sched/rt: Use IPI to trigger RT task push migration instead of pulling
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9
AS
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677 u32 slice;
678
a75cdaa9
AS
679 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
680 p->se.avg.runnable_avg_sum = slice;
681 p->se.avg.runnable_avg_period = slice;
682 __update_task_entity_contrib(&p->se);
683}
684#else
685void init_task_runnable_average(struct task_struct *p)
686{
687}
688#endif
689
bf0f6f24 690/*
9dbdb155 691 * Update the current task's runtime statistics.
bf0f6f24 692 */
b7cc0896 693static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 694{
429d43bc 695 struct sched_entity *curr = cfs_rq->curr;
78becc27 696 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 697 u64 delta_exec;
bf0f6f24
IM
698
699 if (unlikely(!curr))
700 return;
701
9dbdb155
PZ
702 delta_exec = now - curr->exec_start;
703 if (unlikely((s64)delta_exec <= 0))
34f28ecd 704 return;
bf0f6f24 705
8ebc91d9 706 curr->exec_start = now;
d842de87 707
9dbdb155
PZ
708 schedstat_set(curr->statistics.exec_max,
709 max(delta_exec, curr->statistics.exec_max));
710
711 curr->sum_exec_runtime += delta_exec;
712 schedstat_add(cfs_rq, exec_clock, delta_exec);
713
714 curr->vruntime += calc_delta_fair(delta_exec, curr);
715 update_min_vruntime(cfs_rq);
716
d842de87
SV
717 if (entity_is_task(curr)) {
718 struct task_struct *curtask = task_of(curr);
719
f977bb49 720 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 721 cpuacct_charge(curtask, delta_exec);
f06febc9 722 account_group_exec_runtime(curtask, delta_exec);
d842de87 723 }
ec12cb7f
PT
724
725 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
726}
727
6e998916
SG
728static void update_curr_fair(struct rq *rq)
729{
730 update_curr(cfs_rq_of(&rq->curr->se));
731}
732
bf0f6f24 733static inline void
5870db5b 734update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 735{
78becc27 736 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
737}
738
bf0f6f24
IM
739/*
740 * Task is being enqueued - update stats:
741 */
d2417e5a 742static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 743{
bf0f6f24
IM
744 /*
745 * Are we enqueueing a waiting task? (for current tasks
746 * a dequeue/enqueue event is a NOP)
747 */
429d43bc 748 if (se != cfs_rq->curr)
5870db5b 749 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
750}
751
bf0f6f24 752static void
9ef0a961 753update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 754{
41acab88 755 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 756 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
757 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
758 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
760#ifdef CONFIG_SCHEDSTATS
761 if (entity_is_task(se)) {
762 trace_sched_stat_wait(task_of(se),
78becc27 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
764 }
765#endif
41acab88 766 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
767}
768
769static inline void
19b6a2e3 770update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 771{
bf0f6f24
IM
772 /*
773 * Mark the end of the wait period if dequeueing a
774 * waiting task:
775 */
429d43bc 776 if (se != cfs_rq->curr)
9ef0a961 777 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
778}
779
780/*
781 * We are picking a new current task - update its stats:
782 */
783static inline void
79303e9e 784update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
785{
786 /*
787 * We are starting a new run period:
788 */
78becc27 789 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
790}
791
bf0f6f24
IM
792/**************************************************
793 * Scheduling class queueing methods:
794 */
795
cbee9f88
PZ
796#ifdef CONFIG_NUMA_BALANCING
797/*
598f0ec0
MG
798 * Approximate time to scan a full NUMA task in ms. The task scan period is
799 * calculated based on the tasks virtual memory size and
800 * numa_balancing_scan_size.
cbee9f88 801 */
598f0ec0
MG
802unsigned int sysctl_numa_balancing_scan_period_min = 1000;
803unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
804
805/* Portion of address space to scan in MB */
806unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 807
4b96a29b
PZ
808/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
809unsigned int sysctl_numa_balancing_scan_delay = 1000;
810
598f0ec0
MG
811static unsigned int task_nr_scan_windows(struct task_struct *p)
812{
813 unsigned long rss = 0;
814 unsigned long nr_scan_pages;
815
816 /*
817 * Calculations based on RSS as non-present and empty pages are skipped
818 * by the PTE scanner and NUMA hinting faults should be trapped based
819 * on resident pages
820 */
821 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
822 rss = get_mm_rss(p->mm);
823 if (!rss)
824 rss = nr_scan_pages;
825
826 rss = round_up(rss, nr_scan_pages);
827 return rss / nr_scan_pages;
828}
829
830/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
831#define MAX_SCAN_WINDOW 2560
832
833static unsigned int task_scan_min(struct task_struct *p)
834{
64192658 835 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
836 unsigned int scan, floor;
837 unsigned int windows = 1;
838
64192658
KT
839 if (scan_size < MAX_SCAN_WINDOW)
840 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
841 floor = 1000 / windows;
842
843 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
844 return max_t(unsigned int, floor, scan);
845}
846
847static unsigned int task_scan_max(struct task_struct *p)
848{
849 unsigned int smin = task_scan_min(p);
850 unsigned int smax;
851
852 /* Watch for min being lower than max due to floor calculations */
853 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
854 return max(smin, smax);
855}
856
0ec8aa00
PZ
857static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
858{
859 rq->nr_numa_running += (p->numa_preferred_nid != -1);
860 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
861}
862
863static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
864{
865 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
866 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
867}
868
8c8a743c
PZ
869struct numa_group {
870 atomic_t refcount;
871
872 spinlock_t lock; /* nr_tasks, tasks */
873 int nr_tasks;
e29cf08b 874 pid_t gid;
8c8a743c
PZ
875
876 struct rcu_head rcu;
20e07dea 877 nodemask_t active_nodes;
989348b5 878 unsigned long total_faults;
7e2703e6
RR
879 /*
880 * Faults_cpu is used to decide whether memory should move
881 * towards the CPU. As a consequence, these stats are weighted
882 * more by CPU use than by memory faults.
883 */
50ec8a40 884 unsigned long *faults_cpu;
989348b5 885 unsigned long faults[0];
8c8a743c
PZ
886};
887
be1e4e76
RR
888/* Shared or private faults. */
889#define NR_NUMA_HINT_FAULT_TYPES 2
890
891/* Memory and CPU locality */
892#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
893
894/* Averaged statistics, and temporary buffers. */
895#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
896
e29cf08b
MG
897pid_t task_numa_group_id(struct task_struct *p)
898{
899 return p->numa_group ? p->numa_group->gid : 0;
900}
901
44dba3d5
IM
902/*
903 * The averaged statistics, shared & private, memory & cpu,
904 * occupy the first half of the array. The second half of the
905 * array is for current counters, which are averaged into the
906 * first set by task_numa_placement.
907 */
908static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 909{
44dba3d5 910 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
911}
912
913static inline unsigned long task_faults(struct task_struct *p, int nid)
914{
44dba3d5 915 if (!p->numa_faults)
ac8e895b
MG
916 return 0;
917
44dba3d5
IM
918 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
919 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
920}
921
83e1d2cd
MG
922static inline unsigned long group_faults(struct task_struct *p, int nid)
923{
924 if (!p->numa_group)
925 return 0;
926
44dba3d5
IM
927 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
928 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
929}
930
20e07dea
RR
931static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
932{
44dba3d5
IM
933 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
934 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
935}
936
6c6b1193
RR
937/* Handle placement on systems where not all nodes are directly connected. */
938static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
939 int maxdist, bool task)
940{
941 unsigned long score = 0;
942 int node;
943
944 /*
945 * All nodes are directly connected, and the same distance
946 * from each other. No need for fancy placement algorithms.
947 */
948 if (sched_numa_topology_type == NUMA_DIRECT)
949 return 0;
950
951 /*
952 * This code is called for each node, introducing N^2 complexity,
953 * which should be ok given the number of nodes rarely exceeds 8.
954 */
955 for_each_online_node(node) {
956 unsigned long faults;
957 int dist = node_distance(nid, node);
958
959 /*
960 * The furthest away nodes in the system are not interesting
961 * for placement; nid was already counted.
962 */
963 if (dist == sched_max_numa_distance || node == nid)
964 continue;
965
966 /*
967 * On systems with a backplane NUMA topology, compare groups
968 * of nodes, and move tasks towards the group with the most
969 * memory accesses. When comparing two nodes at distance
970 * "hoplimit", only nodes closer by than "hoplimit" are part
971 * of each group. Skip other nodes.
972 */
973 if (sched_numa_topology_type == NUMA_BACKPLANE &&
974 dist > maxdist)
975 continue;
976
977 /* Add up the faults from nearby nodes. */
978 if (task)
979 faults = task_faults(p, node);
980 else
981 faults = group_faults(p, node);
982
983 /*
984 * On systems with a glueless mesh NUMA topology, there are
985 * no fixed "groups of nodes". Instead, nodes that are not
986 * directly connected bounce traffic through intermediate
987 * nodes; a numa_group can occupy any set of nodes.
988 * The further away a node is, the less the faults count.
989 * This seems to result in good task placement.
990 */
991 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
992 faults *= (sched_max_numa_distance - dist);
993 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
994 }
995
996 score += faults;
997 }
998
999 return score;
1000}
1001
83e1d2cd
MG
1002/*
1003 * These return the fraction of accesses done by a particular task, or
1004 * task group, on a particular numa node. The group weight is given a
1005 * larger multiplier, in order to group tasks together that are almost
1006 * evenly spread out between numa nodes.
1007 */
7bd95320
RR
1008static inline unsigned long task_weight(struct task_struct *p, int nid,
1009 int dist)
83e1d2cd 1010{
7bd95320 1011 unsigned long faults, total_faults;
83e1d2cd 1012
44dba3d5 1013 if (!p->numa_faults)
83e1d2cd
MG
1014 return 0;
1015
1016 total_faults = p->total_numa_faults;
1017
1018 if (!total_faults)
1019 return 0;
1020
7bd95320 1021 faults = task_faults(p, nid);
6c6b1193
RR
1022 faults += score_nearby_nodes(p, nid, dist, true);
1023
7bd95320 1024 return 1000 * faults / total_faults;
83e1d2cd
MG
1025}
1026
7bd95320
RR
1027static inline unsigned long group_weight(struct task_struct *p, int nid,
1028 int dist)
83e1d2cd 1029{
7bd95320
RR
1030 unsigned long faults, total_faults;
1031
1032 if (!p->numa_group)
1033 return 0;
1034
1035 total_faults = p->numa_group->total_faults;
1036
1037 if (!total_faults)
83e1d2cd
MG
1038 return 0;
1039
7bd95320 1040 faults = group_faults(p, nid);
6c6b1193
RR
1041 faults += score_nearby_nodes(p, nid, dist, false);
1042
7bd95320 1043 return 1000 * faults / total_faults;
83e1d2cd
MG
1044}
1045
10f39042
RR
1046bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1047 int src_nid, int dst_cpu)
1048{
1049 struct numa_group *ng = p->numa_group;
1050 int dst_nid = cpu_to_node(dst_cpu);
1051 int last_cpupid, this_cpupid;
1052
1053 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1054
1055 /*
1056 * Multi-stage node selection is used in conjunction with a periodic
1057 * migration fault to build a temporal task<->page relation. By using
1058 * a two-stage filter we remove short/unlikely relations.
1059 *
1060 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1061 * a task's usage of a particular page (n_p) per total usage of this
1062 * page (n_t) (in a given time-span) to a probability.
1063 *
1064 * Our periodic faults will sample this probability and getting the
1065 * same result twice in a row, given these samples are fully
1066 * independent, is then given by P(n)^2, provided our sample period
1067 * is sufficiently short compared to the usage pattern.
1068 *
1069 * This quadric squishes small probabilities, making it less likely we
1070 * act on an unlikely task<->page relation.
1071 */
1072 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1073 if (!cpupid_pid_unset(last_cpupid) &&
1074 cpupid_to_nid(last_cpupid) != dst_nid)
1075 return false;
1076
1077 /* Always allow migrate on private faults */
1078 if (cpupid_match_pid(p, last_cpupid))
1079 return true;
1080
1081 /* A shared fault, but p->numa_group has not been set up yet. */
1082 if (!ng)
1083 return true;
1084
1085 /*
1086 * Do not migrate if the destination is not a node that
1087 * is actively used by this numa group.
1088 */
1089 if (!node_isset(dst_nid, ng->active_nodes))
1090 return false;
1091
1092 /*
1093 * Source is a node that is not actively used by this
1094 * numa group, while the destination is. Migrate.
1095 */
1096 if (!node_isset(src_nid, ng->active_nodes))
1097 return true;
1098
1099 /*
1100 * Both source and destination are nodes in active
1101 * use by this numa group. Maximize memory bandwidth
1102 * by migrating from more heavily used groups, to less
1103 * heavily used ones, spreading the load around.
1104 * Use a 1/4 hysteresis to avoid spurious page movement.
1105 */
1106 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1107}
1108
e6628d5b 1109static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1110static unsigned long source_load(int cpu, int type);
1111static unsigned long target_load(int cpu, int type);
ced549fa 1112static unsigned long capacity_of(int cpu);
58d081b5
MG
1113static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1114
fb13c7ee 1115/* Cached statistics for all CPUs within a node */
58d081b5 1116struct numa_stats {
fb13c7ee 1117 unsigned long nr_running;
58d081b5 1118 unsigned long load;
fb13c7ee
MG
1119
1120 /* Total compute capacity of CPUs on a node */
5ef20ca1 1121 unsigned long compute_capacity;
fb13c7ee
MG
1122
1123 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1124 unsigned long task_capacity;
1b6a7495 1125 int has_free_capacity;
58d081b5 1126};
e6628d5b 1127
fb13c7ee
MG
1128/*
1129 * XXX borrowed from update_sg_lb_stats
1130 */
1131static void update_numa_stats(struct numa_stats *ns, int nid)
1132{
83d7f242
RR
1133 int smt, cpu, cpus = 0;
1134 unsigned long capacity;
fb13c7ee
MG
1135
1136 memset(ns, 0, sizeof(*ns));
1137 for_each_cpu(cpu, cpumask_of_node(nid)) {
1138 struct rq *rq = cpu_rq(cpu);
1139
1140 ns->nr_running += rq->nr_running;
1141 ns->load += weighted_cpuload(cpu);
ced549fa 1142 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1143
1144 cpus++;
fb13c7ee
MG
1145 }
1146
5eca82a9
PZ
1147 /*
1148 * If we raced with hotplug and there are no CPUs left in our mask
1149 * the @ns structure is NULL'ed and task_numa_compare() will
1150 * not find this node attractive.
1151 *
1b6a7495
NP
1152 * We'll either bail at !has_free_capacity, or we'll detect a huge
1153 * imbalance and bail there.
5eca82a9
PZ
1154 */
1155 if (!cpus)
1156 return;
1157
83d7f242
RR
1158 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1159 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1160 capacity = cpus / smt; /* cores */
1161
1162 ns->task_capacity = min_t(unsigned, capacity,
1163 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1164 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1165}
1166
58d081b5
MG
1167struct task_numa_env {
1168 struct task_struct *p;
e6628d5b 1169
58d081b5
MG
1170 int src_cpu, src_nid;
1171 int dst_cpu, dst_nid;
e6628d5b 1172
58d081b5 1173 struct numa_stats src_stats, dst_stats;
e6628d5b 1174
40ea2b42 1175 int imbalance_pct;
7bd95320 1176 int dist;
fb13c7ee
MG
1177
1178 struct task_struct *best_task;
1179 long best_imp;
58d081b5
MG
1180 int best_cpu;
1181};
1182
fb13c7ee
MG
1183static void task_numa_assign(struct task_numa_env *env,
1184 struct task_struct *p, long imp)
1185{
1186 if (env->best_task)
1187 put_task_struct(env->best_task);
1188 if (p)
1189 get_task_struct(p);
1190
1191 env->best_task = p;
1192 env->best_imp = imp;
1193 env->best_cpu = env->dst_cpu;
1194}
1195
28a21745 1196static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1197 struct task_numa_env *env)
1198{
28a21745 1199 long src_capacity, dst_capacity;
095bebf6
RR
1200 long orig_src_load;
1201 long load_a, load_b;
1202 long moved_load;
1203 long imb;
28a21745
RR
1204
1205 /*
1206 * The load is corrected for the CPU capacity available on each node.
1207 *
1208 * src_load dst_load
1209 * ------------ vs ---------
1210 * src_capacity dst_capacity
1211 */
1212 src_capacity = env->src_stats.compute_capacity;
1213 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1214
1215 /* We care about the slope of the imbalance, not the direction. */
095bebf6
RR
1216 load_a = dst_load;
1217 load_b = src_load;
1218 if (load_a < load_b)
1219 swap(load_a, load_b);
e63da036
RR
1220
1221 /* Is the difference below the threshold? */
095bebf6
RR
1222 imb = load_a * src_capacity * 100 -
1223 load_b * dst_capacity * env->imbalance_pct;
e63da036
RR
1224 if (imb <= 0)
1225 return false;
1226
1227 /*
1228 * The imbalance is above the allowed threshold.
095bebf6
RR
1229 * Allow a move that brings us closer to a balanced situation,
1230 * without moving things past the point of balance.
e63da036 1231 */
28a21745 1232 orig_src_load = env->src_stats.load;
28a21745 1233
095bebf6
RR
1234 /*
1235 * In a task swap, there will be one load moving from src to dst,
1236 * and another moving back. This is the net sum of both moves.
1237 * A simple task move will always have a positive value.
1238 * Allow the move if it brings the system closer to a balanced
1239 * situation, without crossing over the balance point.
1240 */
1241 moved_load = orig_src_load - src_load;
e63da036 1242
095bebf6
RR
1243 if (moved_load > 0)
1244 /* Moving src -> dst. Did we overshoot balance? */
1245 return src_load * dst_capacity < dst_load * src_capacity;
1246 else
1247 /* Moving dst -> src. Did we overshoot balance? */
1248 return dst_load * src_capacity < src_load * dst_capacity;
e63da036
RR
1249}
1250
fb13c7ee
MG
1251/*
1252 * This checks if the overall compute and NUMA accesses of the system would
1253 * be improved if the source tasks was migrated to the target dst_cpu taking
1254 * into account that it might be best if task running on the dst_cpu should
1255 * be exchanged with the source task
1256 */
887c290e
RR
1257static void task_numa_compare(struct task_numa_env *env,
1258 long taskimp, long groupimp)
fb13c7ee
MG
1259{
1260 struct rq *src_rq = cpu_rq(env->src_cpu);
1261 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1262 struct task_struct *cur;
28a21745 1263 long src_load, dst_load;
fb13c7ee 1264 long load;
1c5d3eb3 1265 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1266 long moveimp = imp;
7bd95320 1267 int dist = env->dist;
fb13c7ee
MG
1268
1269 rcu_read_lock();
1effd9f1
KT
1270
1271 raw_spin_lock_irq(&dst_rq->lock);
1272 cur = dst_rq->curr;
1273 /*
1274 * No need to move the exiting task, and this ensures that ->curr
1275 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1276 * is safe under RCU read lock.
1277 * Note that rcu_read_lock() itself can't protect from the final
1278 * put_task_struct() after the last schedule().
1279 */
1280 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1281 cur = NULL;
1effd9f1 1282 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1283
7af68335
PZ
1284 /*
1285 * Because we have preemption enabled we can get migrated around and
1286 * end try selecting ourselves (current == env->p) as a swap candidate.
1287 */
1288 if (cur == env->p)
1289 goto unlock;
1290
fb13c7ee
MG
1291 /*
1292 * "imp" is the fault differential for the source task between the
1293 * source and destination node. Calculate the total differential for
1294 * the source task and potential destination task. The more negative
1295 * the value is, the more rmeote accesses that would be expected to
1296 * be incurred if the tasks were swapped.
1297 */
1298 if (cur) {
1299 /* Skip this swap candidate if cannot move to the source cpu */
1300 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1301 goto unlock;
1302
887c290e
RR
1303 /*
1304 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1305 * in any group then look only at task weights.
887c290e 1306 */
ca28aa53 1307 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1308 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1309 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1310 /*
1311 * Add some hysteresis to prevent swapping the
1312 * tasks within a group over tiny differences.
1313 */
1314 if (cur->numa_group)
1315 imp -= imp/16;
887c290e 1316 } else {
ca28aa53
RR
1317 /*
1318 * Compare the group weights. If a task is all by
1319 * itself (not part of a group), use the task weight
1320 * instead.
1321 */
ca28aa53 1322 if (cur->numa_group)
7bd95320
RR
1323 imp += group_weight(cur, env->src_nid, dist) -
1324 group_weight(cur, env->dst_nid, dist);
ca28aa53 1325 else
7bd95320
RR
1326 imp += task_weight(cur, env->src_nid, dist) -
1327 task_weight(cur, env->dst_nid, dist);
887c290e 1328 }
fb13c7ee
MG
1329 }
1330
0132c3e1 1331 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1332 goto unlock;
1333
1334 if (!cur) {
1335 /* Is there capacity at our destination? */
b932c03c 1336 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1337 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1338 goto unlock;
1339
1340 goto balance;
1341 }
1342
1343 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1344 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1345 dst_rq->nr_running == 1)
fb13c7ee
MG
1346 goto assign;
1347
1348 /*
1349 * In the overloaded case, try and keep the load balanced.
1350 */
1351balance:
e720fff6
PZ
1352 load = task_h_load(env->p);
1353 dst_load = env->dst_stats.load + load;
1354 src_load = env->src_stats.load - load;
fb13c7ee 1355
0132c3e1
RR
1356 if (moveimp > imp && moveimp > env->best_imp) {
1357 /*
1358 * If the improvement from just moving env->p direction is
1359 * better than swapping tasks around, check if a move is
1360 * possible. Store a slightly smaller score than moveimp,
1361 * so an actually idle CPU will win.
1362 */
1363 if (!load_too_imbalanced(src_load, dst_load, env)) {
1364 imp = moveimp - 1;
1365 cur = NULL;
1366 goto assign;
1367 }
1368 }
1369
1370 if (imp <= env->best_imp)
1371 goto unlock;
1372
fb13c7ee 1373 if (cur) {
e720fff6
PZ
1374 load = task_h_load(cur);
1375 dst_load -= load;
1376 src_load += load;
fb13c7ee
MG
1377 }
1378
28a21745 1379 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1380 goto unlock;
1381
ba7e5a27
RR
1382 /*
1383 * One idle CPU per node is evaluated for a task numa move.
1384 * Call select_idle_sibling to maybe find a better one.
1385 */
1386 if (!cur)
1387 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1388
fb13c7ee
MG
1389assign:
1390 task_numa_assign(env, cur, imp);
1391unlock:
1392 rcu_read_unlock();
1393}
1394
887c290e
RR
1395static void task_numa_find_cpu(struct task_numa_env *env,
1396 long taskimp, long groupimp)
2c8a50aa
MG
1397{
1398 int cpu;
1399
1400 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1401 /* Skip this CPU if the source task cannot migrate */
1402 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1403 continue;
1404
1405 env->dst_cpu = cpu;
887c290e 1406 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1407 }
1408}
1409
58d081b5
MG
1410static int task_numa_migrate(struct task_struct *p)
1411{
58d081b5
MG
1412 struct task_numa_env env = {
1413 .p = p,
fb13c7ee 1414
58d081b5 1415 .src_cpu = task_cpu(p),
b32e86b4 1416 .src_nid = task_node(p),
fb13c7ee
MG
1417
1418 .imbalance_pct = 112,
1419
1420 .best_task = NULL,
1421 .best_imp = 0,
1422 .best_cpu = -1
58d081b5
MG
1423 };
1424 struct sched_domain *sd;
887c290e 1425 unsigned long taskweight, groupweight;
7bd95320 1426 int nid, ret, dist;
887c290e 1427 long taskimp, groupimp;
e6628d5b 1428
58d081b5 1429 /*
fb13c7ee
MG
1430 * Pick the lowest SD_NUMA domain, as that would have the smallest
1431 * imbalance and would be the first to start moving tasks about.
1432 *
1433 * And we want to avoid any moving of tasks about, as that would create
1434 * random movement of tasks -- counter the numa conditions we're trying
1435 * to satisfy here.
58d081b5
MG
1436 */
1437 rcu_read_lock();
fb13c7ee 1438 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1439 if (sd)
1440 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1441 rcu_read_unlock();
1442
46a73e8a
RR
1443 /*
1444 * Cpusets can break the scheduler domain tree into smaller
1445 * balance domains, some of which do not cross NUMA boundaries.
1446 * Tasks that are "trapped" in such domains cannot be migrated
1447 * elsewhere, so there is no point in (re)trying.
1448 */
1449 if (unlikely(!sd)) {
de1b301a 1450 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1451 return -EINVAL;
1452 }
1453
2c8a50aa 1454 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1455 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1456 taskweight = task_weight(p, env.src_nid, dist);
1457 groupweight = group_weight(p, env.src_nid, dist);
1458 update_numa_stats(&env.src_stats, env.src_nid);
1459 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1460 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1461 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1462
a43455a1
RR
1463 /* Try to find a spot on the preferred nid. */
1464 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1465
9de05d48
RR
1466 /*
1467 * Look at other nodes in these cases:
1468 * - there is no space available on the preferred_nid
1469 * - the task is part of a numa_group that is interleaved across
1470 * multiple NUMA nodes; in order to better consolidate the group,
1471 * we need to check other locations.
1472 */
1473 if (env.best_cpu == -1 || (p->numa_group &&
1474 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1475 for_each_online_node(nid) {
1476 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1477 continue;
58d081b5 1478
7bd95320 1479 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1480 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1481 dist != env.dist) {
1482 taskweight = task_weight(p, env.src_nid, dist);
1483 groupweight = group_weight(p, env.src_nid, dist);
1484 }
7bd95320 1485
83e1d2cd 1486 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1487 taskimp = task_weight(p, nid, dist) - taskweight;
1488 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1489 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1490 continue;
1491
7bd95320 1492 env.dist = dist;
2c8a50aa
MG
1493 env.dst_nid = nid;
1494 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1495 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1496 }
1497 }
1498
68d1b02a
RR
1499 /*
1500 * If the task is part of a workload that spans multiple NUMA nodes,
1501 * and is migrating into one of the workload's active nodes, remember
1502 * this node as the task's preferred numa node, so the workload can
1503 * settle down.
1504 * A task that migrated to a second choice node will be better off
1505 * trying for a better one later. Do not set the preferred node here.
1506 */
db015dae
RR
1507 if (p->numa_group) {
1508 if (env.best_cpu == -1)
1509 nid = env.src_nid;
1510 else
1511 nid = env.dst_nid;
1512
1513 if (node_isset(nid, p->numa_group->active_nodes))
1514 sched_setnuma(p, env.dst_nid);
1515 }
1516
1517 /* No better CPU than the current one was found. */
1518 if (env.best_cpu == -1)
1519 return -EAGAIN;
0ec8aa00 1520
04bb2f94
RR
1521 /*
1522 * Reset the scan period if the task is being rescheduled on an
1523 * alternative node to recheck if the tasks is now properly placed.
1524 */
1525 p->numa_scan_period = task_scan_min(p);
1526
fb13c7ee 1527 if (env.best_task == NULL) {
286549dc
MG
1528 ret = migrate_task_to(p, env.best_cpu);
1529 if (ret != 0)
1530 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1531 return ret;
1532 }
1533
1534 ret = migrate_swap(p, env.best_task);
286549dc
MG
1535 if (ret != 0)
1536 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1537 put_task_struct(env.best_task);
1538 return ret;
e6628d5b
MG
1539}
1540
6b9a7460
MG
1541/* Attempt to migrate a task to a CPU on the preferred node. */
1542static void numa_migrate_preferred(struct task_struct *p)
1543{
5085e2a3
RR
1544 unsigned long interval = HZ;
1545
2739d3ee 1546 /* This task has no NUMA fault statistics yet */
44dba3d5 1547 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1548 return;
1549
2739d3ee 1550 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1551 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1552 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1553
1554 /* Success if task is already running on preferred CPU */
de1b301a 1555 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1556 return;
1557
1558 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1559 task_numa_migrate(p);
6b9a7460
MG
1560}
1561
20e07dea
RR
1562/*
1563 * Find the nodes on which the workload is actively running. We do this by
1564 * tracking the nodes from which NUMA hinting faults are triggered. This can
1565 * be different from the set of nodes where the workload's memory is currently
1566 * located.
1567 *
1568 * The bitmask is used to make smarter decisions on when to do NUMA page
1569 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1570 * are added when they cause over 6/16 of the maximum number of faults, but
1571 * only removed when they drop below 3/16.
1572 */
1573static void update_numa_active_node_mask(struct numa_group *numa_group)
1574{
1575 unsigned long faults, max_faults = 0;
1576 int nid;
1577
1578 for_each_online_node(nid) {
1579 faults = group_faults_cpu(numa_group, nid);
1580 if (faults > max_faults)
1581 max_faults = faults;
1582 }
1583
1584 for_each_online_node(nid) {
1585 faults = group_faults_cpu(numa_group, nid);
1586 if (!node_isset(nid, numa_group->active_nodes)) {
1587 if (faults > max_faults * 6 / 16)
1588 node_set(nid, numa_group->active_nodes);
1589 } else if (faults < max_faults * 3 / 16)
1590 node_clear(nid, numa_group->active_nodes);
1591 }
1592}
1593
04bb2f94
RR
1594/*
1595 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1596 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1597 * period will be for the next scan window. If local/(local+remote) ratio is
1598 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1599 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1600 */
1601#define NUMA_PERIOD_SLOTS 10
a22b4b01 1602#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1603
1604/*
1605 * Increase the scan period (slow down scanning) if the majority of
1606 * our memory is already on our local node, or if the majority of
1607 * the page accesses are shared with other processes.
