Merge tag 'for-v3.8-merged' of git://git.infradead.org/battery-2.6
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
29
30#include <trace/events/sched.h>
31
32#include "sched.h"
9745512c 33
bf0f6f24 34/*
21805085 35 * Targeted preemption latency for CPU-bound tasks:
864616ee 36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 37 *
21805085 38 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
bf0f6f24 42 *
d274a4ce
IM
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 45 */
21406928
MG
46unsigned int sysctl_sched_latency = 6000000ULL;
47unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 48
1983a922
CE
49/*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
2bd8e6d4 61/*
b2be5e96 62 * Minimal preemption granularity for CPU-bound tasks:
864616ee 63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 64 */
0bf377bb
IM
65unsigned int sysctl_sched_min_granularity = 750000ULL;
66unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
67
68/*
b2be5e96
PZ
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
0bf377bb 71static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
72
73/*
2bba22c5 74 * After fork, child runs first. If set to 0 (default) then
b2be5e96 75 * parent will (try to) run first.
21805085 76 */
2bba22c5 77unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
ec12cb7f
PT
99#ifdef CONFIG_CFS_BANDWIDTH
100/*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111#endif
112
029632fb
PZ
113/*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122static int get_update_sysctl_factor(void)
123{
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141}
142
143static void update_sysctl(void)
144{
145 unsigned int factor = get_update_sysctl_factor();
146
147#define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152#undef SET_SYSCTL
153}
154
155void sched_init_granularity(void)
156{
157 update_sysctl();
158}
159
160#if BITS_PER_LONG == 32
161# define WMULT_CONST (~0UL)
162#else
163# define WMULT_CONST (1UL << 32)
164#endif
165
166#define WMULT_SHIFT 32
167
168/*
169 * Shift right and round:
170 */
171#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173/*
174 * delta *= weight / lw
175 */
176static unsigned long
177calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179{
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213}
214
215
216const struct sched_class fair_sched_class;
a4c2f00f 217
bf0f6f24
IM
218/**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
62160e3f 222#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 223
62160e3f 224/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
225static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226{
62160e3f 227 return cfs_rq->rq;
bf0f6f24
IM
228}
229
62160e3f
IM
230/* An entity is a task if it doesn't "own" a runqueue */
231#define entity_is_task(se) (!se->my_q)
bf0f6f24 232
8f48894f
PZ
233static inline struct task_struct *task_of(struct sched_entity *se)
234{
235#ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237#endif
238 return container_of(se, struct task_struct, se);
239}
240
b758149c
PZ
241/* Walk up scheduling entities hierarchy */
242#define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246{
247 return p->se.cfs_rq;
248}
249
250/* runqueue on which this entity is (to be) queued */
251static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252{
253 return se->cfs_rq;
254}
255
256/* runqueue "owned" by this group */
257static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258{
259 return grp->my_q;
260}
261
aff3e498
PT
262static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
263 int force_update);
9ee474f5 264
3d4b47b4
PZ
265static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
266{
267 if (!cfs_rq->on_list) {
67e86250
PT
268 /*
269 * Ensure we either appear before our parent (if already
270 * enqueued) or force our parent to appear after us when it is
271 * enqueued. The fact that we always enqueue bottom-up
272 * reduces this to two cases.
273 */
274 if (cfs_rq->tg->parent &&
275 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
276 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
278 } else {
279 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 281 }
3d4b47b4
PZ
282
283 cfs_rq->on_list = 1;
9ee474f5 284 /* We should have no load, but we need to update last_decay. */
aff3e498 285 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
286 }
287}
288
289static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (cfs_rq->on_list) {
292 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
293 cfs_rq->on_list = 0;
294 }
295}
296
b758149c
PZ
297/* Iterate thr' all leaf cfs_rq's on a runqueue */
298#define for_each_leaf_cfs_rq(rq, cfs_rq) \
299 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
300
301/* Do the two (enqueued) entities belong to the same group ? */
302static inline int
303is_same_group(struct sched_entity *se, struct sched_entity *pse)
304{
305 if (se->cfs_rq == pse->cfs_rq)
306 return 1;
307
308 return 0;
309}
310
311static inline struct sched_entity *parent_entity(struct sched_entity *se)
312{
313 return se->parent;
314}
315
464b7527
PZ
316/* return depth at which a sched entity is present in the hierarchy */
317static inline int depth_se(struct sched_entity *se)
318{
319 int depth = 0;
320
321 for_each_sched_entity(se)
322 depth++;
323
324 return depth;
325}
326
327static void
328find_matching_se(struct sched_entity **se, struct sched_entity **pse)
329{
330 int se_depth, pse_depth;
331
332 /*
333 * preemption test can be made between sibling entities who are in the
334 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
335 * both tasks until we find their ancestors who are siblings of common
336 * parent.
337 */
338
339 /* First walk up until both entities are at same depth */
340 se_depth = depth_se(*se);
341 pse_depth = depth_se(*pse);
342
343 while (se_depth > pse_depth) {
344 se_depth--;
345 *se = parent_entity(*se);
346 }
347
348 while (pse_depth > se_depth) {
349 pse_depth--;
350 *pse = parent_entity(*pse);
351 }
352
353 while (!is_same_group(*se, *pse)) {
354 *se = parent_entity(*se);
355 *pse = parent_entity(*pse);
356 }
357}
358
8f48894f
PZ
359#else /* !CONFIG_FAIR_GROUP_SCHED */
360
361static inline struct task_struct *task_of(struct sched_entity *se)
362{
363 return container_of(se, struct task_struct, se);
364}
bf0f6f24 365
62160e3f
IM
366static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
367{
368 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
369}
370
371#define entity_is_task(se) 1
372
b758149c
PZ
373#define for_each_sched_entity(se) \
374 for (; se; se = NULL)
bf0f6f24 375
b758149c 376static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 377{
b758149c 378 return &task_rq(p)->cfs;
bf0f6f24
IM
379}
380
b758149c
PZ
381static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
382{
383 struct task_struct *p = task_of(se);
384 struct rq *rq = task_rq(p);
385
386 return &rq->cfs;
387}
388
389/* runqueue "owned" by this group */
390static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
391{
392 return NULL;
393}
394
3d4b47b4
PZ
395static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
396{
397}
398
399static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400{
401}
402
b758149c
PZ
403#define for_each_leaf_cfs_rq(rq, cfs_rq) \
404 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
405
406static inline int
407is_same_group(struct sched_entity *se, struct sched_entity *pse)
408{
409 return 1;
410}
411
412static inline struct sched_entity *parent_entity(struct sched_entity *se)
413{
414 return NULL;
415}
416
464b7527
PZ
417static inline void
418find_matching_se(struct sched_entity **se, struct sched_entity **pse)
419{
420}
421
b758149c
PZ
422#endif /* CONFIG_FAIR_GROUP_SCHED */
423
6c16a6dc
PZ
424static __always_inline
425void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
426
427/**************************************************************
428 * Scheduling class tree data structure manipulation methods:
429 */
430
0702e3eb 431static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 432{
368059a9
PZ
433 s64 delta = (s64)(vruntime - min_vruntime);
434 if (delta > 0)
02e0431a
PZ
435 min_vruntime = vruntime;
436
437 return min_vruntime;
438}
439
0702e3eb 440static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
441{
442 s64 delta = (s64)(vruntime - min_vruntime);
443 if (delta < 0)
444 min_vruntime = vruntime;
445
446 return min_vruntime;
447}
448
54fdc581
FC
449static inline int entity_before(struct sched_entity *a,
450 struct sched_entity *b)
451{
452 return (s64)(a->vruntime - b->vruntime) < 0;
453}
454
1af5f730
PZ
455static void update_min_vruntime(struct cfs_rq *cfs_rq)
456{
457 u64 vruntime = cfs_rq->min_vruntime;
458
459 if (cfs_rq->curr)
460 vruntime = cfs_rq->curr->vruntime;
461
462 if (cfs_rq->rb_leftmost) {
463 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
464 struct sched_entity,
465 run_node);
466
e17036da 467 if (!cfs_rq->curr)
1af5f730
PZ
468 vruntime = se->vruntime;
469 else
470 vruntime = min_vruntime(vruntime, se->vruntime);
471 }
472
473 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
474#ifndef CONFIG_64BIT
475 smp_wmb();
476 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
477#endif
1af5f730
PZ
478}
479
bf0f6f24
IM
480/*
481 * Enqueue an entity into the rb-tree:
482 */
0702e3eb 483static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
484{
485 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
486 struct rb_node *parent = NULL;
487 struct sched_entity *entry;
bf0f6f24
IM
488 int leftmost = 1;
489
490 /*
491 * Find the right place in the rbtree:
492 */
493 while (*link) {
494 parent = *link;
495 entry = rb_entry(parent, struct sched_entity, run_node);
496 /*
497 * We dont care about collisions. Nodes with
498 * the same key stay together.
499 */
2bd2d6f2 500 if (entity_before(se, entry)) {
bf0f6f24
IM
501 link = &parent->rb_left;
502 } else {
503 link = &parent->rb_right;
504 leftmost = 0;
505 }
506 }
507
508 /*
509 * Maintain a cache of leftmost tree entries (it is frequently
510 * used):
511 */
1af5f730 512 if (leftmost)
57cb499d 513 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
514
515 rb_link_node(&se->run_node, parent, link);
516 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
517}
518
0702e3eb 519static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 520{
3fe69747
PZ
521 if (cfs_rq->rb_leftmost == &se->run_node) {
522 struct rb_node *next_node;
3fe69747
PZ
523
524 next_node = rb_next(&se->run_node);
525 cfs_rq->rb_leftmost = next_node;
3fe69747 526 }
e9acbff6 527
bf0f6f24 528 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
529}
530
029632fb 531struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 532{
f4b6755f
PZ
533 struct rb_node *left = cfs_rq->rb_leftmost;
534
535 if (!left)
536 return NULL;
537
538 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
539}
540
ac53db59
RR
541static struct sched_entity *__pick_next_entity(struct sched_entity *se)
542{
543 struct rb_node *next = rb_next(&se->run_node);
544
545 if (!next)
546 return NULL;
547
548 return rb_entry(next, struct sched_entity, run_node);
549}
550
551#ifdef CONFIG_SCHED_DEBUG
029632fb 552struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 553{
7eee3e67 554 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 555
70eee74b
BS
556 if (!last)
557 return NULL;
7eee3e67
IM
558
559 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
560}
561
bf0f6f24
IM
562/**************************************************************
563 * Scheduling class statistics methods:
564 */
565
acb4a848 566int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 567 void __user *buffer, size_t *lenp,
b2be5e96
PZ
568 loff_t *ppos)
569{
8d65af78 570 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 571 int factor = get_update_sysctl_factor();
b2be5e96
PZ
572
573 if (ret || !write)
574 return ret;
575
576 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
577 sysctl_sched_min_granularity);
578
acb4a848
CE
579#define WRT_SYSCTL(name) \
580 (normalized_sysctl_##name = sysctl_##name / (factor))
581 WRT_SYSCTL(sched_min_granularity);
582 WRT_SYSCTL(sched_latency);
583 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
584#undef WRT_SYSCTL
585
b2be5e96
PZ
586 return 0;
587}
588#endif
647e7cac 589
a7be37ac 590/*
f9c0b095 591 * delta /= w
a7be37ac
PZ
592 */
593static inline unsigned long
594calc_delta_fair(unsigned long delta, struct sched_entity *se)
595{
f9c0b095
PZ
596 if (unlikely(se->load.weight != NICE_0_LOAD))
597 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
598
599 return delta;
600}
601
647e7cac
IM
602/*
603 * The idea is to set a period in which each task runs once.
604 *
532b1858 605 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
606 * this period because otherwise the slices get too small.
607 *
608 * p = (nr <= nl) ? l : l*nr/nl
609 */
4d78e7b6
PZ
610static u64 __sched_period(unsigned long nr_running)
611{
612 u64 period = sysctl_sched_latency;
b2be5e96 613 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
614
615 if (unlikely(nr_running > nr_latency)) {
4bf0b771 616 period = sysctl_sched_min_granularity;
4d78e7b6 617 period *= nr_running;
4d78e7b6
PZ
618 }
619
620 return period;
621}
622
647e7cac
IM
623/*
624 * We calculate the wall-time slice from the period by taking a part
625 * proportional to the weight.
626 *
f9c0b095 627 * s = p*P[w/rw]
647e7cac 628 */
6d0f0ebd 629static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 630{
0a582440 631 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 632
0a582440 633 for_each_sched_entity(se) {
6272d68c 634 struct load_weight *load;
3104bf03 635 struct load_weight lw;
6272d68c
LM
636
637 cfs_rq = cfs_rq_of(se);
638 load = &cfs_rq->load;
f9c0b095 639
0a582440 640 if (unlikely(!se->on_rq)) {
3104bf03 641 lw = cfs_rq->load;
0a582440
MG
642
643 update_load_add(&lw, se->load.weight);
644 load = &lw;
645 }
646 slice = calc_delta_mine(slice, se->load.weight, load);
647 }
648 return slice;
bf0f6f24
IM
649}
650
647e7cac 651/*
ac884dec 652 * We calculate the vruntime slice of a to be inserted task
647e7cac 653 *
f9c0b095 654 * vs = s/w
647e7cac 655 */
f9c0b095 656static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 657{
f9c0b095 658 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
659}
660
bf0f6f24
IM
661/*
662 * Update the current task's runtime statistics. Skip current tasks that
663 * are not in our scheduling class.
664 */
665static inline void
8ebc91d9
IM
666__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
667 unsigned long delta_exec)
bf0f6f24 668{
bbdba7c0 669 unsigned long delta_exec_weighted;
bf0f6f24 670
41acab88
LDM
671 schedstat_set(curr->statistics.exec_max,
672 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
673
674 curr->sum_exec_runtime += delta_exec;
7a62eabc 675 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 676 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 677
e9acbff6 678 curr->vruntime += delta_exec_weighted;
1af5f730 679 update_min_vruntime(cfs_rq);
bf0f6f24
IM
680}
681
b7cc0896 682static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 683{
429d43bc 684 struct sched_entity *curr = cfs_rq->curr;
305e6835 685 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
686 unsigned long delta_exec;
687
688 if (unlikely(!curr))
689 return;
690
691 /*
692 * Get the amount of time the current task was running
693 * since the last time we changed load (this cannot
694 * overflow on 32 bits):
695 */
8ebc91d9 696 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
697 if (!delta_exec)
698 return;
bf0f6f24 699
8ebc91d9
IM
700 __update_curr(cfs_rq, curr, delta_exec);
701 curr->exec_start = now;
d842de87
SV
702
703 if (entity_is_task(curr)) {
704 struct task_struct *curtask = task_of(curr);
705
f977bb49 706 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 707 cpuacct_charge(curtask, delta_exec);
f06febc9 708 account_group_exec_runtime(curtask, delta_exec);
d842de87 709 }
ec12cb7f
PT
710
711 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
712}
713
714static inline void
5870db5b 715update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 716{
41acab88 717 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
718}
719
bf0f6f24
IM
720/*
721 * Task is being enqueued - update stats:
722 */
d2417e5a 723static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 724{
bf0f6f24
IM
725 /*
726 * Are we enqueueing a waiting task? (for current tasks
727 * a dequeue/enqueue event is a NOP)
728 */
429d43bc 729 if (se != cfs_rq->curr)
5870db5b 730 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
731}
732
bf0f6f24 733static void
9ef0a961 734update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 735{
41acab88
LDM
736 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
737 rq_of(cfs_rq)->clock - se->statistics.wait_start));
738 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
739 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
740 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
741#ifdef CONFIG_SCHEDSTATS
742 if (entity_is_task(se)) {
743 trace_sched_stat_wait(task_of(se),
41acab88 744 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
745 }
746#endif
41acab88 747 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
748}
749
750static inline void
19b6a2e3 751update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 752{
bf0f6f24
IM
753 /*
754 * Mark the end of the wait period if dequeueing a
755 * waiting task:
756 */
429d43bc 757 if (se != cfs_rq->curr)
9ef0a961 758 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
759}
760
761/*
762 * We are picking a new current task - update its stats:
763 */
764static inline void
79303e9e 765update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
766{
767 /*
768 * We are starting a new run period:
769 */
305e6835 770 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
771}
772
bf0f6f24
IM
773/**************************************************
774 * Scheduling class queueing methods:
775 */
776
30cfdcfc
DA
777static void
778account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
779{
780 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 781 if (!parent_entity(se))
029632fb 782 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
783#ifdef CONFIG_SMP
784 if (entity_is_task(se))
eb95308e 785 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 786#endif
30cfdcfc 787 cfs_rq->nr_running++;
30cfdcfc
DA
788}
789
790static void
791account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
792{
793 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 794 if (!parent_entity(se))
029632fb 795 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 796 if (entity_is_task(se))
b87f1724 797 list_del_init(&se->group_node);
30cfdcfc 798 cfs_rq->nr_running--;
30cfdcfc
DA
799}
800
3ff6dcac
YZ
801#ifdef CONFIG_FAIR_GROUP_SCHED
802# ifdef CONFIG_SMP
cf5f0acf
PZ
803static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
804{
805 long tg_weight;
806
807 /*
808 * Use this CPU's actual weight instead of the last load_contribution
809 * to gain a more accurate current total weight. See
810 * update_cfs_rq_load_contribution().
811 */
82958366
PT
812 tg_weight = atomic64_read(&tg->load_avg);
813 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
814 tg_weight += cfs_rq->load.weight;
815
816 return tg_weight;
817}
818
6d5ab293 819static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 820{
cf5f0acf 821 long tg_weight, load, shares;
3ff6dcac 822
cf5f0acf 823 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 824 load = cfs_rq->load.weight;
3ff6dcac 825
3ff6dcac 826 shares = (tg->shares * load);
cf5f0acf
PZ
827 if (tg_weight)
828 shares /= tg_weight;
3ff6dcac
YZ
829
830 if (shares < MIN_SHARES)
831 shares = MIN_SHARES;
832 if (shares > tg->shares)
833 shares = tg->shares;
834
835 return shares;
836}
3ff6dcac 837# else /* CONFIG_SMP */
6d5ab293 838static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
839{
840 return tg->shares;
841}
3ff6dcac 842# endif /* CONFIG_SMP */
2069dd75
PZ
843static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
844 unsigned long weight)
845{
19e5eebb
PT
846 if (se->on_rq) {
847 /* commit outstanding execution time */
848 if (cfs_rq->curr == se)
849 update_curr(cfs_rq);
2069dd75 850 account_entity_dequeue(cfs_rq, se);
19e5eebb 851 }
2069dd75
PZ
852
853 update_load_set(&se->load, weight);
854
855 if (se->on_rq)
856 account_entity_enqueue(cfs_rq, se);
857}
858
82958366
PT
859static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
860
6d5ab293 861static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
862{
863 struct task_group *tg;
864 struct sched_entity *se;
3ff6dcac 865 long shares;
2069dd75 866
2069dd75
PZ
867 tg = cfs_rq->tg;
868 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 869 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 870 return;
3ff6dcac
YZ
871#ifndef CONFIG_SMP
872 if (likely(se->load.weight == tg->shares))
873 return;
874#endif
6d5ab293 875 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
876
877 reweight_entity(cfs_rq_of(se), se, shares);
878}
879#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 880static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
881{
882}
883#endif /* CONFIG_FAIR_GROUP_SCHED */
884
f4e26b12
PT
885/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
886#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
5b51f2f8
PT
887/*
888 * We choose a half-life close to 1 scheduling period.
889 * Note: The tables below are dependent on this value.
890 */
891#define LOAD_AVG_PERIOD 32
892#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
893#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
894
895/* Precomputed fixed inverse multiplies for multiplication by y^n */
896static const u32 runnable_avg_yN_inv[] = {
897 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
898 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
899 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
900 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
901 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
902 0x85aac367, 0x82cd8698,
903};
904
905/*
906 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
907 * over-estimates when re-combining.
908 */
909static const u32 runnable_avg_yN_sum[] = {
910 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
911 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
912 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
913};
914
9d85f21c
PT
915/*
916 * Approximate:
917 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
918 */
919static __always_inline u64 decay_load(u64 val, u64 n)
920{
5b51f2f8
PT
921 unsigned int local_n;
922
923 if (!n)
924 return val;
925 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
926 return 0;
927
928 /* after bounds checking we can collapse to 32-bit */
929 local_n = n;
930
931 /*
932 * As y^PERIOD = 1/2, we can combine
933 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
934 * With a look-up table which covers k^n (n<PERIOD)
935 *
936 * To achieve constant time decay_load.
937 */
938 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
939 val >>= local_n / LOAD_AVG_PERIOD;
940 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
941 }
942
5b51f2f8
PT
943 val *= runnable_avg_yN_inv[local_n];
944 /* We don't use SRR here since we always want to round down. */
945 return val >> 32;
946}
947
948/*
949 * For updates fully spanning n periods, the contribution to runnable
950 * average will be: \Sum 1024*y^n
951 *
952 * We can compute this reasonably efficiently by combining:
953 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
954 */
955static u32 __compute_runnable_contrib(u64 n)
956{
957 u32 contrib = 0;
958
959 if (likely(n <= LOAD_AVG_PERIOD))
960 return runnable_avg_yN_sum[n];
961 else if (unlikely(n >= LOAD_AVG_MAX_N))
962 return LOAD_AVG_MAX;
963
964 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
965 do {
966 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
967 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
968
969 n -= LOAD_AVG_PERIOD;
970 } while (n > LOAD_AVG_PERIOD);
971
972 contrib = decay_load(contrib, n);
973 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
974}
975
976/*
977 * We can represent the historical contribution to runnable average as the
978 * coefficients of a geometric series. To do this we sub-divide our runnable
979 * history into segments of approximately 1ms (1024us); label the segment that
980 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
981 *
982 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
983 * p0 p1 p2
984 * (now) (~1ms ago) (~2ms ago)
985 *
986 * Let u_i denote the fraction of p_i that the entity was runnable.
987 *
988 * We then designate the fractions u_i as our co-efficients, yielding the
989 * following representation of historical load:
990 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
991 *
992 * We choose y based on the with of a reasonably scheduling period, fixing:
993 * y^32 = 0.5
994 *
995 * This means that the contribution to load ~32ms ago (u_32) will be weighted
996 * approximately half as much as the contribution to load within the last ms
997 * (u_0).
