Don't trigger congestion wait on dirty-but-not-writeout pages
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
fb13c7ee
MG
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
e63da036
RR
1098static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
1099 long src_load, long dst_load,
1100 struct task_numa_env *env)
1101{
1102 long imb, old_imb;
1103
1104 /* We care about the slope of the imbalance, not the direction. */
1105 if (dst_load < src_load)
1106 swap(dst_load, src_load);
1107
1108 /* Is the difference below the threshold? */
1109 imb = dst_load * 100 - src_load * env->imbalance_pct;
1110 if (imb <= 0)
1111 return false;
1112
1113 /*
1114 * The imbalance is above the allowed threshold.
1115 * Compare it with the old imbalance.
1116 */
1117 if (orig_dst_load < orig_src_load)
1118 swap(orig_dst_load, orig_src_load);
1119
1120 old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;
1121
1122 /* Would this change make things worse? */
1123 return (old_imb > imb);
1124}
1125
fb13c7ee
MG
1126/*
1127 * This checks if the overall compute and NUMA accesses of the system would
1128 * be improved if the source tasks was migrated to the target dst_cpu taking
1129 * into account that it might be best if task running on the dst_cpu should
1130 * be exchanged with the source task
1131 */
887c290e
RR
1132static void task_numa_compare(struct task_numa_env *env,
1133 long taskimp, long groupimp)
fb13c7ee
MG
1134{
1135 struct rq *src_rq = cpu_rq(env->src_cpu);
1136 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1137 struct task_struct *cur;
e63da036
RR
1138 long orig_src_load, src_load;
1139 long orig_dst_load, dst_load;
fb13c7ee 1140 long load;
887c290e 1141 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1142
1143 rcu_read_lock();
1144 cur = ACCESS_ONCE(dst_rq->curr);
1145 if (cur->pid == 0) /* idle */
1146 cur = NULL;
1147
1148 /*
1149 * "imp" is the fault differential for the source task between the
1150 * source and destination node. Calculate the total differential for
1151 * the source task and potential destination task. The more negative
1152 * the value is, the more rmeote accesses that would be expected to
1153 * be incurred if the tasks were swapped.
1154 */
1155 if (cur) {
1156 /* Skip this swap candidate if cannot move to the source cpu */
1157 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1158 goto unlock;
1159
887c290e
RR
1160 /*
1161 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1162 * in any group then look only at task weights.
887c290e 1163 */
ca28aa53 1164 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1165 imp = taskimp + task_weight(cur, env->src_nid) -
1166 task_weight(cur, env->dst_nid);
ca28aa53
RR
1167 /*
1168 * Add some hysteresis to prevent swapping the
1169 * tasks within a group over tiny differences.
1170 */
1171 if (cur->numa_group)
1172 imp -= imp/16;
887c290e 1173 } else {
ca28aa53
RR
1174 /*
1175 * Compare the group weights. If a task is all by
1176 * itself (not part of a group), use the task weight
1177 * instead.
1178 */
1179 if (env->p->numa_group)
1180 imp = groupimp;
1181 else
1182 imp = taskimp;
1183
1184 if (cur->numa_group)
1185 imp += group_weight(cur, env->src_nid) -
1186 group_weight(cur, env->dst_nid);
1187 else
1188 imp += task_weight(cur, env->src_nid) -
1189 task_weight(cur, env->dst_nid);
887c290e 1190 }
fb13c7ee
MG
1191 }
1192
1193 if (imp < env->best_imp)
1194 goto unlock;
1195
1196 if (!cur) {
1197 /* Is there capacity at our destination? */
1198 if (env->src_stats.has_capacity &&
1199 !env->dst_stats.has_capacity)
1200 goto unlock;
1201
1202 goto balance;
1203 }
1204
1205 /* Balance doesn't matter much if we're running a task per cpu */
1206 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1207 goto assign;
1208
1209 /*
1210 * In the overloaded case, try and keep the load balanced.
1211 */
1212balance:
e63da036
RR
1213 orig_dst_load = env->dst_stats.load;
1214 orig_src_load = env->src_stats.load;
fb13c7ee
MG
1215
1216 /* XXX missing power terms */
1217 load = task_h_load(env->p);
e63da036
RR
1218 dst_load = orig_dst_load + load;
1219 src_load = orig_src_load - load;
fb13c7ee
MG
1220
1221 if (cur) {
1222 load = task_h_load(cur);
1223 dst_load -= load;
1224 src_load += load;
1225 }
1226
e63da036
RR
1227 if (load_too_imbalanced(orig_src_load, orig_dst_load,
1228 src_load, dst_load, env))
fb13c7ee
MG
1229 goto unlock;
1230
1231assign:
1232 task_numa_assign(env, cur, imp);
1233unlock:
1234 rcu_read_unlock();
1235}
1236
887c290e
RR
1237static void task_numa_find_cpu(struct task_numa_env *env,
1238 long taskimp, long groupimp)
2c8a50aa
MG
1239{
1240 int cpu;
1241
1242 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1243 /* Skip this CPU if the source task cannot migrate */
1244 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1245 continue;
1246
1247 env->dst_cpu = cpu;
887c290e 1248 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1249 }
1250}
1251
58d081b5
MG
1252static int task_numa_migrate(struct task_struct *p)
1253{
58d081b5
MG
1254 struct task_numa_env env = {
1255 .p = p,
fb13c7ee 1256
58d081b5 1257 .src_cpu = task_cpu(p),
b32e86b4 1258 .src_nid = task_node(p),
fb13c7ee
MG
1259
1260 .imbalance_pct = 112,
1261
1262 .best_task = NULL,
1263 .best_imp = 0,
1264 .best_cpu = -1
58d081b5
MG
1265 };
1266 struct sched_domain *sd;
887c290e 1267 unsigned long taskweight, groupweight;
2c8a50aa 1268 int nid, ret;
887c290e 1269 long taskimp, groupimp;
e6628d5b 1270
58d081b5 1271 /*
fb13c7ee
MG
1272 * Pick the lowest SD_NUMA domain, as that would have the smallest
1273 * imbalance and would be the first to start moving tasks about.
1274 *
1275 * And we want to avoid any moving of tasks about, as that would create
1276 * random movement of tasks -- counter the numa conditions we're trying
1277 * to satisfy here.
58d081b5
MG
1278 */
1279 rcu_read_lock();
fb13c7ee 1280 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1281 if (sd)
1282 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1283 rcu_read_unlock();
1284
46a73e8a
RR
1285 /*
1286 * Cpusets can break the scheduler domain tree into smaller
1287 * balance domains, some of which do not cross NUMA boundaries.
1288 * Tasks that are "trapped" in such domains cannot be migrated
1289 * elsewhere, so there is no point in (re)trying.
1290 */
1291 if (unlikely(!sd)) {
de1b301a 1292 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1293 return -EINVAL;
1294 }
1295
887c290e
RR
1296 taskweight = task_weight(p, env.src_nid);
1297 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1298 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1299 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1300 taskimp = task_weight(p, env.dst_nid) - taskweight;
1301 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1302 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1303
e1dda8a7
RR
1304 /* If the preferred nid has capacity, try to use it. */
1305 if (env.dst_stats.has_capacity)
887c290e 1306 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1307
1308 /* No space available on the preferred nid. Look elsewhere. */
1309 if (env.best_cpu == -1) {
2c8a50aa
MG
1310 for_each_online_node(nid) {
1311 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1312 continue;
58d081b5 1313
83e1d2cd 1314 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1315 taskimp = task_weight(p, nid) - taskweight;
1316 groupimp = group_weight(p, nid) - groupweight;
1317 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1318 continue;
1319
2c8a50aa
MG
1320 env.dst_nid = nid;
1321 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1322 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1323 }
1324 }
1325
fb13c7ee
MG
1326 /* No better CPU than the current one was found. */
1327 if (env.best_cpu == -1)
1328 return -EAGAIN;
1329
68d1b02a
RR
1330 /*
1331 * If the task is part of a workload that spans multiple NUMA nodes,
1332 * and is migrating into one of the workload's active nodes, remember
1333 * this node as the task's preferred numa node, so the workload can
1334 * settle down.
1335 * A task that migrated to a second choice node will be better off
1336 * trying for a better one later. Do not set the preferred node here.
1337 */
1338 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1339 sched_setnuma(p, env.dst_nid);
0ec8aa00 1340
04bb2f94
RR
1341 /*
1342 * Reset the scan period if the task is being rescheduled on an
1343 * alternative node to recheck if the tasks is now properly placed.
1344 */
1345 p->numa_scan_period = task_scan_min(p);
1346
fb13c7ee 1347 if (env.best_task == NULL) {
286549dc
MG
1348 ret = migrate_task_to(p, env.best_cpu);
1349 if (ret != 0)
1350 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1351 return ret;
1352 }
1353
1354 ret = migrate_swap(p, env.best_task);
286549dc
MG
1355 if (ret != 0)
1356 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1357 put_task_struct(env.best_task);
1358 return ret;
e6628d5b
MG
1359}
1360
6b9a7460
MG
1361/* Attempt to migrate a task to a CPU on the preferred node. */
1362static void numa_migrate_preferred(struct task_struct *p)
1363{
5085e2a3
RR
1364 unsigned long interval = HZ;
1365
2739d3ee 1366 /* This task has no NUMA fault statistics yet */
ff1df896 1367 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1368 return;
1369
2739d3ee 1370 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1371 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1372 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1373
1374 /* Success if task is already running on preferred CPU */
de1b301a 1375 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1376 return;
1377
1378 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1379 task_numa_migrate(p);
6b9a7460
MG
1380}
1381
20e07dea
RR
1382/*
1383 * Find the nodes on which the workload is actively running. We do this by
1384 * tracking the nodes from which NUMA hinting faults are triggered. This can
1385 * be different from the set of nodes where the workload's memory is currently
1386 * located.
1387 *
1388 * The bitmask is used to make smarter decisions on when to do NUMA page
1389 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1390 * are added when they cause over 6/16 of the maximum number of faults, but
1391 * only removed when they drop below 3/16.
1392 */
1393static void update_numa_active_node_mask(struct numa_group *numa_group)
1394{
1395 unsigned long faults, max_faults = 0;
1396 int nid;
1397
1398 for_each_online_node(nid) {
1399 faults = group_faults_cpu(numa_group, nid);
1400 if (faults > max_faults)
1401 max_faults = faults;
1402 }
1403
1404 for_each_online_node(nid) {
1405 faults = group_faults_cpu(numa_group, nid);
1406 if (!node_isset(nid, numa_group->active_nodes)) {
1407 if (faults > max_faults * 6 / 16)
1408 node_set(nid, numa_group->active_nodes);
1409 } else if (faults < max_faults * 3 / 16)
1410 node_clear(nid, numa_group->active_nodes);
1411 }
1412}
1413
04bb2f94
RR
1414/*
1415 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1416 * increments. The more local the fault statistics are, the higher the scan
1417 * period will be for the next scan window. If local/remote ratio is below
1418 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1419 * scan period will decrease
1420 */
1421#define NUMA_PERIOD_SLOTS 10
1422#define NUMA_PERIOD_THRESHOLD 3
1423
1424/*
1425 * Increase the scan period (slow down scanning) if the majority of
1426 * our memory is already on our local node, or if the majority of
1427 * the page accesses are shared with other processes.
1428 * Otherwise, decrease the scan period.
1429 */
1430static void update_task_scan_period(struct task_struct *p,
1431 unsigned long shared, unsigned long private)
1432{
1433 unsigned int period_slot;
1434 int ratio;
1435 int diff;
1436
1437 unsigned long remote = p->numa_faults_locality[0];
1438 unsigned long local = p->numa_faults_locality[1];
1439
1440 /*
1441 * If there were no record hinting faults then either the task is
1442 * completely idle or all activity is areas that are not of interest
1443 * to automatic numa balancing. Scan slower
1444 */
1445 if (local + shared == 0) {
1446 p->numa_scan_period = min(p->numa_scan_period_max,
1447 p->numa_scan_period << 1);
1448
1449 p->mm->numa_next_scan = jiffies +
1450 msecs_to_jiffies(p->numa_scan_period);
1451
1452 return;
1453 }
1454
1455 /*
1456 * Prepare to scale scan period relative to the current period.
1457 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1458 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1459 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1460 */
1461 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1462 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1463 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1464 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1465 if (!slot)
1466 slot = 1;
1467 diff = slot * period_slot;
1468 } else {
1469 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1470
1471 /*
1472 * Scale scan rate increases based on sharing. There is an
1473 * inverse relationship between the degree of sharing and
1474 * the adjustment made to the scanning period. Broadly
1475 * speaking the intent is that there is little point
1476 * scanning faster if shared accesses dominate as it may
1477 * simply bounce migrations uselessly
1478 */
04bb2f94
RR
1479 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1480 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1481 }
1482
1483 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1484 task_scan_min(p), task_scan_max(p));
1485 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1486}
1487
7e2703e6
RR
1488/*
1489 * Get the fraction of time the task has been running since the last
1490 * NUMA placement cycle. The scheduler keeps similar statistics, but
1491 * decays those on a 32ms period, which is orders of magnitude off
1492 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1493 * stats only if the task is so new there are no NUMA statistics yet.
1494 */
1495static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1496{
1497 u64 runtime, delta, now;
1498 /* Use the start of this time slice to avoid calculations. */
1499 now = p->se.exec_start;
1500 runtime = p->se.sum_exec_runtime;
1501
1502 if (p->last_task_numa_placement) {
1503 delta = runtime - p->last_sum_exec_runtime;
1504 *period = now - p->last_task_numa_placement;
1505 } else {
1506 delta = p->se.avg.runnable_avg_sum;
1507 *period = p->se.avg.runnable_avg_period;
1508 }
1509
1510 p->last_sum_exec_runtime = runtime;
1511 p->last_task_numa_placement = now;
1512
1513 return delta;
1514}
1515
cbee9f88
PZ
1516static void task_numa_placement(struct task_struct *p)
1517{
83e1d2cd
MG
1518 int seq, nid, max_nid = -1, max_group_nid = -1;
1519 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1520 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1521 unsigned long total_faults;
1522 u64 runtime, period;
7dbd13ed 1523 spinlock_t *group_lock = NULL;
cbee9f88 1524
2832bc19 1525 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1526 if (p->numa_scan_seq == seq)
1527 return;
1528 p->numa_scan_seq = seq;
598f0ec0 1529 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1530
7e2703e6
RR
1531 total_faults = p->numa_faults_locality[0] +
1532 p->numa_faults_locality[1];
1533 runtime = numa_get_avg_runtime(p, &period);
1534
7dbd13ed
MG
1535 /* If the task is part of a group prevent parallel updates to group stats */
1536 if (p->numa_group) {
1537 group_lock = &p->numa_group->lock;
60e69eed 1538 spin_lock_irq(group_lock);
7dbd13ed
MG
1539 }
1540
688b7585
MG
1541 /* Find the node with the highest number of faults */
1542 for_each_online_node(nid) {
83e1d2cd 1543 unsigned long faults = 0, group_faults = 0;
ac8e895b 1544 int priv, i;
745d6147 1545
be1e4e76 1546 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1547 long diff, f_diff, f_weight;
8c8a743c 1548
ac8e895b 1549 i = task_faults_idx(nid, priv);
745d6147 1550
ac8e895b 1551 /* Decay existing window, copy faults since last scan */
35664fd4 1552 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1553 fault_types[priv] += p->numa_faults_buffer_memory[i];
1554 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1555
7e2703e6
RR
1556 /*
1557 * Normalize the faults_from, so all tasks in a group
1558 * count according to CPU use, instead of by the raw
1559 * number of faults. Tasks with little runtime have
1560 * little over-all impact on throughput, and thus their
1561 * faults are less important.
1562 */
1563 f_weight = div64_u64(runtime << 16, period + 1);
1564 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1565 (total_faults + 1);
35664fd4 1566 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1567 p->numa_faults_buffer_cpu[i] = 0;
1568
35664fd4
RR
1569 p->numa_faults_memory[i] += diff;
1570 p->numa_faults_cpu[i] += f_diff;
ff1df896 1571 faults += p->numa_faults_memory[i];
83e1d2cd 1572 p->total_numa_faults += diff;
8c8a743c
PZ
1573 if (p->numa_group) {
1574 /* safe because we can only change our own group */
989348b5 1575 p->numa_group->faults[i] += diff;
50ec8a40 1576 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1577 p->numa_group->total_faults += diff;
1578 group_faults += p->numa_group->faults[i];
8c8a743c 1579 }
ac8e895b
MG
1580 }
1581
688b7585
MG
1582 if (faults > max_faults) {
1583 max_faults = faults;
1584 max_nid = nid;
1585 }
83e1d2cd
MG
1586
1587 if (group_faults > max_group_faults) {
1588 max_group_faults = group_faults;
1589 max_group_nid = nid;
1590 }
1591 }
1592
04bb2f94
RR
1593 update_task_scan_period(p, fault_types[0], fault_types[1]);
1594
7dbd13ed 1595 if (p->numa_group) {
20e07dea 1596 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1597 /*
1598 * If the preferred task and group nids are different,
1599 * iterate over the nodes again to find the best place.
1600 */
1601 if (max_nid != max_group_nid) {
1602 unsigned long weight, max_weight = 0;
1603
1604 for_each_online_node(nid) {
1605 weight = task_weight(p, nid) + group_weight(p, nid);
1606 if (weight > max_weight) {
1607 max_weight = weight;
1608 max_nid = nid;
1609 }
83e1d2cd
MG
1610 }
1611 }
7dbd13ed 1612
60e69eed 1613 spin_unlock_irq(group_lock);
688b7585
MG
1614 }
1615
6b9a7460 1616 /* Preferred node as the node with the most faults */
3a7053b3 1617 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1618 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1619 sched_setnuma(p, max_nid);
6b9a7460 1620 numa_migrate_preferred(p);
3a7053b3 1621 }
cbee9f88
PZ
1622}
1623
8c8a743c
PZ
1624static inline int get_numa_group(struct numa_group *grp)
1625{
1626 return atomic_inc_not_zero(&grp->refcount);
1627}
1628
1629static inline void put_numa_group(struct numa_group *grp)
1630{
1631 if (atomic_dec_and_test(&grp->refcount))
1632 kfree_rcu(grp, rcu);
1633}
1634
3e6a9418
MG
1635static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1636 int *priv)
8c8a743c
PZ
1637{
1638 struct numa_group *grp, *my_grp;
1639 struct task_struct *tsk;
1640 bool join = false;
1641 int cpu = cpupid_to_cpu(cpupid);
1642 int i;
1643
1644 if (unlikely(!p->numa_group)) {
1645 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1646 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1647
1648 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1649 if (!grp)
1650 return;
1651
1652 atomic_set(&grp->refcount, 1);
1653 spin_lock_init(&grp->lock);
1654 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1655 grp->gid = p->pid;
50ec8a40 1656 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1657 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1658 nr_node_ids;
8c8a743c 1659
20e07dea
RR
1660 node_set(task_node(current), grp->active_nodes);
1661
be1e4e76 1662 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1663 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1664
989348b5 1665 grp->total_faults = p->total_numa_faults;
83e1d2cd 1666
8c8a743c
PZ
1667 list_add(&p->numa_entry, &grp->task_list);
1668 grp->nr_tasks++;
1669 rcu_assign_pointer(p->numa_group, grp);
1670 }
1671
1672 rcu_read_lock();
1673 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1674
1675 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1676 goto no_join;
8c8a743c
PZ
1677
1678 grp = rcu_dereference(tsk->numa_group);
1679 if (!grp)
3354781a 1680 goto no_join;
8c8a743c
PZ
1681
1682 my_grp = p->numa_group;
1683 if (grp == my_grp)
3354781a 1684 goto no_join;
8c8a743c
PZ
1685
1686 /*
1687 * Only join the other group if its bigger; if we're the bigger group,
1688 * the other task will join us.
1689 */
1690 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1691 goto no_join;
8c8a743c
PZ
1692
1693 /*
1694 * Tie-break on the grp address.
1695 */
1696 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1697 goto no_join;
8c8a743c 1698
dabe1d99
RR
1699 /* Always join threads in the same process. */
1700 if (tsk->mm == current->mm)
1701 join = true;
1702
1703 /* Simple filter to avoid false positives due to PID collisions */
1704 if (flags & TNF_SHARED)
1705 join = true;
8c8a743c 1706
3e6a9418
MG
1707 /* Update priv based on whether false sharing was detected */
1708 *priv = !join;
1709
dabe1d99 1710 if (join && !get_numa_group(grp))
3354781a 1711 goto no_join;
8c8a743c 1712
8c8a743c
PZ
1713 rcu_read_unlock();
1714
1715 if (!join)
1716 return;
1717
60e69eed
MG
1718 BUG_ON(irqs_disabled());
1719 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1720
be1e4e76 1721 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1722 my_grp->faults[i] -= p->numa_faults_memory[i];
1723 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1724 }
989348b5
MG
1725 my_grp->total_faults -= p->total_numa_faults;
1726 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1727
1728 list_move(&p->numa_entry, &grp->task_list);
1729 my_grp->nr_tasks--;
1730 grp->nr_tasks++;
1731
1732 spin_unlock(&my_grp->lock);
60e69eed 1733 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1734
1735 rcu_assign_pointer(p->numa_group, grp);
1736
1737 put_numa_group(my_grp);
3354781a
PZ
1738 return;
1739
1740no_join:
1741 rcu_read_unlock();
1742 return;
8c8a743c
PZ
1743}
1744
1745void task_numa_free(struct task_struct *p)
1746{
1747 struct numa_group *grp = p->numa_group;
ff1df896 1748 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1749 unsigned long flags;
1750 int i;
8c8a743c
PZ
1751
1752 if (grp) {
e9dd685c 1753 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1754 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1755 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1756 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1757
8c8a743c
PZ
1758 list_del(&p->numa_entry);
1759 grp->nr_tasks--;
e9dd685c 1760 spin_unlock_irqrestore(&grp->lock, flags);
8c8a743c
PZ
1761 rcu_assign_pointer(p->numa_group, NULL);
1762 put_numa_group(grp);
1763 }
1764
ff1df896
RR
1765 p->numa_faults_memory = NULL;
1766 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1767 p->numa_faults_cpu= NULL;
1768 p->numa_faults_buffer_cpu = NULL;
82727018 1769 kfree(numa_faults);
8c8a743c
PZ
1770}
1771
cbee9f88
PZ
1772/*
1773 * Got a PROT_NONE fault for a page on @node.
1774 */
58b46da3 1775void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1776{
1777 struct task_struct *p = current;
6688cc05 1778 bool migrated = flags & TNF_MIGRATED;
58b46da3 1779 int cpu_node = task_node(current);
792568ec 1780 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1781 int priv;
cbee9f88 1782
10e84b97 1783 if (!numabalancing_enabled)
1a687c2e
MG
1784 return;
1785
9ff1d9ff
MG
1786 /* for example, ksmd faulting in a user's mm */
1787 if (!p->mm)
1788 return;
1789
82727018
RR
1790 /* Do not worry about placement if exiting */
1791 if (p->state == TASK_DEAD)
1792 return;
1793
f809ca9a 1794 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1795 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1796 int size = sizeof(*p->numa_faults_memory) *
1797 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1798
be1e4e76 1799 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1800 if (!p->numa_faults_memory)
f809ca9a 1801 return;
745d6147 1802
ff1df896 1803 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1804 /*
1805 * The averaged statistics, shared & private, memory & cpu,
1806 * occupy the first half of the array. The second half of the
1807 * array is for current counters, which are averaged into the
1808 * first set by task_numa_placement.
1809 */
50ec8a40
RR
1810 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1811 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1812 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1813 p->total_numa_faults = 0;
04bb2f94 1814 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1815 }
cbee9f88 1816
8c8a743c
PZ
1817 /*
1818 * First accesses are treated as private, otherwise consider accesses
1819 * to be private if the accessing pid has not changed
1820 */
1821 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1822 priv = 1;
1823 } else {
1824 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1825 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1826 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1827 }
1828
792568ec
RR
1829 /*
1830 * If a workload spans multiple NUMA nodes, a shared fault that
1831 * occurs wholly within the set of nodes that the workload is
1832 * actively using should be counted as local. This allows the
1833 * scan rate to slow down when a workload has settled down.
1834 */
1835 if (!priv && !local && p->numa_group &&
1836 node_isset(cpu_node, p->numa_group->active_nodes) &&
1837 node_isset(mem_node, p->numa_group->active_nodes))
1838 local = 1;
1839
cbee9f88 1840 task_numa_placement(p);
f809ca9a 1841
2739d3ee
RR
1842 /*
1843 * Retry task to preferred node migration periodically, in case it
1844 * case it previously failed, or the scheduler moved us.
1845 */
1846 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1847 numa_migrate_preferred(p);
1848
b32e86b4
IM
1849 if (migrated)
1850 p->numa_pages_migrated += pages;
1851
58b46da3
RR
1852 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1853 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1854 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1855}
1856
6e5fb223
PZ
1857static void reset_ptenuma_scan(struct task_struct *p)
1858{
1859 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1860 p->mm->numa_scan_offset = 0;
1861}
1862
cbee9f88
PZ
1863/*
1864 * The expensive part of numa migration is done from task_work context.
1865 * Triggered from task_tick_numa().
1866 */
1867void task_numa_work(struct callback_head *work)
1868{
1869 unsigned long migrate, next_scan, now = jiffies;
1870 struct task_struct *p = current;
1871 struct mm_struct *mm = p->mm;
6e5fb223 1872 struct vm_area_struct *vma;
9f40604c 1873 unsigned long start, end;
598f0ec0 1874 unsigned long nr_pte_updates = 0;
9f40604c 1875 long pages;
cbee9f88
PZ
1876
1877 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1878
1879 work->next = work; /* protect against double add */
1880 /*
1881 * Who cares about NUMA placement when they're dying.
1882 *
1883 * NOTE: make sure not to dereference p->mm before this check,
1884 * exit_task_work() happens _after_ exit_mm() so we could be called
1885 * without p->mm even though we still had it when we enqueued this
1886 * work.
1887 */
1888 if (p->flags & PF_EXITING)
1889 return;
1890
930aa174 1891 if (!mm->numa_next_scan) {
7e8d16b6
MG
1892 mm->numa_next_scan = now +
1893 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1894 }
1895
cbee9f88
PZ
1896 /*
1897 * Enforce maximal scan/migration frequency..
