sched/numa: Prepare for complex topology placement
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9
AS
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677 u32 slice;
678
679 p->se.avg.decay_count = 0;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = slice;
682 p->se.avg.runnable_avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684}
685#else
686void init_task_runnable_average(struct task_struct *p)
687{
688}
689#endif
690
bf0f6f24 691/*
9dbdb155 692 * Update the current task's runtime statistics.
bf0f6f24 693 */
b7cc0896 694static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 695{
429d43bc 696 struct sched_entity *curr = cfs_rq->curr;
78becc27 697 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 698 u64 delta_exec;
bf0f6f24
IM
699
700 if (unlikely(!curr))
701 return;
702
9dbdb155
PZ
703 delta_exec = now - curr->exec_start;
704 if (unlikely((s64)delta_exec <= 0))
34f28ecd 705 return;
bf0f6f24 706
8ebc91d9 707 curr->exec_start = now;
d842de87 708
9dbdb155
PZ
709 schedstat_set(curr->statistics.exec_max,
710 max(delta_exec, curr->statistics.exec_max));
711
712 curr->sum_exec_runtime += delta_exec;
713 schedstat_add(cfs_rq, exec_clock, delta_exec);
714
715 curr->vruntime += calc_delta_fair(delta_exec, curr);
716 update_min_vruntime(cfs_rq);
717
d842de87
SV
718 if (entity_is_task(curr)) {
719 struct task_struct *curtask = task_of(curr);
720
f977bb49 721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 722 cpuacct_charge(curtask, delta_exec);
f06febc9 723 account_group_exec_runtime(curtask, delta_exec);
d842de87 724 }
ec12cb7f
PT
725
726 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
727}
728
729static inline void
5870db5b 730update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 731{
78becc27 732 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
733}
734
bf0f6f24
IM
735/*
736 * Task is being enqueued - update stats:
737 */
d2417e5a 738static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 739{
bf0f6f24
IM
740 /*
741 * Are we enqueueing a waiting task? (for current tasks
742 * a dequeue/enqueue event is a NOP)
743 */
429d43bc 744 if (se != cfs_rq->curr)
5870db5b 745 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
746}
747
bf0f6f24 748static void
9ef0a961 749update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 750{
41acab88 751 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 752 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
753 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
754 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 755 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
756#ifdef CONFIG_SCHEDSTATS
757 if (entity_is_task(se)) {
758 trace_sched_stat_wait(task_of(se),
78becc27 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
760 }
761#endif
41acab88 762 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
763}
764
765static inline void
19b6a2e3 766update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 767{
bf0f6f24
IM
768 /*
769 * Mark the end of the wait period if dequeueing a
770 * waiting task:
771 */
429d43bc 772 if (se != cfs_rq->curr)
9ef0a961 773 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
774}
775
776/*
777 * We are picking a new current task - update its stats:
778 */
779static inline void
79303e9e 780update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
781{
782 /*
783 * We are starting a new run period:
784 */
78becc27 785 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
786}
787
bf0f6f24
IM
788/**************************************************
789 * Scheduling class queueing methods:
790 */
791
cbee9f88
PZ
792#ifdef CONFIG_NUMA_BALANCING
793/*
598f0ec0
MG
794 * Approximate time to scan a full NUMA task in ms. The task scan period is
795 * calculated based on the tasks virtual memory size and
796 * numa_balancing_scan_size.
cbee9f88 797 */
598f0ec0
MG
798unsigned int sysctl_numa_balancing_scan_period_min = 1000;
799unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
800
801/* Portion of address space to scan in MB */
802unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 803
4b96a29b
PZ
804/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
805unsigned int sysctl_numa_balancing_scan_delay = 1000;
806
598f0ec0
MG
807static unsigned int task_nr_scan_windows(struct task_struct *p)
808{
809 unsigned long rss = 0;
810 unsigned long nr_scan_pages;
811
812 /*
813 * Calculations based on RSS as non-present and empty pages are skipped
814 * by the PTE scanner and NUMA hinting faults should be trapped based
815 * on resident pages
816 */
817 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
818 rss = get_mm_rss(p->mm);
819 if (!rss)
820 rss = nr_scan_pages;
821
822 rss = round_up(rss, nr_scan_pages);
823 return rss / nr_scan_pages;
824}
825
826/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
827#define MAX_SCAN_WINDOW 2560
828
829static unsigned int task_scan_min(struct task_struct *p)
830{
64192658 831 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
832 unsigned int scan, floor;
833 unsigned int windows = 1;
834
64192658
KT
835 if (scan_size < MAX_SCAN_WINDOW)
836 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
837 floor = 1000 / windows;
838
839 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
840 return max_t(unsigned int, floor, scan);
841}
842
843static unsigned int task_scan_max(struct task_struct *p)
844{
845 unsigned int smin = task_scan_min(p);
846 unsigned int smax;
847
848 /* Watch for min being lower than max due to floor calculations */
849 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
850 return max(smin, smax);
851}
852
0ec8aa00
PZ
853static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
854{
855 rq->nr_numa_running += (p->numa_preferred_nid != -1);
856 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
857}
858
859static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
860{
861 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
862 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
863}
864
8c8a743c
PZ
865struct numa_group {
866 atomic_t refcount;
867
868 spinlock_t lock; /* nr_tasks, tasks */
869 int nr_tasks;
e29cf08b 870 pid_t gid;
8c8a743c
PZ
871 struct list_head task_list;
872
873 struct rcu_head rcu;
20e07dea 874 nodemask_t active_nodes;
989348b5 875 unsigned long total_faults;
7e2703e6
RR
876 /*
877 * Faults_cpu is used to decide whether memory should move
878 * towards the CPU. As a consequence, these stats are weighted
879 * more by CPU use than by memory faults.
880 */
50ec8a40 881 unsigned long *faults_cpu;
989348b5 882 unsigned long faults[0];
8c8a743c
PZ
883};
884
be1e4e76
RR
885/* Shared or private faults. */
886#define NR_NUMA_HINT_FAULT_TYPES 2
887
888/* Memory and CPU locality */
889#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
890
891/* Averaged statistics, and temporary buffers. */
892#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
893
e29cf08b
MG
894pid_t task_numa_group_id(struct task_struct *p)
895{
896 return p->numa_group ? p->numa_group->gid : 0;
897}
898
ac8e895b
MG
899static inline int task_faults_idx(int nid, int priv)
900{
be1e4e76 901 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
902}
903
904static inline unsigned long task_faults(struct task_struct *p, int nid)
905{
ff1df896 906 if (!p->numa_faults_memory)
ac8e895b
MG
907 return 0;
908
ff1df896
RR
909 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
910 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
911}
912
83e1d2cd
MG
913static inline unsigned long group_faults(struct task_struct *p, int nid)
914{
915 if (!p->numa_group)
916 return 0;
917
82897b4f
WL
918 return p->numa_group->faults[task_faults_idx(nid, 0)] +
919 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
920}
921
20e07dea
RR
922static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
923{
924 return group->faults_cpu[task_faults_idx(nid, 0)] +
925 group->faults_cpu[task_faults_idx(nid, 1)];
926}
927
83e1d2cd
MG
928/*
929 * These return the fraction of accesses done by a particular task, or
930 * task group, on a particular numa node. The group weight is given a
931 * larger multiplier, in order to group tasks together that are almost
932 * evenly spread out between numa nodes.
933 */
7bd95320
RR
934static inline unsigned long task_weight(struct task_struct *p, int nid,
935 int dist)
83e1d2cd 936{
7bd95320 937 unsigned long faults, total_faults;
83e1d2cd 938
ff1df896 939 if (!p->numa_faults_memory)
83e1d2cd
MG
940 return 0;
941
942 total_faults = p->total_numa_faults;
943
944 if (!total_faults)
945 return 0;
946
7bd95320
RR
947 faults = task_faults(p, nid);
948 return 1000 * faults / total_faults;
83e1d2cd
MG
949}
950
7bd95320
RR
951static inline unsigned long group_weight(struct task_struct *p, int nid,
952 int dist)
83e1d2cd 953{
7bd95320
RR
954 unsigned long faults, total_faults;
955
956 if (!p->numa_group)
957 return 0;
958
959 total_faults = p->numa_group->total_faults;
960
961 if (!total_faults)
83e1d2cd
MG
962 return 0;
963
7bd95320
RR
964 faults = group_faults(p, nid);
965 return 1000 * faults / total_faults;
83e1d2cd
MG
966}
967
10f39042
RR
968bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
969 int src_nid, int dst_cpu)
970{
971 struct numa_group *ng = p->numa_group;
972 int dst_nid = cpu_to_node(dst_cpu);
973 int last_cpupid, this_cpupid;
974
975 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
976
977 /*
978 * Multi-stage node selection is used in conjunction with a periodic
979 * migration fault to build a temporal task<->page relation. By using
980 * a two-stage filter we remove short/unlikely relations.
981 *
982 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
983 * a task's usage of a particular page (n_p) per total usage of this
984 * page (n_t) (in a given time-span) to a probability.
985 *
986 * Our periodic faults will sample this probability and getting the
987 * same result twice in a row, given these samples are fully
988 * independent, is then given by P(n)^2, provided our sample period
989 * is sufficiently short compared to the usage pattern.
990 *
991 * This quadric squishes small probabilities, making it less likely we
992 * act on an unlikely task<->page relation.
993 */
994 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
995 if (!cpupid_pid_unset(last_cpupid) &&
996 cpupid_to_nid(last_cpupid) != dst_nid)
997 return false;
998
999 /* Always allow migrate on private faults */
1000 if (cpupid_match_pid(p, last_cpupid))
1001 return true;
1002
1003 /* A shared fault, but p->numa_group has not been set up yet. */
1004 if (!ng)
1005 return true;
1006
1007 /*
1008 * Do not migrate if the destination is not a node that
1009 * is actively used by this numa group.
1010 */
1011 if (!node_isset(dst_nid, ng->active_nodes))
1012 return false;
1013
1014 /*
1015 * Source is a node that is not actively used by this
1016 * numa group, while the destination is. Migrate.
1017 */
1018 if (!node_isset(src_nid, ng->active_nodes))
1019 return true;
1020
1021 /*
1022 * Both source and destination are nodes in active
1023 * use by this numa group. Maximize memory bandwidth
1024 * by migrating from more heavily used groups, to less
1025 * heavily used ones, spreading the load around.
1026 * Use a 1/4 hysteresis to avoid spurious page movement.
1027 */
1028 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1029}
1030
e6628d5b 1031static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1032static unsigned long source_load(int cpu, int type);
1033static unsigned long target_load(int cpu, int type);
ced549fa 1034static unsigned long capacity_of(int cpu);
58d081b5
MG
1035static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1036
fb13c7ee 1037/* Cached statistics for all CPUs within a node */
58d081b5 1038struct numa_stats {
fb13c7ee 1039 unsigned long nr_running;
58d081b5 1040 unsigned long load;
fb13c7ee
MG
1041
1042 /* Total compute capacity of CPUs on a node */
5ef20ca1 1043 unsigned long compute_capacity;
fb13c7ee
MG
1044
1045 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1046 unsigned long task_capacity;
1b6a7495 1047 int has_free_capacity;
58d081b5 1048};
e6628d5b 1049
fb13c7ee
MG
1050/*
1051 * XXX borrowed from update_sg_lb_stats
1052 */
1053static void update_numa_stats(struct numa_stats *ns, int nid)
1054{
83d7f242
RR
1055 int smt, cpu, cpus = 0;
1056 unsigned long capacity;
fb13c7ee
MG
1057
1058 memset(ns, 0, sizeof(*ns));
1059 for_each_cpu(cpu, cpumask_of_node(nid)) {
1060 struct rq *rq = cpu_rq(cpu);
1061
1062 ns->nr_running += rq->nr_running;
1063 ns->load += weighted_cpuload(cpu);
ced549fa 1064 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1065
1066 cpus++;
fb13c7ee
MG
1067 }
1068
5eca82a9
PZ
1069 /*
1070 * If we raced with hotplug and there are no CPUs left in our mask
1071 * the @ns structure is NULL'ed and task_numa_compare() will
1072 * not find this node attractive.
1073 *
1b6a7495
NP
1074 * We'll either bail at !has_free_capacity, or we'll detect a huge
1075 * imbalance and bail there.
5eca82a9
PZ
1076 */
1077 if (!cpus)
1078 return;
1079
83d7f242
RR
1080 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1081 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1082 capacity = cpus / smt; /* cores */
1083
1084 ns->task_capacity = min_t(unsigned, capacity,
1085 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1086 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1087}
1088
58d081b5
MG
1089struct task_numa_env {
1090 struct task_struct *p;
e6628d5b 1091
58d081b5
MG
1092 int src_cpu, src_nid;
1093 int dst_cpu, dst_nid;
e6628d5b 1094
58d081b5 1095 struct numa_stats src_stats, dst_stats;
e6628d5b 1096
40ea2b42 1097 int imbalance_pct;
7bd95320 1098 int dist;
fb13c7ee
MG
1099
1100 struct task_struct *best_task;
1101 long best_imp;
58d081b5
MG
1102 int best_cpu;
1103};
1104
fb13c7ee
MG
1105static void task_numa_assign(struct task_numa_env *env,
1106 struct task_struct *p, long imp)
1107{
1108 if (env->best_task)
1109 put_task_struct(env->best_task);
1110 if (p)
1111 get_task_struct(p);
1112
1113 env->best_task = p;
1114 env->best_imp = imp;
1115 env->best_cpu = env->dst_cpu;
1116}
1117
28a21745 1118static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1119 struct task_numa_env *env)
1120{
1121 long imb, old_imb;
28a21745
RR
1122 long orig_src_load, orig_dst_load;
1123 long src_capacity, dst_capacity;
1124
1125 /*
1126 * The load is corrected for the CPU capacity available on each node.
1127 *
1128 * src_load dst_load
1129 * ------------ vs ---------
1130 * src_capacity dst_capacity
1131 */
1132 src_capacity = env->src_stats.compute_capacity;
1133 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1134
1135 /* We care about the slope of the imbalance, not the direction. */
1136 if (dst_load < src_load)
1137 swap(dst_load, src_load);
1138
1139 /* Is the difference below the threshold? */
28a21745
RR
1140 imb = dst_load * src_capacity * 100 -
1141 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1142 if (imb <= 0)
1143 return false;
1144
1145 /*
1146 * The imbalance is above the allowed threshold.
1147 * Compare it with the old imbalance.
1148 */
28a21745
RR
1149 orig_src_load = env->src_stats.load;
1150 orig_dst_load = env->dst_stats.load;
1151
e63da036
RR
1152 if (orig_dst_load < orig_src_load)
1153 swap(orig_dst_load, orig_src_load);
1154
28a21745
RR
1155 old_imb = orig_dst_load * src_capacity * 100 -
1156 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1157
1158 /* Would this change make things worse? */
1662867a 1159 return (imb > old_imb);
e63da036
RR
1160}
1161
fb13c7ee
MG
1162/*
1163 * This checks if the overall compute and NUMA accesses of the system would
1164 * be improved if the source tasks was migrated to the target dst_cpu taking
1165 * into account that it might be best if task running on the dst_cpu should
1166 * be exchanged with the source task
1167 */
887c290e
RR
1168static void task_numa_compare(struct task_numa_env *env,
1169 long taskimp, long groupimp)
fb13c7ee
MG
1170{
1171 struct rq *src_rq = cpu_rq(env->src_cpu);
1172 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1173 struct task_struct *cur;
28a21745 1174 long src_load, dst_load;
fb13c7ee 1175 long load;
1c5d3eb3 1176 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1177 long moveimp = imp;
7bd95320 1178 int dist = env->dist;
fb13c7ee
MG
1179
1180 rcu_read_lock();
1effd9f1
KT
1181
1182 raw_spin_lock_irq(&dst_rq->lock);
1183 cur = dst_rq->curr;
1184 /*
1185 * No need to move the exiting task, and this ensures that ->curr
1186 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1187 * is safe under RCU read lock.
1188 * Note that rcu_read_lock() itself can't protect from the final
1189 * put_task_struct() after the last schedule().
1190 */
1191 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1192 cur = NULL;
1effd9f1 1193 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee
MG
1194
1195 /*
1196 * "imp" is the fault differential for the source task between the
1197 * source and destination node. Calculate the total differential for
1198 * the source task and potential destination task. The more negative
1199 * the value is, the more rmeote accesses that would be expected to
1200 * be incurred if the tasks were swapped.
1201 */
1202 if (cur) {
1203 /* Skip this swap candidate if cannot move to the source cpu */
1204 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1205 goto unlock;
1206
887c290e
RR
1207 /*
1208 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1209 * in any group then look only at task weights.
887c290e 1210 */
ca28aa53 1211 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1212 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1213 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1214 /*
1215 * Add some hysteresis to prevent swapping the
1216 * tasks within a group over tiny differences.
1217 */
1218 if (cur->numa_group)
1219 imp -= imp/16;
887c290e 1220 } else {
ca28aa53
RR
1221 /*
1222 * Compare the group weights. If a task is all by
1223 * itself (not part of a group), use the task weight
1224 * instead.
1225 */
ca28aa53 1226 if (cur->numa_group)
7bd95320
RR
1227 imp += group_weight(cur, env->src_nid, dist) -
1228 group_weight(cur, env->dst_nid, dist);
ca28aa53 1229 else
7bd95320
RR
1230 imp += task_weight(cur, env->src_nid, dist) -
1231 task_weight(cur, env->dst_nid, dist);
887c290e 1232 }
fb13c7ee
MG
1233 }
1234
0132c3e1 1235 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1236 goto unlock;
1237
1238 if (!cur) {
1239 /* Is there capacity at our destination? */
b932c03c 1240 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1241 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1242 goto unlock;
1243
1244 goto balance;
1245 }
1246
1247 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1248 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1249 dst_rq->nr_running == 1)
fb13c7ee
MG
1250 goto assign;
1251
1252 /*
1253 * In the overloaded case, try and keep the load balanced.
1254 */
1255balance:
e720fff6
PZ
1256 load = task_h_load(env->p);
1257 dst_load = env->dst_stats.load + load;
1258 src_load = env->src_stats.load - load;
fb13c7ee 1259
0132c3e1
RR
1260 if (moveimp > imp && moveimp > env->best_imp) {
1261 /*
1262 * If the improvement from just moving env->p direction is
1263 * better than swapping tasks around, check if a move is
1264 * possible. Store a slightly smaller score than moveimp,
1265 * so an actually idle CPU will win.
1266 */
1267 if (!load_too_imbalanced(src_load, dst_load, env)) {
1268 imp = moveimp - 1;
1269 cur = NULL;
1270 goto assign;
1271 }
1272 }
1273
1274 if (imp <= env->best_imp)
1275 goto unlock;
1276
fb13c7ee 1277 if (cur) {
e720fff6
PZ
1278 load = task_h_load(cur);
1279 dst_load -= load;
1280 src_load += load;
fb13c7ee
MG
1281 }
1282
28a21745 1283 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1284 goto unlock;
1285
ba7e5a27
RR
1286 /*
1287 * One idle CPU per node is evaluated for a task numa move.
1288 * Call select_idle_sibling to maybe find a better one.
1289 */
1290 if (!cur)
1291 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1292
fb13c7ee
MG
1293assign:
1294 task_numa_assign(env, cur, imp);
1295unlock:
1296 rcu_read_unlock();
1297}
1298
887c290e
RR
1299static void task_numa_find_cpu(struct task_numa_env *env,
1300 long taskimp, long groupimp)
2c8a50aa
MG
1301{
1302 int cpu;
1303
1304 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1305 /* Skip this CPU if the source task cannot migrate */
1306 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1307 continue;
1308
1309 env->dst_cpu = cpu;
887c290e 1310 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1311 }
1312}
1313
58d081b5
MG
1314static int task_numa_migrate(struct task_struct *p)
1315{
58d081b5
MG
1316 struct task_numa_env env = {
1317 .p = p,
fb13c7ee 1318
58d081b5 1319 .src_cpu = task_cpu(p),
b32e86b4 1320 .src_nid = task_node(p),
fb13c7ee
MG
1321
1322 .imbalance_pct = 112,
1323
1324 .best_task = NULL,
1325 .best_imp = 0,
1326 .best_cpu = -1
58d081b5
MG
1327 };
1328 struct sched_domain *sd;
887c290e 1329 unsigned long taskweight, groupweight;
7bd95320 1330 int nid, ret, dist;
887c290e 1331 long taskimp, groupimp;
e6628d5b 1332
58d081b5 1333 /*
fb13c7ee
MG
1334 * Pick the lowest SD_NUMA domain, as that would have the smallest
1335 * imbalance and would be the first to start moving tasks about.
1336 *
1337 * And we want to avoid any moving of tasks about, as that would create
1338 * random movement of tasks -- counter the numa conditions we're trying
1339 * to satisfy here.
58d081b5
MG
1340 */
1341 rcu_read_lock();
fb13c7ee 1342 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1343 if (sd)
1344 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1345 rcu_read_unlock();
1346
46a73e8a
RR
1347 /*
1348 * Cpusets can break the scheduler domain tree into smaller
1349 * balance domains, some of which do not cross NUMA boundaries.
1350 * Tasks that are "trapped" in such domains cannot be migrated
1351 * elsewhere, so there is no point in (re)trying.
1352 */
1353 if (unlikely(!sd)) {
de1b301a 1354 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1355 return -EINVAL;
1356 }
1357
2c8a50aa 1358 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1359 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1360 taskweight = task_weight(p, env.src_nid, dist);
1361 groupweight = group_weight(p, env.src_nid, dist);
1362 update_numa_stats(&env.src_stats, env.src_nid);
1363 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1364 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1365 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1366
a43455a1
RR
1367 /* Try to find a spot on the preferred nid. */
1368 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1369
1370 /* No space available on the preferred nid. Look elsewhere. */
1371 if (env.best_cpu == -1) {
2c8a50aa
MG
1372 for_each_online_node(nid) {
1373 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1374 continue;
58d081b5 1375
7bd95320
RR
1376 dist = node_distance(env.src_nid, env.dst_nid);
1377
83e1d2cd 1378 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1379 taskimp = task_weight(p, nid, dist) - taskweight;
1380 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1381 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1382 continue;
1383
7bd95320 1384 env.dist = dist;
2c8a50aa
MG
1385 env.dst_nid = nid;
1386 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1387 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1388 }
1389 }
1390
68d1b02a
RR
1391 /*
1392 * If the task is part of a workload that spans multiple NUMA nodes,
1393 * and is migrating into one of the workload's active nodes, remember
1394 * this node as the task's preferred numa node, so the workload can
1395 * settle down.
1396 * A task that migrated to a second choice node will be better off
1397 * trying for a better one later. Do not set the preferred node here.
1398 */
db015dae
RR
1399 if (p->numa_group) {
1400 if (env.best_cpu == -1)
1401 nid = env.src_nid;
1402 else
1403 nid = env.dst_nid;
1404
1405 if (node_isset(nid, p->numa_group->active_nodes))
1406 sched_setnuma(p, env.dst_nid);
1407 }
1408
1409 /* No better CPU than the current one was found. */
1410 if (env.best_cpu == -1)
1411 return -EAGAIN;
0ec8aa00 1412
04bb2f94
RR
1413 /*
1414 * Reset the scan period if the task is being rescheduled on an
1415 * alternative node to recheck if the tasks is now properly placed.
1416 */
1417 p->numa_scan_period = task_scan_min(p);
1418
fb13c7ee 1419 if (env.best_task == NULL) {
286549dc
MG
1420 ret = migrate_task_to(p, env.best_cpu);
1421 if (ret != 0)
1422 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1423 return ret;
1424 }
1425
1426 ret = migrate_swap(p, env.best_task);
286549dc
MG
1427 if (ret != 0)
1428 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1429 put_task_struct(env.best_task);
1430 return ret;
e6628d5b
MG
1431}
1432
6b9a7460
MG
1433/* Attempt to migrate a task to a CPU on the preferred node. */
1434static void numa_migrate_preferred(struct task_struct *p)
1435{
5085e2a3
RR
1436 unsigned long interval = HZ;
1437
2739d3ee 1438 /* This task has no NUMA fault statistics yet */
ff1df896 1439 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1440 return;
1441
2739d3ee 1442 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1443 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1444 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1445
1446 /* Success if task is already running on preferred CPU */
de1b301a 1447 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1448 return;
1449
1450 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1451 task_numa_migrate(p);
6b9a7460
MG
1452}
1453
20e07dea
RR
1454/*
1455 * Find the nodes on which the workload is actively running. We do this by
1456 * tracking the nodes from which NUMA hinting faults are triggered. This can
1457 * be different from the set of nodes where the workload's memory is currently
1458 * located.
1459 *
1460 * The bitmask is used to make smarter decisions on when to do NUMA page
1461 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1462 * are added when they cause over 6/16 of the maximum number of faults, but
1463 * only removed when they drop below 3/16.
1464 */
1465static void update_numa_active_node_mask(struct numa_group *numa_group)
1466{
1467 unsigned long faults, max_faults = 0;
1468 int nid;
1469
1470 for_each_online_node(nid) {
1471 faults = group_faults_cpu(numa_group, nid);
1472 if (faults > max_faults)
1473 max_faults = faults;
1474 }
1475
1476 for_each_online_node(nid) {
1477 faults = group_faults_cpu(numa_group, nid);
1478 if (!node_isset(nid, numa_group->active_nodes)) {
1479 if (faults > max_faults * 6 / 16)
1480 node_set(nid, numa_group->active_nodes);
1481 } else if (faults < max_faults * 3 / 16)
1482 node_clear(nid, numa_group->active_nodes);
1483 }
1484}
1485
04bb2f94
RR
1486/*
1487 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1488 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1489 * period will be for the next scan window. If local/(local+remote) ratio is
1490 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1491 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1492 */
1493#define NUMA_PERIOD_SLOTS 10
a22b4b01 1494#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1495
1496/*
1497 * Increase the scan period (slow down scanning) if the majority of
1498 * our memory is already on our local node, or if the majority of
1499 * the page accesses are shared with other processes.
1500 * Otherwise, decrease the scan period.
1501 */
1502static void update_task_scan_period(struct task_struct *p,
1503 unsigned long shared, unsigned long private)
1504{
1505 unsigned int period_slot;
1506 int ratio;
1507 int diff;
1508
1509 unsigned long remote = p->numa_faults_locality[0];
1510 unsigned long local = p->numa_faults_locality[1];
1511
1512 /*
1513 * If there were no record hinting faults then either the task is
1514 * completely idle or all activity is areas that are not of interest
1515 * to automatic numa balancing. Scan slower
1516 */
1517 if (local + shared == 0) {
1518 p->numa_scan_period = min(p->numa_scan_period_max,
1519 p->numa_scan_period << 1);
1520
1521 p->mm->numa_next_scan = jiffies +
1522 msecs_to_jiffies(p->numa_scan_period);
1523
1524 return;
1525 }
1526
1527 /*
1528 * Prepare to scale scan period relative to the current period.
1529 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1530 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1531 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1532 */
1533 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1534 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1535 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1536 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1537 if (!slot)
1538 slot = 1;
1539 diff = slot * period_slot;
1540 } else {
1541 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1542
1543 /*
1544 * Scale scan rate increases based on sharing. There is an
1545 * inverse relationship between the degree of sharing and
1546 * the adjustment made to the scanning period. Broadly
1547 * speaking the intent is that there is little point
1548 * scanning faster if shared accesses dominate as it may
1549 * simply bounce migrations uselessly
1550 */
2847c90e 1551 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1552 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1553 }
1554
1555 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1556 task_scan_min(p), task_scan_max(p));
1557 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1558}
1559
7e2703e6
RR
1560/*
1561 * Get the fraction of time the task has been running since the last
1562 * NUMA placement cycle. The scheduler keeps similar statistics, but
1563 * decays those on a 32ms period, which is orders of magnitude off
1564 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1565 * stats only if the task is so new there are no NUMA statistics yet.
