Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/net
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
325static inline int
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339/* return depth at which a sched entity is present in the hierarchy */
340static inline int depth_se(struct sched_entity *se)
341{
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348}
349
350static void
351find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352{
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380}
381
8f48894f
PZ
382#else /* !CONFIG_FAIR_GROUP_SCHED */
383
384static inline struct task_struct *task_of(struct sched_entity *se)
385{
386 return container_of(se, struct task_struct, se);
387}
bf0f6f24 388
62160e3f
IM
389static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390{
391 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
392}
393
394#define entity_is_task(se) 1
395
b758149c
PZ
396#define for_each_sched_entity(se) \
397 for (; se; se = NULL)
bf0f6f24 398
b758149c 399static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 400{
b758149c 401 return &task_rq(p)->cfs;
bf0f6f24
IM
402}
403
b758149c
PZ
404static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405{
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410}
411
412/* runqueue "owned" by this group */
413static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414{
415 return NULL;
416}
417
3d4b47b4
PZ
418static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419{
420}
421
422static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423{
424}
425
b758149c
PZ
426#define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429static inline int
430is_same_group(struct sched_entity *se, struct sched_entity *pse)
431{
432 return 1;
433}
434
435static inline struct sched_entity *parent_entity(struct sched_entity *se)
436{
437 return NULL;
438}
439
464b7527
PZ
440static inline void
441find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442{
443}
444
b758149c
PZ
445#endif /* CONFIG_FAIR_GROUP_SCHED */
446
6c16a6dc 447static __always_inline
9dbdb155 448void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
449
450/**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
1bf08230 454static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 455{
1bf08230 456 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 457 if (delta > 0)
1bf08230 458 max_vruntime = vruntime;
02e0431a 459
1bf08230 460 return max_vruntime;
02e0431a
PZ
461}
462
0702e3eb 463static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
464{
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470}
471
54fdc581
FC
472static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474{
475 return (s64)(a->vruntime - b->vruntime) < 0;
476}
477
1af5f730
PZ
478static void update_min_vruntime(struct cfs_rq *cfs_rq)
479{
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
e17036da 490 if (!cfs_rq->curr)
1af5f730
PZ
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
1bf08230 496 /* ensure we never gain time by being placed backwards. */
1af5f730 497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
498#ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501#endif
1af5f730
PZ
502}
503
bf0f6f24
IM
504/*
505 * Enqueue an entity into the rb-tree:
506 */
0702e3eb 507static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
508{
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
bf0f6f24
IM
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
2bd2d6f2 524 if (entity_before(se, entry)) {
bf0f6f24
IM
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
1af5f730 536 if (leftmost)
57cb499d 537 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
541}
542
0702e3eb 543static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 544{
3fe69747
PZ
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
3fe69747
PZ
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
3fe69747 550 }
e9acbff6 551
bf0f6f24 552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
553}
554
029632fb 555struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 556{
f4b6755f
PZ
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
563}
564
ac53db59
RR
565static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566{
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573}
574
575#ifdef CONFIG_SCHED_DEBUG
029632fb 576struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 577{
7eee3e67 578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 579
70eee74b
BS
580 if (!last)
581 return NULL;
7eee3e67
IM
582
583 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
584}
585
bf0f6f24
IM
586/**************************************************************
587 * Scheduling class statistics methods:
588 */
589
acb4a848 590int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 591 void __user *buffer, size_t *lenp,
b2be5e96
PZ
592 loff_t *ppos)
593{
8d65af78 594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 595 int factor = get_update_sysctl_factor();
b2be5e96
PZ
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
acb4a848
CE
603#define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
608#undef WRT_SYSCTL
609
b2be5e96
PZ
610 return 0;
611}
612#endif
647e7cac 613
a7be37ac 614/*
f9c0b095 615 * delta /= w
a7be37ac 616 */
9dbdb155 617static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 618{
f9c0b095 619 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
621
622 return delta;
623}
624
647e7cac
IM
625/*
626 * The idea is to set a period in which each task runs once.
627 *
532b1858 628 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
4d78e7b6
PZ
633static u64 __sched_period(unsigned long nr_running)
634{
635 u64 period = sysctl_sched_latency;
b2be5e96 636 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
637
638 if (unlikely(nr_running > nr_latency)) {
4bf0b771 639 period = sysctl_sched_min_granularity;
4d78e7b6 640 period *= nr_running;
4d78e7b6
PZ
641 }
642
643 return period;
644}
645
647e7cac
IM
646/*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
f9c0b095 650 * s = p*P[w/rw]
647e7cac 651 */
6d0f0ebd 652static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 653{
0a582440 654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 655
0a582440 656 for_each_sched_entity(se) {
6272d68c 657 struct load_weight *load;
3104bf03 658 struct load_weight lw;
6272d68c
LM
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
f9c0b095 662
0a582440 663 if (unlikely(!se->on_rq)) {
3104bf03 664 lw = cfs_rq->load;
0a582440
MG
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
9dbdb155 669 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
670 }
671 return slice;
bf0f6f24
IM
672}
673
647e7cac 674/*
660cc00f 675 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 676 *
f9c0b095 677 * vs = s/w
647e7cac 678 */
f9c0b095 679static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 680{
f9c0b095 681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
682}
683
a75cdaa9 684#ifdef CONFIG_SMP
fb13c7ee
MG
685static unsigned long task_h_load(struct task_struct *p);
686
a75cdaa9
AS
687static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689/* Give new task start runnable values to heavy its load in infant time */
690void init_task_runnable_average(struct task_struct *p)
691{
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699}
700#else
701void init_task_runnable_average(struct task_struct *p)
702{
703}
704#endif
705
bf0f6f24 706/*
9dbdb155 707 * Update the current task's runtime statistics.
bf0f6f24 708 */
b7cc0896 709static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 710{
429d43bc 711 struct sched_entity *curr = cfs_rq->curr;
78becc27 712 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 713 u64 delta_exec;
bf0f6f24
IM
714
715 if (unlikely(!curr))
716 return;
717
9dbdb155
PZ
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
34f28ecd 720 return;
bf0f6f24 721
8ebc91d9 722 curr->exec_start = now;
d842de87 723
9dbdb155
PZ
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
d842de87
SV
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
f977bb49 736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 737 cpuacct_charge(curtask, delta_exec);
f06febc9 738 account_group_exec_runtime(curtask, delta_exec);
d842de87 739 }
ec12cb7f
PT
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
742}
743
744static inline void
5870db5b 745update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 746{
78becc27 747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
748}
749
bf0f6f24
IM
750/*
751 * Task is being enqueued - update stats:
752 */
d2417e5a 753static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
bf0f6f24
IM
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
429d43bc 759 if (se != cfs_rq->curr)
5870db5b 760 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
761}
762
bf0f6f24 763static void
9ef0a961 764update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
41acab88 766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
771#ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
78becc27 774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
775 }
776#endif
41acab88 777 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
778}
779
780static inline void
19b6a2e3 781update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 782{
bf0f6f24
IM
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
429d43bc 787 if (se != cfs_rq->curr)
9ef0a961 788 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
789}
790
791/*
792 * We are picking a new current task - update its stats:
793 */
794static inline void
79303e9e 795update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
796{
797 /*
798 * We are starting a new run period:
799 */
78becc27 800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
801}
802
bf0f6f24
IM
803/**************************************************
804 * Scheduling class queueing methods:
805 */
806
cbee9f88
PZ
807#ifdef CONFIG_NUMA_BALANCING
808/*
598f0ec0
MG
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
cbee9f88 812 */
598f0ec0
MG
813unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
815
816/* Portion of address space to scan in MB */
817unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 818
4b96a29b
PZ
819/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
de1c9ce6
RR
822/*
823 * After skipping a page migration on a shared page, skip N more numa page
824 * migrations unconditionally. This reduces the number of NUMA migrations
825 * in shared memory workloads, and has the effect of pulling tasks towards
826 * where their memory lives, over pulling the memory towards the task.
827 */
828unsigned int sysctl_numa_balancing_migrate_deferred = 16;
829
598f0ec0
MG
830static unsigned int task_nr_scan_windows(struct task_struct *p)
831{
832 unsigned long rss = 0;
833 unsigned long nr_scan_pages;
834
835 /*
836 * Calculations based on RSS as non-present and empty pages are skipped
837 * by the PTE scanner and NUMA hinting faults should be trapped based
838 * on resident pages
839 */
840 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
841 rss = get_mm_rss(p->mm);
842 if (!rss)
843 rss = nr_scan_pages;
844
845 rss = round_up(rss, nr_scan_pages);
846 return rss / nr_scan_pages;
847}
848
849/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
850#define MAX_SCAN_WINDOW 2560
851
852static unsigned int task_scan_min(struct task_struct *p)
853{
854 unsigned int scan, floor;
855 unsigned int windows = 1;
856
857 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
858 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
859 floor = 1000 / windows;
860
861 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
862 return max_t(unsigned int, floor, scan);
863}
864
865static unsigned int task_scan_max(struct task_struct *p)
866{
867 unsigned int smin = task_scan_min(p);
868 unsigned int smax;
869
870 /* Watch for min being lower than max due to floor calculations */
871 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
872 return max(smin, smax);
873}
874
3a7053b3
MG
875/*
876 * Once a preferred node is selected the scheduler balancer will prefer moving
877 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
878 * scans. This will give the process the chance to accumulate more faults on
879 * the preferred node but still allow the scheduler to move the task again if
880 * the nodes CPUs are overloaded.
881 */
6fe6b2d6 882unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
3a7053b3 883
0ec8aa00
PZ
884static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
885{
886 rq->nr_numa_running += (p->numa_preferred_nid != -1);
887 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
888}
889
890static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
891{
892 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
893 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
894}
895
8c8a743c
PZ
896struct numa_group {
897 atomic_t refcount;
898
899 spinlock_t lock; /* nr_tasks, tasks */
900 int nr_tasks;
e29cf08b 901 pid_t gid;
8c8a743c
PZ
902 struct list_head task_list;
903
904 struct rcu_head rcu;
989348b5
MG
905 unsigned long total_faults;
906 unsigned long faults[0];
8c8a743c
PZ
907};
908
e29cf08b
MG
909pid_t task_numa_group_id(struct task_struct *p)
910{
911 return p->numa_group ? p->numa_group->gid : 0;
912}
913
ac8e895b
MG
914static inline int task_faults_idx(int nid, int priv)
915{
916 return 2 * nid + priv;
917}
918
919static inline unsigned long task_faults(struct task_struct *p, int nid)
920{
921 if (!p->numa_faults)
922 return 0;
923
924 return p->numa_faults[task_faults_idx(nid, 0)] +
925 p->numa_faults[task_faults_idx(nid, 1)];
926}
927
83e1d2cd
MG
928static inline unsigned long group_faults(struct task_struct *p, int nid)
929{
930 if (!p->numa_group)
931 return 0;
932
989348b5 933 return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1];
83e1d2cd
MG
934}
935
936/*
937 * These return the fraction of accesses done by a particular task, or
938 * task group, on a particular numa node. The group weight is given a
939 * larger multiplier, in order to group tasks together that are almost
940 * evenly spread out between numa nodes.
941 */
942static inline unsigned long task_weight(struct task_struct *p, int nid)
943{
944 unsigned long total_faults;
945
946 if (!p->numa_faults)
947 return 0;
948
949 total_faults = p->total_numa_faults;
950
951 if (!total_faults)
952 return 0;
953
954 return 1000 * task_faults(p, nid) / total_faults;
955}
956
957static inline unsigned long group_weight(struct task_struct *p, int nid)
958{
989348b5 959 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
960 return 0;
961
989348b5 962 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
963}
964
e6628d5b 965static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
966static unsigned long source_load(int cpu, int type);
967static unsigned long target_load(int cpu, int type);
968static unsigned long power_of(int cpu);
969static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
970
fb13c7ee 971/* Cached statistics for all CPUs within a node */
58d081b5 972struct numa_stats {
fb13c7ee 973 unsigned long nr_running;
58d081b5 974 unsigned long load;
fb13c7ee
MG
975
976 /* Total compute capacity of CPUs on a node */
977 unsigned long power;
978
979 /* Approximate capacity in terms of runnable tasks on a node */
980 unsigned long capacity;
981 int has_capacity;
58d081b5 982};
e6628d5b 983
fb13c7ee
MG
984/*
985 * XXX borrowed from update_sg_lb_stats
986 */
987static void update_numa_stats(struct numa_stats *ns, int nid)
988{
5eca82a9 989 int cpu, cpus = 0;
fb13c7ee
MG
990
991 memset(ns, 0, sizeof(*ns));
992 for_each_cpu(cpu, cpumask_of_node(nid)) {
993 struct rq *rq = cpu_rq(cpu);
994
995 ns->nr_running += rq->nr_running;
996 ns->load += weighted_cpuload(cpu);
997 ns->power += power_of(cpu);
5eca82a9
PZ
998
999 cpus++;
fb13c7ee
MG
1000 }
1001
5eca82a9
PZ
1002 /*
1003 * If we raced with hotplug and there are no CPUs left in our mask
1004 * the @ns structure is NULL'ed and task_numa_compare() will
1005 * not find this node attractive.
1006 *
1007 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1008 * and bail there.
1009 */
1010 if (!cpus)
1011 return;
1012
fb13c7ee
MG
1013 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1014 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1015 ns->has_capacity = (ns->nr_running < ns->capacity);
1016}
1017
58d081b5
MG
1018struct task_numa_env {
1019 struct task_struct *p;
e6628d5b 1020
58d081b5
MG
1021 int src_cpu, src_nid;
1022 int dst_cpu, dst_nid;
e6628d5b 1023
58d081b5 1024 struct numa_stats src_stats, dst_stats;
e6628d5b 1025
fb13c7ee
MG
1026 int imbalance_pct, idx;
1027
1028 struct task_struct *best_task;
1029 long best_imp;
58d081b5
MG
1030 int best_cpu;
1031};
1032
fb13c7ee
MG
1033static void task_numa_assign(struct task_numa_env *env,
1034 struct task_struct *p, long imp)
1035{
1036 if (env->best_task)
1037 put_task_struct(env->best_task);
1038 if (p)
1039 get_task_struct(p);
1040
1041 env->best_task = p;
1042 env->best_imp = imp;
1043 env->best_cpu = env->dst_cpu;
1044}
1045
1046/*
1047 * This checks if the overall compute and NUMA accesses of the system would
1048 * be improved if the source tasks was migrated to the target dst_cpu taking
1049 * into account that it might be best if task running on the dst_cpu should
1050 * be exchanged with the source task
1051 */
887c290e
RR
1052static void task_numa_compare(struct task_numa_env *env,
1053 long taskimp, long groupimp)
fb13c7ee
MG
1054{
1055 struct rq *src_rq = cpu_rq(env->src_cpu);
1056 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1057 struct task_struct *cur;
1058 long dst_load, src_load;
1059 long load;
887c290e 1060 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1061
1062 rcu_read_lock();
1063 cur = ACCESS_ONCE(dst_rq->curr);
1064 if (cur->pid == 0) /* idle */
1065 cur = NULL;
1066
1067 /*
1068 * "imp" is the fault differential for the source task between the
1069 * source and destination node. Calculate the total differential for
1070 * the source task and potential destination task. The more negative
1071 * the value is, the more rmeote accesses that would be expected to
1072 * be incurred if the tasks were swapped.
1073 */
1074 if (cur) {
1075 /* Skip this swap candidate if cannot move to the source cpu */
1076 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1077 goto unlock;
1078
887c290e
RR
1079 /*
1080 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1081 * in any group then look only at task weights.
887c290e 1082 */
ca28aa53 1083 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1084 imp = taskimp + task_weight(cur, env->src_nid) -
1085 task_weight(cur, env->dst_nid);
ca28aa53
RR
1086 /*
1087 * Add some hysteresis to prevent swapping the
1088 * tasks within a group over tiny differences.
1089 */
1090 if (cur->numa_group)
1091 imp -= imp/16;
887c290e 1092 } else {
ca28aa53
RR
1093 /*
1094 * Compare the group weights. If a task is all by
1095 * itself (not part of a group), use the task weight
1096 * instead.
1097 */
1098 if (env->p->numa_group)
1099 imp = groupimp;
1100 else
1101 imp = taskimp;
1102
1103 if (cur->numa_group)
1104 imp += group_weight(cur, env->src_nid) -
1105 group_weight(cur, env->dst_nid);
1106 else
1107 imp += task_weight(cur, env->src_nid) -
1108 task_weight(cur, env->dst_nid);
887c290e 1109 }
fb13c7ee
MG
1110 }
1111
1112 if (imp < env->best_imp)
1113 goto unlock;
1114
1115 if (!cur) {
1116 /* Is there capacity at our destination? */
1117 if (env->src_stats.has_capacity &&
1118 !env->dst_stats.has_capacity)
1119 goto unlock;
1120
1121 goto balance;
1122 }
1123
1124 /* Balance doesn't matter much if we're running a task per cpu */
1125 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1126 goto assign;
1127
1128 /*
1129 * In the overloaded case, try and keep the load balanced.
1130 */
1131balance:
1132 dst_load = env->dst_stats.load;
1133 src_load = env->src_stats.load;
1134
1135 /* XXX missing power terms */
1136 load = task_h_load(env->p);
1137 dst_load += load;
1138 src_load -= load;
1139
1140 if (cur) {
1141 load = task_h_load(cur);
1142 dst_load -= load;
1143 src_load += load;
1144 }
1145
1146 /* make src_load the smaller */
1147 if (dst_load < src_load)
1148 swap(dst_load, src_load);
1149
1150 if (src_load * env->imbalance_pct < dst_load * 100)
1151 goto unlock;
1152
1153assign:
1154 task_numa_assign(env, cur, imp);
1155unlock:
1156 rcu_read_unlock();
1157}
1158
887c290e
RR
1159static void task_numa_find_cpu(struct task_numa_env *env,
1160 long taskimp, long groupimp)
2c8a50aa
MG
1161{
1162 int cpu;
1163
1164 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1165 /* Skip this CPU if the source task cannot migrate */
1166 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1167 continue;
1168
1169 env->dst_cpu = cpu;
887c290e 1170 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1171 }
1172}
1173
58d081b5
MG
1174static int task_numa_migrate(struct task_struct *p)
1175{
58d081b5
MG
1176 struct task_numa_env env = {
1177 .p = p,
fb13c7ee 1178
58d081b5 1179 .src_cpu = task_cpu(p),
b32e86b4 1180 .src_nid = task_node(p),
fb13c7ee
MG
1181
1182 .imbalance_pct = 112,
1183
1184 .best_task = NULL,
1185 .best_imp = 0,
1186 .best_cpu = -1
58d081b5
MG
1187 };
1188 struct sched_domain *sd;
887c290e 1189 unsigned long taskweight, groupweight;
2c8a50aa 1190 int nid, ret;
887c290e 1191 long taskimp, groupimp;
e6628d5b 1192
58d081b5 1193 /*
fb13c7ee
MG
1194 * Pick the lowest SD_NUMA domain, as that would have the smallest
1195 * imbalance and would be the first to start moving tasks about.
1196 *
1197 * And we want to avoid any moving of tasks about, as that would create
1198 * random movement of tasks -- counter the numa conditions we're trying
1199 * to satisfy here.
58d081b5
MG
1200 */
1201 rcu_read_lock();
fb13c7ee 1202 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1203 if (sd)
1204 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1205 rcu_read_unlock();
1206
46a73e8a
RR
1207 /*
1208 * Cpusets can break the scheduler domain tree into smaller
1209 * balance domains, some of which do not cross NUMA boundaries.
1210 * Tasks that are "trapped" in such domains cannot be migrated
1211 * elsewhere, so there is no point in (re)trying.
1212 */
1213 if (unlikely(!sd)) {
1214 p->numa_preferred_nid = cpu_to_node(task_cpu(p));
1215 return -EINVAL;
1216 }
1217
887c290e
RR
1218 taskweight = task_weight(p, env.src_nid);
1219 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1220 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1221 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1222 taskimp = task_weight(p, env.dst_nid) - taskweight;
1223 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1224 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1225
e1dda8a7
RR
1226 /* If the preferred nid has capacity, try to use it. */
1227 if (env.dst_stats.has_capacity)
887c290e 1228 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1229
1230 /* No space available on the preferred nid. Look elsewhere. */
1231 if (env.best_cpu == -1) {
2c8a50aa
MG
1232 for_each_online_node(nid) {
1233 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1234 continue;
58d081b5 1235
83e1d2cd 1236 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1237 taskimp = task_weight(p, nid) - taskweight;
1238 groupimp = group_weight(p, nid) - groupweight;
1239 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1240 continue;
1241
2c8a50aa
MG
1242 env.dst_nid = nid;
1243 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1244 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1245 }
1246 }
1247
fb13c7ee
MG
1248 /* No better CPU than the current one was found. */
1249 if (env.best_cpu == -1)
1250 return -EAGAIN;
1251
0ec8aa00
PZ
1252 sched_setnuma(p, env.dst_nid);
1253
04bb2f94
RR
1254 /*
1255 * Reset the scan period if the task is being rescheduled on an
1256 * alternative node to recheck if the tasks is now properly placed.
1257 */
1258 p->numa_scan_period = task_scan_min(p);
1259
fb13c7ee
MG
1260 if (env.best_task == NULL) {
1261 int ret = migrate_task_to(p, env.best_cpu);
1262 return ret;
1263 }
1264
1265 ret = migrate_swap(p, env.best_task);
1266 put_task_struct(env.best_task);
1267 return ret;
e6628d5b
MG
1268}
1269
6b9a7460
MG
1270/* Attempt to migrate a task to a CPU on the preferred node. */
1271static void numa_migrate_preferred(struct task_struct *p)
1272{
2739d3ee
RR
1273 /* This task has no NUMA fault statistics yet */
1274 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1275 return;
1276
2739d3ee
RR
1277 /* Periodically retry migrating the task to the preferred node */
1278 p->numa_migrate_retry = jiffies + HZ;
1279
1280 /* Success if task is already running on preferred CPU */
1281 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
6b9a7460
MG
1282 return;
1283
1284 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1285 task_numa_migrate(p);
6b9a7460
MG
1286}
1287
04bb2f94
RR
1288/*
1289 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1290 * increments. The more local the fault statistics are, the higher the scan
1291 * period will be for the next scan window. If local/remote ratio is below
1292 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1293 * scan period will decrease
1294 */
1295#define NUMA_PERIOD_SLOTS 10
1296#define NUMA_PERIOD_THRESHOLD 3
1297
1298/*
1299 * Increase the scan period (slow down scanning) if the majority of
1300 * our memory is already on our local node, or if the majority of
1301 * the page accesses are shared with other processes.
1302 * Otherwise, decrease the scan period.
1303 */
1304static void update_task_scan_period(struct task_struct *p,
1305 unsigned long shared, unsigned long private)
1306{
1307 unsigned int period_slot;
1308 int ratio;
1309 int diff;
1310
1311 unsigned long remote = p->numa_faults_locality[0];
1312 unsigned long local = p->numa_faults_locality[1];
1313
1314 /*
1315 * If there were no record hinting faults then either the task is
1316 * completely idle or all activity is areas that are not of interest
1317 * to automatic numa balancing. Scan slower
1318 */
1319 if (local + shared == 0) {
1320 p->numa_scan_period = min(p->numa_scan_period_max,
1321 p->numa_scan_period << 1);
1322
1323 p->mm->numa_next_scan = jiffies +
1324 msecs_to_jiffies(p->numa_scan_period);
1325
1326 return;
1327 }
1328
1329 /*
1330 * Prepare to scale scan period relative to the current period.
1331 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1332 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1333 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1334 */
1335 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1336 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1337 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1338 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1339 if (!slot)
1340 slot = 1;
1341 diff = slot * period_slot;
1342 } else {
1343 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1344
1345 /*
1346 * Scale scan rate increases based on sharing. There is an
1347 * inverse relationship between the degree of sharing and
1348 * the adjustment made to the scanning period. Broadly
1349 * speaking the intent is that there is little point
1350 * scanning faster if shared accesses dominate as it may
1351 * simply bounce migrations uselessly
1352 */
1353 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1354 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1355 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1356 }
1357
1358 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1359 task_scan_min(p), task_scan_max(p));
1360 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1361}
1362
cbee9f88
PZ
1363static void task_numa_placement(struct task_struct *p)
1364{
83e1d2cd
MG
1365 int seq, nid, max_nid = -1, max_group_nid = -1;
1366 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1367 unsigned long fault_types[2] = { 0, 0 };
7dbd13ed 1368 spinlock_t *group_lock = NULL;
cbee9f88 1369
2832bc19 1370 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1371 if (p->numa_scan_seq == seq)
1372 return;
1373 p->numa_scan_seq = seq;
598f0ec0 1374 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1375
7dbd13ed
MG
1376 /* If the task is part of a group prevent parallel updates to group stats */
1377 if (p->numa_group) {
1378 group_lock = &p->numa_group->lock;
1379 spin_lock(group_lock);
1380 }
1381
688b7585
MG
1382 /* Find the node with the highest number of faults */
1383 for_each_online_node(nid) {
83e1d2cd 1384 unsigned long faults = 0, group_faults = 0;
ac8e895b 1385 int priv, i;
745d6147 1386
ac8e895b 1387 for (priv = 0; priv < 2; priv++) {
8c8a743c
PZ
1388 long diff;
1389
ac8e895b 1390 i = task_faults_idx(nid, priv);
8c8a743c 1391 diff = -p->numa_faults[i];
745d6147 1392
ac8e895b
MG
1393 /* Decay existing window, copy faults since last scan */
1394 p->numa_faults[i] >>= 1;
1395 p->numa_faults[i] += p->numa_faults_buffer[i];
04bb2f94 1396 fault_types[priv] += p->numa_faults_buffer[i];
ac8e895b 1397 p->numa_faults_buffer[i] = 0;
fb13c7ee
MG
1398
1399 faults += p->numa_faults[i];
8c8a743c 1400 diff += p->numa_faults[i];
83e1d2cd 1401 p->total_numa_faults += diff;
8c8a743c
PZ
1402 if (p->numa_group) {
1403 /* safe because we can only change our own group */
989348b5
MG
1404 p->numa_group->faults[i] += diff;
1405 p->numa_group->total_faults += diff;
1406 group_faults += p->numa_group->faults[i];
8c8a743c 1407 }
ac8e895b
MG
1408 }
1409
688b7585
MG
1410 if (faults > max_faults) {
1411 max_faults = faults;
1412 max_nid = nid;
1413 }
83e1d2cd
MG
1414
1415 if (group_faults > max_group_faults) {
1416 max_group_faults = group_faults;
1417 max_group_nid = nid;
1418 }
1419 }
1420
04bb2f94
RR
1421 update_task_scan_period(p, fault_types[0], fault_types[1]);
1422
7dbd13ed
MG
1423 if (p->numa_group) {
1424 /*
1425 * If the preferred task and group nids are different,
1426 * iterate over the nodes again to find the best place.
