sched/fair: Fix PELT integrity for new tasks
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
7dc603c9
PZ
693static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
694static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
695static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
696
2b8c41da
YD
697/*
698 * With new tasks being created, their initial util_avgs are extrapolated
699 * based on the cfs_rq's current util_avg:
700 *
701 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
702 *
703 * However, in many cases, the above util_avg does not give a desired
704 * value. Moreover, the sum of the util_avgs may be divergent, such
705 * as when the series is a harmonic series.
706 *
707 * To solve this problem, we also cap the util_avg of successive tasks to
708 * only 1/2 of the left utilization budget:
709 *
710 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
711 *
712 * where n denotes the nth task.
713 *
714 * For example, a simplest series from the beginning would be like:
715 *
716 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
717 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
718 *
719 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
720 * if util_avg > util_avg_cap.
721 */
722void post_init_entity_util_avg(struct sched_entity *se)
723{
724 struct cfs_rq *cfs_rq = cfs_rq_of(se);
725 struct sched_avg *sa = &se->avg;
172895e6 726 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 727 u64 now = cfs_rq_clock_task(cfs_rq);
2b8c41da
YD
728
729 if (cap > 0) {
730 if (cfs_rq->avg.util_avg != 0) {
731 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
732 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
733
734 if (sa->util_avg > cap)
735 sa->util_avg = cap;
736 } else {
737 sa->util_avg = cap;
738 }
739 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
740 }
7dc603c9
PZ
741
742 if (entity_is_task(se)) {
743 struct task_struct *p = task_of(se);
744 if (p->sched_class != &fair_sched_class) {
745 /*
746 * For !fair tasks do:
747 *
748 update_cfs_rq_load_avg(now, cfs_rq, false);
749 attach_entity_load_avg(cfs_rq, se);
750 switched_from_fair(rq, p);
751 *
752 * such that the next switched_to_fair() has the
753 * expected state.
754 */
755 se->avg.last_update_time = now;
756 return;
757 }
758 }
759
760 update_cfs_rq_load_avg(now, cfs_rq, false);
761 attach_entity_load_avg(cfs_rq, se);
2b8c41da
YD
762}
763
7dc603c9 764#else /* !CONFIG_SMP */
540247fb 765void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
766{
767}
2b8c41da
YD
768void post_init_entity_util_avg(struct sched_entity *se)
769{
770}
7dc603c9 771#endif /* CONFIG_SMP */
a75cdaa9 772
bf0f6f24 773/*
9dbdb155 774 * Update the current task's runtime statistics.
bf0f6f24 775 */
b7cc0896 776static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 777{
429d43bc 778 struct sched_entity *curr = cfs_rq->curr;
78becc27 779 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 780 u64 delta_exec;
bf0f6f24
IM
781
782 if (unlikely(!curr))
783 return;
784
9dbdb155
PZ
785 delta_exec = now - curr->exec_start;
786 if (unlikely((s64)delta_exec <= 0))
34f28ecd 787 return;
bf0f6f24 788
8ebc91d9 789 curr->exec_start = now;
d842de87 790
9dbdb155
PZ
791 schedstat_set(curr->statistics.exec_max,
792 max(delta_exec, curr->statistics.exec_max));
793
794 curr->sum_exec_runtime += delta_exec;
795 schedstat_add(cfs_rq, exec_clock, delta_exec);
796
797 curr->vruntime += calc_delta_fair(delta_exec, curr);
798 update_min_vruntime(cfs_rq);
799
d842de87
SV
800 if (entity_is_task(curr)) {
801 struct task_struct *curtask = task_of(curr);
802
f977bb49 803 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 804 cpuacct_charge(curtask, delta_exec);
f06febc9 805 account_group_exec_runtime(curtask, delta_exec);
d842de87 806 }
ec12cb7f
PT
807
808 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
809}
810
6e998916
SG
811static void update_curr_fair(struct rq *rq)
812{
813 update_curr(cfs_rq_of(&rq->curr->se));
814}
815
3ea94de1 816#ifdef CONFIG_SCHEDSTATS
bf0f6f24 817static inline void
5870db5b 818update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 819{
3ea94de1
JP
820 u64 wait_start = rq_clock(rq_of(cfs_rq));
821
822 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
823 likely(wait_start > se->statistics.wait_start))
824 wait_start -= se->statistics.wait_start;
825
826 se->statistics.wait_start = wait_start;
bf0f6f24
IM
827}
828
3ea94de1
JP
829static void
830update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
831{
832 struct task_struct *p;
cb251765
MG
833 u64 delta;
834
835 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
836
837 if (entity_is_task(se)) {
838 p = task_of(se);
839 if (task_on_rq_migrating(p)) {
840 /*
841 * Preserve migrating task's wait time so wait_start
842 * time stamp can be adjusted to accumulate wait time
843 * prior to migration.
844 */
845 se->statistics.wait_start = delta;
846 return;
847 }
848 trace_sched_stat_wait(p, delta);
849 }
850
851 se->statistics.wait_max = max(se->statistics.wait_max, delta);
852 se->statistics.wait_count++;
853 se->statistics.wait_sum += delta;
854 se->statistics.wait_start = 0;
855}
3ea94de1 856
bf0f6f24
IM
857/*
858 * Task is being enqueued - update stats:
859 */
cb251765
MG
860static inline void
861update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 862{
bf0f6f24
IM
863 /*
864 * Are we enqueueing a waiting task? (for current tasks
865 * a dequeue/enqueue event is a NOP)
866 */
429d43bc 867 if (se != cfs_rq->curr)
5870db5b 868 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
869}
870
bf0f6f24 871static inline void
cb251765 872update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 873{
bf0f6f24
IM
874 /*
875 * Mark the end of the wait period if dequeueing a
876 * waiting task:
877 */
429d43bc 878 if (se != cfs_rq->curr)
9ef0a961 879 update_stats_wait_end(cfs_rq, se);
cb251765
MG
880
881 if (flags & DEQUEUE_SLEEP) {
882 if (entity_is_task(se)) {
883 struct task_struct *tsk = task_of(se);
884
885 if (tsk->state & TASK_INTERRUPTIBLE)
886 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
887 if (tsk->state & TASK_UNINTERRUPTIBLE)
888 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
889 }
890 }
891
892}
893#else
894static inline void
895update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
896{
897}
898
899static inline void
900update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
901{
902}
903
904static inline void
905update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
906{
907}
908
909static inline void
910update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
911{
bf0f6f24 912}
cb251765 913#endif
bf0f6f24
IM
914
915/*
916 * We are picking a new current task - update its stats:
917 */
918static inline void
79303e9e 919update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
920{
921 /*
922 * We are starting a new run period:
923 */
78becc27 924 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
925}
926
bf0f6f24
IM
927/**************************************************
928 * Scheduling class queueing methods:
929 */
930
cbee9f88
PZ
931#ifdef CONFIG_NUMA_BALANCING
932/*
598f0ec0
MG
933 * Approximate time to scan a full NUMA task in ms. The task scan period is
934 * calculated based on the tasks virtual memory size and
935 * numa_balancing_scan_size.
cbee9f88 936 */
598f0ec0
MG
937unsigned int sysctl_numa_balancing_scan_period_min = 1000;
938unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
939
940/* Portion of address space to scan in MB */
941unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 942
4b96a29b
PZ
943/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
944unsigned int sysctl_numa_balancing_scan_delay = 1000;
945
598f0ec0
MG
946static unsigned int task_nr_scan_windows(struct task_struct *p)
947{
948 unsigned long rss = 0;
949 unsigned long nr_scan_pages;
950
951 /*
952 * Calculations based on RSS as non-present and empty pages are skipped
953 * by the PTE scanner and NUMA hinting faults should be trapped based
954 * on resident pages
955 */
956 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
957 rss = get_mm_rss(p->mm);
958 if (!rss)
959 rss = nr_scan_pages;
960
961 rss = round_up(rss, nr_scan_pages);
962 return rss / nr_scan_pages;
963}
964
965/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
966#define MAX_SCAN_WINDOW 2560
967
968static unsigned int task_scan_min(struct task_struct *p)
969{
316c1608 970 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
971 unsigned int scan, floor;
972 unsigned int windows = 1;
973
64192658
KT
974 if (scan_size < MAX_SCAN_WINDOW)
975 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
976 floor = 1000 / windows;
977
978 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
979 return max_t(unsigned int, floor, scan);
980}
981
982static unsigned int task_scan_max(struct task_struct *p)
983{
984 unsigned int smin = task_scan_min(p);
985 unsigned int smax;
986
987 /* Watch for min being lower than max due to floor calculations */
988 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
989 return max(smin, smax);
990}
991
0ec8aa00
PZ
992static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
993{
994 rq->nr_numa_running += (p->numa_preferred_nid != -1);
995 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
996}
997
998static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
999{
1000 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1001 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1002}
1003
8c8a743c
PZ
1004struct numa_group {
1005 atomic_t refcount;
1006
1007 spinlock_t lock; /* nr_tasks, tasks */
1008 int nr_tasks;
e29cf08b 1009 pid_t gid;
4142c3eb 1010 int active_nodes;
8c8a743c
PZ
1011
1012 struct rcu_head rcu;
989348b5 1013 unsigned long total_faults;
4142c3eb 1014 unsigned long max_faults_cpu;
7e2703e6
RR
1015 /*
1016 * Faults_cpu is used to decide whether memory should move
1017 * towards the CPU. As a consequence, these stats are weighted
1018 * more by CPU use than by memory faults.
1019 */
50ec8a40 1020 unsigned long *faults_cpu;
989348b5 1021 unsigned long faults[0];
8c8a743c
PZ
1022};
1023
be1e4e76
RR
1024/* Shared or private faults. */
1025#define NR_NUMA_HINT_FAULT_TYPES 2
1026
1027/* Memory and CPU locality */
1028#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1029
1030/* Averaged statistics, and temporary buffers. */
1031#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1032
e29cf08b
MG
1033pid_t task_numa_group_id(struct task_struct *p)
1034{
1035 return p->numa_group ? p->numa_group->gid : 0;
1036}
1037
44dba3d5
IM
1038/*
1039 * The averaged statistics, shared & private, memory & cpu,
1040 * occupy the first half of the array. The second half of the
1041 * array is for current counters, which are averaged into the
1042 * first set by task_numa_placement.
1043 */
1044static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1045{
44dba3d5 1046 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1047}
1048
1049static inline unsigned long task_faults(struct task_struct *p, int nid)
1050{
44dba3d5 1051 if (!p->numa_faults)
ac8e895b
MG
1052 return 0;
1053
44dba3d5
IM
1054 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1055 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1056}
1057
83e1d2cd
MG
1058static inline unsigned long group_faults(struct task_struct *p, int nid)
1059{
1060 if (!p->numa_group)
1061 return 0;
1062
44dba3d5
IM
1063 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1064 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1065}
1066
20e07dea
RR
1067static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1068{
44dba3d5
IM
1069 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1070 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1071}
1072
4142c3eb
RR
1073/*
1074 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1075 * considered part of a numa group's pseudo-interleaving set. Migrations
1076 * between these nodes are slowed down, to allow things to settle down.
1077 */
1078#define ACTIVE_NODE_FRACTION 3
1079
1080static bool numa_is_active_node(int nid, struct numa_group *ng)
1081{
1082 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1083}
1084
6c6b1193
RR
1085/* Handle placement on systems where not all nodes are directly connected. */
1086static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1087 int maxdist, bool task)
1088{
1089 unsigned long score = 0;
1090 int node;
1091
1092 /*
1093 * All nodes are directly connected, and the same distance
1094 * from each other. No need for fancy placement algorithms.
1095 */
1096 if (sched_numa_topology_type == NUMA_DIRECT)
1097 return 0;
1098
1099 /*
1100 * This code is called for each node, introducing N^2 complexity,
1101 * which should be ok given the number of nodes rarely exceeds 8.
1102 */
1103 for_each_online_node(node) {
1104 unsigned long faults;
1105 int dist = node_distance(nid, node);
1106
1107 /*
1108 * The furthest away nodes in the system are not interesting
1109 * for placement; nid was already counted.
1110 */
1111 if (dist == sched_max_numa_distance || node == nid)
1112 continue;
1113
1114 /*
1115 * On systems with a backplane NUMA topology, compare groups
1116 * of nodes, and move tasks towards the group with the most
1117 * memory accesses. When comparing two nodes at distance
1118 * "hoplimit", only nodes closer by than "hoplimit" are part
1119 * of each group. Skip other nodes.
1120 */
1121 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1122 dist > maxdist)
1123 continue;
1124
1125 /* Add up the faults from nearby nodes. */
1126 if (task)
1127 faults = task_faults(p, node);
1128 else
1129 faults = group_faults(p, node);
1130
1131 /*
1132 * On systems with a glueless mesh NUMA topology, there are
1133 * no fixed "groups of nodes". Instead, nodes that are not
1134 * directly connected bounce traffic through intermediate
1135 * nodes; a numa_group can occupy any set of nodes.
1136 * The further away a node is, the less the faults count.
1137 * This seems to result in good task placement.
1138 */
1139 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1140 faults *= (sched_max_numa_distance - dist);
1141 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1142 }
1143
1144 score += faults;
1145 }
1146
1147 return score;
1148}
1149
83e1d2cd
MG
1150/*
1151 * These return the fraction of accesses done by a particular task, or
1152 * task group, on a particular numa node. The group weight is given a
1153 * larger multiplier, in order to group tasks together that are almost
1154 * evenly spread out between numa nodes.
1155 */
7bd95320
RR
1156static inline unsigned long task_weight(struct task_struct *p, int nid,
1157 int dist)
83e1d2cd 1158{
7bd95320 1159 unsigned long faults, total_faults;
83e1d2cd 1160
44dba3d5 1161 if (!p->numa_faults)
83e1d2cd
MG
1162 return 0;
1163
1164 total_faults = p->total_numa_faults;
1165
1166 if (!total_faults)
1167 return 0;
1168
7bd95320 1169 faults = task_faults(p, nid);
6c6b1193
RR
1170 faults += score_nearby_nodes(p, nid, dist, true);
1171
7bd95320 1172 return 1000 * faults / total_faults;
83e1d2cd
MG
1173}
1174
7bd95320
RR
1175static inline unsigned long group_weight(struct task_struct *p, int nid,
1176 int dist)
83e1d2cd 1177{
7bd95320
RR
1178 unsigned long faults, total_faults;
1179
1180 if (!p->numa_group)
1181 return 0;
1182
1183 total_faults = p->numa_group->total_faults;
1184
1185 if (!total_faults)
83e1d2cd
MG
1186 return 0;
1187
7bd95320 1188 faults = group_faults(p, nid);
6c6b1193
RR
1189 faults += score_nearby_nodes(p, nid, dist, false);
1190
7bd95320 1191 return 1000 * faults / total_faults;
83e1d2cd
MG
1192}
1193
10f39042
RR
1194bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1195 int src_nid, int dst_cpu)
1196{
1197 struct numa_group *ng = p->numa_group;
1198 int dst_nid = cpu_to_node(dst_cpu);
1199 int last_cpupid, this_cpupid;
1200
1201 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1202
1203 /*
1204 * Multi-stage node selection is used in conjunction with a periodic
1205 * migration fault to build a temporal task<->page relation. By using
1206 * a two-stage filter we remove short/unlikely relations.
1207 *
1208 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1209 * a task's usage of a particular page (n_p) per total usage of this
1210 * page (n_t) (in a given time-span) to a probability.
1211 *
1212 * Our periodic faults will sample this probability and getting the
1213 * same result twice in a row, given these samples are fully
1214 * independent, is then given by P(n)^2, provided our sample period
1215 * is sufficiently short compared to the usage pattern.
1216 *
1217 * This quadric squishes small probabilities, making it less likely we
1218 * act on an unlikely task<->page relation.
1219 */
1220 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1221 if (!cpupid_pid_unset(last_cpupid) &&
1222 cpupid_to_nid(last_cpupid) != dst_nid)
1223 return false;
1224
1225 /* Always allow migrate on private faults */
1226 if (cpupid_match_pid(p, last_cpupid))
1227 return true;
1228
1229 /* A shared fault, but p->numa_group has not been set up yet. */
1230 if (!ng)
1231 return true;
1232
1233 /*
4142c3eb
RR
1234 * Destination node is much more heavily used than the source
1235 * node? Allow migration.
10f39042 1236 */
4142c3eb
RR
1237 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1238 ACTIVE_NODE_FRACTION)
10f39042
RR
1239 return true;
1240
1241 /*
4142c3eb
RR
1242 * Distribute memory according to CPU & memory use on each node,
1243 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1244 *
1245 * faults_cpu(dst) 3 faults_cpu(src)
1246 * --------------- * - > ---------------
1247 * faults_mem(dst) 4 faults_mem(src)
10f39042 1248 */
4142c3eb
RR
1249 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1250 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1251}
1252
e6628d5b 1253static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1254static unsigned long source_load(int cpu, int type);
1255static unsigned long target_load(int cpu, int type);
ced549fa 1256static unsigned long capacity_of(int cpu);
58d081b5
MG
1257static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1258
fb13c7ee 1259/* Cached statistics for all CPUs within a node */
58d081b5 1260struct numa_stats {
fb13c7ee 1261 unsigned long nr_running;
58d081b5 1262 unsigned long load;
fb13c7ee
MG
1263
1264 /* Total compute capacity of CPUs on a node */
5ef20ca1 1265 unsigned long compute_capacity;
fb13c7ee
MG
1266
1267 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1268 unsigned long task_capacity;
1b6a7495 1269 int has_free_capacity;
58d081b5 1270};
e6628d5b 1271
fb13c7ee
MG
1272/*
1273 * XXX borrowed from update_sg_lb_stats
1274 */
1275static void update_numa_stats(struct numa_stats *ns, int nid)
1276{
83d7f242
RR
1277 int smt, cpu, cpus = 0;
1278 unsigned long capacity;
fb13c7ee
MG
1279
1280 memset(ns, 0, sizeof(*ns));
1281 for_each_cpu(cpu, cpumask_of_node(nid)) {
1282 struct rq *rq = cpu_rq(cpu);
1283
1284 ns->nr_running += rq->nr_running;
1285 ns->load += weighted_cpuload(cpu);
ced549fa 1286 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1287
1288 cpus++;
fb13c7ee
MG
1289 }
1290
5eca82a9
PZ
1291 /*
1292 * If we raced with hotplug and there are no CPUs left in our mask
1293 * the @ns structure is NULL'ed and task_numa_compare() will
1294 * not find this node attractive.
1295 *
1b6a7495
NP
1296 * We'll either bail at !has_free_capacity, or we'll detect a huge
1297 * imbalance and bail there.
5eca82a9
PZ
1298 */
1299 if (!cpus)
1300 return;
1301
83d7f242
RR
1302 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1303 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1304 capacity = cpus / smt; /* cores */
1305
1306 ns->task_capacity = min_t(unsigned, capacity,
1307 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1308 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1309}
1310
58d081b5
MG
1311struct task_numa_env {
1312 struct task_struct *p;
e6628d5b 1313
58d081b5
MG
1314 int src_cpu, src_nid;
1315 int dst_cpu, dst_nid;
e6628d5b 1316
58d081b5 1317 struct numa_stats src_stats, dst_stats;
e6628d5b 1318
40ea2b42 1319 int imbalance_pct;
7bd95320 1320 int dist;
fb13c7ee
MG
1321
1322 struct task_struct *best_task;
1323 long best_imp;
58d081b5
MG
1324 int best_cpu;
1325};
1326
fb13c7ee
MG
1327static void task_numa_assign(struct task_numa_env *env,
1328 struct task_struct *p, long imp)
1329{
1330 if (env->best_task)
1331 put_task_struct(env->best_task);
bac78573
ON
1332 if (p)
1333 get_task_struct(p);
fb13c7ee
MG
1334
1335 env->best_task = p;
1336 env->best_imp = imp;
1337 env->best_cpu = env->dst_cpu;
1338}
1339
28a21745 1340static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1341 struct task_numa_env *env)
1342{
e4991b24
RR
1343 long imb, old_imb;
1344 long orig_src_load, orig_dst_load;
28a21745
RR
1345 long src_capacity, dst_capacity;
1346
1347 /*
1348 * The load is corrected for the CPU capacity available on each node.
1349 *
1350 * src_load dst_load
1351 * ------------ vs ---------
1352 * src_capacity dst_capacity
1353 */
1354 src_capacity = env->src_stats.compute_capacity;
1355 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1356
1357 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1358 if (dst_load < src_load)
1359 swap(dst_load, src_load);
e63da036
RR
1360
1361 /* Is the difference below the threshold? */
e4991b24
RR
1362 imb = dst_load * src_capacity * 100 -
1363 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1364 if (imb <= 0)
1365 return false;
1366
1367 /*
1368 * The imbalance is above the allowed threshold.
e4991b24 1369 * Compare it with the old imbalance.
e63da036 1370 */
28a21745 1371 orig_src_load = env->src_stats.load;
e4991b24 1372 orig_dst_load = env->dst_stats.load;
28a21745 1373
e4991b24
RR
1374 if (orig_dst_load < orig_src_load)
1375 swap(orig_dst_load, orig_src_load);
e63da036 1376
e4991b24
RR
1377 old_imb = orig_dst_load * src_capacity * 100 -
1378 orig_src_load * dst_capacity * env->imbalance_pct;
1379
1380 /* Would this change make things worse? */
1381 return (imb > old_imb);
e63da036
RR
1382}
1383
fb13c7ee
MG
1384/*
1385 * This checks if the overall compute and NUMA accesses of the system would
1386 * be improved if the source tasks was migrated to the target dst_cpu taking
1387 * into account that it might be best if task running on the dst_cpu should
1388 * be exchanged with the source task
1389 */
887c290e
RR
1390static void task_numa_compare(struct task_numa_env *env,
1391 long taskimp, long groupimp)
fb13c7ee
MG
1392{
1393 struct rq *src_rq = cpu_rq(env->src_cpu);
1394 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1395 struct task_struct *cur;
28a21745 1396 long src_load, dst_load;
fb13c7ee 1397 long load;
1c5d3eb3 1398 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1399 long moveimp = imp;
7bd95320 1400 int dist = env->dist;
fb13c7ee
MG
1401
1402 rcu_read_lock();
bac78573
ON
1403 cur = task_rcu_dereference(&dst_rq->curr);
1404 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1405 cur = NULL;
1406
7af68335
PZ
1407 /*
1408 * Because we have preemption enabled we can get migrated around and
1409 * end try selecting ourselves (current == env->p) as a swap candidate.
1410 */
1411 if (cur == env->p)
1412 goto unlock;
1413
fb13c7ee
MG
1414 /*
1415 * "imp" is the fault differential for the source task between the
1416 * source and destination node. Calculate the total differential for
1417 * the source task and potential destination task. The more negative
1418 * the value is, the more rmeote accesses that would be expected to
1419 * be incurred if the tasks were swapped.
1420 */
1421 if (cur) {
1422 /* Skip this swap candidate if cannot move to the source cpu */
1423 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1424 goto unlock;
1425
887c290e
RR
1426 /*
1427 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1428 * in any group then look only at task weights.
887c290e 1429 */
ca28aa53 1430 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1431 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1432 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1433 /*
1434 * Add some hysteresis to prevent swapping the
1435 * tasks within a group over tiny differences.
1436 */
1437 if (cur->numa_group)
1438 imp -= imp/16;
887c290e 1439 } else {
ca28aa53
RR
1440 /*
1441 * Compare the group weights. If a task is all by
1442 * itself (not part of a group), use the task weight
1443 * instead.
1444 */
ca28aa53 1445 if (cur->numa_group)
7bd95320
RR
1446 imp += group_weight(cur, env->src_nid, dist) -
1447 group_weight(cur, env->dst_nid, dist);
ca28aa53 1448 else
7bd95320
RR
1449 imp += task_weight(cur, env->src_nid, dist) -
1450 task_weight(cur, env->dst_nid, dist);
887c290e 1451 }
fb13c7ee
MG
1452 }
1453
0132c3e1 1454 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1455 goto unlock;
1456
1457 if (!cur) {
1458 /* Is there capacity at our destination? */
b932c03c 1459 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1460 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1461 goto unlock;
1462
1463 goto balance;
1464 }
1465
1466 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1467 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1468 dst_rq->nr_running == 1)
fb13c7ee
MG
1469 goto assign;
1470
1471 /*
1472 * In the overloaded case, try and keep the load balanced.
1473 */
1474balance:
e720fff6
PZ
1475 load = task_h_load(env->p);
1476 dst_load = env->dst_stats.load + load;
1477 src_load = env->src_stats.load - load;
fb13c7ee 1478
0132c3e1
RR
1479 if (moveimp > imp && moveimp > env->best_imp) {
1480 /*
1481 * If the improvement from just moving env->p direction is
1482 * better than swapping tasks around, check if a move is
1483 * possible. Store a slightly smaller score than moveimp,
1484 * so an actually idle CPU will win.
1485 */
1486 if (!load_too_imbalanced(src_load, dst_load, env)) {
1487 imp = moveimp - 1;
1488 cur = NULL;
1489 goto assign;
1490 }
1491 }
1492
1493 if (imp <= env->best_imp)
1494 goto unlock;
1495
fb13c7ee 1496 if (cur) {
e720fff6
PZ
1497 load = task_h_load(cur);
1498 dst_load -= load;
1499 src_load += load;
fb13c7ee
MG
1500 }
1501
28a21745 1502 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1503 goto unlock;
1504
ba7e5a27
RR
1505 /*
1506 * One idle CPU per node is evaluated for a task numa move.
1507 * Call select_idle_sibling to maybe find a better one.
1508 */
1509 if (!cur)
1510 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1511
fb13c7ee
MG
1512assign:
1513 task_numa_assign(env, cur, imp);
1514unlock:
1515 rcu_read_unlock();
1516}
1517
887c290e
RR
1518static void task_numa_find_cpu(struct task_numa_env *env,
1519 long taskimp, long groupimp)
2c8a50aa
MG
1520{
1521 int cpu;
1522
1523 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1524 /* Skip this CPU if the source task cannot migrate */
1525 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1526 continue;
1527
1528 env->dst_cpu = cpu;
887c290e 1529 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1530 }
1531}
1532
6f9aad0b
RR
1533/* Only move tasks to a NUMA node less busy than the current node. */
1534static bool numa_has_capacity(struct task_numa_env *env)
1535{
1536 struct numa_stats *src = &env->src_stats;
1537 struct numa_stats *dst = &env->dst_stats;
1538
1539 if (src->has_free_capacity && !dst->has_free_capacity)
1540 return false;
1541
1542 /*
1543 * Only consider a task move if the source has a higher load
1544 * than the destination, corrected for CPU capacity on each node.
1545 *
1546 * src->load dst->load
1547 * --------------------- vs ---------------------
1548 * src->compute_capacity dst->compute_capacity
1549 */
44dcb04f
SD
1550 if (src->load * dst->compute_capacity * env->imbalance_pct >
1551
1552 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1553 return true;
1554
1555 return false;
1556}
1557
58d081b5
MG
1558static int task_numa_migrate(struct task_struct *p)
1559{
58d081b5
MG
1560 struct task_numa_env env = {
1561 .p = p,
fb13c7ee 1562
58d081b5 1563 .src_cpu = task_cpu(p),
b32e86b4 1564 .src_nid = task_node(p),
fb13c7ee
MG
1565
1566 .imbalance_pct = 112,
1567
1568 .best_task = NULL,
1569 .best_imp = 0,
4142c3eb 1570 .best_cpu = -1,
58d081b5
MG
1571 };
1572 struct sched_domain *sd;
887c290e 1573 unsigned long taskweight, groupweight;
7bd95320 1574 int nid, ret, dist;
887c290e 1575 long taskimp, groupimp;
e6628d5b 1576
58d081b5 1577 /*
fb13c7ee
MG
1578 * Pick the lowest SD_NUMA domain, as that would have the smallest
1579 * imbalance and would be the first to start moving tasks about.
1580 *
1581 * And we want to avoid any moving of tasks about, as that would create
1582 * random movement of tasks -- counter the numa conditions we're trying
1583 * to satisfy here.
58d081b5
MG
1584 */
1585 rcu_read_lock();
fb13c7ee 1586 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1587 if (sd)
1588 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1589 rcu_read_unlock();
1590
46a73e8a
RR
1591 /*
1592 * Cpusets can break the scheduler domain tree into smaller
1593 * balance domains, some of which do not cross NUMA boundaries.
1594 * Tasks that are "trapped" in such domains cannot be migrated
1595 * elsewhere, so there is no point in (re)trying.
1596 */
1597 if (unlikely(!sd)) {
de1b301a 1598 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1599 return -EINVAL;
1600 }
1601
2c8a50aa 1602 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1603 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1604 taskweight = task_weight(p, env.src_nid, dist);
1605 groupweight = group_weight(p, env.src_nid, dist);
1606 update_numa_stats(&env.src_stats, env.src_nid);
1607 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1608 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1609 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1610
a43455a1 1611 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1612 if (numa_has_capacity(&env))
1613 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1614
9de05d48
RR
1615 /*
1616 * Look at other nodes in these cases:
1617 * - there is no space available on the preferred_nid
1618 * - the task is part of a numa_group that is interleaved across
1619 * multiple NUMA nodes; in order to better consolidate the group,
1620 * we need to check other locations.
1621 */
4142c3eb 1622 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1623 for_each_online_node(nid) {
1624 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1625 continue;
58d081b5 1626
7bd95320 1627 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1628 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1629 dist != env.dist) {
1630 taskweight = task_weight(p, env.src_nid, dist);
1631 groupweight = group_weight(p, env.src_nid, dist);
1632 }
7bd95320 1633
83e1d2cd 1634 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1635 taskimp = task_weight(p, nid, dist) - taskweight;
1636 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1637 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1638 continue;
1639
7bd95320 1640 env.dist = dist;
2c8a50aa
MG
1641 env.dst_nid = nid;
1642 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1643 if (numa_has_capacity(&env))
1644 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1645 }
1646 }
1647
68d1b02a
RR
1648 /*
1649 * If the task is part of a workload that spans multiple NUMA nodes,
1650 * and is migrating into one of the workload's active nodes, remember
1651 * this node as the task's preferred numa node, so the workload can
1652 * settle down.
1653 * A task that migrated to a second choice node will be better off
1654 * trying for a better one later. Do not set the preferred node here.
1655 */
db015dae 1656 if (p->numa_group) {
4142c3eb
RR
1657 struct numa_group *ng = p->numa_group;
1658
db015dae
RR
1659 if (env.best_cpu == -1)
1660 nid = env.src_nid;
1661 else
1662 nid = env.dst_nid;
1663
4142c3eb 1664 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1665 sched_setnuma(p, env.dst_nid);
1666 }
1667
1668 /* No better CPU than the current one was found. */
1669 if (env.best_cpu == -1)
1670 return -EAGAIN;
0ec8aa00 1671
04bb2f94
RR
1672 /*
1673 * Reset the scan period if the task is being rescheduled on an
1674 * alternative node to recheck if the tasks is now properly placed.
1675 */
1676 p->numa_scan_period = task_scan_min(p);
1677
fb13c7ee 1678 if (env.best_task == NULL) {
286549dc
MG
1679 ret = migrate_task_to(p, env.best_cpu);
1680 if (ret != 0)
1681 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1682 return ret;
1683 }
1684
1685 ret = migrate_swap(p, env.best_task);
286549dc
MG
1686 if (ret != 0)
1687 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1688 put_task_struct(env.best_task);
1689 return ret;
e6628d5b
MG
1690}
1691
6b9a7460
MG
1692/* Attempt to migrate a task to a CPU on the preferred node. */
1693static void numa_migrate_preferred(struct task_struct *p)
1694{
5085e2a3
RR
1695 unsigned long interval = HZ;
1696
2739d3ee 1697 /* This task has no NUMA fault statistics yet */
44dba3d5 1698 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1699 return;
1700
2739d3ee 1701 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1702 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1703 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1704
1705 /* Success if task is already running on preferred CPU */
de1b301a 1706 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1707 return;
1708
1709 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1710 task_numa_migrate(p);
6b9a7460
MG
1711}
1712
20e07dea 1713/*
4142c3eb 1714 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1715 * tracking the nodes from which NUMA hinting faults are triggered. This can
1716 * be different from the set of nodes where the workload's memory is currently
1717 * located.