1566 */
1567static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1568{
1569 u64 runtime, delta, now;
1570 /* Use the start of this time slice to avoid calculations. */
1571 now = p->se.exec_start;
1572 runtime = p->se.sum_exec_runtime;
1573
1574 if (p->last_task_numa_placement) {
1575 delta = runtime - p->last_sum_exec_runtime;
1576 *period = now - p->last_task_numa_placement;
1577 } else {
1578 delta = p->se.avg.runnable_avg_sum;
1579 *period = p->se.avg.runnable_avg_period;
1580 }
1581
1582 p->last_sum_exec_runtime = runtime;
1583 p->last_task_numa_placement = now;
1584
1585 return delta;
1586}
1587
cbee9f88
PZ
1588static void task_numa_placement(struct task_struct *p)
1589{
83e1d2cd
MG
1590 int seq, nid, max_nid = -1, max_group_nid = -1;
1591 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1592 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1593 unsigned long total_faults;
1594 u64 runtime, period;
7dbd13ed 1595 spinlock_t *group_lock = NULL;
cbee9f88 1596
2832bc19 1597 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1598 if (p->numa_scan_seq == seq)
1599 return;
1600 p->numa_scan_seq = seq;
598f0ec0 1601 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1602
7e2703e6
RR
1603 total_faults = p->numa_faults_locality[0] +
1604 p->numa_faults_locality[1];
1605 runtime = numa_get_avg_runtime(p, &period);
1606
7dbd13ed
MG
1607 /* If the task is part of a group prevent parallel updates to group stats */
1608 if (p->numa_group) {
1609 group_lock = &p->numa_group->lock;
60e69eed 1610 spin_lock_irq(group_lock);
7dbd13ed
MG
1611 }
1612
688b7585
MG
1613 /* Find the node with the highest number of faults */
1614 for_each_online_node(nid) {
83e1d2cd 1615 unsigned long faults = 0, group_faults = 0;
ac8e895b 1616 int priv, i;
745d6147 1617
be1e4e76 1618 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1619 long diff, f_diff, f_weight;
8c8a743c 1620
ac8e895b 1621 i = task_faults_idx(nid, priv);
745d6147 1622
ac8e895b 1623 /* Decay existing window, copy faults since last scan */
35664fd4 1624 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1625 fault_types[priv] += p->numa_faults_buffer_memory[i];
1626 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1627
7e2703e6
RR
1628 /*
1629 * Normalize the faults_from, so all tasks in a group
1630 * count according to CPU use, instead of by the raw
1631 * number of faults. Tasks with little runtime have
1632 * little over-all impact on throughput, and thus their
1633 * faults are less important.
1634 */
1635 f_weight = div64_u64(runtime << 16, period + 1);
1636 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1637 (total_faults + 1);
35664fd4 1638 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1639 p->numa_faults_buffer_cpu[i] = 0;
1640
35664fd4
RR
1641 p->numa_faults_memory[i] += diff;
1642 p->numa_faults_cpu[i] += f_diff;
ff1df896 1643 faults += p->numa_faults_memory[i];
83e1d2cd 1644 p->total_numa_faults += diff;
8c8a743c
PZ
1645 if (p->numa_group) {
1646 /* safe because we can only change our own group */
989348b5 1647 p->numa_group->faults[i] += diff;
50ec8a40 1648 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1649 p->numa_group->total_faults += diff;
1650 group_faults += p->numa_group->faults[i];
8c8a743c 1651 }
ac8e895b
MG
1652 }
1653
688b7585
MG
1654 if (faults > max_faults) {
1655 max_faults = faults;
1656 max_nid = nid;
1657 }
83e1d2cd
MG
1658
1659 if (group_faults > max_group_faults) {
1660 max_group_faults = group_faults;
1661 max_group_nid = nid;
1662 }
1663 }
1664
04bb2f94
RR
1665 update_task_scan_period(p, fault_types[0], fault_types[1]);
1666
7dbd13ed 1667 if (p->numa_group) {
20e07dea 1668 update_numa_active_node_mask(p->numa_group);
60e69eed 1669 spin_unlock_irq(group_lock);
f0b8a4af 1670 max_nid = max_group_nid;
688b7585
MG
1671 }
1672
bb97fc31
RR
1673 if (max_faults) {
1674 /* Set the new preferred node */
1675 if (max_nid != p->numa_preferred_nid)
1676 sched_setnuma(p, max_nid);
1677
1678 if (task_node(p) != p->numa_preferred_nid)
1679 numa_migrate_preferred(p);
3a7053b3 1680 }
cbee9f88
PZ
1681}
1682
8c8a743c
PZ
1683static inline int get_numa_group(struct numa_group *grp)
1684{
1685 return atomic_inc_not_zero(&grp->refcount);
1686}
1687
1688static inline void put_numa_group(struct numa_group *grp)
1689{
1690 if (atomic_dec_and_test(&grp->refcount))
1691 kfree_rcu(grp, rcu);
1692}
1693
3e6a9418
MG
1694static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1695 int *priv)
8c8a743c
PZ
1696{
1697 struct numa_group *grp, *my_grp;
1698 struct task_struct *tsk;
1699 bool join = false;
1700 int cpu = cpupid_to_cpu(cpupid);
1701 int i;
1702
1703 if (unlikely(!p->numa_group)) {
1704 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1705 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1706
1707 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1708 if (!grp)
1709 return;
1710
1711 atomic_set(&grp->refcount, 1);
1712 spin_lock_init(&grp->lock);
1713 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1714 grp->gid = p->pid;
50ec8a40 1715 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1716 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1717 nr_node_ids;
8c8a743c 1718
20e07dea
RR
1719 node_set(task_node(current), grp->active_nodes);
1720
be1e4e76 1721 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1722 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1723
989348b5 1724 grp->total_faults = p->total_numa_faults;
83e1d2cd 1725
8c8a743c
PZ
1726 list_add(&p->numa_entry, &grp->task_list);
1727 grp->nr_tasks++;
1728 rcu_assign_pointer(p->numa_group, grp);
1729 }
1730
1731 rcu_read_lock();
1732 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1733
1734 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1735 goto no_join;
8c8a743c
PZ
1736
1737 grp = rcu_dereference(tsk->numa_group);
1738 if (!grp)
3354781a 1739 goto no_join;
8c8a743c
PZ
1740
1741 my_grp = p->numa_group;
1742 if (grp == my_grp)
3354781a 1743 goto no_join;
8c8a743c
PZ
1744
1745 /*
1746 * Only join the other group if its bigger; if we're the bigger group,
1747 * the other task will join us.
1748 */
1749 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1750 goto no_join;
8c8a743c
PZ
1751
1752 /*
1753 * Tie-break on the grp address.
1754 */
1755 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1756 goto no_join;
8c8a743c 1757
dabe1d99
RR
1758 /* Always join threads in the same process. */
1759 if (tsk->mm == current->mm)
1760 join = true;
1761
1762 /* Simple filter to avoid false positives due to PID collisions */
1763 if (flags & TNF_SHARED)
1764 join = true;
8c8a743c 1765
3e6a9418
MG
1766 /* Update priv based on whether false sharing was detected */
1767 *priv = !join;
1768
dabe1d99 1769 if (join && !get_numa_group(grp))
3354781a 1770 goto no_join;
8c8a743c 1771
8c8a743c
PZ
1772 rcu_read_unlock();
1773
1774 if (!join)
1775 return;
1776
60e69eed
MG
1777 BUG_ON(irqs_disabled());
1778 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1779
be1e4e76 1780 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1781 my_grp->faults[i] -= p->numa_faults_memory[i];
1782 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1783 }
989348b5
MG
1784 my_grp->total_faults -= p->total_numa_faults;
1785 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1786
1787 list_move(&p->numa_entry, &grp->task_list);
1788 my_grp->nr_tasks--;
1789 grp->nr_tasks++;
1790
1791 spin_unlock(&my_grp->lock);
60e69eed 1792 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1793
1794 rcu_assign_pointer(p->numa_group, grp);
1795
1796 put_numa_group(my_grp);
3354781a
PZ
1797 return;
1798
1799no_join:
1800 rcu_read_unlock();
1801 return;
8c8a743c
PZ
1802}
1803
1804void task_numa_free(struct task_struct *p)
1805{
1806 struct numa_group *grp = p->numa_group;
ff1df896 1807 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1808 unsigned long flags;
1809 int i;
8c8a743c
PZ
1810
1811 if (grp) {
e9dd685c 1812 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1813 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1814 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1815 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1816
8c8a743c
PZ
1817 list_del(&p->numa_entry);
1818 grp->nr_tasks--;
e9dd685c 1819 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 1820 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
1821 put_numa_group(grp);
1822 }
1823
ff1df896
RR
1824 p->numa_faults_memory = NULL;
1825 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1826 p->numa_faults_cpu= NULL;
1827 p->numa_faults_buffer_cpu = NULL;
82727018 1828 kfree(numa_faults);
8c8a743c
PZ
1829}
1830
cbee9f88
PZ
1831/*
1832 * Got a PROT_NONE fault for a page on @node.
1833 */
58b46da3 1834void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1835{
1836 struct task_struct *p = current;
6688cc05 1837 bool migrated = flags & TNF_MIGRATED;
58b46da3 1838 int cpu_node = task_node(current);
792568ec 1839 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1840 int priv;
cbee9f88 1841
10e84b97 1842 if (!numabalancing_enabled)
1a687c2e
MG
1843 return;
1844
9ff1d9ff
MG
1845 /* for example, ksmd faulting in a user's mm */
1846 if (!p->mm)
1847 return;
1848
f809ca9a 1849 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1850 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1851 int size = sizeof(*p->numa_faults_memory) *
1852 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1853
be1e4e76 1854 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1855 if (!p->numa_faults_memory)
f809ca9a 1856 return;
745d6147 1857
ff1df896 1858 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1859 /*
1860 * The averaged statistics, shared & private, memory & cpu,
1861 * occupy the first half of the array. The second half of the
1862 * array is for current counters, which are averaged into the
1863 * first set by task_numa_placement.
1864 */
50ec8a40
RR
1865 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1866 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1867 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1868 p->total_numa_faults = 0;
04bb2f94 1869 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1870 }
cbee9f88 1871
8c8a743c
PZ
1872 /*
1873 * First accesses are treated as private, otherwise consider accesses
1874 * to be private if the accessing pid has not changed
1875 */
1876 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1877 priv = 1;
1878 } else {
1879 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1880 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1881 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1882 }
1883
792568ec
RR
1884 /*
1885 * If a workload spans multiple NUMA nodes, a shared fault that
1886 * occurs wholly within the set of nodes that the workload is
1887 * actively using should be counted as local. This allows the
1888 * scan rate to slow down when a workload has settled down.
1889 */
1890 if (!priv && !local && p->numa_group &&
1891 node_isset(cpu_node, p->numa_group->active_nodes) &&
1892 node_isset(mem_node, p->numa_group->active_nodes))
1893 local = 1;
1894
cbee9f88 1895 task_numa_placement(p);
f809ca9a 1896
2739d3ee
RR
1897 /*
1898 * Retry task to preferred node migration periodically, in case it
1899 * case it previously failed, or the scheduler moved us.
1900 */
1901 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1902 numa_migrate_preferred(p);
1903
b32e86b4
IM
1904 if (migrated)
1905 p->numa_pages_migrated += pages;
1906
58b46da3
RR
1907 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1908 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1909 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1910}
1911
6e5fb223
PZ
1912static void reset_ptenuma_scan(struct task_struct *p)
1913{
1914 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1915 p->mm->numa_scan_offset = 0;
1916}
1917
cbee9f88
PZ
1918/*
1919 * The expensive part of numa migration is done from task_work context.
1920 * Triggered from task_tick_numa().
1921 */
1922void task_numa_work(struct callback_head *work)
1923{
1924 unsigned long migrate, next_scan, now = jiffies;
1925 struct task_struct *p = current;
1926 struct mm_struct *mm = p->mm;
6e5fb223 1927 struct vm_area_struct *vma;
9f40604c 1928 unsigned long start, end;
598f0ec0 1929 unsigned long nr_pte_updates = 0;
9f40604c 1930 long pages;
cbee9f88
PZ
1931
1932 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1933
1934 work->next = work; /* protect against double add */
1935 /*
1936 * Who cares about NUMA placement when they're dying.
1937 *
1938 * NOTE: make sure not to dereference p->mm before this check,
1939 * exit_task_work() happens _after_ exit_mm() so we could be called
1940 * without p->mm even though we still had it when we enqueued this
1941 * work.
1942 */
1943 if (p->flags & PF_EXITING)
1944 return;
1945
930aa174 1946 if (!mm->numa_next_scan) {
7e8d16b6
MG
1947 mm->numa_next_scan = now +
1948 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1949 }
1950
cbee9f88
PZ
1951 /*
1952 * Enforce maximal scan/migration frequency..
1953 */
1954 migrate = mm->numa_next_scan;
1955 if (time_before(now, migrate))
1956 return;
1957
598f0ec0
MG
1958 if (p->numa_scan_period == 0) {
1959 p->numa_scan_period_max = task_scan_max(p);
1960 p->numa_scan_period = task_scan_min(p);
1961 }
cbee9f88 1962
fb003b80 1963 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1964 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1965 return;
1966
19a78d11
PZ
1967 /*
1968 * Delay this task enough that another task of this mm will likely win
1969 * the next time around.
1970 */
1971 p->node_stamp += 2 * TICK_NSEC;
1972
9f40604c
MG
1973 start = mm->numa_scan_offset;
1974 pages = sysctl_numa_balancing_scan_size;
1975 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1976 if (!pages)
1977 return;
cbee9f88 1978
6e5fb223 1979 down_read(&mm->mmap_sem);
9f40604c 1980 vma = find_vma(mm, start);
6e5fb223
PZ
1981 if (!vma) {
1982 reset_ptenuma_scan(p);
9f40604c 1983 start = 0;
6e5fb223
PZ
1984 vma = mm->mmap;
1985 }
9f40604c 1986 for (; vma; vma = vma->vm_next) {
6b6482bb 1987 if (!vma_migratable(vma) || !vma_policy_mof(vma))
6e5fb223
PZ
1988 continue;
1989
4591ce4f
MG
1990 /*
1991 * Shared library pages mapped by multiple processes are not
1992 * migrated as it is expected they are cache replicated. Avoid
1993 * hinting faults in read-only file-backed mappings or the vdso
1994 * as migrating the pages will be of marginal benefit.
1995 */
1996 if (!vma->vm_mm ||
1997 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1998 continue;
1999
3c67f474
MG
2000 /*
2001 * Skip inaccessible VMAs to avoid any confusion between
2002 * PROT_NONE and NUMA hinting ptes
2003 */
2004 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2005 continue;
4591ce4f 2006
9f40604c
MG
2007 do {
2008 start = max(start, vma->vm_start);
2009 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2010 end = min(end, vma->vm_end);
598f0ec0
MG
2011 nr_pte_updates += change_prot_numa(vma, start, end);
2012
2013 /*
2014 * Scan sysctl_numa_balancing_scan_size but ensure that
2015 * at least one PTE is updated so that unused virtual
2016 * address space is quickly skipped.
2017 */
2018 if (nr_pte_updates)
2019 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2020
9f40604c
MG
2021 start = end;
2022 if (pages <= 0)
2023 goto out;
3cf1962c
RR
2024
2025 cond_resched();
9f40604c 2026 } while (end != vma->vm_end);
cbee9f88 2027 }
6e5fb223 2028
9f40604c 2029out:
6e5fb223 2030 /*
c69307d5
PZ
2031 * It is possible to reach the end of the VMA list but the last few
2032 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2033 * would find the !migratable VMA on the next scan but not reset the
2034 * scanner to the start so check it now.
6e5fb223
PZ
2035 */
2036 if (vma)
9f40604c 2037 mm->numa_scan_offset = start;
6e5fb223
PZ
2038 else
2039 reset_ptenuma_scan(p);
2040 up_read(&mm->mmap_sem);
cbee9f88
PZ
2041}
2042
2043/*
2044 * Drive the periodic memory faults..
2045 */
2046void task_tick_numa(struct rq *rq, struct task_struct *curr)
2047{
2048 struct callback_head *work = &curr->numa_work;
2049 u64 period, now;
2050
2051 /*
2052 * We don't care about NUMA placement if we don't have memory.
2053 */
2054 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2055 return;
2056
2057 /*
2058 * Using runtime rather than walltime has the dual advantage that
2059 * we (mostly) drive the selection from busy threads and that the
2060 * task needs to have done some actual work before we bother with
2061 * NUMA placement.
2062 */
2063 now = curr->se.sum_exec_runtime;
2064 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2065
2066 if (now - curr->node_stamp > period) {
4b96a29b 2067 if (!curr->node_stamp)
598f0ec0 2068 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2069 curr->node_stamp += period;
cbee9f88
PZ
2070
2071 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2072 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2073 task_work_add(curr, work, true);
2074 }
2075 }
2076}
2077#else
2078static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2079{
2080}
0ec8aa00
PZ
2081
2082static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2083{
2084}
2085
2086static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2087{
2088}
cbee9f88
PZ
2089#endif /* CONFIG_NUMA_BALANCING */
2090
30cfdcfc
DA
2091static void
2092account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2093{
2094 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2095 if (!parent_entity(se))
029632fb 2096 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2097#ifdef CONFIG_SMP
0ec8aa00
PZ
2098 if (entity_is_task(se)) {
2099 struct rq *rq = rq_of(cfs_rq);
2100
2101 account_numa_enqueue(rq, task_of(se));
2102 list_add(&se->group_node, &rq->cfs_tasks);
2103 }
367456c7 2104#endif
30cfdcfc 2105 cfs_rq->nr_running++;
30cfdcfc
DA
2106}
2107
2108static void
2109account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2110{
2111 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2112 if (!parent_entity(se))
029632fb 2113 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2114 if (entity_is_task(se)) {
2115 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2116 list_del_init(&se->group_node);
0ec8aa00 2117 }
30cfdcfc 2118 cfs_rq->nr_running--;
30cfdcfc
DA
2119}
2120
3ff6dcac
YZ
2121#ifdef CONFIG_FAIR_GROUP_SCHED
2122# ifdef CONFIG_SMP
cf5f0acf
PZ
2123static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2124{
2125 long tg_weight;
2126
2127 /*
2128 * Use this CPU's actual weight instead of the last load_contribution
2129 * to gain a more accurate current total weight. See
2130 * update_cfs_rq_load_contribution().
2131 */
bf5b986e 2132 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2133 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2134 tg_weight += cfs_rq->load.weight;
2135
2136 return tg_weight;
2137}
2138
6d5ab293 2139static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2140{
cf5f0acf 2141 long tg_weight, load, shares;
3ff6dcac 2142
cf5f0acf 2143 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2144 load = cfs_rq->load.weight;
3ff6dcac 2145
3ff6dcac 2146 shares = (tg->shares * load);
cf5f0acf
PZ
2147 if (tg_weight)
2148 shares /= tg_weight;
3ff6dcac
YZ
2149
2150 if (shares < MIN_SHARES)
2151 shares = MIN_SHARES;
2152 if (shares > tg->shares)
2153 shares = tg->shares;
2154
2155 return shares;
2156}
3ff6dcac 2157# else /* CONFIG_SMP */
6d5ab293 2158static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2159{
2160 return tg->shares;
2161}
3ff6dcac 2162# endif /* CONFIG_SMP */
2069dd75
PZ
2163static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2164 unsigned long weight)
2165{
19e5eebb
PT
2166 if (se->on_rq) {
2167 /* commit outstanding execution time */
2168 if (cfs_rq->curr == se)
2169 update_curr(cfs_rq);
2069dd75 2170 account_entity_dequeue(cfs_rq, se);
19e5eebb 2171 }
2069dd75
PZ
2172
2173 update_load_set(&se->load, weight);
2174
2175 if (se->on_rq)
2176 account_entity_enqueue(cfs_rq, se);
2177}
2178
82958366
PT
2179static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2180
6d5ab293 2181static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2182{
2183 struct task_group *tg;
2184 struct sched_entity *se;
3ff6dcac 2185 long shares;
2069dd75 2186
2069dd75
PZ
2187 tg = cfs_rq->tg;
2188 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2189 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2190 return;
3ff6dcac
YZ
2191#ifndef CONFIG_SMP
2192 if (likely(se->load.weight == tg->shares))
2193 return;
2194#endif
6d5ab293 2195 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2196
2197 reweight_entity(cfs_rq_of(se), se, shares);
2198}
2199#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2200static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2201{
2202}
2203#endif /* CONFIG_FAIR_GROUP_SCHED */
2204
141965c7 2205#ifdef CONFIG_SMP
5b51f2f8
PT
2206/*
2207 * We choose a half-life close to 1 scheduling period.
2208 * Note: The tables below are dependent on this value.
2209 */
2210#define LOAD_AVG_PERIOD 32
2211#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2212#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2213
2214/* Precomputed fixed inverse multiplies for multiplication by y^n */
2215static const u32 runnable_avg_yN_inv[] = {
2216 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2217 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2218 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2219 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2220 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2221 0x85aac367, 0x82cd8698,
2222};
2223
2224/*
2225 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2226 * over-estimates when re-combining.
2227 */
2228static const u32 runnable_avg_yN_sum[] = {
2229 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2230 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2231 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2232};
2233
9d85f21c
PT
2234/*
2235 * Approximate:
2236 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2237 */
2238static __always_inline u64 decay_load(u64 val, u64 n)
2239{
5b51f2f8
PT
2240 unsigned int local_n;
2241
2242 if (!n)
2243 return val;
2244 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2245 return 0;
2246
2247 /* after bounds checking we can collapse to 32-bit */
2248 local_n = n;
2249
2250 /*
2251 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2252 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2253 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2254 *
2255 * To achieve constant time decay_load.
2256 */
2257 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2258 val >>= local_n / LOAD_AVG_PERIOD;
2259 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2260 }
2261
5b51f2f8
PT
2262 val *= runnable_avg_yN_inv[local_n];
2263 /* We don't use SRR here since we always want to round down. */
2264 return val >> 32;
2265}
2266
2267/*
2268 * For updates fully spanning n periods, the contribution to runnable
2269 * average will be: \Sum 1024*y^n
2270 *
2271 * We can compute this reasonably efficiently by combining:
2272 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2273 */
2274static u32 __compute_runnable_contrib(u64 n)
2275{
2276 u32 contrib = 0;
2277
2278 if (likely(n <= LOAD_AVG_PERIOD))
2279 return runnable_avg_yN_sum[n];
2280 else if (unlikely(n >= LOAD_AVG_MAX_N))
2281 return LOAD_AVG_MAX;
2282
2283 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2284 do {
2285 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2286 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2287
2288 n -= LOAD_AVG_PERIOD;
2289 } while (n > LOAD_AVG_PERIOD);
2290
2291 contrib = decay_load(contrib, n);
2292 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2293}
2294
2295/*
2296 * We can represent the historical contribution to runnable average as the
2297 * coefficients of a geometric series. To do this we sub-divide our runnable
2298 * history into segments of approximately 1ms (1024us); label the segment that
2299 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2300 *
2301 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2302 * p0 p1 p2
2303 * (now) (~1ms ago) (~2ms ago)
2304 *
2305 * Let u_i denote the fraction of p_i that the entity was runnable.
2306 *
2307 * We then designate the fractions u_i as our co-efficients, yielding the
2308 * following representation of historical load:
2309 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2310 *
2311 * We choose y based on the with of a reasonably scheduling period, fixing:
2312 * y^32 = 0.5
2313 *
2314 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2315 * approximately half as much as the contribution to load within the last ms
2316 * (u_0).
2317 *
2318 * When a period "rolls over" and we have new u_0`, multiplying the previous
2319 * sum again by y is sufficient to update:
2320 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2321 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2322 */
2323static __always_inline int __update_entity_runnable_avg(u64 now,
2324 struct sched_avg *sa,
2325 int runnable)
2326{
5b51f2f8
PT
2327 u64 delta, periods;
2328 u32 runnable_contrib;
9d85f21c
PT
2329 int delta_w, decayed = 0;
2330
2331 delta = now - sa->last_runnable_update;
2332 /*
2333 * This should only happen when time goes backwards, which it
2334 * unfortunately does during sched clock init when we swap over to TSC.
2335 */
2336 if ((s64)delta < 0) {
2337 sa->last_runnable_update = now;
2338 return 0;
2339 }
2340
2341 /*
2342 * Use 1024ns as the unit of measurement since it's a reasonable
2343 * approximation of 1us and fast to compute.
2344 */
2345 delta >>= 10;
2346 if (!delta)
2347 return 0;
2348 sa->last_runnable_update = now;
2349
2350 /* delta_w is the amount already accumulated against our next period */
2351 delta_w = sa->runnable_avg_period % 1024;
2352 if (delta + delta_w >= 1024) {
2353 /* period roll-over */
2354 decayed = 1;
2355
2356 /*
2357 * Now that we know we're crossing a period boundary, figure
2358 * out how much from delta we need to complete the current
2359 * period and accrue it.
2360 */
2361 delta_w = 1024 - delta_w;
5b51f2f8
PT
2362 if (runnable)
2363 sa->runnable_avg_sum += delta_w;
2364 sa->runnable_avg_period += delta_w;
2365
2366 delta -= delta_w;
2367
2368 /* Figure out how many additional periods this update spans */
2369 periods = delta / 1024;
2370 delta %= 1024;
2371
2372 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2373 periods + 1);
2374 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2375 periods + 1);
2376
2377 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2378 runnable_contrib = __compute_runnable_contrib(periods);
2379 if (runnable)
2380 sa->runnable_avg_sum += runnable_contrib;
2381 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2382 }
2383
2384 /* Remainder of delta accrued against u_0` */
2385 if (runnable)
2386 sa->runnable_avg_sum += delta;
2387 sa->runnable_avg_period += delta;
2388
2389 return decayed;
2390}
2391
9ee474f5 2392/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2393static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2394{
2395 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2396 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2397
2398 decays -= se->avg.decay_count;
2399 if (!decays)
aff3e498 2400 return 0;
9ee474f5
PT
2401
2402 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2403 se->avg.decay_count = 0;
aff3e498
PT
2404
2405 return decays;
9ee474f5
PT
2406}
2407
c566e8e9
PT
2408#ifdef CONFIG_FAIR_GROUP_SCHED
2409static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2410 int force_update)
2411{
2412 struct task_group *tg = cfs_rq->tg;
bf5b986e 2413 long tg_contrib;
c566e8e9
PT
2414
2415 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2416 tg_contrib -= cfs_rq->tg_load_contrib;
2417
8236d907
JL
2418 if (!tg_contrib)
2419 return;
2420
bf5b986e
AS
2421 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2422 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2423 cfs_rq->tg_load_contrib += tg_contrib;
2424 }
2425}
8165e145 2426
bb17f655
PT
2427/*
2428 * Aggregate cfs_rq runnable averages into an equivalent task_group
2429 * representation for computing load contributions.
2430 */
2431static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2432 struct cfs_rq *cfs_rq)
2433{
2434 struct task_group *tg = cfs_rq->tg;
2435 long contrib;
2436
2437 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2438 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2439 sa->runnable_avg_period + 1);
2440 contrib -= cfs_rq->tg_runnable_contrib;
2441
2442 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2443 atomic_add(contrib, &tg->runnable_avg);
2444 cfs_rq->tg_runnable_contrib += contrib;
2445 }
2446}
2447
8165e145
PT
2448static inline void __update_group_entity_contrib(struct sched_entity *se)
2449{
2450 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2451 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2452 int runnable_avg;
2453
8165e145
PT
2454 u64 contrib;
2455
2456 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2457 se->avg.load_avg_contrib = div_u64(contrib,
2458 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2459
2460 /*
2461 * For group entities we need to compute a correction term in the case
2462 * that they are consuming <1 cpu so that we would contribute the same
2463 * load as a task of equal weight.
2464 *
2465 * Explicitly co-ordinating this measurement would be expensive, but
2466 * fortunately the sum of each cpus contribution forms a usable
2467 * lower-bound on the true value.
2468 *
2469 * Consider the aggregate of 2 contributions. Either they are disjoint
2470 * (and the sum represents true value) or they are disjoint and we are
2471 * understating by the aggregate of their overlap.
2472 *
2473 * Extending this to N cpus, for a given overlap, the maximum amount we
2474 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2475 * cpus that overlap for this interval and w_i is the interval width.
2476 *
2477 * On a small machine; the first term is well-bounded which bounds the
2478 * total error since w_i is a subset of the period. Whereas on a
2479 * larger machine, while this first term can be larger, if w_i is the
2480 * of consequential size guaranteed to see n_i*w_i quickly converge to
2481 * our upper bound of 1-cpu.
