sched/debug: Make schedstats a runtime tunable that is disabled by default
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257
YD
684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
685 sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
006cdf02 686 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
9d89c257 687 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 688}
7ea241af
YD
689
690static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
691static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
a75cdaa9 692#else
540247fb 693void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
694{
695}
696#endif
697
bf0f6f24 698/*
9dbdb155 699 * Update the current task's runtime statistics.
bf0f6f24 700 */
b7cc0896 701static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 702{
429d43bc 703 struct sched_entity *curr = cfs_rq->curr;
78becc27 704 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 705 u64 delta_exec;
bf0f6f24
IM
706
707 if (unlikely(!curr))
708 return;
709
9dbdb155
PZ
710 delta_exec = now - curr->exec_start;
711 if (unlikely((s64)delta_exec <= 0))
34f28ecd 712 return;
bf0f6f24 713
8ebc91d9 714 curr->exec_start = now;
d842de87 715
9dbdb155
PZ
716 schedstat_set(curr->statistics.exec_max,
717 max(delta_exec, curr->statistics.exec_max));
718
719 curr->sum_exec_runtime += delta_exec;
720 schedstat_add(cfs_rq, exec_clock, delta_exec);
721
722 curr->vruntime += calc_delta_fair(delta_exec, curr);
723 update_min_vruntime(cfs_rq);
724
d842de87
SV
725 if (entity_is_task(curr)) {
726 struct task_struct *curtask = task_of(curr);
727
f977bb49 728 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 729 cpuacct_charge(curtask, delta_exec);
f06febc9 730 account_group_exec_runtime(curtask, delta_exec);
d842de87 731 }
ec12cb7f
PT
732
733 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
734}
735
6e998916
SG
736static void update_curr_fair(struct rq *rq)
737{
738 update_curr(cfs_rq_of(&rq->curr->se));
739}
740
3ea94de1 741#ifdef CONFIG_SCHEDSTATS
bf0f6f24 742static inline void
5870db5b 743update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 744{
3ea94de1
JP
745 u64 wait_start = rq_clock(rq_of(cfs_rq));
746
747 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
748 likely(wait_start > se->statistics.wait_start))
749 wait_start -= se->statistics.wait_start;
750
751 se->statistics.wait_start = wait_start;
bf0f6f24
IM
752}
753
3ea94de1
JP
754static void
755update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
756{
757 struct task_struct *p;
cb251765
MG
758 u64 delta;
759
760 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
761
762 if (entity_is_task(se)) {
763 p = task_of(se);
764 if (task_on_rq_migrating(p)) {
765 /*
766 * Preserve migrating task's wait time so wait_start
767 * time stamp can be adjusted to accumulate wait time
768 * prior to migration.
769 */
770 se->statistics.wait_start = delta;
771 return;
772 }
773 trace_sched_stat_wait(p, delta);
774 }
775
776 se->statistics.wait_max = max(se->statistics.wait_max, delta);
777 se->statistics.wait_count++;
778 se->statistics.wait_sum += delta;
779 se->statistics.wait_start = 0;
780}
3ea94de1 781
bf0f6f24
IM
782/*
783 * Task is being enqueued - update stats:
784 */
cb251765
MG
785static inline void
786update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 787{
bf0f6f24
IM
788 /*
789 * Are we enqueueing a waiting task? (for current tasks
790 * a dequeue/enqueue event is a NOP)
791 */
429d43bc 792 if (se != cfs_rq->curr)
5870db5b 793 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
794}
795
bf0f6f24 796static inline void
cb251765 797update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 798{
bf0f6f24
IM
799 /*
800 * Mark the end of the wait period if dequeueing a
801 * waiting task:
802 */
429d43bc 803 if (se != cfs_rq->curr)
9ef0a961 804 update_stats_wait_end(cfs_rq, se);
cb251765
MG
805
806 if (flags & DEQUEUE_SLEEP) {
807 if (entity_is_task(se)) {
808 struct task_struct *tsk = task_of(se);
809
810 if (tsk->state & TASK_INTERRUPTIBLE)
811 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
812 if (tsk->state & TASK_UNINTERRUPTIBLE)
813 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
814 }
815 }
816
817}
818#else
819static inline void
820update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
821{
822}
823
824static inline void
825update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
826{
827}
828
829static inline void
830update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
831{
832}
833
834static inline void
835update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
836{
bf0f6f24 837}
cb251765 838#endif
bf0f6f24
IM
839
840/*
841 * We are picking a new current task - update its stats:
842 */
843static inline void
79303e9e 844update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
845{
846 /*
847 * We are starting a new run period:
848 */
78becc27 849 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
850}
851
bf0f6f24
IM
852/**************************************************
853 * Scheduling class queueing methods:
854 */
855
cbee9f88
PZ
856#ifdef CONFIG_NUMA_BALANCING
857/*
598f0ec0
MG
858 * Approximate time to scan a full NUMA task in ms. The task scan period is
859 * calculated based on the tasks virtual memory size and
860 * numa_balancing_scan_size.