20e07dea 1718 */
4142c3eb 1719static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1720{
1721 unsigned long faults, max_faults = 0;
4142c3eb 1722 int nid, active_nodes = 0;
20e07dea
RR
1723
1724 for_each_online_node(nid) {
1725 faults = group_faults_cpu(numa_group, nid);
1726 if (faults > max_faults)
1727 max_faults = faults;
1728 }
1729
1730 for_each_online_node(nid) {
1731 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1732 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1733 active_nodes++;
20e07dea 1734 }
4142c3eb
RR
1735
1736 numa_group->max_faults_cpu = max_faults;
1737 numa_group->active_nodes = active_nodes;
20e07dea
RR
1738}
1739
04bb2f94
RR
1740/*
1741 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1742 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1743 * period will be for the next scan window. If local/(local+remote) ratio is
1744 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1745 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1746 */
1747#define NUMA_PERIOD_SLOTS 10
a22b4b01 1748#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1749
1750/*
1751 * Increase the scan period (slow down scanning) if the majority of
1752 * our memory is already on our local node, or if the majority of
1753 * the page accesses are shared with other processes.
1754 * Otherwise, decrease the scan period.
1755 */
1756static void update_task_scan_period(struct task_struct *p,
1757 unsigned long shared, unsigned long private)
1758{
1759 unsigned int period_slot;
1760 int ratio;
1761 int diff;
1762
1763 unsigned long remote = p->numa_faults_locality[0];
1764 unsigned long local = p->numa_faults_locality[1];
1765
1766 /*
1767 * If there were no record hinting faults then either the task is
1768 * completely idle or all activity is areas that are not of interest
074c2381
MG
1769 * to automatic numa balancing. Related to that, if there were failed
1770 * migration then it implies we are migrating too quickly or the local
1771 * node is overloaded. In either case, scan slower
04bb2f94 1772 */
074c2381 1773 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1774 p->numa_scan_period = min(p->numa_scan_period_max,
1775 p->numa_scan_period << 1);
1776
1777 p->mm->numa_next_scan = jiffies +
1778 msecs_to_jiffies(p->numa_scan_period);
1779
1780 return;
1781 }
1782
1783 /*
1784 * Prepare to scale scan period relative to the current period.
1785 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1786 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1787 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1788 */
1789 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1790 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1791 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1792 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1793 if (!slot)
1794 slot = 1;
1795 diff = slot * period_slot;
1796 } else {
1797 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1798
1799 /*
1800 * Scale scan rate increases based on sharing. There is an
1801 * inverse relationship between the degree of sharing and
1802 * the adjustment made to the scanning period. Broadly
1803 * speaking the intent is that there is little point
1804 * scanning faster if shared accesses dominate as it may
1805 * simply bounce migrations uselessly
1806 */
2847c90e 1807 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1808 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1809 }
1810
1811 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1812 task_scan_min(p), task_scan_max(p));
1813 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1814}
1815
7e2703e6
RR
1816/*
1817 * Get the fraction of time the task has been running since the last
1818 * NUMA placement cycle. The scheduler keeps similar statistics, but
1819 * decays those on a 32ms period, which is orders of magnitude off
1820 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1821 * stats only if the task is so new there are no NUMA statistics yet.
1822 */
1823static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1824{
1825 u64 runtime, delta, now;
1826 /* Use the start of this time slice to avoid calculations. */
1827 now = p->se.exec_start;
1828 runtime = p->se.sum_exec_runtime;
1829
1830 if (p->last_task_numa_placement) {
1831 delta = runtime - p->last_sum_exec_runtime;
1832 *period = now - p->last_task_numa_placement;
1833 } else {
9d89c257
YD
1834 delta = p->se.avg.load_sum / p->se.load.weight;
1835 *period = LOAD_AVG_MAX;
7e2703e6
RR
1836 }
1837
1838 p->last_sum_exec_runtime = runtime;
1839 p->last_task_numa_placement = now;
1840
1841 return delta;
1842}
1843
54009416
RR
1844/*
1845 * Determine the preferred nid for a task in a numa_group. This needs to
1846 * be done in a way that produces consistent results with group_weight,
1847 * otherwise workloads might not converge.
1848 */
1849static int preferred_group_nid(struct task_struct *p, int nid)
1850{
1851 nodemask_t nodes;
1852 int dist;
1853
1854 /* Direct connections between all NUMA nodes. */
1855 if (sched_numa_topology_type == NUMA_DIRECT)
1856 return nid;
1857
1858 /*
1859 * On a system with glueless mesh NUMA topology, group_weight
1860 * scores nodes according to the number of NUMA hinting faults on
1861 * both the node itself, and on nearby nodes.
1862 */
1863 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1864 unsigned long score, max_score = 0;
1865 int node, max_node = nid;
1866
1867 dist = sched_max_numa_distance;
1868
1869 for_each_online_node(node) {
1870 score = group_weight(p, node, dist);
1871 if (score > max_score) {
1872 max_score = score;
1873 max_node = node;
1874 }
1875 }
1876 return max_node;
1877 }
1878
1879 /*
1880 * Finding the preferred nid in a system with NUMA backplane
1881 * interconnect topology is more involved. The goal is to locate
1882 * tasks from numa_groups near each other in the system, and
1883 * untangle workloads from different sides of the system. This requires
1884 * searching down the hierarchy of node groups, recursively searching
1885 * inside the highest scoring group of nodes. The nodemask tricks
1886 * keep the complexity of the search down.
1887 */
1888 nodes = node_online_map;
1889 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1890 unsigned long max_faults = 0;
81907478 1891 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1892 int a, b;
1893
1894 /* Are there nodes at this distance from each other? */
1895 if (!find_numa_distance(dist))
1896 continue;
1897
1898 for_each_node_mask(a, nodes) {
1899 unsigned long faults = 0;
1900 nodemask_t this_group;
1901 nodes_clear(this_group);
1902
1903 /* Sum group's NUMA faults; includes a==b case. */
1904 for_each_node_mask(b, nodes) {
1905 if (node_distance(a, b) < dist) {
1906 faults += group_faults(p, b);
1907 node_set(b, this_group);
1908 node_clear(b, nodes);
1909 }
1910 }
1911
1912 /* Remember the top group. */
1913 if (faults > max_faults) {
1914 max_faults = faults;
1915 max_group = this_group;
1916 /*
1917 * subtle: at the smallest distance there is
1918 * just one node left in each "group", the
1919 * winner is the preferred nid.
1920 */
1921 nid = a;
1922 }
1923 }
1924 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1925 if (!max_faults)
1926 break;
54009416
RR
1927 nodes = max_group;
1928 }
1929 return nid;
1930}
1931
cbee9f88
PZ
1932static void task_numa_placement(struct task_struct *p)
1933{
83e1d2cd
MG
1934 int seq, nid, max_nid = -1, max_group_nid = -1;
1935 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1936 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1937 unsigned long total_faults;
1938 u64 runtime, period;
7dbd13ed 1939 spinlock_t *group_lock = NULL;
cbee9f88 1940
7e5a2c17
JL
1941 /*
1942 * The p->mm->numa_scan_seq field gets updated without
1943 * exclusive access. Use READ_ONCE() here to ensure
1944 * that the field is read in a single access:
1945 */
316c1608 1946 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1947 if (p->numa_scan_seq == seq)
1948 return;
1949 p->numa_scan_seq = seq;
598f0ec0 1950 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1951
7e2703e6
RR
1952 total_faults = p->numa_faults_locality[0] +
1953 p->numa_faults_locality[1];
1954 runtime = numa_get_avg_runtime(p, &period);
1955
7dbd13ed
MG
1956 /* If the task is part of a group prevent parallel updates to group stats */
1957 if (p->numa_group) {
1958 group_lock = &p->numa_group->lock;
60e69eed 1959 spin_lock_irq(group_lock);
7dbd13ed
MG
1960 }
1961
688b7585
MG
1962 /* Find the node with the highest number of faults */
1963 for_each_online_node(nid) {
44dba3d5
IM
1964 /* Keep track of the offsets in numa_faults array */
1965 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1966 unsigned long faults = 0, group_faults = 0;
44dba3d5 1967 int priv;
745d6147 1968
be1e4e76 1969 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1970 long diff, f_diff, f_weight;
8c8a743c 1971
44dba3d5
IM
1972 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1973 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1974 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1975 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1976
ac8e895b 1977 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1978 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1979 fault_types[priv] += p->numa_faults[membuf_idx];
1980 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1981
7e2703e6
RR
1982 /*
1983 * Normalize the faults_from, so all tasks in a group
1984 * count according to CPU use, instead of by the raw
1985 * number of faults. Tasks with little runtime have
1986 * little over-all impact on throughput, and thus their
1987 * faults are less important.
1988 */
1989 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1990 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1991 (total_faults + 1);
44dba3d5
IM
1992 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1993 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1994
44dba3d5
IM
1995 p->numa_faults[mem_idx] += diff;
1996 p->numa_faults[cpu_idx] += f_diff;
1997 faults += p->numa_faults[mem_idx];
83e1d2cd 1998 p->total_numa_faults += diff;
8c8a743c 1999 if (p->numa_group) {
44dba3d5
IM
2000 /*
2001 * safe because we can only change our own group
2002 *
2003 * mem_idx represents the offset for a given
2004 * nid and priv in a specific region because it
2005 * is at the beginning of the numa_faults array.
2006 */
2007 p->numa_group->faults[mem_idx] += diff;
2008 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2009 p->numa_group->total_faults += diff;
44dba3d5 2010 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2011 }
ac8e895b
MG
2012 }
2013
688b7585
MG
2014 if (faults > max_faults) {
2015 max_faults = faults;
2016 max_nid = nid;
2017 }
83e1d2cd
MG
2018
2019 if (group_faults > max_group_faults) {
2020 max_group_faults = group_faults;
2021 max_group_nid = nid;
2022 }
2023 }
2024
04bb2f94
RR
2025 update_task_scan_period(p, fault_types[0], fault_types[1]);
2026
7dbd13ed 2027 if (p->numa_group) {
4142c3eb 2028 numa_group_count_active_nodes(p->numa_group);
60e69eed 2029 spin_unlock_irq(group_lock);
54009416 2030 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2031 }
2032
bb97fc31
RR
2033 if (max_faults) {
2034 /* Set the new preferred node */
2035 if (max_nid != p->numa_preferred_nid)
2036 sched_setnuma(p, max_nid);
2037
2038 if (task_node(p) != p->numa_preferred_nid)
2039 numa_migrate_preferred(p);
3a7053b3 2040 }
cbee9f88
PZ
2041}
2042
8c8a743c
PZ
2043static inline int get_numa_group(struct numa_group *grp)
2044{
2045 return atomic_inc_not_zero(&grp->refcount);
2046}
2047
2048static inline void put_numa_group(struct numa_group *grp)
2049{
2050 if (atomic_dec_and_test(&grp->refcount))
2051 kfree_rcu(grp, rcu);
2052}
2053
3e6a9418
MG
2054static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2055 int *priv)
8c8a743c
PZ
2056{
2057 struct numa_group *grp, *my_grp;
2058 struct task_struct *tsk;
2059 bool join = false;
2060 int cpu = cpupid_to_cpu(cpupid);
2061 int i;
2062
2063 if (unlikely(!p->numa_group)) {
2064 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2065 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2066
2067 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2068 if (!grp)
2069 return;
2070
2071 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2072 grp->active_nodes = 1;
2073 grp->max_faults_cpu = 0;
8c8a743c 2074 spin_lock_init(&grp->lock);
e29cf08b 2075 grp->gid = p->pid;
50ec8a40 2076 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2077 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2078 nr_node_ids;
8c8a743c 2079
be1e4e76 2080 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2081 grp->faults[i] = p->numa_faults[i];
8c8a743c 2082
989348b5 2083 grp->total_faults = p->total_numa_faults;
83e1d2cd 2084
8c8a743c
PZ
2085 grp->nr_tasks++;
2086 rcu_assign_pointer(p->numa_group, grp);
2087 }
2088
2089 rcu_read_lock();
316c1608 2090 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2091
2092 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2093 goto no_join;
8c8a743c
PZ
2094
2095 grp = rcu_dereference(tsk->numa_group);
2096 if (!grp)
3354781a 2097 goto no_join;
8c8a743c
PZ
2098
2099 my_grp = p->numa_group;
2100 if (grp == my_grp)
3354781a 2101 goto no_join;
8c8a743c
PZ
2102
2103 /*
2104 * Only join the other group if its bigger; if we're the bigger group,
2105 * the other task will join us.
2106 */
2107 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2108 goto no_join;
8c8a743c
PZ
2109
2110 /*
2111 * Tie-break on the grp address.
2112 */
2113 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2114 goto no_join;
8c8a743c 2115
dabe1d99
RR
2116 /* Always join threads in the same process. */
2117 if (tsk->mm == current->mm)
2118 join = true;
2119
2120 /* Simple filter to avoid false positives due to PID collisions */
2121 if (flags & TNF_SHARED)
2122 join = true;
8c8a743c 2123
3e6a9418
MG
2124 /* Update priv based on whether false sharing was detected */
2125 *priv = !join;
2126
dabe1d99 2127 if (join && !get_numa_group(grp))
3354781a 2128 goto no_join;
8c8a743c 2129
8c8a743c
PZ
2130 rcu_read_unlock();
2131
2132 if (!join)
2133 return;
2134
60e69eed
MG
2135 BUG_ON(irqs_disabled());
2136 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2137
be1e4e76 2138 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2139 my_grp->faults[i] -= p->numa_faults[i];
2140 grp->faults[i] += p->numa_faults[i];
8c8a743c 2141 }
989348b5
MG
2142 my_grp->total_faults -= p->total_numa_faults;
2143 grp->total_faults += p->total_numa_faults;
8c8a743c 2144
8c8a743c
PZ
2145 my_grp->nr_tasks--;
2146 grp->nr_tasks++;
2147
2148 spin_unlock(&my_grp->lock);
60e69eed 2149 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2150
2151 rcu_assign_pointer(p->numa_group, grp);
2152
2153 put_numa_group(my_grp);
3354781a
PZ
2154 return;
2155
2156no_join:
2157 rcu_read_unlock();
2158 return;
8c8a743c
PZ
2159}
2160
2161void task_numa_free(struct task_struct *p)
2162{
2163 struct numa_group *grp = p->numa_group;
44dba3d5 2164 void *numa_faults = p->numa_faults;
e9dd685c
SR
2165 unsigned long flags;
2166 int i;
8c8a743c
PZ
2167
2168 if (grp) {
e9dd685c 2169 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2170 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2171 grp->faults[i] -= p->numa_faults[i];
989348b5 2172 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2173
8c8a743c 2174 grp->nr_tasks--;
e9dd685c 2175 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2176 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2177 put_numa_group(grp);
2178 }
2179
44dba3d5 2180 p->numa_faults = NULL;
82727018 2181 kfree(numa_faults);
8c8a743c
PZ
2182}
2183
cbee9f88
PZ
2184/*
2185 * Got a PROT_NONE fault for a page on @node.
2186 */
58b46da3 2187void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2188{
2189 struct task_struct *p = current;
6688cc05 2190 bool migrated = flags & TNF_MIGRATED;
58b46da3 2191 int cpu_node = task_node(current);
792568ec 2192 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2193 struct numa_group *ng;
ac8e895b 2194 int priv;
cbee9f88 2195
2a595721 2196 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2197 return;
2198
9ff1d9ff
MG
2199 /* for example, ksmd faulting in a user's mm */
2200 if (!p->mm)
2201 return;
2202
f809ca9a 2203 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2204 if (unlikely(!p->numa_faults)) {
2205 int size = sizeof(*p->numa_faults) *
be1e4e76 2206 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2207
44dba3d5
IM
2208 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2209 if (!p->numa_faults)
f809ca9a 2210 return;
745d6147 2211
83e1d2cd 2212 p->total_numa_faults = 0;
04bb2f94 2213 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2214 }
cbee9f88 2215
8c8a743c
PZ
2216 /*
2217 * First accesses are treated as private, otherwise consider accesses
2218 * to be private if the accessing pid has not changed
2219 */
2220 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2221 priv = 1;
2222 } else {
2223 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2224 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2225 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2226 }
2227
792568ec
RR
2228 /*
2229 * If a workload spans multiple NUMA nodes, a shared fault that
2230 * occurs wholly within the set of nodes that the workload is
2231 * actively using should be counted as local. This allows the
2232 * scan rate to slow down when a workload has settled down.
2233 */
4142c3eb
RR
2234 ng = p->numa_group;
2235 if (!priv && !local && ng && ng->active_nodes > 1 &&
2236 numa_is_active_node(cpu_node, ng) &&
2237 numa_is_active_node(mem_node, ng))
792568ec
RR
2238 local = 1;
2239
cbee9f88 2240 task_numa_placement(p);
f809ca9a 2241
2739d3ee
RR
2242 /*
2243 * Retry task to preferred node migration periodically, in case it
2244 * case it previously failed, or the scheduler moved us.
2245 */
2246 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2247 numa_migrate_preferred(p);
2248
b32e86b4
IM
2249 if (migrated)
2250 p->numa_pages_migrated += pages;
074c2381
MG
2251 if (flags & TNF_MIGRATE_FAIL)
2252 p->numa_faults_locality[2] += pages;
b32e86b4 2253
44dba3d5
IM
2254 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2255 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2256 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2257}
2258
6e5fb223
PZ
2259static void reset_ptenuma_scan(struct task_struct *p)
2260{
7e5a2c17
JL
2261 /*
2262 * We only did a read acquisition of the mmap sem, so
2263 * p->mm->numa_scan_seq is written to without exclusive access
2264 * and the update is not guaranteed to be atomic. That's not
2265 * much of an issue though, since this is just used for
2266 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2267 * expensive, to avoid any form of compiler optimizations:
2268 */
316c1608 2269 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2270 p->mm->numa_scan_offset = 0;
2271}
2272
cbee9f88
PZ
2273/*
2274 * The expensive part of numa migration is done from task_work context.
2275 * Triggered from task_tick_numa().
2276 */
2277void task_numa_work(struct callback_head *work)
2278{
2279 unsigned long migrate, next_scan, now = jiffies;
2280 struct task_struct *p = current;
2281 struct mm_struct *mm = p->mm;
51170840 2282 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2283 struct vm_area_struct *vma;
9f40604c 2284 unsigned long start, end;
598f0ec0 2285 unsigned long nr_pte_updates = 0;
4620f8c1 2286 long pages, virtpages;
cbee9f88
PZ
2287
2288 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2289
2290 work->next = work; /* protect against double add */
2291 /*
2292 * Who cares about NUMA placement when they're dying.
2293 *
2294 * NOTE: make sure not to dereference p->mm before this check,
2295 * exit_task_work() happens _after_ exit_mm() so we could be called
2296 * without p->mm even though we still had it when we enqueued this
2297 * work.
2298 */
2299 if (p->flags & PF_EXITING)
2300 return;
2301
930aa174 2302 if (!mm->numa_next_scan) {
7e8d16b6
MG
2303 mm->numa_next_scan = now +
2304 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2305 }
2306
cbee9f88
PZ
2307 /*
2308 * Enforce maximal scan/migration frequency..
2309 */
2310 migrate = mm->numa_next_scan;
2311 if (time_before(now, migrate))
2312 return;
2313
598f0ec0
MG
2314 if (p->numa_scan_period == 0) {
2315 p->numa_scan_period_max = task_scan_max(p);
2316 p->numa_scan_period = task_scan_min(p);
2317 }
cbee9f88 2318
fb003b80 2319 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2320 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2321 return;
2322
19a78d11
PZ
2323 /*
2324 * Delay this task enough that another task of this mm will likely win
2325 * the next time around.
2326 */
2327 p->node_stamp += 2 * TICK_NSEC;
2328
9f40604c
MG
2329 start = mm->numa_scan_offset;
2330 pages = sysctl_numa_balancing_scan_size;
2331 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2332 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2333 if (!pages)
2334 return;
cbee9f88 2335
4620f8c1 2336
6e5fb223 2337 down_read(&mm->mmap_sem);
9f40604c 2338 vma = find_vma(mm, start);
6e5fb223
PZ
2339 if (!vma) {
2340 reset_ptenuma_scan(p);
9f40604c 2341 start = 0;
6e5fb223
PZ
2342 vma = mm->mmap;
2343 }
9f40604c 2344 for (; vma; vma = vma->vm_next) {
6b79c57b 2345 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2346 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2347 continue;
6b79c57b 2348 }
6e5fb223 2349
4591ce4f
MG
2350 /*
2351 * Shared library pages mapped by multiple processes are not
2352 * migrated as it is expected they are cache replicated. Avoid
2353 * hinting faults in read-only file-backed mappings or the vdso
2354 * as migrating the pages will be of marginal benefit.
2355 */
2356 if (!vma->vm_mm ||
2357 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2358 continue;
2359
3c67f474
MG
2360 /*
2361 * Skip inaccessible VMAs to avoid any confusion between
2362 * PROT_NONE and NUMA hinting ptes
2363 */
2364 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2365 continue;
4591ce4f 2366
9f40604c
MG
2367 do {
2368 start = max(start, vma->vm_start);
2369 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2370 end = min(end, vma->vm_end);
4620f8c1 2371 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2372
2373 /*
4620f8c1
RR
2374 * Try to scan sysctl_numa_balancing_size worth of
2375 * hpages that have at least one present PTE that
2376 * is not already pte-numa. If the VMA contains
2377 * areas that are unused or already full of prot_numa
2378 * PTEs, scan up to virtpages, to skip through those
2379 * areas faster.
598f0ec0
MG
2380 */
2381 if (nr_pte_updates)
2382 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2383 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2384
9f40604c 2385 start = end;
4620f8c1 2386 if (pages <= 0 || virtpages <= 0)
9f40604c 2387 goto out;
3cf1962c
RR
2388
2389 cond_resched();
9f40604c 2390 } while (end != vma->vm_end);
cbee9f88 2391 }
6e5fb223 2392
9f40604c 2393out:
6e5fb223 2394 /*
c69307d5
PZ
2395 * It is possible to reach the end of the VMA list but the last few
2396 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2397 * would find the !migratable VMA on the next scan but not reset the
2398 * scanner to the start so check it now.
6e5fb223
PZ
2399 */
2400 if (vma)
9f40604c 2401 mm->numa_scan_offset = start;
6e5fb223
PZ
2402 else
2403 reset_ptenuma_scan(p);
2404 up_read(&mm->mmap_sem);
51170840
RR
2405
2406 /*
2407 * Make sure tasks use at least 32x as much time to run other code
2408 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2409 * Usually update_task_scan_period slows down scanning enough; on an
2410 * overloaded system we need to limit overhead on a per task basis.
2411 */
2412 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2413 u64 diff = p->se.sum_exec_runtime - runtime;
2414 p->node_stamp += 32 * diff;
2415 }
cbee9f88
PZ
2416}
2417
2418/*
2419 * Drive the periodic memory faults..
2420 */
2421void task_tick_numa(struct rq *rq, struct task_struct *curr)
2422{
2423 struct callback_head *work = &curr->numa_work;
2424 u64 period, now;
2425
2426 /*
2427 * We don't care about NUMA placement if we don't have memory.
2428 */
2429 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2430 return;
2431
2432 /*
2433 * Using runtime rather than walltime has the dual advantage that
2434 * we (mostly) drive the selection from busy threads and that the
2435 * task needs to have done some actual work before we bother with
2436 * NUMA placement.
2437 */
2438 now = curr->se.sum_exec_runtime;
2439 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2440
25b3e5a3 2441 if (now > curr->node_stamp + period) {
4b96a29b 2442 if (!curr->node_stamp)
598f0ec0 2443 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2444 curr->node_stamp += period;
cbee9f88
PZ
2445
2446 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2447 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2448 task_work_add(curr, work, true);
2449 }
2450 }
2451}
2452#else
2453static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2454{
2455}
0ec8aa00
PZ
2456
2457static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2458{
2459}
2460
2461static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2462{
2463}
cbee9f88
PZ
2464#endif /* CONFIG_NUMA_BALANCING */
2465
30cfdcfc
DA
2466static void
2467account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2468{
2469 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2470 if (!parent_entity(se))
029632fb 2471 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2472#ifdef CONFIG_SMP
0ec8aa00
PZ
2473 if (entity_is_task(se)) {
2474 struct rq *rq = rq_of(cfs_rq);
2475
2476 account_numa_enqueue(rq, task_of(se));
2477 list_add(&se->group_node, &rq->cfs_tasks);
2478 }
367456c7 2479#endif
30cfdcfc 2480 cfs_rq->nr_running++;
30cfdcfc
DA
2481}
2482
2483static void
2484account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2485{
2486 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2487 if (!parent_entity(se))
029632fb 2488 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2489#ifdef CONFIG_SMP
0ec8aa00
PZ
2490 if (entity_is_task(se)) {
2491 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2492 list_del_init(&se->group_node);
0ec8aa00 2493 }
bfdb198c 2494#endif
30cfdcfc 2495 cfs_rq->nr_running--;
30cfdcfc
DA
2496}
2497
3ff6dcac
YZ
2498#ifdef CONFIG_FAIR_GROUP_SCHED
2499# ifdef CONFIG_SMP
ea1dc6fc 2500static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2501{
ea1dc6fc 2502 long tg_weight, load, shares;
cf5f0acf
PZ
2503
2504 /*
ea1dc6fc
PZ
2505 * This really should be: cfs_rq->avg.load_avg, but instead we use
2506 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2507 * the shares for small weight interactive tasks.
cf5f0acf 2508 */
ea1dc6fc 2509 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2510
ea1dc6fc 2511 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2512
ea1dc6fc
PZ
2513 /* Ensure tg_weight >= load */
2514 tg_weight -= cfs_rq->tg_load_avg_contrib;
2515 tg_weight += load;
3ff6dcac 2516
3ff6dcac 2517 shares = (tg->shares * load);
cf5f0acf
PZ
2518 if (tg_weight)
2519 shares /= tg_weight;
3ff6dcac
YZ
2520
2521 if (shares < MIN_SHARES)
2522 shares = MIN_SHARES;
2523 if (shares > tg->shares)
2524 shares = tg->shares;
2525
2526 return shares;
2527}
3ff6dcac 2528# else /* CONFIG_SMP */
6d5ab293 2529static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2530{
2531 return tg->shares;
2532}
3ff6dcac 2533# endif /* CONFIG_SMP */
ea1dc6fc 2534
2069dd75
PZ
2535static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2536 unsigned long weight)
2537{
19e5eebb
PT
2538 if (se->on_rq) {
2539 /* commit outstanding execution time */
2540 if (cfs_rq->curr == se)
2541 update_curr(cfs_rq);
2069dd75 2542 account_entity_dequeue(cfs_rq, se);
19e5eebb 2543 }
2069dd75
PZ
2544
2545 update_load_set(&se->load, weight);
2546
2547 if (se->on_rq)
2548 account_entity_enqueue(cfs_rq, se);
2549}
2550
82958366
PT
2551static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2552
6d5ab293 2553static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2554{
2555 struct task_group *tg;
2556 struct sched_entity *se;
3ff6dcac 2557 long shares;
2069dd75 2558
2069dd75
PZ
2559 tg = cfs_rq->tg;
2560 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2561 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2562 return;
3ff6dcac
YZ
2563#ifndef CONFIG_SMP
2564 if (likely(se->load.weight == tg->shares))
2565 return;
2566#endif
6d5ab293 2567 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2568
2569 reweight_entity(cfs_rq_of(se), se, shares);
2570}
2571#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2572static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2573{
2574}
2575#endif /* CONFIG_FAIR_GROUP_SCHED */
2576
141965c7 2577#ifdef CONFIG_SMP
5b51f2f8
PT
2578/* Precomputed fixed inverse multiplies for multiplication by y^n */
2579static const u32 runnable_avg_yN_inv[] = {
2580 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2581 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2582 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2583 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2584 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2585 0x85aac367, 0x82cd8698,
2586};
2587
2588/*
2589 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2590 * over-estimates when re-combining.
2591 */
2592static const u32 runnable_avg_yN_sum[] = {
2593 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2594 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2595 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2596};
2597
7b20b916
YD
2598/*
2599 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2600 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2601 * were generated:
2602 */
2603static const u32 __accumulated_sum_N32[] = {
2604 0, 23371, 35056, 40899, 43820, 45281,
2605 46011, 46376, 46559, 46650, 46696, 46719,
2606};
2607
9d85f21c
PT
2608/*
2609 * Approximate:
2610 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2611 */
2612static __always_inline u64 decay_load(u64 val, u64 n)
2613{
5b51f2f8
PT
2614 unsigned int local_n;
2615
2616 if (!n)
2617 return val;
2618 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2619 return 0;
2620
2621 /* after bounds checking we can collapse to 32-bit */
2622 local_n = n;
2623
2624 /*
2625 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2626 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2627 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2628 *
2629 * To achieve constant time decay_load.
2630 */
2631 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2632 val >>= local_n / LOAD_AVG_PERIOD;
2633 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2634 }
2635
9d89c257
YD
2636 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2637 return val;
5b51f2f8
PT
2638}
2639
2640/*
2641 * For updates fully spanning n periods, the contribution to runnable
2642 * average will be: \Sum 1024*y^n
2643 *
2644 * We can compute this reasonably efficiently by combining:
2645 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2646 */
2647static u32 __compute_runnable_contrib(u64 n)
2648{
2649 u32 contrib = 0;
2650
2651 if (likely(n <= LOAD_AVG_PERIOD))
2652 return runnable_avg_yN_sum[n];
2653 else if (unlikely(n >= LOAD_AVG_MAX_N))
2654 return LOAD_AVG_MAX;
2655
7b20b916
YD
2656 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2657 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2658 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2659 contrib = decay_load(contrib, n);
2660 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2661}
2662
54a21385 2663#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2664
9d85f21c
PT
2665/*
2666 * We can represent the historical contribution to runnable average as the
2667 * coefficients of a geometric series. To do this we sub-divide our runnable
2668 * history into segments of approximately 1ms (1024us); label the segment that
2669 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2670 *
2671 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2672 * p0 p1 p2
2673 * (now) (~1ms ago) (~2ms ago)
2674 *
2675 * Let u_i denote the fraction of p_i that the entity was runnable.
2676 *
2677 * We then designate the fractions u_i as our co-efficients, yielding the
2678 * following representation of historical load:
2679 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2680 *
2681 * We choose y based on the with of a reasonably scheduling period, fixing:
2682 * y^32 = 0.5
2683 *
2684 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2685 * approximately half as much as the contribution to load within the last ms
2686 * (u_0).
2687 *
2688 * When a period "rolls over" and we have new u_0`, multiplying the previous
2689 * sum again by y is sufficient to update:
2690 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2691 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2692 */
9d89c257
YD
2693static __always_inline int
2694__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2695 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2696{
e0f5f3af 2697 u64 delta, scaled_delta, periods;
9d89c257 2698 u32 contrib;
6115c793 2699 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2700 unsigned long scale_freq, scale_cpu;
9d85f21c 2701
9d89c257 2702 delta = now - sa->last_update_time;
9d85f21c
PT
2703 /*
2704 * This should only happen when time goes backwards, which it
2705 * unfortunately does during sched clock init when we swap over to TSC.
2706 */
2707 if ((s64)delta < 0) {
9d89c257 2708 sa->last_update_time = now;
9d85f21c
PT
2709 return 0;
2710 }
2711
2712 /*
2713 * Use 1024ns as the unit of measurement since it's a reasonable
2714 * approximation of 1us and fast to compute.
2715 */
2716 delta >>= 10;
2717 if (!delta)
2718 return 0;
9d89c257 2719 sa->last_update_time = now;
9d85f21c 2720
6f2b0452
DE
2721 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2722 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2723
9d85f21c 2724 /* delta_w is the amount already accumulated against our next period */
9d89c257 2725 delta_w = sa->period_contrib;
9d85f21c 2726 if (delta + delta_w >= 1024) {
9d85f21c
PT
2727 decayed = 1;
2728
9d89c257
YD
2729 /* how much left for next period will start over, we don't know yet */
2730 sa->period_contrib = 0;
2731
9d85f21c
PT
2732 /*
2733 * Now that we know we're crossing a period boundary, figure
2734 * out how much from delta we need to complete the current
2735 * period and accrue it.
