sched/fair: Avoid using uninitialized variable in preferred_group_nid()
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9
AS
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677 u32 slice;
678
679 p->se.avg.decay_count = 0;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = slice;
682 p->se.avg.runnable_avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684}
685#else
686void init_task_runnable_average(struct task_struct *p)
687{
688}
689#endif
690
bf0f6f24 691/*
9dbdb155 692 * Update the current task's runtime statistics.
bf0f6f24 693 */
b7cc0896 694static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 695{
429d43bc 696 struct sched_entity *curr = cfs_rq->curr;
78becc27 697 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 698 u64 delta_exec;
bf0f6f24
IM
699
700 if (unlikely(!curr))
701 return;
702
9dbdb155
PZ
703 delta_exec = now - curr->exec_start;
704 if (unlikely((s64)delta_exec <= 0))
34f28ecd 705 return;
bf0f6f24 706
8ebc91d9 707 curr->exec_start = now;
d842de87 708
9dbdb155
PZ
709 schedstat_set(curr->statistics.exec_max,
710 max(delta_exec, curr->statistics.exec_max));
711
712 curr->sum_exec_runtime += delta_exec;
713 schedstat_add(cfs_rq, exec_clock, delta_exec);
714
715 curr->vruntime += calc_delta_fair(delta_exec, curr);
716 update_min_vruntime(cfs_rq);
717
d842de87
SV
718 if (entity_is_task(curr)) {
719 struct task_struct *curtask = task_of(curr);
720
f977bb49 721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 722 cpuacct_charge(curtask, delta_exec);
f06febc9 723 account_group_exec_runtime(curtask, delta_exec);
d842de87 724 }
ec12cb7f
PT
725
726 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
727}
728
6e998916
SG
729static void update_curr_fair(struct rq *rq)
730{
731 update_curr(cfs_rq_of(&rq->curr->se));
732}
733
bf0f6f24 734static inline void
5870db5b 735update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 736{
78becc27 737 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
738}
739
bf0f6f24
IM
740/*
741 * Task is being enqueued - update stats:
742 */
d2417e5a 743static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 744{
bf0f6f24
IM
745 /*
746 * Are we enqueueing a waiting task? (for current tasks
747 * a dequeue/enqueue event is a NOP)
748 */
429d43bc 749 if (se != cfs_rq->curr)
5870db5b 750 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
751}
752
bf0f6f24 753static void
9ef0a961 754update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 755{
41acab88 756 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
758 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
759 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 760 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
761#ifdef CONFIG_SCHEDSTATS
762 if (entity_is_task(se)) {
763 trace_sched_stat_wait(task_of(se),
78becc27 764 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
765 }
766#endif
41acab88 767 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
768}
769
770static inline void
19b6a2e3 771update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 772{
bf0f6f24
IM
773 /*
774 * Mark the end of the wait period if dequeueing a
775 * waiting task:
776 */
429d43bc 777 if (se != cfs_rq->curr)
9ef0a961 778 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
779}
780
781/*
782 * We are picking a new current task - update its stats:
783 */
784static inline void
79303e9e 785update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
786{
787 /*
788 * We are starting a new run period:
789 */
78becc27 790 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
791}
792
bf0f6f24
IM
793/**************************************************
794 * Scheduling class queueing methods:
795 */
796
cbee9f88
PZ
797#ifdef CONFIG_NUMA_BALANCING
798/*
598f0ec0
MG
799 * Approximate time to scan a full NUMA task in ms. The task scan period is
800 * calculated based on the tasks virtual memory size and
801 * numa_balancing_scan_size.
cbee9f88 802 */
598f0ec0
MG
803unsigned int sysctl_numa_balancing_scan_period_min = 1000;
804unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
805
806/* Portion of address space to scan in MB */
807unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 808
4b96a29b
PZ
809/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
810unsigned int sysctl_numa_balancing_scan_delay = 1000;
811
598f0ec0
MG
812static unsigned int task_nr_scan_windows(struct task_struct *p)
813{
814 unsigned long rss = 0;
815 unsigned long nr_scan_pages;
816
817 /*
818 * Calculations based on RSS as non-present and empty pages are skipped
819 * by the PTE scanner and NUMA hinting faults should be trapped based
820 * on resident pages
821 */
822 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
823 rss = get_mm_rss(p->mm);
824 if (!rss)
825 rss = nr_scan_pages;
826
827 rss = round_up(rss, nr_scan_pages);
828 return rss / nr_scan_pages;
829}
830
831/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
832#define MAX_SCAN_WINDOW 2560
833
834static unsigned int task_scan_min(struct task_struct *p)
835{
64192658 836 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
837 unsigned int scan, floor;
838 unsigned int windows = 1;
839
64192658
KT
840 if (scan_size < MAX_SCAN_WINDOW)
841 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
842 floor = 1000 / windows;
843
844 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
845 return max_t(unsigned int, floor, scan);
846}
847
848static unsigned int task_scan_max(struct task_struct *p)
849{
850 unsigned int smin = task_scan_min(p);
851 unsigned int smax;
852
853 /* Watch for min being lower than max due to floor calculations */
854 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
855 return max(smin, smax);
856}
857
0ec8aa00
PZ
858static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
859{
860 rq->nr_numa_running += (p->numa_preferred_nid != -1);
861 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
862}
863
864static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
865{
866 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
868}
869
8c8a743c
PZ
870struct numa_group {
871 atomic_t refcount;
872
873 spinlock_t lock; /* nr_tasks, tasks */
874 int nr_tasks;
e29cf08b 875 pid_t gid;
8c8a743c
PZ
876
877 struct rcu_head rcu;
20e07dea 878 nodemask_t active_nodes;
989348b5 879 unsigned long total_faults;
7e2703e6
RR
880 /*
881 * Faults_cpu is used to decide whether memory should move
882 * towards the CPU. As a consequence, these stats are weighted
883 * more by CPU use than by memory faults.
884 */
50ec8a40 885 unsigned long *faults_cpu;
989348b5 886 unsigned long faults[0];
8c8a743c
PZ
887};
888
be1e4e76
RR
889/* Shared or private faults. */
890#define NR_NUMA_HINT_FAULT_TYPES 2
891
892/* Memory and CPU locality */
893#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
894
895/* Averaged statistics, and temporary buffers. */
896#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
897
e29cf08b
MG
898pid_t task_numa_group_id(struct task_struct *p)
899{
900 return p->numa_group ? p->numa_group->gid : 0;
901}
902
44dba3d5
IM
903/*
904 * The averaged statistics, shared & private, memory & cpu,
905 * occupy the first half of the array. The second half of the
906 * array is for current counters, which are averaged into the
907 * first set by task_numa_placement.
908 */
909static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 910{
44dba3d5 911 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
912}
913
914static inline unsigned long task_faults(struct task_struct *p, int nid)
915{
44dba3d5 916 if (!p->numa_faults)
ac8e895b
MG
917 return 0;
918
44dba3d5
IM
919 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
920 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
921}
922
83e1d2cd
MG
923static inline unsigned long group_faults(struct task_struct *p, int nid)
924{
925 if (!p->numa_group)
926 return 0;
927
44dba3d5
IM
928 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
929 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
930}
931
20e07dea
RR
932static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
933{
44dba3d5
IM
934 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
935 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
936}
937
6c6b1193
RR
938/* Handle placement on systems where not all nodes are directly connected. */
939static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
940 int maxdist, bool task)
941{
942 unsigned long score = 0;
943 int node;
944
945 /*
946 * All nodes are directly connected, and the same distance
947 * from each other. No need for fancy placement algorithms.
948 */
949 if (sched_numa_topology_type == NUMA_DIRECT)
950 return 0;
951
952 /*
953 * This code is called for each node, introducing N^2 complexity,
954 * which should be ok given the number of nodes rarely exceeds 8.
955 */
956 for_each_online_node(node) {
957 unsigned long faults;
958 int dist = node_distance(nid, node);
959
960 /*
961 * The furthest away nodes in the system are not interesting
962 * for placement; nid was already counted.
963 */
964 if (dist == sched_max_numa_distance || node == nid)
965 continue;
966
967 /*
968 * On systems with a backplane NUMA topology, compare groups
969 * of nodes, and move tasks towards the group with the most
970 * memory accesses. When comparing two nodes at distance
971 * "hoplimit", only nodes closer by than "hoplimit" are part
972 * of each group. Skip other nodes.
973 */
974 if (sched_numa_topology_type == NUMA_BACKPLANE &&
975 dist > maxdist)
976 continue;
977
978 /* Add up the faults from nearby nodes. */
979 if (task)
980 faults = task_faults(p, node);
981 else
982 faults = group_faults(p, node);
983
984 /*
985 * On systems with a glueless mesh NUMA topology, there are
986 * no fixed "groups of nodes". Instead, nodes that are not
987 * directly connected bounce traffic through intermediate
988 * nodes; a numa_group can occupy any set of nodes.
989 * The further away a node is, the less the faults count.
990 * This seems to result in good task placement.
991 */
992 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
993 faults *= (sched_max_numa_distance - dist);
994 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
995 }
996
997 score += faults;
998 }
999
1000 return score;
1001}
1002
83e1d2cd
MG
1003/*
1004 * These return the fraction of accesses done by a particular task, or
1005 * task group, on a particular numa node. The group weight is given a
1006 * larger multiplier, in order to group tasks together that are almost
1007 * evenly spread out between numa nodes.
1008 */
7bd95320
RR
1009static inline unsigned long task_weight(struct task_struct *p, int nid,
1010 int dist)
83e1d2cd 1011{
7bd95320 1012 unsigned long faults, total_faults;
83e1d2cd 1013
44dba3d5 1014 if (!p->numa_faults)
83e1d2cd
MG
1015 return 0;
1016
1017 total_faults = p->total_numa_faults;
1018
1019 if (!total_faults)
1020 return 0;
1021
7bd95320 1022 faults = task_faults(p, nid);
6c6b1193
RR
1023 faults += score_nearby_nodes(p, nid, dist, true);
1024
7bd95320 1025 return 1000 * faults / total_faults;
83e1d2cd
MG
1026}
1027
7bd95320
RR
1028static inline unsigned long group_weight(struct task_struct *p, int nid,
1029 int dist)
83e1d2cd 1030{
7bd95320
RR
1031 unsigned long faults, total_faults;
1032
1033 if (!p->numa_group)
1034 return 0;
1035
1036 total_faults = p->numa_group->total_faults;
1037
1038 if (!total_faults)
83e1d2cd
MG
1039 return 0;
1040
7bd95320 1041 faults = group_faults(p, nid);
6c6b1193
RR
1042 faults += score_nearby_nodes(p, nid, dist, false);
1043
7bd95320 1044 return 1000 * faults / total_faults;
83e1d2cd
MG
1045}
1046
10f39042
RR
1047bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1048 int src_nid, int dst_cpu)
1049{
1050 struct numa_group *ng = p->numa_group;
1051 int dst_nid = cpu_to_node(dst_cpu);
1052 int last_cpupid, this_cpupid;
1053
1054 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1055
1056 /*
1057 * Multi-stage node selection is used in conjunction with a periodic
1058 * migration fault to build a temporal task<->page relation. By using
1059 * a two-stage filter we remove short/unlikely relations.
1060 *
1061 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1062 * a task's usage of a particular page (n_p) per total usage of this
1063 * page (n_t) (in a given time-span) to a probability.
1064 *
1065 * Our periodic faults will sample this probability and getting the
1066 * same result twice in a row, given these samples are fully
1067 * independent, is then given by P(n)^2, provided our sample period
1068 * is sufficiently short compared to the usage pattern.
1069 *
1070 * This quadric squishes small probabilities, making it less likely we
1071 * act on an unlikely task<->page relation.
1072 */
1073 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1074 if (!cpupid_pid_unset(last_cpupid) &&
1075 cpupid_to_nid(last_cpupid) != dst_nid)
1076 return false;
1077
1078 /* Always allow migrate on private faults */
1079 if (cpupid_match_pid(p, last_cpupid))
1080 return true;
1081
1082 /* A shared fault, but p->numa_group has not been set up yet. */
1083 if (!ng)
1084 return true;
1085
1086 /*
1087 * Do not migrate if the destination is not a node that
1088 * is actively used by this numa group.
1089 */
1090 if (!node_isset(dst_nid, ng->active_nodes))
1091 return false;
1092
1093 /*
1094 * Source is a node that is not actively used by this
1095 * numa group, while the destination is. Migrate.
1096 */
1097 if (!node_isset(src_nid, ng->active_nodes))
1098 return true;
1099
1100 /*
1101 * Both source and destination are nodes in active
1102 * use by this numa group. Maximize memory bandwidth
1103 * by migrating from more heavily used groups, to less
1104 * heavily used ones, spreading the load around.
1105 * Use a 1/4 hysteresis to avoid spurious page movement.
1106 */
1107 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1108}
1109
e6628d5b 1110static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1111static unsigned long source_load(int cpu, int type);
1112static unsigned long target_load(int cpu, int type);
ced549fa 1113static unsigned long capacity_of(int cpu);
58d081b5
MG
1114static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1115
fb13c7ee 1116/* Cached statistics for all CPUs within a node */
58d081b5 1117struct numa_stats {
fb13c7ee 1118 unsigned long nr_running;
58d081b5 1119 unsigned long load;
fb13c7ee
MG
1120
1121 /* Total compute capacity of CPUs on a node */
5ef20ca1 1122 unsigned long compute_capacity;
fb13c7ee
MG
1123
1124 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1125 unsigned long task_capacity;
1b6a7495 1126 int has_free_capacity;
58d081b5 1127};
e6628d5b 1128
fb13c7ee
MG
1129/*
1130 * XXX borrowed from update_sg_lb_stats
1131 */
1132static void update_numa_stats(struct numa_stats *ns, int nid)
1133{
83d7f242
RR
1134 int smt, cpu, cpus = 0;
1135 unsigned long capacity;
fb13c7ee
MG
1136
1137 memset(ns, 0, sizeof(*ns));
1138 for_each_cpu(cpu, cpumask_of_node(nid)) {
1139 struct rq *rq = cpu_rq(cpu);
1140
1141 ns->nr_running += rq->nr_running;
1142 ns->load += weighted_cpuload(cpu);
ced549fa 1143 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1144
1145 cpus++;
fb13c7ee
MG
1146 }
1147
5eca82a9
PZ
1148 /*
1149 * If we raced with hotplug and there are no CPUs left in our mask
1150 * the @ns structure is NULL'ed and task_numa_compare() will
1151 * not find this node attractive.
1152 *
1b6a7495
NP
1153 * We'll either bail at !has_free_capacity, or we'll detect a huge
1154 * imbalance and bail there.
5eca82a9
PZ
1155 */
1156 if (!cpus)
1157 return;
1158
83d7f242
RR
1159 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1160 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1161 capacity = cpus / smt; /* cores */
1162
1163 ns->task_capacity = min_t(unsigned, capacity,
1164 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1165 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1166}
1167
58d081b5
MG
1168struct task_numa_env {
1169 struct task_struct *p;
e6628d5b 1170
58d081b5
MG
1171 int src_cpu, src_nid;
1172 int dst_cpu, dst_nid;
e6628d5b 1173
58d081b5 1174 struct numa_stats src_stats, dst_stats;
e6628d5b 1175
40ea2b42 1176 int imbalance_pct;
7bd95320 1177 int dist;
fb13c7ee
MG
1178
1179 struct task_struct *best_task;
1180 long best_imp;
58d081b5
MG
1181 int best_cpu;
1182};
1183
fb13c7ee
MG
1184static void task_numa_assign(struct task_numa_env *env,
1185 struct task_struct *p, long imp)
1186{
1187 if (env->best_task)
1188 put_task_struct(env->best_task);
1189 if (p)
1190 get_task_struct(p);
1191
1192 env->best_task = p;
1193 env->best_imp = imp;
1194 env->best_cpu = env->dst_cpu;
1195}
1196
28a21745 1197static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1198 struct task_numa_env *env)
1199{
1200 long imb, old_imb;
28a21745
RR
1201 long orig_src_load, orig_dst_load;
1202 long src_capacity, dst_capacity;
1203
1204 /*
1205 * The load is corrected for the CPU capacity available on each node.
1206 *
1207 * src_load dst_load
1208 * ------------ vs ---------
1209 * src_capacity dst_capacity
1210 */
1211 src_capacity = env->src_stats.compute_capacity;
1212 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1213
1214 /* We care about the slope of the imbalance, not the direction. */
1215 if (dst_load < src_load)
1216 swap(dst_load, src_load);
1217
1218 /* Is the difference below the threshold? */
28a21745
RR
1219 imb = dst_load * src_capacity * 100 -
1220 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1221 if (imb <= 0)
1222 return false;
1223
1224 /*
1225 * The imbalance is above the allowed threshold.
1226 * Compare it with the old imbalance.
1227 */
28a21745
RR
1228 orig_src_load = env->src_stats.load;
1229 orig_dst_load = env->dst_stats.load;
1230
e63da036
RR
1231 if (orig_dst_load < orig_src_load)
1232 swap(orig_dst_load, orig_src_load);
1233
28a21745
RR
1234 old_imb = orig_dst_load * src_capacity * 100 -
1235 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1236
1237 /* Would this change make things worse? */
1662867a 1238 return (imb > old_imb);
e63da036
RR
1239}
1240
fb13c7ee
MG
1241/*
1242 * This checks if the overall compute and NUMA accesses of the system would
1243 * be improved if the source tasks was migrated to the target dst_cpu taking
1244 * into account that it might be best if task running on the dst_cpu should
1245 * be exchanged with the source task
1246 */
887c290e
RR
1247static void task_numa_compare(struct task_numa_env *env,
1248 long taskimp, long groupimp)
fb13c7ee
MG
1249{
1250 struct rq *src_rq = cpu_rq(env->src_cpu);
1251 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1252 struct task_struct *cur;
28a21745 1253 long src_load, dst_load;
fb13c7ee 1254 long load;
1c5d3eb3 1255 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1256 long moveimp = imp;
7bd95320 1257 int dist = env->dist;
fb13c7ee
MG
1258
1259 rcu_read_lock();
1effd9f1
KT
1260
1261 raw_spin_lock_irq(&dst_rq->lock);
1262 cur = dst_rq->curr;
1263 /*
1264 * No need to move the exiting task, and this ensures that ->curr
1265 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1266 * is safe under RCU read lock.
1267 * Note that rcu_read_lock() itself can't protect from the final
1268 * put_task_struct() after the last schedule().
1269 */
1270 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1271 cur = NULL;
1effd9f1 1272 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1273
7af68335
PZ
1274 /*
1275 * Because we have preemption enabled we can get migrated around and
1276 * end try selecting ourselves (current == env->p) as a swap candidate.
1277 */
1278 if (cur == env->p)
1279 goto unlock;
1280
fb13c7ee
MG
1281 /*
1282 * "imp" is the fault differential for the source task between the
1283 * source and destination node. Calculate the total differential for
1284 * the source task and potential destination task. The more negative
1285 * the value is, the more rmeote accesses that would be expected to
1286 * be incurred if the tasks were swapped.
1287 */
1288 if (cur) {
1289 /* Skip this swap candidate if cannot move to the source cpu */
1290 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1291 goto unlock;
1292
887c290e
RR
1293 /*
1294 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1295 * in any group then look only at task weights.
887c290e 1296 */
ca28aa53 1297 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1298 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1299 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1300 /*
1301 * Add some hysteresis to prevent swapping the
1302 * tasks within a group over tiny differences.
1303 */
1304 if (cur->numa_group)
1305 imp -= imp/16;
887c290e 1306 } else {
ca28aa53
RR
1307 /*
1308 * Compare the group weights. If a task is all by
1309 * itself (not part of a group), use the task weight
1310 * instead.
1311 */
ca28aa53 1312 if (cur->numa_group)
7bd95320
RR
1313 imp += group_weight(cur, env->src_nid, dist) -
1314 group_weight(cur, env->dst_nid, dist);
ca28aa53 1315 else
7bd95320
RR
1316 imp += task_weight(cur, env->src_nid, dist) -
1317 task_weight(cur, env->dst_nid, dist);
887c290e 1318 }
fb13c7ee
MG
1319 }
1320
0132c3e1 1321 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1322 goto unlock;
1323
1324 if (!cur) {
1325 /* Is there capacity at our destination? */
b932c03c 1326 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1327 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1328 goto unlock;
1329
1330 goto balance;
1331 }
1332
1333 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1334 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1335 dst_rq->nr_running == 1)
fb13c7ee
MG
1336 goto assign;
1337
1338 /*
1339 * In the overloaded case, try and keep the load balanced.
1340 */
1341balance:
e720fff6
PZ
1342 load = task_h_load(env->p);
1343 dst_load = env->dst_stats.load + load;
1344 src_load = env->src_stats.load - load;
fb13c7ee 1345
0132c3e1
RR
1346 if (moveimp > imp && moveimp > env->best_imp) {
1347 /*
1348 * If the improvement from just moving env->p direction is
1349 * better than swapping tasks around, check if a move is
1350 * possible. Store a slightly smaller score than moveimp,
1351 * so an actually idle CPU will win.
1352 */
1353 if (!load_too_imbalanced(src_load, dst_load, env)) {
1354 imp = moveimp - 1;
1355 cur = NULL;
1356 goto assign;
1357 }
1358 }
1359
1360 if (imp <= env->best_imp)
1361 goto unlock;
1362
fb13c7ee 1363 if (cur) {
e720fff6
PZ
1364 load = task_h_load(cur);
1365 dst_load -= load;
1366 src_load += load;
fb13c7ee
MG
1367 }
1368
28a21745 1369 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1370 goto unlock;
1371
ba7e5a27
RR
1372 /*
1373 * One idle CPU per node is evaluated for a task numa move.
1374 * Call select_idle_sibling to maybe find a better one.
1375 */
1376 if (!cur)
1377 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1378
fb13c7ee
MG
1379assign:
1380 task_numa_assign(env, cur, imp);
1381unlock:
1382 rcu_read_unlock();
1383}
1384
887c290e
RR
1385static void task_numa_find_cpu(struct task_numa_env *env,
1386 long taskimp, long groupimp)
2c8a50aa
MG
1387{
1388 int cpu;
1389
1390 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1391 /* Skip this CPU if the source task cannot migrate */
1392 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1393 continue;
1394
1395 env->dst_cpu = cpu;
887c290e 1396 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1397 }
1398}
1399
58d081b5
MG
1400static int task_numa_migrate(struct task_struct *p)
1401{
58d081b5
MG
1402 struct task_numa_env env = {
1403 .p = p,
fb13c7ee 1404
58d081b5 1405 .src_cpu = task_cpu(p),
b32e86b4 1406 .src_nid = task_node(p),
fb13c7ee
MG
1407
1408 .imbalance_pct = 112,
1409
1410 .best_task = NULL,
1411 .best_imp = 0,
1412 .best_cpu = -1
58d081b5
MG
1413 };
1414 struct sched_domain *sd;
887c290e 1415 unsigned long taskweight, groupweight;
7bd95320 1416 int nid, ret, dist;
887c290e 1417 long taskimp, groupimp;
e6628d5b 1418
58d081b5 1419 /*
fb13c7ee
MG
1420 * Pick the lowest SD_NUMA domain, as that would have the smallest
1421 * imbalance and would be the first to start moving tasks about.
1422 *
1423 * And we want to avoid any moving of tasks about, as that would create
1424 * random movement of tasks -- counter the numa conditions we're trying
1425 * to satisfy here.
58d081b5
MG
1426 */
1427 rcu_read_lock();
fb13c7ee 1428 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1429 if (sd)
1430 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1431 rcu_read_unlock();
1432
46a73e8a
RR
1433 /*
1434 * Cpusets can break the scheduler domain tree into smaller
1435 * balance domains, some of which do not cross NUMA boundaries.
1436 * Tasks that are "trapped" in such domains cannot be migrated
1437 * elsewhere, so there is no point in (re)trying.
1438 */
1439 if (unlikely(!sd)) {
de1b301a 1440 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1441 return -EINVAL;
1442 }
1443
2c8a50aa 1444 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1445 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1446 taskweight = task_weight(p, env.src_nid, dist);
1447 groupweight = group_weight(p, env.src_nid, dist);
1448 update_numa_stats(&env.src_stats, env.src_nid);
1449 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1450 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1451 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1452
a43455a1
RR
1453 /* Try to find a spot on the preferred nid. */
1454 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1455
9de05d48
RR
1456 /*
1457 * Look at other nodes in these cases:
1458 * - there is no space available on the preferred_nid
1459 * - the task is part of a numa_group that is interleaved across
1460 * multiple NUMA nodes; in order to better consolidate the group,
1461 * we need to check other locations.
1462 */
1463 if (env.best_cpu == -1 || (p->numa_group &&
1464 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1465 for_each_online_node(nid) {
1466 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1467 continue;
58d081b5 1468
7bd95320 1469 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1470 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1471 dist != env.dist) {
1472 taskweight = task_weight(p, env.src_nid, dist);
1473 groupweight = group_weight(p, env.src_nid, dist);
1474 }
7bd95320 1475
83e1d2cd 1476 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1477 taskimp = task_weight(p, nid, dist) - taskweight;
1478 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1479 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1480 continue;
1481
7bd95320 1482 env.dist = dist;
2c8a50aa
MG
1483 env.dst_nid = nid;
1484 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1485 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1486 }
1487 }
1488
68d1b02a
RR
1489 /*
1490 * If the task is part of a workload that spans multiple NUMA nodes,
1491 * and is migrating into one of the workload's active nodes, remember
1492 * this node as the task's preferred numa node, so the workload can
1493 * settle down.
1494 * A task that migrated to a second choice node will be better off
1495 * trying for a better one later. Do not set the preferred node here.
1496 */
db015dae
RR
1497 if (p->numa_group) {
1498 if (env.best_cpu == -1)
1499 nid = env.src_nid;
1500 else
1501 nid = env.dst_nid;
1502
1503 if (node_isset(nid, p->numa_group->active_nodes))
1504 sched_setnuma(p, env.dst_nid);
1505 }
1506
1507 /* No better CPU than the current one was found. */
1508 if (env.best_cpu == -1)
1509 return -EAGAIN;
0ec8aa00 1510
04bb2f94
RR
1511 /*
1512 * Reset the scan period if the task is being rescheduled on an
1513 * alternative node to recheck if the tasks is now properly placed.
1514 */
1515 p->numa_scan_period = task_scan_min(p);
1516
fb13c7ee 1517 if (env.best_task == NULL) {
286549dc
MG
1518 ret = migrate_task_to(p, env.best_cpu);
1519 if (ret != 0)
1520 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1521 return ret;
1522 }
1523
1524 ret = migrate_swap(p, env.best_task);
286549dc
MG
1525 if (ret != 0)
1526 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1527 put_task_struct(env.best_task);
1528 return ret;
e6628d5b
MG
1529}
1530
6b9a7460
MG
1531/* Attempt to migrate a task to a CPU on the preferred node. */
1532static void numa_migrate_preferred(struct task_struct *p)
1533{
5085e2a3
RR
1534 unsigned long interval = HZ;
1535
2739d3ee 1536 /* This task has no NUMA fault statistics yet */
44dba3d5 1537 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1538 return;
1539
2739d3ee 1540 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1541 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1542 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1543
1544 /* Success if task is already running on preferred CPU */
de1b301a 1545 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1546 return;
1547
1548 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1549 task_numa_migrate(p);
6b9a7460
MG
1550}
1551
20e07dea
RR
1552/*
1553 * Find the nodes on which the workload is actively running. We do this by
1554 * tracking the nodes from which NUMA hinting faults are triggered. This can
1555 * be different from the set of nodes where the workload's memory is currently
1556 * located.
1557 *
1558 * The bitmask is used to make smarter decisions on when to do NUMA page
1559 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1560 * are added when they cause over 6/16 of the maximum number of faults, but
1561 * only removed when they drop below 3/16.
1562 */
1563static void update_numa_active_node_mask(struct numa_group *numa_group)
1564{
1565 unsigned long faults, max_faults = 0;
1566 int nid;
1567
1568 for_each_online_node(nid) {
1569 faults = group_faults_cpu(numa_group, nid);
1570 if (faults > max_faults)
1571 max_faults = faults;
1572 }
1573
1574 for_each_online_node(nid) {
1575 faults = group_faults_cpu(numa_group, nid);
1576 if (!node_isset(nid, numa_group->active_nodes)) {
1577 if (faults > max_faults * 6 / 16)
1578 node_set(nid, numa_group->active_nodes);
1579 } else if (faults < max_faults * 3 / 16)
1580 node_clear(nid, numa_group->active_nodes);
1581 }
1582}
1583
04bb2f94
RR
1584/*
1585 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1586 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1587 * period will be for the next scan window. If local/(local+remote) ratio is
1588 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1589 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1590 */
1591#define NUMA_PERIOD_SLOTS 10
a22b4b01 1592#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1593
1594/*
1595 * Increase the scan period (slow down scanning) if the majority of
1596 * our memory is already on our local node, or if the majority of
1597 * the page accesses are shared with other processes.
1598 * Otherwise, decrease the scan period.
1599 */
1600static void update_task_scan_period(struct task_struct *p,
1601 unsigned long shared, unsigned long private)
1602{
1603 unsigned int period_slot;
1604 int ratio;
1605 int diff;
1606
1607 unsigned long remote = p->numa_faults_locality[0];
1608 unsigned long local = p->numa_faults_locality[1];
1609
1610 /*
1611 * If there were no record hinting faults then either the task is
1612 * completely idle or all activity is areas that are not of interest
1613 * to automatic numa balancing. Scan slower
1614 */
1615 if (local + shared == 0) {
1616 p->numa_scan_period = min(p->numa_scan_period_max,
1617 p->numa_scan_period << 1);
1618
1619 p->mm->numa_next_scan = jiffies +
1620 msecs_to_jiffies(p->numa_scan_period);
1621
1622 return;
1623 }
1624
1625 /*
1626 * Prepare to scale scan period relative to the current period.
