clipped to [MIN_SHARES, ...) do so now. See
4587 * calc_cfs_shares().
4588 */
977dda7c
PT
4589 if (wl < MIN_SHARES)
4590 wl = MIN_SHARES;
cf5f0acf
PZ
4591
4592 /*
4593 * wl = dw_i = S * (s'_i - s_i); see (3)
4594 */
9d89c257 4595 wl -= se->avg.load_avg;
cf5f0acf
PZ
4596
4597 /*
4598 * Recursively apply this logic to all parent groups to compute
4599 * the final effective load change on the root group. Since
4600 * only the @tg group gets extra weight, all parent groups can
4601 * only redistribute existing shares. @wl is the shift in shares
4602 * resulting from this level per the above.
4603 */
4be9daaa 4604 wg = 0;
4be9daaa 4605 }
bb3469ac 4606
4be9daaa 4607 return wl;
bb3469ac
PZ
4608}
4609#else
4be9daaa 4610
58d081b5 4611static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4612{
83378269 4613 return wl;
bb3469ac 4614}
4be9daaa 4615
bb3469ac
PZ
4616#endif
4617
63b0e9ed
MG
4618/*
4619 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4620 * A waker of many should wake a different task than the one last awakened
4621 * at a frequency roughly N times higher than one of its wakees. In order
4622 * to determine whether we should let the load spread vs consolodating to
4623 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4624 * partner, and a factor of lls_size higher frequency in the other. With
4625 * both conditions met, we can be relatively sure that the relationship is
4626 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4627 * being client/server, worker/dispatcher, interrupt source or whatever is
4628 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4629 */
62470419
MW
4630static int wake_wide(struct task_struct *p)
4631{
63b0e9ed
MG
4632 unsigned int master = current->wakee_flips;
4633 unsigned int slave = p->wakee_flips;
7d9ffa89 4634 int factor = this_cpu_read(sd_llc_size);
62470419 4635
63b0e9ed
MG
4636 if (master < slave)
4637 swap(master, slave);
4638 if (slave < factor || master < slave * factor)
4639 return 0;
4640 return 1;
62470419
MW
4641}
4642
c88d5910 4643static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4644{
e37b6a7b 4645 s64 this_load, load;
bd61c98f 4646 s64 this_eff_load, prev_eff_load;
c88d5910 4647 int idx, this_cpu, prev_cpu;
c88d5910 4648 struct task_group *tg;
83378269 4649 unsigned long weight;
b3137bc8 4650 int balanced;
098fb9db 4651
c88d5910
PZ
4652 idx = sd->wake_idx;
4653 this_cpu = smp_processor_id();
4654 prev_cpu = task_cpu(p);
4655 load = source_load(prev_cpu, idx);
4656 this_load = target_load(this_cpu, idx);
098fb9db 4657
b3137bc8
MG
4658 /*
4659 * If sync wakeup then subtract the (maximum possible)
4660 * effect of the currently running task from the load
4661 * of the current CPU:
4662 */
83378269
PZ
4663 if (sync) {
4664 tg = task_group(current);
9d89c257 4665 weight = current->se.avg.load_avg;
83378269 4666
c88d5910 4667 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4668 load += effective_load(tg, prev_cpu, 0, -weight);
4669 }
b3137bc8 4670
83378269 4671 tg = task_group(p);
9d89c257 4672 weight = p->se.avg.load_avg;
b3137bc8 4673
71a29aa7
PZ
4674 /*
4675 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4676 * due to the sync cause above having dropped this_load to 0, we'll
4677 * always have an imbalance, but there's really nothing you can do
4678 * about that, so that's good too.
71a29aa7
PZ
4679 *
4680 * Otherwise check if either cpus are near enough in load to allow this
4681 * task to be woken on this_cpu.
4682 */
bd61c98f
VG
4683 this_eff_load = 100;
4684 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4685
bd61c98f
VG
4686 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4687 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4688
bd61c98f 4689 if (this_load > 0) {
e51fd5e2
PZ
4690 this_eff_load *= this_load +
4691 effective_load(tg, this_cpu, weight, weight);
4692
e51fd5e2 4693 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4694 }
e51fd5e2 4695
bd61c98f 4696 balanced = this_eff_load <= prev_eff_load;
098fb9db 4697
41acab88 4698 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4699
05bfb65f
VG
4700 if (!balanced)
4701 return 0;
098fb9db 4702
05bfb65f
VG
4703 schedstat_inc(sd, ttwu_move_affine);
4704 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4705
4706 return 1;
098fb9db
IM
4707}
4708
aaee1203
PZ
4709/*
4710 * find_idlest_group finds and returns the least busy CPU group within the
4711 * domain.
4712 */
4713static struct sched_group *
78e7ed53 4714find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4715 int this_cpu, int sd_flag)
e7693a36 4716{
b3bd3de6 4717 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4718 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4719 int load_idx = sd->forkexec_idx;
aaee1203 4720 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4721
c44f2a02
VG
4722 if (sd_flag & SD_BALANCE_WAKE)
4723 load_idx = sd->wake_idx;
4724
aaee1203
PZ
4725 do {
4726 unsigned long load, avg_load;
4727 int local_group;
4728 int i;
e7693a36 4729
aaee1203
PZ
4730 /* Skip over this group if it has no CPUs allowed */
4731 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4732 tsk_cpus_allowed(p)))
aaee1203
PZ
4733 continue;
4734
4735 local_group = cpumask_test_cpu(this_cpu,
4736 sched_group_cpus(group));
4737
4738 /* Tally up the load of all CPUs in the group */
4739 avg_load = 0;
4740
4741 for_each_cpu(i, sched_group_cpus(group)) {
4742 /* Bias balancing toward cpus of our domain */
4743 if (local_group)
4744 load = source_load(i, load_idx);
4745 else
4746 load = target_load(i, load_idx);
4747
4748 avg_load += load;
4749 }
4750
63b2ca30 4751 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4752 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4753
4754 if (local_group) {
4755 this_load = avg_load;
aaee1203
PZ
4756 } else if (avg_load < min_load) {
4757 min_load = avg_load;
4758 idlest = group;
4759 }
4760 } while (group = group->next, group != sd->groups);
4761
4762 if (!idlest || 100*this_load < imbalance*min_load)
4763 return NULL;
4764 return idlest;
4765}
4766
4767/*
4768 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4769 */
4770static int
4771find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4772{
4773 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4774 unsigned int min_exit_latency = UINT_MAX;
4775 u64 latest_idle_timestamp = 0;
4776 int least_loaded_cpu = this_cpu;
4777 int shallowest_idle_cpu = -1;
aaee1203
PZ
4778 int i;
4779
4780 /* Traverse only the allowed CPUs */
fa17b507 4781 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4782 if (idle_cpu(i)) {
4783 struct rq *rq = cpu_rq(i);
4784 struct cpuidle_state *idle = idle_get_state(rq);
4785 if (idle && idle->exit_latency < min_exit_latency) {
4786 /*
4787 * We give priority to a CPU whose idle state
4788 * has the smallest exit latency irrespective
4789 * of any idle timestamp.
4790 */
4791 min_exit_latency = idle->exit_latency;
4792 latest_idle_timestamp = rq->idle_stamp;
4793 shallowest_idle_cpu = i;
4794 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4795 rq->idle_stamp > latest_idle_timestamp) {
4796 /*
4797 * If equal or no active idle state, then
4798 * the most recently idled CPU might have
4799 * a warmer cache.
4800 */
4801 latest_idle_timestamp = rq->idle_stamp;
4802 shallowest_idle_cpu = i;
4803 }
9f96742a 4804 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4805 load = weighted_cpuload(i);
4806 if (load < min_load || (load == min_load && i == this_cpu)) {
4807 min_load = load;
4808 least_loaded_cpu = i;
4809 }
e7693a36
GH
4810 }
4811 }
4812
83a0a96a 4813 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4814}
e7693a36 4815
a50bde51
PZ
4816/*
4817 * Try and locate an idle CPU in the sched_domain.
4818 */
99bd5e2f 4819static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4820{
99bd5e2f 4821 struct sched_domain *sd;
37407ea7 4822 struct sched_group *sg;
e0a79f52 4823 int i = task_cpu(p);
a50bde51 4824
e0a79f52
MG
4825 if (idle_cpu(target))
4826 return target;
99bd5e2f
SS
4827
4828 /*
e0a79f52 4829 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4830 */
e0a79f52
MG
4831 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4832 return i;
a50bde51
PZ
4833
4834 /*
37407ea7 4835 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4836 */
518cd623 4837 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4838 for_each_lower_domain(sd) {
37407ea7
LT
4839 sg = sd->groups;
4840 do {
4841 if (!cpumask_intersects(sched_group_cpus(sg),
4842 tsk_cpus_allowed(p)))
4843 goto next;
4844
4845 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4846 if (i == target || !idle_cpu(i))
37407ea7
LT
4847 goto next;
4848 }
970e1789 4849
37407ea7
LT
4850 target = cpumask_first_and(sched_group_cpus(sg),
4851 tsk_cpus_allowed(p));
4852 goto done;
4853next:
4854 sg = sg->next;
4855 } while (sg != sd->groups);
4856 }
4857done:
a50bde51
PZ
4858 return target;
4859}
231678b7 4860
8bb5b00c 4861/*
9e91d61d 4862 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 4863 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
4864 * compare the utilization with the capacity of the CPU that is available for
4865 * CFS task (ie cpu_capacity).
231678b7
DE
4866 *
4867 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
4868 * recent utilization of currently non-runnable tasks on a CPU. It represents
4869 * the amount of utilization of a CPU in the range [0..capacity_orig] where
4870 * capacity_orig is the cpu_capacity available at the highest frequency
4871 * (arch_scale_freq_capacity()).
4872 * The utilization of a CPU converges towards a sum equal to or less than the
4873 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
4874 * the running time on this CPU scaled by capacity_curr.
4875 *
4876 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
4877 * higher than capacity_orig because of unfortunate rounding in
4878 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
4879 * the average stabilizes with the new running time. We need to check that the
4880 * utilization stays within the range of [0..capacity_orig] and cap it if
4881 * necessary. Without utilization capping, a group could be seen as overloaded
4882 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
4883 * available capacity. We allow utilization to overshoot capacity_curr (but not
4884 * capacity_orig) as it useful for predicting the capacity required after task
4885 * migrations (scheduler-driven DVFS).
8bb5b00c 4886 */
9e91d61d 4887static int cpu_util(int cpu)
8bb5b00c 4888{
9e91d61d 4889 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
4890 unsigned long capacity = capacity_orig_of(cpu);
4891
231678b7 4892 return (util >= capacity) ? capacity : util;
8bb5b00c 4893}
a50bde51 4894
aaee1203 4895/*
de91b9cb
MR
4896 * select_task_rq_fair: Select target runqueue for the waking task in domains
4897 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4898 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4899 *
de91b9cb
MR
4900 * Balances load by selecting the idlest cpu in the idlest group, or under
4901 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4902 *
de91b9cb 4903 * Returns the target cpu number.
aaee1203
PZ
4904 *
4905 * preempt must be disabled.
4906 */
0017d735 4907static int
ac66f547 4908select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4909{
29cd8bae 4910 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4911 int cpu = smp_processor_id();
63b0e9ed 4912 int new_cpu = prev_cpu;
99bd5e2f 4913 int want_affine = 0;
5158f4e4 4914 int sync = wake_flags & WF_SYNC;
c88d5910 4915
a8edd075 4916 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 4917 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4918
dce840a0 4919 rcu_read_lock();
aaee1203 4920 for_each_domain(cpu, tmp) {
e4f42888 4921 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 4922 break;
e4f42888 4923
fe3bcfe1 4924 /*
99bd5e2f
SS
4925 * If both cpu and prev_cpu are part of this domain,
4926 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4927 */
99bd5e2f
SS
4928 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4929 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4930 affine_sd = tmp;
29cd8bae 4931 break;
f03542a7 4932 }
29cd8bae 4933
f03542a7 4934 if (tmp->flags & sd_flag)
29cd8bae 4935 sd = tmp;
63b0e9ed
MG
4936 else if (!want_affine)
4937 break;
29cd8bae
PZ
4938 }
4939
63b0e9ed
MG
4940 if (affine_sd) {
4941 sd = NULL; /* Prefer wake_affine over balance flags */
4942 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4943 new_cpu = cpu;
8b911acd 4944 }
e7693a36 4945
63b0e9ed
MG
4946 if (!sd) {
4947 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
4948 new_cpu = select_idle_sibling(p, new_cpu);
4949
4950 } else while (sd) {
aaee1203 4951 struct sched_group *group;
c88d5910 4952 int weight;
098fb9db 4953
0763a660 4954 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4955 sd = sd->child;
4956 continue;
4957 }
098fb9db 4958
c44f2a02 4959 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4960 if (!group) {
4961 sd = sd->child;
4962 continue;
4963 }
4ae7d5ce 4964
d7c33c49 4965 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4966 if (new_cpu == -1 || new_cpu == cpu) {
4967 /* Now try balancing at a lower domain level of cpu */
4968 sd = sd->child;
4969 continue;
e7693a36 4970 }
aaee1203
PZ
4971
4972 /* Now try balancing at a lower domain level of new_cpu */
4973 cpu = new_cpu;
669c55e9 4974 weight = sd->span_weight;
aaee1203
PZ
4975 sd = NULL;
4976 for_each_domain(cpu, tmp) {
669c55e9 4977 if (weight <= tmp->span_weight)
aaee1203 4978 break;
0763a660 4979 if (tmp->flags & sd_flag)
aaee1203
PZ
4980 sd = tmp;
4981 }
4982 /* while loop will break here if sd == NULL */
e7693a36 4983 }
dce840a0 4984 rcu_read_unlock();
e7693a36 4985
c88d5910 4986 return new_cpu;
e7693a36 4987}
0a74bef8
PT
4988
4989/*
4990 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4991 * cfs_rq_of(p) references at time of call are still valid and identify the
4992 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4993 * other assumptions, including the state of rq->lock, should be made.
4994 */
5a4fd036 4995static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 4996{
aff3e498 4997 /*
9d89c257
YD
4998 * We are supposed to update the task to "current" time, then its up to date
4999 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5000 * what current time is, so simply throw away the out-of-date time. This
5001 * will result in the wakee task is less decayed, but giving the wakee more
5002 * load sounds not bad.
aff3e498 5003 */
9d89c257
YD
5004 remove_entity_load_avg(&p->se);
5005
5006 /* Tell new CPU we are migrated */
5007 p->se.avg.last_update_time = 0;
3944a927
BS
5008
5009 /* We have migrated, no longer consider this task hot */
9d89c257 5010 p->se.exec_start = 0;
0a74bef8 5011}
12695578
YD
5012
5013static void task_dead_fair(struct task_struct *p)
5014{
5015 remove_entity_load_avg(&p->se);
5016}
e7693a36
GH
5017#endif /* CONFIG_SMP */
5018
e52fb7c0
PZ
5019static unsigned long
5020wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5021{
5022 unsigned long gran = sysctl_sched_wakeup_granularity;
5023
5024 /*
e52fb7c0
PZ
5025 * Since its curr running now, convert the gran from real-time
5026 * to virtual-time in his units.
13814d42
MG
5027 *
5028 * By using 'se' instead of 'curr' we penalize light tasks, so
5029 * they get preempted easier. That is, if 'se' < 'curr' then
5030 * the resulting gran will be larger, therefore penalizing the
5031 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5032 * be smaller, again penalizing the lighter task.