2736 */
2737 delta_w = 1024 - delta_w;
54a21385 2738 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2739 if (weight) {
e0f5f3af
DE
2740 sa->load_sum += weight * scaled_delta_w;
2741 if (cfs_rq) {
2742 cfs_rq->runnable_load_sum +=
2743 weight * scaled_delta_w;
2744 }
13962234 2745 }
36ee28e4 2746 if (running)
006cdf02 2747 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2748
2749 delta -= delta_w;
2750
2751 /* Figure out how many additional periods this update spans */
2752 periods = delta / 1024;
2753 delta %= 1024;
2754
9d89c257 2755 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2756 if (cfs_rq) {
2757 cfs_rq->runnable_load_sum =
2758 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2759 }
9d89c257 2760 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2761
2762 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2763 contrib = __compute_runnable_contrib(periods);
54a21385 2764 contrib = cap_scale(contrib, scale_freq);
13962234 2765 if (weight) {
9d89c257 2766 sa->load_sum += weight * contrib;
13962234
YD
2767 if (cfs_rq)
2768 cfs_rq->runnable_load_sum += weight * contrib;
2769 }
36ee28e4 2770 if (running)
006cdf02 2771 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2772 }
2773
2774 /* Remainder of delta accrued against u_0` */
54a21385 2775 scaled_delta = cap_scale(delta, scale_freq);
13962234 2776 if (weight) {
e0f5f3af 2777 sa->load_sum += weight * scaled_delta;
13962234 2778 if (cfs_rq)
e0f5f3af 2779 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2780 }
36ee28e4 2781 if (running)
006cdf02 2782 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2783
9d89c257 2784 sa->period_contrib += delta;
9ee474f5 2785
9d89c257
YD
2786 if (decayed) {
2787 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2788 if (cfs_rq) {
2789 cfs_rq->runnable_load_avg =
2790 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2791 }
006cdf02 2792 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2793 }
aff3e498 2794
9d89c257 2795 return decayed;
9ee474f5
PT
2796}
2797
c566e8e9 2798#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2799/*
9d89c257
YD
2800 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2801 * and effective_load (which is not done because it is too costly).
bb17f655 2802 */
9d89c257 2803static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2804{
9d89c257 2805 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2806
aa0b7ae0
WL
2807 /*
2808 * No need to update load_avg for root_task_group as it is not used.
2809 */
2810 if (cfs_rq->tg == &root_task_group)
2811 return;
2812
9d89c257
YD
2813 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2814 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2815 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2816 }
8165e145 2817}
f5f9739d 2818
ad936d86
BP
2819/*
2820 * Called within set_task_rq() right before setting a task's cpu. The
2821 * caller only guarantees p->pi_lock is held; no other assumptions,
2822 * including the state of rq->lock, should be made.
2823 */
2824void set_task_rq_fair(struct sched_entity *se,
2825 struct cfs_rq *prev, struct cfs_rq *next)
2826{
2827 if (!sched_feat(ATTACH_AGE_LOAD))
2828 return;
2829
2830 /*
2831 * We are supposed to update the task to "current" time, then its up to
2832 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2833 * getting what current time is, so simply throw away the out-of-date
2834 * time. This will result in the wakee task is less decayed, but giving
2835 * the wakee more load sounds not bad.
2836 */
2837 if (se->avg.last_update_time && prev) {
2838 u64 p_last_update_time;
2839 u64 n_last_update_time;
2840
2841#ifndef CONFIG_64BIT
2842 u64 p_last_update_time_copy;
2843 u64 n_last_update_time_copy;
2844
2845 do {
2846 p_last_update_time_copy = prev->load_last_update_time_copy;
2847 n_last_update_time_copy = next->load_last_update_time_copy;
2848
2849 smp_rmb();
2850
2851 p_last_update_time = prev->avg.last_update_time;
2852 n_last_update_time = next->avg.last_update_time;
2853
2854 } while (p_last_update_time != p_last_update_time_copy ||
2855 n_last_update_time != n_last_update_time_copy);
2856#else
2857 p_last_update_time = prev->avg.last_update_time;
2858 n_last_update_time = next->avg.last_update_time;
2859#endif
2860 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2861 &se->avg, 0, 0, NULL);
2862 se->avg.last_update_time = n_last_update_time;
2863 }
2864}
6e83125c 2865#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2866static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2867#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2868
a2c6c91f
SM
2869static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2870{
2871 struct rq *rq = rq_of(cfs_rq);
2872 int cpu = cpu_of(rq);
2873
2874 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2875 unsigned long max = rq->cpu_capacity_orig;
2876
2877 /*
2878 * There are a few boundary cases this might miss but it should
2879 * get called often enough that that should (hopefully) not be
2880 * a real problem -- added to that it only calls on the local
2881 * CPU, so if we enqueue remotely we'll miss an update, but
2882 * the next tick/schedule should update.
2883 *
2884 * It will not get called when we go idle, because the idle
2885 * thread is a different class (!fair), nor will the utilization
2886 * number include things like RT tasks.
2887 *
2888 * As is, the util number is not freq-invariant (we'd have to
2889 * implement arch_scale_freq_capacity() for that).
2890 *
2891 * See cpu_util().
2892 */
2893 cpufreq_update_util(rq_clock(rq),
2894 min(cfs_rq->avg.util_avg, max), max);
2895 }
2896}
2897
89741892
PZ
2898/*
2899 * Unsigned subtract and clamp on underflow.
2900 *
2901 * Explicitly do a load-store to ensure the intermediate value never hits
2902 * memory. This allows lockless observations without ever seeing the negative
2903 * values.
2904 */
2905#define sub_positive(_ptr, _val) do { \
2906 typeof(_ptr) ptr = (_ptr); \
2907 typeof(*ptr) val = (_val); \
2908 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2909 res = var - val; \
2910 if (res > var) \
2911 res = 0; \
2912 WRITE_ONCE(*ptr, res); \
2913} while (0)
2914
9d89c257 2915/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
a2c6c91f
SM
2916static inline int
2917update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2918{
9d89c257 2919 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2920 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2921
9d89c257 2922 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2923 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
2924 sub_positive(&sa->load_avg, r);
2925 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 2926 removed_load = 1;
8165e145 2927 }
2dac754e 2928
9d89c257
YD
2929 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2930 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
2931 sub_positive(&sa->util_avg, r);
2932 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 2933 removed_util = 1;
9d89c257 2934 }
36ee28e4 2935
a2c6c91f 2936 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2937 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2938
9d89c257
YD
2939#ifndef CONFIG_64BIT
2940 smp_wmb();
2941 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2942#endif
36ee28e4 2943
a2c6c91f
SM
2944 if (update_freq && (decayed || removed_util))
2945 cfs_rq_util_change(cfs_rq);
21e96f88 2946
41e0d37f 2947 return decayed || removed_load;
21e96f88
SM
2948}
2949
2950/* Update task and its cfs_rq load average */
2951static inline void update_load_avg(struct sched_entity *se, int update_tg)
2952{
2953 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2954 u64 now = cfs_rq_clock_task(cfs_rq);
2955 struct rq *rq = rq_of(cfs_rq);
2956 int cpu = cpu_of(rq);
2957
2958 /*
2959 * Track task load average for carrying it to new CPU after migrated, and
2960 * track group sched_entity load average for task_h_load calc in migration
2961 */
2962 __update_load_avg(now, cpu, &se->avg,
2963 se->on_rq * scale_load_down(se->load.weight),
2964 cfs_rq->curr == se, NULL);
2965
a2c6c91f 2966 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2967 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2968}
2969
a05e8c51
BP
2970static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2971{
a9280514
PZ
2972 if (!sched_feat(ATTACH_AGE_LOAD))
2973 goto skip_aging;
2974
6efdb105
BP
2975 /*
2976 * If we got migrated (either between CPUs or between cgroups) we'll
2977 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
2978 *
2979 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
2980 */
2981 if (se->avg.last_update_time) {
2982 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2983 &se->avg, 0, 0, NULL);
2984
2985 /*
2986 * XXX: we could have just aged the entire load away if we've been
2987 * absent from the fair class for too long.
2988 */
2989 }
2990
a9280514 2991skip_aging:
a05e8c51
BP
2992 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2993 cfs_rq->avg.load_avg += se->avg.load_avg;
2994 cfs_rq->avg.load_sum += se->avg.load_sum;
2995 cfs_rq->avg.util_avg += se->avg.util_avg;
2996 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
2997
2998 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2999}
3000
3001static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002{
3003 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3004 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3005 cfs_rq->curr == se, NULL);
3006
89741892
PZ
3007 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3008 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3009 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3010 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3011
3012 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3013}
3014
9d89c257
YD
3015/* Add the load generated by se into cfs_rq's load average */
3016static inline void
3017enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3018{
9d89c257
YD
3019 struct sched_avg *sa = &se->avg;
3020 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3021 int migrated, decayed;
9ee474f5 3022
a05e8c51
BP
3023 migrated = !sa->last_update_time;
3024 if (!migrated) {
9d89c257 3025 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3026 se->on_rq * scale_load_down(se->load.weight),
3027 cfs_rq->curr == se, NULL);
aff3e498 3028 }
c566e8e9 3029
a2c6c91f 3030 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3031
13962234
YD
3032 cfs_rq->runnable_load_avg += sa->load_avg;
3033 cfs_rq->runnable_load_sum += sa->load_sum;
3034
a05e8c51
BP
3035 if (migrated)
3036 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3037
9d89c257
YD
3038 if (decayed || migrated)
3039 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3040}
3041
13962234
YD
3042/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3043static inline void
3044dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3045{
3046 update_load_avg(se, 1);
3047
3048 cfs_rq->runnable_load_avg =
3049 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3050 cfs_rq->runnable_load_sum =
a05e8c51 3051 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3052}
3053
9d89c257 3054#ifndef CONFIG_64BIT
0905f04e
YD
3055static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3056{
9d89c257 3057 u64 last_update_time_copy;
0905f04e 3058 u64 last_update_time;
9ee474f5 3059
9d89c257
YD
3060 do {
3061 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3062 smp_rmb();
3063 last_update_time = cfs_rq->avg.last_update_time;
3064 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3065
3066 return last_update_time;
3067}
9d89c257 3068#else
0905f04e
YD
3069static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3070{
3071 return cfs_rq->avg.last_update_time;
3072}
9d89c257
YD
3073#endif
3074
0905f04e
YD
3075/*
3076 * Task first catches up with cfs_rq, and then subtract
3077 * itself from the cfs_rq (task must be off the queue now).
3078 */
3079void remove_entity_load_avg(struct sched_entity *se)
3080{
3081 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3082 u64 last_update_time;
3083
3084 /*
7dc603c9
PZ
3085 * tasks cannot exit without having gone through wake_up_new_task() ->
3086 * post_init_entity_util_avg() which will have added things to the
3087 * cfs_rq, so we can remove unconditionally.
3088 *
3089 * Similarly for groups, they will have passed through
3090 * post_init_entity_util_avg() before unregister_sched_fair_group()
3091 * calls this.
0905f04e 3092 */
0905f04e
YD
3093
3094 last_update_time = cfs_rq_last_update_time(cfs_rq);
3095
13962234 3096 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3097 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3098 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3099}
642dbc39 3100
7ea241af
YD
3101static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3102{
3103 return cfs_rq->runnable_load_avg;
3104}
3105
3106static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3107{
3108 return cfs_rq->avg.load_avg;
3109}
3110
6e83125c
PZ
3111static int idle_balance(struct rq *this_rq);
3112
38033c37
PZ
3113#else /* CONFIG_SMP */
3114
01011473
PZ
3115static inline int
3116update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3117{
3118 return 0;
3119}
3120
536bd00c
RW
3121static inline void update_load_avg(struct sched_entity *se, int not_used)
3122{
3123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3124 struct rq *rq = rq_of(cfs_rq);
3125
3126 cpufreq_trigger_update(rq_clock(rq));
3127}
3128
9d89c257
YD
3129static inline void
3130enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3131static inline void
3132dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3133static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3134
a05e8c51
BP
3135static inline void
3136attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3137static inline void
3138detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3139
6e83125c
PZ
3140static inline int idle_balance(struct rq *rq)
3141{
3142 return 0;
3143}
3144
38033c37 3145#endif /* CONFIG_SMP */
9d85f21c 3146
2396af69 3147static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3148{
bf0f6f24 3149#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3150 struct task_struct *tsk = NULL;
3151
3152 if (entity_is_task(se))
3153 tsk = task_of(se);
3154
41acab88 3155 if (se->statistics.sleep_start) {
78becc27 3156 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3157
3158 if ((s64)delta < 0)
3159 delta = 0;
3160
41acab88
LDM
3161 if (unlikely(delta > se->statistics.sleep_max))
3162 se->statistics.sleep_max = delta;
bf0f6f24 3163
8c79a045 3164 se->statistics.sleep_start = 0;
41acab88 3165 se->statistics.sum_sleep_runtime += delta;
9745512c 3166
768d0c27 3167 if (tsk) {
e414314c 3168 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3169 trace_sched_stat_sleep(tsk, delta);
3170 }
bf0f6f24 3171 }
41acab88 3172 if (se->statistics.block_start) {
78becc27 3173 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3174
3175 if ((s64)delta < 0)
3176 delta = 0;
3177
41acab88
LDM
3178 if (unlikely(delta > se->statistics.block_max))
3179 se->statistics.block_max = delta;
bf0f6f24 3180
8c79a045 3181 se->statistics.block_start = 0;
41acab88 3182 se->statistics.sum_sleep_runtime += delta;
30084fbd 3183
e414314c 3184 if (tsk) {
8f0dfc34 3185 if (tsk->in_iowait) {
41acab88
LDM
3186 se->statistics.iowait_sum += delta;
3187 se->statistics.iowait_count++;
768d0c27 3188 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3189 }
3190
b781a602
AV
3191 trace_sched_stat_blocked(tsk, delta);
3192
e414314c
PZ
3193 /*
3194 * Blocking time is in units of nanosecs, so shift by
3195 * 20 to get a milliseconds-range estimation of the
3196 * amount of time that the task spent sleeping:
3197 */
3198 if (unlikely(prof_on == SLEEP_PROFILING)) {
3199 profile_hits(SLEEP_PROFILING,
3200 (void *)get_wchan(tsk),
3201 delta >> 20);
3202 }
3203 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3204 }
bf0f6f24
IM
3205 }
3206#endif
3207}
3208
ddc97297
PZ
3209static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3210{
3211#ifdef CONFIG_SCHED_DEBUG
3212 s64 d = se->vruntime - cfs_rq->min_vruntime;
3213
3214 if (d < 0)
3215 d = -d;
3216
3217 if (d > 3*sysctl_sched_latency)
3218 schedstat_inc(cfs_rq, nr_spread_over);
3219#endif
3220}
3221
aeb73b04
PZ
3222static void
3223place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3224{
1af5f730 3225 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3226
2cb8600e
PZ
3227 /*
3228 * The 'current' period is already promised to the current tasks,
3229 * however the extra weight of the new task will slow them down a
3230 * little, place the new task so that it fits in the slot that
3231 * stays open at the end.
3232 */
94dfb5e7 3233 if (initial && sched_feat(START_DEBIT))
f9c0b095 3234 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3235
a2e7a7eb 3236 /* sleeps up to a single latency don't count. */
5ca9880c 3237 if (!initial) {
a2e7a7eb 3238 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3239
a2e7a7eb
MG
3240 /*
3241 * Halve their sleep time's effect, to allow
3242 * for a gentler effect of sleepers:
3243 */
3244 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3245 thresh >>= 1;
51e0304c 3246
a2e7a7eb 3247 vruntime -= thresh;
aeb73b04
PZ
3248 }
3249
b5d9d734 3250 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3251 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3252}
3253
d3d9dc33
PT
3254static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3255
cb251765
MG
3256static inline void check_schedstat_required(void)
3257{
3258#ifdef CONFIG_SCHEDSTATS
3259 if (schedstat_enabled())
3260 return;
3261
3262 /* Force schedstat enabled if a dependent tracepoint is active */
3263 if (trace_sched_stat_wait_enabled() ||
3264 trace_sched_stat_sleep_enabled() ||
3265 trace_sched_stat_iowait_enabled() ||
3266 trace_sched_stat_blocked_enabled() ||
3267 trace_sched_stat_runtime_enabled()) {
eda8dca5 3268 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3269 "stat_blocked and stat_runtime require the "
3270 "kernel parameter schedstats=enabled or "
3271 "kernel.sched_schedstats=1\n");
3272 }
3273#endif
3274}
3275
b5179ac7
PZ
3276
3277/*
3278 * MIGRATION
3279 *
3280 * dequeue
3281 * update_curr()
3282 * update_min_vruntime()
3283 * vruntime -= min_vruntime
3284 *
3285 * enqueue
3286 * update_curr()
3287 * update_min_vruntime()
3288 * vruntime += min_vruntime
3289 *
3290 * this way the vruntime transition between RQs is done when both
3291 * min_vruntime are up-to-date.
3292 *
3293 * WAKEUP (remote)
3294 *
59efa0ba 3295 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3296 * vruntime -= min_vruntime
3297 *
3298 * enqueue
3299 * update_curr()
3300 * update_min_vruntime()
3301 * vruntime += min_vruntime
3302 *
3303 * this way we don't have the most up-to-date min_vruntime on the originating
3304 * CPU and an up-to-date min_vruntime on the destination CPU.
3305 */
3306
bf0f6f24 3307static void
88ec22d3 3308enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3309{
2f950354
PZ
3310 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3311 bool curr = cfs_rq->curr == se;
3312
88ec22d3 3313 /*
2f950354
PZ
3314 * If we're the current task, we must renormalise before calling
3315 * update_curr().
88ec22d3 3316 */
2f950354 3317 if (renorm && curr)
88ec22d3
PZ
3318 se->vruntime += cfs_rq->min_vruntime;
3319
2f950354
PZ
3320 update_curr(cfs_rq);
3321
bf0f6f24 3322 /*
2f950354
PZ
3323 * Otherwise, renormalise after, such that we're placed at the current
3324 * moment in time, instead of some random moment in the past. Being
3325 * placed in the past could significantly boost this task to the
3326 * fairness detriment of existing tasks.
bf0f6f24 3327 */
2f950354
PZ
3328 if (renorm && !curr)
3329 se->vruntime += cfs_rq->min_vruntime;
3330
9d89c257 3331 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3332 account_entity_enqueue(cfs_rq, se);
3333 update_cfs_shares(cfs_rq);
bf0f6f24 3334
88ec22d3 3335 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3336 place_entity(cfs_rq, se, 0);
cb251765
MG
3337 if (schedstat_enabled())
3338 enqueue_sleeper(cfs_rq, se);
e9acbff6 3339 }
bf0f6f24 3340
cb251765
MG
3341 check_schedstat_required();
3342 if (schedstat_enabled()) {
3343 update_stats_enqueue(cfs_rq, se);
3344 check_spread(cfs_rq, se);
3345 }
2f950354 3346 if (!curr)
83b699ed 3347 __enqueue_entity(cfs_rq, se);
2069dd75 3348 se->on_rq = 1;
3d4b47b4 3349
d3d9dc33 3350 if (cfs_rq->nr_running == 1) {
3d4b47b4 3351 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3352 check_enqueue_throttle(cfs_rq);
3353 }
bf0f6f24
IM
3354}
3355
2c13c919 3356static void __clear_buddies_last(struct sched_entity *se)
2002c695 3357{
2c13c919
RR
3358 for_each_sched_entity(se) {
3359 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3360 if (cfs_rq->last != se)
2c13c919 3361 break;
f1044799
PZ
3362
3363 cfs_rq->last = NULL;
2c13c919
RR
3364 }
3365}
2002c695 3366
2c13c919
RR
3367static void __clear_buddies_next(struct sched_entity *se)
3368{
3369 for_each_sched_entity(se) {
3370 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3371 if (cfs_rq->next != se)
2c13c919 3372 break;
f1044799
PZ
3373
3374 cfs_rq->next = NULL;
2c13c919 3375 }
2002c695
PZ
3376}
3377
ac53db59
RR
3378static void __clear_buddies_skip(struct sched_entity *se)
3379{
3380 for_each_sched_entity(se) {
3381 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3382 if (cfs_rq->skip != se)
ac53db59 3383 break;
f1044799
PZ
3384
3385 cfs_rq->skip = NULL;
ac53db59
RR
3386 }
3387}
3388
a571bbea
PZ
3389static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3390{
2c13c919
RR
3391 if (cfs_rq->last == se)
3392 __clear_buddies_last(se);
3393
3394 if (cfs_rq->next == se)
3395 __clear_buddies_next(se);
ac53db59
RR
3396
3397 if (cfs_rq->skip == se)
3398 __clear_buddies_skip(se);
a571bbea
PZ
3399}
3400
6c16a6dc 3401static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3402
bf0f6f24 3403static void
371fd7e7 3404dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3405{
a2a2d680
DA
3406 /*
3407 * Update run-time statistics of the 'current'.
3408 */
3409 update_curr(cfs_rq);
13962234 3410 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3411
cb251765
MG
3412 if (schedstat_enabled())
3413 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3414
2002c695 3415 clear_buddies(cfs_rq, se);
4793241b 3416
83b699ed 3417 if (se != cfs_rq->curr)
30cfdcfc 3418 __dequeue_entity(cfs_rq, se);
17bc14b7 3419 se->on_rq = 0;
30cfdcfc 3420 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3421
3422 /*
3423 * Normalize the entity after updating the min_vruntime because the
3424 * update can refer to the ->curr item and we need to reflect this
3425 * movement in our normalized position.
3426 */
371fd7e7 3427 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3428 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3429
d8b4986d
PT
3430 /* return excess runtime on last dequeue */
3431 return_cfs_rq_runtime(cfs_rq);
3432
1e876231 3433 update_min_vruntime(cfs_rq);
17bc14b7 3434 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3435}
3436
3437/*
3438 * Preempt the current task with a newly woken task if needed:
3439 */
7c92e54f 3440static void
2e09bf55 3441check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3442{
11697830 3443 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3444 struct sched_entity *se;
3445 s64 delta;
11697830 3446
6d0f0ebd 3447 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3448 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3449 if (delta_exec > ideal_runtime) {
8875125e 3450 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3451 /*
3452 * The current task ran long enough, ensure it doesn't get
3453 * re-elected due to buddy favours.
3454 */
3455 clear_buddies(cfs_rq, curr);
f685ceac
MG
3456 return;
3457 }
3458
3459 /*
3460 * Ensure that a task that missed wakeup preemption by a
3461 * narrow margin doesn't have to wait for a full slice.
3462 * This also mitigates buddy induced latencies under load.
3463 */
f685ceac
MG
3464 if (delta_exec < sysctl_sched_min_granularity)
3465 return;
3466
f4cfb33e
WX
3467 se = __pick_first_entity(cfs_rq);
3468 delta = curr->vruntime - se->vruntime;
f685ceac 3469
f4cfb33e
WX
3470 if (delta < 0)
3471 return;
d7d82944 3472
f4cfb33e 3473 if (delta > ideal_runtime)
8875125e 3474 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3475}
3476
83b699ed 3477static void
8494f412 3478set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3479{
83b699ed
SV
3480 /* 'current' is not kept within the tree. */
3481 if (se->on_rq) {
3482 /*
3483 * Any task has to be enqueued before it get to execute on
3484 * a CPU. So account for the time it spent waiting on the
3485 * runqueue.
3486 */
cb251765
MG
3487 if (schedstat_enabled())
3488 update_stats_wait_end(cfs_rq, se);
83b699ed 3489 __dequeue_entity(cfs_rq, se);
9d89c257 3490 update_load_avg(se, 1);
83b699ed
SV
3491 }
3492
79303e9e 3493 update_stats_curr_start(cfs_rq, se);
429d43bc 3494 cfs_rq->curr = se;
eba1ed4b
IM
3495#ifdef CONFIG_SCHEDSTATS
3496 /*
3497 * Track our maximum slice length, if the CPU's load is at
3498 * least twice that of our own weight (i.e. dont track it
3499 * when there are only lesser-weight tasks around):
3500 */
cb251765 3501 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3502 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3503 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3504 }
3505#endif
4a55b450 3506 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3507}
3508
3f3a4904
PZ
3509static int
3510wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3511
ac53db59
RR
3512/*
3513 * Pick the next process, keeping these things in mind, in this order:
3514 * 1) keep things fair between processes/task groups
3515 * 2) pick the "next" process, since someone really wants that to run
3516 * 3) pick the "last" process, for cache locality
3517 * 4) do not run the "skip" process, if something else is available
3518 */
678d5718
PZ
3519static struct sched_entity *
3520pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3521{
678d5718
PZ
3522 struct sched_entity *left = __pick_first_entity(cfs_rq);
3523 struct sched_entity *se;
3524
3525 /*
3526 * If curr is set we have to see if its left of the leftmost entity
3527 * still in the tree, provided there was anything in the tree at all.
3528 */
3529 if (!left || (curr && entity_before(curr, left)))
3530 left = curr;
3531
3532 se = left; /* ideally we run the leftmost entity */
f4b6755f 3533
ac53db59
RR
3534 /*
3535 * Avoid running the skip buddy, if running something else can
3536 * be done without getting too unfair.
3537 */
3538 if (cfs_rq->skip == se) {
678d5718
PZ
3539 struct sched_entity *second;
3540
3541 if (se == curr) {
3542 second = __pick_first_entity(cfs_rq);
3543 } else {
3544 second = __pick_next_entity(se);
3545 if (!second || (curr && entity_before(curr, second)))
3546 second = curr;
3547 }
3548
ac53db59
RR
3549 if (second && wakeup_preempt_entity(second, left) < 1)
3550 se = second;
3551 }
aa2ac252 3552
f685ceac
MG
3553 /*
3554 * Prefer last buddy, try to return the CPU to a preempted task.
3555 */
3556 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3557 se = cfs_rq->last;
3558
ac53db59
RR
3559 /*
3560 * Someone really wants this to run. If it's not unfair, run it.
3561 */
3562 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3563 se = cfs_rq->next;
3564
f685ceac 3565 clear_buddies(cfs_rq, se);
4793241b
PZ
3566
3567 return se;
aa2ac252
PZ
3568}
3569
678d5718 3570static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3571
ab6cde26 3572static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3573{
3574 /*
3575 * If still on the runqueue then deactivate_task()
3576 * was not called and update_curr() has to be done:
3577 */
3578 if (prev->on_rq)
b7cc0896 3579 update_curr(cfs_rq);
bf0f6f24 3580
d3d9dc33
PT
3581 /* throttle cfs_rqs exceeding runtime */
3582 check_cfs_rq_runtime(cfs_rq);
3583
cb251765
MG
3584 if (schedstat_enabled()) {
3585 check_spread(cfs_rq, prev);
3586 if (prev->on_rq)
3587 update_stats_wait_start(cfs_rq, prev);
3588 }
3589
30cfdcfc 3590 if (prev->on_rq) {
30cfdcfc
DA
3591 /* Put 'current' back into the tree. */
3592 __enqueue_entity(cfs_rq, prev);
9d85f21c 3593 /* in !on_rq case, update occurred at dequeue */
9d89c257 3594 update_load_avg(prev, 0);
30cfdcfc 3595 }
429d43bc 3596 cfs_rq->curr = NULL;
bf0f6f24
IM
3597}
3598
8f4d37ec
PZ
3599static void
3600entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3601{
bf0f6f24 3602 /*
30cfdcfc 3603 * Update run-time statistics of the 'current'.
bf0f6f24 3604 */
30cfdcfc 3605 update_curr(cfs_rq);
bf0f6f24 3606
9d85f21c
PT
3607 /*
3608 * Ensure that runnable average is periodically updated.
3609 */
9d89c257 3610 update_load_avg(curr, 1);
bf0bd948 3611 update_cfs_shares(cfs_rq);
9d85f21c 3612
8f4d37ec
PZ
3613#ifdef CONFIG_SCHED_HRTICK
3614 /*
3615 * queued ticks are scheduled to match the slice, so don't bother
3616 * validating it and just reschedule.
3617 */
983ed7a6 3618 if (queued) {
8875125e 3619 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3620 return;
3621 }
8f4d37ec
PZ
3622 /*
3623 * don't let the period tick interfere with the hrtick preemption
3624 */
3625 if (!sched_feat(DOUBLE_TICK) &&
3626 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3627 return;
3628#endif
3629
2c2efaed 3630 if (cfs_rq->nr_running > 1)
2e09bf55 3631 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3632}
3633
ab84d31e
PT
3634
3635/**************************************************
3636 * CFS bandwidth control machinery
3637 */
3638
3639#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3640
3641#ifdef HAVE_JUMP_LABEL
c5905afb 3642static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3643
3644static inline bool cfs_bandwidth_used(void)
3645{
c5905afb 3646 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3647}
3648
1ee14e6c 3649void cfs_bandwidth_usage_inc(void)
029632fb 3650{
1ee14e6c
BS
3651 static_key_slow_inc(&__cfs_bandwidth_used);
3652}
3653
3654void cfs_bandwidth_usage_dec(void)
3655{
3656 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3657}
3658#else /* HAVE_JUMP_LABEL */
3659static bool cfs_bandwidth_used(void)
3660{
3661 return true;
3662}
3663
1ee14e6c
BS
3664void cfs_bandwidth_usage_inc(void) {}
3665void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3666#endif /* HAVE_JUMP_LABEL */
3667
ab84d31e
PT
3668/*
3669 * default period for cfs group bandwidth.
3670 * default: 0.1s, units: nanoseconds
3671 */
3672static inline u64 default_cfs_period(void)
3673{
3674 return 100000000ULL;
3675}
ec12cb7f
PT
3676
3677static inline u64 sched_cfs_bandwidth_slice(void)
3678{
3679 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3680}
3681
a9cf55b2
PT
3682/*
3683 * Replenish runtime according to assigned quota and update expiration time.
3684 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3685 * additional synchronization around rq->lock.
3686 *
3687 * requires cfs_b->lock
3688 */
029632fb 3689void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3690{
3691 u64 now;
3692
3693 if (cfs_b->quota == RUNTIME_INF)
3694 return;
3695
3696 now = sched_clock_cpu(smp_processor_id());
3697 cfs_b->runtime = cfs_b->quota;
3698 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3699}
3700
029632fb
PZ
3701static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3702{
3703 return &tg->cfs_bandwidth;
3704}
3705
f1b17280
PT
3706/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3707static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3708{
3709 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3710 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3711
78becc27 3712 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3713}
3714
85dac906
PT
3715/* returns 0 on failure to allocate runtime */
3716static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3717{
3718 struct task_group *tg = cfs_rq->tg;
3719 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3720 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3721
3722 /* note: this is a positive sum as runtime_remaining <= 0 */
3723 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3724
3725 raw_spin_lock(&cfs_b->lock);
3726 if (cfs_b->quota == RUNTIME_INF)
3727 amount = min_amount;
58088ad0 3728 else {
77a4d1a1 3729 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3730
3731 if (cfs_b->runtime > 0) {
3732 amount = min(cfs_b->runtime, min_amount);
3733 cfs_b->runtime -= amount;
3734 cfs_b->idle = 0;
3735 }
ec12cb7f 3736 }
a9cf55b2 3737 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3738 raw_spin_unlock(&cfs_b->lock);
3739
3740 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3741 /*
3742 * we may have advanced our local expiration to account for allowed
3743 * spread between our sched_clock and the one on which runtime was
3744 * issued.
3745 */
3746 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3747 cfs_rq->runtime_expires = expires;
85dac906
PT
3748
3749 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3750}
3751
a9cf55b2
PT
3752/*
3753 * Note: This depends on the synchronization provided by sched_clock and the
3754 * fact that rq->clock snapshots this value.
3755 */
3756static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3757{
a9cf55b2 3758 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3759
3760 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3761 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3762 return;
3763
a9cf55b2
PT
3764 if (cfs_rq->runtime_remaining < 0)
3765 return;
3766
3767 /*
3768 * If the local deadline has passed we have to consider the
3769 * possibility that our sched_clock is 'fast' and the global deadline
3770 * has not truly expired.