1627 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1628 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1629 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1630 */
1631 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1632 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1633 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1634 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1635 if (!slot)
1636 slot = 1;
1637 diff = slot * period_slot;
1638 } else {
1639 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1640
1641 /*
1642 * Scale scan rate increases based on sharing. There is an
1643 * inverse relationship between the degree of sharing and
1644 * the adjustment made to the scanning period. Broadly
1645 * speaking the intent is that there is little point
1646 * scanning faster if shared accesses dominate as it may
1647 * simply bounce migrations uselessly
1648 */
2847c90e 1649 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1650 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1651 }
1652
1653 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1654 task_scan_min(p), task_scan_max(p));
1655 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1656}
1657
7e2703e6
RR
1658/*
1659 * Get the fraction of time the task has been running since the last
1660 * NUMA placement cycle. The scheduler keeps similar statistics, but
1661 * decays those on a 32ms period, which is orders of magnitude off
1662 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1663 * stats only if the task is so new there are no NUMA statistics yet.
1664 */
1665static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1666{
1667 u64 runtime, delta, now;
1668 /* Use the start of this time slice to avoid calculations. */
1669 now = p->se.exec_start;
1670 runtime = p->se.sum_exec_runtime;
1671
1672 if (p->last_task_numa_placement) {
1673 delta = runtime - p->last_sum_exec_runtime;
1674 *period = now - p->last_task_numa_placement;
1675 } else {
1676 delta = p->se.avg.runnable_avg_sum;
1677 *period = p->se.avg.runnable_avg_period;
1678 }
1679
1680 p->last_sum_exec_runtime = runtime;
1681 p->last_task_numa_placement = now;
1682
1683 return delta;
1684}
1685
54009416
RR
1686/*
1687 * Determine the preferred nid for a task in a numa_group. This needs to
1688 * be done in a way that produces consistent results with group_weight,
1689 * otherwise workloads might not converge.
1690 */
1691static int preferred_group_nid(struct task_struct *p, int nid)
1692{
1693 nodemask_t nodes;
1694 int dist;
1695
1696 /* Direct connections between all NUMA nodes. */
1697 if (sched_numa_topology_type == NUMA_DIRECT)
1698 return nid;
1699
1700 /*
1701 * On a system with glueless mesh NUMA topology, group_weight
1702 * scores nodes according to the number of NUMA hinting faults on
1703 * both the node itself, and on nearby nodes.
1704 */
1705 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1706 unsigned long score, max_score = 0;
1707 int node, max_node = nid;
1708
1709 dist = sched_max_numa_distance;
1710
1711 for_each_online_node(node) {
1712 score = group_weight(p, node, dist);
1713 if (score > max_score) {
1714 max_score = score;
1715 max_node = node;
1716 }
1717 }
1718 return max_node;
1719 }
1720
1721 /*
1722 * Finding the preferred nid in a system with NUMA backplane
1723 * interconnect topology is more involved. The goal is to locate
1724 * tasks from numa_groups near each other in the system, and
1725 * untangle workloads from different sides of the system. This requires
1726 * searching down the hierarchy of node groups, recursively searching
1727 * inside the highest scoring group of nodes. The nodemask tricks
1728 * keep the complexity of the search down.
1729 */
1730 nodes = node_online_map;
1731 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1732 unsigned long max_faults = 0;
81907478 1733 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1734 int a, b;
1735
1736 /* Are there nodes at this distance from each other? */
1737 if (!find_numa_distance(dist))
1738 continue;
1739
1740 for_each_node_mask(a, nodes) {
1741 unsigned long faults = 0;
1742 nodemask_t this_group;
1743 nodes_clear(this_group);
1744
1745 /* Sum group's NUMA faults; includes a==b case. */
1746 for_each_node_mask(b, nodes) {
1747 if (node_distance(a, b) < dist) {
1748 faults += group_faults(p, b);
1749 node_set(b, this_group);
1750 node_clear(b, nodes);
1751 }
1752 }
1753
1754 /* Remember the top group. */
1755 if (faults > max_faults) {
1756 max_faults = faults;
1757 max_group = this_group;
1758 /*
1759 * subtle: at the smallest distance there is
1760 * just one node left in each "group", the
1761 * winner is the preferred nid.
1762 */
1763 nid = a;
1764 }
1765 }
1766 /* Next round, evaluate the nodes within max_group. */
1767 nodes = max_group;
1768 }
1769 return nid;
1770}
1771
cbee9f88
PZ
1772static void task_numa_placement(struct task_struct *p)
1773{
83e1d2cd
MG
1774 int seq, nid, max_nid = -1, max_group_nid = -1;
1775 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1776 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1777 unsigned long total_faults;
1778 u64 runtime, period;
7dbd13ed 1779 spinlock_t *group_lock = NULL;
cbee9f88 1780
2832bc19 1781 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1782 if (p->numa_scan_seq == seq)
1783 return;
1784 p->numa_scan_seq = seq;
598f0ec0 1785 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1786
7e2703e6
RR
1787 total_faults = p->numa_faults_locality[0] +
1788 p->numa_faults_locality[1];
1789 runtime = numa_get_avg_runtime(p, &period);
1790
7dbd13ed
MG
1791 /* If the task is part of a group prevent parallel updates to group stats */
1792 if (p->numa_group) {
1793 group_lock = &p->numa_group->lock;
60e69eed 1794 spin_lock_irq(group_lock);
7dbd13ed
MG
1795 }
1796
688b7585
MG
1797 /* Find the node with the highest number of faults */
1798 for_each_online_node(nid) {
44dba3d5
IM
1799 /* Keep track of the offsets in numa_faults array */
1800 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1801 unsigned long faults = 0, group_faults = 0;
44dba3d5 1802 int priv;
745d6147 1803
be1e4e76 1804 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1805 long diff, f_diff, f_weight;
8c8a743c 1806
44dba3d5
IM
1807 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1808 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1809 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1810 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1811
ac8e895b 1812 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1813 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1814 fault_types[priv] += p->numa_faults[membuf_idx];
1815 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1816
7e2703e6
RR
1817 /*
1818 * Normalize the faults_from, so all tasks in a group
1819 * count according to CPU use, instead of by the raw
1820 * number of faults. Tasks with little runtime have
1821 * little over-all impact on throughput, and thus their
1822 * faults are less important.
1823 */
1824 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1825 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1826 (total_faults + 1);
44dba3d5
IM
1827 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1828 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1829
44dba3d5
IM
1830 p->numa_faults[mem_idx] += diff;
1831 p->numa_faults[cpu_idx] += f_diff;
1832 faults += p->numa_faults[mem_idx];
83e1d2cd 1833 p->total_numa_faults += diff;
8c8a743c 1834 if (p->numa_group) {
44dba3d5
IM
1835 /*
1836 * safe because we can only change our own group
1837 *
1838 * mem_idx represents the offset for a given
1839 * nid and priv in a specific region because it
1840 * is at the beginning of the numa_faults array.
1841 */
1842 p->numa_group->faults[mem_idx] += diff;
1843 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1844 p->numa_group->total_faults += diff;
44dba3d5 1845 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1846 }
ac8e895b
MG
1847 }
1848
688b7585
MG
1849 if (faults > max_faults) {
1850 max_faults = faults;
1851 max_nid = nid;
1852 }
83e1d2cd
MG
1853
1854 if (group_faults > max_group_faults) {
1855 max_group_faults = group_faults;
1856 max_group_nid = nid;
1857 }
1858 }
1859
04bb2f94
RR
1860 update_task_scan_period(p, fault_types[0], fault_types[1]);
1861
7dbd13ed 1862 if (p->numa_group) {
20e07dea 1863 update_numa_active_node_mask(p->numa_group);
60e69eed 1864 spin_unlock_irq(group_lock);
54009416 1865 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1866 }
1867
bb97fc31
RR
1868 if (max_faults) {
1869 /* Set the new preferred node */
1870 if (max_nid != p->numa_preferred_nid)
1871 sched_setnuma(p, max_nid);
1872
1873 if (task_node(p) != p->numa_preferred_nid)
1874 numa_migrate_preferred(p);
3a7053b3 1875 }
cbee9f88
PZ
1876}
1877
8c8a743c
PZ
1878static inline int get_numa_group(struct numa_group *grp)
1879{
1880 return atomic_inc_not_zero(&grp->refcount);
1881}
1882
1883static inline void put_numa_group(struct numa_group *grp)
1884{
1885 if (atomic_dec_and_test(&grp->refcount))
1886 kfree_rcu(grp, rcu);
1887}
1888
3e6a9418
MG
1889static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1890 int *priv)
8c8a743c
PZ
1891{
1892 struct numa_group *grp, *my_grp;
1893 struct task_struct *tsk;
1894 bool join = false;
1895 int cpu = cpupid_to_cpu(cpupid);
1896 int i;
1897
1898 if (unlikely(!p->numa_group)) {
1899 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1900 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1901
1902 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1903 if (!grp)
1904 return;
1905
1906 atomic_set(&grp->refcount, 1);
1907 spin_lock_init(&grp->lock);
e29cf08b 1908 grp->gid = p->pid;
50ec8a40 1909 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1910 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1911 nr_node_ids;
8c8a743c 1912
20e07dea
RR
1913 node_set(task_node(current), grp->active_nodes);
1914
be1e4e76 1915 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1916 grp->faults[i] = p->numa_faults[i];
8c8a743c 1917
989348b5 1918 grp->total_faults = p->total_numa_faults;
83e1d2cd 1919
8c8a743c
PZ
1920 grp->nr_tasks++;
1921 rcu_assign_pointer(p->numa_group, grp);
1922 }
1923
1924 rcu_read_lock();
1925 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1926
1927 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1928 goto no_join;
8c8a743c
PZ
1929
1930 grp = rcu_dereference(tsk->numa_group);
1931 if (!grp)
3354781a 1932 goto no_join;
8c8a743c
PZ
1933
1934 my_grp = p->numa_group;
1935 if (grp == my_grp)
3354781a 1936 goto no_join;
8c8a743c
PZ
1937
1938 /*
1939 * Only join the other group if its bigger; if we're the bigger group,
1940 * the other task will join us.
1941 */
1942 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1943 goto no_join;
8c8a743c
PZ
1944
1945 /*
1946 * Tie-break on the grp address.
1947 */
1948 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1949 goto no_join;
8c8a743c 1950
dabe1d99
RR
1951 /* Always join threads in the same process. */
1952 if (tsk->mm == current->mm)
1953 join = true;
1954
1955 /* Simple filter to avoid false positives due to PID collisions */
1956 if (flags & TNF_SHARED)
1957 join = true;
8c8a743c 1958
3e6a9418
MG
1959 /* Update priv based on whether false sharing was detected */
1960 *priv = !join;
1961
dabe1d99 1962 if (join && !get_numa_group(grp))
3354781a 1963 goto no_join;
8c8a743c 1964
8c8a743c
PZ
1965 rcu_read_unlock();
1966
1967 if (!join)
1968 return;
1969
60e69eed
MG
1970 BUG_ON(irqs_disabled());
1971 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1972
be1e4e76 1973 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1974 my_grp->faults[i] -= p->numa_faults[i];
1975 grp->faults[i] += p->numa_faults[i];
8c8a743c 1976 }
989348b5
MG
1977 my_grp->total_faults -= p->total_numa_faults;
1978 grp->total_faults += p->total_numa_faults;
8c8a743c 1979
8c8a743c
PZ
1980 my_grp->nr_tasks--;
1981 grp->nr_tasks++;
1982
1983 spin_unlock(&my_grp->lock);
60e69eed 1984 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1985
1986 rcu_assign_pointer(p->numa_group, grp);
1987
1988 put_numa_group(my_grp);
3354781a
PZ
1989 return;
1990
1991no_join:
1992 rcu_read_unlock();
1993 return;
8c8a743c
PZ
1994}
1995
1996void task_numa_free(struct task_struct *p)
1997{
1998 struct numa_group *grp = p->numa_group;
44dba3d5 1999 void *numa_faults = p->numa_faults;
e9dd685c
SR
2000 unsigned long flags;
2001 int i;
8c8a743c
PZ
2002
2003 if (grp) {
e9dd685c 2004 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2005 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2006 grp->faults[i] -= p->numa_faults[i];
989348b5 2007 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2008
8c8a743c 2009 grp->nr_tasks--;
e9dd685c 2010 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2011 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2012 put_numa_group(grp);
2013 }
2014
44dba3d5 2015 p->numa_faults = NULL;
82727018 2016 kfree(numa_faults);
8c8a743c
PZ
2017}
2018
cbee9f88
PZ
2019/*
2020 * Got a PROT_NONE fault for a page on @node.
2021 */
58b46da3 2022void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2023{
2024 struct task_struct *p = current;
6688cc05 2025 bool migrated = flags & TNF_MIGRATED;
58b46da3 2026 int cpu_node = task_node(current);
792568ec 2027 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2028 int priv;
cbee9f88 2029
10e84b97 2030 if (!numabalancing_enabled)
1a687c2e
MG
2031 return;
2032
9ff1d9ff
MG
2033 /* for example, ksmd faulting in a user's mm */
2034 if (!p->mm)
2035 return;
2036
f809ca9a 2037 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2038 if (unlikely(!p->numa_faults)) {
2039 int size = sizeof(*p->numa_faults) *
be1e4e76 2040 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2041
44dba3d5
IM
2042 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2043 if (!p->numa_faults)
f809ca9a 2044 return;
745d6147 2045
83e1d2cd 2046 p->total_numa_faults = 0;
04bb2f94 2047 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2048 }
cbee9f88 2049
8c8a743c
PZ
2050 /*
2051 * First accesses are treated as private, otherwise consider accesses
2052 * to be private if the accessing pid has not changed
2053 */
2054 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2055 priv = 1;
2056 } else {
2057 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2058 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2059 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2060 }
2061
792568ec
RR
2062 /*
2063 * If a workload spans multiple NUMA nodes, a shared fault that
2064 * occurs wholly within the set of nodes that the workload is
2065 * actively using should be counted as local. This allows the
2066 * scan rate to slow down when a workload has settled down.
2067 */
2068 if (!priv && !local && p->numa_group &&
2069 node_isset(cpu_node, p->numa_group->active_nodes) &&
2070 node_isset(mem_node, p->numa_group->active_nodes))
2071 local = 1;
2072
cbee9f88 2073 task_numa_placement(p);
f809ca9a 2074
2739d3ee
RR
2075 /*
2076 * Retry task to preferred node migration periodically, in case it
2077 * case it previously failed, or the scheduler moved us.
2078 */
2079 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2080 numa_migrate_preferred(p);
2081
b32e86b4
IM
2082 if (migrated)
2083 p->numa_pages_migrated += pages;
2084
44dba3d5
IM
2085 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2086 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2087 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2088}
2089
6e5fb223
PZ
2090static void reset_ptenuma_scan(struct task_struct *p)
2091{
2092 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2093 p->mm->numa_scan_offset = 0;
2094}
2095
cbee9f88
PZ
2096/*
2097 * The expensive part of numa migration is done from task_work context.
2098 * Triggered from task_tick_numa().
2099 */
2100void task_numa_work(struct callback_head *work)
2101{
2102 unsigned long migrate, next_scan, now = jiffies;
2103 struct task_struct *p = current;
2104 struct mm_struct *mm = p->mm;
6e5fb223 2105 struct vm_area_struct *vma;
9f40604c 2106 unsigned long start, end;
598f0ec0 2107 unsigned long nr_pte_updates = 0;
9f40604c 2108 long pages;
cbee9f88
PZ
2109
2110 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2111
2112 work->next = work; /* protect against double add */
2113 /*
2114 * Who cares about NUMA placement when they're dying.
2115 *
2116 * NOTE: make sure not to dereference p->mm before this check,
2117 * exit_task_work() happens _after_ exit_mm() so we could be called
2118 * without p->mm even though we still had it when we enqueued this
2119 * work.
2120 */
2121 if (p->flags & PF_EXITING)
2122 return;
2123
930aa174 2124 if (!mm->numa_next_scan) {
7e8d16b6
MG
2125 mm->numa_next_scan = now +
2126 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2127 }
2128
cbee9f88
PZ
2129 /*
2130 * Enforce maximal scan/migration frequency..
2131 */
2132 migrate = mm->numa_next_scan;
2133 if (time_before(now, migrate))
2134 return;
2135
598f0ec0
MG
2136 if (p->numa_scan_period == 0) {
2137 p->numa_scan_period_max = task_scan_max(p);
2138 p->numa_scan_period = task_scan_min(p);
2139 }
cbee9f88 2140
fb003b80 2141 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2142 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2143 return;
2144
19a78d11
PZ
2145 /*
2146 * Delay this task enough that another task of this mm will likely win
2147 * the next time around.
2148 */
2149 p->node_stamp += 2 * TICK_NSEC;
2150
9f40604c
MG
2151 start = mm->numa_scan_offset;
2152 pages = sysctl_numa_balancing_scan_size;
2153 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2154 if (!pages)
2155 return;
cbee9f88 2156
6e5fb223 2157 down_read(&mm->mmap_sem);
9f40604c 2158 vma = find_vma(mm, start);
6e5fb223
PZ
2159 if (!vma) {
2160 reset_ptenuma_scan(p);
9f40604c 2161 start = 0;
6e5fb223
PZ
2162 vma = mm->mmap;
2163 }
9f40604c 2164 for (; vma; vma = vma->vm_next) {
6b6482bb 2165 if (!vma_migratable(vma) || !vma_policy_mof(vma))
6e5fb223
PZ
2166 continue;
2167
4591ce4f
MG
2168 /*
2169 * Shared library pages mapped by multiple processes are not
2170 * migrated as it is expected they are cache replicated. Avoid
2171 * hinting faults in read-only file-backed mappings or the vdso
2172 * as migrating the pages will be of marginal benefit.
2173 */
2174 if (!vma->vm_mm ||
2175 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2176 continue;
2177
3c67f474
MG
2178 /*
2179 * Skip inaccessible VMAs to avoid any confusion between
2180 * PROT_NONE and NUMA hinting ptes
2181 */
2182 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2183 continue;
4591ce4f 2184
9f40604c
MG
2185 do {
2186 start = max(start, vma->vm_start);
2187 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2188 end = min(end, vma->vm_end);
598f0ec0
MG
2189 nr_pte_updates += change_prot_numa(vma, start, end);
2190
2191 /*
2192 * Scan sysctl_numa_balancing_scan_size but ensure that
2193 * at least one PTE is updated so that unused virtual
2194 * address space is quickly skipped.
2195 */
2196 if (nr_pte_updates)
2197 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2198
9f40604c
MG
2199 start = end;
2200 if (pages <= 0)
2201 goto out;
3cf1962c
RR
2202
2203 cond_resched();
9f40604c 2204 } while (end != vma->vm_end);
cbee9f88 2205 }
6e5fb223 2206
9f40604c 2207out:
6e5fb223 2208 /*
c69307d5
PZ
2209 * It is possible to reach the end of the VMA list but the last few
2210 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2211 * would find the !migratable VMA on the next scan but not reset the
2212 * scanner to the start so check it now.
6e5fb223
PZ
2213 */
2214 if (vma)
9f40604c 2215 mm->numa_scan_offset = start;
6e5fb223
PZ
2216 else
2217 reset_ptenuma_scan(p);
2218 up_read(&mm->mmap_sem);
cbee9f88
PZ
2219}
2220
2221/*
2222 * Drive the periodic memory faults..
2223 */
2224void task_tick_numa(struct rq *rq, struct task_struct *curr)
2225{
2226 struct callback_head *work = &curr->numa_work;
2227 u64 period, now;
2228
2229 /*
2230 * We don't care about NUMA placement if we don't have memory.
2231 */
2232 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2233 return;
2234
2235 /*
2236 * Using runtime rather than walltime has the dual advantage that
2237 * we (mostly) drive the selection from busy threads and that the
2238 * task needs to have done some actual work before we bother with
2239 * NUMA placement.
2240 */
2241 now = curr->se.sum_exec_runtime;
2242 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2243
2244 if (now - curr->node_stamp > period) {
4b96a29b 2245 if (!curr->node_stamp)
598f0ec0 2246 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2247 curr->node_stamp += period;
cbee9f88
PZ
2248
2249 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2250 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2251 task_work_add(curr, work, true);
2252 }
2253 }
2254}
2255#else
2256static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2257{
2258}
0ec8aa00
PZ
2259
2260static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2261{
2262}
2263
2264static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2265{
2266}
cbee9f88
PZ
2267#endif /* CONFIG_NUMA_BALANCING */
2268
30cfdcfc
DA
2269static void
2270account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2271{
2272 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2273 if (!parent_entity(se))
029632fb 2274 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2275#ifdef CONFIG_SMP
0ec8aa00
PZ
2276 if (entity_is_task(se)) {
2277 struct rq *rq = rq_of(cfs_rq);
2278
2279 account_numa_enqueue(rq, task_of(se));
2280 list_add(&se->group_node, &rq->cfs_tasks);
2281 }
367456c7 2282#endif
30cfdcfc 2283 cfs_rq->nr_running++;
30cfdcfc
DA
2284}
2285
2286static void
2287account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2288{
2289 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2290 if (!parent_entity(se))
029632fb 2291 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2292 if (entity_is_task(se)) {
2293 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2294 list_del_init(&se->group_node);
0ec8aa00 2295 }
30cfdcfc 2296 cfs_rq->nr_running--;
30cfdcfc
DA
2297}
2298
3ff6dcac
YZ
2299#ifdef CONFIG_FAIR_GROUP_SCHED
2300# ifdef CONFIG_SMP
cf5f0acf
PZ
2301static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2302{
2303 long tg_weight;
2304
2305 /*
2306 * Use this CPU's actual weight instead of the last load_contribution
2307 * to gain a more accurate current total weight. See
2308 * update_cfs_rq_load_contribution().
2309 */
bf5b986e 2310 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2311 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2312 tg_weight += cfs_rq->load.weight;
2313
2314 return tg_weight;
2315}
2316
6d5ab293 2317static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2318{
cf5f0acf 2319 long tg_weight, load, shares;
3ff6dcac 2320
cf5f0acf 2321 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2322 load = cfs_rq->load.weight;
3ff6dcac 2323
3ff6dcac 2324 shares = (tg->shares * load);
cf5f0acf
PZ
2325 if (tg_weight)
2326 shares /= tg_weight;
3ff6dcac
YZ
2327
2328 if (shares < MIN_SHARES)
2329 shares = MIN_SHARES;
2330 if (shares > tg->shares)
2331 shares = tg->shares;
2332
2333 return shares;
2334}
3ff6dcac 2335# else /* CONFIG_SMP */
6d5ab293 2336static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2337{
2338 return tg->shares;
2339}
3ff6dcac 2340# endif /* CONFIG_SMP */
2069dd75
PZ
2341static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2342 unsigned long weight)
2343{
19e5eebb
PT
2344 if (se->on_rq) {
2345 /* commit outstanding execution time */
2346 if (cfs_rq->curr == se)
2347 update_curr(cfs_rq);
2069dd75 2348 account_entity_dequeue(cfs_rq, se);
19e5eebb 2349 }
2069dd75
PZ
2350
2351 update_load_set(&se->load, weight);
2352
2353 if (se->on_rq)
2354 account_entity_enqueue(cfs_rq, se);
2355}
2356
82958366
PT
2357static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2358
6d5ab293 2359static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2360{
2361 struct task_group *tg;
2362 struct sched_entity *se;
3ff6dcac 2363 long shares;
2069dd75 2364
2069dd75
PZ
2365 tg = cfs_rq->tg;
2366 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2367 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2368 return;
3ff6dcac
YZ
2369#ifndef CONFIG_SMP
2370 if (likely(se->load.weight == tg->shares))
2371 return;
2372#endif
6d5ab293 2373 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2374
2375 reweight_entity(cfs_rq_of(se), se, shares);
2376}
2377#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2378static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2379{
2380}
2381#endif /* CONFIG_FAIR_GROUP_SCHED */
2382
141965c7 2383#ifdef CONFIG_SMP
5b51f2f8
PT
2384/*
2385 * We choose a half-life close to 1 scheduling period.
2386 * Note: The tables below are dependent on this value.
2387 */
2388#define LOAD_AVG_PERIOD 32
2389#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2390#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2391
2392/* Precomputed fixed inverse multiplies for multiplication by y^n */
2393static const u32 runnable_avg_yN_inv[] = {
2394 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2395 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2396 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2397 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2398 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2399 0x85aac367, 0x82cd8698,
2400};
2401
2402/*
2403 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2404 * over-estimates when re-combining.
2405 */
2406static const u32 runnable_avg_yN_sum[] = {
2407 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2408 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2409 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2410};
2411
9d85f21c
PT
2412/*
2413 * Approximate:
2414 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2415 */
2416static __always_inline u64 decay_load(u64 val, u64 n)
2417{
5b51f2f8
PT
2418 unsigned int local_n;
2419
2420 if (!n)
2421 return val;
2422 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2423 return 0;
2424
2425 /* after bounds checking we can collapse to 32-bit */
2426 local_n = n;
2427
2428 /*
2429 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2430 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2431 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2432 *
2433 * To achieve constant time decay_load.
2434 */
2435 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2436 val >>= local_n / LOAD_AVG_PERIOD;
2437 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2438 }
2439
5b51f2f8
PT
2440 val *= runnable_avg_yN_inv[local_n];
2441 /* We don't use SRR here since we always want to round down. */
2442 return val >> 32;
2443}
2444
2445/*
2446 * For updates fully spanning n periods, the contribution to runnable
2447 * average will be: \Sum 1024*y^n
2448 *
2449 * We can compute this reasonably efficiently by combining:
2450 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2451 */
2452static u32 __compute_runnable_contrib(u64 n)
2453{
2454 u32 contrib = 0;
2455
2456 if (likely(n <= LOAD_AVG_PERIOD))
2457 return runnable_avg_yN_sum[n];
2458 else if (unlikely(n >= LOAD_AVG_MAX_N))
2459 return LOAD_AVG_MAX;
2460
2461 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2462 do {
2463 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2464 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2465
2466 n -= LOAD_AVG_PERIOD;
2467 } while (n > LOAD_AVG_PERIOD);
2468
2469 contrib = decay_load(contrib, n);
2470 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2471}
2472
2473/*
2474 * We can represent the historical contribution to runnable average as the
2475 * coefficients of a geometric series. To do this we sub-divide our runnable
2476 * history into segments of approximately 1ms (1024us); label the segment that
2477 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2478 *
2479 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2480 * p0 p1 p2
2481 * (now) (~1ms ago) (~2ms ago)
2482 *
2483 * Let u_i denote the fraction of p_i that the entity was runnable.
2484 *
2485 * We then designate the fractions u_i as our co-efficients, yielding the
2486 * following representation of historical load:
2487 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2488 *
2489 * We choose y based on the with of a reasonably scheduling period, fixing:
2490 * y^32 = 0.5
2491 *
2492 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2493 * approximately half as much as the contribution to load within the last ms
2494 * (u_0).
2495 *
2496 * When a period "rolls over" and we have new u_0`, multiplying the previous
2497 * sum again by y is sufficient to update:
2498 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2499 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2500 */
2501static __always_inline int __update_entity_runnable_avg(u64 now,
2502 struct sched_avg *sa,
2503 int runnable)
2504{
5b51f2f8
PT
2505 u64 delta, periods;
2506 u32 runnable_contrib;
9d85f21c
PT
2507 int delta_w, decayed = 0;
2508
2509 delta = now - sa->last_runnable_update;
2510 /*
2511 * This should only happen when time goes backwards, which it
2512 * unfortunately does during sched clock init when we swap over to TSC.
2513 */
2514 if ((s64)delta < 0) {
2515 sa->last_runnable_update = now;
2516 return 0;
2517 }
2518
2519 /*
2520 * Use 1024ns as the unit of measurement since it's a reasonable
2521 * approximation of 1us and fast to compute.
2522 */
2523 delta >>= 10;
2524 if (!delta)
2525 return 0;
2526 sa->last_runnable_update = now;
2527
2528 /* delta_w is the amount already accumulated against our next period */
2529 delta_w = sa->runnable_avg_period % 1024;
2530 if (delta + delta_w >= 1024) {
2531 /* period roll-over */
2532 decayed = 1;
2533
2534 /*
2535 * Now that we know we're crossing a period boundary, figure
2536 * out how much from delta we need to complete the current
2537 * period and accrue it.
