sched: Fix comment in rebalance_domains()
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
029632fb
PZ
116/*
117 * Increase the granularity value when there are more CPUs,
118 * because with more CPUs the 'effective latency' as visible
119 * to users decreases. But the relationship is not linear,
120 * so pick a second-best guess by going with the log2 of the
121 * number of CPUs.
122 *
123 * This idea comes from the SD scheduler of Con Kolivas:
124 */
125static int get_update_sysctl_factor(void)
126{
127 unsigned int cpus = min_t(int, num_online_cpus(), 8);
128 unsigned int factor;
129
130 switch (sysctl_sched_tunable_scaling) {
131 case SCHED_TUNABLESCALING_NONE:
132 factor = 1;
133 break;
134 case SCHED_TUNABLESCALING_LINEAR:
135 factor = cpus;
136 break;
137 case SCHED_TUNABLESCALING_LOG:
138 default:
139 factor = 1 + ilog2(cpus);
140 break;
141 }
142
143 return factor;
144}
145
146static void update_sysctl(void)
147{
148 unsigned int factor = get_update_sysctl_factor();
149
150#define SET_SYSCTL(name) \
151 (sysctl_##name = (factor) * normalized_sysctl_##name)
152 SET_SYSCTL(sched_min_granularity);
153 SET_SYSCTL(sched_latency);
154 SET_SYSCTL(sched_wakeup_granularity);
155#undef SET_SYSCTL
156}
157
158void sched_init_granularity(void)
159{
160 update_sysctl();
161}
162
163#if BITS_PER_LONG == 32
164# define WMULT_CONST (~0UL)
165#else
166# define WMULT_CONST (1UL << 32)
167#endif
168
169#define WMULT_SHIFT 32
170
171/*
172 * Shift right and round:
173 */
174#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
175
176/*
177 * delta *= weight / lw
178 */
179static unsigned long
180calc_delta_mine(unsigned long delta_exec, unsigned long weight,
181 struct load_weight *lw)
182{
183 u64 tmp;
184
185 /*
186 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
187 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
188 * 2^SCHED_LOAD_RESOLUTION.
189 */
190 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
191 tmp = (u64)delta_exec * scale_load_down(weight);
192 else
193 tmp = (u64)delta_exec;
194
195 if (!lw->inv_weight) {
196 unsigned long w = scale_load_down(lw->weight);
197
198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 lw->inv_weight = 1;
200 else if (unlikely(!w))
201 lw->inv_weight = WMULT_CONST;
202 else
203 lw->inv_weight = WMULT_CONST / w;
204 }
205
206 /*
207 * Check whether we'd overflow the 64-bit multiplication:
208 */
209 if (unlikely(tmp > WMULT_CONST))
210 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
211 WMULT_SHIFT/2);
212 else
213 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
214
215 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
216}
217
218
219const struct sched_class fair_sched_class;
a4c2f00f 220
bf0f6f24
IM
221/**************************************************************
222 * CFS operations on generic schedulable entities:
223 */
224
62160e3f 225#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 226
62160e3f 227/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
228static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
229{
62160e3f 230 return cfs_rq->rq;
bf0f6f24
IM
231}
232
62160e3f
IM
233/* An entity is a task if it doesn't "own" a runqueue */
234#define entity_is_task(se) (!se->my_q)
bf0f6f24 235
8f48894f
PZ
236static inline struct task_struct *task_of(struct sched_entity *se)
237{
238#ifdef CONFIG_SCHED_DEBUG
239 WARN_ON_ONCE(!entity_is_task(se));
240#endif
241 return container_of(se, struct task_struct, se);
242}
243
b758149c
PZ
244/* Walk up scheduling entities hierarchy */
245#define for_each_sched_entity(se) \
246 for (; se; se = se->parent)
247
248static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
249{
250 return p->se.cfs_rq;
251}
252
253/* runqueue on which this entity is (to be) queued */
254static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
255{
256 return se->cfs_rq;
257}
258
259/* runqueue "owned" by this group */
260static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
261{
262 return grp->my_q;
263}
264
aff3e498
PT
265static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
266 int force_update);
9ee474f5 267
3d4b47b4
PZ
268static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
269{
270 if (!cfs_rq->on_list) {
67e86250
PT
271 /*
272 * Ensure we either appear before our parent (if already
273 * enqueued) or force our parent to appear after us when it is
274 * enqueued. The fact that we always enqueue bottom-up
275 * reduces this to two cases.
276 */
277 if (cfs_rq->tg->parent &&
278 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
279 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 } else {
282 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 283 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 284 }
3d4b47b4
PZ
285
286 cfs_rq->on_list = 1;
9ee474f5 287 /* We should have no load, but we need to update last_decay. */
aff3e498 288 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
289 }
290}
291
292static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293{
294 if (cfs_rq->on_list) {
295 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
296 cfs_rq->on_list = 0;
297 }
298}
299
b758149c
PZ
300/* Iterate thr' all leaf cfs_rq's on a runqueue */
301#define for_each_leaf_cfs_rq(rq, cfs_rq) \
302 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
303
304/* Do the two (enqueued) entities belong to the same group ? */
305static inline int
306is_same_group(struct sched_entity *se, struct sched_entity *pse)
307{
308 if (se->cfs_rq == pse->cfs_rq)
309 return 1;
310
311 return 0;
312}
313
314static inline struct sched_entity *parent_entity(struct sched_entity *se)
315{
316 return se->parent;
317}
318
464b7527
PZ
319/* return depth at which a sched entity is present in the hierarchy */
320static inline int depth_se(struct sched_entity *se)
321{
322 int depth = 0;
323
324 for_each_sched_entity(se)
325 depth++;
326
327 return depth;
328}
329
330static void
331find_matching_se(struct sched_entity **se, struct sched_entity **pse)
332{
333 int se_depth, pse_depth;
334
335 /*
336 * preemption test can be made between sibling entities who are in the
337 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
338 * both tasks until we find their ancestors who are siblings of common
339 * parent.
340 */
341
342 /* First walk up until both entities are at same depth */
343 se_depth = depth_se(*se);
344 pse_depth = depth_se(*pse);
345
346 while (se_depth > pse_depth) {
347 se_depth--;
348 *se = parent_entity(*se);
349 }
350
351 while (pse_depth > se_depth) {
352 pse_depth--;
353 *pse = parent_entity(*pse);
354 }
355
356 while (!is_same_group(*se, *pse)) {
357 *se = parent_entity(*se);
358 *pse = parent_entity(*pse);
359 }
360}
361
8f48894f
PZ
362#else /* !CONFIG_FAIR_GROUP_SCHED */
363
364static inline struct task_struct *task_of(struct sched_entity *se)
365{
366 return container_of(se, struct task_struct, se);
367}
bf0f6f24 368
62160e3f
IM
369static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
370{
371 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
372}
373
374#define entity_is_task(se) 1
375
b758149c
PZ
376#define for_each_sched_entity(se) \
377 for (; se; se = NULL)
bf0f6f24 378
b758149c 379static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 380{
b758149c 381 return &task_rq(p)->cfs;
bf0f6f24
IM
382}
383
b758149c
PZ
384static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
385{
386 struct task_struct *p = task_of(se);
387 struct rq *rq = task_rq(p);
388
389 return &rq->cfs;
390}
391
392/* runqueue "owned" by this group */
393static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
394{
395 return NULL;
396}
397
3d4b47b4
PZ
398static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399{
400}
401
402static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
403{
404}
405
b758149c
PZ
406#define for_each_leaf_cfs_rq(rq, cfs_rq) \
407 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
408
409static inline int
410is_same_group(struct sched_entity *se, struct sched_entity *pse)
411{
412 return 1;
413}
414
415static inline struct sched_entity *parent_entity(struct sched_entity *se)
416{
417 return NULL;
418}
419
464b7527
PZ
420static inline void
421find_matching_se(struct sched_entity **se, struct sched_entity **pse)
422{
423}
424
b758149c
PZ
425#endif /* CONFIG_FAIR_GROUP_SCHED */
426
6c16a6dc
PZ
427static __always_inline
428void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
bf0f6f24
IM
429
430/**************************************************************
431 * Scheduling class tree data structure manipulation methods:
432 */
433
1bf08230 434static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 435{
1bf08230 436 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 437 if (delta > 0)
1bf08230 438 max_vruntime = vruntime;
02e0431a 439
1bf08230 440 return max_vruntime;
02e0431a
PZ
441}
442
0702e3eb 443static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
444{
445 s64 delta = (s64)(vruntime - min_vruntime);
446 if (delta < 0)
447 min_vruntime = vruntime;
448
449 return min_vruntime;
450}
451
54fdc581
FC
452static inline int entity_before(struct sched_entity *a,
453 struct sched_entity *b)
454{
455 return (s64)(a->vruntime - b->vruntime) < 0;
456}
457
1af5f730
PZ
458static void update_min_vruntime(struct cfs_rq *cfs_rq)
459{
460 u64 vruntime = cfs_rq->min_vruntime;
461
462 if (cfs_rq->curr)
463 vruntime = cfs_rq->curr->vruntime;
464
465 if (cfs_rq->rb_leftmost) {
466 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
467 struct sched_entity,
468 run_node);
469
e17036da 470 if (!cfs_rq->curr)
1af5f730
PZ
471 vruntime = se->vruntime;
472 else
473 vruntime = min_vruntime(vruntime, se->vruntime);
474 }
475
1bf08230 476 /* ensure we never gain time by being placed backwards. */
1af5f730 477 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
478#ifndef CONFIG_64BIT
479 smp_wmb();
480 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
481#endif
1af5f730
PZ
482}
483
bf0f6f24
IM
484/*
485 * Enqueue an entity into the rb-tree:
486 */
0702e3eb 487static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
488{
489 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
490 struct rb_node *parent = NULL;
491 struct sched_entity *entry;
bf0f6f24
IM
492 int leftmost = 1;
493
494 /*
495 * Find the right place in the rbtree:
496 */
497 while (*link) {
498 parent = *link;
499 entry = rb_entry(parent, struct sched_entity, run_node);
500 /*
501 * We dont care about collisions. Nodes with
502 * the same key stay together.
503 */
2bd2d6f2 504 if (entity_before(se, entry)) {
bf0f6f24
IM
505 link = &parent->rb_left;
506 } else {
507 link = &parent->rb_right;
508 leftmost = 0;
509 }
510 }
511
512 /*
513 * Maintain a cache of leftmost tree entries (it is frequently
514 * used):
515 */
1af5f730 516 if (leftmost)
57cb499d 517 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
518
519 rb_link_node(&se->run_node, parent, link);
520 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
521}
522
0702e3eb 523static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 524{
3fe69747
PZ
525 if (cfs_rq->rb_leftmost == &se->run_node) {
526 struct rb_node *next_node;
3fe69747
PZ
527
528 next_node = rb_next(&se->run_node);
529 cfs_rq->rb_leftmost = next_node;
3fe69747 530 }
e9acbff6 531
bf0f6f24 532 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
533}
534
029632fb 535struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 536{
f4b6755f
PZ
537 struct rb_node *left = cfs_rq->rb_leftmost;
538
539 if (!left)
540 return NULL;
541
542 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
543}
544
ac53db59
RR
545static struct sched_entity *__pick_next_entity(struct sched_entity *se)
546{
547 struct rb_node *next = rb_next(&se->run_node);
548
549 if (!next)
550 return NULL;
551
552 return rb_entry(next, struct sched_entity, run_node);
553}
554
555#ifdef CONFIG_SCHED_DEBUG
029632fb 556struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 557{
7eee3e67 558 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 559
70eee74b
BS
560 if (!last)
561 return NULL;
7eee3e67
IM
562
563 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
564}
565
bf0f6f24
IM
566/**************************************************************
567 * Scheduling class statistics methods:
568 */
569
acb4a848 570int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 571 void __user *buffer, size_t *lenp,
b2be5e96
PZ
572 loff_t *ppos)
573{
8d65af78 574 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 575 int factor = get_update_sysctl_factor();
b2be5e96
PZ
576
577 if (ret || !write)
578 return ret;
579
580 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
581 sysctl_sched_min_granularity);
582
acb4a848
CE
583#define WRT_SYSCTL(name) \
584 (normalized_sysctl_##name = sysctl_##name / (factor))
585 WRT_SYSCTL(sched_min_granularity);
586 WRT_SYSCTL(sched_latency);
587 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
588#undef WRT_SYSCTL
589
b2be5e96
PZ
590 return 0;
591}
592#endif
647e7cac 593
a7be37ac 594/*
f9c0b095 595 * delta /= w
a7be37ac
PZ
596 */
597static inline unsigned long
598calc_delta_fair(unsigned long delta, struct sched_entity *se)
599{
f9c0b095
PZ
600 if (unlikely(se->load.weight != NICE_0_LOAD))
601 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
602
603 return delta;
604}
605
647e7cac
IM
606/*
607 * The idea is to set a period in which each task runs once.
608 *
532b1858 609 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
610 * this period because otherwise the slices get too small.
611 *
612 * p = (nr <= nl) ? l : l*nr/nl
613 */
4d78e7b6
PZ
614static u64 __sched_period(unsigned long nr_running)
615{
616 u64 period = sysctl_sched_latency;
b2be5e96 617 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
618
619 if (unlikely(nr_running > nr_latency)) {
4bf0b771 620 period = sysctl_sched_min_granularity;
4d78e7b6 621 period *= nr_running;
4d78e7b6
PZ
622 }
623
624 return period;
625}
626
647e7cac
IM
627/*
628 * We calculate the wall-time slice from the period by taking a part
629 * proportional to the weight.
630 *
f9c0b095 631 * s = p*P[w/rw]
647e7cac 632 */
6d0f0ebd 633static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 634{
0a582440 635 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 636
0a582440 637 for_each_sched_entity(se) {
6272d68c 638 struct load_weight *load;
3104bf03 639 struct load_weight lw;
6272d68c
LM
640
641 cfs_rq = cfs_rq_of(se);
642 load = &cfs_rq->load;
f9c0b095 643
0a582440 644 if (unlikely(!se->on_rq)) {
3104bf03 645 lw = cfs_rq->load;
0a582440
MG
646
647 update_load_add(&lw, se->load.weight);
648 load = &lw;
649 }
650 slice = calc_delta_mine(slice, se->load.weight, load);
651 }
652 return slice;
bf0f6f24
IM
653}
654
647e7cac 655/*
660cc00f 656 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 657 *
f9c0b095 658 * vs = s/w
647e7cac 659 */
f9c0b095 660static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 661{
f9c0b095 662 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
663}
664
bf0f6f24
IM
665/*
666 * Update the current task's runtime statistics. Skip current tasks that
667 * are not in our scheduling class.
668 */
669static inline void
8ebc91d9
IM
670__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
671 unsigned long delta_exec)
bf0f6f24 672{
bbdba7c0 673 unsigned long delta_exec_weighted;
bf0f6f24 674
41acab88
LDM
675 schedstat_set(curr->statistics.exec_max,
676 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
677
678 curr->sum_exec_runtime += delta_exec;
7a62eabc 679 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 680 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 681
e9acbff6 682 curr->vruntime += delta_exec_weighted;
1af5f730 683 update_min_vruntime(cfs_rq);
bf0f6f24
IM
684}
685
b7cc0896 686static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 687{
429d43bc 688 struct sched_entity *curr = cfs_rq->curr;
305e6835 689 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
690 unsigned long delta_exec;
691
692 if (unlikely(!curr))
693 return;
694
695 /*
696 * Get the amount of time the current task was running
697 * since the last time we changed load (this cannot
698 * overflow on 32 bits):
699 */
8ebc91d9 700 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
701 if (!delta_exec)
702 return;
bf0f6f24 703
8ebc91d9
IM
704 __update_curr(cfs_rq, curr, delta_exec);
705 curr->exec_start = now;
d842de87
SV
706
707 if (entity_is_task(curr)) {
708 struct task_struct *curtask = task_of(curr);
709
f977bb49 710 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 711 cpuacct_charge(curtask, delta_exec);
f06febc9 712 account_group_exec_runtime(curtask, delta_exec);
d842de87 713 }
ec12cb7f
PT
714
715 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
716}
717
718static inline void
5870db5b 719update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 720{
41acab88 721 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
722}
723
bf0f6f24
IM
724/*
725 * Task is being enqueued - update stats:
726 */
d2417e5a 727static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 728{
bf0f6f24
IM
729 /*
730 * Are we enqueueing a waiting task? (for current tasks
731 * a dequeue/enqueue event is a NOP)
732 */
429d43bc 733 if (se != cfs_rq->curr)
5870db5b 734 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
735}
736
bf0f6f24 737static void
9ef0a961 738update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 739{
41acab88
LDM
740 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
741 rq_of(cfs_rq)->clock - se->statistics.wait_start));
742 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
743 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
744 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
745#ifdef CONFIG_SCHEDSTATS
746 if (entity_is_task(se)) {
747 trace_sched_stat_wait(task_of(se),
41acab88 748 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
749 }
750#endif
41acab88 751 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
752}
753
754static inline void
19b6a2e3 755update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 756{
bf0f6f24
IM
757 /*
758 * Mark the end of the wait period if dequeueing a
759 * waiting task:
760 */
429d43bc 761 if (se != cfs_rq->curr)
9ef0a961 762 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
763}
764
765/*
766 * We are picking a new current task - update its stats:
767 */
768static inline void
79303e9e 769update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
770{
771 /*
772 * We are starting a new run period:
773 */
305e6835 774 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
775}
776
bf0f6f24
IM
777/**************************************************
778 * Scheduling class queueing methods:
779 */
780
cbee9f88
PZ
781#ifdef CONFIG_NUMA_BALANCING
782/*
6e5fb223 783 * numa task sample period in ms
cbee9f88 784 */
6e5fb223 785unsigned int sysctl_numa_balancing_scan_period_min = 100;
b8593bfd
MG
786unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
787unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
6e5fb223
PZ
788
789/* Portion of address space to scan in MB */
790unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 791
4b96a29b
PZ
792/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
793unsigned int sysctl_numa_balancing_scan_delay = 1000;
794
cbee9f88
PZ
795static void task_numa_placement(struct task_struct *p)
796{
2832bc19 797 int seq;
cbee9f88 798
2832bc19
HD
799 if (!p->mm) /* for example, ksmd faulting in a user's mm */
800 return;
801 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
802 if (p->numa_scan_seq == seq)
803 return;
804 p->numa_scan_seq = seq;
805
806 /* FIXME: Scheduling placement policy hints go here */
807}
808
809/*
810 * Got a PROT_NONE fault for a page on @node.
811 */
b8593bfd 812void task_numa_fault(int node, int pages, bool migrated)
cbee9f88
PZ
813{
814 struct task_struct *p = current;
815
1a687c2e
MG
816 if (!sched_feat_numa(NUMA))
817 return;
818
cbee9f88
PZ
819 /* FIXME: Allocate task-specific structure for placement policy here */
820
fb003b80 821 /*
b8593bfd
MG
822 * If pages are properly placed (did not migrate) then scan slower.
823 * This is reset periodically in case of phase changes
fb003b80 824 */
b8593bfd
MG
825 if (!migrated)
826 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
827 p->numa_scan_period + jiffies_to_msecs(10));
fb003b80 828
cbee9f88
PZ
829 task_numa_placement(p);
830}
831
6e5fb223
PZ
832static void reset_ptenuma_scan(struct task_struct *p)
833{
834 ACCESS_ONCE(p->mm->numa_scan_seq)++;
835 p->mm->numa_scan_offset = 0;
836}
837
cbee9f88
PZ
838/*
839 * The expensive part of numa migration is done from task_work context.
840 * Triggered from task_tick_numa().
841 */
842void task_numa_work(struct callback_head *work)
843{
844 unsigned long migrate, next_scan, now = jiffies;
845 struct task_struct *p = current;
846 struct mm_struct *mm = p->mm;
6e5fb223 847 struct vm_area_struct *vma;
9f40604c
MG
848 unsigned long start, end;
849 long pages;
cbee9f88
PZ
850
851 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
852
853 work->next = work; /* protect against double add */
854 /*
855 * Who cares about NUMA placement when they're dying.
856 *
857 * NOTE: make sure not to dereference p->mm before this check,
858 * exit_task_work() happens _after_ exit_mm() so we could be called
859 * without p->mm even though we still had it when we enqueued this
860 * work.
861 */
862 if (p->flags & PF_EXITING)
863 return;
864
5bca2303
MG
865 /*
866 * We do not care about task placement until a task runs on a node
867 * other than the first one used by the address space. This is
868 * largely because migrations are driven by what CPU the task
869 * is running on. If it's never scheduled on another node, it'll
870 * not migrate so why bother trapping the fault.
871 */
872 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
873 mm->first_nid = numa_node_id();
874 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
875 /* Are we running on a new node yet? */
876 if (numa_node_id() == mm->first_nid &&
877 !sched_feat_numa(NUMA_FORCE))
878 return;
879
880 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
881 }
882
b8593bfd
MG
883 /*
884 * Reset the scan period if enough time has gone by. Objective is that
885 * scanning will be reduced if pages are properly placed. As tasks
886 * can enter different phases this needs to be re-examined. Lacking
887 * proper tracking of reference behaviour, this blunt hammer is used.
888 */
889 migrate = mm->numa_next_reset;
890 if (time_after(now, migrate)) {
891 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
892 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
893 xchg(&mm->numa_next_reset, next_scan);
894 }
895
cbee9f88
PZ
896 /*
897 * Enforce maximal scan/migration frequency..
898 */
899 migrate = mm->numa_next_scan;
900 if (time_before(now, migrate))
901 return;
902
903 if (p->numa_scan_period == 0)
904 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
905
fb003b80 906 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
907 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
908 return;
909
e14808b4
MG
910 /*
911 * Do not set pte_numa if the current running node is rate-limited.
912 * This loses statistics on the fault but if we are unwilling to
913 * migrate to this node, it is less likely we can do useful work
914 */
915 if (migrate_ratelimited(numa_node_id()))
916 return;
917
9f40604c
MG
918 start = mm->numa_scan_offset;
919 pages = sysctl_numa_balancing_scan_size;
920 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
921 if (!pages)
922 return;
cbee9f88 923
6e5fb223 924 down_read(&mm->mmap_sem);
9f40604c 925 vma = find_vma(mm, start);
6e5fb223
PZ
926 if (!vma) {
927 reset_ptenuma_scan(p);
9f40604c 928 start = 0;
6e5fb223
PZ
929 vma = mm->mmap;
930 }
9f40604c 931 for (; vma; vma = vma->vm_next) {
6e5fb223
PZ
932 if (!vma_migratable(vma))
933 continue;
934
935 /* Skip small VMAs. They are not likely to be of relevance */
221392c3 936 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
6e5fb223
PZ
937 continue;
938
9f40604c
MG
939 do {
940 start = max(start, vma->vm_start);
941 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
942 end = min(end, vma->vm_end);
943 pages -= change_prot_numa(vma, start, end);
6e5fb223 944
9f40604c
MG
945 start = end;
946 if (pages <= 0)
947 goto out;
948 } while (end != vma->vm_end);
cbee9f88 949 }
6e5fb223 950
9f40604c 951out:
6e5fb223
PZ
952 /*
953 * It is possible to reach the end of the VMA list but the last few VMAs are
954 * not guaranteed to the vma_migratable. If they are not, we would find the
955 * !migratable VMA on the next scan but not reset the scanner to the start
956 * so check it now.
957 */
958 if (vma)
9f40604c 959 mm->numa_scan_offset = start;
6e5fb223
PZ
960 else
961 reset_ptenuma_scan(p);
962 up_read(&mm->mmap_sem);
cbee9f88
PZ
963}
964
965/*
966 * Drive the periodic memory faults..
967 */
968void task_tick_numa(struct rq *rq, struct task_struct *curr)
969{
970 struct callback_head *work = &curr->numa_work;
971 u64 period, now;
972
973 /*
974 * We don't care about NUMA placement if we don't have memory.
975 */
976 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
977 return;
978
979 /*
980 * Using runtime rather than walltime has the dual advantage that
981 * we (mostly) drive the selection from busy threads and that the
982 * task needs to have done some actual work before we bother with
983 * NUMA placement.