998 *
999 * When a period "rolls over" and we have new u_0`, multiplying the previous
1000 * sum again by y is sufficient to update:
1001 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1002 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1003 */
1004static __always_inline int __update_entity_runnable_avg(u64 now,
1005 struct sched_avg *sa,
1006 int runnable)
1007{
5b51f2f8
PT
1008 u64 delta, periods;
1009 u32 runnable_contrib;
9d85f21c
PT
1010 int delta_w, decayed = 0;
1011
1012 delta = now - sa->last_runnable_update;
1013 /*
1014 * This should only happen when time goes backwards, which it
1015 * unfortunately does during sched clock init when we swap over to TSC.
1016 */
1017 if ((s64)delta < 0) {
1018 sa->last_runnable_update = now;
1019 return 0;
1020 }
1021
1022 /*
1023 * Use 1024ns as the unit of measurement since it's a reasonable
1024 * approximation of 1us and fast to compute.
1025 */
1026 delta >>= 10;
1027 if (!delta)
1028 return 0;
1029 sa->last_runnable_update = now;
1030
1031 /* delta_w is the amount already accumulated against our next period */
1032 delta_w = sa->runnable_avg_period % 1024;
1033 if (delta + delta_w >= 1024) {
1034 /* period roll-over */
1035 decayed = 1;
1036
1037 /*
1038 * Now that we know we're crossing a period boundary, figure
1039 * out how much from delta we need to complete the current
1040 * period and accrue it.
1041 */
1042 delta_w = 1024 - delta_w;
5b51f2f8
PT
1043 if (runnable)
1044 sa->runnable_avg_sum += delta_w;
1045 sa->runnable_avg_period += delta_w;
1046
1047 delta -= delta_w;
1048
1049 /* Figure out how many additional periods this update spans */
1050 periods = delta / 1024;
1051 delta %= 1024;
1052
1053 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1054 periods + 1);
1055 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1056 periods + 1);
1057
1058 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1059 runnable_contrib = __compute_runnable_contrib(periods);
1060 if (runnable)
1061 sa->runnable_avg_sum += runnable_contrib;
1062 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1063 }
1064
1065 /* Remainder of delta accrued against u_0` */
1066 if (runnable)
1067 sa->runnable_avg_sum += delta;
1068 sa->runnable_avg_period += delta;
1069
1070 return decayed;
1071}
1072
9ee474f5 1073/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1074static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1075{
1076 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1077 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1078
1079 decays -= se->avg.decay_count;
1080 if (!decays)
aff3e498 1081 return 0;
9ee474f5
PT
1082
1083 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1084 se->avg.decay_count = 0;
aff3e498
PT
1085
1086 return decays;
9ee474f5
PT
1087}
1088
c566e8e9
PT
1089#ifdef CONFIG_FAIR_GROUP_SCHED
1090static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1091 int force_update)
1092{
1093 struct task_group *tg = cfs_rq->tg;
1094 s64 tg_contrib;
1095
1096 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1097 tg_contrib -= cfs_rq->tg_load_contrib;
1098
1099 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1100 atomic64_add(tg_contrib, &tg->load_avg);
1101 cfs_rq->tg_load_contrib += tg_contrib;
1102 }
1103}
8165e145 1104
bb17f655
PT
1105/*
1106 * Aggregate cfs_rq runnable averages into an equivalent task_group
1107 * representation for computing load contributions.
1108 */
1109static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1110 struct cfs_rq *cfs_rq)
1111{
1112 struct task_group *tg = cfs_rq->tg;
1113 long contrib;
1114
1115 /* The fraction of a cpu used by this cfs_rq */
1116 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1117 sa->runnable_avg_period + 1);
1118 contrib -= cfs_rq->tg_runnable_contrib;
1119
1120 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1121 atomic_add(contrib, &tg->runnable_avg);
1122 cfs_rq->tg_runnable_contrib += contrib;
1123 }
1124}
1125
8165e145
PT
1126static inline void __update_group_entity_contrib(struct sched_entity *se)
1127{
1128 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1129 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1130 int runnable_avg;
1131
8165e145
PT
1132 u64 contrib;
1133
1134 contrib = cfs_rq->tg_load_contrib * tg->shares;
1135 se->avg.load_avg_contrib = div64_u64(contrib,
1136 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1137
1138 /*
1139 * For group entities we need to compute a correction term in the case
1140 * that they are consuming <1 cpu so that we would contribute the same
1141 * load as a task of equal weight.
1142 *
1143 * Explicitly co-ordinating this measurement would be expensive, but
1144 * fortunately the sum of each cpus contribution forms a usable
1145 * lower-bound on the true value.
1146 *
1147 * Consider the aggregate of 2 contributions. Either they are disjoint
1148 * (and the sum represents true value) or they are disjoint and we are
1149 * understating by the aggregate of their overlap.
1150 *
1151 * Extending this to N cpus, for a given overlap, the maximum amount we
1152 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1153 * cpus that overlap for this interval and w_i is the interval width.
1154 *
1155 * On a small machine; the first term is well-bounded which bounds the
1156 * total error since w_i is a subset of the period. Whereas on a
1157 * larger machine, while this first term can be larger, if w_i is the
1158 * of consequential size guaranteed to see n_i*w_i quickly converge to
1159 * our upper bound of 1-cpu.
1160 */
1161 runnable_avg = atomic_read(&tg->runnable_avg);
1162 if (runnable_avg < NICE_0_LOAD) {
1163 se->avg.load_avg_contrib *= runnable_avg;
1164 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1165 }
8165e145 1166}
c566e8e9
PT
1167#else
1168static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1169 int force_update) {}
bb17f655
PT
1170static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1171 struct cfs_rq *cfs_rq) {}
8165e145 1172static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1173#endif
1174
8165e145
PT
1175static inline void __update_task_entity_contrib(struct sched_entity *se)
1176{
1177 u32 contrib;
1178
1179 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1180 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1181 contrib /= (se->avg.runnable_avg_period + 1);
1182 se->avg.load_avg_contrib = scale_load(contrib);
1183}
1184
2dac754e
PT
1185/* Compute the current contribution to load_avg by se, return any delta */
1186static long __update_entity_load_avg_contrib(struct sched_entity *se)
1187{
1188 long old_contrib = se->avg.load_avg_contrib;
1189
8165e145
PT
1190 if (entity_is_task(se)) {
1191 __update_task_entity_contrib(se);
1192 } else {
bb17f655 1193 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1194 __update_group_entity_contrib(se);
1195 }
2dac754e
PT
1196
1197 return se->avg.load_avg_contrib - old_contrib;
1198}
1199
9ee474f5
PT
1200static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1201 long load_contrib)
1202{
1203 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1204 cfs_rq->blocked_load_avg -= load_contrib;
1205 else
1206 cfs_rq->blocked_load_avg = 0;
1207}
1208
f1b17280
PT
1209static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1210
9d85f21c 1211/* Update a sched_entity's runnable average */
9ee474f5
PT
1212static inline void update_entity_load_avg(struct sched_entity *se,
1213 int update_cfs_rq)
9d85f21c 1214{
2dac754e
PT
1215 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1216 long contrib_delta;
f1b17280 1217 u64 now;
2dac754e 1218
f1b17280
PT
1219 /*
1220 * For a group entity we need to use their owned cfs_rq_clock_task() in
1221 * case they are the parent of a throttled hierarchy.
1222 */
1223 if (entity_is_task(se))
1224 now = cfs_rq_clock_task(cfs_rq);
1225 else
1226 now = cfs_rq_clock_task(group_cfs_rq(se));
1227
1228 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1229 return;
1230
1231 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1232
1233 if (!update_cfs_rq)
1234 return;
1235
2dac754e
PT
1236 if (se->on_rq)
1237 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1238 else
1239 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1240}
1241
1242/*
1243 * Decay the load contributed by all blocked children and account this so that
1244 * their contribution may appropriately discounted when they wake up.
1245 */
aff3e498 1246static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1247{
f1b17280 1248 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1249 u64 decays;
1250
1251 decays = now - cfs_rq->last_decay;
aff3e498 1252 if (!decays && !force_update)
9ee474f5
PT
1253 return;
1254
aff3e498
PT
1255 if (atomic64_read(&cfs_rq->removed_load)) {
1256 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1257 subtract_blocked_load_contrib(cfs_rq, removed_load);
1258 }
9ee474f5 1259
aff3e498
PT
1260 if (decays) {
1261 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1262 decays);
1263 atomic64_add(decays, &cfs_rq->decay_counter);
1264 cfs_rq->last_decay = now;
1265 }
c566e8e9
PT
1266
1267 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
f269ae04 1268 update_cfs_shares(cfs_rq);
9d85f21c 1269}
18bf2805
BS
1270
1271static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1272{
1273 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
bb17f655 1274 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1275}
2dac754e
PT
1276
1277/* Add the load generated by se into cfs_rq's child load-average */
1278static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1279 struct sched_entity *se,
1280 int wakeup)
2dac754e 1281{
aff3e498
PT
1282 /*
1283 * We track migrations using entity decay_count <= 0, on a wake-up
1284 * migration we use a negative decay count to track the remote decays
1285 * accumulated while sleeping.
1286 */
1287 if (unlikely(se->avg.decay_count <= 0)) {
9ee474f5 1288 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
aff3e498
PT
1289 if (se->avg.decay_count) {
1290 /*
1291 * In a wake-up migration we have to approximate the
1292 * time sleeping. This is because we can't synchronize
1293 * clock_task between the two cpus, and it is not
1294 * guaranteed to be read-safe. Instead, we can
1295 * approximate this using our carried decays, which are
1296 * explicitly atomically readable.
1297 */
1298 se->avg.last_runnable_update -= (-se->avg.decay_count)
1299 << 20;
1300 update_entity_load_avg(se, 0);
1301 /* Indicate that we're now synchronized and on-rq */
1302 se->avg.decay_count = 0;
1303 }
9ee474f5
PT
1304 wakeup = 0;
1305 } else {
1306 __synchronize_entity_decay(se);
1307 }
1308
aff3e498
PT
1309 /* migrated tasks did not contribute to our blocked load */
1310 if (wakeup) {
9ee474f5 1311 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1312 update_entity_load_avg(se, 0);
1313 }
9ee474f5 1314
2dac754e 1315 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1316 /* we force update consideration on load-balancer moves */
1317 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1318}
1319
9ee474f5
PT
1320/*
1321 * Remove se's load from this cfs_rq child load-average, if the entity is
1322 * transitioning to a blocked state we track its projected decay using
1323 * blocked_load_avg.
1324 */
2dac754e 1325static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1326 struct sched_entity *se,
1327 int sleep)
2dac754e 1328{
9ee474f5 1329 update_entity_load_avg(se, 1);
aff3e498
PT
1330 /* we force update consideration on load-balancer moves */
1331 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1332
2dac754e 1333 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1334 if (sleep) {
1335 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1336 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1337 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1338}
9d85f21c 1339#else
9ee474f5
PT
1340static inline void update_entity_load_avg(struct sched_entity *se,
1341 int update_cfs_rq) {}
18bf2805 1342static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1343static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1344 struct sched_entity *se,
1345 int wakeup) {}
2dac754e 1346static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1347 struct sched_entity *se,
1348 int sleep) {}
aff3e498
PT
1349static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1350 int force_update) {}
9d85f21c
PT
1351#endif
1352
2396af69 1353static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1354{
bf0f6f24 1355#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1356 struct task_struct *tsk = NULL;
1357
1358 if (entity_is_task(se))
1359 tsk = task_of(se);
1360
41acab88
LDM
1361 if (se->statistics.sleep_start) {
1362 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1363
1364 if ((s64)delta < 0)
1365 delta = 0;
1366
41acab88
LDM
1367 if (unlikely(delta > se->statistics.sleep_max))
1368 se->statistics.sleep_max = delta;
bf0f6f24 1369
8c79a045 1370 se->statistics.sleep_start = 0;
41acab88 1371 se->statistics.sum_sleep_runtime += delta;
9745512c 1372
768d0c27 1373 if (tsk) {
e414314c 1374 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1375 trace_sched_stat_sleep(tsk, delta);
1376 }
bf0f6f24 1377 }
41acab88
LDM
1378 if (se->statistics.block_start) {
1379 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1380
1381 if ((s64)delta < 0)
1382 delta = 0;
1383
41acab88
LDM
1384 if (unlikely(delta > se->statistics.block_max))
1385 se->statistics.block_max = delta;
bf0f6f24 1386
8c79a045 1387 se->statistics.block_start = 0;
41acab88 1388 se->statistics.sum_sleep_runtime += delta;
30084fbd 1389
e414314c 1390 if (tsk) {
8f0dfc34 1391 if (tsk->in_iowait) {
41acab88
LDM
1392 se->statistics.iowait_sum += delta;
1393 se->statistics.iowait_count++;
768d0c27 1394 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1395 }
1396
b781a602
AV
1397 trace_sched_stat_blocked(tsk, delta);
1398
e414314c
PZ
1399 /*
1400 * Blocking time is in units of nanosecs, so shift by
1401 * 20 to get a milliseconds-range estimation of the
1402 * amount of time that the task spent sleeping:
1403 */
1404 if (unlikely(prof_on == SLEEP_PROFILING)) {
1405 profile_hits(SLEEP_PROFILING,
1406 (void *)get_wchan(tsk),
1407 delta >> 20);
1408 }
1409 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1410 }
bf0f6f24
IM
1411 }
1412#endif
1413}
1414
ddc97297
PZ
1415static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1416{
1417#ifdef CONFIG_SCHED_DEBUG
1418 s64 d = se->vruntime - cfs_rq->min_vruntime;
1419
1420 if (d < 0)
1421 d = -d;
1422
1423 if (d > 3*sysctl_sched_latency)
1424 schedstat_inc(cfs_rq, nr_spread_over);
1425#endif
1426}
1427
aeb73b04
PZ
1428static void
1429place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1430{
1af5f730 1431 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1432
2cb8600e
PZ
1433 /*
1434 * The 'current' period is already promised to the current tasks,
1435 * however the extra weight of the new task will slow them down a
1436 * little, place the new task so that it fits in the slot that
1437 * stays open at the end.
1438 */
94dfb5e7 1439 if (initial && sched_feat(START_DEBIT))
f9c0b095 1440 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1441
a2e7a7eb 1442 /* sleeps up to a single latency don't count. */
5ca9880c 1443 if (!initial) {
a2e7a7eb 1444 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1445
a2e7a7eb
MG
1446 /*
1447 * Halve their sleep time's effect, to allow
1448 * for a gentler effect of sleepers:
1449 */
1450 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1451 thresh >>= 1;
51e0304c 1452
a2e7a7eb 1453 vruntime -= thresh;
aeb73b04
PZ
1454 }
1455
b5d9d734
MG
1456 /* ensure we never gain time by being placed backwards. */
1457 vruntime = max_vruntime(se->vruntime, vruntime);
1458
67e9fb2a 1459 se->vruntime = vruntime;
aeb73b04
PZ
1460}
1461
d3d9dc33
PT
1462static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1463
bf0f6f24 1464static void
88ec22d3 1465enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1466{
88ec22d3
PZ
1467 /*
1468 * Update the normalized vruntime before updating min_vruntime
1469 * through callig update_curr().
1470 */
371fd7e7 1471 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1472 se->vruntime += cfs_rq->min_vruntime;
1473
bf0f6f24 1474 /*
a2a2d680 1475 * Update run-time statistics of the 'current'.
bf0f6f24 1476 */
b7cc0896 1477 update_curr(cfs_rq);
a992241d 1478 account_entity_enqueue(cfs_rq, se);
f269ae04 1479 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
bf0f6f24 1480
88ec22d3 1481 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1482 place_entity(cfs_rq, se, 0);
2396af69 1483 enqueue_sleeper(cfs_rq, se);
e9acbff6 1484 }
bf0f6f24 1485
d2417e5a 1486 update_stats_enqueue(cfs_rq, se);
ddc97297 1487 check_spread(cfs_rq, se);
83b699ed
SV
1488 if (se != cfs_rq->curr)
1489 __enqueue_entity(cfs_rq, se);
2069dd75 1490 se->on_rq = 1;
3d4b47b4 1491
d3d9dc33 1492 if (cfs_rq->nr_running == 1) {
3d4b47b4 1493 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1494 check_enqueue_throttle(cfs_rq);
1495 }
bf0f6f24
IM
1496}
1497
2c13c919 1498static void __clear_buddies_last(struct sched_entity *se)
2002c695 1499{
2c13c919
RR
1500 for_each_sched_entity(se) {
1501 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1502 if (cfs_rq->last == se)
1503 cfs_rq->last = NULL;
1504 else
1505 break;
1506 }
1507}
2002c695 1508
2c13c919
RR
1509static void __clear_buddies_next(struct sched_entity *se)
1510{
1511 for_each_sched_entity(se) {
1512 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1513 if (cfs_rq->next == se)
1514 cfs_rq->next = NULL;
1515 else
1516 break;
1517 }
2002c695
PZ
1518}
1519
ac53db59
RR
1520static void __clear_buddies_skip(struct sched_entity *se)
1521{
1522 for_each_sched_entity(se) {
1523 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1524 if (cfs_rq->skip == se)
1525 cfs_rq->skip = NULL;
1526 else
1527 break;
1528 }
1529}
1530
a571bbea
PZ
1531static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1532{
2c13c919
RR
1533 if (cfs_rq->last == se)
1534 __clear_buddies_last(se);
1535
1536 if (cfs_rq->next == se)
1537 __clear_buddies_next(se);
ac53db59
RR
1538
1539 if (cfs_rq->skip == se)
1540 __clear_buddies_skip(se);
a571bbea
PZ
1541}
1542
6c16a6dc 1543static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1544
bf0f6f24 1545static void
371fd7e7 1546dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1547{
a2a2d680
DA
1548 /*
1549 * Update run-time statistics of the 'current'.
1550 */
1551 update_curr(cfs_rq);
1552
19b6a2e3 1553 update_stats_dequeue(cfs_rq, se);
371fd7e7 1554 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1555#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1556 if (entity_is_task(se)) {
1557 struct task_struct *tsk = task_of(se);
1558
1559 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1560 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1561 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1562 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1563 }
db36cc7d 1564#endif
67e9fb2a
PZ
1565 }
1566
2002c695 1567 clear_buddies(cfs_rq, se);
4793241b 1568
83b699ed 1569 if (se != cfs_rq->curr)
30cfdcfc
DA
1570 __dequeue_entity(cfs_rq, se);
1571 account_entity_dequeue(cfs_rq, se);
f269ae04 1572 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
88ec22d3
PZ
1573
1574 /*
1575 * Normalize the entity after updating the min_vruntime because the
1576 * update can refer to the ->curr item and we need to reflect this
1577 * movement in our normalized position.
1578 */
371fd7e7 1579 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1580 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1581
d8b4986d
PT
1582 /* return excess runtime on last dequeue */
1583 return_cfs_rq_runtime(cfs_rq);
1584
1e876231 1585 update_min_vruntime(cfs_rq);
f269ae04 1586 se->on_rq = 0;
bf0f6f24
IM
1587}
1588
1589/*
1590 * Preempt the current task with a newly woken task if needed:
1591 */
7c92e54f 1592static void
2e09bf55 1593check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1594{
11697830 1595 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1596 struct sched_entity *se;
1597 s64 delta;
11697830 1598
6d0f0ebd 1599 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1600 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1601 if (delta_exec > ideal_runtime) {
bf0f6f24 1602 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1603 /*
1604 * The current task ran long enough, ensure it doesn't get
1605 * re-elected due to buddy favours.
1606 */
1607 clear_buddies(cfs_rq, curr);
f685ceac
MG
1608 return;
1609 }
1610
1611 /*
1612 * Ensure that a task that missed wakeup preemption by a
1613 * narrow margin doesn't have to wait for a full slice.
1614 * This also mitigates buddy induced latencies under load.
1615 */
f685ceac
MG
1616 if (delta_exec < sysctl_sched_min_granularity)
1617 return;
1618
f4cfb33e
WX
1619 se = __pick_first_entity(cfs_rq);
1620 delta = curr->vruntime - se->vruntime;
f685ceac 1621
f4cfb33e
WX
1622 if (delta < 0)
1623 return;
d7d82944 1624
f4cfb33e
WX
1625 if (delta > ideal_runtime)
1626 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1627}
1628
83b699ed 1629static void
8494f412 1630set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1631{
83b699ed
SV
1632 /* 'current' is not kept within the tree. */
1633 if (se->on_rq) {
1634 /*
1635 * Any task has to be enqueued before it get to execute on
1636 * a CPU. So account for the time it spent waiting on the
1637 * runqueue.
1638 */
1639 update_stats_wait_end(cfs_rq, se);
1640 __dequeue_entity(cfs_rq, se);
1641 }
1642
79303e9e 1643 update_stats_curr_start(cfs_rq, se);
429d43bc 1644 cfs_rq->curr = se;
eba1ed4b
IM
1645#ifdef CONFIG_SCHEDSTATS
1646 /*
1647 * Track our maximum slice length, if the CPU's load is at
1648 * least twice that of our own weight (i.e. dont track it
1649 * when there are only lesser-weight tasks around):
1650 */
495eca49 1651 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1652 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1653 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1654 }
1655#endif
4a55b450 1656 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1657}
1658
3f3a4904
PZ
1659static int
1660wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1661
ac53db59
RR
1662/*
1663 * Pick the next process, keeping these things in mind, in this order:
1664 * 1) keep things fair between processes/task groups
1665 * 2) pick the "next" process, since someone really wants that to run
1666 * 3) pick the "last" process, for cache locality
1667 * 4) do not run the "skip" process, if something else is available
1668 */
f4b6755f 1669static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1670{
ac53db59 1671 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1672 struct sched_entity *left = se;
f4b6755f 1673
ac53db59
RR
1674 /*
1675 * Avoid running the skip buddy, if running something else can
1676 * be done without getting too unfair.
1677 */
1678 if (cfs_rq->skip == se) {
1679 struct sched_entity *second = __pick_next_entity(se);
1680 if (second && wakeup_preempt_entity(second, left) < 1)
1681 se = second;
1682 }
aa2ac252 1683
f685ceac
MG
1684 /*
1685 * Prefer last buddy, try to return the CPU to a preempted task.
1686 */
1687 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1688 se = cfs_rq->last;
1689
ac53db59
RR
1690 /*
1691 * Someone really wants this to run. If it's not unfair, run it.