cbee9f88 861 */
598f0ec0
MG
862unsigned int sysctl_numa_balancing_scan_period_min = 1000;
863unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
864
865/* Portion of address space to scan in MB */
866unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 867
4b96a29b
PZ
868/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
869unsigned int sysctl_numa_balancing_scan_delay = 1000;
870
598f0ec0
MG
871static unsigned int task_nr_scan_windows(struct task_struct *p)
872{
873 unsigned long rss = 0;
874 unsigned long nr_scan_pages;
875
876 /*
877 * Calculations based on RSS as non-present and empty pages are skipped
878 * by the PTE scanner and NUMA hinting faults should be trapped based
879 * on resident pages
880 */
881 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
882 rss = get_mm_rss(p->mm);
883 if (!rss)
884 rss = nr_scan_pages;
885
886 rss = round_up(rss, nr_scan_pages);
887 return rss / nr_scan_pages;
888}
889
890/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
891#define MAX_SCAN_WINDOW 2560
892
893static unsigned int task_scan_min(struct task_struct *p)
894{
316c1608 895 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
896 unsigned int scan, floor;
897 unsigned int windows = 1;
898
64192658
KT
899 if (scan_size < MAX_SCAN_WINDOW)
900 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
901 floor = 1000 / windows;
902
903 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
904 return max_t(unsigned int, floor, scan);
905}
906
907static unsigned int task_scan_max(struct task_struct *p)
908{
909 unsigned int smin = task_scan_min(p);
910 unsigned int smax;
911
912 /* Watch for min being lower than max due to floor calculations */
913 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
914 return max(smin, smax);
915}
916
0ec8aa00
PZ
917static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
918{
919 rq->nr_numa_running += (p->numa_preferred_nid != -1);
920 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
921}
922
923static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
924{
925 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
926 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
927}
928
8c8a743c
PZ
929struct numa_group {
930 atomic_t refcount;
931
932 spinlock_t lock; /* nr_tasks, tasks */
933 int nr_tasks;
e29cf08b 934 pid_t gid;
8c8a743c
PZ
935
936 struct rcu_head rcu;
20e07dea 937 nodemask_t active_nodes;
989348b5 938 unsigned long total_faults;
7e2703e6
RR
939 /*
940 * Faults_cpu is used to decide whether memory should move
941 * towards the CPU. As a consequence, these stats are weighted
942 * more by CPU use than by memory faults.
943 */
50ec8a40 944 unsigned long *faults_cpu;
989348b5 945 unsigned long faults[0];
8c8a743c
PZ
946};
947
be1e4e76
RR
948/* Shared or private faults. */
949#define NR_NUMA_HINT_FAULT_TYPES 2
950
951/* Memory and CPU locality */
952#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
953
954/* Averaged statistics, and temporary buffers. */
955#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
956
e29cf08b
MG
957pid_t task_numa_group_id(struct task_struct *p)
958{
959 return p->numa_group ? p->numa_group->gid : 0;
960}
961
44dba3d5
IM
962/*
963 * The averaged statistics, shared & private, memory & cpu,
964 * occupy the first half of the array. The second half of the
965 * array is for current counters, which are averaged into the
966 * first set by task_numa_placement.
967 */
968static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 969{
44dba3d5 970 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
971}
972
973static inline unsigned long task_faults(struct task_struct *p, int nid)
974{
44dba3d5 975 if (!p->numa_faults)
ac8e895b
MG
976 return 0;
977
44dba3d5
IM
978 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
979 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
980}
981
83e1d2cd
MG
982static inline unsigned long group_faults(struct task_struct *p, int nid)
983{
984 if (!p->numa_group)
985 return 0;
986
44dba3d5
IM
987 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
988 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
989}
990
20e07dea
RR
991static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
992{
44dba3d5
IM
993 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
994 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
995}
996
6c6b1193
RR
997/* Handle placement on systems where not all nodes are directly connected. */
998static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
999 int maxdist, bool task)
1000{
1001 unsigned long score = 0;
1002 int node;
1003
1004 /*
1005 * All nodes are directly connected, and the same distance
1006 * from each other. No need for fancy placement algorithms.
1007 */
1008 if (sched_numa_topology_type == NUMA_DIRECT)
1009 return 0;
1010
1011 /*
1012 * This code is called for each node, introducing N^2 complexity,
1013 * which should be ok given the number of nodes rarely exceeds 8.
1014 */
1015 for_each_online_node(node) {
1016 unsigned long faults;
1017 int dist = node_distance(nid, node);
1018
1019 /*
1020 * The furthest away nodes in the system are not interesting
1021 * for placement; nid was already counted.
1022 */
1023 if (dist == sched_max_numa_distance || node == nid)
1024 continue;
1025
1026 /*
1027 * On systems with a backplane NUMA topology, compare groups
1028 * of nodes, and move tasks towards the group with the most
1029 * memory accesses. When comparing two nodes at distance
1030 * "hoplimit", only nodes closer by than "hoplimit" are part
1031 * of each group. Skip other nodes.
1032 */
1033 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1034 dist > maxdist)
1035 continue;
1036
1037 /* Add up the faults from nearby nodes. */
1038 if (task)
1039 faults = task_faults(p, node);
1040 else
1041 faults = group_faults(p, node);
1042
1043 /*
1044 * On systems with a glueless mesh NUMA topology, there are
1045 * no fixed "groups of nodes". Instead, nodes that are not
1046 * directly connected bounce traffic through intermediate
1047 * nodes; a numa_group can occupy any set of nodes.
1048 * The further away a node is, the less the faults count.
1049 * This seems to result in good task placement.
1050 */
1051 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1052 faults *= (sched_max_numa_distance - dist);
1053 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1054 }
1055
1056 score += faults;
1057 }
1058
1059 return score;
1060}
1061
83e1d2cd
MG
1062/*
1063 * These return the fraction of accesses done by a particular task, or
1064 * task group, on a particular numa node. The group weight is given a
1065 * larger multiplier, in order to group tasks together that are almost
1066 * evenly spread out between numa nodes.