5033 *
5034 * This is especially important for buddies when the leftmost
5035 * task is higher priority than the buddy.
0bbd3336 5036 */
f4ad9bd2 5037 return calc_delta_fair(gran, se);
0bbd3336
PZ
5038}
5039
464b7527
PZ
5040/*
5041 * Should 'se' preempt 'curr'.
5042 *
5043 * |s1
5044 * |s2
5045 * |s3
5046 * g
5047 * |<--->|c
5048 *
5049 * w(c, s1) = -1
5050 * w(c, s2) = 0
5051 * w(c, s3) = 1
5052 *
5053 */
5054static int
5055wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5056{
5057 s64 gran, vdiff = curr->vruntime - se->vruntime;
5058
5059 if (vdiff <= 0)
5060 return -1;
5061
e52fb7c0 5062 gran = wakeup_gran(curr, se);
464b7527
PZ
5063 if (vdiff > gran)
5064 return 1;
5065
5066 return 0;
5067}
5068
02479099
PZ
5069static void set_last_buddy(struct sched_entity *se)
5070{
69c80f3e
VP
5071 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5072 return;
5073
5074 for_each_sched_entity(se)
5075 cfs_rq_of(se)->last = se;
02479099
PZ
5076}
5077
5078static void set_next_buddy(struct sched_entity *se)
5079{
69c80f3e
VP
5080 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5081 return;
5082
5083 for_each_sched_entity(se)
5084 cfs_rq_of(se)->next = se;
02479099
PZ
5085}
5086
ac53db59
RR
5087static void set_skip_buddy(struct sched_entity *se)
5088{
69c80f3e
VP
5089 for_each_sched_entity(se)
5090 cfs_rq_of(se)->skip = se;
ac53db59
RR
5091}
5092
bf0f6f24
IM
5093/*
5094 * Preempt the current task with a newly woken task if needed:
5095 */
5a9b86f6 5096static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5097{
5098 struct task_struct *curr = rq->curr;
8651a86c 5099 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5100 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5101 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5102 int next_buddy_marked = 0;
bf0f6f24 5103
4ae7d5ce
IM
5104 if (unlikely(se == pse))
5105 return;
5106
5238cdd3 5107 /*
163122b7 5108 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5109 * unconditionally check_prempt_curr() after an enqueue (which may have
5110 * lead to a throttle). This both saves work and prevents false
5111 * next-buddy nomination below.
5112 */
5113 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5114 return;
5115
2f36825b 5116 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5117 set_next_buddy(pse);
2f36825b
VP
5118 next_buddy_marked = 1;
5119 }
57fdc26d 5120
aec0a514
BR
5121 /*
5122 * We can come here with TIF_NEED_RESCHED already set from new task
5123 * wake up path.
5238cdd3
PT
5124 *
5125 * Note: this also catches the edge-case of curr being in a throttled
5126 * group (e.g. via set_curr_task), since update_curr() (in the
5127 * enqueue of curr) will have resulted in resched being set. This
5128 * prevents us from potentially nominating it as a false LAST_BUDDY
5129 * below.
aec0a514
BR
5130 */
5131 if (test_tsk_need_resched(curr))
5132 return;
5133
a2f5c9ab
DH
5134 /* Idle tasks are by definition preempted by non-idle tasks. */
5135 if (unlikely(curr->policy == SCHED_IDLE) &&
5136 likely(p->policy != SCHED_IDLE))
5137 goto preempt;
5138
91c234b4 5139 /*
a2f5c9ab
DH
5140 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5141 * is driven by the tick):
91c234b4 5142 */
8ed92e51 5143 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5144 return;
bf0f6f24 5145
464b7527 5146 find_matching_se(&se, &pse);
9bbd7374 5147 update_curr(cfs_rq_of(se));
002f128b 5148 BUG_ON(!pse);
2f36825b
VP
5149 if (wakeup_preempt_entity(se, pse) == 1) {
5150 /*
5151 * Bias pick_next to pick the sched entity that is
5152 * triggering this preemption.
5153 */
5154 if (!next_buddy_marked)
5155 set_next_buddy(pse);
3a7e73a2 5156 goto preempt;
2f36825b 5157 }
464b7527 5158
3a7e73a2 5159 return;
a65ac745 5160
3a7e73a2 5161preempt:
8875125e 5162 resched_curr(rq);
3a7e73a2
PZ
5163 /*
5164 * Only set the backward buddy when the current task is still
5165 * on the rq. This can happen when a wakeup gets interleaved
5166 * with schedule on the ->pre_schedule() or idle_balance()
5167 * point, either of which can * drop the rq lock.
5168 *
5169 * Also, during early boot the idle thread is in the fair class,
5170 * for obvious reasons its a bad idea to schedule back to it.
5171 */
5172 if (unlikely(!se->on_rq || curr == rq->idle))
5173 return;
5174
5175 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5176 set_last_buddy(se);
bf0f6f24
IM
5177}
5178
606dba2e
PZ
5179static struct task_struct *
5180pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5181{
5182 struct cfs_rq *cfs_rq = &rq->cfs;
5183 struct sched_entity *se;
678d5718 5184 struct task_struct *p;
37e117c0 5185 int new_tasks;
678d5718 5186
6e83125c 5187again:
678d5718
PZ
5188#ifdef CONFIG_FAIR_GROUP_SCHED
5189 if (!cfs_rq->nr_running)
38033c37 5190 goto idle;
678d5718 5191
3f1d2a31 5192 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5193 goto simple;
5194
5195 /*
5196 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5197 * likely that a next task is from the same cgroup as the current.
5198 *
5199 * Therefore attempt to avoid putting and setting the entire cgroup
5200 * hierarchy, only change the part that actually changes.
5201 */
5202
5203 do {
5204 struct sched_entity *curr = cfs_rq->curr;
5205
5206 /*
5207 * Since we got here without doing put_prev_entity() we also
5208 * have to consider cfs_rq->curr. If it is still a runnable
5209 * entity, update_curr() will update its vruntime, otherwise
5210 * forget we've ever seen it.
5211 */
54d27365
BS
5212 if (curr) {
5213 if (curr->on_rq)
5214 update_curr(cfs_rq);
5215 else
5216 curr = NULL;
678d5718 5217
54d27365
BS
5218 /*
5219 * This call to check_cfs_rq_runtime() will do the
5220 * throttle and dequeue its entity in the parent(s).
5221 * Therefore the 'simple' nr_running test will indeed
5222 * be correct.
5223 */
5224 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5225 goto simple;
5226 }
678d5718
PZ
5227
5228 se = pick_next_entity(cfs_rq, curr);
5229 cfs_rq = group_cfs_rq(se);
5230 } while (cfs_rq);
5231
5232 p = task_of(se);
5233
5234 /*
5235 * Since we haven't yet done put_prev_entity and if the selected task
5236 * is a different task than we started out with, try and touch the
5237 * least amount of cfs_rqs.
5238 */
5239 if (prev != p) {
5240 struct sched_entity *pse = &prev->se;
5241
5242 while (!(cfs_rq = is_same_group(se, pse))) {
5243 int se_depth = se->depth;
5244 int pse_depth = pse->depth;
5245
5246 if (se_depth <= pse_depth) {
5247 put_prev_entity(cfs_rq_of(pse), pse);
5248 pse = parent_entity(pse);
5249 }
5250 if (se_depth >= pse_depth) {
5251 set_next_entity(cfs_rq_of(se), se);
5252 se = parent_entity(se);
5253 }
5254 }
5255
5256 put_prev_entity(cfs_rq, pse);
5257 set_next_entity(cfs_rq, se);
5258 }
5259
5260 if (hrtick_enabled(rq))
5261 hrtick_start_fair(rq, p);
5262
5263 return p;
5264simple:
5265 cfs_rq = &rq->cfs;
5266#endif
bf0f6f24 5267
36ace27e 5268 if (!cfs_rq->nr_running)
38033c37 5269 goto idle;
bf0f6f24 5270
3f1d2a31 5271 put_prev_task(rq, prev);
606dba2e 5272
bf0f6f24 5273 do {
678d5718 5274 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5275 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5276 cfs_rq = group_cfs_rq(se);
5277 } while (cfs_rq);
5278
8f4d37ec 5279 p = task_of(se);
678d5718 5280
b39e66ea
MG
5281 if (hrtick_enabled(rq))
5282 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5283
5284 return p;
38033c37
PZ
5285
5286idle:
cbce1a68
PZ
5287 /*
5288 * This is OK, because current is on_cpu, which avoids it being picked
5289 * for load-balance and preemption/IRQs are still disabled avoiding
5290 * further scheduler activity on it and we're being very careful to
5291 * re-start the picking loop.
5292 */
5293 lockdep_unpin_lock(&rq->lock);
e4aa358b 5294 new_tasks = idle_balance(rq);
cbce1a68 5295 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5296 /*
5297 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5298 * possible for any higher priority task to appear. In that case we
5299 * must re-start the pick_next_entity() loop.
5300 */
e4aa358b 5301 if (new_tasks < 0)
37e117c0
PZ
5302 return RETRY_TASK;
5303
e4aa358b 5304 if (new_tasks > 0)
38033c37 5305 goto again;
38033c37
PZ
5306
5307 return NULL;
bf0f6f24
IM
5308}
5309
5310/*
5311 * Account for a descheduled task:
5312 */
31ee529c 5313static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5314{
5315 struct sched_entity *se = &prev->se;
5316 struct cfs_rq *cfs_rq;
5317
5318 for_each_sched_entity(se) {
5319 cfs_rq = cfs_rq_of(se);
ab6cde26 5320 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5321 }
5322}
5323
ac53db59
RR
5324/*
5325 * sched_yield() is very simple
5326 *
5327 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5328 */
5329static void yield_task_fair(struct rq *rq)
5330{
5331 struct task_struct *curr = rq->curr;
5332 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5333 struct sched_entity *se = &curr->se;
5334
5335 /*
5336 * Are we the only task in the tree?
5337 */
5338 if (unlikely(rq->nr_running == 1))
5339 return;
5340
5341 clear_buddies(cfs_rq, se);
5342
5343 if (curr->policy != SCHED_BATCH) {
5344 update_rq_clock(rq);
5345 /*
5346 * Update run-time statistics of the 'current'.
5347 */
5348 update_curr(cfs_rq);
916671c0
MG
5349 /*
5350 * Tell update_rq_clock() that we've just updated,
5351 * so we don't do microscopic update in schedule()
5352 * and double the fastpath cost.
5353 */
9edfbfed 5354 rq_clock_skip_update(rq, true);
ac53db59
RR
5355 }
5356
5357 set_skip_buddy(se);
5358}
5359
d95f4122
MG
5360static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5361{
5362 struct sched_entity *se = &p->se;
5363
5238cdd3
PT
5364 /* throttled hierarchies are not runnable */
5365 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5366 return false;
5367
5368 /* Tell the scheduler that we'd really like pse to run next. */
5369 set_next_buddy(se);
5370
d95f4122
MG
5371 yield_task_fair(rq);
5372
5373 return true;
5374}
5375
681f3e68 5376#ifdef CONFIG_SMP
bf0f6f24 5377/**************************************************
e9c84cb8
PZ
5378 * Fair scheduling class load-balancing methods.
5379 *
5380 * BASICS
5381 *
5382 * The purpose of load-balancing is to achieve the same basic fairness the
5383 * per-cpu scheduler provides, namely provide a proportional amount of compute
5384 * time to each task. This is expressed in the following equation:
5385 *
5386 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5387 *
5388 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5389 * W_i,0 is defined as:
5390 *
5391 * W_i,0 = \Sum_j w_i,j (2)
5392 *
5393 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5394 * is derived from the nice value as per prio_to_weight[].
5395 *
5396 * The weight average is an exponential decay average of the instantaneous
5397 * weight:
5398 *
5399 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5400 *
ced549fa 5401 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5402 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5403 * can also include other factors [XXX].
5404 *
5405 * To achieve this balance we define a measure of imbalance which follows
5406 * directly from (1):
5407 *
ced549fa 5408 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5409 *
5410 * We them move tasks around to minimize the imbalance. In the continuous
5411 * function space it is obvious this converges, in the discrete case we get
5412 * a few fun cases generally called infeasible weight scenarios.
5413 *
5414 * [XXX expand on:
5415 * - infeasible weights;
5416 * - local vs global optima in the discrete case. ]
5417 *
5418 *
5419 * SCHED DOMAINS
5420 *
5421 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5422 * for all i,j solution, we create a tree of cpus that follows the hardware
5423 * topology where each level pairs two lower groups (or better). This results
5424 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5425 * tree to only the first of the previous level and we decrease the frequency
5426 * of load-balance at each level inv. proportional to the number of cpus in
5427 * the groups.
5428 *
5429 * This yields:
5430 *
5431 * log_2 n 1 n
5432 * \Sum { --- * --- * 2^i } = O(n) (5)
5433 * i = 0 2^i 2^i
5434 * `- size of each group
5435 * | | `- number of cpus doing load-balance
5436 * | `- freq
5437 * `- sum over all levels
5438 *
5439 * Coupled with a limit on how many tasks we can migrate every balance pass,
5440 * this makes (5) the runtime complexity of the balancer.
5441 *
5442 * An important property here is that each CPU is still (indirectly) connected
5443 * to every other cpu in at most O(log n) steps:
5444 *
5445 * The adjacency matrix of the resulting graph is given by:
5446 *
5447 * log_2 n
5448 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5449 * k = 0
5450 *
5451 * And you'll find that:
5452 *
5453 * A^(log_2 n)_i,j != 0 for all i,j (7)
5454 *
5455 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5456 * The task movement gives a factor of O(m), giving a convergence complexity
5457 * of:
5458 *
5459 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5460 *
5461 *
5462 * WORK CONSERVING
5463 *
5464 * In order to avoid CPUs going idle while there's still work to do, new idle
5465 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5466 * tree itself instead of relying on other CPUs to bring it work.
5467 *
5468 * This adds some complexity to both (5) and (8) but it reduces the total idle
5469 * time.
5470 *
5471 * [XXX more?]
5472 *
5473 *
5474 * CGROUPS
5475 *
5476 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5477 *
5478 * s_k,i
5479 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5480 * S_k
5481 *
5482 * Where
5483 *
5484 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5485 *
5486 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5487 *
5488 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5489 * property.
5490 *
5491 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5492 * rewrite all of this once again.]