1898 */
1899 migrate = mm->numa_next_scan;
1900 if (time_before(now, migrate))
1901 return;
1902
598f0ec0
MG
1903 if (p->numa_scan_period == 0) {
1904 p->numa_scan_period_max = task_scan_max(p);
1905 p->numa_scan_period = task_scan_min(p);
1906 }
cbee9f88 1907
fb003b80 1908 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1909 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1910 return;
1911
19a78d11
PZ
1912 /*
1913 * Delay this task enough that another task of this mm will likely win
1914 * the next time around.
1915 */
1916 p->node_stamp += 2 * TICK_NSEC;
1917
9f40604c
MG
1918 start = mm->numa_scan_offset;
1919 pages = sysctl_numa_balancing_scan_size;
1920 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1921 if (!pages)
1922 return;
cbee9f88 1923
6e5fb223 1924 down_read(&mm->mmap_sem);
9f40604c 1925 vma = find_vma(mm, start);
6e5fb223
PZ
1926 if (!vma) {
1927 reset_ptenuma_scan(p);
9f40604c 1928 start = 0;
6e5fb223
PZ
1929 vma = mm->mmap;
1930 }
9f40604c 1931 for (; vma; vma = vma->vm_next) {
fc314724 1932 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1933 continue;
1934
4591ce4f
MG
1935 /*
1936 * Shared library pages mapped by multiple processes are not
1937 * migrated as it is expected they are cache replicated. Avoid
1938 * hinting faults in read-only file-backed mappings or the vdso
1939 * as migrating the pages will be of marginal benefit.
1940 */
1941 if (!vma->vm_mm ||
1942 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1943 continue;
1944
3c67f474
MG
1945 /*
1946 * Skip inaccessible VMAs to avoid any confusion between
1947 * PROT_NONE and NUMA hinting ptes
1948 */
1949 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1950 continue;
4591ce4f 1951
9f40604c
MG
1952 do {
1953 start = max(start, vma->vm_start);
1954 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1955 end = min(end, vma->vm_end);
598f0ec0
MG
1956 nr_pte_updates += change_prot_numa(vma, start, end);
1957
1958 /*
1959 * Scan sysctl_numa_balancing_scan_size but ensure that
1960 * at least one PTE is updated so that unused virtual
1961 * address space is quickly skipped.
1962 */
1963 if (nr_pte_updates)
1964 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1965
9f40604c
MG
1966 start = end;
1967 if (pages <= 0)
1968 goto out;
3cf1962c
RR
1969
1970 cond_resched();
9f40604c 1971 } while (end != vma->vm_end);
cbee9f88 1972 }
6e5fb223 1973
9f40604c 1974out:
6e5fb223 1975 /*
c69307d5
PZ
1976 * It is possible to reach the end of the VMA list but the last few
1977 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1978 * would find the !migratable VMA on the next scan but not reset the
1979 * scanner to the start so check it now.
6e5fb223
PZ
1980 */
1981 if (vma)
9f40604c 1982 mm->numa_scan_offset = start;
6e5fb223
PZ
1983 else
1984 reset_ptenuma_scan(p);
1985 up_read(&mm->mmap_sem);
cbee9f88
PZ
1986}
1987
1988/*
1989 * Drive the periodic memory faults..
1990 */
1991void task_tick_numa(struct rq *rq, struct task_struct *curr)
1992{
1993 struct callback_head *work = &curr->numa_work;
1994 u64 period, now;
1995
1996 /*
1997 * We don't care about NUMA placement if we don't have memory.
1998 */
1999 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2000 return;
2001
2002 /*
2003 * Using runtime rather than walltime has the dual advantage that
2004 * we (mostly) drive the selection from busy threads and that the
2005 * task needs to have done some actual work before we bother with
2006 * NUMA placement.
2007 */
2008 now = curr->se.sum_exec_runtime;
2009 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2010
2011 if (now - curr->node_stamp > period) {
4b96a29b 2012 if (!curr->node_stamp)
598f0ec0 2013 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2014 curr->node_stamp += period;
cbee9f88
PZ
2015
2016 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2017 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2018 task_work_add(curr, work, true);
2019 }
2020 }
2021}
2022#else
2023static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2024{
2025}
0ec8aa00
PZ
2026
2027static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2028{
2029}
2030
2031static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2032{
2033}
cbee9f88
PZ
2034#endif /* CONFIG_NUMA_BALANCING */
2035
30cfdcfc
DA
2036static void
2037account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2038{
2039 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2040 if (!parent_entity(se))
029632fb 2041 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2042#ifdef CONFIG_SMP
0ec8aa00
PZ
2043 if (entity_is_task(se)) {
2044 struct rq *rq = rq_of(cfs_rq);
2045
2046 account_numa_enqueue(rq, task_of(se));
2047 list_add(&se->group_node, &rq->cfs_tasks);
2048 }
367456c7 2049#endif
30cfdcfc 2050 cfs_rq->nr_running++;
30cfdcfc
DA
2051}
2052
2053static void
2054account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2055{
2056 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2057 if (!parent_entity(se))
029632fb 2058 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2059 if (entity_is_task(se)) {
2060 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2061 list_del_init(&se->group_node);
0ec8aa00 2062 }
30cfdcfc 2063 cfs_rq->nr_running--;
30cfdcfc
DA
2064}
2065
3ff6dcac
YZ
2066#ifdef CONFIG_FAIR_GROUP_SCHED
2067# ifdef CONFIG_SMP
cf5f0acf
PZ
2068static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2069{
2070 long tg_weight;
2071
2072 /*
2073 * Use this CPU's actual weight instead of the last load_contribution
2074 * to gain a more accurate current total weight. See
2075 * update_cfs_rq_load_contribution().
2076 */
bf5b986e 2077 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2078 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2079 tg_weight += cfs_rq->load.weight;
2080
2081 return tg_weight;
2082}
2083
6d5ab293 2084static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2085{
cf5f0acf 2086 long tg_weight, load, shares;
3ff6dcac 2087
cf5f0acf 2088 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2089 load = cfs_rq->load.weight;
3ff6dcac 2090
3ff6dcac 2091 shares = (tg->shares * load);
cf5f0acf
PZ
2092 if (tg_weight)
2093 shares /= tg_weight;
3ff6dcac
YZ
2094
2095 if (shares < MIN_SHARES)
2096 shares = MIN_SHARES;
2097 if (shares > tg->shares)
2098 shares = tg->shares;
2099
2100 return shares;
2101}
3ff6dcac 2102# else /* CONFIG_SMP */
6d5ab293 2103static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2104{
2105 return tg->shares;
2106}
3ff6dcac 2107# endif /* CONFIG_SMP */
2069dd75
PZ
2108static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2109 unsigned long weight)
2110{
19e5eebb
PT
2111 if (se->on_rq) {
2112 /* commit outstanding execution time */
2113 if (cfs_rq->curr == se)
2114 update_curr(cfs_rq);
2069dd75 2115 account_entity_dequeue(cfs_rq, se);
19e5eebb 2116 }
2069dd75
PZ
2117
2118 update_load_set(&se->load, weight);
2119
2120 if (se->on_rq)
2121 account_entity_enqueue(cfs_rq, se);
2122}
2123
82958366
PT
2124static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2125
6d5ab293 2126static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2127{
2128 struct task_group *tg;
2129 struct sched_entity *se;
3ff6dcac 2130 long shares;
2069dd75 2131
2069dd75
PZ
2132 tg = cfs_rq->tg;
2133 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2134 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2135 return;
3ff6dcac
YZ
2136#ifndef CONFIG_SMP
2137 if (likely(se->load.weight == tg->shares))
2138 return;
2139#endif
6d5ab293 2140 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2141
2142 reweight_entity(cfs_rq_of(se), se, shares);
2143}
2144#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2145static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2146{
2147}
2148#endif /* CONFIG_FAIR_GROUP_SCHED */
2149
141965c7 2150#ifdef CONFIG_SMP
5b51f2f8
PT
2151/*
2152 * We choose a half-life close to 1 scheduling period.
2153 * Note: The tables below are dependent on this value.
2154 */
2155#define LOAD_AVG_PERIOD 32
2156#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2157#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2158
2159/* Precomputed fixed inverse multiplies for multiplication by y^n */
2160static const u32 runnable_avg_yN_inv[] = {
2161 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2162 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2163 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2164 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2165 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2166 0x85aac367, 0x82cd8698,
2167};
2168
2169/*
2170 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2171 * over-estimates when re-combining.
2172 */
2173static const u32 runnable_avg_yN_sum[] = {
2174 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2175 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2176 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2177};
2178
9d85f21c
PT
2179/*
2180 * Approximate:
2181 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2182 */
2183static __always_inline u64 decay_load(u64 val, u64 n)
2184{
5b51f2f8
PT
2185 unsigned int local_n;
2186
2187 if (!n)
2188 return val;
2189 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2190 return 0;
2191
2192 /* after bounds checking we can collapse to 32-bit */
2193 local_n = n;
2194
2195 /*
2196 * As y^PERIOD = 1/2, we can combine
2197 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2198 * With a look-up table which covers k^n (n<PERIOD)
2199 *
2200 * To achieve constant time decay_load.
2201 */
2202 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2203 val >>= local_n / LOAD_AVG_PERIOD;
2204 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2205 }
2206
5b51f2f8
PT
2207 val *= runnable_avg_yN_inv[local_n];
2208 /* We don't use SRR here since we always want to round down. */
2209 return val >> 32;
2210}
2211
2212/*
2213 * For updates fully spanning n periods, the contribution to runnable
2214 * average will be: \Sum 1024*y^n
2215 *
2216 * We can compute this reasonably efficiently by combining:
2217 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2218 */
2219static u32 __compute_runnable_contrib(u64 n)
2220{
2221 u32 contrib = 0;
2222
2223 if (likely(n <= LOAD_AVG_PERIOD))
2224 return runnable_avg_yN_sum[n];
2225 else if (unlikely(n >= LOAD_AVG_MAX_N))
2226 return LOAD_AVG_MAX;
2227
2228 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2229 do {
2230 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2231 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2232
2233 n -= LOAD_AVG_PERIOD;
2234 } while (n > LOAD_AVG_PERIOD);
2235
2236 contrib = decay_load(contrib, n);
2237 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2238}
2239
2240/*
2241 * We can represent the historical contribution to runnable average as the
2242 * coefficients of a geometric series. To do this we sub-divide our runnable
2243 * history into segments of approximately 1ms (1024us); label the segment that
2244 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2245 *
2246 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2247 * p0 p1 p2
2248 * (now) (~1ms ago) (~2ms ago)
2249 *
2250 * Let u_i denote the fraction of p_i that the entity was runnable.
2251 *
2252 * We then designate the fractions u_i as our co-efficients, yielding the
2253 * following representation of historical load:
2254 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2255 *
2256 * We choose y based on the with of a reasonably scheduling period, fixing:
2257 * y^32 = 0.5
2258 *
2259 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2260 * approximately half as much as the contribution to load within the last ms
2261 * (u_0).
2262 *
2263 * When a period "rolls over" and we have new u_0`, multiplying the previous
2264 * sum again by y is sufficient to update:
2265 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2266 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2267 */
2268static __always_inline int __update_entity_runnable_avg(u64 now,
2269 struct sched_avg *sa,
2270 int runnable)
2271{
5b51f2f8
PT
2272 u64 delta, periods;
2273 u32 runnable_contrib;
9d85f21c
PT
2274 int delta_w, decayed = 0;
2275
2276 delta = now - sa->last_runnable_update;
2277 /*
2278 * This should only happen when time goes backwards, which it
2279 * unfortunately does during sched clock init when we swap over to TSC.
2280 */
2281 if ((s64)delta < 0) {
2282 sa->last_runnable_update = now;
2283 return 0;
2284 }
2285
2286 /*
2287 * Use 1024ns as the unit of measurement since it's a reasonable
2288 * approximation of 1us and fast to compute.
2289 */
2290 delta >>= 10;
2291 if (!delta)
2292 return 0;
2293 sa->last_runnable_update = now;
2294
2295 /* delta_w is the amount already accumulated against our next period */
2296 delta_w = sa->runnable_avg_period % 1024;
2297 if (delta + delta_w >= 1024) {
2298 /* period roll-over */
2299 decayed = 1;
2300
2301 /*
2302 * Now that we know we're crossing a period boundary, figure
2303 * out how much from delta we need to complete the current
2304 * period and accrue it.
2305 */
2306 delta_w = 1024 - delta_w;
5b51f2f8
PT
2307 if (runnable)
2308 sa->runnable_avg_sum += delta_w;
2309 sa->runnable_avg_period += delta_w;
2310
2311 delta -= delta_w;
2312
2313 /* Figure out how many additional periods this update spans */
2314 periods = delta / 1024;
2315 delta %= 1024;
2316
2317 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2318 periods + 1);
2319 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2320 periods + 1);
2321
2322 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2323 runnable_contrib = __compute_runnable_contrib(periods);
2324 if (runnable)
2325 sa->runnable_avg_sum += runnable_contrib;
2326 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2327 }
2328
2329 /* Remainder of delta accrued against u_0` */
2330 if (runnable)
2331 sa->runnable_avg_sum += delta;
2332 sa->runnable_avg_period += delta;
2333
2334 return decayed;
2335}
2336
9ee474f5 2337/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2338static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2339{
2340 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2341 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2342
2343 decays -= se->avg.decay_count;
2344 if (!decays)
aff3e498 2345 return 0;
9ee474f5
PT
2346
2347 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2348 se->avg.decay_count = 0;
aff3e498
PT
2349
2350 return decays;
9ee474f5
PT
2351}
2352
c566e8e9
PT
2353#ifdef CONFIG_FAIR_GROUP_SCHED
2354static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2355 int force_update)
2356{
2357 struct task_group *tg = cfs_rq->tg;
bf5b986e 2358 long tg_contrib;
c566e8e9
PT
2359
2360 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2361 tg_contrib -= cfs_rq->tg_load_contrib;
2362
bf5b986e
AS
2363 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2364 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2365 cfs_rq->tg_load_contrib += tg_contrib;
2366 }
2367}
8165e145 2368
bb17f655
PT
2369/*
2370 * Aggregate cfs_rq runnable averages into an equivalent task_group
2371 * representation for computing load contributions.
2372 */
2373static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2374 struct cfs_rq *cfs_rq)
2375{
2376 struct task_group *tg = cfs_rq->tg;
2377 long contrib;
2378
2379 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2380 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2381 sa->runnable_avg_period + 1);
2382 contrib -= cfs_rq->tg_runnable_contrib;
2383
2384 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2385 atomic_add(contrib, &tg->runnable_avg);
2386 cfs_rq->tg_runnable_contrib += contrib;
2387 }
2388}
2389
8165e145
PT
2390static inline void __update_group_entity_contrib(struct sched_entity *se)
2391{
2392 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2393 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2394 int runnable_avg;
2395
8165e145
PT
2396 u64 contrib;
2397
2398 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2399 se->avg.load_avg_contrib = div_u64(contrib,
2400 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2401
2402 /*
2403 * For group entities we need to compute a correction term in the case
2404 * that they are consuming <1 cpu so that we would contribute the same
2405 * load as a task of equal weight.
2406 *
2407 * Explicitly co-ordinating this measurement would be expensive, but
2408 * fortunately the sum of each cpus contribution forms a usable
2409 * lower-bound on the true value.
2410 *
2411 * Consider the aggregate of 2 contributions. Either they are disjoint
2412 * (and the sum represents true value) or they are disjoint and we are
2413 * understating by the aggregate of their overlap.
2414 *
2415 * Extending this to N cpus, for a given overlap, the maximum amount we
2416 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2417 * cpus that overlap for this interval and w_i is the interval width.
2418 *
2419 * On a small machine; the first term is well-bounded which bounds the
2420 * total error since w_i is a subset of the period. Whereas on a
2421 * larger machine, while this first term can be larger, if w_i is the
2422 * of consequential size guaranteed to see n_i*w_i quickly converge to
2423 * our upper bound of 1-cpu.
2424 */
2425 runnable_avg = atomic_read(&tg->runnable_avg);
2426 if (runnable_avg < NICE_0_LOAD) {
2427 se->avg.load_avg_contrib *= runnable_avg;
2428 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2429 }
8165e145 2430}
f5f9739d
DE
2431
2432static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2433{
2434 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2435 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2436}
6e83125c 2437#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2438static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2439 int force_update) {}
bb17f655
PT
2440static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2441 struct cfs_rq *cfs_rq) {}
8165e145 2442static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2443static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2444#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2445
8165e145
PT
2446static inline void __update_task_entity_contrib(struct sched_entity *se)
2447{
2448 u32 contrib;
2449
2450 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2451 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2452 contrib /= (se->avg.runnable_avg_period + 1);
2453 se->avg.load_avg_contrib = scale_load(contrib);
2454}
2455
2dac754e
PT
2456/* Compute the current contribution to load_avg by se, return any delta */
2457static long __update_entity_load_avg_contrib(struct sched_entity *se)
2458{
2459 long old_contrib = se->avg.load_avg_contrib;
2460
8165e145
PT
2461 if (entity_is_task(se)) {
2462 __update_task_entity_contrib(se);
2463 } else {
bb17f655 2464 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2465 __update_group_entity_contrib(se);
2466 }
2dac754e
PT
2467
2468 return se->avg.load_avg_contrib - old_contrib;
2469}
2470
9ee474f5
PT
2471static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2472 long load_contrib)
2473{
2474 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2475 cfs_rq->blocked_load_avg -= load_contrib;
2476 else
2477 cfs_rq->blocked_load_avg = 0;
2478}
2479
f1b17280
PT
2480static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2481
9d85f21c 2482/* Update a sched_entity's runnable average */
9ee474f5
PT
2483static inline void update_entity_load_avg(struct sched_entity *se,
2484 int update_cfs_rq)
9d85f21c 2485{
2dac754e
PT
2486 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2487 long contrib_delta;
f1b17280 2488 u64 now;
2dac754e 2489
f1b17280
PT
2490 /*
2491 * For a group entity we need to use their owned cfs_rq_clock_task() in
2492 * case they are the parent of a throttled hierarchy.
2493 */
2494 if (entity_is_task(se))
2495 now = cfs_rq_clock_task(cfs_rq);
2496 else
2497 now = cfs_rq_clock_task(group_cfs_rq(se));
2498
2499 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2500 return;
2501
2502 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2503
2504 if (!update_cfs_rq)
2505 return;
2506
2dac754e
PT
2507 if (se->on_rq)
2508 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2509 else
2510 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2511}
2512
2513/*
2514 * Decay the load contributed by all blocked children and account this so that
2515 * their contribution may appropriately discounted when they wake up.
2516 */
aff3e498 2517static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2518{
f1b17280 2519 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2520 u64 decays;
2521
2522 decays = now - cfs_rq->last_decay;
aff3e498 2523 if (!decays && !force_update)
9ee474f5
PT
2524 return;
2525
2509940f
AS
2526 if (atomic_long_read(&cfs_rq->removed_load)) {
2527 unsigned long removed_load;
2528 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2529 subtract_blocked_load_contrib(cfs_rq, removed_load);
2530 }
9ee474f5 2531
aff3e498
PT
2532 if (decays) {
2533 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2534 decays);
2535 atomic64_add(decays, &cfs_rq->decay_counter);
2536 cfs_rq->last_decay = now;
2537 }
c566e8e9
PT
2538
2539 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2540}
18bf2805 2541
2dac754e
PT
2542/* Add the load generated by se into cfs_rq's child load-average */
2543static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2544 struct sched_entity *se,
2545 int wakeup)
2dac754e 2546{
aff3e498
PT
2547 /*
2548 * We track migrations using entity decay_count <= 0, on a wake-up
2549 * migration we use a negative decay count to track the remote decays
2550 * accumulated while sleeping.
a75cdaa9
AS
2551 *
2552 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2553 * are seen by enqueue_entity_load_avg() as a migration with an already
2554 * constructed load_avg_contrib.
aff3e498
PT
2555 */
2556 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2557 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2558 if (se->avg.decay_count) {
2559 /*
2560 * In a wake-up migration we have to approximate the
2561 * time sleeping. This is because we can't synchronize
2562 * clock_task between the two cpus, and it is not
2563 * guaranteed to be read-safe. Instead, we can
2564 * approximate this using our carried decays, which are
2565 * explicitly atomically readable.
2566 */
2567 se->avg.last_runnable_update -= (-se->avg.decay_count)
2568 << 20;
2569 update_entity_load_avg(se, 0);
2570 /* Indicate that we're now synchronized and on-rq */
2571 se->avg.decay_count = 0;
2572 }
9ee474f5
PT
2573 wakeup = 0;
2574 } else {
9390675a 2575 __synchronize_entity_decay(se);
9ee474f5
PT
2576 }
2577
aff3e498
PT
2578 /* migrated tasks did not contribute to our blocked load */
2579 if (wakeup) {
9ee474f5 2580 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2581 update_entity_load_avg(se, 0);
2582 }
9ee474f5 2583
2dac754e 2584 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2585 /* we force update consideration on load-balancer moves */
2586 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2587}
2588
9ee474f5
PT
2589/*
2590 * Remove se's load from this cfs_rq child load-average, if the entity is
2591 * transitioning to a blocked state we track its projected decay using
2592 * blocked_load_avg.
2593 */
2dac754e 2594static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2595 struct sched_entity *se,
2596 int sleep)
2dac754e 2597{
9ee474f5 2598 update_entity_load_avg(se, 1);
aff3e498
PT
2599 /* we force update consideration on load-balancer moves */
2600 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2601
2dac754e 2602 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2603 if (sleep) {
2604 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2605 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2606 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2607}
642dbc39
VG
2608
2609/*
2610 * Update the rq's load with the elapsed running time before entering
2611 * idle. if the last scheduled task is not a CFS task, idle_enter will
2612 * be the only way to update the runnable statistic.
2613 */
2614void idle_enter_fair(struct rq *this_rq)
2615{
2616 update_rq_runnable_avg(this_rq, 1);
2617}
2618
2619/*
2620 * Update the rq's load with the elapsed idle time before a task is
2621 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2622 * be the only way to update the runnable statistic.
2623 */
2624void idle_exit_fair(struct rq *this_rq)
2625{
2626 update_rq_runnable_avg(this_rq, 0);
2627}
2628
6e83125c
PZ
2629static int idle_balance(struct rq *this_rq);
2630
38033c37
PZ
2631#else /* CONFIG_SMP */
2632
9ee474f5
PT
2633static inline void update_entity_load_avg(struct sched_entity *se,
2634 int update_cfs_rq) {}
18bf2805 2635static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2636static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2637 struct sched_entity *se,
2638 int wakeup) {}
2dac754e 2639static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2640 struct sched_entity *se,
2641 int sleep) {}
aff3e498
PT
2642static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2643 int force_update) {}
6e83125c
PZ
2644
2645static inline int idle_balance(struct rq *rq)
2646{
2647 return 0;
2648}
2649
38033c37 2650#endif /* CONFIG_SMP */
9d85f21c 2651
2396af69 2652static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2653{
bf0f6f24 2654#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2655 struct task_struct *tsk = NULL;
2656
2657 if (entity_is_task(se))
2658 tsk = task_of(se);
2659
41acab88 2660 if (se->statistics.sleep_start) {
78becc27 2661 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2662
2663 if ((s64)delta < 0)
2664 delta = 0;
2665
41acab88
LDM
2666 if (unlikely(delta > se->statistics.sleep_max))
2667 se->statistics.sleep_max = delta;
bf0f6f24 2668
8c79a045 2669 se->statistics.sleep_start = 0;
41acab88 2670 se->statistics.sum_sleep_runtime += delta;
9745512c 2671
768d0c27 2672 if (tsk) {
e414314c 2673 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2674 trace_sched_stat_sleep(tsk, delta);
2675 }
bf0f6f24 2676 }
41acab88 2677 if (se->statistics.block_start) {
78becc27 2678 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2679
2680 if ((s64)delta < 0)
2681 delta = 0;
2682
41acab88
LDM
2683 if (unlikely(delta > se->statistics.block_max))
2684 se->statistics.block_max = delta;
bf0f6f24 2685
8c79a045 2686 se->statistics.block_start = 0;
41acab88 2687 se->statistics.sum_sleep_runtime += delta;
30084fbd 2688
e414314c 2689 if (tsk) {
8f0dfc34 2690 if (tsk->in_iowait) {
41acab88
LDM
2691 se->statistics.iowait_sum += delta;
2692 se->statistics.iowait_count++;
768d0c27 2693 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2694 }
2695
b781a602
AV
2696 trace_sched_stat_blocked(tsk, delta);
2697
e414314c
PZ
2698 /*
2699 * Blocking time is in units of nanosecs, so shift by
2700 * 20 to get a milliseconds-range estimation of the
2701 * amount of time that the task spent sleeping:
2702 */
2703 if (unlikely(prof_on == SLEEP_PROFILING)) {
2704 profile_hits(SLEEP_PROFILING,
2705 (void *)get_wchan(tsk),
2706 delta >> 20);
2707 }
2708 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2709 }
bf0f6f24
IM
2710 }
2711#endif
2712}
2713
ddc97297
PZ
2714static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2715{
2716#ifdef CONFIG_SCHED_DEBUG
2717 s64 d = se->vruntime - cfs_rq->min_vruntime;
2718
2719 if (d < 0)
2720 d = -d;
2721
2722 if (d > 3*sysctl_sched_latency)
2723 schedstat_inc(cfs_rq, nr_spread_over);
2724#endif
2725}
2726
aeb73b04
PZ
2727static void
2728place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2729{
1af5f730 2730 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2731
2cb8600e
PZ
2732 /*
2733 * The 'current' period is already promised to the current tasks,
2734 * however the extra weight of the new task will slow them down a
2735 * little, place the new task so that it fits in the slot that
2736 * stays open at the end.
2737 */
94dfb5e7 2738 if (initial && sched_feat(START_DEBIT))
f9c0b095 2739 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2740
a2e7a7eb 2741 /* sleeps up to a single latency don't count. */
5ca9880c 2742 if (!initial) {
a2e7a7eb 2743 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2744
a2e7a7eb
MG
2745 /*
2746 * Halve their sleep time's effect, to allow
2747 * for a gentler effect of sleepers:
2748 */
2749 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2750 thresh >>= 1;
51e0304c 2751
a2e7a7eb 2752 vruntime -= thresh;
aeb73b04
PZ
2753 }
2754
b5d9d734 2755 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2756 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2757}
2758
d3d9dc33
PT
2759static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2760
bf0f6f24 2761static void
88ec22d3 2762enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2763{
88ec22d3
PZ
2764 /*
2765 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2766 * through calling update_curr().