984 */
985 now = curr->se.sum_exec_runtime;
986 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
987
988 if (now - curr->node_stamp > period) {
4b96a29b
PZ
989 if (!curr->node_stamp)
990 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
cbee9f88
PZ
991 curr->node_stamp = now;
992
993 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
994 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
995 task_work_add(curr, work, true);
996 }
997 }
998}
999#else
1000static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1001{
1002}
1003#endif /* CONFIG_NUMA_BALANCING */
1004
30cfdcfc
DA
1005static void
1006account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1007{
1008 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 1009 if (!parent_entity(se))
029632fb 1010 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7
PZ
1011#ifdef CONFIG_SMP
1012 if (entity_is_task(se))
eb95308e 1013 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
367456c7 1014#endif
30cfdcfc 1015 cfs_rq->nr_running++;
30cfdcfc
DA
1016}
1017
1018static void
1019account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1020{
1021 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 1022 if (!parent_entity(se))
029632fb 1023 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 1024 if (entity_is_task(se))
b87f1724 1025 list_del_init(&se->group_node);
30cfdcfc 1026 cfs_rq->nr_running--;
30cfdcfc
DA
1027}
1028
3ff6dcac
YZ
1029#ifdef CONFIG_FAIR_GROUP_SCHED
1030# ifdef CONFIG_SMP
cf5f0acf
PZ
1031static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1032{
1033 long tg_weight;
1034
1035 /*
1036 * Use this CPU's actual weight instead of the last load_contribution
1037 * to gain a more accurate current total weight. See
1038 * update_cfs_rq_load_contribution().
1039 */
82958366
PT
1040 tg_weight = atomic64_read(&tg->load_avg);
1041 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
1042 tg_weight += cfs_rq->load.weight;
1043
1044 return tg_weight;
1045}
1046
6d5ab293 1047static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 1048{
cf5f0acf 1049 long tg_weight, load, shares;
3ff6dcac 1050
cf5f0acf 1051 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 1052 load = cfs_rq->load.weight;
3ff6dcac 1053
3ff6dcac 1054 shares = (tg->shares * load);
cf5f0acf
PZ
1055 if (tg_weight)
1056 shares /= tg_weight;
3ff6dcac
YZ
1057
1058 if (shares < MIN_SHARES)
1059 shares = MIN_SHARES;
1060 if (shares > tg->shares)
1061 shares = tg->shares;
1062
1063 return shares;
1064}
3ff6dcac 1065# else /* CONFIG_SMP */
6d5ab293 1066static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
1067{
1068 return tg->shares;
1069}
3ff6dcac 1070# endif /* CONFIG_SMP */
2069dd75
PZ
1071static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1072 unsigned long weight)
1073{
19e5eebb
PT
1074 if (se->on_rq) {
1075 /* commit outstanding execution time */
1076 if (cfs_rq->curr == se)
1077 update_curr(cfs_rq);
2069dd75 1078 account_entity_dequeue(cfs_rq, se);
19e5eebb 1079 }
2069dd75
PZ
1080
1081 update_load_set(&se->load, weight);
1082
1083 if (se->on_rq)
1084 account_entity_enqueue(cfs_rq, se);
1085}
1086
82958366
PT
1087static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1088
6d5ab293 1089static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1090{
1091 struct task_group *tg;
1092 struct sched_entity *se;
3ff6dcac 1093 long shares;
2069dd75 1094
2069dd75
PZ
1095 tg = cfs_rq->tg;
1096 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 1097 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 1098 return;
3ff6dcac
YZ
1099#ifndef CONFIG_SMP
1100 if (likely(se->load.weight == tg->shares))
1101 return;
1102#endif
6d5ab293 1103 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
1104
1105 reweight_entity(cfs_rq_of(se), se, shares);
1106}
1107#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 1108static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
1109{
1110}
1111#endif /* CONFIG_FAIR_GROUP_SCHED */
1112
f4e26b12
PT
1113/* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
1114#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
5b51f2f8
PT
1115/*
1116 * We choose a half-life close to 1 scheduling period.
1117 * Note: The tables below are dependent on this value.
1118 */
1119#define LOAD_AVG_PERIOD 32
1120#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1121#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1122
1123/* Precomputed fixed inverse multiplies for multiplication by y^n */
1124static const u32 runnable_avg_yN_inv[] = {
1125 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1126 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1127 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1128 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1129 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1130 0x85aac367, 0x82cd8698,
1131};
1132
1133/*
1134 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1135 * over-estimates when re-combining.
1136 */
1137static const u32 runnable_avg_yN_sum[] = {
1138 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1139 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1140 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1141};
1142
9d85f21c
PT
1143/*
1144 * Approximate:
1145 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1146 */
1147static __always_inline u64 decay_load(u64 val, u64 n)
1148{
5b51f2f8
PT
1149 unsigned int local_n;
1150
1151 if (!n)
1152 return val;
1153 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1154 return 0;
1155
1156 /* after bounds checking we can collapse to 32-bit */
1157 local_n = n;
1158
1159 /*
1160 * As y^PERIOD = 1/2, we can combine
1161 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1162 * With a look-up table which covers k^n (n<PERIOD)
1163 *
1164 * To achieve constant time decay_load.
1165 */
1166 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1167 val >>= local_n / LOAD_AVG_PERIOD;
1168 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
1169 }
1170
5b51f2f8
PT
1171 val *= runnable_avg_yN_inv[local_n];
1172 /* We don't use SRR here since we always want to round down. */
1173 return val >> 32;
1174}
1175
1176/*
1177 * For updates fully spanning n periods, the contribution to runnable
1178 * average will be: \Sum 1024*y^n
1179 *
1180 * We can compute this reasonably efficiently by combining:
1181 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1182 */
1183static u32 __compute_runnable_contrib(u64 n)
1184{
1185 u32 contrib = 0;
1186
1187 if (likely(n <= LOAD_AVG_PERIOD))
1188 return runnable_avg_yN_sum[n];
1189 else if (unlikely(n >= LOAD_AVG_MAX_N))
1190 return LOAD_AVG_MAX;
1191
1192 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1193 do {
1194 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1195 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1196
1197 n -= LOAD_AVG_PERIOD;
1198 } while (n > LOAD_AVG_PERIOD);
1199
1200 contrib = decay_load(contrib, n);
1201 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
1202}
1203
1204/*
1205 * We can represent the historical contribution to runnable average as the
1206 * coefficients of a geometric series. To do this we sub-divide our runnable
1207 * history into segments of approximately 1ms (1024us); label the segment that
1208 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1209 *
1210 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1211 * p0 p1 p2
1212 * (now) (~1ms ago) (~2ms ago)
1213 *
1214 * Let u_i denote the fraction of p_i that the entity was runnable.
1215 *
1216 * We then designate the fractions u_i as our co-efficients, yielding the
1217 * following representation of historical load:
1218 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1219 *
1220 * We choose y based on the with of a reasonably scheduling period, fixing:
1221 * y^32 = 0.5
1222 *
1223 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1224 * approximately half as much as the contribution to load within the last ms
1225 * (u_0).
1226 *
1227 * When a period "rolls over" and we have new u_0`, multiplying the previous
1228 * sum again by y is sufficient to update:
1229 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1230 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1231 */
1232static __always_inline int __update_entity_runnable_avg(u64 now,
1233 struct sched_avg *sa,
1234 int runnable)
1235{
5b51f2f8
PT
1236 u64 delta, periods;
1237 u32 runnable_contrib;
9d85f21c
PT
1238 int delta_w, decayed = 0;
1239
1240 delta = now - sa->last_runnable_update;
1241 /*
1242 * This should only happen when time goes backwards, which it
1243 * unfortunately does during sched clock init when we swap over to TSC.
1244 */
1245 if ((s64)delta < 0) {
1246 sa->last_runnable_update = now;
1247 return 0;
1248 }
1249
1250 /*
1251 * Use 1024ns as the unit of measurement since it's a reasonable
1252 * approximation of 1us and fast to compute.
1253 */
1254 delta >>= 10;
1255 if (!delta)
1256 return 0;
1257 sa->last_runnable_update = now;
1258
1259 /* delta_w is the amount already accumulated against our next period */
1260 delta_w = sa->runnable_avg_period % 1024;
1261 if (delta + delta_w >= 1024) {
1262 /* period roll-over */
1263 decayed = 1;
1264
1265 /*
1266 * Now that we know we're crossing a period boundary, figure
1267 * out how much from delta we need to complete the current
1268 * period and accrue it.
1269 */
1270 delta_w = 1024 - delta_w;
5b51f2f8
PT
1271 if (runnable)
1272 sa->runnable_avg_sum += delta_w;
1273 sa->runnable_avg_period += delta_w;
1274
1275 delta -= delta_w;
1276
1277 /* Figure out how many additional periods this update spans */
1278 periods = delta / 1024;
1279 delta %= 1024;
1280
1281 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1282 periods + 1);
1283 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1284 periods + 1);
1285
1286 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1287 runnable_contrib = __compute_runnable_contrib(periods);
1288 if (runnable)
1289 sa->runnable_avg_sum += runnable_contrib;
1290 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
1291 }
1292
1293 /* Remainder of delta accrued against u_0` */
1294 if (runnable)
1295 sa->runnable_avg_sum += delta;
1296 sa->runnable_avg_period += delta;
1297
1298 return decayed;
1299}
1300
9ee474f5 1301/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 1302static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
1303{
1304 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1305 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1306
1307 decays -= se->avg.decay_count;
1308 if (!decays)
aff3e498 1309 return 0;
9ee474f5
PT
1310
1311 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1312 se->avg.decay_count = 0;
aff3e498
PT
1313
1314 return decays;
9ee474f5
PT
1315}
1316
c566e8e9
PT
1317#ifdef CONFIG_FAIR_GROUP_SCHED
1318static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1319 int force_update)
1320{
1321 struct task_group *tg = cfs_rq->tg;
1322 s64 tg_contrib;
1323
1324 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1325 tg_contrib -= cfs_rq->tg_load_contrib;
1326
1327 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1328 atomic64_add(tg_contrib, &tg->load_avg);
1329 cfs_rq->tg_load_contrib += tg_contrib;
1330 }
1331}
8165e145 1332
bb17f655
PT
1333/*
1334 * Aggregate cfs_rq runnable averages into an equivalent task_group
1335 * representation for computing load contributions.
1336 */
1337static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1338 struct cfs_rq *cfs_rq)
1339{
1340 struct task_group *tg = cfs_rq->tg;
1341 long contrib;
1342
1343 /* The fraction of a cpu used by this cfs_rq */
1344 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1345 sa->runnable_avg_period + 1);
1346 contrib -= cfs_rq->tg_runnable_contrib;
1347
1348 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1349 atomic_add(contrib, &tg->runnable_avg);
1350 cfs_rq->tg_runnable_contrib += contrib;
1351 }
1352}
1353
8165e145
PT
1354static inline void __update_group_entity_contrib(struct sched_entity *se)
1355{
1356 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1357 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
1358 int runnable_avg;
1359
8165e145
PT
1360 u64 contrib;
1361
1362 contrib = cfs_rq->tg_load_contrib * tg->shares;
1363 se->avg.load_avg_contrib = div64_u64(contrib,
1364 atomic64_read(&tg->load_avg) + 1);
bb17f655
PT
1365
1366 /*
1367 * For group entities we need to compute a correction term in the case
1368 * that they are consuming <1 cpu so that we would contribute the same
1369 * load as a task of equal weight.
1370 *
1371 * Explicitly co-ordinating this measurement would be expensive, but
1372 * fortunately the sum of each cpus contribution forms a usable
1373 * lower-bound on the true value.
1374 *
1375 * Consider the aggregate of 2 contributions. Either they are disjoint
1376 * (and the sum represents true value) or they are disjoint and we are
1377 * understating by the aggregate of their overlap.
1378 *
1379 * Extending this to N cpus, for a given overlap, the maximum amount we
1380 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1381 * cpus that overlap for this interval and w_i is the interval width.
1382 *
1383 * On a small machine; the first term is well-bounded which bounds the
1384 * total error since w_i is a subset of the period. Whereas on a
1385 * larger machine, while this first term can be larger, if w_i is the
1386 * of consequential size guaranteed to see n_i*w_i quickly converge to
1387 * our upper bound of 1-cpu.
1388 */
1389 runnable_avg = atomic_read(&tg->runnable_avg);
1390 if (runnable_avg < NICE_0_LOAD) {
1391 se->avg.load_avg_contrib *= runnable_avg;
1392 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1393 }
8165e145 1394}
c566e8e9
PT
1395#else
1396static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1397 int force_update) {}
bb17f655
PT
1398static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1399 struct cfs_rq *cfs_rq) {}
8165e145 1400static inline void __update_group_entity_contrib(struct sched_entity *se) {}
c566e8e9
PT
1401#endif
1402
8165e145
PT
1403static inline void __update_task_entity_contrib(struct sched_entity *se)
1404{
1405 u32 contrib;
1406
1407 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1408 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1409 contrib /= (se->avg.runnable_avg_period + 1);
1410 se->avg.load_avg_contrib = scale_load(contrib);
1411}
1412
2dac754e
PT
1413/* Compute the current contribution to load_avg by se, return any delta */
1414static long __update_entity_load_avg_contrib(struct sched_entity *se)
1415{
1416 long old_contrib = se->avg.load_avg_contrib;
1417
8165e145
PT
1418 if (entity_is_task(se)) {
1419 __update_task_entity_contrib(se);
1420 } else {
bb17f655 1421 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
1422 __update_group_entity_contrib(se);
1423 }
2dac754e
PT
1424
1425 return se->avg.load_avg_contrib - old_contrib;
1426}
1427
9ee474f5
PT
1428static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1429 long load_contrib)
1430{
1431 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1432 cfs_rq->blocked_load_avg -= load_contrib;
1433 else
1434 cfs_rq->blocked_load_avg = 0;
1435}
1436
f1b17280
PT
1437static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1438
9d85f21c 1439/* Update a sched_entity's runnable average */
9ee474f5
PT
1440static inline void update_entity_load_avg(struct sched_entity *se,
1441 int update_cfs_rq)
9d85f21c 1442{
2dac754e
PT
1443 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1444 long contrib_delta;
f1b17280 1445 u64 now;
2dac754e 1446
f1b17280
PT
1447 /*
1448 * For a group entity we need to use their owned cfs_rq_clock_task() in
1449 * case they are the parent of a throttled hierarchy.
1450 */
1451 if (entity_is_task(se))
1452 now = cfs_rq_clock_task(cfs_rq);
1453 else
1454 now = cfs_rq_clock_task(group_cfs_rq(se));
1455
1456 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
1457 return;
1458
1459 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
1460
1461 if (!update_cfs_rq)
1462 return;
1463
2dac754e
PT
1464 if (se->on_rq)
1465 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
1466 else
1467 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1468}
1469
1470/*
1471 * Decay the load contributed by all blocked children and account this so that
1472 * their contribution may appropriately discounted when they wake up.
1473 */
aff3e498 1474static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 1475{
f1b17280 1476 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
1477 u64 decays;
1478
1479 decays = now - cfs_rq->last_decay;
aff3e498 1480 if (!decays && !force_update)
9ee474f5
PT
1481 return;
1482
aff3e498
PT
1483 if (atomic64_read(&cfs_rq->removed_load)) {
1484 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1485 subtract_blocked_load_contrib(cfs_rq, removed_load);
1486 }
9ee474f5 1487
aff3e498
PT
1488 if (decays) {
1489 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1490 decays);
1491 atomic64_add(decays, &cfs_rq->decay_counter);
1492 cfs_rq->last_decay = now;
1493 }
c566e8e9
PT
1494
1495 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 1496}
18bf2805
BS
1497
1498static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1499{
1500 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
bb17f655 1501 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
18bf2805 1502}
2dac754e
PT
1503
1504/* Add the load generated by se into cfs_rq's child load-average */
1505static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1506 struct sched_entity *se,
1507 int wakeup)
2dac754e 1508{
aff3e498
PT
1509 /*
1510 * We track migrations using entity decay_count <= 0, on a wake-up
1511 * migration we use a negative decay count to track the remote decays
1512 * accumulated while sleeping.
1513 */
1514 if (unlikely(se->avg.decay_count <= 0)) {
9ee474f5 1515 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
aff3e498
PT
1516 if (se->avg.decay_count) {
1517 /*
1518 * In a wake-up migration we have to approximate the
1519 * time sleeping. This is because we can't synchronize
1520 * clock_task between the two cpus, and it is not
1521 * guaranteed to be read-safe. Instead, we can
1522 * approximate this using our carried decays, which are
1523 * explicitly atomically readable.
1524 */
1525 se->avg.last_runnable_update -= (-se->avg.decay_count)
1526 << 20;
1527 update_entity_load_avg(se, 0);
1528 /* Indicate that we're now synchronized and on-rq */
1529 se->avg.decay_count = 0;
1530 }
9ee474f5
PT
1531 wakeup = 0;
1532 } else {
1533 __synchronize_entity_decay(se);
1534 }
1535
aff3e498
PT
1536 /* migrated tasks did not contribute to our blocked load */
1537 if (wakeup) {
9ee474f5 1538 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
1539 update_entity_load_avg(se, 0);
1540 }
9ee474f5 1541
2dac754e 1542 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
1543 /* we force update consideration on load-balancer moves */
1544 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
1545}
1546
9ee474f5
PT
1547/*
1548 * Remove se's load from this cfs_rq child load-average, if the entity is
1549 * transitioning to a blocked state we track its projected decay using
1550 * blocked_load_avg.
1551 */
2dac754e 1552static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1553 struct sched_entity *se,
1554 int sleep)
2dac754e 1555{
9ee474f5 1556 update_entity_load_avg(se, 1);
aff3e498
PT
1557 /* we force update consideration on load-balancer moves */
1558 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 1559
2dac754e 1560 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
1561 if (sleep) {
1562 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1563 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1564 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 1565}
9d85f21c 1566#else
9ee474f5
PT
1567static inline void update_entity_load_avg(struct sched_entity *se,
1568 int update_cfs_rq) {}
18bf2805 1569static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 1570static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1571 struct sched_entity *se,
1572 int wakeup) {}
2dac754e 1573static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
1574 struct sched_entity *se,
1575 int sleep) {}
aff3e498
PT
1576static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1577 int force_update) {}
9d85f21c
PT
1578#endif
1579
2396af69 1580static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1581{
bf0f6f24 1582#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
1583 struct task_struct *tsk = NULL;
1584
1585 if (entity_is_task(se))
1586 tsk = task_of(se);
1587
41acab88
LDM
1588 if (se->statistics.sleep_start) {
1589 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
1590
1591 if ((s64)delta < 0)
1592 delta = 0;
1593
41acab88
LDM
1594 if (unlikely(delta > se->statistics.sleep_max))
1595 se->statistics.sleep_max = delta;
bf0f6f24 1596
8c79a045 1597 se->statistics.sleep_start = 0;
41acab88 1598 se->statistics.sum_sleep_runtime += delta;
9745512c 1599
768d0c27 1600 if (tsk) {
e414314c 1601 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
1602 trace_sched_stat_sleep(tsk, delta);
1603 }
bf0f6f24 1604 }
41acab88
LDM
1605 if (se->statistics.block_start) {
1606 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
1607
1608 if ((s64)delta < 0)
1609 delta = 0;
1610
41acab88
LDM
1611 if (unlikely(delta > se->statistics.block_max))
1612 se->statistics.block_max = delta;
bf0f6f24 1613
8c79a045 1614 se->statistics.block_start = 0;
41acab88 1615 se->statistics.sum_sleep_runtime += delta;
30084fbd 1616
e414314c 1617 if (tsk) {
8f0dfc34 1618 if (tsk->in_iowait) {
41acab88
LDM
1619 se->statistics.iowait_sum += delta;
1620 se->statistics.iowait_count++;
768d0c27 1621 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
1622 }
1623
b781a602
AV
1624 trace_sched_stat_blocked(tsk, delta);
1625
e414314c
PZ
1626 /*
1627 * Blocking time is in units of nanosecs, so shift by
1628 * 20 to get a milliseconds-range estimation of the
1629 * amount of time that the task spent sleeping:
1630 */
1631 if (unlikely(prof_on == SLEEP_PROFILING)) {
1632 profile_hits(SLEEP_PROFILING,
1633 (void *)get_wchan(tsk),
1634 delta >> 20);
1635 }
1636 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 1637 }
bf0f6f24
IM
1638 }
1639#endif
1640}
1641
ddc97297
PZ
1642static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1643{
1644#ifdef CONFIG_SCHED_DEBUG
1645 s64 d = se->vruntime - cfs_rq->min_vruntime;
1646
1647 if (d < 0)
1648 d = -d;
1649
1650 if (d > 3*sysctl_sched_latency)
1651 schedstat_inc(cfs_rq, nr_spread_over);
1652#endif
1653}
1654
aeb73b04
PZ
1655static void
1656place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1657{
1af5f730 1658 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 1659
2cb8600e
PZ
1660 /*
1661 * The 'current' period is already promised to the current tasks,
1662 * however the extra weight of the new task will slow them down a
1663 * little, place the new task so that it fits in the slot that
1664 * stays open at the end.
1665 */
94dfb5e7 1666 if (initial && sched_feat(START_DEBIT))
f9c0b095 1667 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 1668
a2e7a7eb 1669 /* sleeps up to a single latency don't count. */
5ca9880c 1670 if (!initial) {
a2e7a7eb 1671 unsigned long thresh = sysctl_sched_latency;
a7be37ac 1672
a2e7a7eb
MG
1673 /*
1674 * Halve their sleep time's effect, to allow
1675 * for a gentler effect of sleepers:
1676 */
1677 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1678 thresh >>= 1;
51e0304c 1679
a2e7a7eb 1680 vruntime -= thresh;
aeb73b04
PZ
1681 }
1682
b5d9d734 1683 /* ensure we never gain time by being placed backwards. */
16c8f1c7 1684 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
1685}
1686
d3d9dc33
PT
1687static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1688
bf0f6f24 1689static void
88ec22d3 1690enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1691{
88ec22d3
PZ
1692 /*
1693 * Update the normalized vruntime before updating min_vruntime
1694 * through callig update_curr().
1695 */
371fd7e7 1696 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
1697 se->vruntime += cfs_rq->min_vruntime;
1698
bf0f6f24 1699 /*
a2a2d680 1700 * Update run-time statistics of the 'current'.
bf0f6f24 1701 */
b7cc0896 1702 update_curr(cfs_rq);
f269ae04 1703 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
1704 account_entity_enqueue(cfs_rq, se);
1705 update_cfs_shares(cfs_rq);
bf0f6f24 1706
88ec22d3 1707 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 1708 place_entity(cfs_rq, se, 0);
2396af69 1709 enqueue_sleeper(cfs_rq, se);
e9acbff6 1710 }
bf0f6f24 1711
d2417e5a 1712 update_stats_enqueue(cfs_rq, se);
ddc97297 1713 check_spread(cfs_rq, se);
83b699ed
SV
1714 if (se != cfs_rq->curr)
1715 __enqueue_entity(cfs_rq, se);
2069dd75 1716 se->on_rq = 1;
3d4b47b4 1717
d3d9dc33 1718 if (cfs_rq->nr_running == 1) {
3d4b47b4 1719 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
1720 check_enqueue_throttle(cfs_rq);
1721 }
bf0f6f24
IM
1722}
1723
2c13c919 1724static void __clear_buddies_last(struct sched_entity *se)
2002c695 1725{
2c13c919
RR
1726 for_each_sched_entity(se) {
1727 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1728 if (cfs_rq->last == se)
1729 cfs_rq->last = NULL;
1730 else
1731 break;
1732 }
1733}
2002c695 1734
2c13c919
RR
1735static void __clear_buddies_next(struct sched_entity *se)
1736{
1737 for_each_sched_entity(se) {
1738 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1739 if (cfs_rq->next == se)
1740 cfs_rq->next = NULL;
1741 else
1742 break;
1743 }
2002c695
PZ
1744}
1745
ac53db59
RR
1746static void __clear_buddies_skip(struct sched_entity *se)
1747{
1748 for_each_sched_entity(se) {
1749 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1750 if (cfs_rq->skip == se)
1751 cfs_rq->skip = NULL;
1752 else
1753 break;
1754 }
1755}
1756
a571bbea
PZ
1757static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1758{
2c13c919
RR
1759 if (cfs_rq->last == se)
1760 __clear_buddies_last(se);
1761
1762 if (cfs_rq->next == se)
1763 __clear_buddies_next(se);
ac53db59
RR
1764
1765 if (cfs_rq->skip == se)
1766 __clear_buddies_skip(se);
a571bbea
PZ
1767}
1768
6c16a6dc 1769static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 1770
bf0f6f24 1771static void
371fd7e7 1772dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1773{
a2a2d680
DA
1774 /*
1775 * Update run-time statistics of the 'current'.