3771 *
3772 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3773 * whether the global deadline has advanced. It is valid to compare
3774 * cfs_b->runtime_expires without any locks since we only care about
3775 * exact equality, so a partial write will still work.
a9cf55b2
PT
3776 */
3777
51f2176d 3778 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3779 /* extend local deadline, drift is bounded above by 2 ticks */
3780 cfs_rq->runtime_expires += TICK_NSEC;
3781 } else {
3782 /* global deadline is ahead, expiration has passed */
3783 cfs_rq->runtime_remaining = 0;
3784 }
3785}
3786
9dbdb155 3787static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3788{
3789 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3790 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3791 expire_cfs_rq_runtime(cfs_rq);
3792
3793 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3794 return;
3795
85dac906
PT
3796 /*
3797 * if we're unable to extend our runtime we resched so that the active
3798 * hierarchy can be throttled
3799 */
3800 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3801 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3802}
3803
6c16a6dc 3804static __always_inline
9dbdb155 3805void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3806{
56f570e5 3807 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3808 return;
3809
3810 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3811}
3812
85dac906
PT
3813static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3814{
56f570e5 3815 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3816}
3817
64660c86
PT
3818/* check whether cfs_rq, or any parent, is throttled */
3819static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3820{
56f570e5 3821 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3822}
3823
3824/*
3825 * Ensure that neither of the group entities corresponding to src_cpu or
3826 * dest_cpu are members of a throttled hierarchy when performing group
3827 * load-balance operations.
3828 */
3829static inline int throttled_lb_pair(struct task_group *tg,
3830 int src_cpu, int dest_cpu)
3831{
3832 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3833
3834 src_cfs_rq = tg->cfs_rq[src_cpu];
3835 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3836
3837 return throttled_hierarchy(src_cfs_rq) ||
3838 throttled_hierarchy(dest_cfs_rq);
3839}
3840
3841/* updated child weight may affect parent so we have to do this bottom up */
3842static int tg_unthrottle_up(struct task_group *tg, void *data)
3843{
3844 struct rq *rq = data;
3845 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3846
3847 cfs_rq->throttle_count--;
64660c86 3848 if (!cfs_rq->throttle_count) {
f1b17280 3849 /* adjust cfs_rq_clock_task() */
78becc27 3850 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3851 cfs_rq->throttled_clock_task;
64660c86 3852 }
64660c86
PT
3853
3854 return 0;
3855}
3856
3857static int tg_throttle_down(struct task_group *tg, void *data)
3858{
3859 struct rq *rq = data;
3860 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3861
82958366
PT
3862 /* group is entering throttled state, stop time */
3863 if (!cfs_rq->throttle_count)
78becc27 3864 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3865 cfs_rq->throttle_count++;
3866
3867 return 0;
3868}
3869
d3d9dc33 3870static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3871{
3872 struct rq *rq = rq_of(cfs_rq);
3873 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3874 struct sched_entity *se;
3875 long task_delta, dequeue = 1;
77a4d1a1 3876 bool empty;
85dac906
PT
3877
3878 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3879
f1b17280 3880 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3881 rcu_read_lock();
3882 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3883 rcu_read_unlock();
85dac906
PT
3884
3885 task_delta = cfs_rq->h_nr_running;
3886 for_each_sched_entity(se) {
3887 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3888 /* throttled entity or throttle-on-deactivate */
3889 if (!se->on_rq)
3890 break;
3891
3892 if (dequeue)
3893 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3894 qcfs_rq->h_nr_running -= task_delta;
3895
3896 if (qcfs_rq->load.weight)
3897 dequeue = 0;
3898 }
3899
3900 if (!se)
72465447 3901 sub_nr_running(rq, task_delta);
85dac906
PT
3902
3903 cfs_rq->throttled = 1;
78becc27 3904 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3905 raw_spin_lock(&cfs_b->lock);
d49db342 3906 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3907
c06f04c7
BS
3908 /*
3909 * Add to the _head_ of the list, so that an already-started
3910 * distribute_cfs_runtime will not see us
3911 */
3912 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3913
3914 /*
3915 * If we're the first throttled task, make sure the bandwidth
3916 * timer is running.
3917 */
3918 if (empty)
3919 start_cfs_bandwidth(cfs_b);
3920
85dac906
PT
3921 raw_spin_unlock(&cfs_b->lock);
3922}
3923
029632fb 3924void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3925{
3926 struct rq *rq = rq_of(cfs_rq);
3927 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3928 struct sched_entity *se;
3929 int enqueue = 1;
3930 long task_delta;
3931
22b958d8 3932 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3933
3934 cfs_rq->throttled = 0;
1a55af2e
FW
3935
3936 update_rq_clock(rq);
3937
671fd9da 3938 raw_spin_lock(&cfs_b->lock);
78becc27 3939 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3940 list_del_rcu(&cfs_rq->throttled_list);
3941 raw_spin_unlock(&cfs_b->lock);
3942
64660c86
PT
3943 /* update hierarchical throttle state */
3944 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3945
671fd9da
PT
3946 if (!cfs_rq->load.weight)
3947 return;
3948
3949 task_delta = cfs_rq->h_nr_running;
3950 for_each_sched_entity(se) {
3951 if (se->on_rq)
3952 enqueue = 0;
3953
3954 cfs_rq = cfs_rq_of(se);
3955 if (enqueue)
3956 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3957 cfs_rq->h_nr_running += task_delta;
3958
3959 if (cfs_rq_throttled(cfs_rq))
3960 break;
3961 }
3962
3963 if (!se)
72465447 3964 add_nr_running(rq, task_delta);
671fd9da
PT
3965
3966 /* determine whether we need to wake up potentially idle cpu */
3967 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3968 resched_curr(rq);
671fd9da
PT
3969}
3970
3971static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3972 u64 remaining, u64 expires)
3973{
3974 struct cfs_rq *cfs_rq;
c06f04c7
BS
3975 u64 runtime;
3976 u64 starting_runtime = remaining;
671fd9da
PT
3977
3978 rcu_read_lock();
3979 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3980 throttled_list) {
3981 struct rq *rq = rq_of(cfs_rq);
3982
3983 raw_spin_lock(&rq->lock);
3984 if (!cfs_rq_throttled(cfs_rq))
3985 goto next;
3986
3987 runtime = -cfs_rq->runtime_remaining + 1;
3988 if (runtime > remaining)
3989 runtime = remaining;
3990 remaining -= runtime;
3991
3992 cfs_rq->runtime_remaining += runtime;
3993 cfs_rq->runtime_expires = expires;
3994
3995 /* we check whether we're throttled above */
3996 if (cfs_rq->runtime_remaining > 0)
3997 unthrottle_cfs_rq(cfs_rq);
3998
3999next:
4000 raw_spin_unlock(&rq->lock);
4001
4002 if (!remaining)
4003 break;
4004 }
4005 rcu_read_unlock();
4006
c06f04c7 4007 return starting_runtime - remaining;
671fd9da
PT
4008}
4009
58088ad0
PT
4010/*
4011 * Responsible for refilling a task_group's bandwidth and unthrottling its
4012 * cfs_rqs as appropriate. If there has been no activity within the last
4013 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4014 * used to track this state.
4015 */
4016static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4017{
671fd9da 4018 u64 runtime, runtime_expires;
51f2176d 4019 int throttled;
58088ad0 4020
58088ad0
PT
4021 /* no need to continue the timer with no bandwidth constraint */
4022 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4023 goto out_deactivate;
58088ad0 4024
671fd9da 4025 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4026 cfs_b->nr_periods += overrun;
671fd9da 4027
51f2176d
BS
4028 /*
4029 * idle depends on !throttled (for the case of a large deficit), and if
4030 * we're going inactive then everything else can be deferred
4031 */
4032 if (cfs_b->idle && !throttled)
4033 goto out_deactivate;
a9cf55b2
PT
4034
4035 __refill_cfs_bandwidth_runtime(cfs_b);
4036
671fd9da
PT
4037 if (!throttled) {
4038 /* mark as potentially idle for the upcoming period */
4039 cfs_b->idle = 1;
51f2176d 4040 return 0;
671fd9da
PT
4041 }
4042
e8da1b18
NR
4043 /* account preceding periods in which throttling occurred */
4044 cfs_b->nr_throttled += overrun;
4045
671fd9da 4046 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4047
4048 /*
c06f04c7
BS
4049 * This check is repeated as we are holding onto the new bandwidth while
4050 * we unthrottle. This can potentially race with an unthrottled group
4051 * trying to acquire new bandwidth from the global pool. This can result
4052 * in us over-using our runtime if it is all used during this loop, but
4053 * only by limited amounts in that extreme case.
671fd9da 4054 */
c06f04c7
BS
4055 while (throttled && cfs_b->runtime > 0) {
4056 runtime = cfs_b->runtime;
671fd9da
PT
4057 raw_spin_unlock(&cfs_b->lock);
4058 /* we can't nest cfs_b->lock while distributing bandwidth */
4059 runtime = distribute_cfs_runtime(cfs_b, runtime,
4060 runtime_expires);
4061 raw_spin_lock(&cfs_b->lock);
4062
4063 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4064
4065 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4066 }
58088ad0 4067
671fd9da
PT
4068 /*
4069 * While we are ensured activity in the period following an
4070 * unthrottle, this also covers the case in which the new bandwidth is
4071 * insufficient to cover the existing bandwidth deficit. (Forcing the
4072 * timer to remain active while there are any throttled entities.)
4073 */
4074 cfs_b->idle = 0;
58088ad0 4075
51f2176d
BS
4076 return 0;
4077
4078out_deactivate:
51f2176d 4079 return 1;
58088ad0 4080}
d3d9dc33 4081
d8b4986d
PT
4082/* a cfs_rq won't donate quota below this amount */
4083static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4084/* minimum remaining period time to redistribute slack quota */
4085static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4086/* how long we wait to gather additional slack before distributing */
4087static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4088
db06e78c
BS
4089/*
4090 * Are we near the end of the current quota period?
4091 *
4092 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4093 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4094 * migrate_hrtimers, base is never cleared, so we are fine.
4095 */
d8b4986d
PT
4096static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4097{
4098 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4099 u64 remaining;
4100
4101 /* if the call-back is running a quota refresh is already occurring */
4102 if (hrtimer_callback_running(refresh_timer))
4103 return 1;
4104
4105 /* is a quota refresh about to occur? */
4106 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4107 if (remaining < min_expire)
4108 return 1;
4109
4110 return 0;
4111}
4112
4113static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4114{
4115 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4116
4117 /* if there's a quota refresh soon don't bother with slack */
4118 if (runtime_refresh_within(cfs_b, min_left))
4119 return;
4120
4cfafd30
PZ
4121 hrtimer_start(&cfs_b->slack_timer,
4122 ns_to_ktime(cfs_bandwidth_slack_period),
4123 HRTIMER_MODE_REL);
d8b4986d
PT
4124}
4125
4126/* we know any runtime found here is valid as update_curr() precedes return */
4127static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4128{
4129 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4130 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4131
4132 if (slack_runtime <= 0)
4133 return;
4134
4135 raw_spin_lock(&cfs_b->lock);
4136 if (cfs_b->quota != RUNTIME_INF &&
4137 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4138 cfs_b->runtime += slack_runtime;
4139
4140 /* we are under rq->lock, defer unthrottling using a timer */
4141 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4142 !list_empty(&cfs_b->throttled_cfs_rq))
4143 start_cfs_slack_bandwidth(cfs_b);
4144 }
4145 raw_spin_unlock(&cfs_b->lock);
4146
4147 /* even if it's not valid for return we don't want to try again */
4148 cfs_rq->runtime_remaining -= slack_runtime;
4149}
4150
4151static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4152{
56f570e5
PT
4153 if (!cfs_bandwidth_used())
4154 return;
4155
fccfdc6f 4156 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4157 return;
4158
4159 __return_cfs_rq_runtime(cfs_rq);
4160}
4161
4162/*
4163 * This is done with a timer (instead of inline with bandwidth return) since
4164 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4165 */
4166static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4167{
4168 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4169 u64 expires;
4170
4171 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4172 raw_spin_lock(&cfs_b->lock);
4173 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4174 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4175 return;
db06e78c 4176 }
d8b4986d 4177
c06f04c7 4178 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4179 runtime = cfs_b->runtime;
c06f04c7 4180
d8b4986d
PT
4181 expires = cfs_b->runtime_expires;
4182 raw_spin_unlock(&cfs_b->lock);
4183
4184 if (!runtime)
4185 return;
4186
4187 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4188
4189 raw_spin_lock(&cfs_b->lock);
4190 if (expires == cfs_b->runtime_expires)
c06f04c7 4191 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4192 raw_spin_unlock(&cfs_b->lock);
4193}
4194
d3d9dc33
PT
4195/*
4196 * When a group wakes up we want to make sure that its quota is not already
4197 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4198 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4199 */
4200static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4201{
56f570e5
PT
4202 if (!cfs_bandwidth_used())
4203 return;
4204
094f4691
KK
4205 /* Synchronize hierarchical throttle counter: */
4206 if (unlikely(!cfs_rq->throttle_uptodate)) {
4207 struct rq *rq = rq_of(cfs_rq);
4208 struct cfs_rq *pcfs_rq;
4209 struct task_group *tg;
4210
4211 cfs_rq->throttle_uptodate = 1;
4212
4213 /* Get closest up-to-date node, because leaves go first: */
4214 for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
4215 pcfs_rq = tg->cfs_rq[cpu_of(rq)];
4216 if (pcfs_rq->throttle_uptodate)
4217 break;
4218 }
4219 if (tg) {
4220 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4221 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4222 }
4223 }
4224
d3d9dc33
PT
4225 /* an active group must be handled by the update_curr()->put() path */
4226 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4227 return;
4228
4229 /* ensure the group is not already throttled */
4230 if (cfs_rq_throttled(cfs_rq))
4231 return;
4232
4233 /* update runtime allocation */
4234 account_cfs_rq_runtime(cfs_rq, 0);
4235 if (cfs_rq->runtime_remaining <= 0)
4236 throttle_cfs_rq(cfs_rq);
4237}
4238
4239/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4240static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4241{
56f570e5 4242 if (!cfs_bandwidth_used())
678d5718 4243 return false;
56f570e5 4244
d3d9dc33 4245 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4246 return false;
d3d9dc33
PT
4247
4248 /*
4249 * it's possible for a throttled entity to be forced into a running
4250 * state (e.g. set_curr_task), in this case we're finished.
4251 */
4252 if (cfs_rq_throttled(cfs_rq))
678d5718 4253 return true;
d3d9dc33
PT
4254
4255 throttle_cfs_rq(cfs_rq);
678d5718 4256 return true;
d3d9dc33 4257}
029632fb 4258
029632fb
PZ
4259static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4260{
4261 struct cfs_bandwidth *cfs_b =
4262 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4263
029632fb
PZ
4264 do_sched_cfs_slack_timer(cfs_b);
4265
4266 return HRTIMER_NORESTART;
4267}
4268
4269static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4270{
4271 struct cfs_bandwidth *cfs_b =
4272 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4273 int overrun;
4274 int idle = 0;
4275
51f2176d 4276 raw_spin_lock(&cfs_b->lock);
029632fb 4277 for (;;) {
77a4d1a1 4278 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4279 if (!overrun)
4280 break;
4281
4282 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4283 }
4cfafd30
PZ
4284 if (idle)
4285 cfs_b->period_active = 0;
51f2176d 4286 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4287
4288 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4289}
4290
4291void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4292{
4293 raw_spin_lock_init(&cfs_b->lock);
4294 cfs_b->runtime = 0;
4295 cfs_b->quota = RUNTIME_INF;
4296 cfs_b->period = ns_to_ktime(default_cfs_period());
4297
4298 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4299 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4300 cfs_b->period_timer.function = sched_cfs_period_timer;
4301 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4302 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4303}
4304
4305static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4306{
4307 cfs_rq->runtime_enabled = 0;
4308 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4309}
4310
77a4d1a1 4311void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4312{
4cfafd30 4313 lockdep_assert_held(&cfs_b->lock);
029632fb 4314
4cfafd30
PZ
4315 if (!cfs_b->period_active) {
4316 cfs_b->period_active = 1;
4317 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4318 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4319 }
029632fb
PZ
4320}
4321
4322static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4323{
7f1a169b
TH
4324 /* init_cfs_bandwidth() was not called */
4325 if (!cfs_b->throttled_cfs_rq.next)
4326 return;
4327
029632fb
PZ
4328 hrtimer_cancel(&cfs_b->period_timer);
4329 hrtimer_cancel(&cfs_b->slack_timer);
4330}
4331
0e59bdae
KT
4332static void __maybe_unused update_runtime_enabled(struct rq *rq)
4333{
4334 struct cfs_rq *cfs_rq;
4335
4336 for_each_leaf_cfs_rq(rq, cfs_rq) {
4337 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4338
4339 raw_spin_lock(&cfs_b->lock);
4340 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4341 raw_spin_unlock(&cfs_b->lock);
4342 }
4343}
4344
38dc3348 4345static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4346{
4347 struct cfs_rq *cfs_rq;
4348
4349 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4350 if (!cfs_rq->runtime_enabled)
4351 continue;
4352
4353 /*
4354 * clock_task is not advancing so we just need to make sure
4355 * there's some valid quota amount
4356 */
51f2176d 4357 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4358 /*
4359 * Offline rq is schedulable till cpu is completely disabled
4360 * in take_cpu_down(), so we prevent new cfs throttling here.
4361 */
4362 cfs_rq->runtime_enabled = 0;
4363
029632fb
PZ
4364 if (cfs_rq_throttled(cfs_rq))
4365 unthrottle_cfs_rq(cfs_rq);
4366 }
4367}
4368
4369#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4370static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4371{
78becc27 4372 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4373}
4374
9dbdb155 4375static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4376static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4377static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4378static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4379
4380static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4381{
4382 return 0;
4383}
64660c86
PT
4384
4385static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4386{
4387 return 0;
4388}
4389
4390static inline int throttled_lb_pair(struct task_group *tg,
4391 int src_cpu, int dest_cpu)
4392{
4393 return 0;
4394}
029632fb
PZ
4395
4396void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4397
4398#ifdef CONFIG_FAIR_GROUP_SCHED
4399static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4400#endif
4401
029632fb
PZ
4402static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4403{
4404 return NULL;
4405}
4406static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4407static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4408static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4409
4410#endif /* CONFIG_CFS_BANDWIDTH */
4411
bf0f6f24
IM
4412/**************************************************
4413 * CFS operations on tasks:
4414 */
4415
8f4d37ec
PZ
4416#ifdef CONFIG_SCHED_HRTICK
4417static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4418{
8f4d37ec
PZ
4419 struct sched_entity *se = &p->se;
4420 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4421
4422 WARN_ON(task_rq(p) != rq);
4423
b39e66ea 4424 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4425 u64 slice = sched_slice(cfs_rq, se);
4426 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4427 s64 delta = slice - ran;
4428
4429 if (delta < 0) {
4430 if (rq->curr == p)
8875125e 4431 resched_curr(rq);
8f4d37ec
PZ
4432 return;
4433 }
31656519 4434 hrtick_start(rq, delta);
8f4d37ec
PZ
4435 }
4436}
a4c2f00f
PZ
4437
4438/*
4439 * called from enqueue/dequeue and updates the hrtick when the
4440 * current task is from our class and nr_running is low enough
4441 * to matter.
4442 */
4443static void hrtick_update(struct rq *rq)
4444{
4445 struct task_struct *curr = rq->curr;
4446
b39e66ea 4447 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4448 return;
4449
4450 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4451 hrtick_start_fair(rq, curr);
4452}
55e12e5e 4453#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4454static inline void
4455hrtick_start_fair(struct rq *rq, struct task_struct *p)
4456{
4457}
a4c2f00f
PZ
4458
4459static inline void hrtick_update(struct rq *rq)
4460{
4461}
8f4d37ec
PZ
4462#endif
4463
bf0f6f24
IM
4464/*
4465 * The enqueue_task method is called before nr_running is
4466 * increased. Here we update the fair scheduling stats and
4467 * then put the task into the rbtree:
4468 */
ea87bb78 4469static void
371fd7e7 4470enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4471{
4472 struct cfs_rq *cfs_rq;
62fb1851 4473 struct sched_entity *se = &p->se;
bf0f6f24
IM
4474
4475 for_each_sched_entity(se) {
62fb1851 4476 if (se->on_rq)
bf0f6f24
IM
4477 break;
4478 cfs_rq = cfs_rq_of(se);
88ec22d3 4479 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4480
4481 /*
4482 * end evaluation on encountering a throttled cfs_rq
4483 *
4484 * note: in the case of encountering a throttled cfs_rq we will
4485 * post the final h_nr_running increment below.
e210bffd 4486 */
85dac906
PT
4487 if (cfs_rq_throttled(cfs_rq))
4488 break;
953bfcd1 4489 cfs_rq->h_nr_running++;
85dac906 4490
88ec22d3 4491 flags = ENQUEUE_WAKEUP;
bf0f6f24 4492 }
8f4d37ec 4493
2069dd75 4494 for_each_sched_entity(se) {
0f317143 4495 cfs_rq = cfs_rq_of(se);
953bfcd1 4496 cfs_rq->h_nr_running++;
2069dd75 4497
85dac906
PT
4498 if (cfs_rq_throttled(cfs_rq))
4499 break;
4500
9d89c257 4501 update_load_avg(se, 1);
17bc14b7 4502 update_cfs_shares(cfs_rq);
2069dd75
PZ
4503 }
4504
cd126afe 4505 if (!se)
72465447 4506 add_nr_running(rq, 1);
cd126afe 4507
a4c2f00f 4508 hrtick_update(rq);
bf0f6f24
IM
4509}
4510
2f36825b
VP
4511static void set_next_buddy(struct sched_entity *se);
4512
bf0f6f24
IM
4513/*
4514 * The dequeue_task method is called before nr_running is
4515 * decreased. We remove the task from the rbtree and
4516 * update the fair scheduling stats:
4517 */
371fd7e7 4518static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4519{
4520 struct cfs_rq *cfs_rq;
62fb1851 4521 struct sched_entity *se = &p->se;
2f36825b 4522 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4523
4524 for_each_sched_entity(se) {
4525 cfs_rq = cfs_rq_of(se);
371fd7e7 4526 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4527
4528 /*
4529 * end evaluation on encountering a throttled cfs_rq
4530 *
4531 * note: in the case of encountering a throttled cfs_rq we will
4532 * post the final h_nr_running decrement below.
4533 */
4534 if (cfs_rq_throttled(cfs_rq))
4535 break;
953bfcd1 4536 cfs_rq->h_nr_running--;
2069dd75 4537
bf0f6f24 4538 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4539 if (cfs_rq->load.weight) {
754bd598
KK
4540 /* Avoid re-evaluating load for this entity: */
4541 se = parent_entity(se);
2f36825b
VP
4542 /*
4543 * Bias pick_next to pick a task from this cfs_rq, as
4544 * p is sleeping when it is within its sched_slice.
4545 */
754bd598
KK
4546 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4547 set_next_buddy(se);
bf0f6f24 4548 break;
2f36825b 4549 }
371fd7e7 4550 flags |= DEQUEUE_SLEEP;
bf0f6f24 4551 }
8f4d37ec 4552
2069dd75 4553 for_each_sched_entity(se) {
0f317143 4554 cfs_rq = cfs_rq_of(se);
953bfcd1 4555 cfs_rq->h_nr_running--;
2069dd75 4556
85dac906
PT
4557 if (cfs_rq_throttled(cfs_rq))
4558 break;
4559
9d89c257 4560 update_load_avg(se, 1);
17bc14b7 4561 update_cfs_shares(cfs_rq);
2069dd75
PZ
4562 }
4563
cd126afe 4564 if (!se)
72465447 4565 sub_nr_running(rq, 1);
cd126afe 4566
a4c2f00f 4567 hrtick_update(rq);
bf0f6f24
IM
4568}
4569
e7693a36 4570#ifdef CONFIG_SMP
9fd81dd5 4571#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4572/*
4573 * per rq 'load' arrray crap; XXX kill this.
4574 */
4575
4576/*
d937cdc5 4577 * The exact cpuload calculated at every tick would be:
3289bdb4 4578 *
d937cdc5
PZ
4579 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4580 *
4581 * If a cpu misses updates for n ticks (as it was idle) and update gets
4582 * called on the n+1-th tick when cpu may be busy, then we have:
4583 *
4584 * load_n = (1 - 1/2^i)^n * load_0
4585 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4586 *
4587 * decay_load_missed() below does efficient calculation of
3289bdb4 4588 *
d937cdc5
PZ
4589 * load' = (1 - 1/2^i)^n * load
4590 *
4591 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4592 * This allows us to precompute the above in said factors, thereby allowing the
4593 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4594 * fixed_power_int())
3289bdb4 4595 *
d937cdc5 4596 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4597 */
4598#define DEGRADE_SHIFT 7
d937cdc5
PZ
4599
4600static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4601static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4602 { 0, 0, 0, 0, 0, 0, 0, 0 },
4603 { 64, 32, 8, 0, 0, 0, 0, 0 },
4604 { 96, 72, 40, 12, 1, 0, 0, 0 },
4605 { 112, 98, 75, 43, 15, 1, 0, 0 },
4606 { 120, 112, 98, 76, 45, 16, 2, 0 }
4607};
3289bdb4
PZ
4608
4609/*
4610 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4611 * would be when CPU is idle and so we just decay the old load without
4612 * adding any new load.
4613 */
4614static unsigned long
4615decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4616{
4617 int j = 0;
4618
4619 if (!missed_updates)
4620 return load;
4621
4622 if (missed_updates >= degrade_zero_ticks[idx])
4623 return 0;
4624
4625 if (idx == 1)
4626 return load >> missed_updates;
4627
4628 while (missed_updates) {
4629 if (missed_updates % 2)
4630 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4631
4632 missed_updates >>= 1;
4633 j++;
4634 }
4635 return load;
4636}
9fd81dd5 4637#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4638
59543275 4639/**
cee1afce 4640 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4641 * @this_rq: The rq to update statistics for
4642 * @this_load: The current load
4643 * @pending_updates: The number of missed updates
59543275 4644 *
3289bdb4 4645 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4646 * scheduler tick (TICK_NSEC).
4647 *
4648 * This function computes a decaying average:
4649 *
4650 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4651 *
4652 * Because of NOHZ it might not get called on every tick which gives need for
4653 * the @pending_updates argument.
4654 *
4655 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4656 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4657 * = A * (A * load[i]_n-2 + B) + B
4658 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4659 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4660 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4661 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4662 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4663 *
4664 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4665 * any change in load would have resulted in the tick being turned back on.
4666 *
4667 * For regular NOHZ, this reduces to:
4668 *
4669 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4670 *
4671 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4672 * term.
3289bdb4 4673 */
1f41906a
FW
4674static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4675 unsigned long pending_updates)
3289bdb4 4676{
9fd81dd5 4677 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4678 int i, scale;
4679
4680 this_rq->nr_load_updates++;
4681
4682 /* Update our load: */
4683 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4684 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4685 unsigned long old_load, new_load;
4686
4687 /* scale is effectively 1 << i now, and >> i divides by scale */
4688
7400d3bb 4689 old_load = this_rq->cpu_load[i];
9fd81dd5 4690#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4691 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4692 if (tickless_load) {
4693 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4694 /*
4695 * old_load can never be a negative value because a
4696 * decayed tickless_load cannot be greater than the
4697 * original tickless_load.
4698 */
4699 old_load += tickless_load;
4700 }
9fd81dd5 4701#endif
3289bdb4
PZ
4702 new_load = this_load;
4703 /*
4704 * Round up the averaging division if load is increasing. This
4705 * prevents us from getting stuck on 9 if the load is 10, for
4706 * example.
4707 */
4708 if (new_load > old_load)
4709 new_load += scale - 1;
4710
4711 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4712 }
4713
4714 sched_avg_update(this_rq);
4715}
4716
7ea241af
YD
4717/* Used instead of source_load when we know the type == 0 */
4718static unsigned long weighted_cpuload(const int cpu)
4719{
4720 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4721}
4722
3289bdb4 4723#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4724/*
4725 * There is no sane way to deal with nohz on smp when using jiffies because the
4726 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4727 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4728 *
4729 * Therefore we need to avoid the delta approach from the regular tick when
4730 * possible since that would seriously skew the load calculation. This is why we
4731 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4732 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4733 * loop exit, nohz_idle_balance, nohz full exit...)
4734 *
4735 * This means we might still be one tick off for nohz periods.
4736 */
4737
4738static void cpu_load_update_nohz(struct rq *this_rq,
4739 unsigned long curr_jiffies,
4740 unsigned long load)
be68a682
FW
4741{
4742 unsigned long pending_updates;
4743
4744 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4745 if (pending_updates) {
4746 this_rq->last_load_update_tick = curr_jiffies;
4747 /*
4748 * In the regular NOHZ case, we were idle, this means load 0.
4749 * In the NOHZ_FULL case, we were non-idle, we should consider
4750 * its weighted load.
4751 */
1f41906a 4752 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4753 }
4754}
4755
3289bdb4
PZ
4756/*
4757 * Called from nohz_idle_balance() to update the load ratings before doing the
4758 * idle balance.
4759 */
cee1afce 4760static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4761{
3289bdb4
PZ
4762 /*
4763 * bail if there's load or we're actually up-to-date.
4764 */
be68a682 4765 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4766 return;
4767
1f41906a 4768 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4769}
4770
4771/*
1f41906a
FW
4772 * Record CPU load on nohz entry so we know the tickless load to account
4773 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4774 * than other cpu_load[idx] but it should be fine as cpu_load readers
4775 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4776 */
1f41906a 4777void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4778{
4779 struct rq *this_rq = this_rq();
1f41906a
FW
4780
4781 /*
4782 * This is all lockless but should be fine. If weighted_cpuload changes
4783 * concurrently we'll exit nohz. And cpu_load write can race with
4784 * cpu_load_update_idle() but both updater would be writing the same.
4785 */
4786 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4787}
4788
4789/*
4790 * Account the tickless load in the end of a nohz frame.
4791 */
4792void cpu_load_update_nohz_stop(void)
4793{
316c1608 4794 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4795 struct rq *this_rq = this_rq();
4796 unsigned long load;
3289bdb4
PZ
4797
4798 if (curr_jiffies == this_rq->last_load_update_tick)
4799 return;
4800
1f41906a 4801 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4802 raw_spin_lock(&this_rq->lock);
b52fad2d 4803 update_rq_clock(this_rq);
1f41906a 4804 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4805 raw_spin_unlock(&this_rq->lock);
4806}
1f41906a
FW
4807#else /* !CONFIG_NO_HZ_COMMON */
4808static inline void cpu_load_update_nohz(struct rq *this_rq,
4809 unsigned long curr_jiffies,
4810 unsigned long load) { }
4811#endif /* CONFIG_NO_HZ_COMMON */
4812
4813static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4814{
9fd81dd5 4815#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4816 /* See the mess around cpu_load_update_nohz(). */
4817 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4818#endif
1f41906a
FW
4819 cpu_load_update(this_rq, load, 1);
4820}
3289bdb4
PZ
4821
4822/*
4823 * Called from scheduler_tick()
4824 */
cee1afce 4825void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4826{
7ea241af 4827 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4828
4829 if (tick_nohz_tick_stopped())
4830 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4831 else
4832 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4833}
4834
029632fb
PZ
4835/*
4836 * Return a low guess at the load of a migration-source cpu weighted
4837 * according to the scheduling class and "nice" value.
4838 *
4839 * We want to under-estimate the load of migration sources, to
4840 * balance conservatively.
4841 */
4842static unsigned long source_load(int cpu, int type)
4843{
4844 struct rq *rq = cpu_rq(cpu);
4845 unsigned long total = weighted_cpuload(cpu);
4846
4847 if (type == 0 || !sched_feat(LB_BIAS))
4848 return total;
4849
4850 return min(rq->cpu_load[type-1], total);
4851}
4852
4853/*
4854 * Return a high guess at the load of a migration-target cpu weighted
4855 * according to the scheduling class and "nice" value.