1692 */
1693 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1694 se = cfs_rq->next;
1695
f685ceac 1696 clear_buddies(cfs_rq, se);
4793241b
PZ
1697
1698 return se;
aa2ac252
PZ
1699}
1700
d3d9dc33
PT
1701static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1702
ab6cde26 1703static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1704{
1705 /*
1706 * If still on the runqueue then deactivate_task()
1707 * was not called and update_curr() has to be done:
1708 */
1709 if (prev->on_rq)
b7cc0896 1710 update_curr(cfs_rq);
bf0f6f24 1711
d3d9dc33
PT
1712 /* throttle cfs_rqs exceeding runtime */
1713 check_cfs_rq_runtime(cfs_rq);
1714
ddc97297 1715 check_spread(cfs_rq, prev);
30cfdcfc 1716 if (prev->on_rq) {
5870db5b 1717 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1718 /* Put 'current' back into the tree. */
1719 __enqueue_entity(cfs_rq, prev);
9d85f21c 1720 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1721 update_entity_load_avg(prev, 1);
30cfdcfc 1722 }
429d43bc 1723 cfs_rq->curr = NULL;
bf0f6f24
IM
1724}
1725
8f4d37ec
PZ
1726static void
1727entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1728{
bf0f6f24 1729 /*
30cfdcfc 1730 * Update run-time statistics of the 'current'.
bf0f6f24 1731 */
30cfdcfc 1732 update_curr(cfs_rq);
bf0f6f24 1733
9d85f21c
PT
1734 /*
1735 * Ensure that runnable average is periodically updated.
1736 */
9ee474f5 1737 update_entity_load_avg(curr, 1);
aff3e498 1738 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 1739
8f4d37ec
PZ
1740#ifdef CONFIG_SCHED_HRTICK
1741 /*
1742 * queued ticks are scheduled to match the slice, so don't bother
1743 * validating it and just reschedule.
1744 */
983ed7a6
HH
1745 if (queued) {
1746 resched_task(rq_of(cfs_rq)->curr);
1747 return;
1748 }
8f4d37ec
PZ
1749 /*
1750 * don't let the period tick interfere with the hrtick preemption
1751 */
1752 if (!sched_feat(DOUBLE_TICK) &&
1753 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1754 return;
1755#endif
1756
2c2efaed 1757 if (cfs_rq->nr_running > 1)
2e09bf55 1758 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1759}
1760
ab84d31e
PT
1761
1762/**************************************************
1763 * CFS bandwidth control machinery
1764 */
1765
1766#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1767
1768#ifdef HAVE_JUMP_LABEL
c5905afb 1769static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1770
1771static inline bool cfs_bandwidth_used(void)
1772{
c5905afb 1773 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
1774}
1775
1776void account_cfs_bandwidth_used(int enabled, int was_enabled)
1777{
1778 /* only need to count groups transitioning between enabled/!enabled */
1779 if (enabled && !was_enabled)
c5905afb 1780 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 1781 else if (!enabled && was_enabled)
c5905afb 1782 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
1783}
1784#else /* HAVE_JUMP_LABEL */
1785static bool cfs_bandwidth_used(void)
1786{
1787 return true;
1788}
1789
1790void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1791#endif /* HAVE_JUMP_LABEL */
1792
ab84d31e
PT
1793/*
1794 * default period for cfs group bandwidth.
1795 * default: 0.1s, units: nanoseconds
1796 */
1797static inline u64 default_cfs_period(void)
1798{
1799 return 100000000ULL;
1800}
ec12cb7f
PT
1801
1802static inline u64 sched_cfs_bandwidth_slice(void)
1803{
1804 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1805}
1806
a9cf55b2
PT
1807/*
1808 * Replenish runtime according to assigned quota and update expiration time.
1809 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1810 * additional synchronization around rq->lock.
1811 *
1812 * requires cfs_b->lock
1813 */
029632fb 1814void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
1815{
1816 u64 now;
1817
1818 if (cfs_b->quota == RUNTIME_INF)
1819 return;
1820
1821 now = sched_clock_cpu(smp_processor_id());
1822 cfs_b->runtime = cfs_b->quota;
1823 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1824}
1825
029632fb
PZ
1826static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1827{
1828 return &tg->cfs_bandwidth;
1829}
1830
f1b17280
PT
1831/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
1832static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
1833{
1834 if (unlikely(cfs_rq->throttle_count))
1835 return cfs_rq->throttled_clock_task;
1836
1837 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
1838}
1839
85dac906
PT
1840/* returns 0 on failure to allocate runtime */
1841static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
1842{
1843 struct task_group *tg = cfs_rq->tg;
1844 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 1845 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
1846
1847 /* note: this is a positive sum as runtime_remaining <= 0 */
1848 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1849
1850 raw_spin_lock(&cfs_b->lock);
1851 if (cfs_b->quota == RUNTIME_INF)
1852 amount = min_amount;
58088ad0 1853 else {
a9cf55b2
PT
1854 /*
1855 * If the bandwidth pool has become inactive, then at least one
1856 * period must have elapsed since the last consumption.
1857 * Refresh the global state and ensure bandwidth timer becomes
1858 * active.
1859 */
1860 if (!cfs_b->timer_active) {
1861 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 1862 __start_cfs_bandwidth(cfs_b);
a9cf55b2 1863 }
58088ad0
PT
1864
1865 if (cfs_b->runtime > 0) {
1866 amount = min(cfs_b->runtime, min_amount);
1867 cfs_b->runtime -= amount;
1868 cfs_b->idle = 0;
1869 }
ec12cb7f 1870 }
a9cf55b2 1871 expires = cfs_b->runtime_expires;
ec12cb7f
PT
1872 raw_spin_unlock(&cfs_b->lock);
1873
1874 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
1875 /*
1876 * we may have advanced our local expiration to account for allowed
1877 * spread between our sched_clock and the one on which runtime was
1878 * issued.
1879 */
1880 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1881 cfs_rq->runtime_expires = expires;
85dac906
PT
1882
1883 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
1884}
1885
a9cf55b2
PT
1886/*
1887 * Note: This depends on the synchronization provided by sched_clock and the
1888 * fact that rq->clock snapshots this value.
1889 */
1890static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 1891{
a9cf55b2
PT
1892 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1893 struct rq *rq = rq_of(cfs_rq);
1894
1895 /* if the deadline is ahead of our clock, nothing to do */
1896 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
1897 return;
1898
a9cf55b2
PT
1899 if (cfs_rq->runtime_remaining < 0)
1900 return;
1901
1902 /*
1903 * If the local deadline has passed we have to consider the
1904 * possibility that our sched_clock is 'fast' and the global deadline
1905 * has not truly expired.
1906 *
1907 * Fortunately we can check determine whether this the case by checking
1908 * whether the global deadline has advanced.
1909 */
1910
1911 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1912 /* extend local deadline, drift is bounded above by 2 ticks */
1913 cfs_rq->runtime_expires += TICK_NSEC;
1914 } else {
1915 /* global deadline is ahead, expiration has passed */
1916 cfs_rq->runtime_remaining = 0;
1917 }
1918}
1919
1920static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1921 unsigned long delta_exec)
1922{
1923 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 1924 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
1925 expire_cfs_rq_runtime(cfs_rq);
1926
1927 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
1928 return;
1929
85dac906
PT
1930 /*
1931 * if we're unable to extend our runtime we resched so that the active
1932 * hierarchy can be throttled
1933 */
1934 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1935 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
1936}
1937
6c16a6dc
PZ
1938static __always_inline
1939void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 1940{
56f570e5 1941 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
1942 return;
1943
1944 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1945}
1946
85dac906
PT
1947static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1948{
56f570e5 1949 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
1950}
1951
64660c86
PT
1952/* check whether cfs_rq, or any parent, is throttled */
1953static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1954{
56f570e5 1955 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
1956}
1957
1958/*
1959 * Ensure that neither of the group entities corresponding to src_cpu or
1960 * dest_cpu are members of a throttled hierarchy when performing group
1961 * load-balance operations.
1962 */
1963static inline int throttled_lb_pair(struct task_group *tg,
1964 int src_cpu, int dest_cpu)
1965{
1966 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1967
1968 src_cfs_rq = tg->cfs_rq[src_cpu];
1969 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1970
1971 return throttled_hierarchy(src_cfs_rq) ||
1972 throttled_hierarchy(dest_cfs_rq);
1973}
1974
1975/* updated child weight may affect parent so we have to do this bottom up */
1976static int tg_unthrottle_up(struct task_group *tg, void *data)
1977{
1978 struct rq *rq = data;
1979 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1980
1981 cfs_rq->throttle_count--;
1982#ifdef CONFIG_SMP
1983 if (!cfs_rq->throttle_count) {
f1b17280
PT
1984 /* adjust cfs_rq_clock_task() */
1985 cfs_rq->throttled_clock_task_time += rq->clock_task -
1986 cfs_rq->throttled_clock_task;
64660c86
PT
1987 }
1988#endif
1989
1990 return 0;
1991}
1992
1993static int tg_throttle_down(struct task_group *tg, void *data)
1994{
1995 struct rq *rq = data;
1996 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1997
82958366
PT
1998 /* group is entering throttled state, stop time */
1999 if (!cfs_rq->throttle_count)
f1b17280 2000 cfs_rq->throttled_clock_task = rq->clock_task;
64660c86
PT
2001 cfs_rq->throttle_count++;
2002
2003 return 0;
2004}
2005
d3d9dc33 2006static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2007{
2008 struct rq *rq = rq_of(cfs_rq);
2009 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2010 struct sched_entity *se;
2011 long task_delta, dequeue = 1;
2012
2013 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2014
f1b17280 2015 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2016 rcu_read_lock();
2017 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2018 rcu_read_unlock();
85dac906
PT
2019
2020 task_delta = cfs_rq->h_nr_running;
2021 for_each_sched_entity(se) {
2022 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2023 /* throttled entity or throttle-on-deactivate */
2024 if (!se->on_rq)
2025 break;
2026
2027 if (dequeue)
2028 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2029 qcfs_rq->h_nr_running -= task_delta;
2030
2031 if (qcfs_rq->load.weight)
2032 dequeue = 0;
2033 }
2034
2035 if (!se)
2036 rq->nr_running -= task_delta;
2037
2038 cfs_rq->throttled = 1;
f1b17280 2039 cfs_rq->throttled_clock = rq->clock;
85dac906
PT
2040 raw_spin_lock(&cfs_b->lock);
2041 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2042 raw_spin_unlock(&cfs_b->lock);
2043}
2044
029632fb 2045void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2046{
2047 struct rq *rq = rq_of(cfs_rq);
2048 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2049 struct sched_entity *se;
2050 int enqueue = 1;
2051 long task_delta;
2052
2053 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2054
2055 cfs_rq->throttled = 0;
2056 raw_spin_lock(&cfs_b->lock);
f1b17280 2057 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
671fd9da
PT
2058 list_del_rcu(&cfs_rq->throttled_list);
2059 raw_spin_unlock(&cfs_b->lock);
2060
64660c86
PT
2061 update_rq_clock(rq);
2062 /* update hierarchical throttle state */
2063 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2064
671fd9da
PT
2065 if (!cfs_rq->load.weight)
2066 return;
2067
2068 task_delta = cfs_rq->h_nr_running;
2069 for_each_sched_entity(se) {
2070 if (se->on_rq)
2071 enqueue = 0;
2072
2073 cfs_rq = cfs_rq_of(se);
2074 if (enqueue)
2075 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2076 cfs_rq->h_nr_running += task_delta;
2077
2078 if (cfs_rq_throttled(cfs_rq))
2079 break;
2080 }
2081
2082 if (!se)
2083 rq->nr_running += task_delta;
2084
2085 /* determine whether we need to wake up potentially idle cpu */
2086 if (rq->curr == rq->idle && rq->cfs.nr_running)
2087 resched_task(rq->curr);
2088}
2089
2090static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2091 u64 remaining, u64 expires)
2092{
2093 struct cfs_rq *cfs_rq;
2094 u64 runtime = remaining;
2095
2096 rcu_read_lock();
2097 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2098 throttled_list) {
2099 struct rq *rq = rq_of(cfs_rq);
2100
2101 raw_spin_lock(&rq->lock);
2102 if (!cfs_rq_throttled(cfs_rq))
2103 goto next;
2104
2105 runtime = -cfs_rq->runtime_remaining + 1;
2106 if (runtime > remaining)
2107 runtime = remaining;
2108 remaining -= runtime;
2109
2110 cfs_rq->runtime_remaining += runtime;
2111 cfs_rq->runtime_expires = expires;
2112
2113 /* we check whether we're throttled above */
2114 if (cfs_rq->runtime_remaining > 0)
2115 unthrottle_cfs_rq(cfs_rq);
2116
2117next:
2118 raw_spin_unlock(&rq->lock);
2119
2120 if (!remaining)
2121 break;
2122 }
2123 rcu_read_unlock();
2124
2125 return remaining;
2126}
2127
58088ad0
PT
2128/*
2129 * Responsible for refilling a task_group's bandwidth and unthrottling its
2130 * cfs_rqs as appropriate. If there has been no activity within the last
2131 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2132 * used to track this state.
2133 */
2134static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2135{
671fd9da
PT
2136 u64 runtime, runtime_expires;
2137 int idle = 1, throttled;
58088ad0
PT
2138
2139 raw_spin_lock(&cfs_b->lock);
2140 /* no need to continue the timer with no bandwidth constraint */
2141 if (cfs_b->quota == RUNTIME_INF)
2142 goto out_unlock;
2143
671fd9da
PT
2144 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2145 /* idle depends on !throttled (for the case of a large deficit) */
2146 idle = cfs_b->idle && !throttled;
e8da1b18 2147 cfs_b->nr_periods += overrun;
671fd9da 2148
a9cf55b2
PT
2149 /* if we're going inactive then everything else can be deferred */
2150 if (idle)
2151 goto out_unlock;
2152
2153 __refill_cfs_bandwidth_runtime(cfs_b);
2154
671fd9da
PT
2155 if (!throttled) {
2156 /* mark as potentially idle for the upcoming period */
2157 cfs_b->idle = 1;
2158 goto out_unlock;
2159 }
2160
e8da1b18
NR
2161 /* account preceding periods in which throttling occurred */
2162 cfs_b->nr_throttled += overrun;
2163
671fd9da
PT
2164 /*
2165 * There are throttled entities so we must first use the new bandwidth
2166 * to unthrottle them before making it generally available. This
2167 * ensures that all existing debts will be paid before a new cfs_rq is
2168 * allowed to run.
2169 */
2170 runtime = cfs_b->runtime;
2171 runtime_expires = cfs_b->runtime_expires;
2172 cfs_b->runtime = 0;
2173
2174 /*
2175 * This check is repeated as we are holding onto the new bandwidth
2176 * while we unthrottle. This can potentially race with an unthrottled
2177 * group trying to acquire new bandwidth from the global pool.
2178 */
2179 while (throttled && runtime > 0) {
2180 raw_spin_unlock(&cfs_b->lock);
2181 /* we can't nest cfs_b->lock while distributing bandwidth */
2182 runtime = distribute_cfs_runtime(cfs_b, runtime,
2183 runtime_expires);
2184 raw_spin_lock(&cfs_b->lock);
2185
2186 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2187 }
58088ad0 2188
671fd9da
PT
2189 /* return (any) remaining runtime */
2190 cfs_b->runtime = runtime;
2191 /*
2192 * While we are ensured activity in the period following an
2193 * unthrottle, this also covers the case in which the new bandwidth is
2194 * insufficient to cover the existing bandwidth deficit. (Forcing the
2195 * timer to remain active while there are any throttled entities.)
2196 */
2197 cfs_b->idle = 0;
58088ad0
PT
2198out_unlock:
2199 if (idle)
2200 cfs_b->timer_active = 0;
2201 raw_spin_unlock(&cfs_b->lock);
2202
2203 return idle;
2204}
d3d9dc33 2205
d8b4986d
PT
2206/* a cfs_rq won't donate quota below this amount */
2207static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2208/* minimum remaining period time to redistribute slack quota */
2209static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2210/* how long we wait to gather additional slack before distributing */
2211static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2212
2213/* are we near the end of the current quota period? */
2214static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2215{
2216 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2217 u64 remaining;
2218
2219 /* if the call-back is running a quota refresh is already occurring */
2220 if (hrtimer_callback_running(refresh_timer))
2221 return 1;
2222
2223 /* is a quota refresh about to occur? */
2224 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2225 if (remaining < min_expire)
2226 return 1;
2227
2228 return 0;
2229}
2230
2231static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2232{
2233 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2234
2235 /* if there's a quota refresh soon don't bother with slack */
2236 if (runtime_refresh_within(cfs_b, min_left))
2237 return;
2238
2239 start_bandwidth_timer(&cfs_b->slack_timer,
2240 ns_to_ktime(cfs_bandwidth_slack_period));
2241}
2242
2243/* we know any runtime found here is valid as update_curr() precedes return */
2244static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2245{
2246 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2247 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2248
2249 if (slack_runtime <= 0)
2250 return;
2251
2252 raw_spin_lock(&cfs_b->lock);
2253 if (cfs_b->quota != RUNTIME_INF &&
2254 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2255 cfs_b->runtime += slack_runtime;
2256
2257 /* we are under rq->lock, defer unthrottling using a timer */
2258 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2259 !list_empty(&cfs_b->throttled_cfs_rq))
2260 start_cfs_slack_bandwidth(cfs_b);
2261 }
2262 raw_spin_unlock(&cfs_b->lock);
2263
2264 /* even if it's not valid for return we don't want to try again */
2265 cfs_rq->runtime_remaining -= slack_runtime;
2266}
2267
2268static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2269{
56f570e5
PT
2270 if (!cfs_bandwidth_used())
2271 return;
2272
fccfdc6f 2273 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2274 return;
2275
2276 __return_cfs_rq_runtime(cfs_rq);
2277}
2278
2279/*
2280 * This is done with a timer (instead of inline with bandwidth return) since
2281 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2282 */
2283static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2284{
2285 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2286 u64 expires;
2287
2288 /* confirm we're still not at a refresh boundary */
2289 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2290 return;
2291
2292 raw_spin_lock(&cfs_b->lock);
2293 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2294 runtime = cfs_b->runtime;
2295 cfs_b->runtime = 0;
2296 }
2297 expires = cfs_b->runtime_expires;
2298 raw_spin_unlock(&cfs_b->lock);
2299
2300 if (!runtime)
2301 return;
2302
2303 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2304
2305 raw_spin_lock(&cfs_b->lock);
2306 if (expires == cfs_b->runtime_expires)
2307 cfs_b->runtime = runtime;
2308 raw_spin_unlock(&cfs_b->lock);
2309}
2310
d3d9dc33
PT
2311/*
2312 * When a group wakes up we want to make sure that its quota is not already
2313 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2314 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2315 */
2316static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2317{
56f570e5
PT
2318 if (!cfs_bandwidth_used())
2319 return;
2320
d3d9dc33
PT
2321 /* an active group must be handled by the update_curr()->put() path */
2322 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2323 return;
2324
2325 /* ensure the group is not already throttled */
2326 if (cfs_rq_throttled(cfs_rq))
2327 return;
2328
2329 /* update runtime allocation */
2330 account_cfs_rq_runtime(cfs_rq, 0);
2331 if (cfs_rq->runtime_remaining <= 0)
2332 throttle_cfs_rq(cfs_rq);
2333}
2334
2335/* conditionally throttle active cfs_rq's from put_prev_entity() */
2336static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2337{
56f570e5
PT
2338 if (!cfs_bandwidth_used())
2339 return;
2340
d3d9dc33
PT
2341 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2342 return;
2343
2344 /*
2345 * it's possible for a throttled entity to be forced into a running
2346 * state (e.g. set_curr_task), in this case we're finished.
2347 */
2348 if (cfs_rq_throttled(cfs_rq))
2349 return;
2350
2351 throttle_cfs_rq(cfs_rq);
2352}
029632fb
PZ
2353
2354static inline u64 default_cfs_period(void);
2355static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2356static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2357
2358static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2359{
2360 struct cfs_bandwidth *cfs_b =
2361 container_of(timer, struct cfs_bandwidth, slack_timer);
2362 do_sched_cfs_slack_timer(cfs_b);
2363
2364 return HRTIMER_NORESTART;
2365}
2366
2367static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2368{
2369 struct cfs_bandwidth *cfs_b =
2370 container_of(timer, struct cfs_bandwidth, period_timer);
2371 ktime_t now;
2372 int overrun;
2373 int idle = 0;
2374
2375 for (;;) {
2376 now = hrtimer_cb_get_time(timer);
2377 overrun = hrtimer_forward(timer, now, cfs_b->period);
2378
2379 if (!overrun)
2380 break;
2381
2382 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2383 }
2384
2385 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2386}
2387
2388void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2389{
2390 raw_spin_lock_init(&cfs_b->lock);
2391 cfs_b->runtime = 0;
2392 cfs_b->quota = RUNTIME_INF;
2393 cfs_b->period = ns_to_ktime(default_cfs_period());
2394
2395 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2396 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2397 cfs_b->period_timer.function = sched_cfs_period_timer;
2398 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2399 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2400}
2401
2402static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2403{
2404 cfs_rq->runtime_enabled = 0;
2405 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2406}
2407
2408/* requires cfs_b->lock, may release to reprogram timer */
2409void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2410{
2411 /*
2412 * The timer may be active because we're trying to set a new bandwidth
2413 * period or because we're racing with the tear-down path
2414 * (timer_active==0 becomes visible before the hrtimer call-back
2415 * terminates). In either case we ensure that it's re-programmed
2416 */
2417 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2418 raw_spin_unlock(&cfs_b->lock);
2419 /* ensure cfs_b->lock is available while we wait */
2420 hrtimer_cancel(&cfs_b->period_timer);
2421
2422 raw_spin_lock(&cfs_b->lock);
2423 /* if someone else restarted the timer then we're done */
2424 if (cfs_b->timer_active)
2425 return;
2426 }
2427
2428 cfs_b->timer_active = 1;
2429 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2430}
2431
2432static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2433{
2434 hrtimer_cancel(&cfs_b->period_timer);
2435 hrtimer_cancel(&cfs_b->slack_timer);
2436}
2437
a4c96ae3 2438static void unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2439{
2440 struct cfs_rq *cfs_rq;
2441
2442 for_each_leaf_cfs_rq(rq, cfs_rq) {
2443 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2444
2445 if (!cfs_rq->runtime_enabled)
2446 continue;
2447
2448 /*
2449 * clock_task is not advancing so we just need to make sure
2450 * there's some valid quota amount
2451 */
2452 cfs_rq->runtime_remaining = cfs_b->quota;
2453 if (cfs_rq_throttled(cfs_rq))
2454 unthrottle_cfs_rq(cfs_rq);
2455 }
2456}
2457
2458#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2459static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2460{
2461 return rq_of(cfs_rq)->clock_task;
2462}
2463
2464static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2465 unsigned long delta_exec) {}
d3d9dc33
PT
2466static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2467static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2468static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2469
2470static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2471{
2472 return 0;
2473}
64660c86
PT
2474
2475static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2476{
2477 return 0;
2478}
2479
2480static inline int throttled_lb_pair(struct task_group *tg,
2481 int src_cpu, int dest_cpu)
2482{
2483 return 0;
2484}
029632fb
PZ
2485
2486void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2487
2488#ifdef CONFIG_FAIR_GROUP_SCHED
2489static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2490#endif
2491
029632fb
PZ
2492static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2493{
2494 return NULL;
2495}
2496static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2497static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2498
2499#endif /* CONFIG_CFS_BANDWIDTH */
2500
bf0f6f24
IM
2501/**************************************************
2502 * CFS operations on tasks:
2503 */
2504
8f4d37ec
PZ
2505#ifdef CONFIG_SCHED_HRTICK
2506static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2507{
8f4d37ec
PZ
2508 struct sched_entity *se = &p->se;
2509 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2510
2511 WARN_ON(task_rq(p) != rq);
2512
b39e66ea 2513 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2514 u64 slice = sched_slice(cfs_rq, se);
2515 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2516 s64 delta = slice - ran;
2517
2518 if (delta < 0) {
2519 if (rq->curr == p)
2520 resched_task(p);
2521 return;
2522 }
2523
2524 /*
2525 * Don't schedule slices shorter than 10000ns, that just
2526 * doesn't make sense. Rely on vruntime for fairness.