5493 */
bf0f6f24 5494
ed387b78
HS
5495static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5496
0ec8aa00
PZ
5497enum fbq_type { regular, remote, all };
5498
ddcdf6e7 5499#define LBF_ALL_PINNED 0x01
367456c7 5500#define LBF_NEED_BREAK 0x02
6263322c
PZ
5501#define LBF_DST_PINNED 0x04
5502#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5503
5504struct lb_env {
5505 struct sched_domain *sd;
5506
ddcdf6e7 5507 struct rq *src_rq;
85c1e7da 5508 int src_cpu;
ddcdf6e7
PZ
5509
5510 int dst_cpu;
5511 struct rq *dst_rq;
5512
88b8dac0
SV
5513 struct cpumask *dst_grpmask;
5514 int new_dst_cpu;
ddcdf6e7 5515 enum cpu_idle_type idle;
bd939f45 5516 long imbalance;
b9403130
MW
5517 /* The set of CPUs under consideration for load-balancing */
5518 struct cpumask *cpus;
5519
ddcdf6e7 5520 unsigned int flags;
367456c7
PZ
5521
5522 unsigned int loop;
5523 unsigned int loop_break;
5524 unsigned int loop_max;
0ec8aa00
PZ
5525
5526 enum fbq_type fbq_type;
163122b7 5527 struct list_head tasks;
ddcdf6e7
PZ
5528};
5529
029632fb
PZ
5530/*
5531 * Is this task likely cache-hot:
5532 */
5d5e2b1b 5533static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5534{
5535 s64 delta;
5536
e5673f28
KT
5537 lockdep_assert_held(&env->src_rq->lock);
5538
029632fb
PZ
5539 if (p->sched_class != &fair_sched_class)
5540 return 0;
5541
5542 if (unlikely(p->policy == SCHED_IDLE))
5543 return 0;
5544
5545 /*
5546 * Buddy candidates are cache hot:
5547 */
5d5e2b1b 5548 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5549 (&p->se == cfs_rq_of(&p->se)->next ||
5550 &p->se == cfs_rq_of(&p->se)->last))
5551 return 1;
5552
5553 if (sysctl_sched_migration_cost == -1)
5554 return 1;
5555 if (sysctl_sched_migration_cost == 0)
5556 return 0;
5557
5d5e2b1b 5558 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5559
5560 return delta < (s64)sysctl_sched_migration_cost;
5561}
5562
3a7053b3 5563#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5564/*
2a1ed24c
SD
5565 * Returns 1, if task migration degrades locality
5566 * Returns 0, if task migration improves locality i.e migration preferred.
5567 * Returns -1, if task migration is not affected by locality.
c1ceac62 5568 */
2a1ed24c 5569static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5570{
b1ad065e 5571 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5572 unsigned long src_faults, dst_faults;
3a7053b3
MG
5573 int src_nid, dst_nid;
5574
2a595721 5575 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5576 return -1;
5577
c3b9bc5b 5578 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5579 return -1;
7a0f3083
MG
5580
5581 src_nid = cpu_to_node(env->src_cpu);
5582 dst_nid = cpu_to_node(env->dst_cpu);
5583
83e1d2cd 5584 if (src_nid == dst_nid)
2a1ed24c 5585 return -1;
7a0f3083 5586
2a1ed24c
SD
5587 /* Migrating away from the preferred node is always bad. */
5588 if (src_nid == p->numa_preferred_nid) {
5589 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5590 return 1;
5591 else
5592 return -1;
5593 }
b1ad065e 5594
c1ceac62
RR
5595 /* Encourage migration to the preferred node. */
5596 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5597 return 0;
b1ad065e 5598
c1ceac62
RR
5599 if (numa_group) {
5600 src_faults = group_faults(p, src_nid);
5601 dst_faults = group_faults(p, dst_nid);
5602 } else {
5603 src_faults = task_faults(p, src_nid);
5604 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5605 }
5606
c1ceac62 5607 return dst_faults < src_faults;
7a0f3083
MG
5608}
5609
3a7053b3 5610#else
2a1ed24c 5611static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5612 struct lb_env *env)
5613{
2a1ed24c 5614 return -1;
7a0f3083 5615}
3a7053b3
MG
5616#endif
5617
1e3c88bd
PZ
5618/*
5619 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5620 */
5621static
8e45cb54 5622int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5623{
2a1ed24c 5624 int tsk_cache_hot;
e5673f28
KT
5625
5626 lockdep_assert_held(&env->src_rq->lock);
5627
1e3c88bd
PZ
5628 /*
5629 * We do not migrate tasks that are:
d3198084 5630 * 1) throttled_lb_pair, or
1e3c88bd 5631 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5632 * 3) running (obviously), or
5633 * 4) are cache-hot on their current CPU.
1e3c88bd 5634 */
d3198084
JK
5635 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5636 return 0;
5637
ddcdf6e7 5638 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5639 int cpu;
88b8dac0 5640
41acab88 5641 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5642
6263322c
PZ
5643 env->flags |= LBF_SOME_PINNED;
5644
88b8dac0
SV
5645 /*
5646 * Remember if this task can be migrated to any other cpu in
5647 * our sched_group. We may want to revisit it if we couldn't
5648 * meet load balance goals by pulling other tasks on src_cpu.
5649 *
5650 * Also avoid computing new_dst_cpu if we have already computed
5651 * one in current iteration.
5652 */
6263322c 5653 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5654 return 0;
5655
e02e60c1
JK
5656 /* Prevent to re-select dst_cpu via env's cpus */
5657 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5658 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5659 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5660 env->new_dst_cpu = cpu;
5661 break;
5662 }
88b8dac0 5663 }
e02e60c1 5664
1e3c88bd
PZ
5665 return 0;
5666 }
88b8dac0
SV
5667
5668 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5669 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5670
ddcdf6e7 5671 if (task_running(env->src_rq, p)) {
41acab88 5672 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5673 return 0;
5674 }
5675
5676 /*
5677 * Aggressive migration if:
3a7053b3
MG
5678 * 1) destination numa is preferred
5679 * 2) task is cache cold, or
5680 * 3) too many balance attempts have failed.
1e3c88bd 5681 */
2a1ed24c
SD
5682 tsk_cache_hot = migrate_degrades_locality(p, env);
5683 if (tsk_cache_hot == -1)
5684 tsk_cache_hot = task_hot(p, env);
3a7053b3 5685
2a1ed24c 5686 if (tsk_cache_hot <= 0 ||
7a96c231 5687 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5688 if (tsk_cache_hot == 1) {
3a7053b3
MG
5689 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5690 schedstat_inc(p, se.statistics.nr_forced_migrations);
5691 }
1e3c88bd
PZ
5692 return 1;
5693 }
5694
4e2dcb73
ZH
5695 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5696 return 0;
1e3c88bd
PZ
5697}
5698
897c395f 5699/*
163122b7
KT
5700 * detach_task() -- detach the task for the migration specified in env
5701 */
5702static void detach_task(struct task_struct *p, struct lb_env *env)
5703{
5704 lockdep_assert_held(&env->src_rq->lock);
5705
5706 deactivate_task(env->src_rq, p, 0);
5707 p->on_rq = TASK_ON_RQ_MIGRATING;
5708 set_task_cpu(p, env->dst_cpu);
5709}
5710
897c395f 5711/*
e5673f28 5712 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5713 * part of active balancing operations within "domain".
897c395f 5714 *
e5673f28 5715 * Returns a task if successful and NULL otherwise.
897c395f 5716 */
e5673f28 5717static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5718{
5719 struct task_struct *p, *n;
897c395f 5720
e5673f28
KT
5721 lockdep_assert_held(&env->src_rq->lock);
5722
367456c7 5723 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5724 if (!can_migrate_task(p, env))
5725 continue;
897c395f 5726
163122b7 5727 detach_task(p, env);
e5673f28 5728
367456c7 5729 /*
e5673f28 5730 * Right now, this is only the second place where
163122b7 5731 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5732 * so we can safely collect stats here rather than
163122b7 5733 * inside detach_tasks().
367456c7
PZ
5734 */
5735 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5736 return p;
897c395f 5737 }
e5673f28 5738 return NULL;
897c395f
PZ
5739}
5740
eb95308e
PZ
5741static const unsigned int sched_nr_migrate_break = 32;
5742
5d6523eb 5743/*
163122b7
KT
5744 * detach_tasks() -- tries to detach up to imbalance weighted load from
5745 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5746 *
163122b7 5747 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5748 */
163122b7 5749static int detach_tasks(struct lb_env *env)
1e3c88bd 5750{
5d6523eb
PZ
5751 struct list_head *tasks = &env->src_rq->cfs_tasks;
5752 struct task_struct *p;
367456c7 5753 unsigned long load;
163122b7
KT
5754 int detached = 0;
5755
5756 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5757
bd939f45 5758 if (env->imbalance <= 0)
5d6523eb 5759 return 0;
1e3c88bd 5760
5d6523eb 5761 while (!list_empty(tasks)) {
985d3a4c
YD
5762 /*
5763 * We don't want to steal all, otherwise we may be treated likewise,
5764 * which could at worst lead to a livelock crash.
5765 */
5766 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5767 break;
5768
5d6523eb 5769 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5770
367456c7
PZ
5771 env->loop++;
5772 /* We've more or less seen every task there is, call it quits */
5d6523eb 5773 if (env->loop > env->loop_max)
367456c7 5774 break;
5d6523eb
PZ
5775
5776 /* take a breather every nr_migrate tasks */
367456c7 5777 if (env->loop > env->loop_break) {
eb95308e 5778 env->loop_break += sched_nr_migrate_break;
8e45cb54 5779 env->flags |= LBF_NEED_BREAK;
ee00e66f 5780 break;
a195f004 5781 }
1e3c88bd 5782
d3198084 5783 if (!can_migrate_task(p, env))
367456c7
PZ
5784 goto next;
5785
5786 load = task_h_load(p);
5d6523eb 5787
eb95308e 5788 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5789 goto next;
5790
bd939f45 5791 if ((load / 2) > env->imbalance)
367456c7 5792 goto next;
1e3c88bd 5793
163122b7
KT
5794 detach_task(p, env);
5795 list_add(&p->se.group_node, &env->tasks);
5796
5797 detached++;
bd939f45 5798 env->imbalance -= load;
1e3c88bd
PZ
5799
5800#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5801 /*
5802 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5803 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5804 * the critical section.
5805 */
5d6523eb 5806 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5807 break;
1e3c88bd
PZ
5808#endif
5809
ee00e66f
PZ
5810 /*
5811 * We only want to steal up to the prescribed amount of
5812 * weighted load.
5813 */
bd939f45 5814 if (env->imbalance <= 0)
ee00e66f 5815 break;
367456c7
PZ
5816
5817 continue;
5818next:
5d6523eb 5819 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5820 }
5d6523eb 5821
1e3c88bd 5822 /*
163122b7
KT
5823 * Right now, this is one of only two places we collect this stat
5824 * so we can safely collect detach_one_task() stats here rather
5825 * than inside detach_one_task().
1e3c88bd 5826 */
163122b7 5827 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5828
163122b7
KT
5829 return detached;
5830}
5831
5832/*
5833 * attach_task() -- attach the task detached by detach_task() to its new rq.
5834 */
5835static void attach_task(struct rq *rq, struct task_struct *p)
5836{
5837 lockdep_assert_held(&rq->lock);
5838
5839 BUG_ON(task_rq(p) != rq);
5840 p->on_rq = TASK_ON_RQ_QUEUED;
5841 activate_task(rq, p, 0);
5842 check_preempt_curr(rq, p, 0);
5843}
5844
5845/*
5846 * attach_one_task() -- attaches the task returned from detach_one_task() to
5847 * its new rq.
5848 */
5849static void attach_one_task(struct rq *rq, struct task_struct *p)
5850{
5851 raw_spin_lock(&rq->lock);
5852 attach_task(rq, p);
5853 raw_spin_unlock(&rq->lock);
5854}
5855
5856/*
5857 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5858 * new rq.
5859 */
5860static void attach_tasks(struct lb_env *env)
5861{
5862 struct list_head *tasks = &env->tasks;
5863 struct task_struct *p;
5864
5865 raw_spin_lock(&env->dst_rq->lock);
5866
5867 while (!list_empty(tasks)) {
5868 p = list_first_entry(tasks, struct task_struct, se.group_node);
5869 list_del_init(&p->se.group_node);
1e3c88bd 5870
163122b7
KT
5871 attach_task(env->dst_rq, p);
5872 }
5873
5874 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5875}
5876
230059de 5877#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 5878static void update_blocked_averages(int cpu)
9e3081ca 5879{
9e3081ca 5880 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5881 struct cfs_rq *cfs_rq;
5882 unsigned long flags;
9e3081ca 5883
48a16753
PT
5884 raw_spin_lock_irqsave(&rq->lock, flags);
5885 update_rq_clock(rq);
9d89c257 5886
9763b67f
PZ
5887 /*
5888 * Iterates the task_group tree in a bottom up fashion, see
5889 * list_add_leaf_cfs_rq() for details.
5890 */
64660c86 5891 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
5892 /* throttled entities do not contribute to load */
5893 if (throttled_hierarchy(cfs_rq))
5894 continue;
48a16753 5895
9d89c257
YD
5896 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
5897 update_tg_load_avg(cfs_rq, 0);
5898 }
48a16753 5899 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5900}
5901
9763b67f 5902/*
68520796 5903 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5904 * This needs to be done in a top-down fashion because the load of a child
5905 * group is a fraction of its parents load.
5906 */
68520796 5907static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5908{
68520796
VD
5909 struct rq *rq = rq_of(cfs_rq);
5910 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5911 unsigned long now = jiffies;
68520796 5912 unsigned long load;
a35b6466 5913
68520796 5914 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5915 return;
5916
68520796
VD
5917 cfs_rq->h_load_next = NULL;
5918 for_each_sched_entity(se) {
5919 cfs_rq = cfs_rq_of(se);
5920 cfs_rq->h_load_next = se;
5921 if (cfs_rq->last_h_load_update == now)
5922 break;
5923 }
a35b6466 5924
68520796 5925 if (!se) {
7ea241af 5926 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
5927 cfs_rq->last_h_load_update = now;
5928 }
5929
5930 while ((se = cfs_rq->h_load_next) != NULL) {
5931 load = cfs_rq->h_load;
7ea241af
YD
5932 load = div64_ul(load * se->avg.load_avg,
5933 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
5934 cfs_rq = group_cfs_rq(se);
5935 cfs_rq->h_load = load;
5936 cfs_rq->last_h_load_update = now;
5937 }
9763b67f
PZ
5938}
5939
367456c7 5940static unsigned long task_h_load(struct task_struct *p)
230059de 5941{
367456c7 5942 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5943
68520796 5944 update_cfs_rq_h_load(cfs_rq);
9d89c257 5945 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 5946 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
5947}
5948#else
48a16753 5949static inline void update_blocked_averages(int cpu)
9e3081ca 5950{
6c1d47c0
VG
5951 struct rq *rq = cpu_rq(cpu);
5952 struct cfs_rq *cfs_rq = &rq->cfs;
5953 unsigned long flags;
5954
5955 raw_spin_lock_irqsave(&rq->lock, flags);
5956 update_rq_clock(rq);
5957 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
5958 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5959}
5960
367456c7 5961static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5962{
9d89c257 5963 return p->se.avg.load_avg;
1e3c88bd 5964}
230059de 5965#endif
1e3c88bd 5966
1e3c88bd 5967/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5968
5969enum group_type {
5970 group_other = 0,
5971 group_imbalanced,
5972 group_overloaded,
5973};
5974
1e3c88bd
PZ
5975/*
5976 * sg_lb_stats - stats of a sched_group required for load_balancing
5977 */
5978struct sg_lb_stats {
5979 unsigned long avg_load; /*Avg load across the CPUs of the group */
5980 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5981 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5982 unsigned long load_per_task;
63b2ca30 5983 unsigned long group_capacity;
9e91d61d 5984 unsigned long group_util; /* Total utilization of the group */
147c5fc2 5985 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
5986 unsigned int idle_cpus;
5987 unsigned int group_weight;
caeb178c 5988 enum group_type group_type;
ea67821b 5989 int group_no_capacity;
0ec8aa00
PZ
5990#ifdef CONFIG_NUMA_BALANCING
5991 unsigned int nr_numa_running;
5992 unsigned int nr_preferred_running;
5993#endif
1e3c88bd
PZ
5994};
5995
56cf515b
JK
5996/*
5997 * sd_lb_stats - Structure to store the statistics of a sched_domain
5998 * during load balancing.