1427 */
1428 if (max_nid != max_group_nid) {
1429 unsigned long weight, max_weight = 0;
1430
1431 for_each_online_node(nid) {
1432 weight = task_weight(p, nid) + group_weight(p, nid);
1433 if (weight > max_weight) {
1434 max_weight = weight;
1435 max_nid = nid;
1436 }
83e1d2cd
MG
1437 }
1438 }
7dbd13ed
MG
1439
1440 spin_unlock(group_lock);
688b7585
MG
1441 }
1442
6b9a7460 1443 /* Preferred node as the node with the most faults */
3a7053b3 1444 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1445 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1446 sched_setnuma(p, max_nid);
6b9a7460 1447 numa_migrate_preferred(p);
3a7053b3 1448 }
cbee9f88
PZ
1449}
1450
8c8a743c
PZ
1451static inline int get_numa_group(struct numa_group *grp)
1452{
1453 return atomic_inc_not_zero(&grp->refcount);
1454}
1455
1456static inline void put_numa_group(struct numa_group *grp)
1457{
1458 if (atomic_dec_and_test(&grp->refcount))
1459 kfree_rcu(grp, rcu);
1460}
1461
3e6a9418
MG
1462static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1463 int *priv)
8c8a743c
PZ
1464{
1465 struct numa_group *grp, *my_grp;
1466 struct task_struct *tsk;
1467 bool join = false;
1468 int cpu = cpupid_to_cpu(cpupid);
1469 int i;
1470
1471 if (unlikely(!p->numa_group)) {
1472 unsigned int size = sizeof(struct numa_group) +
989348b5 1473 2*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1474
1475 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1476 if (!grp)
1477 return;
1478
1479 atomic_set(&grp->refcount, 1);
1480 spin_lock_init(&grp->lock);
1481 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1482 grp->gid = p->pid;
8c8a743c
PZ
1483
1484 for (i = 0; i < 2*nr_node_ids; i++)
989348b5 1485 grp->faults[i] = p->numa_faults[i];
8c8a743c 1486
989348b5 1487 grp->total_faults = p->total_numa_faults;
83e1d2cd 1488
8c8a743c
PZ
1489 list_add(&p->numa_entry, &grp->task_list);
1490 grp->nr_tasks++;
1491 rcu_assign_pointer(p->numa_group, grp);
1492 }
1493
1494 rcu_read_lock();
1495 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1496
1497 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1498 goto no_join;
8c8a743c
PZ
1499
1500 grp = rcu_dereference(tsk->numa_group);
1501 if (!grp)
3354781a 1502 goto no_join;
8c8a743c
PZ
1503
1504 my_grp = p->numa_group;
1505 if (grp == my_grp)
3354781a 1506 goto no_join;
8c8a743c
PZ
1507
1508 /*
1509 * Only join the other group if its bigger; if we're the bigger group,
1510 * the other task will join us.
1511 */
1512 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1513 goto no_join;
8c8a743c
PZ
1514
1515 /*
1516 * Tie-break on the grp address.
1517 */
1518 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1519 goto no_join;
8c8a743c 1520
dabe1d99
RR
1521 /* Always join threads in the same process. */
1522 if (tsk->mm == current->mm)
1523 join = true;
1524
1525 /* Simple filter to avoid false positives due to PID collisions */
1526 if (flags & TNF_SHARED)
1527 join = true;
8c8a743c 1528
3e6a9418
MG
1529 /* Update priv based on whether false sharing was detected */
1530 *priv = !join;
1531
dabe1d99 1532 if (join && !get_numa_group(grp))
3354781a 1533 goto no_join;
8c8a743c 1534
8c8a743c
PZ
1535 rcu_read_unlock();
1536
1537 if (!join)
1538 return;
1539
989348b5
MG
1540 double_lock(&my_grp->lock, &grp->lock);
1541
8c8a743c 1542 for (i = 0; i < 2*nr_node_ids; i++) {
989348b5
MG
1543 my_grp->faults[i] -= p->numa_faults[i];
1544 grp->faults[i] += p->numa_faults[i];
8c8a743c 1545 }
989348b5
MG
1546 my_grp->total_faults -= p->total_numa_faults;
1547 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1548
1549 list_move(&p->numa_entry, &grp->task_list);
1550 my_grp->nr_tasks--;
1551 grp->nr_tasks++;
1552
1553 spin_unlock(&my_grp->lock);
1554 spin_unlock(&grp->lock);
1555
1556 rcu_assign_pointer(p->numa_group, grp);
1557
1558 put_numa_group(my_grp);
3354781a
PZ
1559 return;
1560
1561no_join:
1562 rcu_read_unlock();
1563 return;
8c8a743c
PZ
1564}
1565
1566void task_numa_free(struct task_struct *p)
1567{
1568 struct numa_group *grp = p->numa_group;
1569 int i;
82727018 1570 void *numa_faults = p->numa_faults;
8c8a743c
PZ
1571
1572 if (grp) {
989348b5 1573 spin_lock(&grp->lock);
8c8a743c 1574 for (i = 0; i < 2*nr_node_ids; i++)
989348b5
MG
1575 grp->faults[i] -= p->numa_faults[i];
1576 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1577
8c8a743c
PZ
1578 list_del(&p->numa_entry);
1579 grp->nr_tasks--;
1580 spin_unlock(&grp->lock);
1581 rcu_assign_pointer(p->numa_group, NULL);
1582 put_numa_group(grp);
1583 }
1584
82727018
RR
1585 p->numa_faults = NULL;
1586 p->numa_faults_buffer = NULL;
1587 kfree(numa_faults);
8c8a743c
PZ
1588}
1589
cbee9f88
PZ
1590/*
1591 * Got a PROT_NONE fault for a page on @node.
1592 */
6688cc05 1593void task_numa_fault(int last_cpupid, int node, int pages, int flags)
cbee9f88
PZ
1594{
1595 struct task_struct *p = current;
6688cc05 1596 bool migrated = flags & TNF_MIGRATED;
ac8e895b 1597 int priv;
cbee9f88 1598
10e84b97 1599 if (!numabalancing_enabled)
1a687c2e
MG
1600 return;
1601
9ff1d9ff
MG
1602 /* for example, ksmd faulting in a user's mm */
1603 if (!p->mm)
1604 return;
1605
82727018
RR
1606 /* Do not worry about placement if exiting */
1607 if (p->state == TASK_DEAD)
1608 return;
1609
f809ca9a
MG
1610 /* Allocate buffer to track faults on a per-node basis */
1611 if (unlikely(!p->numa_faults)) {
ac8e895b 1612 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
f809ca9a 1613
745d6147
MG
1614 /* numa_faults and numa_faults_buffer share the allocation */
1615 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
f809ca9a
MG
1616 if (!p->numa_faults)
1617 return;
745d6147
MG
1618
1619 BUG_ON(p->numa_faults_buffer);
ac8e895b 1620 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
83e1d2cd 1621 p->total_numa_faults = 0;
04bb2f94 1622 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1623 }
cbee9f88 1624
8c8a743c
PZ
1625 /*
1626 * First accesses are treated as private, otherwise consider accesses
1627 * to be private if the accessing pid has not changed
1628 */
1629 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1630 priv = 1;
1631 } else {
1632 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1633 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1634 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1635 }
1636
cbee9f88 1637 task_numa_placement(p);
f809ca9a 1638
2739d3ee
RR
1639 /*
1640 * Retry task to preferred node migration periodically, in case it
1641 * case it previously failed, or the scheduler moved us.
1642 */
1643 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1644 numa_migrate_preferred(p);
1645
b32e86b4
IM
1646 if (migrated)
1647 p->numa_pages_migrated += pages;
1648
ac8e895b 1649 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
04bb2f94 1650 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
cbee9f88
PZ
1651}
1652
6e5fb223
PZ
1653static void reset_ptenuma_scan(struct task_struct *p)
1654{
1655 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1656 p->mm->numa_scan_offset = 0;
1657}
1658
cbee9f88
PZ
1659/*
1660 * The expensive part of numa migration is done from task_work context.
1661 * Triggered from task_tick_numa().
1662 */
1663void task_numa_work(struct callback_head *work)
1664{
1665 unsigned long migrate, next_scan, now = jiffies;
1666 struct task_struct *p = current;
1667 struct mm_struct *mm = p->mm;
6e5fb223 1668 struct vm_area_struct *vma;
9f40604c 1669 unsigned long start, end;
598f0ec0 1670 unsigned long nr_pte_updates = 0;
9f40604c 1671 long pages;
cbee9f88
PZ
1672
1673 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1674
1675 work->next = work; /* protect against double add */
1676 /*
1677 * Who cares about NUMA placement when they're dying.
1678 *
1679 * NOTE: make sure not to dereference p->mm before this check,
1680 * exit_task_work() happens _after_ exit_mm() so we could be called
1681 * without p->mm even though we still had it when we enqueued this
1682 * work.
1683 */
1684 if (p->flags & PF_EXITING)
1685 return;
1686
930aa174 1687 if (!mm->numa_next_scan) {
7e8d16b6
MG
1688 mm->numa_next_scan = now +
1689 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1690 }
1691
cbee9f88
PZ
1692 /*
1693 * Enforce maximal scan/migration frequency..
1694 */
1695 migrate = mm->numa_next_scan;
1696 if (time_before(now, migrate))
1697 return;
1698
598f0ec0
MG
1699 if (p->numa_scan_period == 0) {
1700 p->numa_scan_period_max = task_scan_max(p);
1701 p->numa_scan_period = task_scan_min(p);
1702 }
cbee9f88 1703
fb003b80 1704 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1705 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1706 return;
1707
19a78d11
PZ
1708 /*
1709 * Delay this task enough that another task of this mm will likely win
1710 * the next time around.
1711 */
1712 p->node_stamp += 2 * TICK_NSEC;
1713
9f40604c
MG
1714 start = mm->numa_scan_offset;
1715 pages = sysctl_numa_balancing_scan_size;
1716 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1717 if (!pages)
1718 return;
cbee9f88 1719
6e5fb223 1720 down_read(&mm->mmap_sem);
9f40604c 1721 vma = find_vma(mm, start);
6e5fb223
PZ
1722 if (!vma) {
1723 reset_ptenuma_scan(p);
9f40604c 1724 start = 0;
6e5fb223
PZ
1725 vma = mm->mmap;
1726 }
9f40604c 1727 for (; vma; vma = vma->vm_next) {
fc314724 1728 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1729 continue;
1730
4591ce4f
MG
1731 /*
1732 * Shared library pages mapped by multiple processes are not
1733 * migrated as it is expected they are cache replicated. Avoid
1734 * hinting faults in read-only file-backed mappings or the vdso
1735 * as migrating the pages will be of marginal benefit.
1736 */
1737 if (!vma->vm_mm ||
1738 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1739 continue;
1740
9f40604c
MG
1741 do {
1742 start = max(start, vma->vm_start);
1743 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1744 end = min(end, vma->vm_end);
598f0ec0
MG
1745 nr_pte_updates += change_prot_numa(vma, start, end);
1746
1747 /*
1748 * Scan sysctl_numa_balancing_scan_size but ensure that
1749 * at least one PTE is updated so that unused virtual
1750 * address space is quickly skipped.
1751 */
1752 if (nr_pte_updates)
1753 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1754
9f40604c
MG
1755 start = end;
1756 if (pages <= 0)
1757 goto out;
1758 } while (end != vma->vm_end);
cbee9f88 1759 }
6e5fb223 1760
9f40604c 1761out:
6e5fb223 1762 /*
c69307d5
PZ
1763 * It is possible to reach the end of the VMA list but the last few
1764 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1765 * would find the !migratable VMA on the next scan but not reset the
1766 * scanner to the start so check it now.
6e5fb223
PZ
1767 */
1768 if (vma)
9f40604c 1769 mm->numa_scan_offset = start;
6e5fb223
PZ
1770 else
1771 reset_ptenuma_scan(p);
1772 up_read(&mm->mmap_sem);
cbee9f88
PZ
1773}
1774
1775/*
1776 * Drive the periodic memory faults..
1777 */
1778void task_tick_numa(struct rq *rq, struct task_struct *curr)
1779{
1780 struct callback_head *work = &curr->numa_work;
1781 u64 period, now;
1782
1783 /*
1784 * We don't care about NUMA placement if we don't have memory.
1785 */
1786 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1787 return;
1788
1789 /*
1790 * Using runtime rather than walltime has the dual advantage that
1791 * we (mostly) drive the selection from busy threads and that the
1792 * task needs to have done some actual work before we bother with
1793 * NUMA placement.
1794 */
1795 now = curr->se.sum_exec_runtime;
1796 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1797
1798 if (now - curr->node_stamp > period) {
4b96a29b 1799 if (!curr->node_stamp)
598f0ec0 1800 curr->numa_scan_period = task_scan_min(curr);
19a78d11 1801 curr->node_stamp += period;
cbee9f88
PZ
1802
1803 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1804 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1805 task_work_add(curr, work, true);
1806 }
1807 }
1808}
1809#else
1810static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1811{
1812}
0ec8aa00
PZ
1813
1814static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1815{
1816}
1817
1818static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1819{
1820}
cbee9f88
PZ
1821#endif /* CONFIG_NUMA_BALANCING */
1822
30cfdcfc
DA
1823static void
1824account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1825{
1826 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1827 if (!parent_entity(se))
029632fb 1828 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1829#ifdef CONFIG_SMP
0ec8aa00
PZ
1830 if (entity_is_task(se)) {
1831 struct rq *rq = rq_of(cfs_rq);
1832
1833 account_numa_enqueue(rq, task_of(se));
1834 list_add(&se->group_node, &rq->cfs_tasks);
1835 }
367456c7 1836#endif
30cfdcfc 1837 cfs_rq->nr_running++;
30cfdcfc
DA
1838}
1839
1840static void
1841account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1842{
1843 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1844 if (!parent_entity(se))
029632fb 1845 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
1846 if (entity_is_task(se)) {
1847 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 1848 list_del_init(&se->group_node);
0ec8aa00 1849 }
30cfdcfc 1850 cfs_rq->nr_running--;
30cfdcfc
DA
1851}
1852
3ff6dcac
YZ
1853#ifdef CONFIG_FAIR_GROUP_SCHED
1854# ifdef CONFIG_SMP
cf5f0acf
PZ
1855static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1856{
1857 long tg_weight;
1858
1859 /*
1860 * Use this CPU's actual weight instead of the last load_contribution
1861 * to gain a more accurate current total weight. See
1862 * update_cfs_rq_load_contribution().
1863 */
bf5b986e 1864 tg_weight = atomic_long_read(&tg->load_avg);
82958366 1865 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1866 tg_weight += cfs_rq->load.weight;
1867
1868 return tg_weight;
1869}
1870
6d5ab293 1871static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1872{
cf5f0acf 1873 long tg_weight, load, shares;
3ff6dcac 1874
cf5f0acf 1875 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1876 load = cfs_rq->load.weight;
3ff6dcac 1877
3ff6dcac 1878 shares = (tg->shares * load);
cf5f0acf
PZ
1879 if (tg_weight)
1880 shares /= tg_weight;
3ff6dcac
YZ
1881
1882 if (shares < MIN_SHARES)
1883 shares = MIN_SHARES;
1884 if (shares > tg->shares)
1885 shares = tg->shares;
1886
1887 return shares;
1888}
3ff6dcac 1889# else /* CONFIG_SMP */
6d5ab293 1890static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1891{
1892 return tg->shares;
1893}
3ff6dcac 1894# endif /* CONFIG_SMP */
2069dd75
PZ
1895static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1896 unsigned long weight)
1897{
19e5eebb
PT
1898 if (se->on_rq) {
1899 /* commit outstanding execution time */
1900 if (cfs_rq->curr == se)
1901 update_curr(cfs_rq);
2069dd75 1902 account_entity_dequeue(cfs_rq, se);
19e5eebb 1903 }
2069dd75
PZ
1904
1905 update_load_set(&se->load, weight);
1906
1907 if (se->on_rq)
1908 account_entity_enqueue(cfs_rq, se);
1909}
1910
82958366
PT
1911static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1912
6d5ab293 1913static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1914{
1915 struct task_group *tg;
1916 struct sched_entity *se;
3ff6dcac 1917 long shares;
2069dd75 1918
2069dd75
PZ
1919 tg = cfs_rq->tg;
1920 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1921 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1922 return;
3ff6dcac
YZ
1923#ifndef CONFIG_SMP
1924 if (likely(se->load.weight == tg->shares))
1925 return;
1926#endif
6d5ab293 1927 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1928
1929 reweight_entity(cfs_rq_of(se), se, shares);
1930}
1931#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1932static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1933{
1934}
1935#endif /* CONFIG_FAIR_GROUP_SCHED */
1936
141965c7 1937#ifdef CONFIG_SMP
5b51f2f8
PT
1938/*
1939 * We choose a half-life close to 1 scheduling period.
1940 * Note: The tables below are dependent on this value.
1941 */
1942#define LOAD_AVG_PERIOD 32
1943#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1944#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1945
1946/* Precomputed fixed inverse multiplies for multiplication by y^n */
1947static const u32 runnable_avg_yN_inv[] = {
1948 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1949 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1950 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1951 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1952 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1953 0x85aac367, 0x82cd8698,
1954};
1955
1956/*
1957 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1958 * over-estimates when re-combining.
1959 */
1960static const u32 runnable_avg_yN_sum[] = {
1961 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1962 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1963 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1964};
1965
9d85f21c
PT
1966/*
1967 * Approximate:
1968 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1969 */
1970static __always_inline u64 decay_load(u64 val, u64 n)
1971{
5b51f2f8
PT
1972 unsigned int local_n;
1973
1974 if (!n)
1975 return val;
1976 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1977 return 0;
1978
1979 /* after bounds checking we can collapse to 32-bit */
1980 local_n = n;
1981
1982 /*
1983 * As y^PERIOD = 1/2, we can combine
1984 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1985 * With a look-up table which covers k^n (n<PERIOD)
1986 *
1987 * To achieve constant time decay_load.
1988 */
1989 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1990 val >>= local_n / LOAD_AVG_PERIOD;
1991 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1992 }
1993
5b51f2f8
PT
1994 val *= runnable_avg_yN_inv[local_n];
1995 /* We don't use SRR here since we always want to round down. */
1996 return val >> 32;
1997}
1998
1999/*
2000 * For updates fully spanning n periods, the contribution to runnable
2001 * average will be: \Sum 1024*y^n
2002 *
2003 * We can compute this reasonably efficiently by combining:
2004 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2005 */
2006static u32 __compute_runnable_contrib(u64 n)
2007{
2008 u32 contrib = 0;
2009
2010 if (likely(n <= LOAD_AVG_PERIOD))
2011 return runnable_avg_yN_sum[n];
2012 else if (unlikely(n >= LOAD_AVG_MAX_N))
2013 return LOAD_AVG_MAX;
2014
2015 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2016 do {
2017 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2018 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2019
2020 n -= LOAD_AVG_PERIOD;
2021 } while (n > LOAD_AVG_PERIOD);
2022
2023 contrib = decay_load(contrib, n);
2024 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2025}
2026
2027/*
2028 * We can represent the historical contribution to runnable average as the
2029 * coefficients of a geometric series. To do this we sub-divide our runnable
2030 * history into segments of approximately 1ms (1024us); label the segment that
2031 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2032 *
2033 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2034 * p0 p1 p2
2035 * (now) (~1ms ago) (~2ms ago)
2036 *
2037 * Let u_i denote the fraction of p_i that the entity was runnable.
2038 *
2039 * We then designate the fractions u_i as our co-efficients, yielding the
2040 * following representation of historical load:
2041 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2042 *
2043 * We choose y based on the with of a reasonably scheduling period, fixing:
2044 * y^32 = 0.5
2045 *
2046 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2047 * approximately half as much as the contribution to load within the last ms
2048 * (u_0).
2049 *
2050 * When a period "rolls over" and we have new u_0`, multiplying the previous
2051 * sum again by y is sufficient to update:
2052 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2053 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2054 */
2055static __always_inline int __update_entity_runnable_avg(u64 now,
2056 struct sched_avg *sa,
2057 int runnable)
2058{
5b51f2f8
PT
2059 u64 delta, periods;
2060 u32 runnable_contrib;
9d85f21c
PT
2061 int delta_w, decayed = 0;
2062
2063 delta = now - sa->last_runnable_update;
2064 /*
2065 * This should only happen when time goes backwards, which it
2066 * unfortunately does during sched clock init when we swap over to TSC.
2067 */
2068 if ((s64)delta < 0) {
2069 sa->last_runnable_update = now;
2070 return 0;
2071 }
2072
2073 /*
2074 * Use 1024ns as the unit of measurement since it's a reasonable
2075 * approximation of 1us and fast to compute.
2076 */
2077 delta >>= 10;
2078 if (!delta)
2079 return 0;
2080 sa->last_runnable_update = now;
2081
2082 /* delta_w is the amount already accumulated against our next period */
2083 delta_w = sa->runnable_avg_period % 1024;
2084 if (delta + delta_w >= 1024) {
2085 /* period roll-over */
2086 decayed = 1;
2087
2088 /*
2089 * Now that we know we're crossing a period boundary, figure
2090 * out how much from delta we need to complete the current
2091 * period and accrue it.
2092 */
2093 delta_w = 1024 - delta_w;
5b51f2f8
PT
2094 if (runnable)
2095 sa->runnable_avg_sum += delta_w;
2096 sa->runnable_avg_period += delta_w;
2097
2098 delta -= delta_w;
2099
2100 /* Figure out how many additional periods this update spans */
2101 periods = delta / 1024;
2102 delta %= 1024;
2103
2104 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2105 periods + 1);
2106 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2107 periods + 1);
2108
2109 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2110 runnable_contrib = __compute_runnable_contrib(periods);
2111 if (runnable)
2112 sa->runnable_avg_sum += runnable_contrib;
2113 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2114 }
2115
2116 /* Remainder of delta accrued against u_0` */
2117 if (runnable)
2118 sa->runnable_avg_sum += delta;
2119 sa->runnable_avg_period += delta;
2120
2121 return decayed;
2122}
2123
9ee474f5 2124/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2125static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2126{
2127 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2128 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2129
2130 decays -= se->avg.decay_count;
2131 if (!decays)
aff3e498 2132 return 0;
9ee474f5
PT
2133
2134 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2135 se->avg.decay_count = 0;
aff3e498
PT
2136
2137 return decays;
9ee474f5
PT
2138}
2139
c566e8e9
PT
2140#ifdef CONFIG_FAIR_GROUP_SCHED
2141static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2142 int force_update)
2143{
2144 struct task_group *tg = cfs_rq->tg;
bf5b986e 2145 long tg_contrib;
c566e8e9
PT
2146
2147 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2148 tg_contrib -= cfs_rq->tg_load_contrib;
2149
bf5b986e
AS
2150 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2151 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2152 cfs_rq->tg_load_contrib += tg_contrib;
2153 }
2154}
8165e145 2155
bb17f655
PT
2156/*
2157 * Aggregate cfs_rq runnable averages into an equivalent task_group
2158 * representation for computing load contributions.
2159 */
2160static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2161 struct cfs_rq *cfs_rq)
2162{
2163 struct task_group *tg = cfs_rq->tg;
2164 long contrib;
2165
2166 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2167 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2168 sa->runnable_avg_period + 1);
2169 contrib -= cfs_rq->tg_runnable_contrib;
2170
2171 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2172 atomic_add(contrib, &tg->runnable_avg);
2173 cfs_rq->tg_runnable_contrib += contrib;
2174 }
2175}
2176
8165e145
PT
2177static inline void __update_group_entity_contrib(struct sched_entity *se)
2178{
2179 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2180 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2181 int runnable_avg;
2182
8165e145
PT
2183 u64 contrib;
2184
2185 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2186 se->avg.load_avg_contrib = div_u64(contrib,
2187 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2188
2189 /*
2190 * For group entities we need to compute a correction term in the case
2191 * that they are consuming <1 cpu so that we would contribute the same
2192 * load as a task of equal weight.
2193 *
2194 * Explicitly co-ordinating this measurement would be expensive, but
2195 * fortunately the sum of each cpus contribution forms a usable
2196 * lower-bound on the true value.
2197 *
2198 * Consider the aggregate of 2 contributions. Either they are disjoint
2199 * (and the sum represents true value) or they are disjoint and we are
2200 * understating by the aggregate of their overlap.
2201 *
2202 * Extending this to N cpus, for a given overlap, the maximum amount we
2203 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2204 * cpus that overlap for this interval and w_i is the interval width.
2205 *
2206 * On a small machine; the first term is well-bounded which bounds the
2207 * total error since w_i is a subset of the period. Whereas on a
2208 * larger machine, while this first term can be larger, if w_i is the
2209 * of consequential size guaranteed to see n_i*w_i quickly converge to
2210 * our upper bound of 1-cpu.
2211 */
2212 runnable_avg = atomic_read(&tg->runnable_avg);
2213 if (runnable_avg < NICE_0_LOAD) {
2214 se->avg.load_avg_contrib *= runnable_avg;
2215 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2216 }
8165e145 2217}
c566e8e9
PT
2218#else
2219static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2220 int force_update) {}
bb17f655
PT
2221static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2222 struct cfs_rq *cfs_rq) {}
8165e145 2223static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
2224#endif
2225
8165e145
PT
2226static inline void __update_task_entity_contrib(struct sched_entity *se)
2227{
2228 u32 contrib;
2229
2230 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2231 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2232 contrib /= (se->avg.runnable_avg_period + 1);
2233 se->avg.load_avg_contrib = scale_load(contrib);
2234}
2235
2dac754e
PT
2236/* Compute the current contribution to load_avg by se, return any delta */
2237static long __update_entity_load_avg_contrib(struct sched_entity *se)
2238{
2239 long old_contrib = se->avg.load_avg_contrib;
2240
8165e145
PT
2241 if (entity_is_task(se)) {
2242 __update_task_entity_contrib(se);
2243 } else {
bb17f655 2244 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2245 __update_group_entity_contrib(se);
2246 }
2dac754e
PT
2247
2248 return se->avg.load_avg_contrib - old_contrib;
2249}
2250
9ee474f5
PT
2251static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2252 long load_contrib)
2253{
2254 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2255 cfs_rq->blocked_load_avg -= load_contrib;
2256 else
2257 cfs_rq->blocked_load_avg = 0;
2258}
2259
f1b17280
PT
2260static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2261
9d85f21c 2262/* Update a sched_entity's runnable average */
9ee474f5
PT
2263static inline void update_entity_load_avg(struct sched_entity *se,
2264 int update_cfs_rq)
9d85f21c 2265{
2dac754e
PT
2266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2267 long contrib_delta;
f1b17280 2268 u64 now;
2dac754e 2269
f1b17280
PT
2270 /*
2271 * For a group entity we need to use their owned cfs_rq_clock_task() in
2272 * case they are the parent of a throttled hierarchy.