2482 */
2483 runnable_avg = atomic_read(&tg->runnable_avg);
2484 if (runnable_avg < NICE_0_LOAD) {
2485 se->avg.load_avg_contrib *= runnable_avg;
2486 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2487 }
8165e145 2488}
f5f9739d
DE
2489
2490static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2491{
2492 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2493 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2494}
6e83125c 2495#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2496static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2497 int force_update) {}
bb17f655
PT
2498static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2499 struct cfs_rq *cfs_rq) {}
8165e145 2500static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2501static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2502#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2503
8165e145
PT
2504static inline void __update_task_entity_contrib(struct sched_entity *se)
2505{
2506 u32 contrib;
2507
2508 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2509 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2510 contrib /= (se->avg.runnable_avg_period + 1);
2511 se->avg.load_avg_contrib = scale_load(contrib);
2512}
2513
2dac754e
PT
2514/* Compute the current contribution to load_avg by se, return any delta */
2515static long __update_entity_load_avg_contrib(struct sched_entity *se)
2516{
2517 long old_contrib = se->avg.load_avg_contrib;
2518
8165e145
PT
2519 if (entity_is_task(se)) {
2520 __update_task_entity_contrib(se);
2521 } else {
bb17f655 2522 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2523 __update_group_entity_contrib(se);
2524 }
2dac754e
PT
2525
2526 return se->avg.load_avg_contrib - old_contrib;
2527}
2528
9ee474f5
PT
2529static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2530 long load_contrib)
2531{
2532 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2533 cfs_rq->blocked_load_avg -= load_contrib;
2534 else
2535 cfs_rq->blocked_load_avg = 0;
2536}
2537
f1b17280
PT
2538static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2539
9d85f21c 2540/* Update a sched_entity's runnable average */
9ee474f5
PT
2541static inline void update_entity_load_avg(struct sched_entity *se,
2542 int update_cfs_rq)
9d85f21c 2543{
2dac754e
PT
2544 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2545 long contrib_delta;
f1b17280 2546 u64 now;
2dac754e 2547
f1b17280
PT
2548 /*
2549 * For a group entity we need to use their owned cfs_rq_clock_task() in
2550 * case they are the parent of a throttled hierarchy.
2551 */
2552 if (entity_is_task(se))
2553 now = cfs_rq_clock_task(cfs_rq);
2554 else
2555 now = cfs_rq_clock_task(group_cfs_rq(se));
2556
2557 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2558 return;
2559
2560 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2561
2562 if (!update_cfs_rq)
2563 return;
2564
2dac754e
PT
2565 if (se->on_rq)
2566 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2567 else
2568 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2569}
2570
2571/*
2572 * Decay the load contributed by all blocked children and account this so that
2573 * their contribution may appropriately discounted when they wake up.
2574 */
aff3e498 2575static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2576{
f1b17280 2577 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2578 u64 decays;
2579
2580 decays = now - cfs_rq->last_decay;
aff3e498 2581 if (!decays && !force_update)
9ee474f5
PT
2582 return;
2583
2509940f
AS
2584 if (atomic_long_read(&cfs_rq->removed_load)) {
2585 unsigned long removed_load;
2586 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2587 subtract_blocked_load_contrib(cfs_rq, removed_load);
2588 }
9ee474f5 2589
aff3e498
PT
2590 if (decays) {
2591 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2592 decays);
2593 atomic64_add(decays, &cfs_rq->decay_counter);
2594 cfs_rq->last_decay = now;
2595 }
c566e8e9
PT
2596
2597 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2598}
18bf2805 2599
2dac754e
PT
2600/* Add the load generated by se into cfs_rq's child load-average */
2601static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2602 struct sched_entity *se,
2603 int wakeup)
2dac754e 2604{
aff3e498
PT
2605 /*
2606 * We track migrations using entity decay_count <= 0, on a wake-up
2607 * migration we use a negative decay count to track the remote decays
2608 * accumulated while sleeping.
a75cdaa9
AS
2609 *
2610 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2611 * are seen by enqueue_entity_load_avg() as a migration with an already
2612 * constructed load_avg_contrib.
aff3e498
PT
2613 */
2614 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2615 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2616 if (se->avg.decay_count) {
2617 /*
2618 * In a wake-up migration we have to approximate the
2619 * time sleeping. This is because we can't synchronize
2620 * clock_task between the two cpus, and it is not
2621 * guaranteed to be read-safe. Instead, we can
2622 * approximate this using our carried decays, which are
2623 * explicitly atomically readable.
2624 */
2625 se->avg.last_runnable_update -= (-se->avg.decay_count)
2626 << 20;
2627 update_entity_load_avg(se, 0);
2628 /* Indicate that we're now synchronized and on-rq */
2629 se->avg.decay_count = 0;
2630 }
9ee474f5
PT
2631 wakeup = 0;
2632 } else {
9390675a 2633 __synchronize_entity_decay(se);
9ee474f5
PT
2634 }
2635
aff3e498
PT
2636 /* migrated tasks did not contribute to our blocked load */
2637 if (wakeup) {
9ee474f5 2638 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2639 update_entity_load_avg(se, 0);
2640 }
9ee474f5 2641
2dac754e 2642 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2643 /* we force update consideration on load-balancer moves */
2644 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2645}
2646
9ee474f5
PT
2647/*
2648 * Remove se's load from this cfs_rq child load-average, if the entity is
2649 * transitioning to a blocked state we track its projected decay using
2650 * blocked_load_avg.
2651 */
2dac754e 2652static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2653 struct sched_entity *se,
2654 int sleep)
2dac754e 2655{
9ee474f5 2656 update_entity_load_avg(se, 1);
aff3e498
PT
2657 /* we force update consideration on load-balancer moves */
2658 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2659
2dac754e 2660 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2661 if (sleep) {
2662 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2663 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2664 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2665}
642dbc39
VG
2666
2667/*
2668 * Update the rq's load with the elapsed running time before entering
2669 * idle. if the last scheduled task is not a CFS task, idle_enter will
2670 * be the only way to update the runnable statistic.
2671 */
2672void idle_enter_fair(struct rq *this_rq)
2673{
2674 update_rq_runnable_avg(this_rq, 1);
2675}
2676
2677/*
2678 * Update the rq's load with the elapsed idle time before a task is
2679 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2680 * be the only way to update the runnable statistic.
2681 */
2682void idle_exit_fair(struct rq *this_rq)
2683{
2684 update_rq_runnable_avg(this_rq, 0);
2685}
2686
6e83125c
PZ
2687static int idle_balance(struct rq *this_rq);
2688
38033c37
PZ
2689#else /* CONFIG_SMP */
2690
9ee474f5
PT
2691static inline void update_entity_load_avg(struct sched_entity *se,
2692 int update_cfs_rq) {}
18bf2805 2693static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2694static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2695 struct sched_entity *se,
2696 int wakeup) {}
2dac754e 2697static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2698 struct sched_entity *se,
2699 int sleep) {}
aff3e498
PT
2700static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2701 int force_update) {}
6e83125c
PZ
2702
2703static inline int idle_balance(struct rq *rq)
2704{
2705 return 0;
2706}
2707
38033c37 2708#endif /* CONFIG_SMP */
9d85f21c 2709
2396af69 2710static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2711{
bf0f6f24 2712#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2713 struct task_struct *tsk = NULL;
2714
2715 if (entity_is_task(se))
2716 tsk = task_of(se);
2717
41acab88 2718 if (se->statistics.sleep_start) {
78becc27 2719 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2720
2721 if ((s64)delta < 0)
2722 delta = 0;
2723
41acab88
LDM
2724 if (unlikely(delta > se->statistics.sleep_max))
2725 se->statistics.sleep_max = delta;
bf0f6f24 2726
8c79a045 2727 se->statistics.sleep_start = 0;
41acab88 2728 se->statistics.sum_sleep_runtime += delta;
9745512c 2729
768d0c27 2730 if (tsk) {
e414314c 2731 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2732 trace_sched_stat_sleep(tsk, delta);
2733 }
bf0f6f24 2734 }
41acab88 2735 if (se->statistics.block_start) {
78becc27 2736 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2737
2738 if ((s64)delta < 0)
2739 delta = 0;
2740
41acab88
LDM
2741 if (unlikely(delta > se->statistics.block_max))
2742 se->statistics.block_max = delta;
bf0f6f24 2743
8c79a045 2744 se->statistics.block_start = 0;
41acab88 2745 se->statistics.sum_sleep_runtime += delta;
30084fbd 2746
e414314c 2747 if (tsk) {
8f0dfc34 2748 if (tsk->in_iowait) {
41acab88
LDM
2749 se->statistics.iowait_sum += delta;
2750 se->statistics.iowait_count++;
768d0c27 2751 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2752 }
2753
b781a602
AV
2754 trace_sched_stat_blocked(tsk, delta);
2755
e414314c
PZ
2756 /*
2757 * Blocking time is in units of nanosecs, so shift by
2758 * 20 to get a milliseconds-range estimation of the
2759 * amount of time that the task spent sleeping:
2760 */
2761 if (unlikely(prof_on == SLEEP_PROFILING)) {
2762 profile_hits(SLEEP_PROFILING,
2763 (void *)get_wchan(tsk),
2764 delta >> 20);
2765 }
2766 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2767 }
bf0f6f24
IM
2768 }
2769#endif
2770}
2771
ddc97297
PZ
2772static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2773{
2774#ifdef CONFIG_SCHED_DEBUG
2775 s64 d = se->vruntime - cfs_rq->min_vruntime;
2776
2777 if (d < 0)
2778 d = -d;
2779
2780 if (d > 3*sysctl_sched_latency)
2781 schedstat_inc(cfs_rq, nr_spread_over);
2782#endif
2783}
2784
aeb73b04
PZ
2785static void
2786place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2787{
1af5f730 2788 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2789
2cb8600e
PZ
2790 /*
2791 * The 'current' period is already promised to the current tasks,
2792 * however the extra weight of the new task will slow them down a
2793 * little, place the new task so that it fits in the slot that
2794 * stays open at the end.
2795 */
94dfb5e7 2796 if (initial && sched_feat(START_DEBIT))
f9c0b095 2797 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2798
a2e7a7eb 2799 /* sleeps up to a single latency don't count. */
5ca9880c 2800 if (!initial) {
a2e7a7eb 2801 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2802
a2e7a7eb
MG
2803 /*
2804 * Halve their sleep time's effect, to allow
2805 * for a gentler effect of sleepers:
2806 */
2807 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2808 thresh >>= 1;
51e0304c 2809
a2e7a7eb 2810 vruntime -= thresh;
aeb73b04
PZ
2811 }
2812
b5d9d734 2813 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2814 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2815}
2816
d3d9dc33
PT
2817static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2818
bf0f6f24 2819static void
88ec22d3 2820enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2821{
88ec22d3
PZ
2822 /*
2823 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2824 * through calling update_curr().
88ec22d3 2825 */
371fd7e7 2826 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2827 se->vruntime += cfs_rq->min_vruntime;
2828
bf0f6f24 2829 /*
a2a2d680 2830 * Update run-time statistics of the 'current'.
bf0f6f24 2831 */
b7cc0896 2832 update_curr(cfs_rq);
f269ae04 2833 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2834 account_entity_enqueue(cfs_rq, se);
2835 update_cfs_shares(cfs_rq);
bf0f6f24 2836
88ec22d3 2837 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2838 place_entity(cfs_rq, se, 0);
2396af69 2839 enqueue_sleeper(cfs_rq, se);
e9acbff6 2840 }
bf0f6f24 2841
d2417e5a 2842 update_stats_enqueue(cfs_rq, se);
ddc97297 2843 check_spread(cfs_rq, se);
83b699ed
SV
2844 if (se != cfs_rq->curr)
2845 __enqueue_entity(cfs_rq, se);
2069dd75 2846 se->on_rq = 1;
3d4b47b4 2847
d3d9dc33 2848 if (cfs_rq->nr_running == 1) {
3d4b47b4 2849 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2850 check_enqueue_throttle(cfs_rq);
2851 }
bf0f6f24
IM
2852}
2853
2c13c919 2854static void __clear_buddies_last(struct sched_entity *se)
2002c695 2855{
2c13c919
RR
2856 for_each_sched_entity(se) {
2857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2858 if (cfs_rq->last != se)
2c13c919 2859 break;
f1044799
PZ
2860
2861 cfs_rq->last = NULL;
2c13c919
RR
2862 }
2863}
2002c695 2864
2c13c919
RR
2865static void __clear_buddies_next(struct sched_entity *se)
2866{
2867 for_each_sched_entity(se) {
2868 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2869 if (cfs_rq->next != se)
2c13c919 2870 break;
f1044799
PZ
2871
2872 cfs_rq->next = NULL;
2c13c919 2873 }
2002c695
PZ
2874}
2875
ac53db59
RR
2876static void __clear_buddies_skip(struct sched_entity *se)
2877{
2878 for_each_sched_entity(se) {
2879 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2880 if (cfs_rq->skip != se)
ac53db59 2881 break;
f1044799
PZ
2882
2883 cfs_rq->skip = NULL;
ac53db59
RR
2884 }
2885}
2886
a571bbea
PZ
2887static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2888{
2c13c919
RR
2889 if (cfs_rq->last == se)
2890 __clear_buddies_last(se);
2891
2892 if (cfs_rq->next == se)
2893 __clear_buddies_next(se);
ac53db59
RR
2894
2895 if (cfs_rq->skip == se)
2896 __clear_buddies_skip(se);
a571bbea
PZ
2897}
2898
6c16a6dc 2899static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2900
bf0f6f24 2901static void
371fd7e7 2902dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2903{
a2a2d680
DA
2904 /*
2905 * Update run-time statistics of the 'current'.
2906 */
2907 update_curr(cfs_rq);
17bc14b7 2908 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2909
19b6a2e3 2910 update_stats_dequeue(cfs_rq, se);
371fd7e7 2911 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2912#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2913 if (entity_is_task(se)) {
2914 struct task_struct *tsk = task_of(se);
2915
2916 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2917 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2918 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2919 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2920 }
db36cc7d 2921#endif
67e9fb2a
PZ
2922 }
2923
2002c695 2924 clear_buddies(cfs_rq, se);
4793241b 2925
83b699ed 2926 if (se != cfs_rq->curr)
30cfdcfc 2927 __dequeue_entity(cfs_rq, se);
17bc14b7 2928 se->on_rq = 0;
30cfdcfc 2929 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2930
2931 /*
2932 * Normalize the entity after updating the min_vruntime because the
2933 * update can refer to the ->curr item and we need to reflect this
2934 * movement in our normalized position.
2935 */
371fd7e7 2936 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2937 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2938
d8b4986d
PT
2939 /* return excess runtime on last dequeue */
2940 return_cfs_rq_runtime(cfs_rq);
2941
1e876231 2942 update_min_vruntime(cfs_rq);
17bc14b7 2943 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2944}
2945
2946/*
2947 * Preempt the current task with a newly woken task if needed:
2948 */
7c92e54f 2949static void
2e09bf55 2950check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2951{
11697830 2952 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2953 struct sched_entity *se;
2954 s64 delta;
11697830 2955
6d0f0ebd 2956 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2957 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2958 if (delta_exec > ideal_runtime) {
8875125e 2959 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
2960 /*
2961 * The current task ran long enough, ensure it doesn't get
2962 * re-elected due to buddy favours.
2963 */
2964 clear_buddies(cfs_rq, curr);
f685ceac
MG
2965 return;
2966 }
2967
2968 /*
2969 * Ensure that a task that missed wakeup preemption by a
2970 * narrow margin doesn't have to wait for a full slice.
2971 * This also mitigates buddy induced latencies under load.
2972 */
f685ceac
MG
2973 if (delta_exec < sysctl_sched_min_granularity)
2974 return;
2975
f4cfb33e
WX
2976 se = __pick_first_entity(cfs_rq);
2977 delta = curr->vruntime - se->vruntime;
f685ceac 2978
f4cfb33e
WX
2979 if (delta < 0)
2980 return;
d7d82944 2981
f4cfb33e 2982 if (delta > ideal_runtime)
8875125e 2983 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
2984}
2985
83b699ed 2986static void
8494f412 2987set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2988{
83b699ed
SV
2989 /* 'current' is not kept within the tree. */
2990 if (se->on_rq) {
2991 /*
2992 * Any task has to be enqueued before it get to execute on
2993 * a CPU. So account for the time it spent waiting on the
2994 * runqueue.
2995 */
2996 update_stats_wait_end(cfs_rq, se);
2997 __dequeue_entity(cfs_rq, se);
2998 }
2999
79303e9e 3000 update_stats_curr_start(cfs_rq, se);
429d43bc 3001 cfs_rq->curr = se;
eba1ed4b
IM
3002#ifdef CONFIG_SCHEDSTATS
3003 /*
3004 * Track our maximum slice length, if the CPU's load is at
3005 * least twice that of our own weight (i.e. dont track it
3006 * when there are only lesser-weight tasks around):
3007 */
495eca49 3008 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3009 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3010 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3011 }
3012#endif
4a55b450 3013 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3014}
3015
3f3a4904
PZ
3016static int
3017wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3018
ac53db59
RR
3019/*
3020 * Pick the next process, keeping these things in mind, in this order:
3021 * 1) keep things fair between processes/task groups
3022 * 2) pick the "next" process, since someone really wants that to run
3023 * 3) pick the "last" process, for cache locality
3024 * 4) do not run the "skip" process, if something else is available
3025 */
678d5718
PZ
3026static struct sched_entity *
3027pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3028{
678d5718
PZ
3029 struct sched_entity *left = __pick_first_entity(cfs_rq);
3030 struct sched_entity *se;
3031
3032 /*
3033 * If curr is set we have to see if its left of the leftmost entity
3034 * still in the tree, provided there was anything in the tree at all.
3035 */
3036 if (!left || (curr && entity_before(curr, left)))
3037 left = curr;
3038
3039 se = left; /* ideally we run the leftmost entity */
f4b6755f 3040
ac53db59
RR
3041 /*
3042 * Avoid running the skip buddy, if running something else can
3043 * be done without getting too unfair.
3044 */
3045 if (cfs_rq->skip == se) {
678d5718
PZ
3046 struct sched_entity *second;
3047
3048 if (se == curr) {
3049 second = __pick_first_entity(cfs_rq);
3050 } else {
3051 second = __pick_next_entity(se);
3052 if (!second || (curr && entity_before(curr, second)))
3053 second = curr;
3054 }
3055
ac53db59
RR
3056 if (second && wakeup_preempt_entity(second, left) < 1)
3057 se = second;
3058 }
aa2ac252 3059
f685ceac
MG
3060 /*
3061 * Prefer last buddy, try to return the CPU to a preempted task.
3062 */
3063 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3064 se = cfs_rq->last;
3065
ac53db59
RR
3066 /*
3067 * Someone really wants this to run. If it's not unfair, run it.
3068 */
3069 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3070 se = cfs_rq->next;
3071
f685ceac 3072 clear_buddies(cfs_rq, se);
4793241b
PZ
3073
3074 return se;
aa2ac252
PZ
3075}
3076
678d5718 3077static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3078
ab6cde26 3079static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3080{
3081 /*
3082 * If still on the runqueue then deactivate_task()
3083 * was not called and update_curr() has to be done:
3084 */
3085 if (prev->on_rq)
b7cc0896 3086 update_curr(cfs_rq);
bf0f6f24 3087
d3d9dc33
PT
3088 /* throttle cfs_rqs exceeding runtime */
3089 check_cfs_rq_runtime(cfs_rq);
3090
ddc97297 3091 check_spread(cfs_rq, prev);
30cfdcfc 3092 if (prev->on_rq) {
5870db5b 3093 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3094 /* Put 'current' back into the tree. */
3095 __enqueue_entity(cfs_rq, prev);
9d85f21c 3096 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3097 update_entity_load_avg(prev, 1);
30cfdcfc 3098 }
429d43bc 3099 cfs_rq->curr = NULL;
bf0f6f24
IM
3100}
3101
8f4d37ec
PZ
3102static void
3103entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3104{
bf0f6f24 3105 /*
30cfdcfc 3106 * Update run-time statistics of the 'current'.
bf0f6f24 3107 */
30cfdcfc 3108 update_curr(cfs_rq);
bf0f6f24 3109
9d85f21c
PT
3110 /*
3111 * Ensure that runnable average is periodically updated.
3112 */
9ee474f5 3113 update_entity_load_avg(curr, 1);
aff3e498 3114 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3115 update_cfs_shares(cfs_rq);
9d85f21c 3116
8f4d37ec
PZ
3117#ifdef CONFIG_SCHED_HRTICK
3118 /*
3119 * queued ticks are scheduled to match the slice, so don't bother
3120 * validating it and just reschedule.
3121 */
983ed7a6 3122 if (queued) {
8875125e 3123 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3124 return;
3125 }
8f4d37ec
PZ
3126 /*
3127 * don't let the period tick interfere with the hrtick preemption
3128 */
3129 if (!sched_feat(DOUBLE_TICK) &&
3130 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3131 return;
3132#endif
3133
2c2efaed 3134 if (cfs_rq->nr_running > 1)
2e09bf55 3135 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3136}
3137
ab84d31e
PT
3138
3139/**************************************************
3140 * CFS bandwidth control machinery
3141 */
3142
3143#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3144
3145#ifdef HAVE_JUMP_LABEL
c5905afb 3146static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3147
3148static inline bool cfs_bandwidth_used(void)
3149{
c5905afb 3150 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3151}
3152
1ee14e6c 3153void cfs_bandwidth_usage_inc(void)
029632fb 3154{
1ee14e6c
BS
3155 static_key_slow_inc(&__cfs_bandwidth_used);
3156}
3157
3158void cfs_bandwidth_usage_dec(void)
3159{
3160 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3161}
3162#else /* HAVE_JUMP_LABEL */
3163static bool cfs_bandwidth_used(void)
3164{
3165 return true;
3166}
3167
1ee14e6c
BS
3168void cfs_bandwidth_usage_inc(void) {}
3169void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3170#endif /* HAVE_JUMP_LABEL */
3171
ab84d31e
PT
3172/*
3173 * default period for cfs group bandwidth.
3174 * default: 0.1s, units: nanoseconds
3175 */
3176static inline u64 default_cfs_period(void)
3177{
3178 return 100000000ULL;
3179}
ec12cb7f
PT
3180
3181static inline u64 sched_cfs_bandwidth_slice(void)
3182{
3183 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3184}
3185
a9cf55b2
PT
3186/*
3187 * Replenish runtime according to assigned quota and update expiration time.
3188 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3189 * additional synchronization around rq->lock.
3190 *
3191 * requires cfs_b->lock
3192 */
029632fb 3193void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3194{
3195 u64 now;
3196
3197 if (cfs_b->quota == RUNTIME_INF)
3198 return;
3199
3200 now = sched_clock_cpu(smp_processor_id());
3201 cfs_b->runtime = cfs_b->quota;
3202 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3203}
3204
029632fb
PZ
3205static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3206{
3207 return &tg->cfs_bandwidth;
3208}
3209
f1b17280
PT
3210/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3211static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3212{
3213 if (unlikely(cfs_rq->throttle_count))
3214 return cfs_rq->throttled_clock_task;
3215
78becc27 3216 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3217}
3218
85dac906
PT
3219/* returns 0 on failure to allocate runtime */
3220static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3221{
3222 struct task_group *tg = cfs_rq->tg;
3223 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3224 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3225
3226 /* note: this is a positive sum as runtime_remaining <= 0 */
3227 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3228
3229 raw_spin_lock(&cfs_b->lock);
3230 if (cfs_b->quota == RUNTIME_INF)
3231 amount = min_amount;
58088ad0 3232 else {
a9cf55b2
PT
3233 /*
3234 * If the bandwidth pool has become inactive, then at least one
3235 * period must have elapsed since the last consumption.
3236 * Refresh the global state and ensure bandwidth timer becomes
3237 * active.
3238 */
3239 if (!cfs_b->timer_active) {
3240 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3241 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3242 }
58088ad0
PT
3243
3244 if (cfs_b->runtime > 0) {
3245 amount = min(cfs_b->runtime, min_amount);
3246 cfs_b->runtime -= amount;
3247 cfs_b->idle = 0;
3248 }
ec12cb7f 3249 }
a9cf55b2 3250 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3251 raw_spin_unlock(&cfs_b->lock);
3252
3253 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3254 /*
3255 * we may have advanced our local expiration to account for allowed
3256 * spread between our sched_clock and the one on which runtime was
3257 * issued.
3258 */
3259 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3260 cfs_rq->runtime_expires = expires;
85dac906
PT
3261
3262 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3263}
3264
a9cf55b2
PT
3265/*
3266 * Note: This depends on the synchronization provided by sched_clock and the
3267 * fact that rq->clock snapshots this value.
3268 */
3269static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3270{
a9cf55b2 3271 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3272
3273 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3274 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3275 return;
3276
a9cf55b2
PT
3277 if (cfs_rq->runtime_remaining < 0)
3278 return;
3279
3280 /*
3281 * If the local deadline has passed we have to consider the
3282 * possibility that our sched_clock is 'fast' and the global deadline
3283 * has not truly expired.
3284 *
3285 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3286 * whether the global deadline has advanced. It is valid to compare
3287 * cfs_b->runtime_expires without any locks since we only care about
3288 * exact equality, so a partial write will still work.
a9cf55b2
PT
3289 */
3290
51f2176d 3291 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3292 /* extend local deadline, drift is bounded above by 2 ticks */
3293 cfs_rq->runtime_expires += TICK_NSEC;
3294 } else {
3295 /* global deadline is ahead, expiration has passed */
3296 cfs_rq->runtime_remaining = 0;
3297 }
3298}
3299
9dbdb155 3300static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3301{
3302 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3303 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3304 expire_cfs_rq_runtime(cfs_rq);
3305
3306 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3307 return;
3308
85dac906
PT
3309 /*
3310 * if we're unable to extend our runtime we resched so that the active
3311 * hierarchy can be throttled
3312 */
3313 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3314 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3315}
3316
6c16a6dc 3317static __always_inline
9dbdb155 3318void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3319{
56f570e5 3320 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3321 return;
3322
3323 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3324}
3325
85dac906
PT
3326static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3327{
56f570e5 3328 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3329}
3330
64660c86
PT
3331/* check whether cfs_rq, or any parent, is throttled */
3332static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3333{
56f570e5 3334 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3335}
3336
3337/*
3338 * Ensure that neither of the group entities corresponding to src_cpu or
3339 * dest_cpu are members of a throttled hierarchy when performing group
3340 * load-balance operations.
3341 */
3342static inline int throttled_lb_pair(struct task_group *tg,
3343 int src_cpu, int dest_cpu)
3344{
3345 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3346
3347 src_cfs_rq = tg->cfs_rq[src_cpu];
3348 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3349
3350 return throttled_hierarchy(src_cfs_rq) ||
3351 throttled_hierarchy(dest_cfs_rq);
3352}
3353
3354/* updated child weight may affect parent so we have to do this bottom up */
3355static int tg_unthrottle_up(struct task_group *tg, void *data)
3356{
3357 struct rq *rq = data;
3358 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3359
3360 cfs_rq->throttle_count--;
3361#ifdef CONFIG_SMP
3362 if (!cfs_rq->throttle_count) {
f1b17280 3363 /* adjust cfs_rq_clock_task() */
78becc27 3364 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3365 cfs_rq->throttled_clock_task;
64660c86
PT
3366 }
3367#endif
3368
3369 return 0;
3370}
3371
3372static int tg_throttle_down(struct task_group *tg, void *data)
3373{
3374 struct rq *rq = data;
3375 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3376
82958366
PT
3377 /* group is entering throttled state, stop time */
3378 if (!cfs_rq->throttle_count)
78becc27 3379 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3380 cfs_rq->throttle_count++;
3381
3382 return 0;
3383}
3384
d3d9dc33 3385static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3386{
3387 struct rq *rq = rq_of(cfs_rq);
3388 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3389 struct sched_entity *se;
3390 long task_delta, dequeue = 1;
3391
3392 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3393
f1b17280 3394 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3395 rcu_read_lock();
3396 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3397 rcu_read_unlock();
85dac906
PT
3398
3399 task_delta = cfs_rq->h_nr_running;
3400 for_each_sched_entity(se) {
3401 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3402 /* throttled entity or throttle-on-deactivate */
3403 if (!se->on_rq)
3404 break;
3405
3406 if (dequeue)
3407 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3408 qcfs_rq->h_nr_running -= task_delta;
3409
3410 if (qcfs_rq->load.weight)
3411 dequeue = 0;
3412 }
3413
3414 if (!se)
72465447 3415 sub_nr_running(rq, task_delta);
85dac906
PT
3416
3417 cfs_rq->throttled = 1;
78becc27 3418 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3419 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3420 /*
3421 * Add to the _head_ of the list, so that an already-started
3422 * distribute_cfs_runtime will not see us
3423 */
3424 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3425 if (!cfs_b->timer_active)
09dc4ab0 3426 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3427 raw_spin_unlock(&cfs_b->lock);
3428}
3429
029632fb 3430void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3431{
3432 struct rq *rq = rq_of(cfs_rq);
3433 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3434 struct sched_entity *se;
3435 int enqueue = 1;
3436 long task_delta;
3437
22b958d8 3438 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3439
3440 cfs_rq->throttled = 0;
1a55af2e
FW
3441
3442 update_rq_clock(rq);
3443
671fd9da 3444 raw_spin_lock(&cfs_b->lock);
78becc27 3445 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3446 list_del_rcu(&cfs_rq->throttled_list);
3447 raw_spin_unlock(&cfs_b->lock);
3448
64660c86
PT
3449 /* update hierarchical throttle state */
3450 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3451
671fd9da
PT
3452 if (!cfs_rq->load.weight)
3453 return;
3454
3455 task_delta = cfs_rq->h_nr_running;
3456 for_each_sched_entity(se) {
3457 if (se->on_rq)
3458 enqueue = 0;
3459
3460 cfs_rq = cfs_rq_of(se);
3461 if (enqueue)
3462 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3463 cfs_rq->h_nr_running += task_delta;
3464
3465 if (cfs_rq_throttled(cfs_rq))
3466 break;
3467 }
3468
3469 if (!se)
72465447 3470 add_nr_running(rq, task_delta);
671fd9da
PT
3471
3472 /* determine whether we need to wake up potentially idle cpu */
3473 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3474 resched_curr(rq);
671fd9da
PT
3475}
3476
3477static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3478 u64 remaining, u64 expires)
3479{
3480 struct cfs_rq *cfs_rq;
c06f04c7
BS
3481 u64 runtime;
3482 u64 starting_runtime = remaining;
671fd9da
PT
3483
3484 rcu_read_lock();
3485 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3486 throttled_list) {
3487 struct rq *rq = rq_of(cfs_rq);
3488
3489 raw_spin_lock(&rq->lock);
3490 if (!cfs_rq_throttled(cfs_rq))
3491 goto next;
3492
3493 runtime = -cfs_rq->runtime_remaining + 1;
3494 if (runtime > remaining)
3495 runtime = remaining;
3496 remaining -= runtime;
3497
3498 cfs_rq->runtime_remaining += runtime;
3499 cfs_rq->runtime_expires = expires;
3500
3501 /* we check whether we're throttled above */
3502 if (cfs_rq->runtime_remaining > 0)
3503 unthrottle_cfs_rq(cfs_rq);
3504
3505next:
3506 raw_spin_unlock(&rq->lock);
3507
3508 if (!remaining)
3509 break;
3510 }
3511 rcu_read_unlock();
3512
c06f04c7 3513 return starting_runtime - remaining;
671fd9da
PT
3514}
3515
58088ad0
PT
3516/*
3517 * Responsible for refilling a task_group's bandwidth and unthrottling its
3518 * cfs_rqs as appropriate. If there has been no activity within the last
3519 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3520 * used to track this state.