1776 */
1777 update_curr(cfs_rq);
17bc14b7 1778 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 1779
19b6a2e3 1780 update_stats_dequeue(cfs_rq, se);
371fd7e7 1781 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1782#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1783 if (entity_is_task(se)) {
1784 struct task_struct *tsk = task_of(se);
1785
1786 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1787 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1788 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1789 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1790 }
db36cc7d 1791#endif
67e9fb2a
PZ
1792 }
1793
2002c695 1794 clear_buddies(cfs_rq, se);
4793241b 1795
83b699ed 1796 if (se != cfs_rq->curr)
30cfdcfc 1797 __dequeue_entity(cfs_rq, se);
17bc14b7 1798 se->on_rq = 0;
30cfdcfc 1799 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
1800
1801 /*
1802 * Normalize the entity after updating the min_vruntime because the
1803 * update can refer to the ->curr item and we need to reflect this
1804 * movement in our normalized position.
1805 */
371fd7e7 1806 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1807 se->vruntime -= cfs_rq->min_vruntime;
1e876231 1808
d8b4986d
PT
1809 /* return excess runtime on last dequeue */
1810 return_cfs_rq_runtime(cfs_rq);
1811
1e876231 1812 update_min_vruntime(cfs_rq);
17bc14b7 1813 update_cfs_shares(cfs_rq);
bf0f6f24
IM
1814}
1815
1816/*
1817 * Preempt the current task with a newly woken task if needed:
1818 */
7c92e54f 1819static void
2e09bf55 1820check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1821{
11697830 1822 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
1823 struct sched_entity *se;
1824 s64 delta;
11697830 1825
6d0f0ebd 1826 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1827 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1828 if (delta_exec > ideal_runtime) {
bf0f6f24 1829 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1830 /*
1831 * The current task ran long enough, ensure it doesn't get
1832 * re-elected due to buddy favours.
1833 */
1834 clear_buddies(cfs_rq, curr);
f685ceac
MG
1835 return;
1836 }
1837
1838 /*
1839 * Ensure that a task that missed wakeup preemption by a
1840 * narrow margin doesn't have to wait for a full slice.
1841 * This also mitigates buddy induced latencies under load.
1842 */
f685ceac
MG
1843 if (delta_exec < sysctl_sched_min_granularity)
1844 return;
1845
f4cfb33e
WX
1846 se = __pick_first_entity(cfs_rq);
1847 delta = curr->vruntime - se->vruntime;
f685ceac 1848
f4cfb33e
WX
1849 if (delta < 0)
1850 return;
d7d82944 1851
f4cfb33e
WX
1852 if (delta > ideal_runtime)
1853 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
1854}
1855
83b699ed 1856static void
8494f412 1857set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1858{
83b699ed
SV
1859 /* 'current' is not kept within the tree. */
1860 if (se->on_rq) {
1861 /*
1862 * Any task has to be enqueued before it get to execute on
1863 * a CPU. So account for the time it spent waiting on the
1864 * runqueue.
1865 */
1866 update_stats_wait_end(cfs_rq, se);
1867 __dequeue_entity(cfs_rq, se);
1868 }
1869
79303e9e 1870 update_stats_curr_start(cfs_rq, se);
429d43bc 1871 cfs_rq->curr = se;
eba1ed4b
IM
1872#ifdef CONFIG_SCHEDSTATS
1873 /*
1874 * Track our maximum slice length, if the CPU's load is at
1875 * least twice that of our own weight (i.e. dont track it
1876 * when there are only lesser-weight tasks around):
1877 */
495eca49 1878 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1879 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1880 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1881 }
1882#endif
4a55b450 1883 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1884}
1885
3f3a4904
PZ
1886static int
1887wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1888
ac53db59
RR
1889/*
1890 * Pick the next process, keeping these things in mind, in this order:
1891 * 1) keep things fair between processes/task groups
1892 * 2) pick the "next" process, since someone really wants that to run
1893 * 3) pick the "last" process, for cache locality
1894 * 4) do not run the "skip" process, if something else is available
1895 */
f4b6755f 1896static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1897{
ac53db59 1898 struct sched_entity *se = __pick_first_entity(cfs_rq);
f685ceac 1899 struct sched_entity *left = se;
f4b6755f 1900
ac53db59
RR
1901 /*
1902 * Avoid running the skip buddy, if running something else can
1903 * be done without getting too unfair.
1904 */
1905 if (cfs_rq->skip == se) {
1906 struct sched_entity *second = __pick_next_entity(se);
1907 if (second && wakeup_preempt_entity(second, left) < 1)
1908 se = second;
1909 }
aa2ac252 1910
f685ceac
MG
1911 /*
1912 * Prefer last buddy, try to return the CPU to a preempted task.
1913 */
1914 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1915 se = cfs_rq->last;
1916
ac53db59
RR
1917 /*
1918 * Someone really wants this to run. If it's not unfair, run it.
1919 */
1920 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1921 se = cfs_rq->next;
1922
f685ceac 1923 clear_buddies(cfs_rq, se);
4793241b
PZ
1924
1925 return se;
aa2ac252
PZ
1926}
1927
d3d9dc33
PT
1928static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1929
ab6cde26 1930static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1931{
1932 /*
1933 * If still on the runqueue then deactivate_task()
1934 * was not called and update_curr() has to be done:
1935 */
1936 if (prev->on_rq)
b7cc0896 1937 update_curr(cfs_rq);
bf0f6f24 1938
d3d9dc33
PT
1939 /* throttle cfs_rqs exceeding runtime */
1940 check_cfs_rq_runtime(cfs_rq);
1941
ddc97297 1942 check_spread(cfs_rq, prev);
30cfdcfc 1943 if (prev->on_rq) {
5870db5b 1944 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1945 /* Put 'current' back into the tree. */
1946 __enqueue_entity(cfs_rq, prev);
9d85f21c 1947 /* in !on_rq case, update occurred at dequeue */
9ee474f5 1948 update_entity_load_avg(prev, 1);
30cfdcfc 1949 }
429d43bc 1950 cfs_rq->curr = NULL;
bf0f6f24
IM
1951}
1952
8f4d37ec
PZ
1953static void
1954entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1955{
bf0f6f24 1956 /*
30cfdcfc 1957 * Update run-time statistics of the 'current'.
bf0f6f24 1958 */
30cfdcfc 1959 update_curr(cfs_rq);
bf0f6f24 1960
9d85f21c
PT
1961 /*
1962 * Ensure that runnable average is periodically updated.
1963 */
9ee474f5 1964 update_entity_load_avg(curr, 1);
aff3e498 1965 update_cfs_rq_blocked_load(cfs_rq, 1);
9d85f21c 1966
8f4d37ec
PZ
1967#ifdef CONFIG_SCHED_HRTICK
1968 /*
1969 * queued ticks are scheduled to match the slice, so don't bother
1970 * validating it and just reschedule.
1971 */
983ed7a6
HH
1972 if (queued) {
1973 resched_task(rq_of(cfs_rq)->curr);
1974 return;
1975 }
8f4d37ec
PZ
1976 /*
1977 * don't let the period tick interfere with the hrtick preemption
1978 */
1979 if (!sched_feat(DOUBLE_TICK) &&
1980 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1981 return;
1982#endif
1983
2c2efaed 1984 if (cfs_rq->nr_running > 1)
2e09bf55 1985 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1986}
1987
ab84d31e
PT
1988
1989/**************************************************
1990 * CFS bandwidth control machinery
1991 */
1992
1993#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
1994
1995#ifdef HAVE_JUMP_LABEL
c5905afb 1996static struct static_key __cfs_bandwidth_used;
029632fb
PZ
1997
1998static inline bool cfs_bandwidth_used(void)
1999{
c5905afb 2000 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
2001}
2002
2003void account_cfs_bandwidth_used(int enabled, int was_enabled)
2004{
2005 /* only need to count groups transitioning between enabled/!enabled */
2006 if (enabled && !was_enabled)
c5905afb 2007 static_key_slow_inc(&__cfs_bandwidth_used);
029632fb 2008 else if (!enabled && was_enabled)
c5905afb 2009 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
2010}
2011#else /* HAVE_JUMP_LABEL */
2012static bool cfs_bandwidth_used(void)
2013{
2014 return true;
2015}
2016
2017void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2018#endif /* HAVE_JUMP_LABEL */
2019
ab84d31e
PT
2020/*
2021 * default period for cfs group bandwidth.
2022 * default: 0.1s, units: nanoseconds
2023 */
2024static inline u64 default_cfs_period(void)
2025{
2026 return 100000000ULL;
2027}
ec12cb7f
PT
2028
2029static inline u64 sched_cfs_bandwidth_slice(void)
2030{
2031 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2032}
2033
a9cf55b2
PT
2034/*
2035 * Replenish runtime according to assigned quota and update expiration time.
2036 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2037 * additional synchronization around rq->lock.
2038 *
2039 * requires cfs_b->lock
2040 */
029632fb 2041void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
2042{
2043 u64 now;
2044
2045 if (cfs_b->quota == RUNTIME_INF)
2046 return;
2047
2048 now = sched_clock_cpu(smp_processor_id());
2049 cfs_b->runtime = cfs_b->quota;
2050 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2051}
2052
029632fb
PZ
2053static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2054{
2055 return &tg->cfs_bandwidth;
2056}
2057
f1b17280
PT
2058/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2059static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2060{
2061 if (unlikely(cfs_rq->throttle_count))
2062 return cfs_rq->throttled_clock_task;
2063
2064 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
2065}
2066
85dac906
PT
2067/* returns 0 on failure to allocate runtime */
2068static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
2069{
2070 struct task_group *tg = cfs_rq->tg;
2071 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 2072 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
2073
2074 /* note: this is a positive sum as runtime_remaining <= 0 */
2075 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2076
2077 raw_spin_lock(&cfs_b->lock);
2078 if (cfs_b->quota == RUNTIME_INF)
2079 amount = min_amount;
58088ad0 2080 else {
a9cf55b2
PT
2081 /*
2082 * If the bandwidth pool has become inactive, then at least one
2083 * period must have elapsed since the last consumption.
2084 * Refresh the global state and ensure bandwidth timer becomes
2085 * active.
2086 */
2087 if (!cfs_b->timer_active) {
2088 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 2089 __start_cfs_bandwidth(cfs_b);
a9cf55b2 2090 }
58088ad0
PT
2091
2092 if (cfs_b->runtime > 0) {
2093 amount = min(cfs_b->runtime, min_amount);
2094 cfs_b->runtime -= amount;
2095 cfs_b->idle = 0;
2096 }
ec12cb7f 2097 }
a9cf55b2 2098 expires = cfs_b->runtime_expires;
ec12cb7f
PT
2099 raw_spin_unlock(&cfs_b->lock);
2100
2101 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
2102 /*
2103 * we may have advanced our local expiration to account for allowed
2104 * spread between our sched_clock and the one on which runtime was
2105 * issued.
2106 */
2107 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2108 cfs_rq->runtime_expires = expires;
85dac906
PT
2109
2110 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
2111}
2112
a9cf55b2
PT
2113/*
2114 * Note: This depends on the synchronization provided by sched_clock and the
2115 * fact that rq->clock snapshots this value.
2116 */
2117static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 2118{
a9cf55b2
PT
2119 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2120 struct rq *rq = rq_of(cfs_rq);
2121
2122 /* if the deadline is ahead of our clock, nothing to do */
2123 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
2124 return;
2125
a9cf55b2
PT
2126 if (cfs_rq->runtime_remaining < 0)
2127 return;
2128
2129 /*
2130 * If the local deadline has passed we have to consider the
2131 * possibility that our sched_clock is 'fast' and the global deadline
2132 * has not truly expired.
2133 *
2134 * Fortunately we can check determine whether this the case by checking
2135 * whether the global deadline has advanced.
2136 */
2137
2138 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2139 /* extend local deadline, drift is bounded above by 2 ticks */
2140 cfs_rq->runtime_expires += TICK_NSEC;
2141 } else {
2142 /* global deadline is ahead, expiration has passed */
2143 cfs_rq->runtime_remaining = 0;
2144 }
2145}
2146
2147static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2148 unsigned long delta_exec)
2149{
2150 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 2151 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
2152 expire_cfs_rq_runtime(cfs_rq);
2153
2154 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
2155 return;
2156
85dac906
PT
2157 /*
2158 * if we're unable to extend our runtime we resched so that the active
2159 * hierarchy can be throttled
2160 */
2161 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2162 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
2163}
2164
6c16a6dc
PZ
2165static __always_inline
2166void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
ec12cb7f 2167{
56f570e5 2168 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
2169 return;
2170
2171 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2172}
2173
85dac906
PT
2174static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2175{
56f570e5 2176 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
2177}
2178
64660c86
PT
2179/* check whether cfs_rq, or any parent, is throttled */
2180static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2181{
56f570e5 2182 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
2183}
2184
2185/*
2186 * Ensure that neither of the group entities corresponding to src_cpu or
2187 * dest_cpu are members of a throttled hierarchy when performing group
2188 * load-balance operations.
2189 */
2190static inline int throttled_lb_pair(struct task_group *tg,
2191 int src_cpu, int dest_cpu)
2192{
2193 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2194
2195 src_cfs_rq = tg->cfs_rq[src_cpu];
2196 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2197
2198 return throttled_hierarchy(src_cfs_rq) ||
2199 throttled_hierarchy(dest_cfs_rq);
2200}
2201
2202/* updated child weight may affect parent so we have to do this bottom up */
2203static int tg_unthrottle_up(struct task_group *tg, void *data)
2204{
2205 struct rq *rq = data;
2206 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2207
2208 cfs_rq->throttle_count--;
2209#ifdef CONFIG_SMP
2210 if (!cfs_rq->throttle_count) {
f1b17280
PT
2211 /* adjust cfs_rq_clock_task() */
2212 cfs_rq->throttled_clock_task_time += rq->clock_task -
2213 cfs_rq->throttled_clock_task;
64660c86
PT
2214 }
2215#endif
2216
2217 return 0;
2218}
2219
2220static int tg_throttle_down(struct task_group *tg, void *data)
2221{
2222 struct rq *rq = data;
2223 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2224
82958366
PT
2225 /* group is entering throttled state, stop time */
2226 if (!cfs_rq->throttle_count)
f1b17280 2227 cfs_rq->throttled_clock_task = rq->clock_task;
64660c86
PT
2228 cfs_rq->throttle_count++;
2229
2230 return 0;
2231}
2232
d3d9dc33 2233static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
2234{
2235 struct rq *rq = rq_of(cfs_rq);
2236 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2237 struct sched_entity *se;
2238 long task_delta, dequeue = 1;
2239
2240 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2241
f1b17280 2242 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
2243 rcu_read_lock();
2244 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2245 rcu_read_unlock();
85dac906
PT
2246
2247 task_delta = cfs_rq->h_nr_running;
2248 for_each_sched_entity(se) {
2249 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2250 /* throttled entity or throttle-on-deactivate */
2251 if (!se->on_rq)
2252 break;
2253
2254 if (dequeue)
2255 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2256 qcfs_rq->h_nr_running -= task_delta;
2257
2258 if (qcfs_rq->load.weight)
2259 dequeue = 0;
2260 }
2261
2262 if (!se)
2263 rq->nr_running -= task_delta;
2264
2265 cfs_rq->throttled = 1;
f1b17280 2266 cfs_rq->throttled_clock = rq->clock;
85dac906
PT
2267 raw_spin_lock(&cfs_b->lock);
2268 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2269 raw_spin_unlock(&cfs_b->lock);
2270}
2271
029632fb 2272void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
2273{
2274 struct rq *rq = rq_of(cfs_rq);
2275 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2276 struct sched_entity *se;
2277 int enqueue = 1;
2278 long task_delta;
2279
2280 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2281
2282 cfs_rq->throttled = 0;
2283 raw_spin_lock(&cfs_b->lock);
f1b17280 2284 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
671fd9da
PT
2285 list_del_rcu(&cfs_rq->throttled_list);
2286 raw_spin_unlock(&cfs_b->lock);
2287
64660c86
PT
2288 update_rq_clock(rq);
2289 /* update hierarchical throttle state */
2290 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2291
671fd9da
PT
2292 if (!cfs_rq->load.weight)
2293 return;
2294
2295 task_delta = cfs_rq->h_nr_running;
2296 for_each_sched_entity(se) {
2297 if (se->on_rq)
2298 enqueue = 0;
2299
2300 cfs_rq = cfs_rq_of(se);
2301 if (enqueue)
2302 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2303 cfs_rq->h_nr_running += task_delta;
2304
2305 if (cfs_rq_throttled(cfs_rq))
2306 break;
2307 }
2308
2309 if (!se)
2310 rq->nr_running += task_delta;
2311
2312 /* determine whether we need to wake up potentially idle cpu */
2313 if (rq->curr == rq->idle && rq->cfs.nr_running)
2314 resched_task(rq->curr);
2315}
2316
2317static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2318 u64 remaining, u64 expires)
2319{
2320 struct cfs_rq *cfs_rq;
2321 u64 runtime = remaining;
2322
2323 rcu_read_lock();
2324 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2325 throttled_list) {
2326 struct rq *rq = rq_of(cfs_rq);
2327
2328 raw_spin_lock(&rq->lock);
2329 if (!cfs_rq_throttled(cfs_rq))
2330 goto next;
2331
2332 runtime = -cfs_rq->runtime_remaining + 1;
2333 if (runtime > remaining)
2334 runtime = remaining;
2335 remaining -= runtime;
2336
2337 cfs_rq->runtime_remaining += runtime;
2338 cfs_rq->runtime_expires = expires;
2339
2340 /* we check whether we're throttled above */
2341 if (cfs_rq->runtime_remaining > 0)
2342 unthrottle_cfs_rq(cfs_rq);
2343
2344next:
2345 raw_spin_unlock(&rq->lock);
2346
2347 if (!remaining)
2348 break;
2349 }
2350 rcu_read_unlock();
2351
2352 return remaining;
2353}
2354
58088ad0
PT
2355/*
2356 * Responsible for refilling a task_group's bandwidth and unthrottling its
2357 * cfs_rqs as appropriate. If there has been no activity within the last
2358 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2359 * used to track this state.
2360 */
2361static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2362{
671fd9da
PT
2363 u64 runtime, runtime_expires;
2364 int idle = 1, throttled;
58088ad0
PT
2365
2366 raw_spin_lock(&cfs_b->lock);
2367 /* no need to continue the timer with no bandwidth constraint */
2368 if (cfs_b->quota == RUNTIME_INF)
2369 goto out_unlock;
2370
671fd9da
PT
2371 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2372 /* idle depends on !throttled (for the case of a large deficit) */
2373 idle = cfs_b->idle && !throttled;
e8da1b18 2374 cfs_b->nr_periods += overrun;
671fd9da 2375
a9cf55b2
PT
2376 /* if we're going inactive then everything else can be deferred */
2377 if (idle)
2378 goto out_unlock;
2379
2380 __refill_cfs_bandwidth_runtime(cfs_b);
2381
671fd9da
PT
2382 if (!throttled) {
2383 /* mark as potentially idle for the upcoming period */
2384 cfs_b->idle = 1;
2385 goto out_unlock;
2386 }
2387
e8da1b18
NR
2388 /* account preceding periods in which throttling occurred */
2389 cfs_b->nr_throttled += overrun;
2390
671fd9da
PT
2391 /*
2392 * There are throttled entities so we must first use the new bandwidth
2393 * to unthrottle them before making it generally available. This
2394 * ensures that all existing debts will be paid before a new cfs_rq is
2395 * allowed to run.
2396 */
2397 runtime = cfs_b->runtime;
2398 runtime_expires = cfs_b->runtime_expires;
2399 cfs_b->runtime = 0;
2400
2401 /*
2402 * This check is repeated as we are holding onto the new bandwidth
2403 * while we unthrottle. This can potentially race with an unthrottled
2404 * group trying to acquire new bandwidth from the global pool.
2405 */
2406 while (throttled && runtime > 0) {
2407 raw_spin_unlock(&cfs_b->lock);
2408 /* we can't nest cfs_b->lock while distributing bandwidth */
2409 runtime = distribute_cfs_runtime(cfs_b, runtime,
2410 runtime_expires);
2411 raw_spin_lock(&cfs_b->lock);
2412
2413 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2414 }
58088ad0 2415
671fd9da
PT
2416 /* return (any) remaining runtime */
2417 cfs_b->runtime = runtime;
2418 /*
2419 * While we are ensured activity in the period following an
2420 * unthrottle, this also covers the case in which the new bandwidth is
2421 * insufficient to cover the existing bandwidth deficit. (Forcing the
2422 * timer to remain active while there are any throttled entities.)
2423 */
2424 cfs_b->idle = 0;
58088ad0
PT
2425out_unlock:
2426 if (idle)
2427 cfs_b->timer_active = 0;
2428 raw_spin_unlock(&cfs_b->lock);
2429
2430 return idle;
2431}
d3d9dc33 2432
d8b4986d
PT
2433/* a cfs_rq won't donate quota below this amount */
2434static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2435/* minimum remaining period time to redistribute slack quota */
2436static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2437/* how long we wait to gather additional slack before distributing */
2438static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2439
2440/* are we near the end of the current quota period? */
2441static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2442{
2443 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2444 u64 remaining;
2445
2446 /* if the call-back is running a quota refresh is already occurring */
2447 if (hrtimer_callback_running(refresh_timer))
2448 return 1;
2449
2450 /* is a quota refresh about to occur? */
2451 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2452 if (remaining < min_expire)
2453 return 1;
2454
2455 return 0;
2456}
2457
2458static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2459{
2460 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2461
2462 /* if there's a quota refresh soon don't bother with slack */
2463 if (runtime_refresh_within(cfs_b, min_left))
2464 return;
2465
2466 start_bandwidth_timer(&cfs_b->slack_timer,
2467 ns_to_ktime(cfs_bandwidth_slack_period));
2468}
2469
2470/* we know any runtime found here is valid as update_curr() precedes return */
2471static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2472{
2473 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2474 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2475
2476 if (slack_runtime <= 0)
2477 return;
2478
2479 raw_spin_lock(&cfs_b->lock);
2480 if (cfs_b->quota != RUNTIME_INF &&
2481 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2482 cfs_b->runtime += slack_runtime;
2483
2484 /* we are under rq->lock, defer unthrottling using a timer */
2485 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2486 !list_empty(&cfs_b->throttled_cfs_rq))
2487 start_cfs_slack_bandwidth(cfs_b);
2488 }
2489 raw_spin_unlock(&cfs_b->lock);
2490
2491 /* even if it's not valid for return we don't want to try again */
2492 cfs_rq->runtime_remaining -= slack_runtime;
2493}
2494
2495static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2496{
56f570e5
PT
2497 if (!cfs_bandwidth_used())
2498 return;
2499
fccfdc6f 2500 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
2501 return;
2502
2503 __return_cfs_rq_runtime(cfs_rq);
2504}
2505
2506/*
2507 * This is done with a timer (instead of inline with bandwidth return) since
2508 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2509 */
2510static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2511{
2512 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2513 u64 expires;
2514
2515 /* confirm we're still not at a refresh boundary */
2516 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2517 return;
2518
2519 raw_spin_lock(&cfs_b->lock);
2520 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2521 runtime = cfs_b->runtime;
2522 cfs_b->runtime = 0;
2523 }
2524 expires = cfs_b->runtime_expires;
2525 raw_spin_unlock(&cfs_b->lock);
2526
2527 if (!runtime)
2528 return;
2529
2530 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2531
2532 raw_spin_lock(&cfs_b->lock);
2533 if (expires == cfs_b->runtime_expires)
2534 cfs_b->runtime = runtime;
2535 raw_spin_unlock(&cfs_b->lock);
2536}
2537
d3d9dc33
PT
2538/*
2539 * When a group wakes up we want to make sure that its quota is not already
2540 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2541 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2542 */
2543static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2544{
56f570e5
PT
2545 if (!cfs_bandwidth_used())
2546 return;
2547
d3d9dc33
PT
2548 /* an active group must be handled by the update_curr()->put() path */
2549 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2550 return;
2551
2552 /* ensure the group is not already throttled */
2553 if (cfs_rq_throttled(cfs_rq))
2554 return;
2555
2556 /* update runtime allocation */
2557 account_cfs_rq_runtime(cfs_rq, 0);
2558 if (cfs_rq->runtime_remaining <= 0)
2559 throttle_cfs_rq(cfs_rq);
2560}
2561
2562/* conditionally throttle active cfs_rq's from put_prev_entity() */
2563static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2564{
56f570e5
PT
2565 if (!cfs_bandwidth_used())
2566 return;
2567
d3d9dc33
PT
2568 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2569 return;
2570
2571 /*
2572 * it's possible for a throttled entity to be forced into a running
2573 * state (e.g. set_curr_task), in this case we're finished.