2273 */
2274 if (entity_is_task(se))
2275 now = cfs_rq_clock_task(cfs_rq);
2276 else
2277 now = cfs_rq_clock_task(group_cfs_rq(se));
2278
2279 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2280 return;
2281
2282 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2283
2284 if (!update_cfs_rq)
2285 return;
2286
2dac754e
PT
2287 if (se->on_rq)
2288 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2289 else
2290 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2291}
2292
2293/*
2294 * Decay the load contributed by all blocked children and account this so that
2295 * their contribution may appropriately discounted when they wake up.
2296 */
aff3e498 2297static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2298{
f1b17280 2299 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2300 u64 decays;
2301
2302 decays = now - cfs_rq->last_decay;
aff3e498 2303 if (!decays && !force_update)
9ee474f5
PT
2304 return;
2305
2509940f
AS
2306 if (atomic_long_read(&cfs_rq->removed_load)) {
2307 unsigned long removed_load;
2308 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2309 subtract_blocked_load_contrib(cfs_rq, removed_load);
2310 }
9ee474f5 2311
aff3e498
PT
2312 if (decays) {
2313 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2314 decays);
2315 atomic64_add(decays, &cfs_rq->decay_counter);
2316 cfs_rq->last_decay = now;
2317 }
c566e8e9
PT
2318
2319 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2320}
18bf2805
BS
2321
2322static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2323{
78becc27 2324 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
bb17f655 2325 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 2326}
2dac754e
PT
2327
2328/* Add the load generated by se into cfs_rq's child load-average */
2329static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2330 struct sched_entity *se,
2331 int wakeup)
2dac754e 2332{
aff3e498
PT
2333 /*
2334 * We track migrations using entity decay_count <= 0, on a wake-up
2335 * migration we use a negative decay count to track the remote decays
2336 * accumulated while sleeping.
a75cdaa9
AS
2337 *
2338 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2339 * are seen by enqueue_entity_load_avg() as a migration with an already
2340 * constructed load_avg_contrib.
aff3e498
PT
2341 */
2342 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2343 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2344 if (se->avg.decay_count) {
2345 /*
2346 * In a wake-up migration we have to approximate the
2347 * time sleeping. This is because we can't synchronize
2348 * clock_task between the two cpus, and it is not
2349 * guaranteed to be read-safe. Instead, we can
2350 * approximate this using our carried decays, which are
2351 * explicitly atomically readable.
2352 */
2353 se->avg.last_runnable_update -= (-se->avg.decay_count)
2354 << 20;
2355 update_entity_load_avg(se, 0);
2356 /* Indicate that we're now synchronized and on-rq */
2357 se->avg.decay_count = 0;
2358 }
9ee474f5
PT
2359 wakeup = 0;
2360 } else {
282cf499
AS
2361 /*
2362 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2363 * would have made count negative); we must be careful to avoid
2364 * double-accounting blocked time after synchronizing decays.
2365 */
2366 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2367 << 20;
9ee474f5
PT
2368 }
2369
aff3e498
PT
2370 /* migrated tasks did not contribute to our blocked load */
2371 if (wakeup) {
9ee474f5 2372 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2373 update_entity_load_avg(se, 0);
2374 }
9ee474f5 2375
2dac754e 2376 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2377 /* we force update consideration on load-balancer moves */
2378 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2379}
2380
9ee474f5
PT
2381/*
2382 * Remove se's load from this cfs_rq child load-average, if the entity is
2383 * transitioning to a blocked state we track its projected decay using
2384 * blocked_load_avg.
2385 */
2dac754e 2386static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2387 struct sched_entity *se,
2388 int sleep)
2dac754e 2389{
9ee474f5 2390 update_entity_load_avg(se, 1);
aff3e498
PT
2391 /* we force update consideration on load-balancer moves */
2392 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2393
2dac754e 2394 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2395 if (sleep) {
2396 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2397 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2398 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2399}
642dbc39
VG
2400
2401/*
2402 * Update the rq's load with the elapsed running time before entering
2403 * idle. if the last scheduled task is not a CFS task, idle_enter will
2404 * be the only way to update the runnable statistic.
2405 */
2406void idle_enter_fair(struct rq *this_rq)
2407{
2408 update_rq_runnable_avg(this_rq, 1);
2409}
2410
2411/*
2412 * Update the rq's load with the elapsed idle time before a task is
2413 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2414 * be the only way to update the runnable statistic.
2415 */
2416void idle_exit_fair(struct rq *this_rq)
2417{
2418 update_rq_runnable_avg(this_rq, 0);
2419}
2420
9d85f21c 2421#else
9ee474f5
PT
2422static inline void update_entity_load_avg(struct sched_entity *se,
2423 int update_cfs_rq) {}
18bf2805 2424static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2425static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2426 struct sched_entity *se,
2427 int wakeup) {}
2dac754e 2428static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2429 struct sched_entity *se,
2430 int sleep) {}
aff3e498
PT
2431static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2432 int force_update) {}
9d85f21c
PT
2433#endif
2434
2396af69 2435static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2436{
bf0f6f24 2437#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2438 struct task_struct *tsk = NULL;
2439
2440 if (entity_is_task(se))
2441 tsk = task_of(se);
2442
41acab88 2443 if (se->statistics.sleep_start) {
78becc27 2444 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2445
2446 if ((s64)delta < 0)
2447 delta = 0;
2448
41acab88
LDM
2449 if (unlikely(delta > se->statistics.sleep_max))
2450 se->statistics.sleep_max = delta;
bf0f6f24 2451
8c79a045 2452 se->statistics.sleep_start = 0;
41acab88 2453 se->statistics.sum_sleep_runtime += delta;
9745512c 2454
768d0c27 2455 if (tsk) {
e414314c 2456 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2457 trace_sched_stat_sleep(tsk, delta);
2458 }
bf0f6f24 2459 }
41acab88 2460 if (se->statistics.block_start) {
78becc27 2461 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2462
2463 if ((s64)delta < 0)
2464 delta = 0;
2465
41acab88
LDM
2466 if (unlikely(delta > se->statistics.block_max))
2467 se->statistics.block_max = delta;
bf0f6f24 2468
8c79a045 2469 se->statistics.block_start = 0;
41acab88 2470 se->statistics.sum_sleep_runtime += delta;
30084fbd 2471
e414314c 2472 if (tsk) {
8f0dfc34 2473 if (tsk->in_iowait) {
41acab88
LDM
2474 se->statistics.iowait_sum += delta;
2475 se->statistics.iowait_count++;
768d0c27 2476 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2477 }
2478
b781a602
AV
2479 trace_sched_stat_blocked(tsk, delta);
2480
e414314c
PZ
2481 /*
2482 * Blocking time is in units of nanosecs, so shift by
2483 * 20 to get a milliseconds-range estimation of the
2484 * amount of time that the task spent sleeping:
2485 */
2486 if (unlikely(prof_on == SLEEP_PROFILING)) {
2487 profile_hits(SLEEP_PROFILING,
2488 (void *)get_wchan(tsk),
2489 delta >> 20);
2490 }
2491 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2492 }
bf0f6f24
IM
2493 }
2494#endif
2495}
2496
ddc97297
PZ
2497static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2498{
2499#ifdef CONFIG_SCHED_DEBUG
2500 s64 d = se->vruntime - cfs_rq->min_vruntime;
2501
2502 if (d < 0)
2503 d = -d;
2504
2505 if (d > 3*sysctl_sched_latency)
2506 schedstat_inc(cfs_rq, nr_spread_over);
2507#endif
2508}
2509
aeb73b04
PZ
2510static void
2511place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2512{
1af5f730 2513 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2514
2cb8600e
PZ
2515 /*
2516 * The 'current' period is already promised to the current tasks,
2517 * however the extra weight of the new task will slow them down a
2518 * little, place the new task so that it fits in the slot that
2519 * stays open at the end.
2520 */
94dfb5e7 2521 if (initial && sched_feat(START_DEBIT))
f9c0b095 2522 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2523
a2e7a7eb 2524 /* sleeps up to a single latency don't count. */
5ca9880c 2525 if (!initial) {
a2e7a7eb 2526 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2527
a2e7a7eb
MG
2528 /*
2529 * Halve their sleep time's effect, to allow
2530 * for a gentler effect of sleepers:
2531 */
2532 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2533 thresh >>= 1;
51e0304c 2534
a2e7a7eb 2535 vruntime -= thresh;
aeb73b04
PZ
2536 }
2537
b5d9d734 2538 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2539 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2540}
2541
d3d9dc33
PT
2542static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2543
bf0f6f24 2544static void
88ec22d3 2545enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2546{
88ec22d3
PZ
2547 /*
2548 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2549 * through calling update_curr().
88ec22d3 2550 */
371fd7e7 2551 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2552 se->vruntime += cfs_rq->min_vruntime;
2553
bf0f6f24 2554 /*
a2a2d680 2555 * Update run-time statistics of the 'current'.
bf0f6f24 2556 */
b7cc0896 2557 update_curr(cfs_rq);
f269ae04 2558 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2559 account_entity_enqueue(cfs_rq, se);
2560 update_cfs_shares(cfs_rq);
bf0f6f24 2561
88ec22d3 2562 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2563 place_entity(cfs_rq, se, 0);
2396af69 2564 enqueue_sleeper(cfs_rq, se);
e9acbff6 2565 }
bf0f6f24 2566
d2417e5a 2567 update_stats_enqueue(cfs_rq, se);
ddc97297 2568 check_spread(cfs_rq, se);
83b699ed
SV
2569 if (se != cfs_rq->curr)
2570 __enqueue_entity(cfs_rq, se);
2069dd75 2571 se->on_rq = 1;
3d4b47b4 2572
d3d9dc33 2573 if (cfs_rq->nr_running == 1) {
3d4b47b4 2574 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2575 check_enqueue_throttle(cfs_rq);
2576 }
bf0f6f24
IM
2577}
2578
2c13c919 2579static void __clear_buddies_last(struct sched_entity *se)
2002c695 2580{
2c13c919
RR
2581 for_each_sched_entity(se) {
2582 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2583 if (cfs_rq->last == se)
2584 cfs_rq->last = NULL;
2585 else
2586 break;
2587 }
2588}
2002c695 2589
2c13c919
RR
2590static void __clear_buddies_next(struct sched_entity *se)
2591{
2592 for_each_sched_entity(se) {
2593 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2594 if (cfs_rq->next == se)
2595 cfs_rq->next = NULL;
2596 else
2597 break;
2598 }
2002c695
PZ
2599}
2600
ac53db59
RR
2601static void __clear_buddies_skip(struct sched_entity *se)
2602{
2603 for_each_sched_entity(se) {
2604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2605 if (cfs_rq->skip == se)
2606 cfs_rq->skip = NULL;
2607 else
2608 break;
2609 }
2610}
2611
a571bbea
PZ
2612static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2613{
2c13c919
RR
2614 if (cfs_rq->last == se)
2615 __clear_buddies_last(se);
2616
2617 if (cfs_rq->next == se)
2618 __clear_buddies_next(se);
ac53db59
RR
2619
2620 if (cfs_rq->skip == se)
2621 __clear_buddies_skip(se);
a571bbea
PZ
2622}
2623
6c16a6dc 2624static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2625
bf0f6f24 2626static void
371fd7e7 2627dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2628{
a2a2d680
DA
2629 /*
2630 * Update run-time statistics of the 'current'.
2631 */
2632 update_curr(cfs_rq);
17bc14b7 2633 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2634
19b6a2e3 2635 update_stats_dequeue(cfs_rq, se);
371fd7e7 2636 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2637#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2638 if (entity_is_task(se)) {
2639 struct task_struct *tsk = task_of(se);
2640
2641 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2642 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2643 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2644 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2645 }
db36cc7d 2646#endif
67e9fb2a
PZ
2647 }
2648
2002c695 2649 clear_buddies(cfs_rq, se);
4793241b 2650
83b699ed 2651 if (se != cfs_rq->curr)
30cfdcfc 2652 __dequeue_entity(cfs_rq, se);
17bc14b7 2653 se->on_rq = 0;
30cfdcfc 2654 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2655
2656 /*
2657 * Normalize the entity after updating the min_vruntime because the
2658 * update can refer to the ->curr item and we need to reflect this
2659 * movement in our normalized position.
2660 */
371fd7e7 2661 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2662 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2663
d8b4986d
PT
2664 /* return excess runtime on last dequeue */
2665 return_cfs_rq_runtime(cfs_rq);
2666
1e876231 2667 update_min_vruntime(cfs_rq);
17bc14b7 2668 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2669}
2670
2671/*
2672 * Preempt the current task with a newly woken task if needed:
2673 */
7c92e54f 2674static void
2e09bf55 2675check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2676{
11697830 2677 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2678 struct sched_entity *se;
2679 s64 delta;
11697830 2680
6d0f0ebd 2681 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2682 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2683 if (delta_exec > ideal_runtime) {
bf0f6f24 2684 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2685 /*
2686 * The current task ran long enough, ensure it doesn't get
2687 * re-elected due to buddy favours.
2688 */
2689 clear_buddies(cfs_rq, curr);
f685ceac
MG
2690 return;
2691 }
2692
2693 /*
2694 * Ensure that a task that missed wakeup preemption by a
2695 * narrow margin doesn't have to wait for a full slice.
2696 * This also mitigates buddy induced latencies under load.
2697 */
f685ceac
MG
2698 if (delta_exec < sysctl_sched_min_granularity)
2699 return;
2700
f4cfb33e
WX
2701 se = __pick_first_entity(cfs_rq);
2702 delta = curr->vruntime - se->vruntime;
f685ceac 2703
f4cfb33e
WX
2704 if (delta < 0)
2705 return;
d7d82944 2706
f4cfb33e
WX
2707 if (delta > ideal_runtime)
2708 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2709}
2710
83b699ed 2711static void
8494f412 2712set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2713{
83b699ed
SV
2714 /* 'current' is not kept within the tree. */
2715 if (se->on_rq) {
2716 /*
2717 * Any task has to be enqueued before it get to execute on
2718 * a CPU. So account for the time it spent waiting on the
2719 * runqueue.
2720 */
2721 update_stats_wait_end(cfs_rq, se);
2722 __dequeue_entity(cfs_rq, se);
2723 }
2724
79303e9e 2725 update_stats_curr_start(cfs_rq, se);
429d43bc 2726 cfs_rq->curr = se;
eba1ed4b
IM
2727#ifdef CONFIG_SCHEDSTATS
2728 /*
2729 * Track our maximum slice length, if the CPU's load is at
2730 * least twice that of our own weight (i.e. dont track it
2731 * when there are only lesser-weight tasks around):
2732 */
495eca49 2733 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2734 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2735 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2736 }
2737#endif
4a55b450 2738 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2739}
2740
3f3a4904
PZ
2741static int
2742wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2743
ac53db59
RR
2744/*
2745 * Pick the next process, keeping these things in mind, in this order:
2746 * 1) keep things fair between processes/task groups
2747 * 2) pick the "next" process, since someone really wants that to run
2748 * 3) pick the "last" process, for cache locality
2749 * 4) do not run the "skip" process, if something else is available
2750 */
f4b6755f 2751static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 2752{
ac53db59 2753 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 2754 struct sched_entity *left = se;
f4b6755f 2755
ac53db59
RR
2756 /*
2757 * Avoid running the skip buddy, if running something else can
2758 * be done without getting too unfair.
2759 */
2760 if (cfs_rq->skip == se) {
2761 struct sched_entity *second = __pick_next_entity(se);
2762 if (second && wakeup_preempt_entity(second, left) < 1)
2763 se = second;
2764 }
aa2ac252 2765
f685ceac
MG
2766 /*
2767 * Prefer last buddy, try to return the CPU to a preempted task.
2768 */
2769 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2770 se = cfs_rq->last;
2771
ac53db59
RR
2772 /*
2773 * Someone really wants this to run. If it's not unfair, run it.
2774 */
2775 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2776 se = cfs_rq->next;
2777
f685ceac 2778 clear_buddies(cfs_rq, se);
4793241b
PZ
2779
2780 return se;
aa2ac252
PZ
2781}
2782
d3d9dc33
PT
2783static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2784
ab6cde26 2785static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
2786{
2787 /*
2788 * If still on the runqueue then deactivate_task()
2789 * was not called and update_curr() has to be done:
2790 */
2791 if (prev->on_rq)
b7cc0896 2792 update_curr(cfs_rq);
bf0f6f24 2793
d3d9dc33
PT
2794 /* throttle cfs_rqs exceeding runtime */
2795 check_cfs_rq_runtime(cfs_rq);
2796
ddc97297 2797 check_spread(cfs_rq, prev);
30cfdcfc 2798 if (prev->on_rq) {
5870db5b 2799 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
2800 /* Put 'current' back into the tree. */
2801 __enqueue_entity(cfs_rq, prev);
9d85f21c 2802 /* in !on_rq case, update occurred at dequeue */
9ee474f5 2803 update_entity_load_avg(prev, 1);
30cfdcfc 2804 }
429d43bc 2805 cfs_rq->curr = NULL;
bf0f6f24
IM
2806}
2807
8f4d37ec
PZ
2808static void
2809entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 2810{
bf0f6f24 2811 /*
30cfdcfc 2812 * Update run-time statistics of the 'current'.
bf0f6f24 2813 */
30cfdcfc 2814 update_curr(cfs_rq);
bf0f6f24 2815
9d85f21c
PT
2816 /*
2817 * Ensure that runnable average is periodically updated.
2818 */
9ee474f5 2819 update_entity_load_avg(curr, 1);
aff3e498 2820 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 2821 update_cfs_shares(cfs_rq);
9d85f21c 2822
8f4d37ec
PZ
2823#ifdef CONFIG_SCHED_HRTICK
2824 /*
2825 * queued ticks are scheduled to match the slice, so don't bother
2826 * validating it and just reschedule.
2827 */
983ed7a6
HH
2828 if (queued) {
2829 resched_task(rq_of(cfs_rq)->curr);
2830 return;
2831 }
8f4d37ec
PZ
2832 /*
2833 * don't let the period tick interfere with the hrtick preemption
2834 */
2835 if (!sched_feat(DOUBLE_TICK) &&
2836 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2837 return;
2838#endif
2839
2c2efaed 2840 if (cfs_rq->nr_running > 1)
2e09bf55 2841 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
2842}
2843
ab84d31e
PT
2844
2845/**************************************************
2846 * CFS bandwidth control machinery
2847 */
2848
2849#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
2850
2851#ifdef HAVE_JUMP_LABEL
c5905afb 2852static struct static_key __cfs_bandwidth_used;
029632fb
PZ
2853
2854static inline bool cfs_bandwidth_used(void)
2855{
c5905afb 2856 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2857}
2858
1ee14e6c 2859void cfs_bandwidth_usage_inc(void)
029632fb 2860{
1ee14e6c
BS
2861 static_key_slow_inc(&__cfs_bandwidth_used);
2862}
2863
2864void cfs_bandwidth_usage_dec(void)
2865{
2866 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2867}
2868#else /* HAVE_JUMP_LABEL */
2869static bool cfs_bandwidth_used(void)
2870{
2871 return true;
2872}
2873
1ee14e6c
BS
2874void cfs_bandwidth_usage_inc(void) {}
2875void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
2876#endif /* HAVE_JUMP_LABEL */
2877
ab84d31e
PT
2878/*
2879 * default period for cfs group bandwidth.
2880 * default: 0.1s, units: nanoseconds
2881 */
2882static inline u64 default_cfs_period(void)
2883{
2884 return 100000000ULL;
2885}
ec12cb7f
PT
2886
2887static inline u64 sched_cfs_bandwidth_slice(void)
2888{
2889 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2890}
2891
a9cf55b2
PT
2892/*
2893 * Replenish runtime according to assigned quota and update expiration time.
2894 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2895 * additional synchronization around rq->lock.
2896 *
2897 * requires cfs_b->lock
2898 */
029632fb 2899void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2900{
2901 u64 now;
2902
2903 if (cfs_b->quota == RUNTIME_INF)
2904 return;
2905
2906 now = sched_clock_cpu(smp_processor_id());
2907 cfs_b->runtime = cfs_b->quota;
2908 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2909}
2910
029632fb
PZ
2911static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2912{
2913 return &tg->cfs_bandwidth;
2914}
2915
f1b17280
PT
2916/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2917static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2918{
2919 if (unlikely(cfs_rq->throttle_count))
2920 return cfs_rq->throttled_clock_task;
2921
78becc27 2922 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
2923}
2924
85dac906
PT
2925/* returns 0 on failure to allocate runtime */
2926static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2927{
2928 struct task_group *tg = cfs_rq->tg;
2929 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2930 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2931
2932 /* note: this is a positive sum as runtime_remaining <= 0 */
2933 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2934
2935 raw_spin_lock(&cfs_b->lock);
2936 if (cfs_b->quota == RUNTIME_INF)
2937 amount = min_amount;
58088ad0 2938 else {
a9cf55b2
PT
2939 /*
2940 * If the bandwidth pool has become inactive, then at least one
2941 * period must have elapsed since the last consumption.
2942 * Refresh the global state and ensure bandwidth timer becomes
2943 * active.
2944 */
2945 if (!cfs_b->timer_active) {
2946 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2947 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2948 }
58088ad0
PT
2949
2950 if (cfs_b->runtime > 0) {
2951 amount = min(cfs_b->runtime, min_amount);
2952 cfs_b->runtime -= amount;
2953 cfs_b->idle = 0;
2954 }
ec12cb7f 2955 }
a9cf55b2 2956 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2957 raw_spin_unlock(&cfs_b->lock);
2958
2959 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2960 /*
2961 * we may have advanced our local expiration to account for allowed
2962 * spread between our sched_clock and the one on which runtime was
2963 * issued.
2964 */
2965 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2966 cfs_rq->runtime_expires = expires;
85dac906
PT
2967
2968 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2969}
2970
a9cf55b2
PT
2971/*
2972 * Note: This depends on the synchronization provided by sched_clock and the
2973 * fact that rq->clock snapshots this value.
2974 */
2975static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2976{
a9cf55b2 2977 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
2978
2979 /* if the deadline is ahead of our clock, nothing to do */
78becc27 2980 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2981 return;
2982
a9cf55b2
PT
2983 if (cfs_rq->runtime_remaining < 0)
2984 return;
2985
2986 /*
2987 * If the local deadline has passed we have to consider the
2988 * possibility that our sched_clock is 'fast' and the global deadline
2989 * has not truly expired.
2990 *
2991 * Fortunately we can check determine whether this the case by checking
2992 * whether the global deadline has advanced.
2993 */
2994
2995 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2996 /* extend local deadline, drift is bounded above by 2 ticks */
2997 cfs_rq->runtime_expires += TICK_NSEC;
2998 } else {
2999 /* global deadline is ahead, expiration has passed */
3000 cfs_rq->runtime_remaining = 0;
3001 }
3002}
3003
9dbdb155 3004static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3005{
3006 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3007 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3008 expire_cfs_rq_runtime(cfs_rq);
3009
3010 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3011 return;
3012
85dac906
PT
3013 /*
3014 * if we're unable to extend our runtime we resched so that the active
3015 * hierarchy can be throttled
3016 */
3017 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3018 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3019}
3020
6c16a6dc 3021static __always_inline
9dbdb155 3022void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3023{
56f570e5 3024 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3025 return;
3026
3027 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3028}
3029
85dac906
PT
3030static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3031{
56f570e5 3032 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3033}
3034
64660c86
PT
3035/* check whether cfs_rq, or any parent, is throttled */
3036static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3037{
56f570e5 3038 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3039}
3040
3041/*
3042 * Ensure that neither of the group entities corresponding to src_cpu or
3043 * dest_cpu are members of a throttled hierarchy when performing group
3044 * load-balance operations.
3045 */
3046static inline int throttled_lb_pair(struct task_group *tg,
3047 int src_cpu, int dest_cpu)
3048{
3049 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3050
3051 src_cfs_rq = tg->cfs_rq[src_cpu];
3052 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3053
3054 return throttled_hierarchy(src_cfs_rq) ||
3055 throttled_hierarchy(dest_cfs_rq);
3056}
3057
3058/* updated child weight may affect parent so we have to do this bottom up */
3059static int tg_unthrottle_up(struct task_group *tg, void *data)
3060{
3061 struct rq *rq = data;
3062 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3063
3064 cfs_rq->throttle_count--;
3065#ifdef CONFIG_SMP
3066 if (!cfs_rq->throttle_count) {
f1b17280 3067 /* adjust cfs_rq_clock_task() */
78becc27 3068 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3069 cfs_rq->throttled_clock_task;
64660c86
PT
3070 }
3071#endif
3072
3073 return 0;
3074}
3075
3076static int tg_throttle_down(struct task_group *tg, void *data)
3077{
3078 struct rq *rq = data;
3079 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3080
82958366
PT
3081 /* group is entering throttled state, stop time */
3082 if (!cfs_rq->throttle_count)
78becc27 3083 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3084 cfs_rq->throttle_count++;
3085
3086 return 0;
3087}
3088
d3d9dc33 3089static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3090{
3091 struct rq *rq = rq_of(cfs_rq);
3092 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3093 struct sched_entity *se;
3094 long task_delta, dequeue = 1;
3095
3096 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3097
f1b17280 3098 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3099 rcu_read_lock();
3100 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3101 rcu_read_unlock();
85dac906
PT
3102
3103 task_delta = cfs_rq->h_nr_running;
3104 for_each_sched_entity(se) {
3105 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3106 /* throttled entity or throttle-on-deactivate */
3107 if (!se->on_rq)
3108 break;
3109
3110 if (dequeue)
3111 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3112 qcfs_rq->h_nr_running -= task_delta;
3113
3114 if (qcfs_rq->load.weight)
3115 dequeue = 0;
3116 }
3117
3118 if (!se)
3119 rq->nr_running -= task_delta;
3120
3121 cfs_rq->throttled = 1;
78becc27 3122 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3123 raw_spin_lock(&cfs_b->lock);
3124 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3125 if (!cfs_b->timer_active)
3126 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3127 raw_spin_unlock(&cfs_b->lock);
3128}
3129
029632fb 3130void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3131{
3132 struct rq *rq = rq_of(cfs_rq);
3133 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3134 struct sched_entity *se;
3135 int enqueue = 1;
3136 long task_delta;
3137
22b958d8 3138 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3139
3140 cfs_rq->throttled = 0;
1a55af2e
FW
3141
3142 update_rq_clock(rq);
3143
671fd9da 3144 raw_spin_lock(&cfs_b->lock);
78becc27 3145 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3146 list_del_rcu(&cfs_rq->throttled_list);
3147 raw_spin_unlock(&cfs_b->lock);
3148
64660c86
PT
3149 /* update hierarchical throttle state */
3150 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3151
671fd9da
PT
3152 if (!cfs_rq->load.weight)
3153 return;
3154
3155 task_delta = cfs_rq->h_nr_running;
3156 for_each_sched_entity(se) {
3157 if (se->on_rq)
3158 enqueue = 0;
3159
3160 cfs_rq = cfs_rq_of(se);
3161 if (enqueue)
3162 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3163 cfs_rq->h_nr_running += task_delta;
3164
3165 if (cfs_rq_throttled(cfs_rq))
3166 break;
3167 }
3168
3169 if (!se)
3170 rq->nr_running += task_delta;
3171
3172 /* determine whether we need to wake up potentially idle cpu */
3173 if (rq->curr == rq->idle && rq->cfs.nr_running)
3174 resched_task(rq->curr);
3175}
3176
3177static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3178 u64 remaining, u64 expires)
3179{
3180 struct cfs_rq *cfs_rq;
3181 u64 runtime = remaining;
3182
3183 rcu_read_lock();
3184 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3185 throttled_list) {
3186 struct rq *rq = rq_of(cfs_rq);
3187
3188 raw_spin_lock(&rq->lock);
3189 if (!cfs_rq_throttled(cfs_rq))
3190 goto next;
3191
3192 runtime = -cfs_rq->runtime_remaining + 1;
3193 if (runtime > remaining)
3194 runtime = remaining;
3195 remaining -= runtime;
3196
3197 cfs_rq->runtime_remaining += runtime;
3198 cfs_rq->runtime_expires = expires;
3199
3200 /* we check whether we're throttled above */
3201 if (cfs_rq->runtime_remaining > 0)
3202 unthrottle_cfs_rq(cfs_rq);
3203
3204next:
3205 raw_spin_unlock(&rq->lock);
3206
3207 if (!remaining)
3208 break;
3209 }
3210 rcu_read_unlock();
3211
3212 return remaining;
3213}
3214
58088ad0
PT
3215/*
3216 * Responsible for refilling a task_group's bandwidth and unthrottling its
3217 * cfs_rqs as appropriate. If there has been no activity within the last
3218 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3219 * used to track this state.