2538 */
2539 delta_w = 1024 - delta_w;
5b51f2f8
PT
2540 if (runnable)
2541 sa->runnable_avg_sum += delta_w;
2542 sa->runnable_avg_period += delta_w;
2543
2544 delta -= delta_w;
2545
2546 /* Figure out how many additional periods this update spans */
2547 periods = delta / 1024;
2548 delta %= 1024;
2549
2550 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2551 periods + 1);
2552 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2553 periods + 1);
2554
2555 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2556 runnable_contrib = __compute_runnable_contrib(periods);
2557 if (runnable)
2558 sa->runnable_avg_sum += runnable_contrib;
2559 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2560 }
2561
2562 /* Remainder of delta accrued against u_0` */
2563 if (runnable)
2564 sa->runnable_avg_sum += delta;
2565 sa->runnable_avg_period += delta;
2566
2567 return decayed;
2568}
2569
9ee474f5 2570/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2571static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2572{
2573 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2574 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2575
2576 decays -= se->avg.decay_count;
2577 if (!decays)
aff3e498 2578 return 0;
9ee474f5
PT
2579
2580 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2581 se->avg.decay_count = 0;
aff3e498
PT
2582
2583 return decays;
9ee474f5
PT
2584}
2585
c566e8e9
PT
2586#ifdef CONFIG_FAIR_GROUP_SCHED
2587static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2588 int force_update)
2589{
2590 struct task_group *tg = cfs_rq->tg;
bf5b986e 2591 long tg_contrib;
c566e8e9
PT
2592
2593 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2594 tg_contrib -= cfs_rq->tg_load_contrib;
2595
8236d907
JL
2596 if (!tg_contrib)
2597 return;
2598
bf5b986e
AS
2599 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2600 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2601 cfs_rq->tg_load_contrib += tg_contrib;
2602 }
2603}
8165e145 2604
bb17f655
PT
2605/*
2606 * Aggregate cfs_rq runnable averages into an equivalent task_group
2607 * representation for computing load contributions.
2608 */
2609static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2610 struct cfs_rq *cfs_rq)
2611{
2612 struct task_group *tg = cfs_rq->tg;
2613 long contrib;
2614
2615 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2616 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2617 sa->runnable_avg_period + 1);
2618 contrib -= cfs_rq->tg_runnable_contrib;
2619
2620 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2621 atomic_add(contrib, &tg->runnable_avg);
2622 cfs_rq->tg_runnable_contrib += contrib;
2623 }
2624}
2625
8165e145
PT
2626static inline void __update_group_entity_contrib(struct sched_entity *se)
2627{
2628 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2629 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2630 int runnable_avg;
2631
8165e145
PT
2632 u64 contrib;
2633
2634 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2635 se->avg.load_avg_contrib = div_u64(contrib,
2636 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2637
2638 /*
2639 * For group entities we need to compute a correction term in the case
2640 * that they are consuming <1 cpu so that we would contribute the same
2641 * load as a task of equal weight.
2642 *
2643 * Explicitly co-ordinating this measurement would be expensive, but
2644 * fortunately the sum of each cpus contribution forms a usable
2645 * lower-bound on the true value.
2646 *
2647 * Consider the aggregate of 2 contributions. Either they are disjoint
2648 * (and the sum represents true value) or they are disjoint and we are
2649 * understating by the aggregate of their overlap.
2650 *
2651 * Extending this to N cpus, for a given overlap, the maximum amount we
2652 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2653 * cpus that overlap for this interval and w_i is the interval width.
2654 *
2655 * On a small machine; the first term is well-bounded which bounds the
2656 * total error since w_i is a subset of the period. Whereas on a
2657 * larger machine, while this first term can be larger, if w_i is the
2658 * of consequential size guaranteed to see n_i*w_i quickly converge to
2659 * our upper bound of 1-cpu.
2660 */
2661 runnable_avg = atomic_read(&tg->runnable_avg);
2662 if (runnable_avg < NICE_0_LOAD) {
2663 se->avg.load_avg_contrib *= runnable_avg;
2664 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2665 }
8165e145 2666}
f5f9739d
DE
2667
2668static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2669{
2670 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2671 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2672}
6e83125c 2673#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2674static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2675 int force_update) {}
bb17f655
PT
2676static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2677 struct cfs_rq *cfs_rq) {}
8165e145 2678static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2679static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2680#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2681
8165e145
PT
2682static inline void __update_task_entity_contrib(struct sched_entity *se)
2683{
2684 u32 contrib;
2685
2686 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2687 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2688 contrib /= (se->avg.runnable_avg_period + 1);
2689 se->avg.load_avg_contrib = scale_load(contrib);
2690}
2691
2dac754e
PT
2692/* Compute the current contribution to load_avg by se, return any delta */
2693static long __update_entity_load_avg_contrib(struct sched_entity *se)
2694{
2695 long old_contrib = se->avg.load_avg_contrib;
2696
8165e145
PT
2697 if (entity_is_task(se)) {
2698 __update_task_entity_contrib(se);
2699 } else {
bb17f655 2700 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2701 __update_group_entity_contrib(se);
2702 }
2dac754e
PT
2703
2704 return se->avg.load_avg_contrib - old_contrib;
2705}
2706
9ee474f5
PT
2707static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2708 long load_contrib)
2709{
2710 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2711 cfs_rq->blocked_load_avg -= load_contrib;
2712 else
2713 cfs_rq->blocked_load_avg = 0;
2714}
2715
f1b17280
PT
2716static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2717
9d85f21c 2718/* Update a sched_entity's runnable average */
9ee474f5
PT
2719static inline void update_entity_load_avg(struct sched_entity *se,
2720 int update_cfs_rq)
9d85f21c 2721{
2dac754e
PT
2722 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2723 long contrib_delta;
f1b17280 2724 u64 now;
2dac754e 2725
f1b17280
PT
2726 /*
2727 * For a group entity we need to use their owned cfs_rq_clock_task() in
2728 * case they are the parent of a throttled hierarchy.
2729 */
2730 if (entity_is_task(se))
2731 now = cfs_rq_clock_task(cfs_rq);
2732 else
2733 now = cfs_rq_clock_task(group_cfs_rq(se));
2734
2735 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2736 return;
2737
2738 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2739
2740 if (!update_cfs_rq)
2741 return;
2742
2dac754e
PT
2743 if (se->on_rq)
2744 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2745 else
2746 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2747}
2748
2749/*
2750 * Decay the load contributed by all blocked children and account this so that
2751 * their contribution may appropriately discounted when they wake up.
2752 */
aff3e498 2753static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2754{
f1b17280 2755 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2756 u64 decays;
2757
2758 decays = now - cfs_rq->last_decay;
aff3e498 2759 if (!decays && !force_update)
9ee474f5
PT
2760 return;
2761
2509940f
AS
2762 if (atomic_long_read(&cfs_rq->removed_load)) {
2763 unsigned long removed_load;
2764 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2765 subtract_blocked_load_contrib(cfs_rq, removed_load);
2766 }
9ee474f5 2767
aff3e498
PT
2768 if (decays) {
2769 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2770 decays);
2771 atomic64_add(decays, &cfs_rq->decay_counter);
2772 cfs_rq->last_decay = now;
2773 }
c566e8e9
PT
2774
2775 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2776}
18bf2805 2777
2dac754e
PT
2778/* Add the load generated by se into cfs_rq's child load-average */
2779static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2780 struct sched_entity *se,
2781 int wakeup)
2dac754e 2782{
aff3e498
PT
2783 /*
2784 * We track migrations using entity decay_count <= 0, on a wake-up
2785 * migration we use a negative decay count to track the remote decays
2786 * accumulated while sleeping.
a75cdaa9
AS
2787 *
2788 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2789 * are seen by enqueue_entity_load_avg() as a migration with an already
2790 * constructed load_avg_contrib.
aff3e498
PT
2791 */
2792 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2793 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2794 if (se->avg.decay_count) {
2795 /*
2796 * In a wake-up migration we have to approximate the
2797 * time sleeping. This is because we can't synchronize
2798 * clock_task between the two cpus, and it is not
2799 * guaranteed to be read-safe. Instead, we can
2800 * approximate this using our carried decays, which are
2801 * explicitly atomically readable.
2802 */
2803 se->avg.last_runnable_update -= (-se->avg.decay_count)
2804 << 20;
2805 update_entity_load_avg(se, 0);
2806 /* Indicate that we're now synchronized and on-rq */
2807 se->avg.decay_count = 0;
2808 }
9ee474f5
PT
2809 wakeup = 0;
2810 } else {
9390675a 2811 __synchronize_entity_decay(se);
9ee474f5
PT
2812 }
2813
aff3e498
PT
2814 /* migrated tasks did not contribute to our blocked load */
2815 if (wakeup) {
9ee474f5 2816 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2817 update_entity_load_avg(se, 0);
2818 }
9ee474f5 2819
2dac754e 2820 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2821 /* we force update consideration on load-balancer moves */
2822 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2823}
2824
9ee474f5
PT
2825/*
2826 * Remove se's load from this cfs_rq child load-average, if the entity is
2827 * transitioning to a blocked state we track its projected decay using
2828 * blocked_load_avg.
2829 */
2dac754e 2830static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2831 struct sched_entity *se,
2832 int sleep)
2dac754e 2833{
9ee474f5 2834 update_entity_load_avg(se, 1);
aff3e498
PT
2835 /* we force update consideration on load-balancer moves */
2836 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2837
2dac754e 2838 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2839 if (sleep) {
2840 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2841 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2842 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2843}
642dbc39
VG
2844
2845/*
2846 * Update the rq's load with the elapsed running time before entering
2847 * idle. if the last scheduled task is not a CFS task, idle_enter will
2848 * be the only way to update the runnable statistic.
2849 */
2850void idle_enter_fair(struct rq *this_rq)
2851{
2852 update_rq_runnable_avg(this_rq, 1);
2853}
2854
2855/*
2856 * Update the rq's load with the elapsed idle time before a task is
2857 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2858 * be the only way to update the runnable statistic.
2859 */
2860void idle_exit_fair(struct rq *this_rq)
2861{
2862 update_rq_runnable_avg(this_rq, 0);
2863}
2864
6e83125c
PZ
2865static int idle_balance(struct rq *this_rq);
2866
38033c37
PZ
2867#else /* CONFIG_SMP */
2868
9ee474f5
PT
2869static inline void update_entity_load_avg(struct sched_entity *se,
2870 int update_cfs_rq) {}
18bf2805 2871static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2872static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2873 struct sched_entity *se,
2874 int wakeup) {}
2dac754e 2875static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2876 struct sched_entity *se,
2877 int sleep) {}
aff3e498
PT
2878static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2879 int force_update) {}
6e83125c
PZ
2880
2881static inline int idle_balance(struct rq *rq)
2882{
2883 return 0;
2884}
2885
38033c37 2886#endif /* CONFIG_SMP */
9d85f21c 2887
2396af69 2888static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2889{
bf0f6f24 2890#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2891 struct task_struct *tsk = NULL;
2892
2893 if (entity_is_task(se))
2894 tsk = task_of(se);
2895
41acab88 2896 if (se->statistics.sleep_start) {
78becc27 2897 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2898
2899 if ((s64)delta < 0)
2900 delta = 0;
2901
41acab88
LDM
2902 if (unlikely(delta > se->statistics.sleep_max))
2903 se->statistics.sleep_max = delta;
bf0f6f24 2904
8c79a045 2905 se->statistics.sleep_start = 0;
41acab88 2906 se->statistics.sum_sleep_runtime += delta;
9745512c 2907
768d0c27 2908 if (tsk) {
e414314c 2909 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2910 trace_sched_stat_sleep(tsk, delta);
2911 }
bf0f6f24 2912 }
41acab88 2913 if (se->statistics.block_start) {
78becc27 2914 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2915
2916 if ((s64)delta < 0)
2917 delta = 0;
2918
41acab88
LDM
2919 if (unlikely(delta > se->statistics.block_max))
2920 se->statistics.block_max = delta;
bf0f6f24 2921
8c79a045 2922 se->statistics.block_start = 0;
41acab88 2923 se->statistics.sum_sleep_runtime += delta;
30084fbd 2924
e414314c 2925 if (tsk) {
8f0dfc34 2926 if (tsk->in_iowait) {
41acab88
LDM
2927 se->statistics.iowait_sum += delta;
2928 se->statistics.iowait_count++;
768d0c27 2929 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2930 }
2931
b781a602
AV
2932 trace_sched_stat_blocked(tsk, delta);
2933
e414314c
PZ
2934 /*
2935 * Blocking time is in units of nanosecs, so shift by
2936 * 20 to get a milliseconds-range estimation of the
2937 * amount of time that the task spent sleeping:
2938 */
2939 if (unlikely(prof_on == SLEEP_PROFILING)) {
2940 profile_hits(SLEEP_PROFILING,
2941 (void *)get_wchan(tsk),
2942 delta >> 20);
2943 }
2944 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2945 }
bf0f6f24
IM
2946 }
2947#endif
2948}
2949
ddc97297
PZ
2950static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2951{
2952#ifdef CONFIG_SCHED_DEBUG
2953 s64 d = se->vruntime - cfs_rq->min_vruntime;
2954
2955 if (d < 0)
2956 d = -d;
2957
2958 if (d > 3*sysctl_sched_latency)
2959 schedstat_inc(cfs_rq, nr_spread_over);
2960#endif
2961}
2962
aeb73b04
PZ
2963static void
2964place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2965{
1af5f730 2966 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2967
2cb8600e
PZ
2968 /*
2969 * The 'current' period is already promised to the current tasks,
2970 * however the extra weight of the new task will slow them down a
2971 * little, place the new task so that it fits in the slot that
2972 * stays open at the end.
2973 */
94dfb5e7 2974 if (initial && sched_feat(START_DEBIT))
f9c0b095 2975 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2976
a2e7a7eb 2977 /* sleeps up to a single latency don't count. */
5ca9880c 2978 if (!initial) {
a2e7a7eb 2979 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2980
a2e7a7eb
MG
2981 /*
2982 * Halve their sleep time's effect, to allow
2983 * for a gentler effect of sleepers:
2984 */
2985 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2986 thresh >>= 1;
51e0304c 2987
a2e7a7eb 2988 vruntime -= thresh;
aeb73b04
PZ
2989 }
2990
b5d9d734 2991 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2992 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2993}
2994
d3d9dc33
PT
2995static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2996
bf0f6f24 2997static void
88ec22d3 2998enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2999{
88ec22d3
PZ
3000 /*
3001 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3002 * through calling update_curr().
88ec22d3 3003 */
371fd7e7 3004 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3005 se->vruntime += cfs_rq->min_vruntime;
3006
bf0f6f24 3007 /*
a2a2d680 3008 * Update run-time statistics of the 'current'.
bf0f6f24 3009 */
b7cc0896 3010 update_curr(cfs_rq);
f269ae04 3011 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3012 account_entity_enqueue(cfs_rq, se);
3013 update_cfs_shares(cfs_rq);
bf0f6f24 3014
88ec22d3 3015 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3016 place_entity(cfs_rq, se, 0);
2396af69 3017 enqueue_sleeper(cfs_rq, se);
e9acbff6 3018 }
bf0f6f24 3019
d2417e5a 3020 update_stats_enqueue(cfs_rq, se);
ddc97297 3021 check_spread(cfs_rq, se);
83b699ed
SV
3022 if (se != cfs_rq->curr)
3023 __enqueue_entity(cfs_rq, se);
2069dd75 3024 se->on_rq = 1;
3d4b47b4 3025
d3d9dc33 3026 if (cfs_rq->nr_running == 1) {
3d4b47b4 3027 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3028 check_enqueue_throttle(cfs_rq);
3029 }
bf0f6f24
IM
3030}
3031
2c13c919 3032static void __clear_buddies_last(struct sched_entity *se)
2002c695 3033{
2c13c919
RR
3034 for_each_sched_entity(se) {
3035 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3036 if (cfs_rq->last != se)
2c13c919 3037 break;
f1044799
PZ
3038
3039 cfs_rq->last = NULL;
2c13c919
RR
3040 }
3041}
2002c695 3042
2c13c919
RR
3043static void __clear_buddies_next(struct sched_entity *se)
3044{
3045 for_each_sched_entity(se) {
3046 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3047 if (cfs_rq->next != se)
2c13c919 3048 break;
f1044799
PZ
3049
3050 cfs_rq->next = NULL;
2c13c919 3051 }
2002c695
PZ
3052}
3053
ac53db59
RR
3054static void __clear_buddies_skip(struct sched_entity *se)
3055{
3056 for_each_sched_entity(se) {
3057 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3058 if (cfs_rq->skip != se)
ac53db59 3059 break;
f1044799
PZ
3060
3061 cfs_rq->skip = NULL;
ac53db59
RR
3062 }
3063}
3064
a571bbea
PZ
3065static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3066{
2c13c919
RR
3067 if (cfs_rq->last == se)
3068 __clear_buddies_last(se);
3069
3070 if (cfs_rq->next == se)
3071 __clear_buddies_next(se);
ac53db59
RR
3072
3073 if (cfs_rq->skip == se)
3074 __clear_buddies_skip(se);
a571bbea
PZ
3075}
3076
6c16a6dc 3077static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3078
bf0f6f24 3079static void
371fd7e7 3080dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3081{
a2a2d680
DA
3082 /*
3083 * Update run-time statistics of the 'current'.
3084 */
3085 update_curr(cfs_rq);
17bc14b7 3086 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3087
19b6a2e3 3088 update_stats_dequeue(cfs_rq, se);
371fd7e7 3089 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3090#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3091 if (entity_is_task(se)) {
3092 struct task_struct *tsk = task_of(se);
3093
3094 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3095 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3096 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3097 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3098 }
db36cc7d 3099#endif
67e9fb2a
PZ
3100 }
3101
2002c695 3102 clear_buddies(cfs_rq, se);
4793241b 3103
83b699ed 3104 if (se != cfs_rq->curr)
30cfdcfc 3105 __dequeue_entity(cfs_rq, se);
17bc14b7 3106 se->on_rq = 0;
30cfdcfc 3107 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3108
3109 /*
3110 * Normalize the entity after updating the min_vruntime because the
3111 * update can refer to the ->curr item and we need to reflect this
3112 * movement in our normalized position.
3113 */
371fd7e7 3114 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3115 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3116
d8b4986d
PT
3117 /* return excess runtime on last dequeue */
3118 return_cfs_rq_runtime(cfs_rq);
3119
1e876231 3120 update_min_vruntime(cfs_rq);
17bc14b7 3121 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3122}
3123
3124/*
3125 * Preempt the current task with a newly woken task if needed:
3126 */
7c92e54f 3127static void
2e09bf55 3128check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3129{
11697830 3130 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3131 struct sched_entity *se;
3132 s64 delta;
11697830 3133
6d0f0ebd 3134 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3135 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3136 if (delta_exec > ideal_runtime) {
8875125e 3137 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3138 /*
3139 * The current task ran long enough, ensure it doesn't get
3140 * re-elected due to buddy favours.
3141 */
3142 clear_buddies(cfs_rq, curr);
f685ceac
MG
3143 return;
3144 }
3145
3146 /*
3147 * Ensure that a task that missed wakeup preemption by a
3148 * narrow margin doesn't have to wait for a full slice.
3149 * This also mitigates buddy induced latencies under load.
3150 */
f685ceac
MG
3151 if (delta_exec < sysctl_sched_min_granularity)
3152 return;
3153
f4cfb33e
WX
3154 se = __pick_first_entity(cfs_rq);
3155 delta = curr->vruntime - se->vruntime;
f685ceac 3156
f4cfb33e
WX
3157 if (delta < 0)
3158 return;
d7d82944 3159
f4cfb33e 3160 if (delta > ideal_runtime)
8875125e 3161 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3162}
3163
83b699ed 3164static void
8494f412 3165set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3166{
83b699ed
SV
3167 /* 'current' is not kept within the tree. */
3168 if (se->on_rq) {
3169 /*
3170 * Any task has to be enqueued before it get to execute on
3171 * a CPU. So account for the time it spent waiting on the
3172 * runqueue.
3173 */
3174 update_stats_wait_end(cfs_rq, se);
3175 __dequeue_entity(cfs_rq, se);
3176 }
3177
79303e9e 3178 update_stats_curr_start(cfs_rq, se);
429d43bc 3179 cfs_rq->curr = se;
eba1ed4b
IM
3180#ifdef CONFIG_SCHEDSTATS
3181 /*
3182 * Track our maximum slice length, if the CPU's load is at
3183 * least twice that of our own weight (i.e. dont track it
3184 * when there are only lesser-weight tasks around):
3185 */
495eca49 3186 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3187 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3188 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3189 }
3190#endif
4a55b450 3191 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3192}
3193
3f3a4904
PZ
3194static int
3195wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3196
ac53db59
RR
3197/*
3198 * Pick the next process, keeping these things in mind, in this order:
3199 * 1) keep things fair between processes/task groups
3200 * 2) pick the "next" process, since someone really wants that to run
3201 * 3) pick the "last" process, for cache locality
3202 * 4) do not run the "skip" process, if something else is available
3203 */
678d5718
PZ
3204static struct sched_entity *
3205pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3206{
678d5718
PZ
3207 struct sched_entity *left = __pick_first_entity(cfs_rq);
3208 struct sched_entity *se;
3209
3210 /*
3211 * If curr is set we have to see if its left of the leftmost entity
3212 * still in the tree, provided there was anything in the tree at all.
3213 */
3214 if (!left || (curr && entity_before(curr, left)))
3215 left = curr;
3216
3217 se = left; /* ideally we run the leftmost entity */
f4b6755f 3218
ac53db59
RR
3219 /*
3220 * Avoid running the skip buddy, if running something else can
3221 * be done without getting too unfair.
3222 */
3223 if (cfs_rq->skip == se) {
678d5718
PZ
3224 struct sched_entity *second;
3225
3226 if (se == curr) {
3227 second = __pick_first_entity(cfs_rq);
3228 } else {
3229 second = __pick_next_entity(se);
3230 if (!second || (curr && entity_before(curr, second)))
3231 second = curr;
3232 }
3233
ac53db59
RR
3234 if (second && wakeup_preempt_entity(second, left) < 1)
3235 se = second;
3236 }
aa2ac252 3237
f685ceac
MG
3238 /*
3239 * Prefer last buddy, try to return the CPU to a preempted task.
3240 */
3241 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3242 se = cfs_rq->last;
3243
ac53db59
RR
3244 /*
3245 * Someone really wants this to run. If it's not unfair, run it.
3246 */
3247 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3248 se = cfs_rq->next;
3249
f685ceac 3250 clear_buddies(cfs_rq, se);
4793241b
PZ
3251
3252 return se;
aa2ac252
PZ
3253}
3254
678d5718 3255static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3256
ab6cde26 3257static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3258{
3259 /*
3260 * If still on the runqueue then deactivate_task()
3261 * was not called and update_curr() has to be done:
3262 */
3263 if (prev->on_rq)
b7cc0896 3264 update_curr(cfs_rq);
bf0f6f24 3265
d3d9dc33
PT
3266 /* throttle cfs_rqs exceeding runtime */
3267 check_cfs_rq_runtime(cfs_rq);
3268
ddc97297 3269 check_spread(cfs_rq, prev);
30cfdcfc 3270 if (prev->on_rq) {
5870db5b 3271 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3272 /* Put 'current' back into the tree. */
3273 __enqueue_entity(cfs_rq, prev);
9d85f21c 3274 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3275 update_entity_load_avg(prev, 1);
30cfdcfc 3276 }
429d43bc 3277 cfs_rq->curr = NULL;
bf0f6f24
IM
3278}
3279
8f4d37ec
PZ
3280static void
3281entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3282{
bf0f6f24 3283 /*
30cfdcfc 3284 * Update run-time statistics of the 'current'.
bf0f6f24 3285 */
30cfdcfc 3286 update_curr(cfs_rq);
bf0f6f24 3287
9d85f21c
PT
3288 /*
3289 * Ensure that runnable average is periodically updated.
3290 */
9ee474f5 3291 update_entity_load_avg(curr, 1);
aff3e498 3292 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3293 update_cfs_shares(cfs_rq);
9d85f21c 3294
8f4d37ec
PZ
3295#ifdef CONFIG_SCHED_HRTICK
3296 /*
3297 * queued ticks are scheduled to match the slice, so don't bother
3298 * validating it and just reschedule.
3299 */
983ed7a6 3300 if (queued) {
8875125e 3301 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3302 return;
3303 }
8f4d37ec
PZ
3304 /*
3305 * don't let the period tick interfere with the hrtick preemption
3306 */
3307 if (!sched_feat(DOUBLE_TICK) &&
3308 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3309 return;
3310#endif
3311
2c2efaed 3312 if (cfs_rq->nr_running > 1)
2e09bf55 3313 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3314}
3315
ab84d31e
PT
3316
3317/**************************************************
3318 * CFS bandwidth control machinery
3319 */
3320
3321#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3322
3323#ifdef HAVE_JUMP_LABEL
c5905afb 3324static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3325
3326static inline bool cfs_bandwidth_used(void)
3327{
c5905afb 3328 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3329}
3330
1ee14e6c 3331void cfs_bandwidth_usage_inc(void)
029632fb 3332{
1ee14e6c
BS
3333 static_key_slow_inc(&__cfs_bandwidth_used);
3334}
3335
3336void cfs_bandwidth_usage_dec(void)
3337{
3338 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3339}
3340#else /* HAVE_JUMP_LABEL */
3341static bool cfs_bandwidth_used(void)
3342{
3343 return true;
3344}
3345
1ee14e6c
BS
3346void cfs_bandwidth_usage_inc(void) {}
3347void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3348#endif /* HAVE_JUMP_LABEL */
3349
ab84d31e
PT
3350/*
3351 * default period for cfs group bandwidth.
3352 * default: 0.1s, units: nanoseconds
3353 */
3354static inline u64 default_cfs_period(void)
3355{
3356 return 100000000ULL;
3357}
ec12cb7f
PT
3358
3359static inline u64 sched_cfs_bandwidth_slice(void)
3360{
3361 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3362}
3363
a9cf55b2
PT
3364/*
3365 * Replenish runtime according to assigned quota and update expiration time.
3366 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3367 * additional synchronization around rq->lock.
3368 *
3369 * requires cfs_b->lock
3370 */
029632fb 3371void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3372{
3373 u64 now;
3374
3375 if (cfs_b->quota == RUNTIME_INF)
3376 return;
3377
3378 now = sched_clock_cpu(smp_processor_id());
3379 cfs_b->runtime = cfs_b->quota;
3380 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3381}
3382
029632fb
PZ
3383static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3384{
3385 return &tg->cfs_bandwidth;
3386}
3387
f1b17280
PT
3388/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3389static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3390{
3391 if (unlikely(cfs_rq->throttle_count))
3392 return cfs_rq->throttled_clock_task;
3393
78becc27 3394 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3395}
3396
85dac906
PT
3397/* returns 0 on failure to allocate runtime */
3398static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3399{
3400 struct task_group *tg = cfs_rq->tg;
3401 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3402 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3403
3404 /* note: this is a positive sum as runtime_remaining <= 0 */
3405 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3406
3407 raw_spin_lock(&cfs_b->lock);
3408 if (cfs_b->quota == RUNTIME_INF)
3409 amount = min_amount;
58088ad0 3410 else {
a9cf55b2
PT
3411 /*
3412 * If the bandwidth pool has become inactive, then at least one
3413 * period must have elapsed since the last consumption.
3414 * Refresh the global state and ensure bandwidth timer becomes
3415 * active.
3416 */
3417 if (!cfs_b->timer_active) {
3418 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3419 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3420 }
58088ad0
PT
3421
3422 if (cfs_b->runtime > 0) {
3423 amount = min(cfs_b->runtime, min_amount);
3424 cfs_b->runtime -= amount;
3425 cfs_b->idle = 0;
3426 }
ec12cb7f 3427 }
a9cf55b2 3428 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3429 raw_spin_unlock(&cfs_b->lock);
3430
3431 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3432 /*
3433 * we may have advanced our local expiration to account for allowed
3434 * spread between our sched_clock and the one on which runtime was
3435 * issued.
3436 */
3437 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3438 cfs_rq->runtime_expires = expires;
85dac906
PT
3439
3440 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3441}
3442
a9cf55b2
PT
3443/*
3444 * Note: This depends on the synchronization provided by sched_clock and the
3445 * fact that rq->clock snapshots this value.
3446 */
3447static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3448{
a9cf55b2 3449 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3450
3451 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3452 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3453 return;
3454
a9cf55b2
PT
3455 if (cfs_rq->runtime_remaining < 0)
3456 return;
3457
3458 /*
3459 * If the local deadline has passed we have to consider the
3460 * possibility that our sched_clock is 'fast' and the global deadline
3461 * has not truly expired.
3462 *
3463 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3464 * whether the global deadline has advanced. It is valid to compare
3465 * cfs_b->runtime_expires without any locks since we only care about
3466 * exact equality, so a partial write will still work.
a9cf55b2
PT
3467 */
3468
51f2176d 3469 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3470 /* extend local deadline, drift is bounded above by 2 ticks */
3471 cfs_rq->runtime_expires += TICK_NSEC;
3472 } else {
3473 /* global deadline is ahead, expiration has passed */
3474 cfs_rq->runtime_remaining = 0;
3475 }
3476}
3477
9dbdb155 3478static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3479{
3480 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3481 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3482 expire_cfs_rq_runtime(cfs_rq);
3483
3484 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3485 return;
3486
85dac906
PT
3487 /*
3488 * if we're unable to extend our runtime we resched so that the active
3489 * hierarchy can be throttled
3490 */
3491 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3492 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3493}
3494
6c16a6dc 3495static __always_inline
9dbdb155 3496void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3497{
56f570e5 3498 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3499 return;
3500
3501 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3502}
3503
85dac906
PT
3504static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3505{
56f570e5 3506 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3507}
3508
64660c86
PT
3509/* check whether cfs_rq, or any parent, is throttled */
3510static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3511{
56f570e5 3512 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3513}
3514
3515/*
3516 * Ensure that neither of the group entities corresponding to src_cpu or
3517 * dest_cpu are members of a throttled hierarchy when performing group
3518 * load-balance operations.