1608 * Otherwise, decrease the scan period.
1609 */
1610static void update_task_scan_period(struct task_struct *p,
1611 unsigned long shared, unsigned long private)
1612{
1613 unsigned int period_slot;
1614 int ratio;
1615 int diff;
1616
1617 unsigned long remote = p->numa_faults_locality[0];
1618 unsigned long local = p->numa_faults_locality[1];
1619
1620 /*
1621 * If there were no record hinting faults then either the task is
1622 * completely idle or all activity is areas that are not of interest
1623 * to automatic numa balancing. Scan slower
1624 */
1625 if (local + shared == 0) {
1626 p->numa_scan_period = min(p->numa_scan_period_max,
1627 p->numa_scan_period << 1);
1628
1629 p->mm->numa_next_scan = jiffies +
1630 msecs_to_jiffies(p->numa_scan_period);
1631
1632 return;
1633 }
1634
1635 /*
1636 * Prepare to scale scan period relative to the current period.
1637 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1638 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1639 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1640 */
1641 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1642 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1643 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1644 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1645 if (!slot)
1646 slot = 1;
1647 diff = slot * period_slot;
1648 } else {
1649 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1650
1651 /*
1652 * Scale scan rate increases based on sharing. There is an
1653 * inverse relationship between the degree of sharing and
1654 * the adjustment made to the scanning period. Broadly
1655 * speaking the intent is that there is little point
1656 * scanning faster if shared accesses dominate as it may
1657 * simply bounce migrations uselessly
1658 */
2847c90e 1659 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1660 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1661 }
1662
1663 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1664 task_scan_min(p), task_scan_max(p));
1665 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1666}
1667
7e2703e6
RR
1668/*
1669 * Get the fraction of time the task has been running since the last
1670 * NUMA placement cycle. The scheduler keeps similar statistics, but
1671 * decays those on a 32ms period, which is orders of magnitude off
1672 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1673 * stats only if the task is so new there are no NUMA statistics yet.
1674 */
1675static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1676{
1677 u64 runtime, delta, now;
1678 /* Use the start of this time slice to avoid calculations. */
1679 now = p->se.exec_start;
1680 runtime = p->se.sum_exec_runtime;
1681
1682 if (p->last_task_numa_placement) {
1683 delta = runtime - p->last_sum_exec_runtime;
1684 *period = now - p->last_task_numa_placement;
1685 } else {
1686 delta = p->se.avg.runnable_avg_sum;
1687 *period = p->se.avg.runnable_avg_period;
1688 }
1689
1690 p->last_sum_exec_runtime = runtime;
1691 p->last_task_numa_placement = now;
1692
1693 return delta;
1694}
1695
54009416
RR
1696/*
1697 * Determine the preferred nid for a task in a numa_group. This needs to
1698 * be done in a way that produces consistent results with group_weight,
1699 * otherwise workloads might not converge.
1700 */
1701static int preferred_group_nid(struct task_struct *p, int nid)
1702{
1703 nodemask_t nodes;
1704 int dist;
1705
1706 /* Direct connections between all NUMA nodes. */
1707 if (sched_numa_topology_type == NUMA_DIRECT)
1708 return nid;
1709
1710 /*
1711 * On a system with glueless mesh NUMA topology, group_weight
1712 * scores nodes according to the number of NUMA hinting faults on
1713 * both the node itself, and on nearby nodes.
1714 */
1715 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1716 unsigned long score, max_score = 0;
1717 int node, max_node = nid;
1718
1719 dist = sched_max_numa_distance;
1720
1721 for_each_online_node(node) {
1722 score = group_weight(p, node, dist);
1723 if (score > max_score) {
1724 max_score = score;
1725 max_node = node;
1726 }
1727 }
1728 return max_node;
1729 }
1730
1731 /*
1732 * Finding the preferred nid in a system with NUMA backplane
1733 * interconnect topology is more involved. The goal is to locate
1734 * tasks from numa_groups near each other in the system, and
1735 * untangle workloads from different sides of the system. This requires
1736 * searching down the hierarchy of node groups, recursively searching
1737 * inside the highest scoring group of nodes. The nodemask tricks
1738 * keep the complexity of the search down.
1739 */
1740 nodes = node_online_map;
1741 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1742 unsigned long max_faults = 0;
81907478 1743 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1744 int a, b;
1745
1746 /* Are there nodes at this distance from each other? */
1747 if (!find_numa_distance(dist))
1748 continue;
1749
1750 for_each_node_mask(a, nodes) {
1751 unsigned long faults = 0;
1752 nodemask_t this_group;
1753 nodes_clear(this_group);
1754
1755 /* Sum group's NUMA faults; includes a==b case. */
1756 for_each_node_mask(b, nodes) {
1757 if (node_distance(a, b) < dist) {
1758 faults += group_faults(p, b);
1759 node_set(b, this_group);
1760 node_clear(b, nodes);
1761 }
1762 }
1763
1764 /* Remember the top group. */
1765 if (faults > max_faults) {
1766 max_faults = faults;
1767 max_group = this_group;
1768 /*
1769 * subtle: at the smallest distance there is
1770 * just one node left in each "group", the
1771 * winner is the preferred nid.
1772 */
1773 nid = a;
1774 }
1775 }
1776 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1777 if (!max_faults)
1778 break;
54009416
RR
1779 nodes = max_group;
1780 }
1781 return nid;
1782}
1783
cbee9f88
PZ
1784static void task_numa_placement(struct task_struct *p)
1785{
83e1d2cd
MG
1786 int seq, nid, max_nid = -1, max_group_nid = -1;
1787 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1788 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1789 unsigned long total_faults;
1790 u64 runtime, period;
7dbd13ed 1791 spinlock_t *group_lock = NULL;
cbee9f88 1792
2832bc19 1793 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1794 if (p->numa_scan_seq == seq)
1795 return;
1796 p->numa_scan_seq = seq;
598f0ec0 1797 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1798
7e2703e6
RR
1799 total_faults = p->numa_faults_locality[0] +
1800 p->numa_faults_locality[1];
1801 runtime = numa_get_avg_runtime(p, &period);
1802
7dbd13ed
MG
1803 /* If the task is part of a group prevent parallel updates to group stats */
1804 if (p->numa_group) {
1805 group_lock = &p->numa_group->lock;
60e69eed 1806 spin_lock_irq(group_lock);
7dbd13ed
MG
1807 }
1808
688b7585
MG
1809 /* Find the node with the highest number of faults */
1810 for_each_online_node(nid) {
44dba3d5
IM
1811 /* Keep track of the offsets in numa_faults array */
1812 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1813 unsigned long faults = 0, group_faults = 0;
44dba3d5 1814 int priv;
745d6147 1815
be1e4e76 1816 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1817 long diff, f_diff, f_weight;
8c8a743c 1818
44dba3d5
IM
1819 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1820 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1821 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1822 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1823
ac8e895b 1824 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1825 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1826 fault_types[priv] += p->numa_faults[membuf_idx];
1827 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1828
7e2703e6
RR
1829 /*
1830 * Normalize the faults_from, so all tasks in a group
1831 * count according to CPU use, instead of by the raw
1832 * number of faults. Tasks with little runtime have
1833 * little over-all impact on throughput, and thus their
1834 * faults are less important.
1835 */
1836 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1837 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1838 (total_faults + 1);
44dba3d5
IM
1839 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1840 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1841
44dba3d5
IM
1842 p->numa_faults[mem_idx] += diff;
1843 p->numa_faults[cpu_idx] += f_diff;
1844 faults += p->numa_faults[mem_idx];
83e1d2cd 1845 p->total_numa_faults += diff;
8c8a743c 1846 if (p->numa_group) {
44dba3d5
IM
1847 /*
1848 * safe because we can only change our own group
1849 *
1850 * mem_idx represents the offset for a given
1851 * nid and priv in a specific region because it
1852 * is at the beginning of the numa_faults array.
1853 */
1854 p->numa_group->faults[mem_idx] += diff;
1855 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1856 p->numa_group->total_faults += diff;
44dba3d5 1857 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1858 }
ac8e895b
MG
1859 }
1860
688b7585
MG
1861 if (faults > max_faults) {
1862 max_faults = faults;
1863 max_nid = nid;
1864 }
83e1d2cd
MG
1865
1866 if (group_faults > max_group_faults) {
1867 max_group_faults = group_faults;
1868 max_group_nid = nid;
1869 }
1870 }
1871
04bb2f94
RR
1872 update_task_scan_period(p, fault_types[0], fault_types[1]);
1873
7dbd13ed 1874 if (p->numa_group) {
20e07dea 1875 update_numa_active_node_mask(p->numa_group);
60e69eed 1876 spin_unlock_irq(group_lock);
54009416 1877 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1878 }
1879
bb97fc31
RR
1880 if (max_faults) {
1881 /* Set the new preferred node */
1882 if (max_nid != p->numa_preferred_nid)
1883 sched_setnuma(p, max_nid);
1884
1885 if (task_node(p) != p->numa_preferred_nid)
1886 numa_migrate_preferred(p);
3a7053b3 1887 }
cbee9f88
PZ
1888}
1889
8c8a743c
PZ
1890static inline int get_numa_group(struct numa_group *grp)
1891{
1892 return atomic_inc_not_zero(&grp->refcount);
1893}
1894
1895static inline void put_numa_group(struct numa_group *grp)
1896{
1897 if (atomic_dec_and_test(&grp->refcount))
1898 kfree_rcu(grp, rcu);
1899}
1900
3e6a9418
MG
1901static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1902 int *priv)
8c8a743c
PZ
1903{
1904 struct numa_group *grp, *my_grp;
1905 struct task_struct *tsk;
1906 bool join = false;
1907 int cpu = cpupid_to_cpu(cpupid);
1908 int i;
1909
1910 if (unlikely(!p->numa_group)) {
1911 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1912 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1913
1914 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1915 if (!grp)
1916 return;
1917
1918 atomic_set(&grp->refcount, 1);
1919 spin_lock_init(&grp->lock);
e29cf08b 1920 grp->gid = p->pid;
50ec8a40 1921 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1922 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1923 nr_node_ids;
8c8a743c 1924
20e07dea
RR
1925 node_set(task_node(current), grp->active_nodes);
1926
be1e4e76 1927 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 1928 grp->faults[i] = p->numa_faults[i];
8c8a743c 1929
989348b5 1930 grp->total_faults = p->total_numa_faults;
83e1d2cd 1931
8c8a743c
PZ
1932 grp->nr_tasks++;
1933 rcu_assign_pointer(p->numa_group, grp);
1934 }
1935
1936 rcu_read_lock();
1937 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1938
1939 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1940 goto no_join;
8c8a743c
PZ
1941
1942 grp = rcu_dereference(tsk->numa_group);
1943 if (!grp)
3354781a 1944 goto no_join;
8c8a743c
PZ
1945
1946 my_grp = p->numa_group;
1947 if (grp == my_grp)
3354781a 1948 goto no_join;
8c8a743c
PZ
1949
1950 /*
1951 * Only join the other group if its bigger; if we're the bigger group,
1952 * the other task will join us.
1953 */
1954 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1955 goto no_join;
8c8a743c
PZ
1956
1957 /*
1958 * Tie-break on the grp address.
1959 */
1960 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1961 goto no_join;
8c8a743c 1962
dabe1d99
RR
1963 /* Always join threads in the same process. */
1964 if (tsk->mm == current->mm)
1965 join = true;
1966
1967 /* Simple filter to avoid false positives due to PID collisions */
1968 if (flags & TNF_SHARED)
1969 join = true;
8c8a743c 1970
3e6a9418
MG
1971 /* Update priv based on whether false sharing was detected */
1972 *priv = !join;
1973
dabe1d99 1974 if (join && !get_numa_group(grp))
3354781a 1975 goto no_join;
8c8a743c 1976
8c8a743c
PZ
1977 rcu_read_unlock();
1978
1979 if (!join)
1980 return;
1981
60e69eed
MG
1982 BUG_ON(irqs_disabled());
1983 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1984
be1e4e76 1985 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
1986 my_grp->faults[i] -= p->numa_faults[i];
1987 grp->faults[i] += p->numa_faults[i];
8c8a743c 1988 }
989348b5
MG
1989 my_grp->total_faults -= p->total_numa_faults;
1990 grp->total_faults += p->total_numa_faults;
8c8a743c 1991
8c8a743c
PZ
1992 my_grp->nr_tasks--;
1993 grp->nr_tasks++;
1994
1995 spin_unlock(&my_grp->lock);
60e69eed 1996 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1997
1998 rcu_assign_pointer(p->numa_group, grp);
1999
2000 put_numa_group(my_grp);
3354781a
PZ
2001 return;
2002
2003no_join:
2004 rcu_read_unlock();
2005 return;
8c8a743c
PZ
2006}
2007
2008void task_numa_free(struct task_struct *p)
2009{
2010 struct numa_group *grp = p->numa_group;
44dba3d5 2011 void *numa_faults = p->numa_faults;
e9dd685c
SR
2012 unsigned long flags;
2013 int i;
8c8a743c
PZ
2014
2015 if (grp) {
e9dd685c 2016 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2017 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2018 grp->faults[i] -= p->numa_faults[i];
989348b5 2019 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2020
8c8a743c 2021 grp->nr_tasks--;
e9dd685c 2022 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2023 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2024 put_numa_group(grp);
2025 }
2026
44dba3d5 2027 p->numa_faults = NULL;
82727018 2028 kfree(numa_faults);
8c8a743c
PZ
2029}
2030
cbee9f88
PZ
2031/*
2032 * Got a PROT_NONE fault for a page on @node.
2033 */
58b46da3 2034void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2035{
2036 struct task_struct *p = current;
6688cc05 2037 bool migrated = flags & TNF_MIGRATED;
58b46da3 2038 int cpu_node = task_node(current);
792568ec 2039 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2040 int priv;
cbee9f88 2041
10e84b97 2042 if (!numabalancing_enabled)
1a687c2e
MG
2043 return;
2044
9ff1d9ff
MG
2045 /* for example, ksmd faulting in a user's mm */
2046 if (!p->mm)
2047 return;
2048
f809ca9a 2049 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2050 if (unlikely(!p->numa_faults)) {
2051 int size = sizeof(*p->numa_faults) *
be1e4e76 2052 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2053
44dba3d5
IM
2054 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2055 if (!p->numa_faults)
f809ca9a 2056 return;
745d6147 2057
83e1d2cd 2058 p->total_numa_faults = 0;
04bb2f94 2059 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2060 }
cbee9f88 2061
8c8a743c
PZ
2062 /*
2063 * First accesses are treated as private, otherwise consider accesses
2064 * to be private if the accessing pid has not changed
2065 */
2066 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2067 priv = 1;
2068 } else {
2069 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2070 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2071 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2072 }
2073
792568ec
RR
2074 /*
2075 * If a workload spans multiple NUMA nodes, a shared fault that
2076 * occurs wholly within the set of nodes that the workload is
2077 * actively using should be counted as local. This allows the
2078 * scan rate to slow down when a workload has settled down.
2079 */
2080 if (!priv && !local && p->numa_group &&
2081 node_isset(cpu_node, p->numa_group->active_nodes) &&
2082 node_isset(mem_node, p->numa_group->active_nodes))
2083 local = 1;
2084
cbee9f88 2085 task_numa_placement(p);
f809ca9a 2086
2739d3ee
RR
2087 /*
2088 * Retry task to preferred node migration periodically, in case it
2089 * case it previously failed, or the scheduler moved us.
2090 */
2091 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2092 numa_migrate_preferred(p);
2093
b32e86b4
IM
2094 if (migrated)
2095 p->numa_pages_migrated += pages;
2096
44dba3d5
IM
2097 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2098 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2099 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2100}
2101
6e5fb223
PZ
2102static void reset_ptenuma_scan(struct task_struct *p)
2103{
2104 ACCESS_ONCE(p->mm->numa_scan_seq)++;
2105 p->mm->numa_scan_offset = 0;
2106}
2107
cbee9f88
PZ
2108/*
2109 * The expensive part of numa migration is done from task_work context.
2110 * Triggered from task_tick_numa().
2111 */
2112void task_numa_work(struct callback_head *work)
2113{
2114 unsigned long migrate, next_scan, now = jiffies;
2115 struct task_struct *p = current;
2116 struct mm_struct *mm = p->mm;
6e5fb223 2117 struct vm_area_struct *vma;
9f40604c 2118 unsigned long start, end;
598f0ec0 2119 unsigned long nr_pte_updates = 0;
9f40604c 2120 long pages;
cbee9f88
PZ
2121
2122 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2123
2124 work->next = work; /* protect against double add */
2125 /*
2126 * Who cares about NUMA placement when they're dying.
2127 *
2128 * NOTE: make sure not to dereference p->mm before this check,
2129 * exit_task_work() happens _after_ exit_mm() so we could be called
2130 * without p->mm even though we still had it when we enqueued this
2131 * work.
2132 */
2133 if (p->flags & PF_EXITING)
2134 return;
2135
930aa174 2136 if (!mm->numa_next_scan) {
7e8d16b6
MG
2137 mm->numa_next_scan = now +
2138 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2139 }
2140
cbee9f88
PZ
2141 /*
2142 * Enforce maximal scan/migration frequency..
2143 */
2144 migrate = mm->numa_next_scan;
2145 if (time_before(now, migrate))
2146 return;
2147
598f0ec0
MG
2148 if (p->numa_scan_period == 0) {
2149 p->numa_scan_period_max = task_scan_max(p);
2150 p->numa_scan_period = task_scan_min(p);
2151 }
cbee9f88 2152
fb003b80 2153 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2154 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2155 return;
2156
19a78d11
PZ
2157 /*
2158 * Delay this task enough that another task of this mm will likely win
2159 * the next time around.
2160 */
2161 p->node_stamp += 2 * TICK_NSEC;
2162
9f40604c
MG
2163 start = mm->numa_scan_offset;
2164 pages = sysctl_numa_balancing_scan_size;
2165 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2166 if (!pages)
2167 return;
cbee9f88 2168
6e5fb223 2169 down_read(&mm->mmap_sem);
9f40604c 2170 vma = find_vma(mm, start);
6e5fb223
PZ
2171 if (!vma) {
2172 reset_ptenuma_scan(p);
9f40604c 2173 start = 0;
6e5fb223
PZ
2174 vma = mm->mmap;
2175 }
9f40604c 2176 for (; vma; vma = vma->vm_next) {
6b6482bb 2177 if (!vma_migratable(vma) || !vma_policy_mof(vma))
6e5fb223
PZ
2178 continue;
2179
4591ce4f
MG
2180 /*
2181 * Shared library pages mapped by multiple processes are not
2182 * migrated as it is expected they are cache replicated. Avoid
2183 * hinting faults in read-only file-backed mappings or the vdso
2184 * as migrating the pages will be of marginal benefit.
2185 */
2186 if (!vma->vm_mm ||
2187 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2188 continue;
2189
3c67f474
MG
2190 /*
2191 * Skip inaccessible VMAs to avoid any confusion between
2192 * PROT_NONE and NUMA hinting ptes
2193 */
2194 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2195 continue;
4591ce4f 2196
9f40604c
MG
2197 do {
2198 start = max(start, vma->vm_start);
2199 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2200 end = min(end, vma->vm_end);
598f0ec0
MG
2201 nr_pte_updates += change_prot_numa(vma, start, end);
2202
2203 /*
2204 * Scan sysctl_numa_balancing_scan_size but ensure that
2205 * at least one PTE is updated so that unused virtual
2206 * address space is quickly skipped.
2207 */
2208 if (nr_pte_updates)
2209 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2210
9f40604c
MG
2211 start = end;
2212 if (pages <= 0)
2213 goto out;
3cf1962c
RR
2214
2215 cond_resched();
9f40604c 2216 } while (end != vma->vm_end);
cbee9f88 2217 }
6e5fb223 2218
9f40604c 2219out:
6e5fb223 2220 /*
c69307d5
PZ
2221 * It is possible to reach the end of the VMA list but the last few
2222 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2223 * would find the !migratable VMA on the next scan but not reset the
2224 * scanner to the start so check it now.
6e5fb223
PZ
2225 */
2226 if (vma)
9f40604c 2227 mm->numa_scan_offset = start;
6e5fb223
PZ
2228 else
2229 reset_ptenuma_scan(p);
2230 up_read(&mm->mmap_sem);
cbee9f88
PZ
2231}
2232
2233/*
2234 * Drive the periodic memory faults..
2235 */
2236void task_tick_numa(struct rq *rq, struct task_struct *curr)
2237{
2238 struct callback_head *work = &curr->numa_work;
2239 u64 period, now;
2240
2241 /*
2242 * We don't care about NUMA placement if we don't have memory.
2243 */
2244 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2245 return;
2246
2247 /*
2248 * Using runtime rather than walltime has the dual advantage that
2249 * we (mostly) drive the selection from busy threads and that the
2250 * task needs to have done some actual work before we bother with
2251 * NUMA placement.
2252 */
2253 now = curr->se.sum_exec_runtime;
2254 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2255
2256 if (now - curr->node_stamp > period) {
4b96a29b 2257 if (!curr->node_stamp)
598f0ec0 2258 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2259 curr->node_stamp += period;
cbee9f88
PZ
2260
2261 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2262 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2263 task_work_add(curr, work, true);
2264 }
2265 }
2266}
2267#else
2268static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2269{
2270}
0ec8aa00
PZ
2271
2272static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2273{
2274}
2275
2276static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2277{
2278}
cbee9f88
PZ
2279#endif /* CONFIG_NUMA_BALANCING */
2280
30cfdcfc
DA
2281static void
2282account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2283{
2284 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2285 if (!parent_entity(se))
029632fb 2286 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2287#ifdef CONFIG_SMP
0ec8aa00
PZ
2288 if (entity_is_task(se)) {
2289 struct rq *rq = rq_of(cfs_rq);
2290
2291 account_numa_enqueue(rq, task_of(se));
2292 list_add(&se->group_node, &rq->cfs_tasks);
2293 }
367456c7 2294#endif
30cfdcfc 2295 cfs_rq->nr_running++;
30cfdcfc
DA
2296}
2297
2298static void
2299account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2300{
2301 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2302 if (!parent_entity(se))
029632fb 2303 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2304 if (entity_is_task(se)) {
2305 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2306 list_del_init(&se->group_node);
0ec8aa00 2307 }
30cfdcfc 2308 cfs_rq->nr_running--;
30cfdcfc
DA
2309}
2310
3ff6dcac
YZ
2311#ifdef CONFIG_FAIR_GROUP_SCHED
2312# ifdef CONFIG_SMP
cf5f0acf
PZ
2313static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2314{
2315 long tg_weight;
2316
2317 /*
2318 * Use this CPU's actual weight instead of the last load_contribution
2319 * to gain a more accurate current total weight. See
2320 * update_cfs_rq_load_contribution().
2321 */
bf5b986e 2322 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2323 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2324 tg_weight += cfs_rq->load.weight;
2325
2326 return tg_weight;
2327}
2328
6d5ab293 2329static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2330{
cf5f0acf 2331 long tg_weight, load, shares;
3ff6dcac 2332
cf5f0acf 2333 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2334 load = cfs_rq->load.weight;
3ff6dcac 2335
3ff6dcac 2336 shares = (tg->shares * load);
cf5f0acf
PZ
2337 if (tg_weight)
2338 shares /= tg_weight;
3ff6dcac
YZ
2339
2340 if (shares < MIN_SHARES)
2341 shares = MIN_SHARES;
2342 if (shares > tg->shares)
2343 shares = tg->shares;
2344
2345 return shares;
2346}
3ff6dcac 2347# else /* CONFIG_SMP */
6d5ab293 2348static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2349{
2350 return tg->shares;
2351}
3ff6dcac 2352# endif /* CONFIG_SMP */
2069dd75
PZ
2353static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2354 unsigned long weight)
2355{
19e5eebb
PT
2356 if (se->on_rq) {
2357 /* commit outstanding execution time */
2358 if (cfs_rq->curr == se)
2359 update_curr(cfs_rq);
2069dd75 2360 account_entity_dequeue(cfs_rq, se);
19e5eebb 2361 }
2069dd75
PZ
2362
2363 update_load_set(&se->load, weight);
2364
2365 if (se->on_rq)
2366 account_entity_enqueue(cfs_rq, se);
2367}
2368
82958366
PT
2369static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2370
6d5ab293 2371static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2372{
2373 struct task_group *tg;
2374 struct sched_entity *se;
3ff6dcac 2375 long shares;
2069dd75 2376
2069dd75
PZ
2377 tg = cfs_rq->tg;
2378 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2379 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2380 return;
3ff6dcac
YZ
2381#ifndef CONFIG_SMP
2382 if (likely(se->load.weight == tg->shares))
2383 return;
2384#endif
6d5ab293 2385 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2386
2387 reweight_entity(cfs_rq_of(se), se, shares);
2388}
2389#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2390static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2391{
2392}
2393#endif /* CONFIG_FAIR_GROUP_SCHED */
2394
141965c7 2395#ifdef CONFIG_SMP
5b51f2f8
PT
2396/*
2397 * We choose a half-life close to 1 scheduling period.
2398 * Note: The tables below are dependent on this value.
2399 */
2400#define LOAD_AVG_PERIOD 32
2401#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2402#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2403
2404/* Precomputed fixed inverse multiplies for multiplication by y^n */
2405static const u32 runnable_avg_yN_inv[] = {
2406 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2407 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2408 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2409 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2410 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2411 0x85aac367, 0x82cd8698,
2412};
2413
2414/*
2415 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2416 * over-estimates when re-combining.
2417 */
2418static const u32 runnable_avg_yN_sum[] = {
2419 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2420 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2421 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2422};
2423
9d85f21c
PT
2424/*
2425 * Approximate:
2426 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2427 */
2428static __always_inline u64 decay_load(u64 val, u64 n)
2429{
5b51f2f8
PT
2430 unsigned int local_n;
2431
2432 if (!n)
2433 return val;
2434 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2435 return 0;
2436
2437 /* after bounds checking we can collapse to 32-bit */
2438 local_n = n;
2439
2440 /*
2441 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2442 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2443 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2444 *
2445 * To achieve constant time decay_load.
2446 */
2447 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2448 val >>= local_n / LOAD_AVG_PERIOD;
2449 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2450 }
2451
5b51f2f8
PT
2452 val *= runnable_avg_yN_inv[local_n];
2453 /* We don't use SRR here since we always want to round down. */
2454 return val >> 32;
2455}
2456
2457/*
2458 * For updates fully spanning n periods, the contribution to runnable
2459 * average will be: \Sum 1024*y^n
2460 *
2461 * We can compute this reasonably efficiently by combining:
2462 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2463 */
2464static u32 __compute_runnable_contrib(u64 n)
2465{
2466 u32 contrib = 0;
2467
2468 if (likely(n <= LOAD_AVG_PERIOD))
2469 return runnable_avg_yN_sum[n];
2470 else if (unlikely(n >= LOAD_AVG_MAX_N))
2471 return LOAD_AVG_MAX;
2472
2473 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2474 do {
2475 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2476 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2477
2478 n -= LOAD_AVG_PERIOD;
2479 } while (n > LOAD_AVG_PERIOD);
2480
2481 contrib = decay_load(contrib, n);
2482 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2483}
2484
2485/*
2486 * We can represent the historical contribution to runnable average as the
2487 * coefficients of a geometric series. To do this we sub-divide our runnable
2488 * history into segments of approximately 1ms (1024us); label the segment that
2489 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2490 *
2491 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2492 * p0 p1 p2
2493 * (now) (~1ms ago) (~2ms ago)
2494 *
2495 * Let u_i denote the fraction of p_i that the entity was runnable.
2496 *
2497 * We then designate the fractions u_i as our co-efficients, yielding the
2498 * following representation of historical load:
2499 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2500 *
2501 * We choose y based on the with of a reasonably scheduling period, fixing:
2502 * y^32 = 0.5
2503 *
2504 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2505 * approximately half as much as the contribution to load within the last ms
2506 * (u_0).
2507 *
2508 * When a period "rolls over" and we have new u_0`, multiplying the previous
2509 * sum again by y is sufficient to update:
2510 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2511 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2512 */
2513static __always_inline int __update_entity_runnable_avg(u64 now,
2514 struct sched_avg *sa,
2515 int runnable)
2516{
5b51f2f8
PT
2517 u64 delta, periods;
2518 u32 runnable_contrib;
9d85f21c
PT
2519 int delta_w, decayed = 0;
2520
2521 delta = now - sa->last_runnable_update;
2522 /*
2523 * This should only happen when time goes backwards, which it
2524 * unfortunately does during sched clock init when we swap over to TSC.
2525 */
2526 if ((s64)delta < 0) {
2527 sa->last_runnable_update = now;
2528 return 0;
2529 }
2530
2531 /*
2532 * Use 1024ns as the unit of measurement since it's a reasonable
2533 * approximation of 1us and fast to compute.
2534 */
2535 delta >>= 10;
2536 if (!delta)
2537 return 0;
2538 sa->last_runnable_update = now;
2539
2540 /* delta_w is the amount already accumulated against our next period */
2541 delta_w = sa->runnable_avg_period % 1024;
2542 if (delta + delta_w >= 1024) {
2543 /* period roll-over */
2544 decayed = 1;
2545
2546 /*
2547 * Now that we know we're crossing a period boundary, figure
2548 * out how much from delta we need to complete the current
2549 * period and accrue it.