3220 */
3221static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3222{
671fd9da
PT
3223 u64 runtime, runtime_expires;
3224 int idle = 1, throttled;
58088ad0
PT
3225
3226 raw_spin_lock(&cfs_b->lock);
3227 /* no need to continue the timer with no bandwidth constraint */
3228 if (cfs_b->quota == RUNTIME_INF)
3229 goto out_unlock;
3230
671fd9da
PT
3231 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3232 /* idle depends on !throttled (for the case of a large deficit) */
3233 idle = cfs_b->idle && !throttled;
e8da1b18 3234 cfs_b->nr_periods += overrun;
671fd9da 3235
a9cf55b2
PT
3236 /* if we're going inactive then everything else can be deferred */
3237 if (idle)
3238 goto out_unlock;
3239
927b54fc
BS
3240 /*
3241 * if we have relooped after returning idle once, we need to update our
3242 * status as actually running, so that other cpus doing
3243 * __start_cfs_bandwidth will stop trying to cancel us.
3244 */
3245 cfs_b->timer_active = 1;
3246
a9cf55b2
PT
3247 __refill_cfs_bandwidth_runtime(cfs_b);
3248
671fd9da
PT
3249 if (!throttled) {
3250 /* mark as potentially idle for the upcoming period */
3251 cfs_b->idle = 1;
3252 goto out_unlock;
3253 }
3254
e8da1b18
NR
3255 /* account preceding periods in which throttling occurred */
3256 cfs_b->nr_throttled += overrun;
3257
671fd9da
PT
3258 /*
3259 * There are throttled entities so we must first use the new bandwidth
3260 * to unthrottle them before making it generally available. This
3261 * ensures that all existing debts will be paid before a new cfs_rq is
3262 * allowed to run.
3263 */
3264 runtime = cfs_b->runtime;
3265 runtime_expires = cfs_b->runtime_expires;
3266 cfs_b->runtime = 0;
3267
3268 /*
3269 * This check is repeated as we are holding onto the new bandwidth
3270 * while we unthrottle. This can potentially race with an unthrottled
3271 * group trying to acquire new bandwidth from the global pool.
3272 */
3273 while (throttled && runtime > 0) {
3274 raw_spin_unlock(&cfs_b->lock);
3275 /* we can't nest cfs_b->lock while distributing bandwidth */
3276 runtime = distribute_cfs_runtime(cfs_b, runtime,
3277 runtime_expires);
3278 raw_spin_lock(&cfs_b->lock);
3279
3280 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3281 }
58088ad0 3282
671fd9da
PT
3283 /* return (any) remaining runtime */
3284 cfs_b->runtime = runtime;
3285 /*
3286 * While we are ensured activity in the period following an
3287 * unthrottle, this also covers the case in which the new bandwidth is
3288 * insufficient to cover the existing bandwidth deficit. (Forcing the
3289 * timer to remain active while there are any throttled entities.)
3290 */
3291 cfs_b->idle = 0;
58088ad0
PT
3292out_unlock:
3293 if (idle)
3294 cfs_b->timer_active = 0;
3295 raw_spin_unlock(&cfs_b->lock);
3296
3297 return idle;
3298}
d3d9dc33 3299
d8b4986d
PT
3300/* a cfs_rq won't donate quota below this amount */
3301static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3302/* minimum remaining period time to redistribute slack quota */
3303static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3304/* how long we wait to gather additional slack before distributing */
3305static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3306
db06e78c
BS
3307/*
3308 * Are we near the end of the current quota period?
3309 *
3310 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3311 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3312 * migrate_hrtimers, base is never cleared, so we are fine.
3313 */
d8b4986d
PT
3314static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3315{
3316 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3317 u64 remaining;
3318
3319 /* if the call-back is running a quota refresh is already occurring */
3320 if (hrtimer_callback_running(refresh_timer))
3321 return 1;
3322
3323 /* is a quota refresh about to occur? */
3324 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3325 if (remaining < min_expire)
3326 return 1;
3327
3328 return 0;
3329}
3330
3331static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3332{
3333 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3334
3335 /* if there's a quota refresh soon don't bother with slack */
3336 if (runtime_refresh_within(cfs_b, min_left))
3337 return;
3338
3339 start_bandwidth_timer(&cfs_b->slack_timer,
3340 ns_to_ktime(cfs_bandwidth_slack_period));
3341}
3342
3343/* we know any runtime found here is valid as update_curr() precedes return */
3344static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3345{
3346 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3347 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3348
3349 if (slack_runtime <= 0)
3350 return;
3351
3352 raw_spin_lock(&cfs_b->lock);
3353 if (cfs_b->quota != RUNTIME_INF &&
3354 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3355 cfs_b->runtime += slack_runtime;
3356
3357 /* we are under rq->lock, defer unthrottling using a timer */
3358 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3359 !list_empty(&cfs_b->throttled_cfs_rq))
3360 start_cfs_slack_bandwidth(cfs_b);
3361 }
3362 raw_spin_unlock(&cfs_b->lock);
3363
3364 /* even if it's not valid for return we don't want to try again */
3365 cfs_rq->runtime_remaining -= slack_runtime;
3366}
3367
3368static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3369{
56f570e5
PT
3370 if (!cfs_bandwidth_used())
3371 return;
3372
fccfdc6f 3373 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3374 return;
3375
3376 __return_cfs_rq_runtime(cfs_rq);
3377}
3378
3379/*
3380 * This is done with a timer (instead of inline with bandwidth return) since
3381 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3382 */
3383static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3384{
3385 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3386 u64 expires;
3387
3388 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3389 raw_spin_lock(&cfs_b->lock);
3390 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3391 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3392 return;
db06e78c 3393 }
d8b4986d 3394
d8b4986d
PT
3395 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3396 runtime = cfs_b->runtime;
3397 cfs_b->runtime = 0;
3398 }
3399 expires = cfs_b->runtime_expires;
3400 raw_spin_unlock(&cfs_b->lock);
3401
3402 if (!runtime)
3403 return;
3404
3405 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3406
3407 raw_spin_lock(&cfs_b->lock);
3408 if (expires == cfs_b->runtime_expires)
3409 cfs_b->runtime = runtime;
3410 raw_spin_unlock(&cfs_b->lock);
3411}
3412
d3d9dc33
PT
3413/*
3414 * When a group wakes up we want to make sure that its quota is not already
3415 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3416 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3417 */
3418static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3419{
56f570e5
PT
3420 if (!cfs_bandwidth_used())
3421 return;
3422
d3d9dc33
PT
3423 /* an active group must be handled by the update_curr()->put() path */
3424 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3425 return;
3426
3427 /* ensure the group is not already throttled */
3428 if (cfs_rq_throttled(cfs_rq))
3429 return;
3430
3431 /* update runtime allocation */
3432 account_cfs_rq_runtime(cfs_rq, 0);
3433 if (cfs_rq->runtime_remaining <= 0)
3434 throttle_cfs_rq(cfs_rq);
3435}
3436
3437/* conditionally throttle active cfs_rq's from put_prev_entity() */
3438static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3439{
56f570e5
PT
3440 if (!cfs_bandwidth_used())
3441 return;
3442
d3d9dc33
PT
3443 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3444 return;
3445
3446 /*
3447 * it's possible for a throttled entity to be forced into a running
3448 * state (e.g. set_curr_task), in this case we're finished.
3449 */
3450 if (cfs_rq_throttled(cfs_rq))
3451 return;
3452
3453 throttle_cfs_rq(cfs_rq);
3454}
029632fb 3455
029632fb
PZ
3456static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3457{
3458 struct cfs_bandwidth *cfs_b =
3459 container_of(timer, struct cfs_bandwidth, slack_timer);
3460 do_sched_cfs_slack_timer(cfs_b);
3461
3462 return HRTIMER_NORESTART;
3463}
3464
3465static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3466{
3467 struct cfs_bandwidth *cfs_b =
3468 container_of(timer, struct cfs_bandwidth, period_timer);
3469 ktime_t now;
3470 int overrun;
3471 int idle = 0;
3472
3473 for (;;) {
3474 now = hrtimer_cb_get_time(timer);
3475 overrun = hrtimer_forward(timer, now, cfs_b->period);
3476
3477 if (!overrun)
3478 break;
3479
3480 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3481 }
3482
3483 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3484}
3485
3486void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3487{
3488 raw_spin_lock_init(&cfs_b->lock);
3489 cfs_b->runtime = 0;
3490 cfs_b->quota = RUNTIME_INF;
3491 cfs_b->period = ns_to_ktime(default_cfs_period());
3492
3493 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3494 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3495 cfs_b->period_timer.function = sched_cfs_period_timer;
3496 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3497 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3498}
3499
3500static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3501{
3502 cfs_rq->runtime_enabled = 0;
3503 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3504}
3505
3506/* requires cfs_b->lock, may release to reprogram timer */
3507void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3508{
3509 /*
3510 * The timer may be active because we're trying to set a new bandwidth
3511 * period or because we're racing with the tear-down path
3512 * (timer_active==0 becomes visible before the hrtimer call-back
3513 * terminates). In either case we ensure that it's re-programmed
3514 */
927b54fc
BS
3515 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3516 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3517 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3518 raw_spin_unlock(&cfs_b->lock);
927b54fc 3519 cpu_relax();
029632fb
PZ
3520 raw_spin_lock(&cfs_b->lock);
3521 /* if someone else restarted the timer then we're done */
3522 if (cfs_b->timer_active)
3523 return;
3524 }
3525
3526 cfs_b->timer_active = 1;
3527 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3528}
3529
3530static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3531{
3532 hrtimer_cancel(&cfs_b->period_timer);
3533 hrtimer_cancel(&cfs_b->slack_timer);
3534}
3535
38dc3348 3536static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3537{
3538 struct cfs_rq *cfs_rq;
3539
3540 for_each_leaf_cfs_rq(rq, cfs_rq) {
3541 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3542
3543 if (!cfs_rq->runtime_enabled)
3544 continue;
3545
3546 /*
3547 * clock_task is not advancing so we just need to make sure
3548 * there's some valid quota amount
3549 */
3550 cfs_rq->runtime_remaining = cfs_b->quota;
3551 if (cfs_rq_throttled(cfs_rq))
3552 unthrottle_cfs_rq(cfs_rq);
3553 }
3554}
3555
3556#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3557static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3558{
78becc27 3559 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3560}
3561
9dbdb155 3562static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
d3d9dc33
PT
3563static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3564static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3565static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3566
3567static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3568{
3569 return 0;
3570}
64660c86
PT
3571
3572static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3573{
3574 return 0;
3575}
3576
3577static inline int throttled_lb_pair(struct task_group *tg,
3578 int src_cpu, int dest_cpu)
3579{
3580 return 0;
3581}
029632fb
PZ
3582
3583void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3584
3585#ifdef CONFIG_FAIR_GROUP_SCHED
3586static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3587#endif
3588
029632fb
PZ
3589static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3590{
3591 return NULL;
3592}
3593static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3594static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3595
3596#endif /* CONFIG_CFS_BANDWIDTH */
3597
bf0f6f24
IM
3598/**************************************************
3599 * CFS operations on tasks:
3600 */
3601
8f4d37ec
PZ
3602#ifdef CONFIG_SCHED_HRTICK
3603static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3604{
8f4d37ec
PZ
3605 struct sched_entity *se = &p->se;
3606 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3607
3608 WARN_ON(task_rq(p) != rq);
3609
b39e66ea 3610 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3611 u64 slice = sched_slice(cfs_rq, se);
3612 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3613 s64 delta = slice - ran;
3614
3615 if (delta < 0) {
3616 if (rq->curr == p)
3617 resched_task(p);
3618 return;
3619 }
3620
3621 /*
3622 * Don't schedule slices shorter than 10000ns, that just
3623 * doesn't make sense. Rely on vruntime for fairness.
3624 */
31656519 3625 if (rq->curr != p)
157124c1 3626 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3627
31656519 3628 hrtick_start(rq, delta);
8f4d37ec
PZ
3629 }
3630}
a4c2f00f
PZ
3631
3632/*
3633 * called from enqueue/dequeue and updates the hrtick when the
3634 * current task is from our class and nr_running is low enough
3635 * to matter.
3636 */
3637static void hrtick_update(struct rq *rq)
3638{
3639 struct task_struct *curr = rq->curr;
3640
b39e66ea 3641 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3642 return;
3643
3644 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3645 hrtick_start_fair(rq, curr);
3646}
55e12e5e 3647#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3648static inline void
3649hrtick_start_fair(struct rq *rq, struct task_struct *p)
3650{
3651}
a4c2f00f
PZ
3652
3653static inline void hrtick_update(struct rq *rq)
3654{
3655}
8f4d37ec
PZ
3656#endif
3657
bf0f6f24
IM
3658/*
3659 * The enqueue_task method is called before nr_running is
3660 * increased. Here we update the fair scheduling stats and
3661 * then put the task into the rbtree:
3662 */
ea87bb78 3663static void
371fd7e7 3664enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3665{
3666 struct cfs_rq *cfs_rq;
62fb1851 3667 struct sched_entity *se = &p->se;
bf0f6f24
IM
3668
3669 for_each_sched_entity(se) {
62fb1851 3670 if (se->on_rq)
bf0f6f24
IM
3671 break;
3672 cfs_rq = cfs_rq_of(se);
88ec22d3 3673 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3674
3675 /*
3676 * end evaluation on encountering a throttled cfs_rq
3677 *
3678 * note: in the case of encountering a throttled cfs_rq we will
3679 * post the final h_nr_running increment below.
3680 */
3681 if (cfs_rq_throttled(cfs_rq))
3682 break;
953bfcd1 3683 cfs_rq->h_nr_running++;
85dac906 3684
88ec22d3 3685 flags = ENQUEUE_WAKEUP;
bf0f6f24 3686 }
8f4d37ec 3687
2069dd75 3688 for_each_sched_entity(se) {
0f317143 3689 cfs_rq = cfs_rq_of(se);
953bfcd1 3690 cfs_rq->h_nr_running++;
2069dd75 3691
85dac906
PT
3692 if (cfs_rq_throttled(cfs_rq))
3693 break;
3694
17bc14b7 3695 update_cfs_shares(cfs_rq);
9ee474f5 3696 update_entity_load_avg(se, 1);
2069dd75
PZ
3697 }
3698
18bf2805
BS
3699 if (!se) {
3700 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 3701 inc_nr_running(rq);
18bf2805 3702 }
a4c2f00f 3703 hrtick_update(rq);
bf0f6f24
IM
3704}
3705
2f36825b
VP
3706static void set_next_buddy(struct sched_entity *se);
3707
bf0f6f24
IM
3708/*
3709 * The dequeue_task method is called before nr_running is
3710 * decreased. We remove the task from the rbtree and
3711 * update the fair scheduling stats:
3712 */
371fd7e7 3713static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3714{
3715 struct cfs_rq *cfs_rq;
62fb1851 3716 struct sched_entity *se = &p->se;
2f36825b 3717 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3718
3719 for_each_sched_entity(se) {
3720 cfs_rq = cfs_rq_of(se);
371fd7e7 3721 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3722
3723 /*
3724 * end evaluation on encountering a throttled cfs_rq
3725 *
3726 * note: in the case of encountering a throttled cfs_rq we will
3727 * post the final h_nr_running decrement below.
3728 */
3729 if (cfs_rq_throttled(cfs_rq))
3730 break;
953bfcd1 3731 cfs_rq->h_nr_running--;
2069dd75 3732
bf0f6f24 3733 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3734 if (cfs_rq->load.weight) {
3735 /*
3736 * Bias pick_next to pick a task from this cfs_rq, as
3737 * p is sleeping when it is within its sched_slice.
3738 */
3739 if (task_sleep && parent_entity(se))
3740 set_next_buddy(parent_entity(se));
9598c82d
PT
3741
3742 /* avoid re-evaluating load for this entity */
3743 se = parent_entity(se);
bf0f6f24 3744 break;
2f36825b 3745 }
371fd7e7 3746 flags |= DEQUEUE_SLEEP;
bf0f6f24 3747 }
8f4d37ec 3748
2069dd75 3749 for_each_sched_entity(se) {
0f317143 3750 cfs_rq = cfs_rq_of(se);
953bfcd1 3751 cfs_rq->h_nr_running--;
2069dd75 3752
85dac906
PT
3753 if (cfs_rq_throttled(cfs_rq))
3754 break;
3755
17bc14b7 3756 update_cfs_shares(cfs_rq);
9ee474f5 3757 update_entity_load_avg(se, 1);
2069dd75
PZ
3758 }
3759
18bf2805 3760 if (!se) {
85dac906 3761 dec_nr_running(rq);
18bf2805
BS
3762 update_rq_runnable_avg(rq, 1);
3763 }
a4c2f00f 3764 hrtick_update(rq);
bf0f6f24
IM
3765}
3766
e7693a36 3767#ifdef CONFIG_SMP
029632fb
PZ
3768/* Used instead of source_load when we know the type == 0 */
3769static unsigned long weighted_cpuload(const int cpu)
3770{
b92486cb 3771 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
3772}
3773
3774/*
3775 * Return a low guess at the load of a migration-source cpu weighted
3776 * according to the scheduling class and "nice" value.
3777 *
3778 * We want to under-estimate the load of migration sources, to
3779 * balance conservatively.
3780 */
3781static unsigned long source_load(int cpu, int type)
3782{
3783 struct rq *rq = cpu_rq(cpu);
3784 unsigned long total = weighted_cpuload(cpu);
3785
3786 if (type == 0 || !sched_feat(LB_BIAS))
3787 return total;
3788
3789 return min(rq->cpu_load[type-1], total);
3790}
3791
3792/*
3793 * Return a high guess at the load of a migration-target cpu weighted
3794 * according to the scheduling class and "nice" value.
3795 */
3796static unsigned long target_load(int cpu, int type)
3797{
3798 struct rq *rq = cpu_rq(cpu);
3799 unsigned long total = weighted_cpuload(cpu);
3800
3801 if (type == 0 || !sched_feat(LB_BIAS))
3802 return total;
3803
3804 return max(rq->cpu_load[type-1], total);
3805}
3806
3807static unsigned long power_of(int cpu)
3808{
3809 return cpu_rq(cpu)->cpu_power;
3810}
3811
3812static unsigned long cpu_avg_load_per_task(int cpu)
3813{
3814 struct rq *rq = cpu_rq(cpu);
3815 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 3816 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
3817
3818 if (nr_running)
b92486cb 3819 return load_avg / nr_running;
029632fb
PZ
3820
3821 return 0;
3822}
3823
62470419
MW
3824static void record_wakee(struct task_struct *p)
3825{
3826 /*
3827 * Rough decay (wiping) for cost saving, don't worry
3828 * about the boundary, really active task won't care
3829 * about the loss.
3830 */
3831 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3832 current->wakee_flips = 0;
3833 current->wakee_flip_decay_ts = jiffies;
3834 }
3835
3836 if (current->last_wakee != p) {
3837 current->last_wakee = p;
3838 current->wakee_flips++;
3839 }
3840}
098fb9db 3841
74f8e4b2 3842static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
3843{
3844 struct sched_entity *se = &p->se;
3845 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
3846 u64 min_vruntime;
3847
3848#ifndef CONFIG_64BIT
3849 u64 min_vruntime_copy;
88ec22d3 3850
3fe1698b
PZ
3851 do {
3852 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3853 smp_rmb();
3854 min_vruntime = cfs_rq->min_vruntime;
3855 } while (min_vruntime != min_vruntime_copy);
3856#else
3857 min_vruntime = cfs_rq->min_vruntime;
3858#endif
88ec22d3 3859
3fe1698b 3860 se->vruntime -= min_vruntime;
62470419 3861 record_wakee(p);
88ec22d3
PZ
3862}
3863
bb3469ac 3864#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
3865/*
3866 * effective_load() calculates the load change as seen from the root_task_group
3867 *
3868 * Adding load to a group doesn't make a group heavier, but can cause movement
3869 * of group shares between cpus. Assuming the shares were perfectly aligned one
3870 * can calculate the shift in shares.
cf5f0acf
PZ
3871 *
3872 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3873 * on this @cpu and results in a total addition (subtraction) of @wg to the
3874 * total group weight.
3875 *
3876 * Given a runqueue weight distribution (rw_i) we can compute a shares
3877 * distribution (s_i) using:
3878 *
3879 * s_i = rw_i / \Sum rw_j (1)
3880 *
3881 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3882 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3883 * shares distribution (s_i):
3884 *
3885 * rw_i = { 2, 4, 1, 0 }
3886 * s_i = { 2/7, 4/7, 1/7, 0 }
3887 *
3888 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3889 * task used to run on and the CPU the waker is running on), we need to
3890 * compute the effect of waking a task on either CPU and, in case of a sync
3891 * wakeup, compute the effect of the current task going to sleep.
3892 *
3893 * So for a change of @wl to the local @cpu with an overall group weight change
3894 * of @wl we can compute the new shares distribution (s'_i) using:
3895 *
3896 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3897 *
3898 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3899 * differences in waking a task to CPU 0. The additional task changes the
3900 * weight and shares distributions like:
3901 *
3902 * rw'_i = { 3, 4, 1, 0 }
3903 * s'_i = { 3/8, 4/8, 1/8, 0 }
3904 *
3905 * We can then compute the difference in effective weight by using:
3906 *
3907 * dw_i = S * (s'_i - s_i) (3)
3908 *
3909 * Where 'S' is the group weight as seen by its parent.
3910 *
3911 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3912 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3913 * 4/7) times the weight of the group.
f5bfb7d9 3914 */
2069dd75 3915static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3916{
4be9daaa 3917 struct sched_entity *se = tg->se[cpu];
f1d239f7 3918
58d081b5 3919 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
f1d239f7
PZ
3920 return wl;
3921
4be9daaa 3922 for_each_sched_entity(se) {
cf5f0acf 3923 long w, W;
4be9daaa 3924
977dda7c 3925 tg = se->my_q->tg;
bb3469ac 3926
cf5f0acf
PZ
3927 /*
3928 * W = @wg + \Sum rw_j
3929 */
3930 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3931
cf5f0acf
PZ
3932 /*
3933 * w = rw_i + @wl
3934 */
3935 w = se->my_q->load.weight + wl;
940959e9 3936
cf5f0acf
PZ
3937 /*
3938 * wl = S * s'_i; see (2)
3939 */
3940 if (W > 0 && w < W)
3941 wl = (w * tg->shares) / W;
977dda7c
PT
3942 else
3943 wl = tg->shares;
940959e9 3944
cf5f0acf
PZ
3945 /*
3946 * Per the above, wl is the new se->load.weight value; since
3947 * those are clipped to [MIN_SHARES, ...) do so now. See
3948 * calc_cfs_shares().
3949 */
977dda7c
PT
3950 if (wl < MIN_SHARES)
3951 wl = MIN_SHARES;
cf5f0acf
PZ
3952
3953 /*
3954 * wl = dw_i = S * (s'_i - s_i); see (3)
3955 */
977dda7c 3956 wl -= se->load.weight;
cf5f0acf
PZ
3957
3958 /*
3959 * Recursively apply this logic to all parent groups to compute
3960 * the final effective load change on the root group. Since
3961 * only the @tg group gets extra weight, all parent groups can
3962 * only redistribute existing shares. @wl is the shift in shares
3963 * resulting from this level per the above.
3964 */
4be9daaa 3965 wg = 0;
4be9daaa 3966 }
bb3469ac 3967
4be9daaa 3968 return wl;
bb3469ac
PZ
3969}
3970#else
4be9daaa 3971
58d081b5 3972static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 3973{
83378269 3974 return wl;
bb3469ac 3975}
4be9daaa 3976
bb3469ac
PZ
3977#endif
3978
62470419
MW
3979static int wake_wide(struct task_struct *p)
3980{
7d9ffa89 3981 int factor = this_cpu_read(sd_llc_size);
62470419
MW
3982
3983 /*
3984 * Yeah, it's the switching-frequency, could means many wakee or
3985 * rapidly switch, use factor here will just help to automatically
3986 * adjust the loose-degree, so bigger node will lead to more pull.
3987 */
3988 if (p->wakee_flips > factor) {
3989 /*
3990 * wakee is somewhat hot, it needs certain amount of cpu
3991 * resource, so if waker is far more hot, prefer to leave
3992 * it alone.
3993 */
3994 if (current->wakee_flips > (factor * p->wakee_flips))
3995 return 1;
3996 }
3997
3998 return 0;
3999}
4000
c88d5910 4001static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4002{
e37b6a7b 4003 s64 this_load, load;
c88d5910 4004 int idx, this_cpu, prev_cpu;
098fb9db 4005 unsigned long tl_per_task;
c88d5910 4006 struct task_group *tg;
83378269 4007 unsigned long weight;
b3137bc8 4008 int balanced;
098fb9db 4009
62470419
MW
4010 /*
4011 * If we wake multiple tasks be careful to not bounce
4012 * ourselves around too much.