3519 */
3520static inline int throttled_lb_pair(struct task_group *tg,
3521 int src_cpu, int dest_cpu)
3522{
3523 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3524
3525 src_cfs_rq = tg->cfs_rq[src_cpu];
3526 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3527
3528 return throttled_hierarchy(src_cfs_rq) ||
3529 throttled_hierarchy(dest_cfs_rq);
3530}
3531
3532/* updated child weight may affect parent so we have to do this bottom up */
3533static int tg_unthrottle_up(struct task_group *tg, void *data)
3534{
3535 struct rq *rq = data;
3536 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3537
3538 cfs_rq->throttle_count--;
3539#ifdef CONFIG_SMP
3540 if (!cfs_rq->throttle_count) {
f1b17280 3541 /* adjust cfs_rq_clock_task() */
78becc27 3542 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3543 cfs_rq->throttled_clock_task;
64660c86
PT
3544 }
3545#endif
3546
3547 return 0;
3548}
3549
3550static int tg_throttle_down(struct task_group *tg, void *data)
3551{
3552 struct rq *rq = data;
3553 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3554
82958366
PT
3555 /* group is entering throttled state, stop time */
3556 if (!cfs_rq->throttle_count)
78becc27 3557 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3558 cfs_rq->throttle_count++;
3559
3560 return 0;
3561}
3562
d3d9dc33 3563static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3564{
3565 struct rq *rq = rq_of(cfs_rq);
3566 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3567 struct sched_entity *se;
3568 long task_delta, dequeue = 1;
3569
3570 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3571
f1b17280 3572 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3573 rcu_read_lock();
3574 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3575 rcu_read_unlock();
85dac906
PT
3576
3577 task_delta = cfs_rq->h_nr_running;
3578 for_each_sched_entity(se) {
3579 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3580 /* throttled entity or throttle-on-deactivate */
3581 if (!se->on_rq)
3582 break;
3583
3584 if (dequeue)
3585 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3586 qcfs_rq->h_nr_running -= task_delta;
3587
3588 if (qcfs_rq->load.weight)
3589 dequeue = 0;
3590 }
3591
3592 if (!se)
72465447 3593 sub_nr_running(rq, task_delta);
85dac906
PT
3594
3595 cfs_rq->throttled = 1;
78becc27 3596 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3597 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3598 /*
3599 * Add to the _head_ of the list, so that an already-started
3600 * distribute_cfs_runtime will not see us
3601 */
3602 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3603 if (!cfs_b->timer_active)
09dc4ab0 3604 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3605 raw_spin_unlock(&cfs_b->lock);
3606}
3607
029632fb 3608void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3609{
3610 struct rq *rq = rq_of(cfs_rq);
3611 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3612 struct sched_entity *se;
3613 int enqueue = 1;
3614 long task_delta;
3615
22b958d8 3616 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3617
3618 cfs_rq->throttled = 0;
1a55af2e
FW
3619
3620 update_rq_clock(rq);
3621
671fd9da 3622 raw_spin_lock(&cfs_b->lock);
78becc27 3623 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3624 list_del_rcu(&cfs_rq->throttled_list);
3625 raw_spin_unlock(&cfs_b->lock);
3626
64660c86
PT
3627 /* update hierarchical throttle state */
3628 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3629
671fd9da
PT
3630 if (!cfs_rq->load.weight)
3631 return;
3632
3633 task_delta = cfs_rq->h_nr_running;
3634 for_each_sched_entity(se) {
3635 if (se->on_rq)
3636 enqueue = 0;
3637
3638 cfs_rq = cfs_rq_of(se);
3639 if (enqueue)
3640 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3641 cfs_rq->h_nr_running += task_delta;
3642
3643 if (cfs_rq_throttled(cfs_rq))
3644 break;
3645 }
3646
3647 if (!se)
72465447 3648 add_nr_running(rq, task_delta);
671fd9da
PT
3649
3650 /* determine whether we need to wake up potentially idle cpu */
3651 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3652 resched_curr(rq);
671fd9da
PT
3653}
3654
3655static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3656 u64 remaining, u64 expires)
3657{
3658 struct cfs_rq *cfs_rq;
c06f04c7
BS
3659 u64 runtime;
3660 u64 starting_runtime = remaining;
671fd9da
PT
3661
3662 rcu_read_lock();
3663 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3664 throttled_list) {
3665 struct rq *rq = rq_of(cfs_rq);
3666
3667 raw_spin_lock(&rq->lock);
3668 if (!cfs_rq_throttled(cfs_rq))
3669 goto next;
3670
3671 runtime = -cfs_rq->runtime_remaining + 1;
3672 if (runtime > remaining)
3673 runtime = remaining;
3674 remaining -= runtime;
3675
3676 cfs_rq->runtime_remaining += runtime;
3677 cfs_rq->runtime_expires = expires;
3678
3679 /* we check whether we're throttled above */
3680 if (cfs_rq->runtime_remaining > 0)
3681 unthrottle_cfs_rq(cfs_rq);
3682
3683next:
3684 raw_spin_unlock(&rq->lock);
3685
3686 if (!remaining)
3687 break;
3688 }
3689 rcu_read_unlock();
3690
c06f04c7 3691 return starting_runtime - remaining;
671fd9da
PT
3692}
3693
58088ad0
PT
3694/*
3695 * Responsible for refilling a task_group's bandwidth and unthrottling its
3696 * cfs_rqs as appropriate. If there has been no activity within the last
3697 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3698 * used to track this state.
3699 */
3700static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3701{
671fd9da 3702 u64 runtime, runtime_expires;
51f2176d 3703 int throttled;
58088ad0 3704
58088ad0
PT
3705 /* no need to continue the timer with no bandwidth constraint */
3706 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3707 goto out_deactivate;
58088ad0 3708
671fd9da 3709 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3710 cfs_b->nr_periods += overrun;
671fd9da 3711
51f2176d
BS
3712 /*
3713 * idle depends on !throttled (for the case of a large deficit), and if
3714 * we're going inactive then everything else can be deferred
3715 */
3716 if (cfs_b->idle && !throttled)
3717 goto out_deactivate;
a9cf55b2 3718
927b54fc
BS
3719 /*
3720 * if we have relooped after returning idle once, we need to update our
3721 * status as actually running, so that other cpus doing
3722 * __start_cfs_bandwidth will stop trying to cancel us.
3723 */
3724 cfs_b->timer_active = 1;
3725
a9cf55b2
PT
3726 __refill_cfs_bandwidth_runtime(cfs_b);
3727
671fd9da
PT
3728 if (!throttled) {
3729 /* mark as potentially idle for the upcoming period */
3730 cfs_b->idle = 1;
51f2176d 3731 return 0;
671fd9da
PT
3732 }
3733
e8da1b18
NR
3734 /* account preceding periods in which throttling occurred */
3735 cfs_b->nr_throttled += overrun;
3736
671fd9da 3737 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3738
3739 /*
c06f04c7
BS
3740 * This check is repeated as we are holding onto the new bandwidth while
3741 * we unthrottle. This can potentially race with an unthrottled group
3742 * trying to acquire new bandwidth from the global pool. This can result
3743 * in us over-using our runtime if it is all used during this loop, but
3744 * only by limited amounts in that extreme case.
671fd9da 3745 */
c06f04c7
BS
3746 while (throttled && cfs_b->runtime > 0) {
3747 runtime = cfs_b->runtime;
671fd9da
PT
3748 raw_spin_unlock(&cfs_b->lock);
3749 /* we can't nest cfs_b->lock while distributing bandwidth */
3750 runtime = distribute_cfs_runtime(cfs_b, runtime,
3751 runtime_expires);
3752 raw_spin_lock(&cfs_b->lock);
3753
3754 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3755
3756 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3757 }
58088ad0 3758
671fd9da
PT
3759 /*
3760 * While we are ensured activity in the period following an
3761 * unthrottle, this also covers the case in which the new bandwidth is
3762 * insufficient to cover the existing bandwidth deficit. (Forcing the
3763 * timer to remain active while there are any throttled entities.)
3764 */
3765 cfs_b->idle = 0;
58088ad0 3766
51f2176d
BS
3767 return 0;
3768
3769out_deactivate:
3770 cfs_b->timer_active = 0;
3771 return 1;
58088ad0 3772}
d3d9dc33 3773
d8b4986d
PT
3774/* a cfs_rq won't donate quota below this amount */
3775static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3776/* minimum remaining period time to redistribute slack quota */
3777static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3778/* how long we wait to gather additional slack before distributing */
3779static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3780
db06e78c
BS
3781/*
3782 * Are we near the end of the current quota period?
3783 *
3784 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3785 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3786 * migrate_hrtimers, base is never cleared, so we are fine.
3787 */
d8b4986d
PT
3788static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3789{
3790 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3791 u64 remaining;
3792
3793 /* if the call-back is running a quota refresh is already occurring */
3794 if (hrtimer_callback_running(refresh_timer))
3795 return 1;
3796
3797 /* is a quota refresh about to occur? */
3798 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3799 if (remaining < min_expire)
3800 return 1;
3801
3802 return 0;
3803}
3804
3805static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3806{
3807 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3808
3809 /* if there's a quota refresh soon don't bother with slack */
3810 if (runtime_refresh_within(cfs_b, min_left))
3811 return;
3812
3813 start_bandwidth_timer(&cfs_b->slack_timer,
3814 ns_to_ktime(cfs_bandwidth_slack_period));
3815}
3816
3817/* we know any runtime found here is valid as update_curr() precedes return */
3818static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3819{
3820 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3821 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3822
3823 if (slack_runtime <= 0)
3824 return;
3825
3826 raw_spin_lock(&cfs_b->lock);
3827 if (cfs_b->quota != RUNTIME_INF &&
3828 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3829 cfs_b->runtime += slack_runtime;
3830
3831 /* we are under rq->lock, defer unthrottling using a timer */
3832 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3833 !list_empty(&cfs_b->throttled_cfs_rq))
3834 start_cfs_slack_bandwidth(cfs_b);
3835 }
3836 raw_spin_unlock(&cfs_b->lock);
3837
3838 /* even if it's not valid for return we don't want to try again */
3839 cfs_rq->runtime_remaining -= slack_runtime;
3840}
3841
3842static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3843{
56f570e5
PT
3844 if (!cfs_bandwidth_used())
3845 return;
3846
fccfdc6f 3847 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3848 return;
3849
3850 __return_cfs_rq_runtime(cfs_rq);
3851}
3852
3853/*
3854 * This is done with a timer (instead of inline with bandwidth return) since
3855 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3856 */
3857static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3858{
3859 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3860 u64 expires;
3861
3862 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3863 raw_spin_lock(&cfs_b->lock);
3864 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3865 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3866 return;
db06e78c 3867 }
d8b4986d 3868
c06f04c7 3869 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3870 runtime = cfs_b->runtime;
c06f04c7 3871
d8b4986d
PT
3872 expires = cfs_b->runtime_expires;
3873 raw_spin_unlock(&cfs_b->lock);
3874
3875 if (!runtime)
3876 return;
3877
3878 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3879
3880 raw_spin_lock(&cfs_b->lock);
3881 if (expires == cfs_b->runtime_expires)
c06f04c7 3882 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3883 raw_spin_unlock(&cfs_b->lock);
3884}
3885
d3d9dc33
PT
3886/*
3887 * When a group wakes up we want to make sure that its quota is not already
3888 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3889 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3890 */
3891static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3892{
56f570e5
PT
3893 if (!cfs_bandwidth_used())
3894 return;
3895
d3d9dc33
PT
3896 /* an active group must be handled by the update_curr()->put() path */
3897 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3898 return;
3899
3900 /* ensure the group is not already throttled */
3901 if (cfs_rq_throttled(cfs_rq))
3902 return;
3903
3904 /* update runtime allocation */
3905 account_cfs_rq_runtime(cfs_rq, 0);
3906 if (cfs_rq->runtime_remaining <= 0)
3907 throttle_cfs_rq(cfs_rq);
3908}
3909
3910/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3911static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3912{
56f570e5 3913 if (!cfs_bandwidth_used())
678d5718 3914 return false;
56f570e5 3915
d3d9dc33 3916 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3917 return false;
d3d9dc33
PT
3918
3919 /*
3920 * it's possible for a throttled entity to be forced into a running
3921 * state (e.g. set_curr_task), in this case we're finished.
3922 */
3923 if (cfs_rq_throttled(cfs_rq))
678d5718 3924 return true;
d3d9dc33
PT
3925
3926 throttle_cfs_rq(cfs_rq);
678d5718 3927 return true;
d3d9dc33 3928}
029632fb 3929
029632fb
PZ
3930static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3931{
3932 struct cfs_bandwidth *cfs_b =
3933 container_of(timer, struct cfs_bandwidth, slack_timer);
3934 do_sched_cfs_slack_timer(cfs_b);
3935
3936 return HRTIMER_NORESTART;
3937}
3938
3939static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3940{
3941 struct cfs_bandwidth *cfs_b =
3942 container_of(timer, struct cfs_bandwidth, period_timer);
3943 ktime_t now;
3944 int overrun;
3945 int idle = 0;
3946
51f2176d 3947 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3948 for (;;) {
3949 now = hrtimer_cb_get_time(timer);
3950 overrun = hrtimer_forward(timer, now, cfs_b->period);
3951
3952 if (!overrun)
3953 break;
3954
3955 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3956 }
51f2176d 3957 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3958
3959 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3960}
3961
3962void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3963{
3964 raw_spin_lock_init(&cfs_b->lock);
3965 cfs_b->runtime = 0;
3966 cfs_b->quota = RUNTIME_INF;
3967 cfs_b->period = ns_to_ktime(default_cfs_period());
3968
3969 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3970 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3971 cfs_b->period_timer.function = sched_cfs_period_timer;
3972 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3973 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3974}
3975
3976static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3977{
3978 cfs_rq->runtime_enabled = 0;
3979 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3980}
3981
3982/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3983void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3984{
3985 /*
3986 * The timer may be active because we're trying to set a new bandwidth
3987 * period or because we're racing with the tear-down path
3988 * (timer_active==0 becomes visible before the hrtimer call-back
3989 * terminates). In either case we ensure that it's re-programmed
3990 */
927b54fc
BS
3991 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3992 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3993 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3994 raw_spin_unlock(&cfs_b->lock);
927b54fc 3995 cpu_relax();
029632fb
PZ
3996 raw_spin_lock(&cfs_b->lock);
3997 /* if someone else restarted the timer then we're done */
09dc4ab0 3998 if (!force && cfs_b->timer_active)
029632fb
PZ
3999 return;
4000 }
4001
4002 cfs_b->timer_active = 1;
4003 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4004}
4005
4006static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4007{
7f1a169b
TH
4008 /* init_cfs_bandwidth() was not called */
4009 if (!cfs_b->throttled_cfs_rq.next)
4010 return;
4011
029632fb
PZ
4012 hrtimer_cancel(&cfs_b->period_timer);
4013 hrtimer_cancel(&cfs_b->slack_timer);
4014}
4015
0e59bdae
KT
4016static void __maybe_unused update_runtime_enabled(struct rq *rq)
4017{
4018 struct cfs_rq *cfs_rq;
4019
4020 for_each_leaf_cfs_rq(rq, cfs_rq) {
4021 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4022
4023 raw_spin_lock(&cfs_b->lock);
4024 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4025 raw_spin_unlock(&cfs_b->lock);
4026 }
4027}
4028
38dc3348 4029static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4030{
4031 struct cfs_rq *cfs_rq;
4032
4033 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4034 if (!cfs_rq->runtime_enabled)
4035 continue;
4036
4037 /*
4038 * clock_task is not advancing so we just need to make sure
4039 * there's some valid quota amount
4040 */
51f2176d 4041 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4042 /*
4043 * Offline rq is schedulable till cpu is completely disabled
4044 * in take_cpu_down(), so we prevent new cfs throttling here.
4045 */
4046 cfs_rq->runtime_enabled = 0;
4047
029632fb
PZ
4048 if (cfs_rq_throttled(cfs_rq))
4049 unthrottle_cfs_rq(cfs_rq);
4050 }
4051}
4052
4053#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4054static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4055{
78becc27 4056 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4057}
4058
9dbdb155 4059static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4060static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4061static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4062static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4063
4064static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4065{
4066 return 0;
4067}
64660c86
PT
4068
4069static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4070{
4071 return 0;
4072}
4073
4074static inline int throttled_lb_pair(struct task_group *tg,
4075 int src_cpu, int dest_cpu)
4076{
4077 return 0;
4078}
029632fb
PZ
4079
4080void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4081
4082#ifdef CONFIG_FAIR_GROUP_SCHED
4083static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4084#endif
4085
029632fb
PZ
4086static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4087{
4088 return NULL;
4089}
4090static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4091static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4092static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4093
4094#endif /* CONFIG_CFS_BANDWIDTH */
4095
bf0f6f24
IM
4096/**************************************************
4097 * CFS operations on tasks:
4098 */
4099
8f4d37ec
PZ
4100#ifdef CONFIG_SCHED_HRTICK
4101static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4102{
8f4d37ec
PZ
4103 struct sched_entity *se = &p->se;
4104 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4105
4106 WARN_ON(task_rq(p) != rq);
4107
b39e66ea 4108 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4109 u64 slice = sched_slice(cfs_rq, se);
4110 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4111 s64 delta = slice - ran;
4112
4113 if (delta < 0) {
4114 if (rq->curr == p)
8875125e 4115 resched_curr(rq);
8f4d37ec
PZ
4116 return;
4117 }
31656519 4118 hrtick_start(rq, delta);
8f4d37ec
PZ
4119 }
4120}
a4c2f00f
PZ
4121
4122/*
4123 * called from enqueue/dequeue and updates the hrtick when the
4124 * current task is from our class and nr_running is low enough
4125 * to matter.
4126 */
4127static void hrtick_update(struct rq *rq)
4128{
4129 struct task_struct *curr = rq->curr;
4130
b39e66ea 4131 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4132 return;
4133
4134 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4135 hrtick_start_fair(rq, curr);
4136}
55e12e5e 4137#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4138static inline void
4139hrtick_start_fair(struct rq *rq, struct task_struct *p)
4140{
4141}
a4c2f00f
PZ
4142
4143static inline void hrtick_update(struct rq *rq)
4144{
4145}
8f4d37ec
PZ
4146#endif
4147
bf0f6f24
IM
4148/*
4149 * The enqueue_task method is called before nr_running is
4150 * increased. Here we update the fair scheduling stats and
4151 * then put the task into the rbtree:
4152 */
ea87bb78 4153static void
371fd7e7 4154enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4155{
4156 struct cfs_rq *cfs_rq;
62fb1851 4157 struct sched_entity *se = &p->se;
bf0f6f24
IM
4158
4159 for_each_sched_entity(se) {
62fb1851 4160 if (se->on_rq)
bf0f6f24
IM
4161 break;
4162 cfs_rq = cfs_rq_of(se);
88ec22d3 4163 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4164
4165 /*
4166 * end evaluation on encountering a throttled cfs_rq
4167 *
4168 * note: in the case of encountering a throttled cfs_rq we will
4169 * post the final h_nr_running increment below.
4170 */
4171 if (cfs_rq_throttled(cfs_rq))
4172 break;
953bfcd1 4173 cfs_rq->h_nr_running++;
85dac906 4174
88ec22d3 4175 flags = ENQUEUE_WAKEUP;
bf0f6f24 4176 }
8f4d37ec 4177
2069dd75 4178 for_each_sched_entity(se) {
0f317143 4179 cfs_rq = cfs_rq_of(se);
953bfcd1 4180 cfs_rq->h_nr_running++;
2069dd75 4181
85dac906
PT
4182 if (cfs_rq_throttled(cfs_rq))
4183 break;
4184
17bc14b7 4185 update_cfs_shares(cfs_rq);
9ee474f5 4186 update_entity_load_avg(se, 1);
2069dd75
PZ
4187 }
4188
18bf2805
BS
4189 if (!se) {
4190 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4191 add_nr_running(rq, 1);
18bf2805 4192 }
a4c2f00f 4193 hrtick_update(rq);
bf0f6f24
IM
4194}
4195
2f36825b
VP
4196static void set_next_buddy(struct sched_entity *se);
4197
bf0f6f24
IM
4198/*
4199 * The dequeue_task method is called before nr_running is
4200 * decreased. We remove the task from the rbtree and
4201 * update the fair scheduling stats:
4202 */
371fd7e7 4203static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4204{
4205 struct cfs_rq *cfs_rq;
62fb1851 4206 struct sched_entity *se = &p->se;
2f36825b 4207 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4208
4209 for_each_sched_entity(se) {
4210 cfs_rq = cfs_rq_of(se);
371fd7e7 4211 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4212
4213 /*
4214 * end evaluation on encountering a throttled cfs_rq
4215 *
4216 * note: in the case of encountering a throttled cfs_rq we will
4217 * post the final h_nr_running decrement below.
4218 */
4219 if (cfs_rq_throttled(cfs_rq))
4220 break;
953bfcd1 4221 cfs_rq->h_nr_running--;
2069dd75 4222
bf0f6f24 4223 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4224 if (cfs_rq->load.weight) {
4225 /*
4226 * Bias pick_next to pick a task from this cfs_rq, as
4227 * p is sleeping when it is within its sched_slice.
4228 */
4229 if (task_sleep && parent_entity(se))
4230 set_next_buddy(parent_entity(se));
9598c82d
PT
4231
4232 /* avoid re-evaluating load for this entity */
4233 se = parent_entity(se);
bf0f6f24 4234 break;
2f36825b 4235 }
371fd7e7 4236 flags |= DEQUEUE_SLEEP;
bf0f6f24 4237 }
8f4d37ec 4238
2069dd75 4239 for_each_sched_entity(se) {
0f317143 4240 cfs_rq = cfs_rq_of(se);
953bfcd1 4241 cfs_rq->h_nr_running--;
2069dd75 4242
85dac906
PT
4243 if (cfs_rq_throttled(cfs_rq))
4244 break;
4245
17bc14b7 4246 update_cfs_shares(cfs_rq);
9ee474f5 4247 update_entity_load_avg(se, 1);
2069dd75
PZ
4248 }
4249
18bf2805 4250 if (!se) {
72465447 4251 sub_nr_running(rq, 1);
18bf2805
BS
4252 update_rq_runnable_avg(rq, 1);
4253 }
a4c2f00f 4254 hrtick_update(rq);
bf0f6f24
IM
4255}
4256
e7693a36 4257#ifdef CONFIG_SMP
029632fb
PZ
4258/* Used instead of source_load when we know the type == 0 */
4259static unsigned long weighted_cpuload(const int cpu)
4260{
b92486cb 4261 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4262}
4263
4264/*
4265 * Return a low guess at the load of a migration-source cpu weighted
4266 * according to the scheduling class and "nice" value.
4267 *
4268 * We want to under-estimate the load of migration sources, to
4269 * balance conservatively.
4270 */
4271static unsigned long source_load(int cpu, int type)
4272{
4273 struct rq *rq = cpu_rq(cpu);
4274 unsigned long total = weighted_cpuload(cpu);
4275
4276 if (type == 0 || !sched_feat(LB_BIAS))
4277 return total;
4278
4279 return min(rq->cpu_load[type-1], total);
4280}
4281
4282/*
4283 * Return a high guess at the load of a migration-target cpu weighted
4284 * according to the scheduling class and "nice" value.
4285 */
4286static unsigned long target_load(int cpu, int type)
4287{
4288 struct rq *rq = cpu_rq(cpu);
4289 unsigned long total = weighted_cpuload(cpu);
4290
4291 if (type == 0 || !sched_feat(LB_BIAS))
4292 return total;
4293
4294 return max(rq->cpu_load[type-1], total);
4295}
4296
ced549fa 4297static unsigned long capacity_of(int cpu)
029632fb 4298{
ced549fa 4299 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4300}
4301
4302static unsigned long cpu_avg_load_per_task(int cpu)
4303{
4304 struct rq *rq = cpu_rq(cpu);
65fdac08 4305 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4306 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4307
4308 if (nr_running)
b92486cb 4309 return load_avg / nr_running;
029632fb
PZ
4310
4311 return 0;
4312}
4313
62470419
MW
4314static void record_wakee(struct task_struct *p)
4315{
4316 /*
4317 * Rough decay (wiping) for cost saving, don't worry
4318 * about the boundary, really active task won't care
4319 * about the loss.
4320 */
2538d960 4321 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4322 current->wakee_flips >>= 1;
62470419
MW
4323 current->wakee_flip_decay_ts = jiffies;
4324 }
4325
4326 if (current->last_wakee != p) {
4327 current->last_wakee = p;
4328 current->wakee_flips++;
4329 }
4330}
098fb9db 4331
74f8e4b2 4332static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4333{
4334 struct sched_entity *se = &p->se;
4335 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4336 u64 min_vruntime;
4337
4338#ifndef CONFIG_64BIT
4339 u64 min_vruntime_copy;
88ec22d3 4340
3fe1698b
PZ
4341 do {
4342 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4343 smp_rmb();
4344 min_vruntime = cfs_rq->min_vruntime;
4345 } while (min_vruntime != min_vruntime_copy);
4346#else
4347 min_vruntime = cfs_rq->min_vruntime;
4348#endif
88ec22d3 4349
3fe1698b 4350 se->vruntime -= min_vruntime;
62470419 4351 record_wakee(p);
88ec22d3
PZ
4352}
4353
bb3469ac 4354#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4355/*
4356 * effective_load() calculates the load change as seen from the root_task_group
4357 *
4358 * Adding load to a group doesn't make a group heavier, but can cause movement
4359 * of group shares between cpus. Assuming the shares were perfectly aligned one
4360 * can calculate the shift in shares.
cf5f0acf
PZ
4361 *
4362 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4363 * on this @cpu and results in a total addition (subtraction) of @wg to the
4364 * total group weight.
4365 *
4366 * Given a runqueue weight distribution (rw_i) we can compute a shares
4367 * distribution (s_i) using:
4368 *
4369 * s_i = rw_i / \Sum rw_j (1)
4370 *
4371 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4372 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4373 * shares distribution (s_i):
4374 *
4375 * rw_i = { 2, 4, 1, 0 }
4376 * s_i = { 2/7, 4/7, 1/7, 0 }
4377 *
4378 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4379 * task used to run on and the CPU the waker is running on), we need to
4380 * compute the effect of waking a task on either CPU and, in case of a sync
4381 * wakeup, compute the effect of the current task going to sleep.
4382 *
4383 * So for a change of @wl to the local @cpu with an overall group weight change
4384 * of @wl we can compute the new shares distribution (s'_i) using:
4385 *
4386 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4387 *
4388 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4389 * differences in waking a task to CPU 0. The additional task changes the
4390 * weight and shares distributions like:
4391 *
4392 * rw'_i = { 3, 4, 1, 0 }
4393 * s'_i = { 3/8, 4/8, 1/8, 0 }
4394 *
4395 * We can then compute the difference in effective weight by using:
4396 *
4397 * dw_i = S * (s'_i - s_i) (3)
4398 *
4399 * Where 'S' is the group weight as seen by its parent.
4400 *
4401 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4402 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4403 * 4/7) times the weight of the group.
f5bfb7d9 4404 */
2069dd75 4405static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4406{
4be9daaa 4407 struct sched_entity *se = tg->se[cpu];
f1d239f7 4408
9722c2da 4409 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4410 return wl;
4411
4be9daaa 4412 for_each_sched_entity(se) {
cf5f0acf 4413 long w, W;
4be9daaa 4414
977dda7c 4415 tg = se->my_q->tg;
bb3469ac 4416
cf5f0acf
PZ
4417 /*
4418 * W = @wg + \Sum rw_j
4419 */
4420 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4421
cf5f0acf
PZ
4422 /*
4423 * w = rw_i + @wl
4424 */
4425 w = se->my_q->load.weight + wl;
940959e9 4426
cf5f0acf
PZ
4427 /*
4428 * wl = S * s'_i; see (2)
4429 */
4430 if (W > 0 && w < W)
32a8df4e 4431 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4432 else
4433 wl = tg->shares;
940959e9 4434
cf5f0acf
PZ
4435 /*
4436 * Per the above, wl is the new se->load.weight value; since
4437 * those are clipped to [MIN_SHARES, ...) do so now. See
4438 * calc_cfs_shares().
4439 */
977dda7c
PT
4440 if (wl < MIN_SHARES)
4441 wl = MIN_SHARES;
cf5f0acf
PZ
4442
4443 /*
4444 * wl = dw_i = S * (s'_i - s_i); see (3)
4445 */
977dda7c 4446 wl -= se->load.weight;
cf5f0acf
PZ
4447
4448 /*
4449 * Recursively apply this logic to all parent groups to compute
4450 * the final effective load change on the root group. Since
4451 * only the @tg group gets extra weight, all parent groups can
4452 * only redistribute existing shares. @wl is the shift in shares
4453 * resulting from this level per the above.
4454 */
4be9daaa 4455 wg = 0;
4be9daaa 4456 }
bb3469ac 4457
4be9daaa 4458 return wl;
bb3469ac
PZ
4459}
4460#else
4be9daaa 4461
58d081b5 4462static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4463{
83378269 4464 return wl;
bb3469ac 4465}
4be9daaa 4466
bb3469ac
PZ
4467#endif
4468
62470419
MW
4469static int wake_wide(struct task_struct *p)
4470{
7d9ffa89 4471 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4472
4473 /*
4474 * Yeah, it's the switching-frequency, could means many wakee or
4475 * rapidly switch, use factor here will just help to automatically
4476 * adjust the loose-degree, so bigger node will lead to more pull.