2550 */
2551 delta_w = 1024 - delta_w;
5b51f2f8
PT
2552 if (runnable)
2553 sa->runnable_avg_sum += delta_w;
2554 sa->runnable_avg_period += delta_w;
2555
2556 delta -= delta_w;
2557
2558 /* Figure out how many additional periods this update spans */
2559 periods = delta / 1024;
2560 delta %= 1024;
2561
2562 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2563 periods + 1);
2564 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2565 periods + 1);
2566
2567 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2568 runnable_contrib = __compute_runnable_contrib(periods);
2569 if (runnable)
2570 sa->runnable_avg_sum += runnable_contrib;
2571 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2572 }
2573
2574 /* Remainder of delta accrued against u_0` */
2575 if (runnable)
2576 sa->runnable_avg_sum += delta;
2577 sa->runnable_avg_period += delta;
2578
2579 return decayed;
2580}
2581
9ee474f5 2582/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2583static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2584{
2585 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2586 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2587
2588 decays -= se->avg.decay_count;
63847600 2589 se->avg.decay_count = 0;
9ee474f5 2590 if (!decays)
aff3e498 2591 return 0;
9ee474f5
PT
2592
2593 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
aff3e498
PT
2594
2595 return decays;
9ee474f5
PT
2596}
2597
c566e8e9
PT
2598#ifdef CONFIG_FAIR_GROUP_SCHED
2599static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2600 int force_update)
2601{
2602 struct task_group *tg = cfs_rq->tg;
bf5b986e 2603 long tg_contrib;
c566e8e9
PT
2604
2605 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2606 tg_contrib -= cfs_rq->tg_load_contrib;
2607
8236d907
JL
2608 if (!tg_contrib)
2609 return;
2610
bf5b986e
AS
2611 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2612 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2613 cfs_rq->tg_load_contrib += tg_contrib;
2614 }
2615}
8165e145 2616
bb17f655
PT
2617/*
2618 * Aggregate cfs_rq runnable averages into an equivalent task_group
2619 * representation for computing load contributions.
2620 */
2621static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2622 struct cfs_rq *cfs_rq)
2623{
2624 struct task_group *tg = cfs_rq->tg;
2625 long contrib;
2626
2627 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2628 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2629 sa->runnable_avg_period + 1);
2630 contrib -= cfs_rq->tg_runnable_contrib;
2631
2632 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2633 atomic_add(contrib, &tg->runnable_avg);
2634 cfs_rq->tg_runnable_contrib += contrib;
2635 }
2636}
2637
8165e145
PT
2638static inline void __update_group_entity_contrib(struct sched_entity *se)
2639{
2640 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2641 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2642 int runnable_avg;
2643
8165e145
PT
2644 u64 contrib;
2645
2646 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2647 se->avg.load_avg_contrib = div_u64(contrib,
2648 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2649
2650 /*
2651 * For group entities we need to compute a correction term in the case
2652 * that they are consuming <1 cpu so that we would contribute the same
2653 * load as a task of equal weight.
2654 *
2655 * Explicitly co-ordinating this measurement would be expensive, but
2656 * fortunately the sum of each cpus contribution forms a usable
2657 * lower-bound on the true value.
2658 *
2659 * Consider the aggregate of 2 contributions. Either they are disjoint
2660 * (and the sum represents true value) or they are disjoint and we are
2661 * understating by the aggregate of their overlap.
2662 *
2663 * Extending this to N cpus, for a given overlap, the maximum amount we
2664 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2665 * cpus that overlap for this interval and w_i is the interval width.
2666 *
2667 * On a small machine; the first term is well-bounded which bounds the
2668 * total error since w_i is a subset of the period. Whereas on a
2669 * larger machine, while this first term can be larger, if w_i is the
2670 * of consequential size guaranteed to see n_i*w_i quickly converge to
2671 * our upper bound of 1-cpu.
2672 */
2673 runnable_avg = atomic_read(&tg->runnable_avg);
2674 if (runnable_avg < NICE_0_LOAD) {
2675 se->avg.load_avg_contrib *= runnable_avg;
2676 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2677 }
8165e145 2678}
f5f9739d
DE
2679
2680static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2681{
2682 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2683 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2684}
6e83125c 2685#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2686static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2687 int force_update) {}
bb17f655
PT
2688static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2689 struct cfs_rq *cfs_rq) {}
8165e145 2690static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2691static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2692#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2693
8165e145
PT
2694static inline void __update_task_entity_contrib(struct sched_entity *se)
2695{
2696 u32 contrib;
2697
2698 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2699 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2700 contrib /= (se->avg.runnable_avg_period + 1);
2701 se->avg.load_avg_contrib = scale_load(contrib);
2702}
2703
2dac754e
PT
2704/* Compute the current contribution to load_avg by se, return any delta */
2705static long __update_entity_load_avg_contrib(struct sched_entity *se)
2706{
2707 long old_contrib = se->avg.load_avg_contrib;
2708
8165e145
PT
2709 if (entity_is_task(se)) {
2710 __update_task_entity_contrib(se);
2711 } else {
bb17f655 2712 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2713 __update_group_entity_contrib(se);
2714 }
2dac754e
PT
2715
2716 return se->avg.load_avg_contrib - old_contrib;
2717}
2718
9ee474f5
PT
2719static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2720 long load_contrib)
2721{
2722 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2723 cfs_rq->blocked_load_avg -= load_contrib;
2724 else
2725 cfs_rq->blocked_load_avg = 0;
2726}
2727
f1b17280
PT
2728static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2729
9d85f21c 2730/* Update a sched_entity's runnable average */
9ee474f5
PT
2731static inline void update_entity_load_avg(struct sched_entity *se,
2732 int update_cfs_rq)
9d85f21c 2733{
2dac754e
PT
2734 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2735 long contrib_delta;
f1b17280 2736 u64 now;
2dac754e 2737
f1b17280
PT
2738 /*
2739 * For a group entity we need to use their owned cfs_rq_clock_task() in
2740 * case they are the parent of a throttled hierarchy.
2741 */
2742 if (entity_is_task(se))
2743 now = cfs_rq_clock_task(cfs_rq);
2744 else
2745 now = cfs_rq_clock_task(group_cfs_rq(se));
2746
2747 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2748 return;
2749
2750 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2751
2752 if (!update_cfs_rq)
2753 return;
2754
2dac754e
PT
2755 if (se->on_rq)
2756 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2757 else
2758 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2759}
2760
2761/*
2762 * Decay the load contributed by all blocked children and account this so that
2763 * their contribution may appropriately discounted when they wake up.
2764 */
aff3e498 2765static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2766{
f1b17280 2767 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2768 u64 decays;
2769
2770 decays = now - cfs_rq->last_decay;
aff3e498 2771 if (!decays && !force_update)
9ee474f5
PT
2772 return;
2773
2509940f
AS
2774 if (atomic_long_read(&cfs_rq->removed_load)) {
2775 unsigned long removed_load;
2776 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2777 subtract_blocked_load_contrib(cfs_rq, removed_load);
2778 }
9ee474f5 2779
aff3e498
PT
2780 if (decays) {
2781 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2782 decays);
2783 atomic64_add(decays, &cfs_rq->decay_counter);
2784 cfs_rq->last_decay = now;
2785 }
c566e8e9
PT
2786
2787 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2788}
18bf2805 2789
2dac754e
PT
2790/* Add the load generated by se into cfs_rq's child load-average */
2791static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2792 struct sched_entity *se,
2793 int wakeup)
2dac754e 2794{
aff3e498
PT
2795 /*
2796 * We track migrations using entity decay_count <= 0, on a wake-up
2797 * migration we use a negative decay count to track the remote decays
2798 * accumulated while sleeping.
a75cdaa9
AS
2799 *
2800 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2801 * are seen by enqueue_entity_load_avg() as a migration with an already
2802 * constructed load_avg_contrib.
aff3e498
PT
2803 */
2804 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2805 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2806 if (se->avg.decay_count) {
2807 /*
2808 * In a wake-up migration we have to approximate the
2809 * time sleeping. This is because we can't synchronize
2810 * clock_task between the two cpus, and it is not
2811 * guaranteed to be read-safe. Instead, we can
2812 * approximate this using our carried decays, which are
2813 * explicitly atomically readable.
2814 */
2815 se->avg.last_runnable_update -= (-se->avg.decay_count)
2816 << 20;
2817 update_entity_load_avg(se, 0);
2818 /* Indicate that we're now synchronized and on-rq */
2819 se->avg.decay_count = 0;
2820 }
9ee474f5
PT
2821 wakeup = 0;
2822 } else {
9390675a 2823 __synchronize_entity_decay(se);
9ee474f5
PT
2824 }
2825
aff3e498
PT
2826 /* migrated tasks did not contribute to our blocked load */
2827 if (wakeup) {
9ee474f5 2828 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2829 update_entity_load_avg(se, 0);
2830 }
9ee474f5 2831
2dac754e 2832 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2833 /* we force update consideration on load-balancer moves */
2834 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2835}
2836
9ee474f5
PT
2837/*
2838 * Remove se's load from this cfs_rq child load-average, if the entity is
2839 * transitioning to a blocked state we track its projected decay using
2840 * blocked_load_avg.
2841 */
2dac754e 2842static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2843 struct sched_entity *se,
2844 int sleep)
2dac754e 2845{
9ee474f5 2846 update_entity_load_avg(se, 1);
aff3e498
PT
2847 /* we force update consideration on load-balancer moves */
2848 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2849
2dac754e 2850 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2851 if (sleep) {
2852 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2853 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2854 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2855}
642dbc39
VG
2856
2857/*
2858 * Update the rq's load with the elapsed running time before entering
2859 * idle. if the last scheduled task is not a CFS task, idle_enter will
2860 * be the only way to update the runnable statistic.
2861 */
2862void idle_enter_fair(struct rq *this_rq)
2863{
2864 update_rq_runnable_avg(this_rq, 1);
2865}
2866
2867/*
2868 * Update the rq's load with the elapsed idle time before a task is
2869 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2870 * be the only way to update the runnable statistic.
2871 */
2872void idle_exit_fair(struct rq *this_rq)
2873{
2874 update_rq_runnable_avg(this_rq, 0);
2875}
2876
6e83125c
PZ
2877static int idle_balance(struct rq *this_rq);
2878
38033c37
PZ
2879#else /* CONFIG_SMP */
2880
9ee474f5
PT
2881static inline void update_entity_load_avg(struct sched_entity *se,
2882 int update_cfs_rq) {}
18bf2805 2883static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2884static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2885 struct sched_entity *se,
2886 int wakeup) {}
2dac754e 2887static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2888 struct sched_entity *se,
2889 int sleep) {}
aff3e498
PT
2890static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2891 int force_update) {}
6e83125c
PZ
2892
2893static inline int idle_balance(struct rq *rq)
2894{
2895 return 0;
2896}
2897
38033c37 2898#endif /* CONFIG_SMP */
9d85f21c 2899
2396af69 2900static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2901{
bf0f6f24 2902#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2903 struct task_struct *tsk = NULL;
2904
2905 if (entity_is_task(se))
2906 tsk = task_of(se);
2907
41acab88 2908 if (se->statistics.sleep_start) {
78becc27 2909 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2910
2911 if ((s64)delta < 0)
2912 delta = 0;
2913
41acab88
LDM
2914 if (unlikely(delta > se->statistics.sleep_max))
2915 se->statistics.sleep_max = delta;
bf0f6f24 2916
8c79a045 2917 se->statistics.sleep_start = 0;
41acab88 2918 se->statistics.sum_sleep_runtime += delta;
9745512c 2919
768d0c27 2920 if (tsk) {
e414314c 2921 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2922 trace_sched_stat_sleep(tsk, delta);
2923 }
bf0f6f24 2924 }
41acab88 2925 if (se->statistics.block_start) {
78becc27 2926 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2927
2928 if ((s64)delta < 0)
2929 delta = 0;
2930
41acab88
LDM
2931 if (unlikely(delta > se->statistics.block_max))
2932 se->statistics.block_max = delta;
bf0f6f24 2933
8c79a045 2934 se->statistics.block_start = 0;
41acab88 2935 se->statistics.sum_sleep_runtime += delta;
30084fbd 2936
e414314c 2937 if (tsk) {
8f0dfc34 2938 if (tsk->in_iowait) {
41acab88
LDM
2939 se->statistics.iowait_sum += delta;
2940 se->statistics.iowait_count++;
768d0c27 2941 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2942 }
2943
b781a602
AV
2944 trace_sched_stat_blocked(tsk, delta);
2945
e414314c
PZ
2946 /*
2947 * Blocking time is in units of nanosecs, so shift by
2948 * 20 to get a milliseconds-range estimation of the
2949 * amount of time that the task spent sleeping:
2950 */
2951 if (unlikely(prof_on == SLEEP_PROFILING)) {
2952 profile_hits(SLEEP_PROFILING,
2953 (void *)get_wchan(tsk),
2954 delta >> 20);
2955 }
2956 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2957 }
bf0f6f24
IM
2958 }
2959#endif
2960}
2961
ddc97297
PZ
2962static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2963{
2964#ifdef CONFIG_SCHED_DEBUG
2965 s64 d = se->vruntime - cfs_rq->min_vruntime;
2966
2967 if (d < 0)
2968 d = -d;
2969
2970 if (d > 3*sysctl_sched_latency)
2971 schedstat_inc(cfs_rq, nr_spread_over);
2972#endif
2973}
2974
aeb73b04
PZ
2975static void
2976place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2977{
1af5f730 2978 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2979
2cb8600e
PZ
2980 /*
2981 * The 'current' period is already promised to the current tasks,
2982 * however the extra weight of the new task will slow them down a
2983 * little, place the new task so that it fits in the slot that
2984 * stays open at the end.
2985 */
94dfb5e7 2986 if (initial && sched_feat(START_DEBIT))
f9c0b095 2987 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2988
a2e7a7eb 2989 /* sleeps up to a single latency don't count. */
5ca9880c 2990 if (!initial) {
a2e7a7eb 2991 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2992
a2e7a7eb
MG
2993 /*
2994 * Halve their sleep time's effect, to allow
2995 * for a gentler effect of sleepers:
2996 */
2997 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2998 thresh >>= 1;
51e0304c 2999
a2e7a7eb 3000 vruntime -= thresh;
aeb73b04
PZ
3001 }
3002
b5d9d734 3003 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3004 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3005}
3006
d3d9dc33
PT
3007static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3008
bf0f6f24 3009static void
88ec22d3 3010enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3011{
88ec22d3
PZ
3012 /*
3013 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3014 * through calling update_curr().
88ec22d3 3015 */
371fd7e7 3016 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3017 se->vruntime += cfs_rq->min_vruntime;
3018
bf0f6f24 3019 /*
a2a2d680 3020 * Update run-time statistics of the 'current'.
bf0f6f24 3021 */
b7cc0896 3022 update_curr(cfs_rq);
f269ae04 3023 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
3024 account_entity_enqueue(cfs_rq, se);
3025 update_cfs_shares(cfs_rq);
bf0f6f24 3026
88ec22d3 3027 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3028 place_entity(cfs_rq, se, 0);
2396af69 3029 enqueue_sleeper(cfs_rq, se);
e9acbff6 3030 }
bf0f6f24 3031
d2417e5a 3032 update_stats_enqueue(cfs_rq, se);
ddc97297 3033 check_spread(cfs_rq, se);
83b699ed
SV
3034 if (se != cfs_rq->curr)
3035 __enqueue_entity(cfs_rq, se);
2069dd75 3036 se->on_rq = 1;
3d4b47b4 3037
d3d9dc33 3038 if (cfs_rq->nr_running == 1) {
3d4b47b4 3039 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3040 check_enqueue_throttle(cfs_rq);
3041 }
bf0f6f24
IM
3042}
3043
2c13c919 3044static void __clear_buddies_last(struct sched_entity *se)
2002c695 3045{
2c13c919
RR
3046 for_each_sched_entity(se) {
3047 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3048 if (cfs_rq->last != se)
2c13c919 3049 break;
f1044799
PZ
3050
3051 cfs_rq->last = NULL;
2c13c919
RR
3052 }
3053}
2002c695 3054
2c13c919
RR
3055static void __clear_buddies_next(struct sched_entity *se)
3056{
3057 for_each_sched_entity(se) {
3058 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3059 if (cfs_rq->next != se)
2c13c919 3060 break;
f1044799
PZ
3061
3062 cfs_rq->next = NULL;
2c13c919 3063 }
2002c695
PZ
3064}
3065
ac53db59
RR
3066static void __clear_buddies_skip(struct sched_entity *se)
3067{
3068 for_each_sched_entity(se) {
3069 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3070 if (cfs_rq->skip != se)
ac53db59 3071 break;
f1044799
PZ
3072
3073 cfs_rq->skip = NULL;
ac53db59
RR
3074 }
3075}
3076
a571bbea
PZ
3077static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3078{
2c13c919
RR
3079 if (cfs_rq->last == se)
3080 __clear_buddies_last(se);
3081
3082 if (cfs_rq->next == se)
3083 __clear_buddies_next(se);
ac53db59
RR
3084
3085 if (cfs_rq->skip == se)
3086 __clear_buddies_skip(se);
a571bbea
PZ
3087}
3088
6c16a6dc 3089static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3090
bf0f6f24 3091static void
371fd7e7 3092dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3093{
a2a2d680
DA
3094 /*
3095 * Update run-time statistics of the 'current'.
3096 */
3097 update_curr(cfs_rq);
17bc14b7 3098 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 3099
19b6a2e3 3100 update_stats_dequeue(cfs_rq, se);
371fd7e7 3101 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 3102#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
3103 if (entity_is_task(se)) {
3104 struct task_struct *tsk = task_of(se);
3105
3106 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 3107 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3108 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 3109 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 3110 }
db36cc7d 3111#endif
67e9fb2a
PZ
3112 }
3113
2002c695 3114 clear_buddies(cfs_rq, se);
4793241b 3115
83b699ed 3116 if (se != cfs_rq->curr)
30cfdcfc 3117 __dequeue_entity(cfs_rq, se);
17bc14b7 3118 se->on_rq = 0;
30cfdcfc 3119 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3120
3121 /*
3122 * Normalize the entity after updating the min_vruntime because the
3123 * update can refer to the ->curr item and we need to reflect this
3124 * movement in our normalized position.
3125 */
371fd7e7 3126 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3127 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3128
d8b4986d
PT
3129 /* return excess runtime on last dequeue */
3130 return_cfs_rq_runtime(cfs_rq);
3131
1e876231 3132 update_min_vruntime(cfs_rq);
17bc14b7 3133 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3134}
3135
3136/*
3137 * Preempt the current task with a newly woken task if needed:
3138 */
7c92e54f 3139static void
2e09bf55 3140check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3141{
11697830 3142 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3143 struct sched_entity *se;
3144 s64 delta;
11697830 3145
6d0f0ebd 3146 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3147 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3148 if (delta_exec > ideal_runtime) {
8875125e 3149 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3150 /*
3151 * The current task ran long enough, ensure it doesn't get
3152 * re-elected due to buddy favours.
3153 */
3154 clear_buddies(cfs_rq, curr);
f685ceac
MG
3155 return;
3156 }
3157
3158 /*
3159 * Ensure that a task that missed wakeup preemption by a
3160 * narrow margin doesn't have to wait for a full slice.
3161 * This also mitigates buddy induced latencies under load.
3162 */
f685ceac
MG
3163 if (delta_exec < sysctl_sched_min_granularity)
3164 return;
3165
f4cfb33e
WX
3166 se = __pick_first_entity(cfs_rq);
3167 delta = curr->vruntime - se->vruntime;
f685ceac 3168
f4cfb33e
WX
3169 if (delta < 0)
3170 return;
d7d82944 3171
f4cfb33e 3172 if (delta > ideal_runtime)
8875125e 3173 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3174}
3175
83b699ed 3176static void
8494f412 3177set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3178{
83b699ed
SV
3179 /* 'current' is not kept within the tree. */
3180 if (se->on_rq) {
3181 /*
3182 * Any task has to be enqueued before it get to execute on
3183 * a CPU. So account for the time it spent waiting on the
3184 * runqueue.
3185 */
3186 update_stats_wait_end(cfs_rq, se);
3187 __dequeue_entity(cfs_rq, se);
3188 }
3189
79303e9e 3190 update_stats_curr_start(cfs_rq, se);
429d43bc 3191 cfs_rq->curr = se;
eba1ed4b
IM
3192#ifdef CONFIG_SCHEDSTATS
3193 /*
3194 * Track our maximum slice length, if the CPU's load is at
3195 * least twice that of our own weight (i.e. dont track it
3196 * when there are only lesser-weight tasks around):
3197 */
495eca49 3198 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3199 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3200 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3201 }
3202#endif
4a55b450 3203 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3204}
3205
3f3a4904
PZ
3206static int
3207wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3208
ac53db59
RR
3209/*
3210 * Pick the next process, keeping these things in mind, in this order:
3211 * 1) keep things fair between processes/task groups
3212 * 2) pick the "next" process, since someone really wants that to run
3213 * 3) pick the "last" process, for cache locality
3214 * 4) do not run the "skip" process, if something else is available
3215 */
678d5718
PZ
3216static struct sched_entity *
3217pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3218{
678d5718
PZ
3219 struct sched_entity *left = __pick_first_entity(cfs_rq);
3220 struct sched_entity *se;
3221
3222 /*
3223 * If curr is set we have to see if its left of the leftmost entity
3224 * still in the tree, provided there was anything in the tree at all.
3225 */
3226 if (!left || (curr && entity_before(curr, left)))
3227 left = curr;
3228
3229 se = left; /* ideally we run the leftmost entity */
f4b6755f 3230
ac53db59
RR
3231 /*
3232 * Avoid running the skip buddy, if running something else can
3233 * be done without getting too unfair.
3234 */
3235 if (cfs_rq->skip == se) {
678d5718
PZ
3236 struct sched_entity *second;
3237
3238 if (se == curr) {
3239 second = __pick_first_entity(cfs_rq);
3240 } else {
3241 second = __pick_next_entity(se);
3242 if (!second || (curr && entity_before(curr, second)))
3243 second = curr;
3244 }
3245
ac53db59
RR
3246 if (second && wakeup_preempt_entity(second, left) < 1)
3247 se = second;
3248 }
aa2ac252 3249
f685ceac
MG
3250 /*
3251 * Prefer last buddy, try to return the CPU to a preempted task.
3252 */
3253 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3254 se = cfs_rq->last;
3255
ac53db59
RR
3256 /*
3257 * Someone really wants this to run. If it's not unfair, run it.
3258 */
3259 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3260 se = cfs_rq->next;
3261
f685ceac 3262 clear_buddies(cfs_rq, se);
4793241b
PZ
3263
3264 return se;
aa2ac252
PZ
3265}
3266
678d5718 3267static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3268
ab6cde26 3269static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3270{
3271 /*
3272 * If still on the runqueue then deactivate_task()
3273 * was not called and update_curr() has to be done:
3274 */
3275 if (prev->on_rq)
b7cc0896 3276 update_curr(cfs_rq);
bf0f6f24 3277
d3d9dc33
PT
3278 /* throttle cfs_rqs exceeding runtime */
3279 check_cfs_rq_runtime(cfs_rq);
3280
ddc97297 3281 check_spread(cfs_rq, prev);
30cfdcfc 3282 if (prev->on_rq) {
5870db5b 3283 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3284 /* Put 'current' back into the tree. */
3285 __enqueue_entity(cfs_rq, prev);
9d85f21c 3286 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3287 update_entity_load_avg(prev, 1);
30cfdcfc 3288 }
429d43bc 3289 cfs_rq->curr = NULL;
bf0f6f24
IM
3290}
3291
8f4d37ec
PZ
3292static void
3293entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3294{
bf0f6f24 3295 /*
30cfdcfc 3296 * Update run-time statistics of the 'current'.
bf0f6f24 3297 */
30cfdcfc 3298 update_curr(cfs_rq);
bf0f6f24 3299
9d85f21c
PT
3300 /*
3301 * Ensure that runnable average is periodically updated.
3302 */
9ee474f5 3303 update_entity_load_avg(curr, 1);
aff3e498 3304 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3305 update_cfs_shares(cfs_rq);
9d85f21c 3306
8f4d37ec
PZ
3307#ifdef CONFIG_SCHED_HRTICK
3308 /*
3309 * queued ticks are scheduled to match the slice, so don't bother
3310 * validating it and just reschedule.
3311 */
983ed7a6 3312 if (queued) {
8875125e 3313 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3314 return;
3315 }
8f4d37ec
PZ
3316 /*
3317 * don't let the period tick interfere with the hrtick preemption
3318 */
3319 if (!sched_feat(DOUBLE_TICK) &&
3320 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3321 return;
3322#endif
3323
2c2efaed 3324 if (cfs_rq->nr_running > 1)
2e09bf55 3325 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3326}
3327
ab84d31e
PT
3328
3329/**************************************************
3330 * CFS bandwidth control machinery
3331 */
3332
3333#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3334
3335#ifdef HAVE_JUMP_LABEL
c5905afb 3336static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3337
3338static inline bool cfs_bandwidth_used(void)
3339{
c5905afb 3340 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3341}
3342
1ee14e6c 3343void cfs_bandwidth_usage_inc(void)
029632fb 3344{
1ee14e6c
BS
3345 static_key_slow_inc(&__cfs_bandwidth_used);
3346}
3347
3348void cfs_bandwidth_usage_dec(void)
3349{
3350 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3351}
3352#else /* HAVE_JUMP_LABEL */
3353static bool cfs_bandwidth_used(void)
3354{
3355 return true;
3356}
3357
1ee14e6c
BS
3358void cfs_bandwidth_usage_inc(void) {}
3359void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3360#endif /* HAVE_JUMP_LABEL */
3361
ab84d31e
PT
3362/*
3363 * default period for cfs group bandwidth.
3364 * default: 0.1s, units: nanoseconds
3365 */
3366static inline u64 default_cfs_period(void)
3367{
3368 return 100000000ULL;
3369}
ec12cb7f
PT
3370
3371static inline u64 sched_cfs_bandwidth_slice(void)
3372{
3373 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3374}
3375
a9cf55b2
PT
3376/*
3377 * Replenish runtime according to assigned quota and update expiration time.
3378 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3379 * additional synchronization around rq->lock.
3380 *
3381 * requires cfs_b->lock
3382 */
029632fb 3383void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3384{
3385 u64 now;
3386
3387 if (cfs_b->quota == RUNTIME_INF)
3388 return;
3389
3390 now = sched_clock_cpu(smp_processor_id());
3391 cfs_b->runtime = cfs_b->quota;
3392 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3393}
3394
029632fb
PZ
3395static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3396{
3397 return &tg->cfs_bandwidth;
3398}
3399
f1b17280
PT
3400/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3401static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3402{
3403 if (unlikely(cfs_rq->throttle_count))
3404 return cfs_rq->throttled_clock_task;
3405
78becc27 3406 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3407}
3408
85dac906
PT
3409/* returns 0 on failure to allocate runtime */
3410static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3411{
3412 struct task_group *tg = cfs_rq->tg;
3413 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3414 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3415
3416 /* note: this is a positive sum as runtime_remaining <= 0 */
3417 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3418
3419 raw_spin_lock(&cfs_b->lock);
3420 if (cfs_b->quota == RUNTIME_INF)
3421 amount = min_amount;
58088ad0 3422 else {
a9cf55b2
PT
3423 /*
3424 * If the bandwidth pool has become inactive, then at least one
3425 * period must have elapsed since the last consumption.
3426 * Refresh the global state and ensure bandwidth timer becomes
3427 * active.
3428 */
3429 if (!cfs_b->timer_active) {
3430 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3431 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3432 }
58088ad0
PT
3433
3434 if (cfs_b->runtime > 0) {
3435 amount = min(cfs_b->runtime, min_amount);
3436 cfs_b->runtime -= amount;
3437 cfs_b->idle = 0;
3438 }
ec12cb7f 3439 }
a9cf55b2 3440 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3441 raw_spin_unlock(&cfs_b->lock);
3442
3443 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3444 /*
3445 * we may have advanced our local expiration to account for allowed
3446 * spread between our sched_clock and the one on which runtime was
3447 * issued.
3448 */
3449 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3450 cfs_rq->runtime_expires = expires;
85dac906
PT
3451
3452 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3453}
3454
a9cf55b2
PT
3455/*
3456 * Note: This depends on the synchronization provided by sched_clock and the
3457 * fact that rq->clock snapshots this value.
3458 */
3459static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3460{
a9cf55b2 3461 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3462
3463 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3464 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3465 return;
3466
a9cf55b2
PT
3467 if (cfs_rq->runtime_remaining < 0)
3468 return;
3469
3470 /*
3471 * If the local deadline has passed we have to consider the
3472 * possibility that our sched_clock is 'fast' and the global deadline
3473 * has not truly expired.
3474 *
3475 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3476 * whether the global deadline has advanced. It is valid to compare
3477 * cfs_b->runtime_expires without any locks since we only care about
3478 * exact equality, so a partial write will still work.
a9cf55b2
PT
3479 */
3480
51f2176d 3481 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3482 /* extend local deadline, drift is bounded above by 2 ticks */
3483 cfs_rq->runtime_expires += TICK_NSEC;
3484 } else {
3485 /* global deadline is ahead, expiration has passed */
3486 cfs_rq->runtime_remaining = 0;
3487 }
3488}
3489
9dbdb155 3490static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3491{
3492 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3493 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3494 expire_cfs_rq_runtime(cfs_rq);
3495
3496 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3497 return;
3498
85dac906
PT
3499 /*
3500 * if we're unable to extend our runtime we resched so that the active
3501 * hierarchy can be throttled
3502 */
3503 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3504 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3505}
3506
6c16a6dc 3507static __always_inline
9dbdb155 3508void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3509{
56f570e5 3510 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3511 return;
3512
3513 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3514}
3515
85dac906
PT
3516static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3517{
56f570e5 3518 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3519}
3520
64660c86
PT
3521/* check whether cfs_rq, or any parent, is throttled */
3522static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3523{
56f570e5 3524 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3525}
3526
3527/*
3528 * Ensure that neither of the group entities corresponding to src_cpu or
3529 * dest_cpu are members of a throttled hierarchy when performing group
3530 * load-balance operations.