3521 */
3522static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3523{
671fd9da 3524 u64 runtime, runtime_expires;
51f2176d 3525 int throttled;
58088ad0 3526
58088ad0
PT
3527 /* no need to continue the timer with no bandwidth constraint */
3528 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3529 goto out_deactivate;
58088ad0 3530
671fd9da 3531 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3532 cfs_b->nr_periods += overrun;
671fd9da 3533
51f2176d
BS
3534 /*
3535 * idle depends on !throttled (for the case of a large deficit), and if
3536 * we're going inactive then everything else can be deferred
3537 */
3538 if (cfs_b->idle && !throttled)
3539 goto out_deactivate;
a9cf55b2 3540
927b54fc
BS
3541 /*
3542 * if we have relooped after returning idle once, we need to update our
3543 * status as actually running, so that other cpus doing
3544 * __start_cfs_bandwidth will stop trying to cancel us.
3545 */
3546 cfs_b->timer_active = 1;
3547
a9cf55b2
PT
3548 __refill_cfs_bandwidth_runtime(cfs_b);
3549
671fd9da
PT
3550 if (!throttled) {
3551 /* mark as potentially idle for the upcoming period */
3552 cfs_b->idle = 1;
51f2176d 3553 return 0;
671fd9da
PT
3554 }
3555
e8da1b18
NR
3556 /* account preceding periods in which throttling occurred */
3557 cfs_b->nr_throttled += overrun;
3558
671fd9da 3559 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3560
3561 /*
c06f04c7
BS
3562 * This check is repeated as we are holding onto the new bandwidth while
3563 * we unthrottle. This can potentially race with an unthrottled group
3564 * trying to acquire new bandwidth from the global pool. This can result
3565 * in us over-using our runtime if it is all used during this loop, but
3566 * only by limited amounts in that extreme case.
671fd9da 3567 */
c06f04c7
BS
3568 while (throttled && cfs_b->runtime > 0) {
3569 runtime = cfs_b->runtime;
671fd9da
PT
3570 raw_spin_unlock(&cfs_b->lock);
3571 /* we can't nest cfs_b->lock while distributing bandwidth */
3572 runtime = distribute_cfs_runtime(cfs_b, runtime,
3573 runtime_expires);
3574 raw_spin_lock(&cfs_b->lock);
3575
3576 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3577
3578 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3579 }
58088ad0 3580
671fd9da
PT
3581 /*
3582 * While we are ensured activity in the period following an
3583 * unthrottle, this also covers the case in which the new bandwidth is
3584 * insufficient to cover the existing bandwidth deficit. (Forcing the
3585 * timer to remain active while there are any throttled entities.)
3586 */
3587 cfs_b->idle = 0;
58088ad0 3588
51f2176d
BS
3589 return 0;
3590
3591out_deactivate:
3592 cfs_b->timer_active = 0;
3593 return 1;
58088ad0 3594}
d3d9dc33 3595
d8b4986d
PT
3596/* a cfs_rq won't donate quota below this amount */
3597static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3598/* minimum remaining period time to redistribute slack quota */
3599static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3600/* how long we wait to gather additional slack before distributing */
3601static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3602
db06e78c
BS
3603/*
3604 * Are we near the end of the current quota period?
3605 *
3606 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3607 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3608 * migrate_hrtimers, base is never cleared, so we are fine.
3609 */
d8b4986d
PT
3610static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3611{
3612 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3613 u64 remaining;
3614
3615 /* if the call-back is running a quota refresh is already occurring */
3616 if (hrtimer_callback_running(refresh_timer))
3617 return 1;
3618
3619 /* is a quota refresh about to occur? */
3620 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3621 if (remaining < min_expire)
3622 return 1;
3623
3624 return 0;
3625}
3626
3627static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3628{
3629 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3630
3631 /* if there's a quota refresh soon don't bother with slack */
3632 if (runtime_refresh_within(cfs_b, min_left))
3633 return;
3634
3635 start_bandwidth_timer(&cfs_b->slack_timer,
3636 ns_to_ktime(cfs_bandwidth_slack_period));
3637}
3638
3639/* we know any runtime found here is valid as update_curr() precedes return */
3640static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3641{
3642 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3643 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3644
3645 if (slack_runtime <= 0)
3646 return;
3647
3648 raw_spin_lock(&cfs_b->lock);
3649 if (cfs_b->quota != RUNTIME_INF &&
3650 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3651 cfs_b->runtime += slack_runtime;
3652
3653 /* we are under rq->lock, defer unthrottling using a timer */
3654 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3655 !list_empty(&cfs_b->throttled_cfs_rq))
3656 start_cfs_slack_bandwidth(cfs_b);
3657 }
3658 raw_spin_unlock(&cfs_b->lock);
3659
3660 /* even if it's not valid for return we don't want to try again */
3661 cfs_rq->runtime_remaining -= slack_runtime;
3662}
3663
3664static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3665{
56f570e5
PT
3666 if (!cfs_bandwidth_used())
3667 return;
3668
fccfdc6f 3669 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3670 return;
3671
3672 __return_cfs_rq_runtime(cfs_rq);
3673}
3674
3675/*
3676 * This is done with a timer (instead of inline with bandwidth return) since
3677 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3678 */
3679static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3680{
3681 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3682 u64 expires;
3683
3684 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3685 raw_spin_lock(&cfs_b->lock);
3686 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3687 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3688 return;
db06e78c 3689 }
d8b4986d 3690
c06f04c7 3691 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3692 runtime = cfs_b->runtime;
c06f04c7 3693
d8b4986d
PT
3694 expires = cfs_b->runtime_expires;
3695 raw_spin_unlock(&cfs_b->lock);
3696
3697 if (!runtime)
3698 return;
3699
3700 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3701
3702 raw_spin_lock(&cfs_b->lock);
3703 if (expires == cfs_b->runtime_expires)
c06f04c7 3704 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3705 raw_spin_unlock(&cfs_b->lock);
3706}
3707
d3d9dc33
PT
3708/*
3709 * When a group wakes up we want to make sure that its quota is not already
3710 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3711 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3712 */
3713static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3714{
56f570e5
PT
3715 if (!cfs_bandwidth_used())
3716 return;
3717
d3d9dc33
PT
3718 /* an active group must be handled by the update_curr()->put() path */
3719 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3720 return;
3721
3722 /* ensure the group is not already throttled */
3723 if (cfs_rq_throttled(cfs_rq))
3724 return;
3725
3726 /* update runtime allocation */
3727 account_cfs_rq_runtime(cfs_rq, 0);
3728 if (cfs_rq->runtime_remaining <= 0)
3729 throttle_cfs_rq(cfs_rq);
3730}
3731
3732/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3733static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3734{
56f570e5 3735 if (!cfs_bandwidth_used())
678d5718 3736 return false;
56f570e5 3737
d3d9dc33 3738 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3739 return false;
d3d9dc33
PT
3740
3741 /*
3742 * it's possible for a throttled entity to be forced into a running
3743 * state (e.g. set_curr_task), in this case we're finished.
3744 */
3745 if (cfs_rq_throttled(cfs_rq))
678d5718 3746 return true;
d3d9dc33
PT
3747
3748 throttle_cfs_rq(cfs_rq);
678d5718 3749 return true;
d3d9dc33 3750}
029632fb 3751
029632fb
PZ
3752static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3753{
3754 struct cfs_bandwidth *cfs_b =
3755 container_of(timer, struct cfs_bandwidth, slack_timer);
3756 do_sched_cfs_slack_timer(cfs_b);
3757
3758 return HRTIMER_NORESTART;
3759}
3760
3761static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3762{
3763 struct cfs_bandwidth *cfs_b =
3764 container_of(timer, struct cfs_bandwidth, period_timer);
3765 ktime_t now;
3766 int overrun;
3767 int idle = 0;
3768
51f2176d 3769 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3770 for (;;) {
3771 now = hrtimer_cb_get_time(timer);
3772 overrun = hrtimer_forward(timer, now, cfs_b->period);
3773
3774 if (!overrun)
3775 break;
3776
3777 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3778 }
51f2176d 3779 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3780
3781 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3782}
3783
3784void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3785{
3786 raw_spin_lock_init(&cfs_b->lock);
3787 cfs_b->runtime = 0;
3788 cfs_b->quota = RUNTIME_INF;
3789 cfs_b->period = ns_to_ktime(default_cfs_period());
3790
3791 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3792 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3793 cfs_b->period_timer.function = sched_cfs_period_timer;
3794 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3795 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3796}
3797
3798static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3799{
3800 cfs_rq->runtime_enabled = 0;
3801 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3802}
3803
3804/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3805void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3806{
3807 /*
3808 * The timer may be active because we're trying to set a new bandwidth
3809 * period or because we're racing with the tear-down path
3810 * (timer_active==0 becomes visible before the hrtimer call-back
3811 * terminates). In either case we ensure that it's re-programmed
3812 */
927b54fc
BS
3813 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3814 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3815 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3816 raw_spin_unlock(&cfs_b->lock);
927b54fc 3817 cpu_relax();
029632fb
PZ
3818 raw_spin_lock(&cfs_b->lock);
3819 /* if someone else restarted the timer then we're done */
09dc4ab0 3820 if (!force && cfs_b->timer_active)
029632fb
PZ
3821 return;
3822 }
3823
3824 cfs_b->timer_active = 1;
3825 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3826}
3827
3828static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3829{
3830 hrtimer_cancel(&cfs_b->period_timer);
3831 hrtimer_cancel(&cfs_b->slack_timer);
3832}
3833
0e59bdae
KT
3834static void __maybe_unused update_runtime_enabled(struct rq *rq)
3835{
3836 struct cfs_rq *cfs_rq;
3837
3838 for_each_leaf_cfs_rq(rq, cfs_rq) {
3839 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3840
3841 raw_spin_lock(&cfs_b->lock);
3842 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3843 raw_spin_unlock(&cfs_b->lock);
3844 }
3845}
3846
38dc3348 3847static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3848{
3849 struct cfs_rq *cfs_rq;
3850
3851 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3852 if (!cfs_rq->runtime_enabled)
3853 continue;
3854
3855 /*
3856 * clock_task is not advancing so we just need to make sure
3857 * there's some valid quota amount
3858 */
51f2176d 3859 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3860 /*
3861 * Offline rq is schedulable till cpu is completely disabled
3862 * in take_cpu_down(), so we prevent new cfs throttling here.
3863 */
3864 cfs_rq->runtime_enabled = 0;
3865
029632fb
PZ
3866 if (cfs_rq_throttled(cfs_rq))
3867 unthrottle_cfs_rq(cfs_rq);
3868 }
3869}
3870
3871#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3872static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3873{
78becc27 3874 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3875}
3876
9dbdb155 3877static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3878static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3879static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3880static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3881
3882static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3883{
3884 return 0;
3885}
64660c86
PT
3886
3887static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3888{
3889 return 0;
3890}
3891
3892static inline int throttled_lb_pair(struct task_group *tg,
3893 int src_cpu, int dest_cpu)
3894{
3895 return 0;
3896}
029632fb
PZ
3897
3898void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3899
3900#ifdef CONFIG_FAIR_GROUP_SCHED
3901static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3902#endif
3903
029632fb
PZ
3904static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3905{
3906 return NULL;
3907}
3908static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3909static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3910static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3911
3912#endif /* CONFIG_CFS_BANDWIDTH */
3913
bf0f6f24
IM
3914/**************************************************
3915 * CFS operations on tasks:
3916 */
3917
8f4d37ec
PZ
3918#ifdef CONFIG_SCHED_HRTICK
3919static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3920{
8f4d37ec
PZ
3921 struct sched_entity *se = &p->se;
3922 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3923
3924 WARN_ON(task_rq(p) != rq);
3925
b39e66ea 3926 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3927 u64 slice = sched_slice(cfs_rq, se);
3928 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3929 s64 delta = slice - ran;
3930
3931 if (delta < 0) {
3932 if (rq->curr == p)
8875125e 3933 resched_curr(rq);
8f4d37ec
PZ
3934 return;
3935 }
31656519 3936 hrtick_start(rq, delta);
8f4d37ec
PZ
3937 }
3938}
a4c2f00f
PZ
3939
3940/*
3941 * called from enqueue/dequeue and updates the hrtick when the
3942 * current task is from our class and nr_running is low enough
3943 * to matter.
3944 */
3945static void hrtick_update(struct rq *rq)
3946{
3947 struct task_struct *curr = rq->curr;
3948
b39e66ea 3949 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3950 return;
3951
3952 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3953 hrtick_start_fair(rq, curr);
3954}
55e12e5e 3955#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3956static inline void
3957hrtick_start_fair(struct rq *rq, struct task_struct *p)
3958{
3959}
a4c2f00f
PZ
3960
3961static inline void hrtick_update(struct rq *rq)
3962{
3963}
8f4d37ec
PZ
3964#endif
3965
bf0f6f24
IM
3966/*
3967 * The enqueue_task method is called before nr_running is
3968 * increased. Here we update the fair scheduling stats and
3969 * then put the task into the rbtree:
3970 */
ea87bb78 3971static void
371fd7e7 3972enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3973{
3974 struct cfs_rq *cfs_rq;
62fb1851 3975 struct sched_entity *se = &p->se;
bf0f6f24
IM
3976
3977 for_each_sched_entity(se) {
62fb1851 3978 if (se->on_rq)
bf0f6f24
IM
3979 break;
3980 cfs_rq = cfs_rq_of(se);
88ec22d3 3981 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3982
3983 /*
3984 * end evaluation on encountering a throttled cfs_rq
3985 *
3986 * note: in the case of encountering a throttled cfs_rq we will
3987 * post the final h_nr_running increment below.
3988 */
3989 if (cfs_rq_throttled(cfs_rq))
3990 break;
953bfcd1 3991 cfs_rq->h_nr_running++;
85dac906 3992
88ec22d3 3993 flags = ENQUEUE_WAKEUP;
bf0f6f24 3994 }
8f4d37ec 3995
2069dd75 3996 for_each_sched_entity(se) {
0f317143 3997 cfs_rq = cfs_rq_of(se);
953bfcd1 3998 cfs_rq->h_nr_running++;
2069dd75 3999
85dac906
PT
4000 if (cfs_rq_throttled(cfs_rq))
4001 break;
4002
17bc14b7 4003 update_cfs_shares(cfs_rq);
9ee474f5 4004 update_entity_load_avg(se, 1);
2069dd75
PZ
4005 }
4006
18bf2805
BS
4007 if (!se) {
4008 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4009 add_nr_running(rq, 1);
18bf2805 4010 }
a4c2f00f 4011 hrtick_update(rq);
bf0f6f24
IM
4012}
4013
2f36825b
VP
4014static void set_next_buddy(struct sched_entity *se);
4015
bf0f6f24
IM
4016/*
4017 * The dequeue_task method is called before nr_running is
4018 * decreased. We remove the task from the rbtree and
4019 * update the fair scheduling stats:
4020 */
371fd7e7 4021static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4022{
4023 struct cfs_rq *cfs_rq;
62fb1851 4024 struct sched_entity *se = &p->se;
2f36825b 4025 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4026
4027 for_each_sched_entity(se) {
4028 cfs_rq = cfs_rq_of(se);
371fd7e7 4029 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4030
4031 /*
4032 * end evaluation on encountering a throttled cfs_rq
4033 *
4034 * note: in the case of encountering a throttled cfs_rq we will
4035 * post the final h_nr_running decrement below.
4036 */
4037 if (cfs_rq_throttled(cfs_rq))
4038 break;
953bfcd1 4039 cfs_rq->h_nr_running--;
2069dd75 4040
bf0f6f24 4041 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4042 if (cfs_rq->load.weight) {
4043 /*
4044 * Bias pick_next to pick a task from this cfs_rq, as
4045 * p is sleeping when it is within its sched_slice.
4046 */
4047 if (task_sleep && parent_entity(se))
4048 set_next_buddy(parent_entity(se));
9598c82d
PT
4049
4050 /* avoid re-evaluating load for this entity */
4051 se = parent_entity(se);
bf0f6f24 4052 break;
2f36825b 4053 }
371fd7e7 4054 flags |= DEQUEUE_SLEEP;
bf0f6f24 4055 }
8f4d37ec 4056
2069dd75 4057 for_each_sched_entity(se) {
0f317143 4058 cfs_rq = cfs_rq_of(se);
953bfcd1 4059 cfs_rq->h_nr_running--;
2069dd75 4060
85dac906
PT
4061 if (cfs_rq_throttled(cfs_rq))
4062 break;
4063
17bc14b7 4064 update_cfs_shares(cfs_rq);
9ee474f5 4065 update_entity_load_avg(se, 1);
2069dd75
PZ
4066 }
4067
18bf2805 4068 if (!se) {
72465447 4069 sub_nr_running(rq, 1);
18bf2805
BS
4070 update_rq_runnable_avg(rq, 1);
4071 }
a4c2f00f 4072 hrtick_update(rq);
bf0f6f24
IM
4073}
4074
e7693a36 4075#ifdef CONFIG_SMP
029632fb
PZ
4076/* Used instead of source_load when we know the type == 0 */
4077static unsigned long weighted_cpuload(const int cpu)
4078{
b92486cb 4079 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4080}
4081
4082/*
4083 * Return a low guess at the load of a migration-source cpu weighted
4084 * according to the scheduling class and "nice" value.
4085 *
4086 * We want to under-estimate the load of migration sources, to
4087 * balance conservatively.
4088 */
4089static unsigned long source_load(int cpu, int type)
4090{
4091 struct rq *rq = cpu_rq(cpu);
4092 unsigned long total = weighted_cpuload(cpu);
4093
4094 if (type == 0 || !sched_feat(LB_BIAS))
4095 return total;
4096
4097 return min(rq->cpu_load[type-1], total);
4098}
4099
4100/*
4101 * Return a high guess at the load of a migration-target cpu weighted
4102 * according to the scheduling class and "nice" value.
4103 */
4104static unsigned long target_load(int cpu, int type)
4105{
4106 struct rq *rq = cpu_rq(cpu);
4107 unsigned long total = weighted_cpuload(cpu);
4108
4109 if (type == 0 || !sched_feat(LB_BIAS))
4110 return total;
4111
4112 return max(rq->cpu_load[type-1], total);
4113}
4114
ced549fa 4115static unsigned long capacity_of(int cpu)
029632fb 4116{
ced549fa 4117 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4118}
4119
4120static unsigned long cpu_avg_load_per_task(int cpu)
4121{
4122 struct rq *rq = cpu_rq(cpu);
65fdac08 4123 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4124 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4125
4126 if (nr_running)
b92486cb 4127 return load_avg / nr_running;
029632fb
PZ
4128
4129 return 0;
4130}
4131
62470419
MW
4132static void record_wakee(struct task_struct *p)
4133{
4134 /*
4135 * Rough decay (wiping) for cost saving, don't worry
4136 * about the boundary, really active task won't care
4137 * about the loss.
4138 */
2538d960 4139 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4140 current->wakee_flips >>= 1;
62470419
MW
4141 current->wakee_flip_decay_ts = jiffies;
4142 }
4143
4144 if (current->last_wakee != p) {
4145 current->last_wakee = p;
4146 current->wakee_flips++;
4147 }
4148}
098fb9db 4149
74f8e4b2 4150static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4151{
4152 struct sched_entity *se = &p->se;
4153 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4154 u64 min_vruntime;
4155
4156#ifndef CONFIG_64BIT
4157 u64 min_vruntime_copy;
88ec22d3 4158
3fe1698b
PZ
4159 do {
4160 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4161 smp_rmb();
4162 min_vruntime = cfs_rq->min_vruntime;
4163 } while (min_vruntime != min_vruntime_copy);
4164#else
4165 min_vruntime = cfs_rq->min_vruntime;
4166#endif
88ec22d3 4167
3fe1698b 4168 se->vruntime -= min_vruntime;
62470419 4169 record_wakee(p);
88ec22d3
PZ
4170}
4171
bb3469ac 4172#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4173/*
4174 * effective_load() calculates the load change as seen from the root_task_group
4175 *
4176 * Adding load to a group doesn't make a group heavier, but can cause movement
4177 * of group shares between cpus. Assuming the shares were perfectly aligned one
4178 * can calculate the shift in shares.
cf5f0acf
PZ
4179 *
4180 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4181 * on this @cpu and results in a total addition (subtraction) of @wg to the
4182 * total group weight.
4183 *
4184 * Given a runqueue weight distribution (rw_i) we can compute a shares
4185 * distribution (s_i) using:
4186 *
4187 * s_i = rw_i / \Sum rw_j (1)
4188 *
4189 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4190 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4191 * shares distribution (s_i):
4192 *
4193 * rw_i = { 2, 4, 1, 0 }
4194 * s_i = { 2/7, 4/7, 1/7, 0 }
4195 *
4196 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4197 * task used to run on and the CPU the waker is running on), we need to
4198 * compute the effect of waking a task on either CPU and, in case of a sync
4199 * wakeup, compute the effect of the current task going to sleep.
4200 *
4201 * So for a change of @wl to the local @cpu with an overall group weight change
4202 * of @wl we can compute the new shares distribution (s'_i) using:
4203 *
4204 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4205 *
4206 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4207 * differences in waking a task to CPU 0. The additional task changes the
4208 * weight and shares distributions like:
4209 *
4210 * rw'_i = { 3, 4, 1, 0 }
4211 * s'_i = { 3/8, 4/8, 1/8, 0 }
4212 *
4213 * We can then compute the difference in effective weight by using:
4214 *
4215 * dw_i = S * (s'_i - s_i) (3)
4216 *
4217 * Where 'S' is the group weight as seen by its parent.
4218 *
4219 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4220 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4221 * 4/7) times the weight of the group.
f5bfb7d9 4222 */
2069dd75 4223static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4224{
4be9daaa 4225 struct sched_entity *se = tg->se[cpu];
f1d239f7 4226
9722c2da 4227 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4228 return wl;
4229
4be9daaa 4230 for_each_sched_entity(se) {
cf5f0acf 4231 long w, W;
4be9daaa 4232
977dda7c 4233 tg = se->my_q->tg;
bb3469ac 4234
cf5f0acf
PZ
4235 /*
4236 * W = @wg + \Sum rw_j
4237 */
4238 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4239
cf5f0acf
PZ
4240 /*
4241 * w = rw_i + @wl
4242 */
4243 w = se->my_q->load.weight + wl;
940959e9 4244
cf5f0acf
PZ
4245 /*
4246 * wl = S * s'_i; see (2)
4247 */
4248 if (W > 0 && w < W)
4249 wl = (w * tg->shares) / W;
977dda7c
PT
4250 else
4251 wl = tg->shares;
940959e9 4252
cf5f0acf
PZ
4253 /*
4254 * Per the above, wl is the new se->load.weight value; since
4255 * those are clipped to [MIN_SHARES, ...) do so now. See
4256 * calc_cfs_shares().
4257 */
977dda7c
PT
4258 if (wl < MIN_SHARES)
4259 wl = MIN_SHARES;
cf5f0acf
PZ
4260
4261 /*
4262 * wl = dw_i = S * (s'_i - s_i); see (3)
4263 */
977dda7c 4264 wl -= se->load.weight;
cf5f0acf
PZ
4265
4266 /*
4267 * Recursively apply this logic to all parent groups to compute
4268 * the final effective load change on the root group. Since
4269 * only the @tg group gets extra weight, all parent groups can
4270 * only redistribute existing shares. @wl is the shift in shares
4271 * resulting from this level per the above.
4272 */
4be9daaa 4273 wg = 0;
4be9daaa 4274 }
bb3469ac 4275
4be9daaa 4276 return wl;
bb3469ac
PZ
4277}
4278#else
4be9daaa 4279
58d081b5 4280static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4281{
83378269 4282 return wl;
bb3469ac 4283}
4be9daaa 4284
bb3469ac
PZ
4285#endif
4286
62470419
MW
4287static int wake_wide(struct task_struct *p)
4288{
7d9ffa89 4289 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4290
4291 /*
4292 * Yeah, it's the switching-frequency, could means many wakee or
4293 * rapidly switch, use factor here will just help to automatically
4294 * adjust the loose-degree, so bigger node will lead to more pull.
4295 */
4296 if (p->wakee_flips > factor) {
4297 /*
4298 * wakee is somewhat hot, it needs certain amount of cpu
4299 * resource, so if waker is far more hot, prefer to leave
4300 * it alone.
4301 */
4302 if (current->wakee_flips > (factor * p->wakee_flips))
4303 return 1;
4304 }
4305
4306 return 0;
4307}
4308
c88d5910 4309static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4310{
e37b6a7b 4311 s64 this_load, load;
bd61c98f 4312 s64 this_eff_load, prev_eff_load;
c88d5910 4313 int idx, this_cpu, prev_cpu;
c88d5910 4314 struct task_group *tg;
83378269 4315 unsigned long weight;
b3137bc8 4316 int balanced;
098fb9db 4317
62470419
MW
4318 /*
4319 * If we wake multiple tasks be careful to not bounce
4320 * ourselves around too much.
4321 */
4322 if (wake_wide(p))
4323 return 0;
4324
c88d5910
PZ
4325 idx = sd->wake_idx;
4326 this_cpu = smp_processor_id();
4327 prev_cpu = task_cpu(p);
4328 load = source_load(prev_cpu, idx);
4329 this_load = target_load(this_cpu, idx);
098fb9db 4330
b3137bc8
MG
4331 /*
4332 * If sync wakeup then subtract the (maximum possible)
4333 * effect of the currently running task from the load
4334 * of the current CPU:
4335 */
83378269
PZ
4336 if (sync) {
4337 tg = task_group(current);
4338 weight = current->se.load.weight;
4339
c88d5910 4340 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4341 load += effective_load(tg, prev_cpu, 0, -weight);
4342 }
b3137bc8 4343
83378269
PZ
4344 tg = task_group(p);
4345 weight = p->se.load.weight;
b3137bc8 4346
71a29aa7
PZ
4347 /*
4348 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4349 * due to the sync cause above having dropped this_load to 0, we'll
4350 * always have an imbalance, but there's really nothing you can do
4351 * about that, so that's good too.
71a29aa7
PZ
4352 *
4353 * Otherwise check if either cpus are near enough in load to allow this
4354 * task to be woken on this_cpu.
4355 */
bd61c98f
VG
4356 this_eff_load = 100;
4357 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4358
bd61c98f
VG
4359 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4360 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4361
bd61c98f 4362 if (this_load > 0) {
e51fd5e2
PZ
4363 this_eff_load *= this_load +
4364 effective_load(tg, this_cpu, weight, weight);
4365
e51fd5e2 4366 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4367 }
e51fd5e2 4368
bd61c98f 4369 balanced = this_eff_load <= prev_eff_load;
098fb9db 4370
41acab88 4371 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4372
05bfb65f
VG
4373 if (!balanced)
4374 return 0;
098fb9db 4375
05bfb65f
VG
4376 schedstat_inc(sd, ttwu_move_affine);
4377 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4378
4379 return 1;
098fb9db
IM
4380}
4381
aaee1203
PZ
4382/*
4383 * find_idlest_group finds and returns the least busy CPU group within the
4384 * domain.