1067 */
7bd95320
RR
1068static inline unsigned long task_weight(struct task_struct *p, int nid,
1069 int dist)
83e1d2cd 1070{
7bd95320 1071 unsigned long faults, total_faults;
83e1d2cd 1072
44dba3d5 1073 if (!p->numa_faults)
83e1d2cd
MG
1074 return 0;
1075
1076 total_faults = p->total_numa_faults;
1077
1078 if (!total_faults)
1079 return 0;
1080
7bd95320 1081 faults = task_faults(p, nid);
6c6b1193
RR
1082 faults += score_nearby_nodes(p, nid, dist, true);
1083
7bd95320 1084 return 1000 * faults / total_faults;
83e1d2cd
MG
1085}
1086
7bd95320
RR
1087static inline unsigned long group_weight(struct task_struct *p, int nid,
1088 int dist)
83e1d2cd 1089{
7bd95320
RR
1090 unsigned long faults, total_faults;
1091
1092 if (!p->numa_group)
1093 return 0;
1094
1095 total_faults = p->numa_group->total_faults;
1096
1097 if (!total_faults)
83e1d2cd
MG
1098 return 0;
1099
7bd95320 1100 faults = group_faults(p, nid);
6c6b1193
RR
1101 faults += score_nearby_nodes(p, nid, dist, false);
1102
7bd95320 1103 return 1000 * faults / total_faults;
83e1d2cd
MG
1104}
1105
10f39042
RR
1106bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1107 int src_nid, int dst_cpu)
1108{
1109 struct numa_group *ng = p->numa_group;
1110 int dst_nid = cpu_to_node(dst_cpu);
1111 int last_cpupid, this_cpupid;
1112
1113 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1114
1115 /*
1116 * Multi-stage node selection is used in conjunction with a periodic
1117 * migration fault to build a temporal task<->page relation. By using
1118 * a two-stage filter we remove short/unlikely relations.
1119 *
1120 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1121 * a task's usage of a particular page (n_p) per total usage of this
1122 * page (n_t) (in a given time-span) to a probability.
1123 *
1124 * Our periodic faults will sample this probability and getting the
1125 * same result twice in a row, given these samples are fully
1126 * independent, is then given by P(n)^2, provided our sample period
1127 * is sufficiently short compared to the usage pattern.
1128 *
1129 * This quadric squishes small probabilities, making it less likely we
1130 * act on an unlikely task<->page relation.
1131 */
1132 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1133 if (!cpupid_pid_unset(last_cpupid) &&
1134 cpupid_to_nid(last_cpupid) != dst_nid)
1135 return false;
1136
1137 /* Always allow migrate on private faults */
1138 if (cpupid_match_pid(p, last_cpupid))
1139 return true;
1140
1141 /* A shared fault, but p->numa_group has not been set up yet. */
1142 if (!ng)
1143 return true;
1144
1145 /*
1146 * Do not migrate if the destination is not a node that
1147 * is actively used by this numa group.
1148 */
1149 if (!node_isset(dst_nid, ng->active_nodes))
1150 return false;
1151
1152 /*
1153 * Source is a node that is not actively used by this
1154 * numa group, while the destination is. Migrate.
1155 */
1156 if (!node_isset(src_nid, ng->active_nodes))
1157 return true;
1158
1159 /*
1160 * Both source and destination are nodes in active
1161 * use by this numa group. Maximize memory bandwidth
1162 * by migrating from more heavily used groups, to less
1163 * heavily used ones, spreading the load around.
1164 * Use a 1/4 hysteresis to avoid spurious page movement.
1165 */
1166 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1167}
1168
e6628d5b 1169static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1170static unsigned long source_load(int cpu, int type);
1171static unsigned long target_load(int cpu, int type);
ced549fa 1172static unsigned long capacity_of(int cpu);
58d081b5
MG
1173static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1174
fb13c7ee 1175/* Cached statistics for all CPUs within a node */
58d081b5 1176struct numa_stats {
fb13c7ee 1177 unsigned long nr_running;
58d081b5 1178 unsigned long load;
fb13c7ee
MG
1179
1180 /* Total compute capacity of CPUs on a node */
5ef20ca1 1181 unsigned long compute_capacity;
fb13c7ee
MG
1182
1183 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1184 unsigned long task_capacity;
1b6a7495 1185 int has_free_capacity;
58d081b5 1186};
e6628d5b 1187
fb13c7ee
MG
1188/*
1189 * XXX borrowed from update_sg_lb_stats
1190 */
1191static void update_numa_stats(struct numa_stats *ns, int nid)
1192{
83d7f242
RR
1193 int smt, cpu, cpus = 0;
1194 unsigned long capacity;
fb13c7ee
MG
1195
1196 memset(ns, 0, sizeof(*ns));
1197 for_each_cpu(cpu, cpumask_of_node(nid)) {
1198 struct rq *rq = cpu_rq(cpu);
1199
1200 ns->nr_running += rq->nr_running;
1201 ns->load += weighted_cpuload(cpu);
ced549fa 1202 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1203
1204 cpus++;
fb13c7ee
MG
1205 }
1206
5eca82a9
PZ
1207 /*
1208 * If we raced with hotplug and there are no CPUs left in our mask
1209 * the @ns structure is NULL'ed and task_numa_compare() will
1210 * not find this node attractive.
1211 *
1b6a7495
NP
1212 * We'll either bail at !has_free_capacity, or we'll detect a huge
1213 * imbalance and bail there.
5eca82a9
PZ
1214 */
1215 if (!cpus)
1216 return;
1217
83d7f242
RR
1218 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1219 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1220 capacity = cpus / smt; /* cores */
1221
1222 ns->task_capacity = min_t(unsigned, capacity,
1223 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1224 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1225}
1226
58d081b5
MG
1227struct task_numa_env {
1228 struct task_struct *p;
e6628d5b 1229
58d081b5
MG
1230 int src_cpu, src_nid;
1231 int dst_cpu, dst_nid;
e6628d5b 1232
58d081b5 1233 struct numa_stats src_stats, dst_stats;
e6628d5b 1234
40ea2b42 1235 int imbalance_pct;
7bd95320 1236 int dist;
fb13c7ee
MG
1237
1238 struct task_struct *best_task;
1239 long best_imp;
58d081b5
MG
1240 int best_cpu;
1241};
1242
fb13c7ee
MG
1243static void task_numa_assign(struct task_numa_env *env,
1244 struct task_struct *p, long imp)
1245{
1246 if (env->best_task)
1247 put_task_struct(env->best_task);
fb13c7ee
MG
1248
1249 env->best_task = p;
1250 env->best_imp = imp;
1251 env->best_cpu = env->dst_cpu;
1252}
1253
28a21745 1254static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1255 struct task_numa_env *env)
1256{
e4991b24
RR
1257 long imb, old_imb;
1258 long orig_src_load, orig_dst_load;
28a21745
RR
1259 long src_capacity, dst_capacity;
1260
1261 /*
1262 * The load is corrected for the CPU capacity available on each node.