2527 */
31656519 2528 if (rq->curr != p)
157124c1 2529 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2530
31656519 2531 hrtick_start(rq, delta);
8f4d37ec
PZ
2532 }
2533}
a4c2f00f
PZ
2534
2535/*
2536 * called from enqueue/dequeue and updates the hrtick when the
2537 * current task is from our class and nr_running is low enough
2538 * to matter.
2539 */
2540static void hrtick_update(struct rq *rq)
2541{
2542 struct task_struct *curr = rq->curr;
2543
b39e66ea 2544 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2545 return;
2546
2547 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2548 hrtick_start_fair(rq, curr);
2549}
55e12e5e 2550#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2551static inline void
2552hrtick_start_fair(struct rq *rq, struct task_struct *p)
2553{
2554}
a4c2f00f
PZ
2555
2556static inline void hrtick_update(struct rq *rq)
2557{
2558}
8f4d37ec
PZ
2559#endif
2560
bf0f6f24
IM
2561/*
2562 * The enqueue_task method is called before nr_running is
2563 * increased. Here we update the fair scheduling stats and
2564 * then put the task into the rbtree:
2565 */
ea87bb78 2566static void
371fd7e7 2567enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2568{
2569 struct cfs_rq *cfs_rq;
62fb1851 2570 struct sched_entity *se = &p->se;
bf0f6f24
IM
2571
2572 for_each_sched_entity(se) {
62fb1851 2573 if (se->on_rq)
bf0f6f24
IM
2574 break;
2575 cfs_rq = cfs_rq_of(se);
88ec22d3 2576 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2577
2578 /*
2579 * end evaluation on encountering a throttled cfs_rq
2580 *
2581 * note: in the case of encountering a throttled cfs_rq we will
2582 * post the final h_nr_running increment below.
2583 */
2584 if (cfs_rq_throttled(cfs_rq))
2585 break;
953bfcd1 2586 cfs_rq->h_nr_running++;
85dac906 2587
88ec22d3 2588 flags = ENQUEUE_WAKEUP;
bf0f6f24 2589 }
8f4d37ec 2590
2069dd75 2591 for_each_sched_entity(se) {
0f317143 2592 cfs_rq = cfs_rq_of(se);
953bfcd1 2593 cfs_rq->h_nr_running++;
2069dd75 2594
85dac906
PT
2595 if (cfs_rq_throttled(cfs_rq))
2596 break;
2597
9ee474f5 2598 update_entity_load_avg(se, 1);
f269ae04 2599 update_cfs_rq_blocked_load(cfs_rq, 0);
2069dd75
PZ
2600 }
2601
18bf2805
BS
2602 if (!se) {
2603 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2604 inc_nr_running(rq);
18bf2805 2605 }
a4c2f00f 2606 hrtick_update(rq);
bf0f6f24
IM
2607}
2608
2f36825b
VP
2609static void set_next_buddy(struct sched_entity *se);
2610
bf0f6f24
IM
2611/*
2612 * The dequeue_task method is called before nr_running is
2613 * decreased. We remove the task from the rbtree and
2614 * update the fair scheduling stats:
2615 */
371fd7e7 2616static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2617{
2618 struct cfs_rq *cfs_rq;
62fb1851 2619 struct sched_entity *se = &p->se;
2f36825b 2620 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2621
2622 for_each_sched_entity(se) {
2623 cfs_rq = cfs_rq_of(se);
371fd7e7 2624 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2625
2626 /*
2627 * end evaluation on encountering a throttled cfs_rq
2628 *
2629 * note: in the case of encountering a throttled cfs_rq we will
2630 * post the final h_nr_running decrement below.
2631 */
2632 if (cfs_rq_throttled(cfs_rq))
2633 break;
953bfcd1 2634 cfs_rq->h_nr_running--;
2069dd75 2635
bf0f6f24 2636 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2637 if (cfs_rq->load.weight) {
2638 /*
2639 * Bias pick_next to pick a task from this cfs_rq, as
2640 * p is sleeping when it is within its sched_slice.
2641 */
2642 if (task_sleep && parent_entity(se))
2643 set_next_buddy(parent_entity(se));
9598c82d
PT
2644
2645 /* avoid re-evaluating load for this entity */
2646 se = parent_entity(se);
bf0f6f24 2647 break;
2f36825b 2648 }
371fd7e7 2649 flags |= DEQUEUE_SLEEP;
bf0f6f24 2650 }
8f4d37ec 2651
2069dd75 2652 for_each_sched_entity(se) {
0f317143 2653 cfs_rq = cfs_rq_of(se);
953bfcd1 2654 cfs_rq->h_nr_running--;
2069dd75 2655
85dac906
PT
2656 if (cfs_rq_throttled(cfs_rq))
2657 break;
2658
9ee474f5 2659 update_entity_load_avg(se, 1);
f269ae04 2660 update_cfs_rq_blocked_load(cfs_rq, 0);
2069dd75
PZ
2661 }
2662
18bf2805 2663 if (!se) {
85dac906 2664 dec_nr_running(rq);
18bf2805
BS
2665 update_rq_runnable_avg(rq, 1);
2666 }
a4c2f00f 2667 hrtick_update(rq);
bf0f6f24
IM
2668}
2669
e7693a36 2670#ifdef CONFIG_SMP
029632fb
PZ
2671/* Used instead of source_load when we know the type == 0 */
2672static unsigned long weighted_cpuload(const int cpu)
2673{
2674 return cpu_rq(cpu)->load.weight;
2675}
2676
2677/*
2678 * Return a low guess at the load of a migration-source cpu weighted
2679 * according to the scheduling class and "nice" value.
2680 *
2681 * We want to under-estimate the load of migration sources, to
2682 * balance conservatively.
2683 */
2684static unsigned long source_load(int cpu, int type)
2685{
2686 struct rq *rq = cpu_rq(cpu);
2687 unsigned long total = weighted_cpuload(cpu);
2688
2689 if (type == 0 || !sched_feat(LB_BIAS))
2690 return total;
2691
2692 return min(rq->cpu_load[type-1], total);
2693}
2694
2695/*
2696 * Return a high guess at the load of a migration-target cpu weighted
2697 * according to the scheduling class and "nice" value.
2698 */
2699static unsigned long target_load(int cpu, int type)
2700{
2701 struct rq *rq = cpu_rq(cpu);
2702 unsigned long total = weighted_cpuload(cpu);
2703
2704 if (type == 0 || !sched_feat(LB_BIAS))
2705 return total;
2706
2707 return max(rq->cpu_load[type-1], total);
2708}
2709
2710static unsigned long power_of(int cpu)
2711{
2712 return cpu_rq(cpu)->cpu_power;
2713}
2714
2715static unsigned long cpu_avg_load_per_task(int cpu)
2716{
2717 struct rq *rq = cpu_rq(cpu);
2718 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2719
2720 if (nr_running)
2721 return rq->load.weight / nr_running;
2722
2723 return 0;
2724}
2725
098fb9db 2726
74f8e4b2 2727static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2728{
2729 struct sched_entity *se = &p->se;
2730 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2731 u64 min_vruntime;
2732
2733#ifndef CONFIG_64BIT
2734 u64 min_vruntime_copy;
88ec22d3 2735
3fe1698b
PZ
2736 do {
2737 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2738 smp_rmb();
2739 min_vruntime = cfs_rq->min_vruntime;
2740 } while (min_vruntime != min_vruntime_copy);
2741#else
2742 min_vruntime = cfs_rq->min_vruntime;
2743#endif
88ec22d3 2744
3fe1698b 2745 se->vruntime -= min_vruntime;
88ec22d3
PZ
2746}
2747
bb3469ac 2748#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2749/*
2750 * effective_load() calculates the load change as seen from the root_task_group
2751 *
2752 * Adding load to a group doesn't make a group heavier, but can cause movement
2753 * of group shares between cpus. Assuming the shares were perfectly aligned one
2754 * can calculate the shift in shares.
cf5f0acf
PZ
2755 *
2756 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2757 * on this @cpu and results in a total addition (subtraction) of @wg to the
2758 * total group weight.
2759 *
2760 * Given a runqueue weight distribution (rw_i) we can compute a shares
2761 * distribution (s_i) using:
2762 *
2763 * s_i = rw_i / \Sum rw_j (1)
2764 *
2765 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2766 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2767 * shares distribution (s_i):
2768 *
2769 * rw_i = { 2, 4, 1, 0 }
2770 * s_i = { 2/7, 4/7, 1/7, 0 }
2771 *
2772 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2773 * task used to run on and the CPU the waker is running on), we need to
2774 * compute the effect of waking a task on either CPU and, in case of a sync
2775 * wakeup, compute the effect of the current task going to sleep.
2776 *
2777 * So for a change of @wl to the local @cpu with an overall group weight change
2778 * of @wl we can compute the new shares distribution (s'_i) using:
2779 *
2780 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2781 *
2782 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2783 * differences in waking a task to CPU 0. The additional task changes the
2784 * weight and shares distributions like:
2785 *
2786 * rw'_i = { 3, 4, 1, 0 }
2787 * s'_i = { 3/8, 4/8, 1/8, 0 }
2788 *
2789 * We can then compute the difference in effective weight by using:
2790 *
2791 * dw_i = S * (s'_i - s_i) (3)
2792 *
2793 * Where 'S' is the group weight as seen by its parent.
2794 *
2795 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2796 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2797 * 4/7) times the weight of the group.
f5bfb7d9 2798 */
2069dd75 2799static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 2800{
4be9daaa 2801 struct sched_entity *se = tg->se[cpu];
f1d239f7 2802
cf5f0acf 2803 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
2804 return wl;
2805
4be9daaa 2806 for_each_sched_entity(se) {
cf5f0acf 2807 long w, W;
4be9daaa 2808
977dda7c 2809 tg = se->my_q->tg;
bb3469ac 2810
cf5f0acf
PZ
2811 /*
2812 * W = @wg + \Sum rw_j
2813 */
2814 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 2815
cf5f0acf
PZ
2816 /*
2817 * w = rw_i + @wl
2818 */
2819 w = se->my_q->load.weight + wl;
940959e9 2820
cf5f0acf
PZ
2821 /*
2822 * wl = S * s'_i; see (2)
2823 */
2824 if (W > 0 && w < W)
2825 wl = (w * tg->shares) / W;
977dda7c
PT
2826 else
2827 wl = tg->shares;
940959e9 2828
cf5f0acf
PZ
2829 /*
2830 * Per the above, wl is the new se->load.weight value; since
2831 * those are clipped to [MIN_SHARES, ...) do so now. See
2832 * calc_cfs_shares().
2833 */
977dda7c
PT
2834 if (wl < MIN_SHARES)
2835 wl = MIN_SHARES;
cf5f0acf
PZ
2836
2837 /*
2838 * wl = dw_i = S * (s'_i - s_i); see (3)
2839 */
977dda7c 2840 wl -= se->load.weight;
cf5f0acf
PZ
2841
2842 /*
2843 * Recursively apply this logic to all parent groups to compute
2844 * the final effective load change on the root group. Since
2845 * only the @tg group gets extra weight, all parent groups can
2846 * only redistribute existing shares. @wl is the shift in shares
2847 * resulting from this level per the above.
2848 */
4be9daaa 2849 wg = 0;
4be9daaa 2850 }
bb3469ac 2851
4be9daaa 2852 return wl;
bb3469ac
PZ
2853}
2854#else
4be9daaa 2855
83378269
PZ
2856static inline unsigned long effective_load(struct task_group *tg, int cpu,
2857 unsigned long wl, unsigned long wg)
4be9daaa 2858{
83378269 2859 return wl;
bb3469ac 2860}
4be9daaa 2861
bb3469ac
PZ
2862#endif
2863
c88d5910 2864static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 2865{
e37b6a7b 2866 s64 this_load, load;
c88d5910 2867 int idx, this_cpu, prev_cpu;
098fb9db 2868 unsigned long tl_per_task;
c88d5910 2869 struct task_group *tg;
83378269 2870 unsigned long weight;
b3137bc8 2871 int balanced;
098fb9db 2872
c88d5910
PZ
2873 idx = sd->wake_idx;
2874 this_cpu = smp_processor_id();
2875 prev_cpu = task_cpu(p);
2876 load = source_load(prev_cpu, idx);
2877 this_load = target_load(this_cpu, idx);
098fb9db 2878
b3137bc8
MG
2879 /*
2880 * If sync wakeup then subtract the (maximum possible)
2881 * effect of the currently running task from the load
2882 * of the current CPU:
2883 */
83378269
PZ
2884 if (sync) {
2885 tg = task_group(current);
2886 weight = current->se.load.weight;
2887
c88d5910 2888 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
2889 load += effective_load(tg, prev_cpu, 0, -weight);
2890 }
b3137bc8 2891
83378269
PZ
2892 tg = task_group(p);
2893 weight = p->se.load.weight;
b3137bc8 2894
71a29aa7
PZ
2895 /*
2896 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
2897 * due to the sync cause above having dropped this_load to 0, we'll
2898 * always have an imbalance, but there's really nothing you can do
2899 * about that, so that's good too.
71a29aa7
PZ
2900 *
2901 * Otherwise check if either cpus are near enough in load to allow this
2902 * task to be woken on this_cpu.
2903 */
e37b6a7b
PT
2904 if (this_load > 0) {
2905 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
2906
2907 this_eff_load = 100;
2908 this_eff_load *= power_of(prev_cpu);
2909 this_eff_load *= this_load +
2910 effective_load(tg, this_cpu, weight, weight);
2911
2912 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2913 prev_eff_load *= power_of(this_cpu);
2914 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2915
2916 balanced = this_eff_load <= prev_eff_load;
2917 } else
2918 balanced = true;
b3137bc8 2919
098fb9db 2920 /*
4ae7d5ce
IM
2921 * If the currently running task will sleep within
2922 * a reasonable amount of time then attract this newly
2923 * woken task:
098fb9db 2924 */
2fb7635c
PZ
2925 if (sync && balanced)
2926 return 1;
098fb9db 2927
41acab88 2928 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
2929 tl_per_task = cpu_avg_load_per_task(this_cpu);
2930
c88d5910
PZ
2931 if (balanced ||
2932 (this_load <= load &&
2933 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
2934 /*
2935 * This domain has SD_WAKE_AFFINE and
2936 * p is cache cold in this domain, and
2937 * there is no bad imbalance.
2938 */
c88d5910 2939 schedstat_inc(sd, ttwu_move_affine);
41acab88 2940 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
2941
2942 return 1;
2943 }
2944 return 0;
2945}
2946
aaee1203
PZ
2947/*
2948 * find_idlest_group finds and returns the least busy CPU group within the
2949 * domain.
2950 */
2951static struct sched_group *
78e7ed53 2952find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 2953 int this_cpu, int load_idx)
e7693a36 2954{
b3bd3de6 2955 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 2956 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 2957 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 2958
aaee1203
PZ
2959 do {
2960 unsigned long load, avg_load;
2961 int local_group;
2962 int i;
e7693a36 2963
aaee1203
PZ
2964 /* Skip over this group if it has no CPUs allowed */
2965 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 2966 tsk_cpus_allowed(p)))
aaee1203
PZ
2967 continue;
2968
2969 local_group = cpumask_test_cpu(this_cpu,
2970 sched_group_cpus(group));
2971
2972 /* Tally up the load of all CPUs in the group */
2973 avg_load = 0;
2974
2975 for_each_cpu(i, sched_group_cpus(group)) {
2976 /* Bias balancing toward cpus of our domain */
2977 if (local_group)
2978 load = source_load(i, load_idx);
2979 else
2980 load = target_load(i, load_idx);
2981
2982 avg_load += load;
2983 }
2984
2985 /* Adjust by relative CPU power of the group */
9c3f75cb 2986 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
2987
2988 if (local_group) {
2989 this_load = avg_load;
aaee1203
PZ
2990 } else if (avg_load < min_load) {
2991 min_load = avg_load;
2992 idlest = group;
2993 }
2994 } while (group = group->next, group != sd->groups);
2995
2996 if (!idlest || 100*this_load < imbalance*min_load)
2997 return NULL;
2998 return idlest;
2999}
3000
3001/*
3002 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3003 */
3004static int
3005find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3006{
3007 unsigned long load, min_load = ULONG_MAX;
3008 int idlest = -1;
3009 int i;
3010
3011 /* Traverse only the allowed CPUs */
fa17b507 3012 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3013 load = weighted_cpuload(i);
3014
3015 if (load < min_load || (load == min_load && i == this_cpu)) {
3016 min_load = load;
3017 idlest = i;
e7693a36
GH
3018 }
3019 }
3020
aaee1203
PZ
3021 return idlest;
3022}
e7693a36 3023
a50bde51
PZ
3024/*
3025 * Try and locate an idle CPU in the sched_domain.
3026 */
99bd5e2f 3027static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
3028{
3029 int cpu = smp_processor_id();
3030 int prev_cpu = task_cpu(p);
99bd5e2f 3031 struct sched_domain *sd;
37407ea7
LT
3032 struct sched_group *sg;
3033 int i;
a50bde51
PZ
3034
3035 /*
99bd5e2f
SS
3036 * If the task is going to be woken-up on this cpu and if it is
3037 * already idle, then it is the right target.
a50bde51 3038 */
99bd5e2f
SS
3039 if (target == cpu && idle_cpu(cpu))
3040 return cpu;
3041
3042 /*
3043 * If the task is going to be woken-up on the cpu where it previously
3044 * ran and if it is currently idle, then it the right target.
3045 */
3046 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 3047 return prev_cpu;
a50bde51
PZ
3048
3049 /*
37407ea7 3050 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3051 */
518cd623 3052 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3053 for_each_lower_domain(sd) {
37407ea7
LT
3054 sg = sd->groups;
3055 do {
3056 if (!cpumask_intersects(sched_group_cpus(sg),
3057 tsk_cpus_allowed(p)))
3058 goto next;
3059
3060 for_each_cpu(i, sched_group_cpus(sg)) {
3061 if (!idle_cpu(i))
3062 goto next;
3063 }
970e1789 3064
37407ea7
LT
3065 target = cpumask_first_and(sched_group_cpus(sg),
3066 tsk_cpus_allowed(p));
3067 goto done;
3068next:
3069 sg = sg->next;
3070 } while (sg != sd->groups);
3071 }
3072done:
a50bde51
PZ
3073 return target;
3074}
3075
aaee1203
PZ
3076/*
3077 * sched_balance_self: balance the current task (running on cpu) in domains
3078 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3079 * SD_BALANCE_EXEC.
3080 *
3081 * Balance, ie. select the least loaded group.
3082 *
3083 * Returns the target CPU number, or the same CPU if no balancing is needed.
3084 *
3085 * preempt must be disabled.
3086 */
0017d735 3087static int
7608dec2 3088select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3089{
29cd8bae 3090 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3091 int cpu = smp_processor_id();
3092 int prev_cpu = task_cpu(p);
3093 int new_cpu = cpu;
99bd5e2f 3094 int want_affine = 0;
5158f4e4 3095 int sync = wake_flags & WF_SYNC;
c88d5910 3096
29baa747 3097 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3098 return prev_cpu;
3099
0763a660 3100 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3101 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3102 want_affine = 1;
3103 new_cpu = prev_cpu;
3104 }
aaee1203 3105
dce840a0 3106 rcu_read_lock();
aaee1203 3107 for_each_domain(cpu, tmp) {
e4f42888
PZ
3108 if (!(tmp->flags & SD_LOAD_BALANCE))
3109 continue;
3110
fe3bcfe1 3111 /*
99bd5e2f
SS
3112 * If both cpu and prev_cpu are part of this domain,
3113 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3114 */
99bd5e2f
SS
3115 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3116 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3117 affine_sd = tmp;
29cd8bae 3118 break;
f03542a7 3119 }
29cd8bae 3120
f03542a7 3121 if (tmp->flags & sd_flag)
29cd8bae
PZ
3122 sd = tmp;
3123 }
3124
8b911acd 3125 if (affine_sd) {
f03542a7 3126 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3127 prev_cpu = cpu;
3128
3129 new_cpu = select_idle_sibling(p, prev_cpu);
3130 goto unlock;
8b911acd 3131 }
e7693a36 3132
aaee1203 3133 while (sd) {
5158f4e4 3134 int load_idx = sd->forkexec_idx;
aaee1203 3135 struct sched_group *group;
c88d5910 3136 int weight;
098fb9db 3137
0763a660 3138 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3139 sd = sd->child;
3140 continue;
3141 }
098fb9db 3142
5158f4e4
PZ
3143 if (sd_flag & SD_BALANCE_WAKE)
3144 load_idx = sd->wake_idx;
098fb9db 3145
5158f4e4 3146 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3147 if (!group) {
3148 sd = sd->child;
3149 continue;
3150 }
4ae7d5ce 3151
d7c33c49 3152 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3153 if (new_cpu == -1 || new_cpu == cpu) {
3154 /* Now try balancing at a lower domain level of cpu */
3155 sd = sd->child;
3156 continue;
e7693a36 3157 }
aaee1203
PZ
3158
3159 /* Now try balancing at a lower domain level of new_cpu */
3160 cpu = new_cpu;
669c55e9 3161 weight = sd->span_weight;
aaee1203
PZ
3162 sd = NULL;
3163 for_each_domain(cpu, tmp) {
669c55e9 3164 if (weight <= tmp->span_weight)
aaee1203 3165 break;
0763a660 3166 if (tmp->flags & sd_flag)
aaee1203
PZ
3167 sd = tmp;
3168 }
3169 /* while loop will break here if sd == NULL */
e7693a36 3170 }
dce840a0
PZ
3171unlock:
3172 rcu_read_unlock();
e7693a36 3173
c88d5910 3174 return new_cpu;
e7693a36 3175}
0a74bef8 3176
f4e26b12
PT
3177/*
3178 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3179 * removed when useful for applications beyond shares distribution (e.g.