5999 */
6000struct sd_lb_stats {
6001 struct sched_group *busiest; /* Busiest group in this sd */
6002 struct sched_group *local; /* Local group in this sd */
6003 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6004 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6005 unsigned long avg_load; /* Average load across all groups in sd */
6006
56cf515b 6007 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6008 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6009};
6010
147c5fc2
PZ
6011static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6012{
6013 /*
6014 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6015 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6016 * We must however clear busiest_stat::avg_load because
6017 * update_sd_pick_busiest() reads this before assignment.
6018 */
6019 *sds = (struct sd_lb_stats){
6020 .busiest = NULL,
6021 .local = NULL,
6022 .total_load = 0UL,
63b2ca30 6023 .total_capacity = 0UL,
147c5fc2
PZ
6024 .busiest_stat = {
6025 .avg_load = 0UL,
caeb178c
RR
6026 .sum_nr_running = 0,
6027 .group_type = group_other,
147c5fc2
PZ
6028 },
6029 };
6030}
6031
1e3c88bd
PZ
6032/**
6033 * get_sd_load_idx - Obtain the load index for a given sched domain.
6034 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6035 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6036 *
6037 * Return: The load index.
1e3c88bd
PZ
6038 */
6039static inline int get_sd_load_idx(struct sched_domain *sd,
6040 enum cpu_idle_type idle)
6041{
6042 int load_idx;
6043
6044 switch (idle) {
6045 case CPU_NOT_IDLE:
6046 load_idx = sd->busy_idx;
6047 break;
6048
6049 case CPU_NEWLY_IDLE:
6050 load_idx = sd->newidle_idx;
6051 break;
6052 default:
6053 load_idx = sd->idle_idx;
6054 break;
6055 }
6056
6057 return load_idx;
6058}
6059
ced549fa 6060static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6061{
6062 struct rq *rq = cpu_rq(cpu);
b5b4860d 6063 u64 total, used, age_stamp, avg;
cadefd3d 6064 s64 delta;
1e3c88bd 6065
b654f7de
PZ
6066 /*
6067 * Since we're reading these variables without serialization make sure
6068 * we read them once before doing sanity checks on them.
6069 */
316c1608
JL
6070 age_stamp = READ_ONCE(rq->age_stamp);
6071 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6072 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6073
cadefd3d
PZ
6074 if (unlikely(delta < 0))
6075 delta = 0;
6076
6077 total = sched_avg_period() + delta;
aa483808 6078
b5b4860d 6079 used = div_u64(avg, total);
1e3c88bd 6080
b5b4860d
VG
6081 if (likely(used < SCHED_CAPACITY_SCALE))
6082 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6083
b5b4860d 6084 return 1;
1e3c88bd
PZ
6085}
6086
ced549fa 6087static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6088{
8cd5601c 6089 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6090 struct sched_group *sdg = sd->groups;
6091
ca6d75e6 6092 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6093
ced549fa 6094 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6095 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6096
ced549fa
NP
6097 if (!capacity)
6098 capacity = 1;
1e3c88bd 6099
ced549fa
NP
6100 cpu_rq(cpu)->cpu_capacity = capacity;
6101 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6102}
6103
63b2ca30 6104void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6105{
6106 struct sched_domain *child = sd->child;
6107 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6108 unsigned long capacity;
4ec4412e
VG
6109 unsigned long interval;
6110
6111 interval = msecs_to_jiffies(sd->balance_interval);
6112 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6113 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6114
6115 if (!child) {
ced549fa 6116 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6117 return;
6118 }
6119
dc7ff76e 6120 capacity = 0;
1e3c88bd 6121
74a5ce20
PZ
6122 if (child->flags & SD_OVERLAP) {
6123 /*
6124 * SD_OVERLAP domains cannot assume that child groups
6125 * span the current group.
6126 */
6127
863bffc8 6128 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6129 struct sched_group_capacity *sgc;
9abf24d4 6130 struct rq *rq = cpu_rq(cpu);
863bffc8 6131
9abf24d4 6132 /*
63b2ca30 6133 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6134 * gets here before we've attached the domains to the
6135 * runqueues.
6136 *
ced549fa
NP
6137 * Use capacity_of(), which is set irrespective of domains
6138 * in update_cpu_capacity().
9abf24d4 6139 *
dc7ff76e 6140 * This avoids capacity from being 0 and
9abf24d4 6141 * causing divide-by-zero issues on boot.
9abf24d4
SD
6142 */
6143 if (unlikely(!rq->sd)) {
ced549fa 6144 capacity += capacity_of(cpu);
9abf24d4
SD
6145 continue;
6146 }
863bffc8 6147
63b2ca30 6148 sgc = rq->sd->groups->sgc;
63b2ca30 6149 capacity += sgc->capacity;
863bffc8 6150 }
74a5ce20
PZ
6151 } else {
6152 /*
6153 * !SD_OVERLAP domains can assume that child groups
6154 * span the current group.
6155 */
6156
6157 group = child->groups;
6158 do {
63b2ca30 6159 capacity += group->sgc->capacity;
74a5ce20
PZ
6160 group = group->next;
6161 } while (group != child->groups);
6162 }
1e3c88bd 6163
63b2ca30 6164 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6165}
6166
9d5efe05 6167/*
ea67821b
VG
6168 * Check whether the capacity of the rq has been noticeably reduced by side
6169 * activity. The imbalance_pct is used for the threshold.
6170 * Return true is the capacity is reduced
9d5efe05
SV
6171 */
6172static inline int
ea67821b 6173check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6174{
ea67821b
VG
6175 return ((rq->cpu_capacity * sd->imbalance_pct) <
6176 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6177}
6178
30ce5dab
PZ
6179/*
6180 * Group imbalance indicates (and tries to solve) the problem where balancing
6181 * groups is inadequate due to tsk_cpus_allowed() constraints.
6182 *
6183 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6184 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6185 * Something like:
6186 *
6187 * { 0 1 2 3 } { 4 5 6 7 }
6188 * * * * *
6189 *
6190 * If we were to balance group-wise we'd place two tasks in the first group and
6191 * two tasks in the second group. Clearly this is undesired as it will overload
6192 * cpu 3 and leave one of the cpus in the second group unused.
6193 *
6194 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6195 * by noticing the lower domain failed to reach balance and had difficulty
6196 * moving tasks due to affinity constraints.
30ce5dab
PZ
6197 *
6198 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6199 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6200 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6201 * to create an effective group imbalance.
6202 *
6203 * This is a somewhat tricky proposition since the next run might not find the
6204 * group imbalance and decide the groups need to be balanced again. A most
6205 * subtle and fragile situation.
6206 */
6207
6263322c 6208static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6209{
63b2ca30 6210 return group->sgc->imbalance;
30ce5dab
PZ
6211}
6212
b37d9316 6213/*
ea67821b
VG
6214 * group_has_capacity returns true if the group has spare capacity that could
6215 * be used by some tasks.
6216 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6217 * smaller than the number of CPUs or if the utilization is lower than the
6218 * available capacity for CFS tasks.
ea67821b
VG
6219 * For the latter, we use a threshold to stabilize the state, to take into
6220 * account the variance of the tasks' load and to return true if the available
6221 * capacity in meaningful for the load balancer.
6222 * As an example, an available capacity of 1% can appear but it doesn't make
6223 * any benefit for the load balance.
b37d9316 6224 */
ea67821b
VG
6225static inline bool
6226group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6227{
ea67821b
VG
6228 if (sgs->sum_nr_running < sgs->group_weight)
6229 return true;
c61037e9 6230
ea67821b 6231 if ((sgs->group_capacity * 100) >
9e91d61d 6232 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6233 return true;
b37d9316 6234
ea67821b
VG
6235 return false;
6236}
6237
6238/*
6239 * group_is_overloaded returns true if the group has more tasks than it can
6240 * handle.
6241 * group_is_overloaded is not equals to !group_has_capacity because a group
6242 * with the exact right number of tasks, has no more spare capacity but is not
6243 * overloaded so both group_has_capacity and group_is_overloaded return
6244 * false.
6245 */
6246static inline bool
6247group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6248{
6249 if (sgs->sum_nr_running <= sgs->group_weight)
6250 return false;
b37d9316 6251
ea67821b 6252 if ((sgs->group_capacity * 100) <
9e91d61d 6253 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6254 return true;
b37d9316 6255
ea67821b 6256 return false;
b37d9316
PZ
6257}
6258
79a89f92
LY
6259static inline enum
6260group_type group_classify(struct sched_group *group,
6261 struct sg_lb_stats *sgs)
caeb178c 6262{
ea67821b 6263 if (sgs->group_no_capacity)
caeb178c
RR
6264 return group_overloaded;
6265
6266 if (sg_imbalanced(group))
6267 return group_imbalanced;
6268
6269 return group_other;
6270}
6271
1e3c88bd
PZ
6272/**
6273 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6274 * @env: The load balancing environment.
1e3c88bd 6275 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6276 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6277 * @local_group: Does group contain this_cpu.
1e3c88bd 6278 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6279 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6280 */
bd939f45
PZ
6281static inline void update_sg_lb_stats(struct lb_env *env,
6282 struct sched_group *group, int load_idx,
4486edd1
TC
6283 int local_group, struct sg_lb_stats *sgs,
6284 bool *overload)
1e3c88bd 6285{
30ce5dab 6286 unsigned long load;
bd939f45 6287 int i;
1e3c88bd 6288
b72ff13c
PZ
6289 memset(sgs, 0, sizeof(*sgs));
6290
b9403130 6291 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6292 struct rq *rq = cpu_rq(i);
6293
1e3c88bd 6294 /* Bias balancing toward cpus of our domain */
6263322c 6295 if (local_group)
04f733b4 6296 load = target_load(i, load_idx);
6263322c 6297 else
1e3c88bd 6298 load = source_load(i, load_idx);
1e3c88bd
PZ
6299
6300 sgs->group_load += load;
9e91d61d 6301 sgs->group_util += cpu_util(i);
65fdac08 6302 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6303
6304 if (rq->nr_running > 1)
6305 *overload = true;
6306
0ec8aa00
PZ
6307#ifdef CONFIG_NUMA_BALANCING
6308 sgs->nr_numa_running += rq->nr_numa_running;
6309 sgs->nr_preferred_running += rq->nr_preferred_running;
6310#endif
1e3c88bd 6311 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6312 if (idle_cpu(i))
6313 sgs->idle_cpus++;
1e3c88bd
PZ
6314 }
6315
63b2ca30
NP
6316 /* Adjust by relative CPU capacity of the group */
6317 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6318 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6319
dd5feea1 6320 if (sgs->sum_nr_running)
38d0f770 6321 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6322
aae6d3dd 6323 sgs->group_weight = group->group_weight;
b37d9316 6324
ea67821b 6325 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6326 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6327}
6328
532cb4c4
MN
6329/**
6330 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6331 * @env: The load balancing environment.
532cb4c4
MN
6332 * @sds: sched_domain statistics
6333 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6334 * @sgs: sched_group statistics
532cb4c4
MN
6335 *
6336 * Determine if @sg is a busier group than the previously selected
6337 * busiest group.
e69f6186
YB
6338 *
6339 * Return: %true if @sg is a busier group than the previously selected
6340 * busiest group. %false otherwise.
532cb4c4 6341 */
bd939f45 6342static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6343 struct sd_lb_stats *sds,
6344 struct sched_group *sg,
bd939f45 6345 struct sg_lb_stats *sgs)
532cb4c4 6346{
caeb178c 6347 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6348
caeb178c 6349 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6350 return true;
6351
caeb178c
RR
6352 if (sgs->group_type < busiest->group_type)
6353 return false;
6354
6355 if (sgs->avg_load <= busiest->avg_load)
6356 return false;
6357
6358 /* This is the busiest node in its class. */
6359 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6360 return true;
6361
6362 /*
6363 * ASYM_PACKING needs to move all the work to the lowest
6364 * numbered CPUs in the group, therefore mark all groups
6365 * higher than ourself as busy.
6366 */
caeb178c 6367 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6368 if (!sds->busiest)
6369 return true;
6370
6371 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6372 return true;
6373 }
6374
6375 return false;
6376}
6377
0ec8aa00
PZ
6378#ifdef CONFIG_NUMA_BALANCING
6379static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6380{
6381 if (sgs->sum_nr_running > sgs->nr_numa_running)
6382 return regular;
6383 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6384 return remote;
6385 return all;
6386}
6387
6388static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6389{
6390 if (rq->nr_running > rq->nr_numa_running)
6391 return regular;
6392 if (rq->nr_running > rq->nr_preferred_running)
6393 return remote;
6394 return all;
6395}
6396#else
6397static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6398{
6399 return all;
6400}
6401
6402static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6403{
6404 return regular;
6405}
6406#endif /* CONFIG_NUMA_BALANCING */
6407
1e3c88bd 6408/**
461819ac 6409 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6410 * @env: The load balancing environment.
1e3c88bd
PZ
6411 * @sds: variable to hold the statistics for this sched_domain.
6412 */
0ec8aa00 6413static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6414{
bd939f45
PZ
6415 struct sched_domain *child = env->sd->child;
6416 struct sched_group *sg = env->sd->groups;
56cf515b 6417 struct sg_lb_stats tmp_sgs;
1e3c88bd 6418 int load_idx, prefer_sibling = 0;
4486edd1 6419 bool overload = false;
1e3c88bd
PZ
6420
6421 if (child && child->flags & SD_PREFER_SIBLING)
6422 prefer_sibling = 1;
6423
bd939f45 6424 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6425
6426 do {
56cf515b 6427 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6428 int local_group;
6429
bd939f45 6430 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6431 if (local_group) {
6432 sds->local = sg;
6433 sgs = &sds->local_stat;
b72ff13c
PZ
6434
6435 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6436 time_after_eq(jiffies, sg->sgc->next_update))
6437 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6438 }
1e3c88bd 6439
4486edd1
TC
6440 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6441 &overload);
1e3c88bd 6442
b72ff13c
PZ
6443 if (local_group)
6444 goto next_group;
6445
1e3c88bd
PZ
6446 /*
6447 * In case the child domain prefers tasks go to siblings
ea67821b 6448 * first, lower the sg capacity so that we'll try
75dd321d
NR
6449 * and move all the excess tasks away. We lower the capacity
6450 * of a group only if the local group has the capacity to fit
ea67821b
VG
6451 * these excess tasks. The extra check prevents the case where
6452 * you always pull from the heaviest group when it is already
6453 * under-utilized (possible with a large weight task outweighs
6454 * the tasks on the system).
1e3c88bd 6455 */
b72ff13c 6456 if (prefer_sibling && sds->local &&
ea67821b
VG
6457 group_has_capacity(env, &sds->local_stat) &&
6458 (sgs->sum_nr_running > 1)) {
6459 sgs->group_no_capacity = 1;
79a89f92 6460 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6461 }
1e3c88bd 6462
b72ff13c 6463 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6464 sds->busiest = sg;
56cf515b 6465 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6466 }
6467
b72ff13c
PZ
6468next_group:
6469 /* Now, start updating sd_lb_stats */
6470 sds->total_load += sgs->group_load;
63b2ca30 6471 sds->total_capacity += sgs->group_capacity;
b72ff13c 6472
532cb4c4 6473 sg = sg->next;
bd939f45 6474 } while (sg != env->sd->groups);
0ec8aa00
PZ
6475
6476 if (env->sd->flags & SD_NUMA)
6477 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6478
6479 if (!env->sd->parent) {
6480 /* update overload indicator if we are at root domain */
6481 if (env->dst_rq->rd->overload != overload)
6482 env->dst_rq->rd->overload = overload;
6483 }
6484
532cb4c4
MN
6485}
6486
532cb4c4
MN
6487/**
6488 * check_asym_packing - Check to see if the group is packed into the
6489 * sched doman.