4856 */
4857static unsigned long target_load(int cpu, int type)
4858{
4859 struct rq *rq = cpu_rq(cpu);
4860 unsigned long total = weighted_cpuload(cpu);
4861
4862 if (type == 0 || !sched_feat(LB_BIAS))
4863 return total;
4864
4865 return max(rq->cpu_load[type-1], total);
4866}
4867
ced549fa 4868static unsigned long capacity_of(int cpu)
029632fb 4869{
ced549fa 4870 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4871}
4872
ca6d75e6
VG
4873static unsigned long capacity_orig_of(int cpu)
4874{
4875 return cpu_rq(cpu)->cpu_capacity_orig;
4876}
4877
029632fb
PZ
4878static unsigned long cpu_avg_load_per_task(int cpu)
4879{
4880 struct rq *rq = cpu_rq(cpu);
316c1608 4881 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4882 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4883
4884 if (nr_running)
b92486cb 4885 return load_avg / nr_running;
029632fb
PZ
4886
4887 return 0;
4888}
4889
bb3469ac 4890#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4891/*
4892 * effective_load() calculates the load change as seen from the root_task_group
4893 *
4894 * Adding load to a group doesn't make a group heavier, but can cause movement
4895 * of group shares between cpus. Assuming the shares were perfectly aligned one
4896 * can calculate the shift in shares.
cf5f0acf
PZ
4897 *
4898 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4899 * on this @cpu and results in a total addition (subtraction) of @wg to the
4900 * total group weight.
4901 *
4902 * Given a runqueue weight distribution (rw_i) we can compute a shares
4903 * distribution (s_i) using:
4904 *
4905 * s_i = rw_i / \Sum rw_j (1)
4906 *
4907 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4908 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4909 * shares distribution (s_i):
4910 *
4911 * rw_i = { 2, 4, 1, 0 }
4912 * s_i = { 2/7, 4/7, 1/7, 0 }
4913 *
4914 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4915 * task used to run on and the CPU the waker is running on), we need to
4916 * compute the effect of waking a task on either CPU and, in case of a sync
4917 * wakeup, compute the effect of the current task going to sleep.
4918 *
4919 * So for a change of @wl to the local @cpu with an overall group weight change
4920 * of @wl we can compute the new shares distribution (s'_i) using:
4921 *
4922 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4923 *
4924 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4925 * differences in waking a task to CPU 0. The additional task changes the
4926 * weight and shares distributions like:
4927 *
4928 * rw'_i = { 3, 4, 1, 0 }
4929 * s'_i = { 3/8, 4/8, 1/8, 0 }
4930 *
4931 * We can then compute the difference in effective weight by using:
4932 *
4933 * dw_i = S * (s'_i - s_i) (3)
4934 *
4935 * Where 'S' is the group weight as seen by its parent.
4936 *
4937 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4938 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4939 * 4/7) times the weight of the group.
f5bfb7d9 4940 */
2069dd75 4941static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4942{
4be9daaa 4943 struct sched_entity *se = tg->se[cpu];
f1d239f7 4944
9722c2da 4945 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4946 return wl;
4947
4be9daaa 4948 for_each_sched_entity(se) {
7dd49125
PZ
4949 struct cfs_rq *cfs_rq = se->my_q;
4950 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 4951
7dd49125 4952 tg = cfs_rq->tg;
bb3469ac 4953
cf5f0acf
PZ
4954 /*
4955 * W = @wg + \Sum rw_j
4956 */
7dd49125
PZ
4957 W = wg + atomic_long_read(&tg->load_avg);
4958
4959 /* Ensure \Sum rw_j >= rw_i */
4960 W -= cfs_rq->tg_load_avg_contrib;
4961 W += w;
4be9daaa 4962
cf5f0acf
PZ
4963 /*
4964 * w = rw_i + @wl
4965 */
7dd49125 4966 w += wl;
940959e9 4967
cf5f0acf
PZ
4968 /*
4969 * wl = S * s'_i; see (2)
4970 */
4971 if (W > 0 && w < W)
32a8df4e 4972 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4973 else
4974 wl = tg->shares;
940959e9 4975
cf5f0acf
PZ
4976 /*
4977 * Per the above, wl is the new se->load.weight value; since
4978 * those are clipped to [MIN_SHARES, ...) do so now. See
4979 * calc_cfs_shares().
4980 */
977dda7c
PT
4981 if (wl < MIN_SHARES)
4982 wl = MIN_SHARES;
cf5f0acf
PZ
4983
4984 /*
4985 * wl = dw_i = S * (s'_i - s_i); see (3)
4986 */
9d89c257 4987 wl -= se->avg.load_avg;
cf5f0acf
PZ
4988
4989 /*
4990 * Recursively apply this logic to all parent groups to compute
4991 * the final effective load change on the root group. Since
4992 * only the @tg group gets extra weight, all parent groups can
4993 * only redistribute existing shares. @wl is the shift in shares
4994 * resulting from this level per the above.
4995 */
4be9daaa 4996 wg = 0;
4be9daaa 4997 }
bb3469ac 4998
4be9daaa 4999 return wl;
bb3469ac
PZ
5000}
5001#else
4be9daaa 5002
58d081b5 5003static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5004{
83378269 5005 return wl;
bb3469ac 5006}
4be9daaa 5007
bb3469ac
PZ
5008#endif
5009
c58d25f3
PZ
5010static void record_wakee(struct task_struct *p)
5011{
5012 /*
5013 * Only decay a single time; tasks that have less then 1 wakeup per
5014 * jiffy will not have built up many flips.
5015 */
5016 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5017 current->wakee_flips >>= 1;
5018 current->wakee_flip_decay_ts = jiffies;
5019 }
5020
5021 if (current->last_wakee != p) {
5022 current->last_wakee = p;
5023 current->wakee_flips++;
5024 }
5025}
5026
63b0e9ed
MG
5027/*
5028 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5029 *
63b0e9ed 5030 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5031 * at a frequency roughly N times higher than one of its wakees.
5032 *
5033 * In order to determine whether we should let the load spread vs consolidating
5034 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5035 * partner, and a factor of lls_size higher frequency in the other.
5036 *
5037 * With both conditions met, we can be relatively sure that the relationship is
5038 * non-monogamous, with partner count exceeding socket size.
5039 *
5040 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5041 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5042 * socket size.
63b0e9ed 5043 */
62470419
MW
5044static int wake_wide(struct task_struct *p)
5045{
63b0e9ed
MG
5046 unsigned int master = current->wakee_flips;
5047 unsigned int slave = p->wakee_flips;
7d9ffa89 5048 int factor = this_cpu_read(sd_llc_size);
62470419 5049
63b0e9ed
MG
5050 if (master < slave)
5051 swap(master, slave);
5052 if (slave < factor || master < slave * factor)
5053 return 0;
5054 return 1;
62470419
MW
5055}
5056
c88d5910 5057static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 5058{
e37b6a7b 5059 s64 this_load, load;
bd61c98f 5060 s64 this_eff_load, prev_eff_load;
c88d5910 5061 int idx, this_cpu, prev_cpu;
c88d5910 5062 struct task_group *tg;
83378269 5063 unsigned long weight;
b3137bc8 5064 int balanced;
098fb9db 5065
c88d5910
PZ
5066 idx = sd->wake_idx;
5067 this_cpu = smp_processor_id();
5068 prev_cpu = task_cpu(p);
5069 load = source_load(prev_cpu, idx);
5070 this_load = target_load(this_cpu, idx);
098fb9db 5071
b3137bc8
MG
5072 /*
5073 * If sync wakeup then subtract the (maximum possible)
5074 * effect of the currently running task from the load
5075 * of the current CPU:
5076 */
83378269
PZ
5077 if (sync) {
5078 tg = task_group(current);
9d89c257 5079 weight = current->se.avg.load_avg;
83378269 5080
c88d5910 5081 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5082 load += effective_load(tg, prev_cpu, 0, -weight);
5083 }
b3137bc8 5084
83378269 5085 tg = task_group(p);
9d89c257 5086 weight = p->se.avg.load_avg;
b3137bc8 5087
71a29aa7
PZ
5088 /*
5089 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5090 * due to the sync cause above having dropped this_load to 0, we'll
5091 * always have an imbalance, but there's really nothing you can do
5092 * about that, so that's good too.
71a29aa7
PZ
5093 *
5094 * Otherwise check if either cpus are near enough in load to allow this
5095 * task to be woken on this_cpu.
5096 */
bd61c98f
VG
5097 this_eff_load = 100;
5098 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5099
bd61c98f
VG
5100 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5101 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5102
bd61c98f 5103 if (this_load > 0) {
e51fd5e2
PZ
5104 this_eff_load *= this_load +
5105 effective_load(tg, this_cpu, weight, weight);
5106
e51fd5e2 5107 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5108 }
e51fd5e2 5109
bd61c98f 5110 balanced = this_eff_load <= prev_eff_load;
098fb9db 5111
41acab88 5112 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5113
05bfb65f
VG
5114 if (!balanced)
5115 return 0;
098fb9db 5116
05bfb65f
VG
5117 schedstat_inc(sd, ttwu_move_affine);
5118 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5119
5120 return 1;
098fb9db
IM
5121}
5122
aaee1203
PZ
5123/*
5124 * find_idlest_group finds and returns the least busy CPU group within the
5125 * domain.
5126 */
5127static struct sched_group *
78e7ed53 5128find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5129 int this_cpu, int sd_flag)
e7693a36 5130{
b3bd3de6 5131 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5132 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5133 int load_idx = sd->forkexec_idx;
aaee1203 5134 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5135
c44f2a02
VG
5136 if (sd_flag & SD_BALANCE_WAKE)
5137 load_idx = sd->wake_idx;
5138
aaee1203
PZ
5139 do {
5140 unsigned long load, avg_load;
5141 int local_group;
5142 int i;
e7693a36 5143
aaee1203
PZ
5144 /* Skip over this group if it has no CPUs allowed */
5145 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5146 tsk_cpus_allowed(p)))
aaee1203
PZ
5147 continue;
5148
5149 local_group = cpumask_test_cpu(this_cpu,
5150 sched_group_cpus(group));
5151
5152 /* Tally up the load of all CPUs in the group */
5153 avg_load = 0;
5154
5155 for_each_cpu(i, sched_group_cpus(group)) {
5156 /* Bias balancing toward cpus of our domain */
5157 if (local_group)
5158 load = source_load(i, load_idx);
5159 else
5160 load = target_load(i, load_idx);
5161
5162 avg_load += load;
5163 }
5164
63b2ca30 5165 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5166 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5167
5168 if (local_group) {
5169 this_load = avg_load;
aaee1203
PZ
5170 } else if (avg_load < min_load) {
5171 min_load = avg_load;
5172 idlest = group;
5173 }
5174 } while (group = group->next, group != sd->groups);
5175
5176 if (!idlest || 100*this_load < imbalance*min_load)
5177 return NULL;
5178 return idlest;
5179}
5180
5181/*
5182 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5183 */
5184static int
5185find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5186{
5187 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5188 unsigned int min_exit_latency = UINT_MAX;
5189 u64 latest_idle_timestamp = 0;
5190 int least_loaded_cpu = this_cpu;
5191 int shallowest_idle_cpu = -1;
aaee1203
PZ
5192 int i;
5193
5194 /* Traverse only the allowed CPUs */
fa17b507 5195 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5196 if (idle_cpu(i)) {
5197 struct rq *rq = cpu_rq(i);
5198 struct cpuidle_state *idle = idle_get_state(rq);
5199 if (idle && idle->exit_latency < min_exit_latency) {
5200 /*
5201 * We give priority to a CPU whose idle state
5202 * has the smallest exit latency irrespective
5203 * of any idle timestamp.
5204 */
5205 min_exit_latency = idle->exit_latency;
5206 latest_idle_timestamp = rq->idle_stamp;
5207 shallowest_idle_cpu = i;
5208 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5209 rq->idle_stamp > latest_idle_timestamp) {
5210 /*
5211 * If equal or no active idle state, then
5212 * the most recently idled CPU might have
5213 * a warmer cache.
5214 */
5215 latest_idle_timestamp = rq->idle_stamp;
5216 shallowest_idle_cpu = i;
5217 }
9f96742a 5218 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5219 load = weighted_cpuload(i);
5220 if (load < min_load || (load == min_load && i == this_cpu)) {
5221 min_load = load;
5222 least_loaded_cpu = i;
5223 }
e7693a36
GH
5224 }
5225 }
5226
83a0a96a 5227 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5228}
e7693a36 5229
a50bde51
PZ
5230/*
5231 * Try and locate an idle CPU in the sched_domain.
5232 */
99bd5e2f 5233static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5234{
99bd5e2f 5235 struct sched_domain *sd;
37407ea7 5236 struct sched_group *sg;
e0a79f52 5237 int i = task_cpu(p);
a50bde51 5238
e0a79f52
MG
5239 if (idle_cpu(target))
5240 return target;
99bd5e2f
SS
5241
5242 /*
e0a79f52 5243 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5244 */
e0a79f52
MG
5245 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5246 return i;
a50bde51
PZ
5247
5248 /*
d4335581
MF
5249 * Otherwise, iterate the domains and find an eligible idle cpu.
5250 *
5251 * A completely idle sched group at higher domains is more
5252 * desirable than an idle group at a lower level, because lower
5253 * domains have smaller groups and usually share hardware
5254 * resources which causes tasks to contend on them, e.g. x86
5255 * hyperthread siblings in the lowest domain (SMT) can contend
5256 * on the shared cpu pipeline.
5257 *
5258 * However, while we prefer idle groups at higher domains
5259 * finding an idle cpu at the lowest domain is still better than
5260 * returning 'target', which we've already established, isn't
5261 * idle.
a50bde51 5262 */
518cd623 5263 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5264 for_each_lower_domain(sd) {
37407ea7
LT
5265 sg = sd->groups;
5266 do {
5267 if (!cpumask_intersects(sched_group_cpus(sg),
5268 tsk_cpus_allowed(p)))
5269 goto next;
5270
d4335581 5271 /* Ensure the entire group is idle */
37407ea7 5272 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5273 if (i == target || !idle_cpu(i))
37407ea7
LT
5274 goto next;
5275 }
970e1789 5276
d4335581
MF
5277 /*
5278 * It doesn't matter which cpu we pick, the
5279 * whole group is idle.
5280 */
37407ea7
LT
5281 target = cpumask_first_and(sched_group_cpus(sg),
5282 tsk_cpus_allowed(p));
5283 goto done;
5284next:
5285 sg = sg->next;
5286 } while (sg != sd->groups);
5287 }
5288done:
a50bde51
PZ
5289 return target;
5290}
231678b7 5291
8bb5b00c 5292/*
9e91d61d 5293 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5294 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5295 * compare the utilization with the capacity of the CPU that is available for
5296 * CFS task (ie cpu_capacity).
231678b7
DE
5297 *
5298 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5299 * recent utilization of currently non-runnable tasks on a CPU. It represents
5300 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5301 * capacity_orig is the cpu_capacity available at the highest frequency
5302 * (arch_scale_freq_capacity()).
5303 * The utilization of a CPU converges towards a sum equal to or less than the
5304 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5305 * the running time on this CPU scaled by capacity_curr.
5306 *
5307 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5308 * higher than capacity_orig because of unfortunate rounding in
5309 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5310 * the average stabilizes with the new running time. We need to check that the
5311 * utilization stays within the range of [0..capacity_orig] and cap it if
5312 * necessary. Without utilization capping, a group could be seen as overloaded
5313 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5314 * available capacity. We allow utilization to overshoot capacity_curr (but not
5315 * capacity_orig) as it useful for predicting the capacity required after task
5316 * migrations (scheduler-driven DVFS).
8bb5b00c 5317 */
9e91d61d 5318static int cpu_util(int cpu)
8bb5b00c 5319{
9e91d61d 5320 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5321 unsigned long capacity = capacity_orig_of(cpu);
5322
231678b7 5323 return (util >= capacity) ? capacity : util;
8bb5b00c 5324}
a50bde51 5325
aaee1203 5326/*
de91b9cb
MR
5327 * select_task_rq_fair: Select target runqueue for the waking task in domains
5328 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5329 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5330 *
de91b9cb
MR
5331 * Balances load by selecting the idlest cpu in the idlest group, or under
5332 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5333 *
de91b9cb 5334 * Returns the target cpu number.
aaee1203
PZ
5335 *
5336 * preempt must be disabled.
5337 */
0017d735 5338static int
ac66f547 5339select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5340{
29cd8bae 5341 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5342 int cpu = smp_processor_id();
63b0e9ed 5343 int new_cpu = prev_cpu;
99bd5e2f 5344 int want_affine = 0;
5158f4e4 5345 int sync = wake_flags & WF_SYNC;
c88d5910 5346
c58d25f3
PZ
5347 if (sd_flag & SD_BALANCE_WAKE) {
5348 record_wakee(p);
63b0e9ed 5349 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5350 }
aaee1203 5351
dce840a0 5352 rcu_read_lock();
aaee1203 5353 for_each_domain(cpu, tmp) {
e4f42888 5354 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5355 break;
e4f42888 5356
fe3bcfe1 5357 /*
99bd5e2f
SS
5358 * If both cpu and prev_cpu are part of this domain,
5359 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5360 */
99bd5e2f
SS
5361 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5362 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5363 affine_sd = tmp;
29cd8bae 5364 break;
f03542a7 5365 }
29cd8bae 5366
f03542a7 5367 if (tmp->flags & sd_flag)
29cd8bae 5368 sd = tmp;
63b0e9ed
MG
5369 else if (!want_affine)
5370 break;
29cd8bae
PZ
5371 }
5372
63b0e9ed
MG
5373 if (affine_sd) {
5374 sd = NULL; /* Prefer wake_affine over balance flags */
5375 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5376 new_cpu = cpu;
8b911acd 5377 }
e7693a36 5378
63b0e9ed
MG
5379 if (!sd) {
5380 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5381 new_cpu = select_idle_sibling(p, new_cpu);
5382
5383 } else while (sd) {
aaee1203 5384 struct sched_group *group;
c88d5910 5385 int weight;
098fb9db 5386
0763a660 5387 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5388 sd = sd->child;
5389 continue;
5390 }
098fb9db 5391
c44f2a02 5392 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5393 if (!group) {
5394 sd = sd->child;
5395 continue;
5396 }
4ae7d5ce 5397
d7c33c49 5398 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5399 if (new_cpu == -1 || new_cpu == cpu) {
5400 /* Now try balancing at a lower domain level of cpu */
5401 sd = sd->child;
5402 continue;
e7693a36 5403 }
aaee1203
PZ
5404
5405 /* Now try balancing at a lower domain level of new_cpu */
5406 cpu = new_cpu;
669c55e9 5407 weight = sd->span_weight;
aaee1203
PZ
5408 sd = NULL;
5409 for_each_domain(cpu, tmp) {
669c55e9 5410 if (weight <= tmp->span_weight)
aaee1203 5411 break;
0763a660 5412 if (tmp->flags & sd_flag)
aaee1203
PZ
5413 sd = tmp;
5414 }
5415 /* while loop will break here if sd == NULL */
e7693a36 5416 }
dce840a0 5417 rcu_read_unlock();
e7693a36 5418
c88d5910 5419 return new_cpu;
e7693a36 5420}
0a74bef8
PT
5421
5422/*
5423 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5424 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5425 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5426 */
5a4fd036 5427static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5428{
59efa0ba
PZ
5429 /*
5430 * As blocked tasks retain absolute vruntime the migration needs to
5431 * deal with this by subtracting the old and adding the new
5432 * min_vruntime -- the latter is done by enqueue_entity() when placing
5433 * the task on the new runqueue.
5434 */
5435 if (p->state == TASK_WAKING) {
5436 struct sched_entity *se = &p->se;
5437 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5438 u64 min_vruntime;
5439
5440#ifndef CONFIG_64BIT
5441 u64 min_vruntime_copy;
5442
5443 do {
5444 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5445 smp_rmb();
5446 min_vruntime = cfs_rq->min_vruntime;
5447 } while (min_vruntime != min_vruntime_copy);
5448#else
5449 min_vruntime = cfs_rq->min_vruntime;
5450#endif
5451
5452 se->vruntime -= min_vruntime;
5453 }
5454
aff3e498 5455 /*
9d89c257
YD
5456 * We are supposed to update the task to "current" time, then its up to date
5457 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5458 * what current time is, so simply throw away the out-of-date time. This
5459 * will result in the wakee task is less decayed, but giving the wakee more
5460 * load sounds not bad.
aff3e498 5461 */
9d89c257
YD
5462 remove_entity_load_avg(&p->se);
5463
5464 /* Tell new CPU we are migrated */
5465 p->se.avg.last_update_time = 0;
3944a927
BS
5466
5467 /* We have migrated, no longer consider this task hot */
9d89c257 5468 p->se.exec_start = 0;
0a74bef8 5469}
12695578
YD
5470
5471static void task_dead_fair(struct task_struct *p)
5472{
5473 remove_entity_load_avg(&p->se);
5474}
e7693a36
GH
5475#endif /* CONFIG_SMP */
5476
e52fb7c0
PZ
5477static unsigned long
5478wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5479{
5480 unsigned long gran = sysctl_sched_wakeup_granularity;
5481
5482 /*
e52fb7c0
PZ
5483 * Since its curr running now, convert the gran from real-time
5484 * to virtual-time in his units.
13814d42
MG
5485 *
5486 * By using 'se' instead of 'curr' we penalize light tasks, so
5487 * they get preempted easier. That is, if 'se' < 'curr' then
5488 * the resulting gran will be larger, therefore penalizing the
5489 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5490 * be smaller, again penalizing the lighter task.
5491 *
5492 * This is especially important for buddies when the leftmost
5493 * task is higher priority than the buddy.
0bbd3336 5494 */
f4ad9bd2 5495 return calc_delta_fair(gran, se);
0bbd3336
PZ
5496}
5497
464b7527
PZ
5498/*
5499 * Should 'se' preempt 'curr'.
5500 *
5501 * |s1
5502 * |s2
5503 * |s3
5504 * g
5505 * |<--->|c
5506 *
5507 * w(c, s1) = -1
5508 * w(c, s2) = 0
5509 * w(c, s3) = 1
5510 *
5511 */
5512static int
5513wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5514{
5515 s64 gran, vdiff = curr->vruntime - se->vruntime;
5516
5517 if (vdiff <= 0)
5518 return -1;
5519
e52fb7c0 5520 gran = wakeup_gran(curr, se);
464b7527
PZ
5521 if (vdiff > gran)
5522 return 1;
5523
5524 return 0;
5525}
5526
02479099
PZ
5527static void set_last_buddy(struct sched_entity *se)
5528{
69c80f3e
VP
5529 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5530 return;
5531
5532 for_each_sched_entity(se)
5533 cfs_rq_of(se)->last = se;
02479099
PZ
5534}
5535
5536static void set_next_buddy(struct sched_entity *se)
5537{
69c80f3e
VP
5538 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5539 return;
5540
5541 for_each_sched_entity(se)
5542 cfs_rq_of(se)->next = se;
02479099
PZ
5543}
5544
ac53db59
RR
5545static void set_skip_buddy(struct sched_entity *se)
5546{
69c80f3e
VP
5547 for_each_sched_entity(se)
5548 cfs_rq_of(se)->skip = se;
ac53db59
RR
5549}
5550
bf0f6f24
IM
5551/*
5552 * Preempt the current task with a newly woken task if needed:
5553 */
5a9b86f6 5554static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5555{
5556 struct task_struct *curr = rq->curr;
8651a86c 5557 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5558 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5559 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5560 int next_buddy_marked = 0;
bf0f6f24 5561
4ae7d5ce
IM
5562 if (unlikely(se == pse))
5563 return;
5564
5238cdd3 5565 /*
163122b7 5566 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5567 * unconditionally check_prempt_curr() after an enqueue (which may have
5568 * lead to a throttle). This both saves work and prevents false
5569 * next-buddy nomination below.
5570 */
5571 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5572 return;
5573
2f36825b 5574 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5575 set_next_buddy(pse);
2f36825b
VP
5576 next_buddy_marked = 1;
5577 }
57fdc26d 5578
aec0a514
BR
5579 /*
5580 * We can come here with TIF_NEED_RESCHED already set from new task
5581 * wake up path.
5238cdd3
PT
5582 *
5583 * Note: this also catches the edge-case of curr being in a throttled
5584 * group (e.g. via set_curr_task), since update_curr() (in the
5585 * enqueue of curr) will have resulted in resched being set. This
5586 * prevents us from potentially nominating it as a false LAST_BUDDY
5587 * below.
aec0a514
BR
5588 */
5589 if (test_tsk_need_resched(curr))
5590 return;
5591
a2f5c9ab
DH
5592 /* Idle tasks are by definition preempted by non-idle tasks. */
5593 if (unlikely(curr->policy == SCHED_IDLE) &&
5594 likely(p->policy != SCHED_IDLE))
5595 goto preempt;
5596
91c234b4 5597 /*
a2f5c9ab
DH
5598 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5599 * is driven by the tick):
91c234b4 5600 */
8ed92e51 5601 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5602 return;
bf0f6f24 5603
464b7527 5604 find_matching_se(&se, &pse);
9bbd7374 5605 update_curr(cfs_rq_of(se));
002f128b 5606 BUG_ON(!pse);
2f36825b
VP
5607 if (wakeup_preempt_entity(se, pse) == 1) {
5608 /*
5609 * Bias pick_next to pick the sched entity that is
5610 * triggering this preemption.
5611 */
5612 if (!next_buddy_marked)
5613 set_next_buddy(pse);
3a7e73a2 5614 goto preempt;
2f36825b 5615 }
464b7527 5616
3a7e73a2 5617 return;
a65ac745 5618
3a7e73a2 5619preempt:
8875125e 5620 resched_curr(rq);
3a7e73a2
PZ
5621 /*
5622 * Only set the backward buddy when the current task is still
5623 * on the rq. This can happen when a wakeup gets interleaved
5624 * with schedule on the ->pre_schedule() or idle_balance()
5625 * point, either of which can * drop the rq lock.
5626 *
5627 * Also, during early boot the idle thread is in the fair class,
5628 * for obvious reasons its a bad idea to schedule back to it.
5629 */
5630 if (unlikely(!se->on_rq || curr == rq->idle))
5631 return;
5632
5633 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5634 set_last_buddy(se);
bf0f6f24
IM
5635}
5636
606dba2e 5637static struct task_struct *
e7904a28 5638pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5639{
5640 struct cfs_rq *cfs_rq = &rq->cfs;
5641 struct sched_entity *se;
678d5718 5642 struct task_struct *p;
37e117c0 5643 int new_tasks;
678d5718 5644
6e83125c 5645again:
678d5718
PZ
5646#ifdef CONFIG_FAIR_GROUP_SCHED
5647 if (!cfs_rq->nr_running)
38033c37 5648 goto idle;
678d5718 5649
3f1d2a31 5650 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5651 goto simple;
5652
5653 /*
5654 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5655 * likely that a next task is from the same cgroup as the current.
5656 *
5657 * Therefore attempt to avoid putting and setting the entire cgroup
5658 * hierarchy, only change the part that actually changes.
5659 */
5660
5661 do {
5662 struct sched_entity *curr = cfs_rq->curr;
5663
5664 /*
5665 * Since we got here without doing put_prev_entity() we also
5666 * have to consider cfs_rq->curr. If it is still a runnable
5667 * entity, update_curr() will update its vruntime, otherwise
5668 * forget we've ever seen it.
5669 */
54d27365
BS
5670 if (curr) {
5671 if (curr->on_rq)
5672 update_curr(cfs_rq);
5673 else
5674 curr = NULL;
678d5718 5675
54d27365
BS
5676 /*
5677 * This call to check_cfs_rq_runtime() will do the
5678 * throttle and dequeue its entity in the parent(s).
5679 * Therefore the 'simple' nr_running test will indeed
5680 * be correct.
5681 */
5682 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5683 goto simple;
5684 }
678d5718
PZ
5685
5686 se = pick_next_entity(cfs_rq, curr);
5687 cfs_rq = group_cfs_rq(se);
5688 } while (cfs_rq);
5689
5690 p = task_of(se);
5691
5692 /*
5693 * Since we haven't yet done put_prev_entity and if the selected task
5694 * is a different task than we started out with, try and touch the
5695 * least amount of cfs_rqs.
5696 */
5697 if (prev != p) {
5698 struct sched_entity *pse = &prev->se;
5699
5700 while (!(cfs_rq = is_same_group(se, pse))) {
5701 int se_depth = se->depth;
5702 int pse_depth = pse->depth;
5703
5704 if (se_depth <= pse_depth) {
5705 put_prev_entity(cfs_rq_of(pse), pse);
5706 pse = parent_entity(pse);
5707 }
5708 if (se_depth >= pse_depth) {
5709 set_next_entity(cfs_rq_of(se), se);
5710 se = parent_entity(se);
5711 }
5712 }
5713
5714 put_prev_entity(cfs_rq, pse);
5715 set_next_entity(cfs_rq, se);
5716 }
5717
5718 if (hrtick_enabled(rq))
5719 hrtick_start_fair(rq, p);
5720
5721 return p;
5722simple:
5723 cfs_rq = &rq->cfs;
5724#endif
bf0f6f24 5725
36ace27e 5726 if (!cfs_rq->nr_running)
38033c37 5727 goto idle;
bf0f6f24 5728
3f1d2a31 5729 put_prev_task(rq, prev);
606dba2e 5730
bf0f6f24 5731 do {
678d5718 5732 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5733 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5734 cfs_rq = group_cfs_rq(se);
5735 } while (cfs_rq);
5736
8f4d37ec 5737 p = task_of(se);
678d5718 5738
b39e66ea
MG
5739 if (hrtick_enabled(rq))
5740 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5741
5742 return p;
38033c37
PZ
5743
5744idle:
cbce1a68
PZ
5745 /*
5746 * This is OK, because current is on_cpu, which avoids it being picked
5747 * for load-balance and preemption/IRQs are still disabled avoiding
5748 * further scheduler activity on it and we're being very careful to
5749 * re-start the picking loop.
5750 */
e7904a28 5751 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5752 new_tasks = idle_balance(rq);
e7904a28 5753 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5754 /*
5755 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5756 * possible for any higher priority task to appear. In that case we
5757 * must re-start the pick_next_entity() loop.
5758 */
e4aa358b 5759 if (new_tasks < 0)
37e117c0
PZ
5760 return RETRY_TASK;
5761
e4aa358b 5762 if (new_tasks > 0)
38033c37 5763 goto again;
38033c37
PZ
5764
5765 return NULL;
bf0f6f24
IM
5766}
5767
5768/*
5769 * Account for a descheduled task:
5770 */
31ee529c 5771static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5772{
5773 struct sched_entity *se = &prev->se;
5774 struct cfs_rq *cfs_rq;
5775
5776 for_each_sched_entity(se) {
5777 cfs_rq = cfs_rq_of(se);
ab6cde26 5778 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5779 }
5780}
5781
ac53db59
RR
5782/*
5783 * sched_yield() is very simple
5784 *
5785 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5786 */
5787static void yield_task_fair(struct rq *rq)
5788{
5789 struct task_struct *curr = rq->curr;
5790 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5791 struct sched_entity *se = &curr->se;
5792
5793 /*
5794 * Are we the only task in the tree?
5795 */
5796 if (unlikely(rq->nr_running == 1))
5797 return;
5798
5799 clear_buddies(cfs_rq, se);
5800
5801 if (curr->policy != SCHED_BATCH) {
5802 update_rq_clock(rq);
5803 /*
5804 * Update run-time statistics of the 'current'.
5805 */
5806 update_curr(cfs_rq);
916671c0
MG
5807 /*
5808 * Tell update_rq_clock() that we've just updated,
5809 * so we don't do microscopic update in schedule()
5810 * and double the fastpath cost.
5811 */
9edfbfed 5812 rq_clock_skip_update(rq, true);
ac53db59
RR
5813 }
5814
5815 set_skip_buddy(se);
5816}
5817
d95f4122
MG
5818static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5819{
5820 struct sched_entity *se = &p->se;
5821
5238cdd3
PT
5822 /* throttled hierarchies are not runnable */
5823 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5824 return false;
5825
5826 /* Tell the scheduler that we'd really like pse to run next. */
5827 set_next_buddy(se);
5828
d95f4122
MG
5829 yield_task_fair(rq);
5830
5831 return true;
5832}
5833
681f3e68 5834#ifdef CONFIG_SMP
bf0f6f24 5835/**************************************************
e9c84cb8
PZ
5836 * Fair scheduling class load-balancing methods.