2574 */
2575 if (cfs_rq_throttled(cfs_rq))
2576 return;
2577
2578 throttle_cfs_rq(cfs_rq);
2579}
029632fb
PZ
2580
2581static inline u64 default_cfs_period(void);
2582static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2583static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2584
2585static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2586{
2587 struct cfs_bandwidth *cfs_b =
2588 container_of(timer, struct cfs_bandwidth, slack_timer);
2589 do_sched_cfs_slack_timer(cfs_b);
2590
2591 return HRTIMER_NORESTART;
2592}
2593
2594static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2595{
2596 struct cfs_bandwidth *cfs_b =
2597 container_of(timer, struct cfs_bandwidth, period_timer);
2598 ktime_t now;
2599 int overrun;
2600 int idle = 0;
2601
2602 for (;;) {
2603 now = hrtimer_cb_get_time(timer);
2604 overrun = hrtimer_forward(timer, now, cfs_b->period);
2605
2606 if (!overrun)
2607 break;
2608
2609 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2610 }
2611
2612 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2613}
2614
2615void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2616{
2617 raw_spin_lock_init(&cfs_b->lock);
2618 cfs_b->runtime = 0;
2619 cfs_b->quota = RUNTIME_INF;
2620 cfs_b->period = ns_to_ktime(default_cfs_period());
2621
2622 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2623 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2624 cfs_b->period_timer.function = sched_cfs_period_timer;
2625 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2626 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2627}
2628
2629static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2630{
2631 cfs_rq->runtime_enabled = 0;
2632 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2633}
2634
2635/* requires cfs_b->lock, may release to reprogram timer */
2636void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2637{
2638 /*
2639 * The timer may be active because we're trying to set a new bandwidth
2640 * period or because we're racing with the tear-down path
2641 * (timer_active==0 becomes visible before the hrtimer call-back
2642 * terminates). In either case we ensure that it's re-programmed
2643 */
2644 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2645 raw_spin_unlock(&cfs_b->lock);
2646 /* ensure cfs_b->lock is available while we wait */
2647 hrtimer_cancel(&cfs_b->period_timer);
2648
2649 raw_spin_lock(&cfs_b->lock);
2650 /* if someone else restarted the timer then we're done */
2651 if (cfs_b->timer_active)
2652 return;
2653 }
2654
2655 cfs_b->timer_active = 1;
2656 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2657}
2658
2659static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2660{
2661 hrtimer_cancel(&cfs_b->period_timer);
2662 hrtimer_cancel(&cfs_b->slack_timer);
2663}
2664
38dc3348 2665static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
2666{
2667 struct cfs_rq *cfs_rq;
2668
2669 for_each_leaf_cfs_rq(rq, cfs_rq) {
2670 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2671
2672 if (!cfs_rq->runtime_enabled)
2673 continue;
2674
2675 /*
2676 * clock_task is not advancing so we just need to make sure
2677 * there's some valid quota amount
2678 */
2679 cfs_rq->runtime_remaining = cfs_b->quota;
2680 if (cfs_rq_throttled(cfs_rq))
2681 unthrottle_cfs_rq(cfs_rq);
2682 }
2683}
2684
2685#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
2686static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2687{
2688 return rq_of(cfs_rq)->clock_task;
2689}
2690
2691static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2692 unsigned long delta_exec) {}
d3d9dc33
PT
2693static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2694static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 2695static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
2696
2697static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2698{
2699 return 0;
2700}
64660c86
PT
2701
2702static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2703{
2704 return 0;
2705}
2706
2707static inline int throttled_lb_pair(struct task_group *tg,
2708 int src_cpu, int dest_cpu)
2709{
2710 return 0;
2711}
029632fb
PZ
2712
2713void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2714
2715#ifdef CONFIG_FAIR_GROUP_SCHED
2716static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
2717#endif
2718
029632fb
PZ
2719static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2720{
2721 return NULL;
2722}
2723static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 2724static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
2725
2726#endif /* CONFIG_CFS_BANDWIDTH */
2727
bf0f6f24
IM
2728/**************************************************
2729 * CFS operations on tasks:
2730 */
2731
8f4d37ec
PZ
2732#ifdef CONFIG_SCHED_HRTICK
2733static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2734{
8f4d37ec
PZ
2735 struct sched_entity *se = &p->se;
2736 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2737
2738 WARN_ON(task_rq(p) != rq);
2739
b39e66ea 2740 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
2741 u64 slice = sched_slice(cfs_rq, se);
2742 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2743 s64 delta = slice - ran;
2744
2745 if (delta < 0) {
2746 if (rq->curr == p)
2747 resched_task(p);
2748 return;
2749 }
2750
2751 /*
2752 * Don't schedule slices shorter than 10000ns, that just
2753 * doesn't make sense. Rely on vruntime for fairness.
2754 */
31656519 2755 if (rq->curr != p)
157124c1 2756 delta = max_t(s64, 10000LL, delta);
8f4d37ec 2757
31656519 2758 hrtick_start(rq, delta);
8f4d37ec
PZ
2759 }
2760}
a4c2f00f
PZ
2761
2762/*
2763 * called from enqueue/dequeue and updates the hrtick when the
2764 * current task is from our class and nr_running is low enough
2765 * to matter.
2766 */
2767static void hrtick_update(struct rq *rq)
2768{
2769 struct task_struct *curr = rq->curr;
2770
b39e66ea 2771 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
2772 return;
2773
2774 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2775 hrtick_start_fair(rq, curr);
2776}
55e12e5e 2777#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
2778static inline void
2779hrtick_start_fair(struct rq *rq, struct task_struct *p)
2780{
2781}
a4c2f00f
PZ
2782
2783static inline void hrtick_update(struct rq *rq)
2784{
2785}
8f4d37ec
PZ
2786#endif
2787
bf0f6f24
IM
2788/*
2789 * The enqueue_task method is called before nr_running is
2790 * increased. Here we update the fair scheduling stats and
2791 * then put the task into the rbtree:
2792 */
ea87bb78 2793static void
371fd7e7 2794enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2795{
2796 struct cfs_rq *cfs_rq;
62fb1851 2797 struct sched_entity *se = &p->se;
bf0f6f24
IM
2798
2799 for_each_sched_entity(se) {
62fb1851 2800 if (se->on_rq)
bf0f6f24
IM
2801 break;
2802 cfs_rq = cfs_rq_of(se);
88ec22d3 2803 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
2804
2805 /*
2806 * end evaluation on encountering a throttled cfs_rq
2807 *
2808 * note: in the case of encountering a throttled cfs_rq we will
2809 * post the final h_nr_running increment below.
2810 */
2811 if (cfs_rq_throttled(cfs_rq))
2812 break;
953bfcd1 2813 cfs_rq->h_nr_running++;
85dac906 2814
88ec22d3 2815 flags = ENQUEUE_WAKEUP;
bf0f6f24 2816 }
8f4d37ec 2817
2069dd75 2818 for_each_sched_entity(se) {
0f317143 2819 cfs_rq = cfs_rq_of(se);
953bfcd1 2820 cfs_rq->h_nr_running++;
2069dd75 2821
85dac906
PT
2822 if (cfs_rq_throttled(cfs_rq))
2823 break;
2824
17bc14b7 2825 update_cfs_shares(cfs_rq);
9ee474f5 2826 update_entity_load_avg(se, 1);
2069dd75
PZ
2827 }
2828
18bf2805
BS
2829 if (!se) {
2830 update_rq_runnable_avg(rq, rq->nr_running);
85dac906 2831 inc_nr_running(rq);
18bf2805 2832 }
a4c2f00f 2833 hrtick_update(rq);
bf0f6f24
IM
2834}
2835
2f36825b
VP
2836static void set_next_buddy(struct sched_entity *se);
2837
bf0f6f24
IM
2838/*
2839 * The dequeue_task method is called before nr_running is
2840 * decreased. We remove the task from the rbtree and
2841 * update the fair scheduling stats:
2842 */
371fd7e7 2843static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
2844{
2845 struct cfs_rq *cfs_rq;
62fb1851 2846 struct sched_entity *se = &p->se;
2f36825b 2847 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
2848
2849 for_each_sched_entity(se) {
2850 cfs_rq = cfs_rq_of(se);
371fd7e7 2851 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
2852
2853 /*
2854 * end evaluation on encountering a throttled cfs_rq
2855 *
2856 * note: in the case of encountering a throttled cfs_rq we will
2857 * post the final h_nr_running decrement below.
2858 */
2859 if (cfs_rq_throttled(cfs_rq))
2860 break;
953bfcd1 2861 cfs_rq->h_nr_running--;
2069dd75 2862
bf0f6f24 2863 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
2864 if (cfs_rq->load.weight) {
2865 /*
2866 * Bias pick_next to pick a task from this cfs_rq, as
2867 * p is sleeping when it is within its sched_slice.
2868 */
2869 if (task_sleep && parent_entity(se))
2870 set_next_buddy(parent_entity(se));
9598c82d
PT
2871
2872 /* avoid re-evaluating load for this entity */
2873 se = parent_entity(se);
bf0f6f24 2874 break;
2f36825b 2875 }
371fd7e7 2876 flags |= DEQUEUE_SLEEP;
bf0f6f24 2877 }
8f4d37ec 2878
2069dd75 2879 for_each_sched_entity(se) {
0f317143 2880 cfs_rq = cfs_rq_of(se);
953bfcd1 2881 cfs_rq->h_nr_running--;
2069dd75 2882
85dac906
PT
2883 if (cfs_rq_throttled(cfs_rq))
2884 break;
2885
17bc14b7 2886 update_cfs_shares(cfs_rq);
9ee474f5 2887 update_entity_load_avg(se, 1);
2069dd75
PZ
2888 }
2889
18bf2805 2890 if (!se) {
85dac906 2891 dec_nr_running(rq);
18bf2805
BS
2892 update_rq_runnable_avg(rq, 1);
2893 }
a4c2f00f 2894 hrtick_update(rq);
bf0f6f24
IM
2895}
2896
e7693a36 2897#ifdef CONFIG_SMP
029632fb
PZ
2898/* Used instead of source_load when we know the type == 0 */
2899static unsigned long weighted_cpuload(const int cpu)
2900{
2901 return cpu_rq(cpu)->load.weight;
2902}
2903
2904/*
2905 * Return a low guess at the load of a migration-source cpu weighted
2906 * according to the scheduling class and "nice" value.
2907 *
2908 * We want to under-estimate the load of migration sources, to
2909 * balance conservatively.
2910 */
2911static unsigned long source_load(int cpu, int type)
2912{
2913 struct rq *rq = cpu_rq(cpu);
2914 unsigned long total = weighted_cpuload(cpu);
2915
2916 if (type == 0 || !sched_feat(LB_BIAS))
2917 return total;
2918
2919 return min(rq->cpu_load[type-1], total);
2920}
2921
2922/*
2923 * Return a high guess at the load of a migration-target cpu weighted
2924 * according to the scheduling class and "nice" value.
2925 */
2926static unsigned long target_load(int cpu, int type)
2927{
2928 struct rq *rq = cpu_rq(cpu);
2929 unsigned long total = weighted_cpuload(cpu);
2930
2931 if (type == 0 || !sched_feat(LB_BIAS))
2932 return total;
2933
2934 return max(rq->cpu_load[type-1], total);
2935}
2936
2937static unsigned long power_of(int cpu)
2938{
2939 return cpu_rq(cpu)->cpu_power;
2940}
2941
2942static unsigned long cpu_avg_load_per_task(int cpu)
2943{
2944 struct rq *rq = cpu_rq(cpu);
2945 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2946
2947 if (nr_running)
2948 return rq->load.weight / nr_running;
2949
2950 return 0;
2951}
2952
098fb9db 2953
74f8e4b2 2954static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
2955{
2956 struct sched_entity *se = &p->se;
2957 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
2958 u64 min_vruntime;
2959
2960#ifndef CONFIG_64BIT
2961 u64 min_vruntime_copy;
88ec22d3 2962
3fe1698b
PZ
2963 do {
2964 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2965 smp_rmb();
2966 min_vruntime = cfs_rq->min_vruntime;
2967 } while (min_vruntime != min_vruntime_copy);
2968#else
2969 min_vruntime = cfs_rq->min_vruntime;
2970#endif
88ec22d3 2971
3fe1698b 2972 se->vruntime -= min_vruntime;
88ec22d3
PZ
2973}
2974
bb3469ac 2975#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
2976/*
2977 * effective_load() calculates the load change as seen from the root_task_group
2978 *
2979 * Adding load to a group doesn't make a group heavier, but can cause movement
2980 * of group shares between cpus. Assuming the shares were perfectly aligned one
2981 * can calculate the shift in shares.
cf5f0acf
PZ
2982 *
2983 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2984 * on this @cpu and results in a total addition (subtraction) of @wg to the
2985 * total group weight.
2986 *
2987 * Given a runqueue weight distribution (rw_i) we can compute a shares
2988 * distribution (s_i) using:
2989 *
2990 * s_i = rw_i / \Sum rw_j (1)
2991 *
2992 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2993 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2994 * shares distribution (s_i):
2995 *
2996 * rw_i = { 2, 4, 1, 0 }
2997 * s_i = { 2/7, 4/7, 1/7, 0 }
2998 *
2999 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3000 * task used to run on and the CPU the waker is running on), we need to
3001 * compute the effect of waking a task on either CPU and, in case of a sync
3002 * wakeup, compute the effect of the current task going to sleep.
3003 *
3004 * So for a change of @wl to the local @cpu with an overall group weight change
3005 * of @wl we can compute the new shares distribution (s'_i) using:
3006 *
3007 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3008 *
3009 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3010 * differences in waking a task to CPU 0. The additional task changes the
3011 * weight and shares distributions like:
3012 *
3013 * rw'_i = { 3, 4, 1, 0 }
3014 * s'_i = { 3/8, 4/8, 1/8, 0 }
3015 *
3016 * We can then compute the difference in effective weight by using:
3017 *
3018 * dw_i = S * (s'_i - s_i) (3)
3019 *
3020 * Where 'S' is the group weight as seen by its parent.
3021 *
3022 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3023 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3024 * 4/7) times the weight of the group.
f5bfb7d9 3025 */
2069dd75 3026static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 3027{
4be9daaa 3028 struct sched_entity *se = tg->se[cpu];
f1d239f7 3029
cf5f0acf 3030 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
3031 return wl;
3032
4be9daaa 3033 for_each_sched_entity(se) {
cf5f0acf 3034 long w, W;
4be9daaa 3035
977dda7c 3036 tg = se->my_q->tg;
bb3469ac 3037
cf5f0acf
PZ
3038 /*
3039 * W = @wg + \Sum rw_j
3040 */
3041 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 3042
cf5f0acf
PZ
3043 /*
3044 * w = rw_i + @wl
3045 */
3046 w = se->my_q->load.weight + wl;
940959e9 3047
cf5f0acf
PZ
3048 /*
3049 * wl = S * s'_i; see (2)
3050 */
3051 if (W > 0 && w < W)
3052 wl = (w * tg->shares) / W;
977dda7c
PT
3053 else
3054 wl = tg->shares;
940959e9 3055
cf5f0acf
PZ
3056 /*
3057 * Per the above, wl is the new se->load.weight value; since
3058 * those are clipped to [MIN_SHARES, ...) do so now. See
3059 * calc_cfs_shares().
3060 */
977dda7c
PT
3061 if (wl < MIN_SHARES)
3062 wl = MIN_SHARES;
cf5f0acf
PZ
3063
3064 /*
3065 * wl = dw_i = S * (s'_i - s_i); see (3)
3066 */
977dda7c 3067 wl -= se->load.weight;
cf5f0acf
PZ
3068
3069 /*
3070 * Recursively apply this logic to all parent groups to compute
3071 * the final effective load change on the root group. Since
3072 * only the @tg group gets extra weight, all parent groups can
3073 * only redistribute existing shares. @wl is the shift in shares
3074 * resulting from this level per the above.
3075 */
4be9daaa 3076 wg = 0;
4be9daaa 3077 }
bb3469ac 3078
4be9daaa 3079 return wl;
bb3469ac
PZ
3080}
3081#else
4be9daaa 3082
83378269
PZ
3083static inline unsigned long effective_load(struct task_group *tg, int cpu,
3084 unsigned long wl, unsigned long wg)
4be9daaa 3085{
83378269 3086 return wl;
bb3469ac 3087}
4be9daaa 3088
bb3469ac
PZ
3089#endif
3090
c88d5910 3091static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 3092{
e37b6a7b 3093 s64 this_load, load;
c88d5910 3094 int idx, this_cpu, prev_cpu;
098fb9db 3095 unsigned long tl_per_task;
c88d5910 3096 struct task_group *tg;
83378269 3097 unsigned long weight;
b3137bc8 3098 int balanced;
098fb9db 3099
c88d5910
PZ
3100 idx = sd->wake_idx;
3101 this_cpu = smp_processor_id();
3102 prev_cpu = task_cpu(p);
3103 load = source_load(prev_cpu, idx);
3104 this_load = target_load(this_cpu, idx);
098fb9db 3105
b3137bc8
MG
3106 /*
3107 * If sync wakeup then subtract the (maximum possible)
3108 * effect of the currently running task from the load
3109 * of the current CPU:
3110 */
83378269
PZ
3111 if (sync) {
3112 tg = task_group(current);
3113 weight = current->se.load.weight;
3114
c88d5910 3115 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
3116 load += effective_load(tg, prev_cpu, 0, -weight);
3117 }
b3137bc8 3118
83378269
PZ
3119 tg = task_group(p);
3120 weight = p->se.load.weight;
b3137bc8 3121
71a29aa7
PZ
3122 /*
3123 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
3124 * due to the sync cause above having dropped this_load to 0, we'll
3125 * always have an imbalance, but there's really nothing you can do
3126 * about that, so that's good too.
71a29aa7
PZ
3127 *
3128 * Otherwise check if either cpus are near enough in load to allow this
3129 * task to be woken on this_cpu.
3130 */
e37b6a7b
PT
3131 if (this_load > 0) {
3132 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
3133
3134 this_eff_load = 100;
3135 this_eff_load *= power_of(prev_cpu);
3136 this_eff_load *= this_load +
3137 effective_load(tg, this_cpu, weight, weight);
3138
3139 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3140 prev_eff_load *= power_of(this_cpu);
3141 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3142
3143 balanced = this_eff_load <= prev_eff_load;
3144 } else
3145 balanced = true;
b3137bc8 3146
098fb9db 3147 /*
4ae7d5ce
IM
3148 * If the currently running task will sleep within
3149 * a reasonable amount of time then attract this newly
3150 * woken task:
098fb9db 3151 */
2fb7635c
PZ
3152 if (sync && balanced)
3153 return 1;
098fb9db 3154
41acab88 3155 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
3156 tl_per_task = cpu_avg_load_per_task(this_cpu);
3157
c88d5910
PZ
3158 if (balanced ||
3159 (this_load <= load &&
3160 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
3161 /*
3162 * This domain has SD_WAKE_AFFINE and
3163 * p is cache cold in this domain, and
3164 * there is no bad imbalance.
3165 */
c88d5910 3166 schedstat_inc(sd, ttwu_move_affine);
41acab88 3167 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
3168
3169 return 1;
3170 }
3171 return 0;
3172}
3173
aaee1203
PZ
3174/*
3175 * find_idlest_group finds and returns the least busy CPU group within the
3176 * domain.
3177 */
3178static struct sched_group *
78e7ed53 3179find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 3180 int this_cpu, int load_idx)
e7693a36 3181{
b3bd3de6 3182 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 3183 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 3184 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 3185
aaee1203
PZ
3186 do {
3187 unsigned long load, avg_load;
3188 int local_group;
3189 int i;
e7693a36 3190
aaee1203
PZ
3191 /* Skip over this group if it has no CPUs allowed */
3192 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 3193 tsk_cpus_allowed(p)))
aaee1203
PZ
3194 continue;
3195
3196 local_group = cpumask_test_cpu(this_cpu,
3197 sched_group_cpus(group));
3198
3199 /* Tally up the load of all CPUs in the group */
3200 avg_load = 0;
3201
3202 for_each_cpu(i, sched_group_cpus(group)) {
3203 /* Bias balancing toward cpus of our domain */
3204 if (local_group)
3205 load = source_load(i, load_idx);
3206 else
3207 load = target_load(i, load_idx);
3208
3209 avg_load += load;
3210 }
3211
3212 /* Adjust by relative CPU power of the group */
9c3f75cb 3213 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
3214
3215 if (local_group) {
3216 this_load = avg_load;
aaee1203
PZ
3217 } else if (avg_load < min_load) {
3218 min_load = avg_load;
3219 idlest = group;
3220 }
3221 } while (group = group->next, group != sd->groups);
3222
3223 if (!idlest || 100*this_load < imbalance*min_load)
3224 return NULL;
3225 return idlest;
3226}
3227
3228/*
3229 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3230 */
3231static int
3232find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3233{
3234 unsigned long load, min_load = ULONG_MAX;
3235 int idlest = -1;
3236 int i;
3237
3238 /* Traverse only the allowed CPUs */
fa17b507 3239 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
3240 load = weighted_cpuload(i);
3241
3242 if (load < min_load || (load == min_load && i == this_cpu)) {
3243 min_load = load;
3244 idlest = i;
e7693a36
GH
3245 }
3246 }
3247
aaee1203
PZ
3248 return idlest;
3249}
e7693a36 3250
a50bde51
PZ
3251/*
3252 * Try and locate an idle CPU in the sched_domain.
3253 */
99bd5e2f 3254static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 3255{
99bd5e2f 3256 struct sched_domain *sd;
37407ea7 3257 struct sched_group *sg;
e0a79f52 3258 int i = task_cpu(p);
a50bde51 3259
e0a79f52
MG
3260 if (idle_cpu(target))
3261 return target;
99bd5e2f
SS
3262
3263 /*
e0a79f52 3264 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 3265 */
e0a79f52
MG
3266 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3267 return i;
a50bde51
PZ
3268
3269 /*
37407ea7 3270 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 3271 */
518cd623 3272 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 3273 for_each_lower_domain(sd) {
37407ea7
LT
3274 sg = sd->groups;
3275 do {
3276 if (!cpumask_intersects(sched_group_cpus(sg),
3277 tsk_cpus_allowed(p)))
3278 goto next;
3279
3280 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 3281 if (i == target || !idle_cpu(i))
37407ea7
LT
3282 goto next;
3283 }
970e1789 3284
37407ea7
LT
3285 target = cpumask_first_and(sched_group_cpus(sg),
3286 tsk_cpus_allowed(p));
3287 goto done;
3288next:
3289 sg = sg->next;
3290 } while (sg != sd->groups);
3291 }
3292done:
a50bde51
PZ
3293 return target;
3294}
3295
aaee1203
PZ
3296/*
3297 * sched_balance_self: balance the current task (running on cpu) in domains
3298 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3299 * SD_BALANCE_EXEC.
3300 *
3301 * Balance, ie. select the least loaded group.
3302 *
3303 * Returns the target CPU number, or the same CPU if no balancing is needed.
3304 *
3305 * preempt must be disabled.