1263 *
1264 * src_load dst_load
1265 * ------------ vs ---------
1266 * src_capacity dst_capacity
1267 */
1268 src_capacity = env->src_stats.compute_capacity;
1269 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1270
1271 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1272 if (dst_load < src_load)
1273 swap(dst_load, src_load);
e63da036
RR
1274
1275 /* Is the difference below the threshold? */
e4991b24
RR
1276 imb = dst_load * src_capacity * 100 -
1277 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1278 if (imb <= 0)
1279 return false;
1280
1281 /*
1282 * The imbalance is above the allowed threshold.
e4991b24 1283 * Compare it with the old imbalance.
e63da036 1284 */
28a21745 1285 orig_src_load = env->src_stats.load;
e4991b24 1286 orig_dst_load = env->dst_stats.load;
28a21745 1287
e4991b24
RR
1288 if (orig_dst_load < orig_src_load)
1289 swap(orig_dst_load, orig_src_load);
e63da036 1290
e4991b24
RR
1291 old_imb = orig_dst_load * src_capacity * 100 -
1292 orig_src_load * dst_capacity * env->imbalance_pct;
1293
1294 /* Would this change make things worse? */
1295 return (imb > old_imb);
e63da036
RR
1296}
1297
fb13c7ee
MG
1298/*
1299 * This checks if the overall compute and NUMA accesses of the system would
1300 * be improved if the source tasks was migrated to the target dst_cpu taking
1301 * into account that it might be best if task running on the dst_cpu should
1302 * be exchanged with the source task
1303 */
887c290e
RR
1304static void task_numa_compare(struct task_numa_env *env,
1305 long taskimp, long groupimp)
fb13c7ee
MG
1306{
1307 struct rq *src_rq = cpu_rq(env->src_cpu);
1308 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1309 struct task_struct *cur;
28a21745 1310 long src_load, dst_load;
fb13c7ee 1311 long load;
1c5d3eb3 1312 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1313 long moveimp = imp;
7bd95320 1314 int dist = env->dist;
1dff76b9 1315 bool assigned = false;
fb13c7ee
MG
1316
1317 rcu_read_lock();
1effd9f1
KT
1318
1319 raw_spin_lock_irq(&dst_rq->lock);
1320 cur = dst_rq->curr;
1321 /*
1dff76b9 1322 * No need to move the exiting task or idle task.
1effd9f1
KT
1323 */
1324 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1325 cur = NULL;
1dff76b9
GG
1326 else {
1327 /*
1328 * The task_struct must be protected here to protect the
1329 * p->numa_faults access in the task_weight since the
1330 * numa_faults could already be freed in the following path:
1331 * finish_task_switch()
1332 * --> put_task_struct()
1333 * --> __put_task_struct()
1334 * --> task_numa_free()
1335 */
1336 get_task_struct(cur);
1337 }
1338
1effd9f1 1339 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1340
7af68335
PZ
1341 /*
1342 * Because we have preemption enabled we can get migrated around and
1343 * end try selecting ourselves (current == env->p) as a swap candidate.
1344 */
1345 if (cur == env->p)
1346 goto unlock;
1347
fb13c7ee
MG
1348 /*
1349 * "imp" is the fault differential for the source task between the
1350 * source and destination node. Calculate the total differential for
1351 * the source task and potential destination task. The more negative
1352 * the value is, the more rmeote accesses that would be expected to
1353 * be incurred if the tasks were swapped.
1354 */
1355 if (cur) {
1356 /* Skip this swap candidate if cannot move to the source cpu */
1357 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1358 goto unlock;
1359
887c290e
RR
1360 /*
1361 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1362 * in any group then look only at task weights.
887c290e 1363 */
ca28aa53 1364 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1365 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1366 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1367 /*
1368 * Add some hysteresis to prevent swapping the
1369 * tasks within a group over tiny differences.
1370 */
1371 if (cur->numa_group)
1372 imp -= imp/16;
887c290e 1373 } else {
ca28aa53
RR
1374 /*
1375 * Compare the group weights. If a task is all by
1376 * itself (not part of a group), use the task weight
1377 * instead.
1378 */
ca28aa53 1379 if (cur->numa_group)
7bd95320
RR
1380 imp += group_weight(cur, env->src_nid, dist) -
1381 group_weight(cur, env->dst_nid, dist);
ca28aa53 1382 else
7bd95320
RR
1383 imp += task_weight(cur, env->src_nid, dist) -
1384 task_weight(cur, env->dst_nid, dist);
887c290e 1385 }
fb13c7ee
MG
1386 }
1387
0132c3e1 1388 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1389 goto unlock;
1390
1391 if (!cur) {
1392 /* Is there capacity at our destination? */
b932c03c 1393 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1394 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1395 goto unlock;
1396
1397 goto balance;
1398 }
1399
1400 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1401 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1402 dst_rq->nr_running == 1)
fb13c7ee
MG
1403 goto assign;
1404
1405 /*
1406 * In the overloaded case, try and keep the load balanced.
1407 */
1408balance:
e720fff6
PZ
1409 load = task_h_load(env->p);
1410 dst_load = env->dst_stats.load + load;
1411 src_load = env->src_stats.load - load;
fb13c7ee 1412
0132c3e1
RR
1413 if (moveimp > imp && moveimp > env->best_imp) {
1414 /*
1415 * If the improvement from just moving env->p direction is
1416 * better than swapping tasks around, check if a move is
1417 * possible. Store a slightly smaller score than moveimp,
1418 * so an actually idle CPU will win.