88ec22d3 2767 */
371fd7e7 2768 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2769 se->vruntime += cfs_rq->min_vruntime;
2770
bf0f6f24 2771 /*
a2a2d680 2772 * Update run-time statistics of the 'current'.
bf0f6f24 2773 */
b7cc0896 2774 update_curr(cfs_rq);
f269ae04 2775 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2776 account_entity_enqueue(cfs_rq, se);
2777 update_cfs_shares(cfs_rq);
bf0f6f24 2778
88ec22d3 2779 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2780 place_entity(cfs_rq, se, 0);
2396af69 2781 enqueue_sleeper(cfs_rq, se);
e9acbff6 2782 }
bf0f6f24 2783
d2417e5a 2784 update_stats_enqueue(cfs_rq, se);
ddc97297 2785 check_spread(cfs_rq, se);
83b699ed
SV
2786 if (se != cfs_rq->curr)
2787 __enqueue_entity(cfs_rq, se);
2069dd75 2788 se->on_rq = 1;
3d4b47b4 2789
d3d9dc33 2790 if (cfs_rq->nr_running == 1) {
3d4b47b4 2791 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2792 check_enqueue_throttle(cfs_rq);
2793 }
bf0f6f24
IM
2794}
2795
2c13c919 2796static void __clear_buddies_last(struct sched_entity *se)
2002c695 2797{
2c13c919
RR
2798 for_each_sched_entity(se) {
2799 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2800 if (cfs_rq->last != se)
2c13c919 2801 break;
f1044799
PZ
2802
2803 cfs_rq->last = NULL;
2c13c919
RR
2804 }
2805}
2002c695 2806
2c13c919
RR
2807static void __clear_buddies_next(struct sched_entity *se)
2808{
2809 for_each_sched_entity(se) {
2810 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2811 if (cfs_rq->next != se)
2c13c919 2812 break;
f1044799
PZ
2813
2814 cfs_rq->next = NULL;
2c13c919 2815 }
2002c695
PZ
2816}
2817
ac53db59
RR
2818static void __clear_buddies_skip(struct sched_entity *se)
2819{
2820 for_each_sched_entity(se) {
2821 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2822 if (cfs_rq->skip != se)
ac53db59 2823 break;
f1044799
PZ
2824
2825 cfs_rq->skip = NULL;
ac53db59
RR
2826 }
2827}
2828
a571bbea
PZ
2829static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2830{
2c13c919
RR
2831 if (cfs_rq->last == se)
2832 __clear_buddies_last(se);
2833
2834 if (cfs_rq->next == se)
2835 __clear_buddies_next(se);
ac53db59
RR
2836
2837 if (cfs_rq->skip == se)
2838 __clear_buddies_skip(se);
a571bbea
PZ
2839}
2840
6c16a6dc 2841static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2842
bf0f6f24 2843static void
371fd7e7 2844dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2845{
a2a2d680
DA
2846 /*
2847 * Update run-time statistics of the 'current'.
2848 */
2849 update_curr(cfs_rq);
17bc14b7 2850 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2851
19b6a2e3 2852 update_stats_dequeue(cfs_rq, se);
371fd7e7 2853 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2854#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2855 if (entity_is_task(se)) {
2856 struct task_struct *tsk = task_of(se);
2857
2858 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2859 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2860 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2861 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2862 }
db36cc7d 2863#endif
67e9fb2a
PZ
2864 }
2865
2002c695 2866 clear_buddies(cfs_rq, se);
4793241b 2867
83b699ed 2868 if (se != cfs_rq->curr)
30cfdcfc 2869 __dequeue_entity(cfs_rq, se);
17bc14b7 2870 se->on_rq = 0;
30cfdcfc 2871 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2872
2873 /*
2874 * Normalize the entity after updating the min_vruntime because the
2875 * update can refer to the ->curr item and we need to reflect this
2876 * movement in our normalized position.
2877 */
371fd7e7 2878 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2879 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2880
d8b4986d
PT
2881 /* return excess runtime on last dequeue */
2882 return_cfs_rq_runtime(cfs_rq);
2883
1e876231 2884 update_min_vruntime(cfs_rq);
17bc14b7 2885 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2886}
2887
2888/*
2889 * Preempt the current task with a newly woken task if needed:
2890 */
7c92e54f 2891static void
2e09bf55 2892check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2893{
11697830 2894 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2895 struct sched_entity *se;
2896 s64 delta;
11697830 2897
6d0f0ebd 2898 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2899 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2900 if (delta_exec > ideal_runtime) {
bf0f6f24 2901 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2902 /*
2903 * The current task ran long enough, ensure it doesn't get
2904 * re-elected due to buddy favours.
2905 */
2906 clear_buddies(cfs_rq, curr);
f685ceac
MG
2907 return;
2908 }
2909
2910 /*
2911 * Ensure that a task that missed wakeup preemption by a
2912 * narrow margin doesn't have to wait for a full slice.
2913 * This also mitigates buddy induced latencies under load.
2914 */
f685ceac
MG
2915 if (delta_exec < sysctl_sched_min_granularity)
2916 return;
2917
f4cfb33e
WX
2918 se = __pick_first_entity(cfs_rq);
2919 delta = curr->vruntime - se->vruntime;
f685ceac 2920
f4cfb33e
WX
2921 if (delta < 0)
2922 return;
d7d82944 2923
f4cfb33e
WX
2924 if (delta > ideal_runtime)
2925 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2926}
2927
83b699ed 2928static void
8494f412 2929set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2930{
83b699ed
SV
2931 /* 'current' is not kept within the tree. */
2932 if (se->on_rq) {
2933 /*
2934 * Any task has to be enqueued before it get to execute on
2935 * a CPU. So account for the time it spent waiting on the
2936 * runqueue.
2937 */
2938 update_stats_wait_end(cfs_rq, se);
2939 __dequeue_entity(cfs_rq, se);
2940 }
2941
79303e9e 2942 update_stats_curr_start(cfs_rq, se);
429d43bc 2943 cfs_rq->curr = se;
eba1ed4b
IM
2944#ifdef CONFIG_SCHEDSTATS
2945 /*
2946 * Track our maximum slice length, if the CPU's load is at
2947 * least twice that of our own weight (i.e. dont track it
2948 * when there are only lesser-weight tasks around):
2949 */
495eca49 2950 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2951 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2952 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2953 }
2954#endif
4a55b450 2955 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2956}
2957
3f3a4904
PZ
2958static int
2959wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2960
ac53db59
RR
2961/*
2962 * Pick the next process, keeping these things in mind, in this order:
2963 * 1) keep things fair between processes/task groups
2964 * 2) pick the "next" process, since someone really wants that to run
2965 * 3) pick the "last" process, for cache locality
2966 * 4) do not run the "skip" process, if something else is available
2967 */
678d5718
PZ
2968static struct sched_entity *
2969pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2970{
678d5718
PZ
2971 struct sched_entity *left = __pick_first_entity(cfs_rq);
2972 struct sched_entity *se;
2973
2974 /*
2975 * If curr is set we have to see if its left of the leftmost entity
2976 * still in the tree, provided there was anything in the tree at all.
2977 */
2978 if (!left || (curr && entity_before(curr, left)))
2979 left = curr;
2980
2981 se = left; /* ideally we run the leftmost entity */
f4b6755f 2982
ac53db59
RR
2983 /*
2984 * Avoid running the skip buddy, if running something else can
2985 * be done without getting too unfair.
2986 */
2987 if (cfs_rq->skip == se) {
678d5718
PZ
2988 struct sched_entity *second;
2989
2990 if (se == curr) {
2991 second = __pick_first_entity(cfs_rq);
2992 } else {
2993 second = __pick_next_entity(se);
2994 if (!second || (curr && entity_before(curr, second)))
2995 second = curr;
2996 }
2997
ac53db59
RR
2998 if (second && wakeup_preempt_entity(second, left) < 1)
2999 se = second;
3000 }
aa2ac252 3001
f685ceac
MG
3002 /*
3003 * Prefer last buddy, try to return the CPU to a preempted task.
3004 */
3005 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3006 se = cfs_rq->last;
3007
ac53db59
RR
3008 /*
3009 * Someone really wants this to run. If it's not unfair, run it.
3010 */
3011 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3012 se = cfs_rq->next;
3013
f685ceac 3014 clear_buddies(cfs_rq, se);
4793241b
PZ
3015
3016 return se;
aa2ac252
PZ
3017}
3018
678d5718 3019static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3020
ab6cde26 3021static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3022{
3023 /*
3024 * If still on the runqueue then deactivate_task()
3025 * was not called and update_curr() has to be done:
3026 */
3027 if (prev->on_rq)
b7cc0896 3028 update_curr(cfs_rq);
bf0f6f24 3029
d3d9dc33
PT
3030 /* throttle cfs_rqs exceeding runtime */
3031 check_cfs_rq_runtime(cfs_rq);
3032
ddc97297 3033 check_spread(cfs_rq, prev);
30cfdcfc 3034 if (prev->on_rq) {
5870db5b 3035 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3036 /* Put 'current' back into the tree. */
3037 __enqueue_entity(cfs_rq, prev);
9d85f21c 3038 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3039 update_entity_load_avg(prev, 1);
30cfdcfc 3040 }
429d43bc 3041 cfs_rq->curr = NULL;
bf0f6f24
IM
3042}
3043
8f4d37ec
PZ
3044static void
3045entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3046{
bf0f6f24 3047 /*
30cfdcfc 3048 * Update run-time statistics of the 'current'.
bf0f6f24 3049 */
30cfdcfc 3050 update_curr(cfs_rq);
bf0f6f24 3051
9d85f21c
PT
3052 /*
3053 * Ensure that runnable average is periodically updated.
3054 */
9ee474f5 3055 update_entity_load_avg(curr, 1);
aff3e498 3056 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3057 update_cfs_shares(cfs_rq);
9d85f21c 3058
8f4d37ec
PZ
3059#ifdef CONFIG_SCHED_HRTICK
3060 /*
3061 * queued ticks are scheduled to match the slice, so don't bother
3062 * validating it and just reschedule.
3063 */
983ed7a6
HH
3064 if (queued) {
3065 resched_task(rq_of(cfs_rq)->curr);
3066 return;
3067 }
8f4d37ec
PZ
3068 /*
3069 * don't let the period tick interfere with the hrtick preemption
3070 */
3071 if (!sched_feat(DOUBLE_TICK) &&
3072 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3073 return;
3074#endif
3075
2c2efaed 3076 if (cfs_rq->nr_running > 1)
2e09bf55 3077 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3078}
3079
ab84d31e
PT
3080
3081/**************************************************
3082 * CFS bandwidth control machinery
3083 */
3084
3085#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3086
3087#ifdef HAVE_JUMP_LABEL
c5905afb 3088static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3089
3090static inline bool cfs_bandwidth_used(void)
3091{
c5905afb 3092 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3093}
3094
1ee14e6c 3095void cfs_bandwidth_usage_inc(void)
029632fb 3096{
1ee14e6c
BS
3097 static_key_slow_inc(&__cfs_bandwidth_used);
3098}
3099
3100void cfs_bandwidth_usage_dec(void)
3101{
3102 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3103}
3104#else /* HAVE_JUMP_LABEL */
3105static bool cfs_bandwidth_used(void)
3106{
3107 return true;
3108}
3109
1ee14e6c
BS
3110void cfs_bandwidth_usage_inc(void) {}
3111void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3112#endif /* HAVE_JUMP_LABEL */
3113
ab84d31e
PT
3114/*
3115 * default period for cfs group bandwidth.
3116 * default: 0.1s, units: nanoseconds
3117 */
3118static inline u64 default_cfs_period(void)
3119{
3120 return 100000000ULL;
3121}
ec12cb7f
PT
3122
3123static inline u64 sched_cfs_bandwidth_slice(void)
3124{
3125 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3126}
3127
a9cf55b2
PT
3128/*
3129 * Replenish runtime according to assigned quota and update expiration time.
3130 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3131 * additional synchronization around rq->lock.
3132 *
3133 * requires cfs_b->lock
3134 */
029632fb 3135void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3136{
3137 u64 now;
3138
3139 if (cfs_b->quota == RUNTIME_INF)
3140 return;
3141
3142 now = sched_clock_cpu(smp_processor_id());
3143 cfs_b->runtime = cfs_b->quota;
3144 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3145}
3146
029632fb
PZ
3147static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3148{
3149 return &tg->cfs_bandwidth;
3150}
3151
f1b17280
PT
3152/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3153static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3154{
3155 if (unlikely(cfs_rq->throttle_count))
3156 return cfs_rq->throttled_clock_task;
3157
78becc27 3158 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3159}
3160
85dac906
PT
3161/* returns 0 on failure to allocate runtime */
3162static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3163{
3164 struct task_group *tg = cfs_rq->tg;
3165 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3166 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3167
3168 /* note: this is a positive sum as runtime_remaining <= 0 */
3169 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3170
3171 raw_spin_lock(&cfs_b->lock);
3172 if (cfs_b->quota == RUNTIME_INF)
3173 amount = min_amount;
58088ad0 3174 else {
a9cf55b2
PT
3175 /*
3176 * If the bandwidth pool has become inactive, then at least one
3177 * period must have elapsed since the last consumption.
3178 * Refresh the global state and ensure bandwidth timer becomes
3179 * active.
3180 */
3181 if (!cfs_b->timer_active) {
3182 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3183 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3184 }
58088ad0
PT
3185
3186 if (cfs_b->runtime > 0) {
3187 amount = min(cfs_b->runtime, min_amount);
3188 cfs_b->runtime -= amount;
3189 cfs_b->idle = 0;
3190 }
ec12cb7f 3191 }
a9cf55b2 3192 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3193 raw_spin_unlock(&cfs_b->lock);
3194
3195 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3196 /*
3197 * we may have advanced our local expiration to account for allowed
3198 * spread between our sched_clock and the one on which runtime was
3199 * issued.
3200 */
3201 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3202 cfs_rq->runtime_expires = expires;
85dac906
PT
3203
3204 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3205}
3206
a9cf55b2
PT
3207/*
3208 * Note: This depends on the synchronization provided by sched_clock and the
3209 * fact that rq->clock snapshots this value.
3210 */
3211static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3212{
a9cf55b2 3213 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3214
3215 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3216 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3217 return;
3218
a9cf55b2
PT
3219 if (cfs_rq->runtime_remaining < 0)
3220 return;
3221
3222 /*
3223 * If the local deadline has passed we have to consider the
3224 * possibility that our sched_clock is 'fast' and the global deadline
3225 * has not truly expired.
3226 *
3227 * Fortunately we can check determine whether this the case by checking
3228 * whether the global deadline has advanced.
3229 */
3230
3231 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3232 /* extend local deadline, drift is bounded above by 2 ticks */
3233 cfs_rq->runtime_expires += TICK_NSEC;
3234 } else {
3235 /* global deadline is ahead, expiration has passed */
3236 cfs_rq->runtime_remaining = 0;
3237 }
3238}
3239
9dbdb155 3240static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3241{
3242 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3243 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3244 expire_cfs_rq_runtime(cfs_rq);
3245
3246 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3247 return;
3248
85dac906
PT
3249 /*
3250 * if we're unable to extend our runtime we resched so that the active
3251 * hierarchy can be throttled
3252 */
3253 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3254 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3255}
3256
6c16a6dc 3257static __always_inline
9dbdb155 3258void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3259{
56f570e5 3260 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3261 return;
3262
3263 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3264}
3265
85dac906
PT
3266static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3267{
56f570e5 3268 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3269}
3270
64660c86
PT
3271/* check whether cfs_rq, or any parent, is throttled */
3272static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3273{
56f570e5 3274 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3275}
3276
3277/*
3278 * Ensure that neither of the group entities corresponding to src_cpu or
3279 * dest_cpu are members of a throttled hierarchy when performing group
3280 * load-balance operations.
3281 */
3282static inline int throttled_lb_pair(struct task_group *tg,
3283 int src_cpu, int dest_cpu)
3284{
3285 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3286
3287 src_cfs_rq = tg->cfs_rq[src_cpu];
3288 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3289
3290 return throttled_hierarchy(src_cfs_rq) ||
3291 throttled_hierarchy(dest_cfs_rq);
3292}
3293
3294/* updated child weight may affect parent so we have to do this bottom up */
3295static int tg_unthrottle_up(struct task_group *tg, void *data)
3296{
3297 struct rq *rq = data;
3298 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3299
3300 cfs_rq->throttle_count--;
3301#ifdef CONFIG_SMP
3302 if (!cfs_rq->throttle_count) {
f1b17280 3303 /* adjust cfs_rq_clock_task() */
78becc27 3304 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3305 cfs_rq->throttled_clock_task;
64660c86
PT
3306 }
3307#endif
3308
3309 return 0;
3310}
3311
3312static int tg_throttle_down(struct task_group *tg, void *data)
3313{
3314 struct rq *rq = data;
3315 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3316
82958366
PT
3317 /* group is entering throttled state, stop time */
3318 if (!cfs_rq->throttle_count)
78becc27 3319 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3320 cfs_rq->throttle_count++;
3321
3322 return 0;
3323}
3324
d3d9dc33 3325static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3326{
3327 struct rq *rq = rq_of(cfs_rq);
3328 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3329 struct sched_entity *se;
3330 long task_delta, dequeue = 1;
3331
3332 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3333
f1b17280 3334 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3335 rcu_read_lock();
3336 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3337 rcu_read_unlock();
85dac906
PT
3338
3339 task_delta = cfs_rq->h_nr_running;
3340 for_each_sched_entity(se) {
3341 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3342 /* throttled entity or throttle-on-deactivate */
3343 if (!se->on_rq)
3344 break;
3345
3346 if (dequeue)
3347 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3348 qcfs_rq->h_nr_running -= task_delta;
3349
3350 if (qcfs_rq->load.weight)
3351 dequeue = 0;
3352 }
3353
3354 if (!se)
72465447 3355 sub_nr_running(rq, task_delta);
85dac906
PT
3356
3357 cfs_rq->throttled = 1;
78becc27 3358 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3359 raw_spin_lock(&cfs_b->lock);
3360 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3361 if (!cfs_b->timer_active)
09dc4ab0 3362 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3363 raw_spin_unlock(&cfs_b->lock);
3364}
3365
029632fb 3366void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3367{
3368 struct rq *rq = rq_of(cfs_rq);
3369 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3370 struct sched_entity *se;
3371 int enqueue = 1;
3372 long task_delta;
3373
22b958d8 3374 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3375
3376 cfs_rq->throttled = 0;
1a55af2e
FW
3377
3378 update_rq_clock(rq);
3379
671fd9da 3380 raw_spin_lock(&cfs_b->lock);
78becc27 3381 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3382 list_del_rcu(&cfs_rq->throttled_list);
3383 raw_spin_unlock(&cfs_b->lock);
3384
64660c86
PT
3385 /* update hierarchical throttle state */
3386 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3387
671fd9da
PT
3388 if (!cfs_rq->load.weight)
3389 return;
3390
3391 task_delta = cfs_rq->h_nr_running;
3392 for_each_sched_entity(se) {
3393 if (se->on_rq)
3394 enqueue = 0;
3395
3396 cfs_rq = cfs_rq_of(se);
3397 if (enqueue)
3398 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3399 cfs_rq->h_nr_running += task_delta;
3400
3401 if (cfs_rq_throttled(cfs_rq))
3402 break;
3403 }
3404
3405 if (!se)
72465447 3406 add_nr_running(rq, task_delta);
671fd9da
PT
3407
3408 /* determine whether we need to wake up potentially idle cpu */
3409 if (rq->curr == rq->idle && rq->cfs.nr_running)
3410 resched_task(rq->curr);
3411}
3412
3413static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3414 u64 remaining, u64 expires)
3415{
3416 struct cfs_rq *cfs_rq;
3417 u64 runtime = remaining;
3418
3419 rcu_read_lock();
3420 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3421 throttled_list) {
3422 struct rq *rq = rq_of(cfs_rq);
3423
3424 raw_spin_lock(&rq->lock);
3425 if (!cfs_rq_throttled(cfs_rq))
3426 goto next;
3427
3428 runtime = -cfs_rq->runtime_remaining + 1;
3429 if (runtime > remaining)
3430 runtime = remaining;
3431 remaining -= runtime;
3432
3433 cfs_rq->runtime_remaining += runtime;
3434 cfs_rq->runtime_expires = expires;
3435
3436 /* we check whether we're throttled above */
3437 if (cfs_rq->runtime_remaining > 0)
3438 unthrottle_cfs_rq(cfs_rq);
3439
3440next:
3441 raw_spin_unlock(&rq->lock);
3442
3443 if (!remaining)
3444 break;
3445 }
3446 rcu_read_unlock();
3447
3448 return remaining;
3449}
3450
58088ad0
PT
3451/*
3452 * Responsible for refilling a task_group's bandwidth and unthrottling its
3453 * cfs_rqs as appropriate. If there has been no activity within the last
3454 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3455 * used to track this state.
3456 */
3457static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3458{
671fd9da
PT
3459 u64 runtime, runtime_expires;
3460 int idle = 1, throttled;
58088ad0
PT
3461
3462 raw_spin_lock(&cfs_b->lock);
3463 /* no need to continue the timer with no bandwidth constraint */
3464 if (cfs_b->quota == RUNTIME_INF)
3465 goto out_unlock;
3466
671fd9da
PT
3467 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3468 /* idle depends on !throttled (for the case of a large deficit) */
3469 idle = cfs_b->idle && !throttled;
e8da1b18 3470 cfs_b->nr_periods += overrun;
671fd9da 3471
a9cf55b2
PT
3472 /* if we're going inactive then everything else can be deferred */
3473 if (idle)
3474 goto out_unlock;
3475
927b54fc
BS
3476 /*
3477 * if we have relooped after returning idle once, we need to update our
3478 * status as actually running, so that other cpus doing
3479 * __start_cfs_bandwidth will stop trying to cancel us.
3480 */
3481 cfs_b->timer_active = 1;
3482
a9cf55b2
PT
3483 __refill_cfs_bandwidth_runtime(cfs_b);
3484
671fd9da
PT
3485 if (!throttled) {
3486 /* mark as potentially idle for the upcoming period */
3487 cfs_b->idle = 1;
3488 goto out_unlock;
3489 }
3490
e8da1b18
NR
3491 /* account preceding periods in which throttling occurred */
3492 cfs_b->nr_throttled += overrun;
3493
671fd9da
PT
3494 /*
3495 * There are throttled entities so we must first use the new bandwidth
3496 * to unthrottle them before making it generally available. This
3497 * ensures that all existing debts will be paid before a new cfs_rq is
3498 * allowed to run.
3499 */
3500 runtime = cfs_b->runtime;
3501 runtime_expires = cfs_b->runtime_expires;
3502 cfs_b->runtime = 0;
3503
3504 /*
3505 * This check is repeated as we are holding onto the new bandwidth
3506 * while we unthrottle. This can potentially race with an unthrottled
3507 * group trying to acquire new bandwidth from the global pool.
3508 */
3509 while (throttled && runtime > 0) {
3510 raw_spin_unlock(&cfs_b->lock);
3511 /* we can't nest cfs_b->lock while distributing bandwidth */
3512 runtime = distribute_cfs_runtime(cfs_b, runtime,
3513 runtime_expires);
3514 raw_spin_lock(&cfs_b->lock);
3515
3516 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3517 }
58088ad0 3518
671fd9da
PT
3519 /* return (any) remaining runtime */
3520 cfs_b->runtime = runtime;
3521 /*
3522 * While we are ensured activity in the period following an
3523 * unthrottle, this also covers the case in which the new bandwidth is
3524 * insufficient to cover the existing bandwidth deficit. (Forcing the
3525 * timer to remain active while there are any throttled entities.)
3526 */
3527 cfs_b->idle = 0;
58088ad0
PT
3528out_unlock:
3529 if (idle)
3530 cfs_b->timer_active = 0;
3531 raw_spin_unlock(&cfs_b->lock);
3532
3533 return idle;
3534}
d3d9dc33 3535
d8b4986d
PT
3536/* a cfs_rq won't donate quota below this amount */
3537static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3538/* minimum remaining period time to redistribute slack quota */
3539static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3540/* how long we wait to gather additional slack before distributing */
3541static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3542
db06e78c
BS
3543/*
3544 * Are we near the end of the current quota period?
3545 *
3546 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3547 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3548 * migrate_hrtimers, base is never cleared, so we are fine.
3549 */
d8b4986d
PT
3550static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3551{
3552 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3553 u64 remaining;
3554
3555 /* if the call-back is running a quota refresh is already occurring */
3556 if (hrtimer_callback_running(refresh_timer))
3557 return 1;
3558
3559 /* is a quota refresh about to occur? */
3560 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3561 if (remaining < min_expire)
3562 return 1;
3563
3564 return 0;
3565}
3566
3567static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3568{
3569 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3570
3571 /* if there's a quota refresh soon don't bother with slack */
3572 if (runtime_refresh_within(cfs_b, min_left))
3573 return;
3574
3575 start_bandwidth_timer(&cfs_b->slack_timer,
3576 ns_to_ktime(cfs_bandwidth_slack_period));
3577}
3578
3579/* we know any runtime found here is valid as update_curr() precedes return */
3580static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3581{
3582 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3583 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3584
3585 if (slack_runtime <= 0)
3586 return;
3587
3588 raw_spin_lock(&cfs_b->lock);
3589 if (cfs_b->quota != RUNTIME_INF &&
3590 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3591 cfs_b->runtime += slack_runtime;
3592
3593 /* we are under rq->lock, defer unthrottling using a timer */
3594 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3595 !list_empty(&cfs_b->throttled_cfs_rq))
3596 start_cfs_slack_bandwidth(cfs_b);
3597 }
3598 raw_spin_unlock(&cfs_b->lock);
3599
3600 /* even if it's not valid for return we don't want to try again */
3601 cfs_rq->runtime_remaining -= slack_runtime;
3602}
3603
3604static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3605{
56f570e5
PT
3606 if (!cfs_bandwidth_used())
3607 return;
3608
fccfdc6f 3609 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3610 return;
3611
3612 __return_cfs_rq_runtime(cfs_rq);
3613}
3614
3615/*
3616 * This is done with a timer (instead of inline with bandwidth return) since
3617 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3618 */
3619static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3620{
3621 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3622 u64 expires;
3623
3624 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3625 raw_spin_lock(&cfs_b->lock);
3626 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3627 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3628 return;
db06e78c 3629 }
d8b4986d 3630
d8b4986d
PT
3631 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3632 runtime = cfs_b->runtime;
3633 cfs_b->runtime = 0;
3634 }
3635 expires = cfs_b->runtime_expires;
3636 raw_spin_unlock(&cfs_b->lock);
3637
3638 if (!runtime)
3639 return;
3640
3641 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3642
3643 raw_spin_lock(&cfs_b->lock);
3644 if (expires == cfs_b->runtime_expires)
3645 cfs_b->runtime = runtime;
3646 raw_spin_unlock(&cfs_b->lock);
3647}
3648
d3d9dc33
PT
3649/*
3650 * When a group wakes up we want to make sure that its quota is not already
3651 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3652 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3653 */
3654static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3655{
56f570e5
PT
3656 if (!cfs_bandwidth_used())
3657 return;
3658
d3d9dc33
PT
3659 /* an active group must be handled by the update_curr()->put() path */
3660 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3661 return;
3662
3663 /* ensure the group is not already throttled */
3664 if (cfs_rq_throttled(cfs_rq))
3665 return;
3666
3667 /* update runtime allocation */
3668 account_cfs_rq_runtime(cfs_rq, 0);
3669 if (cfs_rq->runtime_remaining <= 0)
3670 throttle_cfs_rq(cfs_rq);
3671}
3672
3673/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3674static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3675{
56f570e5 3676 if (!cfs_bandwidth_used())
678d5718 3677 return false;
56f570e5 3678
d3d9dc33 3679 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3680 return false;
d3d9dc33
PT
3681
3682 /*
3683 * it's possible for a throttled entity to be forced into a running
3684 * state (e.g. set_curr_task), in this case we're finished.