4013 */
4014 if (wake_wide(p))
4015 return 0;
4016
c88d5910
PZ
4017 idx = sd->wake_idx;
4018 this_cpu = smp_processor_id();
4019 prev_cpu = task_cpu(p);
4020 load = source_load(prev_cpu, idx);
4021 this_load = target_load(this_cpu, idx);
098fb9db 4022
b3137bc8
MG
4023 /*
4024 * If sync wakeup then subtract the (maximum possible)
4025 * effect of the currently running task from the load
4026 * of the current CPU:
4027 */
83378269
PZ
4028 if (sync) {
4029 tg = task_group(current);
4030 weight = current->se.load.weight;
4031
c88d5910 4032 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4033 load += effective_load(tg, prev_cpu, 0, -weight);
4034 }
b3137bc8 4035
83378269
PZ
4036 tg = task_group(p);
4037 weight = p->se.load.weight;
b3137bc8 4038
71a29aa7
PZ
4039 /*
4040 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4041 * due to the sync cause above having dropped this_load to 0, we'll
4042 * always have an imbalance, but there's really nothing you can do
4043 * about that, so that's good too.
71a29aa7
PZ
4044 *
4045 * Otherwise check if either cpus are near enough in load to allow this
4046 * task to be woken on this_cpu.
4047 */
e37b6a7b
PT
4048 if (this_load > 0) {
4049 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4050
4051 this_eff_load = 100;
4052 this_eff_load *= power_of(prev_cpu);
4053 this_eff_load *= this_load +
4054 effective_load(tg, this_cpu, weight, weight);
4055
4056 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4057 prev_eff_load *= power_of(this_cpu);
4058 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4059
4060 balanced = this_eff_load <= prev_eff_load;
4061 } else
4062 balanced = true;
b3137bc8 4063
098fb9db 4064 /*
4ae7d5ce
IM
4065 * If the currently running task will sleep within
4066 * a reasonable amount of time then attract this newly
4067 * woken task:
098fb9db 4068 */
2fb7635c
PZ
4069 if (sync && balanced)
4070 return 1;
098fb9db 4071
41acab88 4072 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4073 tl_per_task = cpu_avg_load_per_task(this_cpu);
4074
c88d5910
PZ
4075 if (balanced ||
4076 (this_load <= load &&
4077 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4078 /*
4079 * This domain has SD_WAKE_AFFINE and
4080 * p is cache cold in this domain, and
4081 * there is no bad imbalance.
4082 */
c88d5910 4083 schedstat_inc(sd, ttwu_move_affine);
41acab88 4084 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4085
4086 return 1;
4087 }
4088 return 0;
4089}
4090
aaee1203
PZ
4091/*
4092 * find_idlest_group finds and returns the least busy CPU group within the
4093 * domain.
4094 */
4095static struct sched_group *
78e7ed53 4096find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 4097 int this_cpu, int load_idx)
e7693a36 4098{
b3bd3de6 4099 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4100 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 4101 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4102
aaee1203
PZ
4103 do {
4104 unsigned long load, avg_load;
4105 int local_group;
4106 int i;
e7693a36 4107
aaee1203
PZ
4108 /* Skip over this group if it has no CPUs allowed */
4109 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4110 tsk_cpus_allowed(p)))
aaee1203
PZ
4111 continue;
4112
4113 local_group = cpumask_test_cpu(this_cpu,
4114 sched_group_cpus(group));
4115
4116 /* Tally up the load of all CPUs in the group */
4117 avg_load = 0;
4118
4119 for_each_cpu(i, sched_group_cpus(group)) {
4120 /* Bias balancing toward cpus of our domain */
4121 if (local_group)
4122 load = source_load(i, load_idx);
4123 else
4124 load = target_load(i, load_idx);
4125
4126 avg_load += load;
4127 }
4128
4129 /* Adjust by relative CPU power of the group */
9c3f75cb 4130 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4131
4132 if (local_group) {
4133 this_load = avg_load;
aaee1203
PZ
4134 } else if (avg_load < min_load) {
4135 min_load = avg_load;
4136 idlest = group;
4137 }
4138 } while (group = group->next, group != sd->groups);
4139
4140 if (!idlest || 100*this_load < imbalance*min_load)
4141 return NULL;
4142 return idlest;
4143}
4144
4145/*
4146 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4147 */
4148static int
4149find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4150{
4151 unsigned long load, min_load = ULONG_MAX;
4152 int idlest = -1;
4153 int i;
4154
4155 /* Traverse only the allowed CPUs */
fa17b507 4156 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4157 load = weighted_cpuload(i);
4158
4159 if (load < min_load || (load == min_load && i == this_cpu)) {
4160 min_load = load;
4161 idlest = i;
e7693a36
GH
4162 }
4163 }
4164
aaee1203
PZ
4165 return idlest;
4166}
e7693a36 4167
a50bde51
PZ
4168/*
4169 * Try and locate an idle CPU in the sched_domain.
4170 */
99bd5e2f 4171static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4172{
99bd5e2f 4173 struct sched_domain *sd;
37407ea7 4174 struct sched_group *sg;
e0a79f52 4175 int i = task_cpu(p);
a50bde51 4176
e0a79f52
MG
4177 if (idle_cpu(target))
4178 return target;
99bd5e2f
SS
4179
4180 /*
e0a79f52 4181 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4182 */
e0a79f52
MG
4183 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4184 return i;
a50bde51
PZ
4185
4186 /*
37407ea7 4187 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4188 */
518cd623 4189 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4190 for_each_lower_domain(sd) {
37407ea7
LT
4191 sg = sd->groups;
4192 do {
4193 if (!cpumask_intersects(sched_group_cpus(sg),
4194 tsk_cpus_allowed(p)))
4195 goto next;
4196
4197 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4198 if (i == target || !idle_cpu(i))
37407ea7
LT
4199 goto next;
4200 }
970e1789 4201
37407ea7
LT
4202 target = cpumask_first_and(sched_group_cpus(sg),
4203 tsk_cpus_allowed(p));
4204 goto done;
4205next:
4206 sg = sg->next;
4207 } while (sg != sd->groups);
4208 }
4209done:
a50bde51
PZ
4210 return target;
4211}
4212
aaee1203
PZ
4213/*
4214 * sched_balance_self: balance the current task (running on cpu) in domains
4215 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4216 * SD_BALANCE_EXEC.
4217 *
4218 * Balance, ie. select the least loaded group.
4219 *
4220 * Returns the target CPU number, or the same CPU if no balancing is needed.
4221 *
4222 * preempt must be disabled.
4223 */
0017d735 4224static int
ac66f547 4225select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4226{
29cd8bae 4227 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4228 int cpu = smp_processor_id();
c88d5910 4229 int new_cpu = cpu;
99bd5e2f 4230 int want_affine = 0;
5158f4e4 4231 int sync = wake_flags & WF_SYNC;
c88d5910 4232
29baa747 4233 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4234 return prev_cpu;
4235
0763a660 4236 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4237 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4238 want_affine = 1;
4239 new_cpu = prev_cpu;
4240 }
aaee1203 4241
dce840a0 4242 rcu_read_lock();
aaee1203 4243 for_each_domain(cpu, tmp) {
e4f42888
PZ
4244 if (!(tmp->flags & SD_LOAD_BALANCE))
4245 continue;
4246
fe3bcfe1 4247 /*
99bd5e2f
SS
4248 * If both cpu and prev_cpu are part of this domain,
4249 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4250 */
99bd5e2f
SS
4251 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4252 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4253 affine_sd = tmp;
29cd8bae 4254 break;
f03542a7 4255 }
29cd8bae 4256
f03542a7 4257 if (tmp->flags & sd_flag)
29cd8bae
PZ
4258 sd = tmp;
4259 }
4260
8b911acd 4261 if (affine_sd) {
f03542a7 4262 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
4263 prev_cpu = cpu;
4264
4265 new_cpu = select_idle_sibling(p, prev_cpu);
4266 goto unlock;
8b911acd 4267 }
e7693a36 4268
aaee1203 4269 while (sd) {
5158f4e4 4270 int load_idx = sd->forkexec_idx;
aaee1203 4271 struct sched_group *group;
c88d5910 4272 int weight;
098fb9db 4273
0763a660 4274 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4275 sd = sd->child;
4276 continue;
4277 }
098fb9db 4278
5158f4e4
PZ
4279 if (sd_flag & SD_BALANCE_WAKE)
4280 load_idx = sd->wake_idx;
098fb9db 4281
5158f4e4 4282 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
4283 if (!group) {
4284 sd = sd->child;
4285 continue;
4286 }
4ae7d5ce 4287
d7c33c49 4288 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4289 if (new_cpu == -1 || new_cpu == cpu) {
4290 /* Now try balancing at a lower domain level of cpu */
4291 sd = sd->child;
4292 continue;
e7693a36 4293 }
aaee1203
PZ
4294
4295 /* Now try balancing at a lower domain level of new_cpu */
4296 cpu = new_cpu;
669c55e9 4297 weight = sd->span_weight;
aaee1203
PZ
4298 sd = NULL;
4299 for_each_domain(cpu, tmp) {
669c55e9 4300 if (weight <= tmp->span_weight)
aaee1203 4301 break;
0763a660 4302 if (tmp->flags & sd_flag)
aaee1203
PZ
4303 sd = tmp;
4304 }
4305 /* while loop will break here if sd == NULL */
e7693a36 4306 }
dce840a0
PZ
4307unlock:
4308 rcu_read_unlock();
e7693a36 4309
c88d5910 4310 return new_cpu;
e7693a36 4311}
0a74bef8
PT
4312
4313/*
4314 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4315 * cfs_rq_of(p) references at time of call are still valid and identify the
4316 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4317 * other assumptions, including the state of rq->lock, should be made.
4318 */
4319static void
4320migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4321{
aff3e498
PT
4322 struct sched_entity *se = &p->se;
4323 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4324
4325 /*
4326 * Load tracking: accumulate removed load so that it can be processed
4327 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4328 * to blocked load iff they have a positive decay-count. It can never
4329 * be negative here since on-rq tasks have decay-count == 0.
4330 */
4331 if (se->avg.decay_count) {
4332 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4333 atomic_long_add(se->avg.load_avg_contrib,
4334 &cfs_rq->removed_load);
aff3e498 4335 }
0a74bef8 4336}
e7693a36
GH
4337#endif /* CONFIG_SMP */
4338
e52fb7c0
PZ
4339static unsigned long
4340wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4341{
4342 unsigned long gran = sysctl_sched_wakeup_granularity;
4343
4344 /*
e52fb7c0
PZ
4345 * Since its curr running now, convert the gran from real-time
4346 * to virtual-time in his units.
13814d42
MG
4347 *
4348 * By using 'se' instead of 'curr' we penalize light tasks, so
4349 * they get preempted easier. That is, if 'se' < 'curr' then
4350 * the resulting gran will be larger, therefore penalizing the
4351 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4352 * be smaller, again penalizing the lighter task.
4353 *
4354 * This is especially important for buddies when the leftmost
4355 * task is higher priority than the buddy.
0bbd3336 4356 */
f4ad9bd2 4357 return calc_delta_fair(gran, se);
0bbd3336
PZ
4358}
4359
464b7527
PZ
4360/*
4361 * Should 'se' preempt 'curr'.
4362 *
4363 * |s1
4364 * |s2
4365 * |s3
4366 * g
4367 * |<--->|c
4368 *
4369 * w(c, s1) = -1
4370 * w(c, s2) = 0
4371 * w(c, s3) = 1
4372 *
4373 */
4374static int
4375wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4376{
4377 s64 gran, vdiff = curr->vruntime - se->vruntime;
4378
4379 if (vdiff <= 0)
4380 return -1;
4381
e52fb7c0 4382 gran = wakeup_gran(curr, se);
464b7527
PZ
4383 if (vdiff > gran)
4384 return 1;
4385
4386 return 0;
4387}
4388
02479099
PZ
4389static void set_last_buddy(struct sched_entity *se)
4390{
69c80f3e
VP
4391 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4392 return;
4393
4394 for_each_sched_entity(se)
4395 cfs_rq_of(se)->last = se;
02479099
PZ
4396}
4397
4398static void set_next_buddy(struct sched_entity *se)
4399{
69c80f3e
VP
4400 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4401 return;
4402
4403 for_each_sched_entity(se)
4404 cfs_rq_of(se)->next = se;
02479099
PZ
4405}
4406
ac53db59
RR
4407static void set_skip_buddy(struct sched_entity *se)
4408{
69c80f3e
VP
4409 for_each_sched_entity(se)
4410 cfs_rq_of(se)->skip = se;
ac53db59
RR
4411}
4412
bf0f6f24
IM
4413/*
4414 * Preempt the current task with a newly woken task if needed:
4415 */
5a9b86f6 4416static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4417{
4418 struct task_struct *curr = rq->curr;
8651a86c 4419 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4420 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4421 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4422 int next_buddy_marked = 0;
bf0f6f24 4423
4ae7d5ce
IM
4424 if (unlikely(se == pse))
4425 return;
4426
5238cdd3 4427 /*
ddcdf6e7 4428 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4429 * unconditionally check_prempt_curr() after an enqueue (which may have
4430 * lead to a throttle). This both saves work and prevents false
4431 * next-buddy nomination below.
4432 */
4433 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4434 return;
4435
2f36825b 4436 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4437 set_next_buddy(pse);
2f36825b
VP
4438 next_buddy_marked = 1;
4439 }
57fdc26d 4440
aec0a514
BR
4441 /*
4442 * We can come here with TIF_NEED_RESCHED already set from new task
4443 * wake up path.
5238cdd3
PT
4444 *
4445 * Note: this also catches the edge-case of curr being in a throttled
4446 * group (e.g. via set_curr_task), since update_curr() (in the
4447 * enqueue of curr) will have resulted in resched being set. This
4448 * prevents us from potentially nominating it as a false LAST_BUDDY
4449 * below.
aec0a514
BR
4450 */
4451 if (test_tsk_need_resched(curr))
4452 return;
4453
a2f5c9ab
DH
4454 /* Idle tasks are by definition preempted by non-idle tasks. */
4455 if (unlikely(curr->policy == SCHED_IDLE) &&
4456 likely(p->policy != SCHED_IDLE))
4457 goto preempt;
4458
91c234b4 4459 /*
a2f5c9ab
DH
4460 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4461 * is driven by the tick):
91c234b4 4462 */
8ed92e51 4463 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4464 return;
bf0f6f24 4465
464b7527 4466 find_matching_se(&se, &pse);
9bbd7374 4467 update_curr(cfs_rq_of(se));
002f128b 4468 BUG_ON(!pse);
2f36825b
VP
4469 if (wakeup_preempt_entity(se, pse) == 1) {
4470 /*
4471 * Bias pick_next to pick the sched entity that is
4472 * triggering this preemption.
4473 */
4474 if (!next_buddy_marked)
4475 set_next_buddy(pse);
3a7e73a2 4476 goto preempt;
2f36825b 4477 }
464b7527 4478
3a7e73a2 4479 return;
a65ac745 4480
3a7e73a2
PZ
4481preempt:
4482 resched_task(curr);
4483 /*
4484 * Only set the backward buddy when the current task is still
4485 * on the rq. This can happen when a wakeup gets interleaved
4486 * with schedule on the ->pre_schedule() or idle_balance()
4487 * point, either of which can * drop the rq lock.
4488 *
4489 * Also, during early boot the idle thread is in the fair class,
4490 * for obvious reasons its a bad idea to schedule back to it.
4491 */
4492 if (unlikely(!se->on_rq || curr == rq->idle))
4493 return;
4494
4495 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4496 set_last_buddy(se);
bf0f6f24
IM
4497}
4498
fb8d4724 4499static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 4500{
8f4d37ec 4501 struct task_struct *p;
bf0f6f24
IM
4502 struct cfs_rq *cfs_rq = &rq->cfs;
4503 struct sched_entity *se;
4504
36ace27e 4505 if (!cfs_rq->nr_running)
bf0f6f24
IM
4506 return NULL;
4507
4508 do {
9948f4b2 4509 se = pick_next_entity(cfs_rq);
f4b6755f 4510 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4511 cfs_rq = group_cfs_rq(se);
4512 } while (cfs_rq);
4513
8f4d37ec 4514 p = task_of(se);
b39e66ea
MG
4515 if (hrtick_enabled(rq))
4516 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4517
4518 return p;
bf0f6f24
IM
4519}
4520
4521/*
4522 * Account for a descheduled task:
4523 */
31ee529c 4524static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4525{
4526 struct sched_entity *se = &prev->se;
4527 struct cfs_rq *cfs_rq;
4528
4529 for_each_sched_entity(se) {
4530 cfs_rq = cfs_rq_of(se);
ab6cde26 4531 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4532 }
4533}
4534
ac53db59
RR
4535/*
4536 * sched_yield() is very simple
4537 *
4538 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4539 */
4540static void yield_task_fair(struct rq *rq)
4541{
4542 struct task_struct *curr = rq->curr;
4543 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4544 struct sched_entity *se = &curr->se;
4545
4546 /*
4547 * Are we the only task in the tree?
4548 */
4549 if (unlikely(rq->nr_running == 1))
4550 return;
4551
4552 clear_buddies(cfs_rq, se);
4553
4554 if (curr->policy != SCHED_BATCH) {
4555 update_rq_clock(rq);
4556 /*
4557 * Update run-time statistics of the 'current'.
4558 */
4559 update_curr(cfs_rq);
916671c0
MG
4560 /*
4561 * Tell update_rq_clock() that we've just updated,
4562 * so we don't do microscopic update in schedule()
4563 * and double the fastpath cost.
4564 */
4565 rq->skip_clock_update = 1;
ac53db59
RR
4566 }
4567
4568 set_skip_buddy(se);
4569}
4570
d95f4122
MG
4571static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4572{
4573 struct sched_entity *se = &p->se;
4574
5238cdd3
PT
4575 /* throttled hierarchies are not runnable */
4576 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4577 return false;
4578
4579 /* Tell the scheduler that we'd really like pse to run next. */
4580 set_next_buddy(se);
4581
d95f4122
MG
4582 yield_task_fair(rq);
4583
4584 return true;
4585}
4586
681f3e68 4587#ifdef CONFIG_SMP
bf0f6f24 4588/**************************************************
e9c84cb8
PZ
4589 * Fair scheduling class load-balancing methods.
4590 *
4591 * BASICS
4592 *
4593 * The purpose of load-balancing is to achieve the same basic fairness the
4594 * per-cpu scheduler provides, namely provide a proportional amount of compute
4595 * time to each task. This is expressed in the following equation:
4596 *
4597 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4598 *
4599 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4600 * W_i,0 is defined as:
4601 *
4602 * W_i,0 = \Sum_j w_i,j (2)
4603 *
4604 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4605 * is derived from the nice value as per prio_to_weight[].
4606 *
4607 * The weight average is an exponential decay average of the instantaneous
4608 * weight:
4609 *
4610 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4611 *
4612 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4613 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4614 * can also include other factors [XXX].
4615 *
4616 * To achieve this balance we define a measure of imbalance which follows
4617 * directly from (1):
4618 *
4619 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4620 *
4621 * We them move tasks around to minimize the imbalance. In the continuous
4622 * function space it is obvious this converges, in the discrete case we get
4623 * a few fun cases generally called infeasible weight scenarios.
4624 *
4625 * [XXX expand on:
4626 * - infeasible weights;
4627 * - local vs global optima in the discrete case. ]
4628 *
4629 *
4630 * SCHED DOMAINS
4631 *
4632 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4633 * for all i,j solution, we create a tree of cpus that follows the hardware
4634 * topology where each level pairs two lower groups (or better). This results
4635 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4636 * tree to only the first of the previous level and we decrease the frequency
4637 * of load-balance at each level inv. proportional to the number of cpus in
4638 * the groups.
4639 *
4640 * This yields:
4641 *
4642 * log_2 n 1 n
4643 * \Sum { --- * --- * 2^i } = O(n) (5)
4644 * i = 0 2^i 2^i
4645 * `- size of each group
4646 * | | `- number of cpus doing load-balance
4647 * | `- freq
4648 * `- sum over all levels
4649 *
4650 * Coupled with a limit on how many tasks we can migrate every balance pass,
4651 * this makes (5) the runtime complexity of the balancer.
4652 *
4653 * An important property here is that each CPU is still (indirectly) connected
4654 * to every other cpu in at most O(log n) steps:
4655 *
4656 * The adjacency matrix of the resulting graph is given by:
4657 *
4658 * log_2 n
4659 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4660 * k = 0
4661 *
4662 * And you'll find that:
4663 *
4664 * A^(log_2 n)_i,j != 0 for all i,j (7)
4665 *
4666 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4667 * The task movement gives a factor of O(m), giving a convergence complexity
4668 * of:
4669 *
4670 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4671 *
4672 *
4673 * WORK CONSERVING
4674 *
4675 * In order to avoid CPUs going idle while there's still work to do, new idle
4676 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4677 * tree itself instead of relying on other CPUs to bring it work.
4678 *
4679 * This adds some complexity to both (5) and (8) but it reduces the total idle
4680 * time.
4681 *
4682 * [XXX more?]
4683 *
4684 *
4685 * CGROUPS
4686 *
4687 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4688 *
4689 * s_k,i
4690 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4691 * S_k
4692 *
4693 * Where
4694 *
4695 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4696 *
4697 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4698 *
4699 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4700 * property.
4701 *
4702 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4703 * rewrite all of this once again.]
4704 */
bf0f6f24 4705
ed387b78
HS
4706static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4707
0ec8aa00
PZ
4708enum fbq_type { regular, remote, all };
4709
ddcdf6e7 4710#define LBF_ALL_PINNED 0x01
367456c7 4711#define LBF_NEED_BREAK 0x02
6263322c
PZ
4712#define LBF_DST_PINNED 0x04
4713#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
4714
4715struct lb_env {
4716 struct sched_domain *sd;
4717
ddcdf6e7 4718 struct rq *src_rq;
85c1e7da 4719 int src_cpu;
ddcdf6e7
PZ
4720
4721 int dst_cpu;
4722 struct rq *dst_rq;
4723
88b8dac0
SV
4724 struct cpumask *dst_grpmask;
4725 int new_dst_cpu;
ddcdf6e7 4726 enum cpu_idle_type idle;
bd939f45 4727 long imbalance;
b9403130
MW
4728 /* The set of CPUs under consideration for load-balancing */
4729 struct cpumask *cpus;
4730
ddcdf6e7 4731 unsigned int flags;
367456c7
PZ
4732
4733 unsigned int loop;
4734 unsigned int loop_break;
4735 unsigned int loop_max;
0ec8aa00
PZ
4736
4737 enum fbq_type fbq_type;
ddcdf6e7
PZ
4738};
4739
1e3c88bd 4740/*
ddcdf6e7 4741 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
4742 * Both runqueues must be locked.
4743 */
ddcdf6e7 4744static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 4745{
ddcdf6e7
PZ
4746 deactivate_task(env->src_rq, p, 0);
4747 set_task_cpu(p, env->dst_cpu);
4748 activate_task(env->dst_rq, p, 0);
4749 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
4750}
4751
029632fb
PZ
4752/*
4753 * Is this task likely cache-hot:
4754 */
4755static int
4756task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4757{
4758 s64 delta;
4759
4760 if (p->sched_class != &fair_sched_class)
4761 return 0;
4762
4763 if (unlikely(p->policy == SCHED_IDLE))
4764 return 0;
4765
4766 /*
4767 * Buddy candidates are cache hot:
4768 */
4769 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4770 (&p->se == cfs_rq_of(&p->se)->next ||
4771 &p->se == cfs_rq_of(&p->se)->last))
4772 return 1;
4773
4774 if (sysctl_sched_migration_cost == -1)
4775 return 1;
4776 if (sysctl_sched_migration_cost == 0)
4777 return 0;
4778
4779 delta = now - p->se.exec_start;
4780
4781 return delta < (s64)sysctl_sched_migration_cost;
4782}
4783
3a7053b3
MG
4784#ifdef CONFIG_NUMA_BALANCING
4785/* Returns true if the destination node has incurred more faults */
4786static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4787{
4788 int src_nid, dst_nid;
4789
4790 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4791 !(env->sd->flags & SD_NUMA)) {
4792 return false;
4793 }
4794
4795 src_nid = cpu_to_node(env->src_cpu);
4796 dst_nid = cpu_to_node(env->dst_cpu);
4797
83e1d2cd 4798 if (src_nid == dst_nid)
3a7053b3
MG
4799 return false;
4800
83e1d2cd
MG
4801 /* Always encourage migration to the preferred node. */
4802 if (dst_nid == p->numa_preferred_nid)
4803 return true;
4804
887c290e
RR
4805 /* If both task and group weight improve, this move is a winner. */
4806 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4807 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
4808 return true;
4809
4810 return false;
4811}
7a0f3083
MG
4812
4813
4814static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4815{
4816 int src_nid, dst_nid;
4817
4818 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4819 return false;
4820
4821 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4822 return false;
4823
4824 src_nid = cpu_to_node(env->src_cpu);
4825 dst_nid = cpu_to_node(env->dst_cpu);
4826
83e1d2cd 4827 if (src_nid == dst_nid)
7a0f3083
MG
4828 return false;
4829
83e1d2cd
MG
4830 /* Migrating away from the preferred node is always bad. */
4831 if (src_nid == p->numa_preferred_nid)
4832 return true;
4833
887c290e
RR
4834 /* If either task or group weight get worse, don't do it. */
4835 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4836 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
4837 return true;
4838
4839 return false;
4840}
4841
3a7053b3
MG
4842#else
4843static inline bool migrate_improves_locality(struct task_struct *p,
4844 struct lb_env *env)
4845{
4846 return false;
4847}
7a0f3083
MG
4848
4849static inline bool migrate_degrades_locality(struct task_struct *p,
4850 struct lb_env *env)
4851{
4852 return false;
4853}
3a7053b3
MG
4854#endif
4855
1e3c88bd
PZ
4856/*
4857 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4858 */
4859static
8e45cb54 4860int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
4861{
4862 int tsk_cache_hot = 0;
4863 /*
4864 * We do not migrate tasks that are:
d3198084 4865 * 1) throttled_lb_pair, or
1e3c88bd 4866 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
4867 * 3) running (obviously), or
4868 * 4) are cache-hot on their current CPU.
1e3c88bd 4869 */
d3198084
JK
4870 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4871 return 0;
4872
ddcdf6e7 4873 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 4874 int cpu;
88b8dac0 4875
41acab88 4876 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 4877
6263322c
PZ
4878 env->flags |= LBF_SOME_PINNED;
4879
88b8dac0
SV
4880 /*
4881 * Remember if this task can be migrated to any other cpu in
4882 * our sched_group. We may want to revisit it if we couldn't
4883 * meet load balance goals by pulling other tasks on src_cpu.
4884 *
4885 * Also avoid computing new_dst_cpu if we have already computed
4886 * one in current iteration.