6490 *
6491 * This is primarily intended to used at the sibling level. Some
6492 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6493 * case of POWER7, it can move to lower SMT modes only when higher
6494 * threads are idle. When in lower SMT modes, the threads will
6495 * perform better since they share less core resources. Hence when we
6496 * have idle threads, we want them to be the higher ones.
6497 *
6498 * This packing function is run on idle threads. It checks to see if
6499 * the busiest CPU in this domain (core in the P7 case) has a higher
6500 * CPU number than the packing function is being run on. Here we are
6501 * assuming lower CPU number will be equivalent to lower a SMT thread
6502 * number.
6503 *
e69f6186 6504 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6505 * this CPU. The amount of the imbalance is returned in *imbalance.
6506 *
cd96891d 6507 * @env: The load balancing environment.
532cb4c4 6508 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6509 */
bd939f45 6510static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6511{
6512 int busiest_cpu;
6513
bd939f45 6514 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6515 return 0;
6516
6517 if (!sds->busiest)
6518 return 0;
6519
6520 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6521 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6522 return 0;
6523
bd939f45 6524 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6525 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6526 SCHED_CAPACITY_SCALE);
bd939f45 6527
532cb4c4 6528 return 1;
1e3c88bd
PZ
6529}
6530
6531/**
6532 * fix_small_imbalance - Calculate the minor imbalance that exists
6533 * amongst the groups of a sched_domain, during
6534 * load balancing.
cd96891d 6535 * @env: The load balancing environment.
1e3c88bd 6536 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6537 */
bd939f45
PZ
6538static inline
6539void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6540{
63b2ca30 6541 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6542 unsigned int imbn = 2;
dd5feea1 6543 unsigned long scaled_busy_load_per_task;
56cf515b 6544 struct sg_lb_stats *local, *busiest;
1e3c88bd 6545
56cf515b
JK
6546 local = &sds->local_stat;
6547 busiest = &sds->busiest_stat;
1e3c88bd 6548
56cf515b
JK
6549 if (!local->sum_nr_running)
6550 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6551 else if (busiest->load_per_task > local->load_per_task)
6552 imbn = 1;
dd5feea1 6553
56cf515b 6554 scaled_busy_load_per_task =
ca8ce3d0 6555 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6556 busiest->group_capacity;
56cf515b 6557
3029ede3
VD
6558 if (busiest->avg_load + scaled_busy_load_per_task >=
6559 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6560 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6561 return;
6562 }
6563
6564 /*
6565 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6566 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6567 * moving them.
6568 */
6569
63b2ca30 6570 capa_now += busiest->group_capacity *
56cf515b 6571 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6572 capa_now += local->group_capacity *
56cf515b 6573 min(local->load_per_task, local->avg_load);
ca8ce3d0 6574 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6575
6576 /* Amount of load we'd subtract */
a2cd4260 6577 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6578 capa_move += busiest->group_capacity *
56cf515b 6579 min(busiest->load_per_task,
a2cd4260 6580 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6581 }
1e3c88bd
PZ
6582
6583 /* Amount of load we'd add */
63b2ca30 6584 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6585 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6586 tmp = (busiest->avg_load * busiest->group_capacity) /
6587 local->group_capacity;
56cf515b 6588 } else {
ca8ce3d0 6589 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6590 local->group_capacity;
56cf515b 6591 }
63b2ca30 6592 capa_move += local->group_capacity *
3ae11c90 6593 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6594 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6595
6596 /* Move if we gain throughput */
63b2ca30 6597 if (capa_move > capa_now)
56cf515b 6598 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6599}
6600
6601/**
6602 * calculate_imbalance - Calculate the amount of imbalance present within the
6603 * groups of a given sched_domain during load balance.
bd939f45 6604 * @env: load balance environment
1e3c88bd 6605 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6606 */
bd939f45 6607static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6608{
dd5feea1 6609 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6610 struct sg_lb_stats *local, *busiest;
6611
6612 local = &sds->local_stat;
56cf515b 6613 busiest = &sds->busiest_stat;
dd5feea1 6614
caeb178c 6615 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6616 /*
6617 * In the group_imb case we cannot rely on group-wide averages
6618 * to ensure cpu-load equilibrium, look at wider averages. XXX
6619 */
56cf515b
JK
6620 busiest->load_per_task =
6621 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6622 }
6623
1e3c88bd
PZ
6624 /*
6625 * In the presence of smp nice balancing, certain scenarios can have
6626 * max load less than avg load(as we skip the groups at or below
ced549fa 6627 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6628 */
b1885550
VD
6629 if (busiest->avg_load <= sds->avg_load ||
6630 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6631 env->imbalance = 0;
6632 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6633 }
6634
9a5d9ba6
PZ
6635 /*
6636 * If there aren't any idle cpus, avoid creating some.
6637 */
6638 if (busiest->group_type == group_overloaded &&
6639 local->group_type == group_overloaded) {
ea67821b
VG
6640 load_above_capacity = busiest->sum_nr_running *
6641 SCHED_LOAD_SCALE;
6642 if (load_above_capacity > busiest->group_capacity)
6643 load_above_capacity -= busiest->group_capacity;
6644 else
6645 load_above_capacity = ~0UL;
dd5feea1
SS
6646 }
6647
6648 /*
6649 * We're trying to get all the cpus to the average_load, so we don't
6650 * want to push ourselves above the average load, nor do we wish to
6651 * reduce the max loaded cpu below the average load. At the same time,
6652 * we also don't want to reduce the group load below the group capacity
6653 * (so that we can implement power-savings policies etc). Thus we look
6654 * for the minimum possible imbalance.
dd5feea1 6655 */
30ce5dab 6656 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6657
6658 /* How much load to actually move to equalise the imbalance */
56cf515b 6659 env->imbalance = min(
63b2ca30
NP
6660 max_pull * busiest->group_capacity,
6661 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6662 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6663
6664 /*
6665 * if *imbalance is less than the average load per runnable task
25985edc 6666 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6667 * a think about bumping its value to force at least one task to be
6668 * moved
6669 */
56cf515b 6670 if (env->imbalance < busiest->load_per_task)
bd939f45 6671 return fix_small_imbalance(env, sds);
1e3c88bd 6672}
fab47622 6673
1e3c88bd
PZ
6674/******* find_busiest_group() helpers end here *********************/
6675
6676/**
6677 * find_busiest_group - Returns the busiest group within the sched_domain
6678 * if there is an imbalance. If there isn't an imbalance, and
6679 * the user has opted for power-savings, it returns a group whose
6680 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6681 * such a group exists.
6682 *
6683 * Also calculates the amount of weighted load which should be moved
6684 * to restore balance.
6685 *
cd96891d 6686 * @env: The load balancing environment.
1e3c88bd 6687 *
e69f6186 6688 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6689 * - If no imbalance and user has opted for power-savings balance,
6690 * return the least loaded group whose CPUs can be
6691 * put to idle by rebalancing its tasks onto our group.
6692 */
56cf515b 6693static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6694{
56cf515b 6695 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6696 struct sd_lb_stats sds;
6697
147c5fc2 6698 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6699
6700 /*
6701 * Compute the various statistics relavent for load balancing at
6702 * this level.
6703 */
23f0d209 6704 update_sd_lb_stats(env, &sds);
56cf515b
JK
6705 local = &sds.local_stat;
6706 busiest = &sds.busiest_stat;
1e3c88bd 6707
ea67821b 6708 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6709 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6710 check_asym_packing(env, &sds))
532cb4c4
MN
6711 return sds.busiest;
6712
cc57aa8f 6713 /* There is no busy sibling group to pull tasks from */
56cf515b 6714 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6715 goto out_balanced;
6716
ca8ce3d0
NP
6717 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6718 / sds.total_capacity;
b0432d8f 6719
866ab43e
PZ
6720 /*
6721 * If the busiest group is imbalanced the below checks don't
30ce5dab 6722 * work because they assume all things are equal, which typically
866ab43e
PZ
6723 * isn't true due to cpus_allowed constraints and the like.
6724 */
caeb178c 6725 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6726 goto force_balance;
6727
cc57aa8f 6728 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6729 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6730 busiest->group_no_capacity)
fab47622
NR
6731 goto force_balance;
6732
cc57aa8f 6733 /*
9c58c79a 6734 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6735 * don't try and pull any tasks.
6736 */
56cf515b 6737 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6738 goto out_balanced;
6739
cc57aa8f
PZ
6740 /*
6741 * Don't pull any tasks if this group is already above the domain
6742 * average load.
6743 */
56cf515b 6744 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6745 goto out_balanced;
6746
bd939f45 6747 if (env->idle == CPU_IDLE) {
aae6d3dd 6748 /*
43f4d666
VG
6749 * This cpu is idle. If the busiest group is not overloaded
6750 * and there is no imbalance between this and busiest group
6751 * wrt idle cpus, it is balanced. The imbalance becomes
6752 * significant if the diff is greater than 1 otherwise we
6753 * might end up to just move the imbalance on another group
aae6d3dd 6754 */
43f4d666
VG
6755 if ((busiest->group_type != group_overloaded) &&
6756 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6757 goto out_balanced;
c186fafe
PZ
6758 } else {
6759 /*
6760 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6761 * imbalance_pct to be conservative.
6762 */
56cf515b
JK
6763 if (100 * busiest->avg_load <=
6764 env->sd->imbalance_pct * local->avg_load)
c186fafe 6765 goto out_balanced;
aae6d3dd 6766 }
1e3c88bd 6767
fab47622 6768force_balance:
1e3c88bd 6769 /* Looks like there is an imbalance. Compute it */
bd939f45 6770 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6771 return sds.busiest;
6772
6773out_balanced:
bd939f45 6774 env->imbalance = 0;
1e3c88bd
PZ
6775 return NULL;
6776}
6777
6778/*
6779 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6780 */
bd939f45 6781static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6782 struct sched_group *group)
1e3c88bd
PZ
6783{
6784 struct rq *busiest = NULL, *rq;
ced549fa 6785 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6786 int i;
6787
6906a408 6788 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6789 unsigned long capacity, wl;
0ec8aa00
PZ
6790 enum fbq_type rt;
6791
6792 rq = cpu_rq(i);
6793 rt = fbq_classify_rq(rq);
1e3c88bd 6794
0ec8aa00
PZ
6795 /*
6796 * We classify groups/runqueues into three groups:
6797 * - regular: there are !numa tasks
6798 * - remote: there are numa tasks that run on the 'wrong' node
6799 * - all: there is no distinction
6800 *
6801 * In order to avoid migrating ideally placed numa tasks,
6802 * ignore those when there's better options.
6803 *
6804 * If we ignore the actual busiest queue to migrate another
6805 * task, the next balance pass can still reduce the busiest
6806 * queue by moving tasks around inside the node.
6807 *
6808 * If we cannot move enough load due to this classification
6809 * the next pass will adjust the group classification and
6810 * allow migration of more tasks.
6811 *
6812 * Both cases only affect the total convergence complexity.
6813 */
6814 if (rt > env->fbq_type)
6815 continue;
6816
ced549fa 6817 capacity = capacity_of(i);
9d5efe05 6818
6e40f5bb 6819 wl = weighted_cpuload(i);
1e3c88bd 6820
6e40f5bb
TG
6821 /*
6822 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6823 * which is not scaled with the cpu capacity.
6e40f5bb 6824 */
ea67821b
VG
6825
6826 if (rq->nr_running == 1 && wl > env->imbalance &&
6827 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
6828 continue;
6829
6e40f5bb
TG
6830 /*
6831 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6832 * the weighted_cpuload() scaled with the cpu capacity, so
6833 * that the load can be moved away from the cpu that is
6834 * potentially running at a lower capacity.
95a79b80 6835 *
ced549fa 6836 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6837 * multiplication to rid ourselves of the division works out
ced549fa
NP
6838 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6839 * our previous maximum.
6e40f5bb 6840 */
ced549fa 6841 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6842 busiest_load = wl;
ced549fa 6843 busiest_capacity = capacity;
1e3c88bd
PZ
6844 busiest = rq;
6845 }
6846 }
6847
6848 return busiest;
6849}
6850
6851/*
6852 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6853 * so long as it is large enough.
6854 */
6855#define MAX_PINNED_INTERVAL 512
6856
6857/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6858DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6859
bd939f45 6860static int need_active_balance(struct lb_env *env)
1af3ed3d 6861{
bd939f45
PZ
6862 struct sched_domain *sd = env->sd;
6863
6864 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6865
6866 /*
6867 * ASYM_PACKING needs to force migrate tasks from busy but
6868 * higher numbered CPUs in order to pack all tasks in the
6869 * lowest numbered CPUs.
6870 */
bd939f45 6871 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6872 return 1;
1af3ed3d
PZ
6873 }
6874
1aaf90a4
VG
6875 /*
6876 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
6877 * It's worth migrating the task if the src_cpu's capacity is reduced
6878 * because of other sched_class or IRQs if more capacity stays
6879 * available on dst_cpu.
6880 */
6881 if ((env->idle != CPU_NOT_IDLE) &&
6882 (env->src_rq->cfs.h_nr_running == 1)) {
6883 if ((check_cpu_capacity(env->src_rq, sd)) &&
6884 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
6885 return 1;
6886 }
6887
1af3ed3d
PZ
6888 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6889}
6890
969c7921
TH
6891static int active_load_balance_cpu_stop(void *data);
6892
23f0d209
JK
6893static int should_we_balance(struct lb_env *env)
6894{
6895 struct sched_group *sg = env->sd->groups;
6896 struct cpumask *sg_cpus, *sg_mask;
6897 int cpu, balance_cpu = -1;
6898
6899 /*
6900 * In the newly idle case, we will allow all the cpu's
6901 * to do the newly idle load balance.
6902 */
6903 if (env->idle == CPU_NEWLY_IDLE)
6904 return 1;
6905
6906 sg_cpus = sched_group_cpus(sg);
6907 sg_mask = sched_group_mask(sg);
6908 /* Try to find first idle cpu */
6909 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6910 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6911 continue;
6912
6913 balance_cpu = cpu;
6914 break;
6915 }
6916
6917 if (balance_cpu == -1)
6918 balance_cpu = group_balance_cpu(sg);
6919
6920 /*
6921 * First idle cpu or the first cpu(busiest) in this sched group
6922 * is eligible for doing load balancing at this and above domains.
6923 */
b0cff9d8 6924 return balance_cpu == env->dst_cpu;
23f0d209
JK
6925}
6926
1e3c88bd
PZ
6927/*
6928 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6929 * tasks if there is an imbalance.