5837 *
5838 * BASICS
5839 *
5840 * The purpose of load-balancing is to achieve the same basic fairness the
5841 * per-cpu scheduler provides, namely provide a proportional amount of compute
5842 * time to each task. This is expressed in the following equation:
5843 *
5844 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5845 *
5846 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5847 * W_i,0 is defined as:
5848 *
5849 * W_i,0 = \Sum_j w_i,j (2)
5850 *
5851 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5852 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5853 *
5854 * The weight average is an exponential decay average of the instantaneous
5855 * weight:
5856 *
5857 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5858 *
ced549fa 5859 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5860 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5861 * can also include other factors [XXX].
5862 *
5863 * To achieve this balance we define a measure of imbalance which follows
5864 * directly from (1):
5865 *
ced549fa 5866 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5867 *
5868 * We them move tasks around to minimize the imbalance. In the continuous
5869 * function space it is obvious this converges, in the discrete case we get
5870 * a few fun cases generally called infeasible weight scenarios.
5871 *
5872 * [XXX expand on:
5873 * - infeasible weights;
5874 * - local vs global optima in the discrete case. ]
5875 *
5876 *
5877 * SCHED DOMAINS
5878 *
5879 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5880 * for all i,j solution, we create a tree of cpus that follows the hardware
5881 * topology where each level pairs two lower groups (or better). This results
5882 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5883 * tree to only the first of the previous level and we decrease the frequency
5884 * of load-balance at each level inv. proportional to the number of cpus in
5885 * the groups.
5886 *
5887 * This yields:
5888 *
5889 * log_2 n 1 n
5890 * \Sum { --- * --- * 2^i } = O(n) (5)
5891 * i = 0 2^i 2^i
5892 * `- size of each group
5893 * | | `- number of cpus doing load-balance
5894 * | `- freq
5895 * `- sum over all levels
5896 *
5897 * Coupled with a limit on how many tasks we can migrate every balance pass,
5898 * this makes (5) the runtime complexity of the balancer.
5899 *
5900 * An important property here is that each CPU is still (indirectly) connected
5901 * to every other cpu in at most O(log n) steps:
5902 *
5903 * The adjacency matrix of the resulting graph is given by:
5904 *
5905 * log_2 n
5906 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5907 * k = 0
5908 *
5909 * And you'll find that:
5910 *
5911 * A^(log_2 n)_i,j != 0 for all i,j (7)
5912 *
5913 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5914 * The task movement gives a factor of O(m), giving a convergence complexity
5915 * of:
5916 *
5917 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5918 *
5919 *
5920 * WORK CONSERVING
5921 *
5922 * In order to avoid CPUs going idle while there's still work to do, new idle
5923 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5924 * tree itself instead of relying on other CPUs to bring it work.
5925 *
5926 * This adds some complexity to both (5) and (8) but it reduces the total idle
5927 * time.
5928 *
5929 * [XXX more?]
5930 *
5931 *
5932 * CGROUPS
5933 *
5934 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5935 *
5936 * s_k,i
5937 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5938 * S_k
5939 *
5940 * Where
5941 *
5942 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5943 *
5944 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5945 *
5946 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5947 * property.
5948 *
5949 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5950 * rewrite all of this once again.]
5951 */
bf0f6f24 5952
ed387b78
HS
5953static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5954
0ec8aa00
PZ
5955enum fbq_type { regular, remote, all };
5956
ddcdf6e7 5957#define LBF_ALL_PINNED 0x01
367456c7 5958#define LBF_NEED_BREAK 0x02
6263322c
PZ
5959#define LBF_DST_PINNED 0x04
5960#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5961
5962struct lb_env {
5963 struct sched_domain *sd;
5964
ddcdf6e7 5965 struct rq *src_rq;
85c1e7da 5966 int src_cpu;
ddcdf6e7
PZ
5967
5968 int dst_cpu;
5969 struct rq *dst_rq;
5970
88b8dac0
SV
5971 struct cpumask *dst_grpmask;
5972 int new_dst_cpu;
ddcdf6e7 5973 enum cpu_idle_type idle;
bd939f45 5974 long imbalance;
b9403130
MW
5975 /* The set of CPUs under consideration for load-balancing */
5976 struct cpumask *cpus;
5977
ddcdf6e7 5978 unsigned int flags;
367456c7
PZ
5979
5980 unsigned int loop;
5981 unsigned int loop_break;
5982 unsigned int loop_max;
0ec8aa00
PZ
5983
5984 enum fbq_type fbq_type;
163122b7 5985 struct list_head tasks;
ddcdf6e7
PZ
5986};
5987
029632fb
PZ
5988/*
5989 * Is this task likely cache-hot:
5990 */
5d5e2b1b 5991static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5992{
5993 s64 delta;
5994
e5673f28
KT
5995 lockdep_assert_held(&env->src_rq->lock);
5996
029632fb
PZ
5997 if (p->sched_class != &fair_sched_class)
5998 return 0;
5999
6000 if (unlikely(p->policy == SCHED_IDLE))
6001 return 0;
6002
6003 /*
6004 * Buddy candidates are cache hot:
6005 */
5d5e2b1b 6006 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6007 (&p->se == cfs_rq_of(&p->se)->next ||
6008 &p->se == cfs_rq_of(&p->se)->last))
6009 return 1;
6010
6011 if (sysctl_sched_migration_cost == -1)
6012 return 1;
6013 if (sysctl_sched_migration_cost == 0)
6014 return 0;
6015
5d5e2b1b 6016 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6017
6018 return delta < (s64)sysctl_sched_migration_cost;
6019}
6020
3a7053b3 6021#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6022/*
2a1ed24c
SD
6023 * Returns 1, if task migration degrades locality
6024 * Returns 0, if task migration improves locality i.e migration preferred.
6025 * Returns -1, if task migration is not affected by locality.
c1ceac62 6026 */
2a1ed24c 6027static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6028{
b1ad065e 6029 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6030 unsigned long src_faults, dst_faults;
3a7053b3
MG
6031 int src_nid, dst_nid;
6032
2a595721 6033 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6034 return -1;
6035
c3b9bc5b 6036 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6037 return -1;
7a0f3083
MG
6038
6039 src_nid = cpu_to_node(env->src_cpu);
6040 dst_nid = cpu_to_node(env->dst_cpu);
6041
83e1d2cd 6042 if (src_nid == dst_nid)
2a1ed24c 6043 return -1;
7a0f3083 6044
2a1ed24c
SD
6045 /* Migrating away from the preferred node is always bad. */
6046 if (src_nid == p->numa_preferred_nid) {
6047 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6048 return 1;
6049 else
6050 return -1;
6051 }
b1ad065e 6052
c1ceac62
RR
6053 /* Encourage migration to the preferred node. */
6054 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6055 return 0;
b1ad065e 6056
c1ceac62
RR
6057 if (numa_group) {
6058 src_faults = group_faults(p, src_nid);
6059 dst_faults = group_faults(p, dst_nid);
6060 } else {
6061 src_faults = task_faults(p, src_nid);
6062 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6063 }
6064
c1ceac62 6065 return dst_faults < src_faults;
7a0f3083
MG
6066}
6067
3a7053b3 6068#else
2a1ed24c 6069static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6070 struct lb_env *env)
6071{
2a1ed24c 6072 return -1;
7a0f3083 6073}
3a7053b3
MG
6074#endif
6075
1e3c88bd
PZ
6076/*
6077 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6078 */
6079static
8e45cb54 6080int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6081{
2a1ed24c 6082 int tsk_cache_hot;
e5673f28
KT
6083
6084 lockdep_assert_held(&env->src_rq->lock);
6085
1e3c88bd
PZ
6086 /*
6087 * We do not migrate tasks that are:
d3198084 6088 * 1) throttled_lb_pair, or
1e3c88bd 6089 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6090 * 3) running (obviously), or
6091 * 4) are cache-hot on their current CPU.
1e3c88bd 6092 */
d3198084
JK
6093 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6094 return 0;
6095
ddcdf6e7 6096 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6097 int cpu;
88b8dac0 6098
41acab88 6099 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6100
6263322c
PZ
6101 env->flags |= LBF_SOME_PINNED;
6102
88b8dac0
SV
6103 /*
6104 * Remember if this task can be migrated to any other cpu in
6105 * our sched_group. We may want to revisit it if we couldn't
6106 * meet load balance goals by pulling other tasks on src_cpu.
6107 *
6108 * Also avoid computing new_dst_cpu if we have already computed
6109 * one in current iteration.
6110 */
6263322c 6111 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6112 return 0;
6113
e02e60c1
JK
6114 /* Prevent to re-select dst_cpu via env's cpus */
6115 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6116 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6117 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6118 env->new_dst_cpu = cpu;
6119 break;
6120 }
88b8dac0 6121 }
e02e60c1 6122
1e3c88bd
PZ
6123 return 0;
6124 }
88b8dac0
SV
6125
6126 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6127 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6128
ddcdf6e7 6129 if (task_running(env->src_rq, p)) {
41acab88 6130 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6131 return 0;
6132 }
6133
6134 /*
6135 * Aggressive migration if:
3a7053b3
MG
6136 * 1) destination numa is preferred
6137 * 2) task is cache cold, or
6138 * 3) too many balance attempts have failed.
1e3c88bd 6139 */
2a1ed24c
SD
6140 tsk_cache_hot = migrate_degrades_locality(p, env);
6141 if (tsk_cache_hot == -1)
6142 tsk_cache_hot = task_hot(p, env);
3a7053b3 6143
2a1ed24c 6144 if (tsk_cache_hot <= 0 ||
7a96c231 6145 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6146 if (tsk_cache_hot == 1) {
3a7053b3
MG
6147 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6148 schedstat_inc(p, se.statistics.nr_forced_migrations);
6149 }
1e3c88bd
PZ
6150 return 1;
6151 }
6152
4e2dcb73
ZH
6153 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6154 return 0;
1e3c88bd
PZ
6155}
6156
897c395f 6157/*
163122b7
KT
6158 * detach_task() -- detach the task for the migration specified in env
6159 */
6160static void detach_task(struct task_struct *p, struct lb_env *env)
6161{
6162 lockdep_assert_held(&env->src_rq->lock);
6163
163122b7 6164 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6165 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6166 set_task_cpu(p, env->dst_cpu);
6167}
6168
897c395f 6169/*
e5673f28 6170 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6171 * part of active balancing operations within "domain".
897c395f 6172 *
e5673f28 6173 * Returns a task if successful and NULL otherwise.
897c395f 6174 */
e5673f28 6175static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6176{
6177 struct task_struct *p, *n;
897c395f 6178
e5673f28
KT
6179 lockdep_assert_held(&env->src_rq->lock);
6180
367456c7 6181 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6182 if (!can_migrate_task(p, env))
6183 continue;
897c395f 6184
163122b7 6185 detach_task(p, env);
e5673f28 6186
367456c7 6187 /*
e5673f28 6188 * Right now, this is only the second place where
163122b7 6189 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6190 * so we can safely collect stats here rather than
163122b7 6191 * inside detach_tasks().
367456c7
PZ
6192 */
6193 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6194 return p;
897c395f 6195 }
e5673f28 6196 return NULL;
897c395f
PZ
6197}
6198
eb95308e
PZ
6199static const unsigned int sched_nr_migrate_break = 32;
6200
5d6523eb 6201/*
163122b7
KT
6202 * detach_tasks() -- tries to detach up to imbalance weighted load from
6203 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6204 *
163122b7 6205 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6206 */
163122b7 6207static int detach_tasks(struct lb_env *env)
1e3c88bd 6208{
5d6523eb
PZ
6209 struct list_head *tasks = &env->src_rq->cfs_tasks;
6210 struct task_struct *p;
367456c7 6211 unsigned long load;
163122b7
KT
6212 int detached = 0;
6213
6214 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6215
bd939f45 6216 if (env->imbalance <= 0)
5d6523eb 6217 return 0;
1e3c88bd 6218
5d6523eb 6219 while (!list_empty(tasks)) {
985d3a4c
YD
6220 /*
6221 * We don't want to steal all, otherwise we may be treated likewise,
6222 * which could at worst lead to a livelock crash.
6223 */
6224 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6225 break;
6226
5d6523eb 6227 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6228
367456c7
PZ
6229 env->loop++;
6230 /* We've more or less seen every task there is, call it quits */
5d6523eb 6231 if (env->loop > env->loop_max)
367456c7 6232 break;
5d6523eb
PZ
6233
6234 /* take a breather every nr_migrate tasks */
367456c7 6235 if (env->loop > env->loop_break) {
eb95308e 6236 env->loop_break += sched_nr_migrate_break;
8e45cb54 6237 env->flags |= LBF_NEED_BREAK;
ee00e66f 6238 break;
a195f004 6239 }
1e3c88bd 6240
d3198084 6241 if (!can_migrate_task(p, env))
367456c7
PZ
6242 goto next;
6243
6244 load = task_h_load(p);
5d6523eb 6245
eb95308e 6246 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6247 goto next;
6248
bd939f45 6249 if ((load / 2) > env->imbalance)
367456c7 6250 goto next;
1e3c88bd 6251
163122b7
KT
6252 detach_task(p, env);
6253 list_add(&p->se.group_node, &env->tasks);
6254
6255 detached++;
bd939f45 6256 env->imbalance -= load;
1e3c88bd
PZ
6257
6258#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6259 /*
6260 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6261 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6262 * the critical section.
6263 */
5d6523eb 6264 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6265 break;
1e3c88bd
PZ
6266#endif
6267
ee00e66f
PZ
6268 /*
6269 * We only want to steal up to the prescribed amount of
6270 * weighted load.
6271 */
bd939f45 6272 if (env->imbalance <= 0)
ee00e66f 6273 break;
367456c7
PZ
6274
6275 continue;
6276next:
5d6523eb 6277 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6278 }
5d6523eb 6279
1e3c88bd 6280 /*
163122b7
KT
6281 * Right now, this is one of only two places we collect this stat
6282 * so we can safely collect detach_one_task() stats here rather
6283 * than inside detach_one_task().
1e3c88bd 6284 */
163122b7 6285 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6286
163122b7
KT
6287 return detached;
6288}
6289
6290/*
6291 * attach_task() -- attach the task detached by detach_task() to its new rq.
6292 */
6293static void attach_task(struct rq *rq, struct task_struct *p)
6294{
6295 lockdep_assert_held(&rq->lock);
6296
6297 BUG_ON(task_rq(p) != rq);
163122b7 6298 activate_task(rq, p, 0);
3ea94de1 6299 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6300 check_preempt_curr(rq, p, 0);
6301}
6302
6303/*
6304 * attach_one_task() -- attaches the task returned from detach_one_task() to
6305 * its new rq.
6306 */
6307static void attach_one_task(struct rq *rq, struct task_struct *p)
6308{
6309 raw_spin_lock(&rq->lock);
6310 attach_task(rq, p);
6311 raw_spin_unlock(&rq->lock);
6312}
6313
6314/*
6315 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6316 * new rq.
6317 */
6318static void attach_tasks(struct lb_env *env)
6319{
6320 struct list_head *tasks = &env->tasks;
6321 struct task_struct *p;
6322
6323 raw_spin_lock(&env->dst_rq->lock);
6324
6325 while (!list_empty(tasks)) {
6326 p = list_first_entry(tasks, struct task_struct, se.group_node);
6327 list_del_init(&p->se.group_node);
1e3c88bd 6328
163122b7
KT
6329 attach_task(env->dst_rq, p);
6330 }
6331
6332 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6333}
6334
230059de 6335#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6336static void update_blocked_averages(int cpu)
9e3081ca 6337{
9e3081ca 6338 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6339 struct cfs_rq *cfs_rq;
6340 unsigned long flags;
9e3081ca 6341
48a16753
PT
6342 raw_spin_lock_irqsave(&rq->lock, flags);
6343 update_rq_clock(rq);
9d89c257 6344
9763b67f
PZ
6345 /*
6346 * Iterates the task_group tree in a bottom up fashion, see
6347 * list_add_leaf_cfs_rq() for details.
6348 */
64660c86 6349 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6350 /* throttled entities do not contribute to load */
6351 if (throttled_hierarchy(cfs_rq))
6352 continue;
48a16753 6353
a2c6c91f 6354 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6355 update_tg_load_avg(cfs_rq, 0);
6356 }
48a16753 6357 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6358}
6359
9763b67f 6360/*
68520796 6361 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6362 * This needs to be done in a top-down fashion because the load of a child
6363 * group is a fraction of its parents load.
6364 */
68520796 6365static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6366{
68520796
VD
6367 struct rq *rq = rq_of(cfs_rq);
6368 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6369 unsigned long now = jiffies;
68520796 6370 unsigned long load;
a35b6466 6371
68520796 6372 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6373 return;
6374
68520796
VD
6375 cfs_rq->h_load_next = NULL;
6376 for_each_sched_entity(se) {
6377 cfs_rq = cfs_rq_of(se);
6378 cfs_rq->h_load_next = se;
6379 if (cfs_rq->last_h_load_update == now)
6380 break;
6381 }
a35b6466 6382
68520796 6383 if (!se) {
7ea241af 6384 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6385 cfs_rq->last_h_load_update = now;
6386 }
6387
6388 while ((se = cfs_rq->h_load_next) != NULL) {
6389 load = cfs_rq->h_load;
7ea241af
YD
6390 load = div64_ul(load * se->avg.load_avg,
6391 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6392 cfs_rq = group_cfs_rq(se);
6393 cfs_rq->h_load = load;
6394 cfs_rq->last_h_load_update = now;
6395 }
9763b67f
PZ
6396}
6397
367456c7 6398static unsigned long task_h_load(struct task_struct *p)
230059de 6399{
367456c7 6400 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6401
68520796 6402 update_cfs_rq_h_load(cfs_rq);
9d89c257 6403 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6404 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6405}
6406#else
48a16753 6407static inline void update_blocked_averages(int cpu)
9e3081ca 6408{
6c1d47c0
VG
6409 struct rq *rq = cpu_rq(cpu);
6410 struct cfs_rq *cfs_rq = &rq->cfs;
6411 unsigned long flags;
6412
6413 raw_spin_lock_irqsave(&rq->lock, flags);
6414 update_rq_clock(rq);
a2c6c91f 6415 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6416 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6417}
6418
367456c7 6419static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6420{
9d89c257 6421 return p->se.avg.load_avg;
1e3c88bd 6422}
230059de 6423#endif
1e3c88bd 6424
1e3c88bd 6425/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6426
6427enum group_type {
6428 group_other = 0,
6429 group_imbalanced,
6430 group_overloaded,
6431};
6432
1e3c88bd
PZ
6433/*
6434 * sg_lb_stats - stats of a sched_group required for load_balancing
6435 */
6436struct sg_lb_stats {
6437 unsigned long avg_load; /*Avg load across the CPUs of the group */
6438 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6439 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6440 unsigned long load_per_task;
63b2ca30 6441 unsigned long group_capacity;
9e91d61d 6442 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6443 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6444 unsigned int idle_cpus;
6445 unsigned int group_weight;
caeb178c 6446 enum group_type group_type;
ea67821b 6447 int group_no_capacity;
0ec8aa00
PZ
6448#ifdef CONFIG_NUMA_BALANCING
6449 unsigned int nr_numa_running;
6450 unsigned int nr_preferred_running;
6451#endif
1e3c88bd
PZ
6452};
6453
56cf515b
JK
6454/*
6455 * sd_lb_stats - Structure to store the statistics of a sched_domain
6456 * during load balancing.
6457 */
6458struct sd_lb_stats {
6459 struct sched_group *busiest; /* Busiest group in this sd */
6460 struct sched_group *local; /* Local group in this sd */
6461 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6462 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6463 unsigned long avg_load; /* Average load across all groups in sd */
6464
56cf515b 6465 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6466 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6467};
6468
147c5fc2
PZ
6469static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6470{
6471 /*
6472 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6473 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6474 * We must however clear busiest_stat::avg_load because
6475 * update_sd_pick_busiest() reads this before assignment.
6476 */
6477 *sds = (struct sd_lb_stats){
6478 .busiest = NULL,
6479 .local = NULL,
6480 .total_load = 0UL,
63b2ca30 6481 .total_capacity = 0UL,
147c5fc2
PZ
6482 .busiest_stat = {
6483 .avg_load = 0UL,
caeb178c
RR
6484 .sum_nr_running = 0,
6485 .group_type = group_other,
147c5fc2
PZ
6486 },
6487 };
6488}
6489
1e3c88bd
PZ
6490/**
6491 * get_sd_load_idx - Obtain the load index for a given sched domain.
6492 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6493 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6494 *
6495 * Return: The load index.
1e3c88bd
PZ
6496 */
6497static inline int get_sd_load_idx(struct sched_domain *sd,
6498 enum cpu_idle_type idle)
6499{
6500 int load_idx;
6501
6502 switch (idle) {
6503 case CPU_NOT_IDLE:
6504 load_idx = sd->busy_idx;
6505 break;
6506
6507 case CPU_NEWLY_IDLE:
6508 load_idx = sd->newidle_idx;
6509 break;
6510 default:
6511 load_idx = sd->idle_idx;
6512 break;
6513 }
6514
6515 return load_idx;
6516}
6517
ced549fa 6518static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6519{
6520 struct rq *rq = cpu_rq(cpu);
b5b4860d 6521 u64 total, used, age_stamp, avg;
cadefd3d 6522 s64 delta;
1e3c88bd 6523
b654f7de
PZ
6524 /*
6525 * Since we're reading these variables without serialization make sure
6526 * we read them once before doing sanity checks on them.
6527 */
316c1608
JL
6528 age_stamp = READ_ONCE(rq->age_stamp);
6529 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6530 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6531
cadefd3d
PZ
6532 if (unlikely(delta < 0))
6533 delta = 0;
6534
6535 total = sched_avg_period() + delta;
aa483808 6536
b5b4860d 6537 used = div_u64(avg, total);
1e3c88bd 6538
b5b4860d
VG
6539 if (likely(used < SCHED_CAPACITY_SCALE))
6540 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6541
b5b4860d 6542 return 1;
1e3c88bd
PZ
6543}
6544
ced549fa 6545static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6546{
8cd5601c 6547 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6548 struct sched_group *sdg = sd->groups;
6549
ca6d75e6 6550 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6551
ced549fa 6552 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6553 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6554
ced549fa
NP
6555 if (!capacity)
6556 capacity = 1;
1e3c88bd 6557
ced549fa
NP
6558 cpu_rq(cpu)->cpu_capacity = capacity;
6559 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6560}
6561
63b2ca30 6562void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6563{
6564 struct sched_domain *child = sd->child;
6565 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6566 unsigned long capacity;
4ec4412e
VG
6567 unsigned long interval;
6568
6569 interval = msecs_to_jiffies(sd->balance_interval);
6570 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6571 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6572
6573 if (!child) {
ced549fa 6574 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6575 return;
6576 }
6577
dc7ff76e 6578 capacity = 0;
1e3c88bd 6579
74a5ce20
PZ
6580 if (child->flags & SD_OVERLAP) {
6581 /*
6582 * SD_OVERLAP domains cannot assume that child groups
6583 * span the current group.
6584 */
6585
863bffc8 6586 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6587 struct sched_group_capacity *sgc;
9abf24d4 6588 struct rq *rq = cpu_rq(cpu);
863bffc8 6589
9abf24d4 6590 /*
63b2ca30 6591 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6592 * gets here before we've attached the domains to the
6593 * runqueues.
6594 *
ced549fa
NP
6595 * Use capacity_of(), which is set irrespective of domains
6596 * in update_cpu_capacity().
9abf24d4 6597 *
dc7ff76e 6598 * This avoids capacity from being 0 and
9abf24d4 6599 * causing divide-by-zero issues on boot.
9abf24d4
SD
6600 */
6601 if (unlikely(!rq->sd)) {
ced549fa 6602 capacity += capacity_of(cpu);
9abf24d4
SD
6603 continue;
6604 }
863bffc8 6605
63b2ca30 6606 sgc = rq->sd->groups->sgc;
63b2ca30 6607 capacity += sgc->capacity;
863bffc8 6608 }
74a5ce20
PZ
6609 } else {
6610 /*
6611 * !SD_OVERLAP domains can assume that child groups
6612 * span the current group.
6613 */
6614
6615 group = child->groups;
6616 do {
63b2ca30 6617 capacity += group->sgc->capacity;
74a5ce20
PZ
6618 group = group->next;
6619 } while (group != child->groups);
6620 }
1e3c88bd 6621
63b2ca30 6622 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6623}
6624
9d5efe05 6625/*
ea67821b
VG
6626 * Check whether the capacity of the rq has been noticeably reduced by side
6627 * activity. The imbalance_pct is used for the threshold.
6628 * Return true is the capacity is reduced
9d5efe05
SV
6629 */
6630static inline int
ea67821b 6631check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6632{
ea67821b
VG
6633 return ((rq->cpu_capacity * sd->imbalance_pct) <
6634 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6635}
6636
30ce5dab
PZ
6637/*
6638 * Group imbalance indicates (and tries to solve) the problem where balancing
6639 * groups is inadequate due to tsk_cpus_allowed() constraints.
6640 *
6641 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6642 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6643 * Something like:
6644 *
6645 * { 0 1 2 3 } { 4 5 6 7 }
6646 * * * * *
6647 *
6648 * If we were to balance group-wise we'd place two tasks in the first group and
6649 * two tasks in the second group. Clearly this is undesired as it will overload
6650 * cpu 3 and leave one of the cpus in the second group unused.
6651 *
6652 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6653 * by noticing the lower domain failed to reach balance and had difficulty
6654 * moving tasks due to affinity constraints.
30ce5dab
PZ
6655 *
6656 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6657 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6658 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6659 * to create an effective group imbalance.
6660 *
6661 * This is a somewhat tricky proposition since the next run might not find the
6662 * group imbalance and decide the groups need to be balanced again. A most
6663 * subtle and fragile situation.
6664 */
6665
6263322c 6666static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6667{
63b2ca30 6668 return group->sgc->imbalance;
30ce5dab
PZ
6669}
6670
b37d9316 6671/*
ea67821b
VG
6672 * group_has_capacity returns true if the group has spare capacity that could
6673 * be used by some tasks.
6674 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6675 * smaller than the number of CPUs or if the utilization is lower than the
6676 * available capacity for CFS tasks.
ea67821b
VG
6677 * For the latter, we use a threshold to stabilize the state, to take into
6678 * account the variance of the tasks' load and to return true if the available
6679 * capacity in meaningful for the load balancer.
6680 * As an example, an available capacity of 1% can appear but it doesn't make
6681 * any benefit for the load balance.
b37d9316 6682 */
ea67821b
VG
6683static inline bool
6684group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6685{
ea67821b
VG
6686 if (sgs->sum_nr_running < sgs->group_weight)
6687 return true;
c61037e9 6688
ea67821b 6689 if ((sgs->group_capacity * 100) >
9e91d61d 6690 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6691 return true;
b37d9316 6692
ea67821b
VG
6693 return false;
6694}
6695
6696/*
6697 * group_is_overloaded returns true if the group has more tasks than it can
6698 * handle.
6699 * group_is_overloaded is not equals to !group_has_capacity because a group
6700 * with the exact right number of tasks, has no more spare capacity but is not
6701 * overloaded so both group_has_capacity and group_is_overloaded return
6702 * false.
6703 */
6704static inline bool
6705group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6706{
6707 if (sgs->sum_nr_running <= sgs->group_weight)
6708 return false;
b37d9316 6709
ea67821b 6710 if ((sgs->group_capacity * 100) <
9e91d61d 6711 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6712 return true;
b37d9316 6713
ea67821b 6714 return false;
b37d9316
PZ
6715}
6716
79a89f92
LY
6717static inline enum
6718group_type group_classify(struct sched_group *group,
6719 struct sg_lb_stats *sgs)
caeb178c 6720{
ea67821b 6721 if (sgs->group_no_capacity)
caeb178c
RR
6722 return group_overloaded;
6723
6724 if (sg_imbalanced(group))
6725 return group_imbalanced;
6726
6727 return group_other;
6728}
6729
1e3c88bd
PZ
6730/**
6731 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6732 * @env: The load balancing environment.
1e3c88bd 6733 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6734 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6735 * @local_group: Does group contain this_cpu.
1e3c88bd 6736 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6737 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6738 */
bd939f45
PZ
6739static inline void update_sg_lb_stats(struct lb_env *env,
6740 struct sched_group *group, int load_idx,
4486edd1
TC
6741 int local_group, struct sg_lb_stats *sgs,
6742 bool *overload)
1e3c88bd 6743{
30ce5dab 6744 unsigned long load;
a426f99c 6745 int i, nr_running;
1e3c88bd 6746
b72ff13c
PZ
6747 memset(sgs, 0, sizeof(*sgs));
6748
b9403130 6749 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6750 struct rq *rq = cpu_rq(i);
6751
1e3c88bd 6752 /* Bias balancing toward cpus of our domain */
6263322c 6753 if (local_group)
04f733b4 6754 load = target_load(i, load_idx);
6263322c 6755 else
1e3c88bd 6756 load = source_load(i, load_idx);
1e3c88bd
PZ
6757
6758 sgs->group_load += load;
9e91d61d 6759 sgs->group_util += cpu_util(i);
65fdac08 6760 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6761
a426f99c
WL
6762 nr_running = rq->nr_running;
6763 if (nr_running > 1)
4486edd1
TC
6764 *overload = true;
6765
0ec8aa00
PZ
6766#ifdef CONFIG_NUMA_BALANCING
6767 sgs->nr_numa_running += rq->nr_numa_running;
6768 sgs->nr_preferred_running += rq->nr_preferred_running;
6769#endif
1e3c88bd 6770 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6771 /*
6772 * No need to call idle_cpu() if nr_running is not 0
6773 */
6774 if (!nr_running && idle_cpu(i))
aae6d3dd 6775 sgs->idle_cpus++;
1e3c88bd
PZ
6776 }
6777
63b2ca30
NP
6778 /* Adjust by relative CPU capacity of the group */
6779 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6780 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6781
dd5feea1 6782 if (sgs->sum_nr_running)
38d0f770 6783 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6784
aae6d3dd 6785 sgs->group_weight = group->group_weight;
b37d9316 6786
ea67821b 6787 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6788 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6789}
6790
532cb4c4
MN
6791/**
6792 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6793 * @env: The load balancing environment.
532cb4c4
MN
6794 * @sds: sched_domain statistics
6795 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6796 * @sgs: sched_group statistics
532cb4c4
MN
6797 *
6798 * Determine if @sg is a busier group than the previously selected
6799 * busiest group.
e69f6186
YB
6800 *
6801 * Return: %true if @sg is a busier group than the previously selected
6802 * busiest group. %false otherwise.
532cb4c4 6803 */
bd939f45 6804static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6805 struct sd_lb_stats *sds,
6806 struct sched_group *sg,
bd939f45 6807 struct sg_lb_stats *sgs)
532cb4c4 6808{
caeb178c 6809 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6810
caeb178c 6811 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6812 return true;
6813
caeb178c
RR
6814 if (sgs->group_type < busiest->group_type)
6815 return false;
6816
6817 if (sgs->avg_load <= busiest->avg_load)
6818 return false;
6819
6820 /* This is the busiest node in its class. */
6821 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6822 return true;
6823
1f621e02
SD
6824 /* No ASYM_PACKING if target cpu is already busy */
6825 if (env->idle == CPU_NOT_IDLE)
6826 return true;
532cb4c4
MN
6827 /*
6828 * ASYM_PACKING needs to move all the work to the lowest
6829 * numbered CPUs in the group, therefore mark all groups
6830 * higher than ourself as busy.
6831 */
caeb178c 6832 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6833 if (!sds->busiest)
6834 return true;
6835
1f621e02
SD
6836 /* Prefer to move from highest possible cpu's work */
6837 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6838 return true;
6839 }
6840
6841 return false;
6842}
6843
0ec8aa00
PZ
6844#ifdef CONFIG_NUMA_BALANCING
6845static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6846{
6847 if (sgs->sum_nr_running > sgs->nr_numa_running)
6848 return regular;
6849 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6850 return remote;
6851 return all;
6852}
6853
6854static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6855{
6856 if (rq->nr_running > rq->nr_numa_running)
6857 return regular;
6858 if (rq->nr_running > rq->nr_preferred_running)
6859 return remote;
6860 return all;
6861}
6862#else
6863static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6864{
6865 return all;
6866}
6867
6868static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6869{
6870 return regular;
6871}
6872#endif /* CONFIG_NUMA_BALANCING */
6873
1e3c88bd 6874/**
461819ac 6875 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6876 * @env: The load balancing environment.