4477 */
4478 if (p->wakee_flips > factor) {
4479 /*
4480 * wakee is somewhat hot, it needs certain amount of cpu
4481 * resource, so if waker is far more hot, prefer to leave
4482 * it alone.
4483 */
4484 if (current->wakee_flips > (factor * p->wakee_flips))
4485 return 1;
4486 }
4487
4488 return 0;
4489}
4490
c88d5910 4491static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4492{
e37b6a7b 4493 s64 this_load, load;
bd61c98f 4494 s64 this_eff_load, prev_eff_load;
c88d5910 4495 int idx, this_cpu, prev_cpu;
c88d5910 4496 struct task_group *tg;
83378269 4497 unsigned long weight;
b3137bc8 4498 int balanced;
098fb9db 4499
62470419
MW
4500 /*
4501 * If we wake multiple tasks be careful to not bounce
4502 * ourselves around too much.
4503 */
4504 if (wake_wide(p))
4505 return 0;
4506
c88d5910
PZ
4507 idx = sd->wake_idx;
4508 this_cpu = smp_processor_id();
4509 prev_cpu = task_cpu(p);
4510 load = source_load(prev_cpu, idx);
4511 this_load = target_load(this_cpu, idx);
098fb9db 4512
b3137bc8
MG
4513 /*
4514 * If sync wakeup then subtract the (maximum possible)
4515 * effect of the currently running task from the load
4516 * of the current CPU:
4517 */
83378269
PZ
4518 if (sync) {
4519 tg = task_group(current);
4520 weight = current->se.load.weight;
4521
c88d5910 4522 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4523 load += effective_load(tg, prev_cpu, 0, -weight);
4524 }
b3137bc8 4525
83378269
PZ
4526 tg = task_group(p);
4527 weight = p->se.load.weight;
b3137bc8 4528
71a29aa7
PZ
4529 /*
4530 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4531 * due to the sync cause above having dropped this_load to 0, we'll
4532 * always have an imbalance, but there's really nothing you can do
4533 * about that, so that's good too.
71a29aa7
PZ
4534 *
4535 * Otherwise check if either cpus are near enough in load to allow this
4536 * task to be woken on this_cpu.
4537 */
bd61c98f
VG
4538 this_eff_load = 100;
4539 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4540
bd61c98f
VG
4541 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4542 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4543
bd61c98f 4544 if (this_load > 0) {
e51fd5e2
PZ
4545 this_eff_load *= this_load +
4546 effective_load(tg, this_cpu, weight, weight);
4547
e51fd5e2 4548 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4549 }
e51fd5e2 4550
bd61c98f 4551 balanced = this_eff_load <= prev_eff_load;
098fb9db 4552
41acab88 4553 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4554
05bfb65f
VG
4555 if (!balanced)
4556 return 0;
098fb9db 4557
05bfb65f
VG
4558 schedstat_inc(sd, ttwu_move_affine);
4559 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4560
4561 return 1;
098fb9db
IM
4562}
4563
aaee1203
PZ
4564/*
4565 * find_idlest_group finds and returns the least busy CPU group within the
4566 * domain.
4567 */
4568static struct sched_group *
78e7ed53 4569find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4570 int this_cpu, int sd_flag)
e7693a36 4571{
b3bd3de6 4572 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4573 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4574 int load_idx = sd->forkexec_idx;
aaee1203 4575 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4576
c44f2a02
VG
4577 if (sd_flag & SD_BALANCE_WAKE)
4578 load_idx = sd->wake_idx;
4579
aaee1203
PZ
4580 do {
4581 unsigned long load, avg_load;
4582 int local_group;
4583 int i;
e7693a36 4584
aaee1203
PZ
4585 /* Skip over this group if it has no CPUs allowed */
4586 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4587 tsk_cpus_allowed(p)))
aaee1203
PZ
4588 continue;
4589
4590 local_group = cpumask_test_cpu(this_cpu,
4591 sched_group_cpus(group));
4592
4593 /* Tally up the load of all CPUs in the group */
4594 avg_load = 0;
4595
4596 for_each_cpu(i, sched_group_cpus(group)) {
4597 /* Bias balancing toward cpus of our domain */
4598 if (local_group)
4599 load = source_load(i, load_idx);
4600 else
4601 load = target_load(i, load_idx);
4602
4603 avg_load += load;
4604 }
4605
63b2ca30 4606 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4607 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4608
4609 if (local_group) {
4610 this_load = avg_load;
aaee1203
PZ
4611 } else if (avg_load < min_load) {
4612 min_load = avg_load;
4613 idlest = group;
4614 }
4615 } while (group = group->next, group != sd->groups);
4616
4617 if (!idlest || 100*this_load < imbalance*min_load)
4618 return NULL;
4619 return idlest;
4620}
4621
4622/*
4623 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4624 */
4625static int
4626find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4627{
4628 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4629 unsigned int min_exit_latency = UINT_MAX;
4630 u64 latest_idle_timestamp = 0;
4631 int least_loaded_cpu = this_cpu;
4632 int shallowest_idle_cpu = -1;
aaee1203
PZ
4633 int i;
4634
4635 /* Traverse only the allowed CPUs */
fa17b507 4636 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4637 if (idle_cpu(i)) {
4638 struct rq *rq = cpu_rq(i);
4639 struct cpuidle_state *idle = idle_get_state(rq);
4640 if (idle && idle->exit_latency < min_exit_latency) {
4641 /*
4642 * We give priority to a CPU whose idle state
4643 * has the smallest exit latency irrespective
4644 * of any idle timestamp.
4645 */
4646 min_exit_latency = idle->exit_latency;
4647 latest_idle_timestamp = rq->idle_stamp;
4648 shallowest_idle_cpu = i;
4649 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4650 rq->idle_stamp > latest_idle_timestamp) {
4651 /*
4652 * If equal or no active idle state, then
4653 * the most recently idled CPU might have
4654 * a warmer cache.
4655 */
4656 latest_idle_timestamp = rq->idle_stamp;
4657 shallowest_idle_cpu = i;
4658 }
9f96742a 4659 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4660 load = weighted_cpuload(i);
4661 if (load < min_load || (load == min_load && i == this_cpu)) {
4662 min_load = load;
4663 least_loaded_cpu = i;
4664 }
e7693a36
GH
4665 }
4666 }
4667
83a0a96a 4668 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4669}
e7693a36 4670
a50bde51
PZ
4671/*
4672 * Try and locate an idle CPU in the sched_domain.
4673 */
99bd5e2f 4674static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4675{
99bd5e2f 4676 struct sched_domain *sd;
37407ea7 4677 struct sched_group *sg;
e0a79f52 4678 int i = task_cpu(p);
a50bde51 4679
e0a79f52
MG
4680 if (idle_cpu(target))
4681 return target;
99bd5e2f
SS
4682
4683 /*
e0a79f52 4684 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4685 */
e0a79f52
MG
4686 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4687 return i;
a50bde51
PZ
4688
4689 /*
37407ea7 4690 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4691 */
518cd623 4692 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4693 for_each_lower_domain(sd) {
37407ea7
LT
4694 sg = sd->groups;
4695 do {
4696 if (!cpumask_intersects(sched_group_cpus(sg),
4697 tsk_cpus_allowed(p)))
4698 goto next;
4699
4700 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4701 if (i == target || !idle_cpu(i))
37407ea7
LT
4702 goto next;
4703 }
970e1789 4704
37407ea7
LT
4705 target = cpumask_first_and(sched_group_cpus(sg),
4706 tsk_cpus_allowed(p));
4707 goto done;
4708next:
4709 sg = sg->next;
4710 } while (sg != sd->groups);
4711 }
4712done:
a50bde51
PZ
4713 return target;
4714}
4715
aaee1203 4716/*
de91b9cb
MR
4717 * select_task_rq_fair: Select target runqueue for the waking task in domains
4718 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4719 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4720 *
de91b9cb
MR
4721 * Balances load by selecting the idlest cpu in the idlest group, or under
4722 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4723 *
de91b9cb 4724 * Returns the target cpu number.
aaee1203
PZ
4725 *
4726 * preempt must be disabled.
4727 */
0017d735 4728static int
ac66f547 4729select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4730{
29cd8bae 4731 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4732 int cpu = smp_processor_id();
c88d5910 4733 int new_cpu = cpu;
99bd5e2f 4734 int want_affine = 0;
5158f4e4 4735 int sync = wake_flags & WF_SYNC;
c88d5910 4736
a8edd075
KT
4737 if (sd_flag & SD_BALANCE_WAKE)
4738 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4739
dce840a0 4740 rcu_read_lock();
aaee1203 4741 for_each_domain(cpu, tmp) {
e4f42888
PZ
4742 if (!(tmp->flags & SD_LOAD_BALANCE))
4743 continue;
4744
fe3bcfe1 4745 /*
99bd5e2f
SS
4746 * If both cpu and prev_cpu are part of this domain,
4747 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4748 */
99bd5e2f
SS
4749 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4750 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4751 affine_sd = tmp;
29cd8bae 4752 break;
f03542a7 4753 }
29cd8bae 4754
f03542a7 4755 if (tmp->flags & sd_flag)
29cd8bae
PZ
4756 sd = tmp;
4757 }
4758
8bf21433
RR
4759 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4760 prev_cpu = cpu;
dce840a0 4761
8bf21433 4762 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4763 new_cpu = select_idle_sibling(p, prev_cpu);
4764 goto unlock;
8b911acd 4765 }
e7693a36 4766
aaee1203
PZ
4767 while (sd) {
4768 struct sched_group *group;
c88d5910 4769 int weight;
098fb9db 4770
0763a660 4771 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4772 sd = sd->child;
4773 continue;
4774 }
098fb9db 4775
c44f2a02 4776 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4777 if (!group) {
4778 sd = sd->child;
4779 continue;
4780 }
4ae7d5ce 4781
d7c33c49 4782 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4783 if (new_cpu == -1 || new_cpu == cpu) {
4784 /* Now try balancing at a lower domain level of cpu */
4785 sd = sd->child;
4786 continue;
e7693a36 4787 }
aaee1203
PZ
4788
4789 /* Now try balancing at a lower domain level of new_cpu */
4790 cpu = new_cpu;
669c55e9 4791 weight = sd->span_weight;
aaee1203
PZ
4792 sd = NULL;
4793 for_each_domain(cpu, tmp) {
669c55e9 4794 if (weight <= tmp->span_weight)
aaee1203 4795 break;
0763a660 4796 if (tmp->flags & sd_flag)
aaee1203
PZ
4797 sd = tmp;
4798 }
4799 /* while loop will break here if sd == NULL */
e7693a36 4800 }
dce840a0
PZ
4801unlock:
4802 rcu_read_unlock();
e7693a36 4803
c88d5910 4804 return new_cpu;
e7693a36 4805}
0a74bef8
PT
4806
4807/*
4808 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4809 * cfs_rq_of(p) references at time of call are still valid and identify the
4810 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4811 * other assumptions, including the state of rq->lock, should be made.
4812 */
4813static void
4814migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4815{
aff3e498
PT
4816 struct sched_entity *se = &p->se;
4817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4818
4819 /*
4820 * Load tracking: accumulate removed load so that it can be processed
4821 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4822 * to blocked load iff they have a positive decay-count. It can never
4823 * be negative here since on-rq tasks have decay-count == 0.
4824 */
4825 if (se->avg.decay_count) {
4826 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4827 atomic_long_add(se->avg.load_avg_contrib,
4828 &cfs_rq->removed_load);
aff3e498 4829 }
3944a927
BS
4830
4831 /* We have migrated, no longer consider this task hot */
4832 se->exec_start = 0;
0a74bef8 4833}
e7693a36
GH
4834#endif /* CONFIG_SMP */
4835
e52fb7c0
PZ
4836static unsigned long
4837wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4838{
4839 unsigned long gran = sysctl_sched_wakeup_granularity;
4840
4841 /*
e52fb7c0
PZ
4842 * Since its curr running now, convert the gran from real-time
4843 * to virtual-time in his units.
13814d42
MG
4844 *
4845 * By using 'se' instead of 'curr' we penalize light tasks, so
4846 * they get preempted easier. That is, if 'se' < 'curr' then
4847 * the resulting gran will be larger, therefore penalizing the
4848 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4849 * be smaller, again penalizing the lighter task.
4850 *
4851 * This is especially important for buddies when the leftmost
4852 * task is higher priority than the buddy.
0bbd3336 4853 */
f4ad9bd2 4854 return calc_delta_fair(gran, se);
0bbd3336
PZ
4855}
4856
464b7527
PZ
4857/*
4858 * Should 'se' preempt 'curr'.
4859 *
4860 * |s1
4861 * |s2
4862 * |s3
4863 * g
4864 * |<--->|c
4865 *
4866 * w(c, s1) = -1
4867 * w(c, s2) = 0
4868 * w(c, s3) = 1
4869 *
4870 */
4871static int
4872wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4873{
4874 s64 gran, vdiff = curr->vruntime - se->vruntime;
4875
4876 if (vdiff <= 0)
4877 return -1;
4878
e52fb7c0 4879 gran = wakeup_gran(curr, se);
464b7527
PZ
4880 if (vdiff > gran)
4881 return 1;
4882
4883 return 0;
4884}
4885
02479099
PZ
4886static void set_last_buddy(struct sched_entity *se)
4887{
69c80f3e
VP
4888 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4889 return;
4890
4891 for_each_sched_entity(se)
4892 cfs_rq_of(se)->last = se;
02479099
PZ
4893}
4894
4895static void set_next_buddy(struct sched_entity *se)
4896{
69c80f3e
VP
4897 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4898 return;
4899
4900 for_each_sched_entity(se)
4901 cfs_rq_of(se)->next = se;
02479099
PZ
4902}
4903
ac53db59
RR
4904static void set_skip_buddy(struct sched_entity *se)
4905{
69c80f3e
VP
4906 for_each_sched_entity(se)
4907 cfs_rq_of(se)->skip = se;
ac53db59
RR
4908}
4909
bf0f6f24
IM
4910/*
4911 * Preempt the current task with a newly woken task if needed:
4912 */
5a9b86f6 4913static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4914{
4915 struct task_struct *curr = rq->curr;
8651a86c 4916 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4917 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4918 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4919 int next_buddy_marked = 0;
bf0f6f24 4920
4ae7d5ce
IM
4921 if (unlikely(se == pse))
4922 return;
4923
5238cdd3 4924 /*
163122b7 4925 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4926 * unconditionally check_prempt_curr() after an enqueue (which may have
4927 * lead to a throttle). This both saves work and prevents false
4928 * next-buddy nomination below.
4929 */
4930 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4931 return;
4932
2f36825b 4933 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4934 set_next_buddy(pse);
2f36825b
VP
4935 next_buddy_marked = 1;
4936 }
57fdc26d 4937
aec0a514
BR
4938 /*
4939 * We can come here with TIF_NEED_RESCHED already set from new task
4940 * wake up path.
5238cdd3
PT
4941 *
4942 * Note: this also catches the edge-case of curr being in a throttled
4943 * group (e.g. via set_curr_task), since update_curr() (in the
4944 * enqueue of curr) will have resulted in resched being set. This
4945 * prevents us from potentially nominating it as a false LAST_BUDDY
4946 * below.
aec0a514
BR
4947 */
4948 if (test_tsk_need_resched(curr))
4949 return;
4950
a2f5c9ab
DH
4951 /* Idle tasks are by definition preempted by non-idle tasks. */
4952 if (unlikely(curr->policy == SCHED_IDLE) &&
4953 likely(p->policy != SCHED_IDLE))
4954 goto preempt;
4955
91c234b4 4956 /*
a2f5c9ab
DH
4957 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4958 * is driven by the tick):
91c234b4 4959 */
8ed92e51 4960 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4961 return;
bf0f6f24 4962
464b7527 4963 find_matching_se(&se, &pse);
9bbd7374 4964 update_curr(cfs_rq_of(se));
002f128b 4965 BUG_ON(!pse);
2f36825b
VP
4966 if (wakeup_preempt_entity(se, pse) == 1) {
4967 /*
4968 * Bias pick_next to pick the sched entity that is
4969 * triggering this preemption.
4970 */
4971 if (!next_buddy_marked)
4972 set_next_buddy(pse);
3a7e73a2 4973 goto preempt;
2f36825b 4974 }
464b7527 4975
3a7e73a2 4976 return;
a65ac745 4977
3a7e73a2 4978preempt:
8875125e 4979 resched_curr(rq);
3a7e73a2
PZ
4980 /*
4981 * Only set the backward buddy when the current task is still
4982 * on the rq. This can happen when a wakeup gets interleaved
4983 * with schedule on the ->pre_schedule() or idle_balance()
4984 * point, either of which can * drop the rq lock.
4985 *
4986 * Also, during early boot the idle thread is in the fair class,
4987 * for obvious reasons its a bad idea to schedule back to it.
4988 */
4989 if (unlikely(!se->on_rq || curr == rq->idle))
4990 return;
4991
4992 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4993 set_last_buddy(se);
bf0f6f24
IM
4994}
4995
606dba2e
PZ
4996static struct task_struct *
4997pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4998{
4999 struct cfs_rq *cfs_rq = &rq->cfs;
5000 struct sched_entity *se;
678d5718 5001 struct task_struct *p;
37e117c0 5002 int new_tasks;
678d5718 5003
6e83125c 5004again:
678d5718
PZ
5005#ifdef CONFIG_FAIR_GROUP_SCHED
5006 if (!cfs_rq->nr_running)
38033c37 5007 goto idle;
678d5718 5008
3f1d2a31 5009 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5010 goto simple;
5011
5012 /*
5013 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5014 * likely that a next task is from the same cgroup as the current.
5015 *
5016 * Therefore attempt to avoid putting and setting the entire cgroup
5017 * hierarchy, only change the part that actually changes.
5018 */
5019
5020 do {
5021 struct sched_entity *curr = cfs_rq->curr;
5022
5023 /*
5024 * Since we got here without doing put_prev_entity() we also
5025 * have to consider cfs_rq->curr. If it is still a runnable
5026 * entity, update_curr() will update its vruntime, otherwise
5027 * forget we've ever seen it.
5028 */
5029 if (curr && curr->on_rq)
5030 update_curr(cfs_rq);
5031 else
5032 curr = NULL;
5033
5034 /*
5035 * This call to check_cfs_rq_runtime() will do the throttle and
5036 * dequeue its entity in the parent(s). Therefore the 'simple'
5037 * nr_running test will indeed be correct.
5038 */
5039 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5040 goto simple;
5041
5042 se = pick_next_entity(cfs_rq, curr);
5043 cfs_rq = group_cfs_rq(se);
5044 } while (cfs_rq);
5045
5046 p = task_of(se);
5047
5048 /*
5049 * Since we haven't yet done put_prev_entity and if the selected task
5050 * is a different task than we started out with, try and touch the
5051 * least amount of cfs_rqs.
5052 */
5053 if (prev != p) {
5054 struct sched_entity *pse = &prev->se;
5055
5056 while (!(cfs_rq = is_same_group(se, pse))) {
5057 int se_depth = se->depth;
5058 int pse_depth = pse->depth;
5059
5060 if (se_depth <= pse_depth) {
5061 put_prev_entity(cfs_rq_of(pse), pse);
5062 pse = parent_entity(pse);
5063 }
5064 if (se_depth >= pse_depth) {
5065 set_next_entity(cfs_rq_of(se), se);
5066 se = parent_entity(se);
5067 }
5068 }
5069
5070 put_prev_entity(cfs_rq, pse);
5071 set_next_entity(cfs_rq, se);
5072 }
5073
5074 if (hrtick_enabled(rq))
5075 hrtick_start_fair(rq, p);
5076
5077 return p;
5078simple:
5079 cfs_rq = &rq->cfs;
5080#endif
bf0f6f24 5081
36ace27e 5082 if (!cfs_rq->nr_running)
38033c37 5083 goto idle;
bf0f6f24 5084
3f1d2a31 5085 put_prev_task(rq, prev);
606dba2e 5086
bf0f6f24 5087 do {
678d5718 5088 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5089 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5090 cfs_rq = group_cfs_rq(se);
5091 } while (cfs_rq);
5092
8f4d37ec 5093 p = task_of(se);
678d5718 5094
b39e66ea
MG
5095 if (hrtick_enabled(rq))
5096 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5097
5098 return p;
38033c37
PZ
5099
5100idle:
e4aa358b 5101 new_tasks = idle_balance(rq);
37e117c0
PZ
5102 /*
5103 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5104 * possible for any higher priority task to appear. In that case we
5105 * must re-start the pick_next_entity() loop.
5106 */
e4aa358b 5107 if (new_tasks < 0)
37e117c0
PZ
5108 return RETRY_TASK;
5109
e4aa358b 5110 if (new_tasks > 0)
38033c37 5111 goto again;
38033c37
PZ
5112
5113 return NULL;
bf0f6f24
IM
5114}
5115
5116/*
5117 * Account for a descheduled task:
5118 */
31ee529c 5119static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5120{
5121 struct sched_entity *se = &prev->se;
5122 struct cfs_rq *cfs_rq;
5123
5124 for_each_sched_entity(se) {
5125 cfs_rq = cfs_rq_of(se);
ab6cde26 5126 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5127 }
5128}
5129
ac53db59
RR
5130/*
5131 * sched_yield() is very simple
5132 *
5133 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5134 */
5135static void yield_task_fair(struct rq *rq)
5136{
5137 struct task_struct *curr = rq->curr;
5138 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5139 struct sched_entity *se = &curr->se;
5140
5141 /*
5142 * Are we the only task in the tree?
5143 */
5144 if (unlikely(rq->nr_running == 1))
5145 return;
5146
5147 clear_buddies(cfs_rq, se);
5148
5149 if (curr->policy != SCHED_BATCH) {
5150 update_rq_clock(rq);
5151 /*
5152 * Update run-time statistics of the 'current'.
5153 */
5154 update_curr(cfs_rq);
916671c0
MG
5155 /*
5156 * Tell update_rq_clock() that we've just updated,
5157 * so we don't do microscopic update in schedule()
5158 * and double the fastpath cost.
5159 */
5160 rq->skip_clock_update = 1;
ac53db59
RR
5161 }
5162
5163 set_skip_buddy(se);
5164}
5165
d95f4122
MG
5166static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5167{
5168 struct sched_entity *se = &p->se;
5169
5238cdd3
PT
5170 /* throttled hierarchies are not runnable */
5171 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5172 return false;
5173
5174 /* Tell the scheduler that we'd really like pse to run next. */
5175 set_next_buddy(se);
5176
d95f4122
MG
5177 yield_task_fair(rq);
5178
5179 return true;
5180}
5181
681f3e68 5182#ifdef CONFIG_SMP
bf0f6f24 5183/**************************************************
e9c84cb8
PZ
5184 * Fair scheduling class load-balancing methods.
5185 *
5186 * BASICS
5187 *
5188 * The purpose of load-balancing is to achieve the same basic fairness the
5189 * per-cpu scheduler provides, namely provide a proportional amount of compute
5190 * time to each task. This is expressed in the following equation:
5191 *
5192 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5193 *
5194 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5195 * W_i,0 is defined as:
5196 *
5197 * W_i,0 = \Sum_j w_i,j (2)
5198 *
5199 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5200 * is derived from the nice value as per prio_to_weight[].
5201 *
5202 * The weight average is an exponential decay average of the instantaneous
5203 * weight:
5204 *
5205 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5206 *
ced549fa 5207 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5208 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5209 * can also include other factors [XXX].
5210 *
5211 * To achieve this balance we define a measure of imbalance which follows
5212 * directly from (1):
5213 *
ced549fa 5214 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5215 *
5216 * We them move tasks around to minimize the imbalance. In the continuous
5217 * function space it is obvious this converges, in the discrete case we get
5218 * a few fun cases generally called infeasible weight scenarios.
5219 *
5220 * [XXX expand on:
5221 * - infeasible weights;
5222 * - local vs global optima in the discrete case. ]
5223 *
5224 *
5225 * SCHED DOMAINS
5226 *
5227 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5228 * for all i,j solution, we create a tree of cpus that follows the hardware
5229 * topology where each level pairs two lower groups (or better). This results
5230 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5231 * tree to only the first of the previous level and we decrease the frequency
5232 * of load-balance at each level inv. proportional to the number of cpus in
5233 * the groups.
5234 *
5235 * This yields:
5236 *
5237 * log_2 n 1 n
5238 * \Sum { --- * --- * 2^i } = O(n) (5)
5239 * i = 0 2^i 2^i
5240 * `- size of each group
5241 * | | `- number of cpus doing load-balance
5242 * | `- freq
5243 * `- sum over all levels
5244 *
5245 * Coupled with a limit on how many tasks we can migrate every balance pass,
5246 * this makes (5) the runtime complexity of the balancer.
5247 *
5248 * An important property here is that each CPU is still (indirectly) connected
5249 * to every other cpu in at most O(log n) steps:
5250 *
5251 * The adjacency matrix of the resulting graph is given by:
5252 *
5253 * log_2 n
5254 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5255 * k = 0
5256 *
5257 * And you'll find that:
5258 *
5259 * A^(log_2 n)_i,j != 0 for all i,j (7)
5260 *
5261 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5262 * The task movement gives a factor of O(m), giving a convergence complexity
5263 * of:
5264 *
5265 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5266 *
5267 *
5268 * WORK CONSERVING
5269 *
5270 * In order to avoid CPUs going idle while there's still work to do, new idle
5271 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5272 * tree itself instead of relying on other CPUs to bring it work.
5273 *
5274 * This adds some complexity to both (5) and (8) but it reduces the total idle
5275 * time.
5276 *
5277 * [XXX more?]
5278 *
5279 *
5280 * CGROUPS
5281 *
5282 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5283 *
5284 * s_k,i
5285 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5286 * S_k
5287 *
5288 * Where
5289 *
5290 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5291 *
5292 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5293 *
5294 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5295 * property.
5296 *
5297 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5298 * rewrite all of this once again.]
5299 */
bf0f6f24 5300
ed387b78
HS
5301static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5302
0ec8aa00
PZ
5303enum fbq_type { regular, remote, all };
5304
ddcdf6e7 5305#define LBF_ALL_PINNED 0x01
367456c7 5306#define LBF_NEED_BREAK 0x02
6263322c
PZ
5307#define LBF_DST_PINNED 0x04
5308#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5309
5310struct lb_env {
5311 struct sched_domain *sd;
5312
ddcdf6e7 5313 struct rq *src_rq;
85c1e7da 5314 int src_cpu;
ddcdf6e7
PZ
5315
5316 int dst_cpu;
5317 struct rq *dst_rq;
5318
88b8dac0
SV
5319 struct cpumask *dst_grpmask;
5320 int new_dst_cpu;
ddcdf6e7 5321 enum cpu_idle_type idle;
bd939f45 5322 long imbalance;
b9403130
MW
5323 /* The set of CPUs under consideration for load-balancing */
5324 struct cpumask *cpus;
5325
ddcdf6e7 5326 unsigned int flags;
367456c7
PZ
5327
5328 unsigned int loop;
5329 unsigned int loop_break;
5330 unsigned int loop_max;
0ec8aa00
PZ
5331
5332 enum fbq_type fbq_type;
163122b7 5333 struct list_head tasks;
ddcdf6e7
PZ
5334};
5335
029632fb
PZ
5336/*
5337 * Is this task likely cache-hot:
5338 */
5d5e2b1b 5339static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5340{
5341 s64 delta;
5342
e5673f28
KT
5343 lockdep_assert_held(&env->src_rq->lock);
5344
029632fb
PZ
5345 if (p->sched_class != &fair_sched_class)
5346 return 0;
5347
5348 if (unlikely(p->policy == SCHED_IDLE))
5349 return 0;
5350
5351 /*
5352 * Buddy candidates are cache hot:
5353 */
5d5e2b1b 5354 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5355 (&p->se == cfs_rq_of(&p->se)->next ||
5356 &p->se == cfs_rq_of(&p->se)->last))
5357 return 1;
5358
5359 if (sysctl_sched_migration_cost == -1)
5360 return 1;
5361 if (sysctl_sched_migration_cost == 0)
5362 return 0;
5363
5d5e2b1b 5364 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5365
5366 return delta < (s64)sysctl_sched_migration_cost;
5367}
5368
3a7053b3
MG
5369#ifdef CONFIG_NUMA_BALANCING
5370/* Returns true if the destination node has incurred more faults */
5371static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5372{
b1ad065e 5373 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5374 int src_nid, dst_nid;
5375
44dba3d5 5376 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5377 !(env->sd->flags & SD_NUMA)) {
5378 return false;
5379 }
5380
5381 src_nid = cpu_to_node(env->src_cpu);
5382 dst_nid = cpu_to_node(env->dst_cpu);
5383
83e1d2cd 5384 if (src_nid == dst_nid)
3a7053b3
MG
5385 return false;
5386
b1ad065e
RR
5387 if (numa_group) {
5388 /* Task is already in the group's interleave set. */
5389 if (node_isset(src_nid, numa_group->active_nodes))
5390 return false;
83e1d2cd 5391
b1ad065e
RR
5392 /* Task is moving into the group's interleave set. */
5393 if (node_isset(dst_nid, numa_group->active_nodes))
5394 return true;
83e1d2cd 5395
b1ad065e
RR
5396 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5397 }
5398
5399 /* Encourage migration to the preferred node. */
5400 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5401 return true;
5402
b1ad065e 5403 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5404}
7a0f3083
MG
5405
5406
5407static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5408{
b1ad065e 5409 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5410 int src_nid, dst_nid;
5411
5412 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5413 return false;
5414
44dba3d5 5415 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5416 return false;
5417
5418 src_nid = cpu_to_node(env->src_cpu);
5419 dst_nid = cpu_to_node(env->dst_cpu);
5420
83e1d2cd 5421 if (src_nid == dst_nid)
7a0f3083
MG
5422 return false;
5423
b1ad065e
RR
5424 if (numa_group) {
5425 /* Task is moving within/into the group's interleave set. */
5426 if (node_isset(dst_nid, numa_group->active_nodes))
5427 return false;
5428
5429 /* Task is moving out of the group's interleave set. */
5430 if (node_isset(src_nid, numa_group->active_nodes))
5431 return true;
5432
5433 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5434 }
5435
83e1d2cd
MG
5436 /* Migrating away from the preferred node is always bad. */
5437 if (src_nid == p->numa_preferred_nid)
5438 return true;
5439
b1ad065e 5440 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5441}
5442
3a7053b3
MG
5443#else
5444static inline bool migrate_improves_locality(struct task_struct *p,
5445 struct lb_env *env)
5446{
5447 return false;
5448}
7a0f3083
MG
5449
5450static inline bool migrate_degrades_locality(struct task_struct *p,
5451 struct lb_env *env)
5452{
5453 return false;
5454}
3a7053b3
MG
5455#endif
5456
1e3c88bd
PZ
5457/*
5458 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5459 */
5460static
8e45cb54 5461int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5462{
5463 int tsk_cache_hot = 0;
e5673f28
KT
5464
5465 lockdep_assert_held(&env->src_rq->lock);
5466
1e3c88bd
PZ
5467 /*
5468 * We do not migrate tasks that are:
d3198084 5469 * 1) throttled_lb_pair, or
1e3c88bd 5470 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5471 * 3) running (obviously), or
5472 * 4) are cache-hot on their current CPU.