3685 */
3686 if (cfs_rq_throttled(cfs_rq))
678d5718 3687 return true;
d3d9dc33
PT
3688
3689 throttle_cfs_rq(cfs_rq);
678d5718 3690 return true;
d3d9dc33 3691}
029632fb 3692
029632fb
PZ
3693static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3694{
3695 struct cfs_bandwidth *cfs_b =
3696 container_of(timer, struct cfs_bandwidth, slack_timer);
3697 do_sched_cfs_slack_timer(cfs_b);
3698
3699 return HRTIMER_NORESTART;
3700}
3701
3702static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3703{
3704 struct cfs_bandwidth *cfs_b =
3705 container_of(timer, struct cfs_bandwidth, period_timer);
3706 ktime_t now;
3707 int overrun;
3708 int idle = 0;
3709
3710 for (;;) {
3711 now = hrtimer_cb_get_time(timer);
3712 overrun = hrtimer_forward(timer, now, cfs_b->period);
3713
3714 if (!overrun)
3715 break;
3716
3717 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3718 }
3719
3720 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3721}
3722
3723void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3724{
3725 raw_spin_lock_init(&cfs_b->lock);
3726 cfs_b->runtime = 0;
3727 cfs_b->quota = RUNTIME_INF;
3728 cfs_b->period = ns_to_ktime(default_cfs_period());
3729
3730 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3731 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3732 cfs_b->period_timer.function = sched_cfs_period_timer;
3733 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3734 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3735}
3736
3737static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3738{
3739 cfs_rq->runtime_enabled = 0;
3740 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3741}
3742
3743/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3744void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3745{
3746 /*
3747 * The timer may be active because we're trying to set a new bandwidth
3748 * period or because we're racing with the tear-down path
3749 * (timer_active==0 becomes visible before the hrtimer call-back
3750 * terminates). In either case we ensure that it's re-programmed
3751 */
927b54fc
BS
3752 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3753 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3754 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3755 raw_spin_unlock(&cfs_b->lock);
927b54fc 3756 cpu_relax();
029632fb
PZ
3757 raw_spin_lock(&cfs_b->lock);
3758 /* if someone else restarted the timer then we're done */
09dc4ab0 3759 if (!force && cfs_b->timer_active)
029632fb
PZ
3760 return;
3761 }
3762
3763 cfs_b->timer_active = 1;
3764 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3765}
3766
3767static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3768{
3769 hrtimer_cancel(&cfs_b->period_timer);
3770 hrtimer_cancel(&cfs_b->slack_timer);
3771}
3772
38dc3348 3773static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3774{
3775 struct cfs_rq *cfs_rq;
3776
3777 for_each_leaf_cfs_rq(rq, cfs_rq) {
3778 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3779
3780 if (!cfs_rq->runtime_enabled)
3781 continue;
3782
3783 /*
3784 * clock_task is not advancing so we just need to make sure
3785 * there's some valid quota amount
3786 */
3787 cfs_rq->runtime_remaining = cfs_b->quota;
3788 if (cfs_rq_throttled(cfs_rq))
3789 unthrottle_cfs_rq(cfs_rq);
3790 }
3791}
3792
3793#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3794static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3795{
78becc27 3796 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3797}
3798
9dbdb155 3799static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3800static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3801static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3802static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3803
3804static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3805{
3806 return 0;
3807}
64660c86
PT
3808
3809static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3810{
3811 return 0;
3812}
3813
3814static inline int throttled_lb_pair(struct task_group *tg,
3815 int src_cpu, int dest_cpu)
3816{
3817 return 0;
3818}
029632fb
PZ
3819
3820void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3821
3822#ifdef CONFIG_FAIR_GROUP_SCHED
3823static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3824#endif
3825
029632fb
PZ
3826static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3827{
3828 return NULL;
3829}
3830static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3831static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3832
3833#endif /* CONFIG_CFS_BANDWIDTH */
3834
bf0f6f24
IM
3835/**************************************************
3836 * CFS operations on tasks:
3837 */
3838
8f4d37ec
PZ
3839#ifdef CONFIG_SCHED_HRTICK
3840static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3841{
8f4d37ec
PZ
3842 struct sched_entity *se = &p->se;
3843 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3844
3845 WARN_ON(task_rq(p) != rq);
3846
b39e66ea 3847 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3848 u64 slice = sched_slice(cfs_rq, se);
3849 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3850 s64 delta = slice - ran;
3851
3852 if (delta < 0) {
3853 if (rq->curr == p)
3854 resched_task(p);
3855 return;
3856 }
3857
3858 /*
3859 * Don't schedule slices shorter than 10000ns, that just
3860 * doesn't make sense. Rely on vruntime for fairness.
3861 */
31656519 3862 if (rq->curr != p)
157124c1 3863 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3864
31656519 3865 hrtick_start(rq, delta);
8f4d37ec
PZ
3866 }
3867}
a4c2f00f
PZ
3868
3869/*
3870 * called from enqueue/dequeue and updates the hrtick when the
3871 * current task is from our class and nr_running is low enough
3872 * to matter.
3873 */
3874static void hrtick_update(struct rq *rq)
3875{
3876 struct task_struct *curr = rq->curr;
3877
b39e66ea 3878 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3879 return;
3880
3881 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3882 hrtick_start_fair(rq, curr);
3883}
55e12e5e 3884#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3885static inline void
3886hrtick_start_fair(struct rq *rq, struct task_struct *p)
3887{
3888}
a4c2f00f
PZ
3889
3890static inline void hrtick_update(struct rq *rq)
3891{
3892}
8f4d37ec
PZ
3893#endif
3894
bf0f6f24
IM
3895/*
3896 * The enqueue_task method is called before nr_running is
3897 * increased. Here we update the fair scheduling stats and
3898 * then put the task into the rbtree:
3899 */
ea87bb78 3900static void
371fd7e7 3901enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3902{
3903 struct cfs_rq *cfs_rq;
62fb1851 3904 struct sched_entity *se = &p->se;
bf0f6f24
IM
3905
3906 for_each_sched_entity(se) {
62fb1851 3907 if (se->on_rq)
bf0f6f24
IM
3908 break;
3909 cfs_rq = cfs_rq_of(se);
88ec22d3 3910 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3911
3912 /*
3913 * end evaluation on encountering a throttled cfs_rq
3914 *
3915 * note: in the case of encountering a throttled cfs_rq we will
3916 * post the final h_nr_running increment below.
3917 */
3918 if (cfs_rq_throttled(cfs_rq))
3919 break;
953bfcd1 3920 cfs_rq->h_nr_running++;
85dac906 3921
88ec22d3 3922 flags = ENQUEUE_WAKEUP;
bf0f6f24 3923 }
8f4d37ec 3924
2069dd75 3925 for_each_sched_entity(se) {
0f317143 3926 cfs_rq = cfs_rq_of(se);
953bfcd1 3927 cfs_rq->h_nr_running++;
2069dd75 3928
85dac906
PT
3929 if (cfs_rq_throttled(cfs_rq))
3930 break;
3931
17bc14b7 3932 update_cfs_shares(cfs_rq);
9ee474f5 3933 update_entity_load_avg(se, 1);
2069dd75
PZ
3934 }
3935
18bf2805
BS
3936 if (!se) {
3937 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3938 add_nr_running(rq, 1);
18bf2805 3939 }
a4c2f00f 3940 hrtick_update(rq);
bf0f6f24
IM
3941}
3942
2f36825b
VP
3943static void set_next_buddy(struct sched_entity *se);
3944
bf0f6f24
IM
3945/*
3946 * The dequeue_task method is called before nr_running is
3947 * decreased. We remove the task from the rbtree and
3948 * update the fair scheduling stats:
3949 */
371fd7e7 3950static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3951{
3952 struct cfs_rq *cfs_rq;
62fb1851 3953 struct sched_entity *se = &p->se;
2f36825b 3954 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3955
3956 for_each_sched_entity(se) {
3957 cfs_rq = cfs_rq_of(se);
371fd7e7 3958 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3959
3960 /*
3961 * end evaluation on encountering a throttled cfs_rq
3962 *
3963 * note: in the case of encountering a throttled cfs_rq we will
3964 * post the final h_nr_running decrement below.
3965 */
3966 if (cfs_rq_throttled(cfs_rq))
3967 break;
953bfcd1 3968 cfs_rq->h_nr_running--;
2069dd75 3969
bf0f6f24 3970 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3971 if (cfs_rq->load.weight) {
3972 /*
3973 * Bias pick_next to pick a task from this cfs_rq, as
3974 * p is sleeping when it is within its sched_slice.
3975 */
3976 if (task_sleep && parent_entity(se))
3977 set_next_buddy(parent_entity(se));
9598c82d
PT
3978
3979 /* avoid re-evaluating load for this entity */
3980 se = parent_entity(se);
bf0f6f24 3981 break;
2f36825b 3982 }
371fd7e7 3983 flags |= DEQUEUE_SLEEP;
bf0f6f24 3984 }
8f4d37ec 3985
2069dd75 3986 for_each_sched_entity(se) {
0f317143 3987 cfs_rq = cfs_rq_of(se);
953bfcd1 3988 cfs_rq->h_nr_running--;
2069dd75 3989
85dac906
PT
3990 if (cfs_rq_throttled(cfs_rq))
3991 break;
3992
17bc14b7 3993 update_cfs_shares(cfs_rq);
9ee474f5 3994 update_entity_load_avg(se, 1);
2069dd75
PZ
3995 }
3996
18bf2805 3997 if (!se) {
72465447 3998 sub_nr_running(rq, 1);
18bf2805
BS
3999 update_rq_runnable_avg(rq, 1);
4000 }
a4c2f00f 4001 hrtick_update(rq);
bf0f6f24
IM
4002}
4003
e7693a36 4004#ifdef CONFIG_SMP
029632fb
PZ
4005/* Used instead of source_load when we know the type == 0 */
4006static unsigned long weighted_cpuload(const int cpu)
4007{
b92486cb 4008 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4009}
4010
4011/*
4012 * Return a low guess at the load of a migration-source cpu weighted
4013 * according to the scheduling class and "nice" value.
4014 *
4015 * We want to under-estimate the load of migration sources, to
4016 * balance conservatively.
4017 */
4018static unsigned long source_load(int cpu, int type)
4019{
4020 struct rq *rq = cpu_rq(cpu);
4021 unsigned long total = weighted_cpuload(cpu);
4022
4023 if (type == 0 || !sched_feat(LB_BIAS))
4024 return total;
4025
4026 return min(rq->cpu_load[type-1], total);
4027}
4028
4029/*
4030 * Return a high guess at the load of a migration-target cpu weighted
4031 * according to the scheduling class and "nice" value.
4032 */
4033static unsigned long target_load(int cpu, int type)
4034{
4035 struct rq *rq = cpu_rq(cpu);
4036 unsigned long total = weighted_cpuload(cpu);
4037
4038 if (type == 0 || !sched_feat(LB_BIAS))
4039 return total;
4040
4041 return max(rq->cpu_load[type-1], total);
4042}
4043
4044static unsigned long power_of(int cpu)
4045{
4046 return cpu_rq(cpu)->cpu_power;
4047}
4048
4049static unsigned long cpu_avg_load_per_task(int cpu)
4050{
4051 struct rq *rq = cpu_rq(cpu);
4052 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4053 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4054
4055 if (nr_running)
b92486cb 4056 return load_avg / nr_running;
029632fb
PZ
4057
4058 return 0;
4059}
4060
62470419
MW
4061static void record_wakee(struct task_struct *p)
4062{
4063 /*
4064 * Rough decay (wiping) for cost saving, don't worry
4065 * about the boundary, really active task won't care
4066 * about the loss.
4067 */
4068 if (jiffies > current->wakee_flip_decay_ts + HZ) {
096aa338 4069 current->wakee_flips >>= 1;
62470419
MW
4070 current->wakee_flip_decay_ts = jiffies;
4071 }
4072
4073 if (current->last_wakee != p) {
4074 current->last_wakee = p;
4075 current->wakee_flips++;
4076 }
4077}
098fb9db 4078
74f8e4b2 4079static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4080{
4081 struct sched_entity *se = &p->se;
4082 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4083 u64 min_vruntime;
4084
4085#ifndef CONFIG_64BIT
4086 u64 min_vruntime_copy;
88ec22d3 4087
3fe1698b
PZ
4088 do {
4089 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4090 smp_rmb();
4091 min_vruntime = cfs_rq->min_vruntime;
4092 } while (min_vruntime != min_vruntime_copy);
4093#else
4094 min_vruntime = cfs_rq->min_vruntime;
4095#endif
88ec22d3 4096
3fe1698b 4097 se->vruntime -= min_vruntime;
62470419 4098 record_wakee(p);
88ec22d3
PZ
4099}
4100
bb3469ac 4101#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4102/*
4103 * effective_load() calculates the load change as seen from the root_task_group
4104 *
4105 * Adding load to a group doesn't make a group heavier, but can cause movement
4106 * of group shares between cpus. Assuming the shares were perfectly aligned one
4107 * can calculate the shift in shares.
cf5f0acf
PZ
4108 *
4109 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4110 * on this @cpu and results in a total addition (subtraction) of @wg to the
4111 * total group weight.
4112 *
4113 * Given a runqueue weight distribution (rw_i) we can compute a shares
4114 * distribution (s_i) using:
4115 *
4116 * s_i = rw_i / \Sum rw_j (1)
4117 *
4118 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4119 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4120 * shares distribution (s_i):
4121 *
4122 * rw_i = { 2, 4, 1, 0 }
4123 * s_i = { 2/7, 4/7, 1/7, 0 }
4124 *
4125 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4126 * task used to run on and the CPU the waker is running on), we need to
4127 * compute the effect of waking a task on either CPU and, in case of a sync
4128 * wakeup, compute the effect of the current task going to sleep.
4129 *
4130 * So for a change of @wl to the local @cpu with an overall group weight change
4131 * of @wl we can compute the new shares distribution (s'_i) using:
4132 *
4133 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4134 *
4135 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4136 * differences in waking a task to CPU 0. The additional task changes the
4137 * weight and shares distributions like:
4138 *
4139 * rw'_i = { 3, 4, 1, 0 }
4140 * s'_i = { 3/8, 4/8, 1/8, 0 }
4141 *
4142 * We can then compute the difference in effective weight by using:
4143 *
4144 * dw_i = S * (s'_i - s_i) (3)
4145 *
4146 * Where 'S' is the group weight as seen by its parent.
4147 *
4148 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4149 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4150 * 4/7) times the weight of the group.
f5bfb7d9 4151 */
2069dd75 4152static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4153{
4be9daaa 4154 struct sched_entity *se = tg->se[cpu];
f1d239f7 4155
9722c2da 4156 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4157 return wl;
4158
4be9daaa 4159 for_each_sched_entity(se) {
cf5f0acf 4160 long w, W;
4be9daaa 4161
977dda7c 4162 tg = se->my_q->tg;
bb3469ac 4163
cf5f0acf
PZ
4164 /*
4165 * W = @wg + \Sum rw_j
4166 */
4167 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4168
cf5f0acf
PZ
4169 /*
4170 * w = rw_i + @wl
4171 */
4172 w = se->my_q->load.weight + wl;
940959e9 4173
cf5f0acf
PZ
4174 /*
4175 * wl = S * s'_i; see (2)
4176 */
4177 if (W > 0 && w < W)
4178 wl = (w * tg->shares) / W;
977dda7c
PT
4179 else
4180 wl = tg->shares;
940959e9 4181
cf5f0acf
PZ
4182 /*
4183 * Per the above, wl is the new se->load.weight value; since
4184 * those are clipped to [MIN_SHARES, ...) do so now. See
4185 * calc_cfs_shares().
4186 */
977dda7c
PT
4187 if (wl < MIN_SHARES)
4188 wl = MIN_SHARES;
cf5f0acf
PZ
4189
4190 /*
4191 * wl = dw_i = S * (s'_i - s_i); see (3)
4192 */
977dda7c 4193 wl -= se->load.weight;
cf5f0acf
PZ
4194
4195 /*
4196 * Recursively apply this logic to all parent groups to compute
4197 * the final effective load change on the root group. Since
4198 * only the @tg group gets extra weight, all parent groups can
4199 * only redistribute existing shares. @wl is the shift in shares
4200 * resulting from this level per the above.
4201 */
4be9daaa 4202 wg = 0;
4be9daaa 4203 }
bb3469ac 4204
4be9daaa 4205 return wl;
bb3469ac
PZ
4206}
4207#else
4be9daaa 4208
58d081b5 4209static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4210{
83378269 4211 return wl;
bb3469ac 4212}
4be9daaa 4213
bb3469ac
PZ
4214#endif
4215
62470419
MW
4216static int wake_wide(struct task_struct *p)
4217{
7d9ffa89 4218 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4219
4220 /*
4221 * Yeah, it's the switching-frequency, could means many wakee or
4222 * rapidly switch, use factor here will just help to automatically
4223 * adjust the loose-degree, so bigger node will lead to more pull.
4224 */
4225 if (p->wakee_flips > factor) {
4226 /*
4227 * wakee is somewhat hot, it needs certain amount of cpu
4228 * resource, so if waker is far more hot, prefer to leave
4229 * it alone.
4230 */
4231 if (current->wakee_flips > (factor * p->wakee_flips))
4232 return 1;
4233 }
4234
4235 return 0;
4236}
4237
c88d5910 4238static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4239{
e37b6a7b 4240 s64 this_load, load;
c88d5910 4241 int idx, this_cpu, prev_cpu;
098fb9db 4242 unsigned long tl_per_task;
c88d5910 4243 struct task_group *tg;
83378269 4244 unsigned long weight;
b3137bc8 4245 int balanced;
098fb9db 4246
62470419
MW
4247 /*
4248 * If we wake multiple tasks be careful to not bounce
4249 * ourselves around too much.
4250 */
4251 if (wake_wide(p))
4252 return 0;
4253
c88d5910
PZ
4254 idx = sd->wake_idx;
4255 this_cpu = smp_processor_id();
4256 prev_cpu = task_cpu(p);
4257 load = source_load(prev_cpu, idx);
4258 this_load = target_load(this_cpu, idx);
098fb9db 4259
b3137bc8
MG
4260 /*
4261 * If sync wakeup then subtract the (maximum possible)
4262 * effect of the currently running task from the load
4263 * of the current CPU:
4264 */
83378269
PZ
4265 if (sync) {
4266 tg = task_group(current);
4267 weight = current->se.load.weight;
4268
c88d5910 4269 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4270 load += effective_load(tg, prev_cpu, 0, -weight);
4271 }
b3137bc8 4272
83378269
PZ
4273 tg = task_group(p);
4274 weight = p->se.load.weight;
b3137bc8 4275
71a29aa7
PZ
4276 /*
4277 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4278 * due to the sync cause above having dropped this_load to 0, we'll
4279 * always have an imbalance, but there's really nothing you can do
4280 * about that, so that's good too.
71a29aa7
PZ
4281 *
4282 * Otherwise check if either cpus are near enough in load to allow this
4283 * task to be woken on this_cpu.
4284 */
e37b6a7b
PT
4285 if (this_load > 0) {
4286 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4287
4288 this_eff_load = 100;
4289 this_eff_load *= power_of(prev_cpu);
4290 this_eff_load *= this_load +
4291 effective_load(tg, this_cpu, weight, weight);
4292
4293 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4294 prev_eff_load *= power_of(this_cpu);
4295 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4296
4297 balanced = this_eff_load <= prev_eff_load;
4298 } else
4299 balanced = true;
b3137bc8 4300
098fb9db 4301 /*
4ae7d5ce
IM
4302 * If the currently running task will sleep within
4303 * a reasonable amount of time then attract this newly
4304 * woken task:
098fb9db 4305 */
2fb7635c
PZ
4306 if (sync && balanced)
4307 return 1;
098fb9db 4308
41acab88 4309 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4310 tl_per_task = cpu_avg_load_per_task(this_cpu);
4311
c88d5910
PZ
4312 if (balanced ||
4313 (this_load <= load &&
4314 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4315 /*
4316 * This domain has SD_WAKE_AFFINE and
4317 * p is cache cold in this domain, and
4318 * there is no bad imbalance.
4319 */
c88d5910 4320 schedstat_inc(sd, ttwu_move_affine);
41acab88 4321 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4322
4323 return 1;
4324 }
4325 return 0;
4326}
4327
aaee1203
PZ
4328/*
4329 * find_idlest_group finds and returns the least busy CPU group within the
4330 * domain.
4331 */
4332static struct sched_group *
78e7ed53 4333find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4334 int this_cpu, int sd_flag)
e7693a36 4335{
b3bd3de6 4336 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4337 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4338 int load_idx = sd->forkexec_idx;
aaee1203 4339 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4340
c44f2a02
VG
4341 if (sd_flag & SD_BALANCE_WAKE)
4342 load_idx = sd->wake_idx;
4343
aaee1203
PZ
4344 do {
4345 unsigned long load, avg_load;
4346 int local_group;
4347 int i;
e7693a36 4348
aaee1203
PZ
4349 /* Skip over this group if it has no CPUs allowed */
4350 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4351 tsk_cpus_allowed(p)))
aaee1203
PZ
4352 continue;
4353
4354 local_group = cpumask_test_cpu(this_cpu,
4355 sched_group_cpus(group));
4356
4357 /* Tally up the load of all CPUs in the group */
4358 avg_load = 0;
4359
4360 for_each_cpu(i, sched_group_cpus(group)) {
4361 /* Bias balancing toward cpus of our domain */
4362 if (local_group)
4363 load = source_load(i, load_idx);
4364 else
4365 load = target_load(i, load_idx);
4366
4367 avg_load += load;
4368 }
4369
4370 /* Adjust by relative CPU power of the group */
9c3f75cb 4371 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4372
4373 if (local_group) {
4374 this_load = avg_load;
aaee1203
PZ
4375 } else if (avg_load < min_load) {
4376 min_load = avg_load;
4377 idlest = group;
4378 }
4379 } while (group = group->next, group != sd->groups);
4380
4381 if (!idlest || 100*this_load < imbalance*min_load)
4382 return NULL;
4383 return idlest;
4384}
4385
4386/*
4387 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4388 */
4389static int
4390find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4391{
4392 unsigned long load, min_load = ULONG_MAX;
4393 int idlest = -1;
4394 int i;
4395
4396 /* Traverse only the allowed CPUs */
fa17b507 4397 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4398 load = weighted_cpuload(i);
4399
4400 if (load < min_load || (load == min_load && i == this_cpu)) {
4401 min_load = load;
4402 idlest = i;
e7693a36
GH
4403 }
4404 }
4405
aaee1203
PZ
4406 return idlest;
4407}
e7693a36 4408
a50bde51
PZ
4409/*
4410 * Try and locate an idle CPU in the sched_domain.
4411 */
99bd5e2f 4412static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4413{
99bd5e2f 4414 struct sched_domain *sd;
37407ea7 4415 struct sched_group *sg;
e0a79f52 4416 int i = task_cpu(p);
a50bde51 4417
e0a79f52
MG
4418 if (idle_cpu(target))
4419 return target;
99bd5e2f
SS
4420
4421 /*
e0a79f52 4422 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4423 */
e0a79f52
MG
4424 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4425 return i;
a50bde51
PZ
4426
4427 /*
37407ea7 4428 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4429 */
518cd623 4430 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4431 for_each_lower_domain(sd) {
37407ea7
LT
4432 sg = sd->groups;
4433 do {
4434 if (!cpumask_intersects(sched_group_cpus(sg),
4435 tsk_cpus_allowed(p)))
4436 goto next;
4437
4438 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4439 if (i == target || !idle_cpu(i))
37407ea7
LT
4440 goto next;
4441 }
970e1789 4442
37407ea7
LT
4443 target = cpumask_first_and(sched_group_cpus(sg),
4444 tsk_cpus_allowed(p));
4445 goto done;
4446next:
4447 sg = sg->next;
4448 } while (sg != sd->groups);
4449 }
4450done:
a50bde51
PZ
4451 return target;
4452}
4453
aaee1203 4454/*
de91b9cb
MR
4455 * select_task_rq_fair: Select target runqueue for the waking task in domains
4456 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4457 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4458 *
de91b9cb
MR
4459 * Balances load by selecting the idlest cpu in the idlest group, or under
4460 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4461 *
de91b9cb 4462 * Returns the target cpu number.
aaee1203
PZ
4463 *
4464 * preempt must be disabled.