4385 */
4386static struct sched_group *
78e7ed53 4387find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4388 int this_cpu, int sd_flag)
e7693a36 4389{
b3bd3de6 4390 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4391 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4392 int load_idx = sd->forkexec_idx;
aaee1203 4393 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4394
c44f2a02
VG
4395 if (sd_flag & SD_BALANCE_WAKE)
4396 load_idx = sd->wake_idx;
4397
aaee1203
PZ
4398 do {
4399 unsigned long load, avg_load;
4400 int local_group;
4401 int i;
e7693a36 4402
aaee1203
PZ
4403 /* Skip over this group if it has no CPUs allowed */
4404 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4405 tsk_cpus_allowed(p)))
aaee1203
PZ
4406 continue;
4407
4408 local_group = cpumask_test_cpu(this_cpu,
4409 sched_group_cpus(group));
4410
4411 /* Tally up the load of all CPUs in the group */
4412 avg_load = 0;
4413
4414 for_each_cpu(i, sched_group_cpus(group)) {
4415 /* Bias balancing toward cpus of our domain */
4416 if (local_group)
4417 load = source_load(i, load_idx);
4418 else
4419 load = target_load(i, load_idx);
4420
4421 avg_load += load;
4422 }
4423
63b2ca30 4424 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4425 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4426
4427 if (local_group) {
4428 this_load = avg_load;
aaee1203
PZ
4429 } else if (avg_load < min_load) {
4430 min_load = avg_load;
4431 idlest = group;
4432 }
4433 } while (group = group->next, group != sd->groups);
4434
4435 if (!idlest || 100*this_load < imbalance*min_load)
4436 return NULL;
4437 return idlest;
4438}
4439
4440/*
4441 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4442 */
4443static int
4444find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4445{
4446 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4447 unsigned int min_exit_latency = UINT_MAX;
4448 u64 latest_idle_timestamp = 0;
4449 int least_loaded_cpu = this_cpu;
4450 int shallowest_idle_cpu = -1;
aaee1203
PZ
4451 int i;
4452
4453 /* Traverse only the allowed CPUs */
fa17b507 4454 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4455 if (idle_cpu(i)) {
4456 struct rq *rq = cpu_rq(i);
4457 struct cpuidle_state *idle = idle_get_state(rq);
4458 if (idle && idle->exit_latency < min_exit_latency) {
4459 /*
4460 * We give priority to a CPU whose idle state
4461 * has the smallest exit latency irrespective
4462 * of any idle timestamp.
4463 */
4464 min_exit_latency = idle->exit_latency;
4465 latest_idle_timestamp = rq->idle_stamp;
4466 shallowest_idle_cpu = i;
4467 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4468 rq->idle_stamp > latest_idle_timestamp) {
4469 /*
4470 * If equal or no active idle state, then
4471 * the most recently idled CPU might have
4472 * a warmer cache.
4473 */
4474 latest_idle_timestamp = rq->idle_stamp;
4475 shallowest_idle_cpu = i;
4476 }
4477 } else {
4478 load = weighted_cpuload(i);
4479 if (load < min_load || (load == min_load && i == this_cpu)) {
4480 min_load = load;
4481 least_loaded_cpu = i;
4482 }
e7693a36
GH
4483 }
4484 }
4485
83a0a96a 4486 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4487}
e7693a36 4488
a50bde51
PZ
4489/*
4490 * Try and locate an idle CPU in the sched_domain.
4491 */
99bd5e2f 4492static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4493{
99bd5e2f 4494 struct sched_domain *sd;
37407ea7 4495 struct sched_group *sg;
e0a79f52 4496 int i = task_cpu(p);
a50bde51 4497
e0a79f52
MG
4498 if (idle_cpu(target))
4499 return target;
99bd5e2f
SS
4500
4501 /*
e0a79f52 4502 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4503 */
e0a79f52
MG
4504 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4505 return i;
a50bde51
PZ
4506
4507 /*
37407ea7 4508 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4509 */
518cd623 4510 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4511 for_each_lower_domain(sd) {
37407ea7
LT
4512 sg = sd->groups;
4513 do {
4514 if (!cpumask_intersects(sched_group_cpus(sg),
4515 tsk_cpus_allowed(p)))
4516 goto next;
4517
4518 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4519 if (i == target || !idle_cpu(i))
37407ea7
LT
4520 goto next;
4521 }
970e1789 4522
37407ea7
LT
4523 target = cpumask_first_and(sched_group_cpus(sg),
4524 tsk_cpus_allowed(p));
4525 goto done;
4526next:
4527 sg = sg->next;
4528 } while (sg != sd->groups);
4529 }
4530done:
a50bde51
PZ
4531 return target;
4532}
4533
aaee1203 4534/*
de91b9cb
MR
4535 * select_task_rq_fair: Select target runqueue for the waking task in domains
4536 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4537 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4538 *
de91b9cb
MR
4539 * Balances load by selecting the idlest cpu in the idlest group, or under
4540 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4541 *
de91b9cb 4542 * Returns the target cpu number.
aaee1203
PZ
4543 *
4544 * preempt must be disabled.
4545 */
0017d735 4546static int
ac66f547 4547select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4548{
29cd8bae 4549 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4550 int cpu = smp_processor_id();
c88d5910 4551 int new_cpu = cpu;
99bd5e2f 4552 int want_affine = 0;
5158f4e4 4553 int sync = wake_flags & WF_SYNC;
c88d5910 4554
29baa747 4555 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4556 return prev_cpu;
4557
a8edd075
KT
4558 if (sd_flag & SD_BALANCE_WAKE)
4559 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4560
dce840a0 4561 rcu_read_lock();
aaee1203 4562 for_each_domain(cpu, tmp) {
e4f42888
PZ
4563 if (!(tmp->flags & SD_LOAD_BALANCE))
4564 continue;
4565
fe3bcfe1 4566 /*
99bd5e2f
SS
4567 * If both cpu and prev_cpu are part of this domain,
4568 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4569 */
99bd5e2f
SS
4570 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4571 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4572 affine_sd = tmp;
29cd8bae 4573 break;
f03542a7 4574 }
29cd8bae 4575
f03542a7 4576 if (tmp->flags & sd_flag)
29cd8bae
PZ
4577 sd = tmp;
4578 }
4579
8bf21433
RR
4580 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4581 prev_cpu = cpu;
dce840a0 4582
8bf21433 4583 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4584 new_cpu = select_idle_sibling(p, prev_cpu);
4585 goto unlock;
8b911acd 4586 }
e7693a36 4587
aaee1203
PZ
4588 while (sd) {
4589 struct sched_group *group;
c88d5910 4590 int weight;
098fb9db 4591
0763a660 4592 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4593 sd = sd->child;
4594 continue;
4595 }
098fb9db 4596
c44f2a02 4597 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4598 if (!group) {
4599 sd = sd->child;
4600 continue;
4601 }
4ae7d5ce 4602
d7c33c49 4603 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4604 if (new_cpu == -1 || new_cpu == cpu) {
4605 /* Now try balancing at a lower domain level of cpu */
4606 sd = sd->child;
4607 continue;
e7693a36 4608 }
aaee1203
PZ
4609
4610 /* Now try balancing at a lower domain level of new_cpu */
4611 cpu = new_cpu;
669c55e9 4612 weight = sd->span_weight;
aaee1203
PZ
4613 sd = NULL;
4614 for_each_domain(cpu, tmp) {
669c55e9 4615 if (weight <= tmp->span_weight)
aaee1203 4616 break;
0763a660 4617 if (tmp->flags & sd_flag)
aaee1203
PZ
4618 sd = tmp;
4619 }
4620 /* while loop will break here if sd == NULL */
e7693a36 4621 }
dce840a0
PZ
4622unlock:
4623 rcu_read_unlock();
e7693a36 4624
c88d5910 4625 return new_cpu;
e7693a36 4626}
0a74bef8
PT
4627
4628/*
4629 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4630 * cfs_rq_of(p) references at time of call are still valid and identify the
4631 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4632 * other assumptions, including the state of rq->lock, should be made.
4633 */
4634static void
4635migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4636{
aff3e498
PT
4637 struct sched_entity *se = &p->se;
4638 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4639
4640 /*
4641 * Load tracking: accumulate removed load so that it can be processed
4642 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4643 * to blocked load iff they have a positive decay-count. It can never
4644 * be negative here since on-rq tasks have decay-count == 0.
4645 */
4646 if (se->avg.decay_count) {
4647 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4648 atomic_long_add(se->avg.load_avg_contrib,
4649 &cfs_rq->removed_load);
aff3e498 4650 }
3944a927
BS
4651
4652 /* We have migrated, no longer consider this task hot */
4653 se->exec_start = 0;
0a74bef8 4654}
e7693a36
GH
4655#endif /* CONFIG_SMP */
4656
e52fb7c0
PZ
4657static unsigned long
4658wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4659{
4660 unsigned long gran = sysctl_sched_wakeup_granularity;
4661
4662 /*
e52fb7c0
PZ
4663 * Since its curr running now, convert the gran from real-time
4664 * to virtual-time in his units.
13814d42
MG
4665 *
4666 * By using 'se' instead of 'curr' we penalize light tasks, so
4667 * they get preempted easier. That is, if 'se' < 'curr' then
4668 * the resulting gran will be larger, therefore penalizing the
4669 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4670 * be smaller, again penalizing the lighter task.
4671 *
4672 * This is especially important for buddies when the leftmost
4673 * task is higher priority than the buddy.
0bbd3336 4674 */
f4ad9bd2 4675 return calc_delta_fair(gran, se);
0bbd3336
PZ
4676}
4677
464b7527
PZ
4678/*
4679 * Should 'se' preempt 'curr'.
4680 *
4681 * |s1
4682 * |s2
4683 * |s3
4684 * g
4685 * |<--->|c
4686 *
4687 * w(c, s1) = -1
4688 * w(c, s2) = 0
4689 * w(c, s3) = 1
4690 *
4691 */
4692static int
4693wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4694{
4695 s64 gran, vdiff = curr->vruntime - se->vruntime;
4696
4697 if (vdiff <= 0)
4698 return -1;
4699
e52fb7c0 4700 gran = wakeup_gran(curr, se);
464b7527
PZ
4701 if (vdiff > gran)
4702 return 1;
4703
4704 return 0;
4705}
4706
02479099
PZ
4707static void set_last_buddy(struct sched_entity *se)
4708{
69c80f3e
VP
4709 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4710 return;
4711
4712 for_each_sched_entity(se)
4713 cfs_rq_of(se)->last = se;
02479099
PZ
4714}
4715
4716static void set_next_buddy(struct sched_entity *se)
4717{
69c80f3e
VP
4718 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4719 return;
4720
4721 for_each_sched_entity(se)
4722 cfs_rq_of(se)->next = se;
02479099
PZ
4723}
4724
ac53db59
RR
4725static void set_skip_buddy(struct sched_entity *se)
4726{
69c80f3e
VP
4727 for_each_sched_entity(se)
4728 cfs_rq_of(se)->skip = se;
ac53db59
RR
4729}
4730
bf0f6f24
IM
4731/*
4732 * Preempt the current task with a newly woken task if needed:
4733 */
5a9b86f6 4734static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4735{
4736 struct task_struct *curr = rq->curr;
8651a86c 4737 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4738 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4739 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4740 int next_buddy_marked = 0;
bf0f6f24 4741
4ae7d5ce
IM
4742 if (unlikely(se == pse))
4743 return;
4744
5238cdd3 4745 /*
163122b7 4746 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4747 * unconditionally check_prempt_curr() after an enqueue (which may have
4748 * lead to a throttle). This both saves work and prevents false
4749 * next-buddy nomination below.
4750 */
4751 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4752 return;
4753
2f36825b 4754 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4755 set_next_buddy(pse);
2f36825b
VP
4756 next_buddy_marked = 1;
4757 }
57fdc26d 4758
aec0a514
BR
4759 /*
4760 * We can come here with TIF_NEED_RESCHED already set from new task
4761 * wake up path.
5238cdd3
PT
4762 *
4763 * Note: this also catches the edge-case of curr being in a throttled
4764 * group (e.g. via set_curr_task), since update_curr() (in the
4765 * enqueue of curr) will have resulted in resched being set. This
4766 * prevents us from potentially nominating it as a false LAST_BUDDY
4767 * below.
aec0a514
BR
4768 */
4769 if (test_tsk_need_resched(curr))
4770 return;
4771
a2f5c9ab
DH
4772 /* Idle tasks are by definition preempted by non-idle tasks. */
4773 if (unlikely(curr->policy == SCHED_IDLE) &&
4774 likely(p->policy != SCHED_IDLE))
4775 goto preempt;
4776
91c234b4 4777 /*
a2f5c9ab
DH
4778 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4779 * is driven by the tick):
91c234b4 4780 */
8ed92e51 4781 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4782 return;
bf0f6f24 4783
464b7527 4784 find_matching_se(&se, &pse);
9bbd7374 4785 update_curr(cfs_rq_of(se));
002f128b 4786 BUG_ON(!pse);
2f36825b
VP
4787 if (wakeup_preempt_entity(se, pse) == 1) {
4788 /*
4789 * Bias pick_next to pick the sched entity that is
4790 * triggering this preemption.
4791 */
4792 if (!next_buddy_marked)
4793 set_next_buddy(pse);
3a7e73a2 4794 goto preempt;
2f36825b 4795 }
464b7527 4796
3a7e73a2 4797 return;
a65ac745 4798
3a7e73a2 4799preempt:
8875125e 4800 resched_curr(rq);
3a7e73a2
PZ
4801 /*
4802 * Only set the backward buddy when the current task is still
4803 * on the rq. This can happen when a wakeup gets interleaved
4804 * with schedule on the ->pre_schedule() or idle_balance()
4805 * point, either of which can * drop the rq lock.
4806 *
4807 * Also, during early boot the idle thread is in the fair class,
4808 * for obvious reasons its a bad idea to schedule back to it.
4809 */
4810 if (unlikely(!se->on_rq || curr == rq->idle))
4811 return;
4812
4813 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4814 set_last_buddy(se);
bf0f6f24
IM
4815}
4816
606dba2e
PZ
4817static struct task_struct *
4818pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4819{
4820 struct cfs_rq *cfs_rq = &rq->cfs;
4821 struct sched_entity *se;
678d5718 4822 struct task_struct *p;
37e117c0 4823 int new_tasks;
678d5718 4824
6e83125c 4825again:
678d5718
PZ
4826#ifdef CONFIG_FAIR_GROUP_SCHED
4827 if (!cfs_rq->nr_running)
38033c37 4828 goto idle;
678d5718 4829
3f1d2a31 4830 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4831 goto simple;
4832
4833 /*
4834 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4835 * likely that a next task is from the same cgroup as the current.
4836 *
4837 * Therefore attempt to avoid putting and setting the entire cgroup
4838 * hierarchy, only change the part that actually changes.
4839 */
4840
4841 do {
4842 struct sched_entity *curr = cfs_rq->curr;
4843
4844 /*
4845 * Since we got here without doing put_prev_entity() we also
4846 * have to consider cfs_rq->curr. If it is still a runnable
4847 * entity, update_curr() will update its vruntime, otherwise
4848 * forget we've ever seen it.
4849 */
4850 if (curr && curr->on_rq)
4851 update_curr(cfs_rq);
4852 else
4853 curr = NULL;
4854
4855 /*
4856 * This call to check_cfs_rq_runtime() will do the throttle and
4857 * dequeue its entity in the parent(s). Therefore the 'simple'
4858 * nr_running test will indeed be correct.
4859 */
4860 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4861 goto simple;
4862
4863 se = pick_next_entity(cfs_rq, curr);
4864 cfs_rq = group_cfs_rq(se);
4865 } while (cfs_rq);
4866
4867 p = task_of(se);
4868
4869 /*
4870 * Since we haven't yet done put_prev_entity and if the selected task
4871 * is a different task than we started out with, try and touch the
4872 * least amount of cfs_rqs.
4873 */
4874 if (prev != p) {
4875 struct sched_entity *pse = &prev->se;
4876
4877 while (!(cfs_rq = is_same_group(se, pse))) {
4878 int se_depth = se->depth;
4879 int pse_depth = pse->depth;
4880
4881 if (se_depth <= pse_depth) {
4882 put_prev_entity(cfs_rq_of(pse), pse);
4883 pse = parent_entity(pse);
4884 }
4885 if (se_depth >= pse_depth) {
4886 set_next_entity(cfs_rq_of(se), se);
4887 se = parent_entity(se);
4888 }
4889 }
4890
4891 put_prev_entity(cfs_rq, pse);
4892 set_next_entity(cfs_rq, se);
4893 }
4894
4895 if (hrtick_enabled(rq))
4896 hrtick_start_fair(rq, p);
4897
4898 return p;
4899simple:
4900 cfs_rq = &rq->cfs;
4901#endif
bf0f6f24 4902
36ace27e 4903 if (!cfs_rq->nr_running)
38033c37 4904 goto idle;
bf0f6f24 4905
3f1d2a31 4906 put_prev_task(rq, prev);
606dba2e 4907
bf0f6f24 4908 do {
678d5718 4909 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4910 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4911 cfs_rq = group_cfs_rq(se);
4912 } while (cfs_rq);
4913
8f4d37ec 4914 p = task_of(se);
678d5718 4915
b39e66ea
MG
4916 if (hrtick_enabled(rq))
4917 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4918
4919 return p;
38033c37
PZ
4920
4921idle:
e4aa358b 4922 new_tasks = idle_balance(rq);
37e117c0
PZ
4923 /*
4924 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4925 * possible for any higher priority task to appear. In that case we
4926 * must re-start the pick_next_entity() loop.
4927 */
e4aa358b 4928 if (new_tasks < 0)
37e117c0
PZ
4929 return RETRY_TASK;
4930
e4aa358b 4931 if (new_tasks > 0)
38033c37 4932 goto again;
38033c37
PZ
4933
4934 return NULL;
bf0f6f24
IM
4935}
4936
4937/*
4938 * Account for a descheduled task:
4939 */
31ee529c 4940static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4941{
4942 struct sched_entity *se = &prev->se;
4943 struct cfs_rq *cfs_rq;
4944
4945 for_each_sched_entity(se) {
4946 cfs_rq = cfs_rq_of(se);
ab6cde26 4947 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4948 }
4949}
4950
ac53db59
RR
4951/*
4952 * sched_yield() is very simple
4953 *
4954 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4955 */
4956static void yield_task_fair(struct rq *rq)
4957{
4958 struct task_struct *curr = rq->curr;
4959 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4960 struct sched_entity *se = &curr->se;
4961
4962 /*
4963 * Are we the only task in the tree?
4964 */
4965 if (unlikely(rq->nr_running == 1))
4966 return;
4967
4968 clear_buddies(cfs_rq, se);
4969
4970 if (curr->policy != SCHED_BATCH) {
4971 update_rq_clock(rq);
4972 /*
4973 * Update run-time statistics of the 'current'.
4974 */
4975 update_curr(cfs_rq);
916671c0
MG
4976 /*
4977 * Tell update_rq_clock() that we've just updated,
4978 * so we don't do microscopic update in schedule()
4979 * and double the fastpath cost.
4980 */
4981 rq->skip_clock_update = 1;
ac53db59
RR
4982 }
4983
4984 set_skip_buddy(se);
4985}
4986
d95f4122
MG
4987static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4988{
4989 struct sched_entity *se = &p->se;
4990
5238cdd3
PT
4991 /* throttled hierarchies are not runnable */
4992 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4993 return false;
4994
4995 /* Tell the scheduler that we'd really like pse to run next. */
4996 set_next_buddy(se);
4997
d95f4122
MG
4998 yield_task_fair(rq);
4999
5000 return true;
5001}
5002
681f3e68 5003#ifdef CONFIG_SMP
bf0f6f24 5004/**************************************************
e9c84cb8
PZ
5005 * Fair scheduling class load-balancing methods.
5006 *
5007 * BASICS
5008 *
5009 * The purpose of load-balancing is to achieve the same basic fairness the
5010 * per-cpu scheduler provides, namely provide a proportional amount of compute
5011 * time to each task. This is expressed in the following equation:
5012 *
5013 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5014 *
5015 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5016 * W_i,0 is defined as:
5017 *
5018 * W_i,0 = \Sum_j w_i,j (2)
5019 *
5020 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5021 * is derived from the nice value as per prio_to_weight[].
5022 *
5023 * The weight average is an exponential decay average of the instantaneous
5024 * weight:
5025 *
5026 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5027 *
ced549fa 5028 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5029 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5030 * can also include other factors [XXX].
5031 *
5032 * To achieve this balance we define a measure of imbalance which follows
5033 * directly from (1):
5034 *
ced549fa 5035 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5036 *
5037 * We them move tasks around to minimize the imbalance. In the continuous
5038 * function space it is obvious this converges, in the discrete case we get
5039 * a few fun cases generally called infeasible weight scenarios.
5040 *
5041 * [XXX expand on:
5042 * - infeasible weights;
5043 * - local vs global optima in the discrete case. ]
5044 *
5045 *
5046 * SCHED DOMAINS
5047 *
5048 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5049 * for all i,j solution, we create a tree of cpus that follows the hardware
5050 * topology where each level pairs two lower groups (or better). This results
5051 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5052 * tree to only the first of the previous level and we decrease the frequency
5053 * of load-balance at each level inv. proportional to the number of cpus in
5054 * the groups.
5055 *
5056 * This yields:
5057 *
5058 * log_2 n 1 n
5059 * \Sum { --- * --- * 2^i } = O(n) (5)
5060 * i = 0 2^i 2^i
5061 * `- size of each group
5062 * | | `- number of cpus doing load-balance
5063 * | `- freq
5064 * `- sum over all levels
5065 *
5066 * Coupled with a limit on how many tasks we can migrate every balance pass,
5067 * this makes (5) the runtime complexity of the balancer.
5068 *
5069 * An important property here is that each CPU is still (indirectly) connected
5070 * to every other cpu in at most O(log n) steps:
5071 *
5072 * The adjacency matrix of the resulting graph is given by:
5073 *
5074 * log_2 n
5075 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5076 * k = 0
5077 *
5078 * And you'll find that:
5079 *
5080 * A^(log_2 n)_i,j != 0 for all i,j (7)
5081 *
5082 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5083 * The task movement gives a factor of O(m), giving a convergence complexity
5084 * of:
5085 *
5086 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5087 *
5088 *
5089 * WORK CONSERVING
5090 *
5091 * In order to avoid CPUs going idle while there's still work to do, new idle
5092 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5093 * tree itself instead of relying on other CPUs to bring it work.
5094 *
5095 * This adds some complexity to both (5) and (8) but it reduces the total idle
5096 * time.
5097 *
5098 * [XXX more?]
5099 *
5100 *
5101 * CGROUPS
5102 *
5103 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5104 *
5105 * s_k,i
5106 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5107 * S_k
5108 *
5109 * Where
5110 *
5111 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5112 *
5113 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5114 *
5115 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5116 * property.
5117 *
5118 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5119 * rewrite all of this once again.]
5120 */
bf0f6f24 5121
ed387b78
HS
5122static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5123
0ec8aa00
PZ
5124enum fbq_type { regular, remote, all };
5125
ddcdf6e7 5126#define LBF_ALL_PINNED 0x01
367456c7 5127#define LBF_NEED_BREAK 0x02
6263322c
PZ
5128#define LBF_DST_PINNED 0x04
5129#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5130
5131struct lb_env {
5132 struct sched_domain *sd;
5133
ddcdf6e7 5134 struct rq *src_rq;
85c1e7da 5135 int src_cpu;
ddcdf6e7
PZ
5136
5137 int dst_cpu;
5138 struct rq *dst_rq;
5139
88b8dac0
SV
5140 struct cpumask *dst_grpmask;
5141 int new_dst_cpu;
ddcdf6e7 5142 enum cpu_idle_type idle;
bd939f45 5143 long imbalance;
b9403130
MW
5144 /* The set of CPUs under consideration for load-balancing */
5145 struct cpumask *cpus;
5146
ddcdf6e7 5147 unsigned int flags;
367456c7
PZ
5148
5149 unsigned int loop;
5150 unsigned int loop_break;
5151 unsigned int loop_max;
0ec8aa00
PZ
5152
5153 enum fbq_type fbq_type;
163122b7 5154 struct list_head tasks;
ddcdf6e7
PZ
5155};
5156
029632fb
PZ
5157/*
5158 * Is this task likely cache-hot:
5159 */
5d5e2b1b 5160static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5161{
5162 s64 delta;
5163
e5673f28
KT
5164 lockdep_assert_held(&env->src_rq->lock);
5165
029632fb
PZ
5166 if (p->sched_class != &fair_sched_class)
5167 return 0;
5168
5169 if (unlikely(p->policy == SCHED_IDLE))
5170 return 0;
5171
5172 /*
5173 * Buddy candidates are cache hot:
5174 */
5d5e2b1b 5175 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5176 (&p->se == cfs_rq_of(&p->se)->next ||
5177 &p->se == cfs_rq_of(&p->se)->last))
5178 return 1;
5179
5180 if (sysctl_sched_migration_cost == -1)
5181 return 1;
5182 if (sysctl_sched_migration_cost == 0)
5183 return 0;
5184
5d5e2b1b 5185 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5186
5187 return delta < (s64)sysctl_sched_migration_cost;
5188}
5189
3a7053b3
MG
5190#ifdef CONFIG_NUMA_BALANCING
5191/* Returns true if the destination node has incurred more faults */
5192static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5193{
b1ad065e 5194 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5195 int src_nid, dst_nid;
5196
ff1df896 5197 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5198 !(env->sd->flags & SD_NUMA)) {
5199 return false;
5200 }
5201
5202 src_nid = cpu_to_node(env->src_cpu);
5203 dst_nid = cpu_to_node(env->dst_cpu);
5204
83e1d2cd 5205 if (src_nid == dst_nid)
3a7053b3
MG
5206 return false;
5207
b1ad065e
RR
5208 if (numa_group) {
5209 /* Task is already in the group's interleave set. */
5210 if (node_isset(src_nid, numa_group->active_nodes))
5211 return false;
83e1d2cd 5212
b1ad065e
RR
5213 /* Task is moving into the group's interleave set. */
5214 if (node_isset(dst_nid, numa_group->active_nodes))
5215 return true;
83e1d2cd 5216
b1ad065e
RR
5217 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5218 }
5219
5220 /* Encourage migration to the preferred node. */
5221 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5222 return true;
5223
b1ad065e 5224 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5225}
7a0f3083
MG
5226
5227
5228static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5229{
b1ad065e 5230 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5231 int src_nid, dst_nid;
5232
5233 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5234 return false;
5235
ff1df896 5236 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5237 return false;
5238
5239 src_nid = cpu_to_node(env->src_cpu);
5240 dst_nid = cpu_to_node(env->dst_cpu);
5241
83e1d2cd 5242 if (src_nid == dst_nid)
7a0f3083
MG
5243 return false;
5244
b1ad065e
RR
5245 if (numa_group) {
5246 /* Task is moving within/into the group's interleave set. */
5247 if (node_isset(dst_nid, numa_group->active_nodes))
5248 return false;
5249
5250 /* Task is moving out of the group's interleave set. */
5251 if (node_isset(src_nid, numa_group->active_nodes))
5252 return true;
5253
5254 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5255 }
5256
83e1d2cd
MG
5257 /* Migrating away from the preferred node is always bad. */
5258 if (src_nid == p->numa_preferred_nid)
5259 return true;
5260
b1ad065e 5261 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5262}
5263
3a7053b3
MG
5264#else
5265static inline bool migrate_improves_locality(struct task_struct *p,
5266 struct lb_env *env)
5267{
5268 return false;
5269}
7a0f3083
MG
5270
5271static inline bool migrate_degrades_locality(struct task_struct *p,
5272 struct lb_env *env)
5273{
5274 return false;
5275}
3a7053b3
MG
5276#endif
5277
1e3c88bd
PZ
5278/*
5279 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5280 */
5281static
8e45cb54 5282int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5283{
5284 int tsk_cache_hot = 0;
e5673f28
KT
5285
5286 lockdep_assert_held(&env->src_rq->lock);
5287
1e3c88bd
PZ
5288 /*
5289 * We do not migrate tasks that are:
d3198084 5290 * 1) throttled_lb_pair, or
1e3c88bd 5291 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5292 * 3) running (obviously), or
5293 * 4) are cache-hot on their current CPU.