1e3c88bd 5473 */
d3198084
JK
5474 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5475 return 0;
5476
ddcdf6e7 5477 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5478 int cpu;
88b8dac0 5479
41acab88 5480 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5481
6263322c
PZ
5482 env->flags |= LBF_SOME_PINNED;
5483
88b8dac0
SV
5484 /*
5485 * Remember if this task can be migrated to any other cpu in
5486 * our sched_group. We may want to revisit it if we couldn't
5487 * meet load balance goals by pulling other tasks on src_cpu.
5488 *
5489 * Also avoid computing new_dst_cpu if we have already computed
5490 * one in current iteration.
5491 */
6263322c 5492 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5493 return 0;
5494
e02e60c1
JK
5495 /* Prevent to re-select dst_cpu via env's cpus */
5496 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5497 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5498 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5499 env->new_dst_cpu = cpu;
5500 break;
5501 }
88b8dac0 5502 }
e02e60c1 5503
1e3c88bd
PZ
5504 return 0;
5505 }
88b8dac0
SV
5506
5507 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5508 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5509
ddcdf6e7 5510 if (task_running(env->src_rq, p)) {
41acab88 5511 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5512 return 0;
5513 }
5514
5515 /*
5516 * Aggressive migration if:
3a7053b3
MG
5517 * 1) destination numa is preferred
5518 * 2) task is cache cold, or
5519 * 3) too many balance attempts have failed.
1e3c88bd 5520 */
5d5e2b1b 5521 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5522 if (!tsk_cache_hot)
5523 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5524
7a96c231
KT
5525 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5526 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5527 if (tsk_cache_hot) {
5528 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5529 schedstat_inc(p, se.statistics.nr_forced_migrations);
5530 }
1e3c88bd
PZ
5531 return 1;
5532 }
5533
4e2dcb73
ZH
5534 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5535 return 0;
1e3c88bd
PZ
5536}
5537
897c395f 5538/*
163122b7
KT
5539 * detach_task() -- detach the task for the migration specified in env
5540 */
5541static void detach_task(struct task_struct *p, struct lb_env *env)
5542{
5543 lockdep_assert_held(&env->src_rq->lock);
5544
5545 deactivate_task(env->src_rq, p, 0);
5546 p->on_rq = TASK_ON_RQ_MIGRATING;
5547 set_task_cpu(p, env->dst_cpu);
5548}
5549
897c395f 5550/*
e5673f28 5551 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5552 * part of active balancing operations within "domain".
897c395f 5553 *
e5673f28 5554 * Returns a task if successful and NULL otherwise.
897c395f 5555 */
e5673f28 5556static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5557{
5558 struct task_struct *p, *n;
897c395f 5559
e5673f28
KT
5560 lockdep_assert_held(&env->src_rq->lock);
5561
367456c7 5562 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5563 if (!can_migrate_task(p, env))
5564 continue;
897c395f 5565
163122b7 5566 detach_task(p, env);
e5673f28 5567
367456c7 5568 /*
e5673f28 5569 * Right now, this is only the second place where
163122b7 5570 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5571 * so we can safely collect stats here rather than
163122b7 5572 * inside detach_tasks().
367456c7
PZ
5573 */
5574 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5575 return p;
897c395f 5576 }
e5673f28 5577 return NULL;
897c395f
PZ
5578}
5579
eb95308e
PZ
5580static const unsigned int sched_nr_migrate_break = 32;
5581
5d6523eb 5582/*
163122b7
KT
5583 * detach_tasks() -- tries to detach up to imbalance weighted load from
5584 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5585 *
163122b7 5586 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5587 */
163122b7 5588static int detach_tasks(struct lb_env *env)
1e3c88bd 5589{
5d6523eb
PZ
5590 struct list_head *tasks = &env->src_rq->cfs_tasks;
5591 struct task_struct *p;
367456c7 5592 unsigned long load;
163122b7
KT
5593 int detached = 0;
5594
5595 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5596
bd939f45 5597 if (env->imbalance <= 0)
5d6523eb 5598 return 0;
1e3c88bd 5599
5d6523eb
PZ
5600 while (!list_empty(tasks)) {
5601 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5602
367456c7
PZ
5603 env->loop++;
5604 /* We've more or less seen every task there is, call it quits */
5d6523eb 5605 if (env->loop > env->loop_max)
367456c7 5606 break;
5d6523eb
PZ
5607
5608 /* take a breather every nr_migrate tasks */
367456c7 5609 if (env->loop > env->loop_break) {
eb95308e 5610 env->loop_break += sched_nr_migrate_break;
8e45cb54 5611 env->flags |= LBF_NEED_BREAK;
ee00e66f 5612 break;
a195f004 5613 }
1e3c88bd 5614
d3198084 5615 if (!can_migrate_task(p, env))
367456c7
PZ
5616 goto next;
5617
5618 load = task_h_load(p);
5d6523eb 5619
eb95308e 5620 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5621 goto next;
5622
bd939f45 5623 if ((load / 2) > env->imbalance)
367456c7 5624 goto next;
1e3c88bd 5625
163122b7
KT
5626 detach_task(p, env);
5627 list_add(&p->se.group_node, &env->tasks);
5628
5629 detached++;
bd939f45 5630 env->imbalance -= load;
1e3c88bd
PZ
5631
5632#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5633 /*
5634 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5635 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5636 * the critical section.
5637 */
5d6523eb 5638 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5639 break;
1e3c88bd
PZ
5640#endif
5641
ee00e66f
PZ
5642 /*
5643 * We only want to steal up to the prescribed amount of
5644 * weighted load.
5645 */
bd939f45 5646 if (env->imbalance <= 0)
ee00e66f 5647 break;
367456c7
PZ
5648
5649 continue;
5650next:
5d6523eb 5651 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5652 }
5d6523eb 5653
1e3c88bd 5654 /*
163122b7
KT
5655 * Right now, this is one of only two places we collect this stat
5656 * so we can safely collect detach_one_task() stats here rather
5657 * than inside detach_one_task().
1e3c88bd 5658 */
163122b7 5659 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5660
163122b7
KT
5661 return detached;
5662}
5663
5664/*
5665 * attach_task() -- attach the task detached by detach_task() to its new rq.
5666 */
5667static void attach_task(struct rq *rq, struct task_struct *p)
5668{
5669 lockdep_assert_held(&rq->lock);
5670
5671 BUG_ON(task_rq(p) != rq);
5672 p->on_rq = TASK_ON_RQ_QUEUED;
5673 activate_task(rq, p, 0);
5674 check_preempt_curr(rq, p, 0);
5675}
5676
5677/*
5678 * attach_one_task() -- attaches the task returned from detach_one_task() to
5679 * its new rq.
5680 */
5681static void attach_one_task(struct rq *rq, struct task_struct *p)
5682{
5683 raw_spin_lock(&rq->lock);
5684 attach_task(rq, p);
5685 raw_spin_unlock(&rq->lock);
5686}
5687
5688/*
5689 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5690 * new rq.
5691 */
5692static void attach_tasks(struct lb_env *env)
5693{
5694 struct list_head *tasks = &env->tasks;
5695 struct task_struct *p;
5696
5697 raw_spin_lock(&env->dst_rq->lock);
5698
5699 while (!list_empty(tasks)) {
5700 p = list_first_entry(tasks, struct task_struct, se.group_node);
5701 list_del_init(&p->se.group_node);
1e3c88bd 5702
163122b7
KT
5703 attach_task(env->dst_rq, p);
5704 }
5705
5706 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5707}
5708
230059de 5709#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5710/*
5711 * update tg->load_weight by folding this cpu's load_avg
5712 */
48a16753 5713static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5714{
48a16753
PT
5715 struct sched_entity *se = tg->se[cpu];
5716 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5717
48a16753
PT
5718 /* throttled entities do not contribute to load */
5719 if (throttled_hierarchy(cfs_rq))
5720 return;
9e3081ca 5721
aff3e498 5722 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5723
82958366
PT
5724 if (se) {
5725 update_entity_load_avg(se, 1);
5726 /*
5727 * We pivot on our runnable average having decayed to zero for
5728 * list removal. This generally implies that all our children
5729 * have also been removed (modulo rounding error or bandwidth
5730 * control); however, such cases are rare and we can fix these
5731 * at enqueue.
5732 *
5733 * TODO: fix up out-of-order children on enqueue.
5734 */
5735 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5736 list_del_leaf_cfs_rq(cfs_rq);
5737 } else {
48a16753 5738 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5739 update_rq_runnable_avg(rq, rq->nr_running);
5740 }
9e3081ca
PZ
5741}
5742
48a16753 5743static void update_blocked_averages(int cpu)
9e3081ca 5744{
9e3081ca 5745 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5746 struct cfs_rq *cfs_rq;
5747 unsigned long flags;
9e3081ca 5748
48a16753
PT
5749 raw_spin_lock_irqsave(&rq->lock, flags);
5750 update_rq_clock(rq);
9763b67f
PZ
5751 /*
5752 * Iterates the task_group tree in a bottom up fashion, see
5753 * list_add_leaf_cfs_rq() for details.
5754 */
64660c86 5755 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5756 /*
5757 * Note: We may want to consider periodically releasing
5758 * rq->lock about these updates so that creating many task
5759 * groups does not result in continually extending hold time.
5760 */
5761 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5762 }
48a16753
PT
5763
5764 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5765}
5766
9763b67f 5767/*
68520796 5768 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5769 * This needs to be done in a top-down fashion because the load of a child
5770 * group is a fraction of its parents load.
5771 */
68520796 5772static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5773{
68520796
VD
5774 struct rq *rq = rq_of(cfs_rq);
5775 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5776 unsigned long now = jiffies;
68520796 5777 unsigned long load;
a35b6466 5778
68520796 5779 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5780 return;
5781
68520796
VD
5782 cfs_rq->h_load_next = NULL;
5783 for_each_sched_entity(se) {
5784 cfs_rq = cfs_rq_of(se);
5785 cfs_rq->h_load_next = se;
5786 if (cfs_rq->last_h_load_update == now)
5787 break;
5788 }
a35b6466 5789
68520796 5790 if (!se) {
7e3115ef 5791 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5792 cfs_rq->last_h_load_update = now;
5793 }
5794
5795 while ((se = cfs_rq->h_load_next) != NULL) {
5796 load = cfs_rq->h_load;
5797 load = div64_ul(load * se->avg.load_avg_contrib,
5798 cfs_rq->runnable_load_avg + 1);
5799 cfs_rq = group_cfs_rq(se);
5800 cfs_rq->h_load = load;
5801 cfs_rq->last_h_load_update = now;
5802 }
9763b67f
PZ
5803}
5804
367456c7 5805static unsigned long task_h_load(struct task_struct *p)
230059de 5806{
367456c7 5807 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5808
68520796 5809 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5810 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5811 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5812}
5813#else
48a16753 5814static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5815{
5816}
5817
367456c7 5818static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5819{
a003a25b 5820 return p->se.avg.load_avg_contrib;
1e3c88bd 5821}
230059de 5822#endif
1e3c88bd 5823
1e3c88bd 5824/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5825
5826enum group_type {
5827 group_other = 0,
5828 group_imbalanced,
5829 group_overloaded,
5830};
5831
1e3c88bd
PZ
5832/*
5833 * sg_lb_stats - stats of a sched_group required for load_balancing
5834 */
5835struct sg_lb_stats {
5836 unsigned long avg_load; /*Avg load across the CPUs of the group */
5837 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5838 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5839 unsigned long load_per_task;
63b2ca30 5840 unsigned long group_capacity;
147c5fc2 5841 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5842 unsigned int group_capacity_factor;
147c5fc2
PZ
5843 unsigned int idle_cpus;
5844 unsigned int group_weight;
caeb178c 5845 enum group_type group_type;
1b6a7495 5846 int group_has_free_capacity;
0ec8aa00
PZ
5847#ifdef CONFIG_NUMA_BALANCING
5848 unsigned int nr_numa_running;
5849 unsigned int nr_preferred_running;
5850#endif
1e3c88bd
PZ
5851};
5852
56cf515b
JK
5853/*
5854 * sd_lb_stats - Structure to store the statistics of a sched_domain
5855 * during load balancing.
5856 */
5857struct sd_lb_stats {
5858 struct sched_group *busiest; /* Busiest group in this sd */
5859 struct sched_group *local; /* Local group in this sd */
5860 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5861 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5862 unsigned long avg_load; /* Average load across all groups in sd */
5863
56cf515b 5864 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5865 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5866};
5867
147c5fc2
PZ
5868static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5869{
5870 /*
5871 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5872 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5873 * We must however clear busiest_stat::avg_load because
5874 * update_sd_pick_busiest() reads this before assignment.
5875 */
5876 *sds = (struct sd_lb_stats){
5877 .busiest = NULL,
5878 .local = NULL,
5879 .total_load = 0UL,
63b2ca30 5880 .total_capacity = 0UL,
147c5fc2
PZ
5881 .busiest_stat = {
5882 .avg_load = 0UL,
caeb178c
RR
5883 .sum_nr_running = 0,
5884 .group_type = group_other,
147c5fc2
PZ
5885 },
5886 };
5887}
5888
1e3c88bd
PZ
5889/**
5890 * get_sd_load_idx - Obtain the load index for a given sched domain.
5891 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5892 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5893 *
5894 * Return: The load index.
1e3c88bd
PZ
5895 */
5896static inline int get_sd_load_idx(struct sched_domain *sd,
5897 enum cpu_idle_type idle)
5898{
5899 int load_idx;
5900
5901 switch (idle) {
5902 case CPU_NOT_IDLE:
5903 load_idx = sd->busy_idx;
5904 break;
5905
5906 case CPU_NEWLY_IDLE:
5907 load_idx = sd->newidle_idx;
5908 break;
5909 default:
5910 load_idx = sd->idle_idx;
5911 break;
5912 }
5913
5914 return load_idx;
5915}
5916
ced549fa 5917static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5918{
ca8ce3d0 5919 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5920}
5921
ca8ce3d0 5922unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5923{
ced549fa 5924 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5925}
5926
26bc3c50 5927static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5928{
26bc3c50
VG
5929 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5930 return sd->smt_gain / sd->span_weight;
1e3c88bd 5931
26bc3c50 5932 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5933}
5934
26bc3c50 5935unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5936{
26bc3c50 5937 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5938}
5939
ced549fa 5940static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5941{
5942 struct rq *rq = cpu_rq(cpu);
b654f7de 5943 u64 total, available, age_stamp, avg;
cadefd3d 5944 s64 delta;
1e3c88bd 5945
b654f7de
PZ
5946 /*
5947 * Since we're reading these variables without serialization make sure
5948 * we read them once before doing sanity checks on them.
5949 */
5950 age_stamp = ACCESS_ONCE(rq->age_stamp);
5951 avg = ACCESS_ONCE(rq->rt_avg);
5952
cadefd3d
PZ
5953 delta = rq_clock(rq) - age_stamp;
5954 if (unlikely(delta < 0))
5955 delta = 0;
5956
5957 total = sched_avg_period() + delta;
aa483808 5958
b654f7de 5959 if (unlikely(total < avg)) {
ced549fa 5960 /* Ensures that capacity won't end up being negative */
aa483808
VP
5961 available = 0;
5962 } else {
b654f7de 5963 available = total - avg;
aa483808 5964 }
1e3c88bd 5965
ca8ce3d0
NP
5966 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5967 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5968
ca8ce3d0 5969 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5970
5971 return div_u64(available, total);
5972}
5973
ced549fa 5974static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5975{
ca8ce3d0 5976 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5977 struct sched_group *sdg = sd->groups;
5978
26bc3c50
VG
5979 if (sched_feat(ARCH_CAPACITY))
5980 capacity *= arch_scale_cpu_capacity(sd, cpu);
5981 else
5982 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 5983
26bc3c50 5984 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5985
ced549fa 5986 sdg->sgc->capacity_orig = capacity;
9d5efe05 5987
5d4dfddd 5988 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5989 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5990 else
ced549fa 5991 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5992
ca8ce3d0 5993 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5994
ced549fa 5995 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5996 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5997
ced549fa
NP
5998 if (!capacity)
5999 capacity = 1;
1e3c88bd 6000
ced549fa
NP
6001 cpu_rq(cpu)->cpu_capacity = capacity;
6002 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6003}
6004
63b2ca30 6005void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6006{
6007 struct sched_domain *child = sd->child;
6008 struct sched_group *group, *sdg = sd->groups;
63b2ca30 6009 unsigned long capacity, capacity_orig;
4ec4412e
VG
6010 unsigned long interval;
6011
6012 interval = msecs_to_jiffies(sd->balance_interval);
6013 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6014 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6015
6016 if (!child) {
ced549fa 6017 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6018 return;
6019 }
6020
63b2ca30 6021 capacity_orig = capacity = 0;
1e3c88bd 6022
74a5ce20
PZ
6023 if (child->flags & SD_OVERLAP) {
6024 /*
6025 * SD_OVERLAP domains cannot assume that child groups
6026 * span the current group.
6027 */
6028
863bffc8 6029 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6030 struct sched_group_capacity *sgc;
9abf24d4 6031 struct rq *rq = cpu_rq(cpu);
863bffc8 6032
9abf24d4 6033 /*
63b2ca30 6034 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6035 * gets here before we've attached the domains to the
6036 * runqueues.
6037 *
ced549fa
NP
6038 * Use capacity_of(), which is set irrespective of domains
6039 * in update_cpu_capacity().
9abf24d4 6040 *
63b2ca30 6041 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
6042 * causing divide-by-zero issues on boot.
6043 *
63b2ca30 6044 * Runtime updates will correct capacity_orig.
9abf24d4
SD
6045 */
6046 if (unlikely(!rq->sd)) {
ced549fa
NP
6047 capacity_orig += capacity_of(cpu);
6048 capacity += capacity_of(cpu);
9abf24d4
SD
6049 continue;
6050 }
863bffc8 6051
63b2ca30
NP
6052 sgc = rq->sd->groups->sgc;
6053 capacity_orig += sgc->capacity_orig;
6054 capacity += sgc->capacity;
863bffc8 6055 }
74a5ce20
PZ
6056 } else {
6057 /*
6058 * !SD_OVERLAP domains can assume that child groups
6059 * span the current group.
6060 */
6061
6062 group = child->groups;
6063 do {
63b2ca30
NP
6064 capacity_orig += group->sgc->capacity_orig;
6065 capacity += group->sgc->capacity;
74a5ce20
PZ
6066 group = group->next;
6067 } while (group != child->groups);
6068 }
1e3c88bd 6069
63b2ca30
NP
6070 sdg->sgc->capacity_orig = capacity_orig;
6071 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6072}
6073
9d5efe05
SV
6074/*
6075 * Try and fix up capacity for tiny siblings, this is needed when
6076 * things like SD_ASYM_PACKING need f_b_g to select another sibling
6077 * which on its own isn't powerful enough.
6078 *
6079 * See update_sd_pick_busiest() and check_asym_packing().
6080 */
6081static inline int
6082fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6083{
6084 /*
ca8ce3d0 6085 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 6086 */
5d4dfddd 6087 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
6088 return 0;
6089
6090 /*
63b2ca30 6091 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 6092 */
63b2ca30 6093 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
6094 return 1;
6095
6096 return 0;
6097}
6098
30ce5dab
PZ
6099/*
6100 * Group imbalance indicates (and tries to solve) the problem where balancing
6101 * groups is inadequate due to tsk_cpus_allowed() constraints.
6102 *
6103 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6104 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6105 * Something like:
6106 *
6107 * { 0 1 2 3 } { 4 5 6 7 }
6108 * * * * *
6109 *
6110 * If we were to balance group-wise we'd place two tasks in the first group and
6111 * two tasks in the second group. Clearly this is undesired as it will overload
6112 * cpu 3 and leave one of the cpus in the second group unused.
6113 *
6114 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6115 * by noticing the lower domain failed to reach balance and had difficulty
6116 * moving tasks due to affinity constraints.
30ce5dab
PZ
6117 *
6118 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6119 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6120 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6121 * to create an effective group imbalance.
6122 *
6123 * This is a somewhat tricky proposition since the next run might not find the
6124 * group imbalance and decide the groups need to be balanced again. A most
6125 * subtle and fragile situation.
6126 */
6127
6263322c 6128static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6129{
63b2ca30 6130 return group->sgc->imbalance;
30ce5dab
PZ
6131}
6132
b37d9316 6133/*
0fedc6c8 6134 * Compute the group capacity factor.
b37d9316 6135 *
ced549fa 6136 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 6137 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 6138 * and limit unit capacity with that.
b37d9316 6139 */
0fedc6c8 6140static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 6141{
0fedc6c8 6142 unsigned int capacity_factor, smt, cpus;
63b2ca30 6143 unsigned int capacity, capacity_orig;
c61037e9 6144
63b2ca30
NP
6145 capacity = group->sgc->capacity;
6146 capacity_orig = group->sgc->capacity_orig;
c61037e9 6147 cpus = group->group_weight;
b37d9316 6148
63b2ca30 6149 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 6150 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 6151 capacity_factor = cpus / smt; /* cores */
b37d9316 6152
63b2ca30 6153 capacity_factor = min_t(unsigned,
ca8ce3d0 6154 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
6155 if (!capacity_factor)
6156 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 6157
0fedc6c8 6158 return capacity_factor;
b37d9316
PZ
6159}
6160
caeb178c
RR
6161static enum group_type
6162group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6163{
6164 if (sgs->sum_nr_running > sgs->group_capacity_factor)
6165 return group_overloaded;
6166
6167 if (sg_imbalanced(group))
6168 return group_imbalanced;
6169
6170 return group_other;
6171}
6172
1e3c88bd
PZ
6173/**
6174 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6175 * @env: The load balancing environment.
1e3c88bd 6176 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6177 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6178 * @local_group: Does group contain this_cpu.
1e3c88bd 6179 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6180 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6181 */
bd939f45
PZ
6182static inline void update_sg_lb_stats(struct lb_env *env,
6183 struct sched_group *group, int load_idx,
4486edd1
TC
6184 int local_group, struct sg_lb_stats *sgs,
6185 bool *overload)
1e3c88bd 6186{
30ce5dab 6187 unsigned long load;
bd939f45 6188 int i;
1e3c88bd 6189
b72ff13c
PZ
6190 memset(sgs, 0, sizeof(*sgs));
6191
b9403130 6192 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6193 struct rq *rq = cpu_rq(i);
6194
1e3c88bd 6195 /* Bias balancing toward cpus of our domain */
6263322c 6196 if (local_group)
04f733b4 6197 load = target_load(i, load_idx);
6263322c 6198 else
1e3c88bd 6199 load = source_load(i, load_idx);
1e3c88bd
PZ
6200
6201 sgs->group_load += load;
65fdac08 6202 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6203
6204 if (rq->nr_running > 1)
6205 *overload = true;
6206
0ec8aa00
PZ
6207#ifdef CONFIG_NUMA_BALANCING
6208 sgs->nr_numa_running += rq->nr_numa_running;
6209 sgs->nr_preferred_running += rq->nr_preferred_running;
6210#endif
1e3c88bd 6211 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6212 if (idle_cpu(i))
6213 sgs->idle_cpus++;
1e3c88bd
PZ
6214 }
6215
63b2ca30
NP
6216 /* Adjust by relative CPU capacity of the group */
6217 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6218 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6219
dd5feea1 6220 if (sgs->sum_nr_running)
38d0f770 6221 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6222
aae6d3dd 6223 sgs->group_weight = group->group_weight;
0fedc6c8 6224 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6225 sgs->group_type = group_classify(group, sgs);
b37d9316 6226
0fedc6c8 6227 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6228 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6229}
6230
532cb4c4
MN
6231/**
6232 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6233 * @env: The load balancing environment.
532cb4c4
MN
6234 * @sds: sched_domain statistics
6235 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6236 * @sgs: sched_group statistics
532cb4c4
MN
6237 *
6238 * Determine if @sg is a busier group than the previously selected
6239 * busiest group.
e69f6186
YB
6240 *
6241 * Return: %true if @sg is a busier group than the previously selected
6242 * busiest group. %false otherwise.
532cb4c4 6243 */
bd939f45 6244static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6245 struct sd_lb_stats *sds,
6246 struct sched_group *sg,
bd939f45 6247 struct sg_lb_stats *sgs)
532cb4c4 6248{
caeb178c 6249 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6250
caeb178c 6251 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6252 return true;
6253
caeb178c
RR
6254 if (sgs->group_type < busiest->group_type)
6255 return false;
6256
6257 if (sgs->avg_load <= busiest->avg_load)
6258 return false;
6259
6260 /* This is the busiest node in its class. */
6261 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6262 return true;
6263
6264 /*
6265 * ASYM_PACKING needs to move all the work to the lowest
6266 * numbered CPUs in the group, therefore mark all groups
6267 * higher than ourself as busy.
6268 */
caeb178c 6269 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6270 if (!sds->busiest)
6271 return true;
6272
6273 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6274 return true;
6275 }
6276
6277 return false;
6278}
6279
0ec8aa00
PZ
6280#ifdef CONFIG_NUMA_BALANCING
6281static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6282{
6283 if (sgs->sum_nr_running > sgs->nr_numa_running)
6284 return regular;
6285 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6286 return remote;
6287 return all;
6288}
6289
6290static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6291{
6292 if (rq->nr_running > rq->nr_numa_running)
6293 return regular;
6294 if (rq->nr_running > rq->nr_preferred_running)
6295 return remote;
6296 return all;
6297}
6298#else
6299static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6300{
6301 return all;
6302}
6303
6304static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6305{
6306 return regular;
6307}
6308#endif /* CONFIG_NUMA_BALANCING */
6309
1e3c88bd 6310/**
461819ac 6311 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6312 * @env: The load balancing environment.
1e3c88bd
PZ
6313 * @sds: variable to hold the statistics for this sched_domain.
6314 */
0ec8aa00 6315static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6316{
bd939f45
PZ
6317 struct sched_domain *child = env->sd->child;
6318 struct sched_group *sg = env->sd->groups;
56cf515b 6319 struct sg_lb_stats tmp_sgs;
1e3c88bd 6320 int load_idx, prefer_sibling = 0;
4486edd1 6321 bool overload = false;
1e3c88bd
PZ
6322
6323 if (child && child->flags & SD_PREFER_SIBLING)
6324 prefer_sibling = 1;
6325
bd939f45 6326 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6327
6328 do {
56cf515b 6329 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6330 int local_group;
6331
bd939f45 6332 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6333 if (local_group) {
6334 sds->local = sg;
6335 sgs = &sds->local_stat;
b72ff13c
PZ
6336
6337 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6338 time_after_eq(jiffies, sg->sgc->next_update))
6339 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6340 }
1e3c88bd 6341
4486edd1
TC
6342 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6343 &overload);
1e3c88bd 6344
b72ff13c
PZ
6345 if (local_group)
6346 goto next_group;
6347
1e3c88bd
PZ
6348 /*
6349 * In case the child domain prefers tasks go to siblings
0fedc6c8 6350 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6351 * and move all the excess tasks away. We lower the capacity
6352 * of a group only if the local group has the capacity to fit
0fedc6c8 6353 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6354 * extra check prevents the case where you always pull from the
6355 * heaviest group when it is already under-utilized (possible
6356 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6357 */
b72ff13c 6358 if (prefer_sibling && sds->local &&
cb0b9f24 6359 sds->local_stat.group_has_free_capacity) {
0fedc6c8 6360 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
cb0b9f24
WL
6361 sgs->group_type = group_classify(sg, sgs);
6362 }
1e3c88bd 6363
b72ff13c 6364 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6365 sds->busiest = sg;
56cf515b 6366 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6367 }
6368
b72ff13c
PZ
6369next_group:
6370 /* Now, start updating sd_lb_stats */
6371 sds->total_load += sgs->group_load;
63b2ca30 6372 sds->total_capacity += sgs->group_capacity;
b72ff13c 6373
532cb4c4 6374 sg = sg->next;
bd939f45 6375 } while (sg != env->sd->groups);
0ec8aa00
PZ
6376
6377 if (env->sd->flags & SD_NUMA)
6378 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6379
6380 if (!env->sd->parent) {
6381 /* update overload indicator if we are at root domain */
6382 if (env->dst_rq->rd->overload != overload)
6383 env->dst_rq->rd->overload = overload;
6384 }
6385
532cb4c4
MN
6386}
6387
532cb4c4
MN
6388/**
6389 * check_asym_packing - Check to see if the group is packed into the
6390 * sched doman.