3180 * load-balance).
3181 */
3182#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8
PT
3183/*
3184 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3185 * cfs_rq_of(p) references at time of call are still valid and identify the
3186 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3187 * other assumptions, including the state of rq->lock, should be made.
3188 */
3189static void
3190migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3191{
aff3e498
PT
3192 struct sched_entity *se = &p->se;
3193 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3194
3195 /*
3196 * Load tracking: accumulate removed load so that it can be processed
3197 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3198 * to blocked load iff they have a positive decay-count. It can never
3199 * be negative here since on-rq tasks have decay-count == 0.
3200 */
3201 if (se->avg.decay_count) {
3202 se->avg.decay_count = -__synchronize_entity_decay(se);
3203 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3204 }
0a74bef8 3205}
f4e26b12 3206#endif
e7693a36
GH
3207#endif /* CONFIG_SMP */
3208
e52fb7c0
PZ
3209static unsigned long
3210wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3211{
3212 unsigned long gran = sysctl_sched_wakeup_granularity;
3213
3214 /*
e52fb7c0
PZ
3215 * Since its curr running now, convert the gran from real-time
3216 * to virtual-time in his units.
13814d42
MG
3217 *
3218 * By using 'se' instead of 'curr' we penalize light tasks, so
3219 * they get preempted easier. That is, if 'se' < 'curr' then
3220 * the resulting gran will be larger, therefore penalizing the
3221 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3222 * be smaller, again penalizing the lighter task.
3223 *
3224 * This is especially important for buddies when the leftmost
3225 * task is higher priority than the buddy.
0bbd3336 3226 */
f4ad9bd2 3227 return calc_delta_fair(gran, se);
0bbd3336
PZ
3228}
3229
464b7527
PZ
3230/*
3231 * Should 'se' preempt 'curr'.
3232 *
3233 * |s1
3234 * |s2
3235 * |s3
3236 * g
3237 * |<--->|c
3238 *
3239 * w(c, s1) = -1
3240 * w(c, s2) = 0
3241 * w(c, s3) = 1
3242 *
3243 */
3244static int
3245wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3246{
3247 s64 gran, vdiff = curr->vruntime - se->vruntime;
3248
3249 if (vdiff <= 0)
3250 return -1;
3251
e52fb7c0 3252 gran = wakeup_gran(curr, se);
464b7527
PZ
3253 if (vdiff > gran)
3254 return 1;
3255
3256 return 0;
3257}
3258
02479099
PZ
3259static void set_last_buddy(struct sched_entity *se)
3260{
69c80f3e
VP
3261 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3262 return;
3263
3264 for_each_sched_entity(se)
3265 cfs_rq_of(se)->last = se;
02479099
PZ
3266}
3267
3268static void set_next_buddy(struct sched_entity *se)
3269{
69c80f3e
VP
3270 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3271 return;
3272
3273 for_each_sched_entity(se)
3274 cfs_rq_of(se)->next = se;
02479099
PZ
3275}
3276
ac53db59
RR
3277static void set_skip_buddy(struct sched_entity *se)
3278{
69c80f3e
VP
3279 for_each_sched_entity(se)
3280 cfs_rq_of(se)->skip = se;
ac53db59
RR
3281}
3282
bf0f6f24
IM
3283/*
3284 * Preempt the current task with a newly woken task if needed:
3285 */
5a9b86f6 3286static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3287{
3288 struct task_struct *curr = rq->curr;
8651a86c 3289 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3290 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3291 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3292 int next_buddy_marked = 0;
bf0f6f24 3293
4ae7d5ce
IM
3294 if (unlikely(se == pse))
3295 return;
3296
5238cdd3 3297 /*
ddcdf6e7 3298 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3299 * unconditionally check_prempt_curr() after an enqueue (which may have
3300 * lead to a throttle). This both saves work and prevents false
3301 * next-buddy nomination below.
3302 */
3303 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3304 return;
3305
2f36825b 3306 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3307 set_next_buddy(pse);
2f36825b
VP
3308 next_buddy_marked = 1;
3309 }
57fdc26d 3310
aec0a514
BR
3311 /*
3312 * We can come here with TIF_NEED_RESCHED already set from new task
3313 * wake up path.
5238cdd3
PT
3314 *
3315 * Note: this also catches the edge-case of curr being in a throttled
3316 * group (e.g. via set_curr_task), since update_curr() (in the
3317 * enqueue of curr) will have resulted in resched being set. This
3318 * prevents us from potentially nominating it as a false LAST_BUDDY
3319 * below.
aec0a514
BR
3320 */
3321 if (test_tsk_need_resched(curr))
3322 return;
3323
a2f5c9ab
DH
3324 /* Idle tasks are by definition preempted by non-idle tasks. */
3325 if (unlikely(curr->policy == SCHED_IDLE) &&
3326 likely(p->policy != SCHED_IDLE))
3327 goto preempt;
3328
91c234b4 3329 /*
a2f5c9ab
DH
3330 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3331 * is driven by the tick):
91c234b4 3332 */
8ed92e51 3333 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3334 return;
bf0f6f24 3335
464b7527 3336 find_matching_se(&se, &pse);
9bbd7374 3337 update_curr(cfs_rq_of(se));
002f128b 3338 BUG_ON(!pse);
2f36825b
VP
3339 if (wakeup_preempt_entity(se, pse) == 1) {
3340 /*
3341 * Bias pick_next to pick the sched entity that is
3342 * triggering this preemption.
3343 */
3344 if (!next_buddy_marked)
3345 set_next_buddy(pse);
3a7e73a2 3346 goto preempt;
2f36825b 3347 }
464b7527 3348
3a7e73a2 3349 return;
a65ac745 3350
3a7e73a2
PZ
3351preempt:
3352 resched_task(curr);
3353 /*
3354 * Only set the backward buddy when the current task is still
3355 * on the rq. This can happen when a wakeup gets interleaved
3356 * with schedule on the ->pre_schedule() or idle_balance()
3357 * point, either of which can * drop the rq lock.
3358 *
3359 * Also, during early boot the idle thread is in the fair class,
3360 * for obvious reasons its a bad idea to schedule back to it.
3361 */
3362 if (unlikely(!se->on_rq || curr == rq->idle))
3363 return;
3364
3365 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3366 set_last_buddy(se);
bf0f6f24
IM
3367}
3368
fb8d4724 3369static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3370{
8f4d37ec 3371 struct task_struct *p;
bf0f6f24
IM
3372 struct cfs_rq *cfs_rq = &rq->cfs;
3373 struct sched_entity *se;
3374
36ace27e 3375 if (!cfs_rq->nr_running)
bf0f6f24
IM
3376 return NULL;
3377
3378 do {
9948f4b2 3379 se = pick_next_entity(cfs_rq);
f4b6755f 3380 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3381 cfs_rq = group_cfs_rq(se);
3382 } while (cfs_rq);
3383
8f4d37ec 3384 p = task_of(se);
b39e66ea
MG
3385 if (hrtick_enabled(rq))
3386 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3387
3388 return p;
bf0f6f24
IM
3389}
3390
3391/*
3392 * Account for a descheduled task:
3393 */
31ee529c 3394static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3395{
3396 struct sched_entity *se = &prev->se;
3397 struct cfs_rq *cfs_rq;
3398
3399 for_each_sched_entity(se) {
3400 cfs_rq = cfs_rq_of(se);
ab6cde26 3401 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3402 }
3403}
3404
ac53db59
RR
3405/*
3406 * sched_yield() is very simple
3407 *
3408 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3409 */
3410static void yield_task_fair(struct rq *rq)
3411{
3412 struct task_struct *curr = rq->curr;
3413 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3414 struct sched_entity *se = &curr->se;
3415
3416 /*
3417 * Are we the only task in the tree?
3418 */
3419 if (unlikely(rq->nr_running == 1))
3420 return;
3421
3422 clear_buddies(cfs_rq, se);
3423
3424 if (curr->policy != SCHED_BATCH) {
3425 update_rq_clock(rq);
3426 /*
3427 * Update run-time statistics of the 'current'.
3428 */
3429 update_curr(cfs_rq);
916671c0
MG
3430 /*
3431 * Tell update_rq_clock() that we've just updated,
3432 * so we don't do microscopic update in schedule()
3433 * and double the fastpath cost.
3434 */
3435 rq->skip_clock_update = 1;
ac53db59
RR
3436 }
3437
3438 set_skip_buddy(se);
3439}
3440
d95f4122
MG
3441static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3442{
3443 struct sched_entity *se = &p->se;
3444
5238cdd3
PT
3445 /* throttled hierarchies are not runnable */
3446 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3447 return false;
3448
3449 /* Tell the scheduler that we'd really like pse to run next. */
3450 set_next_buddy(se);
3451
d95f4122
MG
3452 yield_task_fair(rq);
3453
3454 return true;
3455}
3456
681f3e68 3457#ifdef CONFIG_SMP
bf0f6f24 3458/**************************************************
e9c84cb8
PZ
3459 * Fair scheduling class load-balancing methods.
3460 *
3461 * BASICS
3462 *
3463 * The purpose of load-balancing is to achieve the same basic fairness the
3464 * per-cpu scheduler provides, namely provide a proportional amount of compute
3465 * time to each task. This is expressed in the following equation:
3466 *
3467 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3468 *
3469 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3470 * W_i,0 is defined as:
3471 *
3472 * W_i,0 = \Sum_j w_i,j (2)
3473 *
3474 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3475 * is derived from the nice value as per prio_to_weight[].
3476 *
3477 * The weight average is an exponential decay average of the instantaneous
3478 * weight:
3479 *
3480 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3481 *
3482 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3483 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3484 * can also include other factors [XXX].
3485 *
3486 * To achieve this balance we define a measure of imbalance which follows
3487 * directly from (1):
3488 *
3489 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3490 *
3491 * We them move tasks around to minimize the imbalance. In the continuous
3492 * function space it is obvious this converges, in the discrete case we get
3493 * a few fun cases generally called infeasible weight scenarios.
3494 *
3495 * [XXX expand on:
3496 * - infeasible weights;
3497 * - local vs global optima in the discrete case. ]
3498 *
3499 *
3500 * SCHED DOMAINS
3501 *
3502 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3503 * for all i,j solution, we create a tree of cpus that follows the hardware
3504 * topology where each level pairs two lower groups (or better). This results
3505 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3506 * tree to only the first of the previous level and we decrease the frequency
3507 * of load-balance at each level inv. proportional to the number of cpus in
3508 * the groups.
3509 *
3510 * This yields:
3511 *
3512 * log_2 n 1 n
3513 * \Sum { --- * --- * 2^i } = O(n) (5)
3514 * i = 0 2^i 2^i
3515 * `- size of each group
3516 * | | `- number of cpus doing load-balance
3517 * | `- freq
3518 * `- sum over all levels
3519 *
3520 * Coupled with a limit on how many tasks we can migrate every balance pass,
3521 * this makes (5) the runtime complexity of the balancer.
3522 *
3523 * An important property here is that each CPU is still (indirectly) connected
3524 * to every other cpu in at most O(log n) steps:
3525 *
3526 * The adjacency matrix of the resulting graph is given by:
3527 *
3528 * log_2 n
3529 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3530 * k = 0
3531 *
3532 * And you'll find that:
3533 *
3534 * A^(log_2 n)_i,j != 0 for all i,j (7)
3535 *
3536 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3537 * The task movement gives a factor of O(m), giving a convergence complexity
3538 * of:
3539 *
3540 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3541 *
3542 *
3543 * WORK CONSERVING
3544 *
3545 * In order to avoid CPUs going idle while there's still work to do, new idle
3546 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3547 * tree itself instead of relying on other CPUs to bring it work.
3548 *
3549 * This adds some complexity to both (5) and (8) but it reduces the total idle
3550 * time.
3551 *
3552 * [XXX more?]
3553 *
3554 *
3555 * CGROUPS
3556 *
3557 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3558 *
3559 * s_k,i
3560 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3561 * S_k
3562 *
3563 * Where
3564 *
3565 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3566 *
3567 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3568 *
3569 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3570 * property.
3571 *
3572 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3573 * rewrite all of this once again.]
3574 */
bf0f6f24 3575
ed387b78
HS
3576static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3577
ddcdf6e7 3578#define LBF_ALL_PINNED 0x01
367456c7 3579#define LBF_NEED_BREAK 0x02
88b8dac0 3580#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3581
3582struct lb_env {
3583 struct sched_domain *sd;
3584
ddcdf6e7 3585 struct rq *src_rq;
85c1e7da 3586 int src_cpu;
ddcdf6e7
PZ
3587
3588 int dst_cpu;
3589 struct rq *dst_rq;
3590
88b8dac0
SV
3591 struct cpumask *dst_grpmask;
3592 int new_dst_cpu;
ddcdf6e7 3593 enum cpu_idle_type idle;
bd939f45 3594 long imbalance;
b9403130
MW
3595 /* The set of CPUs under consideration for load-balancing */
3596 struct cpumask *cpus;
3597
ddcdf6e7 3598 unsigned int flags;
367456c7
PZ
3599
3600 unsigned int loop;
3601 unsigned int loop_break;
3602 unsigned int loop_max;
ddcdf6e7
PZ
3603};
3604
1e3c88bd 3605/*
ddcdf6e7 3606 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3607 * Both runqueues must be locked.
3608 */
ddcdf6e7 3609static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3610{
ddcdf6e7
PZ
3611 deactivate_task(env->src_rq, p, 0);
3612 set_task_cpu(p, env->dst_cpu);
3613 activate_task(env->dst_rq, p, 0);
3614 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3615}
3616
029632fb
PZ
3617/*
3618 * Is this task likely cache-hot:
3619 */
3620static int
3621task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3622{
3623 s64 delta;
3624
3625 if (p->sched_class != &fair_sched_class)
3626 return 0;
3627
3628 if (unlikely(p->policy == SCHED_IDLE))
3629 return 0;
3630
3631 /*
3632 * Buddy candidates are cache hot:
3633 */
3634 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3635 (&p->se == cfs_rq_of(&p->se)->next ||
3636 &p->se == cfs_rq_of(&p->se)->last))
3637 return 1;
3638
3639 if (sysctl_sched_migration_cost == -1)
3640 return 1;
3641 if (sysctl_sched_migration_cost == 0)
3642 return 0;
3643
3644 delta = now - p->se.exec_start;
3645
3646 return delta < (s64)sysctl_sched_migration_cost;
3647}
3648
1e3c88bd
PZ
3649/*
3650 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3651 */
3652static
8e45cb54 3653int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3654{
3655 int tsk_cache_hot = 0;
3656 /*
3657 * We do not migrate tasks that are:
3658 * 1) running (obviously), or
3659 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3660 * 3) are cache-hot on their current CPU.
3661 */
ddcdf6e7 3662 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3663 int new_dst_cpu;
3664
41acab88 3665 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3666
3667 /*
3668 * Remember if this task can be migrated to any other cpu in
3669 * our sched_group. We may want to revisit it if we couldn't
3670 * meet load balance goals by pulling other tasks on src_cpu.
3671 *
3672 * Also avoid computing new_dst_cpu if we have already computed
3673 * one in current iteration.
3674 */
3675 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3676 return 0;
3677
3678 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3679 tsk_cpus_allowed(p));
3680 if (new_dst_cpu < nr_cpu_ids) {
3681 env->flags |= LBF_SOME_PINNED;
3682 env->new_dst_cpu = new_dst_cpu;
3683 }
1e3c88bd
PZ
3684 return 0;
3685 }
88b8dac0
SV
3686
3687 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3688 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3689
ddcdf6e7 3690 if (task_running(env->src_rq, p)) {
41acab88 3691 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3692 return 0;
3693 }
3694
3695 /*
3696 * Aggressive migration if:
3697 * 1) task is cache cold, or
3698 * 2) too many balance attempts have failed.
3699 */
3700
ddcdf6e7 3701 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3702 if (!tsk_cache_hot ||
8e45cb54 3703 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
1e3c88bd
PZ
3704#ifdef CONFIG_SCHEDSTATS
3705 if (tsk_cache_hot) {
8e45cb54 3706 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3707 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
3708 }
3709#endif
3710 return 1;
3711 }
3712
3713 if (tsk_cache_hot) {
41acab88 3714 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
3715 return 0;
3716 }
3717 return 1;
3718}
3719
897c395f
PZ
3720/*
3721 * move_one_task tries to move exactly one task from busiest to this_rq, as
3722 * part of active balancing operations within "domain".
3723 * Returns 1 if successful and 0 otherwise.
3724 *
3725 * Called with both runqueues locked.
3726 */
8e45cb54 3727static int move_one_task(struct lb_env *env)
897c395f
PZ
3728{
3729 struct task_struct *p, *n;
897c395f 3730
367456c7
PZ
3731 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3732 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3733 continue;
897c395f 3734
367456c7
PZ
3735 if (!can_migrate_task(p, env))
3736 continue;
897c395f 3737
367456c7
PZ
3738 move_task(p, env);
3739 /*
3740 * Right now, this is only the second place move_task()
3741 * is called, so we can safely collect move_task()
3742 * stats here rather than inside move_task().
3743 */
3744 schedstat_inc(env->sd, lb_gained[env->idle]);
3745 return 1;
897c395f 3746 }
897c395f
PZ
3747 return 0;
3748}
3749
367456c7
PZ
3750static unsigned long task_h_load(struct task_struct *p);
3751
eb95308e
PZ
3752static const unsigned int sched_nr_migrate_break = 32;
3753
5d6523eb 3754/*
bd939f45 3755 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3756 * this_rq, as part of a balancing operation within domain "sd".
3757 * Returns 1 if successful and 0 otherwise.
3758 *
3759 * Called with both runqueues locked.
3760 */
3761static int move_tasks(struct lb_env *env)
1e3c88bd 3762{
5d6523eb
PZ
3763 struct list_head *tasks = &env->src_rq->cfs_tasks;
3764 struct task_struct *p;
367456c7
PZ
3765 unsigned long load;
3766 int pulled = 0;
1e3c88bd 3767
bd939f45 3768 if (env->imbalance <= 0)
5d6523eb 3769 return 0;
1e3c88bd 3770
5d6523eb
PZ
3771 while (!list_empty(tasks)) {
3772 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 3773
367456c7
PZ
3774 env->loop++;
3775 /* We've more or less seen every task there is, call it quits */
5d6523eb 3776 if (env->loop > env->loop_max)
367456c7 3777 break;
5d6523eb
PZ
3778
3779 /* take a breather every nr_migrate tasks */
367456c7 3780 if (env->loop > env->loop_break) {
eb95308e 3781 env->loop_break += sched_nr_migrate_break;
8e45cb54 3782 env->flags |= LBF_NEED_BREAK;
ee00e66f 3783 break;
a195f004 3784 }
1e3c88bd 3785
5d6523eb 3786 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
3787 goto next;
3788
3789 load = task_h_load(p);
5d6523eb 3790
eb95308e 3791 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
3792 goto next;
3793
bd939f45 3794 if ((load / 2) > env->imbalance)
367456c7 3795 goto next;
1e3c88bd 3796
367456c7
PZ
3797 if (!can_migrate_task(p, env))
3798 goto next;
1e3c88bd 3799
ddcdf6e7 3800 move_task(p, env);
ee00e66f 3801 pulled++;
bd939f45 3802 env->imbalance -= load;
1e3c88bd
PZ
3803
3804#ifdef CONFIG_PREEMPT
ee00e66f
PZ
3805 /*
3806 * NEWIDLE balancing is a source of latency, so preemptible
3807 * kernels will stop after the first task is pulled to minimize
3808 * the critical section.
3809 */
5d6523eb 3810 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 3811 break;
1e3c88bd
PZ
3812#endif
3813
ee00e66f
PZ
3814 /*
3815 * We only want to steal up to the prescribed amount of
3816 * weighted load.
3817 */
bd939f45 3818 if (env->imbalance <= 0)
ee00e66f 3819 break;
367456c7
PZ
3820
3821 continue;
3822next:
5d6523eb 3823 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 3824 }
5d6523eb 3825
1e3c88bd 3826 /*
ddcdf6e7
PZ
3827 * Right now, this is one of only two places move_task() is called,
3828 * so we can safely collect move_task() stats here rather than
3829 * inside move_task().
1e3c88bd 3830 */
8e45cb54 3831 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 3832
5d6523eb 3833 return pulled;
1e3c88bd
PZ
3834}
3835
230059de 3836#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
3837/*
3838 * update tg->load_weight by folding this cpu's load_avg
3839 */
48a16753 3840static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 3841{
48a16753
PT
3842 struct sched_entity *se = tg->se[cpu];
3843 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 3844
48a16753
PT
3845 /* throttled entities do not contribute to load */
3846 if (throttled_hierarchy(cfs_rq))
3847 return;
9e3081ca 3848
aff3e498 3849 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 3850
82958366
PT
3851 if (se) {
3852 update_entity_load_avg(se, 1);
3853 /*
3854 * We pivot on our runnable average having decayed to zero for
3855 * list removal. This generally implies that all our children
3856 * have also been removed (modulo rounding error or bandwidth
3857 * control); however, such cases are rare and we can fix these
3858 * at enqueue.