1e3c88bd 5294 */
d3198084
JK
5295 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5296 return 0;
5297
ddcdf6e7 5298 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5299 int cpu;
88b8dac0 5300
41acab88 5301 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5302
6263322c
PZ
5303 env->flags |= LBF_SOME_PINNED;
5304
88b8dac0
SV
5305 /*
5306 * Remember if this task can be migrated to any other cpu in
5307 * our sched_group. We may want to revisit it if we couldn't
5308 * meet load balance goals by pulling other tasks on src_cpu.
5309 *
5310 * Also avoid computing new_dst_cpu if we have already computed
5311 * one in current iteration.
5312 */
6263322c 5313 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5314 return 0;
5315
e02e60c1
JK
5316 /* Prevent to re-select dst_cpu via env's cpus */
5317 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5318 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5319 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5320 env->new_dst_cpu = cpu;
5321 break;
5322 }
88b8dac0 5323 }
e02e60c1 5324
1e3c88bd
PZ
5325 return 0;
5326 }
88b8dac0
SV
5327
5328 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5329 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5330
ddcdf6e7 5331 if (task_running(env->src_rq, p)) {
41acab88 5332 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5333 return 0;
5334 }
5335
5336 /*
5337 * Aggressive migration if:
3a7053b3
MG
5338 * 1) destination numa is preferred
5339 * 2) task is cache cold, or
5340 * 3) too many balance attempts have failed.
1e3c88bd 5341 */
5d5e2b1b 5342 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5343 if (!tsk_cache_hot)
5344 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5345
7a96c231
KT
5346 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5347 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5348 if (tsk_cache_hot) {
5349 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5350 schedstat_inc(p, se.statistics.nr_forced_migrations);
5351 }
1e3c88bd
PZ
5352 return 1;
5353 }
5354
4e2dcb73
ZH
5355 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5356 return 0;
1e3c88bd
PZ
5357}
5358
897c395f 5359/*
163122b7
KT
5360 * detach_task() -- detach the task for the migration specified in env
5361 */
5362static void detach_task(struct task_struct *p, struct lb_env *env)
5363{
5364 lockdep_assert_held(&env->src_rq->lock);
5365
5366 deactivate_task(env->src_rq, p, 0);
5367 p->on_rq = TASK_ON_RQ_MIGRATING;
5368 set_task_cpu(p, env->dst_cpu);
5369}
5370
897c395f 5371/*
e5673f28 5372 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5373 * part of active balancing operations within "domain".
897c395f 5374 *
e5673f28 5375 * Returns a task if successful and NULL otherwise.
897c395f 5376 */
e5673f28 5377static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5378{
5379 struct task_struct *p, *n;
897c395f 5380
e5673f28
KT
5381 lockdep_assert_held(&env->src_rq->lock);
5382
367456c7 5383 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5384 if (!can_migrate_task(p, env))
5385 continue;
897c395f 5386
163122b7 5387 detach_task(p, env);
e5673f28 5388
367456c7 5389 /*
e5673f28 5390 * Right now, this is only the second place where
163122b7 5391 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5392 * so we can safely collect stats here rather than
163122b7 5393 * inside detach_tasks().
367456c7
PZ
5394 */
5395 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5396 return p;
897c395f 5397 }
e5673f28 5398 return NULL;
897c395f
PZ
5399}
5400
eb95308e
PZ
5401static const unsigned int sched_nr_migrate_break = 32;
5402
5d6523eb 5403/*
163122b7
KT
5404 * detach_tasks() -- tries to detach up to imbalance weighted load from
5405 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5406 *
163122b7 5407 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5408 */
163122b7 5409static int detach_tasks(struct lb_env *env)
1e3c88bd 5410{
5d6523eb
PZ
5411 struct list_head *tasks = &env->src_rq->cfs_tasks;
5412 struct task_struct *p;
367456c7 5413 unsigned long load;
163122b7
KT
5414 int detached = 0;
5415
5416 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5417
bd939f45 5418 if (env->imbalance <= 0)
5d6523eb 5419 return 0;
1e3c88bd 5420
5d6523eb
PZ
5421 while (!list_empty(tasks)) {
5422 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5423
367456c7
PZ
5424 env->loop++;
5425 /* We've more or less seen every task there is, call it quits */
5d6523eb 5426 if (env->loop > env->loop_max)
367456c7 5427 break;
5d6523eb
PZ
5428
5429 /* take a breather every nr_migrate tasks */
367456c7 5430 if (env->loop > env->loop_break) {
eb95308e 5431 env->loop_break += sched_nr_migrate_break;
8e45cb54 5432 env->flags |= LBF_NEED_BREAK;
ee00e66f 5433 break;
a195f004 5434 }
1e3c88bd 5435
d3198084 5436 if (!can_migrate_task(p, env))
367456c7
PZ
5437 goto next;
5438
5439 load = task_h_load(p);
5d6523eb 5440
eb95308e 5441 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5442 goto next;
5443
bd939f45 5444 if ((load / 2) > env->imbalance)
367456c7 5445 goto next;
1e3c88bd 5446
163122b7
KT
5447 detach_task(p, env);
5448 list_add(&p->se.group_node, &env->tasks);
5449
5450 detached++;
bd939f45 5451 env->imbalance -= load;
1e3c88bd
PZ
5452
5453#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5454 /*
5455 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5456 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5457 * the critical section.
5458 */
5d6523eb 5459 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5460 break;
1e3c88bd
PZ
5461#endif
5462
ee00e66f
PZ
5463 /*
5464 * We only want to steal up to the prescribed amount of
5465 * weighted load.
5466 */
bd939f45 5467 if (env->imbalance <= 0)
ee00e66f 5468 break;
367456c7
PZ
5469
5470 continue;
5471next:
5d6523eb 5472 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5473 }
5d6523eb 5474
1e3c88bd 5475 /*
163122b7
KT
5476 * Right now, this is one of only two places we collect this stat
5477 * so we can safely collect detach_one_task() stats here rather
5478 * than inside detach_one_task().
1e3c88bd 5479 */
163122b7 5480 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5481
163122b7
KT
5482 return detached;
5483}
5484
5485/*
5486 * attach_task() -- attach the task detached by detach_task() to its new rq.
5487 */
5488static void attach_task(struct rq *rq, struct task_struct *p)
5489{
5490 lockdep_assert_held(&rq->lock);
5491
5492 BUG_ON(task_rq(p) != rq);
5493 p->on_rq = TASK_ON_RQ_QUEUED;
5494 activate_task(rq, p, 0);
5495 check_preempt_curr(rq, p, 0);
5496}
5497
5498/*
5499 * attach_one_task() -- attaches the task returned from detach_one_task() to
5500 * its new rq.
5501 */
5502static void attach_one_task(struct rq *rq, struct task_struct *p)
5503{
5504 raw_spin_lock(&rq->lock);
5505 attach_task(rq, p);
5506 raw_spin_unlock(&rq->lock);
5507}
5508
5509/*
5510 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5511 * new rq.
5512 */
5513static void attach_tasks(struct lb_env *env)
5514{
5515 struct list_head *tasks = &env->tasks;
5516 struct task_struct *p;
5517
5518 raw_spin_lock(&env->dst_rq->lock);
5519
5520 while (!list_empty(tasks)) {
5521 p = list_first_entry(tasks, struct task_struct, se.group_node);
5522 list_del_init(&p->se.group_node);
1e3c88bd 5523
163122b7
KT
5524 attach_task(env->dst_rq, p);
5525 }
5526
5527 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5528}
5529
230059de 5530#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5531/*
5532 * update tg->load_weight by folding this cpu's load_avg
5533 */
48a16753 5534static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5535{
48a16753
PT
5536 struct sched_entity *se = tg->se[cpu];
5537 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5538
48a16753
PT
5539 /* throttled entities do not contribute to load */
5540 if (throttled_hierarchy(cfs_rq))
5541 return;
9e3081ca 5542
aff3e498 5543 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5544
82958366
PT
5545 if (se) {
5546 update_entity_load_avg(se, 1);
5547 /*
5548 * We pivot on our runnable average having decayed to zero for
5549 * list removal. This generally implies that all our children
5550 * have also been removed (modulo rounding error or bandwidth
5551 * control); however, such cases are rare and we can fix these
5552 * at enqueue.
5553 *
5554 * TODO: fix up out-of-order children on enqueue.
5555 */
5556 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5557 list_del_leaf_cfs_rq(cfs_rq);
5558 } else {
48a16753 5559 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5560 update_rq_runnable_avg(rq, rq->nr_running);
5561 }
9e3081ca
PZ
5562}
5563
48a16753 5564static void update_blocked_averages(int cpu)
9e3081ca 5565{
9e3081ca 5566 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5567 struct cfs_rq *cfs_rq;
5568 unsigned long flags;
9e3081ca 5569
48a16753
PT
5570 raw_spin_lock_irqsave(&rq->lock, flags);
5571 update_rq_clock(rq);
9763b67f
PZ
5572 /*
5573 * Iterates the task_group tree in a bottom up fashion, see
5574 * list_add_leaf_cfs_rq() for details.
5575 */
64660c86 5576 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5577 /*
5578 * Note: We may want to consider periodically releasing
5579 * rq->lock about these updates so that creating many task
5580 * groups does not result in continually extending hold time.
5581 */
5582 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5583 }
48a16753
PT
5584
5585 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5586}
5587
9763b67f 5588/*
68520796 5589 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5590 * This needs to be done in a top-down fashion because the load of a child
5591 * group is a fraction of its parents load.
5592 */
68520796 5593static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5594{
68520796
VD
5595 struct rq *rq = rq_of(cfs_rq);
5596 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5597 unsigned long now = jiffies;
68520796 5598 unsigned long load;
a35b6466 5599
68520796 5600 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5601 return;
5602
68520796
VD
5603 cfs_rq->h_load_next = NULL;
5604 for_each_sched_entity(se) {
5605 cfs_rq = cfs_rq_of(se);
5606 cfs_rq->h_load_next = se;
5607 if (cfs_rq->last_h_load_update == now)
5608 break;
5609 }
a35b6466 5610
68520796 5611 if (!se) {
7e3115ef 5612 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5613 cfs_rq->last_h_load_update = now;
5614 }
5615
5616 while ((se = cfs_rq->h_load_next) != NULL) {
5617 load = cfs_rq->h_load;
5618 load = div64_ul(load * se->avg.load_avg_contrib,
5619 cfs_rq->runnable_load_avg + 1);
5620 cfs_rq = group_cfs_rq(se);
5621 cfs_rq->h_load = load;
5622 cfs_rq->last_h_load_update = now;
5623 }
9763b67f
PZ
5624}
5625
367456c7 5626static unsigned long task_h_load(struct task_struct *p)
230059de 5627{
367456c7 5628 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5629
68520796 5630 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5631 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5632 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5633}
5634#else
48a16753 5635static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5636{
5637}
5638
367456c7 5639static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5640{
a003a25b 5641 return p->se.avg.load_avg_contrib;
1e3c88bd 5642}
230059de 5643#endif
1e3c88bd 5644
1e3c88bd 5645/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5646
5647enum group_type {
5648 group_other = 0,
5649 group_imbalanced,
5650 group_overloaded,
5651};
5652
1e3c88bd
PZ
5653/*
5654 * sg_lb_stats - stats of a sched_group required for load_balancing
5655 */
5656struct sg_lb_stats {
5657 unsigned long avg_load; /*Avg load across the CPUs of the group */
5658 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5659 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5660 unsigned long load_per_task;
63b2ca30 5661 unsigned long group_capacity;
147c5fc2 5662 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5663 unsigned int group_capacity_factor;
147c5fc2
PZ
5664 unsigned int idle_cpus;
5665 unsigned int group_weight;
caeb178c 5666 enum group_type group_type;
1b6a7495 5667 int group_has_free_capacity;
0ec8aa00
PZ
5668#ifdef CONFIG_NUMA_BALANCING
5669 unsigned int nr_numa_running;
5670 unsigned int nr_preferred_running;
5671#endif
1e3c88bd
PZ
5672};
5673
56cf515b
JK
5674/*
5675 * sd_lb_stats - Structure to store the statistics of a sched_domain
5676 * during load balancing.
5677 */
5678struct sd_lb_stats {
5679 struct sched_group *busiest; /* Busiest group in this sd */
5680 struct sched_group *local; /* Local group in this sd */
5681 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5682 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5683 unsigned long avg_load; /* Average load across all groups in sd */
5684
56cf515b 5685 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5686 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5687};
5688
147c5fc2
PZ
5689static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5690{
5691 /*
5692 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5693 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5694 * We must however clear busiest_stat::avg_load because
5695 * update_sd_pick_busiest() reads this before assignment.
5696 */
5697 *sds = (struct sd_lb_stats){
5698 .busiest = NULL,
5699 .local = NULL,
5700 .total_load = 0UL,
63b2ca30 5701 .total_capacity = 0UL,
147c5fc2
PZ
5702 .busiest_stat = {
5703 .avg_load = 0UL,
caeb178c
RR
5704 .sum_nr_running = 0,
5705 .group_type = group_other,
147c5fc2
PZ
5706 },
5707 };
5708}
5709
1e3c88bd
PZ
5710/**
5711 * get_sd_load_idx - Obtain the load index for a given sched domain.
5712 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5713 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5714 *
5715 * Return: The load index.
1e3c88bd
PZ
5716 */
5717static inline int get_sd_load_idx(struct sched_domain *sd,
5718 enum cpu_idle_type idle)
5719{
5720 int load_idx;
5721
5722 switch (idle) {
5723 case CPU_NOT_IDLE:
5724 load_idx = sd->busy_idx;
5725 break;
5726
5727 case CPU_NEWLY_IDLE:
5728 load_idx = sd->newidle_idx;
5729 break;
5730 default:
5731 load_idx = sd->idle_idx;
5732 break;
5733 }
5734
5735 return load_idx;
5736}
5737
ced549fa 5738static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5739{
ca8ce3d0 5740 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5741}
5742
ca8ce3d0 5743unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5744{
ced549fa 5745 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5746}
5747
26bc3c50 5748static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5749{
26bc3c50
VG
5750 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5751 return sd->smt_gain / sd->span_weight;
1e3c88bd 5752
26bc3c50 5753 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5754}
5755
26bc3c50 5756unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5757{
26bc3c50 5758 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5759}
5760
ced549fa 5761static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5762{
5763 struct rq *rq = cpu_rq(cpu);
b654f7de 5764 u64 total, available, age_stamp, avg;
cadefd3d 5765 s64 delta;
1e3c88bd 5766
b654f7de
PZ
5767 /*
5768 * Since we're reading these variables without serialization make sure
5769 * we read them once before doing sanity checks on them.
5770 */
5771 age_stamp = ACCESS_ONCE(rq->age_stamp);
5772 avg = ACCESS_ONCE(rq->rt_avg);
5773
cadefd3d
PZ
5774 delta = rq_clock(rq) - age_stamp;
5775 if (unlikely(delta < 0))
5776 delta = 0;
5777
5778 total = sched_avg_period() + delta;
aa483808 5779
b654f7de 5780 if (unlikely(total < avg)) {
ced549fa 5781 /* Ensures that capacity won't end up being negative */
aa483808
VP
5782 available = 0;
5783 } else {
b654f7de 5784 available = total - avg;
aa483808 5785 }
1e3c88bd 5786
ca8ce3d0
NP
5787 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5788 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5789
ca8ce3d0 5790 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5791
5792 return div_u64(available, total);
5793}
5794
ced549fa 5795static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5796{
ca8ce3d0 5797 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5798 struct sched_group *sdg = sd->groups;
5799
26bc3c50
VG
5800 if (sched_feat(ARCH_CAPACITY))
5801 capacity *= arch_scale_cpu_capacity(sd, cpu);
5802 else
5803 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 5804
26bc3c50 5805 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5806
ced549fa 5807 sdg->sgc->capacity_orig = capacity;
9d5efe05 5808
5d4dfddd 5809 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5810 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5811 else
ced549fa 5812 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5813
ca8ce3d0 5814 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5815
ced549fa 5816 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5817 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5818
ced549fa
NP
5819 if (!capacity)
5820 capacity = 1;
1e3c88bd 5821
ced549fa
NP
5822 cpu_rq(cpu)->cpu_capacity = capacity;
5823 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5824}
5825
63b2ca30 5826void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5827{
5828 struct sched_domain *child = sd->child;
5829 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5830 unsigned long capacity, capacity_orig;
4ec4412e
VG
5831 unsigned long interval;
5832
5833 interval = msecs_to_jiffies(sd->balance_interval);
5834 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5835 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5836
5837 if (!child) {
ced549fa 5838 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5839 return;
5840 }
5841
63b2ca30 5842 capacity_orig = capacity = 0;
1e3c88bd 5843
74a5ce20
PZ
5844 if (child->flags & SD_OVERLAP) {
5845 /*
5846 * SD_OVERLAP domains cannot assume that child groups
5847 * span the current group.
5848 */
5849
863bffc8 5850 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5851 struct sched_group_capacity *sgc;
9abf24d4 5852 struct rq *rq = cpu_rq(cpu);
863bffc8 5853
9abf24d4 5854 /*
63b2ca30 5855 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5856 * gets here before we've attached the domains to the
5857 * runqueues.
5858 *
ced549fa
NP
5859 * Use capacity_of(), which is set irrespective of domains
5860 * in update_cpu_capacity().
9abf24d4 5861 *
63b2ca30 5862 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5863 * causing divide-by-zero issues on boot.
5864 *
63b2ca30 5865 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5866 */
5867 if (unlikely(!rq->sd)) {
ced549fa
NP
5868 capacity_orig += capacity_of(cpu);
5869 capacity += capacity_of(cpu);
9abf24d4
SD
5870 continue;
5871 }
863bffc8 5872
63b2ca30
NP
5873 sgc = rq->sd->groups->sgc;
5874 capacity_orig += sgc->capacity_orig;
5875 capacity += sgc->capacity;
863bffc8 5876 }
74a5ce20
PZ
5877 } else {
5878 /*
5879 * !SD_OVERLAP domains can assume that child groups
5880 * span the current group.
5881 */
5882
5883 group = child->groups;
5884 do {
63b2ca30
NP
5885 capacity_orig += group->sgc->capacity_orig;
5886 capacity += group->sgc->capacity;
74a5ce20
PZ
5887 group = group->next;
5888 } while (group != child->groups);
5889 }
1e3c88bd 5890
63b2ca30
NP
5891 sdg->sgc->capacity_orig = capacity_orig;
5892 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5893}
5894
9d5efe05
SV
5895/*
5896 * Try and fix up capacity for tiny siblings, this is needed when
5897 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5898 * which on its own isn't powerful enough.
5899 *
5900 * See update_sd_pick_busiest() and check_asym_packing().
5901 */
5902static inline int
5903fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5904{
5905 /*
ca8ce3d0 5906 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5907 */
5d4dfddd 5908 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5909 return 0;
5910
5911 /*
63b2ca30 5912 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5913 */
63b2ca30 5914 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5915 return 1;
5916
5917 return 0;
5918}
5919
30ce5dab
PZ
5920/*
5921 * Group imbalance indicates (and tries to solve) the problem where balancing
5922 * groups is inadequate due to tsk_cpus_allowed() constraints.
5923 *
5924 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5925 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5926 * Something like:
5927 *
5928 * { 0 1 2 3 } { 4 5 6 7 }
5929 * * * * *
5930 *
5931 * If we were to balance group-wise we'd place two tasks in the first group and
5932 * two tasks in the second group. Clearly this is undesired as it will overload
5933 * cpu 3 and leave one of the cpus in the second group unused.
5934 *
5935 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5936 * by noticing the lower domain failed to reach balance and had difficulty
5937 * moving tasks due to affinity constraints.
30ce5dab
PZ
5938 *
5939 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5940 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5941 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5942 * to create an effective group imbalance.
5943 *
5944 * This is a somewhat tricky proposition since the next run might not find the
5945 * group imbalance and decide the groups need to be balanced again. A most
5946 * subtle and fragile situation.
5947 */
5948
6263322c 5949static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5950{
63b2ca30 5951 return group->sgc->imbalance;
30ce5dab
PZ
5952}
5953
b37d9316 5954/*
0fedc6c8 5955 * Compute the group capacity factor.
b37d9316 5956 *
ced549fa 5957 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5958 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5959 * and limit unit capacity with that.
b37d9316 5960 */
0fedc6c8 5961static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5962{
0fedc6c8 5963 unsigned int capacity_factor, smt, cpus;
63b2ca30 5964 unsigned int capacity, capacity_orig;
c61037e9 5965
63b2ca30
NP
5966 capacity = group->sgc->capacity;
5967 capacity_orig = group->sgc->capacity_orig;
c61037e9 5968 cpus = group->group_weight;
b37d9316 5969
63b2ca30 5970 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5971 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5972 capacity_factor = cpus / smt; /* cores */
b37d9316 5973
63b2ca30 5974 capacity_factor = min_t(unsigned,
ca8ce3d0 5975 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5976 if (!capacity_factor)
5977 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5978
0fedc6c8 5979 return capacity_factor;
b37d9316
PZ
5980}
5981
caeb178c
RR
5982static enum group_type
5983group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5984{
5985 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5986 return group_overloaded;
5987
5988 if (sg_imbalanced(group))
5989 return group_imbalanced;
5990
5991 return group_other;
5992}
5993
1e3c88bd
PZ
5994/**
5995 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5996 * @env: The load balancing environment.
1e3c88bd 5997 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5998 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5999 * @local_group: Does group contain this_cpu.
1e3c88bd 6000 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6001 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6002 */
bd939f45
PZ
6003static inline void update_sg_lb_stats(struct lb_env *env,
6004 struct sched_group *group, int load_idx,
4486edd1
TC
6005 int local_group, struct sg_lb_stats *sgs,
6006 bool *overload)
1e3c88bd 6007{
30ce5dab 6008 unsigned long load;
bd939f45 6009 int i;
1e3c88bd 6010
b72ff13c
PZ
6011 memset(sgs, 0, sizeof(*sgs));
6012
b9403130 6013 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6014 struct rq *rq = cpu_rq(i);
6015
1e3c88bd 6016 /* Bias balancing toward cpus of our domain */
6263322c 6017 if (local_group)
04f733b4 6018 load = target_load(i, load_idx);
6263322c 6019 else
1e3c88bd 6020 load = source_load(i, load_idx);
1e3c88bd
PZ
6021
6022 sgs->group_load += load;
65fdac08 6023 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6024
6025 if (rq->nr_running > 1)
6026 *overload = true;
6027
0ec8aa00
PZ
6028#ifdef CONFIG_NUMA_BALANCING
6029 sgs->nr_numa_running += rq->nr_numa_running;
6030 sgs->nr_preferred_running += rq->nr_preferred_running;
6031#endif
1e3c88bd 6032 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6033 if (idle_cpu(i))
6034 sgs->idle_cpus++;
1e3c88bd
PZ
6035 }
6036
63b2ca30
NP
6037 /* Adjust by relative CPU capacity of the group */
6038 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6039 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6040
dd5feea1 6041 if (sgs->sum_nr_running)
38d0f770 6042 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6043
aae6d3dd 6044 sgs->group_weight = group->group_weight;
0fedc6c8 6045 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6046 sgs->group_type = group_classify(group, sgs);
b37d9316 6047
0fedc6c8 6048 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6049 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6050}
6051
532cb4c4
MN
6052/**
6053 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6054 * @env: The load balancing environment.
532cb4c4
MN
6055 * @sds: sched_domain statistics
6056 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6057 * @sgs: sched_group statistics
532cb4c4
MN
6058 *
6059 * Determine if @sg is a busier group than the previously selected
6060 * busiest group.
e69f6186
YB
6061 *
6062 * Return: %true if @sg is a busier group than the previously selected
6063 * busiest group. %false otherwise.
532cb4c4 6064 */
bd939f45 6065static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6066 struct sd_lb_stats *sds,
6067 struct sched_group *sg,
bd939f45 6068 struct sg_lb_stats *sgs)
532cb4c4 6069{
caeb178c 6070 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6071
caeb178c 6072 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6073 return true;
6074
caeb178c
RR
6075 if (sgs->group_type < busiest->group_type)
6076 return false;
6077
6078 if (sgs->avg_load <= busiest->avg_load)
6079 return false;
6080
6081 /* This is the busiest node in its class. */
6082 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6083 return true;
6084
6085 /*
6086 * ASYM_PACKING needs to move all the work to the lowest
6087 * numbered CPUs in the group, therefore mark all groups
6088 * higher than ourself as busy.
6089 */
caeb178c 6090 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6091 if (!sds->busiest)
6092 return true;
6093
6094 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6095 return true;
6096 }
6097
6098 return false;
6099}
6100
0ec8aa00
PZ
6101#ifdef CONFIG_NUMA_BALANCING
6102static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6103{
6104 if (sgs->sum_nr_running > sgs->nr_numa_running)
6105 return regular;
6106 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6107 return remote;
6108 return all;
6109}
6110
6111static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6112{
6113 if (rq->nr_running > rq->nr_numa_running)
6114 return regular;
6115 if (rq->nr_running > rq->nr_preferred_running)
6116 return remote;
6117 return all;
6118}
6119#else
6120static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6121{
6122 return all;
6123}
6124
6125static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6126{
6127 return regular;
6128}
6129#endif /* CONFIG_NUMA_BALANCING */
6130
1e3c88bd 6131/**
461819ac 6132 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6133 * @env: The load balancing environment.
1e3c88bd
PZ
6134 * @sds: variable to hold the statistics for this sched_domain.
6135 */
0ec8aa00 6136static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6137{
bd939f45
PZ
6138 struct sched_domain *child = env->sd->child;
6139 struct sched_group *sg = env->sd->groups;
56cf515b 6140 struct sg_lb_stats tmp_sgs;
1e3c88bd 6141 int load_idx, prefer_sibling = 0;
4486edd1 6142 bool overload = false;
1e3c88bd
PZ
6143
6144 if (child && child->flags & SD_PREFER_SIBLING)
6145 prefer_sibling = 1;
6146
bd939f45 6147 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6148
6149 do {
56cf515b 6150 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6151 int local_group;
6152
bd939f45 6153 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6154 if (local_group) {
6155 sds->local = sg;
6156 sgs = &sds->local_stat;
b72ff13c
PZ
6157
6158 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6159 time_after_eq(jiffies, sg->sgc->next_update))
6160 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6161 }
1e3c88bd 6162
4486edd1
TC
6163 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6164 &overload);
1e3c88bd 6165
b72ff13c
PZ
6166 if (local_group)
6167 goto next_group;
6168
1e3c88bd
PZ
6169 /*
6170 * In case the child domain prefers tasks go to siblings
0fedc6c8 6171 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6172 * and move all the excess tasks away. We lower the capacity
6173 * of a group only if the local group has the capacity to fit
0fedc6c8 6174 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6175 * extra check prevents the case where you always pull from the
6176 * heaviest group when it is already under-utilized (possible
6177 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6178 */
b72ff13c 6179 if (prefer_sibling && sds->local &&
1b6a7495 6180 sds->local_stat.group_has_free_capacity)
0fedc6c8 6181 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6182
b72ff13c 6183 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6184 sds->busiest = sg;
56cf515b 6185 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6186 }
6187
b72ff13c
PZ
6188next_group:
6189 /* Now, start updating sd_lb_stats */
6190 sds->total_load += sgs->group_load;
63b2ca30 6191 sds->total_capacity += sgs->group_capacity;
b72ff13c 6192
532cb4c4 6193 sg = sg->next;
bd939f45 6194 } while (sg != env->sd->groups);
0ec8aa00
PZ
6195
6196 if (env->sd->flags & SD_NUMA)
6197 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6198
6199 if (!env->sd->parent) {
6200 /* update overload indicator if we are at root domain */
6201 if (env->dst_rq->rd->overload != overload)
6202 env->dst_rq->rd->overload = overload;
6203 }
6204
532cb4c4
MN
6205}
6206
532cb4c4
MN
6207/**
6208 * check_asym_packing - Check to see if the group is packed into the
6209 * sched doman.
6210 *
6211 * This is primarily intended to used at the sibling level. Some
6212 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6213 * case of POWER7, it can move to lower SMT modes only when higher
6214 * threads are idle. When in lower SMT modes, the threads will
6215 * perform better since they share less core resources. Hence when we
6216 * have idle threads, we want them to be the higher ones.
6217 *
6218 * This packing function is run on idle threads. It checks to see if
6219 * the busiest CPU in this domain (core in the P7 case) has a higher
6220 * CPU number than the packing function is being run on. Here we are
6221 * assuming lower CPU number will be equivalent to lower a SMT thread
6222 * number.
6223 *
e69f6186 6224 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6225 * this CPU. The amount of the imbalance is returned in *imbalance.