4887 */
6263322c 4888 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
4889 return 0;
4890
e02e60c1
JK
4891 /* Prevent to re-select dst_cpu via env's cpus */
4892 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4893 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 4894 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
4895 env->new_dst_cpu = cpu;
4896 break;
4897 }
88b8dac0 4898 }
e02e60c1 4899
1e3c88bd
PZ
4900 return 0;
4901 }
88b8dac0
SV
4902
4903 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 4904 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 4905
ddcdf6e7 4906 if (task_running(env->src_rq, p)) {
41acab88 4907 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
4908 return 0;
4909 }
4910
4911 /*
4912 * Aggressive migration if:
3a7053b3
MG
4913 * 1) destination numa is preferred
4914 * 2) task is cache cold, or
4915 * 3) too many balance attempts have failed.
1e3c88bd 4916 */
78becc27 4917 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
7a0f3083
MG
4918 if (!tsk_cache_hot)
4919 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
4920
4921 if (migrate_improves_locality(p, env)) {
4922#ifdef CONFIG_SCHEDSTATS
4923 if (tsk_cache_hot) {
4924 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4925 schedstat_inc(p, se.statistics.nr_forced_migrations);
4926 }
4927#endif
4928 return 1;
4929 }
4930
1e3c88bd 4931 if (!tsk_cache_hot ||
8e45cb54 4932 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 4933
1e3c88bd 4934 if (tsk_cache_hot) {
8e45cb54 4935 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 4936 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 4937 }
4e2dcb73 4938
1e3c88bd
PZ
4939 return 1;
4940 }
4941
4e2dcb73
ZH
4942 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4943 return 0;
1e3c88bd
PZ
4944}
4945
897c395f
PZ
4946/*
4947 * move_one_task tries to move exactly one task from busiest to this_rq, as
4948 * part of active balancing operations within "domain".
4949 * Returns 1 if successful and 0 otherwise.
4950 *
4951 * Called with both runqueues locked.
4952 */
8e45cb54 4953static int move_one_task(struct lb_env *env)
897c395f
PZ
4954{
4955 struct task_struct *p, *n;
897c395f 4956
367456c7 4957 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
4958 if (!can_migrate_task(p, env))
4959 continue;
897c395f 4960
367456c7
PZ
4961 move_task(p, env);
4962 /*
4963 * Right now, this is only the second place move_task()
4964 * is called, so we can safely collect move_task()
4965 * stats here rather than inside move_task().
4966 */
4967 schedstat_inc(env->sd, lb_gained[env->idle]);
4968 return 1;
897c395f 4969 }
897c395f
PZ
4970 return 0;
4971}
4972
eb95308e
PZ
4973static const unsigned int sched_nr_migrate_break = 32;
4974
5d6523eb 4975/*
bd939f45 4976 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
4977 * this_rq, as part of a balancing operation within domain "sd".
4978 * Returns 1 if successful and 0 otherwise.
4979 *
4980 * Called with both runqueues locked.
4981 */
4982static int move_tasks(struct lb_env *env)
1e3c88bd 4983{
5d6523eb
PZ
4984 struct list_head *tasks = &env->src_rq->cfs_tasks;
4985 struct task_struct *p;
367456c7
PZ
4986 unsigned long load;
4987 int pulled = 0;
1e3c88bd 4988
bd939f45 4989 if (env->imbalance <= 0)
5d6523eb 4990 return 0;
1e3c88bd 4991
5d6523eb
PZ
4992 while (!list_empty(tasks)) {
4993 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 4994
367456c7
PZ
4995 env->loop++;
4996 /* We've more or less seen every task there is, call it quits */
5d6523eb 4997 if (env->loop > env->loop_max)
367456c7 4998 break;
5d6523eb
PZ
4999
5000 /* take a breather every nr_migrate tasks */
367456c7 5001 if (env->loop > env->loop_break) {
eb95308e 5002 env->loop_break += sched_nr_migrate_break;
8e45cb54 5003 env->flags |= LBF_NEED_BREAK;
ee00e66f 5004 break;
a195f004 5005 }
1e3c88bd 5006
d3198084 5007 if (!can_migrate_task(p, env))
367456c7
PZ
5008 goto next;
5009
5010 load = task_h_load(p);
5d6523eb 5011
eb95308e 5012 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5013 goto next;
5014
bd939f45 5015 if ((load / 2) > env->imbalance)
367456c7 5016 goto next;
1e3c88bd 5017
ddcdf6e7 5018 move_task(p, env);
ee00e66f 5019 pulled++;
bd939f45 5020 env->imbalance -= load;
1e3c88bd
PZ
5021
5022#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5023 /*
5024 * NEWIDLE balancing is a source of latency, so preemptible
5025 * kernels will stop after the first task is pulled to minimize
5026 * the critical section.
5027 */
5d6523eb 5028 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5029 break;
1e3c88bd
PZ
5030#endif
5031
ee00e66f
PZ
5032 /*
5033 * We only want to steal up to the prescribed amount of
5034 * weighted load.
5035 */
bd939f45 5036 if (env->imbalance <= 0)
ee00e66f 5037 break;
367456c7
PZ
5038
5039 continue;
5040next:
5d6523eb 5041 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5042 }
5d6523eb 5043
1e3c88bd 5044 /*
ddcdf6e7
PZ
5045 * Right now, this is one of only two places move_task() is called,
5046 * so we can safely collect move_task() stats here rather than
5047 * inside move_task().
1e3c88bd 5048 */
8e45cb54 5049 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5050
5d6523eb 5051 return pulled;
1e3c88bd
PZ
5052}
5053
230059de 5054#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5055/*
5056 * update tg->load_weight by folding this cpu's load_avg
5057 */
48a16753 5058static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5059{
48a16753
PT
5060 struct sched_entity *se = tg->se[cpu];
5061 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5062
48a16753
PT
5063 /* throttled entities do not contribute to load */
5064 if (throttled_hierarchy(cfs_rq))
5065 return;
9e3081ca 5066
aff3e498 5067 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5068
82958366
PT
5069 if (se) {
5070 update_entity_load_avg(se, 1);
5071 /*
5072 * We pivot on our runnable average having decayed to zero for
5073 * list removal. This generally implies that all our children
5074 * have also been removed (modulo rounding error or bandwidth
5075 * control); however, such cases are rare and we can fix these
5076 * at enqueue.
5077 *
5078 * TODO: fix up out-of-order children on enqueue.
5079 */
5080 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5081 list_del_leaf_cfs_rq(cfs_rq);
5082 } else {
48a16753 5083 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5084 update_rq_runnable_avg(rq, rq->nr_running);
5085 }
9e3081ca
PZ
5086}
5087
48a16753 5088static void update_blocked_averages(int cpu)
9e3081ca 5089{
9e3081ca 5090 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5091 struct cfs_rq *cfs_rq;
5092 unsigned long flags;
9e3081ca 5093
48a16753
PT
5094 raw_spin_lock_irqsave(&rq->lock, flags);
5095 update_rq_clock(rq);
9763b67f
PZ
5096 /*
5097 * Iterates the task_group tree in a bottom up fashion, see
5098 * list_add_leaf_cfs_rq() for details.
5099 */
64660c86 5100 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5101 /*
5102 * Note: We may want to consider periodically releasing
5103 * rq->lock about these updates so that creating many task
5104 * groups does not result in continually extending hold time.
5105 */
5106 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5107 }
48a16753
PT
5108
5109 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5110}
5111
9763b67f 5112/*
68520796 5113 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5114 * This needs to be done in a top-down fashion because the load of a child
5115 * group is a fraction of its parents load.
5116 */
68520796 5117static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5118{
68520796
VD
5119 struct rq *rq = rq_of(cfs_rq);
5120 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5121 unsigned long now = jiffies;
68520796 5122 unsigned long load;
a35b6466 5123
68520796 5124 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5125 return;
5126
68520796
VD
5127 cfs_rq->h_load_next = NULL;
5128 for_each_sched_entity(se) {
5129 cfs_rq = cfs_rq_of(se);
5130 cfs_rq->h_load_next = se;
5131 if (cfs_rq->last_h_load_update == now)
5132 break;
5133 }
a35b6466 5134
68520796 5135 if (!se) {
7e3115ef 5136 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5137 cfs_rq->last_h_load_update = now;
5138 }
5139
5140 while ((se = cfs_rq->h_load_next) != NULL) {
5141 load = cfs_rq->h_load;
5142 load = div64_ul(load * se->avg.load_avg_contrib,
5143 cfs_rq->runnable_load_avg + 1);
5144 cfs_rq = group_cfs_rq(se);
5145 cfs_rq->h_load = load;
5146 cfs_rq->last_h_load_update = now;
5147 }
9763b67f
PZ
5148}
5149
367456c7 5150static unsigned long task_h_load(struct task_struct *p)
230059de 5151{
367456c7 5152 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5153
68520796 5154 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5155 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5156 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5157}
5158#else
48a16753 5159static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5160{
5161}
5162
367456c7 5163static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5164{
a003a25b 5165 return p->se.avg.load_avg_contrib;
1e3c88bd 5166}
230059de 5167#endif
1e3c88bd 5168
1e3c88bd 5169/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5170/*
5171 * sg_lb_stats - stats of a sched_group required for load_balancing
5172 */
5173struct sg_lb_stats {
5174 unsigned long avg_load; /*Avg load across the CPUs of the group */
5175 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5176 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5177 unsigned long load_per_task;
3ae11c90 5178 unsigned long group_power;
147c5fc2
PZ
5179 unsigned int sum_nr_running; /* Nr tasks running in the group */
5180 unsigned int group_capacity;
5181 unsigned int idle_cpus;
5182 unsigned int group_weight;
1e3c88bd 5183 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5184 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5185#ifdef CONFIG_NUMA_BALANCING
5186 unsigned int nr_numa_running;
5187 unsigned int nr_preferred_running;
5188#endif
1e3c88bd
PZ
5189};
5190
56cf515b
JK
5191/*
5192 * sd_lb_stats - Structure to store the statistics of a sched_domain
5193 * during load balancing.
5194 */
5195struct sd_lb_stats {
5196 struct sched_group *busiest; /* Busiest group in this sd */
5197 struct sched_group *local; /* Local group in this sd */
5198 unsigned long total_load; /* Total load of all groups in sd */
5199 unsigned long total_pwr; /* Total power of all groups in sd */
5200 unsigned long avg_load; /* Average load across all groups in sd */
5201
56cf515b 5202 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5203 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5204};
5205
147c5fc2
PZ
5206static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5207{
5208 /*
5209 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5210 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5211 * We must however clear busiest_stat::avg_load because
5212 * update_sd_pick_busiest() reads this before assignment.
5213 */
5214 *sds = (struct sd_lb_stats){
5215 .busiest = NULL,
5216 .local = NULL,
5217 .total_load = 0UL,
5218 .total_pwr = 0UL,
5219 .busiest_stat = {
5220 .avg_load = 0UL,
5221 },
5222 };
5223}
5224
1e3c88bd
PZ
5225/**
5226 * get_sd_load_idx - Obtain the load index for a given sched domain.
5227 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5228 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5229 *
5230 * Return: The load index.
1e3c88bd
PZ
5231 */
5232static inline int get_sd_load_idx(struct sched_domain *sd,
5233 enum cpu_idle_type idle)
5234{
5235 int load_idx;
5236
5237 switch (idle) {
5238 case CPU_NOT_IDLE:
5239 load_idx = sd->busy_idx;
5240 break;
5241
5242 case CPU_NEWLY_IDLE:
5243 load_idx = sd->newidle_idx;
5244 break;
5245 default:
5246 load_idx = sd->idle_idx;
5247 break;
5248 }
5249
5250 return load_idx;
5251}
5252
15f803c9 5253static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5254{
1399fa78 5255 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5256}
5257
5258unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5259{
5260 return default_scale_freq_power(sd, cpu);
5261}
5262
15f803c9 5263static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5264{
669c55e9 5265 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5266 unsigned long smt_gain = sd->smt_gain;
5267
5268 smt_gain /= weight;
5269
5270 return smt_gain;
5271}
5272
5273unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5274{
5275 return default_scale_smt_power(sd, cpu);
5276}
5277
15f803c9 5278static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5279{
5280 struct rq *rq = cpu_rq(cpu);
b654f7de 5281 u64 total, available, age_stamp, avg;
1e3c88bd 5282
b654f7de
PZ
5283 /*
5284 * Since we're reading these variables without serialization make sure
5285 * we read them once before doing sanity checks on them.
5286 */
5287 age_stamp = ACCESS_ONCE(rq->age_stamp);
5288 avg = ACCESS_ONCE(rq->rt_avg);
5289
78becc27 5290 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
aa483808 5291
b654f7de 5292 if (unlikely(total < avg)) {
aa483808
VP
5293 /* Ensures that power won't end up being negative */
5294 available = 0;
5295 } else {
b654f7de 5296 available = total - avg;
aa483808 5297 }
1e3c88bd 5298
1399fa78
NR
5299 if (unlikely((s64)total < SCHED_POWER_SCALE))
5300 total = SCHED_POWER_SCALE;
1e3c88bd 5301
1399fa78 5302 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5303
5304 return div_u64(available, total);
5305}
5306
5307static void update_cpu_power(struct sched_domain *sd, int cpu)
5308{
669c55e9 5309 unsigned long weight = sd->span_weight;
1399fa78 5310 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5311 struct sched_group *sdg = sd->groups;
5312
1e3c88bd
PZ
5313 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5314 if (sched_feat(ARCH_POWER))
5315 power *= arch_scale_smt_power(sd, cpu);
5316 else
5317 power *= default_scale_smt_power(sd, cpu);
5318
1399fa78 5319 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5320 }
5321
9c3f75cb 5322 sdg->sgp->power_orig = power;
9d5efe05
SV
5323
5324 if (sched_feat(ARCH_POWER))
5325 power *= arch_scale_freq_power(sd, cpu);
5326 else
5327 power *= default_scale_freq_power(sd, cpu);
5328
1399fa78 5329 power >>= SCHED_POWER_SHIFT;
9d5efe05 5330
1e3c88bd 5331 power *= scale_rt_power(cpu);
1399fa78 5332 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5333
5334 if (!power)
5335 power = 1;
5336
e51fd5e2 5337 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5338 sdg->sgp->power = power;
1e3c88bd
PZ
5339}
5340
029632fb 5341void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5342{
5343 struct sched_domain *child = sd->child;
5344 struct sched_group *group, *sdg = sd->groups;
863bffc8 5345 unsigned long power, power_orig;
4ec4412e
VG
5346 unsigned long interval;
5347
5348 interval = msecs_to_jiffies(sd->balance_interval);
5349 interval = clamp(interval, 1UL, max_load_balance_interval);
5350 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5351
5352 if (!child) {
5353 update_cpu_power(sd, cpu);
5354 return;
5355 }
5356
863bffc8 5357 power_orig = power = 0;
1e3c88bd 5358
74a5ce20
PZ
5359 if (child->flags & SD_OVERLAP) {
5360 /*
5361 * SD_OVERLAP domains cannot assume that child groups
5362 * span the current group.
5363 */
5364
863bffc8 5365 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5366 struct sched_group_power *sgp;
5367 struct rq *rq = cpu_rq(cpu);
863bffc8 5368
9abf24d4
SD
5369 /*
5370 * build_sched_domains() -> init_sched_groups_power()
5371 * gets here before we've attached the domains to the
5372 * runqueues.
5373 *
5374 * Use power_of(), which is set irrespective of domains
5375 * in update_cpu_power().
5376 *
5377 * This avoids power/power_orig from being 0 and
5378 * causing divide-by-zero issues on boot.
5379 *
5380 * Runtime updates will correct power_orig.
5381 */
5382 if (unlikely(!rq->sd)) {
5383 power_orig += power_of(cpu);
5384 power += power_of(cpu);
5385 continue;
5386 }
5387
5388 sgp = rq->sd->groups->sgp;
5389 power_orig += sgp->power_orig;
5390 power += sgp->power;
863bffc8 5391 }
74a5ce20
PZ
5392 } else {
5393 /*
5394 * !SD_OVERLAP domains can assume that child groups
5395 * span the current group.
5396 */
5397
5398 group = child->groups;
5399 do {
863bffc8 5400 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5401 power += group->sgp->power;
5402 group = group->next;
5403 } while (group != child->groups);
5404 }
1e3c88bd 5405
863bffc8
PZ
5406 sdg->sgp->power_orig = power_orig;
5407 sdg->sgp->power = power;
1e3c88bd
PZ
5408}
5409
9d5efe05
SV
5410/*
5411 * Try and fix up capacity for tiny siblings, this is needed when
5412 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5413 * which on its own isn't powerful enough.
5414 *
5415 * See update_sd_pick_busiest() and check_asym_packing().
5416 */
5417static inline int
5418fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5419{
5420 /*
1399fa78 5421 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5422 */
a6c75f2f 5423 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5424 return 0;
5425
5426 /*
5427 * If ~90% of the cpu_power is still there, we're good.
5428 */
9c3f75cb 5429 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5430 return 1;
5431
5432 return 0;
5433}
5434
30ce5dab
PZ
5435/*
5436 * Group imbalance indicates (and tries to solve) the problem where balancing
5437 * groups is inadequate due to tsk_cpus_allowed() constraints.
5438 *
5439 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5440 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5441 * Something like:
5442 *
5443 * { 0 1 2 3 } { 4 5 6 7 }
5444 * * * * *
5445 *
5446 * If we were to balance group-wise we'd place two tasks in the first group and
5447 * two tasks in the second group. Clearly this is undesired as it will overload
5448 * cpu 3 and leave one of the cpus in the second group unused.
5449 *
5450 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5451 * by noticing the lower domain failed to reach balance and had difficulty
5452 * moving tasks due to affinity constraints.
30ce5dab
PZ
5453 *
5454 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5455 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5456 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5457 * to create an effective group imbalance.
5458 *
5459 * This is a somewhat tricky proposition since the next run might not find the
5460 * group imbalance and decide the groups need to be balanced again. A most
5461 * subtle and fragile situation.
5462 */
5463
6263322c 5464static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5465{
6263322c 5466 return group->sgp->imbalance;
30ce5dab
PZ
5467}
5468
b37d9316
PZ
5469/*
5470 * Compute the group capacity.
5471 *
c61037e9
PZ
5472 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5473 * first dividing out the smt factor and computing the actual number of cores
5474 * and limit power unit capacity with that.
b37d9316
PZ
5475 */
5476static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5477{
c61037e9
PZ
5478 unsigned int capacity, smt, cpus;
5479 unsigned int power, power_orig;
5480
5481 power = group->sgp->power;
5482 power_orig = group->sgp->power_orig;
5483 cpus = group->group_weight;
b37d9316 5484
c61037e9
PZ
5485 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5486 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5487 capacity = cpus / smt; /* cores */
b37d9316 5488
c61037e9 5489 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5490 if (!capacity)
5491 capacity = fix_small_capacity(env->sd, group);
5492
5493 return capacity;
5494}
5495
1e3c88bd
PZ
5496/**
5497 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5498 * @env: The load balancing environment.
1e3c88bd 5499 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5500 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5501 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5502 * @sgs: variable to hold the statistics for this group.
5503 */
bd939f45
PZ
5504static inline void update_sg_lb_stats(struct lb_env *env,
5505 struct sched_group *group, int load_idx,
23f0d209 5506 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5507{
30ce5dab
PZ
5508 unsigned long nr_running;
5509 unsigned long load;
bd939f45 5510 int i;
1e3c88bd 5511
b72ff13c
PZ
5512 memset(sgs, 0, sizeof(*sgs));
5513
b9403130 5514 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5515 struct rq *rq = cpu_rq(i);
5516
e44bc5c5
PZ
5517 nr_running = rq->nr_running;
5518
1e3c88bd 5519 /* Bias balancing toward cpus of our domain */
6263322c 5520 if (local_group)
04f733b4 5521 load = target_load(i, load_idx);
6263322c 5522 else
1e3c88bd 5523 load = source_load(i, load_idx);
1e3c88bd
PZ
5524
5525 sgs->group_load += load;
e44bc5c5 5526 sgs->sum_nr_running += nr_running;
0ec8aa00
PZ
5527#ifdef CONFIG_NUMA_BALANCING
5528 sgs->nr_numa_running += rq->nr_numa_running;
5529 sgs->nr_preferred_running += rq->nr_preferred_running;
5530#endif
1e3c88bd 5531 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5532 if (idle_cpu(i))
5533 sgs->idle_cpus++;
1e3c88bd
PZ
5534 }
5535
1e3c88bd 5536 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5537 sgs->group_power = group->sgp->power;
5538 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5539
dd5feea1 5540 if (sgs->sum_nr_running)
38d0f770 5541 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5542
aae6d3dd 5543 sgs->group_weight = group->group_weight;
fab47622 5544
b37d9316
PZ
5545 sgs->group_imb = sg_imbalanced(group);
5546 sgs->group_capacity = sg_capacity(env, group);
5547
fab47622
NR
5548 if (sgs->group_capacity > sgs->sum_nr_running)
5549 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5550}
5551
532cb4c4
MN
5552/**
5553 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5554 * @env: The load balancing environment.
532cb4c4
MN
5555 * @sds: sched_domain statistics
5556 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5557 * @sgs: sched_group statistics
532cb4c4
MN
5558 *
5559 * Determine if @sg is a busier group than the previously selected
5560 * busiest group.
e69f6186
YB
5561 *
5562 * Return: %true if @sg is a busier group than the previously selected
5563 * busiest group. %false otherwise.
532cb4c4 5564 */
bd939f45 5565static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5566 struct sd_lb_stats *sds,
5567 struct sched_group *sg,
bd939f45 5568 struct sg_lb_stats *sgs)
532cb4c4 5569{
56cf515b 5570 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5571 return false;
5572
5573 if (sgs->sum_nr_running > sgs->group_capacity)
5574 return true;
5575
5576 if (sgs->group_imb)
5577 return true;
5578
5579 /*
5580 * ASYM_PACKING needs to move all the work to the lowest
5581 * numbered CPUs in the group, therefore mark all groups
5582 * higher than ourself as busy.
5583 */
bd939f45
PZ
5584 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5585 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5586 if (!sds->busiest)
5587 return true;
5588
5589 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5590 return true;
5591 }
5592
5593 return false;
5594}
5595
0ec8aa00
PZ
5596#ifdef CONFIG_NUMA_BALANCING
5597static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5598{
5599 if (sgs->sum_nr_running > sgs->nr_numa_running)
5600 return regular;
5601 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5602 return remote;
5603 return all;
5604}
5605
5606static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5607{
5608 if (rq->nr_running > rq->nr_numa_running)
5609 return regular;
5610 if (rq->nr_running > rq->nr_preferred_running)
5611 return remote;
5612 return all;
5613}
5614#else
5615static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5616{
5617 return all;
5618}
5619
5620static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5621{
5622 return regular;
5623}
5624#endif /* CONFIG_NUMA_BALANCING */
5625
1e3c88bd 5626/**
461819ac 5627 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5628 * @env: The load balancing environment.
1e3c88bd
PZ
5629 * @sds: variable to hold the statistics for this sched_domain.
5630 */
0ec8aa00 5631static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5632{
bd939f45
PZ
5633 struct sched_domain *child = env->sd->child;
5634 struct sched_group *sg = env->sd->groups;
56cf515b 5635 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5636 int load_idx, prefer_sibling = 0;
5637
5638 if (child && child->flags & SD_PREFER_SIBLING)
5639 prefer_sibling = 1;
5640
bd939f45 5641 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5642
5643 do {
56cf515b 5644 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5645 int local_group;
5646
bd939f45 5647 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5648 if (local_group) {
5649 sds->local = sg;
5650 sgs = &sds->local_stat;
b72ff13c
PZ
5651
5652 if (env->idle != CPU_NEWLY_IDLE ||
5653 time_after_eq(jiffies, sg->sgp->next_update))
5654 update_group_power(env->sd, env->dst_cpu);
56cf515b 5655 }
1e3c88bd 5656
56cf515b 5657 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5658
b72ff13c
PZ
5659 if (local_group)
5660 goto next_group;
5661
1e3c88bd
PZ
5662 /*
5663 * In case the child domain prefers tasks go to siblings
532cb4c4 5664 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
5665 * and move all the excess tasks away. We lower the capacity
5666 * of a group only if the local group has the capacity to fit
5667 * these excess tasks, i.e. nr_running < group_capacity. The
5668 * extra check prevents the case where you always pull from the
5669 * heaviest group when it is already under-utilized (possible
5670 * with a large weight task outweighs the tasks on the system).
1e3c88bd 5671 */
b72ff13c
PZ
5672 if (prefer_sibling && sds->local &&
5673 sds->local_stat.group_has_capacity)
147c5fc2 5674 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 5675
b72ff13c 5676 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 5677 sds->busiest = sg;
56cf515b 5678 sds->busiest_stat = *sgs;
1e3c88bd
PZ
5679 }
5680
b72ff13c
PZ
5681next_group:
5682 /* Now, start updating sd_lb_stats */
5683 sds->total_load += sgs->group_load;
5684 sds->total_pwr += sgs->group_power;
5685
532cb4c4 5686 sg = sg->next;
bd939f45 5687 } while (sg != env->sd->groups);
0ec8aa00
PZ
5688
5689 if (env->sd->flags & SD_NUMA)
5690 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
5691}
5692
532cb4c4
MN
5693/**
5694 * check_asym_packing - Check to see if the group is packed into the
5695 * sched doman.
5696 *
5697 * This is primarily intended to used at the sibling level. Some
5698 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5699 * case of POWER7, it can move to lower SMT modes only when higher
5700 * threads are idle. When in lower SMT modes, the threads will
5701 * perform better since they share less core resources. Hence when we
5702 * have idle threads, we want them to be the higher ones.
5703 *
5704 * This packing function is run on idle threads. It checks to see if
5705 * the busiest CPU in this domain (core in the P7 case) has a higher
5706 * CPU number than the packing function is being run on. Here we are
5707 * assuming lower CPU number will be equivalent to lower a SMT thread
5708 * number.
5709 *
e69f6186 5710 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
5711 * this CPU. The amount of the imbalance is returned in *imbalance.
5712 *
cd96891d 5713 * @env: The load balancing environment.
532cb4c4 5714 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 5715 */
bd939f45 5716static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
5717{
5718 int busiest_cpu;
5719
bd939f45 5720 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
5721 return 0;
5722
5723 if (!sds->busiest)
5724 return 0;
5725
5726 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 5727 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
5728 return 0;
5729
bd939f45 5730 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
5731 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5732 SCHED_POWER_SCALE);
bd939f45 5733
532cb4c4 5734 return 1;
1e3c88bd
PZ
5735}
5736
5737/**
5738 * fix_small_imbalance - Calculate the minor imbalance that exists
5739 * amongst the groups of a sched_domain, during
5740 * load balancing.
cd96891d 5741 * @env: The load balancing environment.