1419 */
1420 if (!load_too_imbalanced(src_load, dst_load, env)) {
1421 imp = moveimp - 1;
1dff76b9 1422 put_task_struct(cur);
0132c3e1
RR
1423 cur = NULL;
1424 goto assign;
1425 }
1426 }
1427
1428 if (imp <= env->best_imp)
1429 goto unlock;
1430
fb13c7ee 1431 if (cur) {
e720fff6
PZ
1432 load = task_h_load(cur);
1433 dst_load -= load;
1434 src_load += load;
fb13c7ee
MG
1435 }
1436
28a21745 1437 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1438 goto unlock;
1439
ba7e5a27
RR
1440 /*
1441 * One idle CPU per node is evaluated for a task numa move.
1442 * Call select_idle_sibling to maybe find a better one.
1443 */
1444 if (!cur)
1445 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1446
fb13c7ee 1447assign:
1dff76b9 1448 assigned = true;
fb13c7ee
MG
1449 task_numa_assign(env, cur, imp);
1450unlock:
1451 rcu_read_unlock();
1dff76b9
GG
1452 /*
1453 * The dst_rq->curr isn't assigned. The protection for task_struct is
1454 * finished.
1455 */
1456 if (cur && !assigned)
1457 put_task_struct(cur);
fb13c7ee
MG
1458}
1459
887c290e
RR
1460static void task_numa_find_cpu(struct task_numa_env *env,
1461 long taskimp, long groupimp)
2c8a50aa
MG
1462{
1463 int cpu;
1464
1465 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1466 /* Skip this CPU if the source task cannot migrate */
1467 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1468 continue;
1469
1470 env->dst_cpu = cpu;
887c290e 1471 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1472 }
1473}
1474
6f9aad0b
RR
1475/* Only move tasks to a NUMA node less busy than the current node. */
1476static bool numa_has_capacity(struct task_numa_env *env)
1477{
1478 struct numa_stats *src = &env->src_stats;
1479 struct numa_stats *dst = &env->dst_stats;
1480
1481 if (src->has_free_capacity && !dst->has_free_capacity)
1482 return false;
1483
1484 /*
1485 * Only consider a task move if the source has a higher load
1486 * than the destination, corrected for CPU capacity on each node.
1487 *
1488 * src->load dst->load
1489 * --------------------- vs ---------------------
1490 * src->compute_capacity dst->compute_capacity
1491 */
44dcb04f
SD
1492 if (src->load * dst->compute_capacity * env->imbalance_pct >
1493
1494 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1495 return true;
1496
1497 return false;
1498}
1499
58d081b5
MG
1500static int task_numa_migrate(struct task_struct *p)
1501{
58d081b5
MG
1502 struct task_numa_env env = {
1503 .p = p,
fb13c7ee 1504
58d081b5 1505 .src_cpu = task_cpu(p),
b32e86b4 1506 .src_nid = task_node(p),
fb13c7ee
MG
1507
1508 .imbalance_pct = 112,
1509
1510 .best_task = NULL,
1511 .best_imp = 0,
1512 .best_cpu = -1
58d081b5
MG
1513 };
1514 struct sched_domain *sd;
887c290e 1515 unsigned long taskweight, groupweight;
7bd95320 1516 int nid, ret, dist;
887c290e 1517 long taskimp, groupimp;
e6628d5b 1518
58d081b5 1519 /*
fb13c7ee
MG
1520 * Pick the lowest SD_NUMA domain, as that would have the smallest
1521 * imbalance and would be the first to start moving tasks about.
1522 *
1523 * And we want to avoid any moving of tasks about, as that would create
1524 * random movement of tasks -- counter the numa conditions we're trying
1525 * to satisfy here.
58d081b5
MG
1526 */
1527 rcu_read_lock();
fb13c7ee 1528 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1529 if (sd)
1530 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1531 rcu_read_unlock();
1532
46a73e8a
RR
1533 /*
1534 * Cpusets can break the scheduler domain tree into smaller
1535 * balance domains, some of which do not cross NUMA boundaries.
1536 * Tasks that are "trapped" in such domains cannot be migrated
1537 * elsewhere, so there is no point in (re)trying.
1538 */
1539 if (unlikely(!sd)) {
de1b301a 1540 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1541 return -EINVAL;
1542 }
1543
2c8a50aa 1544 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1545 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1546 taskweight = task_weight(p, env.src_nid, dist);
1547 groupweight = group_weight(p, env.src_nid, dist);
1548 update_numa_stats(&env.src_stats, env.src_nid);
1549 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1550 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1551 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1552
a43455a1 1553 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1554 if (numa_has_capacity(&env))
1555 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1556
9de05d48
RR
1557 /*
1558 * Look at other nodes in these cases:
1559 * - there is no space available on the preferred_nid
1560 * - the task is part of a numa_group that is interleaved across
1561 * multiple NUMA nodes; in order to better consolidate the group,
1562 * we need to check other locations.
1563 */
1564 if (env.best_cpu == -1 || (p->numa_group &&
1565 nodes_weight(p->numa_group->active_nodes) > 1)) {
2c8a50aa
MG
1566 for_each_online_node(nid) {
1567 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1568 continue;
58d081b5 1569
7bd95320 1570 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1571 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1572 dist != env.dist) {
1573 taskweight = task_weight(p, env.src_nid, dist);
1574 groupweight = group_weight(p, env.src_nid, dist);
1575 }
7bd95320 1576
83e1d2cd 1577 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1578 taskimp = task_weight(p, nid, dist) - taskweight;
1579 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1580 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1581 continue;
1582
7bd95320 1583 env.dist = dist;
2c8a50aa
MG
1584 env.dst_nid = nid;
1585 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1586 if (numa_has_capacity(&env))
1587 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1588 }
1589 }
1590
68d1b02a
RR
1591 /*
1592 * If the task is part of a workload that spans multiple NUMA nodes,
1593 * and is migrating into one of the workload's active nodes, remember
1594 * this node as the task's preferred numa node, so the workload can
1595 * settle down.
1596 * A task that migrated to a second choice node will be better off
1597 * trying for a better one later. Do not set the preferred node here.