6226 *
cd96891d 6227 * @env: The load balancing environment.
532cb4c4 6228 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6229 */
bd939f45 6230static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6231{
6232 int busiest_cpu;
6233
bd939f45 6234 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6235 return 0;
6236
6237 if (!sds->busiest)
6238 return 0;
6239
6240 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6241 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6242 return 0;
6243
bd939f45 6244 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6245 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6246 SCHED_CAPACITY_SCALE);
bd939f45 6247
532cb4c4 6248 return 1;
1e3c88bd
PZ
6249}
6250
6251/**
6252 * fix_small_imbalance - Calculate the minor imbalance that exists
6253 * amongst the groups of a sched_domain, during
6254 * load balancing.
cd96891d 6255 * @env: The load balancing environment.
1e3c88bd 6256 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6257 */
bd939f45
PZ
6258static inline
6259void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6260{
63b2ca30 6261 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6262 unsigned int imbn = 2;
dd5feea1 6263 unsigned long scaled_busy_load_per_task;
56cf515b 6264 struct sg_lb_stats *local, *busiest;
1e3c88bd 6265
56cf515b
JK
6266 local = &sds->local_stat;
6267 busiest = &sds->busiest_stat;
1e3c88bd 6268
56cf515b
JK
6269 if (!local->sum_nr_running)
6270 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6271 else if (busiest->load_per_task > local->load_per_task)
6272 imbn = 1;
dd5feea1 6273
56cf515b 6274 scaled_busy_load_per_task =
ca8ce3d0 6275 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6276 busiest->group_capacity;
56cf515b 6277
3029ede3
VD
6278 if (busiest->avg_load + scaled_busy_load_per_task >=
6279 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6280 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6281 return;
6282 }
6283
6284 /*
6285 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6286 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6287 * moving them.
6288 */
6289
63b2ca30 6290 capa_now += busiest->group_capacity *
56cf515b 6291 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6292 capa_now += local->group_capacity *
56cf515b 6293 min(local->load_per_task, local->avg_load);
ca8ce3d0 6294 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6295
6296 /* Amount of load we'd subtract */
a2cd4260 6297 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6298 capa_move += busiest->group_capacity *
56cf515b 6299 min(busiest->load_per_task,
a2cd4260 6300 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6301 }
1e3c88bd
PZ
6302
6303 /* Amount of load we'd add */
63b2ca30 6304 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6305 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6306 tmp = (busiest->avg_load * busiest->group_capacity) /
6307 local->group_capacity;
56cf515b 6308 } else {
ca8ce3d0 6309 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6310 local->group_capacity;
56cf515b 6311 }
63b2ca30 6312 capa_move += local->group_capacity *
3ae11c90 6313 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6314 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6315
6316 /* Move if we gain throughput */
63b2ca30 6317 if (capa_move > capa_now)
56cf515b 6318 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6319}
6320
6321/**
6322 * calculate_imbalance - Calculate the amount of imbalance present within the
6323 * groups of a given sched_domain during load balance.
bd939f45 6324 * @env: load balance environment
1e3c88bd 6325 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6326 */
bd939f45 6327static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6328{
dd5feea1 6329 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6330 struct sg_lb_stats *local, *busiest;
6331
6332 local = &sds->local_stat;
56cf515b 6333 busiest = &sds->busiest_stat;
dd5feea1 6334
caeb178c 6335 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6336 /*
6337 * In the group_imb case we cannot rely on group-wide averages
6338 * to ensure cpu-load equilibrium, look at wider averages. XXX
6339 */
56cf515b
JK
6340 busiest->load_per_task =
6341 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6342 }
6343
1e3c88bd
PZ
6344 /*
6345 * In the presence of smp nice balancing, certain scenarios can have
6346 * max load less than avg load(as we skip the groups at or below
ced549fa 6347 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6348 */
b1885550
VD
6349 if (busiest->avg_load <= sds->avg_load ||
6350 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6351 env->imbalance = 0;
6352 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6353 }
6354
9a5d9ba6
PZ
6355 /*
6356 * If there aren't any idle cpus, avoid creating some.
6357 */
6358 if (busiest->group_type == group_overloaded &&
6359 local->group_type == group_overloaded) {
56cf515b 6360 load_above_capacity =
0fedc6c8 6361 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6362
ca8ce3d0 6363 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6364 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6365 }
6366
6367 /*
6368 * We're trying to get all the cpus to the average_load, so we don't
6369 * want to push ourselves above the average load, nor do we wish to
6370 * reduce the max loaded cpu below the average load. At the same time,
6371 * we also don't want to reduce the group load below the group capacity
6372 * (so that we can implement power-savings policies etc). Thus we look
6373 * for the minimum possible imbalance.
dd5feea1 6374 */
30ce5dab 6375 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6376
6377 /* How much load to actually move to equalise the imbalance */
56cf515b 6378 env->imbalance = min(
63b2ca30
NP
6379 max_pull * busiest->group_capacity,
6380 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6381 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6382
6383 /*
6384 * if *imbalance is less than the average load per runnable task
25985edc 6385 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6386 * a think about bumping its value to force at least one task to be
6387 * moved
6388 */
56cf515b 6389 if (env->imbalance < busiest->load_per_task)
bd939f45 6390 return fix_small_imbalance(env, sds);
1e3c88bd 6391}
fab47622 6392
1e3c88bd
PZ
6393/******* find_busiest_group() helpers end here *********************/
6394
6395/**
6396 * find_busiest_group - Returns the busiest group within the sched_domain
6397 * if there is an imbalance. If there isn't an imbalance, and
6398 * the user has opted for power-savings, it returns a group whose
6399 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6400 * such a group exists.
6401 *
6402 * Also calculates the amount of weighted load which should be moved
6403 * to restore balance.
6404 *
cd96891d 6405 * @env: The load balancing environment.
1e3c88bd 6406 *
e69f6186 6407 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6408 * - If no imbalance and user has opted for power-savings balance,
6409 * return the least loaded group whose CPUs can be
6410 * put to idle by rebalancing its tasks onto our group.
6411 */
56cf515b 6412static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6413{
56cf515b 6414 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6415 struct sd_lb_stats sds;
6416
147c5fc2 6417 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6418
6419 /*
6420 * Compute the various statistics relavent for load balancing at
6421 * this level.
6422 */
23f0d209 6423 update_sd_lb_stats(env, &sds);
56cf515b
JK
6424 local = &sds.local_stat;
6425 busiest = &sds.busiest_stat;
1e3c88bd 6426
bd939f45
PZ
6427 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6428 check_asym_packing(env, &sds))
532cb4c4
MN
6429 return sds.busiest;
6430
cc57aa8f 6431 /* There is no busy sibling group to pull tasks from */
56cf515b 6432 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6433 goto out_balanced;
6434
ca8ce3d0
NP
6435 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6436 / sds.total_capacity;
b0432d8f 6437
866ab43e
PZ
6438 /*
6439 * If the busiest group is imbalanced the below checks don't
30ce5dab 6440 * work because they assume all things are equal, which typically
866ab43e
PZ
6441 * isn't true due to cpus_allowed constraints and the like.
6442 */
caeb178c 6443 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6444 goto force_balance;
6445
cc57aa8f 6446 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6447 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6448 !busiest->group_has_free_capacity)
fab47622
NR
6449 goto force_balance;
6450
cc57aa8f 6451 /*
9c58c79a 6452 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6453 * don't try and pull any tasks.
6454 */
56cf515b 6455 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6456 goto out_balanced;
6457
cc57aa8f
PZ
6458 /*
6459 * Don't pull any tasks if this group is already above the domain
6460 * average load.
6461 */
56cf515b 6462 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6463 goto out_balanced;
6464
bd939f45 6465 if (env->idle == CPU_IDLE) {
aae6d3dd 6466 /*
43f4d666
VG
6467 * This cpu is idle. If the busiest group is not overloaded
6468 * and there is no imbalance between this and busiest group
6469 * wrt idle cpus, it is balanced. The imbalance becomes
6470 * significant if the diff is greater than 1 otherwise we
6471 * might end up to just move the imbalance on another group
aae6d3dd 6472 */
43f4d666
VG
6473 if ((busiest->group_type != group_overloaded) &&
6474 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6475 goto out_balanced;
c186fafe
PZ
6476 } else {
6477 /*
6478 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6479 * imbalance_pct to be conservative.
6480 */
56cf515b
JK
6481 if (100 * busiest->avg_load <=
6482 env->sd->imbalance_pct * local->avg_load)
c186fafe 6483 goto out_balanced;
aae6d3dd 6484 }
1e3c88bd 6485
fab47622 6486force_balance:
1e3c88bd 6487 /* Looks like there is an imbalance. Compute it */
bd939f45 6488 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6489 return sds.busiest;
6490
6491out_balanced:
bd939f45 6492 env->imbalance = 0;
1e3c88bd
PZ
6493 return NULL;
6494}
6495
6496/*
6497 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6498 */
bd939f45 6499static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6500 struct sched_group *group)
1e3c88bd
PZ
6501{
6502 struct rq *busiest = NULL, *rq;
ced549fa 6503 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6504 int i;
6505
6906a408 6506 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6507 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6508 enum fbq_type rt;
6509
6510 rq = cpu_rq(i);
6511 rt = fbq_classify_rq(rq);
1e3c88bd 6512
0ec8aa00
PZ
6513 /*
6514 * We classify groups/runqueues into three groups:
6515 * - regular: there are !numa tasks
6516 * - remote: there are numa tasks that run on the 'wrong' node
6517 * - all: there is no distinction
6518 *
6519 * In order to avoid migrating ideally placed numa tasks,
6520 * ignore those when there's better options.
6521 *
6522 * If we ignore the actual busiest queue to migrate another
6523 * task, the next balance pass can still reduce the busiest
6524 * queue by moving tasks around inside the node.
6525 *
6526 * If we cannot move enough load due to this classification
6527 * the next pass will adjust the group classification and
6528 * allow migration of more tasks.
6529 *
6530 * Both cases only affect the total convergence complexity.
6531 */
6532 if (rt > env->fbq_type)
6533 continue;
6534
ced549fa 6535 capacity = capacity_of(i);
ca8ce3d0 6536 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6537 if (!capacity_factor)
6538 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6539
6e40f5bb 6540 wl = weighted_cpuload(i);
1e3c88bd 6541
6e40f5bb
TG
6542 /*
6543 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6544 * which is not scaled with the cpu capacity.
6e40f5bb 6545 */
0fedc6c8 6546 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6547 continue;
6548
6e40f5bb
TG
6549 /*
6550 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6551 * the weighted_cpuload() scaled with the cpu capacity, so
6552 * that the load can be moved away from the cpu that is
6553 * potentially running at a lower capacity.
95a79b80 6554 *
ced549fa 6555 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6556 * multiplication to rid ourselves of the division works out
ced549fa
NP
6557 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6558 * our previous maximum.
6e40f5bb 6559 */
ced549fa 6560 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6561 busiest_load = wl;
ced549fa 6562 busiest_capacity = capacity;
1e3c88bd
PZ
6563 busiest = rq;
6564 }
6565 }
6566
6567 return busiest;
6568}
6569
6570/*
6571 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6572 * so long as it is large enough.
6573 */
6574#define MAX_PINNED_INTERVAL 512
6575
6576/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6577DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6578
bd939f45 6579static int need_active_balance(struct lb_env *env)
1af3ed3d 6580{
bd939f45
PZ
6581 struct sched_domain *sd = env->sd;
6582
6583 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6584
6585 /*
6586 * ASYM_PACKING needs to force migrate tasks from busy but
6587 * higher numbered CPUs in order to pack all tasks in the
6588 * lowest numbered CPUs.
6589 */
bd939f45 6590 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6591 return 1;
1af3ed3d
PZ
6592 }
6593
6594 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6595}
6596
969c7921
TH
6597static int active_load_balance_cpu_stop(void *data);
6598
23f0d209
JK
6599static int should_we_balance(struct lb_env *env)
6600{
6601 struct sched_group *sg = env->sd->groups;
6602 struct cpumask *sg_cpus, *sg_mask;
6603 int cpu, balance_cpu = -1;
6604
6605 /*
6606 * In the newly idle case, we will allow all the cpu's
6607 * to do the newly idle load balance.
6608 */
6609 if (env->idle == CPU_NEWLY_IDLE)
6610 return 1;
6611
6612 sg_cpus = sched_group_cpus(sg);
6613 sg_mask = sched_group_mask(sg);
6614 /* Try to find first idle cpu */
6615 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6616 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6617 continue;
6618
6619 balance_cpu = cpu;
6620 break;
6621 }
6622
6623 if (balance_cpu == -1)
6624 balance_cpu = group_balance_cpu(sg);
6625
6626 /*
6627 * First idle cpu or the first cpu(busiest) in this sched group
6628 * is eligible for doing load balancing at this and above domains.
6629 */
b0cff9d8 6630 return balance_cpu == env->dst_cpu;
23f0d209
JK
6631}
6632
1e3c88bd
PZ
6633/*
6634 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6635 * tasks if there is an imbalance.
6636 */
6637static int load_balance(int this_cpu, struct rq *this_rq,
6638 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6639 int *continue_balancing)
1e3c88bd 6640{
88b8dac0 6641 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6642 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6643 struct sched_group *group;
1e3c88bd
PZ
6644 struct rq *busiest;
6645 unsigned long flags;
4ba29684 6646 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6647
8e45cb54
PZ
6648 struct lb_env env = {
6649 .sd = sd,
ddcdf6e7
PZ
6650 .dst_cpu = this_cpu,
6651 .dst_rq = this_rq,
88b8dac0 6652 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6653 .idle = idle,
eb95308e 6654 .loop_break = sched_nr_migrate_break,
b9403130 6655 .cpus = cpus,
0ec8aa00 6656 .fbq_type = all,
163122b7 6657 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6658 };
6659
cfc03118
JK
6660 /*
6661 * For NEWLY_IDLE load_balancing, we don't need to consider
6662 * other cpus in our group
6663 */
e02e60c1 6664 if (idle == CPU_NEWLY_IDLE)
cfc03118 6665 env.dst_grpmask = NULL;
cfc03118 6666
1e3c88bd
PZ
6667 cpumask_copy(cpus, cpu_active_mask);
6668
1e3c88bd
PZ
6669 schedstat_inc(sd, lb_count[idle]);
6670
6671redo:
23f0d209
JK
6672 if (!should_we_balance(&env)) {
6673 *continue_balancing = 0;
1e3c88bd 6674 goto out_balanced;
23f0d209 6675 }
1e3c88bd 6676
23f0d209 6677 group = find_busiest_group(&env);
1e3c88bd
PZ
6678 if (!group) {
6679 schedstat_inc(sd, lb_nobusyg[idle]);
6680 goto out_balanced;
6681 }
6682
b9403130 6683 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6684 if (!busiest) {
6685 schedstat_inc(sd, lb_nobusyq[idle]);
6686 goto out_balanced;
6687 }
6688
78feefc5 6689 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6690
bd939f45 6691 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6692
6693 ld_moved = 0;
6694 if (busiest->nr_running > 1) {
6695 /*
6696 * Attempt to move tasks. If find_busiest_group has found
6697 * an imbalance but busiest->nr_running <= 1, the group is
6698 * still unbalanced. ld_moved simply stays zero, so it is
6699 * correctly treated as an imbalance.
6700 */
8e45cb54 6701 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6702 env.src_cpu = busiest->cpu;
6703 env.src_rq = busiest;
6704 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6705
5d6523eb 6706more_balance:
163122b7 6707 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6708
6709 /*
6710 * cur_ld_moved - load moved in current iteration
6711 * ld_moved - cumulative load moved across iterations
6712 */
163122b7 6713 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6714
6715 /*
163122b7
KT
6716 * We've detached some tasks from busiest_rq. Every
6717 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6718 * unlock busiest->lock, and we are able to be sure
6719 * that nobody can manipulate the tasks in parallel.
6720 * See task_rq_lock() family for the details.
1e3c88bd 6721 */
163122b7
KT
6722
6723 raw_spin_unlock(&busiest->lock);
6724
6725 if (cur_ld_moved) {
6726 attach_tasks(&env);
6727 ld_moved += cur_ld_moved;
6728 }
6729
1e3c88bd 6730 local_irq_restore(flags);
88b8dac0 6731
f1cd0858
JK
6732 if (env.flags & LBF_NEED_BREAK) {
6733 env.flags &= ~LBF_NEED_BREAK;
6734 goto more_balance;
6735 }
6736
88b8dac0
SV
6737 /*
6738 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6739 * us and move them to an alternate dst_cpu in our sched_group
6740 * where they can run. The upper limit on how many times we
6741 * iterate on same src_cpu is dependent on number of cpus in our
6742 * sched_group.
6743 *
6744 * This changes load balance semantics a bit on who can move
6745 * load to a given_cpu. In addition to the given_cpu itself
6746 * (or a ilb_cpu acting on its behalf where given_cpu is
6747 * nohz-idle), we now have balance_cpu in a position to move
6748 * load to given_cpu. In rare situations, this may cause
6749 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6750 * _independently_ and at _same_ time to move some load to
6751 * given_cpu) causing exceess load to be moved to given_cpu.
6752 * This however should not happen so much in practice and
6753 * moreover subsequent load balance cycles should correct the
6754 * excess load moved.
6755 */
6263322c 6756 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6757
7aff2e3a
VD
6758 /* Prevent to re-select dst_cpu via env's cpus */
6759 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6760
78feefc5 6761 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6762 env.dst_cpu = env.new_dst_cpu;
6263322c 6763 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6764 env.loop = 0;
6765 env.loop_break = sched_nr_migrate_break;
e02e60c1 6766
88b8dac0
SV
6767 /*
6768 * Go back to "more_balance" rather than "redo" since we
6769 * need to continue with same src_cpu.
6770 */
6771 goto more_balance;
6772 }
1e3c88bd 6773
6263322c
PZ
6774 /*
6775 * We failed to reach balance because of affinity.
6776 */
6777 if (sd_parent) {
63b2ca30 6778 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6779
afdeee05 6780 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6781 *group_imbalance = 1;
6263322c
PZ
6782 }
6783
1e3c88bd 6784 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6785 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6786 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6787 if (!cpumask_empty(cpus)) {
6788 env.loop = 0;
6789 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6790 goto redo;
bbf18b19 6791 }
afdeee05 6792 goto out_all_pinned;
1e3c88bd
PZ
6793 }
6794 }
6795
6796 if (!ld_moved) {
6797 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6798 /*
6799 * Increment the failure counter only on periodic balance.
6800 * We do not want newidle balance, which can be very
6801 * frequent, pollute the failure counter causing
6802 * excessive cache_hot migrations and active balances.
6803 */
6804 if (idle != CPU_NEWLY_IDLE)
6805 sd->nr_balance_failed++;
1e3c88bd 6806
bd939f45 6807 if (need_active_balance(&env)) {
1e3c88bd
PZ
6808 raw_spin_lock_irqsave(&busiest->lock, flags);
6809
969c7921
TH
6810 /* don't kick the active_load_balance_cpu_stop,
6811 * if the curr task on busiest cpu can't be
6812 * moved to this_cpu
1e3c88bd
PZ
6813 */
6814 if (!cpumask_test_cpu(this_cpu,
fa17b507 6815 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6816 raw_spin_unlock_irqrestore(&busiest->lock,
6817 flags);
8e45cb54 6818 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6819 goto out_one_pinned;
6820 }
6821
969c7921
TH
6822 /*
6823 * ->active_balance synchronizes accesses to
6824 * ->active_balance_work. Once set, it's cleared
6825 * only after active load balance is finished.
6826 */
1e3c88bd
PZ
6827 if (!busiest->active_balance) {
6828 busiest->active_balance = 1;
6829 busiest->push_cpu = this_cpu;
6830 active_balance = 1;
6831 }
6832 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6833
bd939f45 6834 if (active_balance) {
969c7921
TH
6835 stop_one_cpu_nowait(cpu_of(busiest),
6836 active_load_balance_cpu_stop, busiest,
6837 &busiest->active_balance_work);
bd939f45 6838 }
1e3c88bd
PZ
6839
6840 /*
6841 * We've kicked active balancing, reset the failure
6842 * counter.
6843 */
6844 sd->nr_balance_failed = sd->cache_nice_tries+1;
6845 }
6846 } else
6847 sd->nr_balance_failed = 0;
6848
6849 if (likely(!active_balance)) {
6850 /* We were unbalanced, so reset the balancing interval */
6851 sd->balance_interval = sd->min_interval;
6852 } else {
6853 /*
6854 * If we've begun active balancing, start to back off. This
6855 * case may not be covered by the all_pinned logic if there
6856 * is only 1 task on the busy runqueue (because we don't call
163122b7 6857 * detach_tasks).
1e3c88bd
PZ
6858 */
6859 if (sd->balance_interval < sd->max_interval)
6860 sd->balance_interval *= 2;
6861 }
6862
1e3c88bd
PZ
6863 goto out;
6864
6865out_balanced:
afdeee05
VG
6866 /*
6867 * We reach balance although we may have faced some affinity
6868 * constraints. Clear the imbalance flag if it was set.
6869 */
6870 if (sd_parent) {
6871 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6872
6873 if (*group_imbalance)
6874 *group_imbalance = 0;
6875 }
6876
6877out_all_pinned:
6878 /*
6879 * We reach balance because all tasks are pinned at this level so
6880 * we can't migrate them. Let the imbalance flag set so parent level
6881 * can try to migrate them.
6882 */
1e3c88bd
PZ
6883 schedstat_inc(sd, lb_balanced[idle]);
6884
6885 sd->nr_balance_failed = 0;
6886
6887out_one_pinned:
6888 /* tune up the balancing interval */
8e45cb54 6889 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6890 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6891 (sd->balance_interval < sd->max_interval))
6892 sd->balance_interval *= 2;
6893
46e49b38 6894 ld_moved = 0;
1e3c88bd 6895out:
1e3c88bd
PZ
6896 return ld_moved;
6897}
6898
52a08ef1
JL
6899static inline unsigned long
6900get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6901{
6902 unsigned long interval = sd->balance_interval;
6903
6904 if (cpu_busy)
6905 interval *= sd->busy_factor;
6906
6907 /* scale ms to jiffies */
6908 interval = msecs_to_jiffies(interval);
6909 interval = clamp(interval, 1UL, max_load_balance_interval);
6910
6911 return interval;
6912}
6913
6914static inline void
6915update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6916{
6917 unsigned long interval, next;
6918
6919 interval = get_sd_balance_interval(sd, cpu_busy);
6920 next = sd->last_balance + interval;
6921
6922 if (time_after(*next_balance, next))
6923 *next_balance = next;
6924}
6925
1e3c88bd
PZ
6926/*
6927 * idle_balance is called by schedule() if this_cpu is about to become
6928 * idle. Attempts to pull tasks from other CPUs.
6929 */
6e83125c 6930static int idle_balance(struct rq *this_rq)
1e3c88bd 6931{
52a08ef1
JL
6932 unsigned long next_balance = jiffies + HZ;
6933 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6934 struct sched_domain *sd;
6935 int pulled_task = 0;
9bd721c5 6936 u64 curr_cost = 0;
1e3c88bd 6937
6e83125c 6938 idle_enter_fair(this_rq);
0e5b5337 6939
6e83125c
PZ
6940 /*
6941 * We must set idle_stamp _before_ calling idle_balance(), such that we
6942 * measure the duration of idle_balance() as idle time.
6943 */
6944 this_rq->idle_stamp = rq_clock(this_rq);
6945
4486edd1
TC
6946 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6947 !this_rq->rd->overload) {
52a08ef1
JL
6948 rcu_read_lock();
6949 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6950 if (sd)
6951 update_next_balance(sd, 0, &next_balance);
6952 rcu_read_unlock();
6953
6e83125c 6954 goto out;
52a08ef1 6955 }
1e3c88bd 6956
f492e12e
PZ
6957 /*
6958 * Drop the rq->lock, but keep IRQ/preempt disabled.
6959 */
6960 raw_spin_unlock(&this_rq->lock);
6961
48a16753 6962 update_blocked_averages(this_cpu);
dce840a0 6963 rcu_read_lock();
1e3c88bd 6964 for_each_domain(this_cpu, sd) {
23f0d209 6965 int continue_balancing = 1;
9bd721c5 6966 u64 t0, domain_cost;
1e3c88bd
PZ
6967
6968 if (!(sd->flags & SD_LOAD_BALANCE))
6969 continue;
6970
52a08ef1
JL
6971 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6972 update_next_balance(sd, 0, &next_balance);
9bd721c5 6973 break;
52a08ef1 6974 }
9bd721c5 6975
f492e12e 6976 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6977 t0 = sched_clock_cpu(this_cpu);
6978
f492e12e 6979 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6980 sd, CPU_NEWLY_IDLE,
6981 &continue_balancing);
9bd721c5
JL
6982
6983 domain_cost = sched_clock_cpu(this_cpu) - t0;
6984 if (domain_cost > sd->max_newidle_lb_cost)
6985 sd->max_newidle_lb_cost = domain_cost;
6986
6987 curr_cost += domain_cost;
f492e12e 6988 }
1e3c88bd 6989
52a08ef1 6990 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6991
6992 /*
6993 * Stop searching for tasks to pull if there are
6994 * now runnable tasks on this rq.
6995 */
6996 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6997 break;
1e3c88bd 6998 }
dce840a0 6999 rcu_read_unlock();
f492e12e
PZ
7000
7001 raw_spin_lock(&this_rq->lock);
7002
0e5b5337
JL
7003 if (curr_cost > this_rq->max_idle_balance_cost)
7004 this_rq->max_idle_balance_cost = curr_cost;
7005
e5fc6611 7006 /*
0e5b5337
JL
7007 * While browsing the domains, we released the rq lock, a task could
7008 * have been enqueued in the meantime. Since we're not going idle,
7009 * pretend we pulled a task.
e5fc6611 7010 */
0e5b5337 7011 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7012 pulled_task = 1;
e5fc6611 7013
52a08ef1
JL
7014out:
7015 /* Move the next balance forward */
7016 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7017 this_rq->next_balance = next_balance;
9bd721c5 7018
e4aa358b 7019 /* Is there a task of a high priority class? */
46383648 7020 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7021 pulled_task = -1;
7022
7023 if (pulled_task) {
7024 idle_exit_fair(this_rq);
6e83125c 7025 this_rq->idle_stamp = 0;
e4aa358b 7026 }
6e83125c 7027
3c4017c1 7028 return pulled_task;
1e3c88bd
PZ
7029}
7030
7031/*
969c7921
TH
7032 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7033 * running tasks off the busiest CPU onto idle CPUs. It requires at
7034 * least 1 task to be running on each physical CPU where possible, and
7035 * avoids physical / logical imbalances.
1e3c88bd 7036 */
969c7921 7037static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7038{
969c7921
TH
7039 struct rq *busiest_rq = data;
7040 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7041 int target_cpu = busiest_rq->push_cpu;
969c7921 7042 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7043 struct sched_domain *sd;
e5673f28 7044 struct task_struct *p = NULL;
969c7921
TH
7045
7046 raw_spin_lock_irq(&busiest_rq->lock);
7047
7048 /* make sure the requested cpu hasn't gone down in the meantime */
7049 if (unlikely(busiest_cpu != smp_processor_id() ||
7050 !busiest_rq->active_balance))
7051 goto out_unlock;
1e3c88bd
PZ
7052
7053 /* Is there any task to move? */
7054 if (busiest_rq->nr_running <= 1)
969c7921 7055 goto out_unlock;
1e3c88bd
PZ
7056
7057 /*
7058 * This condition is "impossible", if it occurs
7059 * we need to fix it. Originally reported by
7060 * Bjorn Helgaas on a 128-cpu setup.
7061 */
7062 BUG_ON(busiest_rq == target_rq);
7063
1e3c88bd 7064 /* Search for an sd spanning us and the target CPU. */
dce840a0 7065 rcu_read_lock();
1e3c88bd
PZ
7066 for_each_domain(target_cpu, sd) {
7067 if ((sd->flags & SD_LOAD_BALANCE) &&
7068 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7069 break;
7070 }
7071
7072 if (likely(sd)) {
8e45cb54
PZ
7073 struct lb_env env = {
7074 .sd = sd,
ddcdf6e7
PZ
7075 .dst_cpu = target_cpu,
7076 .dst_rq = target_rq,
7077 .src_cpu = busiest_rq->cpu,
7078 .src_rq = busiest_rq,
8e45cb54
PZ
7079 .idle = CPU_IDLE,
7080 };
7081
1e3c88bd
PZ
7082 schedstat_inc(sd, alb_count);
7083
e5673f28
KT
7084 p = detach_one_task(&env);
7085 if (p)
1e3c88bd
PZ
7086 schedstat_inc(sd, alb_pushed);
7087 else
7088 schedstat_inc(sd, alb_failed);
7089 }
dce840a0 7090 rcu_read_unlock();
969c7921
TH
7091out_unlock:
7092 busiest_rq->active_balance = 0;
e5673f28
KT
7093 raw_spin_unlock(&busiest_rq->lock);
7094
7095 if (p)
7096 attach_one_task(target_rq, p);
7097
7098 local_irq_enable();
7099
969c7921 7100 return 0;
1e3c88bd
PZ
7101}
7102
d987fc7f
MG
7103static inline int on_null_domain(struct rq *rq)
7104{
7105 return unlikely(!rcu_dereference_sched(rq->sd));
7106}
7107
3451d024 7108#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7109/*
7110 * idle load balancing details
83cd4fe2
VP
7111 * - When one of the busy CPUs notice that there may be an idle rebalancing
7112 * needed, they will kick the idle load balancer, which then does idle
7113 * load balancing for all the idle CPUs.