1e3c88bd 5742 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5743 */
bd939f45
PZ
5744static inline
5745void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
5746{
5747 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5748 unsigned int imbn = 2;
dd5feea1 5749 unsigned long scaled_busy_load_per_task;
56cf515b 5750 struct sg_lb_stats *local, *busiest;
1e3c88bd 5751
56cf515b
JK
5752 local = &sds->local_stat;
5753 busiest = &sds->busiest_stat;
1e3c88bd 5754
56cf515b
JK
5755 if (!local->sum_nr_running)
5756 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5757 else if (busiest->load_per_task > local->load_per_task)
5758 imbn = 1;
dd5feea1 5759
56cf515b
JK
5760 scaled_busy_load_per_task =
5761 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5762 busiest->group_power;
56cf515b 5763
3029ede3
VD
5764 if (busiest->avg_load + scaled_busy_load_per_task >=
5765 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 5766 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5767 return;
5768 }
5769
5770 /*
5771 * OK, we don't have enough imbalance to justify moving tasks,
5772 * however we may be able to increase total CPU power used by
5773 * moving them.
5774 */
5775
3ae11c90 5776 pwr_now += busiest->group_power *
56cf515b 5777 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 5778 pwr_now += local->group_power *
56cf515b 5779 min(local->load_per_task, local->avg_load);
1399fa78 5780 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5781
5782 /* Amount of load we'd subtract */
56cf515b 5783 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5784 busiest->group_power;
56cf515b 5785 if (busiest->avg_load > tmp) {
3ae11c90 5786 pwr_move += busiest->group_power *
56cf515b
JK
5787 min(busiest->load_per_task,
5788 busiest->avg_load - tmp);
5789 }
1e3c88bd
PZ
5790
5791 /* Amount of load we'd add */
3ae11c90 5792 if (busiest->avg_load * busiest->group_power <
56cf515b 5793 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
5794 tmp = (busiest->avg_load * busiest->group_power) /
5795 local->group_power;
56cf515b
JK
5796 } else {
5797 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 5798 local->group_power;
56cf515b 5799 }
3ae11c90
PZ
5800 pwr_move += local->group_power *
5801 min(local->load_per_task, local->avg_load + tmp);
1399fa78 5802 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
5803
5804 /* Move if we gain throughput */
5805 if (pwr_move > pwr_now)
56cf515b 5806 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
5807}
5808
5809/**
5810 * calculate_imbalance - Calculate the amount of imbalance present within the
5811 * groups of a given sched_domain during load balance.
bd939f45 5812 * @env: load balance environment
1e3c88bd 5813 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 5814 */
bd939f45 5815static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5816{
dd5feea1 5817 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
5818 struct sg_lb_stats *local, *busiest;
5819
5820 local = &sds->local_stat;
56cf515b 5821 busiest = &sds->busiest_stat;
dd5feea1 5822
56cf515b 5823 if (busiest->group_imb) {
30ce5dab
PZ
5824 /*
5825 * In the group_imb case we cannot rely on group-wide averages
5826 * to ensure cpu-load equilibrium, look at wider averages. XXX
5827 */
56cf515b
JK
5828 busiest->load_per_task =
5829 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
5830 }
5831
1e3c88bd
PZ
5832 /*
5833 * In the presence of smp nice balancing, certain scenarios can have
5834 * max load less than avg load(as we skip the groups at or below
5835 * its cpu_power, while calculating max_load..)
5836 */
b1885550
VD
5837 if (busiest->avg_load <= sds->avg_load ||
5838 local->avg_load >= sds->avg_load) {
bd939f45
PZ
5839 env->imbalance = 0;
5840 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
5841 }
5842
56cf515b 5843 if (!busiest->group_imb) {
dd5feea1
SS
5844 /*
5845 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
5846 * Except of course for the group_imb case, since then we might
5847 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 5848 */
56cf515b
JK
5849 load_above_capacity =
5850 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 5851
1399fa78 5852 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 5853 load_above_capacity /= busiest->group_power;
dd5feea1
SS
5854 }
5855
5856 /*
5857 * We're trying to get all the cpus to the average_load, so we don't
5858 * want to push ourselves above the average load, nor do we wish to
5859 * reduce the max loaded cpu below the average load. At the same time,
5860 * we also don't want to reduce the group load below the group capacity
5861 * (so that we can implement power-savings policies etc). Thus we look
5862 * for the minimum possible imbalance.
dd5feea1 5863 */
30ce5dab 5864 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
5865
5866 /* How much load to actually move to equalise the imbalance */
56cf515b 5867 env->imbalance = min(
3ae11c90
PZ
5868 max_pull * busiest->group_power,
5869 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 5870 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
5871
5872 /*
5873 * if *imbalance is less than the average load per runnable task
25985edc 5874 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
5875 * a think about bumping its value to force at least one task to be
5876 * moved
5877 */
56cf515b 5878 if (env->imbalance < busiest->load_per_task)
bd939f45 5879 return fix_small_imbalance(env, sds);
1e3c88bd 5880}
fab47622 5881
1e3c88bd
PZ
5882/******* find_busiest_group() helpers end here *********************/
5883
5884/**
5885 * find_busiest_group - Returns the busiest group within the sched_domain
5886 * if there is an imbalance. If there isn't an imbalance, and
5887 * the user has opted for power-savings, it returns a group whose
5888 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5889 * such a group exists.
5890 *
5891 * Also calculates the amount of weighted load which should be moved
5892 * to restore balance.
5893 *
cd96891d 5894 * @env: The load balancing environment.
1e3c88bd 5895 *
e69f6186 5896 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
5897 * - If no imbalance and user has opted for power-savings balance,
5898 * return the least loaded group whose CPUs can be
5899 * put to idle by rebalancing its tasks onto our group.
5900 */
56cf515b 5901static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 5902{
56cf515b 5903 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
5904 struct sd_lb_stats sds;
5905
147c5fc2 5906 init_sd_lb_stats(&sds);
1e3c88bd
PZ
5907
5908 /*
5909 * Compute the various statistics relavent for load balancing at
5910 * this level.
5911 */
23f0d209 5912 update_sd_lb_stats(env, &sds);
56cf515b
JK
5913 local = &sds.local_stat;
5914 busiest = &sds.busiest_stat;
1e3c88bd 5915
bd939f45
PZ
5916 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5917 check_asym_packing(env, &sds))
532cb4c4
MN
5918 return sds.busiest;
5919
cc57aa8f 5920 /* There is no busy sibling group to pull tasks from */
56cf515b 5921 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
5922 goto out_balanced;
5923
1399fa78 5924 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 5925
866ab43e
PZ
5926 /*
5927 * If the busiest group is imbalanced the below checks don't
30ce5dab 5928 * work because they assume all things are equal, which typically
866ab43e
PZ
5929 * isn't true due to cpus_allowed constraints and the like.
5930 */
56cf515b 5931 if (busiest->group_imb)
866ab43e
PZ
5932 goto force_balance;
5933
cc57aa8f 5934 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
5935 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5936 !busiest->group_has_capacity)
fab47622
NR
5937 goto force_balance;
5938
cc57aa8f
PZ
5939 /*
5940 * If the local group is more busy than the selected busiest group
5941 * don't try and pull any tasks.
5942 */
56cf515b 5943 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
5944 goto out_balanced;
5945
cc57aa8f
PZ
5946 /*
5947 * Don't pull any tasks if this group is already above the domain
5948 * average load.
5949 */
56cf515b 5950 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
5951 goto out_balanced;
5952
bd939f45 5953 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
5954 /*
5955 * This cpu is idle. If the busiest group load doesn't
5956 * have more tasks than the number of available cpu's and
5957 * there is no imbalance between this and busiest group
5958 * wrt to idle cpu's, it is balanced.
5959 */
56cf515b
JK
5960 if ((local->idle_cpus < busiest->idle_cpus) &&
5961 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 5962 goto out_balanced;
c186fafe
PZ
5963 } else {
5964 /*
5965 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5966 * imbalance_pct to be conservative.
5967 */
56cf515b
JK
5968 if (100 * busiest->avg_load <=
5969 env->sd->imbalance_pct * local->avg_load)
c186fafe 5970 goto out_balanced;
aae6d3dd 5971 }
1e3c88bd 5972
fab47622 5973force_balance:
1e3c88bd 5974 /* Looks like there is an imbalance. Compute it */
bd939f45 5975 calculate_imbalance(env, &sds);
1e3c88bd
PZ
5976 return sds.busiest;
5977
5978out_balanced:
bd939f45 5979 env->imbalance = 0;
1e3c88bd
PZ
5980 return NULL;
5981}
5982
5983/*
5984 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5985 */
bd939f45 5986static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 5987 struct sched_group *group)
1e3c88bd
PZ
5988{
5989 struct rq *busiest = NULL, *rq;
95a79b80 5990 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
5991 int i;
5992
6906a408 5993 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
5994 unsigned long power, capacity, wl;
5995 enum fbq_type rt;
5996
5997 rq = cpu_rq(i);
5998 rt = fbq_classify_rq(rq);
1e3c88bd 5999
0ec8aa00
PZ
6000 /*
6001 * We classify groups/runqueues into three groups:
6002 * - regular: there are !numa tasks
6003 * - remote: there are numa tasks that run on the 'wrong' node
6004 * - all: there is no distinction
6005 *
6006 * In order to avoid migrating ideally placed numa tasks,
6007 * ignore those when there's better options.
6008 *
6009 * If we ignore the actual busiest queue to migrate another
6010 * task, the next balance pass can still reduce the busiest
6011 * queue by moving tasks around inside the node.
6012 *
6013 * If we cannot move enough load due to this classification
6014 * the next pass will adjust the group classification and
6015 * allow migration of more tasks.
6016 *
6017 * Both cases only affect the total convergence complexity.
6018 */
6019 if (rt > env->fbq_type)
6020 continue;
6021
6022 power = power_of(i);
6023 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6024 if (!capacity)
bd939f45 6025 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6026
6e40f5bb 6027 wl = weighted_cpuload(i);
1e3c88bd 6028
6e40f5bb
TG
6029 /*
6030 * When comparing with imbalance, use weighted_cpuload()
6031 * which is not scaled with the cpu power.
6032 */
bd939f45 6033 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6034 continue;
6035
6e40f5bb
TG
6036 /*
6037 * For the load comparisons with the other cpu's, consider
6038 * the weighted_cpuload() scaled with the cpu power, so that
6039 * the load can be moved away from the cpu that is potentially
6040 * running at a lower capacity.
95a79b80
JK
6041 *
6042 * Thus we're looking for max(wl_i / power_i), crosswise
6043 * multiplication to rid ourselves of the division works out
6044 * to: wl_i * power_j > wl_j * power_i; where j is our
6045 * previous maximum.
6e40f5bb 6046 */
95a79b80
JK
6047 if (wl * busiest_power > busiest_load * power) {
6048 busiest_load = wl;
6049 busiest_power = power;
1e3c88bd
PZ
6050 busiest = rq;
6051 }
6052 }
6053
6054 return busiest;
6055}
6056
6057/*
6058 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6059 * so long as it is large enough.
6060 */
6061#define MAX_PINNED_INTERVAL 512
6062
6063/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6064DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6065
bd939f45 6066static int need_active_balance(struct lb_env *env)
1af3ed3d 6067{
bd939f45
PZ
6068 struct sched_domain *sd = env->sd;
6069
6070 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6071
6072 /*
6073 * ASYM_PACKING needs to force migrate tasks from busy but
6074 * higher numbered CPUs in order to pack all tasks in the
6075 * lowest numbered CPUs.
6076 */
bd939f45 6077 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6078 return 1;
1af3ed3d
PZ
6079 }
6080
6081 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6082}
6083
969c7921
TH
6084static int active_load_balance_cpu_stop(void *data);
6085
23f0d209
JK
6086static int should_we_balance(struct lb_env *env)
6087{
6088 struct sched_group *sg = env->sd->groups;
6089 struct cpumask *sg_cpus, *sg_mask;
6090 int cpu, balance_cpu = -1;
6091
6092 /*
6093 * In the newly idle case, we will allow all the cpu's
6094 * to do the newly idle load balance.
6095 */
6096 if (env->idle == CPU_NEWLY_IDLE)
6097 return 1;
6098
6099 sg_cpus = sched_group_cpus(sg);
6100 sg_mask = sched_group_mask(sg);
6101 /* Try to find first idle cpu */
6102 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6103 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6104 continue;
6105
6106 balance_cpu = cpu;
6107 break;
6108 }
6109
6110 if (balance_cpu == -1)
6111 balance_cpu = group_balance_cpu(sg);
6112
6113 /*
6114 * First idle cpu or the first cpu(busiest) in this sched group
6115 * is eligible for doing load balancing at this and above domains.
6116 */
b0cff9d8 6117 return balance_cpu == env->dst_cpu;
23f0d209
JK
6118}
6119
1e3c88bd
PZ
6120/*
6121 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6122 * tasks if there is an imbalance.
6123 */
6124static int load_balance(int this_cpu, struct rq *this_rq,
6125 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6126 int *continue_balancing)
1e3c88bd 6127{
88b8dac0 6128 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6129 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6130 struct sched_group *group;
1e3c88bd
PZ
6131 struct rq *busiest;
6132 unsigned long flags;
e6252c3e 6133 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6134
8e45cb54
PZ
6135 struct lb_env env = {
6136 .sd = sd,
ddcdf6e7
PZ
6137 .dst_cpu = this_cpu,
6138 .dst_rq = this_rq,
88b8dac0 6139 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6140 .idle = idle,
eb95308e 6141 .loop_break = sched_nr_migrate_break,
b9403130 6142 .cpus = cpus,
0ec8aa00 6143 .fbq_type = all,
8e45cb54
PZ
6144 };
6145
cfc03118
JK
6146 /*
6147 * For NEWLY_IDLE load_balancing, we don't need to consider
6148 * other cpus in our group
6149 */
e02e60c1 6150 if (idle == CPU_NEWLY_IDLE)
cfc03118 6151 env.dst_grpmask = NULL;
cfc03118 6152
1e3c88bd
PZ
6153 cpumask_copy(cpus, cpu_active_mask);
6154
1e3c88bd
PZ
6155 schedstat_inc(sd, lb_count[idle]);
6156
6157redo:
23f0d209
JK
6158 if (!should_we_balance(&env)) {
6159 *continue_balancing = 0;
1e3c88bd 6160 goto out_balanced;
23f0d209 6161 }
1e3c88bd 6162
23f0d209 6163 group = find_busiest_group(&env);
1e3c88bd
PZ
6164 if (!group) {
6165 schedstat_inc(sd, lb_nobusyg[idle]);
6166 goto out_balanced;
6167 }
6168
b9403130 6169 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6170 if (!busiest) {
6171 schedstat_inc(sd, lb_nobusyq[idle]);
6172 goto out_balanced;
6173 }
6174
78feefc5 6175 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6176
bd939f45 6177 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6178
6179 ld_moved = 0;
6180 if (busiest->nr_running > 1) {
6181 /*
6182 * Attempt to move tasks. If find_busiest_group has found
6183 * an imbalance but busiest->nr_running <= 1, the group is
6184 * still unbalanced. ld_moved simply stays zero, so it is
6185 * correctly treated as an imbalance.
6186 */
8e45cb54 6187 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6188 env.src_cpu = busiest->cpu;
6189 env.src_rq = busiest;
6190 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6191
5d6523eb 6192more_balance:
1e3c88bd 6193 local_irq_save(flags);
78feefc5 6194 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6195
6196 /*
6197 * cur_ld_moved - load moved in current iteration
6198 * ld_moved - cumulative load moved across iterations
6199 */
6200 cur_ld_moved = move_tasks(&env);
6201 ld_moved += cur_ld_moved;
78feefc5 6202 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6203 local_irq_restore(flags);
6204
6205 /*
6206 * some other cpu did the load balance for us.
6207 */
88b8dac0
SV
6208 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6209 resched_cpu(env.dst_cpu);
6210
f1cd0858
JK
6211 if (env.flags & LBF_NEED_BREAK) {
6212 env.flags &= ~LBF_NEED_BREAK;
6213 goto more_balance;
6214 }
6215
88b8dac0
SV
6216 /*
6217 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6218 * us and move them to an alternate dst_cpu in our sched_group
6219 * where they can run. The upper limit on how many times we
6220 * iterate on same src_cpu is dependent on number of cpus in our
6221 * sched_group.
6222 *
6223 * This changes load balance semantics a bit on who can move
6224 * load to a given_cpu. In addition to the given_cpu itself
6225 * (or a ilb_cpu acting on its behalf where given_cpu is
6226 * nohz-idle), we now have balance_cpu in a position to move
6227 * load to given_cpu. In rare situations, this may cause
6228 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6229 * _independently_ and at _same_ time to move some load to
6230 * given_cpu) causing exceess load to be moved to given_cpu.
6231 * This however should not happen so much in practice and
6232 * moreover subsequent load balance cycles should correct the
6233 * excess load moved.
6234 */
6263322c 6235 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6236
7aff2e3a
VD
6237 /* Prevent to re-select dst_cpu via env's cpus */
6238 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6239
78feefc5 6240 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6241 env.dst_cpu = env.new_dst_cpu;
6263322c 6242 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6243 env.loop = 0;
6244 env.loop_break = sched_nr_migrate_break;
e02e60c1 6245
88b8dac0
SV
6246 /*
6247 * Go back to "more_balance" rather than "redo" since we
6248 * need to continue with same src_cpu.
6249 */
6250 goto more_balance;
6251 }
1e3c88bd 6252
6263322c
PZ
6253 /*
6254 * We failed to reach balance because of affinity.
6255 */
6256 if (sd_parent) {
6257 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6258
6259 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6260 *group_imbalance = 1;
6261 } else if (*group_imbalance)
6262 *group_imbalance = 0;
6263 }
6264
1e3c88bd 6265 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6266 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6267 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6268 if (!cpumask_empty(cpus)) {
6269 env.loop = 0;
6270 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6271 goto redo;
bbf18b19 6272 }
1e3c88bd
PZ
6273 goto out_balanced;
6274 }
6275 }
6276
6277 if (!ld_moved) {
6278 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6279 /*
6280 * Increment the failure counter only on periodic balance.
6281 * We do not want newidle balance, which can be very
6282 * frequent, pollute the failure counter causing
6283 * excessive cache_hot migrations and active balances.
6284 */
6285 if (idle != CPU_NEWLY_IDLE)
6286 sd->nr_balance_failed++;
1e3c88bd 6287
bd939f45 6288 if (need_active_balance(&env)) {
1e3c88bd
PZ
6289 raw_spin_lock_irqsave(&busiest->lock, flags);
6290
969c7921
TH
6291 /* don't kick the active_load_balance_cpu_stop,
6292 * if the curr task on busiest cpu can't be
6293 * moved to this_cpu
1e3c88bd
PZ
6294 */
6295 if (!cpumask_test_cpu(this_cpu,
fa17b507 6296 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6297 raw_spin_unlock_irqrestore(&busiest->lock,
6298 flags);
8e45cb54 6299 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6300 goto out_one_pinned;
6301 }
6302
969c7921
TH
6303 /*
6304 * ->active_balance synchronizes accesses to
6305 * ->active_balance_work. Once set, it's cleared
6306 * only after active load balance is finished.
6307 */
1e3c88bd
PZ
6308 if (!busiest->active_balance) {
6309 busiest->active_balance = 1;
6310 busiest->push_cpu = this_cpu;
6311 active_balance = 1;
6312 }
6313 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6314
bd939f45 6315 if (active_balance) {
969c7921
TH
6316 stop_one_cpu_nowait(cpu_of(busiest),
6317 active_load_balance_cpu_stop, busiest,
6318 &busiest->active_balance_work);
bd939f45 6319 }
1e3c88bd
PZ
6320
6321 /*
6322 * We've kicked active balancing, reset the failure
6323 * counter.
6324 */
6325 sd->nr_balance_failed = sd->cache_nice_tries+1;
6326 }
6327 } else
6328 sd->nr_balance_failed = 0;
6329
6330 if (likely(!active_balance)) {
6331 /* We were unbalanced, so reset the balancing interval */
6332 sd->balance_interval = sd->min_interval;
6333 } else {
6334 /*
6335 * If we've begun active balancing, start to back off. This
6336 * case may not be covered by the all_pinned logic if there
6337 * is only 1 task on the busy runqueue (because we don't call
6338 * move_tasks).
6339 */
6340 if (sd->balance_interval < sd->max_interval)
6341 sd->balance_interval *= 2;
6342 }
6343
1e3c88bd
PZ
6344 goto out;
6345
6346out_balanced:
6347 schedstat_inc(sd, lb_balanced[idle]);
6348
6349 sd->nr_balance_failed = 0;
6350
6351out_one_pinned:
6352 /* tune up the balancing interval */
8e45cb54 6353 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6354 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6355 (sd->balance_interval < sd->max_interval))
6356 sd->balance_interval *= 2;
6357
46e49b38 6358 ld_moved = 0;
1e3c88bd 6359out:
1e3c88bd
PZ
6360 return ld_moved;
6361}
6362
1e3c88bd
PZ
6363/*
6364 * idle_balance is called by schedule() if this_cpu is about to become
6365 * idle. Attempts to pull tasks from other CPUs.
6366 */
029632fb 6367void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
6368{
6369 struct sched_domain *sd;
6370 int pulled_task = 0;
6371 unsigned long next_balance = jiffies + HZ;
9bd721c5 6372 u64 curr_cost = 0;
1e3c88bd 6373
78becc27 6374 this_rq->idle_stamp = rq_clock(this_rq);
1e3c88bd
PZ
6375
6376 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6377 return;
6378
f492e12e
PZ
6379 /*
6380 * Drop the rq->lock, but keep IRQ/preempt disabled.
6381 */
6382 raw_spin_unlock(&this_rq->lock);
6383
48a16753 6384 update_blocked_averages(this_cpu);
dce840a0 6385 rcu_read_lock();
1e3c88bd
PZ
6386 for_each_domain(this_cpu, sd) {
6387 unsigned long interval;
23f0d209 6388 int continue_balancing = 1;
9bd721c5 6389 u64 t0, domain_cost;
1e3c88bd
PZ
6390
6391 if (!(sd->flags & SD_LOAD_BALANCE))
6392 continue;
6393
9bd721c5
JL
6394 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6395 break;
6396
f492e12e 6397 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6398 t0 = sched_clock_cpu(this_cpu);
6399
1e3c88bd 6400 /* If we've pulled tasks over stop searching: */
f492e12e 6401 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6402 sd, CPU_NEWLY_IDLE,
6403 &continue_balancing);
9bd721c5
JL
6404
6405 domain_cost = sched_clock_cpu(this_cpu) - t0;
6406 if (domain_cost > sd->max_newidle_lb_cost)
6407 sd->max_newidle_lb_cost = domain_cost;
6408
6409 curr_cost += domain_cost;
f492e12e 6410 }
1e3c88bd
PZ
6411
6412 interval = msecs_to_jiffies(sd->balance_interval);
6413 if (time_after(next_balance, sd->last_balance + interval))
6414 next_balance = sd->last_balance + interval;
d5ad140b
NR
6415 if (pulled_task) {
6416 this_rq->idle_stamp = 0;
1e3c88bd 6417 break;
d5ad140b 6418 }
1e3c88bd 6419 }
dce840a0 6420 rcu_read_unlock();
f492e12e
PZ
6421
6422 raw_spin_lock(&this_rq->lock);
6423
1e3c88bd
PZ
6424 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6425 /*
6426 * We are going idle. next_balance may be set based on
6427 * a busy processor. So reset next_balance.
6428 */
6429 this_rq->next_balance = next_balance;
6430 }
9bd721c5
JL
6431
6432 if (curr_cost > this_rq->max_idle_balance_cost)
6433 this_rq->max_idle_balance_cost = curr_cost;
1e3c88bd
PZ
6434}
6435
6436/*
969c7921
TH
6437 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6438 * running tasks off the busiest CPU onto idle CPUs. It requires at
6439 * least 1 task to be running on each physical CPU where possible, and
6440 * avoids physical / logical imbalances.
1e3c88bd 6441 */
969c7921 6442static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6443{
969c7921
TH
6444 struct rq *busiest_rq = data;
6445 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6446 int target_cpu = busiest_rq->push_cpu;
969c7921 6447 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6448 struct sched_domain *sd;
969c7921
TH
6449
6450 raw_spin_lock_irq(&busiest_rq->lock);
6451
6452 /* make sure the requested cpu hasn't gone down in the meantime */
6453 if (unlikely(busiest_cpu != smp_processor_id() ||
6454 !busiest_rq->active_balance))
6455 goto out_unlock;
1e3c88bd
PZ
6456
6457 /* Is there any task to move? */
6458 if (busiest_rq->nr_running <= 1)
969c7921 6459 goto out_unlock;
1e3c88bd
PZ
6460
6461 /*
6462 * This condition is "impossible", if it occurs
6463 * we need to fix it. Originally reported by
6464 * Bjorn Helgaas on a 128-cpu setup.
6465 */
6466 BUG_ON(busiest_rq == target_rq);
6467
6468 /* move a task from busiest_rq to target_rq */
6469 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6470
6471 /* Search for an sd spanning us and the target CPU. */
dce840a0 6472 rcu_read_lock();
1e3c88bd
PZ
6473 for_each_domain(target_cpu, sd) {
6474 if ((sd->flags & SD_LOAD_BALANCE) &&
6475 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6476 break;
6477 }
6478
6479 if (likely(sd)) {
8e45cb54
PZ
6480 struct lb_env env = {
6481 .sd = sd,
ddcdf6e7
PZ
6482 .dst_cpu = target_cpu,
6483 .dst_rq = target_rq,
6484 .src_cpu = busiest_rq->cpu,
6485 .src_rq = busiest_rq,
8e45cb54
PZ
6486 .idle = CPU_IDLE,
6487 };
6488
1e3c88bd
PZ
6489 schedstat_inc(sd, alb_count);
6490
8e45cb54 6491 if (move_one_task(&env))
1e3c88bd
PZ
6492 schedstat_inc(sd, alb_pushed);
6493 else
6494 schedstat_inc(sd, alb_failed);
6495 }
dce840a0 6496 rcu_read_unlock();
1e3c88bd 6497 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6498out_unlock:
6499 busiest_rq->active_balance = 0;
6500 raw_spin_unlock_irq(&busiest_rq->lock);
6501 return 0;
1e3c88bd
PZ
6502}
6503
3451d024 6504#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6505/*
6506 * idle load balancing details
83cd4fe2
VP
6507 * - When one of the busy CPUs notice that there may be an idle rebalancing
6508 * needed, they will kick the idle load balancer, which then does idle
6509 * load balancing for all the idle CPUs.
6510 */
1e3c88bd 6511static struct {
83cd4fe2 6512 cpumask_var_t idle_cpus_mask;
0b005cf5 6513 atomic_t nr_cpus;
83cd4fe2
VP
6514 unsigned long next_balance; /* in jiffy units */
6515} nohz ____cacheline_aligned;
1e3c88bd 6516
8e7fbcbc 6517static inline int find_new_ilb(int call_cpu)
1e3c88bd 6518{
0b005cf5 6519 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6520
786d6dc7
SS
6521 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6522 return ilb;
6523
6524 return nr_cpu_ids;
1e3c88bd 6525}
1e3c88bd 6526
83cd4fe2
VP
6527/*
6528 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6529 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6530 * CPU (if there is one).