1e3c88bd
PZ
6877 * @sds: variable to hold the statistics for this sched_domain.
6878 */
0ec8aa00 6879static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6880{
bd939f45
PZ
6881 struct sched_domain *child = env->sd->child;
6882 struct sched_group *sg = env->sd->groups;
56cf515b 6883 struct sg_lb_stats tmp_sgs;
1e3c88bd 6884 int load_idx, prefer_sibling = 0;
4486edd1 6885 bool overload = false;
1e3c88bd
PZ
6886
6887 if (child && child->flags & SD_PREFER_SIBLING)
6888 prefer_sibling = 1;
6889
bd939f45 6890 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6891
6892 do {
56cf515b 6893 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6894 int local_group;
6895
bd939f45 6896 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6897 if (local_group) {
6898 sds->local = sg;
6899 sgs = &sds->local_stat;
b72ff13c
PZ
6900
6901 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6902 time_after_eq(jiffies, sg->sgc->next_update))
6903 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6904 }
1e3c88bd 6905
4486edd1
TC
6906 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6907 &overload);
1e3c88bd 6908
b72ff13c
PZ
6909 if (local_group)
6910 goto next_group;
6911
1e3c88bd
PZ
6912 /*
6913 * In case the child domain prefers tasks go to siblings
ea67821b 6914 * first, lower the sg capacity so that we'll try
75dd321d
NR
6915 * and move all the excess tasks away. We lower the capacity
6916 * of a group only if the local group has the capacity to fit
ea67821b
VG
6917 * these excess tasks. The extra check prevents the case where
6918 * you always pull from the heaviest group when it is already
6919 * under-utilized (possible with a large weight task outweighs
6920 * the tasks on the system).
1e3c88bd 6921 */
b72ff13c 6922 if (prefer_sibling && sds->local &&
ea67821b
VG
6923 group_has_capacity(env, &sds->local_stat) &&
6924 (sgs->sum_nr_running > 1)) {
6925 sgs->group_no_capacity = 1;
79a89f92 6926 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6927 }
1e3c88bd 6928
b72ff13c 6929 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6930 sds->busiest = sg;
56cf515b 6931 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6932 }
6933
b72ff13c
PZ
6934next_group:
6935 /* Now, start updating sd_lb_stats */
6936 sds->total_load += sgs->group_load;
63b2ca30 6937 sds->total_capacity += sgs->group_capacity;
b72ff13c 6938
532cb4c4 6939 sg = sg->next;
bd939f45 6940 } while (sg != env->sd->groups);
0ec8aa00
PZ
6941
6942 if (env->sd->flags & SD_NUMA)
6943 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6944
6945 if (!env->sd->parent) {
6946 /* update overload indicator if we are at root domain */
6947 if (env->dst_rq->rd->overload != overload)
6948 env->dst_rq->rd->overload = overload;
6949 }
6950
532cb4c4
MN
6951}
6952
532cb4c4
MN
6953/**
6954 * check_asym_packing - Check to see if the group is packed into the
6955 * sched doman.
6956 *
6957 * This is primarily intended to used at the sibling level. Some
6958 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6959 * case of POWER7, it can move to lower SMT modes only when higher
6960 * threads are idle. When in lower SMT modes, the threads will
6961 * perform better since they share less core resources. Hence when we
6962 * have idle threads, we want them to be the higher ones.
6963 *
6964 * This packing function is run on idle threads. It checks to see if
6965 * the busiest CPU in this domain (core in the P7 case) has a higher
6966 * CPU number than the packing function is being run on. Here we are
6967 * assuming lower CPU number will be equivalent to lower a SMT thread
6968 * number.
6969 *
e69f6186 6970 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6971 * this CPU. The amount of the imbalance is returned in *imbalance.
6972 *
cd96891d 6973 * @env: The load balancing environment.
532cb4c4 6974 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6975 */
bd939f45 6976static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6977{
6978 int busiest_cpu;
6979
bd939f45 6980 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6981 return 0;
6982
1f621e02
SD
6983 if (env->idle == CPU_NOT_IDLE)
6984 return 0;
6985
532cb4c4
MN
6986 if (!sds->busiest)
6987 return 0;
6988
6989 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6990 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6991 return 0;
6992
bd939f45 6993 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6994 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6995 SCHED_CAPACITY_SCALE);
bd939f45 6996
532cb4c4 6997 return 1;
1e3c88bd
PZ
6998}
6999
7000/**
7001 * fix_small_imbalance - Calculate the minor imbalance that exists
7002 * amongst the groups of a sched_domain, during
7003 * load balancing.
cd96891d 7004 * @env: The load balancing environment.
1e3c88bd 7005 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7006 */
bd939f45
PZ
7007static inline
7008void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7009{
63b2ca30 7010 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7011 unsigned int imbn = 2;
dd5feea1 7012 unsigned long scaled_busy_load_per_task;
56cf515b 7013 struct sg_lb_stats *local, *busiest;
1e3c88bd 7014
56cf515b
JK
7015 local = &sds->local_stat;
7016 busiest = &sds->busiest_stat;
1e3c88bd 7017
56cf515b
JK
7018 if (!local->sum_nr_running)
7019 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7020 else if (busiest->load_per_task > local->load_per_task)
7021 imbn = 1;
dd5feea1 7022
56cf515b 7023 scaled_busy_load_per_task =
ca8ce3d0 7024 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7025 busiest->group_capacity;
56cf515b 7026
3029ede3
VD
7027 if (busiest->avg_load + scaled_busy_load_per_task >=
7028 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7029 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7030 return;
7031 }
7032
7033 /*
7034 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7035 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7036 * moving them.
7037 */
7038
63b2ca30 7039 capa_now += busiest->group_capacity *
56cf515b 7040 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7041 capa_now += local->group_capacity *
56cf515b 7042 min(local->load_per_task, local->avg_load);
ca8ce3d0 7043 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7044
7045 /* Amount of load we'd subtract */
a2cd4260 7046 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7047 capa_move += busiest->group_capacity *
56cf515b 7048 min(busiest->load_per_task,
a2cd4260 7049 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7050 }
1e3c88bd
PZ
7051
7052 /* Amount of load we'd add */
63b2ca30 7053 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7054 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7055 tmp = (busiest->avg_load * busiest->group_capacity) /
7056 local->group_capacity;
56cf515b 7057 } else {
ca8ce3d0 7058 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7059 local->group_capacity;
56cf515b 7060 }
63b2ca30 7061 capa_move += local->group_capacity *
3ae11c90 7062 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7063 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7064
7065 /* Move if we gain throughput */
63b2ca30 7066 if (capa_move > capa_now)
56cf515b 7067 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7068}
7069
7070/**
7071 * calculate_imbalance - Calculate the amount of imbalance present within the
7072 * groups of a given sched_domain during load balance.
bd939f45 7073 * @env: load balance environment
1e3c88bd 7074 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7075 */
bd939f45 7076static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7077{
dd5feea1 7078 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7079 struct sg_lb_stats *local, *busiest;
7080
7081 local = &sds->local_stat;
56cf515b 7082 busiest = &sds->busiest_stat;
dd5feea1 7083
caeb178c 7084 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7085 /*
7086 * In the group_imb case we cannot rely on group-wide averages
7087 * to ensure cpu-load equilibrium, look at wider averages. XXX
7088 */
56cf515b
JK
7089 busiest->load_per_task =
7090 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7091 }
7092
1e3c88bd 7093 /*
885e542c
DE
7094 * Avg load of busiest sg can be less and avg load of local sg can
7095 * be greater than avg load across all sgs of sd because avg load
7096 * factors in sg capacity and sgs with smaller group_type are
7097 * skipped when updating the busiest sg:
1e3c88bd 7098 */
b1885550
VD
7099 if (busiest->avg_load <= sds->avg_load ||
7100 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7101 env->imbalance = 0;
7102 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7103 }
7104
9a5d9ba6
PZ
7105 /*
7106 * If there aren't any idle cpus, avoid creating some.
7107 */
7108 if (busiest->group_type == group_overloaded &&
7109 local->group_type == group_overloaded) {
1be0eb2a 7110 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7111 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7112 load_above_capacity -= busiest->group_capacity;
cfa10334
MR
7113 load_above_capacity *= NICE_0_LOAD;
7114 load_above_capacity /= busiest->group_capacity;
7115 } else
ea67821b 7116 load_above_capacity = ~0UL;
dd5feea1
SS
7117 }
7118
7119 /*
7120 * We're trying to get all the cpus to the average_load, so we don't
7121 * want to push ourselves above the average load, nor do we wish to
7122 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7123 * we also don't want to reduce the group load below the group
7124 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7125 */
30ce5dab 7126 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7127
7128 /* How much load to actually move to equalise the imbalance */
56cf515b 7129 env->imbalance = min(
63b2ca30
NP
7130 max_pull * busiest->group_capacity,
7131 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7132 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7133
7134 /*
7135 * if *imbalance is less than the average load per runnable task
25985edc 7136 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7137 * a think about bumping its value to force at least one task to be
7138 * moved
7139 */
56cf515b 7140 if (env->imbalance < busiest->load_per_task)
bd939f45 7141 return fix_small_imbalance(env, sds);
1e3c88bd 7142}
fab47622 7143
1e3c88bd
PZ
7144/******* find_busiest_group() helpers end here *********************/
7145
7146/**
7147 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7148 * if there is an imbalance.
1e3c88bd
PZ
7149 *
7150 * Also calculates the amount of weighted load which should be moved
7151 * to restore balance.
7152 *
cd96891d 7153 * @env: The load balancing environment.
1e3c88bd 7154 *
e69f6186 7155 * Return: - The busiest group if imbalance exists.
1e3c88bd 7156 */
56cf515b 7157static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7158{
56cf515b 7159 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7160 struct sd_lb_stats sds;
7161
147c5fc2 7162 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7163
7164 /*
7165 * Compute the various statistics relavent for load balancing at
7166 * this level.
7167 */
23f0d209 7168 update_sd_lb_stats(env, &sds);
56cf515b
JK
7169 local = &sds.local_stat;
7170 busiest = &sds.busiest_stat;
1e3c88bd 7171
ea67821b 7172 /* ASYM feature bypasses nice load balance check */
1f621e02 7173 if (check_asym_packing(env, &sds))
532cb4c4
MN
7174 return sds.busiest;
7175
cc57aa8f 7176 /* There is no busy sibling group to pull tasks from */
56cf515b 7177 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7178 goto out_balanced;
7179
ca8ce3d0
NP
7180 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7181 / sds.total_capacity;
b0432d8f 7182
866ab43e
PZ
7183 /*
7184 * If the busiest group is imbalanced the below checks don't
30ce5dab 7185 * work because they assume all things are equal, which typically
866ab43e
PZ
7186 * isn't true due to cpus_allowed constraints and the like.
7187 */
caeb178c 7188 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7189 goto force_balance;
7190
cc57aa8f 7191 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7192 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7193 busiest->group_no_capacity)
fab47622
NR
7194 goto force_balance;
7195
cc57aa8f 7196 /*
9c58c79a 7197 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7198 * don't try and pull any tasks.
7199 */
56cf515b 7200 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7201 goto out_balanced;
7202
cc57aa8f
PZ
7203 /*
7204 * Don't pull any tasks if this group is already above the domain
7205 * average load.
7206 */
56cf515b 7207 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7208 goto out_balanced;
7209
bd939f45 7210 if (env->idle == CPU_IDLE) {
aae6d3dd 7211 /*
43f4d666
VG
7212 * This cpu is idle. If the busiest group is not overloaded
7213 * and there is no imbalance between this and busiest group
7214 * wrt idle cpus, it is balanced. The imbalance becomes
7215 * significant if the diff is greater than 1 otherwise we
7216 * might end up to just move the imbalance on another group
aae6d3dd 7217 */
43f4d666
VG
7218 if ((busiest->group_type != group_overloaded) &&
7219 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7220 goto out_balanced;
c186fafe
PZ
7221 } else {
7222 /*
7223 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7224 * imbalance_pct to be conservative.
7225 */
56cf515b
JK
7226 if (100 * busiest->avg_load <=
7227 env->sd->imbalance_pct * local->avg_load)
c186fafe 7228 goto out_balanced;
aae6d3dd 7229 }
1e3c88bd 7230
fab47622 7231force_balance:
1e3c88bd 7232 /* Looks like there is an imbalance. Compute it */
bd939f45 7233 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7234 return sds.busiest;
7235
7236out_balanced:
bd939f45 7237 env->imbalance = 0;
1e3c88bd
PZ
7238 return NULL;
7239}
7240
7241/*
7242 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7243 */
bd939f45 7244static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7245 struct sched_group *group)
1e3c88bd
PZ
7246{
7247 struct rq *busiest = NULL, *rq;
ced549fa 7248 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7249 int i;
7250
6906a408 7251 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7252 unsigned long capacity, wl;
0ec8aa00
PZ
7253 enum fbq_type rt;
7254
7255 rq = cpu_rq(i);
7256 rt = fbq_classify_rq(rq);
1e3c88bd 7257
0ec8aa00
PZ
7258 /*
7259 * We classify groups/runqueues into three groups:
7260 * - regular: there are !numa tasks
7261 * - remote: there are numa tasks that run on the 'wrong' node
7262 * - all: there is no distinction
7263 *
7264 * In order to avoid migrating ideally placed numa tasks,
7265 * ignore those when there's better options.
7266 *
7267 * If we ignore the actual busiest queue to migrate another
7268 * task, the next balance pass can still reduce the busiest
7269 * queue by moving tasks around inside the node.
7270 *
7271 * If we cannot move enough load due to this classification
7272 * the next pass will adjust the group classification and
7273 * allow migration of more tasks.
7274 *
7275 * Both cases only affect the total convergence complexity.
7276 */
7277 if (rt > env->fbq_type)
7278 continue;
7279
ced549fa 7280 capacity = capacity_of(i);
9d5efe05 7281
6e40f5bb 7282 wl = weighted_cpuload(i);
1e3c88bd 7283
6e40f5bb
TG
7284 /*
7285 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7286 * which is not scaled with the cpu capacity.
6e40f5bb 7287 */
ea67821b
VG
7288
7289 if (rq->nr_running == 1 && wl > env->imbalance &&
7290 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7291 continue;
7292
6e40f5bb
TG
7293 /*
7294 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7295 * the weighted_cpuload() scaled with the cpu capacity, so
7296 * that the load can be moved away from the cpu that is
7297 * potentially running at a lower capacity.
95a79b80 7298 *
ced549fa 7299 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7300 * multiplication to rid ourselves of the division works out
ced549fa
NP
7301 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7302 * our previous maximum.
6e40f5bb 7303 */
ced549fa 7304 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7305 busiest_load = wl;
ced549fa 7306 busiest_capacity = capacity;
1e3c88bd
PZ
7307 busiest = rq;
7308 }
7309 }
7310
7311 return busiest;
7312}
7313
7314/*
7315 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7316 * so long as it is large enough.
7317 */
7318#define MAX_PINNED_INTERVAL 512
7319
7320/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7321DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7322
bd939f45 7323static int need_active_balance(struct lb_env *env)
1af3ed3d 7324{
bd939f45
PZ
7325 struct sched_domain *sd = env->sd;
7326
7327 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7328
7329 /*
7330 * ASYM_PACKING needs to force migrate tasks from busy but
7331 * higher numbered CPUs in order to pack all tasks in the
7332 * lowest numbered CPUs.
7333 */
bd939f45 7334 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7335 return 1;
1af3ed3d
PZ
7336 }
7337
1aaf90a4
VG
7338 /*
7339 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7340 * It's worth migrating the task if the src_cpu's capacity is reduced
7341 * because of other sched_class or IRQs if more capacity stays
7342 * available on dst_cpu.
7343 */
7344 if ((env->idle != CPU_NOT_IDLE) &&
7345 (env->src_rq->cfs.h_nr_running == 1)) {
7346 if ((check_cpu_capacity(env->src_rq, sd)) &&
7347 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7348 return 1;
7349 }
7350
1af3ed3d
PZ
7351 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7352}
7353
969c7921
TH
7354static int active_load_balance_cpu_stop(void *data);
7355
23f0d209
JK
7356static int should_we_balance(struct lb_env *env)
7357{
7358 struct sched_group *sg = env->sd->groups;
7359 struct cpumask *sg_cpus, *sg_mask;
7360 int cpu, balance_cpu = -1;
7361
7362 /*
7363 * In the newly idle case, we will allow all the cpu's
7364 * to do the newly idle load balance.
7365 */
7366 if (env->idle == CPU_NEWLY_IDLE)
7367 return 1;
7368
7369 sg_cpus = sched_group_cpus(sg);
7370 sg_mask = sched_group_mask(sg);
7371 /* Try to find first idle cpu */
7372 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7373 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7374 continue;
7375
7376 balance_cpu = cpu;
7377 break;
7378 }
7379
7380 if (balance_cpu == -1)
7381 balance_cpu = group_balance_cpu(sg);
7382
7383 /*
7384 * First idle cpu or the first cpu(busiest) in this sched group
7385 * is eligible for doing load balancing at this and above domains.
7386 */
b0cff9d8 7387 return balance_cpu == env->dst_cpu;
23f0d209
JK
7388}
7389
1e3c88bd
PZ
7390/*
7391 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7392 * tasks if there is an imbalance.
7393 */
7394static int load_balance(int this_cpu, struct rq *this_rq,
7395 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7396 int *continue_balancing)
1e3c88bd 7397{
88b8dac0 7398 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7399 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7400 struct sched_group *group;
1e3c88bd
PZ
7401 struct rq *busiest;
7402 unsigned long flags;
4ba29684 7403 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7404
8e45cb54
PZ
7405 struct lb_env env = {
7406 .sd = sd,
ddcdf6e7
PZ
7407 .dst_cpu = this_cpu,
7408 .dst_rq = this_rq,
88b8dac0 7409 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7410 .idle = idle,
eb95308e 7411 .loop_break = sched_nr_migrate_break,
b9403130 7412 .cpus = cpus,
0ec8aa00 7413 .fbq_type = all,
163122b7 7414 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7415 };
7416
cfc03118
JK
7417 /*
7418 * For NEWLY_IDLE load_balancing, we don't need to consider
7419 * other cpus in our group
7420 */
e02e60c1 7421 if (idle == CPU_NEWLY_IDLE)
cfc03118 7422 env.dst_grpmask = NULL;
cfc03118 7423
1e3c88bd
PZ
7424 cpumask_copy(cpus, cpu_active_mask);
7425
1e3c88bd
PZ
7426 schedstat_inc(sd, lb_count[idle]);
7427
7428redo:
23f0d209
JK
7429 if (!should_we_balance(&env)) {
7430 *continue_balancing = 0;
1e3c88bd 7431 goto out_balanced;
23f0d209 7432 }
1e3c88bd 7433
23f0d209 7434 group = find_busiest_group(&env);
1e3c88bd
PZ
7435 if (!group) {
7436 schedstat_inc(sd, lb_nobusyg[idle]);
7437 goto out_balanced;
7438 }
7439
b9403130 7440 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7441 if (!busiest) {
7442 schedstat_inc(sd, lb_nobusyq[idle]);
7443 goto out_balanced;
7444 }
7445
78feefc5 7446 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7447
bd939f45 7448 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7449
1aaf90a4
VG
7450 env.src_cpu = busiest->cpu;
7451 env.src_rq = busiest;
7452
1e3c88bd
PZ
7453 ld_moved = 0;
7454 if (busiest->nr_running > 1) {
7455 /*
7456 * Attempt to move tasks. If find_busiest_group has found
7457 * an imbalance but busiest->nr_running <= 1, the group is
7458 * still unbalanced. ld_moved simply stays zero, so it is
7459 * correctly treated as an imbalance.
7460 */
8e45cb54 7461 env.flags |= LBF_ALL_PINNED;
c82513e5 7462 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7463
5d6523eb 7464more_balance:
163122b7 7465 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7466
7467 /*
7468 * cur_ld_moved - load moved in current iteration
7469 * ld_moved - cumulative load moved across iterations
7470 */
163122b7 7471 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7472
7473 /*
163122b7
KT
7474 * We've detached some tasks from busiest_rq. Every
7475 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7476 * unlock busiest->lock, and we are able to be sure
7477 * that nobody can manipulate the tasks in parallel.
7478 * See task_rq_lock() family for the details.
1e3c88bd 7479 */
163122b7
KT
7480
7481 raw_spin_unlock(&busiest->lock);
7482
7483 if (cur_ld_moved) {
7484 attach_tasks(&env);
7485 ld_moved += cur_ld_moved;
7486 }
7487
1e3c88bd 7488 local_irq_restore(flags);
88b8dac0 7489
f1cd0858
JK
7490 if (env.flags & LBF_NEED_BREAK) {
7491 env.flags &= ~LBF_NEED_BREAK;
7492 goto more_balance;
7493 }
7494
88b8dac0
SV
7495 /*
7496 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7497 * us and move them to an alternate dst_cpu in our sched_group
7498 * where they can run. The upper limit on how many times we
7499 * iterate on same src_cpu is dependent on number of cpus in our
7500 * sched_group.
7501 *
7502 * This changes load balance semantics a bit on who can move
7503 * load to a given_cpu. In addition to the given_cpu itself
7504 * (or a ilb_cpu acting on its behalf where given_cpu is
7505 * nohz-idle), we now have balance_cpu in a position to move
7506 * load to given_cpu. In rare situations, this may cause
7507 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7508 * _independently_ and at _same_ time to move some load to
7509 * given_cpu) causing exceess load to be moved to given_cpu.
7510 * This however should not happen so much in practice and
7511 * moreover subsequent load balance cycles should correct the
7512 * excess load moved.
7513 */
6263322c 7514 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7515
7aff2e3a
VD
7516 /* Prevent to re-select dst_cpu via env's cpus */
7517 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7518
78feefc5 7519 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7520 env.dst_cpu = env.new_dst_cpu;
6263322c 7521 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7522 env.loop = 0;
7523 env.loop_break = sched_nr_migrate_break;
e02e60c1 7524
88b8dac0
SV
7525 /*
7526 * Go back to "more_balance" rather than "redo" since we
7527 * need to continue with same src_cpu.
7528 */
7529 goto more_balance;
7530 }
1e3c88bd 7531
6263322c
PZ
7532 /*
7533 * We failed to reach balance because of affinity.
7534 */
7535 if (sd_parent) {
63b2ca30 7536 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7537
afdeee05 7538 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7539 *group_imbalance = 1;
6263322c
PZ
7540 }
7541
1e3c88bd 7542 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7543 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7544 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7545 if (!cpumask_empty(cpus)) {
7546 env.loop = 0;
7547 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7548 goto redo;
bbf18b19 7549 }
afdeee05 7550 goto out_all_pinned;
1e3c88bd
PZ
7551 }
7552 }
7553
7554 if (!ld_moved) {
7555 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7556 /*
7557 * Increment the failure counter only on periodic balance.
7558 * We do not want newidle balance, which can be very
7559 * frequent, pollute the failure counter causing
7560 * excessive cache_hot migrations and active balances.
7561 */
7562 if (idle != CPU_NEWLY_IDLE)
7563 sd->nr_balance_failed++;
1e3c88bd 7564
bd939f45 7565 if (need_active_balance(&env)) {
1e3c88bd
PZ
7566 raw_spin_lock_irqsave(&busiest->lock, flags);
7567
969c7921
TH
7568 /* don't kick the active_load_balance_cpu_stop,
7569 * if the curr task on busiest cpu can't be
7570 * moved to this_cpu
1e3c88bd
PZ
7571 */
7572 if (!cpumask_test_cpu(this_cpu,
fa17b507 7573 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7574 raw_spin_unlock_irqrestore(&busiest->lock,
7575 flags);
8e45cb54 7576 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7577 goto out_one_pinned;
7578 }
7579
969c7921
TH
7580 /*
7581 * ->active_balance synchronizes accesses to
7582 * ->active_balance_work. Once set, it's cleared
7583 * only after active load balance is finished.
7584 */
1e3c88bd
PZ
7585 if (!busiest->active_balance) {
7586 busiest->active_balance = 1;
7587 busiest->push_cpu = this_cpu;
7588 active_balance = 1;
7589 }
7590 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7591
bd939f45 7592 if (active_balance) {
969c7921
TH
7593 stop_one_cpu_nowait(cpu_of(busiest),
7594 active_load_balance_cpu_stop, busiest,
7595 &busiest->active_balance_work);
bd939f45 7596 }
1e3c88bd 7597
d02c0711 7598 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7599 sd->nr_balance_failed = sd->cache_nice_tries+1;
7600 }
7601 } else
7602 sd->nr_balance_failed = 0;
7603
7604 if (likely(!active_balance)) {
7605 /* We were unbalanced, so reset the balancing interval */
7606 sd->balance_interval = sd->min_interval;
7607 } else {
7608 /*
7609 * If we've begun active balancing, start to back off. This
7610 * case may not be covered by the all_pinned logic if there
7611 * is only 1 task on the busy runqueue (because we don't call
163122b7 7612 * detach_tasks).
1e3c88bd
PZ
7613 */
7614 if (sd->balance_interval < sd->max_interval)
7615 sd->balance_interval *= 2;
7616 }
7617
1e3c88bd
PZ
7618 goto out;
7619
7620out_balanced:
afdeee05
VG
7621 /*
7622 * We reach balance although we may have faced some affinity
7623 * constraints. Clear the imbalance flag if it was set.
7624 */
7625 if (sd_parent) {
7626 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7627
7628 if (*group_imbalance)
7629 *group_imbalance = 0;
7630 }
7631
7632out_all_pinned:
7633 /*
7634 * We reach balance because all tasks are pinned at this level so
7635 * we can't migrate them. Let the imbalance flag set so parent level
7636 * can try to migrate them.
7637 */
1e3c88bd
PZ
7638 schedstat_inc(sd, lb_balanced[idle]);
7639
7640 sd->nr_balance_failed = 0;
7641
7642out_one_pinned:
7643 /* tune up the balancing interval */
8e45cb54 7644 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7645 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7646 (sd->balance_interval < sd->max_interval))
7647 sd->balance_interval *= 2;
7648
46e49b38 7649 ld_moved = 0;
1e3c88bd 7650out:
1e3c88bd
PZ
7651 return ld_moved;
7652}
7653
52a08ef1
JL
7654static inline unsigned long
7655get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7656{
7657 unsigned long interval = sd->balance_interval;
7658
7659 if (cpu_busy)
7660 interval *= sd->busy_factor;
7661
7662 /* scale ms to jiffies */
7663 interval = msecs_to_jiffies(interval);
7664 interval = clamp(interval, 1UL, max_load_balance_interval);
7665
7666 return interval;
7667}
7668
7669static inline void
7670update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7671{
7672 unsigned long interval, next;
7673
7674 interval = get_sd_balance_interval(sd, cpu_busy);
7675 next = sd->last_balance + interval;
7676
7677 if (time_after(*next_balance, next))
7678 *next_balance = next;
7679}
7680
1e3c88bd
PZ
7681/*
7682 * idle_balance is called by schedule() if this_cpu is about to become
7683 * idle. Attempts to pull tasks from other CPUs.
7684 */
6e83125c 7685static int idle_balance(struct rq *this_rq)
1e3c88bd 7686{
52a08ef1
JL
7687 unsigned long next_balance = jiffies + HZ;
7688 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7689 struct sched_domain *sd;
7690 int pulled_task = 0;
9bd721c5 7691 u64 curr_cost = 0;
1e3c88bd 7692
6e83125c
PZ
7693 /*
7694 * We must set idle_stamp _before_ calling idle_balance(), such that we
7695 * measure the duration of idle_balance() as idle time.
7696 */
7697 this_rq->idle_stamp = rq_clock(this_rq);
7698
4486edd1
TC
7699 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7700 !this_rq->rd->overload) {
52a08ef1
JL
7701 rcu_read_lock();
7702 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7703 if (sd)
7704 update_next_balance(sd, 0, &next_balance);
7705 rcu_read_unlock();
7706
6e83125c 7707 goto out;
52a08ef1 7708 }
1e3c88bd 7709
f492e12e
PZ
7710 raw_spin_unlock(&this_rq->lock);
7711
48a16753 7712 update_blocked_averages(this_cpu);
dce840a0 7713 rcu_read_lock();
1e3c88bd 7714 for_each_domain(this_cpu, sd) {
23f0d209 7715 int continue_balancing = 1;
9bd721c5 7716 u64 t0, domain_cost;
1e3c88bd
PZ
7717
7718 if (!(sd->flags & SD_LOAD_BALANCE))
7719 continue;
7720
52a08ef1
JL
7721 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7722 update_next_balance(sd, 0, &next_balance);
9bd721c5 7723 break;
52a08ef1 7724 }
9bd721c5 7725
f492e12e 7726 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7727 t0 = sched_clock_cpu(this_cpu);
7728
f492e12e 7729 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7730 sd, CPU_NEWLY_IDLE,
7731 &continue_balancing);
9bd721c5
JL
7732
7733 domain_cost = sched_clock_cpu(this_cpu) - t0;
7734 if (domain_cost > sd->max_newidle_lb_cost)
7735 sd->max_newidle_lb_cost = domain_cost;
7736
7737 curr_cost += domain_cost;
f492e12e 7738 }
1e3c88bd 7739
52a08ef1 7740 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7741
7742 /*
7743 * Stop searching for tasks to pull if there are
7744 * now runnable tasks on this rq.
7745 */
7746 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7747 break;
1e3c88bd 7748 }
dce840a0 7749 rcu_read_unlock();
f492e12e
PZ
7750
7751 raw_spin_lock(&this_rq->lock);
7752
0e5b5337
JL
7753 if (curr_cost > this_rq->max_idle_balance_cost)
7754 this_rq->max_idle_balance_cost = curr_cost;
7755
e5fc6611 7756 /*
0e5b5337
JL
7757 * While browsing the domains, we released the rq lock, a task could
7758 * have been enqueued in the meantime. Since we're not going idle,
7759 * pretend we pulled a task.
e5fc6611 7760 */
0e5b5337 7761 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7762 pulled_task = 1;
e5fc6611 7763
52a08ef1
JL
7764out:
7765 /* Move the next balance forward */
7766 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7767 this_rq->next_balance = next_balance;
9bd721c5 7768
e4aa358b 7769 /* Is there a task of a high priority class? */
46383648 7770 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7771 pulled_task = -1;
7772
38c6ade2 7773 if (pulled_task)
6e83125c
PZ
7774 this_rq->idle_stamp = 0;
7775
3c4017c1 7776 return pulled_task;
1e3c88bd
PZ
7777}
7778
7779/*
969c7921
TH
7780 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7781 * running tasks off the busiest CPU onto idle CPUs. It requires at
7782 * least 1 task to be running on each physical CPU where possible, and
7783 * avoids physical / logical imbalances.
1e3c88bd 7784 */
969c7921 7785static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7786{
969c7921
TH
7787 struct rq *busiest_rq = data;
7788 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7789 int target_cpu = busiest_rq->push_cpu;
969c7921 7790 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7791 struct sched_domain *sd;
e5673f28 7792 struct task_struct *p = NULL;
969c7921
TH
7793
7794 raw_spin_lock_irq(&busiest_rq->lock);
7795
7796 /* make sure the requested cpu hasn't gone down in the meantime */
7797 if (unlikely(busiest_cpu != smp_processor_id() ||
7798 !busiest_rq->active_balance))
7799 goto out_unlock;
1e3c88bd
PZ
7800
7801 /* Is there any task to move? */
7802 if (busiest_rq->nr_running <= 1)
969c7921 7803 goto out_unlock;
1e3c88bd
PZ
7804
7805 /*
7806 * This condition is "impossible", if it occurs
7807 * we need to fix it. Originally reported by
7808 * Bjorn Helgaas on a 128-cpu setup.