6930 */
6931static int load_balance(int this_cpu, struct rq *this_rq,
6932 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6933 int *continue_balancing)
1e3c88bd 6934{
88b8dac0 6935 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6936 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6937 struct sched_group *group;
1e3c88bd
PZ
6938 struct rq *busiest;
6939 unsigned long flags;
4ba29684 6940 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6941
8e45cb54
PZ
6942 struct lb_env env = {
6943 .sd = sd,
ddcdf6e7
PZ
6944 .dst_cpu = this_cpu,
6945 .dst_rq = this_rq,
88b8dac0 6946 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6947 .idle = idle,
eb95308e 6948 .loop_break = sched_nr_migrate_break,
b9403130 6949 .cpus = cpus,
0ec8aa00 6950 .fbq_type = all,
163122b7 6951 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6952 };
6953
cfc03118
JK
6954 /*
6955 * For NEWLY_IDLE load_balancing, we don't need to consider
6956 * other cpus in our group
6957 */
e02e60c1 6958 if (idle == CPU_NEWLY_IDLE)
cfc03118 6959 env.dst_grpmask = NULL;
cfc03118 6960
1e3c88bd
PZ
6961 cpumask_copy(cpus, cpu_active_mask);
6962
1e3c88bd
PZ
6963 schedstat_inc(sd, lb_count[idle]);
6964
6965redo:
23f0d209
JK
6966 if (!should_we_balance(&env)) {
6967 *continue_balancing = 0;
1e3c88bd 6968 goto out_balanced;
23f0d209 6969 }
1e3c88bd 6970
23f0d209 6971 group = find_busiest_group(&env);
1e3c88bd
PZ
6972 if (!group) {
6973 schedstat_inc(sd, lb_nobusyg[idle]);
6974 goto out_balanced;
6975 }
6976
b9403130 6977 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6978 if (!busiest) {
6979 schedstat_inc(sd, lb_nobusyq[idle]);
6980 goto out_balanced;
6981 }
6982
78feefc5 6983 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6984
bd939f45 6985 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 6986
1aaf90a4
VG
6987 env.src_cpu = busiest->cpu;
6988 env.src_rq = busiest;
6989
1e3c88bd
PZ
6990 ld_moved = 0;
6991 if (busiest->nr_running > 1) {
6992 /*
6993 * Attempt to move tasks. If find_busiest_group has found
6994 * an imbalance but busiest->nr_running <= 1, the group is
6995 * still unbalanced. ld_moved simply stays zero, so it is
6996 * correctly treated as an imbalance.
6997 */
8e45cb54 6998 env.flags |= LBF_ALL_PINNED;
c82513e5 6999 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7000
5d6523eb 7001more_balance:
163122b7 7002 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7003
7004 /*
7005 * cur_ld_moved - load moved in current iteration
7006 * ld_moved - cumulative load moved across iterations
7007 */
163122b7 7008 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7009
7010 /*
163122b7
KT
7011 * We've detached some tasks from busiest_rq. Every
7012 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7013 * unlock busiest->lock, and we are able to be sure
7014 * that nobody can manipulate the tasks in parallel.
7015 * See task_rq_lock() family for the details.
1e3c88bd 7016 */
163122b7
KT
7017
7018 raw_spin_unlock(&busiest->lock);
7019
7020 if (cur_ld_moved) {
7021 attach_tasks(&env);
7022 ld_moved += cur_ld_moved;
7023 }
7024
1e3c88bd 7025 local_irq_restore(flags);
88b8dac0 7026
f1cd0858
JK
7027 if (env.flags & LBF_NEED_BREAK) {
7028 env.flags &= ~LBF_NEED_BREAK;
7029 goto more_balance;
7030 }
7031
88b8dac0
SV
7032 /*
7033 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7034 * us and move them to an alternate dst_cpu in our sched_group
7035 * where they can run. The upper limit on how many times we
7036 * iterate on same src_cpu is dependent on number of cpus in our
7037 * sched_group.
7038 *
7039 * This changes load balance semantics a bit on who can move
7040 * load to a given_cpu. In addition to the given_cpu itself
7041 * (or a ilb_cpu acting on its behalf where given_cpu is
7042 * nohz-idle), we now have balance_cpu in a position to move
7043 * load to given_cpu. In rare situations, this may cause
7044 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7045 * _independently_ and at _same_ time to move some load to
7046 * given_cpu) causing exceess load to be moved to given_cpu.
7047 * This however should not happen so much in practice and
7048 * moreover subsequent load balance cycles should correct the
7049 * excess load moved.
7050 */
6263322c 7051 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7052
7aff2e3a
VD
7053 /* Prevent to re-select dst_cpu via env's cpus */
7054 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7055
78feefc5 7056 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7057 env.dst_cpu = env.new_dst_cpu;
6263322c 7058 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7059 env.loop = 0;
7060 env.loop_break = sched_nr_migrate_break;
e02e60c1 7061
88b8dac0
SV
7062 /*
7063 * Go back to "more_balance" rather than "redo" since we
7064 * need to continue with same src_cpu.
7065 */
7066 goto more_balance;
7067 }
1e3c88bd 7068
6263322c
PZ
7069 /*
7070 * We failed to reach balance because of affinity.
7071 */
7072 if (sd_parent) {
63b2ca30 7073 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7074
afdeee05 7075 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7076 *group_imbalance = 1;
6263322c
PZ
7077 }
7078
1e3c88bd 7079 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7080 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7081 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7082 if (!cpumask_empty(cpus)) {
7083 env.loop = 0;
7084 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7085 goto redo;
bbf18b19 7086 }
afdeee05 7087 goto out_all_pinned;
1e3c88bd
PZ
7088 }
7089 }
7090
7091 if (!ld_moved) {
7092 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7093 /*
7094 * Increment the failure counter only on periodic balance.
7095 * We do not want newidle balance, which can be very
7096 * frequent, pollute the failure counter causing
7097 * excessive cache_hot migrations and active balances.
7098 */
7099 if (idle != CPU_NEWLY_IDLE)
7100 sd->nr_balance_failed++;
1e3c88bd 7101
bd939f45 7102 if (need_active_balance(&env)) {
1e3c88bd
PZ
7103 raw_spin_lock_irqsave(&busiest->lock, flags);
7104
969c7921
TH
7105 /* don't kick the active_load_balance_cpu_stop,
7106 * if the curr task on busiest cpu can't be
7107 * moved to this_cpu
1e3c88bd
PZ
7108 */
7109 if (!cpumask_test_cpu(this_cpu,
fa17b507 7110 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7111 raw_spin_unlock_irqrestore(&busiest->lock,
7112 flags);
8e45cb54 7113 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7114 goto out_one_pinned;
7115 }
7116
969c7921
TH
7117 /*
7118 * ->active_balance synchronizes accesses to
7119 * ->active_balance_work. Once set, it's cleared
7120 * only after active load balance is finished.
7121 */
1e3c88bd
PZ
7122 if (!busiest->active_balance) {
7123 busiest->active_balance = 1;
7124 busiest->push_cpu = this_cpu;
7125 active_balance = 1;
7126 }
7127 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7128
bd939f45 7129 if (active_balance) {
969c7921
TH
7130 stop_one_cpu_nowait(cpu_of(busiest),
7131 active_load_balance_cpu_stop, busiest,
7132 &busiest->active_balance_work);
bd939f45 7133 }
1e3c88bd
PZ
7134
7135 /*
7136 * We've kicked active balancing, reset the failure
7137 * counter.
7138 */
7139 sd->nr_balance_failed = sd->cache_nice_tries+1;
7140 }
7141 } else
7142 sd->nr_balance_failed = 0;
7143
7144 if (likely(!active_balance)) {
7145 /* We were unbalanced, so reset the balancing interval */
7146 sd->balance_interval = sd->min_interval;
7147 } else {
7148 /*
7149 * If we've begun active balancing, start to back off. This
7150 * case may not be covered by the all_pinned logic if there
7151 * is only 1 task on the busy runqueue (because we don't call
163122b7 7152 * detach_tasks).
1e3c88bd
PZ
7153 */
7154 if (sd->balance_interval < sd->max_interval)
7155 sd->balance_interval *= 2;
7156 }
7157
1e3c88bd
PZ
7158 goto out;
7159
7160out_balanced:
afdeee05
VG
7161 /*
7162 * We reach balance although we may have faced some affinity
7163 * constraints. Clear the imbalance flag if it was set.
7164 */
7165 if (sd_parent) {
7166 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7167
7168 if (*group_imbalance)
7169 *group_imbalance = 0;
7170 }
7171
7172out_all_pinned:
7173 /*
7174 * We reach balance because all tasks are pinned at this level so
7175 * we can't migrate them. Let the imbalance flag set so parent level
7176 * can try to migrate them.
7177 */
1e3c88bd
PZ
7178 schedstat_inc(sd, lb_balanced[idle]);
7179
7180 sd->nr_balance_failed = 0;
7181
7182out_one_pinned:
7183 /* tune up the balancing interval */
8e45cb54 7184 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7185 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7186 (sd->balance_interval < sd->max_interval))
7187 sd->balance_interval *= 2;
7188
46e49b38 7189 ld_moved = 0;
1e3c88bd 7190out:
1e3c88bd
PZ
7191 return ld_moved;
7192}
7193
52a08ef1
JL
7194static inline unsigned long
7195get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7196{
7197 unsigned long interval = sd->balance_interval;
7198
7199 if (cpu_busy)
7200 interval *= sd->busy_factor;
7201
7202 /* scale ms to jiffies */
7203 interval = msecs_to_jiffies(interval);
7204 interval = clamp(interval, 1UL, max_load_balance_interval);
7205
7206 return interval;
7207}
7208
7209static inline void
7210update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7211{
7212 unsigned long interval, next;
7213
7214 interval = get_sd_balance_interval(sd, cpu_busy);
7215 next = sd->last_balance + interval;
7216
7217 if (time_after(*next_balance, next))
7218 *next_balance = next;
7219}
7220
1e3c88bd
PZ
7221/*
7222 * idle_balance is called by schedule() if this_cpu is about to become
7223 * idle. Attempts to pull tasks from other CPUs.
7224 */
6e83125c 7225static int idle_balance(struct rq *this_rq)
1e3c88bd 7226{
52a08ef1
JL
7227 unsigned long next_balance = jiffies + HZ;
7228 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7229 struct sched_domain *sd;
7230 int pulled_task = 0;
9bd721c5 7231 u64 curr_cost = 0;
1e3c88bd 7232
6e83125c
PZ
7233 /*
7234 * We must set idle_stamp _before_ calling idle_balance(), such that we
7235 * measure the duration of idle_balance() as idle time.
7236 */
7237 this_rq->idle_stamp = rq_clock(this_rq);
7238
4486edd1
TC
7239 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7240 !this_rq->rd->overload) {
52a08ef1
JL
7241 rcu_read_lock();
7242 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7243 if (sd)
7244 update_next_balance(sd, 0, &next_balance);
7245 rcu_read_unlock();
7246
6e83125c 7247 goto out;
52a08ef1 7248 }
1e3c88bd 7249
f492e12e
PZ
7250 raw_spin_unlock(&this_rq->lock);
7251
48a16753 7252 update_blocked_averages(this_cpu);
dce840a0 7253 rcu_read_lock();
1e3c88bd 7254 for_each_domain(this_cpu, sd) {
23f0d209 7255 int continue_balancing = 1;
9bd721c5 7256 u64 t0, domain_cost;
1e3c88bd
PZ
7257
7258 if (!(sd->flags & SD_LOAD_BALANCE))
7259 continue;
7260
52a08ef1
JL
7261 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7262 update_next_balance(sd, 0, &next_balance);
9bd721c5 7263 break;
52a08ef1 7264 }
9bd721c5 7265
f492e12e 7266 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7267 t0 = sched_clock_cpu(this_cpu);
7268
f492e12e 7269 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7270 sd, CPU_NEWLY_IDLE,
7271 &continue_balancing);
9bd721c5
JL
7272
7273 domain_cost = sched_clock_cpu(this_cpu) - t0;
7274 if (domain_cost > sd->max_newidle_lb_cost)
7275 sd->max_newidle_lb_cost = domain_cost;
7276
7277 curr_cost += domain_cost;
f492e12e 7278 }
1e3c88bd 7279
52a08ef1 7280 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7281
7282 /*
7283 * Stop searching for tasks to pull if there are
7284 * now runnable tasks on this rq.
7285 */
7286 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7287 break;
1e3c88bd 7288 }
dce840a0 7289 rcu_read_unlock();
f492e12e
PZ
7290
7291 raw_spin_lock(&this_rq->lock);
7292
0e5b5337
JL
7293 if (curr_cost > this_rq->max_idle_balance_cost)
7294 this_rq->max_idle_balance_cost = curr_cost;
7295
e5fc6611 7296 /*
0e5b5337
JL
7297 * While browsing the domains, we released the rq lock, a task could
7298 * have been enqueued in the meantime. Since we're not going idle,
7299 * pretend we pulled a task.
e5fc6611 7300 */
0e5b5337 7301 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7302 pulled_task = 1;
e5fc6611 7303
52a08ef1
JL
7304out:
7305 /* Move the next balance forward */
7306 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7307 this_rq->next_balance = next_balance;
9bd721c5 7308
e4aa358b 7309 /* Is there a task of a high priority class? */
46383648 7310 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7311 pulled_task = -1;
7312
38c6ade2 7313 if (pulled_task)
6e83125c
PZ
7314 this_rq->idle_stamp = 0;
7315
3c4017c1 7316 return pulled_task;
1e3c88bd
PZ
7317}
7318
7319/*
969c7921
TH
7320 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7321 * running tasks off the busiest CPU onto idle CPUs. It requires at
7322 * least 1 task to be running on each physical CPU where possible, and
7323 * avoids physical / logical imbalances.
1e3c88bd 7324 */
969c7921 7325static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7326{
969c7921
TH
7327 struct rq *busiest_rq = data;
7328 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7329 int target_cpu = busiest_rq->push_cpu;
969c7921 7330 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7331 struct sched_domain *sd;
e5673f28 7332 struct task_struct *p = NULL;
969c7921
TH
7333
7334 raw_spin_lock_irq(&busiest_rq->lock);
7335
7336 /* make sure the requested cpu hasn't gone down in the meantime */
7337 if (unlikely(busiest_cpu != smp_processor_id() ||
7338 !busiest_rq->active_balance))
7339 goto out_unlock;
1e3c88bd
PZ
7340
7341 /* Is there any task to move? */
7342 if (busiest_rq->nr_running <= 1)
969c7921 7343 goto out_unlock;
1e3c88bd
PZ
7344
7345 /*
7346 * This condition is "impossible", if it occurs
7347 * we need to fix it. Originally reported by
7348 * Bjorn Helgaas on a 128-cpu setup.
7349 */
7350 BUG_ON(busiest_rq == target_rq);
7351
1e3c88bd 7352 /* Search for an sd spanning us and the target CPU. */
dce840a0 7353 rcu_read_lock();
1e3c88bd
PZ
7354 for_each_domain(target_cpu, sd) {
7355 if ((sd->flags & SD_LOAD_BALANCE) &&
7356 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7357 break;
7358 }
7359
7360 if (likely(sd)) {
8e45cb54
PZ
7361 struct lb_env env = {
7362 .sd = sd,
ddcdf6e7
PZ
7363 .dst_cpu = target_cpu,
7364 .dst_rq = target_rq,
7365 .src_cpu = busiest_rq->cpu,
7366 .src_rq = busiest_rq,
8e45cb54
PZ
7367 .idle = CPU_IDLE,
7368 };
7369
1e3c88bd
PZ
7370 schedstat_inc(sd, alb_count);
7371
e5673f28
KT
7372 p = detach_one_task(&env);
7373 if (p)
1e3c88bd
PZ
7374 schedstat_inc(sd, alb_pushed);
7375 else
7376 schedstat_inc(sd, alb_failed);
7377 }
dce840a0 7378 rcu_read_unlock();
969c7921
TH
7379out_unlock:
7380 busiest_rq->active_balance = 0;
e5673f28
KT
7381 raw_spin_unlock(&busiest_rq->lock);
7382
7383 if (p)
7384 attach_one_task(target_rq, p);
7385
7386 local_irq_enable();
7387
969c7921 7388 return 0;
1e3c88bd
PZ
7389}
7390
d987fc7f
MG
7391static inline int on_null_domain(struct rq *rq)
7392{
7393 return unlikely(!rcu_dereference_sched(rq->sd));
7394}
7395
3451d024 7396#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7397/*
7398 * idle load balancing details
83cd4fe2
VP
7399 * - When one of the busy CPUs notice that there may be an idle rebalancing
7400 * needed, they will kick the idle load balancer, which then does idle
7401 * load balancing for all the idle CPUs.