4465 */
0017d735 4466static int
ac66f547 4467select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4468{
29cd8bae 4469 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4470 int cpu = smp_processor_id();
c88d5910 4471 int new_cpu = cpu;
99bd5e2f 4472 int want_affine = 0;
5158f4e4 4473 int sync = wake_flags & WF_SYNC;
c88d5910 4474
29baa747 4475 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4476 return prev_cpu;
4477
0763a660 4478 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4479 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4480 want_affine = 1;
4481 new_cpu = prev_cpu;
4482 }
aaee1203 4483
dce840a0 4484 rcu_read_lock();
aaee1203 4485 for_each_domain(cpu, tmp) {
e4f42888
PZ
4486 if (!(tmp->flags & SD_LOAD_BALANCE))
4487 continue;
4488
fe3bcfe1 4489 /*
99bd5e2f
SS
4490 * If both cpu and prev_cpu are part of this domain,
4491 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4492 */
99bd5e2f
SS
4493 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4494 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4495 affine_sd = tmp;
29cd8bae 4496 break;
f03542a7 4497 }
29cd8bae 4498
f03542a7 4499 if (tmp->flags & sd_flag)
29cd8bae
PZ
4500 sd = tmp;
4501 }
4502
8bf21433
RR
4503 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4504 prev_cpu = cpu;
dce840a0 4505
8bf21433 4506 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4507 new_cpu = select_idle_sibling(p, prev_cpu);
4508 goto unlock;
8b911acd 4509 }
e7693a36 4510
aaee1203
PZ
4511 while (sd) {
4512 struct sched_group *group;
c88d5910 4513 int weight;
098fb9db 4514
0763a660 4515 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4516 sd = sd->child;
4517 continue;
4518 }
098fb9db 4519
c44f2a02 4520 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4521 if (!group) {
4522 sd = sd->child;
4523 continue;
4524 }
4ae7d5ce 4525
d7c33c49 4526 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4527 if (new_cpu == -1 || new_cpu == cpu) {
4528 /* Now try balancing at a lower domain level of cpu */
4529 sd = sd->child;
4530 continue;
e7693a36 4531 }
aaee1203
PZ
4532
4533 /* Now try balancing at a lower domain level of new_cpu */
4534 cpu = new_cpu;
669c55e9 4535 weight = sd->span_weight;
aaee1203
PZ
4536 sd = NULL;
4537 for_each_domain(cpu, tmp) {
669c55e9 4538 if (weight <= tmp->span_weight)
aaee1203 4539 break;
0763a660 4540 if (tmp->flags & sd_flag)
aaee1203
PZ
4541 sd = tmp;
4542 }
4543 /* while loop will break here if sd == NULL */
e7693a36 4544 }
dce840a0
PZ
4545unlock:
4546 rcu_read_unlock();
e7693a36 4547
c88d5910 4548 return new_cpu;
e7693a36 4549}
0a74bef8
PT
4550
4551/*
4552 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4553 * cfs_rq_of(p) references at time of call are still valid and identify the
4554 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4555 * other assumptions, including the state of rq->lock, should be made.
4556 */
4557static void
4558migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4559{
aff3e498
PT
4560 struct sched_entity *se = &p->se;
4561 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4562
4563 /*
4564 * Load tracking: accumulate removed load so that it can be processed
4565 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4566 * to blocked load iff they have a positive decay-count. It can never
4567 * be negative here since on-rq tasks have decay-count == 0.
4568 */
4569 if (se->avg.decay_count) {
4570 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4571 atomic_long_add(se->avg.load_avg_contrib,
4572 &cfs_rq->removed_load);
aff3e498 4573 }
3944a927
BS
4574
4575 /* We have migrated, no longer consider this task hot */
4576 se->exec_start = 0;
0a74bef8 4577}
e7693a36
GH
4578#endif /* CONFIG_SMP */
4579
e52fb7c0
PZ
4580static unsigned long
4581wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4582{
4583 unsigned long gran = sysctl_sched_wakeup_granularity;
4584
4585 /*
e52fb7c0
PZ
4586 * Since its curr running now, convert the gran from real-time
4587 * to virtual-time in his units.
13814d42
MG
4588 *
4589 * By using 'se' instead of 'curr' we penalize light tasks, so
4590 * they get preempted easier. That is, if 'se' < 'curr' then
4591 * the resulting gran will be larger, therefore penalizing the
4592 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4593 * be smaller, again penalizing the lighter task.
4594 *
4595 * This is especially important for buddies when the leftmost
4596 * task is higher priority than the buddy.
0bbd3336 4597 */
f4ad9bd2 4598 return calc_delta_fair(gran, se);
0bbd3336
PZ
4599}
4600
464b7527
PZ
4601/*
4602 * Should 'se' preempt 'curr'.
4603 *
4604 * |s1
4605 * |s2
4606 * |s3
4607 * g
4608 * |<--->|c
4609 *
4610 * w(c, s1) = -1
4611 * w(c, s2) = 0
4612 * w(c, s3) = 1
4613 *
4614 */
4615static int
4616wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4617{
4618 s64 gran, vdiff = curr->vruntime - se->vruntime;
4619
4620 if (vdiff <= 0)
4621 return -1;
4622
e52fb7c0 4623 gran = wakeup_gran(curr, se);
464b7527
PZ
4624 if (vdiff > gran)
4625 return 1;
4626
4627 return 0;
4628}
4629
02479099
PZ
4630static void set_last_buddy(struct sched_entity *se)
4631{
69c80f3e
VP
4632 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4633 return;
4634
4635 for_each_sched_entity(se)
4636 cfs_rq_of(se)->last = se;
02479099
PZ
4637}
4638
4639static void set_next_buddy(struct sched_entity *se)
4640{
69c80f3e
VP
4641 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4642 return;
4643
4644 for_each_sched_entity(se)
4645 cfs_rq_of(se)->next = se;
02479099
PZ
4646}
4647
ac53db59
RR
4648static void set_skip_buddy(struct sched_entity *se)
4649{
69c80f3e
VP
4650 for_each_sched_entity(se)
4651 cfs_rq_of(se)->skip = se;
ac53db59
RR
4652}
4653
bf0f6f24
IM
4654/*
4655 * Preempt the current task with a newly woken task if needed:
4656 */
5a9b86f6 4657static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4658{
4659 struct task_struct *curr = rq->curr;
8651a86c 4660 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4661 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4662 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4663 int next_buddy_marked = 0;
bf0f6f24 4664
4ae7d5ce
IM
4665 if (unlikely(se == pse))
4666 return;
4667
5238cdd3 4668 /*
ddcdf6e7 4669 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4670 * unconditionally check_prempt_curr() after an enqueue (which may have
4671 * lead to a throttle). This both saves work and prevents false
4672 * next-buddy nomination below.
4673 */
4674 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4675 return;
4676
2f36825b 4677 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4678 set_next_buddy(pse);
2f36825b
VP
4679 next_buddy_marked = 1;
4680 }
57fdc26d 4681
aec0a514
BR
4682 /*
4683 * We can come here with TIF_NEED_RESCHED already set from new task
4684 * wake up path.
5238cdd3
PT
4685 *
4686 * Note: this also catches the edge-case of curr being in a throttled
4687 * group (e.g. via set_curr_task), since update_curr() (in the
4688 * enqueue of curr) will have resulted in resched being set. This
4689 * prevents us from potentially nominating it as a false LAST_BUDDY
4690 * below.
aec0a514
BR
4691 */
4692 if (test_tsk_need_resched(curr))
4693 return;
4694
a2f5c9ab
DH
4695 /* Idle tasks are by definition preempted by non-idle tasks. */
4696 if (unlikely(curr->policy == SCHED_IDLE) &&
4697 likely(p->policy != SCHED_IDLE))
4698 goto preempt;
4699
91c234b4 4700 /*
a2f5c9ab
DH
4701 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4702 * is driven by the tick):
91c234b4 4703 */
8ed92e51 4704 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4705 return;
bf0f6f24 4706
464b7527 4707 find_matching_se(&se, &pse);
9bbd7374 4708 update_curr(cfs_rq_of(se));
002f128b 4709 BUG_ON(!pse);
2f36825b
VP
4710 if (wakeup_preempt_entity(se, pse) == 1) {
4711 /*
4712 * Bias pick_next to pick the sched entity that is
4713 * triggering this preemption.
4714 */
4715 if (!next_buddy_marked)
4716 set_next_buddy(pse);
3a7e73a2 4717 goto preempt;
2f36825b 4718 }
464b7527 4719
3a7e73a2 4720 return;
a65ac745 4721
3a7e73a2
PZ
4722preempt:
4723 resched_task(curr);
4724 /*
4725 * Only set the backward buddy when the current task is still
4726 * on the rq. This can happen when a wakeup gets interleaved
4727 * with schedule on the ->pre_schedule() or idle_balance()
4728 * point, either of which can * drop the rq lock.
4729 *
4730 * Also, during early boot the idle thread is in the fair class,
4731 * for obvious reasons its a bad idea to schedule back to it.
4732 */
4733 if (unlikely(!se->on_rq || curr == rq->idle))
4734 return;
4735
4736 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4737 set_last_buddy(se);
bf0f6f24
IM
4738}
4739
606dba2e
PZ
4740static struct task_struct *
4741pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4742{
4743 struct cfs_rq *cfs_rq = &rq->cfs;
4744 struct sched_entity *se;
678d5718 4745 struct task_struct *p;
37e117c0 4746 int new_tasks;
678d5718 4747
6e83125c 4748again:
678d5718
PZ
4749#ifdef CONFIG_FAIR_GROUP_SCHED
4750 if (!cfs_rq->nr_running)
38033c37 4751 goto idle;
678d5718 4752
3f1d2a31 4753 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4754 goto simple;
4755
4756 /*
4757 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4758 * likely that a next task is from the same cgroup as the current.
4759 *
4760 * Therefore attempt to avoid putting and setting the entire cgroup
4761 * hierarchy, only change the part that actually changes.
4762 */
4763
4764 do {
4765 struct sched_entity *curr = cfs_rq->curr;
4766
4767 /*
4768 * Since we got here without doing put_prev_entity() we also
4769 * have to consider cfs_rq->curr. If it is still a runnable
4770 * entity, update_curr() will update its vruntime, otherwise
4771 * forget we've ever seen it.
4772 */
4773 if (curr && curr->on_rq)
4774 update_curr(cfs_rq);
4775 else
4776 curr = NULL;
4777
4778 /*
4779 * This call to check_cfs_rq_runtime() will do the throttle and
4780 * dequeue its entity in the parent(s). Therefore the 'simple'
4781 * nr_running test will indeed be correct.
4782 */
4783 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4784 goto simple;
4785
4786 se = pick_next_entity(cfs_rq, curr);
4787 cfs_rq = group_cfs_rq(se);
4788 } while (cfs_rq);
4789
4790 p = task_of(se);
4791
4792 /*
4793 * Since we haven't yet done put_prev_entity and if the selected task
4794 * is a different task than we started out with, try and touch the
4795 * least amount of cfs_rqs.
4796 */
4797 if (prev != p) {
4798 struct sched_entity *pse = &prev->se;
4799
4800 while (!(cfs_rq = is_same_group(se, pse))) {
4801 int se_depth = se->depth;
4802 int pse_depth = pse->depth;
4803
4804 if (se_depth <= pse_depth) {
4805 put_prev_entity(cfs_rq_of(pse), pse);
4806 pse = parent_entity(pse);
4807 }
4808 if (se_depth >= pse_depth) {
4809 set_next_entity(cfs_rq_of(se), se);
4810 se = parent_entity(se);
4811 }
4812 }
4813
4814 put_prev_entity(cfs_rq, pse);
4815 set_next_entity(cfs_rq, se);
4816 }
4817
4818 if (hrtick_enabled(rq))
4819 hrtick_start_fair(rq, p);
4820
4821 return p;
4822simple:
4823 cfs_rq = &rq->cfs;
4824#endif
bf0f6f24 4825
36ace27e 4826 if (!cfs_rq->nr_running)
38033c37 4827 goto idle;
bf0f6f24 4828
3f1d2a31 4829 put_prev_task(rq, prev);
606dba2e 4830
bf0f6f24 4831 do {
678d5718 4832 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4833 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4834 cfs_rq = group_cfs_rq(se);
4835 } while (cfs_rq);
4836
8f4d37ec 4837 p = task_of(se);
678d5718 4838
b39e66ea
MG
4839 if (hrtick_enabled(rq))
4840 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4841
4842 return p;
38033c37
PZ
4843
4844idle:
e4aa358b 4845 new_tasks = idle_balance(rq);
37e117c0
PZ
4846 /*
4847 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4848 * possible for any higher priority task to appear. In that case we
4849 * must re-start the pick_next_entity() loop.
4850 */
e4aa358b 4851 if (new_tasks < 0)
37e117c0
PZ
4852 return RETRY_TASK;
4853
e4aa358b 4854 if (new_tasks > 0)
38033c37 4855 goto again;
38033c37
PZ
4856
4857 return NULL;
bf0f6f24
IM
4858}
4859
4860/*
4861 * Account for a descheduled task:
4862 */
31ee529c 4863static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4864{
4865 struct sched_entity *se = &prev->se;
4866 struct cfs_rq *cfs_rq;
4867
4868 for_each_sched_entity(se) {
4869 cfs_rq = cfs_rq_of(se);
ab6cde26 4870 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4871 }
4872}
4873
ac53db59
RR
4874/*
4875 * sched_yield() is very simple
4876 *
4877 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4878 */
4879static void yield_task_fair(struct rq *rq)
4880{
4881 struct task_struct *curr = rq->curr;
4882 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4883 struct sched_entity *se = &curr->se;
4884
4885 /*
4886 * Are we the only task in the tree?
4887 */
4888 if (unlikely(rq->nr_running == 1))
4889 return;
4890
4891 clear_buddies(cfs_rq, se);
4892
4893 if (curr->policy != SCHED_BATCH) {
4894 update_rq_clock(rq);
4895 /*
4896 * Update run-time statistics of the 'current'.
4897 */
4898 update_curr(cfs_rq);
916671c0
MG
4899 /*
4900 * Tell update_rq_clock() that we've just updated,
4901 * so we don't do microscopic update in schedule()
4902 * and double the fastpath cost.
4903 */
4904 rq->skip_clock_update = 1;
ac53db59
RR
4905 }
4906
4907 set_skip_buddy(se);
4908}
4909
d95f4122
MG
4910static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4911{
4912 struct sched_entity *se = &p->se;
4913
5238cdd3
PT
4914 /* throttled hierarchies are not runnable */
4915 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4916 return false;
4917
4918 /* Tell the scheduler that we'd really like pse to run next. */
4919 set_next_buddy(se);
4920
d95f4122
MG
4921 yield_task_fair(rq);
4922
4923 return true;
4924}
4925
681f3e68 4926#ifdef CONFIG_SMP
bf0f6f24 4927/**************************************************
e9c84cb8
PZ
4928 * Fair scheduling class load-balancing methods.
4929 *
4930 * BASICS
4931 *
4932 * The purpose of load-balancing is to achieve the same basic fairness the
4933 * per-cpu scheduler provides, namely provide a proportional amount of compute
4934 * time to each task. This is expressed in the following equation:
4935 *
4936 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4937 *
4938 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4939 * W_i,0 is defined as:
4940 *
4941 * W_i,0 = \Sum_j w_i,j (2)
4942 *
4943 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4944 * is derived from the nice value as per prio_to_weight[].
4945 *
4946 * The weight average is an exponential decay average of the instantaneous
4947 * weight:
4948 *
4949 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4950 *
4951 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4952 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4953 * can also include other factors [XXX].
4954 *
4955 * To achieve this balance we define a measure of imbalance which follows
4956 * directly from (1):
4957 *
4958 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4959 *
4960 * We them move tasks around to minimize the imbalance. In the continuous
4961 * function space it is obvious this converges, in the discrete case we get
4962 * a few fun cases generally called infeasible weight scenarios.
4963 *
4964 * [XXX expand on:
4965 * - infeasible weights;
4966 * - local vs global optima in the discrete case. ]
4967 *
4968 *
4969 * SCHED DOMAINS
4970 *
4971 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4972 * for all i,j solution, we create a tree of cpus that follows the hardware
4973 * topology where each level pairs two lower groups (or better). This results
4974 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4975 * tree to only the first of the previous level and we decrease the frequency
4976 * of load-balance at each level inv. proportional to the number of cpus in
4977 * the groups.
4978 *
4979 * This yields:
4980 *
4981 * log_2 n 1 n
4982 * \Sum { --- * --- * 2^i } = O(n) (5)
4983 * i = 0 2^i 2^i
4984 * `- size of each group
4985 * | | `- number of cpus doing load-balance
4986 * | `- freq
4987 * `- sum over all levels
4988 *
4989 * Coupled with a limit on how many tasks we can migrate every balance pass,
4990 * this makes (5) the runtime complexity of the balancer.
4991 *
4992 * An important property here is that each CPU is still (indirectly) connected
4993 * to every other cpu in at most O(log n) steps:
4994 *
4995 * The adjacency matrix of the resulting graph is given by:
4996 *
4997 * log_2 n
4998 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4999 * k = 0
5000 *
5001 * And you'll find that:
5002 *
5003 * A^(log_2 n)_i,j != 0 for all i,j (7)
5004 *
5005 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5006 * The task movement gives a factor of O(m), giving a convergence complexity
5007 * of:
5008 *
5009 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5010 *
5011 *
5012 * WORK CONSERVING
5013 *
5014 * In order to avoid CPUs going idle while there's still work to do, new idle
5015 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5016 * tree itself instead of relying on other CPUs to bring it work.
5017 *
5018 * This adds some complexity to both (5) and (8) but it reduces the total idle
5019 * time.
5020 *
5021 * [XXX more?]
5022 *
5023 *
5024 * CGROUPS
5025 *
5026 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5027 *
5028 * s_k,i
5029 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5030 * S_k
5031 *
5032 * Where
5033 *
5034 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5035 *
5036 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5037 *
5038 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5039 * property.
5040 *
5041 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5042 * rewrite all of this once again.]
5043 */
bf0f6f24 5044
ed387b78
HS
5045static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5046
0ec8aa00
PZ
5047enum fbq_type { regular, remote, all };
5048
ddcdf6e7 5049#define LBF_ALL_PINNED 0x01
367456c7 5050#define LBF_NEED_BREAK 0x02
6263322c
PZ
5051#define LBF_DST_PINNED 0x04
5052#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5053
5054struct lb_env {
5055 struct sched_domain *sd;
5056
ddcdf6e7 5057 struct rq *src_rq;
85c1e7da 5058 int src_cpu;
ddcdf6e7
PZ
5059
5060 int dst_cpu;
5061 struct rq *dst_rq;
5062
88b8dac0
SV
5063 struct cpumask *dst_grpmask;
5064 int new_dst_cpu;
ddcdf6e7 5065 enum cpu_idle_type idle;
bd939f45 5066 long imbalance;
b9403130
MW
5067 /* The set of CPUs under consideration for load-balancing */
5068 struct cpumask *cpus;
5069
ddcdf6e7 5070 unsigned int flags;
367456c7
PZ
5071
5072 unsigned int loop;
5073 unsigned int loop_break;
5074 unsigned int loop_max;
0ec8aa00
PZ
5075
5076 enum fbq_type fbq_type;
ddcdf6e7
PZ
5077};
5078
1e3c88bd 5079/*
ddcdf6e7 5080 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5081 * Both runqueues must be locked.
5082 */
ddcdf6e7 5083static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5084{
ddcdf6e7
PZ
5085 deactivate_task(env->src_rq, p, 0);
5086 set_task_cpu(p, env->dst_cpu);
5087 activate_task(env->dst_rq, p, 0);
5088 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5089}
5090
029632fb
PZ
5091/*
5092 * Is this task likely cache-hot:
5093 */
5094static int
6037dd1a 5095task_hot(struct task_struct *p, u64 now)
029632fb
PZ
5096{
5097 s64 delta;
5098
5099 if (p->sched_class != &fair_sched_class)
5100 return 0;
5101
5102 if (unlikely(p->policy == SCHED_IDLE))
5103 return 0;
5104
5105 /*
5106 * Buddy candidates are cache hot:
5107 */
5108 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5109 (&p->se == cfs_rq_of(&p->se)->next ||
5110 &p->se == cfs_rq_of(&p->se)->last))
5111 return 1;
5112
5113 if (sysctl_sched_migration_cost == -1)
5114 return 1;
5115 if (sysctl_sched_migration_cost == 0)
5116 return 0;
5117
5118 delta = now - p->se.exec_start;
5119
5120 return delta < (s64)sysctl_sched_migration_cost;
5121}
5122
3a7053b3
MG
5123#ifdef CONFIG_NUMA_BALANCING
5124/* Returns true if the destination node has incurred more faults */
5125static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5126{
b1ad065e 5127 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5128 int src_nid, dst_nid;
5129
ff1df896 5130 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5131 !(env->sd->flags & SD_NUMA)) {
5132 return false;
5133 }
5134
5135 src_nid = cpu_to_node(env->src_cpu);
5136 dst_nid = cpu_to_node(env->dst_cpu);
5137
83e1d2cd 5138 if (src_nid == dst_nid)
3a7053b3
MG
5139 return false;
5140
b1ad065e
RR
5141 if (numa_group) {
5142 /* Task is already in the group's interleave set. */
5143 if (node_isset(src_nid, numa_group->active_nodes))
5144 return false;
83e1d2cd 5145
b1ad065e
RR
5146 /* Task is moving into the group's interleave set. */
5147 if (node_isset(dst_nid, numa_group->active_nodes))
5148 return true;
83e1d2cd 5149
b1ad065e
RR
5150 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5151 }
5152
5153 /* Encourage migration to the preferred node. */
5154 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5155 return true;
5156
b1ad065e 5157 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5158}
7a0f3083
MG
5159
5160
5161static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5162{
b1ad065e 5163 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5164 int src_nid, dst_nid;
5165
5166 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5167 return false;
5168
ff1df896 5169 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5170 return false;
5171
5172 src_nid = cpu_to_node(env->src_cpu);
5173 dst_nid = cpu_to_node(env->dst_cpu);
5174
83e1d2cd 5175 if (src_nid == dst_nid)
7a0f3083
MG
5176 return false;
5177
b1ad065e
RR
5178 if (numa_group) {
5179 /* Task is moving within/into the group's interleave set. */
5180 if (node_isset(dst_nid, numa_group->active_nodes))
5181 return false;
5182
5183 /* Task is moving out of the group's interleave set. */
5184 if (node_isset(src_nid, numa_group->active_nodes))
5185 return true;
5186
5187 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5188 }
5189
83e1d2cd
MG
5190 /* Migrating away from the preferred node is always bad. */
5191 if (src_nid == p->numa_preferred_nid)
5192 return true;
5193
b1ad065e 5194 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5195}
5196
3a7053b3
MG
5197#else
5198static inline bool migrate_improves_locality(struct task_struct *p,
5199 struct lb_env *env)
5200{
5201 return false;
5202}
7a0f3083
MG
5203
5204static inline bool migrate_degrades_locality(struct task_struct *p,
5205 struct lb_env *env)
5206{
5207 return false;
5208}
3a7053b3
MG
5209#endif
5210
1e3c88bd
PZ
5211/*
5212 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5213 */
5214static
8e45cb54 5215int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5216{
5217 int tsk_cache_hot = 0;
5218 /*
5219 * We do not migrate tasks that are:
d3198084 5220 * 1) throttled_lb_pair, or
1e3c88bd 5221 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5222 * 3) running (obviously), or
5223 * 4) are cache-hot on their current CPU.
1e3c88bd 5224 */
d3198084
JK
5225 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5226 return 0;
5227
ddcdf6e7 5228 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5229 int cpu;
88b8dac0 5230
41acab88 5231 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5232
6263322c
PZ
5233 env->flags |= LBF_SOME_PINNED;
5234
88b8dac0
SV
5235 /*
5236 * Remember if this task can be migrated to any other cpu in
5237 * our sched_group. We may want to revisit it if we couldn't
5238 * meet load balance goals by pulling other tasks on src_cpu.
5239 *
5240 * Also avoid computing new_dst_cpu if we have already computed
5241 * one in current iteration.
5242 */
6263322c 5243 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5244 return 0;
5245
e02e60c1
JK
5246 /* Prevent to re-select dst_cpu via env's cpus */
5247 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5248 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5249 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5250 env->new_dst_cpu = cpu;
5251 break;
5252 }
88b8dac0 5253 }
e02e60c1 5254
1e3c88bd
PZ
5255 return 0;
5256 }
88b8dac0
SV
5257
5258 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5259 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5260
ddcdf6e7 5261 if (task_running(env->src_rq, p)) {
41acab88 5262 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5263 return 0;
5264 }
5265
5266 /*
5267 * Aggressive migration if:
3a7053b3
MG
5268 * 1) destination numa is preferred
5269 * 2) task is cache cold, or
5270 * 3) too many balance attempts have failed.
1e3c88bd 5271 */
6037dd1a 5272 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
7a0f3083
MG
5273 if (!tsk_cache_hot)
5274 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5275
5276 if (migrate_improves_locality(p, env)) {
5277#ifdef CONFIG_SCHEDSTATS
5278 if (tsk_cache_hot) {
5279 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5280 schedstat_inc(p, se.statistics.nr_forced_migrations);
5281 }
5282#endif
5283 return 1;
5284 }
5285
1e3c88bd 5286 if (!tsk_cache_hot ||
8e45cb54 5287 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5288
1e3c88bd 5289 if (tsk_cache_hot) {
8e45cb54 5290 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5291 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5292 }
4e2dcb73 5293
1e3c88bd
PZ
5294 return 1;
5295 }
5296
4e2dcb73
ZH
5297 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5298 return 0;
1e3c88bd
PZ
5299}
5300
897c395f
PZ
5301/*
5302 * move_one_task tries to move exactly one task from busiest to this_rq, as
5303 * part of active balancing operations within "domain".
5304 * Returns 1 if successful and 0 otherwise.
5305 *
5306 * Called with both runqueues locked.
5307 */
8e45cb54 5308static int move_one_task(struct lb_env *env)
897c395f
PZ
5309{
5310 struct task_struct *p, *n;
897c395f 5311
367456c7 5312 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5313 if (!can_migrate_task(p, env))
5314 continue;
897c395f 5315
367456c7
PZ
5316 move_task(p, env);
5317 /*
5318 * Right now, this is only the second place move_task()
5319 * is called, so we can safely collect move_task()
5320 * stats here rather than inside move_task().
5321 */
5322 schedstat_inc(env->sd, lb_gained[env->idle]);
5323 return 1;
897c395f 5324 }
897c395f
PZ
5325 return 0;
5326}
5327
eb95308e
PZ
5328static const unsigned int sched_nr_migrate_break = 32;
5329
5d6523eb 5330/*
bd939f45 5331 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5332 * this_rq, as part of a balancing operation within domain "sd".
5333 * Returns 1 if successful and 0 otherwise.
5334 *
5335 * Called with both runqueues locked.