3859 *
3860 * TODO: fix up out-of-order children on enqueue.
3861 */
3862 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
3863 list_del_leaf_cfs_rq(cfs_rq);
3864 } else {
48a16753 3865 struct rq *rq = rq_of(cfs_rq);
82958366
PT
3866 update_rq_runnable_avg(rq, rq->nr_running);
3867 }
9e3081ca
PZ
3868}
3869
48a16753 3870static void update_blocked_averages(int cpu)
9e3081ca 3871{
9e3081ca 3872 struct rq *rq = cpu_rq(cpu);
48a16753
PT
3873 struct cfs_rq *cfs_rq;
3874 unsigned long flags;
9e3081ca 3875
48a16753
PT
3876 raw_spin_lock_irqsave(&rq->lock, flags);
3877 update_rq_clock(rq);
9763b67f
PZ
3878 /*
3879 * Iterates the task_group tree in a bottom up fashion, see
3880 * list_add_leaf_cfs_rq() for details.
3881 */
64660c86 3882 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
3883 /*
3884 * Note: We may want to consider periodically releasing
3885 * rq->lock about these updates so that creating many task
3886 * groups does not result in continually extending hold time.
3887 */
3888 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 3889 }
48a16753
PT
3890
3891 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
3892}
3893
9763b67f
PZ
3894/*
3895 * Compute the cpu's hierarchical load factor for each task group.
3896 * This needs to be done in a top-down fashion because the load of a child
3897 * group is a fraction of its parents load.
3898 */
3899static int tg_load_down(struct task_group *tg, void *data)
3900{
3901 unsigned long load;
3902 long cpu = (long)data;
3903
3904 if (!tg->parent) {
3905 load = cpu_rq(cpu)->load.weight;
3906 } else {
3907 load = tg->parent->cfs_rq[cpu]->h_load;
3908 load *= tg->se[cpu]->load.weight;
3909 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3910 }
3911
3912 tg->cfs_rq[cpu]->h_load = load;
3913
3914 return 0;
3915}
3916
3917static void update_h_load(long cpu)
3918{
a35b6466
PZ
3919 struct rq *rq = cpu_rq(cpu);
3920 unsigned long now = jiffies;
3921
3922 if (rq->h_load_throttle == now)
3923 return;
3924
3925 rq->h_load_throttle = now;
3926
367456c7 3927 rcu_read_lock();
9763b67f 3928 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 3929 rcu_read_unlock();
9763b67f
PZ
3930}
3931
367456c7 3932static unsigned long task_h_load(struct task_struct *p)
230059de 3933{
367456c7
PZ
3934 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3935 unsigned long load;
230059de 3936
367456c7
PZ
3937 load = p->se.load.weight;
3938 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 3939
367456c7 3940 return load;
230059de
PZ
3941}
3942#else
48a16753 3943static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
3944{
3945}
3946
367456c7 3947static inline void update_h_load(long cpu)
230059de 3948{
230059de 3949}
230059de 3950
367456c7 3951static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 3952{
367456c7 3953 return p->se.load.weight;
1e3c88bd 3954}
230059de 3955#endif
1e3c88bd 3956
1e3c88bd
PZ
3957/********** Helpers for find_busiest_group ************************/
3958/*
3959 * sd_lb_stats - Structure to store the statistics of a sched_domain
3960 * during load balancing.
3961 */
3962struct sd_lb_stats {
3963 struct sched_group *busiest; /* Busiest group in this sd */
3964 struct sched_group *this; /* Local group in this sd */
3965 unsigned long total_load; /* Total load of all groups in sd */
3966 unsigned long total_pwr; /* Total power of all groups in sd */
3967 unsigned long avg_load; /* Average load across all groups in sd */
3968
3969 /** Statistics of this group */
3970 unsigned long this_load;
3971 unsigned long this_load_per_task;
3972 unsigned long this_nr_running;
fab47622 3973 unsigned long this_has_capacity;
aae6d3dd 3974 unsigned int this_idle_cpus;
1e3c88bd
PZ
3975
3976 /* Statistics of the busiest group */
aae6d3dd 3977 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
3978 unsigned long max_load;
3979 unsigned long busiest_load_per_task;
3980 unsigned long busiest_nr_running;
dd5feea1 3981 unsigned long busiest_group_capacity;
fab47622 3982 unsigned long busiest_has_capacity;
aae6d3dd 3983 unsigned int busiest_group_weight;
1e3c88bd
PZ
3984
3985 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
3986};
3987
3988/*
3989 * sg_lb_stats - stats of a sched_group required for load_balancing
3990 */
3991struct sg_lb_stats {
3992 unsigned long avg_load; /*Avg load across the CPUs of the group */
3993 unsigned long group_load; /* Total load over the CPUs of the group */
3994 unsigned long sum_nr_running; /* Nr tasks running in the group */
3995 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3996 unsigned long group_capacity;
aae6d3dd
SS
3997 unsigned long idle_cpus;
3998 unsigned long group_weight;
1e3c88bd 3999 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4000 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4001};
4002
1e3c88bd
PZ
4003/**
4004 * get_sd_load_idx - Obtain the load index for a given sched domain.
4005 * @sd: The sched_domain whose load_idx is to be obtained.
4006 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4007 */
4008static inline int get_sd_load_idx(struct sched_domain *sd,
4009 enum cpu_idle_type idle)
4010{
4011 int load_idx;
4012
4013 switch (idle) {
4014 case CPU_NOT_IDLE:
4015 load_idx = sd->busy_idx;
4016 break;
4017
4018 case CPU_NEWLY_IDLE:
4019 load_idx = sd->newidle_idx;
4020 break;
4021 default:
4022 load_idx = sd->idle_idx;
4023 break;
4024 }
4025
4026 return load_idx;
4027}
4028
1e3c88bd
PZ
4029unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4030{
1399fa78 4031 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4032}
4033
4034unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4035{
4036 return default_scale_freq_power(sd, cpu);
4037}
4038
4039unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4040{
669c55e9 4041 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4042 unsigned long smt_gain = sd->smt_gain;
4043
4044 smt_gain /= weight;
4045
4046 return smt_gain;
4047}
4048
4049unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4050{
4051 return default_scale_smt_power(sd, cpu);
4052}
4053
4054unsigned long scale_rt_power(int cpu)
4055{
4056 struct rq *rq = cpu_rq(cpu);
b654f7de 4057 u64 total, available, age_stamp, avg;
1e3c88bd 4058
b654f7de
PZ
4059 /*
4060 * Since we're reading these variables without serialization make sure
4061 * we read them once before doing sanity checks on them.
4062 */
4063 age_stamp = ACCESS_ONCE(rq->age_stamp);
4064 avg = ACCESS_ONCE(rq->rt_avg);
4065
4066 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 4067
b654f7de 4068 if (unlikely(total < avg)) {
aa483808
VP
4069 /* Ensures that power won't end up being negative */
4070 available = 0;
4071 } else {
b654f7de 4072 available = total - avg;
aa483808 4073 }
1e3c88bd 4074
1399fa78
NR
4075 if (unlikely((s64)total < SCHED_POWER_SCALE))
4076 total = SCHED_POWER_SCALE;
1e3c88bd 4077
1399fa78 4078 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4079
4080 return div_u64(available, total);
4081}
4082
4083static void update_cpu_power(struct sched_domain *sd, int cpu)
4084{
669c55e9 4085 unsigned long weight = sd->span_weight;
1399fa78 4086 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4087 struct sched_group *sdg = sd->groups;
4088
1e3c88bd
PZ
4089 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4090 if (sched_feat(ARCH_POWER))
4091 power *= arch_scale_smt_power(sd, cpu);
4092 else
4093 power *= default_scale_smt_power(sd, cpu);
4094
1399fa78 4095 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4096 }
4097
9c3f75cb 4098 sdg->sgp->power_orig = power;
9d5efe05
SV
4099
4100 if (sched_feat(ARCH_POWER))
4101 power *= arch_scale_freq_power(sd, cpu);
4102 else
4103 power *= default_scale_freq_power(sd, cpu);
4104
1399fa78 4105 power >>= SCHED_POWER_SHIFT;
9d5efe05 4106
1e3c88bd 4107 power *= scale_rt_power(cpu);
1399fa78 4108 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4109
4110 if (!power)
4111 power = 1;
4112
e51fd5e2 4113 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4114 sdg->sgp->power = power;
1e3c88bd
PZ
4115}
4116
029632fb 4117void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4118{
4119 struct sched_domain *child = sd->child;
4120 struct sched_group *group, *sdg = sd->groups;
4121 unsigned long power;
4ec4412e
VG
4122 unsigned long interval;
4123
4124 interval = msecs_to_jiffies(sd->balance_interval);
4125 interval = clamp(interval, 1UL, max_load_balance_interval);
4126 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4127
4128 if (!child) {
4129 update_cpu_power(sd, cpu);
4130 return;
4131 }
4132
4133 power = 0;
4134
74a5ce20
PZ
4135 if (child->flags & SD_OVERLAP) {
4136 /*
4137 * SD_OVERLAP domains cannot assume that child groups
4138 * span the current group.
4139 */
4140
4141 for_each_cpu(cpu, sched_group_cpus(sdg))
4142 power += power_of(cpu);
4143 } else {
4144 /*
4145 * !SD_OVERLAP domains can assume that child groups
4146 * span the current group.
4147 */
4148
4149 group = child->groups;
4150 do {
4151 power += group->sgp->power;
4152 group = group->next;
4153 } while (group != child->groups);
4154 }
1e3c88bd 4155
c3decf0d 4156 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4157}
4158
9d5efe05
SV
4159/*
4160 * Try and fix up capacity for tiny siblings, this is needed when
4161 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4162 * which on its own isn't powerful enough.
4163 *
4164 * See update_sd_pick_busiest() and check_asym_packing().
4165 */
4166static inline int
4167fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4168{
4169 /*
1399fa78 4170 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4171 */
a6c75f2f 4172 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4173 return 0;
4174
4175 /*
4176 * If ~90% of the cpu_power is still there, we're good.
4177 */
9c3f75cb 4178 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4179 return 1;
4180
4181 return 0;
4182}
4183
1e3c88bd
PZ
4184/**
4185 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4186 * @env: The load balancing environment.
1e3c88bd 4187 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4188 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4189 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4190 * @balance: Should we balance.
4191 * @sgs: variable to hold the statistics for this group.
4192 */
bd939f45
PZ
4193static inline void update_sg_lb_stats(struct lb_env *env,
4194 struct sched_group *group, int load_idx,
b9403130 4195 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4196{
e44bc5c5
PZ
4197 unsigned long nr_running, max_nr_running, min_nr_running;
4198 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4199 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4200 unsigned long avg_load_per_task = 0;
bd939f45 4201 int i;
1e3c88bd 4202
871e35bc 4203 if (local_group)
c1174876 4204 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4205
4206 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4207 max_cpu_load = 0;
4208 min_cpu_load = ~0UL;
2582f0eb 4209 max_nr_running = 0;
e44bc5c5 4210 min_nr_running = ~0UL;
1e3c88bd 4211
b9403130 4212 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4213 struct rq *rq = cpu_rq(i);
4214
e44bc5c5
PZ
4215 nr_running = rq->nr_running;
4216
1e3c88bd
PZ
4217 /* Bias balancing toward cpus of our domain */
4218 if (local_group) {
c1174876
PZ
4219 if (idle_cpu(i) && !first_idle_cpu &&
4220 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4221 first_idle_cpu = 1;
1e3c88bd
PZ
4222 balance_cpu = i;
4223 }
04f733b4
PZ
4224
4225 load = target_load(i, load_idx);
1e3c88bd
PZ
4226 } else {
4227 load = source_load(i, load_idx);
e44bc5c5 4228 if (load > max_cpu_load)
1e3c88bd
PZ
4229 max_cpu_load = load;
4230 if (min_cpu_load > load)
4231 min_cpu_load = load;
e44bc5c5
PZ
4232
4233 if (nr_running > max_nr_running)
4234 max_nr_running = nr_running;
4235 if (min_nr_running > nr_running)
4236 min_nr_running = nr_running;
1e3c88bd
PZ
4237 }
4238
4239 sgs->group_load += load;
e44bc5c5 4240 sgs->sum_nr_running += nr_running;
1e3c88bd 4241 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4242 if (idle_cpu(i))
4243 sgs->idle_cpus++;
1e3c88bd
PZ
4244 }
4245
4246 /*
4247 * First idle cpu or the first cpu(busiest) in this sched group
4248 * is eligible for doing load balancing at this and above
4249 * domains. In the newly idle case, we will allow all the cpu's
4250 * to do the newly idle load balance.
4251 */
4ec4412e 4252 if (local_group) {
bd939f45 4253 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4254 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4255 *balance = 0;
4256 return;
4257 }
bd939f45 4258 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4259 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4260 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4261 }
4262
4263 /* Adjust by relative CPU power of the group */
9c3f75cb 4264 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4265
1e3c88bd
PZ
4266 /*
4267 * Consider the group unbalanced when the imbalance is larger
866ab43e 4268 * than the average weight of a task.
1e3c88bd
PZ
4269 *
4270 * APZ: with cgroup the avg task weight can vary wildly and
4271 * might not be a suitable number - should we keep a
4272 * normalized nr_running number somewhere that negates
4273 * the hierarchy?
4274 */
dd5feea1
SS
4275 if (sgs->sum_nr_running)
4276 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4277
e44bc5c5
PZ
4278 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4279 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4280 sgs->group_imb = 1;
4281
9c3f75cb 4282 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4283 SCHED_POWER_SCALE);
9d5efe05 4284 if (!sgs->group_capacity)
bd939f45 4285 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4286 sgs->group_weight = group->group_weight;
fab47622
NR
4287
4288 if (sgs->group_capacity > sgs->sum_nr_running)
4289 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4290}
4291
532cb4c4
MN
4292/**
4293 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4294 * @env: The load balancing environment.
532cb4c4
MN
4295 * @sds: sched_domain statistics
4296 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4297 * @sgs: sched_group statistics
532cb4c4
MN
4298 *
4299 * Determine if @sg is a busier group than the previously selected
4300 * busiest group.
4301 */
bd939f45 4302static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4303 struct sd_lb_stats *sds,
4304 struct sched_group *sg,
bd939f45 4305 struct sg_lb_stats *sgs)
532cb4c4
MN
4306{
4307 if (sgs->avg_load <= sds->max_load)
4308 return false;
4309
4310 if (sgs->sum_nr_running > sgs->group_capacity)
4311 return true;
4312
4313 if (sgs->group_imb)
4314 return true;
4315
4316 /*
4317 * ASYM_PACKING needs to move all the work to the lowest
4318 * numbered CPUs in the group, therefore mark all groups
4319 * higher than ourself as busy.
4320 */
bd939f45
PZ
4321 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4322 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4323 if (!sds->busiest)
4324 return true;
4325
4326 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4327 return true;
4328 }
4329
4330 return false;
4331}
4332
1e3c88bd 4333/**
461819ac 4334 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4335 * @env: The load balancing environment.
1e3c88bd
PZ
4336 * @balance: Should we balance.
4337 * @sds: variable to hold the statistics for this sched_domain.
4338 */
bd939f45 4339static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4340 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4341{
bd939f45
PZ
4342 struct sched_domain *child = env->sd->child;
4343 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4344 struct sg_lb_stats sgs;
4345 int load_idx, prefer_sibling = 0;
4346
4347 if (child && child->flags & SD_PREFER_SIBLING)
4348 prefer_sibling = 1;
4349
bd939f45 4350 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4351
4352 do {
4353 int local_group;
4354
bd939f45 4355 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4356 memset(&sgs, 0, sizeof(sgs));
b9403130 4357 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4358
8f190fb3 4359 if (local_group && !(*balance))
1e3c88bd
PZ
4360 return;
4361
4362 sds->total_load += sgs.group_load;
9c3f75cb 4363 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4364
4365 /*
4366 * In case the child domain prefers tasks go to siblings
532cb4c4 4367 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4368 * and move all the excess tasks away. We lower the capacity
4369 * of a group only if the local group has the capacity to fit
4370 * these excess tasks, i.e. nr_running < group_capacity. The
4371 * extra check prevents the case where you always pull from the
4372 * heaviest group when it is already under-utilized (possible
4373 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4374 */
75dd321d 4375 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4376 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4377
4378 if (local_group) {
4379 sds->this_load = sgs.avg_load;
532cb4c4 4380 sds->this = sg;
1e3c88bd
PZ
4381 sds->this_nr_running = sgs.sum_nr_running;
4382 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4383 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4384 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4385 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4386 sds->max_load = sgs.avg_load;
532cb4c4 4387 sds->busiest = sg;
1e3c88bd 4388 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4389 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4390 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4391 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4392 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4393 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4394 sds->group_imb = sgs.group_imb;
4395 }
4396
532cb4c4 4397 sg = sg->next;
bd939f45 4398 } while (sg != env->sd->groups);
532cb4c4
MN
4399}
4400
532cb4c4
MN
4401/**
4402 * check_asym_packing - Check to see if the group is packed into the
4403 * sched doman.
4404 *
4405 * This is primarily intended to used at the sibling level. Some
4406 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4407 * case of POWER7, it can move to lower SMT modes only when higher
4408 * threads are idle. When in lower SMT modes, the threads will
4409 * perform better since they share less core resources. Hence when we
4410 * have idle threads, we want them to be the higher ones.
4411 *
4412 * This packing function is run on idle threads. It checks to see if
4413 * the busiest CPU in this domain (core in the P7 case) has a higher
4414 * CPU number than the packing function is being run on. Here we are
4415 * assuming lower CPU number will be equivalent to lower a SMT thread
4416 * number.
4417 *
b6b12294
MN
4418 * Returns 1 when packing is required and a task should be moved to
4419 * this CPU. The amount of the imbalance is returned in *imbalance.
4420 *
cd96891d 4421 * @env: The load balancing environment.
532cb4c4 4422 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4423 */
bd939f45 4424static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4425{
4426 int busiest_cpu;
4427
bd939f45 4428 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4429 return 0;
4430
4431 if (!sds->busiest)
4432 return 0;
4433
4434 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4435 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4436 return 0;
4437
bd939f45
PZ
4438 env->imbalance = DIV_ROUND_CLOSEST(
4439 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4440
532cb4c4 4441 return 1;
1e3c88bd
PZ
4442}
4443
4444/**
4445 * fix_small_imbalance - Calculate the minor imbalance that exists
4446 * amongst the groups of a sched_domain, during
4447 * load balancing.
cd96891d 4448 * @env: The load balancing environment.
1e3c88bd 4449 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4450 */
bd939f45
PZ
4451static inline
4452void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4453{
4454 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4455 unsigned int imbn = 2;
dd5feea1 4456 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4457
4458 if (sds->this_nr_running) {
4459 sds->this_load_per_task /= sds->this_nr_running;
4460 if (sds->busiest_load_per_task >
4461 sds->this_load_per_task)
4462 imbn = 1;
bd939f45 4463 } else {
1e3c88bd 4464 sds->this_load_per_task =
bd939f45
PZ
4465 cpu_avg_load_per_task(env->dst_cpu);
4466 }
1e3c88bd 4467
dd5feea1 4468 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4469 * SCHED_POWER_SCALE;
9c3f75cb 4470 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4471
4472 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4473 (scaled_busy_load_per_task * imbn)) {
bd939f45 4474 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4475 return;
4476 }
4477
4478 /*
4479 * OK, we don't have enough imbalance to justify moving tasks,
4480 * however we may be able to increase total CPU power used by
4481 * moving them.
4482 */
4483
9c3f75cb 4484 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4485 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4486 pwr_now += sds->this->sgp->power *
1e3c88bd 4487 min(sds->this_load_per_task, sds->this_load);
1399fa78 4488 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4489
4490 /* Amount of load we'd subtract */
1399fa78 4491 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4492 sds->busiest->sgp->power;
1e3c88bd 4493 if (sds->max_load > tmp)
9c3f75cb 4494 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4495 min(sds->busiest_load_per_task, sds->max_load - tmp);
4496
4497 /* Amount of load we'd add */
9c3f75cb 4498 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4499 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4500 tmp = (sds->max_load * sds->busiest->sgp->power) /
4501 sds->this->sgp->power;
1e3c88bd 4502 else
1399fa78 4503 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4504 sds->this->sgp->power;
4505 pwr_move += sds->this->sgp->power *
1e3c88bd 4506 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4507 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4508
4509 /* Move if we gain throughput */
4510 if (pwr_move > pwr_now)
bd939f45 4511 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4512}
4513
4514/**
4515 * calculate_imbalance - Calculate the amount of imbalance present within the
4516 * groups of a given sched_domain during load balance.
bd939f45 4517 * @env: load balance environment
1e3c88bd 4518 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4519 */
bd939f45 4520static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4521{
dd5feea1
SS
4522 unsigned long max_pull, load_above_capacity = ~0UL;
4523
4524 sds->busiest_load_per_task /= sds->busiest_nr_running;
4525 if (sds->group_imb) {
4526 sds->busiest_load_per_task =
4527 min(sds->busiest_load_per_task, sds->avg_load);
4528 }
4529
1e3c88bd
PZ
4530 /*
4531 * In the presence of smp nice balancing, certain scenarios can have
4532 * max load less than avg load(as we skip the groups at or below
4533 * its cpu_power, while calculating max_load..)
4534 */
4535 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4536 env->imbalance = 0;
4537 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4538 }
4539
dd5feea1
SS
4540 if (!sds->group_imb) {
4541 /*
4542 * Don't want to pull so many tasks that a group would go idle.
4543 */
4544 load_above_capacity = (sds->busiest_nr_running -
4545 sds->busiest_group_capacity);
4546
1399fa78 4547 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4548
9c3f75cb 4549 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4550 }
4551
4552 /*
4553 * We're trying to get all the cpus to the average_load, so we don't
4554 * want to push ourselves above the average load, nor do we wish to
4555 * reduce the max loaded cpu below the average load. At the same time,
4556 * we also don't want to reduce the group load below the group capacity
4557 * (so that we can implement power-savings policies etc). Thus we look
4558 * for the minimum possible imbalance.
4559 * Be careful of negative numbers as they'll appear as very large values
4560 * with unsigned longs.