7402 */
1e3c88bd 7403static struct {
83cd4fe2 7404 cpumask_var_t idle_cpus_mask;
0b005cf5 7405 atomic_t nr_cpus;
83cd4fe2
VP
7406 unsigned long next_balance; /* in jiffy units */
7407} nohz ____cacheline_aligned;
1e3c88bd 7408
3dd0337d 7409static inline int find_new_ilb(void)
1e3c88bd 7410{
0b005cf5 7411 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7412
786d6dc7
SS
7413 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7414 return ilb;
7415
7416 return nr_cpu_ids;
1e3c88bd 7417}
1e3c88bd 7418
83cd4fe2
VP
7419/*
7420 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7421 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7422 * CPU (if there is one).
7423 */
0aeeeeba 7424static void nohz_balancer_kick(void)
83cd4fe2
VP
7425{
7426 int ilb_cpu;
7427
7428 nohz.next_balance++;
7429
3dd0337d 7430 ilb_cpu = find_new_ilb();
83cd4fe2 7431
0b005cf5
SS
7432 if (ilb_cpu >= nr_cpu_ids)
7433 return;
83cd4fe2 7434
cd490c5b 7435 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7436 return;
7437 /*
7438 * Use smp_send_reschedule() instead of resched_cpu().
7439 * This way we generate a sched IPI on the target cpu which
7440 * is idle. And the softirq performing nohz idle load balance
7441 * will be run before returning from the IPI.
7442 */
7443 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7444 return;
7445}
7446
c1cc017c 7447static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7448{
7449 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7450 /*
7451 * Completely isolated CPUs don't ever set, so we must test.
7452 */
7453 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7454 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7455 atomic_dec(&nohz.nr_cpus);
7456 }
71325960
SS
7457 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7458 }
7459}
7460
69e1e811
SS
7461static inline void set_cpu_sd_state_busy(void)
7462{
7463 struct sched_domain *sd;
37dc6b50 7464 int cpu = smp_processor_id();
69e1e811 7465
69e1e811 7466 rcu_read_lock();
37dc6b50 7467 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7468
7469 if (!sd || !sd->nohz_idle)
7470 goto unlock;
7471 sd->nohz_idle = 0;
7472
63b2ca30 7473 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7474unlock:
69e1e811
SS
7475 rcu_read_unlock();
7476}
7477
7478void set_cpu_sd_state_idle(void)
7479{
7480 struct sched_domain *sd;
37dc6b50 7481 int cpu = smp_processor_id();
69e1e811 7482
69e1e811 7483 rcu_read_lock();
37dc6b50 7484 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7485
7486 if (!sd || sd->nohz_idle)
7487 goto unlock;
7488 sd->nohz_idle = 1;
7489
63b2ca30 7490 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7491unlock:
69e1e811
SS
7492 rcu_read_unlock();
7493}
7494
1e3c88bd 7495/*
c1cc017c 7496 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7497 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7498 */
c1cc017c 7499void nohz_balance_enter_idle(int cpu)
1e3c88bd 7500{
71325960
SS
7501 /*
7502 * If this cpu is going down, then nothing needs to be done.
7503 */
7504 if (!cpu_active(cpu))
7505 return;
7506
c1cc017c
AS
7507 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7508 return;
1e3c88bd 7509
d987fc7f
MG
7510 /*
7511 * If we're a completely isolated CPU, we don't play.
7512 */
7513 if (on_null_domain(cpu_rq(cpu)))
7514 return;
7515
c1cc017c
AS
7516 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7517 atomic_inc(&nohz.nr_cpus);
7518 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7519}
71325960 7520
0db0628d 7521static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7522 unsigned long action, void *hcpu)
7523{
7524 switch (action & ~CPU_TASKS_FROZEN) {
7525 case CPU_DYING:
c1cc017c 7526 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7527 return NOTIFY_OK;
7528 default:
7529 return NOTIFY_DONE;
7530 }
7531}
1e3c88bd
PZ
7532#endif
7533
7534static DEFINE_SPINLOCK(balancing);
7535
49c022e6
PZ
7536/*
7537 * Scale the max load_balance interval with the number of CPUs in the system.
7538 * This trades load-balance latency on larger machines for less cross talk.
7539 */
029632fb 7540void update_max_interval(void)
49c022e6
PZ
7541{
7542 max_load_balance_interval = HZ*num_online_cpus()/10;
7543}
7544
1e3c88bd
PZ
7545/*
7546 * It checks each scheduling domain to see if it is due to be balanced,
7547 * and initiates a balancing operation if so.
7548 *
b9b0853a 7549 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7550 */
f7ed0a89 7551static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7552{
23f0d209 7553 int continue_balancing = 1;
f7ed0a89 7554 int cpu = rq->cpu;
1e3c88bd 7555 unsigned long interval;
04f733b4 7556 struct sched_domain *sd;
1e3c88bd
PZ
7557 /* Earliest time when we have to do rebalance again */
7558 unsigned long next_balance = jiffies + 60*HZ;
7559 int update_next_balance = 0;
f48627e6
JL
7560 int need_serialize, need_decay = 0;
7561 u64 max_cost = 0;
1e3c88bd 7562
48a16753 7563 update_blocked_averages(cpu);
2069dd75 7564
dce840a0 7565 rcu_read_lock();
1e3c88bd 7566 for_each_domain(cpu, sd) {
f48627e6
JL
7567 /*
7568 * Decay the newidle max times here because this is a regular
7569 * visit to all the domains. Decay ~1% per second.
7570 */
7571 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7572 sd->max_newidle_lb_cost =
7573 (sd->max_newidle_lb_cost * 253) / 256;
7574 sd->next_decay_max_lb_cost = jiffies + HZ;
7575 need_decay = 1;
7576 }
7577 max_cost += sd->max_newidle_lb_cost;
7578
1e3c88bd
PZ
7579 if (!(sd->flags & SD_LOAD_BALANCE))
7580 continue;
7581
f48627e6
JL
7582 /*
7583 * Stop the load balance at this level. There is another
7584 * CPU in our sched group which is doing load balancing more
7585 * actively.
7586 */
7587 if (!continue_balancing) {
7588 if (need_decay)
7589 continue;
7590 break;
7591 }
7592
52a08ef1 7593 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7594
7595 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7596 if (need_serialize) {
7597 if (!spin_trylock(&balancing))
7598 goto out;
7599 }
7600
7601 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7602 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7603 /*
6263322c 7604 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7605 * env->dst_cpu, so we can't know our idle
7606 * state even if we migrated tasks. Update it.
1e3c88bd 7607 */
de5eb2dd 7608 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7609 }
7610 sd->last_balance = jiffies;
52a08ef1 7611 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7612 }
7613 if (need_serialize)
7614 spin_unlock(&balancing);
7615out:
7616 if (time_after(next_balance, sd->last_balance + interval)) {
7617 next_balance = sd->last_balance + interval;
7618 update_next_balance = 1;
7619 }
f48627e6
JL
7620 }
7621 if (need_decay) {
1e3c88bd 7622 /*
f48627e6
JL
7623 * Ensure the rq-wide value also decays but keep it at a
7624 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7625 */
f48627e6
JL
7626 rq->max_idle_balance_cost =
7627 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7628 }
dce840a0 7629 rcu_read_unlock();
1e3c88bd
PZ
7630
7631 /*
7632 * next_balance will be updated only when there is a need.
7633 * When the cpu is attached to null domain for ex, it will not be
7634 * updated.
7635 */
c5afb6a8 7636 if (likely(update_next_balance)) {
1e3c88bd 7637 rq->next_balance = next_balance;
c5afb6a8
VG
7638
7639#ifdef CONFIG_NO_HZ_COMMON
7640 /*
7641 * If this CPU has been elected to perform the nohz idle
7642 * balance. Other idle CPUs have already rebalanced with
7643 * nohz_idle_balance() and nohz.next_balance has been
7644 * updated accordingly. This CPU is now running the idle load
7645 * balance for itself and we need to update the
7646 * nohz.next_balance accordingly.
7647 */
7648 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7649 nohz.next_balance = rq->next_balance;
7650#endif
7651 }
1e3c88bd
PZ
7652}
7653
3451d024 7654#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7655/*
3451d024 7656 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7657 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7658 */
208cb16b 7659static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7660{
208cb16b 7661 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7662 struct rq *rq;
7663 int balance_cpu;
c5afb6a8
VG
7664 /* Earliest time when we have to do rebalance again */
7665 unsigned long next_balance = jiffies + 60*HZ;
7666 int update_next_balance = 0;
83cd4fe2 7667
1c792db7
SS
7668 if (idle != CPU_IDLE ||
7669 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7670 goto end;
83cd4fe2
VP
7671
7672 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7673 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7674 continue;
7675
7676 /*
7677 * If this cpu gets work to do, stop the load balancing
7678 * work being done for other cpus. Next load
7679 * balancing owner will pick it up.
7680 */
1c792db7 7681 if (need_resched())
83cd4fe2 7682 break;
83cd4fe2 7683
5ed4f1d9
VG
7684 rq = cpu_rq(balance_cpu);
7685
ed61bbc6
TC
7686 /*
7687 * If time for next balance is due,
7688 * do the balance.
7689 */
7690 if (time_after_eq(jiffies, rq->next_balance)) {
7691 raw_spin_lock_irq(&rq->lock);
7692 update_rq_clock(rq);
7693 update_idle_cpu_load(rq);
7694 raw_spin_unlock_irq(&rq->lock);
7695 rebalance_domains(rq, CPU_IDLE);
7696 }
83cd4fe2 7697
c5afb6a8
VG
7698 if (time_after(next_balance, rq->next_balance)) {
7699 next_balance = rq->next_balance;
7700 update_next_balance = 1;
7701 }
83cd4fe2 7702 }
c5afb6a8
VG
7703
7704 /*
7705 * next_balance will be updated only when there is a need.
7706 * When the CPU is attached to null domain for ex, it will not be
7707 * updated.
7708 */
7709 if (likely(update_next_balance))
7710 nohz.next_balance = next_balance;
1c792db7
SS
7711end:
7712 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7713}
7714
7715/*
0b005cf5 7716 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7717 * of an idle cpu in the system.
0b005cf5 7718 * - This rq has more than one task.
1aaf90a4
VG
7719 * - This rq has at least one CFS task and the capacity of the CPU is
7720 * significantly reduced because of RT tasks or IRQs.
7721 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7722 * multiple busy cpu.
0b005cf5
SS
7723 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7724 * domain span are idle.
83cd4fe2 7725 */
1aaf90a4 7726static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7727{
7728 unsigned long now = jiffies;
0b005cf5 7729 struct sched_domain *sd;
63b2ca30 7730 struct sched_group_capacity *sgc;
4a725627 7731 int nr_busy, cpu = rq->cpu;
1aaf90a4 7732 bool kick = false;
83cd4fe2 7733
4a725627 7734 if (unlikely(rq->idle_balance))
1aaf90a4 7735 return false;
83cd4fe2 7736
1c792db7
SS
7737 /*
7738 * We may be recently in ticked or tickless idle mode. At the first
7739 * busy tick after returning from idle, we will update the busy stats.
7740 */
69e1e811 7741 set_cpu_sd_state_busy();
c1cc017c 7742 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7743
7744 /*
7745 * None are in tickless mode and hence no need for NOHZ idle load
7746 * balancing.
7747 */
7748 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7749 return false;
1c792db7
SS
7750
7751 if (time_before(now, nohz.next_balance))
1aaf90a4 7752 return false;
83cd4fe2 7753
0b005cf5 7754 if (rq->nr_running >= 2)
1aaf90a4 7755 return true;
83cd4fe2 7756
067491b7 7757 rcu_read_lock();
37dc6b50 7758 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7759 if (sd) {
63b2ca30
NP
7760 sgc = sd->groups->sgc;
7761 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7762
1aaf90a4
VG
7763 if (nr_busy > 1) {
7764 kick = true;
7765 goto unlock;
7766 }
7767
83cd4fe2 7768 }
37dc6b50 7769
1aaf90a4
VG
7770 sd = rcu_dereference(rq->sd);
7771 if (sd) {
7772 if ((rq->cfs.h_nr_running >= 1) &&
7773 check_cpu_capacity(rq, sd)) {
7774 kick = true;
7775 goto unlock;
7776 }
7777 }
37dc6b50 7778
1aaf90a4 7779 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7780 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7781 sched_domain_span(sd)) < cpu)) {
7782 kick = true;
7783 goto unlock;
7784 }
067491b7 7785
1aaf90a4 7786unlock:
067491b7 7787 rcu_read_unlock();
1aaf90a4 7788 return kick;
83cd4fe2
VP
7789}
7790#else
208cb16b 7791static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7792#endif
7793
7794/*
7795 * run_rebalance_domains is triggered when needed from the scheduler tick.
7796 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7797 */
1e3c88bd
PZ
7798static void run_rebalance_domains(struct softirq_action *h)
7799{
208cb16b 7800 struct rq *this_rq = this_rq();
6eb57e0d 7801 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7802 CPU_IDLE : CPU_NOT_IDLE;
7803
1e3c88bd 7804 /*
83cd4fe2 7805 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 7806 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
7807 * stopped. Do nohz_idle_balance *before* rebalance_domains to
7808 * give the idle cpus a chance to load balance. Else we may
7809 * load balance only within the local sched_domain hierarchy
7810 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 7811 */
208cb16b 7812 nohz_idle_balance(this_rq, idle);
d4573c3e 7813 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
7814}
7815
1e3c88bd
PZ
7816/*
7817 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7818 */
7caff66f 7819void trigger_load_balance(struct rq *rq)
1e3c88bd 7820{
1e3c88bd 7821 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7822 if (unlikely(on_null_domain(rq)))
7823 return;
7824
7825 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7826 raise_softirq(SCHED_SOFTIRQ);
3451d024 7827#ifdef CONFIG_NO_HZ_COMMON
c726099e 7828 if (nohz_kick_needed(rq))
0aeeeeba 7829 nohz_balancer_kick();
83cd4fe2 7830#endif
1e3c88bd
PZ
7831}
7832
0bcdcf28
CE
7833static void rq_online_fair(struct rq *rq)
7834{
7835 update_sysctl();
0e59bdae
KT
7836
7837 update_runtime_enabled(rq);
0bcdcf28
CE
7838}
7839
7840static void rq_offline_fair(struct rq *rq)
7841{
7842 update_sysctl();
a4c96ae3
PB
7843
7844 /* Ensure any throttled groups are reachable by pick_next_task */
7845 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7846}
7847
55e12e5e 7848#endif /* CONFIG_SMP */
e1d1484f 7849
bf0f6f24
IM
7850/*
7851 * scheduler tick hitting a task of our scheduling class:
7852 */
8f4d37ec 7853static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7854{
7855 struct cfs_rq *cfs_rq;
7856 struct sched_entity *se = &curr->se;
7857
7858 for_each_sched_entity(se) {
7859 cfs_rq = cfs_rq_of(se);
8f4d37ec 7860 entity_tick(cfs_rq, se, queued);
bf0f6f24 7861 }
18bf2805 7862
b52da86e 7863 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 7864 task_tick_numa(rq, curr);
bf0f6f24
IM
7865}
7866
7867/*
cd29fe6f
PZ
7868 * called on fork with the child task as argument from the parent's context
7869 * - child not yet on the tasklist
7870 * - preemption disabled
bf0f6f24 7871 */
cd29fe6f 7872static void task_fork_fair(struct task_struct *p)
bf0f6f24 7873{
4fc420c9
DN
7874 struct cfs_rq *cfs_rq;
7875 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7876 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7877 struct rq *rq = this_rq();
7878 unsigned long flags;
7879
05fa785c 7880 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7881
861d034e
PZ
7882 update_rq_clock(rq);
7883
4fc420c9
DN
7884 cfs_rq = task_cfs_rq(current);
7885 curr = cfs_rq->curr;
7886
6c9a27f5
DN
7887 /*
7888 * Not only the cpu but also the task_group of the parent might have
7889 * been changed after parent->se.parent,cfs_rq were copied to
7890 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7891 * of child point to valid ones.