3306 */
0017d735 3307static int
7608dec2 3308select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 3309{
29cd8bae 3310 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
3311 int cpu = smp_processor_id();
3312 int prev_cpu = task_cpu(p);
3313 int new_cpu = cpu;
99bd5e2f 3314 int want_affine = 0;
5158f4e4 3315 int sync = wake_flags & WF_SYNC;
c88d5910 3316
29baa747 3317 if (p->nr_cpus_allowed == 1)
76854c7e
MG
3318 return prev_cpu;
3319
0763a660 3320 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 3321 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
3322 want_affine = 1;
3323 new_cpu = prev_cpu;
3324 }
aaee1203 3325
dce840a0 3326 rcu_read_lock();
aaee1203 3327 for_each_domain(cpu, tmp) {
e4f42888
PZ
3328 if (!(tmp->flags & SD_LOAD_BALANCE))
3329 continue;
3330
fe3bcfe1 3331 /*
99bd5e2f
SS
3332 * If both cpu and prev_cpu are part of this domain,
3333 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 3334 */
99bd5e2f
SS
3335 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3336 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3337 affine_sd = tmp;
29cd8bae 3338 break;
f03542a7 3339 }
29cd8bae 3340
f03542a7 3341 if (tmp->flags & sd_flag)
29cd8bae
PZ
3342 sd = tmp;
3343 }
3344
8b911acd 3345 if (affine_sd) {
f03542a7 3346 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
dce840a0
PZ
3347 prev_cpu = cpu;
3348
3349 new_cpu = select_idle_sibling(p, prev_cpu);
3350 goto unlock;
8b911acd 3351 }
e7693a36 3352
aaee1203 3353 while (sd) {
5158f4e4 3354 int load_idx = sd->forkexec_idx;
aaee1203 3355 struct sched_group *group;
c88d5910 3356 int weight;
098fb9db 3357
0763a660 3358 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
3359 sd = sd->child;
3360 continue;
3361 }
098fb9db 3362
5158f4e4
PZ
3363 if (sd_flag & SD_BALANCE_WAKE)
3364 load_idx = sd->wake_idx;
098fb9db 3365
5158f4e4 3366 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
3367 if (!group) {
3368 sd = sd->child;
3369 continue;
3370 }
4ae7d5ce 3371
d7c33c49 3372 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
3373 if (new_cpu == -1 || new_cpu == cpu) {
3374 /* Now try balancing at a lower domain level of cpu */
3375 sd = sd->child;
3376 continue;
e7693a36 3377 }
aaee1203
PZ
3378
3379 /* Now try balancing at a lower domain level of new_cpu */
3380 cpu = new_cpu;
669c55e9 3381 weight = sd->span_weight;
aaee1203
PZ
3382 sd = NULL;
3383 for_each_domain(cpu, tmp) {
669c55e9 3384 if (weight <= tmp->span_weight)
aaee1203 3385 break;
0763a660 3386 if (tmp->flags & sd_flag)
aaee1203
PZ
3387 sd = tmp;
3388 }
3389 /* while loop will break here if sd == NULL */
e7693a36 3390 }
dce840a0
PZ
3391unlock:
3392 rcu_read_unlock();
e7693a36 3393
c88d5910 3394 return new_cpu;
e7693a36 3395}
0a74bef8 3396
f4e26b12
PT
3397/*
3398 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3399 * removed when useful for applications beyond shares distribution (e.g.
3400 * load-balance).
3401 */
3402#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8
PT
3403/*
3404 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3405 * cfs_rq_of(p) references at time of call are still valid and identify the
3406 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3407 * other assumptions, including the state of rq->lock, should be made.
3408 */
3409static void
3410migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3411{
aff3e498
PT
3412 struct sched_entity *se = &p->se;
3413 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3414
3415 /*
3416 * Load tracking: accumulate removed load so that it can be processed
3417 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3418 * to blocked load iff they have a positive decay-count. It can never
3419 * be negative here since on-rq tasks have decay-count == 0.
3420 */
3421 if (se->avg.decay_count) {
3422 se->avg.decay_count = -__synchronize_entity_decay(se);
3423 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3424 }
0a74bef8 3425}
f4e26b12 3426#endif
e7693a36
GH
3427#endif /* CONFIG_SMP */
3428
e52fb7c0
PZ
3429static unsigned long
3430wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
3431{
3432 unsigned long gran = sysctl_sched_wakeup_granularity;
3433
3434 /*
e52fb7c0
PZ
3435 * Since its curr running now, convert the gran from real-time
3436 * to virtual-time in his units.
13814d42
MG
3437 *
3438 * By using 'se' instead of 'curr' we penalize light tasks, so
3439 * they get preempted easier. That is, if 'se' < 'curr' then
3440 * the resulting gran will be larger, therefore penalizing the
3441 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3442 * be smaller, again penalizing the lighter task.
3443 *
3444 * This is especially important for buddies when the leftmost
3445 * task is higher priority than the buddy.
0bbd3336 3446 */
f4ad9bd2 3447 return calc_delta_fair(gran, se);
0bbd3336
PZ
3448}
3449
464b7527
PZ
3450/*
3451 * Should 'se' preempt 'curr'.
3452 *
3453 * |s1
3454 * |s2
3455 * |s3
3456 * g
3457 * |<--->|c
3458 *
3459 * w(c, s1) = -1
3460 * w(c, s2) = 0
3461 * w(c, s3) = 1
3462 *
3463 */
3464static int
3465wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3466{
3467 s64 gran, vdiff = curr->vruntime - se->vruntime;
3468
3469 if (vdiff <= 0)
3470 return -1;
3471
e52fb7c0 3472 gran = wakeup_gran(curr, se);
464b7527
PZ
3473 if (vdiff > gran)
3474 return 1;
3475
3476 return 0;
3477}
3478
02479099
PZ
3479static void set_last_buddy(struct sched_entity *se)
3480{
69c80f3e
VP
3481 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3482 return;
3483
3484 for_each_sched_entity(se)
3485 cfs_rq_of(se)->last = se;
02479099
PZ
3486}
3487
3488static void set_next_buddy(struct sched_entity *se)
3489{
69c80f3e
VP
3490 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3491 return;
3492
3493 for_each_sched_entity(se)
3494 cfs_rq_of(se)->next = se;
02479099
PZ
3495}
3496
ac53db59
RR
3497static void set_skip_buddy(struct sched_entity *se)
3498{
69c80f3e
VP
3499 for_each_sched_entity(se)
3500 cfs_rq_of(se)->skip = se;
ac53db59
RR
3501}
3502
bf0f6f24
IM
3503/*
3504 * Preempt the current task with a newly woken task if needed:
3505 */
5a9b86f6 3506static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
3507{
3508 struct task_struct *curr = rq->curr;
8651a86c 3509 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 3510 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 3511 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 3512 int next_buddy_marked = 0;
bf0f6f24 3513
4ae7d5ce
IM
3514 if (unlikely(se == pse))
3515 return;
3516
5238cdd3 3517 /*
ddcdf6e7 3518 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
3519 * unconditionally check_prempt_curr() after an enqueue (which may have
3520 * lead to a throttle). This both saves work and prevents false
3521 * next-buddy nomination below.
3522 */
3523 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3524 return;
3525
2f36825b 3526 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 3527 set_next_buddy(pse);
2f36825b
VP
3528 next_buddy_marked = 1;
3529 }
57fdc26d 3530
aec0a514
BR
3531 /*
3532 * We can come here with TIF_NEED_RESCHED already set from new task
3533 * wake up path.
5238cdd3
PT
3534 *
3535 * Note: this also catches the edge-case of curr being in a throttled
3536 * group (e.g. via set_curr_task), since update_curr() (in the
3537 * enqueue of curr) will have resulted in resched being set. This
3538 * prevents us from potentially nominating it as a false LAST_BUDDY
3539 * below.
aec0a514
BR
3540 */
3541 if (test_tsk_need_resched(curr))
3542 return;
3543
a2f5c9ab
DH
3544 /* Idle tasks are by definition preempted by non-idle tasks. */
3545 if (unlikely(curr->policy == SCHED_IDLE) &&
3546 likely(p->policy != SCHED_IDLE))
3547 goto preempt;
3548
91c234b4 3549 /*
a2f5c9ab
DH
3550 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3551 * is driven by the tick):
91c234b4 3552 */
8ed92e51 3553 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 3554 return;
bf0f6f24 3555
464b7527 3556 find_matching_se(&se, &pse);
9bbd7374 3557 update_curr(cfs_rq_of(se));
002f128b 3558 BUG_ON(!pse);
2f36825b
VP
3559 if (wakeup_preempt_entity(se, pse) == 1) {
3560 /*
3561 * Bias pick_next to pick the sched entity that is
3562 * triggering this preemption.
3563 */
3564 if (!next_buddy_marked)
3565 set_next_buddy(pse);
3a7e73a2 3566 goto preempt;
2f36825b 3567 }
464b7527 3568
3a7e73a2 3569 return;
a65ac745 3570
3a7e73a2
PZ
3571preempt:
3572 resched_task(curr);
3573 /*
3574 * Only set the backward buddy when the current task is still
3575 * on the rq. This can happen when a wakeup gets interleaved
3576 * with schedule on the ->pre_schedule() or idle_balance()
3577 * point, either of which can * drop the rq lock.
3578 *
3579 * Also, during early boot the idle thread is in the fair class,
3580 * for obvious reasons its a bad idea to schedule back to it.
3581 */
3582 if (unlikely(!se->on_rq || curr == rq->idle))
3583 return;
3584
3585 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3586 set_last_buddy(se);
bf0f6f24
IM
3587}
3588
fb8d4724 3589static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 3590{
8f4d37ec 3591 struct task_struct *p;
bf0f6f24
IM
3592 struct cfs_rq *cfs_rq = &rq->cfs;
3593 struct sched_entity *se;
3594
36ace27e 3595 if (!cfs_rq->nr_running)
bf0f6f24
IM
3596 return NULL;
3597
3598 do {
9948f4b2 3599 se = pick_next_entity(cfs_rq);
f4b6755f 3600 set_next_entity(cfs_rq, se);
bf0f6f24
IM
3601 cfs_rq = group_cfs_rq(se);
3602 } while (cfs_rq);
3603
8f4d37ec 3604 p = task_of(se);
b39e66ea
MG
3605 if (hrtick_enabled(rq))
3606 hrtick_start_fair(rq, p);
8f4d37ec
PZ
3607
3608 return p;
bf0f6f24
IM
3609}
3610
3611/*
3612 * Account for a descheduled task:
3613 */
31ee529c 3614static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
3615{
3616 struct sched_entity *se = &prev->se;
3617 struct cfs_rq *cfs_rq;
3618
3619 for_each_sched_entity(se) {
3620 cfs_rq = cfs_rq_of(se);
ab6cde26 3621 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
3622 }
3623}
3624
ac53db59
RR
3625/*
3626 * sched_yield() is very simple
3627 *
3628 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3629 */
3630static void yield_task_fair(struct rq *rq)
3631{
3632 struct task_struct *curr = rq->curr;
3633 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3634 struct sched_entity *se = &curr->se;
3635
3636 /*
3637 * Are we the only task in the tree?
3638 */
3639 if (unlikely(rq->nr_running == 1))
3640 return;
3641
3642 clear_buddies(cfs_rq, se);
3643
3644 if (curr->policy != SCHED_BATCH) {
3645 update_rq_clock(rq);
3646 /*
3647 * Update run-time statistics of the 'current'.
3648 */
3649 update_curr(cfs_rq);
916671c0
MG
3650 /*
3651 * Tell update_rq_clock() that we've just updated,
3652 * so we don't do microscopic update in schedule()
3653 * and double the fastpath cost.
3654 */
3655 rq->skip_clock_update = 1;
ac53db59
RR
3656 }
3657
3658 set_skip_buddy(se);
3659}
3660
d95f4122
MG
3661static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3662{
3663 struct sched_entity *se = &p->se;
3664
5238cdd3
PT
3665 /* throttled hierarchies are not runnable */
3666 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
3667 return false;
3668
3669 /* Tell the scheduler that we'd really like pse to run next. */
3670 set_next_buddy(se);
3671
d95f4122
MG
3672 yield_task_fair(rq);
3673
3674 return true;
3675}
3676
681f3e68 3677#ifdef CONFIG_SMP
bf0f6f24 3678/**************************************************
e9c84cb8
PZ
3679 * Fair scheduling class load-balancing methods.
3680 *
3681 * BASICS
3682 *
3683 * The purpose of load-balancing is to achieve the same basic fairness the
3684 * per-cpu scheduler provides, namely provide a proportional amount of compute
3685 * time to each task. This is expressed in the following equation:
3686 *
3687 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3688 *
3689 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3690 * W_i,0 is defined as:
3691 *
3692 * W_i,0 = \Sum_j w_i,j (2)
3693 *
3694 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3695 * is derived from the nice value as per prio_to_weight[].
3696 *
3697 * The weight average is an exponential decay average of the instantaneous
3698 * weight:
3699 *
3700 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3701 *
3702 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3703 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3704 * can also include other factors [XXX].
3705 *
3706 * To achieve this balance we define a measure of imbalance which follows
3707 * directly from (1):
3708 *
3709 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3710 *
3711 * We them move tasks around to minimize the imbalance. In the continuous
3712 * function space it is obvious this converges, in the discrete case we get
3713 * a few fun cases generally called infeasible weight scenarios.
3714 *
3715 * [XXX expand on:
3716 * - infeasible weights;
3717 * - local vs global optima in the discrete case. ]
3718 *
3719 *
3720 * SCHED DOMAINS
3721 *
3722 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3723 * for all i,j solution, we create a tree of cpus that follows the hardware
3724 * topology where each level pairs two lower groups (or better). This results
3725 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3726 * tree to only the first of the previous level and we decrease the frequency
3727 * of load-balance at each level inv. proportional to the number of cpus in
3728 * the groups.
3729 *
3730 * This yields:
3731 *
3732 * log_2 n 1 n
3733 * \Sum { --- * --- * 2^i } = O(n) (5)
3734 * i = 0 2^i 2^i
3735 * `- size of each group
3736 * | | `- number of cpus doing load-balance
3737 * | `- freq
3738 * `- sum over all levels
3739 *
3740 * Coupled with a limit on how many tasks we can migrate every balance pass,
3741 * this makes (5) the runtime complexity of the balancer.
3742 *
3743 * An important property here is that each CPU is still (indirectly) connected
3744 * to every other cpu in at most O(log n) steps:
3745 *
3746 * The adjacency matrix of the resulting graph is given by:
3747 *
3748 * log_2 n
3749 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3750 * k = 0
3751 *
3752 * And you'll find that:
3753 *
3754 * A^(log_2 n)_i,j != 0 for all i,j (7)
3755 *
3756 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3757 * The task movement gives a factor of O(m), giving a convergence complexity
3758 * of:
3759 *
3760 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3761 *
3762 *
3763 * WORK CONSERVING
3764 *
3765 * In order to avoid CPUs going idle while there's still work to do, new idle
3766 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3767 * tree itself instead of relying on other CPUs to bring it work.
3768 *
3769 * This adds some complexity to both (5) and (8) but it reduces the total idle
3770 * time.
3771 *
3772 * [XXX more?]
3773 *
3774 *
3775 * CGROUPS
3776 *
3777 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3778 *
3779 * s_k,i
3780 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3781 * S_k
3782 *
3783 * Where
3784 *
3785 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3786 *
3787 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3788 *
3789 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3790 * property.
3791 *
3792 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3793 * rewrite all of this once again.]
3794 */
bf0f6f24 3795
ed387b78
HS
3796static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3797
ddcdf6e7 3798#define LBF_ALL_PINNED 0x01
367456c7 3799#define LBF_NEED_BREAK 0x02
88b8dac0 3800#define LBF_SOME_PINNED 0x04
ddcdf6e7
PZ
3801
3802struct lb_env {
3803 struct sched_domain *sd;
3804
ddcdf6e7 3805 struct rq *src_rq;
85c1e7da 3806 int src_cpu;
ddcdf6e7
PZ
3807
3808 int dst_cpu;
3809 struct rq *dst_rq;
3810
88b8dac0
SV
3811 struct cpumask *dst_grpmask;
3812 int new_dst_cpu;
ddcdf6e7 3813 enum cpu_idle_type idle;
bd939f45 3814 long imbalance;
b9403130
MW
3815 /* The set of CPUs under consideration for load-balancing */
3816 struct cpumask *cpus;
3817
ddcdf6e7 3818 unsigned int flags;
367456c7
PZ
3819
3820 unsigned int loop;
3821 unsigned int loop_break;
3822 unsigned int loop_max;
ddcdf6e7
PZ
3823};
3824
1e3c88bd 3825/*
ddcdf6e7 3826 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
3827 * Both runqueues must be locked.
3828 */
ddcdf6e7 3829static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 3830{
ddcdf6e7
PZ
3831 deactivate_task(env->src_rq, p, 0);
3832 set_task_cpu(p, env->dst_cpu);
3833 activate_task(env->dst_rq, p, 0);
3834 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
3835}
3836
029632fb
PZ
3837/*
3838 * Is this task likely cache-hot:
3839 */
3840static int
3841task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3842{
3843 s64 delta;
3844
3845 if (p->sched_class != &fair_sched_class)
3846 return 0;
3847
3848 if (unlikely(p->policy == SCHED_IDLE))
3849 return 0;
3850
3851 /*
3852 * Buddy candidates are cache hot:
3853 */
3854 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3855 (&p->se == cfs_rq_of(&p->se)->next ||
3856 &p->se == cfs_rq_of(&p->se)->last))
3857 return 1;
3858
3859 if (sysctl_sched_migration_cost == -1)
3860 return 1;
3861 if (sysctl_sched_migration_cost == 0)
3862 return 0;
3863
3864 delta = now - p->se.exec_start;
3865
3866 return delta < (s64)sysctl_sched_migration_cost;
3867}
3868
1e3c88bd
PZ
3869/*
3870 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3871 */
3872static
8e45cb54 3873int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
3874{
3875 int tsk_cache_hot = 0;
3876 /*
3877 * We do not migrate tasks that are:
3878 * 1) running (obviously), or
3879 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3880 * 3) are cache-hot on their current CPU.
3881 */
ddcdf6e7 3882 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
88b8dac0
SV
3883 int new_dst_cpu;
3884
41acab88 3885 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0
SV
3886
3887 /*
3888 * Remember if this task can be migrated to any other cpu in
3889 * our sched_group. We may want to revisit it if we couldn't
3890 * meet load balance goals by pulling other tasks on src_cpu.
3891 *
3892 * Also avoid computing new_dst_cpu if we have already computed
3893 * one in current iteration.
3894 */
3895 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3896 return 0;
3897
3898 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3899 tsk_cpus_allowed(p));
3900 if (new_dst_cpu < nr_cpu_ids) {
3901 env->flags |= LBF_SOME_PINNED;
3902 env->new_dst_cpu = new_dst_cpu;
3903 }
1e3c88bd
PZ
3904 return 0;
3905 }
88b8dac0
SV
3906
3907 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 3908 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 3909
ddcdf6e7 3910 if (task_running(env->src_rq, p)) {
41acab88 3911 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
3912 return 0;
3913 }
3914
3915 /*
3916 * Aggressive migration if:
3917 * 1) task is cache cold, or
3918 * 2) too many balance attempts have failed.
3919 */
3920
ddcdf6e7 3921 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
1e3c88bd 3922 if (!tsk_cache_hot ||
8e45cb54 3923 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 3924
1e3c88bd 3925 if (tsk_cache_hot) {
8e45cb54 3926 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 3927 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 3928 }
4e2dcb73 3929
1e3c88bd
PZ
3930 return 1;
3931 }
3932
4e2dcb73
ZH
3933 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3934 return 0;
1e3c88bd
PZ
3935}
3936
897c395f
PZ
3937/*
3938 * move_one_task tries to move exactly one task from busiest to this_rq, as
3939 * part of active balancing operations within "domain".
3940 * Returns 1 if successful and 0 otherwise.
3941 *
3942 * Called with both runqueues locked.
3943 */
8e45cb54 3944static int move_one_task(struct lb_env *env)
897c395f
PZ
3945{
3946 struct task_struct *p, *n;
897c395f 3947
367456c7
PZ
3948 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3949 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3950 continue;
897c395f 3951
367456c7
PZ
3952 if (!can_migrate_task(p, env))
3953 continue;
897c395f 3954
367456c7
PZ
3955 move_task(p, env);
3956 /*
3957 * Right now, this is only the second place move_task()
3958 * is called, so we can safely collect move_task()
3959 * stats here rather than inside move_task().
3960 */
3961 schedstat_inc(env->sd, lb_gained[env->idle]);
3962 return 1;
897c395f 3963 }
897c395f
PZ
3964 return 0;
3965}
3966
367456c7
PZ
3967static unsigned long task_h_load(struct task_struct *p);
3968
eb95308e
PZ
3969static const unsigned int sched_nr_migrate_break = 32;
3970
5d6523eb 3971/*
bd939f45 3972 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
3973 * this_rq, as part of a balancing operation within domain "sd".
3974 * Returns 1 if successful and 0 otherwise.
3975 *
3976 * Called with both runqueues locked.
3977 */
3978static int move_tasks(struct lb_env *env)
1e3c88bd 3979{
5d6523eb
PZ
3980 struct list_head *tasks = &env->src_rq->cfs_tasks;
3981 struct task_struct *p;
367456c7
PZ
3982 unsigned long load;
3983 int pulled = 0;
1e3c88bd 3984
bd939f45 3985 if (env->imbalance <= 0)
5d6523eb 3986 return 0;
1e3c88bd 3987
5d6523eb
PZ
3988 while (!list_empty(tasks)) {
3989 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 3990
367456c7
PZ
3991 env->loop++;
3992 /* We've more or less seen every task there is, call it quits */
5d6523eb 3993 if (env->loop > env->loop_max)
367456c7 3994 break;
5d6523eb
PZ
3995
3996 /* take a breather every nr_migrate tasks */
367456c7 3997 if (env->loop > env->loop_break) {
eb95308e 3998 env->loop_break += sched_nr_migrate_break;
8e45cb54 3999 env->flags |= LBF_NEED_BREAK;
ee00e66f 4000 break;
a195f004 4001 }
1e3c88bd 4002
5d6523eb 4003 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
367456c7
PZ
4004 goto next;
4005
4006 load = task_h_load(p);
5d6523eb 4007
eb95308e 4008 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
4009 goto next;
4010
bd939f45 4011 if ((load / 2) > env->imbalance)
367456c7 4012 goto next;
1e3c88bd 4013
367456c7
PZ
4014 if (!can_migrate_task(p, env))
4015 goto next;
1e3c88bd 4016
ddcdf6e7 4017 move_task(p, env);
ee00e66f 4018 pulled++;
bd939f45 4019 env->imbalance -= load;
1e3c88bd
PZ
4020
4021#ifdef CONFIG_PREEMPT
ee00e66f
PZ
4022 /*
4023 * NEWIDLE balancing is a source of latency, so preemptible
4024 * kernels will stop after the first task is pulled to minimize
4025 * the critical section.
4026 */
5d6523eb 4027 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 4028 break;
1e3c88bd
PZ
4029#endif
4030
ee00e66f
PZ
4031 /*
4032 * We only want to steal up to the prescribed amount of
4033 * weighted load.
4034 */
bd939f45 4035 if (env->imbalance <= 0)
ee00e66f 4036 break;
367456c7
PZ
4037
4038 continue;
4039next:
5d6523eb 4040 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 4041 }
5d6523eb 4042
1e3c88bd 4043 /*
ddcdf6e7
PZ
4044 * Right now, this is one of only two places move_task() is called,
4045 * so we can safely collect move_task() stats here rather than
4046 * inside move_task().
1e3c88bd 4047 */
8e45cb54 4048 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 4049
5d6523eb 4050 return pulled;
1e3c88bd
PZ
4051}
4052
230059de 4053#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
4054/*
4055 * update tg->load_weight by folding this cpu's load_avg
4056 */
48a16753 4057static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 4058{
48a16753
PT
4059 struct sched_entity *se = tg->se[cpu];
4060 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 4061
48a16753
PT
4062 /* throttled entities do not contribute to load */
4063 if (throttled_hierarchy(cfs_rq))
4064 return;
9e3081ca 4065
aff3e498 4066 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 4067
82958366
PT
4068 if (se) {
4069 update_entity_load_avg(se, 1);
4070 /*
4071 * We pivot on our runnable average having decayed to zero for
4072 * list removal. This generally implies that all our children
4073 * have also been removed (modulo rounding error or bandwidth
4074 * control); however, such cases are rare and we can fix these
4075 * at enqueue.