1598 */
db015dae
RR
1599 if (p->numa_group) {
1600 if (env.best_cpu == -1)
1601 nid = env.src_nid;
1602 else
1603 nid = env.dst_nid;
1604
1605 if (node_isset(nid, p->numa_group->active_nodes))
1606 sched_setnuma(p, env.dst_nid);
1607 }
1608
1609 /* No better CPU than the current one was found. */
1610 if (env.best_cpu == -1)
1611 return -EAGAIN;
0ec8aa00 1612
04bb2f94
RR
1613 /*
1614 * Reset the scan period if the task is being rescheduled on an
1615 * alternative node to recheck if the tasks is now properly placed.
1616 */
1617 p->numa_scan_period = task_scan_min(p);
1618
fb13c7ee 1619 if (env.best_task == NULL) {
286549dc
MG
1620 ret = migrate_task_to(p, env.best_cpu);
1621 if (ret != 0)
1622 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1623 return ret;
1624 }
1625
1626 ret = migrate_swap(p, env.best_task);
286549dc
MG
1627 if (ret != 0)
1628 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1629 put_task_struct(env.best_task);
1630 return ret;
e6628d5b
MG
1631}
1632
6b9a7460
MG
1633/* Attempt to migrate a task to a CPU on the preferred node. */
1634static void numa_migrate_preferred(struct task_struct *p)
1635{
5085e2a3
RR
1636 unsigned long interval = HZ;
1637
2739d3ee 1638 /* This task has no NUMA fault statistics yet */
44dba3d5 1639 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1640 return;
1641
2739d3ee 1642 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1643 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1644 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1645
1646 /* Success if task is already running on preferred CPU */
de1b301a 1647 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1648 return;
1649
1650 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1651 task_numa_migrate(p);
6b9a7460
MG
1652}
1653
20e07dea
RR
1654/*
1655 * Find the nodes on which the workload is actively running. We do this by
1656 * tracking the nodes from which NUMA hinting faults are triggered. This can
1657 * be different from the set of nodes where the workload's memory is currently
1658 * located.
1659 *
1660 * The bitmask is used to make smarter decisions on when to do NUMA page
1661 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1662 * are added when they cause over 6/16 of the maximum number of faults, but
1663 * only removed when they drop below 3/16.
1664 */
1665static void update_numa_active_node_mask(struct numa_group *numa_group)
1666{
1667 unsigned long faults, max_faults = 0;
1668 int nid;
1669
1670 for_each_online_node(nid) {
1671 faults = group_faults_cpu(numa_group, nid);
1672 if (faults > max_faults)
1673 max_faults = faults;
1674 }
1675
1676 for_each_online_node(nid) {
1677 faults = group_faults_cpu(numa_group, nid);
1678 if (!node_isset(nid, numa_group->active_nodes)) {
1679 if (faults > max_faults * 6 / 16)
1680 node_set(nid, numa_group->active_nodes);
1681 } else if (faults < max_faults * 3 / 16)
1682 node_clear(nid, numa_group->active_nodes);
1683 }
1684}
1685
04bb2f94
RR
1686/*
1687 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1688 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1689 * period will be for the next scan window. If local/(local+remote) ratio is
1690 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1691 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1692 */
1693#define NUMA_PERIOD_SLOTS 10
a22b4b01 1694#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1695
1696/*
1697 * Increase the scan period (slow down scanning) if the majority of
1698 * our memory is already on our local node, or if the majority of
1699 * the page accesses are shared with other processes.
1700 * Otherwise, decrease the scan period.
1701 */
1702static void update_task_scan_period(struct task_struct *p,
1703 unsigned long shared, unsigned long private)
1704{
1705 unsigned int period_slot;
1706 int ratio;
1707 int diff;
1708
1709 unsigned long remote = p->numa_faults_locality[0];
1710 unsigned long local = p->numa_faults_locality[1];
1711
1712 /*
1713 * If there were no record hinting faults then either the task is
1714 * completely idle or all activity is areas that are not of interest
074c2381
MG
1715 * to automatic numa balancing. Related to that, if there were failed
1716 * migration then it implies we are migrating too quickly or the local
1717 * node is overloaded. In either case, scan slower
04bb2f94 1718 */
074c2381 1719 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1720 p->numa_scan_period = min(p->numa_scan_period_max,
1721 p->numa_scan_period << 1);
1722
1723 p->mm->numa_next_scan = jiffies +
1724 msecs_to_jiffies(p->numa_scan_period);
1725
1726 return;
1727 }
1728
1729 /*
1730 * Prepare to scale scan period relative to the current period.
1731 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1732 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1733 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1734 */
1735 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1736 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1737 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1738 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1739 if (!slot)
1740 slot = 1;
1741 diff = slot * period_slot;
1742 } else {
1743 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1744
1745 /*
1746 * Scale scan rate increases based on sharing. There is an
1747 * inverse relationship between the degree of sharing and
1748 * the adjustment made to the scanning period. Broadly
1749 * speaking the intent is that there is little point
1750 * scanning faster if shared accesses dominate as it may
1751 * simply bounce migrations uselessly
1752 */
2847c90e 1753 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1754 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1755 }
1756
1757 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1758 task_scan_min(p), task_scan_max(p));
1759 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1760}
1761
7e2703e6
RR
1762/*
1763 * Get the fraction of time the task has been running since the last
1764 * NUMA placement cycle. The scheduler keeps similar statistics, but
1765 * decays those on a 32ms period, which is orders of magnitude off
1766 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1767 * stats only if the task is so new there are no NUMA statistics yet.
1768 */
1769static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1770{
1771 u64 runtime, delta, now;
1772 /* Use the start of this time slice to avoid calculations. */
1773 now = p->se.exec_start;
1774 runtime = p->se.sum_exec_runtime;
1775
1776 if (p->last_task_numa_placement) {
1777 delta = runtime - p->last_sum_exec_runtime;
1778 *period = now - p->last_task_numa_placement;
1779 } else {
9d89c257
YD
1780 delta = p->se.avg.load_sum / p->se.load.weight;
1781 *period = LOAD_AVG_MAX;
7e2703e6
RR
1782 }
1783
1784 p->last_sum_exec_runtime = runtime;
1785 p->last_task_numa_placement = now;
1786
1787 return delta;
1788}
1789
54009416
RR
1790/*
1791 * Determine the preferred nid for a task in a numa_group. This needs to
1792 * be done in a way that produces consistent results with group_weight,
1793 * otherwise workloads might not converge.