6391 *
6392 * This is primarily intended to used at the sibling level. Some
6393 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6394 * case of POWER7, it can move to lower SMT modes only when higher
6395 * threads are idle. When in lower SMT modes, the threads will
6396 * perform better since they share less core resources. Hence when we
6397 * have idle threads, we want them to be the higher ones.
6398 *
6399 * This packing function is run on idle threads. It checks to see if
6400 * the busiest CPU in this domain (core in the P7 case) has a higher
6401 * CPU number than the packing function is being run on. Here we are
6402 * assuming lower CPU number will be equivalent to lower a SMT thread
6403 * number.
6404 *
e69f6186 6405 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6406 * this CPU. The amount of the imbalance is returned in *imbalance.
6407 *
cd96891d 6408 * @env: The load balancing environment.
532cb4c4 6409 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6410 */
bd939f45 6411static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6412{
6413 int busiest_cpu;
6414
bd939f45 6415 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6416 return 0;
6417
6418 if (!sds->busiest)
6419 return 0;
6420
6421 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6422 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6423 return 0;
6424
bd939f45 6425 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6426 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6427 SCHED_CAPACITY_SCALE);
bd939f45 6428
532cb4c4 6429 return 1;
1e3c88bd
PZ
6430}
6431
6432/**
6433 * fix_small_imbalance - Calculate the minor imbalance that exists
6434 * amongst the groups of a sched_domain, during
6435 * load balancing.
cd96891d 6436 * @env: The load balancing environment.
1e3c88bd 6437 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6438 */
bd939f45
PZ
6439static inline
6440void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6441{
63b2ca30 6442 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6443 unsigned int imbn = 2;
dd5feea1 6444 unsigned long scaled_busy_load_per_task;
56cf515b 6445 struct sg_lb_stats *local, *busiest;
1e3c88bd 6446
56cf515b
JK
6447 local = &sds->local_stat;
6448 busiest = &sds->busiest_stat;
1e3c88bd 6449
56cf515b
JK
6450 if (!local->sum_nr_running)
6451 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6452 else if (busiest->load_per_task > local->load_per_task)
6453 imbn = 1;
dd5feea1 6454
56cf515b 6455 scaled_busy_load_per_task =
ca8ce3d0 6456 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6457 busiest->group_capacity;
56cf515b 6458
3029ede3
VD
6459 if (busiest->avg_load + scaled_busy_load_per_task >=
6460 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6461 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6462 return;
6463 }
6464
6465 /*
6466 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6467 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6468 * moving them.
6469 */
6470
63b2ca30 6471 capa_now += busiest->group_capacity *
56cf515b 6472 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6473 capa_now += local->group_capacity *
56cf515b 6474 min(local->load_per_task, local->avg_load);
ca8ce3d0 6475 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6476
6477 /* Amount of load we'd subtract */
a2cd4260 6478 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6479 capa_move += busiest->group_capacity *
56cf515b 6480 min(busiest->load_per_task,
a2cd4260 6481 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6482 }
1e3c88bd
PZ
6483
6484 /* Amount of load we'd add */
63b2ca30 6485 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6486 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6487 tmp = (busiest->avg_load * busiest->group_capacity) /
6488 local->group_capacity;
56cf515b 6489 } else {
ca8ce3d0 6490 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6491 local->group_capacity;
56cf515b 6492 }
63b2ca30 6493 capa_move += local->group_capacity *
3ae11c90 6494 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6495 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6496
6497 /* Move if we gain throughput */
63b2ca30 6498 if (capa_move > capa_now)
56cf515b 6499 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6500}
6501
6502/**
6503 * calculate_imbalance - Calculate the amount of imbalance present within the
6504 * groups of a given sched_domain during load balance.
bd939f45 6505 * @env: load balance environment
1e3c88bd 6506 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6507 */
bd939f45 6508static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6509{
dd5feea1 6510 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6511 struct sg_lb_stats *local, *busiest;
6512
6513 local = &sds->local_stat;
56cf515b 6514 busiest = &sds->busiest_stat;
dd5feea1 6515
caeb178c 6516 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6517 /*
6518 * In the group_imb case we cannot rely on group-wide averages
6519 * to ensure cpu-load equilibrium, look at wider averages. XXX
6520 */
56cf515b
JK
6521 busiest->load_per_task =
6522 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6523 }
6524
1e3c88bd
PZ
6525 /*
6526 * In the presence of smp nice balancing, certain scenarios can have
6527 * max load less than avg load(as we skip the groups at or below
ced549fa 6528 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6529 */
b1885550
VD
6530 if (busiest->avg_load <= sds->avg_load ||
6531 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6532 env->imbalance = 0;
6533 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6534 }
6535
9a5d9ba6
PZ
6536 /*
6537 * If there aren't any idle cpus, avoid creating some.
6538 */
6539 if (busiest->group_type == group_overloaded &&
6540 local->group_type == group_overloaded) {
56cf515b 6541 load_above_capacity =
0fedc6c8 6542 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6543
ca8ce3d0 6544 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6545 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6546 }
6547
6548 /*
6549 * We're trying to get all the cpus to the average_load, so we don't
6550 * want to push ourselves above the average load, nor do we wish to
6551 * reduce the max loaded cpu below the average load. At the same time,
6552 * we also don't want to reduce the group load below the group capacity
6553 * (so that we can implement power-savings policies etc). Thus we look
6554 * for the minimum possible imbalance.
dd5feea1 6555 */
30ce5dab 6556 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6557
6558 /* How much load to actually move to equalise the imbalance */
56cf515b 6559 env->imbalance = min(
63b2ca30
NP
6560 max_pull * busiest->group_capacity,
6561 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6562 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6563
6564 /*
6565 * if *imbalance is less than the average load per runnable task
25985edc 6566 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6567 * a think about bumping its value to force at least one task to be
6568 * moved
6569 */
56cf515b 6570 if (env->imbalance < busiest->load_per_task)
bd939f45 6571 return fix_small_imbalance(env, sds);
1e3c88bd 6572}
fab47622 6573
1e3c88bd
PZ
6574/******* find_busiest_group() helpers end here *********************/
6575
6576/**
6577 * find_busiest_group - Returns the busiest group within the sched_domain
6578 * if there is an imbalance. If there isn't an imbalance, and
6579 * the user has opted for power-savings, it returns a group whose
6580 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6581 * such a group exists.
6582 *
6583 * Also calculates the amount of weighted load which should be moved
6584 * to restore balance.
6585 *
cd96891d 6586 * @env: The load balancing environment.
1e3c88bd 6587 *
e69f6186 6588 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6589 * - If no imbalance and user has opted for power-savings balance,
6590 * return the least loaded group whose CPUs can be
6591 * put to idle by rebalancing its tasks onto our group.
6592 */
56cf515b 6593static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6594{
56cf515b 6595 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6596 struct sd_lb_stats sds;
6597
147c5fc2 6598 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6599
6600 /*
6601 * Compute the various statistics relavent for load balancing at
6602 * this level.
6603 */
23f0d209 6604 update_sd_lb_stats(env, &sds);
56cf515b
JK
6605 local = &sds.local_stat;
6606 busiest = &sds.busiest_stat;
1e3c88bd 6607
bd939f45
PZ
6608 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6609 check_asym_packing(env, &sds))
532cb4c4
MN
6610 return sds.busiest;
6611
cc57aa8f 6612 /* There is no busy sibling group to pull tasks from */
56cf515b 6613 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6614 goto out_balanced;
6615
ca8ce3d0
NP
6616 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6617 / sds.total_capacity;
b0432d8f 6618
866ab43e
PZ
6619 /*
6620 * If the busiest group is imbalanced the below checks don't
30ce5dab 6621 * work because they assume all things are equal, which typically
866ab43e
PZ
6622 * isn't true due to cpus_allowed constraints and the like.
6623 */
caeb178c 6624 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6625 goto force_balance;
6626
cc57aa8f 6627 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6628 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6629 !busiest->group_has_free_capacity)
fab47622
NR
6630 goto force_balance;
6631
cc57aa8f 6632 /*
9c58c79a 6633 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6634 * don't try and pull any tasks.
6635 */
56cf515b 6636 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6637 goto out_balanced;
6638
cc57aa8f
PZ
6639 /*
6640 * Don't pull any tasks if this group is already above the domain
6641 * average load.
6642 */
56cf515b 6643 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6644 goto out_balanced;
6645
bd939f45 6646 if (env->idle == CPU_IDLE) {
aae6d3dd 6647 /*
43f4d666
VG
6648 * This cpu is idle. If the busiest group is not overloaded
6649 * and there is no imbalance between this and busiest group
6650 * wrt idle cpus, it is balanced. The imbalance becomes
6651 * significant if the diff is greater than 1 otherwise we
6652 * might end up to just move the imbalance on another group
aae6d3dd 6653 */
43f4d666
VG
6654 if ((busiest->group_type != group_overloaded) &&
6655 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6656 goto out_balanced;
c186fafe
PZ
6657 } else {
6658 /*
6659 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6660 * imbalance_pct to be conservative.
6661 */
56cf515b
JK
6662 if (100 * busiest->avg_load <=
6663 env->sd->imbalance_pct * local->avg_load)
c186fafe 6664 goto out_balanced;
aae6d3dd 6665 }
1e3c88bd 6666
fab47622 6667force_balance:
1e3c88bd 6668 /* Looks like there is an imbalance. Compute it */
bd939f45 6669 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6670 return sds.busiest;
6671
6672out_balanced:
bd939f45 6673 env->imbalance = 0;
1e3c88bd
PZ
6674 return NULL;
6675}
6676
6677/*
6678 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6679 */
bd939f45 6680static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6681 struct sched_group *group)
1e3c88bd
PZ
6682{
6683 struct rq *busiest = NULL, *rq;
ced549fa 6684 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6685 int i;
6686
6906a408 6687 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6688 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6689 enum fbq_type rt;
6690
6691 rq = cpu_rq(i);
6692 rt = fbq_classify_rq(rq);
1e3c88bd 6693
0ec8aa00
PZ
6694 /*
6695 * We classify groups/runqueues into three groups:
6696 * - regular: there are !numa tasks
6697 * - remote: there are numa tasks that run on the 'wrong' node
6698 * - all: there is no distinction
6699 *
6700 * In order to avoid migrating ideally placed numa tasks,
6701 * ignore those when there's better options.
6702 *
6703 * If we ignore the actual busiest queue to migrate another
6704 * task, the next balance pass can still reduce the busiest
6705 * queue by moving tasks around inside the node.
6706 *
6707 * If we cannot move enough load due to this classification
6708 * the next pass will adjust the group classification and
6709 * allow migration of more tasks.
6710 *
6711 * Both cases only affect the total convergence complexity.
6712 */
6713 if (rt > env->fbq_type)
6714 continue;
6715
ced549fa 6716 capacity = capacity_of(i);
ca8ce3d0 6717 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6718 if (!capacity_factor)
6719 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6720
6e40f5bb 6721 wl = weighted_cpuload(i);
1e3c88bd 6722
6e40f5bb
TG
6723 /*
6724 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6725 * which is not scaled with the cpu capacity.
6e40f5bb 6726 */
0fedc6c8 6727 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6728 continue;
6729
6e40f5bb
TG
6730 /*
6731 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6732 * the weighted_cpuload() scaled with the cpu capacity, so
6733 * that the load can be moved away from the cpu that is
6734 * potentially running at a lower capacity.
95a79b80 6735 *
ced549fa 6736 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6737 * multiplication to rid ourselves of the division works out
ced549fa
NP
6738 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6739 * our previous maximum.
6e40f5bb 6740 */
ced549fa 6741 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6742 busiest_load = wl;
ced549fa 6743 busiest_capacity = capacity;
1e3c88bd
PZ
6744 busiest = rq;
6745 }
6746 }
6747
6748 return busiest;
6749}
6750
6751/*
6752 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6753 * so long as it is large enough.
6754 */
6755#define MAX_PINNED_INTERVAL 512
6756
6757/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6758DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6759
bd939f45 6760static int need_active_balance(struct lb_env *env)
1af3ed3d 6761{
bd939f45
PZ
6762 struct sched_domain *sd = env->sd;
6763
6764 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6765
6766 /*
6767 * ASYM_PACKING needs to force migrate tasks from busy but
6768 * higher numbered CPUs in order to pack all tasks in the
6769 * lowest numbered CPUs.
6770 */
bd939f45 6771 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6772 return 1;
1af3ed3d
PZ
6773 }
6774
6775 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6776}
6777
969c7921
TH
6778static int active_load_balance_cpu_stop(void *data);
6779
23f0d209
JK
6780static int should_we_balance(struct lb_env *env)
6781{
6782 struct sched_group *sg = env->sd->groups;
6783 struct cpumask *sg_cpus, *sg_mask;
6784 int cpu, balance_cpu = -1;
6785
6786 /*
6787 * In the newly idle case, we will allow all the cpu's
6788 * to do the newly idle load balance.
6789 */
6790 if (env->idle == CPU_NEWLY_IDLE)
6791 return 1;
6792
6793 sg_cpus = sched_group_cpus(sg);
6794 sg_mask = sched_group_mask(sg);
6795 /* Try to find first idle cpu */
6796 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6797 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6798 continue;
6799
6800 balance_cpu = cpu;
6801 break;
6802 }
6803
6804 if (balance_cpu == -1)
6805 balance_cpu = group_balance_cpu(sg);
6806
6807 /*
6808 * First idle cpu or the first cpu(busiest) in this sched group
6809 * is eligible for doing load balancing at this and above domains.
6810 */
b0cff9d8 6811 return balance_cpu == env->dst_cpu;
23f0d209
JK
6812}
6813
1e3c88bd
PZ
6814/*
6815 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6816 * tasks if there is an imbalance.
6817 */
6818static int load_balance(int this_cpu, struct rq *this_rq,
6819 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6820 int *continue_balancing)
1e3c88bd 6821{
88b8dac0 6822 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6823 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6824 struct sched_group *group;
1e3c88bd
PZ
6825 struct rq *busiest;
6826 unsigned long flags;
4ba29684 6827 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6828
8e45cb54
PZ
6829 struct lb_env env = {
6830 .sd = sd,
ddcdf6e7
PZ
6831 .dst_cpu = this_cpu,
6832 .dst_rq = this_rq,
88b8dac0 6833 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6834 .idle = idle,
eb95308e 6835 .loop_break = sched_nr_migrate_break,
b9403130 6836 .cpus = cpus,
0ec8aa00 6837 .fbq_type = all,
163122b7 6838 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6839 };
6840
cfc03118
JK
6841 /*
6842 * For NEWLY_IDLE load_balancing, we don't need to consider
6843 * other cpus in our group
6844 */
e02e60c1 6845 if (idle == CPU_NEWLY_IDLE)
cfc03118 6846 env.dst_grpmask = NULL;
cfc03118 6847
1e3c88bd
PZ
6848 cpumask_copy(cpus, cpu_active_mask);
6849
1e3c88bd
PZ
6850 schedstat_inc(sd, lb_count[idle]);
6851
6852redo:
23f0d209
JK
6853 if (!should_we_balance(&env)) {
6854 *continue_balancing = 0;
1e3c88bd 6855 goto out_balanced;
23f0d209 6856 }
1e3c88bd 6857
23f0d209 6858 group = find_busiest_group(&env);
1e3c88bd
PZ
6859 if (!group) {
6860 schedstat_inc(sd, lb_nobusyg[idle]);
6861 goto out_balanced;
6862 }
6863
b9403130 6864 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6865 if (!busiest) {
6866 schedstat_inc(sd, lb_nobusyq[idle]);
6867 goto out_balanced;
6868 }
6869
78feefc5 6870 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6871
bd939f45 6872 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6873
6874 ld_moved = 0;
6875 if (busiest->nr_running > 1) {
6876 /*
6877 * Attempt to move tasks. If find_busiest_group has found
6878 * an imbalance but busiest->nr_running <= 1, the group is
6879 * still unbalanced. ld_moved simply stays zero, so it is
6880 * correctly treated as an imbalance.
6881 */
8e45cb54 6882 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6883 env.src_cpu = busiest->cpu;
6884 env.src_rq = busiest;
6885 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6886
5d6523eb 6887more_balance:
163122b7 6888 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6889
6890 /*
6891 * cur_ld_moved - load moved in current iteration
6892 * ld_moved - cumulative load moved across iterations
6893 */
163122b7 6894 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6895
6896 /*
163122b7
KT
6897 * We've detached some tasks from busiest_rq. Every
6898 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6899 * unlock busiest->lock, and we are able to be sure
6900 * that nobody can manipulate the tasks in parallel.
6901 * See task_rq_lock() family for the details.
1e3c88bd 6902 */
163122b7
KT
6903
6904 raw_spin_unlock(&busiest->lock);
6905
6906 if (cur_ld_moved) {
6907 attach_tasks(&env);
6908 ld_moved += cur_ld_moved;
6909 }
6910
1e3c88bd 6911 local_irq_restore(flags);
88b8dac0 6912
f1cd0858
JK
6913 if (env.flags & LBF_NEED_BREAK) {
6914 env.flags &= ~LBF_NEED_BREAK;
6915 goto more_balance;
6916 }
6917
88b8dac0
SV
6918 /*
6919 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6920 * us and move them to an alternate dst_cpu in our sched_group
6921 * where they can run. The upper limit on how many times we
6922 * iterate on same src_cpu is dependent on number of cpus in our
6923 * sched_group.
6924 *
6925 * This changes load balance semantics a bit on who can move
6926 * load to a given_cpu. In addition to the given_cpu itself
6927 * (or a ilb_cpu acting on its behalf where given_cpu is
6928 * nohz-idle), we now have balance_cpu in a position to move
6929 * load to given_cpu. In rare situations, this may cause
6930 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6931 * _independently_ and at _same_ time to move some load to
6932 * given_cpu) causing exceess load to be moved to given_cpu.
6933 * This however should not happen so much in practice and
6934 * moreover subsequent load balance cycles should correct the
6935 * excess load moved.
6936 */
6263322c 6937 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6938
7aff2e3a
VD
6939 /* Prevent to re-select dst_cpu via env's cpus */
6940 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6941
78feefc5 6942 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6943 env.dst_cpu = env.new_dst_cpu;
6263322c 6944 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6945 env.loop = 0;
6946 env.loop_break = sched_nr_migrate_break;
e02e60c1 6947
88b8dac0
SV
6948 /*
6949 * Go back to "more_balance" rather than "redo" since we
6950 * need to continue with same src_cpu.
6951 */
6952 goto more_balance;
6953 }
1e3c88bd 6954
6263322c
PZ
6955 /*
6956 * We failed to reach balance because of affinity.
6957 */
6958 if (sd_parent) {
63b2ca30 6959 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6960
afdeee05 6961 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6962 *group_imbalance = 1;
6263322c
PZ
6963 }
6964
1e3c88bd 6965 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6966 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6967 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6968 if (!cpumask_empty(cpus)) {
6969 env.loop = 0;
6970 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6971 goto redo;
bbf18b19 6972 }
afdeee05 6973 goto out_all_pinned;
1e3c88bd
PZ
6974 }
6975 }
6976
6977 if (!ld_moved) {
6978 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6979 /*
6980 * Increment the failure counter only on periodic balance.
6981 * We do not want newidle balance, which can be very
6982 * frequent, pollute the failure counter causing
6983 * excessive cache_hot migrations and active balances.
6984 */
6985 if (idle != CPU_NEWLY_IDLE)
6986 sd->nr_balance_failed++;
1e3c88bd 6987
bd939f45 6988 if (need_active_balance(&env)) {
1e3c88bd
PZ
6989 raw_spin_lock_irqsave(&busiest->lock, flags);
6990
969c7921
TH
6991 /* don't kick the active_load_balance_cpu_stop,
6992 * if the curr task on busiest cpu can't be
6993 * moved to this_cpu
1e3c88bd
PZ
6994 */
6995 if (!cpumask_test_cpu(this_cpu,
fa17b507 6996 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6997 raw_spin_unlock_irqrestore(&busiest->lock,
6998 flags);
8e45cb54 6999 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7000 goto out_one_pinned;
7001 }
7002
969c7921
TH
7003 /*
7004 * ->active_balance synchronizes accesses to
7005 * ->active_balance_work. Once set, it's cleared
7006 * only after active load balance is finished.
7007 */
1e3c88bd
PZ
7008 if (!busiest->active_balance) {
7009 busiest->active_balance = 1;
7010 busiest->push_cpu = this_cpu;
7011 active_balance = 1;
7012 }
7013 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7014
bd939f45 7015 if (active_balance) {
969c7921
TH
7016 stop_one_cpu_nowait(cpu_of(busiest),
7017 active_load_balance_cpu_stop, busiest,
7018 &busiest->active_balance_work);
bd939f45 7019 }
1e3c88bd
PZ
7020
7021 /*
7022 * We've kicked active balancing, reset the failure
7023 * counter.
7024 */
7025 sd->nr_balance_failed = sd->cache_nice_tries+1;
7026 }
7027 } else
7028 sd->nr_balance_failed = 0;
7029
7030 if (likely(!active_balance)) {
7031 /* We were unbalanced, so reset the balancing interval */
7032 sd->balance_interval = sd->min_interval;
7033 } else {
7034 /*
7035 * If we've begun active balancing, start to back off. This
7036 * case may not be covered by the all_pinned logic if there
7037 * is only 1 task on the busy runqueue (because we don't call
163122b7 7038 * detach_tasks).
1e3c88bd
PZ
7039 */
7040 if (sd->balance_interval < sd->max_interval)
7041 sd->balance_interval *= 2;
7042 }
7043
1e3c88bd
PZ
7044 goto out;
7045
7046out_balanced:
afdeee05
VG
7047 /*
7048 * We reach balance although we may have faced some affinity
7049 * constraints. Clear the imbalance flag if it was set.
7050 */
7051 if (sd_parent) {
7052 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7053
7054 if (*group_imbalance)
7055 *group_imbalance = 0;
7056 }
7057
7058out_all_pinned:
7059 /*
7060 * We reach balance because all tasks are pinned at this level so
7061 * we can't migrate them. Let the imbalance flag set so parent level
7062 * can try to migrate them.
7063 */
1e3c88bd
PZ
7064 schedstat_inc(sd, lb_balanced[idle]);
7065
7066 sd->nr_balance_failed = 0;
7067
7068out_one_pinned:
7069 /* tune up the balancing interval */
8e45cb54 7070 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7071 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7072 (sd->balance_interval < sd->max_interval))
7073 sd->balance_interval *= 2;
7074
46e49b38 7075 ld_moved = 0;
1e3c88bd 7076out:
1e3c88bd
PZ
7077 return ld_moved;
7078}
7079
52a08ef1
JL
7080static inline unsigned long
7081get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7082{
7083 unsigned long interval = sd->balance_interval;
7084
7085 if (cpu_busy)
7086 interval *= sd->busy_factor;
7087
7088 /* scale ms to jiffies */
7089 interval = msecs_to_jiffies(interval);
7090 interval = clamp(interval, 1UL, max_load_balance_interval);
7091
7092 return interval;
7093}
7094
7095static inline void
7096update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7097{
7098 unsigned long interval, next;
7099
7100 interval = get_sd_balance_interval(sd, cpu_busy);
7101 next = sd->last_balance + interval;
7102
7103 if (time_after(*next_balance, next))
7104 *next_balance = next;
7105}
7106
1e3c88bd
PZ
7107/*
7108 * idle_balance is called by schedule() if this_cpu is about to become
7109 * idle. Attempts to pull tasks from other CPUs.
7110 */
6e83125c 7111static int idle_balance(struct rq *this_rq)
1e3c88bd 7112{
52a08ef1
JL
7113 unsigned long next_balance = jiffies + HZ;
7114 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7115 struct sched_domain *sd;
7116 int pulled_task = 0;
9bd721c5 7117 u64 curr_cost = 0;
1e3c88bd 7118
6e83125c 7119 idle_enter_fair(this_rq);
0e5b5337 7120
6e83125c
PZ
7121 /*
7122 * We must set idle_stamp _before_ calling idle_balance(), such that we
7123 * measure the duration of idle_balance() as idle time.
7124 */
7125 this_rq->idle_stamp = rq_clock(this_rq);
7126
4486edd1
TC
7127 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7128 !this_rq->rd->overload) {
52a08ef1
JL
7129 rcu_read_lock();
7130 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7131 if (sd)
7132 update_next_balance(sd, 0, &next_balance);
7133 rcu_read_unlock();
7134
6e83125c 7135 goto out;
52a08ef1 7136 }
1e3c88bd 7137
f492e12e
PZ
7138 /*
7139 * Drop the rq->lock, but keep IRQ/preempt disabled.
7140 */
7141 raw_spin_unlock(&this_rq->lock);
7142
48a16753 7143 update_blocked_averages(this_cpu);
dce840a0 7144 rcu_read_lock();
1e3c88bd 7145 for_each_domain(this_cpu, sd) {
23f0d209 7146 int continue_balancing = 1;
9bd721c5 7147 u64 t0, domain_cost;
1e3c88bd
PZ
7148
7149 if (!(sd->flags & SD_LOAD_BALANCE))
7150 continue;
7151
52a08ef1
JL
7152 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7153 update_next_balance(sd, 0, &next_balance);
9bd721c5 7154 break;
52a08ef1 7155 }
9bd721c5 7156
f492e12e 7157 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7158 t0 = sched_clock_cpu(this_cpu);
7159
f492e12e 7160 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7161 sd, CPU_NEWLY_IDLE,
7162 &continue_balancing);
9bd721c5
JL
7163
7164 domain_cost = sched_clock_cpu(this_cpu) - t0;
7165 if (domain_cost > sd->max_newidle_lb_cost)
7166 sd->max_newidle_lb_cost = domain_cost;
7167
7168 curr_cost += domain_cost;
f492e12e 7169 }
1e3c88bd 7170
52a08ef1 7171 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7172
7173 /*
7174 * Stop searching for tasks to pull if there are
7175 * now runnable tasks on this rq.
7176 */
7177 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7178 break;
1e3c88bd 7179 }
dce840a0 7180 rcu_read_unlock();
f492e12e
PZ
7181
7182 raw_spin_lock(&this_rq->lock);
7183
0e5b5337
JL
7184 if (curr_cost > this_rq->max_idle_balance_cost)
7185 this_rq->max_idle_balance_cost = curr_cost;
7186
e5fc6611 7187 /*
0e5b5337
JL
7188 * While browsing the domains, we released the rq lock, a task could
7189 * have been enqueued in the meantime. Since we're not going idle,
7190 * pretend we pulled a task.
e5fc6611 7191 */
0e5b5337 7192 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7193 pulled_task = 1;
e5fc6611 7194
52a08ef1
JL
7195out:
7196 /* Move the next balance forward */
7197 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7198 this_rq->next_balance = next_balance;
9bd721c5 7199
e4aa358b 7200 /* Is there a task of a high priority class? */
46383648 7201 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7202 pulled_task = -1;
7203
7204 if (pulled_task) {
7205 idle_exit_fair(this_rq);
6e83125c 7206 this_rq->idle_stamp = 0;
e4aa358b 7207 }
6e83125c 7208
3c4017c1 7209 return pulled_task;
1e3c88bd
PZ
7210}
7211
7212/*
969c7921
TH
7213 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7214 * running tasks off the busiest CPU onto idle CPUs. It requires at
7215 * least 1 task to be running on each physical CPU where possible, and
7216 * avoids physical / logical imbalances.
1e3c88bd 7217 */
969c7921 7218static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7219{
969c7921
TH
7220 struct rq *busiest_rq = data;
7221 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7222 int target_cpu = busiest_rq->push_cpu;
969c7921 7223 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7224 struct sched_domain *sd;
e5673f28 7225 struct task_struct *p = NULL;
969c7921
TH
7226
7227 raw_spin_lock_irq(&busiest_rq->lock);
7228
7229 /* make sure the requested cpu hasn't gone down in the meantime */
7230 if (unlikely(busiest_cpu != smp_processor_id() ||
7231 !busiest_rq->active_balance))
7232 goto out_unlock;
1e3c88bd
PZ
7233
7234 /* Is there any task to move? */
7235 if (busiest_rq->nr_running <= 1)
969c7921 7236 goto out_unlock;
1e3c88bd
PZ
7237
7238 /*
7239 * This condition is "impossible", if it occurs
7240 * we need to fix it. Originally reported by
7241 * Bjorn Helgaas on a 128-cpu setup.