4076 *
4077 * TODO: fix up out-of-order children on enqueue.
4078 */
4079 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4080 list_del_leaf_cfs_rq(cfs_rq);
4081 } else {
48a16753 4082 struct rq *rq = rq_of(cfs_rq);
82958366
PT
4083 update_rq_runnable_avg(rq, rq->nr_running);
4084 }
9e3081ca
PZ
4085}
4086
48a16753 4087static void update_blocked_averages(int cpu)
9e3081ca 4088{
9e3081ca 4089 struct rq *rq = cpu_rq(cpu);
48a16753
PT
4090 struct cfs_rq *cfs_rq;
4091 unsigned long flags;
9e3081ca 4092
48a16753
PT
4093 raw_spin_lock_irqsave(&rq->lock, flags);
4094 update_rq_clock(rq);
9763b67f
PZ
4095 /*
4096 * Iterates the task_group tree in a bottom up fashion, see
4097 * list_add_leaf_cfs_rq() for details.
4098 */
64660c86 4099 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
4100 /*
4101 * Note: We may want to consider periodically releasing
4102 * rq->lock about these updates so that creating many task
4103 * groups does not result in continually extending hold time.
4104 */
4105 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 4106 }
48a16753
PT
4107
4108 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
4109}
4110
9763b67f
PZ
4111/*
4112 * Compute the cpu's hierarchical load factor for each task group.
4113 * This needs to be done in a top-down fashion because the load of a child
4114 * group is a fraction of its parents load.
4115 */
4116static int tg_load_down(struct task_group *tg, void *data)
4117{
4118 unsigned long load;
4119 long cpu = (long)data;
4120
4121 if (!tg->parent) {
4122 load = cpu_rq(cpu)->load.weight;
4123 } else {
4124 load = tg->parent->cfs_rq[cpu]->h_load;
4125 load *= tg->se[cpu]->load.weight;
4126 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
4127 }
4128
4129 tg->cfs_rq[cpu]->h_load = load;
4130
4131 return 0;
4132}
4133
4134static void update_h_load(long cpu)
4135{
a35b6466
PZ
4136 struct rq *rq = cpu_rq(cpu);
4137 unsigned long now = jiffies;
4138
4139 if (rq->h_load_throttle == now)
4140 return;
4141
4142 rq->h_load_throttle = now;
4143
367456c7 4144 rcu_read_lock();
9763b67f 4145 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
367456c7 4146 rcu_read_unlock();
9763b67f
PZ
4147}
4148
367456c7 4149static unsigned long task_h_load(struct task_struct *p)
230059de 4150{
367456c7
PZ
4151 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4152 unsigned long load;
230059de 4153
367456c7
PZ
4154 load = p->se.load.weight;
4155 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
230059de 4156
367456c7 4157 return load;
230059de
PZ
4158}
4159#else
48a16753 4160static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
4161{
4162}
4163
367456c7 4164static inline void update_h_load(long cpu)
230059de 4165{
230059de 4166}
230059de 4167
367456c7 4168static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 4169{
367456c7 4170 return p->se.load.weight;
1e3c88bd 4171}
230059de 4172#endif
1e3c88bd 4173
1e3c88bd
PZ
4174/********** Helpers for find_busiest_group ************************/
4175/*
4176 * sd_lb_stats - Structure to store the statistics of a sched_domain
4177 * during load balancing.
4178 */
4179struct sd_lb_stats {
4180 struct sched_group *busiest; /* Busiest group in this sd */
4181 struct sched_group *this; /* Local group in this sd */
4182 unsigned long total_load; /* Total load of all groups in sd */
4183 unsigned long total_pwr; /* Total power of all groups in sd */
4184 unsigned long avg_load; /* Average load across all groups in sd */
4185
4186 /** Statistics of this group */
4187 unsigned long this_load;
4188 unsigned long this_load_per_task;
4189 unsigned long this_nr_running;
fab47622 4190 unsigned long this_has_capacity;
aae6d3dd 4191 unsigned int this_idle_cpus;
1e3c88bd
PZ
4192
4193 /* Statistics of the busiest group */
aae6d3dd 4194 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
4195 unsigned long max_load;
4196 unsigned long busiest_load_per_task;
4197 unsigned long busiest_nr_running;
dd5feea1 4198 unsigned long busiest_group_capacity;
fab47622 4199 unsigned long busiest_has_capacity;
aae6d3dd 4200 unsigned int busiest_group_weight;
1e3c88bd
PZ
4201
4202 int group_imb; /* Is there imbalance in this sd */
1e3c88bd
PZ
4203};
4204
4205/*
4206 * sg_lb_stats - stats of a sched_group required for load_balancing
4207 */
4208struct sg_lb_stats {
4209 unsigned long avg_load; /*Avg load across the CPUs of the group */
4210 unsigned long group_load; /* Total load over the CPUs of the group */
4211 unsigned long sum_nr_running; /* Nr tasks running in the group */
4212 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4213 unsigned long group_capacity;
aae6d3dd
SS
4214 unsigned long idle_cpus;
4215 unsigned long group_weight;
1e3c88bd 4216 int group_imb; /* Is there an imbalance in the group ? */
fab47622 4217 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
4218};
4219
1e3c88bd
PZ
4220/**
4221 * get_sd_load_idx - Obtain the load index for a given sched domain.
4222 * @sd: The sched_domain whose load_idx is to be obtained.
4223 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4224 */
4225static inline int get_sd_load_idx(struct sched_domain *sd,
4226 enum cpu_idle_type idle)
4227{
4228 int load_idx;
4229
4230 switch (idle) {
4231 case CPU_NOT_IDLE:
4232 load_idx = sd->busy_idx;
4233 break;
4234
4235 case CPU_NEWLY_IDLE:
4236 load_idx = sd->newidle_idx;
4237 break;
4238 default:
4239 load_idx = sd->idle_idx;
4240 break;
4241 }
4242
4243 return load_idx;
4244}
4245
15f803c9 4246static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 4247{
1399fa78 4248 return SCHED_POWER_SCALE;
1e3c88bd
PZ
4249}
4250
4251unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4252{
4253 return default_scale_freq_power(sd, cpu);
4254}
4255
15f803c9 4256static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 4257{
669c55e9 4258 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
4259 unsigned long smt_gain = sd->smt_gain;
4260
4261 smt_gain /= weight;
4262
4263 return smt_gain;
4264}
4265
4266unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4267{
4268 return default_scale_smt_power(sd, cpu);
4269}
4270
15f803c9 4271static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
4272{
4273 struct rq *rq = cpu_rq(cpu);
b654f7de 4274 u64 total, available, age_stamp, avg;
1e3c88bd 4275
b654f7de
PZ
4276 /*
4277 * Since we're reading these variables without serialization make sure
4278 * we read them once before doing sanity checks on them.
4279 */
4280 age_stamp = ACCESS_ONCE(rq->age_stamp);
4281 avg = ACCESS_ONCE(rq->rt_avg);
4282
4283 total = sched_avg_period() + (rq->clock - age_stamp);
aa483808 4284
b654f7de 4285 if (unlikely(total < avg)) {
aa483808
VP
4286 /* Ensures that power won't end up being negative */
4287 available = 0;
4288 } else {
b654f7de 4289 available = total - avg;
aa483808 4290 }
1e3c88bd 4291
1399fa78
NR
4292 if (unlikely((s64)total < SCHED_POWER_SCALE))
4293 total = SCHED_POWER_SCALE;
1e3c88bd 4294
1399fa78 4295 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4296
4297 return div_u64(available, total);
4298}
4299
4300static void update_cpu_power(struct sched_domain *sd, int cpu)
4301{
669c55e9 4302 unsigned long weight = sd->span_weight;
1399fa78 4303 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
4304 struct sched_group *sdg = sd->groups;
4305
1e3c88bd
PZ
4306 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4307 if (sched_feat(ARCH_POWER))
4308 power *= arch_scale_smt_power(sd, cpu);
4309 else
4310 power *= default_scale_smt_power(sd, cpu);
4311
1399fa78 4312 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4313 }
4314
9c3f75cb 4315 sdg->sgp->power_orig = power;
9d5efe05
SV
4316
4317 if (sched_feat(ARCH_POWER))
4318 power *= arch_scale_freq_power(sd, cpu);
4319 else
4320 power *= default_scale_freq_power(sd, cpu);
4321
1399fa78 4322 power >>= SCHED_POWER_SHIFT;
9d5efe05 4323
1e3c88bd 4324 power *= scale_rt_power(cpu);
1399fa78 4325 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
4326
4327 if (!power)
4328 power = 1;
4329
e51fd5e2 4330 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 4331 sdg->sgp->power = power;
1e3c88bd
PZ
4332}
4333
029632fb 4334void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
4335{
4336 struct sched_domain *child = sd->child;
4337 struct sched_group *group, *sdg = sd->groups;
4338 unsigned long power;
4ec4412e
VG
4339 unsigned long interval;
4340
4341 interval = msecs_to_jiffies(sd->balance_interval);
4342 interval = clamp(interval, 1UL, max_load_balance_interval);
4343 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
4344
4345 if (!child) {
4346 update_cpu_power(sd, cpu);
4347 return;
4348 }
4349
4350 power = 0;
4351
74a5ce20
PZ
4352 if (child->flags & SD_OVERLAP) {
4353 /*
4354 * SD_OVERLAP domains cannot assume that child groups
4355 * span the current group.
4356 */
4357
4358 for_each_cpu(cpu, sched_group_cpus(sdg))
4359 power += power_of(cpu);
4360 } else {
4361 /*
4362 * !SD_OVERLAP domains can assume that child groups
4363 * span the current group.
4364 */
4365
4366 group = child->groups;
4367 do {
4368 power += group->sgp->power;
4369 group = group->next;
4370 } while (group != child->groups);
4371 }
1e3c88bd 4372
c3decf0d 4373 sdg->sgp->power_orig = sdg->sgp->power = power;
1e3c88bd
PZ
4374}
4375
9d5efe05
SV
4376/*
4377 * Try and fix up capacity for tiny siblings, this is needed when
4378 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4379 * which on its own isn't powerful enough.
4380 *
4381 * See update_sd_pick_busiest() and check_asym_packing().
4382 */
4383static inline int
4384fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4385{
4386 /*
1399fa78 4387 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 4388 */
a6c75f2f 4389 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
4390 return 0;
4391
4392 /*
4393 * If ~90% of the cpu_power is still there, we're good.
4394 */
9c3f75cb 4395 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
4396 return 1;
4397
4398 return 0;
4399}
4400
1e3c88bd
PZ
4401/**
4402 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 4403 * @env: The load balancing environment.
1e3c88bd 4404 * @group: sched_group whose statistics are to be updated.
1e3c88bd 4405 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 4406 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
4407 * @balance: Should we balance.
4408 * @sgs: variable to hold the statistics for this group.
4409 */
bd939f45
PZ
4410static inline void update_sg_lb_stats(struct lb_env *env,
4411 struct sched_group *group, int load_idx,
b9403130 4412 int local_group, int *balance, struct sg_lb_stats *sgs)
1e3c88bd 4413{
e44bc5c5
PZ
4414 unsigned long nr_running, max_nr_running, min_nr_running;
4415 unsigned long load, max_cpu_load, min_cpu_load;
04f733b4 4416 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 4417 unsigned long avg_load_per_task = 0;
bd939f45 4418 int i;
1e3c88bd 4419
871e35bc 4420 if (local_group)
c1174876 4421 balance_cpu = group_balance_cpu(group);
1e3c88bd
PZ
4422
4423 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
4424 max_cpu_load = 0;
4425 min_cpu_load = ~0UL;
2582f0eb 4426 max_nr_running = 0;
e44bc5c5 4427 min_nr_running = ~0UL;
1e3c88bd 4428
b9403130 4429 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
4430 struct rq *rq = cpu_rq(i);
4431
e44bc5c5
PZ
4432 nr_running = rq->nr_running;
4433
1e3c88bd
PZ
4434 /* Bias balancing toward cpus of our domain */
4435 if (local_group) {
c1174876
PZ
4436 if (idle_cpu(i) && !first_idle_cpu &&
4437 cpumask_test_cpu(i, sched_group_mask(group))) {
04f733b4 4438 first_idle_cpu = 1;
1e3c88bd
PZ
4439 balance_cpu = i;
4440 }
04f733b4
PZ
4441
4442 load = target_load(i, load_idx);
1e3c88bd
PZ
4443 } else {
4444 load = source_load(i, load_idx);
e44bc5c5 4445 if (load > max_cpu_load)
1e3c88bd
PZ
4446 max_cpu_load = load;
4447 if (min_cpu_load > load)
4448 min_cpu_load = load;
e44bc5c5
PZ
4449
4450 if (nr_running > max_nr_running)
4451 max_nr_running = nr_running;
4452 if (min_nr_running > nr_running)
4453 min_nr_running = nr_running;
1e3c88bd
PZ
4454 }
4455
4456 sgs->group_load += load;
e44bc5c5 4457 sgs->sum_nr_running += nr_running;
1e3c88bd 4458 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
4459 if (idle_cpu(i))
4460 sgs->idle_cpus++;
1e3c88bd
PZ
4461 }
4462
4463 /*
4464 * First idle cpu or the first cpu(busiest) in this sched group
4465 * is eligible for doing load balancing at this and above
4466 * domains. In the newly idle case, we will allow all the cpu's
4467 * to do the newly idle load balance.
4468 */
4ec4412e 4469 if (local_group) {
bd939f45 4470 if (env->idle != CPU_NEWLY_IDLE) {
04f733b4 4471 if (balance_cpu != env->dst_cpu) {
4ec4412e
VG
4472 *balance = 0;
4473 return;
4474 }
bd939f45 4475 update_group_power(env->sd, env->dst_cpu);
4ec4412e 4476 } else if (time_after_eq(jiffies, group->sgp->next_update))
bd939f45 4477 update_group_power(env->sd, env->dst_cpu);
1e3c88bd
PZ
4478 }
4479
4480 /* Adjust by relative CPU power of the group */
9c3f75cb 4481 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
1e3c88bd 4482
1e3c88bd
PZ
4483 /*
4484 * Consider the group unbalanced when the imbalance is larger
866ab43e 4485 * than the average weight of a task.
1e3c88bd
PZ
4486 *
4487 * APZ: with cgroup the avg task weight can vary wildly and
4488 * might not be a suitable number - should we keep a
4489 * normalized nr_running number somewhere that negates
4490 * the hierarchy?
4491 */
dd5feea1
SS
4492 if (sgs->sum_nr_running)
4493 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 4494
e44bc5c5
PZ
4495 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4496 (max_nr_running - min_nr_running) > 1)
1e3c88bd
PZ
4497 sgs->group_imb = 1;
4498
9c3f75cb 4499 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
1399fa78 4500 SCHED_POWER_SCALE);
9d5efe05 4501 if (!sgs->group_capacity)
bd939f45 4502 sgs->group_capacity = fix_small_capacity(env->sd, group);
aae6d3dd 4503 sgs->group_weight = group->group_weight;
fab47622
NR
4504
4505 if (sgs->group_capacity > sgs->sum_nr_running)
4506 sgs->group_has_capacity = 1;
1e3c88bd
PZ
4507}
4508
532cb4c4
MN
4509/**
4510 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 4511 * @env: The load balancing environment.
532cb4c4
MN
4512 * @sds: sched_domain statistics
4513 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 4514 * @sgs: sched_group statistics
532cb4c4
MN
4515 *
4516 * Determine if @sg is a busier group than the previously selected
4517 * busiest group.
4518 */
bd939f45 4519static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
4520 struct sd_lb_stats *sds,
4521 struct sched_group *sg,
bd939f45 4522 struct sg_lb_stats *sgs)
532cb4c4
MN
4523{
4524 if (sgs->avg_load <= sds->max_load)
4525 return false;
4526
4527 if (sgs->sum_nr_running > sgs->group_capacity)
4528 return true;
4529
4530 if (sgs->group_imb)
4531 return true;
4532
4533 /*
4534 * ASYM_PACKING needs to move all the work to the lowest
4535 * numbered CPUs in the group, therefore mark all groups
4536 * higher than ourself as busy.
4537 */
bd939f45
PZ
4538 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4539 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
4540 if (!sds->busiest)
4541 return true;
4542
4543 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4544 return true;
4545 }
4546
4547 return false;
4548}
4549
1e3c88bd 4550/**
461819ac 4551 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 4552 * @env: The load balancing environment.
1e3c88bd
PZ
4553 * @balance: Should we balance.
4554 * @sds: variable to hold the statistics for this sched_domain.
4555 */
bd939f45 4556static inline void update_sd_lb_stats(struct lb_env *env,
b9403130 4557 int *balance, struct sd_lb_stats *sds)
1e3c88bd 4558{
bd939f45
PZ
4559 struct sched_domain *child = env->sd->child;
4560 struct sched_group *sg = env->sd->groups;
1e3c88bd
PZ
4561 struct sg_lb_stats sgs;
4562 int load_idx, prefer_sibling = 0;
4563
4564 if (child && child->flags & SD_PREFER_SIBLING)
4565 prefer_sibling = 1;
4566
bd939f45 4567 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
4568
4569 do {
4570 int local_group;
4571
bd939f45 4572 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
1e3c88bd 4573 memset(&sgs, 0, sizeof(sgs));
b9403130 4574 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
1e3c88bd 4575
8f190fb3 4576 if (local_group && !(*balance))
1e3c88bd
PZ
4577 return;
4578
4579 sds->total_load += sgs.group_load;
9c3f75cb 4580 sds->total_pwr += sg->sgp->power;
1e3c88bd
PZ
4581
4582 /*
4583 * In case the child domain prefers tasks go to siblings
532cb4c4 4584 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
4585 * and move all the excess tasks away. We lower the capacity
4586 * of a group only if the local group has the capacity to fit
4587 * these excess tasks, i.e. nr_running < group_capacity. The
4588 * extra check prevents the case where you always pull from the
4589 * heaviest group when it is already under-utilized (possible
4590 * with a large weight task outweighs the tasks on the system).
1e3c88bd 4591 */
75dd321d 4592 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
4593 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4594
4595 if (local_group) {
4596 sds->this_load = sgs.avg_load;
532cb4c4 4597 sds->this = sg;
1e3c88bd
PZ
4598 sds->this_nr_running = sgs.sum_nr_running;
4599 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 4600 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 4601 sds->this_idle_cpus = sgs.idle_cpus;
bd939f45 4602 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
1e3c88bd 4603 sds->max_load = sgs.avg_load;
532cb4c4 4604 sds->busiest = sg;
1e3c88bd 4605 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 4606 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 4607 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 4608 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 4609 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 4610 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
4611 sds->group_imb = sgs.group_imb;
4612 }
4613
532cb4c4 4614 sg = sg->next;
bd939f45 4615 } while (sg != env->sd->groups);
532cb4c4
MN
4616}
4617
532cb4c4
MN
4618/**
4619 * check_asym_packing - Check to see if the group is packed into the
4620 * sched doman.
4621 *
4622 * This is primarily intended to used at the sibling level. Some
4623 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4624 * case of POWER7, it can move to lower SMT modes only when higher
4625 * threads are idle. When in lower SMT modes, the threads will
4626 * perform better since they share less core resources. Hence when we
4627 * have idle threads, we want them to be the higher ones.
4628 *
4629 * This packing function is run on idle threads. It checks to see if
4630 * the busiest CPU in this domain (core in the P7 case) has a higher
4631 * CPU number than the packing function is being run on. Here we are
4632 * assuming lower CPU number will be equivalent to lower a SMT thread
4633 * number.
4634 *
b6b12294
MN
4635 * Returns 1 when packing is required and a task should be moved to
4636 * this CPU. The amount of the imbalance is returned in *imbalance.
4637 *
cd96891d 4638 * @env: The load balancing environment.
532cb4c4 4639 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 4640 */
bd939f45 4641static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
4642{
4643 int busiest_cpu;
4644
bd939f45 4645 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
4646 return 0;
4647
4648 if (!sds->busiest)
4649 return 0;
4650
4651 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 4652 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
4653 return 0;
4654
bd939f45
PZ
4655 env->imbalance = DIV_ROUND_CLOSEST(
4656 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4657
532cb4c4 4658 return 1;
1e3c88bd
PZ
4659}
4660
4661/**
4662 * fix_small_imbalance - Calculate the minor imbalance that exists
4663 * amongst the groups of a sched_domain, during
4664 * load balancing.
cd96891d 4665 * @env: The load balancing environment.
1e3c88bd 4666 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4667 */
bd939f45
PZ
4668static inline
4669void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
4670{
4671 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4672 unsigned int imbn = 2;
dd5feea1 4673 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
4674
4675 if (sds->this_nr_running) {
4676 sds->this_load_per_task /= sds->this_nr_running;
4677 if (sds->busiest_load_per_task >
4678 sds->this_load_per_task)
4679 imbn = 1;
bd939f45 4680 } else {
1e3c88bd 4681 sds->this_load_per_task =
bd939f45
PZ
4682 cpu_avg_load_per_task(env->dst_cpu);
4683 }
1e3c88bd 4684
dd5feea1 4685 scaled_busy_load_per_task = sds->busiest_load_per_task
1399fa78 4686 * SCHED_POWER_SCALE;
9c3f75cb 4687 scaled_busy_load_per_task /= sds->busiest->sgp->power;
dd5feea1
SS
4688
4689 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4690 (scaled_busy_load_per_task * imbn)) {
bd939f45 4691 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4692 return;
4693 }
4694
4695 /*
4696 * OK, we don't have enough imbalance to justify moving tasks,
4697 * however we may be able to increase total CPU power used by
4698 * moving them.
4699 */
4700
9c3f75cb 4701 pwr_now += sds->busiest->sgp->power *
1e3c88bd 4702 min(sds->busiest_load_per_task, sds->max_load);
9c3f75cb 4703 pwr_now += sds->this->sgp->power *
1e3c88bd 4704 min(sds->this_load_per_task, sds->this_load);
1399fa78 4705 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4706
4707 /* Amount of load we'd subtract */
1399fa78 4708 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb 4709 sds->busiest->sgp->power;
1e3c88bd 4710 if (sds->max_load > tmp)
9c3f75cb 4711 pwr_move += sds->busiest->sgp->power *
1e3c88bd
PZ
4712 min(sds->busiest_load_per_task, sds->max_load - tmp);
4713
4714 /* Amount of load we'd add */
9c3f75cb 4715 if (sds->max_load * sds->busiest->sgp->power <
1399fa78 4716 sds->busiest_load_per_task * SCHED_POWER_SCALE)
9c3f75cb
PZ
4717 tmp = (sds->max_load * sds->busiest->sgp->power) /
4718 sds->this->sgp->power;
1e3c88bd 4719 else
1399fa78 4720 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
9c3f75cb
PZ
4721 sds->this->sgp->power;
4722 pwr_move += sds->this->sgp->power *
1e3c88bd 4723 min(sds->this_load_per_task, sds->this_load + tmp);
1399fa78 4724 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
4725
4726 /* Move if we gain throughput */
4727 if (pwr_move > pwr_now)
bd939f45 4728 env->imbalance = sds->busiest_load_per_task;
1e3c88bd
PZ
4729}
4730
4731/**
4732 * calculate_imbalance - Calculate the amount of imbalance present within the
4733 * groups of a given sched_domain during load balance.
bd939f45 4734 * @env: load balance environment
1e3c88bd 4735 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 4736 */
bd939f45 4737static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 4738{
dd5feea1
SS
4739 unsigned long max_pull, load_above_capacity = ~0UL;
4740
4741 sds->busiest_load_per_task /= sds->busiest_nr_running;
4742 if (sds->group_imb) {
4743 sds->busiest_load_per_task =
4744 min(sds->busiest_load_per_task, sds->avg_load);
4745 }
4746
1e3c88bd
PZ
4747 /*
4748 * In the presence of smp nice balancing, certain scenarios can have
4749 * max load less than avg load(as we skip the groups at or below
4750 * its cpu_power, while calculating max_load..)