3531 */
3532static inline int throttled_lb_pair(struct task_group *tg,
3533 int src_cpu, int dest_cpu)
3534{
3535 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3536
3537 src_cfs_rq = tg->cfs_rq[src_cpu];
3538 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3539
3540 return throttled_hierarchy(src_cfs_rq) ||
3541 throttled_hierarchy(dest_cfs_rq);
3542}
3543
3544/* updated child weight may affect parent so we have to do this bottom up */
3545static int tg_unthrottle_up(struct task_group *tg, void *data)
3546{
3547 struct rq *rq = data;
3548 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3549
3550 cfs_rq->throttle_count--;
3551#ifdef CONFIG_SMP
3552 if (!cfs_rq->throttle_count) {
f1b17280 3553 /* adjust cfs_rq_clock_task() */
78becc27 3554 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3555 cfs_rq->throttled_clock_task;
64660c86
PT
3556 }
3557#endif
3558
3559 return 0;
3560}
3561
3562static int tg_throttle_down(struct task_group *tg, void *data)
3563{
3564 struct rq *rq = data;
3565 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3566
82958366
PT
3567 /* group is entering throttled state, stop time */
3568 if (!cfs_rq->throttle_count)
78becc27 3569 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3570 cfs_rq->throttle_count++;
3571
3572 return 0;
3573}
3574
d3d9dc33 3575static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3576{
3577 struct rq *rq = rq_of(cfs_rq);
3578 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3579 struct sched_entity *se;
3580 long task_delta, dequeue = 1;
3581
3582 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3583
f1b17280 3584 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3585 rcu_read_lock();
3586 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3587 rcu_read_unlock();
85dac906
PT
3588
3589 task_delta = cfs_rq->h_nr_running;
3590 for_each_sched_entity(se) {
3591 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3592 /* throttled entity or throttle-on-deactivate */
3593 if (!se->on_rq)
3594 break;
3595
3596 if (dequeue)
3597 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3598 qcfs_rq->h_nr_running -= task_delta;
3599
3600 if (qcfs_rq->load.weight)
3601 dequeue = 0;
3602 }
3603
3604 if (!se)
72465447 3605 sub_nr_running(rq, task_delta);
85dac906
PT
3606
3607 cfs_rq->throttled = 1;
78becc27 3608 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3609 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3610 /*
3611 * Add to the _head_ of the list, so that an already-started
3612 * distribute_cfs_runtime will not see us
3613 */
3614 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3615 if (!cfs_b->timer_active)
09dc4ab0 3616 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3617 raw_spin_unlock(&cfs_b->lock);
3618}
3619
029632fb 3620void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3621{
3622 struct rq *rq = rq_of(cfs_rq);
3623 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3624 struct sched_entity *se;
3625 int enqueue = 1;
3626 long task_delta;
3627
22b958d8 3628 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3629
3630 cfs_rq->throttled = 0;
1a55af2e
FW
3631
3632 update_rq_clock(rq);
3633
671fd9da 3634 raw_spin_lock(&cfs_b->lock);
78becc27 3635 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3636 list_del_rcu(&cfs_rq->throttled_list);
3637 raw_spin_unlock(&cfs_b->lock);
3638
64660c86
PT
3639 /* update hierarchical throttle state */
3640 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3641
671fd9da
PT
3642 if (!cfs_rq->load.weight)
3643 return;
3644
3645 task_delta = cfs_rq->h_nr_running;
3646 for_each_sched_entity(se) {
3647 if (se->on_rq)
3648 enqueue = 0;
3649
3650 cfs_rq = cfs_rq_of(se);
3651 if (enqueue)
3652 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3653 cfs_rq->h_nr_running += task_delta;
3654
3655 if (cfs_rq_throttled(cfs_rq))
3656 break;
3657 }
3658
3659 if (!se)
72465447 3660 add_nr_running(rq, task_delta);
671fd9da
PT
3661
3662 /* determine whether we need to wake up potentially idle cpu */
3663 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3664 resched_curr(rq);
671fd9da
PT
3665}
3666
3667static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3668 u64 remaining, u64 expires)
3669{
3670 struct cfs_rq *cfs_rq;
c06f04c7
BS
3671 u64 runtime;
3672 u64 starting_runtime = remaining;
671fd9da
PT
3673
3674 rcu_read_lock();
3675 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3676 throttled_list) {
3677 struct rq *rq = rq_of(cfs_rq);
3678
3679 raw_spin_lock(&rq->lock);
3680 if (!cfs_rq_throttled(cfs_rq))
3681 goto next;
3682
3683 runtime = -cfs_rq->runtime_remaining + 1;
3684 if (runtime > remaining)
3685 runtime = remaining;
3686 remaining -= runtime;
3687
3688 cfs_rq->runtime_remaining += runtime;
3689 cfs_rq->runtime_expires = expires;
3690
3691 /* we check whether we're throttled above */
3692 if (cfs_rq->runtime_remaining > 0)
3693 unthrottle_cfs_rq(cfs_rq);
3694
3695next:
3696 raw_spin_unlock(&rq->lock);
3697
3698 if (!remaining)
3699 break;
3700 }
3701 rcu_read_unlock();
3702
c06f04c7 3703 return starting_runtime - remaining;
671fd9da
PT
3704}
3705
58088ad0
PT
3706/*
3707 * Responsible for refilling a task_group's bandwidth and unthrottling its
3708 * cfs_rqs as appropriate. If there has been no activity within the last
3709 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3710 * used to track this state.
3711 */
3712static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3713{
671fd9da 3714 u64 runtime, runtime_expires;
51f2176d 3715 int throttled;
58088ad0 3716
58088ad0
PT
3717 /* no need to continue the timer with no bandwidth constraint */
3718 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3719 goto out_deactivate;
58088ad0 3720
671fd9da 3721 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3722 cfs_b->nr_periods += overrun;
671fd9da 3723
51f2176d
BS
3724 /*
3725 * idle depends on !throttled (for the case of a large deficit), and if
3726 * we're going inactive then everything else can be deferred
3727 */
3728 if (cfs_b->idle && !throttled)
3729 goto out_deactivate;
a9cf55b2 3730
927b54fc
BS
3731 /*
3732 * if we have relooped after returning idle once, we need to update our
3733 * status as actually running, so that other cpus doing
3734 * __start_cfs_bandwidth will stop trying to cancel us.
3735 */
3736 cfs_b->timer_active = 1;
3737
a9cf55b2
PT
3738 __refill_cfs_bandwidth_runtime(cfs_b);
3739
671fd9da
PT
3740 if (!throttled) {
3741 /* mark as potentially idle for the upcoming period */
3742 cfs_b->idle = 1;
51f2176d 3743 return 0;
671fd9da
PT
3744 }
3745
e8da1b18
NR
3746 /* account preceding periods in which throttling occurred */
3747 cfs_b->nr_throttled += overrun;
3748
671fd9da 3749 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3750
3751 /*
c06f04c7
BS
3752 * This check is repeated as we are holding onto the new bandwidth while
3753 * we unthrottle. This can potentially race with an unthrottled group
3754 * trying to acquire new bandwidth from the global pool. This can result
3755 * in us over-using our runtime if it is all used during this loop, but
3756 * only by limited amounts in that extreme case.
671fd9da 3757 */
c06f04c7
BS
3758 while (throttled && cfs_b->runtime > 0) {
3759 runtime = cfs_b->runtime;
671fd9da
PT
3760 raw_spin_unlock(&cfs_b->lock);
3761 /* we can't nest cfs_b->lock while distributing bandwidth */
3762 runtime = distribute_cfs_runtime(cfs_b, runtime,
3763 runtime_expires);
3764 raw_spin_lock(&cfs_b->lock);
3765
3766 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3767
3768 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3769 }
58088ad0 3770
671fd9da
PT
3771 /*
3772 * While we are ensured activity in the period following an
3773 * unthrottle, this also covers the case in which the new bandwidth is
3774 * insufficient to cover the existing bandwidth deficit. (Forcing the
3775 * timer to remain active while there are any throttled entities.)
3776 */
3777 cfs_b->idle = 0;
58088ad0 3778
51f2176d
BS
3779 return 0;
3780
3781out_deactivate:
3782 cfs_b->timer_active = 0;
3783 return 1;
58088ad0 3784}
d3d9dc33 3785
d8b4986d
PT
3786/* a cfs_rq won't donate quota below this amount */
3787static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3788/* minimum remaining period time to redistribute slack quota */
3789static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3790/* how long we wait to gather additional slack before distributing */
3791static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3792
db06e78c
BS
3793/*
3794 * Are we near the end of the current quota period?
3795 *
3796 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3797 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3798 * migrate_hrtimers, base is never cleared, so we are fine.
3799 */
d8b4986d
PT
3800static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3801{
3802 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3803 u64 remaining;
3804
3805 /* if the call-back is running a quota refresh is already occurring */
3806 if (hrtimer_callback_running(refresh_timer))
3807 return 1;
3808
3809 /* is a quota refresh about to occur? */
3810 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3811 if (remaining < min_expire)
3812 return 1;
3813
3814 return 0;
3815}
3816
3817static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3818{
3819 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3820
3821 /* if there's a quota refresh soon don't bother with slack */
3822 if (runtime_refresh_within(cfs_b, min_left))
3823 return;
3824
3825 start_bandwidth_timer(&cfs_b->slack_timer,
3826 ns_to_ktime(cfs_bandwidth_slack_period));
3827}
3828
3829/* we know any runtime found here is valid as update_curr() precedes return */
3830static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3831{
3832 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3833 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3834
3835 if (slack_runtime <= 0)
3836 return;
3837
3838 raw_spin_lock(&cfs_b->lock);
3839 if (cfs_b->quota != RUNTIME_INF &&
3840 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3841 cfs_b->runtime += slack_runtime;
3842
3843 /* we are under rq->lock, defer unthrottling using a timer */
3844 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3845 !list_empty(&cfs_b->throttled_cfs_rq))
3846 start_cfs_slack_bandwidth(cfs_b);
3847 }
3848 raw_spin_unlock(&cfs_b->lock);
3849
3850 /* even if it's not valid for return we don't want to try again */
3851 cfs_rq->runtime_remaining -= slack_runtime;
3852}
3853
3854static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3855{
56f570e5
PT
3856 if (!cfs_bandwidth_used())
3857 return;
3858
fccfdc6f 3859 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3860 return;
3861
3862 __return_cfs_rq_runtime(cfs_rq);
3863}
3864
3865/*
3866 * This is done with a timer (instead of inline with bandwidth return) since
3867 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3868 */
3869static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3870{
3871 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3872 u64 expires;
3873
3874 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3875 raw_spin_lock(&cfs_b->lock);
3876 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3877 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3878 return;
db06e78c 3879 }
d8b4986d 3880
c06f04c7 3881 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3882 runtime = cfs_b->runtime;
c06f04c7 3883
d8b4986d
PT
3884 expires = cfs_b->runtime_expires;
3885 raw_spin_unlock(&cfs_b->lock);
3886
3887 if (!runtime)
3888 return;
3889
3890 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3891
3892 raw_spin_lock(&cfs_b->lock);
3893 if (expires == cfs_b->runtime_expires)
c06f04c7 3894 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3895 raw_spin_unlock(&cfs_b->lock);
3896}
3897
d3d9dc33
PT
3898/*
3899 * When a group wakes up we want to make sure that its quota is not already
3900 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3901 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3902 */
3903static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3904{
56f570e5
PT
3905 if (!cfs_bandwidth_used())
3906 return;
3907
d3d9dc33
PT
3908 /* an active group must be handled by the update_curr()->put() path */
3909 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3910 return;
3911
3912 /* ensure the group is not already throttled */
3913 if (cfs_rq_throttled(cfs_rq))
3914 return;
3915
3916 /* update runtime allocation */
3917 account_cfs_rq_runtime(cfs_rq, 0);
3918 if (cfs_rq->runtime_remaining <= 0)
3919 throttle_cfs_rq(cfs_rq);
3920}
3921
3922/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3923static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3924{
56f570e5 3925 if (!cfs_bandwidth_used())
678d5718 3926 return false;
56f570e5 3927
d3d9dc33 3928 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3929 return false;
d3d9dc33
PT
3930
3931 /*
3932 * it's possible for a throttled entity to be forced into a running
3933 * state (e.g. set_curr_task), in this case we're finished.
3934 */
3935 if (cfs_rq_throttled(cfs_rq))
678d5718 3936 return true;
d3d9dc33
PT
3937
3938 throttle_cfs_rq(cfs_rq);
678d5718 3939 return true;
d3d9dc33 3940}
029632fb 3941
029632fb
PZ
3942static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3943{
3944 struct cfs_bandwidth *cfs_b =
3945 container_of(timer, struct cfs_bandwidth, slack_timer);
3946 do_sched_cfs_slack_timer(cfs_b);
3947
3948 return HRTIMER_NORESTART;
3949}
3950
3951static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3952{
3953 struct cfs_bandwidth *cfs_b =
3954 container_of(timer, struct cfs_bandwidth, period_timer);
3955 ktime_t now;
3956 int overrun;
3957 int idle = 0;
3958
51f2176d 3959 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3960 for (;;) {
3961 now = hrtimer_cb_get_time(timer);
3962 overrun = hrtimer_forward(timer, now, cfs_b->period);
3963
3964 if (!overrun)
3965 break;
3966
3967 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3968 }
51f2176d 3969 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3970
3971 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3972}
3973
3974void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3975{
3976 raw_spin_lock_init(&cfs_b->lock);
3977 cfs_b->runtime = 0;
3978 cfs_b->quota = RUNTIME_INF;
3979 cfs_b->period = ns_to_ktime(default_cfs_period());
3980
3981 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3982 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3983 cfs_b->period_timer.function = sched_cfs_period_timer;
3984 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3985 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3986}
3987
3988static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3989{
3990 cfs_rq->runtime_enabled = 0;
3991 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3992}
3993
3994/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3995void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3996{
3997 /*
3998 * The timer may be active because we're trying to set a new bandwidth
3999 * period or because we're racing with the tear-down path
4000 * (timer_active==0 becomes visible before the hrtimer call-back
4001 * terminates). In either case we ensure that it's re-programmed
4002 */
927b54fc
BS
4003 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
4004 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
4005 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 4006 raw_spin_unlock(&cfs_b->lock);
927b54fc 4007 cpu_relax();
029632fb
PZ
4008 raw_spin_lock(&cfs_b->lock);
4009 /* if someone else restarted the timer then we're done */
09dc4ab0 4010 if (!force && cfs_b->timer_active)
029632fb
PZ
4011 return;
4012 }
4013
4014 cfs_b->timer_active = 1;
4015 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4016}
4017
4018static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4019{
7f1a169b
TH
4020 /* init_cfs_bandwidth() was not called */
4021 if (!cfs_b->throttled_cfs_rq.next)
4022 return;
4023
029632fb
PZ
4024 hrtimer_cancel(&cfs_b->period_timer);
4025 hrtimer_cancel(&cfs_b->slack_timer);
4026}
4027
0e59bdae
KT
4028static void __maybe_unused update_runtime_enabled(struct rq *rq)
4029{
4030 struct cfs_rq *cfs_rq;
4031
4032 for_each_leaf_cfs_rq(rq, cfs_rq) {
4033 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4034
4035 raw_spin_lock(&cfs_b->lock);
4036 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4037 raw_spin_unlock(&cfs_b->lock);
4038 }
4039}
4040
38dc3348 4041static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4042{
4043 struct cfs_rq *cfs_rq;
4044
4045 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4046 if (!cfs_rq->runtime_enabled)
4047 continue;
4048
4049 /*
4050 * clock_task is not advancing so we just need to make sure
4051 * there's some valid quota amount
4052 */
51f2176d 4053 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4054 /*
4055 * Offline rq is schedulable till cpu is completely disabled
4056 * in take_cpu_down(), so we prevent new cfs throttling here.
4057 */
4058 cfs_rq->runtime_enabled = 0;
4059
029632fb
PZ
4060 if (cfs_rq_throttled(cfs_rq))
4061 unthrottle_cfs_rq(cfs_rq);
4062 }
4063}
4064
4065#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4066static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4067{
78becc27 4068 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4069}
4070
9dbdb155 4071static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4072static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4073static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4074static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4075
4076static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4077{
4078 return 0;
4079}
64660c86
PT
4080
4081static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4082{
4083 return 0;
4084}
4085
4086static inline int throttled_lb_pair(struct task_group *tg,
4087 int src_cpu, int dest_cpu)
4088{
4089 return 0;
4090}
029632fb
PZ
4091
4092void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4093
4094#ifdef CONFIG_FAIR_GROUP_SCHED
4095static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4096#endif
4097
029632fb
PZ
4098static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4099{
4100 return NULL;
4101}
4102static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4103static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4104static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4105
4106#endif /* CONFIG_CFS_BANDWIDTH */
4107
bf0f6f24
IM
4108/**************************************************
4109 * CFS operations on tasks:
4110 */
4111
8f4d37ec
PZ
4112#ifdef CONFIG_SCHED_HRTICK
4113static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4114{
8f4d37ec
PZ
4115 struct sched_entity *se = &p->se;
4116 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4117
4118 WARN_ON(task_rq(p) != rq);
4119
b39e66ea 4120 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4121 u64 slice = sched_slice(cfs_rq, se);
4122 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4123 s64 delta = slice - ran;
4124
4125 if (delta < 0) {
4126 if (rq->curr == p)
8875125e 4127 resched_curr(rq);
8f4d37ec
PZ
4128 return;
4129 }
31656519 4130 hrtick_start(rq, delta);
8f4d37ec
PZ
4131 }
4132}
a4c2f00f
PZ
4133
4134/*
4135 * called from enqueue/dequeue and updates the hrtick when the
4136 * current task is from our class and nr_running is low enough
4137 * to matter.
4138 */
4139static void hrtick_update(struct rq *rq)
4140{
4141 struct task_struct *curr = rq->curr;
4142
b39e66ea 4143 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4144 return;
4145
4146 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4147 hrtick_start_fair(rq, curr);
4148}
55e12e5e 4149#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4150static inline void
4151hrtick_start_fair(struct rq *rq, struct task_struct *p)
4152{
4153}
a4c2f00f
PZ
4154
4155static inline void hrtick_update(struct rq *rq)
4156{
4157}
8f4d37ec
PZ
4158#endif
4159
bf0f6f24
IM
4160/*
4161 * The enqueue_task method is called before nr_running is
4162 * increased. Here we update the fair scheduling stats and
4163 * then put the task into the rbtree:
4164 */
ea87bb78 4165static void
371fd7e7 4166enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4167{
4168 struct cfs_rq *cfs_rq;
62fb1851 4169 struct sched_entity *se = &p->se;
bf0f6f24
IM
4170
4171 for_each_sched_entity(se) {
62fb1851 4172 if (se->on_rq)
bf0f6f24
IM
4173 break;
4174 cfs_rq = cfs_rq_of(se);
88ec22d3 4175 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4176
4177 /*
4178 * end evaluation on encountering a throttled cfs_rq
4179 *
4180 * note: in the case of encountering a throttled cfs_rq we will
4181 * post the final h_nr_running increment below.
4182 */
4183 if (cfs_rq_throttled(cfs_rq))
4184 break;
953bfcd1 4185 cfs_rq->h_nr_running++;
85dac906 4186
88ec22d3 4187 flags = ENQUEUE_WAKEUP;
bf0f6f24 4188 }
8f4d37ec 4189
2069dd75 4190 for_each_sched_entity(se) {
0f317143 4191 cfs_rq = cfs_rq_of(se);
953bfcd1 4192 cfs_rq->h_nr_running++;
2069dd75 4193
85dac906
PT
4194 if (cfs_rq_throttled(cfs_rq))
4195 break;
4196
17bc14b7 4197 update_cfs_shares(cfs_rq);
9ee474f5 4198 update_entity_load_avg(se, 1);
2069dd75
PZ
4199 }
4200
18bf2805
BS
4201 if (!se) {
4202 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4203 add_nr_running(rq, 1);
18bf2805 4204 }
a4c2f00f 4205 hrtick_update(rq);
bf0f6f24
IM
4206}
4207
2f36825b
VP
4208static void set_next_buddy(struct sched_entity *se);
4209
bf0f6f24
IM
4210/*
4211 * The dequeue_task method is called before nr_running is
4212 * decreased. We remove the task from the rbtree and
4213 * update the fair scheduling stats:
4214 */
371fd7e7 4215static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4216{
4217 struct cfs_rq *cfs_rq;
62fb1851 4218 struct sched_entity *se = &p->se;
2f36825b 4219 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4220
4221 for_each_sched_entity(se) {
4222 cfs_rq = cfs_rq_of(se);
371fd7e7 4223 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4224
4225 /*
4226 * end evaluation on encountering a throttled cfs_rq
4227 *
4228 * note: in the case of encountering a throttled cfs_rq we will
4229 * post the final h_nr_running decrement below.
4230 */
4231 if (cfs_rq_throttled(cfs_rq))
4232 break;
953bfcd1 4233 cfs_rq->h_nr_running--;
2069dd75 4234
bf0f6f24 4235 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4236 if (cfs_rq->load.weight) {
4237 /*
4238 * Bias pick_next to pick a task from this cfs_rq, as
4239 * p is sleeping when it is within its sched_slice.
4240 */
4241 if (task_sleep && parent_entity(se))
4242 set_next_buddy(parent_entity(se));
9598c82d
PT
4243
4244 /* avoid re-evaluating load for this entity */
4245 se = parent_entity(se);
bf0f6f24 4246 break;
2f36825b 4247 }
371fd7e7 4248 flags |= DEQUEUE_SLEEP;
bf0f6f24 4249 }
8f4d37ec 4250
2069dd75 4251 for_each_sched_entity(se) {
0f317143 4252 cfs_rq = cfs_rq_of(se);
953bfcd1 4253 cfs_rq->h_nr_running--;
2069dd75 4254
85dac906
PT
4255 if (cfs_rq_throttled(cfs_rq))
4256 break;
4257
17bc14b7 4258 update_cfs_shares(cfs_rq);
9ee474f5 4259 update_entity_load_avg(se, 1);
2069dd75
PZ
4260 }
4261
18bf2805 4262 if (!se) {
72465447 4263 sub_nr_running(rq, 1);
18bf2805
BS
4264 update_rq_runnable_avg(rq, 1);
4265 }
a4c2f00f 4266 hrtick_update(rq);
bf0f6f24
IM
4267}
4268
e7693a36 4269#ifdef CONFIG_SMP
029632fb
PZ
4270/* Used instead of source_load when we know the type == 0 */
4271static unsigned long weighted_cpuload(const int cpu)
4272{
b92486cb 4273 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4274}
4275
4276/*
4277 * Return a low guess at the load of a migration-source cpu weighted
4278 * according to the scheduling class and "nice" value.
4279 *
4280 * We want to under-estimate the load of migration sources, to
4281 * balance conservatively.
4282 */
4283static unsigned long source_load(int cpu, int type)
4284{
4285 struct rq *rq = cpu_rq(cpu);
4286 unsigned long total = weighted_cpuload(cpu);
4287
4288 if (type == 0 || !sched_feat(LB_BIAS))
4289 return total;
4290
4291 return min(rq->cpu_load[type-1], total);
4292}
4293
4294/*
4295 * Return a high guess at the load of a migration-target cpu weighted
4296 * according to the scheduling class and "nice" value.
4297 */
4298static unsigned long target_load(int cpu, int type)
4299{
4300 struct rq *rq = cpu_rq(cpu);
4301 unsigned long total = weighted_cpuload(cpu);
4302
4303 if (type == 0 || !sched_feat(LB_BIAS))
4304 return total;
4305
4306 return max(rq->cpu_load[type-1], total);
4307}
4308
ced549fa 4309static unsigned long capacity_of(int cpu)
029632fb 4310{
ced549fa 4311 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4312}
4313
4314static unsigned long cpu_avg_load_per_task(int cpu)
4315{
4316 struct rq *rq = cpu_rq(cpu);
65fdac08 4317 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4318 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4319
4320 if (nr_running)
b92486cb 4321 return load_avg / nr_running;
029632fb
PZ
4322
4323 return 0;
4324}
4325
62470419
MW
4326static void record_wakee(struct task_struct *p)
4327{
4328 /*
4329 * Rough decay (wiping) for cost saving, don't worry
4330 * about the boundary, really active task won't care
4331 * about the loss.
4332 */
2538d960 4333 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4334 current->wakee_flips >>= 1;
62470419
MW
4335 current->wakee_flip_decay_ts = jiffies;
4336 }
4337
4338 if (current->last_wakee != p) {
4339 current->last_wakee = p;
4340 current->wakee_flips++;
4341 }
4342}
098fb9db 4343
74f8e4b2 4344static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4345{
4346 struct sched_entity *se = &p->se;
4347 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4348 u64 min_vruntime;
4349
4350#ifndef CONFIG_64BIT
4351 u64 min_vruntime_copy;
88ec22d3 4352
3fe1698b
PZ
4353 do {
4354 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4355 smp_rmb();
4356 min_vruntime = cfs_rq->min_vruntime;
4357 } while (min_vruntime != min_vruntime_copy);
4358#else
4359 min_vruntime = cfs_rq->min_vruntime;
4360#endif
88ec22d3 4361
3fe1698b 4362 se->vruntime -= min_vruntime;
62470419 4363 record_wakee(p);
88ec22d3
PZ
4364}
4365
bb3469ac 4366#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4367/*
4368 * effective_load() calculates the load change as seen from the root_task_group
4369 *
4370 * Adding load to a group doesn't make a group heavier, but can cause movement
4371 * of group shares between cpus. Assuming the shares were perfectly aligned one
4372 * can calculate the shift in shares.
cf5f0acf
PZ
4373 *
4374 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4375 * on this @cpu and results in a total addition (subtraction) of @wg to the
4376 * total group weight.
4377 *
4378 * Given a runqueue weight distribution (rw_i) we can compute a shares
4379 * distribution (s_i) using:
4380 *
4381 * s_i = rw_i / \Sum rw_j (1)
4382 *
4383 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4384 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4385 * shares distribution (s_i):
4386 *
4387 * rw_i = { 2, 4, 1, 0 }
4388 * s_i = { 2/7, 4/7, 1/7, 0 }
4389 *
4390 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4391 * task used to run on and the CPU the waker is running on), we need to
4392 * compute the effect of waking a task on either CPU and, in case of a sync
4393 * wakeup, compute the effect of the current task going to sleep.
4394 *
4395 * So for a change of @wl to the local @cpu with an overall group weight change
4396 * of @wl we can compute the new shares distribution (s'_i) using:
4397 *
4398 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4399 *
4400 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4401 * differences in waking a task to CPU 0. The additional task changes the
4402 * weight and shares distributions like:
4403 *
4404 * rw'_i = { 3, 4, 1, 0 }
4405 * s'_i = { 3/8, 4/8, 1/8, 0 }
4406 *
4407 * We can then compute the difference in effective weight by using:
4408 *
4409 * dw_i = S * (s'_i - s_i) (3)
4410 *
4411 * Where 'S' is the group weight as seen by its parent.
4412 *
4413 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4414 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4415 * 4/7) times the weight of the group.
f5bfb7d9 4416 */
2069dd75 4417static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4418{
4be9daaa 4419 struct sched_entity *se = tg->se[cpu];
f1d239f7 4420
9722c2da 4421 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4422 return wl;
4423
4be9daaa 4424 for_each_sched_entity(se) {
cf5f0acf 4425 long w, W;
4be9daaa 4426
977dda7c 4427 tg = se->my_q->tg;
bb3469ac 4428
cf5f0acf
PZ
4429 /*
4430 * W = @wg + \Sum rw_j
4431 */
4432 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4433
cf5f0acf
PZ
4434 /*
4435 * w = rw_i + @wl
4436 */
4437 w = se->my_q->load.weight + wl;
940959e9 4438
cf5f0acf
PZ
4439 /*
4440 * wl = S * s'_i; see (2)
4441 */
4442 if (W > 0 && w < W)
32a8df4e 4443 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4444 else
4445 wl = tg->shares;
940959e9 4446
cf5f0acf
PZ
4447 /*
4448 * Per the above, wl is the new se->load.weight value; since
4449 * those are clipped to [MIN_SHARES, ...) do so now. See
4450 * calc_cfs_shares().
4451 */
977dda7c
PT
4452 if (wl < MIN_SHARES)
4453 wl = MIN_SHARES;
cf5f0acf
PZ
4454
4455 /*
4456 * wl = dw_i = S * (s'_i - s_i); see (3)
4457 */
977dda7c 4458 wl -= se->load.weight;
cf5f0acf
PZ
4459
4460 /*
4461 * Recursively apply this logic to all parent groups to compute
4462 * the final effective load change on the root group. Since
4463 * only the @tg group gets extra weight, all parent groups can
4464 * only redistribute existing shares. @wl is the shift in shares
4465 * resulting from this level per the above.