4561 */
4562 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4563
4564 /* How much load to actually move to equalise the imbalance */
bd939f45 4565 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4566 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4567 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4568
4569 /*
4570 * if *imbalance is less than the average load per runnable task
25985edc 4571 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4572 * a think about bumping its value to force at least one task to be
4573 * moved
4574 */
bd939f45
PZ
4575 if (env->imbalance < sds->busiest_load_per_task)
4576 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4577
4578}
fab47622 4579
1e3c88bd
PZ
4580/******* find_busiest_group() helpers end here *********************/
4581
4582/**
4583 * find_busiest_group - Returns the busiest group within the sched_domain
4584 * if there is an imbalance. If there isn't an imbalance, and
4585 * the user has opted for power-savings, it returns a group whose
4586 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4587 * such a group exists.
4588 *
4589 * Also calculates the amount of weighted load which should be moved
4590 * to restore balance.
4591 *
cd96891d 4592 * @env: The load balancing environment.
1e3c88bd
PZ
4593 * @balance: Pointer to a variable indicating if this_cpu
4594 * is the appropriate cpu to perform load balancing at this_level.
4595 *
4596 * Returns: - the busiest group if imbalance exists.
4597 * - If no imbalance and user has opted for power-savings balance,
4598 * return the least loaded group whose CPUs can be
4599 * put to idle by rebalancing its tasks onto our group.
4600 */
4601static struct sched_group *
b9403130 4602find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4603{
4604 struct sd_lb_stats sds;
4605
4606 memset(&sds, 0, sizeof(sds));
4607
4608 /*
4609 * Compute the various statistics relavent for load balancing at
4610 * this level.
4611 */
b9403130 4612 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4613
cc57aa8f
PZ
4614 /*
4615 * this_cpu is not the appropriate cpu to perform load balancing at
4616 * this level.
1e3c88bd 4617 */
8f190fb3 4618 if (!(*balance))
1e3c88bd
PZ
4619 goto ret;
4620
bd939f45
PZ
4621 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4622 check_asym_packing(env, &sds))
532cb4c4
MN
4623 return sds.busiest;
4624
cc57aa8f 4625 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4626 if (!sds.busiest || sds.busiest_nr_running == 0)
4627 goto out_balanced;
4628
1399fa78 4629 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4630
866ab43e
PZ
4631 /*
4632 * If the busiest group is imbalanced the below checks don't
4633 * work because they assumes all things are equal, which typically
4634 * isn't true due to cpus_allowed constraints and the like.
4635 */
4636 if (sds.group_imb)
4637 goto force_balance;
4638
cc57aa8f 4639 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4640 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4641 !sds.busiest_has_capacity)
4642 goto force_balance;
4643
cc57aa8f
PZ
4644 /*
4645 * If the local group is more busy than the selected busiest group
4646 * don't try and pull any tasks.
4647 */
1e3c88bd
PZ
4648 if (sds.this_load >= sds.max_load)
4649 goto out_balanced;
4650
cc57aa8f
PZ
4651 /*
4652 * Don't pull any tasks if this group is already above the domain
4653 * average load.
4654 */
1e3c88bd
PZ
4655 if (sds.this_load >= sds.avg_load)
4656 goto out_balanced;
4657
bd939f45 4658 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4659 /*
4660 * This cpu is idle. If the busiest group load doesn't
4661 * have more tasks than the number of available cpu's and
4662 * there is no imbalance between this and busiest group
4663 * wrt to idle cpu's, it is balanced.
4664 */
c186fafe 4665 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4666 sds.busiest_nr_running <= sds.busiest_group_weight)
4667 goto out_balanced;
c186fafe
PZ
4668 } else {
4669 /*
4670 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4671 * imbalance_pct to be conservative.
4672 */
bd939f45 4673 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4674 goto out_balanced;
aae6d3dd 4675 }
1e3c88bd 4676
fab47622 4677force_balance:
1e3c88bd 4678 /* Looks like there is an imbalance. Compute it */
bd939f45 4679 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4680 return sds.busiest;
4681
4682out_balanced:
1e3c88bd 4683ret:
bd939f45 4684 env->imbalance = 0;
1e3c88bd
PZ
4685 return NULL;
4686}
4687
4688/*
4689 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4690 */
bd939f45 4691static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4692 struct sched_group *group)
1e3c88bd
PZ
4693{
4694 struct rq *busiest = NULL, *rq;
4695 unsigned long max_load = 0;
4696 int i;
4697
4698 for_each_cpu(i, sched_group_cpus(group)) {
4699 unsigned long power = power_of(i);
1399fa78
NR
4700 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4701 SCHED_POWER_SCALE);
1e3c88bd
PZ
4702 unsigned long wl;
4703
9d5efe05 4704 if (!capacity)
bd939f45 4705 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4706
b9403130 4707 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4708 continue;
4709
4710 rq = cpu_rq(i);
6e40f5bb 4711 wl = weighted_cpuload(i);
1e3c88bd 4712
6e40f5bb
TG
4713 /*
4714 * When comparing with imbalance, use weighted_cpuload()
4715 * which is not scaled with the cpu power.
4716 */
bd939f45 4717 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4718 continue;
4719
6e40f5bb
TG
4720 /*
4721 * For the load comparisons with the other cpu's, consider
4722 * the weighted_cpuload() scaled with the cpu power, so that
4723 * the load can be moved away from the cpu that is potentially
4724 * running at a lower capacity.
4725 */
1399fa78 4726 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4727
1e3c88bd
PZ
4728 if (wl > max_load) {
4729 max_load = wl;
4730 busiest = rq;
4731 }
4732 }
4733
4734 return busiest;
4735}
4736
4737/*
4738 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4739 * so long as it is large enough.
4740 */
4741#define MAX_PINNED_INTERVAL 512
4742
4743/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4744DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4745
bd939f45 4746static int need_active_balance(struct lb_env *env)
1af3ed3d 4747{
bd939f45
PZ
4748 struct sched_domain *sd = env->sd;
4749
4750 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4751
4752 /*
4753 * ASYM_PACKING needs to force migrate tasks from busy but
4754 * higher numbered CPUs in order to pack all tasks in the
4755 * lowest numbered CPUs.
4756 */
bd939f45 4757 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4758 return 1;
1af3ed3d
PZ
4759 }
4760
4761 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4762}
4763
969c7921
TH
4764static int active_load_balance_cpu_stop(void *data);
4765
1e3c88bd
PZ
4766/*
4767 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4768 * tasks if there is an imbalance.
4769 */
4770static int load_balance(int this_cpu, struct rq *this_rq,
4771 struct sched_domain *sd, enum cpu_idle_type idle,
4772 int *balance)
4773{
88b8dac0
SV
4774 int ld_moved, cur_ld_moved, active_balance = 0;
4775 int lb_iterations, max_lb_iterations;
1e3c88bd 4776 struct sched_group *group;
1e3c88bd
PZ
4777 struct rq *busiest;
4778 unsigned long flags;
4779 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4780
8e45cb54
PZ
4781 struct lb_env env = {
4782 .sd = sd,
ddcdf6e7
PZ
4783 .dst_cpu = this_cpu,
4784 .dst_rq = this_rq,
88b8dac0 4785 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 4786 .idle = idle,
eb95308e 4787 .loop_break = sched_nr_migrate_break,
b9403130 4788 .cpus = cpus,
8e45cb54
PZ
4789 };
4790
1e3c88bd 4791 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 4792 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 4793
1e3c88bd
PZ
4794 schedstat_inc(sd, lb_count[idle]);
4795
4796redo:
b9403130 4797 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
4798
4799 if (*balance == 0)
4800 goto out_balanced;
4801
4802 if (!group) {
4803 schedstat_inc(sd, lb_nobusyg[idle]);
4804 goto out_balanced;
4805 }
4806
b9403130 4807 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
4808 if (!busiest) {
4809 schedstat_inc(sd, lb_nobusyq[idle]);
4810 goto out_balanced;
4811 }
4812
78feefc5 4813 BUG_ON(busiest == env.dst_rq);
1e3c88bd 4814
bd939f45 4815 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
4816
4817 ld_moved = 0;
88b8dac0 4818 lb_iterations = 1;
1e3c88bd
PZ
4819 if (busiest->nr_running > 1) {
4820 /*
4821 * Attempt to move tasks. If find_busiest_group has found
4822 * an imbalance but busiest->nr_running <= 1, the group is
4823 * still unbalanced. ld_moved simply stays zero, so it is
4824 * correctly treated as an imbalance.
4825 */
8e45cb54 4826 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
4827 env.src_cpu = busiest->cpu;
4828 env.src_rq = busiest;
4829 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 4830
a35b6466 4831 update_h_load(env.src_cpu);
5d6523eb 4832more_balance:
1e3c88bd 4833 local_irq_save(flags);
78feefc5 4834 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
4835
4836 /*
4837 * cur_ld_moved - load moved in current iteration
4838 * ld_moved - cumulative load moved across iterations
4839 */
4840 cur_ld_moved = move_tasks(&env);
4841 ld_moved += cur_ld_moved;
78feefc5 4842 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
4843 local_irq_restore(flags);
4844
5d6523eb
PZ
4845 if (env.flags & LBF_NEED_BREAK) {
4846 env.flags &= ~LBF_NEED_BREAK;
4847 goto more_balance;
4848 }
4849
1e3c88bd
PZ
4850 /*
4851 * some other cpu did the load balance for us.
4852 */
88b8dac0
SV
4853 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
4854 resched_cpu(env.dst_cpu);
4855
4856 /*
4857 * Revisit (affine) tasks on src_cpu that couldn't be moved to
4858 * us and move them to an alternate dst_cpu in our sched_group
4859 * where they can run. The upper limit on how many times we
4860 * iterate on same src_cpu is dependent on number of cpus in our
4861 * sched_group.
4862 *
4863 * This changes load balance semantics a bit on who can move
4864 * load to a given_cpu. In addition to the given_cpu itself
4865 * (or a ilb_cpu acting on its behalf where given_cpu is
4866 * nohz-idle), we now have balance_cpu in a position to move
4867 * load to given_cpu. In rare situations, this may cause
4868 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
4869 * _independently_ and at _same_ time to move some load to
4870 * given_cpu) causing exceess load to be moved to given_cpu.
4871 * This however should not happen so much in practice and
4872 * moreover subsequent load balance cycles should correct the
4873 * excess load moved.
4874 */
4875 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
4876 lb_iterations++ < max_lb_iterations) {
4877
78feefc5 4878 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
4879 env.dst_cpu = env.new_dst_cpu;
4880 env.flags &= ~LBF_SOME_PINNED;
4881 env.loop = 0;
4882 env.loop_break = sched_nr_migrate_break;
4883 /*
4884 * Go back to "more_balance" rather than "redo" since we
4885 * need to continue with same src_cpu.
4886 */
4887 goto more_balance;
4888 }
1e3c88bd
PZ
4889
4890 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 4891 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 4892 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
4893 if (!cpumask_empty(cpus)) {
4894 env.loop = 0;
4895 env.loop_break = sched_nr_migrate_break;
1e3c88bd 4896 goto redo;
bbf18b19 4897 }
1e3c88bd
PZ
4898 goto out_balanced;
4899 }
4900 }
4901
4902 if (!ld_moved) {
4903 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
4904 /*
4905 * Increment the failure counter only on periodic balance.
4906 * We do not want newidle balance, which can be very
4907 * frequent, pollute the failure counter causing
4908 * excessive cache_hot migrations and active balances.
4909 */
4910 if (idle != CPU_NEWLY_IDLE)
4911 sd->nr_balance_failed++;
1e3c88bd 4912
bd939f45 4913 if (need_active_balance(&env)) {
1e3c88bd
PZ
4914 raw_spin_lock_irqsave(&busiest->lock, flags);
4915
969c7921
TH
4916 /* don't kick the active_load_balance_cpu_stop,
4917 * if the curr task on busiest cpu can't be
4918 * moved to this_cpu
1e3c88bd
PZ
4919 */
4920 if (!cpumask_test_cpu(this_cpu,
fa17b507 4921 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
4922 raw_spin_unlock_irqrestore(&busiest->lock,
4923 flags);
8e45cb54 4924 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
4925 goto out_one_pinned;
4926 }
4927
969c7921
TH
4928 /*
4929 * ->active_balance synchronizes accesses to
4930 * ->active_balance_work. Once set, it's cleared
4931 * only after active load balance is finished.
4932 */
1e3c88bd
PZ
4933 if (!busiest->active_balance) {
4934 busiest->active_balance = 1;
4935 busiest->push_cpu = this_cpu;
4936 active_balance = 1;
4937 }
4938 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 4939
bd939f45 4940 if (active_balance) {
969c7921
TH
4941 stop_one_cpu_nowait(cpu_of(busiest),
4942 active_load_balance_cpu_stop, busiest,
4943 &busiest->active_balance_work);
bd939f45 4944 }
1e3c88bd
PZ
4945
4946 /*
4947 * We've kicked active balancing, reset the failure
4948 * counter.
4949 */
4950 sd->nr_balance_failed = sd->cache_nice_tries+1;
4951 }
4952 } else
4953 sd->nr_balance_failed = 0;
4954
4955 if (likely(!active_balance)) {
4956 /* We were unbalanced, so reset the balancing interval */
4957 sd->balance_interval = sd->min_interval;
4958 } else {
4959 /*
4960 * If we've begun active balancing, start to back off. This
4961 * case may not be covered by the all_pinned logic if there
4962 * is only 1 task on the busy runqueue (because we don't call
4963 * move_tasks).
4964 */
4965 if (sd->balance_interval < sd->max_interval)
4966 sd->balance_interval *= 2;
4967 }
4968
1e3c88bd
PZ
4969 goto out;
4970
4971out_balanced:
4972 schedstat_inc(sd, lb_balanced[idle]);
4973
4974 sd->nr_balance_failed = 0;
4975
4976out_one_pinned:
4977 /* tune up the balancing interval */
8e45cb54 4978 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 4979 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
4980 (sd->balance_interval < sd->max_interval))
4981 sd->balance_interval *= 2;
4982
46e49b38 4983 ld_moved = 0;
1e3c88bd 4984out:
1e3c88bd
PZ
4985 return ld_moved;
4986}
4987
1e3c88bd
PZ
4988/*
4989 * idle_balance is called by schedule() if this_cpu is about to become
4990 * idle. Attempts to pull tasks from other CPUs.
4991 */
029632fb 4992void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
4993{
4994 struct sched_domain *sd;
4995 int pulled_task = 0;
4996 unsigned long next_balance = jiffies + HZ;
4997
4998 this_rq->idle_stamp = this_rq->clock;
4999
5000 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5001 return;
5002
18bf2805
BS
5003 update_rq_runnable_avg(this_rq, 1);
5004
f492e12e
PZ
5005 /*
5006 * Drop the rq->lock, but keep IRQ/preempt disabled.
5007 */
5008 raw_spin_unlock(&this_rq->lock);
5009
48a16753 5010 update_blocked_averages(this_cpu);
dce840a0 5011 rcu_read_lock();
1e3c88bd
PZ
5012 for_each_domain(this_cpu, sd) {
5013 unsigned long interval;
f492e12e 5014 int balance = 1;
1e3c88bd
PZ
5015
5016 if (!(sd->flags & SD_LOAD_BALANCE))
5017 continue;
5018
f492e12e 5019 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5020 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5021 pulled_task = load_balance(this_cpu, this_rq,
5022 sd, CPU_NEWLY_IDLE, &balance);
5023 }
1e3c88bd
PZ
5024
5025 interval = msecs_to_jiffies(sd->balance_interval);
5026 if (time_after(next_balance, sd->last_balance + interval))
5027 next_balance = sd->last_balance + interval;
d5ad140b
NR
5028 if (pulled_task) {
5029 this_rq->idle_stamp = 0;
1e3c88bd 5030 break;
d5ad140b 5031 }
1e3c88bd 5032 }
dce840a0 5033 rcu_read_unlock();
f492e12e
PZ
5034
5035 raw_spin_lock(&this_rq->lock);
5036
1e3c88bd
PZ
5037 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5038 /*
5039 * We are going idle. next_balance may be set based on
5040 * a busy processor. So reset next_balance.
5041 */
5042 this_rq->next_balance = next_balance;
5043 }
5044}
5045
5046/*
969c7921
TH
5047 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5048 * running tasks off the busiest CPU onto idle CPUs. It requires at
5049 * least 1 task to be running on each physical CPU where possible, and
5050 * avoids physical / logical imbalances.
1e3c88bd 5051 */
969c7921 5052static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5053{
969c7921
TH
5054 struct rq *busiest_rq = data;
5055 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5056 int target_cpu = busiest_rq->push_cpu;
969c7921 5057 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5058 struct sched_domain *sd;
969c7921
TH
5059
5060 raw_spin_lock_irq(&busiest_rq->lock);
5061
5062 /* make sure the requested cpu hasn't gone down in the meantime */
5063 if (unlikely(busiest_cpu != smp_processor_id() ||
5064 !busiest_rq->active_balance))
5065 goto out_unlock;
1e3c88bd
PZ
5066
5067 /* Is there any task to move? */
5068 if (busiest_rq->nr_running <= 1)
969c7921 5069 goto out_unlock;
1e3c88bd
PZ
5070
5071 /*
5072 * This condition is "impossible", if it occurs
5073 * we need to fix it. Originally reported by
5074 * Bjorn Helgaas on a 128-cpu setup.
5075 */
5076 BUG_ON(busiest_rq == target_rq);
5077
5078 /* move a task from busiest_rq to target_rq */
5079 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5080
5081 /* Search for an sd spanning us and the target CPU. */
dce840a0 5082 rcu_read_lock();
1e3c88bd
PZ
5083 for_each_domain(target_cpu, sd) {
5084 if ((sd->flags & SD_LOAD_BALANCE) &&
5085 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5086 break;
5087 }
5088
5089 if (likely(sd)) {
8e45cb54
PZ
5090 struct lb_env env = {
5091 .sd = sd,
ddcdf6e7
PZ
5092 .dst_cpu = target_cpu,
5093 .dst_rq = target_rq,
5094 .src_cpu = busiest_rq->cpu,
5095 .src_rq = busiest_rq,
8e45cb54
PZ
5096 .idle = CPU_IDLE,
5097 };
5098
1e3c88bd
PZ
5099 schedstat_inc(sd, alb_count);
5100
8e45cb54 5101 if (move_one_task(&env))
1e3c88bd
PZ
5102 schedstat_inc(sd, alb_pushed);
5103 else
5104 schedstat_inc(sd, alb_failed);
5105 }
dce840a0 5106 rcu_read_unlock();
1e3c88bd 5107 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5108out_unlock:
5109 busiest_rq->active_balance = 0;
5110 raw_spin_unlock_irq(&busiest_rq->lock);
5111 return 0;
1e3c88bd
PZ
5112}
5113
5114#ifdef CONFIG_NO_HZ
83cd4fe2
VP
5115/*
5116 * idle load balancing details
83cd4fe2
VP
5117 * - When one of the busy CPUs notice that there may be an idle rebalancing
5118 * needed, they will kick the idle load balancer, which then does idle
5119 * load balancing for all the idle CPUs.
5120 */
1e3c88bd 5121static struct {
83cd4fe2 5122 cpumask_var_t idle_cpus_mask;
0b005cf5 5123 atomic_t nr_cpus;
83cd4fe2
VP
5124 unsigned long next_balance; /* in jiffy units */
5125} nohz ____cacheline_aligned;
1e3c88bd 5126
8e7fbcbc 5127static inline int find_new_ilb(int call_cpu)
1e3c88bd 5128{
0b005cf5 5129 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5130
786d6dc7
SS
5131 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5132 return ilb;
5133
5134 return nr_cpu_ids;
1e3c88bd 5135}
1e3c88bd 5136
83cd4fe2
VP
5137/*
5138 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5139 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5140 * CPU (if there is one).
5141 */
5142static void nohz_balancer_kick(int cpu)
5143{
5144 int ilb_cpu;
5145
5146 nohz.next_balance++;
5147
0b005cf5 5148 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5149
0b005cf5
SS
5150 if (ilb_cpu >= nr_cpu_ids)
5151 return;
83cd4fe2 5152
cd490c5b 5153 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5154 return;
5155 /*
5156 * Use smp_send_reschedule() instead of resched_cpu().
5157 * This way we generate a sched IPI on the target cpu which
5158 * is idle. And the softirq performing nohz idle load balance
5159 * will be run before returning from the IPI.
5160 */
5161 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5162 return;
5163}
5164
c1cc017c 5165static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5166{
5167 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5168 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5169 atomic_dec(&nohz.nr_cpus);
5170 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5171 }
5172}
5173
69e1e811
SS
5174static inline void set_cpu_sd_state_busy(void)
5175{
5176 struct sched_domain *sd;
5177 int cpu = smp_processor_id();
5178
5179 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5180 return;
5181 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5182
5183 rcu_read_lock();
5184 for_each_domain(cpu, sd)
5185 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5186 rcu_read_unlock();
5187}
5188
5189void set_cpu_sd_state_idle(void)
5190{
5191 struct sched_domain *sd;
5192 int cpu = smp_processor_id();
5193
5194 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5195 return;
5196 set_bit(NOHZ_IDLE, nohz_flags(cpu));
5197
5198 rcu_read_lock();
5199 for_each_domain(cpu, sd)
5200 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5201 rcu_read_unlock();
5202}
5203
1e3c88bd 5204/*
c1cc017c 5205 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5206 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5207 */
c1cc017c 5208void nohz_balance_enter_idle(int cpu)
1e3c88bd 5209{
71325960
SS
5210 /*
5211 * If this cpu is going down, then nothing needs to be done.
5212 */
5213 if (!cpu_active(cpu))
5214 return;
5215
c1cc017c
AS
5216 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5217 return;
1e3c88bd 5218
c1cc017c
AS
5219 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5220 atomic_inc(&nohz.nr_cpus);
5221 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5222}
71325960
SS
5223
5224static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5225 unsigned long action, void *hcpu)
5226{
5227 switch (action & ~CPU_TASKS_FROZEN) {
5228 case CPU_DYING:
c1cc017c 5229 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5230 return NOTIFY_OK;
5231 default:
5232 return NOTIFY_DONE;
5233 }
5234}
1e3c88bd
PZ
5235#endif
5236
5237static DEFINE_SPINLOCK(balancing);
5238
49c022e6
PZ
5239/*
5240 * Scale the max load_balance interval with the number of CPUs in the system.
5241 * This trades load-balance latency on larger machines for less cross talk.