4751 */
4752 if (sds->max_load < sds->avg_load) {
bd939f45
PZ
4753 env->imbalance = 0;
4754 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4755 }
4756
dd5feea1
SS
4757 if (!sds->group_imb) {
4758 /*
4759 * Don't want to pull so many tasks that a group would go idle.
4760 */
4761 load_above_capacity = (sds->busiest_nr_running -
4762 sds->busiest_group_capacity);
4763
1399fa78 4764 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
dd5feea1 4765
9c3f75cb 4766 load_above_capacity /= sds->busiest->sgp->power;
dd5feea1
SS
4767 }
4768
4769 /*
4770 * We're trying to get all the cpus to the average_load, so we don't
4771 * want to push ourselves above the average load, nor do we wish to
4772 * reduce the max loaded cpu below the average load. At the same time,
4773 * we also don't want to reduce the group load below the group capacity
4774 * (so that we can implement power-savings policies etc). Thus we look
4775 * for the minimum possible imbalance.
4776 * Be careful of negative numbers as they'll appear as very large values
4777 * with unsigned longs.
4778 */
4779 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
4780
4781 /* How much load to actually move to equalise the imbalance */
bd939f45 4782 env->imbalance = min(max_pull * sds->busiest->sgp->power,
9c3f75cb 4783 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
1399fa78 4784 / SCHED_POWER_SCALE;
1e3c88bd
PZ
4785
4786 /*
4787 * if *imbalance is less than the average load per runnable task
25985edc 4788 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
4789 * a think about bumping its value to force at least one task to be
4790 * moved
4791 */
bd939f45
PZ
4792 if (env->imbalance < sds->busiest_load_per_task)
4793 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
4794
4795}
fab47622 4796
1e3c88bd
PZ
4797/******* find_busiest_group() helpers end here *********************/
4798
4799/**
4800 * find_busiest_group - Returns the busiest group within the sched_domain
4801 * if there is an imbalance. If there isn't an imbalance, and
4802 * the user has opted for power-savings, it returns a group whose
4803 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4804 * such a group exists.
4805 *
4806 * Also calculates the amount of weighted load which should be moved
4807 * to restore balance.
4808 *
cd96891d 4809 * @env: The load balancing environment.
1e3c88bd
PZ
4810 * @balance: Pointer to a variable indicating if this_cpu
4811 * is the appropriate cpu to perform load balancing at this_level.
4812 *
4813 * Returns: - the busiest group if imbalance exists.
4814 * - If no imbalance and user has opted for power-savings balance,
4815 * return the least loaded group whose CPUs can be
4816 * put to idle by rebalancing its tasks onto our group.
4817 */
4818static struct sched_group *
b9403130 4819find_busiest_group(struct lb_env *env, int *balance)
1e3c88bd
PZ
4820{
4821 struct sd_lb_stats sds;
4822
4823 memset(&sds, 0, sizeof(sds));
4824
4825 /*
4826 * Compute the various statistics relavent for load balancing at
4827 * this level.
4828 */
b9403130 4829 update_sd_lb_stats(env, balance, &sds);
1e3c88bd 4830
cc57aa8f
PZ
4831 /*
4832 * this_cpu is not the appropriate cpu to perform load balancing at
4833 * this level.
1e3c88bd 4834 */
8f190fb3 4835 if (!(*balance))
1e3c88bd
PZ
4836 goto ret;
4837
bd939f45
PZ
4838 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4839 check_asym_packing(env, &sds))
532cb4c4
MN
4840 return sds.busiest;
4841
cc57aa8f 4842 /* There is no busy sibling group to pull tasks from */
1e3c88bd
PZ
4843 if (!sds.busiest || sds.busiest_nr_running == 0)
4844 goto out_balanced;
4845
1399fa78 4846 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 4847
866ab43e
PZ
4848 /*
4849 * If the busiest group is imbalanced the below checks don't
4850 * work because they assumes all things are equal, which typically
4851 * isn't true due to cpus_allowed constraints and the like.
4852 */
4853 if (sds.group_imb)
4854 goto force_balance;
4855
cc57aa8f 4856 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
bd939f45 4857 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
fab47622
NR
4858 !sds.busiest_has_capacity)
4859 goto force_balance;
4860
cc57aa8f
PZ
4861 /*
4862 * If the local group is more busy than the selected busiest group
4863 * don't try and pull any tasks.
4864 */
1e3c88bd
PZ
4865 if (sds.this_load >= sds.max_load)
4866 goto out_balanced;
4867
cc57aa8f
PZ
4868 /*
4869 * Don't pull any tasks if this group is already above the domain
4870 * average load.
4871 */
1e3c88bd
PZ
4872 if (sds.this_load >= sds.avg_load)
4873 goto out_balanced;
4874
bd939f45 4875 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
4876 /*
4877 * This cpu is idle. If the busiest group load doesn't
4878 * have more tasks than the number of available cpu's and
4879 * there is no imbalance between this and busiest group
4880 * wrt to idle cpu's, it is balanced.
4881 */
c186fafe 4882 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
aae6d3dd
SS
4883 sds.busiest_nr_running <= sds.busiest_group_weight)
4884 goto out_balanced;
c186fafe
PZ
4885 } else {
4886 /*
4887 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4888 * imbalance_pct to be conservative.
4889 */
bd939f45 4890 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
c186fafe 4891 goto out_balanced;
aae6d3dd 4892 }
1e3c88bd 4893
fab47622 4894force_balance:
1e3c88bd 4895 /* Looks like there is an imbalance. Compute it */
bd939f45 4896 calculate_imbalance(env, &sds);
1e3c88bd
PZ
4897 return sds.busiest;
4898
4899out_balanced:
1e3c88bd 4900ret:
bd939f45 4901 env->imbalance = 0;
1e3c88bd
PZ
4902 return NULL;
4903}
4904
4905/*
4906 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4907 */
bd939f45 4908static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 4909 struct sched_group *group)
1e3c88bd
PZ
4910{
4911 struct rq *busiest = NULL, *rq;
4912 unsigned long max_load = 0;
4913 int i;
4914
4915 for_each_cpu(i, sched_group_cpus(group)) {
4916 unsigned long power = power_of(i);
1399fa78
NR
4917 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4918 SCHED_POWER_SCALE);
1e3c88bd
PZ
4919 unsigned long wl;
4920
9d5efe05 4921 if (!capacity)
bd939f45 4922 capacity = fix_small_capacity(env->sd, group);
9d5efe05 4923
b9403130 4924 if (!cpumask_test_cpu(i, env->cpus))
1e3c88bd
PZ
4925 continue;
4926
4927 rq = cpu_rq(i);
6e40f5bb 4928 wl = weighted_cpuload(i);
1e3c88bd 4929
6e40f5bb
TG
4930 /*
4931 * When comparing with imbalance, use weighted_cpuload()
4932 * which is not scaled with the cpu power.
4933 */
bd939f45 4934 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
4935 continue;
4936
6e40f5bb
TG
4937 /*
4938 * For the load comparisons with the other cpu's, consider
4939 * the weighted_cpuload() scaled with the cpu power, so that
4940 * the load can be moved away from the cpu that is potentially
4941 * running at a lower capacity.
4942 */
1399fa78 4943 wl = (wl * SCHED_POWER_SCALE) / power;
6e40f5bb 4944
1e3c88bd
PZ
4945 if (wl > max_load) {
4946 max_load = wl;
4947 busiest = rq;
4948 }
4949 }
4950
4951 return busiest;
4952}
4953
4954/*
4955 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4956 * so long as it is large enough.
4957 */
4958#define MAX_PINNED_INTERVAL 512
4959
4960/* Working cpumask for load_balance and load_balance_newidle. */
029632fb 4961DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
1e3c88bd 4962
bd939f45 4963static int need_active_balance(struct lb_env *env)
1af3ed3d 4964{
bd939f45
PZ
4965 struct sched_domain *sd = env->sd;
4966
4967 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
4968
4969 /*
4970 * ASYM_PACKING needs to force migrate tasks from busy but
4971 * higher numbered CPUs in order to pack all tasks in the
4972 * lowest numbered CPUs.
4973 */
bd939f45 4974 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 4975 return 1;
1af3ed3d
PZ
4976 }
4977
4978 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4979}
4980
969c7921
TH
4981static int active_load_balance_cpu_stop(void *data);
4982
1e3c88bd
PZ
4983/*
4984 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4985 * tasks if there is an imbalance.
4986 */
4987static int load_balance(int this_cpu, struct rq *this_rq,
4988 struct sched_domain *sd, enum cpu_idle_type idle,
4989 int *balance)
4990{
88b8dac0
SV
4991 int ld_moved, cur_ld_moved, active_balance = 0;
4992 int lb_iterations, max_lb_iterations;
1e3c88bd 4993 struct sched_group *group;
1e3c88bd
PZ
4994 struct rq *busiest;
4995 unsigned long flags;
4996 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4997
8e45cb54
PZ
4998 struct lb_env env = {
4999 .sd = sd,
ddcdf6e7
PZ
5000 .dst_cpu = this_cpu,
5001 .dst_rq = this_rq,
88b8dac0 5002 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 5003 .idle = idle,
eb95308e 5004 .loop_break = sched_nr_migrate_break,
b9403130 5005 .cpus = cpus,
8e45cb54
PZ
5006 };
5007
1e3c88bd 5008 cpumask_copy(cpus, cpu_active_mask);
88b8dac0 5009 max_lb_iterations = cpumask_weight(env.dst_grpmask);
1e3c88bd 5010
1e3c88bd
PZ
5011 schedstat_inc(sd, lb_count[idle]);
5012
5013redo:
b9403130 5014 group = find_busiest_group(&env, balance);
1e3c88bd
PZ
5015
5016 if (*balance == 0)
5017 goto out_balanced;
5018
5019 if (!group) {
5020 schedstat_inc(sd, lb_nobusyg[idle]);
5021 goto out_balanced;
5022 }
5023
b9403130 5024 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
5025 if (!busiest) {
5026 schedstat_inc(sd, lb_nobusyq[idle]);
5027 goto out_balanced;
5028 }
5029
78feefc5 5030 BUG_ON(busiest == env.dst_rq);
1e3c88bd 5031
bd939f45 5032 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
5033
5034 ld_moved = 0;
88b8dac0 5035 lb_iterations = 1;
1e3c88bd
PZ
5036 if (busiest->nr_running > 1) {
5037 /*
5038 * Attempt to move tasks. If find_busiest_group has found
5039 * an imbalance but busiest->nr_running <= 1, the group is
5040 * still unbalanced. ld_moved simply stays zero, so it is
5041 * correctly treated as an imbalance.
5042 */
8e45cb54 5043 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
5044 env.src_cpu = busiest->cpu;
5045 env.src_rq = busiest;
5046 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 5047
a35b6466 5048 update_h_load(env.src_cpu);
5d6523eb 5049more_balance:
1e3c88bd 5050 local_irq_save(flags);
78feefc5 5051 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
5052
5053 /*
5054 * cur_ld_moved - load moved in current iteration
5055 * ld_moved - cumulative load moved across iterations
5056 */
5057 cur_ld_moved = move_tasks(&env);
5058 ld_moved += cur_ld_moved;
78feefc5 5059 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
5060 local_irq_restore(flags);
5061
5d6523eb
PZ
5062 if (env.flags & LBF_NEED_BREAK) {
5063 env.flags &= ~LBF_NEED_BREAK;
5064 goto more_balance;
5065 }
5066
1e3c88bd
PZ
5067 /*
5068 * some other cpu did the load balance for us.
5069 */
88b8dac0
SV
5070 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5071 resched_cpu(env.dst_cpu);
5072
5073 /*
5074 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5075 * us and move them to an alternate dst_cpu in our sched_group
5076 * where they can run. The upper limit on how many times we
5077 * iterate on same src_cpu is dependent on number of cpus in our
5078 * sched_group.
5079 *
5080 * This changes load balance semantics a bit on who can move
5081 * load to a given_cpu. In addition to the given_cpu itself
5082 * (or a ilb_cpu acting on its behalf where given_cpu is
5083 * nohz-idle), we now have balance_cpu in a position to move
5084 * load to given_cpu. In rare situations, this may cause
5085 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5086 * _independently_ and at _same_ time to move some load to
5087 * given_cpu) causing exceess load to be moved to given_cpu.
5088 * This however should not happen so much in practice and
5089 * moreover subsequent load balance cycles should correct the
5090 * excess load moved.
5091 */
5092 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
5093 lb_iterations++ < max_lb_iterations) {
5094
78feefc5 5095 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0
SV
5096 env.dst_cpu = env.new_dst_cpu;
5097 env.flags &= ~LBF_SOME_PINNED;
5098 env.loop = 0;
5099 env.loop_break = sched_nr_migrate_break;
5100 /*
5101 * Go back to "more_balance" rather than "redo" since we
5102 * need to continue with same src_cpu.
5103 */
5104 goto more_balance;
5105 }
1e3c88bd
PZ
5106
5107 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 5108 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 5109 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
5110 if (!cpumask_empty(cpus)) {
5111 env.loop = 0;
5112 env.loop_break = sched_nr_migrate_break;
1e3c88bd 5113 goto redo;
bbf18b19 5114 }
1e3c88bd
PZ
5115 goto out_balanced;
5116 }
5117 }
5118
5119 if (!ld_moved) {
5120 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
5121 /*
5122 * Increment the failure counter only on periodic balance.
5123 * We do not want newidle balance, which can be very
5124 * frequent, pollute the failure counter causing
5125 * excessive cache_hot migrations and active balances.
5126 */
5127 if (idle != CPU_NEWLY_IDLE)
5128 sd->nr_balance_failed++;
1e3c88bd 5129
bd939f45 5130 if (need_active_balance(&env)) {
1e3c88bd
PZ
5131 raw_spin_lock_irqsave(&busiest->lock, flags);
5132
969c7921
TH
5133 /* don't kick the active_load_balance_cpu_stop,
5134 * if the curr task on busiest cpu can't be
5135 * moved to this_cpu
1e3c88bd
PZ
5136 */
5137 if (!cpumask_test_cpu(this_cpu,
fa17b507 5138 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
5139 raw_spin_unlock_irqrestore(&busiest->lock,
5140 flags);
8e45cb54 5141 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
5142 goto out_one_pinned;
5143 }
5144
969c7921
TH
5145 /*
5146 * ->active_balance synchronizes accesses to
5147 * ->active_balance_work. Once set, it's cleared
5148 * only after active load balance is finished.
5149 */
1e3c88bd
PZ
5150 if (!busiest->active_balance) {
5151 busiest->active_balance = 1;
5152 busiest->push_cpu = this_cpu;
5153 active_balance = 1;
5154 }
5155 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 5156
bd939f45 5157 if (active_balance) {
969c7921
TH
5158 stop_one_cpu_nowait(cpu_of(busiest),
5159 active_load_balance_cpu_stop, busiest,
5160 &busiest->active_balance_work);
bd939f45 5161 }
1e3c88bd
PZ
5162
5163 /*
5164 * We've kicked active balancing, reset the failure
5165 * counter.
5166 */
5167 sd->nr_balance_failed = sd->cache_nice_tries+1;
5168 }
5169 } else
5170 sd->nr_balance_failed = 0;
5171
5172 if (likely(!active_balance)) {
5173 /* We were unbalanced, so reset the balancing interval */
5174 sd->balance_interval = sd->min_interval;
5175 } else {
5176 /*
5177 * If we've begun active balancing, start to back off. This
5178 * case may not be covered by the all_pinned logic if there
5179 * is only 1 task on the busy runqueue (because we don't call
5180 * move_tasks).
5181 */
5182 if (sd->balance_interval < sd->max_interval)
5183 sd->balance_interval *= 2;
5184 }
5185
1e3c88bd
PZ
5186 goto out;
5187
5188out_balanced:
5189 schedstat_inc(sd, lb_balanced[idle]);
5190
5191 sd->nr_balance_failed = 0;
5192
5193out_one_pinned:
5194 /* tune up the balancing interval */
8e45cb54 5195 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 5196 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
5197 (sd->balance_interval < sd->max_interval))
5198 sd->balance_interval *= 2;
5199
46e49b38 5200 ld_moved = 0;
1e3c88bd 5201out:
1e3c88bd
PZ
5202 return ld_moved;
5203}
5204
1e3c88bd
PZ
5205/*
5206 * idle_balance is called by schedule() if this_cpu is about to become
5207 * idle. Attempts to pull tasks from other CPUs.
5208 */
029632fb 5209void idle_balance(int this_cpu, struct rq *this_rq)
1e3c88bd
PZ
5210{
5211 struct sched_domain *sd;
5212 int pulled_task = 0;
5213 unsigned long next_balance = jiffies + HZ;
5214
5215 this_rq->idle_stamp = this_rq->clock;
5216
5217 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5218 return;
5219
18bf2805
BS
5220 update_rq_runnable_avg(this_rq, 1);
5221
f492e12e
PZ
5222 /*
5223 * Drop the rq->lock, but keep IRQ/preempt disabled.
5224 */
5225 raw_spin_unlock(&this_rq->lock);
5226
48a16753 5227 update_blocked_averages(this_cpu);
dce840a0 5228 rcu_read_lock();
1e3c88bd
PZ
5229 for_each_domain(this_cpu, sd) {
5230 unsigned long interval;
f492e12e 5231 int balance = 1;
1e3c88bd
PZ
5232
5233 if (!(sd->flags & SD_LOAD_BALANCE))
5234 continue;
5235
f492e12e 5236 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 5237 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
5238 pulled_task = load_balance(this_cpu, this_rq,
5239 sd, CPU_NEWLY_IDLE, &balance);
5240 }
1e3c88bd
PZ
5241
5242 interval = msecs_to_jiffies(sd->balance_interval);
5243 if (time_after(next_balance, sd->last_balance + interval))
5244 next_balance = sd->last_balance + interval;
d5ad140b
NR
5245 if (pulled_task) {
5246 this_rq->idle_stamp = 0;
1e3c88bd 5247 break;
d5ad140b 5248 }
1e3c88bd 5249 }
dce840a0 5250 rcu_read_unlock();
f492e12e
PZ
5251
5252 raw_spin_lock(&this_rq->lock);
5253
1e3c88bd
PZ
5254 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5255 /*
5256 * We are going idle. next_balance may be set based on
5257 * a busy processor. So reset next_balance.
5258 */
5259 this_rq->next_balance = next_balance;
5260 }
5261}
5262
5263/*
969c7921
TH
5264 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5265 * running tasks off the busiest CPU onto idle CPUs. It requires at
5266 * least 1 task to be running on each physical CPU where possible, and
5267 * avoids physical / logical imbalances.
1e3c88bd 5268 */
969c7921 5269static int active_load_balance_cpu_stop(void *data)
1e3c88bd 5270{
969c7921
TH
5271 struct rq *busiest_rq = data;
5272 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 5273 int target_cpu = busiest_rq->push_cpu;
969c7921 5274 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 5275 struct sched_domain *sd;
969c7921
TH
5276
5277 raw_spin_lock_irq(&busiest_rq->lock);
5278
5279 /* make sure the requested cpu hasn't gone down in the meantime */
5280 if (unlikely(busiest_cpu != smp_processor_id() ||
5281 !busiest_rq->active_balance))
5282 goto out_unlock;
1e3c88bd
PZ
5283
5284 /* Is there any task to move? */
5285 if (busiest_rq->nr_running <= 1)
969c7921 5286 goto out_unlock;
1e3c88bd
PZ
5287
5288 /*
5289 * This condition is "impossible", if it occurs
5290 * we need to fix it. Originally reported by
5291 * Bjorn Helgaas on a 128-cpu setup.
5292 */
5293 BUG_ON(busiest_rq == target_rq);
5294
5295 /* move a task from busiest_rq to target_rq */
5296 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
5297
5298 /* Search for an sd spanning us and the target CPU. */
dce840a0 5299 rcu_read_lock();
1e3c88bd
PZ
5300 for_each_domain(target_cpu, sd) {
5301 if ((sd->flags & SD_LOAD_BALANCE) &&
5302 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5303 break;
5304 }
5305
5306 if (likely(sd)) {
8e45cb54
PZ
5307 struct lb_env env = {
5308 .sd = sd,
ddcdf6e7
PZ
5309 .dst_cpu = target_cpu,
5310 .dst_rq = target_rq,
5311 .src_cpu = busiest_rq->cpu,
5312 .src_rq = busiest_rq,
8e45cb54
PZ
5313 .idle = CPU_IDLE,
5314 };
5315
1e3c88bd
PZ
5316 schedstat_inc(sd, alb_count);
5317
8e45cb54 5318 if (move_one_task(&env))
1e3c88bd
PZ
5319 schedstat_inc(sd, alb_pushed);
5320 else
5321 schedstat_inc(sd, alb_failed);
5322 }
dce840a0 5323 rcu_read_unlock();
1e3c88bd 5324 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
5325out_unlock:
5326 busiest_rq->active_balance = 0;
5327 raw_spin_unlock_irq(&busiest_rq->lock);
5328 return 0;
1e3c88bd
PZ
5329}
5330
5331#ifdef CONFIG_NO_HZ
83cd4fe2
VP
5332/*
5333 * idle load balancing details
83cd4fe2
VP
5334 * - When one of the busy CPUs notice that there may be an idle rebalancing
5335 * needed, they will kick the idle load balancer, which then does idle
5336 * load balancing for all the idle CPUs.
5337 */
1e3c88bd 5338static struct {
83cd4fe2 5339 cpumask_var_t idle_cpus_mask;
0b005cf5 5340 atomic_t nr_cpus;
83cd4fe2
VP
5341 unsigned long next_balance; /* in jiffy units */
5342} nohz ____cacheline_aligned;
1e3c88bd 5343
8e7fbcbc 5344static inline int find_new_ilb(int call_cpu)
1e3c88bd 5345{
0b005cf5 5346 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 5347
786d6dc7
SS
5348 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5349 return ilb;
5350
5351 return nr_cpu_ids;
1e3c88bd 5352}
1e3c88bd 5353
83cd4fe2
VP
5354/*
5355 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5356 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5357 * CPU (if there is one).
5358 */
5359static void nohz_balancer_kick(int cpu)
5360{
5361 int ilb_cpu;
5362
5363 nohz.next_balance++;
5364
0b005cf5 5365 ilb_cpu = find_new_ilb(cpu);
83cd4fe2 5366
0b005cf5
SS
5367 if (ilb_cpu >= nr_cpu_ids)
5368 return;
83cd4fe2 5369
cd490c5b 5370 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
5371 return;
5372 /*
5373 * Use smp_send_reschedule() instead of resched_cpu().
5374 * This way we generate a sched IPI on the target cpu which
5375 * is idle. And the softirq performing nohz idle load balance
5376 * will be run before returning from the IPI.
5377 */
5378 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
5379 return;
5380}
5381
c1cc017c 5382static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
5383{
5384 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5385 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5386 atomic_dec(&nohz.nr_cpus);
5387 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5388 }
5389}
5390
69e1e811
SS
5391static inline void set_cpu_sd_state_busy(void)
5392{
5393 struct sched_domain *sd;
5394 int cpu = smp_processor_id();
5395
5396 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5397 return;
5398 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5399
5400 rcu_read_lock();
5401 for_each_domain(cpu, sd)
5402 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5403 rcu_read_unlock();
5404}
5405
5406void set_cpu_sd_state_idle(void)
5407{
5408 struct sched_domain *sd;
5409 int cpu = smp_processor_id();
5410
5411 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5412 return;
5413 set_bit(NOHZ_IDLE, nohz_flags(cpu));
5414
5415 rcu_read_lock();
5416 for_each_domain(cpu, sd)
5417 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5418 rcu_read_unlock();
5419}
5420
1e3c88bd 5421/*
c1cc017c 5422 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 5423 * This info will be used in performing idle load balancing in the future.
1e3c88bd 5424 */
c1cc017c 5425void nohz_balance_enter_idle(int cpu)
1e3c88bd 5426{
71325960
SS
5427 /*
5428 * If this cpu is going down, then nothing needs to be done.