6531 */
6532static void nohz_balancer_kick(int cpu)
6533{
6534 int ilb_cpu;
6535
6536 nohz.next_balance++;
6537
0b005cf5 6538 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 6539
0b005cf5
SS
6540 if (ilb_cpu >= nr_cpu_ids)
6541 return;
83cd4fe2 6542
cd490c5b 6543 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6544 return;
6545 /*
6546 * Use smp_send_reschedule() instead of resched_cpu().
6547 * This way we generate a sched IPI on the target cpu which
6548 * is idle. And the softirq performing nohz idle load balance
6549 * will be run before returning from the IPI.
6550 */
6551 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6552 return;
6553}
6554
c1cc017c 6555static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6556{
6557 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6558 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6559 atomic_dec(&nohz.nr_cpus);
6560 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6561 }
6562}
6563
69e1e811
SS
6564static inline void set_cpu_sd_state_busy(void)
6565{
6566 struct sched_domain *sd;
37dc6b50 6567 int cpu = smp_processor_id();
69e1e811 6568
69e1e811 6569 rcu_read_lock();
37dc6b50 6570 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6571
6572 if (!sd || !sd->nohz_idle)
6573 goto unlock;
6574 sd->nohz_idle = 0;
6575
37dc6b50 6576 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6577unlock:
69e1e811
SS
6578 rcu_read_unlock();
6579}
6580
6581void set_cpu_sd_state_idle(void)
6582{
6583 struct sched_domain *sd;
37dc6b50 6584 int cpu = smp_processor_id();
69e1e811 6585
69e1e811 6586 rcu_read_lock();
37dc6b50 6587 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6588
6589 if (!sd || sd->nohz_idle)
6590 goto unlock;
6591 sd->nohz_idle = 1;
6592
37dc6b50 6593 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6594unlock:
69e1e811
SS
6595 rcu_read_unlock();
6596}
6597
1e3c88bd 6598/*
c1cc017c 6599 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 6600 * This info will be used in performing idle load balancing in the future.
1e3c88bd 6601 */
c1cc017c 6602void nohz_balance_enter_idle(int cpu)
1e3c88bd 6603{
71325960
SS
6604 /*
6605 * If this cpu is going down, then nothing needs to be done.
6606 */
6607 if (!cpu_active(cpu))
6608 return;
6609
c1cc017c
AS
6610 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6611 return;
1e3c88bd 6612
c1cc017c
AS
6613 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6614 atomic_inc(&nohz.nr_cpus);
6615 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 6616}
71325960 6617
0db0628d 6618static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
6619 unsigned long action, void *hcpu)
6620{
6621 switch (action & ~CPU_TASKS_FROZEN) {
6622 case CPU_DYING:
c1cc017c 6623 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
6624 return NOTIFY_OK;
6625 default:
6626 return NOTIFY_DONE;
6627 }
6628}
1e3c88bd
PZ
6629#endif
6630
6631static DEFINE_SPINLOCK(balancing);
6632
49c022e6
PZ
6633/*
6634 * Scale the max load_balance interval with the number of CPUs in the system.
6635 * This trades load-balance latency on larger machines for less cross talk.
6636 */
029632fb 6637void update_max_interval(void)
49c022e6
PZ
6638{
6639 max_load_balance_interval = HZ*num_online_cpus()/10;
6640}
6641
1e3c88bd
PZ
6642/*
6643 * It checks each scheduling domain to see if it is due to be balanced,
6644 * and initiates a balancing operation if so.
6645 *
b9b0853a 6646 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
6647 */
6648static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6649{
23f0d209 6650 int continue_balancing = 1;
1e3c88bd
PZ
6651 struct rq *rq = cpu_rq(cpu);
6652 unsigned long interval;
04f733b4 6653 struct sched_domain *sd;
1e3c88bd
PZ
6654 /* Earliest time when we have to do rebalance again */
6655 unsigned long next_balance = jiffies + 60*HZ;
6656 int update_next_balance = 0;
f48627e6
JL
6657 int need_serialize, need_decay = 0;
6658 u64 max_cost = 0;
1e3c88bd 6659
48a16753 6660 update_blocked_averages(cpu);
2069dd75 6661
dce840a0 6662 rcu_read_lock();
1e3c88bd 6663 for_each_domain(cpu, sd) {
f48627e6
JL
6664 /*
6665 * Decay the newidle max times here because this is a regular
6666 * visit to all the domains. Decay ~1% per second.
6667 */
6668 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6669 sd->max_newidle_lb_cost =
6670 (sd->max_newidle_lb_cost * 253) / 256;
6671 sd->next_decay_max_lb_cost = jiffies + HZ;
6672 need_decay = 1;
6673 }
6674 max_cost += sd->max_newidle_lb_cost;
6675
1e3c88bd
PZ
6676 if (!(sd->flags & SD_LOAD_BALANCE))
6677 continue;
6678
f48627e6
JL
6679 /*
6680 * Stop the load balance at this level. There is another
6681 * CPU in our sched group which is doing load balancing more
6682 * actively.
6683 */
6684 if (!continue_balancing) {
6685 if (need_decay)
6686 continue;
6687 break;
6688 }
6689
1e3c88bd
PZ
6690 interval = sd->balance_interval;
6691 if (idle != CPU_IDLE)
6692 interval *= sd->busy_factor;
6693
6694 /* scale ms to jiffies */
6695 interval = msecs_to_jiffies(interval);
49c022e6 6696 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
6697
6698 need_serialize = sd->flags & SD_SERIALIZE;
6699
6700 if (need_serialize) {
6701 if (!spin_trylock(&balancing))
6702 goto out;
6703 }
6704
6705 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 6706 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 6707 /*
6263322c 6708 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
6709 * env->dst_cpu, so we can't know our idle
6710 * state even if we migrated tasks. Update it.
1e3c88bd 6711 */
de5eb2dd 6712 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
6713 }
6714 sd->last_balance = jiffies;
6715 }
6716 if (need_serialize)
6717 spin_unlock(&balancing);
6718out:
6719 if (time_after(next_balance, sd->last_balance + interval)) {
6720 next_balance = sd->last_balance + interval;
6721 update_next_balance = 1;
6722 }
f48627e6
JL
6723 }
6724 if (need_decay) {
1e3c88bd 6725 /*
f48627e6
JL
6726 * Ensure the rq-wide value also decays but keep it at a
6727 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 6728 */
f48627e6
JL
6729 rq->max_idle_balance_cost =
6730 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 6731 }
dce840a0 6732 rcu_read_unlock();
1e3c88bd
PZ
6733
6734 /*
6735 * next_balance will be updated only when there is a need.
6736 * When the cpu is attached to null domain for ex, it will not be
6737 * updated.
6738 */
6739 if (likely(update_next_balance))
6740 rq->next_balance = next_balance;
6741}
6742
3451d024 6743#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 6744/*
3451d024 6745 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
6746 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6747 */
83cd4fe2
VP
6748static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6749{
6750 struct rq *this_rq = cpu_rq(this_cpu);
6751 struct rq *rq;
6752 int balance_cpu;
6753
1c792db7
SS
6754 if (idle != CPU_IDLE ||
6755 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6756 goto end;
83cd4fe2
VP
6757
6758 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 6759 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
6760 continue;
6761
6762 /*
6763 * If this cpu gets work to do, stop the load balancing
6764 * work being done for other cpus. Next load
6765 * balancing owner will pick it up.
6766 */
1c792db7 6767 if (need_resched())
83cd4fe2 6768 break;
83cd4fe2 6769
5ed4f1d9
VG
6770 rq = cpu_rq(balance_cpu);
6771
6772 raw_spin_lock_irq(&rq->lock);
6773 update_rq_clock(rq);
6774 update_idle_cpu_load(rq);
6775 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
6776
6777 rebalance_domains(balance_cpu, CPU_IDLE);
6778
83cd4fe2
VP
6779 if (time_after(this_rq->next_balance, rq->next_balance))
6780 this_rq->next_balance = rq->next_balance;
6781 }
6782 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
6783end:
6784 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
6785}
6786
6787/*
0b005cf5
SS
6788 * Current heuristic for kicking the idle load balancer in the presence
6789 * of an idle cpu is the system.
6790 * - This rq has more than one task.
6791 * - At any scheduler domain level, this cpu's scheduler group has multiple
6792 * busy cpu's exceeding the group's power.
6793 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6794 * domain span are idle.
83cd4fe2
VP
6795 */
6796static inline int nohz_kick_needed(struct rq *rq, int cpu)
6797{
6798 unsigned long now = jiffies;
0b005cf5 6799 struct sched_domain *sd;
37dc6b50
PM
6800 struct sched_group_power *sgp;
6801 int nr_busy;
83cd4fe2 6802
1c792db7 6803 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
6804 return 0;
6805
1c792db7
SS
6806 /*
6807 * We may be recently in ticked or tickless idle mode. At the first
6808 * busy tick after returning from idle, we will update the busy stats.
6809 */
69e1e811 6810 set_cpu_sd_state_busy();
c1cc017c 6811 nohz_balance_exit_idle(cpu);
0b005cf5
SS
6812
6813 /*
6814 * None are in tickless mode and hence no need for NOHZ idle load
6815 * balancing.
6816 */
6817 if (likely(!atomic_read(&nohz.nr_cpus)))
6818 return 0;
1c792db7
SS
6819
6820 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
6821 return 0;
6822
0b005cf5
SS
6823 if (rq->nr_running >= 2)
6824 goto need_kick;
83cd4fe2 6825
067491b7 6826 rcu_read_lock();
37dc6b50 6827 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 6828
37dc6b50
PM
6829 if (sd) {
6830 sgp = sd->groups->sgp;
6831 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 6832
37dc6b50 6833 if (nr_busy > 1)
067491b7 6834 goto need_kick_unlock;
83cd4fe2 6835 }
37dc6b50
PM
6836
6837 sd = rcu_dereference(per_cpu(sd_asym, cpu));
6838
6839 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
6840 sched_domain_span(sd)) < cpu))
6841 goto need_kick_unlock;
6842
067491b7 6843 rcu_read_unlock();
83cd4fe2 6844 return 0;
067491b7
PZ
6845
6846need_kick_unlock:
6847 rcu_read_unlock();
0b005cf5
SS
6848need_kick:
6849 return 1;
83cd4fe2
VP
6850}
6851#else
6852static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6853#endif
6854
6855/*
6856 * run_rebalance_domains is triggered when needed from the scheduler tick.
6857 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6858 */
1e3c88bd
PZ
6859static void run_rebalance_domains(struct softirq_action *h)
6860{
6861 int this_cpu = smp_processor_id();
6862 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 6863 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
6864 CPU_IDLE : CPU_NOT_IDLE;
6865
6866 rebalance_domains(this_cpu, idle);
6867
1e3c88bd 6868 /*
83cd4fe2 6869 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
6870 * balancing on behalf of the other idle cpus whose ticks are
6871 * stopped.
6872 */
83cd4fe2 6873 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
6874}
6875
6876static inline int on_null_domain(int cpu)
6877{
90a6501f 6878 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
6879}
6880
6881/*
6882 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 6883 */
029632fb 6884void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 6885{
1e3c88bd
PZ
6886 /* Don't need to rebalance while attached to NULL domain */
6887 if (time_after_eq(jiffies, rq->next_balance) &&
6888 likely(!on_null_domain(cpu)))
6889 raise_softirq(SCHED_SOFTIRQ);
3451d024 6890#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6891 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
6892 nohz_balancer_kick(cpu);
6893#endif
1e3c88bd
PZ
6894}
6895
0bcdcf28
CE
6896static void rq_online_fair(struct rq *rq)
6897{
6898 update_sysctl();
6899}
6900
6901static void rq_offline_fair(struct rq *rq)
6902{
6903 update_sysctl();
a4c96ae3
PB
6904
6905 /* Ensure any throttled groups are reachable by pick_next_task */
6906 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
6907}
6908
55e12e5e 6909#endif /* CONFIG_SMP */
e1d1484f 6910
bf0f6f24
IM
6911/*
6912 * scheduler tick hitting a task of our scheduling class:
6913 */
8f4d37ec 6914static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
6915{
6916 struct cfs_rq *cfs_rq;
6917 struct sched_entity *se = &curr->se;
6918
6919 for_each_sched_entity(se) {
6920 cfs_rq = cfs_rq_of(se);
8f4d37ec 6921 entity_tick(cfs_rq, se, queued);
bf0f6f24 6922 }
18bf2805 6923
10e84b97 6924 if (numabalancing_enabled)
cbee9f88 6925 task_tick_numa(rq, curr);
3d59eebc 6926
18bf2805 6927 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
6928}
6929
6930/*
cd29fe6f
PZ
6931 * called on fork with the child task as argument from the parent's context
6932 * - child not yet on the tasklist
6933 * - preemption disabled
bf0f6f24 6934 */
cd29fe6f 6935static void task_fork_fair(struct task_struct *p)
bf0f6f24 6936{
4fc420c9
DN
6937 struct cfs_rq *cfs_rq;
6938 struct sched_entity *se = &p->se, *curr;
00bf7bfc 6939 int this_cpu = smp_processor_id();
cd29fe6f
PZ
6940 struct rq *rq = this_rq();
6941 unsigned long flags;
6942
05fa785c 6943 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 6944
861d034e
PZ
6945 update_rq_clock(rq);
6946
4fc420c9
DN
6947 cfs_rq = task_cfs_rq(current);
6948 curr = cfs_rq->curr;
6949
6c9a27f5
DN
6950 /*
6951 * Not only the cpu but also the task_group of the parent might have
6952 * been changed after parent->se.parent,cfs_rq were copied to
6953 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6954 * of child point to valid ones.
6955 */
6956 rcu_read_lock();
6957 __set_task_cpu(p, this_cpu);
6958 rcu_read_unlock();
bf0f6f24 6959
7109c442 6960 update_curr(cfs_rq);
cd29fe6f 6961
b5d9d734
MG
6962 if (curr)
6963 se->vruntime = curr->vruntime;
aeb73b04 6964 place_entity(cfs_rq, se, 1);
4d78e7b6 6965
cd29fe6f 6966 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 6967 /*
edcb60a3
IM
6968 * Upon rescheduling, sched_class::put_prev_task() will place
6969 * 'current' within the tree based on its new key value.
6970 */
4d78e7b6 6971 swap(curr->vruntime, se->vruntime);
aec0a514 6972 resched_task(rq->curr);
4d78e7b6 6973 }
bf0f6f24 6974
88ec22d3
PZ
6975 se->vruntime -= cfs_rq->min_vruntime;
6976
05fa785c 6977 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
6978}
6979
cb469845
SR
6980/*
6981 * Priority of the task has changed. Check to see if we preempt
6982 * the current task.
6983 */
da7a735e
PZ
6984static void
6985prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 6986{
da7a735e
PZ
6987 if (!p->se.on_rq)
6988 return;
6989
cb469845
SR
6990 /*
6991 * Reschedule if we are currently running on this runqueue and
6992 * our priority decreased, or if we are not currently running on
6993 * this runqueue and our priority is higher than the current's
6994 */
da7a735e 6995 if (rq->curr == p) {
cb469845
SR
6996 if (p->prio > oldprio)
6997 resched_task(rq->curr);
6998 } else
15afe09b 6999 check_preempt_curr(rq, p, 0);
cb469845
SR
7000}
7001
da7a735e
PZ
7002static void switched_from_fair(struct rq *rq, struct task_struct *p)
7003{
7004 struct sched_entity *se = &p->se;
7005 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7006
7007 /*
7008 * Ensure the task's vruntime is normalized, so that when its
7009 * switched back to the fair class the enqueue_entity(.flags=0) will
7010 * do the right thing.
7011 *
7012 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7013 * have normalized the vruntime, if it was !on_rq, then only when
7014 * the task is sleeping will it still have non-normalized vruntime.
7015 */
7016 if (!se->on_rq && p->state != TASK_RUNNING) {
7017 /*
7018 * Fix up our vruntime so that the current sleep doesn't
7019 * cause 'unlimited' sleep bonus.
7020 */
7021 place_entity(cfs_rq, se, 0);
7022 se->vruntime -= cfs_rq->min_vruntime;
7023 }
9ee474f5 7024
141965c7 7025#ifdef CONFIG_SMP
9ee474f5
PT
7026 /*
7027 * Remove our load from contribution when we leave sched_fair
7028 * and ensure we don't carry in an old decay_count if we
7029 * switch back.
7030 */
87e3c8ae
KT
7031 if (se->avg.decay_count) {
7032 __synchronize_entity_decay(se);
7033 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7034 }
7035#endif
da7a735e
PZ
7036}
7037
cb469845
SR
7038/*
7039 * We switched to the sched_fair class.
7040 */
da7a735e 7041static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7042{
da7a735e
PZ
7043 if (!p->se.on_rq)
7044 return;
7045
cb469845
SR
7046 /*
7047 * We were most likely switched from sched_rt, so
7048 * kick off the schedule if running, otherwise just see
7049 * if we can still preempt the current task.
7050 */
da7a735e 7051 if (rq->curr == p)
cb469845
SR
7052 resched_task(rq->curr);
7053 else
15afe09b 7054 check_preempt_curr(rq, p, 0);
cb469845
SR
7055}
7056
83b699ed
SV
7057/* Account for a task changing its policy or group.
7058 *
7059 * This routine is mostly called to set cfs_rq->curr field when a task
7060 * migrates between groups/classes.
7061 */
7062static void set_curr_task_fair(struct rq *rq)
7063{
7064 struct sched_entity *se = &rq->curr->se;
7065
ec12cb7f
PT
7066 for_each_sched_entity(se) {
7067 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7068
7069 set_next_entity(cfs_rq, se);
7070 /* ensure bandwidth has been allocated on our new cfs_rq */
7071 account_cfs_rq_runtime(cfs_rq, 0);
7072 }
83b699ed
SV
7073}
7074
029632fb
PZ
7075void init_cfs_rq(struct cfs_rq *cfs_rq)
7076{
7077 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7078 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7079#ifndef CONFIG_64BIT
7080 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7081#endif
141965c7 7082#ifdef CONFIG_SMP
9ee474f5 7083 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7084 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7085#endif
029632fb
PZ
7086}
7087
810b3817 7088#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7089static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7090{
aff3e498 7091 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
7092 /*
7093 * If the task was not on the rq at the time of this cgroup movement
7094 * it must have been asleep, sleeping tasks keep their ->vruntime
7095 * absolute on their old rq until wakeup (needed for the fair sleeper
7096 * bonus in place_entity()).
7097 *
7098 * If it was on the rq, we've just 'preempted' it, which does convert
7099 * ->vruntime to a relative base.
7100 *
7101 * Make sure both cases convert their relative position when migrating
7102 * to another cgroup's rq. This does somewhat interfere with the
7103 * fair sleeper stuff for the first placement, but who cares.
7104 */
7ceff013
DN
7105 /*
7106 * When !on_rq, vruntime of the task has usually NOT been normalized.
7107 * But there are some cases where it has already been normalized:
7108 *
7109 * - Moving a forked child which is waiting for being woken up by
7110 * wake_up_new_task().
62af3783
DN
7111 * - Moving a task which has been woken up by try_to_wake_up() and
7112 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7113 *
7114 * To prevent boost or penalty in the new cfs_rq caused by delta
7115 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7116 */
62af3783 7117 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7118 on_rq = 1;
7119
b2b5ce02
PZ
7120 if (!on_rq)
7121 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7122 set_task_rq(p, task_cpu(p));
aff3e498
PT
7123 if (!on_rq) {
7124 cfs_rq = cfs_rq_of(&p->se);
7125 p->se.vruntime += cfs_rq->min_vruntime;
7126#ifdef CONFIG_SMP
7127 /*
7128 * migrate_task_rq_fair() will have removed our previous
7129 * contribution, but we must synchronize for ongoing future
7130 * decay.
7131 */
7132 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7133 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7134#endif
7135 }
810b3817 7136}
029632fb
PZ
7137
7138void free_fair_sched_group(struct task_group *tg)
7139{
7140 int i;
7141
7142 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7143
7144 for_each_possible_cpu(i) {
7145 if (tg->cfs_rq)
7146 kfree(tg->cfs_rq[i]);
7147 if (tg->se)
7148 kfree(tg->se[i]);
7149 }
7150
7151 kfree(tg->cfs_rq);
7152 kfree(tg->se);
7153}
7154
7155int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7156{
7157 struct cfs_rq *cfs_rq;
7158 struct sched_entity *se;
7159 int i;
7160
7161 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7162 if (!tg->cfs_rq)
7163 goto err;
7164 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7165 if (!tg->se)
7166 goto err;
7167
7168 tg->shares = NICE_0_LOAD;
7169
7170 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7171
7172 for_each_possible_cpu(i) {
7173 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7174 GFP_KERNEL, cpu_to_node(i));
7175 if (!cfs_rq)
7176 goto err;
7177
7178 se = kzalloc_node(sizeof(struct sched_entity),
7179 GFP_KERNEL, cpu_to_node(i));
7180 if (!se)
7181 goto err_free_rq;
7182
7183 init_cfs_rq(cfs_rq);
7184 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7185 }
7186
7187 return 1;
7188
7189err_free_rq:
7190 kfree(cfs_rq);
7191err:
7192 return 0;
7193}
7194
7195void unregister_fair_sched_group(struct task_group *tg, int cpu)
7196{
7197 struct rq *rq = cpu_rq(cpu);
7198 unsigned long flags;
7199
7200 /*
7201 * Only empty task groups can be destroyed; so we can speculatively
7202 * check on_list without danger of it being re-added.
7203 */
7204 if (!tg->cfs_rq[cpu]->on_list)
7205 return;
7206
7207 raw_spin_lock_irqsave(&rq->lock, flags);
7208 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7209 raw_spin_unlock_irqrestore(&rq->lock, flags);
7210}
7211
7212void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7213 struct sched_entity *se, int cpu,
7214 struct sched_entity *parent)
7215{
7216 struct rq *rq = cpu_rq(cpu);
7217
7218 cfs_rq->tg = tg;
7219 cfs_rq->rq = rq;
029632fb
PZ
7220 init_cfs_rq_runtime(cfs_rq);
7221
7222 tg->cfs_rq[cpu] = cfs_rq;
7223 tg->se[cpu] = se;
7224
7225 /* se could be NULL for root_task_group */
7226 if (!se)
7227 return;
7228
7229 if (!parent)
7230 se->cfs_rq = &rq->cfs;
7231 else
7232 se->cfs_rq = parent->my_q;
7233
7234 se->my_q = cfs_rq;
0ac9b1c2
PT
7235 /* guarantee group entities always have weight */
7236 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7237 se->parent = parent;
7238}
7239
7240static DEFINE_MUTEX(shares_mutex);
7241
7242int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7243{
7244 int i;
7245 unsigned long flags;
7246
7247 /*
7248 * We can't change the weight of the root cgroup.
7249 */
7250 if (!tg->se[0])
7251 return -EINVAL;
7252
7253 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7254
7255 mutex_lock(&shares_mutex);
7256 if (tg->shares == shares)
7257 goto done;
7258
7259 tg->shares = shares;
7260 for_each_possible_cpu(i) {
7261 struct rq *rq = cpu_rq(i);
7262 struct sched_entity *se;
7263
7264 se = tg->se[i];
7265 /* Propagate contribution to hierarchy */
7266 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7267
7268 /* Possible calls to update_curr() need rq clock */
7269 update_rq_clock(rq);
17bc14b7 7270 for_each_sched_entity(se)
029632fb
PZ
7271 update_cfs_shares(group_cfs_rq(se));
7272 raw_spin_unlock_irqrestore(&rq->lock, flags);
7273 }
7274
7275done:
7276 mutex_unlock(&shares_mutex);
7277 return 0;
7278}
7279#else /* CONFIG_FAIR_GROUP_SCHED */
7280
7281void free_fair_sched_group(struct task_group *tg) { }
7282
7283int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7284{
7285 return 1;
7286}
7287
7288void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7289
7290#endif /* CONFIG_FAIR_GROUP_SCHED */
7291
810b3817 7292
6d686f45 7293static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7294{
7295 struct sched_entity *se = &task->se;
0d721cea
PW
7296 unsigned int rr_interval = 0;
7297
7298 /*
7299 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7300 * idle runqueue:
7301 */
0d721cea 7302 if (rq->cfs.load.weight)
a59f4e07 7303 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7304
7305 return rr_interval;
7306}
7307
bf0f6f24
IM
7308/*
7309 * All the scheduling class methods:
7310 */
029632fb 7311const struct sched_class fair_sched_class = {
5522d5d5 7312 .next = &idle_sched_class,
bf0f6f24
IM
7313 .enqueue_task = enqueue_task_fair,
7314 .dequeue_task = dequeue_task_fair,
7315 .yield_task = yield_task_fair,
d95f4122 7316 .yield_to_task = yield_to_task_fair,
bf0f6f24 7317
2e09bf55 7318 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7319
7320 .pick_next_task = pick_next_task_fair,
7321 .put_prev_task = put_prev_task_fair,
7322
681f3e68 7323#ifdef CONFIG_SMP
4ce72a2c 7324 .select_task_rq = select_task_rq_fair,
0a74bef8 7325 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7326
0bcdcf28
CE
7327 .rq_online = rq_online_fair,
7328 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7329
7330 .task_waking = task_waking_fair,
681f3e68 7331#endif
bf0f6f24 7332
83b699ed 7333 .set_curr_task = set_curr_task_fair,
bf0f6f24 7334 .task_tick = task_tick_fair,
cd29fe6f 7335 .task_fork = task_fork_fair,
cb469845
SR
7336
7337 .prio_changed = prio_changed_fair,
da7a735e 7338 .switched_from = switched_from_fair,
cb469845 7339 .switched_to = switched_to_fair,
810b3817 7340
0d721cea
PW
7341 .get_rr_interval = get_rr_interval_fair,
7342
810b3817 7343#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7344 .task_move_group = task_move_group_fair,
810b3817 7345#endif
bf0f6f24
IM
7346};
7347
7348#ifdef CONFIG_SCHED_DEBUG
029632fb 7349void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7350{
bf0f6f24
IM
7351 struct cfs_rq *cfs_rq;
7352
5973e5b9 7353 rcu_read_lock();
c3b64f1e 7354 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7355 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7356 rcu_read_unlock();
bf0f6f24
IM
7357}
7358#endif
029632fb
PZ
7359
7360__init void init_sched_fair_class(void)
7361{
7362#ifdef CONFIG_SMP
7363 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7364
3451d024 7365#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7366 nohz.next_balance = jiffies;
029632fb 7367 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7368 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7369#endif
7370#endif /* SMP */
7371
7372}
This page took 0.968409 seconds and 5 git commands to generate.