5336 */
5337static int move_tasks(struct lb_env *env)
1e3c88bd 5338{
5d6523eb
PZ
5339 struct list_head *tasks = &env->src_rq->cfs_tasks;
5340 struct task_struct *p;
367456c7
PZ
5341 unsigned long load;
5342 int pulled = 0;
1e3c88bd 5343
bd939f45 5344 if (env->imbalance <= 0)
5d6523eb 5345 return 0;
1e3c88bd 5346
5d6523eb
PZ
5347 while (!list_empty(tasks)) {
5348 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5349
367456c7
PZ
5350 env->loop++;
5351 /* We've more or less seen every task there is, call it quits */
5d6523eb 5352 if (env->loop > env->loop_max)
367456c7 5353 break;
5d6523eb
PZ
5354
5355 /* take a breather every nr_migrate tasks */
367456c7 5356 if (env->loop > env->loop_break) {
eb95308e 5357 env->loop_break += sched_nr_migrate_break;
8e45cb54 5358 env->flags |= LBF_NEED_BREAK;
ee00e66f 5359 break;
a195f004 5360 }
1e3c88bd 5361
d3198084 5362 if (!can_migrate_task(p, env))
367456c7
PZ
5363 goto next;
5364
5365 load = task_h_load(p);
5d6523eb 5366
eb95308e 5367 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5368 goto next;
5369
bd939f45 5370 if ((load / 2) > env->imbalance)
367456c7 5371 goto next;
1e3c88bd 5372
ddcdf6e7 5373 move_task(p, env);
ee00e66f 5374 pulled++;
bd939f45 5375 env->imbalance -= load;
1e3c88bd
PZ
5376
5377#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5378 /*
5379 * NEWIDLE balancing is a source of latency, so preemptible
5380 * kernels will stop after the first task is pulled to minimize
5381 * the critical section.
5382 */
5d6523eb 5383 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5384 break;
1e3c88bd
PZ
5385#endif
5386
ee00e66f
PZ
5387 /*
5388 * We only want to steal up to the prescribed amount of
5389 * weighted load.
5390 */
bd939f45 5391 if (env->imbalance <= 0)
ee00e66f 5392 break;
367456c7
PZ
5393
5394 continue;
5395next:
5d6523eb 5396 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5397 }
5d6523eb 5398
1e3c88bd 5399 /*
ddcdf6e7
PZ
5400 * Right now, this is one of only two places move_task() is called,
5401 * so we can safely collect move_task() stats here rather than
5402 * inside move_task().
1e3c88bd 5403 */
8e45cb54 5404 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5405
5d6523eb 5406 return pulled;
1e3c88bd
PZ
5407}
5408
230059de 5409#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5410/*
5411 * update tg->load_weight by folding this cpu's load_avg
5412 */
48a16753 5413static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5414{
48a16753
PT
5415 struct sched_entity *se = tg->se[cpu];
5416 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5417
48a16753
PT
5418 /* throttled entities do not contribute to load */
5419 if (throttled_hierarchy(cfs_rq))
5420 return;
9e3081ca 5421
aff3e498 5422 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5423
82958366
PT
5424 if (se) {
5425 update_entity_load_avg(se, 1);
5426 /*
5427 * We pivot on our runnable average having decayed to zero for
5428 * list removal. This generally implies that all our children
5429 * have also been removed (modulo rounding error or bandwidth
5430 * control); however, such cases are rare and we can fix these
5431 * at enqueue.
5432 *
5433 * TODO: fix up out-of-order children on enqueue.
5434 */
5435 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5436 list_del_leaf_cfs_rq(cfs_rq);
5437 } else {
48a16753 5438 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5439 update_rq_runnable_avg(rq, rq->nr_running);
5440 }
9e3081ca
PZ
5441}
5442
48a16753 5443static void update_blocked_averages(int cpu)
9e3081ca 5444{
9e3081ca 5445 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5446 struct cfs_rq *cfs_rq;
5447 unsigned long flags;
9e3081ca 5448
48a16753
PT
5449 raw_spin_lock_irqsave(&rq->lock, flags);
5450 update_rq_clock(rq);
9763b67f
PZ
5451 /*
5452 * Iterates the task_group tree in a bottom up fashion, see
5453 * list_add_leaf_cfs_rq() for details.
5454 */
64660c86 5455 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5456 /*
5457 * Note: We may want to consider periodically releasing
5458 * rq->lock about these updates so that creating many task
5459 * groups does not result in continually extending hold time.
5460 */
5461 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5462 }
48a16753
PT
5463
5464 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5465}
5466
9763b67f 5467/*
68520796 5468 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5469 * This needs to be done in a top-down fashion because the load of a child
5470 * group is a fraction of its parents load.
5471 */
68520796 5472static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5473{
68520796
VD
5474 struct rq *rq = rq_of(cfs_rq);
5475 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5476 unsigned long now = jiffies;
68520796 5477 unsigned long load;
a35b6466 5478
68520796 5479 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5480 return;
5481
68520796
VD
5482 cfs_rq->h_load_next = NULL;
5483 for_each_sched_entity(se) {
5484 cfs_rq = cfs_rq_of(se);
5485 cfs_rq->h_load_next = se;
5486 if (cfs_rq->last_h_load_update == now)
5487 break;
5488 }
a35b6466 5489
68520796 5490 if (!se) {
7e3115ef 5491 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5492 cfs_rq->last_h_load_update = now;
5493 }
5494
5495 while ((se = cfs_rq->h_load_next) != NULL) {
5496 load = cfs_rq->h_load;
5497 load = div64_ul(load * se->avg.load_avg_contrib,
5498 cfs_rq->runnable_load_avg + 1);
5499 cfs_rq = group_cfs_rq(se);
5500 cfs_rq->h_load = load;
5501 cfs_rq->last_h_load_update = now;
5502 }
9763b67f
PZ
5503}
5504
367456c7 5505static unsigned long task_h_load(struct task_struct *p)
230059de 5506{
367456c7 5507 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5508
68520796 5509 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5510 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5511 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5512}
5513#else
48a16753 5514static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5515{
5516}
5517
367456c7 5518static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5519{
a003a25b 5520 return p->se.avg.load_avg_contrib;
1e3c88bd 5521}
230059de 5522#endif
1e3c88bd 5523
1e3c88bd 5524/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5525/*
5526 * sg_lb_stats - stats of a sched_group required for load_balancing
5527 */
5528struct sg_lb_stats {
5529 unsigned long avg_load; /*Avg load across the CPUs of the group */
5530 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5531 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5532 unsigned long load_per_task;
3ae11c90 5533 unsigned long group_power;
147c5fc2
PZ
5534 unsigned int sum_nr_running; /* Nr tasks running in the group */
5535 unsigned int group_capacity;
5536 unsigned int idle_cpus;
5537 unsigned int group_weight;
1e3c88bd 5538 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5539 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5540#ifdef CONFIG_NUMA_BALANCING
5541 unsigned int nr_numa_running;
5542 unsigned int nr_preferred_running;
5543#endif
1e3c88bd
PZ
5544};
5545
56cf515b
JK
5546/*
5547 * sd_lb_stats - Structure to store the statistics of a sched_domain
5548 * during load balancing.
5549 */
5550struct sd_lb_stats {
5551 struct sched_group *busiest; /* Busiest group in this sd */
5552 struct sched_group *local; /* Local group in this sd */
5553 unsigned long total_load; /* Total load of all groups in sd */
5554 unsigned long total_pwr; /* Total power of all groups in sd */
5555 unsigned long avg_load; /* Average load across all groups in sd */
5556
56cf515b 5557 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5558 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5559};
5560
147c5fc2
PZ
5561static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5562{
5563 /*
5564 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5565 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5566 * We must however clear busiest_stat::avg_load because
5567 * update_sd_pick_busiest() reads this before assignment.
5568 */
5569 *sds = (struct sd_lb_stats){
5570 .busiest = NULL,
5571 .local = NULL,
5572 .total_load = 0UL,
5573 .total_pwr = 0UL,
5574 .busiest_stat = {
5575 .avg_load = 0UL,
5576 },
5577 };
5578}
5579
1e3c88bd
PZ
5580/**
5581 * get_sd_load_idx - Obtain the load index for a given sched domain.
5582 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5583 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5584 *
5585 * Return: The load index.
1e3c88bd
PZ
5586 */
5587static inline int get_sd_load_idx(struct sched_domain *sd,
5588 enum cpu_idle_type idle)
5589{
5590 int load_idx;
5591
5592 switch (idle) {
5593 case CPU_NOT_IDLE:
5594 load_idx = sd->busy_idx;
5595 break;
5596
5597 case CPU_NEWLY_IDLE:
5598 load_idx = sd->newidle_idx;
5599 break;
5600 default:
5601 load_idx = sd->idle_idx;
5602 break;
5603 }
5604
5605 return load_idx;
5606}
5607
15f803c9 5608static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5609{
1399fa78 5610 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5611}
5612
5613unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5614{
5615 return default_scale_freq_power(sd, cpu);
5616}
5617
15f803c9 5618static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5619{
669c55e9 5620 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5621 unsigned long smt_gain = sd->smt_gain;
5622
5623 smt_gain /= weight;
5624
5625 return smt_gain;
5626}
5627
5628unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5629{
5630 return default_scale_smt_power(sd, cpu);
5631}
5632
15f803c9 5633static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5634{
5635 struct rq *rq = cpu_rq(cpu);
b654f7de 5636 u64 total, available, age_stamp, avg;
cadefd3d 5637 s64 delta;
1e3c88bd 5638
b654f7de
PZ
5639 /*
5640 * Since we're reading these variables without serialization make sure
5641 * we read them once before doing sanity checks on them.
5642 */
5643 age_stamp = ACCESS_ONCE(rq->age_stamp);
5644 avg = ACCESS_ONCE(rq->rt_avg);
5645
cadefd3d
PZ
5646 delta = rq_clock(rq) - age_stamp;
5647 if (unlikely(delta < 0))
5648 delta = 0;
5649
5650 total = sched_avg_period() + delta;
aa483808 5651
b654f7de 5652 if (unlikely(total < avg)) {
aa483808
VP
5653 /* Ensures that power won't end up being negative */
5654 available = 0;
5655 } else {
b654f7de 5656 available = total - avg;
aa483808 5657 }
1e3c88bd 5658
1399fa78
NR
5659 if (unlikely((s64)total < SCHED_POWER_SCALE))
5660 total = SCHED_POWER_SCALE;
1e3c88bd 5661
1399fa78 5662 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5663
5664 return div_u64(available, total);
5665}
5666
5667static void update_cpu_power(struct sched_domain *sd, int cpu)
5668{
669c55e9 5669 unsigned long weight = sd->span_weight;
1399fa78 5670 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5671 struct sched_group *sdg = sd->groups;
5672
1e3c88bd
PZ
5673 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5674 if (sched_feat(ARCH_POWER))
5675 power *= arch_scale_smt_power(sd, cpu);
5676 else
5677 power *= default_scale_smt_power(sd, cpu);
5678
1399fa78 5679 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5680 }
5681
9c3f75cb 5682 sdg->sgp->power_orig = power;
9d5efe05
SV
5683
5684 if (sched_feat(ARCH_POWER))
5685 power *= arch_scale_freq_power(sd, cpu);
5686 else
5687 power *= default_scale_freq_power(sd, cpu);
5688
1399fa78 5689 power >>= SCHED_POWER_SHIFT;
9d5efe05 5690
1e3c88bd 5691 power *= scale_rt_power(cpu);
1399fa78 5692 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5693
5694 if (!power)
5695 power = 1;
5696
e51fd5e2 5697 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5698 sdg->sgp->power = power;
1e3c88bd
PZ
5699}
5700
029632fb 5701void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5702{
5703 struct sched_domain *child = sd->child;
5704 struct sched_group *group, *sdg = sd->groups;
863bffc8 5705 unsigned long power, power_orig;
4ec4412e
VG
5706 unsigned long interval;
5707
5708 interval = msecs_to_jiffies(sd->balance_interval);
5709 interval = clamp(interval, 1UL, max_load_balance_interval);
5710 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5711
5712 if (!child) {
5713 update_cpu_power(sd, cpu);
5714 return;
5715 }
5716
863bffc8 5717 power_orig = power = 0;
1e3c88bd 5718
74a5ce20
PZ
5719 if (child->flags & SD_OVERLAP) {
5720 /*
5721 * SD_OVERLAP domains cannot assume that child groups
5722 * span the current group.
5723 */
5724
863bffc8 5725 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5726 struct sched_group_power *sgp;
5727 struct rq *rq = cpu_rq(cpu);
863bffc8 5728
9abf24d4
SD
5729 /*
5730 * build_sched_domains() -> init_sched_groups_power()
5731 * gets here before we've attached the domains to the
5732 * runqueues.
5733 *
5734 * Use power_of(), which is set irrespective of domains
5735 * in update_cpu_power().
5736 *
5737 * This avoids power/power_orig from being 0 and
5738 * causing divide-by-zero issues on boot.
5739 *
5740 * Runtime updates will correct power_orig.
5741 */
5742 if (unlikely(!rq->sd)) {
5743 power_orig += power_of(cpu);
5744 power += power_of(cpu);
5745 continue;
5746 }
863bffc8 5747
9abf24d4
SD
5748 sgp = rq->sd->groups->sgp;
5749 power_orig += sgp->power_orig;
5750 power += sgp->power;
863bffc8 5751 }
74a5ce20
PZ
5752 } else {
5753 /*
5754 * !SD_OVERLAP domains can assume that child groups
5755 * span the current group.
5756 */
5757
5758 group = child->groups;
5759 do {
863bffc8 5760 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5761 power += group->sgp->power;
5762 group = group->next;
5763 } while (group != child->groups);
5764 }
1e3c88bd 5765
863bffc8
PZ
5766 sdg->sgp->power_orig = power_orig;
5767 sdg->sgp->power = power;
1e3c88bd
PZ
5768}
5769
9d5efe05
SV
5770/*
5771 * Try and fix up capacity for tiny siblings, this is needed when
5772 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5773 * which on its own isn't powerful enough.
5774 *
5775 * See update_sd_pick_busiest() and check_asym_packing().
5776 */
5777static inline int
5778fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5779{
5780 /*
1399fa78 5781 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5782 */
a6c75f2f 5783 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5784 return 0;
5785
5786 /*
5787 * If ~90% of the cpu_power is still there, we're good.
5788 */
9c3f75cb 5789 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5790 return 1;
5791
5792 return 0;
5793}
5794
30ce5dab
PZ
5795/*
5796 * Group imbalance indicates (and tries to solve) the problem where balancing
5797 * groups is inadequate due to tsk_cpus_allowed() constraints.
5798 *
5799 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5800 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5801 * Something like:
5802 *
5803 * { 0 1 2 3 } { 4 5 6 7 }
5804 * * * * *
5805 *
5806 * If we were to balance group-wise we'd place two tasks in the first group and
5807 * two tasks in the second group. Clearly this is undesired as it will overload
5808 * cpu 3 and leave one of the cpus in the second group unused.
5809 *
5810 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5811 * by noticing the lower domain failed to reach balance and had difficulty
5812 * moving tasks due to affinity constraints.
30ce5dab
PZ
5813 *
5814 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5815 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5816 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5817 * to create an effective group imbalance.
5818 *
5819 * This is a somewhat tricky proposition since the next run might not find the
5820 * group imbalance and decide the groups need to be balanced again. A most
5821 * subtle and fragile situation.
5822 */
5823
6263322c 5824static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5825{
6263322c 5826 return group->sgp->imbalance;
30ce5dab
PZ
5827}
5828
b37d9316
PZ
5829/*
5830 * Compute the group capacity.
5831 *
c61037e9
PZ
5832 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5833 * first dividing out the smt factor and computing the actual number of cores
5834 * and limit power unit capacity with that.
b37d9316
PZ
5835 */
5836static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5837{
c61037e9
PZ
5838 unsigned int capacity, smt, cpus;
5839 unsigned int power, power_orig;
5840
5841 power = group->sgp->power;
5842 power_orig = group->sgp->power_orig;
5843 cpus = group->group_weight;
b37d9316 5844
c61037e9
PZ
5845 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5846 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5847 capacity = cpus / smt; /* cores */
b37d9316 5848
c61037e9 5849 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5850 if (!capacity)
5851 capacity = fix_small_capacity(env->sd, group);
5852
5853 return capacity;
5854}
5855
1e3c88bd
PZ
5856/**
5857 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5858 * @env: The load balancing environment.
1e3c88bd 5859 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5860 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5861 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5862 * @sgs: variable to hold the statistics for this group.
5863 */
bd939f45
PZ
5864static inline void update_sg_lb_stats(struct lb_env *env,
5865 struct sched_group *group, int load_idx,
23f0d209 5866 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5867{
30ce5dab 5868 unsigned long load;
bd939f45 5869 int i;
1e3c88bd 5870
b72ff13c
PZ
5871 memset(sgs, 0, sizeof(*sgs));
5872
b9403130 5873 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5874 struct rq *rq = cpu_rq(i);
5875
1e3c88bd 5876 /* Bias balancing toward cpus of our domain */
6263322c 5877 if (local_group)
04f733b4 5878 load = target_load(i, load_idx);
6263322c 5879 else
1e3c88bd 5880 load = source_load(i, load_idx);
1e3c88bd
PZ
5881
5882 sgs->group_load += load;
380c9077 5883 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5884#ifdef CONFIG_NUMA_BALANCING
5885 sgs->nr_numa_running += rq->nr_numa_running;
5886 sgs->nr_preferred_running += rq->nr_preferred_running;
5887#endif
1e3c88bd 5888 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5889 if (idle_cpu(i))
5890 sgs->idle_cpus++;
1e3c88bd
PZ
5891 }
5892
1e3c88bd 5893 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5894 sgs->group_power = group->sgp->power;
5895 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5896
dd5feea1 5897 if (sgs->sum_nr_running)
38d0f770 5898 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5899
aae6d3dd 5900 sgs->group_weight = group->group_weight;
fab47622 5901
b37d9316
PZ
5902 sgs->group_imb = sg_imbalanced(group);
5903 sgs->group_capacity = sg_capacity(env, group);
5904
fab47622
NR
5905 if (sgs->group_capacity > sgs->sum_nr_running)
5906 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5907}
5908
532cb4c4
MN
5909/**
5910 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5911 * @env: The load balancing environment.
532cb4c4
MN
5912 * @sds: sched_domain statistics
5913 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5914 * @sgs: sched_group statistics
532cb4c4
MN
5915 *
5916 * Determine if @sg is a busier group than the previously selected
5917 * busiest group.
e69f6186
YB
5918 *
5919 * Return: %true if @sg is a busier group than the previously selected
5920 * busiest group. %false otherwise.
532cb4c4 5921 */
bd939f45 5922static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5923 struct sd_lb_stats *sds,
5924 struct sched_group *sg,
bd939f45 5925 struct sg_lb_stats *sgs)
532cb4c4 5926{
56cf515b 5927 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5928 return false;
5929
5930 if (sgs->sum_nr_running > sgs->group_capacity)
5931 return true;
5932
5933 if (sgs->group_imb)
5934 return true;
5935
5936 /*
5937 * ASYM_PACKING needs to move all the work to the lowest
5938 * numbered CPUs in the group, therefore mark all groups
5939 * higher than ourself as busy.
5940 */
bd939f45
PZ
5941 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5942 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5943 if (!sds->busiest)
5944 return true;
5945
5946 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5947 return true;
5948 }
5949
5950 return false;
5951}
5952
0ec8aa00
PZ
5953#ifdef CONFIG_NUMA_BALANCING
5954static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5955{
5956 if (sgs->sum_nr_running > sgs->nr_numa_running)
5957 return regular;
5958 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5959 return remote;
5960 return all;
5961}
5962
5963static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5964{
5965 if (rq->nr_running > rq->nr_numa_running)
5966 return regular;
5967 if (rq->nr_running > rq->nr_preferred_running)
5968 return remote;
5969 return all;
5970}
5971#else
5972static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5973{
5974 return all;
5975}
5976
5977static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5978{
5979 return regular;
5980}
5981#endif /* CONFIG_NUMA_BALANCING */
5982
1e3c88bd 5983/**
461819ac 5984 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5985 * @env: The load balancing environment.
1e3c88bd
PZ
5986 * @sds: variable to hold the statistics for this sched_domain.
5987 */
0ec8aa00 5988static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5989{
bd939f45
PZ
5990 struct sched_domain *child = env->sd->child;
5991 struct sched_group *sg = env->sd->groups;
56cf515b 5992 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5993 int load_idx, prefer_sibling = 0;
5994
5995 if (child && child->flags & SD_PREFER_SIBLING)
5996 prefer_sibling = 1;
5997
bd939f45 5998 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5999
6000 do {
56cf515b 6001 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6002 int local_group;
6003
bd939f45 6004 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6005 if (local_group) {
6006 sds->local = sg;
6007 sgs = &sds->local_stat;
b72ff13c
PZ
6008
6009 if (env->idle != CPU_NEWLY_IDLE ||
6010 time_after_eq(jiffies, sg->sgp->next_update))
6011 update_group_power(env->sd, env->dst_cpu);
56cf515b 6012 }
1e3c88bd 6013
56cf515b 6014 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 6015
b72ff13c
PZ
6016 if (local_group)
6017 goto next_group;
6018
1e3c88bd
PZ
6019 /*
6020 * In case the child domain prefers tasks go to siblings
532cb4c4 6021 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
6022 * and move all the excess tasks away. We lower the capacity
6023 * of a group only if the local group has the capacity to fit
6024 * these excess tasks, i.e. nr_running < group_capacity. The
6025 * extra check prevents the case where you always pull from the
6026 * heaviest group when it is already under-utilized (possible
6027 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6028 */
b72ff13c
PZ
6029 if (prefer_sibling && sds->local &&
6030 sds->local_stat.group_has_capacity)
147c5fc2 6031 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 6032
b72ff13c 6033 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6034 sds->busiest = sg;
56cf515b 6035 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6036 }
6037
b72ff13c
PZ
6038next_group:
6039 /* Now, start updating sd_lb_stats */
6040 sds->total_load += sgs->group_load;
6041 sds->total_pwr += sgs->group_power;
6042
532cb4c4 6043 sg = sg->next;
bd939f45 6044 } while (sg != env->sd->groups);
0ec8aa00
PZ
6045
6046 if (env->sd->flags & SD_NUMA)
6047 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
6048}
6049
532cb4c4
MN
6050/**
6051 * check_asym_packing - Check to see if the group is packed into the
6052 * sched doman.
6053 *
6054 * This is primarily intended to used at the sibling level. Some
6055 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6056 * case of POWER7, it can move to lower SMT modes only when higher
6057 * threads are idle. When in lower SMT modes, the threads will
6058 * perform better since they share less core resources. Hence when we
6059 * have idle threads, we want them to be the higher ones.
6060 *
6061 * This packing function is run on idle threads. It checks to see if
6062 * the busiest CPU in this domain (core in the P7 case) has a higher
6063 * CPU number than the packing function is being run on. Here we are
6064 * assuming lower CPU number will be equivalent to lower a SMT thread
6065 * number.
6066 *
e69f6186 6067 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6068 * this CPU. The amount of the imbalance is returned in *imbalance.
6069 *
cd96891d 6070 * @env: The load balancing environment.
532cb4c4 6071 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6072 */
bd939f45 6073static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6074{
6075 int busiest_cpu;
6076
bd939f45 6077 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6078 return 0;
6079
6080 if (!sds->busiest)
6081 return 0;
6082
6083 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6084 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6085 return 0;
6086
bd939f45 6087 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
6088 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6089 SCHED_POWER_SCALE);
bd939f45 6090
532cb4c4 6091 return 1;
1e3c88bd
PZ
6092}
6093
6094/**
6095 * fix_small_imbalance - Calculate the minor imbalance that exists
6096 * amongst the groups of a sched_domain, during
6097 * load balancing.
cd96891d 6098 * @env: The load balancing environment.
1e3c88bd 6099 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6100 */
bd939f45
PZ
6101static inline
6102void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
6103{
6104 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6105 unsigned int imbn = 2;
dd5feea1 6106 unsigned long scaled_busy_load_per_task;
56cf515b 6107 struct sg_lb_stats *local, *busiest;
1e3c88bd 6108
56cf515b
JK
6109 local = &sds->local_stat;
6110 busiest = &sds->busiest_stat;
1e3c88bd 6111
56cf515b
JK
6112 if (!local->sum_nr_running)
6113 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6114 else if (busiest->load_per_task > local->load_per_task)
6115 imbn = 1;
dd5feea1 6116
56cf515b
JK
6117 scaled_busy_load_per_task =
6118 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6119 busiest->group_power;
56cf515b 6120
3029ede3
VD
6121 if (busiest->avg_load + scaled_busy_load_per_task >=
6122 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6123 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6124 return;
6125 }
6126
6127 /*
6128 * OK, we don't have enough imbalance to justify moving tasks,
6129 * however we may be able to increase total CPU power used by
6130 * moving them.
6131 */
6132
3ae11c90 6133 pwr_now += busiest->group_power *
56cf515b 6134 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 6135 pwr_now += local->group_power *
56cf515b 6136 min(local->load_per_task, local->avg_load);
1399fa78 6137 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6138
6139 /* Amount of load we'd subtract */
a2cd4260 6140 if (busiest->avg_load > scaled_busy_load_per_task) {
3ae11c90 6141 pwr_move += busiest->group_power *
56cf515b 6142 min(busiest->load_per_task,
a2cd4260 6143 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6144 }
1e3c88bd
PZ
6145
6146 /* Amount of load we'd add */
3ae11c90 6147 if (busiest->avg_load * busiest->group_power <
56cf515b 6148 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
6149 tmp = (busiest->avg_load * busiest->group_power) /
6150 local->group_power;
56cf515b
JK
6151 } else {
6152 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6153 local->group_power;
56cf515b 6154 }
3ae11c90
PZ
6155 pwr_move += local->group_power *
6156 min(local->load_per_task, local->avg_load + tmp);
1399fa78 6157 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6158
6159 /* Move if we gain throughput */
6160 if (pwr_move > pwr_now)
56cf515b 6161 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6162}
6163
6164/**
6165 * calculate_imbalance - Calculate the amount of imbalance present within the
6166 * groups of a given sched_domain during load balance.
bd939f45 6167 * @env: load balance environment
1e3c88bd 6168 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6169 */
bd939f45 6170static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6171{
dd5feea1 6172 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6173 struct sg_lb_stats *local, *busiest;
6174
6175 local = &sds->local_stat;
56cf515b 6176 busiest = &sds->busiest_stat;
dd5feea1 6177
56cf515b 6178 if (busiest->group_imb) {
30ce5dab
PZ
6179 /*
6180 * In the group_imb case we cannot rely on group-wide averages
6181 * to ensure cpu-load equilibrium, look at wider averages. XXX
6182 */
56cf515b
JK
6183 busiest->load_per_task =
6184 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6185 }
6186
1e3c88bd
PZ
6187 /*
6188 * In the presence of smp nice balancing, certain scenarios can have
6189 * max load less than avg load(as we skip the groups at or below
6190 * its cpu_power, while calculating max_load..)