5429 */
5430 if (!cpu_active(cpu))
5431 return;
5432
c1cc017c
AS
5433 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5434 return;
1e3c88bd 5435
c1cc017c
AS
5436 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5437 atomic_inc(&nohz.nr_cpus);
5438 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 5439}
71325960
SS
5440
5441static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5442 unsigned long action, void *hcpu)
5443{
5444 switch (action & ~CPU_TASKS_FROZEN) {
5445 case CPU_DYING:
c1cc017c 5446 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
5447 return NOTIFY_OK;
5448 default:
5449 return NOTIFY_DONE;
5450 }
5451}
1e3c88bd
PZ
5452#endif
5453
5454static DEFINE_SPINLOCK(balancing);
5455
49c022e6
PZ
5456/*
5457 * Scale the max load_balance interval with the number of CPUs in the system.
5458 * This trades load-balance latency on larger machines for less cross talk.
5459 */
029632fb 5460void update_max_interval(void)
49c022e6
PZ
5461{
5462 max_load_balance_interval = HZ*num_online_cpus()/10;
5463}
5464
1e3c88bd
PZ
5465/*
5466 * It checks each scheduling domain to see if it is due to be balanced,
5467 * and initiates a balancing operation if so.
5468 *
b9b0853a 5469 * Balancing parameters are set up in init_sched_domains.
1e3c88bd
PZ
5470 */
5471static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5472{
5473 int balance = 1;
5474 struct rq *rq = cpu_rq(cpu);
5475 unsigned long interval;
04f733b4 5476 struct sched_domain *sd;
1e3c88bd
PZ
5477 /* Earliest time when we have to do rebalance again */
5478 unsigned long next_balance = jiffies + 60*HZ;
5479 int update_next_balance = 0;
5480 int need_serialize;
5481
48a16753 5482 update_blocked_averages(cpu);
2069dd75 5483
dce840a0 5484 rcu_read_lock();
1e3c88bd
PZ
5485 for_each_domain(cpu, sd) {
5486 if (!(sd->flags & SD_LOAD_BALANCE))
5487 continue;
5488
5489 interval = sd->balance_interval;
5490 if (idle != CPU_IDLE)
5491 interval *= sd->busy_factor;
5492
5493 /* scale ms to jiffies */
5494 interval = msecs_to_jiffies(interval);
49c022e6 5495 interval = clamp(interval, 1UL, max_load_balance_interval);
1e3c88bd
PZ
5496
5497 need_serialize = sd->flags & SD_SERIALIZE;
5498
5499 if (need_serialize) {
5500 if (!spin_trylock(&balancing))
5501 goto out;
5502 }
5503
5504 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5505 if (load_balance(cpu, rq, sd, idle, &balance)) {
5506 /*
5507 * We've pulled tasks over so either we're no
c186fafe 5508 * longer idle.
1e3c88bd
PZ
5509 */
5510 idle = CPU_NOT_IDLE;
5511 }
5512 sd->last_balance = jiffies;
5513 }
5514 if (need_serialize)
5515 spin_unlock(&balancing);
5516out:
5517 if (time_after(next_balance, sd->last_balance + interval)) {
5518 next_balance = sd->last_balance + interval;
5519 update_next_balance = 1;
5520 }
5521
5522 /*
5523 * Stop the load balance at this level. There is another
5524 * CPU in our sched group which is doing load balancing more
5525 * actively.
5526 */
5527 if (!balance)
5528 break;
5529 }
dce840a0 5530 rcu_read_unlock();
1e3c88bd
PZ
5531
5532 /*
5533 * next_balance will be updated only when there is a need.
5534 * When the cpu is attached to null domain for ex, it will not be
5535 * updated.
5536 */
5537 if (likely(update_next_balance))
5538 rq->next_balance = next_balance;
5539}
5540
83cd4fe2 5541#ifdef CONFIG_NO_HZ
1e3c88bd 5542/*
83cd4fe2 5543 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
5544 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5545 */
83cd4fe2
VP
5546static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5547{
5548 struct rq *this_rq = cpu_rq(this_cpu);
5549 struct rq *rq;
5550 int balance_cpu;
5551
1c792db7
SS
5552 if (idle != CPU_IDLE ||
5553 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5554 goto end;
83cd4fe2
VP
5555
5556 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 5557 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
5558 continue;
5559
5560 /*
5561 * If this cpu gets work to do, stop the load balancing
5562 * work being done for other cpus. Next load
5563 * balancing owner will pick it up.
5564 */
1c792db7 5565 if (need_resched())
83cd4fe2 5566 break;
83cd4fe2 5567
5ed4f1d9
VG
5568 rq = cpu_rq(balance_cpu);
5569
5570 raw_spin_lock_irq(&rq->lock);
5571 update_rq_clock(rq);
5572 update_idle_cpu_load(rq);
5573 raw_spin_unlock_irq(&rq->lock);
83cd4fe2
VP
5574
5575 rebalance_domains(balance_cpu, CPU_IDLE);
5576
83cd4fe2
VP
5577 if (time_after(this_rq->next_balance, rq->next_balance))
5578 this_rq->next_balance = rq->next_balance;
5579 }
5580 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
5581end:
5582 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
5583}
5584
5585/*
0b005cf5
SS
5586 * Current heuristic for kicking the idle load balancer in the presence
5587 * of an idle cpu is the system.
5588 * - This rq has more than one task.
5589 * - At any scheduler domain level, this cpu's scheduler group has multiple
5590 * busy cpu's exceeding the group's power.
5591 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5592 * domain span are idle.
83cd4fe2
VP
5593 */
5594static inline int nohz_kick_needed(struct rq *rq, int cpu)
5595{
5596 unsigned long now = jiffies;
0b005cf5 5597 struct sched_domain *sd;
83cd4fe2 5598
1c792db7 5599 if (unlikely(idle_cpu(cpu)))
83cd4fe2
VP
5600 return 0;
5601
1c792db7
SS
5602 /*
5603 * We may be recently in ticked or tickless idle mode. At the first
5604 * busy tick after returning from idle, we will update the busy stats.
5605 */
69e1e811 5606 set_cpu_sd_state_busy();
c1cc017c 5607 nohz_balance_exit_idle(cpu);
0b005cf5
SS
5608
5609 /*
5610 * None are in tickless mode and hence no need for NOHZ idle load
5611 * balancing.
5612 */
5613 if (likely(!atomic_read(&nohz.nr_cpus)))
5614 return 0;
1c792db7
SS
5615
5616 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
5617 return 0;
5618
0b005cf5
SS
5619 if (rq->nr_running >= 2)
5620 goto need_kick;
83cd4fe2 5621
067491b7 5622 rcu_read_lock();
0b005cf5
SS
5623 for_each_domain(cpu, sd) {
5624 struct sched_group *sg = sd->groups;
5625 struct sched_group_power *sgp = sg->sgp;
5626 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
83cd4fe2 5627
0b005cf5 5628 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
067491b7 5629 goto need_kick_unlock;
0b005cf5
SS
5630
5631 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5632 && (cpumask_first_and(nohz.idle_cpus_mask,
5633 sched_domain_span(sd)) < cpu))
067491b7 5634 goto need_kick_unlock;
0b005cf5
SS
5635
5636 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5637 break;
83cd4fe2 5638 }
067491b7 5639 rcu_read_unlock();
83cd4fe2 5640 return 0;
067491b7
PZ
5641
5642need_kick_unlock:
5643 rcu_read_unlock();
0b005cf5
SS
5644need_kick:
5645 return 1;
83cd4fe2
VP
5646}
5647#else
5648static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5649#endif
5650
5651/*
5652 * run_rebalance_domains is triggered when needed from the scheduler tick.
5653 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5654 */
1e3c88bd
PZ
5655static void run_rebalance_domains(struct softirq_action *h)
5656{
5657 int this_cpu = smp_processor_id();
5658 struct rq *this_rq = cpu_rq(this_cpu);
6eb57e0d 5659 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
5660 CPU_IDLE : CPU_NOT_IDLE;
5661
5662 rebalance_domains(this_cpu, idle);
5663
1e3c88bd 5664 /*
83cd4fe2 5665 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
5666 * balancing on behalf of the other idle cpus whose ticks are
5667 * stopped.
5668 */
83cd4fe2 5669 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
5670}
5671
5672static inline int on_null_domain(int cpu)
5673{
90a6501f 5674 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
5675}
5676
5677/*
5678 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 5679 */
029632fb 5680void trigger_load_balance(struct rq *rq, int cpu)
1e3c88bd 5681{
1e3c88bd
PZ
5682 /* Don't need to rebalance while attached to NULL domain */
5683 if (time_after_eq(jiffies, rq->next_balance) &&
5684 likely(!on_null_domain(cpu)))
5685 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2 5686#ifdef CONFIG_NO_HZ
1c792db7 5687 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
83cd4fe2
VP
5688 nohz_balancer_kick(cpu);
5689#endif
1e3c88bd
PZ
5690}
5691
0bcdcf28
CE
5692static void rq_online_fair(struct rq *rq)
5693{
5694 update_sysctl();
5695}
5696
5697static void rq_offline_fair(struct rq *rq)
5698{
5699 update_sysctl();
a4c96ae3
PB
5700
5701 /* Ensure any throttled groups are reachable by pick_next_task */
5702 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
5703}
5704
55e12e5e 5705#endif /* CONFIG_SMP */
e1d1484f 5706
bf0f6f24
IM
5707/*
5708 * scheduler tick hitting a task of our scheduling class:
5709 */
8f4d37ec 5710static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
5711{
5712 struct cfs_rq *cfs_rq;
5713 struct sched_entity *se = &curr->se;
5714
5715 for_each_sched_entity(se) {
5716 cfs_rq = cfs_rq_of(se);
8f4d37ec 5717 entity_tick(cfs_rq, se, queued);
bf0f6f24 5718 }
18bf2805 5719
cbee9f88
PZ
5720 if (sched_feat_numa(NUMA))
5721 task_tick_numa(rq, curr);
3d59eebc 5722
18bf2805 5723 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
5724}
5725
5726/*
cd29fe6f
PZ
5727 * called on fork with the child task as argument from the parent's context
5728 * - child not yet on the tasklist
5729 * - preemption disabled
bf0f6f24 5730 */
cd29fe6f 5731static void task_fork_fair(struct task_struct *p)
bf0f6f24 5732{
4fc420c9
DN
5733 struct cfs_rq *cfs_rq;
5734 struct sched_entity *se = &p->se, *curr;
00bf7bfc 5735 int this_cpu = smp_processor_id();
cd29fe6f
PZ
5736 struct rq *rq = this_rq();
5737 unsigned long flags;
5738
05fa785c 5739 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 5740
861d034e
PZ
5741 update_rq_clock(rq);
5742
4fc420c9
DN
5743 cfs_rq = task_cfs_rq(current);
5744 curr = cfs_rq->curr;
5745
b0a0f667
PM
5746 if (unlikely(task_cpu(p) != this_cpu)) {
5747 rcu_read_lock();
cd29fe6f 5748 __set_task_cpu(p, this_cpu);
b0a0f667
PM
5749 rcu_read_unlock();
5750 }
bf0f6f24 5751
7109c442 5752 update_curr(cfs_rq);
cd29fe6f 5753
b5d9d734
MG
5754 if (curr)
5755 se->vruntime = curr->vruntime;
aeb73b04 5756 place_entity(cfs_rq, se, 1);
4d78e7b6 5757
cd29fe6f 5758 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 5759 /*
edcb60a3
IM
5760 * Upon rescheduling, sched_class::put_prev_task() will place
5761 * 'current' within the tree based on its new key value.
5762 */
4d78e7b6 5763 swap(curr->vruntime, se->vruntime);
aec0a514 5764 resched_task(rq->curr);
4d78e7b6 5765 }
bf0f6f24 5766
88ec22d3
PZ
5767 se->vruntime -= cfs_rq->min_vruntime;
5768
05fa785c 5769 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
5770}
5771
cb469845
SR
5772/*
5773 * Priority of the task has changed. Check to see if we preempt
5774 * the current task.
5775 */
da7a735e
PZ
5776static void
5777prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 5778{
da7a735e
PZ
5779 if (!p->se.on_rq)
5780 return;
5781
cb469845
SR
5782 /*
5783 * Reschedule if we are currently running on this runqueue and
5784 * our priority decreased, or if we are not currently running on
5785 * this runqueue and our priority is higher than the current's
5786 */
da7a735e 5787 if (rq->curr == p) {
cb469845
SR
5788 if (p->prio > oldprio)
5789 resched_task(rq->curr);
5790 } else
15afe09b 5791 check_preempt_curr(rq, p, 0);
cb469845
SR
5792}
5793
da7a735e
PZ
5794static void switched_from_fair(struct rq *rq, struct task_struct *p)
5795{
5796 struct sched_entity *se = &p->se;
5797 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5798
5799 /*
5800 * Ensure the task's vruntime is normalized, so that when its
5801 * switched back to the fair class the enqueue_entity(.flags=0) will
5802 * do the right thing.
5803 *
5804 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5805 * have normalized the vruntime, if it was !on_rq, then only when
5806 * the task is sleeping will it still have non-normalized vruntime.
5807 */
5808 if (!se->on_rq && p->state != TASK_RUNNING) {
5809 /*
5810 * Fix up our vruntime so that the current sleep doesn't
5811 * cause 'unlimited' sleep bonus.
5812 */
5813 place_entity(cfs_rq, se, 0);
5814 se->vruntime -= cfs_rq->min_vruntime;
5815 }
9ee474f5
PT
5816
5817#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5818 /*
5819 * Remove our load from contribution when we leave sched_fair
5820 * and ensure we don't carry in an old decay_count if we
5821 * switch back.
5822 */
5823 if (p->se.avg.decay_count) {
5824 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5825 __synchronize_entity_decay(&p->se);
5826 subtract_blocked_load_contrib(cfs_rq,
5827 p->se.avg.load_avg_contrib);
5828 }
5829#endif
da7a735e
PZ
5830}
5831
cb469845
SR
5832/*
5833 * We switched to the sched_fair class.
5834 */
da7a735e 5835static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 5836{
da7a735e
PZ
5837 if (!p->se.on_rq)
5838 return;
5839
cb469845
SR
5840 /*
5841 * We were most likely switched from sched_rt, so
5842 * kick off the schedule if running, otherwise just see
5843 * if we can still preempt the current task.
5844 */
da7a735e 5845 if (rq->curr == p)
cb469845
SR
5846 resched_task(rq->curr);
5847 else
15afe09b 5848 check_preempt_curr(rq, p, 0);
cb469845
SR
5849}
5850
83b699ed
SV
5851/* Account for a task changing its policy or group.
5852 *
5853 * This routine is mostly called to set cfs_rq->curr field when a task
5854 * migrates between groups/classes.
5855 */
5856static void set_curr_task_fair(struct rq *rq)
5857{
5858 struct sched_entity *se = &rq->curr->se;
5859
ec12cb7f
PT
5860 for_each_sched_entity(se) {
5861 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5862
5863 set_next_entity(cfs_rq, se);
5864 /* ensure bandwidth has been allocated on our new cfs_rq */
5865 account_cfs_rq_runtime(cfs_rq, 0);
5866 }
83b699ed
SV
5867}
5868
029632fb
PZ
5869void init_cfs_rq(struct cfs_rq *cfs_rq)
5870{
5871 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
5872 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5873#ifndef CONFIG_64BIT
5874 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5875#endif
9ee474f5
PT
5876#if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5877 atomic64_set(&cfs_rq->decay_counter, 1);
aff3e498 5878 atomic64_set(&cfs_rq->removed_load, 0);
9ee474f5 5879#endif
029632fb
PZ
5880}
5881
810b3817 5882#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 5883static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 5884{
aff3e498 5885 struct cfs_rq *cfs_rq;
b2b5ce02
PZ
5886 /*
5887 * If the task was not on the rq at the time of this cgroup movement
5888 * it must have been asleep, sleeping tasks keep their ->vruntime
5889 * absolute on their old rq until wakeup (needed for the fair sleeper
5890 * bonus in place_entity()).
5891 *
5892 * If it was on the rq, we've just 'preempted' it, which does convert
5893 * ->vruntime to a relative base.
5894 *
5895 * Make sure both cases convert their relative position when migrating
5896 * to another cgroup's rq. This does somewhat interfere with the
5897 * fair sleeper stuff for the first placement, but who cares.
5898 */
7ceff013
DN
5899 /*
5900 * When !on_rq, vruntime of the task has usually NOT been normalized.
5901 * But there are some cases where it has already been normalized:
5902 *
5903 * - Moving a forked child which is waiting for being woken up by
5904 * wake_up_new_task().
62af3783
DN
5905 * - Moving a task which has been woken up by try_to_wake_up() and
5906 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
5907 *
5908 * To prevent boost or penalty in the new cfs_rq caused by delta
5909 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5910 */
62af3783 5911 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
5912 on_rq = 1;
5913
b2b5ce02
PZ
5914 if (!on_rq)
5915 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5916 set_task_rq(p, task_cpu(p));
aff3e498
PT
5917 if (!on_rq) {
5918 cfs_rq = cfs_rq_of(&p->se);
5919 p->se.vruntime += cfs_rq->min_vruntime;
5920#ifdef CONFIG_SMP
5921 /*
5922 * migrate_task_rq_fair() will have removed our previous
5923 * contribution, but we must synchronize for ongoing future
5924 * decay.
5925 */
5926 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5927 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5928#endif
5929 }
810b3817 5930}
029632fb
PZ
5931
5932void free_fair_sched_group(struct task_group *tg)
5933{
5934 int i;
5935
5936 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5937
5938 for_each_possible_cpu(i) {
5939 if (tg->cfs_rq)
5940 kfree(tg->cfs_rq[i]);
5941 if (tg->se)
5942 kfree(tg->se[i]);
5943 }
5944
5945 kfree(tg->cfs_rq);
5946 kfree(tg->se);
5947}
5948
5949int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5950{
5951 struct cfs_rq *cfs_rq;
5952 struct sched_entity *se;
5953 int i;
5954
5955 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5956 if (!tg->cfs_rq)
5957 goto err;
5958 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5959 if (!tg->se)
5960 goto err;
5961
5962 tg->shares = NICE_0_LOAD;
5963
5964 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5965
5966 for_each_possible_cpu(i) {
5967 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5968 GFP_KERNEL, cpu_to_node(i));
5969 if (!cfs_rq)
5970 goto err;
5971
5972 se = kzalloc_node(sizeof(struct sched_entity),
5973 GFP_KERNEL, cpu_to_node(i));
5974 if (!se)
5975 goto err_free_rq;
5976
5977 init_cfs_rq(cfs_rq);
5978 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5979 }
5980
5981 return 1;
5982
5983err_free_rq:
5984 kfree(cfs_rq);
5985err:
5986 return 0;
5987}
5988
5989void unregister_fair_sched_group(struct task_group *tg, int cpu)
5990{
5991 struct rq *rq = cpu_rq(cpu);
5992 unsigned long flags;
5993
5994 /*
5995 * Only empty task groups can be destroyed; so we can speculatively
5996 * check on_list without danger of it being re-added.
5997 */
5998 if (!tg->cfs_rq[cpu]->on_list)
5999 return;
6000
6001 raw_spin_lock_irqsave(&rq->lock, flags);
6002 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6003 raw_spin_unlock_irqrestore(&rq->lock, flags);
6004}
6005
6006void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6007 struct sched_entity *se, int cpu,
6008 struct sched_entity *parent)
6009{
6010 struct rq *rq = cpu_rq(cpu);
6011
6012 cfs_rq->tg = tg;
6013 cfs_rq->rq = rq;
029632fb
PZ
6014 init_cfs_rq_runtime(cfs_rq);
6015
6016 tg->cfs_rq[cpu] = cfs_rq;
6017 tg->se[cpu] = se;
6018
6019 /* se could be NULL for root_task_group */
6020 if (!se)
6021 return;
6022
6023 if (!parent)
6024 se->cfs_rq = &rq->cfs;
6025 else
6026 se->cfs_rq = parent->my_q;
6027
6028 se->my_q = cfs_rq;
6029 update_load_set(&se->load, 0);
6030 se->parent = parent;
6031}
6032
6033static DEFINE_MUTEX(shares_mutex);
6034
6035int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6036{
6037 int i;
6038 unsigned long flags;
6039
6040 /*
6041 * We can't change the weight of the root cgroup.
6042 */
6043 if (!tg->se[0])
6044 return -EINVAL;
6045
6046 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6047
6048 mutex_lock(&shares_mutex);
6049 if (tg->shares == shares)
6050 goto done;
6051
6052 tg->shares = shares;
6053 for_each_possible_cpu(i) {
6054 struct rq *rq = cpu_rq(i);
6055 struct sched_entity *se;
6056
6057 se = tg->se[i];
6058 /* Propagate contribution to hierarchy */
6059 raw_spin_lock_irqsave(&rq->lock, flags);
17bc14b7 6060 for_each_sched_entity(se)
029632fb
PZ
6061 update_cfs_shares(group_cfs_rq(se));
6062 raw_spin_unlock_irqrestore(&rq->lock, flags);
6063 }
6064
6065done:
6066 mutex_unlock(&shares_mutex);
6067 return 0;
6068}
6069#else /* CONFIG_FAIR_GROUP_SCHED */
6070
6071void free_fair_sched_group(struct task_group *tg) { }
6072
6073int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6074{
6075 return 1;
6076}
6077
6078void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6079
6080#endif /* CONFIG_FAIR_GROUP_SCHED */
6081
810b3817 6082
6d686f45 6083static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
6084{
6085 struct sched_entity *se = &task->se;
0d721cea
PW
6086 unsigned int rr_interval = 0;
6087
6088 /*
6089 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6090 * idle runqueue:
6091 */
0d721cea 6092 if (rq->cfs.load.weight)
a59f4e07 6093 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
6094
6095 return rr_interval;
6096}
6097
bf0f6f24
IM
6098/*
6099 * All the scheduling class methods:
6100 */
029632fb 6101const struct sched_class fair_sched_class = {
5522d5d5 6102 .next = &idle_sched_class,
bf0f6f24
IM
6103 .enqueue_task = enqueue_task_fair,
6104 .dequeue_task = dequeue_task_fair,
6105 .yield_task = yield_task_fair,
d95f4122 6106 .yield_to_task = yield_to_task_fair,
bf0f6f24 6107
2e09bf55 6108 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
6109
6110 .pick_next_task = pick_next_task_fair,
6111 .put_prev_task = put_prev_task_fair,
6112
681f3e68 6113#ifdef CONFIG_SMP
4ce72a2c 6114 .select_task_rq = select_task_rq_fair,
f4e26b12 6115#ifdef CONFIG_FAIR_GROUP_SCHED
0a74bef8 6116 .migrate_task_rq = migrate_task_rq_fair,
f4e26b12 6117#endif
0bcdcf28
CE
6118 .rq_online = rq_online_fair,
6119 .rq_offline = rq_offline_fair,
88ec22d3
PZ
6120
6121 .task_waking = task_waking_fair,
681f3e68 6122#endif
bf0f6f24 6123
83b699ed 6124 .set_curr_task = set_curr_task_fair,
bf0f6f24 6125 .task_tick = task_tick_fair,
cd29fe6f 6126 .task_fork = task_fork_fair,
cb469845
SR
6127
6128 .prio_changed = prio_changed_fair,
da7a735e 6129 .switched_from = switched_from_fair,
cb469845 6130 .switched_to = switched_to_fair,
810b3817 6131
0d721cea
PW
6132 .get_rr_interval = get_rr_interval_fair,
6133
810b3817 6134#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 6135 .task_move_group = task_move_group_fair,
810b3817 6136#endif
bf0f6f24
IM
6137};
6138
6139#ifdef CONFIG_SCHED_DEBUG
029632fb 6140void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 6141{
bf0f6f24
IM
6142 struct cfs_rq *cfs_rq;
6143
5973e5b9 6144 rcu_read_lock();
c3b64f1e 6145 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 6146 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 6147 rcu_read_unlock();
bf0f6f24
IM
6148}
6149#endif
029632fb
PZ
6150
6151__init void init_sched_fair_class(void)
6152{
6153#ifdef CONFIG_SMP
6154 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6155
6156#ifdef CONFIG_NO_HZ
554cecaf 6157 nohz.next_balance = jiffies;
029632fb 6158 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 6159 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
6160#endif
6161#endif /* SMP */
6162
6163}
This page took 0.830675 seconds and 5 git commands to generate.