7892 */
7893 rcu_read_lock();
7894 __set_task_cpu(p, this_cpu);
7895 rcu_read_unlock();
bf0f6f24 7896
7109c442 7897 update_curr(cfs_rq);
cd29fe6f 7898
b5d9d734
MG
7899 if (curr)
7900 se->vruntime = curr->vruntime;
aeb73b04 7901 place_entity(cfs_rq, se, 1);
4d78e7b6 7902
cd29fe6f 7903 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7904 /*
edcb60a3
IM
7905 * Upon rescheduling, sched_class::put_prev_task() will place
7906 * 'current' within the tree based on its new key value.
7907 */
4d78e7b6 7908 swap(curr->vruntime, se->vruntime);
8875125e 7909 resched_curr(rq);
4d78e7b6 7910 }
bf0f6f24 7911
88ec22d3
PZ
7912 se->vruntime -= cfs_rq->min_vruntime;
7913
05fa785c 7914 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7915}
7916
cb469845
SR
7917/*
7918 * Priority of the task has changed. Check to see if we preempt
7919 * the current task.
7920 */
da7a735e
PZ
7921static void
7922prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7923{
da0c1e65 7924 if (!task_on_rq_queued(p))
da7a735e
PZ
7925 return;
7926
cb469845
SR
7927 /*
7928 * Reschedule if we are currently running on this runqueue and
7929 * our priority decreased, or if we are not currently running on
7930 * this runqueue and our priority is higher than the current's
7931 */
da7a735e 7932 if (rq->curr == p) {
cb469845 7933 if (p->prio > oldprio)
8875125e 7934 resched_curr(rq);
cb469845 7935 } else
15afe09b 7936 check_preempt_curr(rq, p, 0);
cb469845
SR
7937}
7938
daa59407 7939static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
7940{
7941 struct sched_entity *se = &p->se;
da7a735e
PZ
7942
7943 /*
daa59407
BP
7944 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
7945 * the dequeue_entity(.flags=0) will already have normalized the
7946 * vruntime.
7947 */
7948 if (p->on_rq)
7949 return true;
7950
7951 /*
7952 * When !on_rq, vruntime of the task has usually NOT been normalized.
7953 * But there are some cases where it has already been normalized:
da7a735e 7954 *
daa59407
BP
7955 * - A forked child which is waiting for being woken up by
7956 * wake_up_new_task().
7957 * - A task which has been woken up by try_to_wake_up() and
7958 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 7959 */
daa59407
BP
7960 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
7961 return true;
7962
7963 return false;
7964}
7965
7966static void detach_task_cfs_rq(struct task_struct *p)
7967{
7968 struct sched_entity *se = &p->se;
7969 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7970
7971 if (!vruntime_normalized(p)) {
da7a735e
PZ
7972 /*
7973 * Fix up our vruntime so that the current sleep doesn't
7974 * cause 'unlimited' sleep bonus.
7975 */
7976 place_entity(cfs_rq, se, 0);
7977 se->vruntime -= cfs_rq->min_vruntime;
7978 }
9ee474f5 7979
9d89c257 7980 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 7981 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
7982}
7983
daa59407 7984static void attach_task_cfs_rq(struct task_struct *p)
cb469845 7985{
f36c019c 7986 struct sched_entity *se = &p->se;
daa59407 7987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
7988
7989#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
7990 /*
7991 * Since the real-depth could have been changed (only FAIR
7992 * class maintain depth value), reset depth properly.
7993 */
7994 se->depth = se->parent ? se->parent->depth + 1 : 0;
7995#endif
7855a35a 7996
6efdb105 7997 /* Synchronize task with its cfs_rq */
daa59407
BP
7998 attach_entity_load_avg(cfs_rq, se);
7999
8000 if (!vruntime_normalized(p))
8001 se->vruntime += cfs_rq->min_vruntime;
8002}
6efdb105 8003
daa59407
BP
8004static void switched_from_fair(struct rq *rq, struct task_struct *p)
8005{
8006 detach_task_cfs_rq(p);
8007}
8008
8009static void switched_to_fair(struct rq *rq, struct task_struct *p)
8010{
8011 attach_task_cfs_rq(p);
7855a35a 8012
daa59407 8013 if (task_on_rq_queued(p)) {
7855a35a 8014 /*
daa59407
BP
8015 * We were most likely switched from sched_rt, so
8016 * kick off the schedule if running, otherwise just see
8017 * if we can still preempt the current task.
7855a35a 8018 */
daa59407
BP
8019 if (rq->curr == p)
8020 resched_curr(rq);
8021 else
8022 check_preempt_curr(rq, p, 0);
7855a35a 8023 }
cb469845
SR
8024}
8025
83b699ed
SV
8026/* Account for a task changing its policy or group.
8027 *
8028 * This routine is mostly called to set cfs_rq->curr field when a task
8029 * migrates between groups/classes.
8030 */
8031static void set_curr_task_fair(struct rq *rq)
8032{
8033 struct sched_entity *se = &rq->curr->se;
8034
ec12cb7f
PT
8035 for_each_sched_entity(se) {
8036 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8037
8038 set_next_entity(cfs_rq, se);
8039 /* ensure bandwidth has been allocated on our new cfs_rq */
8040 account_cfs_rq_runtime(cfs_rq, 0);
8041 }
83b699ed
SV
8042}
8043
029632fb
PZ
8044void init_cfs_rq(struct cfs_rq *cfs_rq)
8045{
8046 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8047 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8048#ifndef CONFIG_64BIT
8049 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8050#endif
141965c7 8051#ifdef CONFIG_SMP
9d89c257
YD
8052 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8053 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8054#endif
029632fb
PZ
8055}
8056
810b3817 8057#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8058static void task_move_group_fair(struct task_struct *p)
810b3817 8059{
daa59407 8060 detach_task_cfs_rq(p);
b2b5ce02 8061 set_task_rq(p, task_cpu(p));
6efdb105
BP
8062
8063#ifdef CONFIG_SMP
8064 /* Tell se's cfs_rq has been changed -- migrated */
8065 p->se.avg.last_update_time = 0;
8066#endif
daa59407 8067 attach_task_cfs_rq(p);
810b3817 8068}
029632fb
PZ
8069
8070void free_fair_sched_group(struct task_group *tg)
8071{
8072 int i;
8073
8074 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8075
8076 for_each_possible_cpu(i) {
8077 if (tg->cfs_rq)
8078 kfree(tg->cfs_rq[i]);
12695578
YD
8079 if (tg->se) {
8080 if (tg->se[i])
8081 remove_entity_load_avg(tg->se[i]);
029632fb 8082 kfree(tg->se[i]);
12695578 8083 }
029632fb
PZ
8084 }
8085
8086 kfree(tg->cfs_rq);
8087 kfree(tg->se);
8088}
8089
8090int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8091{
8092 struct cfs_rq *cfs_rq;
8093 struct sched_entity *se;
8094 int i;
8095
8096 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8097 if (!tg->cfs_rq)
8098 goto err;
8099 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8100 if (!tg->se)
8101 goto err;
8102
8103 tg->shares = NICE_0_LOAD;
8104
8105 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8106
8107 for_each_possible_cpu(i) {
8108 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8109 GFP_KERNEL, cpu_to_node(i));
8110 if (!cfs_rq)
8111 goto err;
8112
8113 se = kzalloc_node(sizeof(struct sched_entity),
8114 GFP_KERNEL, cpu_to_node(i));
8115 if (!se)
8116 goto err_free_rq;
8117
8118 init_cfs_rq(cfs_rq);
8119 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8120 init_entity_runnable_average(se);
029632fb
PZ
8121 }
8122
8123 return 1;
8124
8125err_free_rq:
8126 kfree(cfs_rq);
8127err:
8128 return 0;
8129}
8130
8131void unregister_fair_sched_group(struct task_group *tg, int cpu)
8132{
8133 struct rq *rq = cpu_rq(cpu);
8134 unsigned long flags;
8135
8136 /*
8137 * Only empty task groups can be destroyed; so we can speculatively
8138 * check on_list without danger of it being re-added.
8139 */
8140 if (!tg->cfs_rq[cpu]->on_list)
8141 return;
8142
8143 raw_spin_lock_irqsave(&rq->lock, flags);
8144 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8145 raw_spin_unlock_irqrestore(&rq->lock, flags);
8146}
8147
8148void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8149 struct sched_entity *se, int cpu,
8150 struct sched_entity *parent)
8151{
8152 struct rq *rq = cpu_rq(cpu);
8153
8154 cfs_rq->tg = tg;
8155 cfs_rq->rq = rq;
029632fb
PZ
8156 init_cfs_rq_runtime(cfs_rq);
8157
8158 tg->cfs_rq[cpu] = cfs_rq;
8159 tg->se[cpu] = se;
8160
8161 /* se could be NULL for root_task_group */
8162 if (!se)
8163 return;
8164
fed14d45 8165 if (!parent) {
029632fb 8166 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8167 se->depth = 0;
8168 } else {
029632fb 8169 se->cfs_rq = parent->my_q;
fed14d45
PZ
8170 se->depth = parent->depth + 1;
8171 }
029632fb
PZ
8172
8173 se->my_q = cfs_rq;
0ac9b1c2
PT
8174 /* guarantee group entities always have weight */
8175 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8176 se->parent = parent;
8177}
8178
8179static DEFINE_MUTEX(shares_mutex);
8180
8181int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8182{
8183 int i;
8184 unsigned long flags;
8185
8186 /*
8187 * We can't change the weight of the root cgroup.
8188 */
8189 if (!tg->se[0])
8190 return -EINVAL;
8191
8192 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8193
8194 mutex_lock(&shares_mutex);
8195 if (tg->shares == shares)
8196 goto done;
8197
8198 tg->shares = shares;
8199 for_each_possible_cpu(i) {
8200 struct rq *rq = cpu_rq(i);
8201 struct sched_entity *se;
8202
8203 se = tg->se[i];
8204 /* Propagate contribution to hierarchy */
8205 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8206
8207 /* Possible calls to update_curr() need rq clock */
8208 update_rq_clock(rq);
17bc14b7 8209 for_each_sched_entity(se)
029632fb
PZ
8210 update_cfs_shares(group_cfs_rq(se));
8211 raw_spin_unlock_irqrestore(&rq->lock, flags);
8212 }
8213
8214done:
8215 mutex_unlock(&shares_mutex);
8216 return 0;
8217}
8218#else /* CONFIG_FAIR_GROUP_SCHED */
8219
8220void free_fair_sched_group(struct task_group *tg) { }
8221
8222int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8223{
8224 return 1;
8225}
8226
8227void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8228
8229#endif /* CONFIG_FAIR_GROUP_SCHED */
8230
810b3817 8231
6d686f45 8232static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8233{
8234 struct sched_entity *se = &task->se;
0d721cea
PW
8235 unsigned int rr_interval = 0;
8236
8237 /*
8238 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8239 * idle runqueue:
8240 */
0d721cea 8241 if (rq->cfs.load.weight)
a59f4e07 8242 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8243
8244 return rr_interval;
8245}
8246
bf0f6f24
IM
8247/*
8248 * All the scheduling class methods:
8249 */
029632fb 8250const struct sched_class fair_sched_class = {
5522d5d5 8251 .next = &idle_sched_class,
bf0f6f24
IM
8252 .enqueue_task = enqueue_task_fair,
8253 .dequeue_task = dequeue_task_fair,
8254 .yield_task = yield_task_fair,
d95f4122 8255 .yield_to_task = yield_to_task_fair,
bf0f6f24 8256
2e09bf55 8257 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8258
8259 .pick_next_task = pick_next_task_fair,
8260 .put_prev_task = put_prev_task_fair,
8261
681f3e68 8262#ifdef CONFIG_SMP
4ce72a2c 8263 .select_task_rq = select_task_rq_fair,
0a74bef8 8264 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8265
0bcdcf28
CE
8266 .rq_online = rq_online_fair,
8267 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8268
8269 .task_waking = task_waking_fair,
12695578 8270 .task_dead = task_dead_fair,
c5b28038 8271 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8272#endif
bf0f6f24 8273
83b699ed 8274 .set_curr_task = set_curr_task_fair,
bf0f6f24 8275 .task_tick = task_tick_fair,
cd29fe6f 8276 .task_fork = task_fork_fair,
cb469845
SR
8277
8278 .prio_changed = prio_changed_fair,
da7a735e 8279 .switched_from = switched_from_fair,
cb469845 8280 .switched_to = switched_to_fair,
810b3817 8281
0d721cea
PW
8282 .get_rr_interval = get_rr_interval_fair,
8283
6e998916
SG
8284 .update_curr = update_curr_fair,
8285
810b3817 8286#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8287 .task_move_group = task_move_group_fair,
810b3817 8288#endif
bf0f6f24
IM
8289};
8290
8291#ifdef CONFIG_SCHED_DEBUG
029632fb 8292void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8293{
bf0f6f24
IM
8294 struct cfs_rq *cfs_rq;
8295
5973e5b9 8296 rcu_read_lock();
c3b64f1e 8297 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8298 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8299 rcu_read_unlock();
bf0f6f24 8300}
397f2378
SD
8301
8302#ifdef CONFIG_NUMA_BALANCING
8303void show_numa_stats(struct task_struct *p, struct seq_file *m)
8304{
8305 int node;
8306 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8307
8308 for_each_online_node(node) {
8309 if (p->numa_faults) {
8310 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8311 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8312 }
8313 if (p->numa_group) {
8314 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8315 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8316 }
8317 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8318 }
8319}
8320#endif /* CONFIG_NUMA_BALANCING */
8321#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8322
8323__init void init_sched_fair_class(void)
8324{
8325#ifdef CONFIG_SMP
8326 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8327
3451d024 8328#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8329 nohz.next_balance = jiffies;
029632fb 8330 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8331 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8332#endif
8333#endif /* SMP */
8334
8335}
This page took 1.292793 seconds and 5 git commands to generate.