6191 */
b1885550
VD
6192 if (busiest->avg_load <= sds->avg_load ||
6193 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6194 env->imbalance = 0;
6195 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6196 }
6197
56cf515b 6198 if (!busiest->group_imb) {
dd5feea1
SS
6199 /*
6200 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6201 * Except of course for the group_imb case, since then we might
6202 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6203 */
56cf515b
JK
6204 load_above_capacity =
6205 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 6206
1399fa78 6207 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 6208 load_above_capacity /= busiest->group_power;
dd5feea1
SS
6209 }
6210
6211 /*
6212 * We're trying to get all the cpus to the average_load, so we don't
6213 * want to push ourselves above the average load, nor do we wish to
6214 * reduce the max loaded cpu below the average load. At the same time,
6215 * we also don't want to reduce the group load below the group capacity
6216 * (so that we can implement power-savings policies etc). Thus we look
6217 * for the minimum possible imbalance.
dd5feea1 6218 */
30ce5dab 6219 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6220
6221 /* How much load to actually move to equalise the imbalance */
56cf515b 6222 env->imbalance = min(
3ae11c90
PZ
6223 max_pull * busiest->group_power,
6224 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 6225 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
6226
6227 /*
6228 * if *imbalance is less than the average load per runnable task
25985edc 6229 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6230 * a think about bumping its value to force at least one task to be
6231 * moved
6232 */
56cf515b 6233 if (env->imbalance < busiest->load_per_task)
bd939f45 6234 return fix_small_imbalance(env, sds);
1e3c88bd 6235}
fab47622 6236
1e3c88bd
PZ
6237/******* find_busiest_group() helpers end here *********************/
6238
6239/**
6240 * find_busiest_group - Returns the busiest group within the sched_domain
6241 * if there is an imbalance. If there isn't an imbalance, and
6242 * the user has opted for power-savings, it returns a group whose
6243 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6244 * such a group exists.
6245 *
6246 * Also calculates the amount of weighted load which should be moved
6247 * to restore balance.
6248 *
cd96891d 6249 * @env: The load balancing environment.
1e3c88bd 6250 *
e69f6186 6251 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6252 * - If no imbalance and user has opted for power-savings balance,
6253 * return the least loaded group whose CPUs can be
6254 * put to idle by rebalancing its tasks onto our group.
6255 */
56cf515b 6256static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6257{
56cf515b 6258 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6259 struct sd_lb_stats sds;
6260
147c5fc2 6261 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6262
6263 /*
6264 * Compute the various statistics relavent for load balancing at
6265 * this level.
6266 */
23f0d209 6267 update_sd_lb_stats(env, &sds);
56cf515b
JK
6268 local = &sds.local_stat;
6269 busiest = &sds.busiest_stat;
1e3c88bd 6270
bd939f45
PZ
6271 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6272 check_asym_packing(env, &sds))
532cb4c4
MN
6273 return sds.busiest;
6274
cc57aa8f 6275 /* There is no busy sibling group to pull tasks from */
56cf515b 6276 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6277 goto out_balanced;
6278
1399fa78 6279 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6280
866ab43e
PZ
6281 /*
6282 * If the busiest group is imbalanced the below checks don't
30ce5dab 6283 * work because they assume all things are equal, which typically
866ab43e
PZ
6284 * isn't true due to cpus_allowed constraints and the like.
6285 */
56cf515b 6286 if (busiest->group_imb)
866ab43e
PZ
6287 goto force_balance;
6288
cc57aa8f 6289 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
6290 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6291 !busiest->group_has_capacity)
fab47622
NR
6292 goto force_balance;
6293
cc57aa8f
PZ
6294 /*
6295 * If the local group is more busy than the selected busiest group
6296 * don't try and pull any tasks.
6297 */
56cf515b 6298 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6299 goto out_balanced;
6300
cc57aa8f
PZ
6301 /*
6302 * Don't pull any tasks if this group is already above the domain
6303 * average load.
6304 */
56cf515b 6305 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6306 goto out_balanced;
6307
bd939f45 6308 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6309 /*
6310 * This cpu is idle. If the busiest group load doesn't
6311 * have more tasks than the number of available cpu's and
6312 * there is no imbalance between this and busiest group
6313 * wrt to idle cpu's, it is balanced.
6314 */
56cf515b
JK
6315 if ((local->idle_cpus < busiest->idle_cpus) &&
6316 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6317 goto out_balanced;
c186fafe
PZ
6318 } else {
6319 /*
6320 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6321 * imbalance_pct to be conservative.
6322 */
56cf515b
JK
6323 if (100 * busiest->avg_load <=
6324 env->sd->imbalance_pct * local->avg_load)
c186fafe 6325 goto out_balanced;
aae6d3dd 6326 }
1e3c88bd 6327
fab47622 6328force_balance:
1e3c88bd 6329 /* Looks like there is an imbalance. Compute it */
bd939f45 6330 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6331 return sds.busiest;
6332
6333out_balanced:
bd939f45 6334 env->imbalance = 0;
1e3c88bd
PZ
6335 return NULL;
6336}
6337
6338/*
6339 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6340 */
bd939f45 6341static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6342 struct sched_group *group)
1e3c88bd
PZ
6343{
6344 struct rq *busiest = NULL, *rq;
95a79b80 6345 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6346 int i;
6347
6906a408 6348 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6349 unsigned long power, capacity, wl;
6350 enum fbq_type rt;
6351
6352 rq = cpu_rq(i);
6353 rt = fbq_classify_rq(rq);
1e3c88bd 6354
0ec8aa00
PZ
6355 /*
6356 * We classify groups/runqueues into three groups:
6357 * - regular: there are !numa tasks
6358 * - remote: there are numa tasks that run on the 'wrong' node
6359 * - all: there is no distinction
6360 *
6361 * In order to avoid migrating ideally placed numa tasks,
6362 * ignore those when there's better options.
6363 *
6364 * If we ignore the actual busiest queue to migrate another
6365 * task, the next balance pass can still reduce the busiest
6366 * queue by moving tasks around inside the node.
6367 *
6368 * If we cannot move enough load due to this classification
6369 * the next pass will adjust the group classification and
6370 * allow migration of more tasks.
6371 *
6372 * Both cases only affect the total convergence complexity.
6373 */
6374 if (rt > env->fbq_type)
6375 continue;
6376
6377 power = power_of(i);
6378 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6379 if (!capacity)
bd939f45 6380 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6381
6e40f5bb 6382 wl = weighted_cpuload(i);
1e3c88bd 6383
6e40f5bb
TG
6384 /*
6385 * When comparing with imbalance, use weighted_cpuload()
6386 * which is not scaled with the cpu power.
6387 */
bd939f45 6388 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6389 continue;
6390
6e40f5bb
TG
6391 /*
6392 * For the load comparisons with the other cpu's, consider
6393 * the weighted_cpuload() scaled with the cpu power, so that
6394 * the load can be moved away from the cpu that is potentially
6395 * running at a lower capacity.
95a79b80
JK
6396 *
6397 * Thus we're looking for max(wl_i / power_i), crosswise
6398 * multiplication to rid ourselves of the division works out
6399 * to: wl_i * power_j > wl_j * power_i; where j is our
6400 * previous maximum.
6e40f5bb 6401 */
95a79b80
JK
6402 if (wl * busiest_power > busiest_load * power) {
6403 busiest_load = wl;
6404 busiest_power = power;
1e3c88bd
PZ
6405 busiest = rq;
6406 }
6407 }
6408
6409 return busiest;
6410}
6411
6412/*
6413 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6414 * so long as it is large enough.
6415 */
6416#define MAX_PINNED_INTERVAL 512
6417
6418/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6419DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6420
bd939f45 6421static int need_active_balance(struct lb_env *env)
1af3ed3d 6422{
bd939f45
PZ
6423 struct sched_domain *sd = env->sd;
6424
6425 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6426
6427 /*
6428 * ASYM_PACKING needs to force migrate tasks from busy but
6429 * higher numbered CPUs in order to pack all tasks in the
6430 * lowest numbered CPUs.
6431 */
bd939f45 6432 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6433 return 1;
1af3ed3d
PZ
6434 }
6435
6436 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6437}
6438
969c7921
TH
6439static int active_load_balance_cpu_stop(void *data);
6440
23f0d209
JK
6441static int should_we_balance(struct lb_env *env)
6442{
6443 struct sched_group *sg = env->sd->groups;
6444 struct cpumask *sg_cpus, *sg_mask;
6445 int cpu, balance_cpu = -1;
6446
6447 /*
6448 * In the newly idle case, we will allow all the cpu's
6449 * to do the newly idle load balance.
6450 */
6451 if (env->idle == CPU_NEWLY_IDLE)
6452 return 1;
6453
6454 sg_cpus = sched_group_cpus(sg);
6455 sg_mask = sched_group_mask(sg);
6456 /* Try to find first idle cpu */
6457 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6458 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6459 continue;
6460
6461 balance_cpu = cpu;
6462 break;
6463 }
6464
6465 if (balance_cpu == -1)
6466 balance_cpu = group_balance_cpu(sg);
6467
6468 /*
6469 * First idle cpu or the first cpu(busiest) in this sched group
6470 * is eligible for doing load balancing at this and above domains.
6471 */
b0cff9d8 6472 return balance_cpu == env->dst_cpu;
23f0d209
JK
6473}
6474
1e3c88bd
PZ
6475/*
6476 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6477 * tasks if there is an imbalance.
6478 */
6479static int load_balance(int this_cpu, struct rq *this_rq,
6480 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6481 int *continue_balancing)
1e3c88bd 6482{
88b8dac0 6483 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6484 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6485 struct sched_group *group;
1e3c88bd
PZ
6486 struct rq *busiest;
6487 unsigned long flags;
e6252c3e 6488 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6489
8e45cb54
PZ
6490 struct lb_env env = {
6491 .sd = sd,
ddcdf6e7
PZ
6492 .dst_cpu = this_cpu,
6493 .dst_rq = this_rq,
88b8dac0 6494 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6495 .idle = idle,
eb95308e 6496 .loop_break = sched_nr_migrate_break,
b9403130 6497 .cpus = cpus,
0ec8aa00 6498 .fbq_type = all,
8e45cb54
PZ
6499 };
6500
cfc03118
JK
6501 /*
6502 * For NEWLY_IDLE load_balancing, we don't need to consider
6503 * other cpus in our group
6504 */
e02e60c1 6505 if (idle == CPU_NEWLY_IDLE)
cfc03118 6506 env.dst_grpmask = NULL;
cfc03118 6507
1e3c88bd
PZ
6508 cpumask_copy(cpus, cpu_active_mask);
6509
1e3c88bd
PZ
6510 schedstat_inc(sd, lb_count[idle]);
6511
6512redo:
23f0d209
JK
6513 if (!should_we_balance(&env)) {
6514 *continue_balancing = 0;
1e3c88bd 6515 goto out_balanced;
23f0d209 6516 }
1e3c88bd 6517
23f0d209 6518 group = find_busiest_group(&env);
1e3c88bd
PZ
6519 if (!group) {
6520 schedstat_inc(sd, lb_nobusyg[idle]);
6521 goto out_balanced;
6522 }
6523
b9403130 6524 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6525 if (!busiest) {
6526 schedstat_inc(sd, lb_nobusyq[idle]);
6527 goto out_balanced;
6528 }
6529
78feefc5 6530 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6531
bd939f45 6532 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6533
6534 ld_moved = 0;
6535 if (busiest->nr_running > 1) {
6536 /*
6537 * Attempt to move tasks. If find_busiest_group has found
6538 * an imbalance but busiest->nr_running <= 1, the group is
6539 * still unbalanced. ld_moved simply stays zero, so it is
6540 * correctly treated as an imbalance.
6541 */
8e45cb54 6542 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6543 env.src_cpu = busiest->cpu;
6544 env.src_rq = busiest;
6545 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6546
5d6523eb 6547more_balance:
1e3c88bd 6548 local_irq_save(flags);
78feefc5 6549 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6550
6551 /*
6552 * cur_ld_moved - load moved in current iteration
6553 * ld_moved - cumulative load moved across iterations
6554 */
6555 cur_ld_moved = move_tasks(&env);
6556 ld_moved += cur_ld_moved;
78feefc5 6557 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6558 local_irq_restore(flags);
6559
6560 /*
6561 * some other cpu did the load balance for us.
6562 */
88b8dac0
SV
6563 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6564 resched_cpu(env.dst_cpu);
6565
f1cd0858
JK
6566 if (env.flags & LBF_NEED_BREAK) {
6567 env.flags &= ~LBF_NEED_BREAK;
6568 goto more_balance;
6569 }
6570
88b8dac0
SV
6571 /*
6572 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6573 * us and move them to an alternate dst_cpu in our sched_group
6574 * where they can run. The upper limit on how many times we
6575 * iterate on same src_cpu is dependent on number of cpus in our
6576 * sched_group.
6577 *
6578 * This changes load balance semantics a bit on who can move
6579 * load to a given_cpu. In addition to the given_cpu itself
6580 * (or a ilb_cpu acting on its behalf where given_cpu is
6581 * nohz-idle), we now have balance_cpu in a position to move
6582 * load to given_cpu. In rare situations, this may cause
6583 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6584 * _independently_ and at _same_ time to move some load to
6585 * given_cpu) causing exceess load to be moved to given_cpu.
6586 * This however should not happen so much in practice and
6587 * moreover subsequent load balance cycles should correct the
6588 * excess load moved.
6589 */
6263322c 6590 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6591
7aff2e3a
VD
6592 /* Prevent to re-select dst_cpu via env's cpus */
6593 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6594
78feefc5 6595 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6596 env.dst_cpu = env.new_dst_cpu;
6263322c 6597 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6598 env.loop = 0;
6599 env.loop_break = sched_nr_migrate_break;
e02e60c1 6600
88b8dac0
SV
6601 /*
6602 * Go back to "more_balance" rather than "redo" since we
6603 * need to continue with same src_cpu.
6604 */
6605 goto more_balance;
6606 }
1e3c88bd 6607
6263322c
PZ
6608 /*
6609 * We failed to reach balance because of affinity.
6610 */
6611 if (sd_parent) {
6612 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6613
6614 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6615 *group_imbalance = 1;
6616 } else if (*group_imbalance)
6617 *group_imbalance = 0;
6618 }
6619
1e3c88bd 6620 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6621 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6622 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6623 if (!cpumask_empty(cpus)) {
6624 env.loop = 0;
6625 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6626 goto redo;
bbf18b19 6627 }
1e3c88bd
PZ
6628 goto out_balanced;
6629 }
6630 }
6631
6632 if (!ld_moved) {
6633 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6634 /*
6635 * Increment the failure counter only on periodic balance.
6636 * We do not want newidle balance, which can be very
6637 * frequent, pollute the failure counter causing
6638 * excessive cache_hot migrations and active balances.
6639 */
6640 if (idle != CPU_NEWLY_IDLE)
6641 sd->nr_balance_failed++;
1e3c88bd 6642
bd939f45 6643 if (need_active_balance(&env)) {
1e3c88bd
PZ
6644 raw_spin_lock_irqsave(&busiest->lock, flags);
6645
969c7921
TH
6646 /* don't kick the active_load_balance_cpu_stop,
6647 * if the curr task on busiest cpu can't be
6648 * moved to this_cpu
1e3c88bd
PZ
6649 */
6650 if (!cpumask_test_cpu(this_cpu,
fa17b507 6651 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6652 raw_spin_unlock_irqrestore(&busiest->lock,
6653 flags);
8e45cb54 6654 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6655 goto out_one_pinned;
6656 }
6657
969c7921
TH
6658 /*
6659 * ->active_balance synchronizes accesses to
6660 * ->active_balance_work. Once set, it's cleared
6661 * only after active load balance is finished.
6662 */
1e3c88bd
PZ
6663 if (!busiest->active_balance) {
6664 busiest->active_balance = 1;
6665 busiest->push_cpu = this_cpu;
6666 active_balance = 1;
6667 }
6668 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6669
bd939f45 6670 if (active_balance) {
969c7921
TH
6671 stop_one_cpu_nowait(cpu_of(busiest),
6672 active_load_balance_cpu_stop, busiest,
6673 &busiest->active_balance_work);
bd939f45 6674 }
1e3c88bd
PZ
6675
6676 /*
6677 * We've kicked active balancing, reset the failure
6678 * counter.
6679 */
6680 sd->nr_balance_failed = sd->cache_nice_tries+1;
6681 }
6682 } else
6683 sd->nr_balance_failed = 0;
6684
6685 if (likely(!active_balance)) {
6686 /* We were unbalanced, so reset the balancing interval */
6687 sd->balance_interval = sd->min_interval;
6688 } else {
6689 /*
6690 * If we've begun active balancing, start to back off. This
6691 * case may not be covered by the all_pinned logic if there
6692 * is only 1 task on the busy runqueue (because we don't call
6693 * move_tasks).
6694 */
6695 if (sd->balance_interval < sd->max_interval)
6696 sd->balance_interval *= 2;
6697 }
6698
1e3c88bd
PZ
6699 goto out;
6700
6701out_balanced:
6702 schedstat_inc(sd, lb_balanced[idle]);
6703
6704 sd->nr_balance_failed = 0;
6705
6706out_one_pinned:
6707 /* tune up the balancing interval */
8e45cb54 6708 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6709 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6710 (sd->balance_interval < sd->max_interval))
6711 sd->balance_interval *= 2;
6712
46e49b38 6713 ld_moved = 0;
1e3c88bd 6714out:
1e3c88bd
PZ
6715 return ld_moved;
6716}
6717
52a08ef1
JL
6718static inline unsigned long
6719get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6720{
6721 unsigned long interval = sd->balance_interval;
6722
6723 if (cpu_busy)
6724 interval *= sd->busy_factor;
6725
6726 /* scale ms to jiffies */
6727 interval = msecs_to_jiffies(interval);
6728 interval = clamp(interval, 1UL, max_load_balance_interval);
6729
6730 return interval;
6731}
6732
6733static inline void
6734update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6735{
6736 unsigned long interval, next;
6737
6738 interval = get_sd_balance_interval(sd, cpu_busy);
6739 next = sd->last_balance + interval;
6740
6741 if (time_after(*next_balance, next))
6742 *next_balance = next;
6743}
6744
1e3c88bd
PZ
6745/*
6746 * idle_balance is called by schedule() if this_cpu is about to become
6747 * idle. Attempts to pull tasks from other CPUs.
6748 */
6e83125c 6749static int idle_balance(struct rq *this_rq)
1e3c88bd 6750{
52a08ef1
JL
6751 unsigned long next_balance = jiffies + HZ;
6752 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6753 struct sched_domain *sd;
6754 int pulled_task = 0;
9bd721c5 6755 u64 curr_cost = 0;
1e3c88bd 6756
6e83125c 6757 idle_enter_fair(this_rq);
0e5b5337 6758
6e83125c
PZ
6759 /*
6760 * We must set idle_stamp _before_ calling idle_balance(), such that we
6761 * measure the duration of idle_balance() as idle time.
6762 */
6763 this_rq->idle_stamp = rq_clock(this_rq);
6764
52a08ef1
JL
6765 if (this_rq->avg_idle < sysctl_sched_migration_cost) {
6766 rcu_read_lock();
6767 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6768 if (sd)
6769 update_next_balance(sd, 0, &next_balance);
6770 rcu_read_unlock();
6771
6e83125c 6772 goto out;
52a08ef1 6773 }
1e3c88bd 6774
f492e12e
PZ
6775 /*
6776 * Drop the rq->lock, but keep IRQ/preempt disabled.
6777 */
6778 raw_spin_unlock(&this_rq->lock);
6779
48a16753 6780 update_blocked_averages(this_cpu);
dce840a0 6781 rcu_read_lock();
1e3c88bd 6782 for_each_domain(this_cpu, sd) {
23f0d209 6783 int continue_balancing = 1;
9bd721c5 6784 u64 t0, domain_cost;
1e3c88bd
PZ
6785
6786 if (!(sd->flags & SD_LOAD_BALANCE))
6787 continue;
6788
52a08ef1
JL
6789 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6790 update_next_balance(sd, 0, &next_balance);
9bd721c5 6791 break;
52a08ef1 6792 }
9bd721c5 6793
f492e12e 6794 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6795 t0 = sched_clock_cpu(this_cpu);
6796
f492e12e 6797 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6798 sd, CPU_NEWLY_IDLE,
6799 &continue_balancing);
9bd721c5
JL
6800
6801 domain_cost = sched_clock_cpu(this_cpu) - t0;
6802 if (domain_cost > sd->max_newidle_lb_cost)
6803 sd->max_newidle_lb_cost = domain_cost;
6804
6805 curr_cost += domain_cost;
f492e12e 6806 }
1e3c88bd 6807
52a08ef1 6808 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6809
6810 /*
6811 * Stop searching for tasks to pull if there are
6812 * now runnable tasks on this rq.
6813 */
6814 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6815 break;
1e3c88bd 6816 }
dce840a0 6817 rcu_read_unlock();
f492e12e
PZ
6818
6819 raw_spin_lock(&this_rq->lock);
6820
0e5b5337
JL
6821 if (curr_cost > this_rq->max_idle_balance_cost)
6822 this_rq->max_idle_balance_cost = curr_cost;
6823
e5fc6611 6824 /*
0e5b5337
JL
6825 * While browsing the domains, we released the rq lock, a task could
6826 * have been enqueued in the meantime. Since we're not going idle,
6827 * pretend we pulled a task.
e5fc6611 6828 */
0e5b5337 6829 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6830 pulled_task = 1;
e5fc6611 6831
52a08ef1
JL
6832out:
6833 /* Move the next balance forward */
6834 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6835 this_rq->next_balance = next_balance;
9bd721c5 6836
e4aa358b 6837 /* Is there a task of a high priority class? */
46383648 6838 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6839 pulled_task = -1;
6840
6841 if (pulled_task) {
6842 idle_exit_fair(this_rq);
6e83125c 6843 this_rq->idle_stamp = 0;
e4aa358b 6844 }
6e83125c 6845
3c4017c1 6846 return pulled_task;
1e3c88bd
PZ
6847}
6848
6849/*
969c7921
TH
6850 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6851 * running tasks off the busiest CPU onto idle CPUs. It requires at
6852 * least 1 task to be running on each physical CPU where possible, and
6853 * avoids physical / logical imbalances.
1e3c88bd 6854 */
969c7921 6855static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6856{
969c7921
TH
6857 struct rq *busiest_rq = data;
6858 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6859 int target_cpu = busiest_rq->push_cpu;
969c7921 6860 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6861 struct sched_domain *sd;
969c7921
TH
6862
6863 raw_spin_lock_irq(&busiest_rq->lock);
6864
6865 /* make sure the requested cpu hasn't gone down in the meantime */
6866 if (unlikely(busiest_cpu != smp_processor_id() ||
6867 !busiest_rq->active_balance))
6868 goto out_unlock;
1e3c88bd
PZ
6869
6870 /* Is there any task to move? */
6871 if (busiest_rq->nr_running <= 1)
969c7921 6872 goto out_unlock;
1e3c88bd
PZ
6873
6874 /*
6875 * This condition is "impossible", if it occurs
6876 * we need to fix it. Originally reported by
6877 * Bjorn Helgaas on a 128-cpu setup.
6878 */
6879 BUG_ON(busiest_rq == target_rq);
6880
6881 /* move a task from busiest_rq to target_rq */
6882 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6883
6884 /* Search for an sd spanning us and the target CPU. */
dce840a0 6885 rcu_read_lock();
1e3c88bd
PZ
6886 for_each_domain(target_cpu, sd) {
6887 if ((sd->flags & SD_LOAD_BALANCE) &&
6888 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6889 break;
6890 }
6891
6892 if (likely(sd)) {
8e45cb54
PZ
6893 struct lb_env env = {
6894 .sd = sd,
ddcdf6e7
PZ
6895 .dst_cpu = target_cpu,
6896 .dst_rq = target_rq,
6897 .src_cpu = busiest_rq->cpu,
6898 .src_rq = busiest_rq,
8e45cb54
PZ
6899 .idle = CPU_IDLE,
6900 };
6901
1e3c88bd
PZ
6902 schedstat_inc(sd, alb_count);
6903
8e45cb54 6904 if (move_one_task(&env))
1e3c88bd
PZ
6905 schedstat_inc(sd, alb_pushed);
6906 else
6907 schedstat_inc(sd, alb_failed);
6908 }
dce840a0 6909 rcu_read_unlock();
1e3c88bd 6910 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6911out_unlock:
6912 busiest_rq->active_balance = 0;
6913 raw_spin_unlock_irq(&busiest_rq->lock);
6914 return 0;
1e3c88bd
PZ
6915}
6916
d987fc7f
MG
6917static inline int on_null_domain(struct rq *rq)
6918{
6919 return unlikely(!rcu_dereference_sched(rq->sd));
6920}
6921
3451d024 6922#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6923/*
6924 * idle load balancing details
83cd4fe2
VP
6925 * - When one of the busy CPUs notice that there may be an idle rebalancing
6926 * needed, they will kick the idle load balancer, which then does idle
6927 * load balancing for all the idle CPUs.
6928 */
1e3c88bd 6929static struct {
83cd4fe2 6930 cpumask_var_t idle_cpus_mask;
0b005cf5 6931 atomic_t nr_cpus;
83cd4fe2
VP
6932 unsigned long next_balance; /* in jiffy units */
6933} nohz ____cacheline_aligned;
1e3c88bd 6934
3dd0337d 6935static inline int find_new_ilb(void)
1e3c88bd 6936{
0b005cf5 6937 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6938
786d6dc7
SS
6939 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6940 return ilb;
6941
6942 return nr_cpu_ids;
1e3c88bd 6943}
1e3c88bd 6944
83cd4fe2
VP
6945/*
6946 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6947 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6948 * CPU (if there is one).
6949 */
0aeeeeba 6950static void nohz_balancer_kick(void)
83cd4fe2
VP
6951{
6952 int ilb_cpu;
6953
6954 nohz.next_balance++;
6955
3dd0337d 6956 ilb_cpu = find_new_ilb();
83cd4fe2 6957
0b005cf5
SS
6958 if (ilb_cpu >= nr_cpu_ids)
6959 return;
83cd4fe2 6960
cd490c5b 6961 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6962 return;
6963 /*
6964 * Use smp_send_reschedule() instead of resched_cpu().