4466 */
4be9daaa 4467 wg = 0;
4be9daaa 4468 }
bb3469ac 4469
4be9daaa 4470 return wl;
bb3469ac
PZ
4471}
4472#else
4be9daaa 4473
58d081b5 4474static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4475{
83378269 4476 return wl;
bb3469ac 4477}
4be9daaa 4478
bb3469ac
PZ
4479#endif
4480
62470419
MW
4481static int wake_wide(struct task_struct *p)
4482{
7d9ffa89 4483 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4484
4485 /*
4486 * Yeah, it's the switching-frequency, could means many wakee or
4487 * rapidly switch, use factor here will just help to automatically
4488 * adjust the loose-degree, so bigger node will lead to more pull.
4489 */
4490 if (p->wakee_flips > factor) {
4491 /*
4492 * wakee is somewhat hot, it needs certain amount of cpu
4493 * resource, so if waker is far more hot, prefer to leave
4494 * it alone.
4495 */
4496 if (current->wakee_flips > (factor * p->wakee_flips))
4497 return 1;
4498 }
4499
4500 return 0;
4501}
4502
c88d5910 4503static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4504{
e37b6a7b 4505 s64 this_load, load;
bd61c98f 4506 s64 this_eff_load, prev_eff_load;
c88d5910 4507 int idx, this_cpu, prev_cpu;
c88d5910 4508 struct task_group *tg;
83378269 4509 unsigned long weight;
b3137bc8 4510 int balanced;
098fb9db 4511
62470419
MW
4512 /*
4513 * If we wake multiple tasks be careful to not bounce
4514 * ourselves around too much.
4515 */
4516 if (wake_wide(p))
4517 return 0;
4518
c88d5910
PZ
4519 idx = sd->wake_idx;
4520 this_cpu = smp_processor_id();
4521 prev_cpu = task_cpu(p);
4522 load = source_load(prev_cpu, idx);
4523 this_load = target_load(this_cpu, idx);
098fb9db 4524
b3137bc8
MG
4525 /*
4526 * If sync wakeup then subtract the (maximum possible)
4527 * effect of the currently running task from the load
4528 * of the current CPU:
4529 */
83378269
PZ
4530 if (sync) {
4531 tg = task_group(current);
4532 weight = current->se.load.weight;
4533
c88d5910 4534 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4535 load += effective_load(tg, prev_cpu, 0, -weight);
4536 }
b3137bc8 4537
83378269
PZ
4538 tg = task_group(p);
4539 weight = p->se.load.weight;
b3137bc8 4540
71a29aa7
PZ
4541 /*
4542 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4543 * due to the sync cause above having dropped this_load to 0, we'll
4544 * always have an imbalance, but there's really nothing you can do
4545 * about that, so that's good too.
71a29aa7
PZ
4546 *
4547 * Otherwise check if either cpus are near enough in load to allow this
4548 * task to be woken on this_cpu.
4549 */
bd61c98f
VG
4550 this_eff_load = 100;
4551 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4552
bd61c98f
VG
4553 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4554 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4555
bd61c98f 4556 if (this_load > 0) {
e51fd5e2
PZ
4557 this_eff_load *= this_load +
4558 effective_load(tg, this_cpu, weight, weight);
4559
e51fd5e2 4560 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4561 }
e51fd5e2 4562
bd61c98f 4563 balanced = this_eff_load <= prev_eff_load;
098fb9db 4564
41acab88 4565 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4566
05bfb65f
VG
4567 if (!balanced)
4568 return 0;
098fb9db 4569
05bfb65f
VG
4570 schedstat_inc(sd, ttwu_move_affine);
4571 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4572
4573 return 1;
098fb9db
IM
4574}
4575
aaee1203
PZ
4576/*
4577 * find_idlest_group finds and returns the least busy CPU group within the
4578 * domain.
4579 */
4580static struct sched_group *
78e7ed53 4581find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4582 int this_cpu, int sd_flag)
e7693a36 4583{
b3bd3de6 4584 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4585 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4586 int load_idx = sd->forkexec_idx;
aaee1203 4587 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4588
c44f2a02
VG
4589 if (sd_flag & SD_BALANCE_WAKE)
4590 load_idx = sd->wake_idx;
4591
aaee1203
PZ
4592 do {
4593 unsigned long load, avg_load;
4594 int local_group;
4595 int i;
e7693a36 4596
aaee1203
PZ
4597 /* Skip over this group if it has no CPUs allowed */
4598 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4599 tsk_cpus_allowed(p)))
aaee1203
PZ
4600 continue;
4601
4602 local_group = cpumask_test_cpu(this_cpu,
4603 sched_group_cpus(group));
4604
4605 /* Tally up the load of all CPUs in the group */
4606 avg_load = 0;
4607
4608 for_each_cpu(i, sched_group_cpus(group)) {
4609 /* Bias balancing toward cpus of our domain */
4610 if (local_group)
4611 load = source_load(i, load_idx);
4612 else
4613 load = target_load(i, load_idx);
4614
4615 avg_load += load;
4616 }
4617
63b2ca30 4618 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4619 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4620
4621 if (local_group) {
4622 this_load = avg_load;
aaee1203
PZ
4623 } else if (avg_load < min_load) {
4624 min_load = avg_load;
4625 idlest = group;
4626 }
4627 } while (group = group->next, group != sd->groups);
4628
4629 if (!idlest || 100*this_load < imbalance*min_load)
4630 return NULL;
4631 return idlest;
4632}
4633
4634/*
4635 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4636 */
4637static int
4638find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4639{
4640 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4641 unsigned int min_exit_latency = UINT_MAX;
4642 u64 latest_idle_timestamp = 0;
4643 int least_loaded_cpu = this_cpu;
4644 int shallowest_idle_cpu = -1;
aaee1203
PZ
4645 int i;
4646
4647 /* Traverse only the allowed CPUs */
fa17b507 4648 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4649 if (idle_cpu(i)) {
4650 struct rq *rq = cpu_rq(i);
4651 struct cpuidle_state *idle = idle_get_state(rq);
4652 if (idle && idle->exit_latency < min_exit_latency) {
4653 /*
4654 * We give priority to a CPU whose idle state
4655 * has the smallest exit latency irrespective
4656 * of any idle timestamp.
4657 */
4658 min_exit_latency = idle->exit_latency;
4659 latest_idle_timestamp = rq->idle_stamp;
4660 shallowest_idle_cpu = i;
4661 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4662 rq->idle_stamp > latest_idle_timestamp) {
4663 /*
4664 * If equal or no active idle state, then
4665 * the most recently idled CPU might have
4666 * a warmer cache.
4667 */
4668 latest_idle_timestamp = rq->idle_stamp;
4669 shallowest_idle_cpu = i;
4670 }
9f96742a 4671 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
4672 load = weighted_cpuload(i);
4673 if (load < min_load || (load == min_load && i == this_cpu)) {
4674 min_load = load;
4675 least_loaded_cpu = i;
4676 }
e7693a36
GH
4677 }
4678 }
4679
83a0a96a 4680 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4681}
e7693a36 4682
a50bde51
PZ
4683/*
4684 * Try and locate an idle CPU in the sched_domain.
4685 */
99bd5e2f 4686static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4687{
99bd5e2f 4688 struct sched_domain *sd;
37407ea7 4689 struct sched_group *sg;
e0a79f52 4690 int i = task_cpu(p);
a50bde51 4691
e0a79f52
MG
4692 if (idle_cpu(target))
4693 return target;
99bd5e2f
SS
4694
4695 /*
e0a79f52 4696 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4697 */
e0a79f52
MG
4698 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4699 return i;
a50bde51
PZ
4700
4701 /*
37407ea7 4702 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4703 */
518cd623 4704 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4705 for_each_lower_domain(sd) {
37407ea7
LT
4706 sg = sd->groups;
4707 do {
4708 if (!cpumask_intersects(sched_group_cpus(sg),
4709 tsk_cpus_allowed(p)))
4710 goto next;
4711
4712 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4713 if (i == target || !idle_cpu(i))
37407ea7
LT
4714 goto next;
4715 }
970e1789 4716
37407ea7
LT
4717 target = cpumask_first_and(sched_group_cpus(sg),
4718 tsk_cpus_allowed(p));
4719 goto done;
4720next:
4721 sg = sg->next;
4722 } while (sg != sd->groups);
4723 }
4724done:
a50bde51
PZ
4725 return target;
4726}
4727
aaee1203 4728/*
de91b9cb
MR
4729 * select_task_rq_fair: Select target runqueue for the waking task in domains
4730 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4731 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4732 *
de91b9cb
MR
4733 * Balances load by selecting the idlest cpu in the idlest group, or under
4734 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4735 *
de91b9cb 4736 * Returns the target cpu number.
aaee1203
PZ
4737 *
4738 * preempt must be disabled.
4739 */
0017d735 4740static int
ac66f547 4741select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4742{
29cd8bae 4743 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4744 int cpu = smp_processor_id();
c88d5910 4745 int new_cpu = cpu;
99bd5e2f 4746 int want_affine = 0;
5158f4e4 4747 int sync = wake_flags & WF_SYNC;
c88d5910 4748
a8edd075
KT
4749 if (sd_flag & SD_BALANCE_WAKE)
4750 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4751
dce840a0 4752 rcu_read_lock();
aaee1203 4753 for_each_domain(cpu, tmp) {
e4f42888
PZ
4754 if (!(tmp->flags & SD_LOAD_BALANCE))
4755 continue;
4756
fe3bcfe1 4757 /*
99bd5e2f
SS
4758 * If both cpu and prev_cpu are part of this domain,
4759 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4760 */
99bd5e2f
SS
4761 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4762 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4763 affine_sd = tmp;
29cd8bae 4764 break;
f03542a7 4765 }
29cd8bae 4766
f03542a7 4767 if (tmp->flags & sd_flag)
29cd8bae
PZ
4768 sd = tmp;
4769 }
4770
8bf21433
RR
4771 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4772 prev_cpu = cpu;
dce840a0 4773
8bf21433 4774 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4775 new_cpu = select_idle_sibling(p, prev_cpu);
4776 goto unlock;
8b911acd 4777 }
e7693a36 4778
aaee1203
PZ
4779 while (sd) {
4780 struct sched_group *group;
c88d5910 4781 int weight;
098fb9db 4782
0763a660 4783 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4784 sd = sd->child;
4785 continue;
4786 }
098fb9db 4787
c44f2a02 4788 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4789 if (!group) {
4790 sd = sd->child;
4791 continue;
4792 }
4ae7d5ce 4793
d7c33c49 4794 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4795 if (new_cpu == -1 || new_cpu == cpu) {
4796 /* Now try balancing at a lower domain level of cpu */
4797 sd = sd->child;
4798 continue;
e7693a36 4799 }
aaee1203
PZ
4800
4801 /* Now try balancing at a lower domain level of new_cpu */
4802 cpu = new_cpu;
669c55e9 4803 weight = sd->span_weight;
aaee1203
PZ
4804 sd = NULL;
4805 for_each_domain(cpu, tmp) {
669c55e9 4806 if (weight <= tmp->span_weight)
aaee1203 4807 break;
0763a660 4808 if (tmp->flags & sd_flag)
aaee1203
PZ
4809 sd = tmp;
4810 }
4811 /* while loop will break here if sd == NULL */
e7693a36 4812 }
dce840a0
PZ
4813unlock:
4814 rcu_read_unlock();
e7693a36 4815
c88d5910 4816 return new_cpu;
e7693a36 4817}
0a74bef8
PT
4818
4819/*
4820 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4821 * cfs_rq_of(p) references at time of call are still valid and identify the
4822 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4823 * other assumptions, including the state of rq->lock, should be made.
4824 */
4825static void
4826migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4827{
aff3e498
PT
4828 struct sched_entity *se = &p->se;
4829 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4830
4831 /*
4832 * Load tracking: accumulate removed load so that it can be processed
4833 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4834 * to blocked load iff they have a positive decay-count. It can never
4835 * be negative here since on-rq tasks have decay-count == 0.
4836 */
4837 if (se->avg.decay_count) {
4838 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4839 atomic_long_add(se->avg.load_avg_contrib,
4840 &cfs_rq->removed_load);
aff3e498 4841 }
3944a927
BS
4842
4843 /* We have migrated, no longer consider this task hot */
4844 se->exec_start = 0;
0a74bef8 4845}
e7693a36
GH
4846#endif /* CONFIG_SMP */
4847
e52fb7c0
PZ
4848static unsigned long
4849wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4850{
4851 unsigned long gran = sysctl_sched_wakeup_granularity;
4852
4853 /*
e52fb7c0
PZ
4854 * Since its curr running now, convert the gran from real-time
4855 * to virtual-time in his units.
13814d42
MG
4856 *
4857 * By using 'se' instead of 'curr' we penalize light tasks, so
4858 * they get preempted easier. That is, if 'se' < 'curr' then
4859 * the resulting gran will be larger, therefore penalizing the
4860 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4861 * be smaller, again penalizing the lighter task.
4862 *
4863 * This is especially important for buddies when the leftmost
4864 * task is higher priority than the buddy.
0bbd3336 4865 */
f4ad9bd2 4866 return calc_delta_fair(gran, se);
0bbd3336
PZ
4867}
4868
464b7527
PZ
4869/*
4870 * Should 'se' preempt 'curr'.
4871 *
4872 * |s1
4873 * |s2
4874 * |s3
4875 * g
4876 * |<--->|c
4877 *
4878 * w(c, s1) = -1
4879 * w(c, s2) = 0
4880 * w(c, s3) = 1
4881 *
4882 */
4883static int
4884wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4885{
4886 s64 gran, vdiff = curr->vruntime - se->vruntime;
4887
4888 if (vdiff <= 0)
4889 return -1;
4890
e52fb7c0 4891 gran = wakeup_gran(curr, se);
464b7527
PZ
4892 if (vdiff > gran)
4893 return 1;
4894
4895 return 0;
4896}
4897
02479099
PZ
4898static void set_last_buddy(struct sched_entity *se)
4899{
69c80f3e
VP
4900 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4901 return;
4902
4903 for_each_sched_entity(se)
4904 cfs_rq_of(se)->last = se;
02479099
PZ
4905}
4906
4907static void set_next_buddy(struct sched_entity *se)
4908{
69c80f3e
VP
4909 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4910 return;
4911
4912 for_each_sched_entity(se)
4913 cfs_rq_of(se)->next = se;
02479099
PZ
4914}
4915
ac53db59
RR
4916static void set_skip_buddy(struct sched_entity *se)
4917{
69c80f3e
VP
4918 for_each_sched_entity(se)
4919 cfs_rq_of(se)->skip = se;
ac53db59
RR
4920}
4921
bf0f6f24
IM
4922/*
4923 * Preempt the current task with a newly woken task if needed:
4924 */
5a9b86f6 4925static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4926{
4927 struct task_struct *curr = rq->curr;
8651a86c 4928 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4929 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4930 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4931 int next_buddy_marked = 0;
bf0f6f24 4932
4ae7d5ce
IM
4933 if (unlikely(se == pse))
4934 return;
4935
5238cdd3 4936 /*
163122b7 4937 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4938 * unconditionally check_prempt_curr() after an enqueue (which may have
4939 * lead to a throttle). This both saves work and prevents false
4940 * next-buddy nomination below.
4941 */
4942 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4943 return;
4944
2f36825b 4945 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4946 set_next_buddy(pse);
2f36825b
VP
4947 next_buddy_marked = 1;
4948 }
57fdc26d 4949
aec0a514
BR
4950 /*
4951 * We can come here with TIF_NEED_RESCHED already set from new task
4952 * wake up path.
5238cdd3
PT
4953 *
4954 * Note: this also catches the edge-case of curr being in a throttled
4955 * group (e.g. via set_curr_task), since update_curr() (in the
4956 * enqueue of curr) will have resulted in resched being set. This
4957 * prevents us from potentially nominating it as a false LAST_BUDDY
4958 * below.
aec0a514
BR
4959 */
4960 if (test_tsk_need_resched(curr))
4961 return;
4962
a2f5c9ab
DH
4963 /* Idle tasks are by definition preempted by non-idle tasks. */
4964 if (unlikely(curr->policy == SCHED_IDLE) &&
4965 likely(p->policy != SCHED_IDLE))
4966 goto preempt;
4967
91c234b4 4968 /*
a2f5c9ab
DH
4969 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4970 * is driven by the tick):
91c234b4 4971 */
8ed92e51 4972 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4973 return;
bf0f6f24 4974
464b7527 4975 find_matching_se(&se, &pse);
9bbd7374 4976 update_curr(cfs_rq_of(se));
002f128b 4977 BUG_ON(!pse);
2f36825b
VP
4978 if (wakeup_preempt_entity(se, pse) == 1) {
4979 /*
4980 * Bias pick_next to pick the sched entity that is
4981 * triggering this preemption.
4982 */
4983 if (!next_buddy_marked)
4984 set_next_buddy(pse);
3a7e73a2 4985 goto preempt;
2f36825b 4986 }
464b7527 4987
3a7e73a2 4988 return;
a65ac745 4989
3a7e73a2 4990preempt:
8875125e 4991 resched_curr(rq);
3a7e73a2
PZ
4992 /*
4993 * Only set the backward buddy when the current task is still
4994 * on the rq. This can happen when a wakeup gets interleaved
4995 * with schedule on the ->pre_schedule() or idle_balance()
4996 * point, either of which can * drop the rq lock.
4997 *
4998 * Also, during early boot the idle thread is in the fair class,
4999 * for obvious reasons its a bad idea to schedule back to it.
5000 */
5001 if (unlikely(!se->on_rq || curr == rq->idle))
5002 return;
5003
5004 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5005 set_last_buddy(se);
bf0f6f24
IM
5006}
5007
606dba2e
PZ
5008static struct task_struct *
5009pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5010{
5011 struct cfs_rq *cfs_rq = &rq->cfs;
5012 struct sched_entity *se;
678d5718 5013 struct task_struct *p;
37e117c0 5014 int new_tasks;
678d5718 5015
6e83125c 5016again:
678d5718
PZ
5017#ifdef CONFIG_FAIR_GROUP_SCHED
5018 if (!cfs_rq->nr_running)
38033c37 5019 goto idle;
678d5718 5020
3f1d2a31 5021 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5022 goto simple;
5023
5024 /*
5025 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5026 * likely that a next task is from the same cgroup as the current.
5027 *
5028 * Therefore attempt to avoid putting and setting the entire cgroup
5029 * hierarchy, only change the part that actually changes.
5030 */
5031
5032 do {
5033 struct sched_entity *curr = cfs_rq->curr;
5034
5035 /*
5036 * Since we got here without doing put_prev_entity() we also
5037 * have to consider cfs_rq->curr. If it is still a runnable
5038 * entity, update_curr() will update its vruntime, otherwise
5039 * forget we've ever seen it.
5040 */
5041 if (curr && curr->on_rq)
5042 update_curr(cfs_rq);
5043 else
5044 curr = NULL;
5045
5046 /*
5047 * This call to check_cfs_rq_runtime() will do the throttle and
5048 * dequeue its entity in the parent(s). Therefore the 'simple'
5049 * nr_running test will indeed be correct.
5050 */
5051 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5052 goto simple;
5053
5054 se = pick_next_entity(cfs_rq, curr);
5055 cfs_rq = group_cfs_rq(se);
5056 } while (cfs_rq);
5057
5058 p = task_of(se);
5059
5060 /*
5061 * Since we haven't yet done put_prev_entity and if the selected task
5062 * is a different task than we started out with, try and touch the
5063 * least amount of cfs_rqs.
5064 */
5065 if (prev != p) {
5066 struct sched_entity *pse = &prev->se;
5067
5068 while (!(cfs_rq = is_same_group(se, pse))) {
5069 int se_depth = se->depth;
5070 int pse_depth = pse->depth;
5071
5072 if (se_depth <= pse_depth) {
5073 put_prev_entity(cfs_rq_of(pse), pse);
5074 pse = parent_entity(pse);
5075 }
5076 if (se_depth >= pse_depth) {
5077 set_next_entity(cfs_rq_of(se), se);
5078 se = parent_entity(se);
5079 }
5080 }
5081
5082 put_prev_entity(cfs_rq, pse);
5083 set_next_entity(cfs_rq, se);
5084 }
5085
5086 if (hrtick_enabled(rq))
5087 hrtick_start_fair(rq, p);
5088
5089 return p;
5090simple:
5091 cfs_rq = &rq->cfs;
5092#endif
bf0f6f24 5093
36ace27e 5094 if (!cfs_rq->nr_running)
38033c37 5095 goto idle;
bf0f6f24 5096
3f1d2a31 5097 put_prev_task(rq, prev);
606dba2e 5098
bf0f6f24 5099 do {
678d5718 5100 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5101 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5102 cfs_rq = group_cfs_rq(se);
5103 } while (cfs_rq);
5104
8f4d37ec 5105 p = task_of(se);
678d5718 5106
b39e66ea
MG
5107 if (hrtick_enabled(rq))
5108 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5109
5110 return p;
38033c37
PZ
5111
5112idle:
e4aa358b 5113 new_tasks = idle_balance(rq);
37e117c0
PZ
5114 /*
5115 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5116 * possible for any higher priority task to appear. In that case we
5117 * must re-start the pick_next_entity() loop.
5118 */
e4aa358b 5119 if (new_tasks < 0)
37e117c0
PZ
5120 return RETRY_TASK;
5121
e4aa358b 5122 if (new_tasks > 0)
38033c37 5123 goto again;
38033c37
PZ
5124
5125 return NULL;
bf0f6f24
IM
5126}
5127
5128/*
5129 * Account for a descheduled task:
5130 */
31ee529c 5131static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5132{
5133 struct sched_entity *se = &prev->se;
5134 struct cfs_rq *cfs_rq;
5135
5136 for_each_sched_entity(se) {
5137 cfs_rq = cfs_rq_of(se);
ab6cde26 5138 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5139 }
5140}
5141
ac53db59
RR
5142/*
5143 * sched_yield() is very simple
5144 *
5145 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5146 */
5147static void yield_task_fair(struct rq *rq)
5148{
5149 struct task_struct *curr = rq->curr;
5150 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5151 struct sched_entity *se = &curr->se;
5152
5153 /*
5154 * Are we the only task in the tree?
5155 */
5156 if (unlikely(rq->nr_running == 1))
5157 return;
5158
5159 clear_buddies(cfs_rq, se);
5160
5161 if (curr->policy != SCHED_BATCH) {
5162 update_rq_clock(rq);
5163 /*
5164 * Update run-time statistics of the 'current'.
5165 */
5166 update_curr(cfs_rq);
916671c0
MG
5167 /*
5168 * Tell update_rq_clock() that we've just updated,
5169 * so we don't do microscopic update in schedule()
5170 * and double the fastpath cost.
5171 */
9edfbfed 5172 rq_clock_skip_update(rq, true);
ac53db59
RR
5173 }
5174
5175 set_skip_buddy(se);
5176}
5177
d95f4122
MG
5178static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5179{
5180 struct sched_entity *se = &p->se;
5181
5238cdd3
PT
5182 /* throttled hierarchies are not runnable */
5183 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5184 return false;
5185
5186 /* Tell the scheduler that we'd really like pse to run next. */
5187 set_next_buddy(se);
5188
d95f4122
MG
5189 yield_task_fair(rq);
5190
5191 return true;
5192}
5193
681f3e68 5194#ifdef CONFIG_SMP
bf0f6f24 5195/**************************************************
e9c84cb8
PZ
5196 * Fair scheduling class load-balancing methods.
5197 *
5198 * BASICS
5199 *
5200 * The purpose of load-balancing is to achieve the same basic fairness the
5201 * per-cpu scheduler provides, namely provide a proportional amount of compute
5202 * time to each task. This is expressed in the following equation:
5203 *
5204 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5205 *
5206 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5207 * W_i,0 is defined as:
5208 *
5209 * W_i,0 = \Sum_j w_i,j (2)
5210 *
5211 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5212 * is derived from the nice value as per prio_to_weight[].
5213 *
5214 * The weight average is an exponential decay average of the instantaneous
5215 * weight:
5216 *
5217 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5218 *
ced549fa 5219 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5220 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5221 * can also include other factors [XXX].
5222 *
5223 * To achieve this balance we define a measure of imbalance which follows
5224 * directly from (1):
5225 *
ced549fa 5226 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5227 *
5228 * We them move tasks around to minimize the imbalance. In the continuous
5229 * function space it is obvious this converges, in the discrete case we get
5230 * a few fun cases generally called infeasible weight scenarios.
5231 *
5232 * [XXX expand on:
5233 * - infeasible weights;
5234 * - local vs global optima in the discrete case. ]
5235 *
5236 *
5237 * SCHED DOMAINS
5238 *
5239 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5240 * for all i,j solution, we create a tree of cpus that follows the hardware
5241 * topology where each level pairs two lower groups (or better). This results
5242 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5243 * tree to only the first of the previous level and we decrease the frequency
5244 * of load-balance at each level inv. proportional to the number of cpus in
5245 * the groups.
5246 *
5247 * This yields:
5248 *
5249 * log_2 n 1 n
5250 * \Sum { --- * --- * 2^i } = O(n) (5)
5251 * i = 0 2^i 2^i
5252 * `- size of each group
5253 * | | `- number of cpus doing load-balance
5254 * | `- freq
5255 * `- sum over all levels
5256 *
5257 * Coupled with a limit on how many tasks we can migrate every balance pass,
5258 * this makes (5) the runtime complexity of the balancer.
5259 *
5260 * An important property here is that each CPU is still (indirectly) connected
5261 * to every other cpu in at most O(log n) steps:
5262 *
5263 * The adjacency matrix of the resulting graph is given by:
5264 *
5265 * log_2 n
5266 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5267 * k = 0
5268 *
5269 * And you'll find that:
5270 *
5271 * A^(log_2 n)_i,j != 0 for all i,j (7)
5272 *
5273 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5274 * The task movement gives a factor of O(m), giving a convergence complexity
5275 * of:
5276 *
5277 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5278 *
5279 *
5280 * WORK CONSERVING
5281 *
5282 * In order to avoid CPUs going idle while there's still work to do, new idle
5283 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5284 * tree itself instead of relying on other CPUs to bring it work.
5285 *
5286 * This adds some complexity to both (5) and (8) but it reduces the total idle
5287 * time.
5288 *
5289 * [XXX more?]
5290 *
5291 *
5292 * CGROUPS
5293 *
5294 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5295 *
5296 * s_k,i
5297 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5298 * S_k
5299 *
5300 * Where
5301 *
5302 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5303 *
5304 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5305 *
5306 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5307 * property.
5308 *
5309 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5310 * rewrite all of this once again.]
5311 */
bf0f6f24 5312
ed387b78
HS
5313static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5314
0ec8aa00
PZ
5315enum fbq_type { regular, remote, all };
5316
ddcdf6e7 5317#define LBF_ALL_PINNED 0x01
367456c7 5318#define LBF_NEED_BREAK 0x02
6263322c
PZ
5319#define LBF_DST_PINNED 0x04
5320#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5321
5322struct lb_env {
5323 struct sched_domain *sd;
5324
ddcdf6e7 5325 struct rq *src_rq;
85c1e7da 5326 int src_cpu;
ddcdf6e7
PZ
5327
5328 int dst_cpu;
5329 struct rq *dst_rq;
5330
88b8dac0
SV
5331 struct cpumask *dst_grpmask;
5332 int new_dst_cpu;
ddcdf6e7 5333 enum cpu_idle_type idle;
bd939f45 5334 long imbalance;
b9403130
MW
5335 /* The set of CPUs under consideration for load-balancing */
5336 struct cpumask *cpus;
5337
ddcdf6e7 5338 unsigned int flags;
367456c7
PZ
5339
5340 unsigned int loop;
5341 unsigned int loop_break;
5342 unsigned int loop_max;
0ec8aa00
PZ
5343
5344 enum fbq_type fbq_type;
163122b7 5345 struct list_head tasks;
ddcdf6e7
PZ
5346};
5347
029632fb
PZ
5348/*
5349 * Is this task likely cache-hot:
5350 */
5d5e2b1b 5351static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5352{
5353 s64 delta;
5354
e5673f28
KT
5355 lockdep_assert_held(&env->src_rq->lock);
5356
029632fb
PZ
5357 if (p->sched_class != &fair_sched_class)
5358 return 0;
5359
5360 if (unlikely(p->policy == SCHED_IDLE))
5361 return 0;
5362
5363 /*
5364 * Buddy candidates are cache hot:
5365 */
5d5e2b1b 5366 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5367 (&p->se == cfs_rq_of(&p->se)->next ||
5368 &p->se == cfs_rq_of(&p->se)->last))
5369 return 1;
5370
5371 if (sysctl_sched_migration_cost == -1)
5372 return 1;
5373 if (sysctl_sched_migration_cost == 0)
5374 return 0;
5375
5d5e2b1b 5376 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5377
5378 return delta < (s64)sysctl_sched_migration_cost;
5379}
5380
3a7053b3
MG
5381#ifdef CONFIG_NUMA_BALANCING
5382/* Returns true if the destination node has incurred more faults */
5383static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5384{
b1ad065e 5385 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5386 int src_nid, dst_nid;
5387
44dba3d5 5388 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
3a7053b3
MG
5389 !(env->sd->flags & SD_NUMA)) {
5390 return false;
5391 }
5392
5393 src_nid = cpu_to_node(env->src_cpu);
5394 dst_nid = cpu_to_node(env->dst_cpu);
5395
83e1d2cd 5396 if (src_nid == dst_nid)
3a7053b3
MG
5397 return false;
5398
b1ad065e
RR
5399 if (numa_group) {
5400 /* Task is already in the group's interleave set. */
5401 if (node_isset(src_nid, numa_group->active_nodes))
5402 return false;
83e1d2cd 5403
b1ad065e
RR
5404 /* Task is moving into the group's interleave set. */
5405 if (node_isset(dst_nid, numa_group->active_nodes))
5406 return true;
83e1d2cd 5407
b1ad065e
RR
5408 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5409 }
5410
5411 /* Encourage migration to the preferred node. */
5412 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5413 return true;
5414
b1ad065e 5415 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5416}
7a0f3083
MG
5417
5418
5419static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5420{
b1ad065e 5421 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5422 int src_nid, dst_nid;
5423
5424 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5425 return false;
5426
44dba3d5 5427 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5428 return false;
5429
5430 src_nid = cpu_to_node(env->src_cpu);
5431 dst_nid = cpu_to_node(env->dst_cpu);
5432
83e1d2cd 5433 if (src_nid == dst_nid)
7a0f3083
MG
5434 return false;
5435
b1ad065e
RR
5436 if (numa_group) {
5437 /* Task is moving within/into the group's interleave set. */
5438 if (node_isset(dst_nid, numa_group->active_nodes))
5439 return false;
5440
5441 /* Task is moving out of the group's interleave set. */
5442 if (node_isset(src_nid, numa_group->active_nodes))
5443 return true;
5444
5445 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5446 }
5447
83e1d2cd
MG
5448 /* Migrating away from the preferred node is always bad. */
5449 if (src_nid == p->numa_preferred_nid)
5450 return true;
5451
b1ad065e 5452 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5453}
5454
3a7053b3
MG
5455#else
5456static inline bool migrate_improves_locality(struct task_struct *p,
5457 struct lb_env *env)
5458{
5459 return false;
5460}
7a0f3083
MG
5461
5462static inline bool migrate_degrades_locality(struct task_struct *p,
5463 struct lb_env *env)
5464{
5465 return false;
5466}
3a7053b3
MG
5467#endif
5468
1e3c88bd
PZ
5469/*
5470 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5471 */
5472static
8e45cb54 5473int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5474{
5475 int tsk_cache_hot = 0;
e5673f28
KT
5476
5477 lockdep_assert_held(&env->src_rq->lock);
5478
1e3c88bd
PZ
5479 /*
5480 * We do not migrate tasks that are:
d3198084 5481 * 1) throttled_lb_pair, or
1e3c88bd 5482 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5483 * 3) running (obviously), or
5484 * 4) are cache-hot on their current CPU.