7114 */
1e3c88bd 7115static struct {
83cd4fe2 7116 cpumask_var_t idle_cpus_mask;
0b005cf5 7117 atomic_t nr_cpus;
83cd4fe2
VP
7118 unsigned long next_balance; /* in jiffy units */
7119} nohz ____cacheline_aligned;
1e3c88bd 7120
3dd0337d 7121static inline int find_new_ilb(void)
1e3c88bd 7122{
0b005cf5 7123 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7124
786d6dc7
SS
7125 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7126 return ilb;
7127
7128 return nr_cpu_ids;
1e3c88bd 7129}
1e3c88bd 7130
83cd4fe2
VP
7131/*
7132 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7133 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7134 * CPU (if there is one).
7135 */
0aeeeeba 7136static void nohz_balancer_kick(void)
83cd4fe2
VP
7137{
7138 int ilb_cpu;
7139
7140 nohz.next_balance++;
7141
3dd0337d 7142 ilb_cpu = find_new_ilb();
83cd4fe2 7143
0b005cf5
SS
7144 if (ilb_cpu >= nr_cpu_ids)
7145 return;
83cd4fe2 7146
cd490c5b 7147 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7148 return;
7149 /*
7150 * Use smp_send_reschedule() instead of resched_cpu().
7151 * This way we generate a sched IPI on the target cpu which
7152 * is idle. And the softirq performing nohz idle load balance
7153 * will be run before returning from the IPI.
7154 */
7155 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7156 return;
7157}
7158
c1cc017c 7159static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7160{
7161 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7162 /*
7163 * Completely isolated CPUs don't ever set, so we must test.
7164 */
7165 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7166 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7167 atomic_dec(&nohz.nr_cpus);
7168 }
71325960
SS
7169 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7170 }
7171}
7172
69e1e811
SS
7173static inline void set_cpu_sd_state_busy(void)
7174{
7175 struct sched_domain *sd;
37dc6b50 7176 int cpu = smp_processor_id();
69e1e811 7177
69e1e811 7178 rcu_read_lock();
37dc6b50 7179 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7180
7181 if (!sd || !sd->nohz_idle)
7182 goto unlock;
7183 sd->nohz_idle = 0;
7184
63b2ca30 7185 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7186unlock:
69e1e811
SS
7187 rcu_read_unlock();
7188}
7189
7190void set_cpu_sd_state_idle(void)
7191{
7192 struct sched_domain *sd;
37dc6b50 7193 int cpu = smp_processor_id();
69e1e811 7194
69e1e811 7195 rcu_read_lock();
37dc6b50 7196 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7197
7198 if (!sd || sd->nohz_idle)
7199 goto unlock;
7200 sd->nohz_idle = 1;
7201
63b2ca30 7202 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7203unlock:
69e1e811
SS
7204 rcu_read_unlock();
7205}
7206
1e3c88bd 7207/*
c1cc017c 7208 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7209 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7210 */
c1cc017c 7211void nohz_balance_enter_idle(int cpu)
1e3c88bd 7212{
71325960
SS
7213 /*
7214 * If this cpu is going down, then nothing needs to be done.
7215 */
7216 if (!cpu_active(cpu))
7217 return;
7218
c1cc017c
AS
7219 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7220 return;
1e3c88bd 7221
d987fc7f
MG
7222 /*
7223 * If we're a completely isolated CPU, we don't play.
7224 */
7225 if (on_null_domain(cpu_rq(cpu)))
7226 return;
7227
c1cc017c
AS
7228 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7229 atomic_inc(&nohz.nr_cpus);
7230 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7231}
71325960 7232
0db0628d 7233static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7234 unsigned long action, void *hcpu)
7235{
7236 switch (action & ~CPU_TASKS_FROZEN) {
7237 case CPU_DYING:
c1cc017c 7238 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7239 return NOTIFY_OK;
7240 default:
7241 return NOTIFY_DONE;
7242 }
7243}
1e3c88bd
PZ
7244#endif
7245
7246static DEFINE_SPINLOCK(balancing);
7247
49c022e6
PZ
7248/*
7249 * Scale the max load_balance interval with the number of CPUs in the system.
7250 * This trades load-balance latency on larger machines for less cross talk.
7251 */
029632fb 7252void update_max_interval(void)
49c022e6
PZ
7253{
7254 max_load_balance_interval = HZ*num_online_cpus()/10;
7255}
7256
1e3c88bd
PZ
7257/*
7258 * It checks each scheduling domain to see if it is due to be balanced,
7259 * and initiates a balancing operation if so.
7260 *
b9b0853a 7261 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7262 */
f7ed0a89 7263static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7264{
23f0d209 7265 int continue_balancing = 1;
f7ed0a89 7266 int cpu = rq->cpu;
1e3c88bd 7267 unsigned long interval;
04f733b4 7268 struct sched_domain *sd;
1e3c88bd
PZ
7269 /* Earliest time when we have to do rebalance again */
7270 unsigned long next_balance = jiffies + 60*HZ;
7271 int update_next_balance = 0;
f48627e6
JL
7272 int need_serialize, need_decay = 0;
7273 u64 max_cost = 0;
1e3c88bd 7274
48a16753 7275 update_blocked_averages(cpu);
2069dd75 7276
dce840a0 7277 rcu_read_lock();
1e3c88bd 7278 for_each_domain(cpu, sd) {
f48627e6
JL
7279 /*
7280 * Decay the newidle max times here because this is a regular
7281 * visit to all the domains. Decay ~1% per second.
7282 */
7283 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7284 sd->max_newidle_lb_cost =
7285 (sd->max_newidle_lb_cost * 253) / 256;
7286 sd->next_decay_max_lb_cost = jiffies + HZ;
7287 need_decay = 1;
7288 }
7289 max_cost += sd->max_newidle_lb_cost;
7290
1e3c88bd
PZ
7291 if (!(sd->flags & SD_LOAD_BALANCE))
7292 continue;
7293
f48627e6
JL
7294 /*
7295 * Stop the load balance at this level. There is another
7296 * CPU in our sched group which is doing load balancing more
7297 * actively.
7298 */
7299 if (!continue_balancing) {
7300 if (need_decay)
7301 continue;
7302 break;
7303 }
7304
52a08ef1 7305 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7306
7307 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7308 if (need_serialize) {
7309 if (!spin_trylock(&balancing))
7310 goto out;
7311 }
7312
7313 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7314 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7315 /*
6263322c 7316 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7317 * env->dst_cpu, so we can't know our idle
7318 * state even if we migrated tasks. Update it.
1e3c88bd 7319 */
de5eb2dd 7320 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7321 }
7322 sd->last_balance = jiffies;
52a08ef1 7323 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7324 }
7325 if (need_serialize)
7326 spin_unlock(&balancing);
7327out:
7328 if (time_after(next_balance, sd->last_balance + interval)) {
7329 next_balance = sd->last_balance + interval;
7330 update_next_balance = 1;
7331 }
f48627e6
JL
7332 }
7333 if (need_decay) {
1e3c88bd 7334 /*
f48627e6
JL
7335 * Ensure the rq-wide value also decays but keep it at a
7336 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7337 */
f48627e6
JL
7338 rq->max_idle_balance_cost =
7339 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7340 }
dce840a0 7341 rcu_read_unlock();
1e3c88bd
PZ
7342
7343 /*
7344 * next_balance will be updated only when there is a need.
7345 * When the cpu is attached to null domain for ex, it will not be
7346 * updated.
7347 */
7348 if (likely(update_next_balance))
7349 rq->next_balance = next_balance;
7350}
7351
3451d024 7352#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7353/*
3451d024 7354 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7355 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7356 */
208cb16b 7357static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7358{
208cb16b 7359 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7360 struct rq *rq;
7361 int balance_cpu;
7362
1c792db7
SS
7363 if (idle != CPU_IDLE ||
7364 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7365 goto end;
83cd4fe2
VP
7366
7367 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7368 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7369 continue;
7370
7371 /*
7372 * If this cpu gets work to do, stop the load balancing
7373 * work being done for other cpus. Next load
7374 * balancing owner will pick it up.
7375 */
1c792db7 7376 if (need_resched())
83cd4fe2 7377 break;
83cd4fe2 7378
5ed4f1d9
VG
7379 rq = cpu_rq(balance_cpu);
7380
ed61bbc6
TC
7381 /*
7382 * If time for next balance is due,
7383 * do the balance.
7384 */
7385 if (time_after_eq(jiffies, rq->next_balance)) {
7386 raw_spin_lock_irq(&rq->lock);
7387 update_rq_clock(rq);
7388 update_idle_cpu_load(rq);
7389 raw_spin_unlock_irq(&rq->lock);
7390 rebalance_domains(rq, CPU_IDLE);
7391 }
83cd4fe2 7392
83cd4fe2
VP
7393 if (time_after(this_rq->next_balance, rq->next_balance))
7394 this_rq->next_balance = rq->next_balance;
7395 }
7396 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7397end:
7398 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7399}
7400
7401/*
0b005cf5
SS
7402 * Current heuristic for kicking the idle load balancer in the presence
7403 * of an idle cpu is the system.
7404 * - This rq has more than one task.
7405 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7406 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7407 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7408 * domain span are idle.
83cd4fe2 7409 */
4a725627 7410static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7411{
7412 unsigned long now = jiffies;
0b005cf5 7413 struct sched_domain *sd;
63b2ca30 7414 struct sched_group_capacity *sgc;
4a725627 7415 int nr_busy, cpu = rq->cpu;
83cd4fe2 7416
4a725627 7417 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7418 return 0;
7419
1c792db7
SS
7420 /*
7421 * We may be recently in ticked or tickless idle mode. At the first
7422 * busy tick after returning from idle, we will update the busy stats.
7423 */
69e1e811 7424 set_cpu_sd_state_busy();
c1cc017c 7425 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7426
7427 /*
7428 * None are in tickless mode and hence no need for NOHZ idle load
7429 * balancing.
7430 */
7431 if (likely(!atomic_read(&nohz.nr_cpus)))
7432 return 0;
1c792db7
SS
7433
7434 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7435 return 0;
7436
0b005cf5
SS
7437 if (rq->nr_running >= 2)
7438 goto need_kick;
83cd4fe2 7439
067491b7 7440 rcu_read_lock();
37dc6b50 7441 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7442
37dc6b50 7443 if (sd) {
63b2ca30
NP
7444 sgc = sd->groups->sgc;
7445 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7446
37dc6b50 7447 if (nr_busy > 1)
067491b7 7448 goto need_kick_unlock;
83cd4fe2 7449 }
37dc6b50
PM
7450
7451 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7452
7453 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7454 sched_domain_span(sd)) < cpu))
7455 goto need_kick_unlock;
7456
067491b7 7457 rcu_read_unlock();
83cd4fe2 7458 return 0;
067491b7
PZ
7459
7460need_kick_unlock:
7461 rcu_read_unlock();
0b005cf5
SS
7462need_kick:
7463 return 1;
83cd4fe2
VP
7464}
7465#else
208cb16b 7466static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7467#endif
7468
7469/*
7470 * run_rebalance_domains is triggered when needed from the scheduler tick.
7471 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7472 */
1e3c88bd
PZ
7473static void run_rebalance_domains(struct softirq_action *h)
7474{
208cb16b 7475 struct rq *this_rq = this_rq();
6eb57e0d 7476 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7477 CPU_IDLE : CPU_NOT_IDLE;
7478
f7ed0a89 7479 rebalance_domains(this_rq, idle);
1e3c88bd 7480
1e3c88bd 7481 /*
83cd4fe2 7482 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7483 * balancing on behalf of the other idle cpus whose ticks are
7484 * stopped.
7485 */
208cb16b 7486 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7487}
7488
1e3c88bd
PZ
7489/*
7490 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7491 */
7caff66f 7492void trigger_load_balance(struct rq *rq)
1e3c88bd 7493{
1e3c88bd 7494 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7495 if (unlikely(on_null_domain(rq)))
7496 return;
7497
7498 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7499 raise_softirq(SCHED_SOFTIRQ);
3451d024 7500#ifdef CONFIG_NO_HZ_COMMON
c726099e 7501 if (nohz_kick_needed(rq))
0aeeeeba 7502 nohz_balancer_kick();
83cd4fe2 7503#endif
1e3c88bd
PZ
7504}
7505
0bcdcf28
CE
7506static void rq_online_fair(struct rq *rq)
7507{
7508 update_sysctl();
0e59bdae
KT
7509
7510 update_runtime_enabled(rq);
0bcdcf28
CE
7511}
7512
7513static void rq_offline_fair(struct rq *rq)
7514{
7515 update_sysctl();
a4c96ae3
PB
7516
7517 /* Ensure any throttled groups are reachable by pick_next_task */
7518 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7519}
7520
55e12e5e 7521#endif /* CONFIG_SMP */
e1d1484f 7522
bf0f6f24
IM
7523/*
7524 * scheduler tick hitting a task of our scheduling class:
7525 */
8f4d37ec 7526static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7527{
7528 struct cfs_rq *cfs_rq;
7529 struct sched_entity *se = &curr->se;
7530
7531 for_each_sched_entity(se) {
7532 cfs_rq = cfs_rq_of(se);
8f4d37ec 7533 entity_tick(cfs_rq, se, queued);
bf0f6f24 7534 }
18bf2805 7535
10e84b97 7536 if (numabalancing_enabled)
cbee9f88 7537 task_tick_numa(rq, curr);
3d59eebc 7538
18bf2805 7539 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7540}
7541
7542/*
cd29fe6f
PZ
7543 * called on fork with the child task as argument from the parent's context
7544 * - child not yet on the tasklist
7545 * - preemption disabled
bf0f6f24 7546 */
cd29fe6f 7547static void task_fork_fair(struct task_struct *p)
bf0f6f24 7548{
4fc420c9
DN
7549 struct cfs_rq *cfs_rq;
7550 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7551 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7552 struct rq *rq = this_rq();
7553 unsigned long flags;
7554
05fa785c 7555 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7556
861d034e
PZ
7557 update_rq_clock(rq);
7558
4fc420c9
DN
7559 cfs_rq = task_cfs_rq(current);
7560 curr = cfs_rq->curr;
7561
6c9a27f5
DN
7562 /*
7563 * Not only the cpu but also the task_group of the parent might have
7564 * been changed after parent->se.parent,cfs_rq were copied to
7565 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7566 * of child point to valid ones.
7567 */
7568 rcu_read_lock();
7569 __set_task_cpu(p, this_cpu);
7570 rcu_read_unlock();
bf0f6f24 7571
7109c442 7572 update_curr(cfs_rq);
cd29fe6f 7573
b5d9d734
MG
7574 if (curr)
7575 se->vruntime = curr->vruntime;
aeb73b04 7576 place_entity(cfs_rq, se, 1);
4d78e7b6 7577
cd29fe6f 7578 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7579 /*
edcb60a3
IM
7580 * Upon rescheduling, sched_class::put_prev_task() will place
7581 * 'current' within the tree based on its new key value.
7582 */
4d78e7b6 7583 swap(curr->vruntime, se->vruntime);
8875125e 7584 resched_curr(rq);
4d78e7b6 7585 }
bf0f6f24 7586
88ec22d3
PZ
7587 se->vruntime -= cfs_rq->min_vruntime;
7588
05fa785c 7589 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7590}
7591
cb469845
SR
7592/*
7593 * Priority of the task has changed. Check to see if we preempt
7594 * the current task.
7595 */
da7a735e
PZ
7596static void
7597prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7598{
da0c1e65 7599 if (!task_on_rq_queued(p))
da7a735e
PZ
7600 return;
7601
cb469845
SR
7602 /*
7603 * Reschedule if we are currently running on this runqueue and
7604 * our priority decreased, or if we are not currently running on
7605 * this runqueue and our priority is higher than the current's
7606 */
da7a735e 7607 if (rq->curr == p) {
cb469845 7608 if (p->prio > oldprio)
8875125e 7609 resched_curr(rq);
cb469845 7610 } else
15afe09b 7611 check_preempt_curr(rq, p, 0);
cb469845
SR
7612}
7613
da7a735e
PZ
7614static void switched_from_fair(struct rq *rq, struct task_struct *p)
7615{
7616 struct sched_entity *se = &p->se;
7617 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7618
7619 /*
791c9e02 7620 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7621 * switched back to the fair class the enqueue_entity(.flags=0) will
7622 * do the right thing.
7623 *
da0c1e65
KT
7624 * If it's queued, then the dequeue_entity(.flags=0) will already
7625 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7626 * the task is sleeping will it still have non-normalized vruntime.
7627 */
da0c1e65 7628 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7629 /*
7630 * Fix up our vruntime so that the current sleep doesn't
7631 * cause 'unlimited' sleep bonus.
7632 */
7633 place_entity(cfs_rq, se, 0);
7634 se->vruntime -= cfs_rq->min_vruntime;
7635 }
9ee474f5 7636
141965c7 7637#ifdef CONFIG_SMP
9ee474f5
PT
7638 /*
7639 * Remove our load from contribution when we leave sched_fair
7640 * and ensure we don't carry in an old decay_count if we
7641 * switch back.
7642 */
87e3c8ae
KT
7643 if (se->avg.decay_count) {
7644 __synchronize_entity_decay(se);
7645 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7646 }
7647#endif
da7a735e
PZ
7648}
7649
cb469845
SR
7650/*
7651 * We switched to the sched_fair class.
7652 */
da7a735e 7653static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7654{
eb7a59b2 7655#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7656 struct sched_entity *se = &p->se;
eb7a59b2
M
7657 /*
7658 * Since the real-depth could have been changed (only FAIR
7659 * class maintain depth value), reset depth properly.
7660 */
7661 se->depth = se->parent ? se->parent->depth + 1 : 0;
7662#endif
da0c1e65 7663 if (!task_on_rq_queued(p))
da7a735e
PZ
7664 return;
7665
cb469845
SR
7666 /*
7667 * We were most likely switched from sched_rt, so
7668 * kick off the schedule if running, otherwise just see
7669 * if we can still preempt the current task.
7670 */
da7a735e 7671 if (rq->curr == p)
8875125e 7672 resched_curr(rq);
cb469845 7673 else
15afe09b 7674 check_preempt_curr(rq, p, 0);
cb469845
SR
7675}
7676
83b699ed
SV
7677/* Account for a task changing its policy or group.
7678 *
7679 * This routine is mostly called to set cfs_rq->curr field when a task
7680 * migrates between groups/classes.
7681 */
7682static void set_curr_task_fair(struct rq *rq)
7683{
7684 struct sched_entity *se = &rq->curr->se;
7685
ec12cb7f
PT
7686 for_each_sched_entity(se) {
7687 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7688
7689 set_next_entity(cfs_rq, se);
7690 /* ensure bandwidth has been allocated on our new cfs_rq */
7691 account_cfs_rq_runtime(cfs_rq, 0);
7692 }
83b699ed
SV
7693}
7694
029632fb
PZ
7695void init_cfs_rq(struct cfs_rq *cfs_rq)
7696{
7697 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7698 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7699#ifndef CONFIG_64BIT
7700 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7701#endif
141965c7 7702#ifdef CONFIG_SMP
9ee474f5 7703 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7704 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7705#endif
029632fb
PZ
7706}
7707
810b3817 7708#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7709static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7710{
fed14d45 7711 struct sched_entity *se = &p->se;
aff3e498 7712 struct cfs_rq *cfs_rq;
fed14d45 7713
b2b5ce02
PZ
7714 /*
7715 * If the task was not on the rq at the time of this cgroup movement
7716 * it must have been asleep, sleeping tasks keep their ->vruntime
7717 * absolute on their old rq until wakeup (needed for the fair sleeper
7718 * bonus in place_entity()).
7719 *
7720 * If it was on the rq, we've just 'preempted' it, which does convert
7721 * ->vruntime to a relative base.
7722 *
7723 * Make sure both cases convert their relative position when migrating
7724 * to another cgroup's rq. This does somewhat interfere with the
7725 * fair sleeper stuff for the first placement, but who cares.
7726 */
7ceff013 7727 /*
da0c1e65 7728 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7729 * But there are some cases where it has already been normalized:
7730 *
7731 * - Moving a forked child which is waiting for being woken up by
7732 * wake_up_new_task().
62af3783
DN
7733 * - Moving a task which has been woken up by try_to_wake_up() and
7734 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7735 *
7736 * To prevent boost or penalty in the new cfs_rq caused by delta
7737 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7738 */
da0c1e65
KT
7739 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7740 queued = 1;
7ceff013 7741
da0c1e65 7742 if (!queued)
fed14d45 7743 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7744 set_task_rq(p, task_cpu(p));
fed14d45 7745 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7746 if (!queued) {
fed14d45
PZ
7747 cfs_rq = cfs_rq_of(se);
7748 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7749#ifdef CONFIG_SMP
7750 /*
7751 * migrate_task_rq_fair() will have removed our previous
7752 * contribution, but we must synchronize for ongoing future
7753 * decay.
7754 */
fed14d45
PZ
7755 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7756 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7757#endif
7758 }
810b3817 7759}
029632fb
PZ
7760
7761void free_fair_sched_group(struct task_group *tg)
7762{
7763 int i;
7764
7765 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7766
7767 for_each_possible_cpu(i) {
7768 if (tg->cfs_rq)
7769 kfree(tg->cfs_rq[i]);
7770 if (tg->se)
7771 kfree(tg->se[i]);
7772 }
7773
7774 kfree(tg->cfs_rq);
7775 kfree(tg->se);
7776}
7777
7778int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7779{
7780 struct cfs_rq *cfs_rq;
7781 struct sched_entity *se;
7782 int i;
7783
7784 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7785 if (!tg->cfs_rq)
7786 goto err;
7787 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7788 if (!tg->se)
7789 goto err;
7790
7791 tg->shares = NICE_0_LOAD;
7792
7793 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7794
7795 for_each_possible_cpu(i) {
7796 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7797 GFP_KERNEL, cpu_to_node(i));
7798 if (!cfs_rq)
7799 goto err;
7800
7801 se = kzalloc_node(sizeof(struct sched_entity),
7802 GFP_KERNEL, cpu_to_node(i));
7803 if (!se)
7804 goto err_free_rq;
7805
7806 init_cfs_rq(cfs_rq);
7807 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7808 }
7809
7810 return 1;
7811
7812err_free_rq:
7813 kfree(cfs_rq);
7814err:
7815 return 0;
7816}
7817
7818void unregister_fair_sched_group(struct task_group *tg, int cpu)
7819{
7820 struct rq *rq = cpu_rq(cpu);
7821 unsigned long flags;
7822
7823 /*
7824 * Only empty task groups can be destroyed; so we can speculatively
7825 * check on_list without danger of it being re-added.
7826 */
7827 if (!tg->cfs_rq[cpu]->on_list)
7828 return;
7829
7830 raw_spin_lock_irqsave(&rq->lock, flags);
7831 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7832 raw_spin_unlock_irqrestore(&rq->lock, flags);
7833}
7834
7835void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7836 struct sched_entity *se, int cpu,
7837 struct sched_entity *parent)
7838{
7839 struct rq *rq = cpu_rq(cpu);
7840
7841 cfs_rq->tg = tg;
7842 cfs_rq->rq = rq;
029632fb
PZ
7843 init_cfs_rq_runtime(cfs_rq);
7844
7845 tg->cfs_rq[cpu] = cfs_rq;
7846 tg->se[cpu] = se;
7847
7848 /* se could be NULL for root_task_group */
7849 if (!se)
7850 return;
7851
fed14d45 7852 if (!parent) {
029632fb 7853 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7854 se->depth = 0;
7855 } else {
029632fb 7856 se->cfs_rq = parent->my_q;
fed14d45
PZ
7857 se->depth = parent->depth + 1;
7858 }
029632fb
PZ
7859
7860 se->my_q = cfs_rq;
0ac9b1c2
PT
7861 /* guarantee group entities always have weight */
7862 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7863 se->parent = parent;
7864}
7865
7866static DEFINE_MUTEX(shares_mutex);
7867
7868int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7869{
7870 int i;
7871 unsigned long flags;
7872
7873 /*
7874 * We can't change the weight of the root cgroup.
7875 */
7876 if (!tg->se[0])
7877 return -EINVAL;
7878
7879 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7880
7881 mutex_lock(&shares_mutex);
7882 if (tg->shares == shares)
7883 goto done;
7884
7885 tg->shares = shares;
7886 for_each_possible_cpu(i) {
7887 struct rq *rq = cpu_rq(i);
7888 struct sched_entity *se;
7889
7890 se = tg->se[i];
7891 /* Propagate contribution to hierarchy */
7892 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7893
7894 /* Possible calls to update_curr() need rq clock */
7895 update_rq_clock(rq);
17bc14b7 7896 for_each_sched_entity(se)
029632fb
PZ
7897 update_cfs_shares(group_cfs_rq(se));
7898 raw_spin_unlock_irqrestore(&rq->lock, flags);
7899 }
7900
7901done:
7902 mutex_unlock(&shares_mutex);
7903 return 0;
7904}
7905#else /* CONFIG_FAIR_GROUP_SCHED */
7906
7907void free_fair_sched_group(struct task_group *tg) { }
7908
7909int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7910{
7911 return 1;
7912}
7913
7914void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7915
7916#endif /* CONFIG_FAIR_GROUP_SCHED */
7917
810b3817 7918
6d686f45 7919static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7920{
7921 struct sched_entity *se = &task->se;
0d721cea
PW
7922 unsigned int rr_interval = 0;
7923
7924 /*
7925 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7926 * idle runqueue:
7927 */
0d721cea 7928 if (rq->cfs.load.weight)
a59f4e07 7929 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7930
7931 return rr_interval;
7932}
7933
bf0f6f24
IM
7934/*
7935 * All the scheduling class methods:
7936 */
029632fb 7937const struct sched_class fair_sched_class = {
5522d5d5 7938 .next = &idle_sched_class,
bf0f6f24
IM
7939 .enqueue_task = enqueue_task_fair,
7940 .dequeue_task = dequeue_task_fair,
7941 .yield_task = yield_task_fair,
d95f4122 7942 .yield_to_task = yield_to_task_fair,
bf0f6f24 7943
2e09bf55 7944 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7945
7946 .pick_next_task = pick_next_task_fair,
7947 .put_prev_task = put_prev_task_fair,
7948
681f3e68 7949#ifdef CONFIG_SMP
4ce72a2c 7950 .select_task_rq = select_task_rq_fair,
0a74bef8 7951 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7952
0bcdcf28
CE
7953 .rq_online = rq_online_fair,
7954 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7955
7956 .task_waking = task_waking_fair,
681f3e68 7957#endif
bf0f6f24 7958
83b699ed 7959 .set_curr_task = set_curr_task_fair,
bf0f6f24 7960 .task_tick = task_tick_fair,
cd29fe6f 7961 .task_fork = task_fork_fair,
cb469845
SR
7962
7963 .prio_changed = prio_changed_fair,
da7a735e 7964 .switched_from = switched_from_fair,
cb469845 7965 .switched_to = switched_to_fair,
810b3817 7966
0d721cea
PW
7967 .get_rr_interval = get_rr_interval_fair,
7968
810b3817 7969#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7970 .task_move_group = task_move_group_fair,
810b3817 7971#endif
bf0f6f24
IM
7972};
7973
7974#ifdef CONFIG_SCHED_DEBUG
029632fb 7975void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7976{
bf0f6f24
IM
7977 struct cfs_rq *cfs_rq;
7978
5973e5b9 7979 rcu_read_lock();
c3b64f1e 7980 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7981 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7982 rcu_read_unlock();
bf0f6f24
IM
7983}
7984#endif
029632fb
PZ
7985
7986__init void init_sched_fair_class(void)
7987{
7988#ifdef CONFIG_SMP
7989 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7990
3451d024 7991#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7992 nohz.next_balance = jiffies;
029632fb 7993 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7994 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7995#endif
7996#endif /* SMP */
7997
7998}
This page took 1.052542 seconds and 5 git commands to generate.