6965 * This way we generate a sched IPI on the target cpu which
6966 * is idle. And the softirq performing nohz idle load balance
6967 * will be run before returning from the IPI.
6968 */
6969 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6970 return;
6971}
6972
c1cc017c 6973static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6974{
6975 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6976 /*
6977 * Completely isolated CPUs don't ever set, so we must test.
6978 */
6979 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6980 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6981 atomic_dec(&nohz.nr_cpus);
6982 }
71325960
SS
6983 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6984 }
6985}
6986
69e1e811
SS
6987static inline void set_cpu_sd_state_busy(void)
6988{
6989 struct sched_domain *sd;
37dc6b50 6990 int cpu = smp_processor_id();
69e1e811 6991
69e1e811 6992 rcu_read_lock();
37dc6b50 6993 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6994
6995 if (!sd || !sd->nohz_idle)
6996 goto unlock;
6997 sd->nohz_idle = 0;
6998
37dc6b50 6999 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 7000unlock:
69e1e811
SS
7001 rcu_read_unlock();
7002}
7003
7004void set_cpu_sd_state_idle(void)
7005{
7006 struct sched_domain *sd;
37dc6b50 7007 int cpu = smp_processor_id();
69e1e811 7008
69e1e811 7009 rcu_read_lock();
37dc6b50 7010 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7011
7012 if (!sd || sd->nohz_idle)
7013 goto unlock;
7014 sd->nohz_idle = 1;
7015
37dc6b50 7016 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 7017unlock:
69e1e811
SS
7018 rcu_read_unlock();
7019}
7020
1e3c88bd 7021/*
c1cc017c 7022 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7023 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7024 */
c1cc017c 7025void nohz_balance_enter_idle(int cpu)
1e3c88bd 7026{
71325960
SS
7027 /*
7028 * If this cpu is going down, then nothing needs to be done.
7029 */
7030 if (!cpu_active(cpu))
7031 return;
7032
c1cc017c
AS
7033 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7034 return;
1e3c88bd 7035
d987fc7f
MG
7036 /*
7037 * If we're a completely isolated CPU, we don't play.
7038 */
7039 if (on_null_domain(cpu_rq(cpu)))
7040 return;
7041
c1cc017c
AS
7042 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7043 atomic_inc(&nohz.nr_cpus);
7044 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7045}
71325960 7046
0db0628d 7047static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7048 unsigned long action, void *hcpu)
7049{
7050 switch (action & ~CPU_TASKS_FROZEN) {
7051 case CPU_DYING:
c1cc017c 7052 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7053 return NOTIFY_OK;
7054 default:
7055 return NOTIFY_DONE;
7056 }
7057}
1e3c88bd
PZ
7058#endif
7059
7060static DEFINE_SPINLOCK(balancing);
7061
49c022e6
PZ
7062/*
7063 * Scale the max load_balance interval with the number of CPUs in the system.
7064 * This trades load-balance latency on larger machines for less cross talk.
7065 */
029632fb 7066void update_max_interval(void)
49c022e6
PZ
7067{
7068 max_load_balance_interval = HZ*num_online_cpus()/10;
7069}
7070
1e3c88bd
PZ
7071/*
7072 * It checks each scheduling domain to see if it is due to be balanced,
7073 * and initiates a balancing operation if so.
7074 *
b9b0853a 7075 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7076 */
f7ed0a89 7077static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7078{
23f0d209 7079 int continue_balancing = 1;
f7ed0a89 7080 int cpu = rq->cpu;
1e3c88bd 7081 unsigned long interval;
04f733b4 7082 struct sched_domain *sd;
1e3c88bd
PZ
7083 /* Earliest time when we have to do rebalance again */
7084 unsigned long next_balance = jiffies + 60*HZ;
7085 int update_next_balance = 0;
f48627e6
JL
7086 int need_serialize, need_decay = 0;
7087 u64 max_cost = 0;
1e3c88bd 7088
48a16753 7089 update_blocked_averages(cpu);
2069dd75 7090
dce840a0 7091 rcu_read_lock();
1e3c88bd 7092 for_each_domain(cpu, sd) {
f48627e6
JL
7093 /*
7094 * Decay the newidle max times here because this is a regular
7095 * visit to all the domains. Decay ~1% per second.
7096 */
7097 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7098 sd->max_newidle_lb_cost =
7099 (sd->max_newidle_lb_cost * 253) / 256;
7100 sd->next_decay_max_lb_cost = jiffies + HZ;
7101 need_decay = 1;
7102 }
7103 max_cost += sd->max_newidle_lb_cost;
7104
1e3c88bd
PZ
7105 if (!(sd->flags & SD_LOAD_BALANCE))
7106 continue;
7107
f48627e6
JL
7108 /*
7109 * Stop the load balance at this level. There is another
7110 * CPU in our sched group which is doing load balancing more
7111 * actively.
7112 */
7113 if (!continue_balancing) {
7114 if (need_decay)
7115 continue;
7116 break;
7117 }
7118
52a08ef1 7119 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7120
7121 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7122 if (need_serialize) {
7123 if (!spin_trylock(&balancing))
7124 goto out;
7125 }
7126
7127 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7128 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7129 /*
6263322c 7130 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7131 * env->dst_cpu, so we can't know our idle
7132 * state even if we migrated tasks. Update it.
1e3c88bd 7133 */
de5eb2dd 7134 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7135 }
7136 sd->last_balance = jiffies;
52a08ef1 7137 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7138 }
7139 if (need_serialize)
7140 spin_unlock(&balancing);
7141out:
7142 if (time_after(next_balance, sd->last_balance + interval)) {
7143 next_balance = sd->last_balance + interval;
7144 update_next_balance = 1;
7145 }
f48627e6
JL
7146 }
7147 if (need_decay) {
1e3c88bd 7148 /*
f48627e6
JL
7149 * Ensure the rq-wide value also decays but keep it at a
7150 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7151 */
f48627e6
JL
7152 rq->max_idle_balance_cost =
7153 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7154 }
dce840a0 7155 rcu_read_unlock();
1e3c88bd
PZ
7156
7157 /*
7158 * next_balance will be updated only when there is a need.
7159 * When the cpu is attached to null domain for ex, it will not be
7160 * updated.
7161 */
7162 if (likely(update_next_balance))
7163 rq->next_balance = next_balance;
7164}
7165
3451d024 7166#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7167/*
3451d024 7168 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7169 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7170 */
208cb16b 7171static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7172{
208cb16b 7173 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7174 struct rq *rq;
7175 int balance_cpu;
7176
1c792db7
SS
7177 if (idle != CPU_IDLE ||
7178 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7179 goto end;
83cd4fe2
VP
7180
7181 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7182 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7183 continue;
7184
7185 /*
7186 * If this cpu gets work to do, stop the load balancing
7187 * work being done for other cpus. Next load
7188 * balancing owner will pick it up.
7189 */
1c792db7 7190 if (need_resched())
83cd4fe2 7191 break;
83cd4fe2 7192
5ed4f1d9
VG
7193 rq = cpu_rq(balance_cpu);
7194
7195 raw_spin_lock_irq(&rq->lock);
7196 update_rq_clock(rq);
7197 update_idle_cpu_load(rq);
7198 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 7199
f7ed0a89 7200 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 7201
83cd4fe2
VP
7202 if (time_after(this_rq->next_balance, rq->next_balance))
7203 this_rq->next_balance = rq->next_balance;
7204 }
7205 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7206end:
7207 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7208}
7209
7210/*
0b005cf5
SS
7211 * Current heuristic for kicking the idle load balancer in the presence
7212 * of an idle cpu is the system.
7213 * - This rq has more than one task.
7214 * - At any scheduler domain level, this cpu's scheduler group has multiple
7215 * busy cpu's exceeding the group's power.
7216 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7217 * domain span are idle.
83cd4fe2 7218 */
4a725627 7219static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7220{
7221 unsigned long now = jiffies;
0b005cf5 7222 struct sched_domain *sd;
37dc6b50 7223 struct sched_group_power *sgp;
4a725627 7224 int nr_busy, cpu = rq->cpu;
83cd4fe2 7225
4a725627 7226 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7227 return 0;
7228
1c792db7
SS
7229 /*
7230 * We may be recently in ticked or tickless idle mode. At the first
7231 * busy tick after returning from idle, we will update the busy stats.
7232 */
69e1e811 7233 set_cpu_sd_state_busy();
c1cc017c 7234 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7235
7236 /*
7237 * None are in tickless mode and hence no need for NOHZ idle load
7238 * balancing.
7239 */
7240 if (likely(!atomic_read(&nohz.nr_cpus)))
7241 return 0;
1c792db7
SS
7242
7243 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7244 return 0;
7245
0b005cf5
SS
7246 if (rq->nr_running >= 2)
7247 goto need_kick;
83cd4fe2 7248
067491b7 7249 rcu_read_lock();
37dc6b50 7250 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7251
37dc6b50
PM
7252 if (sd) {
7253 sgp = sd->groups->sgp;
7254 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 7255
37dc6b50 7256 if (nr_busy > 1)
067491b7 7257 goto need_kick_unlock;
83cd4fe2 7258 }
37dc6b50
PM
7259
7260 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7261
7262 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7263 sched_domain_span(sd)) < cpu))
7264 goto need_kick_unlock;
7265
067491b7 7266 rcu_read_unlock();
83cd4fe2 7267 return 0;
067491b7
PZ
7268
7269need_kick_unlock:
7270 rcu_read_unlock();
0b005cf5
SS
7271need_kick:
7272 return 1;
83cd4fe2
VP
7273}
7274#else
208cb16b 7275static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7276#endif
7277
7278/*
7279 * run_rebalance_domains is triggered when needed from the scheduler tick.
7280 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7281 */
1e3c88bd
PZ
7282static void run_rebalance_domains(struct softirq_action *h)
7283{
208cb16b 7284 struct rq *this_rq = this_rq();
6eb57e0d 7285 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7286 CPU_IDLE : CPU_NOT_IDLE;
7287
f7ed0a89 7288 rebalance_domains(this_rq, idle);
1e3c88bd 7289
1e3c88bd 7290 /*
83cd4fe2 7291 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7292 * balancing on behalf of the other idle cpus whose ticks are
7293 * stopped.
7294 */
208cb16b 7295 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7296}
7297
1e3c88bd
PZ
7298/*
7299 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7300 */
7caff66f 7301void trigger_load_balance(struct rq *rq)
1e3c88bd 7302{
1e3c88bd 7303 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7304 if (unlikely(on_null_domain(rq)))
7305 return;
7306
7307 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7308 raise_softirq(SCHED_SOFTIRQ);
3451d024 7309#ifdef CONFIG_NO_HZ_COMMON
c726099e 7310 if (nohz_kick_needed(rq))
0aeeeeba 7311 nohz_balancer_kick();
83cd4fe2 7312#endif
1e3c88bd
PZ
7313}
7314
0bcdcf28
CE
7315static void rq_online_fair(struct rq *rq)
7316{
7317 update_sysctl();
7318}
7319
7320static void rq_offline_fair(struct rq *rq)
7321{
7322 update_sysctl();
a4c96ae3
PB
7323
7324 /* Ensure any throttled groups are reachable by pick_next_task */
7325 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7326}
7327
55e12e5e 7328#endif /* CONFIG_SMP */
e1d1484f 7329
bf0f6f24
IM
7330/*
7331 * scheduler tick hitting a task of our scheduling class:
7332 */
8f4d37ec 7333static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7334{
7335 struct cfs_rq *cfs_rq;
7336 struct sched_entity *se = &curr->se;
7337
7338 for_each_sched_entity(se) {
7339 cfs_rq = cfs_rq_of(se);
8f4d37ec 7340 entity_tick(cfs_rq, se, queued);
bf0f6f24 7341 }
18bf2805 7342
10e84b97 7343 if (numabalancing_enabled)
cbee9f88 7344 task_tick_numa(rq, curr);
3d59eebc 7345
18bf2805 7346 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7347}
7348
7349/*
cd29fe6f
PZ
7350 * called on fork with the child task as argument from the parent's context
7351 * - child not yet on the tasklist
7352 * - preemption disabled
bf0f6f24 7353 */
cd29fe6f 7354static void task_fork_fair(struct task_struct *p)
bf0f6f24 7355{
4fc420c9
DN
7356 struct cfs_rq *cfs_rq;
7357 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7358 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7359 struct rq *rq = this_rq();
7360 unsigned long flags;
7361
05fa785c 7362 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7363
861d034e
PZ
7364 update_rq_clock(rq);
7365
4fc420c9
DN
7366 cfs_rq = task_cfs_rq(current);
7367 curr = cfs_rq->curr;
7368
6c9a27f5
DN
7369 /*
7370 * Not only the cpu but also the task_group of the parent might have
7371 * been changed after parent->se.parent,cfs_rq were copied to
7372 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7373 * of child point to valid ones.
7374 */
7375 rcu_read_lock();
7376 __set_task_cpu(p, this_cpu);
7377 rcu_read_unlock();
bf0f6f24 7378
7109c442 7379 update_curr(cfs_rq);
cd29fe6f 7380
b5d9d734
MG
7381 if (curr)
7382 se->vruntime = curr->vruntime;
aeb73b04 7383 place_entity(cfs_rq, se, 1);
4d78e7b6 7384
cd29fe6f 7385 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7386 /*
edcb60a3
IM
7387 * Upon rescheduling, sched_class::put_prev_task() will place
7388 * 'current' within the tree based on its new key value.
7389 */
4d78e7b6 7390 swap(curr->vruntime, se->vruntime);
aec0a514 7391 resched_task(rq->curr);
4d78e7b6 7392 }
bf0f6f24 7393
88ec22d3
PZ
7394 se->vruntime -= cfs_rq->min_vruntime;
7395
05fa785c 7396 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7397}
7398
cb469845
SR
7399/*
7400 * Priority of the task has changed. Check to see if we preempt
7401 * the current task.
7402 */
da7a735e
PZ
7403static void
7404prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7405{
da7a735e
PZ
7406 if (!p->se.on_rq)
7407 return;
7408
cb469845
SR
7409 /*
7410 * Reschedule if we are currently running on this runqueue and
7411 * our priority decreased, or if we are not currently running on
7412 * this runqueue and our priority is higher than the current's
7413 */
da7a735e 7414 if (rq->curr == p) {
cb469845
SR
7415 if (p->prio > oldprio)
7416 resched_task(rq->curr);
7417 } else
15afe09b 7418 check_preempt_curr(rq, p, 0);
cb469845
SR
7419}
7420
da7a735e
PZ
7421static void switched_from_fair(struct rq *rq, struct task_struct *p)
7422{
7423 struct sched_entity *se = &p->se;
7424 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7425
7426 /*
791c9e02 7427 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7428 * switched back to the fair class the enqueue_entity(.flags=0) will
7429 * do the right thing.
7430 *
791c9e02
GM
7431 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7432 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7433 * the task is sleeping will it still have non-normalized vruntime.
7434 */
791c9e02 7435 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7436 /*
7437 * Fix up our vruntime so that the current sleep doesn't
7438 * cause 'unlimited' sleep bonus.
7439 */
7440 place_entity(cfs_rq, se, 0);
7441 se->vruntime -= cfs_rq->min_vruntime;
7442 }
9ee474f5 7443
141965c7 7444#ifdef CONFIG_SMP
9ee474f5
PT
7445 /*
7446 * Remove our load from contribution when we leave sched_fair
7447 * and ensure we don't carry in an old decay_count if we
7448 * switch back.
7449 */
87e3c8ae
KT
7450 if (se->avg.decay_count) {
7451 __synchronize_entity_decay(se);
7452 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7453 }
7454#endif
da7a735e
PZ
7455}
7456
cb469845
SR
7457/*
7458 * We switched to the sched_fair class.
7459 */
da7a735e 7460static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7461{
eb7a59b2
M
7462 struct sched_entity *se = &p->se;
7463#ifdef CONFIG_FAIR_GROUP_SCHED
7464 /*
7465 * Since the real-depth could have been changed (only FAIR
7466 * class maintain depth value), reset depth properly.
7467 */
7468 se->depth = se->parent ? se->parent->depth + 1 : 0;
7469#endif
7470 if (!se->on_rq)
da7a735e
PZ
7471 return;
7472
cb469845
SR
7473 /*
7474 * We were most likely switched from sched_rt, so
7475 * kick off the schedule if running, otherwise just see
7476 * if we can still preempt the current task.
7477 */
da7a735e 7478 if (rq->curr == p)
cb469845
SR
7479 resched_task(rq->curr);
7480 else
15afe09b 7481 check_preempt_curr(rq, p, 0);
cb469845
SR
7482}
7483
83b699ed
SV
7484/* Account for a task changing its policy or group.
7485 *
7486 * This routine is mostly called to set cfs_rq->curr field when a task
7487 * migrates between groups/classes.
7488 */
7489static void set_curr_task_fair(struct rq *rq)
7490{
7491 struct sched_entity *se = &rq->curr->se;
7492
ec12cb7f
PT
7493 for_each_sched_entity(se) {
7494 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7495
7496 set_next_entity(cfs_rq, se);
7497 /* ensure bandwidth has been allocated on our new cfs_rq */
7498 account_cfs_rq_runtime(cfs_rq, 0);
7499 }
83b699ed
SV
7500}
7501
029632fb
PZ
7502void init_cfs_rq(struct cfs_rq *cfs_rq)
7503{
7504 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7505 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7506#ifndef CONFIG_64BIT
7507 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7508#endif
141965c7 7509#ifdef CONFIG_SMP
9ee474f5 7510 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7511 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7512#endif
029632fb
PZ
7513}
7514
810b3817 7515#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7516static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7517{
fed14d45 7518 struct sched_entity *se = &p->se;
aff3e498 7519 struct cfs_rq *cfs_rq;
fed14d45 7520
b2b5ce02
PZ
7521 /*
7522 * If the task was not on the rq at the time of this cgroup movement
7523 * it must have been asleep, sleeping tasks keep their ->vruntime
7524 * absolute on their old rq until wakeup (needed for the fair sleeper
7525 * bonus in place_entity()).
7526 *
7527 * If it was on the rq, we've just 'preempted' it, which does convert
7528 * ->vruntime to a relative base.
7529 *
7530 * Make sure both cases convert their relative position when migrating
7531 * to another cgroup's rq. This does somewhat interfere with the
7532 * fair sleeper stuff for the first placement, but who cares.
7533 */
7ceff013
DN
7534 /*
7535 * When !on_rq, vruntime of the task has usually NOT been normalized.
7536 * But there are some cases where it has already been normalized:
7537 *
7538 * - Moving a forked child which is waiting for being woken up by
7539 * wake_up_new_task().
62af3783
DN
7540 * - Moving a task which has been woken up by try_to_wake_up() and
7541 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7542 *
7543 * To prevent boost or penalty in the new cfs_rq caused by delta
7544 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7545 */
fed14d45 7546 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7547 on_rq = 1;
7548
b2b5ce02 7549 if (!on_rq)
fed14d45 7550 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7551 set_task_rq(p, task_cpu(p));
fed14d45 7552 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7553 if (!on_rq) {
fed14d45
PZ
7554 cfs_rq = cfs_rq_of(se);
7555 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7556#ifdef CONFIG_SMP
7557 /*
7558 * migrate_task_rq_fair() will have removed our previous
7559 * contribution, but we must synchronize for ongoing future
7560 * decay.
7561 */
fed14d45
PZ
7562 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7563 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7564#endif
7565 }
810b3817 7566}
029632fb
PZ
7567
7568void free_fair_sched_group(struct task_group *tg)
7569{
7570 int i;
7571
7572 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7573
7574 for_each_possible_cpu(i) {
7575 if (tg->cfs_rq)
7576 kfree(tg->cfs_rq[i]);
7577 if (tg->se)
7578 kfree(tg->se[i]);
7579 }
7580
7581 kfree(tg->cfs_rq);
7582 kfree(tg->se);
7583}
7584
7585int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7586{
7587 struct cfs_rq *cfs_rq;
7588 struct sched_entity *se;
7589 int i;
7590
7591 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7592 if (!tg->cfs_rq)
7593 goto err;
7594 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7595 if (!tg->se)
7596 goto err;
7597
7598 tg->shares = NICE_0_LOAD;
7599
7600 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7601
7602 for_each_possible_cpu(i) {
7603 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7604 GFP_KERNEL, cpu_to_node(i));
7605 if (!cfs_rq)
7606 goto err;
7607
7608 se = kzalloc_node(sizeof(struct sched_entity),
7609 GFP_KERNEL, cpu_to_node(i));
7610 if (!se)
7611 goto err_free_rq;
7612
7613 init_cfs_rq(cfs_rq);
7614 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7615 }
7616
7617 return 1;
7618
7619err_free_rq:
7620 kfree(cfs_rq);
7621err:
7622 return 0;
7623}
7624
7625void unregister_fair_sched_group(struct task_group *tg, int cpu)
7626{
7627 struct rq *rq = cpu_rq(cpu);
7628 unsigned long flags;
7629
7630 /*
7631 * Only empty task groups can be destroyed; so we can speculatively
7632 * check on_list without danger of it being re-added.
7633 */
7634 if (!tg->cfs_rq[cpu]->on_list)
7635 return;
7636
7637 raw_spin_lock_irqsave(&rq->lock, flags);
7638 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7639 raw_spin_unlock_irqrestore(&rq->lock, flags);
7640}
7641
7642void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7643 struct sched_entity *se, int cpu,
7644 struct sched_entity *parent)
7645{
7646 struct rq *rq = cpu_rq(cpu);
7647
7648 cfs_rq->tg = tg;
7649 cfs_rq->rq = rq;
029632fb
PZ
7650 init_cfs_rq_runtime(cfs_rq);
7651
7652 tg->cfs_rq[cpu] = cfs_rq;
7653 tg->se[cpu] = se;
7654
7655 /* se could be NULL for root_task_group */
7656 if (!se)
7657 return;
7658
fed14d45 7659 if (!parent) {
029632fb 7660 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7661 se->depth = 0;
7662 } else {
029632fb 7663 se->cfs_rq = parent->my_q;
fed14d45
PZ
7664 se->depth = parent->depth + 1;
7665 }
029632fb
PZ
7666
7667 se->my_q = cfs_rq;
0ac9b1c2
PT
7668 /* guarantee group entities always have weight */
7669 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7670 se->parent = parent;
7671}
7672
7673static DEFINE_MUTEX(shares_mutex);
7674
7675int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7676{
7677 int i;
7678 unsigned long flags;
7679
7680 /*
7681 * We can't change the weight of the root cgroup.
7682 */
7683 if (!tg->se[0])
7684 return -EINVAL;
7685
7686 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7687
7688 mutex_lock(&shares_mutex);
7689 if (tg->shares == shares)
7690 goto done;
7691
7692 tg->shares = shares;
7693 for_each_possible_cpu(i) {
7694 struct rq *rq = cpu_rq(i);
7695 struct sched_entity *se;
7696
7697 se = tg->se[i];
7698 /* Propagate contribution to hierarchy */
7699 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7700
7701 /* Possible calls to update_curr() need rq clock */
7702 update_rq_clock(rq);
17bc14b7 7703 for_each_sched_entity(se)
029632fb
PZ
7704 update_cfs_shares(group_cfs_rq(se));
7705 raw_spin_unlock_irqrestore(&rq->lock, flags);
7706 }
7707
7708done:
7709 mutex_unlock(&shares_mutex);
7710 return 0;
7711}
7712#else /* CONFIG_FAIR_GROUP_SCHED */
7713
7714void free_fair_sched_group(struct task_group *tg) { }
7715
7716int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7717{
7718 return 1;
7719}
7720
7721void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7722
7723#endif /* CONFIG_FAIR_GROUP_SCHED */
7724
810b3817 7725
6d686f45 7726static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7727{
7728 struct sched_entity *se = &task->se;
0d721cea
PW
7729 unsigned int rr_interval = 0;
7730
7731 /*
7732 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7733 * idle runqueue:
7734 */
0d721cea 7735 if (rq->cfs.load.weight)
a59f4e07 7736 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7737
7738 return rr_interval;
7739}
7740
bf0f6f24
IM
7741/*
7742 * All the scheduling class methods:
7743 */
029632fb 7744const struct sched_class fair_sched_class = {
5522d5d5 7745 .next = &idle_sched_class,
bf0f6f24
IM
7746 .enqueue_task = enqueue_task_fair,
7747 .dequeue_task = dequeue_task_fair,
7748 .yield_task = yield_task_fair,
d95f4122 7749 .yield_to_task = yield_to_task_fair,
bf0f6f24 7750
2e09bf55 7751 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7752
7753 .pick_next_task = pick_next_task_fair,
7754 .put_prev_task = put_prev_task_fair,
7755
681f3e68 7756#ifdef CONFIG_SMP
4ce72a2c 7757 .select_task_rq = select_task_rq_fair,
0a74bef8 7758 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7759
0bcdcf28
CE
7760 .rq_online = rq_online_fair,
7761 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7762
7763 .task_waking = task_waking_fair,
681f3e68 7764#endif
bf0f6f24 7765
83b699ed 7766 .set_curr_task = set_curr_task_fair,
bf0f6f24 7767 .task_tick = task_tick_fair,
cd29fe6f 7768 .task_fork = task_fork_fair,
cb469845
SR
7769
7770 .prio_changed = prio_changed_fair,
da7a735e 7771 .switched_from = switched_from_fair,
cb469845 7772 .switched_to = switched_to_fair,
810b3817 7773
0d721cea
PW
7774 .get_rr_interval = get_rr_interval_fair,
7775
810b3817 7776#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7777 .task_move_group = task_move_group_fair,
810b3817 7778#endif
bf0f6f24
IM
7779};
7780
7781#ifdef CONFIG_SCHED_DEBUG
029632fb 7782void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7783{
bf0f6f24
IM
7784 struct cfs_rq *cfs_rq;
7785
5973e5b9 7786 rcu_read_lock();
c3b64f1e 7787 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7788 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7789 rcu_read_unlock();
bf0f6f24
IM
7790}
7791#endif
029632fb
PZ
7792
7793__init void init_sched_fair_class(void)
7794{
7795#ifdef CONFIG_SMP
7796 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7797
3451d024 7798#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7799 nohz.next_balance = jiffies;
029632fb 7800 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7801 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7802#endif
7803#endif /* SMP */
7804
7805}
This page took 1.206481 seconds and 5 git commands to generate.