7809 */
7810 BUG_ON(busiest_rq == target_rq);
7811
1e3c88bd 7812 /* Search for an sd spanning us and the target CPU. */
dce840a0 7813 rcu_read_lock();
1e3c88bd
PZ
7814 for_each_domain(target_cpu, sd) {
7815 if ((sd->flags & SD_LOAD_BALANCE) &&
7816 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7817 break;
7818 }
7819
7820 if (likely(sd)) {
8e45cb54
PZ
7821 struct lb_env env = {
7822 .sd = sd,
ddcdf6e7
PZ
7823 .dst_cpu = target_cpu,
7824 .dst_rq = target_rq,
7825 .src_cpu = busiest_rq->cpu,
7826 .src_rq = busiest_rq,
8e45cb54
PZ
7827 .idle = CPU_IDLE,
7828 };
7829
1e3c88bd
PZ
7830 schedstat_inc(sd, alb_count);
7831
e5673f28 7832 p = detach_one_task(&env);
d02c0711 7833 if (p) {
1e3c88bd 7834 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7835 /* Active balancing done, reset the failure counter. */
7836 sd->nr_balance_failed = 0;
7837 } else {
1e3c88bd 7838 schedstat_inc(sd, alb_failed);
d02c0711 7839 }
1e3c88bd 7840 }
dce840a0 7841 rcu_read_unlock();
969c7921
TH
7842out_unlock:
7843 busiest_rq->active_balance = 0;
e5673f28
KT
7844 raw_spin_unlock(&busiest_rq->lock);
7845
7846 if (p)
7847 attach_one_task(target_rq, p);
7848
7849 local_irq_enable();
7850
969c7921 7851 return 0;
1e3c88bd
PZ
7852}
7853
d987fc7f
MG
7854static inline int on_null_domain(struct rq *rq)
7855{
7856 return unlikely(!rcu_dereference_sched(rq->sd));
7857}
7858
3451d024 7859#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7860/*
7861 * idle load balancing details
83cd4fe2
VP
7862 * - When one of the busy CPUs notice that there may be an idle rebalancing
7863 * needed, they will kick the idle load balancer, which then does idle
7864 * load balancing for all the idle CPUs.
7865 */
1e3c88bd 7866static struct {
83cd4fe2 7867 cpumask_var_t idle_cpus_mask;
0b005cf5 7868 atomic_t nr_cpus;
83cd4fe2
VP
7869 unsigned long next_balance; /* in jiffy units */
7870} nohz ____cacheline_aligned;
1e3c88bd 7871
3dd0337d 7872static inline int find_new_ilb(void)
1e3c88bd 7873{
0b005cf5 7874 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7875
786d6dc7
SS
7876 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7877 return ilb;
7878
7879 return nr_cpu_ids;
1e3c88bd 7880}
1e3c88bd 7881
83cd4fe2
VP
7882/*
7883 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7884 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7885 * CPU (if there is one).
7886 */
0aeeeeba 7887static void nohz_balancer_kick(void)
83cd4fe2
VP
7888{
7889 int ilb_cpu;
7890
7891 nohz.next_balance++;
7892
3dd0337d 7893 ilb_cpu = find_new_ilb();
83cd4fe2 7894
0b005cf5
SS
7895 if (ilb_cpu >= nr_cpu_ids)
7896 return;
83cd4fe2 7897
cd490c5b 7898 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7899 return;
7900 /*
7901 * Use smp_send_reschedule() instead of resched_cpu().
7902 * This way we generate a sched IPI on the target cpu which
7903 * is idle. And the softirq performing nohz idle load balance
7904 * will be run before returning from the IPI.
7905 */
7906 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7907 return;
7908}
7909
20a5c8cc 7910void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7911{
7912 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7913 /*
7914 * Completely isolated CPUs don't ever set, so we must test.
7915 */
7916 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7917 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7918 atomic_dec(&nohz.nr_cpus);
7919 }
71325960
SS
7920 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7921 }
7922}
7923
69e1e811
SS
7924static inline void set_cpu_sd_state_busy(void)
7925{
7926 struct sched_domain *sd;
37dc6b50 7927 int cpu = smp_processor_id();
69e1e811 7928
69e1e811 7929 rcu_read_lock();
37dc6b50 7930 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7931
7932 if (!sd || !sd->nohz_idle)
7933 goto unlock;
7934 sd->nohz_idle = 0;
7935
63b2ca30 7936 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7937unlock:
69e1e811
SS
7938 rcu_read_unlock();
7939}
7940
7941void set_cpu_sd_state_idle(void)
7942{
7943 struct sched_domain *sd;
37dc6b50 7944 int cpu = smp_processor_id();
69e1e811 7945
69e1e811 7946 rcu_read_lock();
37dc6b50 7947 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7948
7949 if (!sd || sd->nohz_idle)
7950 goto unlock;
7951 sd->nohz_idle = 1;
7952
63b2ca30 7953 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7954unlock:
69e1e811
SS
7955 rcu_read_unlock();
7956}
7957
1e3c88bd 7958/*
c1cc017c 7959 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7960 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7961 */
c1cc017c 7962void nohz_balance_enter_idle(int cpu)
1e3c88bd 7963{
71325960
SS
7964 /*
7965 * If this cpu is going down, then nothing needs to be done.
7966 */
7967 if (!cpu_active(cpu))
7968 return;
7969
c1cc017c
AS
7970 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7971 return;
1e3c88bd 7972
d987fc7f
MG
7973 /*
7974 * If we're a completely isolated CPU, we don't play.
7975 */
7976 if (on_null_domain(cpu_rq(cpu)))
7977 return;
7978
c1cc017c
AS
7979 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7980 atomic_inc(&nohz.nr_cpus);
7981 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
7982}
7983#endif
7984
7985static DEFINE_SPINLOCK(balancing);
7986
49c022e6
PZ
7987/*
7988 * Scale the max load_balance interval with the number of CPUs in the system.
7989 * This trades load-balance latency on larger machines for less cross talk.
7990 */
029632fb 7991void update_max_interval(void)
49c022e6
PZ
7992{
7993 max_load_balance_interval = HZ*num_online_cpus()/10;
7994}
7995
1e3c88bd
PZ
7996/*
7997 * It checks each scheduling domain to see if it is due to be balanced,
7998 * and initiates a balancing operation if so.
7999 *
b9b0853a 8000 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8001 */
f7ed0a89 8002static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8003{
23f0d209 8004 int continue_balancing = 1;
f7ed0a89 8005 int cpu = rq->cpu;
1e3c88bd 8006 unsigned long interval;
04f733b4 8007 struct sched_domain *sd;
1e3c88bd
PZ
8008 /* Earliest time when we have to do rebalance again */
8009 unsigned long next_balance = jiffies + 60*HZ;
8010 int update_next_balance = 0;
f48627e6
JL
8011 int need_serialize, need_decay = 0;
8012 u64 max_cost = 0;
1e3c88bd 8013
48a16753 8014 update_blocked_averages(cpu);
2069dd75 8015
dce840a0 8016 rcu_read_lock();
1e3c88bd 8017 for_each_domain(cpu, sd) {
f48627e6
JL
8018 /*
8019 * Decay the newidle max times here because this is a regular
8020 * visit to all the domains. Decay ~1% per second.
8021 */
8022 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8023 sd->max_newidle_lb_cost =
8024 (sd->max_newidle_lb_cost * 253) / 256;
8025 sd->next_decay_max_lb_cost = jiffies + HZ;
8026 need_decay = 1;
8027 }
8028 max_cost += sd->max_newidle_lb_cost;
8029
1e3c88bd
PZ
8030 if (!(sd->flags & SD_LOAD_BALANCE))
8031 continue;
8032
f48627e6
JL
8033 /*
8034 * Stop the load balance at this level. There is another
8035 * CPU in our sched group which is doing load balancing more
8036 * actively.
8037 */
8038 if (!continue_balancing) {
8039 if (need_decay)
8040 continue;
8041 break;
8042 }
8043
52a08ef1 8044 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8045
8046 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8047 if (need_serialize) {
8048 if (!spin_trylock(&balancing))
8049 goto out;
8050 }
8051
8052 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8053 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8054 /*
6263322c 8055 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8056 * env->dst_cpu, so we can't know our idle
8057 * state even if we migrated tasks. Update it.
1e3c88bd 8058 */
de5eb2dd 8059 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8060 }
8061 sd->last_balance = jiffies;
52a08ef1 8062 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8063 }
8064 if (need_serialize)
8065 spin_unlock(&balancing);
8066out:
8067 if (time_after(next_balance, sd->last_balance + interval)) {
8068 next_balance = sd->last_balance + interval;
8069 update_next_balance = 1;
8070 }
f48627e6
JL
8071 }
8072 if (need_decay) {
1e3c88bd 8073 /*
f48627e6
JL
8074 * Ensure the rq-wide value also decays but keep it at a
8075 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8076 */
f48627e6
JL
8077 rq->max_idle_balance_cost =
8078 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8079 }
dce840a0 8080 rcu_read_unlock();
1e3c88bd
PZ
8081
8082 /*
8083 * next_balance will be updated only when there is a need.
8084 * When the cpu is attached to null domain for ex, it will not be
8085 * updated.
8086 */
c5afb6a8 8087 if (likely(update_next_balance)) {
1e3c88bd 8088 rq->next_balance = next_balance;
c5afb6a8
VG
8089
8090#ifdef CONFIG_NO_HZ_COMMON
8091 /*
8092 * If this CPU has been elected to perform the nohz idle
8093 * balance. Other idle CPUs have already rebalanced with
8094 * nohz_idle_balance() and nohz.next_balance has been
8095 * updated accordingly. This CPU is now running the idle load
8096 * balance for itself and we need to update the
8097 * nohz.next_balance accordingly.
8098 */
8099 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8100 nohz.next_balance = rq->next_balance;
8101#endif
8102 }
1e3c88bd
PZ
8103}
8104
3451d024 8105#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8106/*
3451d024 8107 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8108 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8109 */
208cb16b 8110static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8111{
208cb16b 8112 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8113 struct rq *rq;
8114 int balance_cpu;
c5afb6a8
VG
8115 /* Earliest time when we have to do rebalance again */
8116 unsigned long next_balance = jiffies + 60*HZ;
8117 int update_next_balance = 0;
83cd4fe2 8118
1c792db7
SS
8119 if (idle != CPU_IDLE ||
8120 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8121 goto end;
83cd4fe2
VP
8122
8123 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8124 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8125 continue;
8126
8127 /*
8128 * If this cpu gets work to do, stop the load balancing
8129 * work being done for other cpus. Next load
8130 * balancing owner will pick it up.
8131 */
1c792db7 8132 if (need_resched())
83cd4fe2 8133 break;
83cd4fe2 8134
5ed4f1d9
VG
8135 rq = cpu_rq(balance_cpu);
8136
ed61bbc6
TC
8137 /*
8138 * If time for next balance is due,
8139 * do the balance.
8140 */
8141 if (time_after_eq(jiffies, rq->next_balance)) {
8142 raw_spin_lock_irq(&rq->lock);
8143 update_rq_clock(rq);
cee1afce 8144 cpu_load_update_idle(rq);
ed61bbc6
TC
8145 raw_spin_unlock_irq(&rq->lock);
8146 rebalance_domains(rq, CPU_IDLE);
8147 }
83cd4fe2 8148
c5afb6a8
VG
8149 if (time_after(next_balance, rq->next_balance)) {
8150 next_balance = rq->next_balance;
8151 update_next_balance = 1;
8152 }
83cd4fe2 8153 }
c5afb6a8
VG
8154
8155 /*
8156 * next_balance will be updated only when there is a need.
8157 * When the CPU is attached to null domain for ex, it will not be
8158 * updated.
8159 */
8160 if (likely(update_next_balance))
8161 nohz.next_balance = next_balance;
1c792db7
SS
8162end:
8163 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8164}
8165
8166/*
0b005cf5 8167 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8168 * of an idle cpu in the system.
0b005cf5 8169 * - This rq has more than one task.
1aaf90a4
VG
8170 * - This rq has at least one CFS task and the capacity of the CPU is
8171 * significantly reduced because of RT tasks or IRQs.
8172 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8173 * multiple busy cpu.
0b005cf5
SS
8174 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8175 * domain span are idle.
83cd4fe2 8176 */
1aaf90a4 8177static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8178{
8179 unsigned long now = jiffies;
0b005cf5 8180 struct sched_domain *sd;
63b2ca30 8181 struct sched_group_capacity *sgc;
4a725627 8182 int nr_busy, cpu = rq->cpu;
1aaf90a4 8183 bool kick = false;
83cd4fe2 8184
4a725627 8185 if (unlikely(rq->idle_balance))
1aaf90a4 8186 return false;
83cd4fe2 8187
1c792db7
SS
8188 /*
8189 * We may be recently in ticked or tickless idle mode. At the first
8190 * busy tick after returning from idle, we will update the busy stats.
8191 */
69e1e811 8192 set_cpu_sd_state_busy();
c1cc017c 8193 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8194
8195 /*
8196 * None are in tickless mode and hence no need for NOHZ idle load
8197 * balancing.
8198 */
8199 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8200 return false;
1c792db7
SS
8201
8202 if (time_before(now, nohz.next_balance))
1aaf90a4 8203 return false;
83cd4fe2 8204
0b005cf5 8205 if (rq->nr_running >= 2)
1aaf90a4 8206 return true;
83cd4fe2 8207
067491b7 8208 rcu_read_lock();
37dc6b50 8209 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8210 if (sd) {
63b2ca30
NP
8211 sgc = sd->groups->sgc;
8212 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8213
1aaf90a4
VG
8214 if (nr_busy > 1) {
8215 kick = true;
8216 goto unlock;
8217 }
8218
83cd4fe2 8219 }
37dc6b50 8220
1aaf90a4
VG
8221 sd = rcu_dereference(rq->sd);
8222 if (sd) {
8223 if ((rq->cfs.h_nr_running >= 1) &&
8224 check_cpu_capacity(rq, sd)) {
8225 kick = true;
8226 goto unlock;
8227 }
8228 }
37dc6b50 8229
1aaf90a4 8230 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8231 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8232 sched_domain_span(sd)) < cpu)) {
8233 kick = true;
8234 goto unlock;
8235 }
067491b7 8236
1aaf90a4 8237unlock:
067491b7 8238 rcu_read_unlock();
1aaf90a4 8239 return kick;
83cd4fe2
VP
8240}
8241#else
208cb16b 8242static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8243#endif
8244
8245/*
8246 * run_rebalance_domains is triggered when needed from the scheduler tick.
8247 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8248 */
1e3c88bd
PZ
8249static void run_rebalance_domains(struct softirq_action *h)
8250{
208cb16b 8251 struct rq *this_rq = this_rq();
6eb57e0d 8252 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8253 CPU_IDLE : CPU_NOT_IDLE;
8254
1e3c88bd 8255 /*
83cd4fe2 8256 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8257 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8258 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8259 * give the idle cpus a chance to load balance. Else we may
8260 * load balance only within the local sched_domain hierarchy
8261 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8262 */
208cb16b 8263 nohz_idle_balance(this_rq, idle);
d4573c3e 8264 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8265}
8266
1e3c88bd
PZ
8267/*
8268 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8269 */
7caff66f 8270void trigger_load_balance(struct rq *rq)
1e3c88bd 8271{
1e3c88bd 8272 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8273 if (unlikely(on_null_domain(rq)))
8274 return;
8275
8276 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8277 raise_softirq(SCHED_SOFTIRQ);
3451d024 8278#ifdef CONFIG_NO_HZ_COMMON
c726099e 8279 if (nohz_kick_needed(rq))
0aeeeeba 8280 nohz_balancer_kick();
83cd4fe2 8281#endif
1e3c88bd
PZ
8282}
8283
0bcdcf28
CE
8284static void rq_online_fair(struct rq *rq)
8285{
8286 update_sysctl();
0e59bdae
KT
8287
8288 update_runtime_enabled(rq);
0bcdcf28
CE
8289}
8290
8291static void rq_offline_fair(struct rq *rq)
8292{
8293 update_sysctl();
a4c96ae3
PB
8294
8295 /* Ensure any throttled groups are reachable by pick_next_task */
8296 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8297}
8298
55e12e5e 8299#endif /* CONFIG_SMP */
e1d1484f 8300
bf0f6f24
IM
8301/*
8302 * scheduler tick hitting a task of our scheduling class:
8303 */
8f4d37ec 8304static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8305{
8306 struct cfs_rq *cfs_rq;
8307 struct sched_entity *se = &curr->se;
8308
8309 for_each_sched_entity(se) {
8310 cfs_rq = cfs_rq_of(se);
8f4d37ec 8311 entity_tick(cfs_rq, se, queued);
bf0f6f24 8312 }
18bf2805 8313
b52da86e 8314 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8315 task_tick_numa(rq, curr);
bf0f6f24
IM
8316}
8317
8318/*
cd29fe6f
PZ
8319 * called on fork with the child task as argument from the parent's context
8320 * - child not yet on the tasklist
8321 * - preemption disabled
bf0f6f24 8322 */
cd29fe6f 8323static void task_fork_fair(struct task_struct *p)
bf0f6f24 8324{
4fc420c9
DN
8325 struct cfs_rq *cfs_rq;
8326 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8327 struct rq *rq = this_rq();
bf0f6f24 8328
e210bffd 8329 raw_spin_lock(&rq->lock);
861d034e
PZ
8330 update_rq_clock(rq);
8331
4fc420c9
DN
8332 cfs_rq = task_cfs_rq(current);
8333 curr = cfs_rq->curr;
e210bffd
PZ
8334 if (curr) {
8335 update_curr(cfs_rq);
b5d9d734 8336 se->vruntime = curr->vruntime;
e210bffd 8337 }
aeb73b04 8338 place_entity(cfs_rq, se, 1);
4d78e7b6 8339
cd29fe6f 8340 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8341 /*
edcb60a3
IM
8342 * Upon rescheduling, sched_class::put_prev_task() will place
8343 * 'current' within the tree based on its new key value.
8344 */
4d78e7b6 8345 swap(curr->vruntime, se->vruntime);
8875125e 8346 resched_curr(rq);
4d78e7b6 8347 }
bf0f6f24 8348
88ec22d3 8349 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8350 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8351}
8352
cb469845
SR
8353/*
8354 * Priority of the task has changed. Check to see if we preempt
8355 * the current task.
8356 */
da7a735e
PZ
8357static void
8358prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8359{
da0c1e65 8360 if (!task_on_rq_queued(p))
da7a735e
PZ
8361 return;
8362
cb469845
SR
8363 /*
8364 * Reschedule if we are currently running on this runqueue and
8365 * our priority decreased, or if we are not currently running on
8366 * this runqueue and our priority is higher than the current's
8367 */
da7a735e 8368 if (rq->curr == p) {
cb469845 8369 if (p->prio > oldprio)
8875125e 8370 resched_curr(rq);
cb469845 8371 } else
15afe09b 8372 check_preempt_curr(rq, p, 0);
cb469845
SR
8373}
8374
daa59407 8375static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8376{
8377 struct sched_entity *se = &p->se;
da7a735e
PZ
8378
8379 /*
daa59407
BP
8380 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8381 * the dequeue_entity(.flags=0) will already have normalized the
8382 * vruntime.
8383 */
8384 if (p->on_rq)
8385 return true;
8386
8387 /*
8388 * When !on_rq, vruntime of the task has usually NOT been normalized.
8389 * But there are some cases where it has already been normalized:
da7a735e 8390 *
daa59407
BP
8391 * - A forked child which is waiting for being woken up by
8392 * wake_up_new_task().
8393 * - A task which has been woken up by try_to_wake_up() and
8394 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8395 */
daa59407
BP
8396 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8397 return true;
8398
8399 return false;
8400}
8401
8402static void detach_task_cfs_rq(struct task_struct *p)
8403{
8404 struct sched_entity *se = &p->se;
8405 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8406 u64 now = cfs_rq_clock_task(cfs_rq);
daa59407
BP
8407
8408 if (!vruntime_normalized(p)) {
da7a735e
PZ
8409 /*
8410 * Fix up our vruntime so that the current sleep doesn't
8411 * cause 'unlimited' sleep bonus.
8412 */
8413 place_entity(cfs_rq, se, 0);
8414 se->vruntime -= cfs_rq->min_vruntime;
8415 }
9ee474f5 8416
9d89c257 8417 /* Catch up with the cfs_rq and remove our load when we leave */
01011473 8418 update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8419 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8420}
8421
daa59407 8422static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8423{
f36c019c 8424 struct sched_entity *se = &p->se;
daa59407 8425 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8426 u64 now = cfs_rq_clock_task(cfs_rq);
7855a35a
BP
8427
8428#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8429 /*
8430 * Since the real-depth could have been changed (only FAIR
8431 * class maintain depth value), reset depth properly.
8432 */
8433 se->depth = se->parent ? se->parent->depth + 1 : 0;
8434#endif
7855a35a 8435
6efdb105 8436 /* Synchronize task with its cfs_rq */
01011473 8437 update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407
BP
8438 attach_entity_load_avg(cfs_rq, se);
8439
8440 if (!vruntime_normalized(p))
8441 se->vruntime += cfs_rq->min_vruntime;
8442}
6efdb105 8443
daa59407
BP
8444static void switched_from_fair(struct rq *rq, struct task_struct *p)
8445{
8446 detach_task_cfs_rq(p);
8447}
8448
8449static void switched_to_fair(struct rq *rq, struct task_struct *p)
8450{
8451 attach_task_cfs_rq(p);
7855a35a 8452
daa59407 8453 if (task_on_rq_queued(p)) {
7855a35a 8454 /*
daa59407
BP
8455 * We were most likely switched from sched_rt, so
8456 * kick off the schedule if running, otherwise just see
8457 * if we can still preempt the current task.
7855a35a 8458 */
daa59407
BP
8459 if (rq->curr == p)
8460 resched_curr(rq);
8461 else
8462 check_preempt_curr(rq, p, 0);
7855a35a 8463 }
cb469845
SR
8464}
8465
83b699ed
SV
8466/* Account for a task changing its policy or group.
8467 *
8468 * This routine is mostly called to set cfs_rq->curr field when a task
8469 * migrates between groups/classes.
8470 */
8471static void set_curr_task_fair(struct rq *rq)
8472{
8473 struct sched_entity *se = &rq->curr->se;
8474
ec12cb7f
PT
8475 for_each_sched_entity(se) {
8476 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8477
8478 set_next_entity(cfs_rq, se);
8479 /* ensure bandwidth has been allocated on our new cfs_rq */
8480 account_cfs_rq_runtime(cfs_rq, 0);
8481 }
83b699ed
SV
8482}
8483
029632fb
PZ
8484void init_cfs_rq(struct cfs_rq *cfs_rq)
8485{
8486 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8487 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8488#ifndef CONFIG_64BIT
8489 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8490#endif
141965c7 8491#ifdef CONFIG_SMP
9d89c257
YD
8492 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8493 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8494#endif
029632fb
PZ
8495}
8496
810b3817 8497#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8498static void task_set_group_fair(struct task_struct *p)
8499{
8500 struct sched_entity *se = &p->se;
8501
8502 set_task_rq(p, task_cpu(p));
8503 se->depth = se->parent ? se->parent->depth + 1 : 0;
8504}
8505
bc54da21 8506static void task_move_group_fair(struct task_struct *p)
810b3817 8507{
daa59407 8508 detach_task_cfs_rq(p);
b2b5ce02 8509 set_task_rq(p, task_cpu(p));
6efdb105
BP
8510
8511#ifdef CONFIG_SMP
8512 /* Tell se's cfs_rq has been changed -- migrated */
8513 p->se.avg.last_update_time = 0;
8514#endif
daa59407 8515 attach_task_cfs_rq(p);
810b3817 8516}
029632fb 8517
ea86cb4b
VG
8518static void task_change_group_fair(struct task_struct *p, int type)
8519{
8520 switch (type) {
8521 case TASK_SET_GROUP:
8522 task_set_group_fair(p);
8523 break;
8524
8525 case TASK_MOVE_GROUP:
8526 task_move_group_fair(p);
8527 break;
8528 }
8529}
8530
029632fb
PZ
8531void free_fair_sched_group(struct task_group *tg)
8532{
8533 int i;
8534
8535 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8536
8537 for_each_possible_cpu(i) {
8538 if (tg->cfs_rq)
8539 kfree(tg->cfs_rq[i]);
6fe1f348 8540 if (tg->se)
029632fb
PZ
8541 kfree(tg->se[i]);
8542 }
8543
8544 kfree(tg->cfs_rq);
8545 kfree(tg->se);
8546}
8547
8548int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8549{
029632fb 8550 struct sched_entity *se;
b7fa30c9
PZ
8551 struct cfs_rq *cfs_rq;
8552 struct rq *rq;
029632fb
PZ
8553 int i;
8554
8555 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8556 if (!tg->cfs_rq)
8557 goto err;
8558 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8559 if (!tg->se)
8560 goto err;
8561
8562 tg->shares = NICE_0_LOAD;
8563
8564 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8565
8566 for_each_possible_cpu(i) {
b7fa30c9
PZ
8567 rq = cpu_rq(i);
8568
029632fb
PZ
8569 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8570 GFP_KERNEL, cpu_to_node(i));
8571 if (!cfs_rq)
8572 goto err;
8573
8574 se = kzalloc_node(sizeof(struct sched_entity),
8575 GFP_KERNEL, cpu_to_node(i));
8576 if (!se)
8577 goto err_free_rq;
8578
8579 init_cfs_rq(cfs_rq);
8580 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8581 init_entity_runnable_average(se);
b7fa30c9
PZ
8582
8583 raw_spin_lock_irq(&rq->lock);
2b8c41da 8584 post_init_entity_util_avg(se);
b7fa30c9 8585 raw_spin_unlock_irq(&rq->lock);
029632fb
PZ
8586 }
8587
8588 return 1;
8589
8590err_free_rq:
8591 kfree(cfs_rq);
8592err:
8593 return 0;
8594}
8595
6fe1f348 8596void unregister_fair_sched_group(struct task_group *tg)
029632fb 8597{
029632fb 8598 unsigned long flags;
6fe1f348
PZ
8599 struct rq *rq;
8600 int cpu;
029632fb 8601
6fe1f348
PZ
8602 for_each_possible_cpu(cpu) {
8603 if (tg->se[cpu])
8604 remove_entity_load_avg(tg->se[cpu]);
029632fb 8605
6fe1f348
PZ
8606 /*
8607 * Only empty task groups can be destroyed; so we can speculatively
8608 * check on_list without danger of it being re-added.
8609 */
8610 if (!tg->cfs_rq[cpu]->on_list)
8611 continue;
8612
8613 rq = cpu_rq(cpu);
8614
8615 raw_spin_lock_irqsave(&rq->lock, flags);
8616 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8617 raw_spin_unlock_irqrestore(&rq->lock, flags);
8618 }
029632fb
PZ
8619}
8620
8621void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8622 struct sched_entity *se, int cpu,
8623 struct sched_entity *parent)
8624{
8625 struct rq *rq = cpu_rq(cpu);
8626
8627 cfs_rq->tg = tg;
8628 cfs_rq->rq = rq;
029632fb
PZ
8629 init_cfs_rq_runtime(cfs_rq);
8630
8631 tg->cfs_rq[cpu] = cfs_rq;
8632 tg->se[cpu] = se;
8633
8634 /* se could be NULL for root_task_group */
8635 if (!se)
8636 return;
8637
fed14d45 8638 if (!parent) {
029632fb 8639 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8640 se->depth = 0;
8641 } else {
029632fb 8642 se->cfs_rq = parent->my_q;
fed14d45
PZ
8643 se->depth = parent->depth + 1;
8644 }
029632fb
PZ
8645
8646 se->my_q = cfs_rq;
0ac9b1c2
PT
8647 /* guarantee group entities always have weight */
8648 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8649 se->parent = parent;
8650}
8651
8652static DEFINE_MUTEX(shares_mutex);
8653
8654int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8655{
8656 int i;
8657 unsigned long flags;
8658
8659 /*
8660 * We can't change the weight of the root cgroup.
8661 */
8662 if (!tg->se[0])
8663 return -EINVAL;
8664
8665 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8666
8667 mutex_lock(&shares_mutex);
8668 if (tg->shares == shares)
8669 goto done;
8670
8671 tg->shares = shares;
8672 for_each_possible_cpu(i) {
8673 struct rq *rq = cpu_rq(i);
8674 struct sched_entity *se;
8675
8676 se = tg->se[i];
8677 /* Propagate contribution to hierarchy */
8678 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8679
8680 /* Possible calls to update_curr() need rq clock */
8681 update_rq_clock(rq);
17bc14b7 8682 for_each_sched_entity(se)
029632fb
PZ
8683 update_cfs_shares(group_cfs_rq(se));
8684 raw_spin_unlock_irqrestore(&rq->lock, flags);
8685 }
8686
8687done:
8688 mutex_unlock(&shares_mutex);
8689 return 0;
8690}
8691#else /* CONFIG_FAIR_GROUP_SCHED */
8692
8693void free_fair_sched_group(struct task_group *tg) { }
8694
8695int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8696{
8697 return 1;
8698}
8699
6fe1f348 8700void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8701
8702#endif /* CONFIG_FAIR_GROUP_SCHED */
8703
810b3817 8704
6d686f45 8705static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8706{
8707 struct sched_entity *se = &task->se;
0d721cea
PW
8708 unsigned int rr_interval = 0;
8709
8710 /*
8711 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8712 * idle runqueue:
8713 */
0d721cea 8714 if (rq->cfs.load.weight)
a59f4e07 8715 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8716
8717 return rr_interval;
8718}
8719
bf0f6f24
IM
8720/*
8721 * All the scheduling class methods:
8722 */
029632fb 8723const struct sched_class fair_sched_class = {
5522d5d5 8724 .next = &idle_sched_class,
bf0f6f24
IM
8725 .enqueue_task = enqueue_task_fair,
8726 .dequeue_task = dequeue_task_fair,
8727 .yield_task = yield_task_fair,
d95f4122 8728 .yield_to_task = yield_to_task_fair,
bf0f6f24 8729
2e09bf55 8730 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8731
8732 .pick_next_task = pick_next_task_fair,
8733 .put_prev_task = put_prev_task_fair,
8734
681f3e68 8735#ifdef CONFIG_SMP
4ce72a2c 8736 .select_task_rq = select_task_rq_fair,
0a74bef8 8737 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8738
0bcdcf28
CE
8739 .rq_online = rq_online_fair,
8740 .rq_offline = rq_offline_fair,
88ec22d3 8741
12695578 8742 .task_dead = task_dead_fair,
c5b28038 8743 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8744#endif
bf0f6f24 8745
83b699ed 8746 .set_curr_task = set_curr_task_fair,
bf0f6f24 8747 .task_tick = task_tick_fair,
cd29fe6f 8748 .task_fork = task_fork_fair,
cb469845
SR
8749
8750 .prio_changed = prio_changed_fair,
da7a735e 8751 .switched_from = switched_from_fair,
cb469845 8752 .switched_to = switched_to_fair,
810b3817 8753
0d721cea
PW
8754 .get_rr_interval = get_rr_interval_fair,
8755
6e998916
SG
8756 .update_curr = update_curr_fair,
8757
810b3817 8758#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 8759 .task_change_group = task_change_group_fair,
810b3817 8760#endif
bf0f6f24
IM
8761};
8762
8763#ifdef CONFIG_SCHED_DEBUG
029632fb 8764void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8765{
bf0f6f24
IM
8766 struct cfs_rq *cfs_rq;
8767
5973e5b9 8768 rcu_read_lock();
c3b64f1e 8769 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8770 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8771 rcu_read_unlock();
bf0f6f24 8772}
397f2378
SD
8773
8774#ifdef CONFIG_NUMA_BALANCING
8775void show_numa_stats(struct task_struct *p, struct seq_file *m)
8776{
8777 int node;
8778 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8779
8780 for_each_online_node(node) {
8781 if (p->numa_faults) {
8782 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8783 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8784 }
8785 if (p->numa_group) {
8786 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8787 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8788 }
8789 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8790 }
8791}
8792#endif /* CONFIG_NUMA_BALANCING */
8793#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8794
8795__init void init_sched_fair_class(void)
8796{
8797#ifdef CONFIG_SMP
8798 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8799
3451d024 8800#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8801 nohz.next_balance = jiffies;
029632fb 8802 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8803#endif
8804#endif /* SMP */
8805
8806}
This page took 1.599934 seconds and 5 git commands to generate.