1794 */
1795static int preferred_group_nid(struct task_struct *p, int nid)
1796{
1797 nodemask_t nodes;
1798 int dist;
1799
1800 /* Direct connections between all NUMA nodes. */
1801 if (sched_numa_topology_type == NUMA_DIRECT)
1802 return nid;
1803
1804 /*
1805 * On a system with glueless mesh NUMA topology, group_weight
1806 * scores nodes according to the number of NUMA hinting faults on
1807 * both the node itself, and on nearby nodes.
1808 */
1809 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1810 unsigned long score, max_score = 0;
1811 int node, max_node = nid;
1812
1813 dist = sched_max_numa_distance;
1814
1815 for_each_online_node(node) {
1816 score = group_weight(p, node, dist);
1817 if (score > max_score) {
1818 max_score = score;
1819 max_node = node;
1820 }
1821 }
1822 return max_node;
1823 }
1824
1825 /*
1826 * Finding the preferred nid in a system with NUMA backplane
1827 * interconnect topology is more involved. The goal is to locate
1828 * tasks from numa_groups near each other in the system, and
1829 * untangle workloads from different sides of the system. This requires
1830 * searching down the hierarchy of node groups, recursively searching
1831 * inside the highest scoring group of nodes. The nodemask tricks
1832 * keep the complexity of the search down.
1833 */
1834 nodes = node_online_map;
1835 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1836 unsigned long max_faults = 0;
81907478 1837 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1838 int a, b;
1839
1840 /* Are there nodes at this distance from each other? */
1841 if (!find_numa_distance(dist))
1842 continue;
1843
1844 for_each_node_mask(a, nodes) {
1845 unsigned long faults = 0;
1846 nodemask_t this_group;
1847 nodes_clear(this_group);
1848
1849 /* Sum group's NUMA faults; includes a==b case. */
1850 for_each_node_mask(b, nodes) {
1851 if (node_distance(a, b) < dist) {
1852 faults += group_faults(p, b);
1853 node_set(b, this_group);
1854 node_clear(b, nodes);
1855 }
1856 }
1857
1858 /* Remember the top group. */
1859 if (faults > max_faults) {
1860 max_faults = faults;
1861 max_group = this_group;
1862 /*
1863 * subtle: at the smallest distance there is
1864 * just one node left in each "group", the
1865 * winner is the preferred nid.
1866 */
1867 nid = a;
1868 }
1869 }
1870 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1871 if (!max_faults)
1872 break;
54009416
RR
1873 nodes = max_group;
1874 }
1875 return nid;
1876}
1877
cbee9f88
PZ
1878static void task_numa_placement(struct task_struct *p)
1879{
83e1d2cd
MG
1880 int seq, nid, max_nid = -1, max_group_nid = -1;
1881 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1882 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1883 unsigned long total_faults;
1884 u64 runtime, period;
7dbd13ed 1885 spinlock_t *group_lock = NULL;
cbee9f88 1886
7e5a2c17
JL
1887 /*
1888 * The p->mm->numa_scan_seq field gets updated without
1889 * exclusive access. Use READ_ONCE() here to ensure
1890 * that the field is read in a single access:
1891 */
316c1608 1892 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1893 if (p->numa_scan_seq == seq)
1894 return;
1895 p->numa_scan_seq = seq;
598f0ec0 1896 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1897
7e2703e6
RR
1898 total_faults = p->numa_faults_locality[0] +
1899 p->numa_faults_locality[1];
1900 runtime = numa_get_avg_runtime(p, &period);
1901
7dbd13ed
MG
1902 /* If the task is part of a group prevent parallel updates to group stats */
1903 if (p->numa_group) {
1904 group_lock = &p->numa_group->lock;
60e69eed 1905 spin_lock_irq(group_lock);
7dbd13ed
MG
1906 }
1907
688b7585
MG
1908 /* Find the node with the highest number of faults */
1909 for_each_online_node(nid) {
44dba3d5
IM
1910 /* Keep track of the offsets in numa_faults array */
1911 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1912 unsigned long faults = 0, group_faults = 0;
44dba3d5 1913 int priv;
745d6147 1914
be1e4e76 1915 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1916 long diff, f_diff, f_weight;
8c8a743c 1917
44dba3d5
IM
1918 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1919 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1920 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1921 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1922
ac8e895b 1923 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1924 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1925 fault_types[priv] += p->numa_faults[membuf_idx];
1926 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1927
7e2703e6
RR
1928 /*
1929 * Normalize the faults_from, so all tasks in a group
1930 * count according to CPU use, instead of by the raw
1931 * number of faults. Tasks with little runtime have
1932 * little over-all impact on throughput, and thus their
1933 * faults are less important.
1934 */
1935 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1936 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1937 (total_faults + 1);
44dba3d5
IM
1938 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1939 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1940
44dba3d5
IM
1941 p->numa_faults[mem_idx] += diff;
1942 p->numa_faults[cpu_idx] += f_diff;
1943 faults += p->numa_faults[mem_idx];
83e1d2cd 1944 p->total_numa_faults += diff;
8c8a743c 1945 if (p->numa_group) {
44dba3d5
IM
1946 /*
1947 * safe because we can only change our own group
1948 *
1949 * mem_idx represents the offset for a given
1950 * nid and priv in a specific region because it
1951 * is at the beginning of the numa_faults array.