7242 */
7243 BUG_ON(busiest_rq == target_rq);
7244
1e3c88bd 7245 /* Search for an sd spanning us and the target CPU. */
dce840a0 7246 rcu_read_lock();
1e3c88bd
PZ
7247 for_each_domain(target_cpu, sd) {
7248 if ((sd->flags & SD_LOAD_BALANCE) &&
7249 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7250 break;
7251 }
7252
7253 if (likely(sd)) {
8e45cb54
PZ
7254 struct lb_env env = {
7255 .sd = sd,
ddcdf6e7
PZ
7256 .dst_cpu = target_cpu,
7257 .dst_rq = target_rq,
7258 .src_cpu = busiest_rq->cpu,
7259 .src_rq = busiest_rq,
8e45cb54
PZ
7260 .idle = CPU_IDLE,
7261 };
7262
1e3c88bd
PZ
7263 schedstat_inc(sd, alb_count);
7264
e5673f28
KT
7265 p = detach_one_task(&env);
7266 if (p)
1e3c88bd
PZ
7267 schedstat_inc(sd, alb_pushed);
7268 else
7269 schedstat_inc(sd, alb_failed);
7270 }
dce840a0 7271 rcu_read_unlock();
969c7921
TH
7272out_unlock:
7273 busiest_rq->active_balance = 0;
e5673f28
KT
7274 raw_spin_unlock(&busiest_rq->lock);
7275
7276 if (p)
7277 attach_one_task(target_rq, p);
7278
7279 local_irq_enable();
7280
969c7921 7281 return 0;
1e3c88bd
PZ
7282}
7283
d987fc7f
MG
7284static inline int on_null_domain(struct rq *rq)
7285{
7286 return unlikely(!rcu_dereference_sched(rq->sd));
7287}
7288
3451d024 7289#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7290/*
7291 * idle load balancing details
83cd4fe2
VP
7292 * - When one of the busy CPUs notice that there may be an idle rebalancing
7293 * needed, they will kick the idle load balancer, which then does idle
7294 * load balancing for all the idle CPUs.
7295 */
1e3c88bd 7296static struct {
83cd4fe2 7297 cpumask_var_t idle_cpus_mask;
0b005cf5 7298 atomic_t nr_cpus;
83cd4fe2
VP
7299 unsigned long next_balance; /* in jiffy units */
7300} nohz ____cacheline_aligned;
1e3c88bd 7301
3dd0337d 7302static inline int find_new_ilb(void)
1e3c88bd 7303{
0b005cf5 7304 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7305
786d6dc7
SS
7306 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7307 return ilb;
7308
7309 return nr_cpu_ids;
1e3c88bd 7310}
1e3c88bd 7311
83cd4fe2
VP
7312/*
7313 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7314 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7315 * CPU (if there is one).
7316 */
0aeeeeba 7317static void nohz_balancer_kick(void)
83cd4fe2
VP
7318{
7319 int ilb_cpu;
7320
7321 nohz.next_balance++;
7322
3dd0337d 7323 ilb_cpu = find_new_ilb();
83cd4fe2 7324
0b005cf5
SS
7325 if (ilb_cpu >= nr_cpu_ids)
7326 return;
83cd4fe2 7327
cd490c5b 7328 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7329 return;
7330 /*
7331 * Use smp_send_reschedule() instead of resched_cpu().
7332 * This way we generate a sched IPI on the target cpu which
7333 * is idle. And the softirq performing nohz idle load balance
7334 * will be run before returning from the IPI.
7335 */
7336 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7337 return;
7338}
7339
c1cc017c 7340static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7341{
7342 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7343 /*
7344 * Completely isolated CPUs don't ever set, so we must test.
7345 */
7346 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7347 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7348 atomic_dec(&nohz.nr_cpus);
7349 }
71325960
SS
7350 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7351 }
7352}
7353
69e1e811
SS
7354static inline void set_cpu_sd_state_busy(void)
7355{
7356 struct sched_domain *sd;
37dc6b50 7357 int cpu = smp_processor_id();
69e1e811 7358
69e1e811 7359 rcu_read_lock();
37dc6b50 7360 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7361
7362 if (!sd || !sd->nohz_idle)
7363 goto unlock;
7364 sd->nohz_idle = 0;
7365
63b2ca30 7366 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7367unlock:
69e1e811
SS
7368 rcu_read_unlock();
7369}
7370
7371void set_cpu_sd_state_idle(void)
7372{
7373 struct sched_domain *sd;
37dc6b50 7374 int cpu = smp_processor_id();
69e1e811 7375
69e1e811 7376 rcu_read_lock();
37dc6b50 7377 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7378
7379 if (!sd || sd->nohz_idle)
7380 goto unlock;
7381 sd->nohz_idle = 1;
7382
63b2ca30 7383 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7384unlock:
69e1e811
SS
7385 rcu_read_unlock();
7386}
7387
1e3c88bd 7388/*
c1cc017c 7389 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7390 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7391 */
c1cc017c 7392void nohz_balance_enter_idle(int cpu)
1e3c88bd 7393{
71325960
SS
7394 /*
7395 * If this cpu is going down, then nothing needs to be done.
7396 */
7397 if (!cpu_active(cpu))
7398 return;
7399
c1cc017c
AS
7400 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7401 return;
1e3c88bd 7402
d987fc7f
MG
7403 /*
7404 * If we're a completely isolated CPU, we don't play.
7405 */
7406 if (on_null_domain(cpu_rq(cpu)))
7407 return;
7408
c1cc017c
AS
7409 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7410 atomic_inc(&nohz.nr_cpus);
7411 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7412}
71325960 7413
0db0628d 7414static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7415 unsigned long action, void *hcpu)
7416{
7417 switch (action & ~CPU_TASKS_FROZEN) {
7418 case CPU_DYING:
c1cc017c 7419 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7420 return NOTIFY_OK;
7421 default:
7422 return NOTIFY_DONE;
7423 }
7424}
1e3c88bd
PZ
7425#endif
7426
7427static DEFINE_SPINLOCK(balancing);
7428
49c022e6
PZ
7429/*
7430 * Scale the max load_balance interval with the number of CPUs in the system.
7431 * This trades load-balance latency on larger machines for less cross talk.
7432 */
029632fb 7433void update_max_interval(void)
49c022e6
PZ
7434{
7435 max_load_balance_interval = HZ*num_online_cpus()/10;
7436}
7437
1e3c88bd
PZ
7438/*
7439 * It checks each scheduling domain to see if it is due to be balanced,
7440 * and initiates a balancing operation if so.
7441 *
b9b0853a 7442 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7443 */
f7ed0a89 7444static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7445{
23f0d209 7446 int continue_balancing = 1;
f7ed0a89 7447 int cpu = rq->cpu;
1e3c88bd 7448 unsigned long interval;
04f733b4 7449 struct sched_domain *sd;
1e3c88bd
PZ
7450 /* Earliest time when we have to do rebalance again */
7451 unsigned long next_balance = jiffies + 60*HZ;
7452 int update_next_balance = 0;
f48627e6
JL
7453 int need_serialize, need_decay = 0;
7454 u64 max_cost = 0;
1e3c88bd 7455
48a16753 7456 update_blocked_averages(cpu);
2069dd75 7457
dce840a0 7458 rcu_read_lock();
1e3c88bd 7459 for_each_domain(cpu, sd) {
f48627e6
JL
7460 /*
7461 * Decay the newidle max times here because this is a regular
7462 * visit to all the domains. Decay ~1% per second.
7463 */
7464 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7465 sd->max_newidle_lb_cost =
7466 (sd->max_newidle_lb_cost * 253) / 256;
7467 sd->next_decay_max_lb_cost = jiffies + HZ;
7468 need_decay = 1;
7469 }
7470 max_cost += sd->max_newidle_lb_cost;
7471
1e3c88bd
PZ
7472 if (!(sd->flags & SD_LOAD_BALANCE))
7473 continue;
7474
f48627e6
JL
7475 /*
7476 * Stop the load balance at this level. There is another
7477 * CPU in our sched group which is doing load balancing more
7478 * actively.
7479 */
7480 if (!continue_balancing) {
7481 if (need_decay)
7482 continue;
7483 break;
7484 }
7485
52a08ef1 7486 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7487
7488 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7489 if (need_serialize) {
7490 if (!spin_trylock(&balancing))
7491 goto out;
7492 }
7493
7494 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7495 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7496 /*
6263322c 7497 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7498 * env->dst_cpu, so we can't know our idle
7499 * state even if we migrated tasks. Update it.
1e3c88bd 7500 */
de5eb2dd 7501 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7502 }
7503 sd->last_balance = jiffies;
52a08ef1 7504 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7505 }
7506 if (need_serialize)
7507 spin_unlock(&balancing);
7508out:
7509 if (time_after(next_balance, sd->last_balance + interval)) {
7510 next_balance = sd->last_balance + interval;
7511 update_next_balance = 1;
7512 }
f48627e6
JL
7513 }
7514 if (need_decay) {
1e3c88bd 7515 /*
f48627e6
JL
7516 * Ensure the rq-wide value also decays but keep it at a
7517 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7518 */
f48627e6
JL
7519 rq->max_idle_balance_cost =
7520 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7521 }
dce840a0 7522 rcu_read_unlock();
1e3c88bd
PZ
7523
7524 /*
7525 * next_balance will be updated only when there is a need.
7526 * When the cpu is attached to null domain for ex, it will not be
7527 * updated.
7528 */
7529 if (likely(update_next_balance))
7530 rq->next_balance = next_balance;
7531}
7532
3451d024 7533#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7534/*
3451d024 7535 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7536 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7537 */
208cb16b 7538static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7539{
208cb16b 7540 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7541 struct rq *rq;
7542 int balance_cpu;
7543
1c792db7
SS
7544 if (idle != CPU_IDLE ||
7545 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7546 goto end;
83cd4fe2
VP
7547
7548 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7549 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7550 continue;
7551
7552 /*
7553 * If this cpu gets work to do, stop the load balancing
7554 * work being done for other cpus. Next load
7555 * balancing owner will pick it up.
7556 */
1c792db7 7557 if (need_resched())
83cd4fe2 7558 break;
83cd4fe2 7559
5ed4f1d9
VG
7560 rq = cpu_rq(balance_cpu);
7561
ed61bbc6
TC
7562 /*
7563 * If time for next balance is due,
7564 * do the balance.
7565 */
7566 if (time_after_eq(jiffies, rq->next_balance)) {
7567 raw_spin_lock_irq(&rq->lock);
7568 update_rq_clock(rq);
7569 update_idle_cpu_load(rq);
7570 raw_spin_unlock_irq(&rq->lock);
7571 rebalance_domains(rq, CPU_IDLE);
7572 }
83cd4fe2 7573
83cd4fe2
VP
7574 if (time_after(this_rq->next_balance, rq->next_balance))
7575 this_rq->next_balance = rq->next_balance;
7576 }
7577 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7578end:
7579 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7580}
7581
7582/*
0b005cf5
SS
7583 * Current heuristic for kicking the idle load balancer in the presence
7584 * of an idle cpu is the system.
7585 * - This rq has more than one task.
7586 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7587 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7588 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7589 * domain span are idle.
83cd4fe2 7590 */
4a725627 7591static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7592{
7593 unsigned long now = jiffies;
0b005cf5 7594 struct sched_domain *sd;
63b2ca30 7595 struct sched_group_capacity *sgc;
4a725627 7596 int nr_busy, cpu = rq->cpu;
83cd4fe2 7597
4a725627 7598 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7599 return 0;
7600
1c792db7
SS
7601 /*
7602 * We may be recently in ticked or tickless idle mode. At the first
7603 * busy tick after returning from idle, we will update the busy stats.
7604 */
69e1e811 7605 set_cpu_sd_state_busy();
c1cc017c 7606 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7607
7608 /*
7609 * None are in tickless mode and hence no need for NOHZ idle load
7610 * balancing.
7611 */
7612 if (likely(!atomic_read(&nohz.nr_cpus)))
7613 return 0;
1c792db7
SS
7614
7615 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7616 return 0;
7617
0b005cf5
SS
7618 if (rq->nr_running >= 2)
7619 goto need_kick;
83cd4fe2 7620
067491b7 7621 rcu_read_lock();
37dc6b50 7622 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7623
37dc6b50 7624 if (sd) {
63b2ca30
NP
7625 sgc = sd->groups->sgc;
7626 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7627
37dc6b50 7628 if (nr_busy > 1)
067491b7 7629 goto need_kick_unlock;
83cd4fe2 7630 }
37dc6b50
PM
7631
7632 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7633
7634 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7635 sched_domain_span(sd)) < cpu))
7636 goto need_kick_unlock;
7637
067491b7 7638 rcu_read_unlock();
83cd4fe2 7639 return 0;
067491b7
PZ
7640
7641need_kick_unlock:
7642 rcu_read_unlock();
0b005cf5
SS
7643need_kick:
7644 return 1;
83cd4fe2
VP
7645}
7646#else
208cb16b 7647static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7648#endif
7649
7650/*
7651 * run_rebalance_domains is triggered when needed from the scheduler tick.
7652 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7653 */
1e3c88bd
PZ
7654static void run_rebalance_domains(struct softirq_action *h)
7655{
208cb16b 7656 struct rq *this_rq = this_rq();
6eb57e0d 7657 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7658 CPU_IDLE : CPU_NOT_IDLE;
7659
f7ed0a89 7660 rebalance_domains(this_rq, idle);
1e3c88bd 7661
1e3c88bd 7662 /*
83cd4fe2 7663 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7664 * balancing on behalf of the other idle cpus whose ticks are
7665 * stopped.
7666 */
208cb16b 7667 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7668}
7669
1e3c88bd
PZ
7670/*
7671 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7672 */
7caff66f 7673void trigger_load_balance(struct rq *rq)
1e3c88bd 7674{
1e3c88bd 7675 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7676 if (unlikely(on_null_domain(rq)))
7677 return;
7678
7679 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7680 raise_softirq(SCHED_SOFTIRQ);
3451d024 7681#ifdef CONFIG_NO_HZ_COMMON
c726099e 7682 if (nohz_kick_needed(rq))
0aeeeeba 7683 nohz_balancer_kick();
83cd4fe2 7684#endif
1e3c88bd
PZ
7685}
7686
0bcdcf28
CE
7687static void rq_online_fair(struct rq *rq)
7688{
7689 update_sysctl();
0e59bdae
KT
7690
7691 update_runtime_enabled(rq);
0bcdcf28
CE
7692}
7693
7694static void rq_offline_fair(struct rq *rq)
7695{
7696 update_sysctl();
a4c96ae3
PB
7697
7698 /* Ensure any throttled groups are reachable by pick_next_task */
7699 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7700}
7701
55e12e5e 7702#endif /* CONFIG_SMP */
e1d1484f 7703
bf0f6f24
IM
7704/*
7705 * scheduler tick hitting a task of our scheduling class:
7706 */
8f4d37ec 7707static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7708{
7709 struct cfs_rq *cfs_rq;
7710 struct sched_entity *se = &curr->se;
7711
7712 for_each_sched_entity(se) {
7713 cfs_rq = cfs_rq_of(se);
8f4d37ec 7714 entity_tick(cfs_rq, se, queued);
bf0f6f24 7715 }
18bf2805 7716
10e84b97 7717 if (numabalancing_enabled)
cbee9f88 7718 task_tick_numa(rq, curr);
3d59eebc 7719
18bf2805 7720 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7721}
7722
7723/*
cd29fe6f
PZ
7724 * called on fork with the child task as argument from the parent's context
7725 * - child not yet on the tasklist
7726 * - preemption disabled
bf0f6f24 7727 */
cd29fe6f 7728static void task_fork_fair(struct task_struct *p)
bf0f6f24 7729{
4fc420c9
DN
7730 struct cfs_rq *cfs_rq;
7731 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7732 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7733 struct rq *rq = this_rq();
7734 unsigned long flags;
7735
05fa785c 7736 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7737
861d034e
PZ
7738 update_rq_clock(rq);
7739
4fc420c9
DN
7740 cfs_rq = task_cfs_rq(current);
7741 curr = cfs_rq->curr;
7742
6c9a27f5
DN
7743 /*
7744 * Not only the cpu but also the task_group of the parent might have
7745 * been changed after parent->se.parent,cfs_rq were copied to
7746 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7747 * of child point to valid ones.
7748 */
7749 rcu_read_lock();
7750 __set_task_cpu(p, this_cpu);
7751 rcu_read_unlock();
bf0f6f24 7752
7109c442 7753 update_curr(cfs_rq);
cd29fe6f 7754
b5d9d734
MG
7755 if (curr)
7756 se->vruntime = curr->vruntime;
aeb73b04 7757 place_entity(cfs_rq, se, 1);
4d78e7b6 7758
cd29fe6f 7759 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7760 /*
edcb60a3
IM
7761 * Upon rescheduling, sched_class::put_prev_task() will place
7762 * 'current' within the tree based on its new key value.
7763 */
4d78e7b6 7764 swap(curr->vruntime, se->vruntime);
8875125e 7765 resched_curr(rq);
4d78e7b6 7766 }
bf0f6f24 7767
88ec22d3
PZ
7768 se->vruntime -= cfs_rq->min_vruntime;
7769
05fa785c 7770 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7771}
7772
cb469845
SR
7773/*
7774 * Priority of the task has changed. Check to see if we preempt
7775 * the current task.
7776 */
da7a735e
PZ
7777static void
7778prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7779{
da0c1e65 7780 if (!task_on_rq_queued(p))
da7a735e
PZ
7781 return;
7782
cb469845
SR
7783 /*
7784 * Reschedule if we are currently running on this runqueue and
7785 * our priority decreased, or if we are not currently running on
7786 * this runqueue and our priority is higher than the current's
7787 */
da7a735e 7788 if (rq->curr == p) {
cb469845 7789 if (p->prio > oldprio)
8875125e 7790 resched_curr(rq);
cb469845 7791 } else
15afe09b 7792 check_preempt_curr(rq, p, 0);
cb469845
SR
7793}
7794
da7a735e
PZ
7795static void switched_from_fair(struct rq *rq, struct task_struct *p)
7796{
7797 struct sched_entity *se = &p->se;
7798 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7799
7800 /*
791c9e02 7801 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7802 * switched back to the fair class the enqueue_entity(.flags=0) will
7803 * do the right thing.
7804 *
da0c1e65
KT
7805 * If it's queued, then the dequeue_entity(.flags=0) will already
7806 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7807 * the task is sleeping will it still have non-normalized vruntime.
7808 */
da0c1e65 7809 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7810 /*
7811 * Fix up our vruntime so that the current sleep doesn't
7812 * cause 'unlimited' sleep bonus.
7813 */
7814 place_entity(cfs_rq, se, 0);
7815 se->vruntime -= cfs_rq->min_vruntime;
7816 }
9ee474f5 7817
141965c7 7818#ifdef CONFIG_SMP
9ee474f5
PT
7819 /*
7820 * Remove our load from contribution when we leave sched_fair
7821 * and ensure we don't carry in an old decay_count if we
7822 * switch back.
7823 */
87e3c8ae
KT
7824 if (se->avg.decay_count) {
7825 __synchronize_entity_decay(se);
7826 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7827 }
7828#endif
da7a735e
PZ
7829}
7830
cb469845
SR
7831/*
7832 * We switched to the sched_fair class.
7833 */
da7a735e 7834static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7835{
eb7a59b2 7836#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7837 struct sched_entity *se = &p->se;
eb7a59b2
M
7838 /*
7839 * Since the real-depth could have been changed (only FAIR
7840 * class maintain depth value), reset depth properly.
7841 */
7842 se->depth = se->parent ? se->parent->depth + 1 : 0;
7843#endif
da0c1e65 7844 if (!task_on_rq_queued(p))
da7a735e
PZ
7845 return;
7846
cb469845
SR
7847 /*
7848 * We were most likely switched from sched_rt, so
7849 * kick off the schedule if running, otherwise just see
7850 * if we can still preempt the current task.
7851 */
da7a735e 7852 if (rq->curr == p)
8875125e 7853 resched_curr(rq);
cb469845 7854 else
15afe09b 7855 check_preempt_curr(rq, p, 0);
cb469845
SR
7856}
7857
83b699ed
SV
7858/* Account for a task changing its policy or group.
7859 *
7860 * This routine is mostly called to set cfs_rq->curr field when a task
7861 * migrates between groups/classes.
7862 */
7863static void set_curr_task_fair(struct rq *rq)
7864{
7865 struct sched_entity *se = &rq->curr->se;
7866
ec12cb7f
PT
7867 for_each_sched_entity(se) {
7868 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7869
7870 set_next_entity(cfs_rq, se);
7871 /* ensure bandwidth has been allocated on our new cfs_rq */
7872 account_cfs_rq_runtime(cfs_rq, 0);
7873 }
83b699ed
SV
7874}
7875
029632fb
PZ
7876void init_cfs_rq(struct cfs_rq *cfs_rq)
7877{
7878 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7879 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7880#ifndef CONFIG_64BIT
7881 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7882#endif
141965c7 7883#ifdef CONFIG_SMP
9ee474f5 7884 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7885 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7886#endif
029632fb
PZ
7887}
7888
810b3817 7889#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7890static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7891{
fed14d45 7892 struct sched_entity *se = &p->se;
aff3e498 7893 struct cfs_rq *cfs_rq;
fed14d45 7894
b2b5ce02
PZ
7895 /*
7896 * If the task was not on the rq at the time of this cgroup movement
7897 * it must have been asleep, sleeping tasks keep their ->vruntime
7898 * absolute on their old rq until wakeup (needed for the fair sleeper
7899 * bonus in place_entity()).
7900 *
7901 * If it was on the rq, we've just 'preempted' it, which does convert
7902 * ->vruntime to a relative base.
7903 *
7904 * Make sure both cases convert their relative position when migrating
7905 * to another cgroup's rq. This does somewhat interfere with the
7906 * fair sleeper stuff for the first placement, but who cares.
7907 */
7ceff013 7908 /*
da0c1e65 7909 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7910 * But there are some cases where it has already been normalized:
7911 *
7912 * - Moving a forked child which is waiting for being woken up by
7913 * wake_up_new_task().
62af3783
DN
7914 * - Moving a task which has been woken up by try_to_wake_up() and
7915 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7916 *
7917 * To prevent boost or penalty in the new cfs_rq caused by delta
7918 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7919 */
da0c1e65
KT
7920 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7921 queued = 1;
7ceff013 7922
da0c1e65 7923 if (!queued)
fed14d45 7924 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7925 set_task_rq(p, task_cpu(p));
fed14d45 7926 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7927 if (!queued) {
fed14d45
PZ
7928 cfs_rq = cfs_rq_of(se);
7929 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7930#ifdef CONFIG_SMP
7931 /*
7932 * migrate_task_rq_fair() will have removed our previous
7933 * contribution, but we must synchronize for ongoing future
7934 * decay.
7935 */
fed14d45
PZ
7936 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7937 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7938#endif
7939 }
810b3817 7940}
029632fb
PZ
7941
7942void free_fair_sched_group(struct task_group *tg)
7943{
7944 int i;
7945
7946 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7947
7948 for_each_possible_cpu(i) {
7949 if (tg->cfs_rq)
7950 kfree(tg->cfs_rq[i]);
7951 if (tg->se)
7952 kfree(tg->se[i]);
7953 }
7954
7955 kfree(tg->cfs_rq);
7956 kfree(tg->se);
7957}
7958
7959int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7960{
7961 struct cfs_rq *cfs_rq;
7962 struct sched_entity *se;
7963 int i;
7964
7965 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7966 if (!tg->cfs_rq)
7967 goto err;
7968 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7969 if (!tg->se)
7970 goto err;
7971
7972 tg->shares = NICE_0_LOAD;
7973
7974 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7975
7976 for_each_possible_cpu(i) {
7977 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7978 GFP_KERNEL, cpu_to_node(i));
7979 if (!cfs_rq)
7980 goto err;
7981
7982 se = kzalloc_node(sizeof(struct sched_entity),
7983 GFP_KERNEL, cpu_to_node(i));
7984 if (!se)
7985 goto err_free_rq;
7986
7987 init_cfs_rq(cfs_rq);
7988 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7989 }
7990
7991 return 1;
7992
7993err_free_rq:
7994 kfree(cfs_rq);
7995err:
7996 return 0;
7997}
7998
7999void unregister_fair_sched_group(struct task_group *tg, int cpu)
8000{
8001 struct rq *rq = cpu_rq(cpu);
8002 unsigned long flags;
8003
8004 /*
8005 * Only empty task groups can be destroyed; so we can speculatively
8006 * check on_list without danger of it being re-added.
8007 */
8008 if (!tg->cfs_rq[cpu]->on_list)
8009 return;
8010
8011 raw_spin_lock_irqsave(&rq->lock, flags);
8012 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8013 raw_spin_unlock_irqrestore(&rq->lock, flags);
8014}
8015
8016void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8017 struct sched_entity *se, int cpu,
8018 struct sched_entity *parent)
8019{
8020 struct rq *rq = cpu_rq(cpu);
8021
8022 cfs_rq->tg = tg;
8023 cfs_rq->rq = rq;
029632fb
PZ
8024 init_cfs_rq_runtime(cfs_rq);
8025
8026 tg->cfs_rq[cpu] = cfs_rq;
8027 tg->se[cpu] = se;
8028
8029 /* se could be NULL for root_task_group */
8030 if (!se)
8031 return;
8032
fed14d45 8033 if (!parent) {
029632fb 8034 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8035 se->depth = 0;
8036 } else {
029632fb 8037 se->cfs_rq = parent->my_q;
fed14d45
PZ
8038 se->depth = parent->depth + 1;
8039 }
029632fb
PZ
8040
8041 se->my_q = cfs_rq;
0ac9b1c2
PT
8042 /* guarantee group entities always have weight */
8043 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8044 se->parent = parent;
8045}
8046
8047static DEFINE_MUTEX(shares_mutex);
8048
8049int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8050{
8051 int i;
8052 unsigned long flags;
8053
8054 /*
8055 * We can't change the weight of the root cgroup.
8056 */
8057 if (!tg->se[0])
8058 return -EINVAL;
8059
8060 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8061
8062 mutex_lock(&shares_mutex);
8063 if (tg->shares == shares)
8064 goto done;
8065
8066 tg->shares = shares;
8067 for_each_possible_cpu(i) {
8068 struct rq *rq = cpu_rq(i);
8069 struct sched_entity *se;
8070
8071 se = tg->se[i];
8072 /* Propagate contribution to hierarchy */
8073 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8074
8075 /* Possible calls to update_curr() need rq clock */
8076 update_rq_clock(rq);
17bc14b7 8077 for_each_sched_entity(se)
029632fb
PZ
8078 update_cfs_shares(group_cfs_rq(se));
8079 raw_spin_unlock_irqrestore(&rq->lock, flags);
8080 }
8081
8082done:
8083 mutex_unlock(&shares_mutex);
8084 return 0;
8085}
8086#else /* CONFIG_FAIR_GROUP_SCHED */
8087
8088void free_fair_sched_group(struct task_group *tg) { }
8089
8090int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8091{
8092 return 1;
8093}
8094
8095void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8096
8097#endif /* CONFIG_FAIR_GROUP_SCHED */
8098
810b3817 8099
6d686f45 8100static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8101{
8102 struct sched_entity *se = &task->se;
0d721cea
PW
8103 unsigned int rr_interval = 0;
8104
8105 /*
8106 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8107 * idle runqueue:
8108 */
0d721cea 8109 if (rq->cfs.load.weight)
a59f4e07 8110 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8111
8112 return rr_interval;
8113}
8114
bf0f6f24
IM
8115/*
8116 * All the scheduling class methods:
8117 */
029632fb 8118const struct sched_class fair_sched_class = {
5522d5d5 8119 .next = &idle_sched_class,
bf0f6f24
IM
8120 .enqueue_task = enqueue_task_fair,
8121 .dequeue_task = dequeue_task_fair,
8122 .yield_task = yield_task_fair,
d95f4122 8123 .yield_to_task = yield_to_task_fair,
bf0f6f24 8124
2e09bf55 8125 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8126
8127 .pick_next_task = pick_next_task_fair,
8128 .put_prev_task = put_prev_task_fair,
8129
681f3e68 8130#ifdef CONFIG_SMP
4ce72a2c 8131 .select_task_rq = select_task_rq_fair,
0a74bef8 8132 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8133
0bcdcf28
CE
8134 .rq_online = rq_online_fair,
8135 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8136
8137 .task_waking = task_waking_fair,
681f3e68 8138#endif
bf0f6f24 8139
83b699ed 8140 .set_curr_task = set_curr_task_fair,
bf0f6f24 8141 .task_tick = task_tick_fair,
cd29fe6f 8142 .task_fork = task_fork_fair,
cb469845
SR
8143
8144 .prio_changed = prio_changed_fair,
da7a735e 8145 .switched_from = switched_from_fair,
cb469845 8146 .switched_to = switched_to_fair,
810b3817 8147
0d721cea
PW
8148 .get_rr_interval = get_rr_interval_fair,
8149
6e998916
SG
8150 .update_curr = update_curr_fair,
8151
810b3817 8152#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8153 .task_move_group = task_move_group_fair,
810b3817 8154#endif
bf0f6f24
IM
8155};
8156
8157#ifdef CONFIG_SCHED_DEBUG
029632fb 8158void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8159{
bf0f6f24
IM
8160 struct cfs_rq *cfs_rq;
8161
5973e5b9 8162 rcu_read_lock();
c3b64f1e 8163 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8164 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8165 rcu_read_unlock();
bf0f6f24
IM
8166}
8167#endif
029632fb
PZ
8168
8169__init void init_sched_fair_class(void)
8170{
8171#ifdef CONFIG_SMP
8172 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8173
3451d024 8174#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8175 nohz.next_balance = jiffies;
029632fb 8176 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8177 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8178#endif
8179#endif /* SMP */
8180
8181}
This page took 1.201573 seconds and 5 git commands to generate.