5242 */
029632fb 5243void update_max_interval(void)
49c022e6
PZ
5244{
5245 max_load_balance_interval = HZ*num_online_cpus()/10;
5246}
5247
1e3c88bd
PZ
5248/*
5249 * It checks each scheduling domain to see if it is due to be balanced,
5250 * and initiates a balancing operation if so.
5251 *
5252 * Balancing parameters are set up in arch_init_sched_domains.
5253 */
5254static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5255{
5256 int balance = 1;
5257 struct rq *rq = cpu_rq(cpu);
5258 unsigned long interval;
04f733b4 5259 struct sched_domain *sd;
1e3c88bd
PZ
5260 /* Earliest time when we have to do rebalance again */
5261 unsigned long next_balance = jiffies + 60*HZ;
5262 int update_next_balance = 0;
5263 int need_serialize;
5264
48a16753 5265 update_blocked_averages(cpu);
2069dd75 5266
dce840a0 5267 rcu_read_lock();
1e3c88bd
PZ
5268 for_each_domain(cpu, sd) {
5269 if (!(sd->flags & SD_LOAD_BALANCE))
5270 continue;
5271
5272 interval = sd->balance_interval;
5273 if (idle != CPU_IDLE)
5274 interval *= sd->busy_factor;
5275
5276 /* scale ms to jiffies */
5277 interval = msecs_to_jiffies(interval);
49c022e6 5278 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5279
5280 need_serialize = sd->flags & SD_SERIALIZE;
5281
5282 if (need_serialize) {
5283 if (!spin_trylock(&balancing))
5284 goto out;
5285 }
5286
5287 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5288 if (load_balance(cpu, rq, sd, idle, &balance)) {
5289 /*
5290 * We've pulled tasks over so either we're no
c186fafe 5291 * longer idle.
1e3c88bd
PZ
5292 */
5293 idle = CPU_NOT_IDLE;
5294 }
5295 sd->last_balance = jiffies;
5296 }
5297 if (need_serialize)
5298 spin_unlock(&balancing);
5299out:
5300 if (time_after(next_balance, sd->last_balance + interval)) {
5301 next_balance = sd->last_balance + interval;
5302 update_next_balance = 1;
5303 }
5304
5305 /*
5306 * Stop the load balance at this level. There is another
5307 * CPU in our sched group which is doing load balancing more
5308 * actively.
5309 */
5310 if (!balance)
5311 break;
5312 }
dce840a0 5313 rcu_read_unlock();
1e3c88bd
PZ
5314
5315 /*
5316 * next_balance will be updated only when there is a need.
5317 * When the cpu is attached to null domain for ex, it will not be
5318 * updated.
5319 */
5320 if (likely(update_next_balance))
5321 rq->next_balance = next_balance;
5322}
5323
83cd4fe2 5324#ifdef CONFIG_NO_HZ
1e3c88bd 5325/*
83cd4fe2 5326 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5327 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5328 */
83cd4fe2
VP
5329static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5330{
5331 struct rq *this_rq = cpu_rq(this_cpu);
5332 struct rq *rq;
5333 int balance_cpu;
5334
1c792db7
SS
5335 if (idle != CPU_IDLE ||
5336 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5337 goto end;
83cd4fe2
VP
5338
5339 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5340 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5341 continue;
5342
5343 /*
5344 * If this cpu gets work to do, stop the load balancing
5345 * work being done for other cpus. Next load
5346 * balancing owner will pick it up.
5347 */
1c792db7 5348 if (need_resched())
83cd4fe2 5349 break;
83cd4fe2 5350
5ed4f1d9
VG
5351 rq = cpu_rq(balance_cpu);
5352
5353 raw_spin_lock_irq(&rq->lock);
5354 update_rq_clock(rq);
5355 update_idle_cpu_load(rq);
5356 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5357
5358 rebalance_domains(balance_cpu, CPU_IDLE);
5359
83cd4fe2
VP
5360 if (time_after(this_rq->next_balance, rq->next_balance))
5361 this_rq->next_balance = rq->next_balance;
5362 }
5363 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5364end:
5365 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5366}
5367
5368/*
0b005cf5
SS
5369 * Current heuristic for kicking the idle load balancer in the presence
5370 * of an idle cpu is the system.
5371 * - This rq has more than one task.
5372 * - At any scheduler domain level, this cpu's scheduler group has multiple
5373 * busy cpu's exceeding the group's power.
5374 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5375 * domain span are idle.
83cd4fe2
VP
5376 */
5377static inline int nohz_kick_needed(struct rq *rq, int cpu)
5378{
5379 unsigned long now = jiffies;
0b005cf5 5380 struct sched_domain *sd;
83cd4fe2 5381
1c792db7 5382 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5383 return 0;
5384
1c792db7
SS
5385 /*
5386 * We may be recently in ticked or tickless idle mode. At the first
5387 * busy tick after returning from idle, we will update the busy stats.
5388 */
69e1e811 5389 set_cpu_sd_state_busy();
c1cc017c 5390 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5391
5392 /*
5393 * None are in tickless mode and hence no need for NOHZ idle load
5394 * balancing.
5395 */
5396 if (likely(!atomic_read(&nohz.nr_cpus)))
5397 return 0;
1c792db7
SS
5398
5399 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5400 return 0;
5401
0b005cf5
SS
5402 if (rq->nr_running >= 2)
5403 goto need_kick;
83cd4fe2 5404
067491b7 5405 rcu_read_lock();
0b005cf5
SS
5406 for_each_domain(cpu, sd) {
5407 struct sched_group *sg = sd->groups;
5408 struct sched_group_power *sgp = sg->sgp;
5409 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5410
0b005cf5 5411 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5412 goto need_kick_unlock;
0b005cf5
SS
5413
5414 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5415 && (cpumask_first_and(nohz.idle_cpus_mask,
5416 sched_domain_span(sd)) < cpu))
067491b7 5417 goto need_kick_unlock;
0b005cf5
SS
5418
5419 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5420 break;
83cd4fe2 5421 }
067491b7 5422 rcu_read_unlock();
83cd4fe2 5423 return 0;
067491b7
PZ
5424
5425need_kick_unlock:
5426 rcu_read_unlock();
0b005cf5
SS
5427need_kick:
5428 return 1;
83cd4fe2
VP
5429}
5430#else
5431static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5432#endif
5433
5434/*
5435 * run_rebalance_domains is triggered when needed from the scheduler tick.
5436 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5437 */
1e3c88bd
PZ
5438static void run_rebalance_domains(struct softirq_action *h)
5439{
5440 int this_cpu = smp_processor_id();
5441 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5442 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5443 CPU_IDLE : CPU_NOT_IDLE;
5444
5445 rebalance_domains(this_cpu, idle);
5446
1e3c88bd 5447 /*
83cd4fe2 5448 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5449 * balancing on behalf of the other idle cpus whose ticks are
5450 * stopped.
5451 */
83cd4fe2 5452 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5453}
5454
5455static inline int on_null_domain(int cpu)
5456{
90a6501f 5457 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5458}
5459
5460/*
5461 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5462 */
029632fb 5463void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5464{
1e3c88bd
PZ
5465 /* Don't need to rebalance while attached to NULL domain */
5466 if (time_after_eq(jiffies, rq->next_balance) &&
5467 likely(!on_null_domain(cpu)))
5468 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5469#ifdef CONFIG_NO_HZ
1c792db7 5470 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5471 nohz_balancer_kick(cpu);
5472#endif
1e3c88bd
PZ
5473}
5474
0bcdcf28
CE
5475static void rq_online_fair(struct rq *rq)
5476{
5477 update_sysctl();
5478}
5479
5480static void rq_offline_fair(struct rq *rq)
5481{
5482 update_sysctl();
a4c96ae3
PB
5483
5484 /* Ensure any throttled groups are reachable by pick_next_task */
5485 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5486}
5487
55e12e5e 5488#endif /* CONFIG_SMP */
e1d1484f 5489
bf0f6f24
IM
5490/*
5491 * scheduler tick hitting a task of our scheduling class:
5492 */
8f4d37ec 5493static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5494{
5495 struct cfs_rq *cfs_rq;
5496 struct sched_entity *se = &curr->se;
5497
5498 for_each_sched_entity(se) {
5499 cfs_rq = cfs_rq_of(se);
8f4d37ec 5500 entity_tick(cfs_rq, se, queued);
bf0f6f24 5501 }
18bf2805
BS
5502
5503 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5504}
5505
5506/*
cd29fe6f
PZ
5507 * called on fork with the child task as argument from the parent's context
5508 * - child not yet on the tasklist
5509 * - preemption disabled
bf0f6f24 5510 */
cd29fe6f 5511static void task_fork_fair(struct task_struct *p)
bf0f6f24 5512{
4fc420c9
DN
5513 struct cfs_rq *cfs_rq;
5514 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5515 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5516 struct rq *rq = this_rq();
5517 unsigned long flags;
5518
05fa785c 5519 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5520
861d034e
PZ
5521 update_rq_clock(rq);
5522
4fc420c9
DN
5523 cfs_rq = task_cfs_rq(current);
5524 curr = cfs_rq->curr;
5525
b0a0f667
PM
5526 if (unlikely(task_cpu(p) != this_cpu)) {
5527 rcu_read_lock();
cd29fe6f 5528 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5529 rcu_read_unlock();
5530 }
bf0f6f24 5531
7109c442 5532 update_curr(cfs_rq);
cd29fe6f 5533
b5d9d734
MG
5534 if (curr)
5535 se->vruntime = curr->vruntime;
aeb73b04 5536 place_entity(cfs_rq, se, 1);
4d78e7b6 5537
cd29fe6f 5538 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5539 /*
edcb60a3
IM
5540 * Upon rescheduling, sched_class::put_prev_task() will place
5541 * 'current' within the tree based on its new key value.
5542 */
4d78e7b6 5543 swap(curr->vruntime, se->vruntime);
aec0a514 5544 resched_task(rq->curr);
4d78e7b6 5545 }
bf0f6f24 5546
88ec22d3
PZ
5547 se->vruntime -= cfs_rq->min_vruntime;
5548
05fa785c 5549 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5550}
5551
cb469845
SR
5552/*
5553 * Priority of the task has changed. Check to see if we preempt
5554 * the current task.
5555 */
da7a735e
PZ
5556static void
5557prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5558{
da7a735e
PZ
5559 if (!p->se.on_rq)
5560 return;
5561
cb469845
SR
5562 /*
5563 * Reschedule if we are currently running on this runqueue and
5564 * our priority decreased, or if we are not currently running on
5565 * this runqueue and our priority is higher than the current's
5566 */
da7a735e 5567 if (rq->curr == p) {
cb469845
SR
5568 if (p->prio > oldprio)
5569 resched_task(rq->curr);
5570 } else
15afe09b 5571 check_preempt_curr(rq, p, 0);
cb469845
SR
5572}
5573
da7a735e
PZ
5574static void switched_from_fair(struct rq *rq, struct task_struct *p)
5575{
5576 struct sched_entity *se = &p->se;
5577 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5578
5579 /*
5580 * Ensure the task's vruntime is normalized, so that when its
5581 * switched back to the fair class the enqueue_entity(.flags=0) will
5582 * do the right thing.
5583 *
5584 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5585 * have normalized the vruntime, if it was !on_rq, then only when
5586 * the task is sleeping will it still have non-normalized vruntime.
5587 */
5588 if (!se->on_rq && p->state != TASK_RUNNING) {
5589 /*
5590 * Fix up our vruntime so that the current sleep doesn't
5591 * cause 'unlimited' sleep bonus.
5592 */
5593 place_entity(cfs_rq, se, 0);
5594 se->vruntime -= cfs_rq->min_vruntime;
5595 }
9ee474f5
PT
5596
5597#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5598 /*
5599 * Remove our load from contribution when we leave sched_fair
5600 * and ensure we don't carry in an old decay_count if we
5601 * switch back.
5602 */
5603 if (p->se.avg.decay_count) {
5604 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5605 __synchronize_entity_decay(&p->se);
5606 subtract_blocked_load_contrib(cfs_rq,
5607 p->se.avg.load_avg_contrib);
5608 }
5609#endif
da7a735e
PZ
5610}
5611
cb469845
SR
5612/*
5613 * We switched to the sched_fair class.
5614 */
da7a735e 5615static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5616{
da7a735e
PZ
5617 if (!p->se.on_rq)
5618 return;
5619
cb469845
SR
5620 /*
5621 * We were most likely switched from sched_rt, so
5622 * kick off the schedule if running, otherwise just see
5623 * if we can still preempt the current task.
5624 */
da7a735e 5625 if (rq->curr == p)
cb469845
SR
5626 resched_task(rq->curr);
5627 else
15afe09b 5628 check_preempt_curr(rq, p, 0);
cb469845
SR
5629}
5630
83b699ed
SV
5631/* Account for a task changing its policy or group.
5632 *
5633 * This routine is mostly called to set cfs_rq->curr field when a task
5634 * migrates between groups/classes.
5635 */
5636static void set_curr_task_fair(struct rq *rq)
5637{
5638 struct sched_entity *se = &rq->curr->se;
5639
ec12cb7f
PT
5640 for_each_sched_entity(se) {
5641 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5642
5643 set_next_entity(cfs_rq, se);
5644 /* ensure bandwidth has been allocated on our new cfs_rq */
5645 account_cfs_rq_runtime(cfs_rq, 0);
5646 }
83b699ed
SV
5647}
5648
029632fb
PZ
5649void init_cfs_rq(struct cfs_rq *cfs_rq)
5650{
5651 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5652 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5653#ifndef CONFIG_64BIT
5654 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5655#endif
9ee474f5
PT
5656#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5657 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5658 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5659#endif
029632fb
PZ
5660}
5661
810b3817 5662#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5663static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5664{
aff3e498 5665 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5666 /*
5667 * If the task was not on the rq at the time of this cgroup movement
5668 * it must have been asleep, sleeping tasks keep their ->vruntime
5669 * absolute on their old rq until wakeup (needed for the fair sleeper
5670 * bonus in place_entity()).
5671 *
5672 * If it was on the rq, we've just 'preempted' it, which does convert
5673 * ->vruntime to a relative base.
5674 *
5675 * Make sure both cases convert their relative position when migrating
5676 * to another cgroup's rq. This does somewhat interfere with the
5677 * fair sleeper stuff for the first placement, but who cares.
5678 */
7ceff013
DN
5679 /*
5680 * When !on_rq, vruntime of the task has usually NOT been normalized.
5681 * But there are some cases where it has already been normalized:
5682 *
5683 * - Moving a forked child which is waiting for being woken up by
5684 * wake_up_new_task().
62af3783
DN
5685 * - Moving a task which has been woken up by try_to_wake_up() and
5686 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5687 *
5688 * To prevent boost or penalty in the new cfs_rq caused by delta
5689 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5690 */
62af3783 5691 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5692 on_rq = 1;
5693
b2b5ce02
PZ
5694 if (!on_rq)
5695 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5696 set_task_rq(p, task_cpu(p));
aff3e498
PT
5697 if (!on_rq) {
5698 cfs_rq = cfs_rq_of(&p->se);
5699 p->se.vruntime += cfs_rq->min_vruntime;
5700#ifdef CONFIG_SMP
5701 /*
5702 * migrate_task_rq_fair() will have removed our previous
5703 * contribution, but we must synchronize for ongoing future
5704 * decay.
5705 */
5706 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5707 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5708#endif
5709 }
810b3817 5710}
029632fb
PZ
5711
5712void free_fair_sched_group(struct task_group *tg)
5713{
5714 int i;
5715
5716 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5717
5718 for_each_possible_cpu(i) {
5719 if (tg->cfs_rq)
5720 kfree(tg->cfs_rq[i]);
5721 if (tg->se)
5722 kfree(tg->se[i]);
5723 }
5724
5725 kfree(tg->cfs_rq);
5726 kfree(tg->se);
5727}
5728
5729int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5730{
5731 struct cfs_rq *cfs_rq;
5732 struct sched_entity *se;
5733 int i;
5734
5735 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5736 if (!tg->cfs_rq)
5737 goto err;
5738 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5739 if (!tg->se)
5740 goto err;
5741
5742 tg->shares = NICE_0_LOAD;
5743
5744 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5745
5746 for_each_possible_cpu(i) {
5747 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5748 GFP_KERNEL, cpu_to_node(i));
5749 if (!cfs_rq)
5750 goto err;
5751
5752 se = kzalloc_node(sizeof(struct sched_entity),
5753 GFP_KERNEL, cpu_to_node(i));
5754 if (!se)
5755 goto err_free_rq;
5756
5757 init_cfs_rq(cfs_rq);
5758 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5759 }
5760
5761 return 1;
5762
5763err_free_rq:
5764 kfree(cfs_rq);
5765err:
5766 return 0;
5767}
5768
5769void unregister_fair_sched_group(struct task_group *tg, int cpu)
5770{
5771 struct rq *rq = cpu_rq(cpu);
5772 unsigned long flags;
5773
5774 /*
5775 * Only empty task groups can be destroyed; so we can speculatively
5776 * check on_list without danger of it being re-added.
5777 */
5778 if (!tg->cfs_rq[cpu]->on_list)
5779 return;
5780
5781 raw_spin_lock_irqsave(&rq->lock, flags);
5782 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5783 raw_spin_unlock_irqrestore(&rq->lock, flags);
5784}
5785
5786void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5787 struct sched_entity *se, int cpu,
5788 struct sched_entity *parent)
5789{
5790 struct rq *rq = cpu_rq(cpu);
5791
5792 cfs_rq->tg = tg;
5793 cfs_rq->rq = rq;
029632fb
PZ
5794 init_cfs_rq_runtime(cfs_rq);
5795
5796 tg->cfs_rq[cpu] = cfs_rq;
5797 tg->se[cpu] = se;
5798
5799 /* se could be NULL for root_task_group */
5800 if (!se)
5801 return;
5802
5803 if (!parent)
5804 se->cfs_rq = &rq->cfs;
5805 else
5806 se->cfs_rq = parent->my_q;
5807
5808 se->my_q = cfs_rq;
5809 update_load_set(&se->load, 0);
5810 se->parent = parent;
5811}
5812
5813static DEFINE_MUTEX(shares_mutex);
5814
5815int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5816{
5817 int i;
5818 unsigned long flags;
5819
5820 /*
5821 * We can't change the weight of the root cgroup.
5822 */
5823 if (!tg->se[0])
5824 return -EINVAL;
5825
5826 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5827
5828 mutex_lock(&shares_mutex);
5829 if (tg->shares == shares)
5830 goto done;
5831
5832 tg->shares = shares;
5833 for_each_possible_cpu(i) {
5834 struct rq *rq = cpu_rq(i);
5835 struct sched_entity *se;
5836
5837 se = tg->se[i];
5838 /* Propagate contribution to hierarchy */
5839 raw_spin_lock_irqsave(&rq->lock, flags);
f269ae04 5840 for_each_sched_entity(se) {
029632fb 5841 update_cfs_shares(group_cfs_rq(se));
f269ae04
PT
5842 /* update contribution to parent */
5843 update_entity_load_avg(se, 1);
5844 }
029632fb
PZ
5845 raw_spin_unlock_irqrestore(&rq->lock, flags);
5846 }
5847
5848done:
5849 mutex_unlock(&shares_mutex);
5850 return 0;
5851}
5852#else /* CONFIG_FAIR_GROUP_SCHED */
5853
5854void free_fair_sched_group(struct task_group *tg) { }
5855
5856int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5857{
5858 return 1;
5859}
5860
5861void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5862
5863#endif /* CONFIG_FAIR_GROUP_SCHED */
5864
810b3817 5865
6d686f45 5866static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
5867{
5868 struct sched_entity *se = &task->se;
0d721cea
PW
5869 unsigned int rr_interval = 0;
5870
5871 /*
5872 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5873 * idle runqueue:
5874 */
0d721cea
PW
5875 if (rq->cfs.load.weight)
5876 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
5877
5878 return rr_interval;
5879}
5880
bf0f6f24
IM
5881/*
5882 * All the scheduling class methods:
5883 */
029632fb 5884const struct sched_class fair_sched_class = {
5522d5d5 5885 .next = &idle_sched_class,
bf0f6f24
IM
5886 .enqueue_task = enqueue_task_fair,
5887 .dequeue_task = dequeue_task_fair,
5888 .yield_task = yield_task_fair,
d95f4122 5889 .yield_to_task = yield_to_task_fair,
bf0f6f24 5890
2e09bf55 5891 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
5892
5893 .pick_next_task = pick_next_task_fair,
5894 .put_prev_task = put_prev_task_fair,
5895
681f3e68 5896#ifdef CONFIG_SMP
4ce72a2c 5897 .select_task_rq = select_task_rq_fair,
f4e26b12 5898#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8 5899 .migrate_task_rq = migrate_task_rq_fair,
f4e26b12 5900#endif
0bcdcf28
CE
5901 .rq_online = rq_online_fair,
5902 .rq_offline = rq_offline_fair,
88ec22d3
PZ
5903
5904 .task_waking = task_waking_fair,
681f3e68 5905#endif
bf0f6f24 5906
83b699ed 5907 .set_curr_task = set_curr_task_fair,
bf0f6f24 5908 .task_tick = task_tick_fair,
cd29fe6f 5909 .task_fork = task_fork_fair,
cb469845
SR
5910
5911 .prio_changed = prio_changed_fair,
da7a735e 5912 .switched_from = switched_from_fair,
cb469845 5913 .switched_to = switched_to_fair,
810b3817 5914
0d721cea
PW
5915 .get_rr_interval = get_rr_interval_fair,
5916
810b3817 5917#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5918 .task_move_group = task_move_group_fair,
810b3817 5919#endif
bf0f6f24
IM
5920};
5921
5922#ifdef CONFIG_SCHED_DEBUG
029632fb 5923void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 5924{
bf0f6f24
IM
5925 struct cfs_rq *cfs_rq;
5926
5973e5b9 5927 rcu_read_lock();
c3b64f1e 5928 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 5929 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 5930 rcu_read_unlock();
bf0f6f24
IM
5931}
5932#endif
029632fb
PZ
5933
5934__init void init_sched_fair_class(void)
5935{
5936#ifdef CONFIG_SMP
5937 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5938
5939#ifdef CONFIG_NO_HZ
554cecaf 5940 nohz.next_balance = jiffies;
029632fb 5941 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 5942 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
5943#endif
5944#endif /* SMP */
5945
5946}
This page took 1.075626 seconds and 5 git commands to generate.