1e3c88bd 5485 */
d3198084
JK
5486 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5487 return 0;
5488
ddcdf6e7 5489 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5490 int cpu;
88b8dac0 5491
41acab88 5492 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5493
6263322c
PZ
5494 env->flags |= LBF_SOME_PINNED;
5495
88b8dac0
SV
5496 /*
5497 * Remember if this task can be migrated to any other cpu in
5498 * our sched_group. We may want to revisit it if we couldn't
5499 * meet load balance goals by pulling other tasks on src_cpu.
5500 *
5501 * Also avoid computing new_dst_cpu if we have already computed
5502 * one in current iteration.
5503 */
6263322c 5504 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5505 return 0;
5506
e02e60c1
JK
5507 /* Prevent to re-select dst_cpu via env's cpus */
5508 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5509 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5510 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5511 env->new_dst_cpu = cpu;
5512 break;
5513 }
88b8dac0 5514 }
e02e60c1 5515
1e3c88bd
PZ
5516 return 0;
5517 }
88b8dac0
SV
5518
5519 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5520 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5521
ddcdf6e7 5522 if (task_running(env->src_rq, p)) {
41acab88 5523 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5524 return 0;
5525 }
5526
5527 /*
5528 * Aggressive migration if:
3a7053b3
MG
5529 * 1) destination numa is preferred
5530 * 2) task is cache cold, or
5531 * 3) too many balance attempts have failed.
1e3c88bd 5532 */
5d5e2b1b 5533 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5534 if (!tsk_cache_hot)
5535 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5536
7a96c231
KT
5537 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5538 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5539 if (tsk_cache_hot) {
5540 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5541 schedstat_inc(p, se.statistics.nr_forced_migrations);
5542 }
1e3c88bd
PZ
5543 return 1;
5544 }
5545
4e2dcb73
ZH
5546 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5547 return 0;
1e3c88bd
PZ
5548}
5549
897c395f 5550/*
163122b7
KT
5551 * detach_task() -- detach the task for the migration specified in env
5552 */
5553static void detach_task(struct task_struct *p, struct lb_env *env)
5554{
5555 lockdep_assert_held(&env->src_rq->lock);
5556
5557 deactivate_task(env->src_rq, p, 0);
5558 p->on_rq = TASK_ON_RQ_MIGRATING;
5559 set_task_cpu(p, env->dst_cpu);
5560}
5561
897c395f 5562/*
e5673f28 5563 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5564 * part of active balancing operations within "domain".
897c395f 5565 *
e5673f28 5566 * Returns a task if successful and NULL otherwise.
897c395f 5567 */
e5673f28 5568static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5569{
5570 struct task_struct *p, *n;
897c395f 5571
e5673f28
KT
5572 lockdep_assert_held(&env->src_rq->lock);
5573
367456c7 5574 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5575 if (!can_migrate_task(p, env))
5576 continue;
897c395f 5577
163122b7 5578 detach_task(p, env);
e5673f28 5579
367456c7 5580 /*
e5673f28 5581 * Right now, this is only the second place where
163122b7 5582 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5583 * so we can safely collect stats here rather than
163122b7 5584 * inside detach_tasks().
367456c7
PZ
5585 */
5586 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5587 return p;
897c395f 5588 }
e5673f28 5589 return NULL;
897c395f
PZ
5590}
5591
eb95308e
PZ
5592static const unsigned int sched_nr_migrate_break = 32;
5593
5d6523eb 5594/*
163122b7
KT
5595 * detach_tasks() -- tries to detach up to imbalance weighted load from
5596 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5597 *
163122b7 5598 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5599 */
163122b7 5600static int detach_tasks(struct lb_env *env)
1e3c88bd 5601{
5d6523eb
PZ
5602 struct list_head *tasks = &env->src_rq->cfs_tasks;
5603 struct task_struct *p;
367456c7 5604 unsigned long load;
163122b7
KT
5605 int detached = 0;
5606
5607 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5608
bd939f45 5609 if (env->imbalance <= 0)
5d6523eb 5610 return 0;
1e3c88bd 5611
5d6523eb
PZ
5612 while (!list_empty(tasks)) {
5613 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5614
367456c7
PZ
5615 env->loop++;
5616 /* We've more or less seen every task there is, call it quits */
5d6523eb 5617 if (env->loop > env->loop_max)
367456c7 5618 break;
5d6523eb
PZ
5619
5620 /* take a breather every nr_migrate tasks */
367456c7 5621 if (env->loop > env->loop_break) {
eb95308e 5622 env->loop_break += sched_nr_migrate_break;
8e45cb54 5623 env->flags |= LBF_NEED_BREAK;
ee00e66f 5624 break;
a195f004 5625 }
1e3c88bd 5626
d3198084 5627 if (!can_migrate_task(p, env))
367456c7
PZ
5628 goto next;
5629
5630 load = task_h_load(p);
5d6523eb 5631
eb95308e 5632 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5633 goto next;
5634
bd939f45 5635 if ((load / 2) > env->imbalance)
367456c7 5636 goto next;
1e3c88bd 5637
163122b7
KT
5638 detach_task(p, env);
5639 list_add(&p->se.group_node, &env->tasks);
5640
5641 detached++;
bd939f45 5642 env->imbalance -= load;
1e3c88bd
PZ
5643
5644#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5645 /*
5646 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5647 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5648 * the critical section.
5649 */
5d6523eb 5650 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5651 break;
1e3c88bd
PZ
5652#endif
5653
ee00e66f
PZ
5654 /*
5655 * We only want to steal up to the prescribed amount of
5656 * weighted load.
5657 */
bd939f45 5658 if (env->imbalance <= 0)
ee00e66f 5659 break;
367456c7
PZ
5660
5661 continue;
5662next:
5d6523eb 5663 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5664 }
5d6523eb 5665
1e3c88bd 5666 /*
163122b7
KT
5667 * Right now, this is one of only two places we collect this stat
5668 * so we can safely collect detach_one_task() stats here rather
5669 * than inside detach_one_task().
1e3c88bd 5670 */
163122b7 5671 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5672
163122b7
KT
5673 return detached;
5674}
5675
5676/*
5677 * attach_task() -- attach the task detached by detach_task() to its new rq.
5678 */
5679static void attach_task(struct rq *rq, struct task_struct *p)
5680{
5681 lockdep_assert_held(&rq->lock);
5682
5683 BUG_ON(task_rq(p) != rq);
5684 p->on_rq = TASK_ON_RQ_QUEUED;
5685 activate_task(rq, p, 0);
5686 check_preempt_curr(rq, p, 0);
5687}
5688
5689/*
5690 * attach_one_task() -- attaches the task returned from detach_one_task() to
5691 * its new rq.
5692 */
5693static void attach_one_task(struct rq *rq, struct task_struct *p)
5694{
5695 raw_spin_lock(&rq->lock);
5696 attach_task(rq, p);
5697 raw_spin_unlock(&rq->lock);
5698}
5699
5700/*
5701 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5702 * new rq.
5703 */
5704static void attach_tasks(struct lb_env *env)
5705{
5706 struct list_head *tasks = &env->tasks;
5707 struct task_struct *p;
5708
5709 raw_spin_lock(&env->dst_rq->lock);
5710
5711 while (!list_empty(tasks)) {
5712 p = list_first_entry(tasks, struct task_struct, se.group_node);
5713 list_del_init(&p->se.group_node);
1e3c88bd 5714
163122b7
KT
5715 attach_task(env->dst_rq, p);
5716 }
5717
5718 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5719}
5720
230059de 5721#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5722/*
5723 * update tg->load_weight by folding this cpu's load_avg
5724 */
48a16753 5725static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5726{
48a16753
PT
5727 struct sched_entity *se = tg->se[cpu];
5728 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5729
48a16753
PT
5730 /* throttled entities do not contribute to load */
5731 if (throttled_hierarchy(cfs_rq))
5732 return;
9e3081ca 5733
aff3e498 5734 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5735
82958366
PT
5736 if (se) {
5737 update_entity_load_avg(se, 1);
5738 /*
5739 * We pivot on our runnable average having decayed to zero for
5740 * list removal. This generally implies that all our children
5741 * have also been removed (modulo rounding error or bandwidth
5742 * control); however, such cases are rare and we can fix these
5743 * at enqueue.
5744 *
5745 * TODO: fix up out-of-order children on enqueue.
5746 */
5747 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5748 list_del_leaf_cfs_rq(cfs_rq);
5749 } else {
48a16753 5750 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5751 update_rq_runnable_avg(rq, rq->nr_running);
5752 }
9e3081ca
PZ
5753}
5754
48a16753 5755static void update_blocked_averages(int cpu)
9e3081ca 5756{
9e3081ca 5757 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5758 struct cfs_rq *cfs_rq;
5759 unsigned long flags;
9e3081ca 5760
48a16753
PT
5761 raw_spin_lock_irqsave(&rq->lock, flags);
5762 update_rq_clock(rq);
9763b67f
PZ
5763 /*
5764 * Iterates the task_group tree in a bottom up fashion, see
5765 * list_add_leaf_cfs_rq() for details.
5766 */
64660c86 5767 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5768 /*
5769 * Note: We may want to consider periodically releasing
5770 * rq->lock about these updates so that creating many task
5771 * groups does not result in continually extending hold time.
5772 */
5773 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5774 }
48a16753
PT
5775
5776 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5777}
5778
9763b67f 5779/*
68520796 5780 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5781 * This needs to be done in a top-down fashion because the load of a child
5782 * group is a fraction of its parents load.
5783 */
68520796 5784static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5785{
68520796
VD
5786 struct rq *rq = rq_of(cfs_rq);
5787 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5788 unsigned long now = jiffies;
68520796 5789 unsigned long load;
a35b6466 5790
68520796 5791 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5792 return;
5793
68520796
VD
5794 cfs_rq->h_load_next = NULL;
5795 for_each_sched_entity(se) {
5796 cfs_rq = cfs_rq_of(se);
5797 cfs_rq->h_load_next = se;
5798 if (cfs_rq->last_h_load_update == now)
5799 break;
5800 }
a35b6466 5801
68520796 5802 if (!se) {
7e3115ef 5803 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5804 cfs_rq->last_h_load_update = now;
5805 }
5806
5807 while ((se = cfs_rq->h_load_next) != NULL) {
5808 load = cfs_rq->h_load;
5809 load = div64_ul(load * se->avg.load_avg_contrib,
5810 cfs_rq->runnable_load_avg + 1);
5811 cfs_rq = group_cfs_rq(se);
5812 cfs_rq->h_load = load;
5813 cfs_rq->last_h_load_update = now;
5814 }
9763b67f
PZ
5815}
5816
367456c7 5817static unsigned long task_h_load(struct task_struct *p)
230059de 5818{
367456c7 5819 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5820
68520796 5821 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5822 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5823 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5824}
5825#else
48a16753 5826static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5827{
5828}
5829
367456c7 5830static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5831{
a003a25b 5832 return p->se.avg.load_avg_contrib;
1e3c88bd 5833}
230059de 5834#endif
1e3c88bd 5835
1e3c88bd 5836/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5837
5838enum group_type {
5839 group_other = 0,
5840 group_imbalanced,
5841 group_overloaded,
5842};
5843
1e3c88bd
PZ
5844/*
5845 * sg_lb_stats - stats of a sched_group required for load_balancing
5846 */
5847struct sg_lb_stats {
5848 unsigned long avg_load; /*Avg load across the CPUs of the group */
5849 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5850 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5851 unsigned long load_per_task;
63b2ca30 5852 unsigned long group_capacity;
147c5fc2 5853 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5854 unsigned int group_capacity_factor;
147c5fc2
PZ
5855 unsigned int idle_cpus;
5856 unsigned int group_weight;
caeb178c 5857 enum group_type group_type;
1b6a7495 5858 int group_has_free_capacity;
0ec8aa00
PZ
5859#ifdef CONFIG_NUMA_BALANCING
5860 unsigned int nr_numa_running;
5861 unsigned int nr_preferred_running;
5862#endif
1e3c88bd
PZ
5863};
5864
56cf515b
JK
5865/*
5866 * sd_lb_stats - Structure to store the statistics of a sched_domain
5867 * during load balancing.
5868 */
5869struct sd_lb_stats {
5870 struct sched_group *busiest; /* Busiest group in this sd */
5871 struct sched_group *local; /* Local group in this sd */
5872 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5873 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5874 unsigned long avg_load; /* Average load across all groups in sd */
5875
56cf515b 5876 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5877 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5878};
5879
147c5fc2
PZ
5880static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5881{
5882 /*
5883 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5884 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5885 * We must however clear busiest_stat::avg_load because
5886 * update_sd_pick_busiest() reads this before assignment.
5887 */
5888 *sds = (struct sd_lb_stats){
5889 .busiest = NULL,
5890 .local = NULL,
5891 .total_load = 0UL,
63b2ca30 5892 .total_capacity = 0UL,
147c5fc2
PZ
5893 .busiest_stat = {
5894 .avg_load = 0UL,
caeb178c
RR
5895 .sum_nr_running = 0,
5896 .group_type = group_other,
147c5fc2
PZ
5897 },
5898 };
5899}
5900
1e3c88bd
PZ
5901/**
5902 * get_sd_load_idx - Obtain the load index for a given sched domain.
5903 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5904 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5905 *
5906 * Return: The load index.
1e3c88bd
PZ
5907 */
5908static inline int get_sd_load_idx(struct sched_domain *sd,
5909 enum cpu_idle_type idle)
5910{
5911 int load_idx;
5912
5913 switch (idle) {
5914 case CPU_NOT_IDLE:
5915 load_idx = sd->busy_idx;
5916 break;
5917
5918 case CPU_NEWLY_IDLE:
5919 load_idx = sd->newidle_idx;
5920 break;
5921 default:
5922 load_idx = sd->idle_idx;
5923 break;
5924 }
5925
5926 return load_idx;
5927}
5928
ced549fa 5929static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5930{
ca8ce3d0 5931 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5932}
5933
ca8ce3d0 5934unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5935{
ced549fa 5936 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5937}
5938
26bc3c50 5939static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5940{
26bc3c50
VG
5941 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5942 return sd->smt_gain / sd->span_weight;
1e3c88bd 5943
26bc3c50 5944 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5945}
5946
26bc3c50 5947unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5948{
26bc3c50 5949 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5950}
5951
ced549fa 5952static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5953{
5954 struct rq *rq = cpu_rq(cpu);
b654f7de 5955 u64 total, available, age_stamp, avg;
cadefd3d 5956 s64 delta;
1e3c88bd 5957
b654f7de
PZ
5958 /*
5959 * Since we're reading these variables without serialization make sure
5960 * we read them once before doing sanity checks on them.
5961 */
5962 age_stamp = ACCESS_ONCE(rq->age_stamp);
5963 avg = ACCESS_ONCE(rq->rt_avg);
cebde6d6 5964 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 5965
cadefd3d
PZ
5966 if (unlikely(delta < 0))
5967 delta = 0;
5968
5969 total = sched_avg_period() + delta;
aa483808 5970
b654f7de 5971 if (unlikely(total < avg)) {
ced549fa 5972 /* Ensures that capacity won't end up being negative */
aa483808
VP
5973 available = 0;
5974 } else {
b654f7de 5975 available = total - avg;
aa483808 5976 }
1e3c88bd 5977
ca8ce3d0
NP
5978 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5979 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5980
ca8ce3d0 5981 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5982
5983 return div_u64(available, total);
5984}
5985
ced549fa 5986static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5987{
ca8ce3d0 5988 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5989 struct sched_group *sdg = sd->groups;
5990
26bc3c50
VG
5991 if (sched_feat(ARCH_CAPACITY))
5992 capacity *= arch_scale_cpu_capacity(sd, cpu);
5993 else
5994 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 5995
26bc3c50 5996 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5997
ced549fa 5998 sdg->sgc->capacity_orig = capacity;
9d5efe05 5999
5d4dfddd 6000 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 6001 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 6002 else
ced549fa 6003 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 6004
ca8ce3d0 6005 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 6006
ced549fa 6007 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6008 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6009
ced549fa
NP
6010 if (!capacity)
6011 capacity = 1;
1e3c88bd 6012
ced549fa
NP
6013 cpu_rq(cpu)->cpu_capacity = capacity;
6014 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6015}
6016
63b2ca30 6017void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6018{
6019 struct sched_domain *child = sd->child;
6020 struct sched_group *group, *sdg = sd->groups;
63b2ca30 6021 unsigned long capacity, capacity_orig;
4ec4412e
VG
6022 unsigned long interval;
6023
6024 interval = msecs_to_jiffies(sd->balance_interval);
6025 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6026 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6027
6028 if (!child) {
ced549fa 6029 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6030 return;
6031 }
6032
63b2ca30 6033 capacity_orig = capacity = 0;
1e3c88bd 6034
74a5ce20
PZ
6035 if (child->flags & SD_OVERLAP) {
6036 /*
6037 * SD_OVERLAP domains cannot assume that child groups
6038 * span the current group.
6039 */
6040
863bffc8 6041 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6042 struct sched_group_capacity *sgc;
9abf24d4 6043 struct rq *rq = cpu_rq(cpu);
863bffc8 6044
9abf24d4 6045 /*
63b2ca30 6046 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6047 * gets here before we've attached the domains to the
6048 * runqueues.
6049 *
ced549fa
NP
6050 * Use capacity_of(), which is set irrespective of domains
6051 * in update_cpu_capacity().
9abf24d4 6052 *
63b2ca30 6053 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
6054 * causing divide-by-zero issues on boot.
6055 *
63b2ca30 6056 * Runtime updates will correct capacity_orig.
9abf24d4
SD
6057 */
6058 if (unlikely(!rq->sd)) {
ced549fa
NP
6059 capacity_orig += capacity_of(cpu);
6060 capacity += capacity_of(cpu);
9abf24d4
SD
6061 continue;
6062 }
863bffc8 6063
63b2ca30
NP
6064 sgc = rq->sd->groups->sgc;
6065 capacity_orig += sgc->capacity_orig;
6066 capacity += sgc->capacity;
863bffc8 6067 }
74a5ce20
PZ
6068 } else {
6069 /*
6070 * !SD_OVERLAP domains can assume that child groups
6071 * span the current group.
6072 */
6073
6074 group = child->groups;
6075 do {
63b2ca30
NP
6076 capacity_orig += group->sgc->capacity_orig;
6077 capacity += group->sgc->capacity;
74a5ce20
PZ
6078 group = group->next;
6079 } while (group != child->groups);
6080 }
1e3c88bd 6081
63b2ca30
NP
6082 sdg->sgc->capacity_orig = capacity_orig;
6083 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6084}
6085
9d5efe05
SV
6086/*
6087 * Try and fix up capacity for tiny siblings, this is needed when
6088 * things like SD_ASYM_PACKING need f_b_g to select another sibling
6089 * which on its own isn't powerful enough.
6090 *
6091 * See update_sd_pick_busiest() and check_asym_packing().
6092 */
6093static inline int
6094fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6095{
6096 /*
ca8ce3d0 6097 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 6098 */
5d4dfddd 6099 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
6100 return 0;
6101
6102 /*
63b2ca30 6103 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 6104 */
63b2ca30 6105 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
6106 return 1;
6107
6108 return 0;
6109}
6110
30ce5dab
PZ
6111/*
6112 * Group imbalance indicates (and tries to solve) the problem where balancing
6113 * groups is inadequate due to tsk_cpus_allowed() constraints.
6114 *
6115 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6116 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6117 * Something like:
6118 *
6119 * { 0 1 2 3 } { 4 5 6 7 }
6120 * * * * *
6121 *
6122 * If we were to balance group-wise we'd place two tasks in the first group and
6123 * two tasks in the second group. Clearly this is undesired as it will overload
6124 * cpu 3 and leave one of the cpus in the second group unused.
6125 *
6126 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6127 * by noticing the lower domain failed to reach balance and had difficulty
6128 * moving tasks due to affinity constraints.
30ce5dab
PZ
6129 *
6130 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6131 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6132 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6133 * to create an effective group imbalance.
6134 *
6135 * This is a somewhat tricky proposition since the next run might not find the
6136 * group imbalance and decide the groups need to be balanced again. A most
6137 * subtle and fragile situation.
6138 */
6139
6263322c 6140static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6141{
63b2ca30 6142 return group->sgc->imbalance;
30ce5dab
PZ
6143}
6144
b37d9316 6145/*
0fedc6c8 6146 * Compute the group capacity factor.
b37d9316 6147 *
ced549fa 6148 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 6149 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 6150 * and limit unit capacity with that.
b37d9316 6151 */
0fedc6c8 6152static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 6153{
0fedc6c8 6154 unsigned int capacity_factor, smt, cpus;
63b2ca30 6155 unsigned int capacity, capacity_orig;
c61037e9 6156
63b2ca30
NP
6157 capacity = group->sgc->capacity;
6158 capacity_orig = group->sgc->capacity_orig;
c61037e9 6159 cpus = group->group_weight;
b37d9316 6160
63b2ca30 6161 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 6162 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 6163 capacity_factor = cpus / smt; /* cores */
b37d9316 6164
63b2ca30 6165 capacity_factor = min_t(unsigned,
ca8ce3d0 6166 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
6167 if (!capacity_factor)
6168 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 6169
0fedc6c8 6170 return capacity_factor;
b37d9316
PZ
6171}
6172
caeb178c
RR
6173static enum group_type
6174group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6175{
6176 if (sgs->sum_nr_running > sgs->group_capacity_factor)
6177 return group_overloaded;
6178
6179 if (sg_imbalanced(group))
6180 return group_imbalanced;
6181
6182 return group_other;
6183}
6184
1e3c88bd
PZ
6185/**
6186 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6187 * @env: The load balancing environment.
1e3c88bd 6188 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6189 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6190 * @local_group: Does group contain this_cpu.
1e3c88bd 6191 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6192 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6193 */
bd939f45
PZ
6194static inline void update_sg_lb_stats(struct lb_env *env,
6195 struct sched_group *group, int load_idx,
4486edd1
TC
6196 int local_group, struct sg_lb_stats *sgs,
6197 bool *overload)
1e3c88bd 6198{
30ce5dab 6199 unsigned long load;
bd939f45 6200 int i;
1e3c88bd 6201
b72ff13c
PZ
6202 memset(sgs, 0, sizeof(*sgs));
6203
b9403130 6204 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6205 struct rq *rq = cpu_rq(i);
6206
1e3c88bd 6207 /* Bias balancing toward cpus of our domain */
6263322c 6208 if (local_group)
04f733b4 6209 load = target_load(i, load_idx);
6263322c 6210 else
1e3c88bd 6211 load = source_load(i, load_idx);
1e3c88bd
PZ
6212
6213 sgs->group_load += load;
65fdac08 6214 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6215
6216 if (rq->nr_running > 1)
6217 *overload = true;
6218
0ec8aa00
PZ
6219#ifdef CONFIG_NUMA_BALANCING
6220 sgs->nr_numa_running += rq->nr_numa_running;
6221 sgs->nr_preferred_running += rq->nr_preferred_running;
6222#endif
1e3c88bd 6223 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6224 if (idle_cpu(i))
6225 sgs->idle_cpus++;
1e3c88bd
PZ
6226 }
6227
63b2ca30
NP
6228 /* Adjust by relative CPU capacity of the group */
6229 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6230 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6231
dd5feea1 6232 if (sgs->sum_nr_running)
38d0f770 6233 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6234
aae6d3dd 6235 sgs->group_weight = group->group_weight;
0fedc6c8 6236 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6237 sgs->group_type = group_classify(group, sgs);
b37d9316 6238
0fedc6c8 6239 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6240 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6241}
6242
532cb4c4
MN
6243/**
6244 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6245 * @env: The load balancing environment.
532cb4c4
MN
6246 * @sds: sched_domain statistics
6247 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6248 * @sgs: sched_group statistics
532cb4c4
MN
6249 *
6250 * Determine if @sg is a busier group than the previously selected
6251 * busiest group.
e69f6186
YB
6252 *
6253 * Return: %true if @sg is a busier group than the previously selected
6254 * busiest group. %false otherwise.
532cb4c4 6255 */
bd939f45 6256static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6257 struct sd_lb_stats *sds,
6258 struct sched_group *sg,
bd939f45 6259 struct sg_lb_stats *sgs)
532cb4c4 6260{
caeb178c 6261 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6262
caeb178c 6263 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6264 return true;
6265
caeb178c
RR
6266 if (sgs->group_type < busiest->group_type)
6267 return false;
6268
6269 if (sgs->avg_load <= busiest->avg_load)
6270 return false;
6271
6272 /* This is the busiest node in its class. */
6273 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6274 return true;
6275
6276 /*
6277 * ASYM_PACKING needs to move all the work to the lowest
6278 * numbered CPUs in the group, therefore mark all groups
6279 * higher than ourself as busy.
6280 */
caeb178c 6281 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6282 if (!sds->busiest)
6283 return true;
6284
6285 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6286 return true;
6287 }
6288
6289 return false;
6290}
6291
0ec8aa00
PZ
6292#ifdef CONFIG_NUMA_BALANCING
6293static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6294{
6295 if (sgs->sum_nr_running > sgs->nr_numa_running)
6296 return regular;
6297 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6298 return remote;
6299 return all;
6300}
6301
6302static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6303{
6304 if (rq->nr_running > rq->nr_numa_running)
6305 return regular;
6306 if (rq->nr_running > rq->nr_preferred_running)
6307 return remote;
6308 return all;
6309}
6310#else
6311static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6312{
6313 return all;
6314}
6315
6316static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6317{
6318 return regular;
6319}
6320#endif /* CONFIG_NUMA_BALANCING */
6321
1e3c88bd 6322/**
461819ac 6323 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6324 * @env: The load balancing environment.
1e3c88bd
PZ
6325 * @sds: variable to hold the statistics for this sched_domain.
6326 */
0ec8aa00 6327static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6328{
bd939f45
PZ
6329 struct sched_domain *child = env->sd->child;
6330 struct sched_group *sg = env->sd->groups;
56cf515b 6331 struct sg_lb_stats tmp_sgs;
1e3c88bd 6332 int load_idx, prefer_sibling = 0;
4486edd1 6333 bool overload = false;
1e3c88bd
PZ
6334
6335 if (child && child->flags & SD_PREFER_SIBLING)
6336 prefer_sibling = 1;
6337
bd939f45 6338 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6339
6340 do {
56cf515b 6341 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6342 int local_group;
6343
bd939f45 6344 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6345 if (local_group) {
6346 sds->local = sg;
6347 sgs = &sds->local_stat;
b72ff13c
PZ
6348
6349 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6350 time_after_eq(jiffies, sg->sgc->next_update))
6351 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6352 }
1e3c88bd 6353
4486edd1
TC
6354 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6355 &overload);
1e3c88bd 6356
b72ff13c
PZ
6357 if (local_group)
6358 goto next_group;
6359
1e3c88bd
PZ
6360 /*
6361 * In case the child domain prefers tasks go to siblings
0fedc6c8 6362 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6363 * and move all the excess tasks away. We lower the capacity
6364 * of a group only if the local group has the capacity to fit
0fedc6c8 6365 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6366 * extra check prevents the case where you always pull from the
6367 * heaviest group when it is already under-utilized (possible
6368 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6369 */
b72ff13c 6370 if (prefer_sibling && sds->local &&
cb0b9f24 6371 sds->local_stat.group_has_free_capacity) {
0fedc6c8 6372 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
cb0b9f24
WL
6373 sgs->group_type = group_classify(sg, sgs);
6374 }
1e3c88bd 6375
b72ff13c 6376 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6377 sds->busiest = sg;
56cf515b 6378 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6379 }
6380
b72ff13c
PZ
6381next_group:
6382 /* Now, start updating sd_lb_stats */
6383 sds->total_load += sgs->group_load;
63b2ca30 6384 sds->total_capacity += sgs->group_capacity;
b72ff13c 6385
532cb4c4 6386 sg = sg->next;
bd939f45 6387 } while (sg != env->sd->groups);
0ec8aa00
PZ
6388
6389 if (env->sd->flags & SD_NUMA)
6390 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6391
6392 if (!env->sd->parent) {
6393 /* update overload indicator if we are at root domain */
6394 if (env->dst_rq->rd->overload != overload)
6395 env->dst_rq->rd->overload = overload;
6396 }
6397
532cb4c4
MN
6398}
6399
532cb4c4
MN
6400/**
6401 * check_asym_packing - Check to see if the group is packed into the
6402 * sched doman.
6403 *
6404 * This is primarily intended to used at the sibling level. Some
6405 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6406 * case of POWER7, it can move to lower SMT modes only when higher
6407 * threads are idle. When in lower SMT modes, the threads will
6408 * perform better since they share less core resources. Hence when we
6409 * have idle threads, we want them to be the higher ones.
6410 *
6411 * This packing function is run on idle threads. It checks to see if
6412 * the busiest CPU in this domain (core in the P7 case) has a higher
6413 * CPU number than the packing function is being run on. Here we are
6414 * assuming lower CPU number will be equivalent to lower a SMT thread
6415 * number.
6416 *
e69f6186 6417 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6418 * this CPU. The amount of the imbalance is returned in *imbalance.
6419 *
cd96891d 6420 * @env: The load balancing environment.
532cb4c4 6421 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6422 */
bd939f45 6423static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6424{
6425 int busiest_cpu;
6426
bd939f45 6427 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6428 return 0;
6429
6430 if (!sds->busiest)
6431 return 0;
6432
6433 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6434 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6435 return 0;
6436
bd939f45 6437 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6438 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6439 SCHED_CAPACITY_SCALE);
bd939f45 6440
532cb4c4 6441 return 1;
1e3c88bd
PZ
6442}
6443
6444/**
6445 * fix_small_imbalance - Calculate the minor imbalance that exists
6446 * amongst the groups of a sched_domain, during
6447 * load balancing.
cd96891d 6448 * @env: The load balancing environment.
1e3c88bd 6449 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6450 */
bd939f45
PZ
6451static inline
6452void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6453{
63b2ca30 6454 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6455 unsigned int imbn = 2;
dd5feea1 6456 unsigned long scaled_busy_load_per_task;
56cf515b 6457 struct sg_lb_stats *local, *busiest;
1e3c88bd 6458
56cf515b
JK
6459 local = &sds->local_stat;
6460 busiest = &sds->busiest_stat;
1e3c88bd 6461
56cf515b
JK
6462 if (!local->sum_nr_running)
6463 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6464 else if (busiest->load_per_task > local->load_per_task)
6465 imbn = 1;
dd5feea1 6466
56cf515b 6467 scaled_busy_load_per_task =
ca8ce3d0 6468 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6469 busiest->group_capacity;
56cf515b 6470
3029ede3
VD
6471 if (busiest->avg_load + scaled_busy_load_per_task >=
6472 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6473 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6474 return;
6475 }
6476
6477 /*
6478 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6479 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6480 * moving them.
6481 */
6482
63b2ca30 6483 capa_now += busiest->group_capacity *
56cf515b 6484 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6485 capa_now += local->group_capacity *
56cf515b 6486 min(local->load_per_task, local->avg_load);
ca8ce3d0 6487 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6488
6489 /* Amount of load we'd subtract */
a2cd4260 6490 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6491 capa_move += busiest->group_capacity *
56cf515b 6492 min(busiest->load_per_task,
a2cd4260 6493 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6494 }
1e3c88bd
PZ
6495
6496 /* Amount of load we'd add */
63b2ca30 6497 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6498 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6499 tmp = (busiest->avg_load * busiest->group_capacity) /
6500 local->group_capacity;
56cf515b 6501 } else {
ca8ce3d0 6502 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6503 local->group_capacity;
56cf515b 6504 }
63b2ca30 6505 capa_move += local->group_capacity *
3ae11c90 6506 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6507 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6508
6509 /* Move if we gain throughput */
63b2ca30 6510 if (capa_move > capa_now)
56cf515b 6511 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6512}
6513
6514/**
6515 * calculate_imbalance - Calculate the amount of imbalance present within the
6516 * groups of a given sched_domain during load balance.
bd939f45 6517 * @env: load balance environment
1e3c88bd 6518 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6519 */
bd939f45 6520static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6521{
dd5feea1 6522 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6523 struct sg_lb_stats *local, *busiest;
6524
6525 local = &sds->local_stat;
56cf515b 6526 busiest = &sds->busiest_stat;
dd5feea1 6527
caeb178c 6528 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6529 /*
6530 * In the group_imb case we cannot rely on group-wide averages
6531 * to ensure cpu-load equilibrium, look at wider averages. XXX
6532 */
56cf515b
JK
6533 busiest->load_per_task =
6534 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6535 }
6536
1e3c88bd
PZ
6537 /*
6538 * In the presence of smp nice balancing, certain scenarios can have
6539 * max load less than avg load(as we skip the groups at or below
ced549fa 6540 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6541 */
b1885550
VD
6542 if (busiest->avg_load <= sds->avg_load ||
6543 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6544 env->imbalance = 0;
6545 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6546 }
6547
9a5d9ba6
PZ
6548 /*
6549 * If there aren't any idle cpus, avoid creating some.
6550 */
6551 if (busiest->group_type == group_overloaded &&
6552 local->group_type == group_overloaded) {
56cf515b 6553 load_above_capacity =
0fedc6c8 6554 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6555
ca8ce3d0 6556 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6557 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6558 }
6559
6560 /*
6561 * We're trying to get all the cpus to the average_load, so we don't
6562 * want to push ourselves above the average load, nor do we wish to
6563 * reduce the max loaded cpu below the average load. At the same time,
6564 * we also don't want to reduce the group load below the group capacity
6565 * (so that we can implement power-savings policies etc). Thus we look
6566 * for the minimum possible imbalance.
dd5feea1 6567 */
30ce5dab 6568 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6569
6570 /* How much load to actually move to equalise the imbalance */
56cf515b 6571 env->imbalance = min(
63b2ca30
NP
6572 max_pull * busiest->group_capacity,
6573 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6574 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6575
6576 /*
6577 * if *imbalance is less than the average load per runnable task
25985edc 6578 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6579 * a think about bumping its value to force at least one task to be
6580 * moved
6581 */
56cf515b 6582 if (env->imbalance < busiest->load_per_task)
bd939f45 6583 return fix_small_imbalance(env, sds);
1e3c88bd 6584}
fab47622 6585
1e3c88bd
PZ
6586/******* find_busiest_group() helpers end here *********************/
6587
6588/**
6589 * find_busiest_group - Returns the busiest group within the sched_domain
6590 * if there is an imbalance. If there isn't an imbalance, and
6591 * the user has opted for power-savings, it returns a group whose
6592 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6593 * such a group exists.
6594 *
6595 * Also calculates the amount of weighted load which should be moved
6596 * to restore balance.
6597 *
cd96891d 6598 * @env: The load balancing environment.
1e3c88bd 6599 *
e69f6186 6600 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6601 * - If no imbalance and user has opted for power-savings balance,
6602 * return the least loaded group whose CPUs can be
6603 * put to idle by rebalancing its tasks onto our group.
6604 */
56cf515b 6605static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6606{
56cf515b 6607 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6608 struct sd_lb_stats sds;
6609
147c5fc2 6610 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6611
6612 /*
6613 * Compute the various statistics relavent for load balancing at
6614 * this level.
6615 */
23f0d209 6616 update_sd_lb_stats(env, &sds);
56cf515b
JK
6617 local = &sds.local_stat;
6618 busiest = &sds.busiest_stat;
1e3c88bd 6619
bd939f45
PZ
6620 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6621 check_asym_packing(env, &sds))
532cb4c4
MN
6622 return sds.busiest;
6623
cc57aa8f 6624 /* There is no busy sibling group to pull tasks from */
56cf515b 6625 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6626 goto out_balanced;
6627
ca8ce3d0
NP
6628 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6629 / sds.total_capacity;
b0432d8f 6630
866ab43e
PZ
6631 /*
6632 * If the busiest group is imbalanced the below checks don't
30ce5dab 6633 * work because they assume all things are equal, which typically
866ab43e
PZ
6634 * isn't true due to cpus_allowed constraints and the like.
6635 */
caeb178c 6636 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6637 goto force_balance;
6638
cc57aa8f 6639 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6640 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6641 !busiest->group_has_free_capacity)
fab47622
NR
6642 goto force_balance;
6643
cc57aa8f 6644 /*
9c58c79a 6645 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6646 * don't try and pull any tasks.
6647 */
56cf515b 6648 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6649 goto out_balanced;
6650
cc57aa8f
PZ
6651 /*
6652 * Don't pull any tasks if this group is already above the domain
6653 * average load.
6654 */
56cf515b 6655 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6656 goto out_balanced;
6657
bd939f45 6658 if (env->idle == CPU_IDLE) {
aae6d3dd 6659 /*
43f4d666
VG
6660 * This cpu is idle. If the busiest group is not overloaded
6661 * and there is no imbalance between this and busiest group
6662 * wrt idle cpus, it is balanced. The imbalance becomes
6663 * significant if the diff is greater than 1 otherwise we
6664 * might end up to just move the imbalance on another group
aae6d3dd 6665 */
43f4d666
VG
6666 if ((busiest->group_type != group_overloaded) &&
6667 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6668 goto out_balanced;
c186fafe
PZ
6669 } else {
6670 /*
6671 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6672 * imbalance_pct to be conservative.
6673 */
56cf515b
JK
6674 if (100 * busiest->avg_load <=
6675 env->sd->imbalance_pct * local->avg_load)
c186fafe 6676 goto out_balanced;
aae6d3dd 6677 }
1e3c88bd 6678
fab47622 6679force_balance:
1e3c88bd 6680 /* Looks like there is an imbalance. Compute it */
bd939f45 6681 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6682 return sds.busiest;
6683
6684out_balanced:
bd939f45 6685 env->imbalance = 0;
1e3c88bd
PZ
6686 return NULL;
6687}
6688
6689/*
6690 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6691 */
bd939f45 6692static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6693 struct sched_group *group)
1e3c88bd
PZ
6694{
6695 struct rq *busiest = NULL, *rq;
ced549fa 6696 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6697 int i;
6698
6906a408 6699 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6700 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6701 enum fbq_type rt;
6702
6703 rq = cpu_rq(i);
6704 rt = fbq_classify_rq(rq);
1e3c88bd 6705
0ec8aa00
PZ
6706 /*
6707 * We classify groups/runqueues into three groups:
6708 * - regular: there are !numa tasks
6709 * - remote: there are numa tasks that run on the 'wrong' node
6710 * - all: there is no distinction
6711 *
6712 * In order to avoid migrating ideally placed numa tasks,
6713 * ignore those when there's better options.
6714 *
6715 * If we ignore the actual busiest queue to migrate another
6716 * task, the next balance pass can still reduce the busiest
6717 * queue by moving tasks around inside the node.
6718 *
6719 * If we cannot move enough load due to this classification
6720 * the next pass will adjust the group classification and
6721 * allow migration of more tasks.
6722 *
6723 * Both cases only affect the total convergence complexity.
6724 */
6725 if (rt > env->fbq_type)
6726 continue;
6727
ced549fa 6728 capacity = capacity_of(i);
ca8ce3d0 6729 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6730 if (!capacity_factor)
6731 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6732
6e40f5bb 6733 wl = weighted_cpuload(i);
1e3c88bd 6734
6e40f5bb
TG
6735 /*
6736 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6737 * which is not scaled with the cpu capacity.
6e40f5bb 6738 */
0fedc6c8 6739 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6740 continue;
6741
6e40f5bb
TG
6742 /*
6743 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6744 * the weighted_cpuload() scaled with the cpu capacity, so
6745 * that the load can be moved away from the cpu that is
6746 * potentially running at a lower capacity.
95a79b80 6747 *
ced549fa 6748 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6749 * multiplication to rid ourselves of the division works out
ced549fa
NP
6750 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6751 * our previous maximum.
6e40f5bb 6752 */
ced549fa 6753 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6754 busiest_load = wl;
ced549fa 6755 busiest_capacity = capacity;
1e3c88bd
PZ
6756 busiest = rq;
6757 }
6758 }
6759
6760 return busiest;
6761}
6762
6763/*
6764 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6765 * so long as it is large enough.
6766 */
6767#define MAX_PINNED_INTERVAL 512
6768
6769/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6770DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6771
bd939f45 6772static int need_active_balance(struct lb_env *env)
1af3ed3d 6773{
bd939f45
PZ
6774 struct sched_domain *sd = env->sd;
6775
6776 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6777
6778 /*
6779 * ASYM_PACKING needs to force migrate tasks from busy but
6780 * higher numbered CPUs in order to pack all tasks in the
6781 * lowest numbered CPUs.
6782 */
bd939f45 6783 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6784 return 1;
1af3ed3d
PZ
6785 }
6786
6787 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6788}
6789
969c7921
TH
6790static int active_load_balance_cpu_stop(void *data);
6791
23f0d209
JK
6792static int should_we_balance(struct lb_env *env)
6793{
6794 struct sched_group *sg = env->sd->groups;
6795 struct cpumask *sg_cpus, *sg_mask;
6796 int cpu, balance_cpu = -1;
6797
6798 /*
6799 * In the newly idle case, we will allow all the cpu's
6800 * to do the newly idle load balance.
6801 */
6802 if (env->idle == CPU_NEWLY_IDLE)
6803 return 1;
6804
6805 sg_cpus = sched_group_cpus(sg);
6806 sg_mask = sched_group_mask(sg);
6807 /* Try to find first idle cpu */
6808 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6809 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6810 continue;
6811
6812 balance_cpu = cpu;
6813 break;
6814 }
6815
6816 if (balance_cpu == -1)
6817 balance_cpu = group_balance_cpu(sg);
6818
6819 /*
6820 * First idle cpu or the first cpu(busiest) in this sched group
6821 * is eligible for doing load balancing at this and above domains.
6822 */
b0cff9d8 6823 return balance_cpu == env->dst_cpu;
23f0d209
JK
6824}
6825
1e3c88bd
PZ
6826/*
6827 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6828 * tasks if there is an imbalance.
6829 */
6830static int load_balance(int this_cpu, struct rq *this_rq,
6831 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6832 int *continue_balancing)
1e3c88bd 6833{
88b8dac0 6834 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6835 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6836 struct sched_group *group;
1e3c88bd
PZ
6837 struct rq *busiest;
6838 unsigned long flags;
4ba29684 6839 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6840
8e45cb54
PZ
6841 struct lb_env env = {
6842 .sd = sd,
ddcdf6e7
PZ
6843 .dst_cpu = this_cpu,
6844 .dst_rq = this_rq,
88b8dac0 6845 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6846 .idle = idle,
eb95308e 6847 .loop_break = sched_nr_migrate_break,
b9403130 6848 .cpus = cpus,
0ec8aa00 6849 .fbq_type = all,
163122b7 6850 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6851 };
6852
cfc03118
JK
6853 /*
6854 * For NEWLY_IDLE load_balancing, we don't need to consider
6855 * other cpus in our group
6856 */
e02e60c1 6857 if (idle == CPU_NEWLY_IDLE)
cfc03118 6858 env.dst_grpmask = NULL;
cfc03118 6859
1e3c88bd
PZ
6860 cpumask_copy(cpus, cpu_active_mask);
6861
1e3c88bd
PZ
6862 schedstat_inc(sd, lb_count[idle]);
6863
6864redo:
23f0d209
JK
6865 if (!should_we_balance(&env)) {
6866 *continue_balancing = 0;
1e3c88bd 6867 goto out_balanced;
23f0d209 6868 }
1e3c88bd 6869
23f0d209 6870 group = find_busiest_group(&env);
1e3c88bd
PZ
6871 if (!group) {
6872 schedstat_inc(sd, lb_nobusyg[idle]);
6873 goto out_balanced;
6874 }
6875
b9403130 6876 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6877 if (!busiest) {
6878 schedstat_inc(sd, lb_nobusyq[idle]);
6879 goto out_balanced;
6880 }
6881
78feefc5 6882 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6883
bd939f45 6884 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6885
6886 ld_moved = 0;
6887 if (busiest->nr_running > 1) {
6888 /*
6889 * Attempt to move tasks. If find_busiest_group has found
6890 * an imbalance but busiest->nr_running <= 1, the group is
6891 * still unbalanced. ld_moved simply stays zero, so it is
6892 * correctly treated as an imbalance.
6893 */
8e45cb54 6894 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6895 env.src_cpu = busiest->cpu;
6896 env.src_rq = busiest;
6897 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6898
5d6523eb 6899more_balance:
163122b7 6900 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6901
6902 /*
6903 * cur_ld_moved - load moved in current iteration
6904 * ld_moved - cumulative load moved across iterations
6905 */
163122b7 6906 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6907
6908 /*
163122b7
KT
6909 * We've detached some tasks from busiest_rq. Every
6910 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6911 * unlock busiest->lock, and we are able to be sure
6912 * that nobody can manipulate the tasks in parallel.
6913 * See task_rq_lock() family for the details.
1e3c88bd 6914 */
163122b7
KT
6915
6916 raw_spin_unlock(&busiest->lock);
6917
6918 if (cur_ld_moved) {
6919 attach_tasks(&env);
6920 ld_moved += cur_ld_moved;
6921 }
6922
1e3c88bd 6923 local_irq_restore(flags);
88b8dac0 6924
f1cd0858
JK
6925 if (env.flags & LBF_NEED_BREAK) {
6926 env.flags &= ~LBF_NEED_BREAK;
6927 goto more_balance;
6928 }
6929
88b8dac0
SV
6930 /*
6931 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6932 * us and move them to an alternate dst_cpu in our sched_group
6933 * where they can run. The upper limit on how many times we
6934 * iterate on same src_cpu is dependent on number of cpus in our
6935 * sched_group.
6936 *
6937 * This changes load balance semantics a bit on who can move
6938 * load to a given_cpu. In addition to the given_cpu itself
6939 * (or a ilb_cpu acting on its behalf where given_cpu is
6940 * nohz-idle), we now have balance_cpu in a position to move
6941 * load to given_cpu. In rare situations, this may cause
6942 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6943 * _independently_ and at _same_ time to move some load to
6944 * given_cpu) causing exceess load to be moved to given_cpu.
6945 * This however should not happen so much in practice and
6946 * moreover subsequent load balance cycles should correct the
6947 * excess load moved.
6948 */
6263322c 6949 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6950
7aff2e3a
VD
6951 /* Prevent to re-select dst_cpu via env's cpus */
6952 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6953
78feefc5 6954 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6955 env.dst_cpu = env.new_dst_cpu;
6263322c 6956 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6957 env.loop = 0;
6958 env.loop_break = sched_nr_migrate_break;
e02e60c1 6959
88b8dac0
SV
6960 /*
6961 * Go back to "more_balance" rather than "redo" since we
6962 * need to continue with same src_cpu.
6963 */
6964 goto more_balance;
6965 }
1e3c88bd 6966
6263322c
PZ
6967 /*
6968 * We failed to reach balance because of affinity.
6969 */
6970 if (sd_parent) {
63b2ca30 6971 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6972
afdeee05 6973 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6974 *group_imbalance = 1;
6263322c
PZ
6975 }
6976
1e3c88bd 6977 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6978 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6979 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6980 if (!cpumask_empty(cpus)) {
6981 env.loop = 0;
6982 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6983 goto redo;
bbf18b19 6984 }
afdeee05 6985 goto out_all_pinned;
1e3c88bd
PZ
6986 }
6987 }
6988
6989 if (!ld_moved) {
6990 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6991 /*
6992 * Increment the failure counter only on periodic balance.
6993 * We do not want newidle balance, which can be very
6994 * frequent, pollute the failure counter causing
6995 * excessive cache_hot migrations and active balances.
6996 */
6997 if (idle != CPU_NEWLY_IDLE)
6998 sd->nr_balance_failed++;
1e3c88bd 6999
bd939f45 7000 if (need_active_balance(&env)) {
1e3c88bd
PZ
7001 raw_spin_lock_irqsave(&busiest->lock, flags);
7002
969c7921
TH
7003 /* don't kick the active_load_balance_cpu_stop,
7004 * if the curr task on busiest cpu can't be
7005 * moved to this_cpu
1e3c88bd
PZ
7006 */
7007 if (!cpumask_test_cpu(this_cpu,
fa17b507 7008 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7009 raw_spin_unlock_irqrestore(&busiest->lock,
7010 flags);
8e45cb54 7011 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7012 goto out_one_pinned;
7013 }
7014
969c7921
TH
7015 /*
7016 * ->active_balance synchronizes accesses to
7017 * ->active_balance_work. Once set, it's cleared
7018 * only after active load balance is finished.
7019 */
1e3c88bd
PZ
7020 if (!busiest->active_balance) {
7021 busiest->active_balance = 1;
7022 busiest->push_cpu = this_cpu;
7023 active_balance = 1;
7024 }
7025 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7026
bd939f45 7027 if (active_balance) {
969c7921
TH
7028 stop_one_cpu_nowait(cpu_of(busiest),
7029 active_load_balance_cpu_stop, busiest,
7030 &busiest->active_balance_work);
bd939f45 7031 }
1e3c88bd
PZ
7032
7033 /*
7034 * We've kicked active balancing, reset the failure
7035 * counter.
7036 */
7037 sd->nr_balance_failed = sd->cache_nice_tries+1;
7038 }
7039 } else
7040 sd->nr_balance_failed = 0;
7041
7042 if (likely(!active_balance)) {
7043 /* We were unbalanced, so reset the balancing interval */
7044 sd->balance_interval = sd->min_interval;
7045 } else {
7046 /*
7047 * If we've begun active balancing, start to back off. This
7048 * case may not be covered by the all_pinned logic if there
7049 * is only 1 task on the busy runqueue (because we don't call
163122b7 7050 * detach_tasks).
1e3c88bd
PZ
7051 */
7052 if (sd->balance_interval < sd->max_interval)
7053 sd->balance_interval *= 2;
7054 }
7055
1e3c88bd
PZ
7056 goto out;
7057
7058out_balanced:
afdeee05
VG
7059 /*
7060 * We reach balance although we may have faced some affinity
7061 * constraints. Clear the imbalance flag if it was set.
7062 */
7063 if (sd_parent) {
7064 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7065
7066 if (*group_imbalance)
7067 *group_imbalance = 0;
7068 }
7069
7070out_all_pinned:
7071 /*
7072 * We reach balance because all tasks are pinned at this level so
7073 * we can't migrate them. Let the imbalance flag set so parent level
7074 * can try to migrate them.
7075 */
1e3c88bd
PZ
7076 schedstat_inc(sd, lb_balanced[idle]);
7077
7078 sd->nr_balance_failed = 0;
7079
7080out_one_pinned:
7081 /* tune up the balancing interval */
8e45cb54 7082 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7083 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7084 (sd->balance_interval < sd->max_interval))
7085 sd->balance_interval *= 2;
7086
46e49b38 7087 ld_moved = 0;
1e3c88bd 7088out:
1e3c88bd
PZ
7089 return ld_moved;
7090}
7091
52a08ef1
JL
7092static inline unsigned long
7093get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7094{
7095 unsigned long interval = sd->balance_interval;
7096
7097 if (cpu_busy)
7098 interval *= sd->busy_factor;
7099
7100 /* scale ms to jiffies */
7101 interval = msecs_to_jiffies(interval);
7102 interval = clamp(interval, 1UL, max_load_balance_interval);
7103
7104 return interval;
7105}
7106
7107static inline void
7108update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7109{
7110 unsigned long interval, next;
7111
7112 interval = get_sd_balance_interval(sd, cpu_busy);
7113 next = sd->last_balance + interval;
7114
7115 if (time_after(*next_balance, next))
7116 *next_balance = next;
7117}
7118
1e3c88bd
PZ
7119/*
7120 * idle_balance is called by schedule() if this_cpu is about to become
7121 * idle. Attempts to pull tasks from other CPUs.
7122 */
6e83125c 7123static int idle_balance(struct rq *this_rq)
1e3c88bd 7124{
52a08ef1
JL
7125 unsigned long next_balance = jiffies + HZ;
7126 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7127 struct sched_domain *sd;
7128 int pulled_task = 0;
9bd721c5 7129 u64 curr_cost = 0;
1e3c88bd 7130
6e83125c 7131 idle_enter_fair(this_rq);
0e5b5337 7132
6e83125c
PZ
7133 /*
7134 * We must set idle_stamp _before_ calling idle_balance(), such that we
7135 * measure the duration of idle_balance() as idle time.
7136 */
7137 this_rq->idle_stamp = rq_clock(this_rq);
7138
4486edd1
TC
7139 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7140 !this_rq->rd->overload) {
52a08ef1
JL
7141 rcu_read_lock();
7142 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7143 if (sd)
7144 update_next_balance(sd, 0, &next_balance);
7145 rcu_read_unlock();
7146
6e83125c 7147 goto out;
52a08ef1 7148 }
1e3c88bd 7149
f492e12e
PZ
7150 /*
7151 * Drop the rq->lock, but keep IRQ/preempt disabled.
7152 */
7153 raw_spin_unlock(&this_rq->lock);
7154
48a16753 7155 update_blocked_averages(this_cpu);
dce840a0 7156 rcu_read_lock();
1e3c88bd 7157 for_each_domain(this_cpu, sd) {
23f0d209 7158 int continue_balancing = 1;
9bd721c5 7159 u64 t0, domain_cost;
1e3c88bd
PZ
7160
7161 if (!(sd->flags & SD_LOAD_BALANCE))
7162 continue;
7163
52a08ef1
JL
7164 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7165 update_next_balance(sd, 0, &next_balance);
9bd721c5 7166 break;
52a08ef1 7167 }
9bd721c5 7168
f492e12e 7169 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7170 t0 = sched_clock_cpu(this_cpu);
7171
f492e12e 7172 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7173 sd, CPU_NEWLY_IDLE,
7174 &continue_balancing);
9bd721c5
JL
7175
7176 domain_cost = sched_clock_cpu(this_cpu) - t0;
7177 if (domain_cost > sd->max_newidle_lb_cost)
7178 sd->max_newidle_lb_cost = domain_cost;
7179
7180 curr_cost += domain_cost;
f492e12e 7181 }
1e3c88bd 7182
52a08ef1 7183 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7184
7185 /*
7186 * Stop searching for tasks to pull if there are
7187 * now runnable tasks on this rq.
7188 */
7189 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7190 break;
1e3c88bd 7191 }
dce840a0 7192 rcu_read_unlock();
f492e12e
PZ
7193
7194 raw_spin_lock(&this_rq->lock);
7195
0e5b5337
JL
7196 if (curr_cost > this_rq->max_idle_balance_cost)
7197 this_rq->max_idle_balance_cost = curr_cost;
7198
e5fc6611 7199 /*
0e5b5337
JL
7200 * While browsing the domains, we released the rq lock, a task could
7201 * have been enqueued in the meantime. Since we're not going idle,
7202 * pretend we pulled a task.
e5fc6611 7203 */
0e5b5337 7204 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7205 pulled_task = 1;
e5fc6611 7206
52a08ef1
JL
7207out:
7208 /* Move the next balance forward */
7209 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7210 this_rq->next_balance = next_balance;
9bd721c5 7211
e4aa358b 7212 /* Is there a task of a high priority class? */
46383648 7213 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7214 pulled_task = -1;
7215
7216 if (pulled_task) {
7217 idle_exit_fair(this_rq);
6e83125c 7218 this_rq->idle_stamp = 0;
e4aa358b 7219 }
6e83125c 7220
3c4017c1 7221 return pulled_task;
1e3c88bd
PZ
7222}
7223
7224/*
969c7921
TH
7225 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7226 * running tasks off the busiest CPU onto idle CPUs. It requires at
7227 * least 1 task to be running on each physical CPU where possible, and
7228 * avoids physical / logical imbalances.
1e3c88bd 7229 */
969c7921 7230static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7231{
969c7921
TH
7232 struct rq *busiest_rq = data;
7233 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7234 int target_cpu = busiest_rq->push_cpu;
969c7921 7235 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7236 struct sched_domain *sd;
e5673f28 7237 struct task_struct *p = NULL;
969c7921
TH
7238
7239 raw_spin_lock_irq(&busiest_rq->lock);
7240
7241 /* make sure the requested cpu hasn't gone down in the meantime */
7242 if (unlikely(busiest_cpu != smp_processor_id() ||
7243 !busiest_rq->active_balance))
7244 goto out_unlock;
1e3c88bd
PZ
7245
7246 /* Is there any task to move? */
7247 if (busiest_rq->nr_running <= 1)
969c7921 7248 goto out_unlock;
1e3c88bd
PZ
7249
7250 /*
7251 * This condition is "impossible", if it occurs
7252 * we need to fix it. Originally reported by
7253 * Bjorn Helgaas on a 128-cpu setup.
7254 */
7255 BUG_ON(busiest_rq == target_rq);
7256
1e3c88bd 7257 /* Search for an sd spanning us and the target CPU. */
dce840a0 7258 rcu_read_lock();
1e3c88bd
PZ
7259 for_each_domain(target_cpu, sd) {
7260 if ((sd->flags & SD_LOAD_BALANCE) &&
7261 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7262 break;
7263 }
7264
7265 if (likely(sd)) {
8e45cb54
PZ
7266 struct lb_env env = {
7267 .sd = sd,
ddcdf6e7
PZ
7268 .dst_cpu = target_cpu,
7269 .dst_rq = target_rq,
7270 .src_cpu = busiest_rq->cpu,
7271 .src_rq = busiest_rq,
8e45cb54
PZ
7272 .idle = CPU_IDLE,
7273 };
7274
1e3c88bd
PZ
7275 schedstat_inc(sd, alb_count);
7276
e5673f28
KT
7277 p = detach_one_task(&env);
7278 if (p)
1e3c88bd
PZ
7279 schedstat_inc(sd, alb_pushed);
7280 else
7281 schedstat_inc(sd, alb_failed);
7282 }
dce840a0 7283 rcu_read_unlock();
969c7921
TH
7284out_unlock:
7285 busiest_rq->active_balance = 0;
e5673f28
KT
7286 raw_spin_unlock(&busiest_rq->lock);
7287
7288 if (p)
7289 attach_one_task(target_rq, p);
7290
7291 local_irq_enable();
7292
969c7921 7293 return 0;
1e3c88bd
PZ
7294}
7295
d987fc7f
MG
7296static inline int on_null_domain(struct rq *rq)
7297{
7298 return unlikely(!rcu_dereference_sched(rq->sd));
7299}
7300
3451d024 7301#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7302/*
7303 * idle load balancing details
83cd4fe2
VP
7304 * - When one of the busy CPUs notice that there may be an idle rebalancing
7305 * needed, they will kick the idle load balancer, which then does idle
7306 * load balancing for all the idle CPUs.
7307 */
1e3c88bd 7308static struct {
83cd4fe2 7309 cpumask_var_t idle_cpus_mask;
0b005cf5 7310 atomic_t nr_cpus;
83cd4fe2
VP
7311 unsigned long next_balance; /* in jiffy units */
7312} nohz ____cacheline_aligned;
1e3c88bd 7313
3dd0337d 7314static inline int find_new_ilb(void)
1e3c88bd 7315{
0b005cf5 7316 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7317
786d6dc7
SS
7318 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7319 return ilb;
7320
7321 return nr_cpu_ids;
1e3c88bd 7322}
1e3c88bd 7323
83cd4fe2
VP
7324/*
7325 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7326 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7327 * CPU (if there is one).
7328 */
0aeeeeba 7329static void nohz_balancer_kick(void)
83cd4fe2
VP
7330{
7331 int ilb_cpu;
7332
7333 nohz.next_balance++;
7334
3dd0337d 7335 ilb_cpu = find_new_ilb();
83cd4fe2 7336
0b005cf5
SS
7337 if (ilb_cpu >= nr_cpu_ids)
7338 return;
83cd4fe2 7339
cd490c5b 7340 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7341 return;
7342 /*
7343 * Use smp_send_reschedule() instead of resched_cpu().
7344 * This way we generate a sched IPI on the target cpu which
7345 * is idle. And the softirq performing nohz idle load balance
7346 * will be run before returning from the IPI.
7347 */
7348 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7349 return;
7350}
7351
c1cc017c 7352static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7353{
7354 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7355 /*
7356 * Completely isolated CPUs don't ever set, so we must test.
7357 */
7358 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7359 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7360 atomic_dec(&nohz.nr_cpus);
7361 }
71325960
SS
7362 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7363 }
7364}
7365
69e1e811
SS
7366static inline void set_cpu_sd_state_busy(void)
7367{
7368 struct sched_domain *sd;
37dc6b50 7369 int cpu = smp_processor_id();
69e1e811 7370
69e1e811 7371 rcu_read_lock();
37dc6b50 7372 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7373
7374 if (!sd || !sd->nohz_idle)
7375 goto unlock;
7376 sd->nohz_idle = 0;
7377
63b2ca30 7378 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7379unlock:
69e1e811
SS
7380 rcu_read_unlock();
7381}
7382
7383void set_cpu_sd_state_idle(void)
7384{
7385 struct sched_domain *sd;
37dc6b50 7386 int cpu = smp_processor_id();
69e1e811 7387
69e1e811 7388 rcu_read_lock();
37dc6b50 7389 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7390
7391 if (!sd || sd->nohz_idle)
7392 goto unlock;
7393 sd->nohz_idle = 1;
7394
63b2ca30 7395 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7396unlock:
69e1e811
SS
7397 rcu_read_unlock();
7398}
7399
1e3c88bd 7400/*
c1cc017c 7401 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7402 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7403 */
c1cc017c 7404void nohz_balance_enter_idle(int cpu)
1e3c88bd 7405{
71325960
SS
7406 /*
7407 * If this cpu is going down, then nothing needs to be done.
7408 */
7409 if (!cpu_active(cpu))
7410 return;
7411
c1cc017c
AS
7412 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7413 return;
1e3c88bd 7414
d987fc7f
MG
7415 /*
7416 * If we're a completely isolated CPU, we don't play.
7417 */
7418 if (on_null_domain(cpu_rq(cpu)))
7419 return;
7420
c1cc017c
AS
7421 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7422 atomic_inc(&nohz.nr_cpus);
7423 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7424}
71325960 7425
0db0628d 7426static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7427 unsigned long action, void *hcpu)
7428{
7429 switch (action & ~CPU_TASKS_FROZEN) {
7430 case CPU_DYING:
c1cc017c 7431 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7432 return NOTIFY_OK;
7433 default:
7434 return NOTIFY_DONE;
7435 }
7436}
1e3c88bd
PZ
7437#endif
7438
7439static DEFINE_SPINLOCK(balancing);
7440
49c022e6
PZ
7441/*
7442 * Scale the max load_balance interval with the number of CPUs in the system.
7443 * This trades load-balance latency on larger machines for less cross talk.
7444 */
029632fb 7445void update_max_interval(void)
49c022e6
PZ
7446{
7447 max_load_balance_interval = HZ*num_online_cpus()/10;
7448}
7449
1e3c88bd
PZ
7450/*
7451 * It checks each scheduling domain to see if it is due to be balanced,
7452 * and initiates a balancing operation if so.
7453 *
b9b0853a 7454 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7455 */
f7ed0a89 7456static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7457{
23f0d209 7458 int continue_balancing = 1;
f7ed0a89 7459 int cpu = rq->cpu;
1e3c88bd 7460 unsigned long interval;
04f733b4 7461 struct sched_domain *sd;
1e3c88bd
PZ
7462 /* Earliest time when we have to do rebalance again */
7463 unsigned long next_balance = jiffies + 60*HZ;
7464 int update_next_balance = 0;
f48627e6
JL
7465 int need_serialize, need_decay = 0;
7466 u64 max_cost = 0;
1e3c88bd 7467
48a16753 7468 update_blocked_averages(cpu);
2069dd75 7469
dce840a0 7470 rcu_read_lock();
1e3c88bd 7471 for_each_domain(cpu, sd) {
f48627e6
JL
7472 /*
7473 * Decay the newidle max times here because this is a regular
7474 * visit to all the domains. Decay ~1% per second.
7475 */
7476 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7477 sd->max_newidle_lb_cost =
7478 (sd->max_newidle_lb_cost * 253) / 256;
7479 sd->next_decay_max_lb_cost = jiffies + HZ;
7480 need_decay = 1;
7481 }
7482 max_cost += sd->max_newidle_lb_cost;
7483
1e3c88bd
PZ
7484 if (!(sd->flags & SD_LOAD_BALANCE))
7485 continue;
7486
f48627e6
JL
7487 /*
7488 * Stop the load balance at this level. There is another
7489 * CPU in our sched group which is doing load balancing more
7490 * actively.
7491 */
7492 if (!continue_balancing) {
7493 if (need_decay)
7494 continue;
7495 break;
7496 }
7497
52a08ef1 7498 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7499
7500 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7501 if (need_serialize) {
7502 if (!spin_trylock(&balancing))
7503 goto out;
7504 }
7505
7506 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7507 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7508 /*
6263322c 7509 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7510 * env->dst_cpu, so we can't know our idle
7511 * state even if we migrated tasks. Update it.
1e3c88bd 7512 */
de5eb2dd 7513 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7514 }
7515 sd->last_balance = jiffies;
52a08ef1 7516 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7517 }
7518 if (need_serialize)
7519 spin_unlock(&balancing);
7520out:
7521 if (time_after(next_balance, sd->last_balance + interval)) {
7522 next_balance = sd->last_balance + interval;
7523 update_next_balance = 1;
7524 }
f48627e6
JL
7525 }
7526 if (need_decay) {
1e3c88bd 7527 /*
f48627e6
JL
7528 * Ensure the rq-wide value also decays but keep it at a
7529 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7530 */
f48627e6
JL
7531 rq->max_idle_balance_cost =
7532 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7533 }
dce840a0 7534 rcu_read_unlock();
1e3c88bd
PZ
7535
7536 /*
7537 * next_balance will be updated only when there is a need.
7538 * When the cpu is attached to null domain for ex, it will not be
7539 * updated.
7540 */
7541 if (likely(update_next_balance))
7542 rq->next_balance = next_balance;
7543}
7544
3451d024 7545#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7546/*
3451d024 7547 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7548 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7549 */
208cb16b 7550static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7551{
208cb16b 7552 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7553 struct rq *rq;
7554 int balance_cpu;
7555
1c792db7
SS
7556 if (idle != CPU_IDLE ||
7557 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7558 goto end;
83cd4fe2
VP
7559
7560 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7561 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7562 continue;
7563
7564 /*
7565 * If this cpu gets work to do, stop the load balancing
7566 * work being done for other cpus. Next load
7567 * balancing owner will pick it up.
7568 */
1c792db7 7569 if (need_resched())
83cd4fe2 7570 break;
83cd4fe2 7571
5ed4f1d9
VG
7572 rq = cpu_rq(balance_cpu);
7573
ed61bbc6
TC
7574 /*
7575 * If time for next balance is due,
7576 * do the balance.
7577 */
7578 if (time_after_eq(jiffies, rq->next_balance)) {
7579 raw_spin_lock_irq(&rq->lock);
7580 update_rq_clock(rq);
7581 update_idle_cpu_load(rq);
7582 raw_spin_unlock_irq(&rq->lock);
7583 rebalance_domains(rq, CPU_IDLE);
7584 }
83cd4fe2 7585
83cd4fe2
VP
7586 if (time_after(this_rq->next_balance, rq->next_balance))
7587 this_rq->next_balance = rq->next_balance;
7588 }
7589 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7590end:
7591 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7592}
7593
7594/*
0b005cf5
SS
7595 * Current heuristic for kicking the idle load balancer in the presence
7596 * of an idle cpu is the system.
7597 * - This rq has more than one task.
7598 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7599 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7600 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7601 * domain span are idle.
83cd4fe2 7602 */
4a725627 7603static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7604{
7605 unsigned long now = jiffies;
0b005cf5 7606 struct sched_domain *sd;
63b2ca30 7607 struct sched_group_capacity *sgc;
4a725627 7608 int nr_busy, cpu = rq->cpu;
83cd4fe2 7609
4a725627 7610 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7611 return 0;
7612
1c792db7
SS
7613 /*
7614 * We may be recently in ticked or tickless idle mode. At the first
7615 * busy tick after returning from idle, we will update the busy stats.
7616 */
69e1e811 7617 set_cpu_sd_state_busy();
c1cc017c 7618 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7619
7620 /*
7621 * None are in tickless mode and hence no need for NOHZ idle load
7622 * balancing.
7623 */
7624 if (likely(!atomic_read(&nohz.nr_cpus)))
7625 return 0;
1c792db7
SS
7626
7627 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7628 return 0;
7629
0b005cf5
SS
7630 if (rq->nr_running >= 2)
7631 goto need_kick;
83cd4fe2 7632
067491b7 7633 rcu_read_lock();
37dc6b50 7634 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7635
37dc6b50 7636 if (sd) {
63b2ca30
NP
7637 sgc = sd->groups->sgc;
7638 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7639
37dc6b50 7640 if (nr_busy > 1)
067491b7 7641 goto need_kick_unlock;
83cd4fe2 7642 }
37dc6b50
PM
7643
7644 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7645
7646 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7647 sched_domain_span(sd)) < cpu))
7648 goto need_kick_unlock;
7649
067491b7 7650 rcu_read_unlock();
83cd4fe2 7651 return 0;
067491b7
PZ
7652
7653need_kick_unlock:
7654 rcu_read_unlock();
0b005cf5
SS
7655need_kick:
7656 return 1;
83cd4fe2
VP
7657}
7658#else
208cb16b 7659static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7660#endif
7661
7662/*
7663 * run_rebalance_domains is triggered when needed from the scheduler tick.
7664 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7665 */
1e3c88bd
PZ
7666static void run_rebalance_domains(struct softirq_action *h)
7667{
208cb16b 7668 struct rq *this_rq = this_rq();
6eb57e0d 7669 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7670 CPU_IDLE : CPU_NOT_IDLE;
7671
f7ed0a89 7672 rebalance_domains(this_rq, idle);
1e3c88bd 7673
1e3c88bd 7674 /*
83cd4fe2 7675 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7676 * balancing on behalf of the other idle cpus whose ticks are
7677 * stopped.
7678 */
208cb16b 7679 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7680}
7681
1e3c88bd
PZ
7682/*
7683 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7684 */
7caff66f 7685void trigger_load_balance(struct rq *rq)
1e3c88bd 7686{
1e3c88bd 7687 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7688 if (unlikely(on_null_domain(rq)))
7689 return;
7690
7691 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7692 raise_softirq(SCHED_SOFTIRQ);
3451d024 7693#ifdef CONFIG_NO_HZ_COMMON
c726099e 7694 if (nohz_kick_needed(rq))
0aeeeeba 7695 nohz_balancer_kick();
83cd4fe2 7696#endif
1e3c88bd
PZ
7697}
7698
0bcdcf28
CE
7699static void rq_online_fair(struct rq *rq)
7700{
7701 update_sysctl();
0e59bdae
KT
7702
7703 update_runtime_enabled(rq);
0bcdcf28
CE
7704}
7705
7706static void rq_offline_fair(struct rq *rq)
7707{
7708 update_sysctl();
a4c96ae3
PB
7709
7710 /* Ensure any throttled groups are reachable by pick_next_task */
7711 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7712}
7713
55e12e5e 7714#endif /* CONFIG_SMP */
e1d1484f 7715
bf0f6f24
IM
7716/*
7717 * scheduler tick hitting a task of our scheduling class:
7718 */
8f4d37ec 7719static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7720{
7721 struct cfs_rq *cfs_rq;
7722 struct sched_entity *se = &curr->se;
7723
7724 for_each_sched_entity(se) {
7725 cfs_rq = cfs_rq_of(se);
8f4d37ec 7726 entity_tick(cfs_rq, se, queued);
bf0f6f24 7727 }
18bf2805 7728
10e84b97 7729 if (numabalancing_enabled)
cbee9f88 7730 task_tick_numa(rq, curr);
3d59eebc 7731
18bf2805 7732 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7733}
7734
7735/*
cd29fe6f
PZ
7736 * called on fork with the child task as argument from the parent's context
7737 * - child not yet on the tasklist
7738 * - preemption disabled
bf0f6f24 7739 */
cd29fe6f 7740static void task_fork_fair(struct task_struct *p)
bf0f6f24 7741{
4fc420c9
DN
7742 struct cfs_rq *cfs_rq;
7743 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7744 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7745 struct rq *rq = this_rq();
7746 unsigned long flags;
7747
05fa785c 7748 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7749
861d034e
PZ
7750 update_rq_clock(rq);
7751
4fc420c9
DN
7752 cfs_rq = task_cfs_rq(current);
7753 curr = cfs_rq->curr;
7754
6c9a27f5
DN
7755 /*
7756 * Not only the cpu but also the task_group of the parent might have
7757 * been changed after parent->se.parent,cfs_rq were copied to
7758 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7759 * of child point to valid ones.
7760 */
7761 rcu_read_lock();
7762 __set_task_cpu(p, this_cpu);
7763 rcu_read_unlock();
bf0f6f24 7764
7109c442 7765 update_curr(cfs_rq);
cd29fe6f 7766
b5d9d734
MG
7767 if (curr)
7768 se->vruntime = curr->vruntime;
aeb73b04 7769 place_entity(cfs_rq, se, 1);
4d78e7b6 7770
cd29fe6f 7771 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7772 /*
edcb60a3
IM
7773 * Upon rescheduling, sched_class::put_prev_task() will place
7774 * 'current' within the tree based on its new key value.
7775 */
4d78e7b6 7776 swap(curr->vruntime, se->vruntime);
8875125e 7777 resched_curr(rq);
4d78e7b6 7778 }
bf0f6f24 7779
88ec22d3
PZ
7780 se->vruntime -= cfs_rq->min_vruntime;
7781
05fa785c 7782 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7783}
7784
cb469845
SR
7785/*
7786 * Priority of the task has changed. Check to see if we preempt
7787 * the current task.
7788 */
da7a735e
PZ
7789static void
7790prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7791{
da0c1e65 7792 if (!task_on_rq_queued(p))
da7a735e
PZ
7793 return;
7794
cb469845
SR
7795 /*
7796 * Reschedule if we are currently running on this runqueue and
7797 * our priority decreased, or if we are not currently running on
7798 * this runqueue and our priority is higher than the current's
7799 */
da7a735e 7800 if (rq->curr == p) {
cb469845 7801 if (p->prio > oldprio)
8875125e 7802 resched_curr(rq);
cb469845 7803 } else
15afe09b 7804 check_preempt_curr(rq, p, 0);
cb469845
SR
7805}
7806
da7a735e
PZ
7807static void switched_from_fair(struct rq *rq, struct task_struct *p)
7808{
7809 struct sched_entity *se = &p->se;
7810 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7811
7812 /*
791c9e02 7813 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7814 * switched back to the fair class the enqueue_entity(.flags=0) will
7815 * do the right thing.
7816 *
da0c1e65
KT
7817 * If it's queued, then the dequeue_entity(.flags=0) will already
7818 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7819 * the task is sleeping will it still have non-normalized vruntime.
7820 */
da0c1e65 7821 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7822 /*
7823 * Fix up our vruntime so that the current sleep doesn't
7824 * cause 'unlimited' sleep bonus.
7825 */
7826 place_entity(cfs_rq, se, 0);
7827 se->vruntime -= cfs_rq->min_vruntime;
7828 }
9ee474f5 7829
141965c7 7830#ifdef CONFIG_SMP
9ee474f5
PT
7831 /*
7832 * Remove our load from contribution when we leave sched_fair
7833 * and ensure we don't carry in an old decay_count if we
7834 * switch back.
7835 */
87e3c8ae
KT
7836 if (se->avg.decay_count) {
7837 __synchronize_entity_decay(se);
7838 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7839 }
7840#endif
da7a735e
PZ
7841}
7842
cb469845
SR
7843/*
7844 * We switched to the sched_fair class.
7845 */
da7a735e 7846static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7847{
eb7a59b2 7848#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7849 struct sched_entity *se = &p->se;
eb7a59b2
M
7850 /*
7851 * Since the real-depth could have been changed (only FAIR
7852 * class maintain depth value), reset depth properly.
7853 */
7854 se->depth = se->parent ? se->parent->depth + 1 : 0;
7855#endif
da0c1e65 7856 if (!task_on_rq_queued(p))
da7a735e
PZ
7857 return;
7858
cb469845
SR
7859 /*
7860 * We were most likely switched from sched_rt, so
7861 * kick off the schedule if running, otherwise just see
7862 * if we can still preempt the current task.
7863 */
da7a735e 7864 if (rq->curr == p)
8875125e 7865 resched_curr(rq);
cb469845 7866 else
15afe09b 7867 check_preempt_curr(rq, p, 0);
cb469845
SR
7868}
7869
83b699ed
SV
7870/* Account for a task changing its policy or group.
7871 *
7872 * This routine is mostly called to set cfs_rq->curr field when a task
7873 * migrates between groups/classes.
7874 */
7875static void set_curr_task_fair(struct rq *rq)
7876{
7877 struct sched_entity *se = &rq->curr->se;
7878
ec12cb7f
PT
7879 for_each_sched_entity(se) {
7880 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7881
7882 set_next_entity(cfs_rq, se);
7883 /* ensure bandwidth has been allocated on our new cfs_rq */
7884 account_cfs_rq_runtime(cfs_rq, 0);
7885 }
83b699ed
SV
7886}
7887
029632fb
PZ
7888void init_cfs_rq(struct cfs_rq *cfs_rq)
7889{
7890 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7891 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7892#ifndef CONFIG_64BIT
7893 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7894#endif
141965c7 7895#ifdef CONFIG_SMP
9ee474f5 7896 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7897 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7898#endif
029632fb
PZ
7899}
7900
810b3817 7901#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7902static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7903{
fed14d45 7904 struct sched_entity *se = &p->se;
aff3e498 7905 struct cfs_rq *cfs_rq;
fed14d45 7906
b2b5ce02
PZ
7907 /*
7908 * If the task was not on the rq at the time of this cgroup movement
7909 * it must have been asleep, sleeping tasks keep their ->vruntime
7910 * absolute on their old rq until wakeup (needed for the fair sleeper
7911 * bonus in place_entity()).
7912 *
7913 * If it was on the rq, we've just 'preempted' it, which does convert
7914 * ->vruntime to a relative base.
7915 *
7916 * Make sure both cases convert their relative position when migrating
7917 * to another cgroup's rq. This does somewhat interfere with the
7918 * fair sleeper stuff for the first placement, but who cares.
7919 */
7ceff013 7920 /*
da0c1e65 7921 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7922 * But there are some cases where it has already been normalized:
7923 *
7924 * - Moving a forked child which is waiting for being woken up by
7925 * wake_up_new_task().
62af3783
DN
7926 * - Moving a task which has been woken up by try_to_wake_up() and
7927 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7928 *
7929 * To prevent boost or penalty in the new cfs_rq caused by delta
7930 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7931 */
da0c1e65
KT
7932 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7933 queued = 1;
7ceff013 7934
da0c1e65 7935 if (!queued)
fed14d45 7936 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7937 set_task_rq(p, task_cpu(p));
fed14d45 7938 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7939 if (!queued) {
fed14d45
PZ
7940 cfs_rq = cfs_rq_of(se);
7941 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7942#ifdef CONFIG_SMP
7943 /*
7944 * migrate_task_rq_fair() will have removed our previous
7945 * contribution, but we must synchronize for ongoing future
7946 * decay.
7947 */
fed14d45
PZ
7948 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7949 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7950#endif
7951 }
810b3817 7952}
029632fb
PZ
7953
7954void free_fair_sched_group(struct task_group *tg)
7955{
7956 int i;
7957
7958 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7959
7960 for_each_possible_cpu(i) {
7961 if (tg->cfs_rq)
7962 kfree(tg->cfs_rq[i]);
7963 if (tg->se)
7964 kfree(tg->se[i]);
7965 }
7966
7967 kfree(tg->cfs_rq);
7968 kfree(tg->se);
7969}
7970
7971int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7972{
7973 struct cfs_rq *cfs_rq;
7974 struct sched_entity *se;
7975 int i;
7976
7977 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7978 if (!tg->cfs_rq)
7979 goto err;
7980 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7981 if (!tg->se)
7982 goto err;
7983
7984 tg->shares = NICE_0_LOAD;
7985
7986 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7987
7988 for_each_possible_cpu(i) {
7989 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7990 GFP_KERNEL, cpu_to_node(i));
7991 if (!cfs_rq)
7992 goto err;
7993
7994 se = kzalloc_node(sizeof(struct sched_entity),
7995 GFP_KERNEL, cpu_to_node(i));
7996 if (!se)
7997 goto err_free_rq;
7998
7999 init_cfs_rq(cfs_rq);
8000 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8001 }
8002
8003 return 1;
8004
8005err_free_rq:
8006 kfree(cfs_rq);
8007err:
8008 return 0;
8009}
8010
8011void unregister_fair_sched_group(struct task_group *tg, int cpu)
8012{
8013 struct rq *rq = cpu_rq(cpu);
8014 unsigned long flags;
8015
8016 /*
8017 * Only empty task groups can be destroyed; so we can speculatively
8018 * check on_list without danger of it being re-added.
8019 */
8020 if (!tg->cfs_rq[cpu]->on_list)
8021 return;
8022
8023 raw_spin_lock_irqsave(&rq->lock, flags);
8024 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8025 raw_spin_unlock_irqrestore(&rq->lock, flags);
8026}
8027
8028void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8029 struct sched_entity *se, int cpu,
8030 struct sched_entity *parent)
8031{
8032 struct rq *rq = cpu_rq(cpu);
8033
8034 cfs_rq->tg = tg;
8035 cfs_rq->rq = rq;
029632fb
PZ
8036 init_cfs_rq_runtime(cfs_rq);
8037
8038 tg->cfs_rq[cpu] = cfs_rq;
8039 tg->se[cpu] = se;
8040
8041 /* se could be NULL for root_task_group */
8042 if (!se)
8043 return;
8044
fed14d45 8045 if (!parent) {
029632fb 8046 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8047 se->depth = 0;
8048 } else {
029632fb 8049 se->cfs_rq = parent->my_q;
fed14d45
PZ
8050 se->depth = parent->depth + 1;
8051 }
029632fb
PZ
8052
8053 se->my_q = cfs_rq;
0ac9b1c2
PT
8054 /* guarantee group entities always have weight */
8055 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8056 se->parent = parent;
8057}
8058
8059static DEFINE_MUTEX(shares_mutex);
8060
8061int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8062{
8063 int i;
8064 unsigned long flags;
8065
8066 /*
8067 * We can't change the weight of the root cgroup.
8068 */
8069 if (!tg->se[0])
8070 return -EINVAL;
8071
8072 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8073
8074 mutex_lock(&shares_mutex);
8075 if (tg->shares == shares)
8076 goto done;
8077
8078 tg->shares = shares;
8079 for_each_possible_cpu(i) {
8080 struct rq *rq = cpu_rq(i);
8081 struct sched_entity *se;
8082
8083 se = tg->se[i];
8084 /* Propagate contribution to hierarchy */
8085 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8086
8087 /* Possible calls to update_curr() need rq clock */
8088 update_rq_clock(rq);
17bc14b7 8089 for_each_sched_entity(se)
029632fb
PZ
8090 update_cfs_shares(group_cfs_rq(se));
8091 raw_spin_unlock_irqrestore(&rq->lock, flags);
8092 }
8093
8094done:
8095 mutex_unlock(&shares_mutex);
8096 return 0;
8097}
8098#else /* CONFIG_FAIR_GROUP_SCHED */
8099
8100void free_fair_sched_group(struct task_group *tg) { }
8101
8102int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8103{
8104 return 1;
8105}
8106
8107void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8108
8109#endif /* CONFIG_FAIR_GROUP_SCHED */
8110
810b3817 8111
6d686f45 8112static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8113{
8114 struct sched_entity *se = &task->se;
0d721cea
PW
8115 unsigned int rr_interval = 0;
8116
8117 /*
8118 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8119 * idle runqueue:
8120 */
0d721cea 8121 if (rq->cfs.load.weight)
a59f4e07 8122 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8123
8124 return rr_interval;
8125}
8126
bf0f6f24
IM
8127/*
8128 * All the scheduling class methods:
8129 */
029632fb 8130const struct sched_class fair_sched_class = {
5522d5d5 8131 .next = &idle_sched_class,
bf0f6f24
IM
8132 .enqueue_task = enqueue_task_fair,
8133 .dequeue_task = dequeue_task_fair,
8134 .yield_task = yield_task_fair,
d95f4122 8135 .yield_to_task = yield_to_task_fair,
bf0f6f24 8136
2e09bf55 8137 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8138
8139 .pick_next_task = pick_next_task_fair,
8140 .put_prev_task = put_prev_task_fair,
8141
681f3e68 8142#ifdef CONFIG_SMP
4ce72a2c 8143 .select_task_rq = select_task_rq_fair,
0a74bef8 8144 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8145
0bcdcf28
CE
8146 .rq_online = rq_online_fair,
8147 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8148
8149 .task_waking = task_waking_fair,
681f3e68 8150#endif
bf0f6f24 8151
83b699ed 8152 .set_curr_task = set_curr_task_fair,
bf0f6f24 8153 .task_tick = task_tick_fair,
cd29fe6f 8154 .task_fork = task_fork_fair,
cb469845
SR
8155
8156 .prio_changed = prio_changed_fair,
da7a735e 8157 .switched_from = switched_from_fair,
cb469845 8158 .switched_to = switched_to_fair,
810b3817 8159
0d721cea
PW
8160 .get_rr_interval = get_rr_interval_fair,
8161
6e998916
SG
8162 .update_curr = update_curr_fair,
8163
810b3817 8164#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8165 .task_move_group = task_move_group_fair,
810b3817 8166#endif
bf0f6f24
IM
8167};
8168
8169#ifdef CONFIG_SCHED_DEBUG
029632fb 8170void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8171{
bf0f6f24
IM
8172 struct cfs_rq *cfs_rq;
8173
5973e5b9 8174 rcu_read_lock();
c3b64f1e 8175 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8176 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8177 rcu_read_unlock();
bf0f6f24
IM
8178}
8179#endif
029632fb
PZ
8180
8181__init void init_sched_fair_class(void)
8182{
8183#ifdef CONFIG_SMP
8184 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8185
3451d024 8186#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8187 nohz.next_balance = jiffies;
029632fb 8188 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8189 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8190#endif
8191#endif /* SMP */
8192
8193}
This page took 1.311274 seconds and 5 git commands to generate.