1952 */
1953 p->numa_group->faults[mem_idx] += diff;
1954 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1955 p->numa_group->total_faults += diff;
44dba3d5 1956 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1957 }
ac8e895b
MG
1958 }
1959
688b7585
MG
1960 if (faults > max_faults) {
1961 max_faults = faults;
1962 max_nid = nid;
1963 }
83e1d2cd
MG
1964
1965 if (group_faults > max_group_faults) {
1966 max_group_faults = group_faults;
1967 max_group_nid = nid;
1968 }
1969 }
1970
04bb2f94
RR
1971 update_task_scan_period(p, fault_types[0], fault_types[1]);
1972
7dbd13ed 1973 if (p->numa_group) {
20e07dea 1974 update_numa_active_node_mask(p->numa_group);
60e69eed 1975 spin_unlock_irq(group_lock);
54009416 1976 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
1977 }
1978
bb97fc31
RR
1979 if (max_faults) {
1980 /* Set the new preferred node */
1981 if (max_nid != p->numa_preferred_nid)
1982 sched_setnuma(p, max_nid);
1983
1984 if (task_node(p) != p->numa_preferred_nid)
1985 numa_migrate_preferred(p);
3a7053b3 1986 }
cbee9f88
PZ
1987}
1988
8c8a743c
PZ
1989static inline int get_numa_group(struct numa_group *grp)
1990{
1991 return atomic_inc_not_zero(&grp->refcount);
1992}
1993
1994static inline void put_numa_group(struct numa_group *grp)
1995{
1996 if (atomic_dec_and_test(&grp->refcount))
1997 kfree_rcu(grp, rcu);
1998}
1999
3e6a9418
MG
2000static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2001 int *priv)
8c8a743c
PZ
2002{
2003 struct numa_group *grp, *my_grp;
2004 struct task_struct *tsk;
2005 bool join = false;
2006 int cpu = cpupid_to_cpu(cpupid);
2007 int i;
2008
2009 if (unlikely(!p->numa_group)) {
2010 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2011 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2012
2013 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2014 if (!grp)
2015 return;
2016
2017 atomic_set(&grp->refcount, 1);
2018 spin_lock_init(&grp->lock);
e29cf08b 2019 grp->gid = p->pid;
50ec8a40 2020 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2021 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2022 nr_node_ids;
8c8a743c 2023
20e07dea
RR
2024 node_set(task_node(current), grp->active_nodes);
2025
be1e4e76 2026 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2027 grp->faults[i] = p->numa_faults[i];
8c8a743c 2028
989348b5 2029 grp->total_faults = p->total_numa_faults;
83e1d2cd 2030
8c8a743c
PZ
2031 grp->nr_tasks++;
2032 rcu_assign_pointer(p->numa_group, grp);
2033 }
2034
2035 rcu_read_lock();
316c1608 2036 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2037
2038 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2039 goto no_join;
8c8a743c
PZ
2040
2041 grp = rcu_dereference(tsk->numa_group);
2042 if (!grp)
3354781a 2043 goto no_join;
8c8a743c
PZ
2044
2045 my_grp = p->numa_group;
2046 if (grp == my_grp)
3354781a 2047 goto no_join;
8c8a743c
PZ
2048
2049 /*
2050 * Only join the other group if its bigger; if we're the bigger group,
2051 * the other task will join us.
2052 */
2053 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2054 goto no_join;
8c8a743c
PZ
2055
2056 /*
2057 * Tie-break on the grp address.
2058 */
2059 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2060 goto no_join;
8c8a743c 2061
dabe1d99
RR
2062 /* Always join threads in the same process. */
2063 if (tsk->mm == current->mm)
2064 join = true;
2065
2066 /* Simple filter to avoid false positives due to PID collisions */
2067 if (flags & TNF_SHARED)
2068 join = true;
8c8a743c 2069
3e6a9418
MG
2070 /* Update priv based on whether false sharing was detected */
2071 *priv = !join;
2072
dabe1d99 2073 if (join && !get_numa_group(grp))
3354781a 2074 goto no_join;
8c8a743c 2075
8c8a743c
PZ
2076 rcu_read_unlock();
2077
2078 if (!join)
2079 return;
2080
60e69eed
MG
2081 BUG_ON(irqs_disabled());
2082 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2083
be1e4e76 2084 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2085 my_grp->faults[i] -= p->numa_faults[i];
2086 grp->faults[i] += p->numa_faults[i];
8c8a743c 2087 }
989348b5
MG
2088 my_grp->total_faults -= p->total_numa_faults;
2089 grp->total_faults += p->total_numa_faults;
8c8a743c 2090
8c8a743c
PZ
2091 my_grp->nr_tasks--;
2092 grp->nr_tasks++;
2093
2094 spin_unlock(&my_grp->lock);
60e69eed 2095 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2096
2097 rcu_assign_pointer(p->numa_group, grp);
2098
2099 put_numa_group(my_grp);
3354781a
PZ
2100 return;
2101
2102no_join:
2103 rcu_read_unlock();
2104 return;
8c8a743c
PZ
2105}
2106
2107void task_numa_free(struct task_struct *p)
2108{
2109 struct numa_group *grp = p->numa_group;
44dba3d5 2110 void *numa_faults = p->numa_faults;
e9dd685c
SR
2111 unsigned long flags;
2112 int i;
8c8a743c
PZ
2113
2114 if (grp) {
e9dd685c 2115 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2116 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2117 grp->faults[i] -= p->numa_faults[i];
989348b5 2118 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2119
8c8a743c 2120 grp->nr_tasks--;
e9dd685c 2121 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2122 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2123 put_numa_group(grp);
2124 }
2125
44dba3d5 2126 p->numa_faults = NULL;
82727018 2127 kfree(numa_faults);
8c8a743c
PZ
2128}
2129
cbee9f88
PZ
2130/*
2131 * Got a PROT_NONE fault for a page on @node.
2132 */
58b46da3 2133void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2134{
2135 struct task_struct *p = current;
6688cc05 2136 bool migrated = flags & TNF_MIGRATED;
58b46da3 2137 int cpu_node = task_node(current);
792568ec 2138 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 2139 int priv;
cbee9f88 2140
2a595721 2141 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2142 return;
2143
9ff1d9ff
MG
2144 /* for example, ksmd faulting in a user's mm */
2145 if (!p->mm)
2146 return;
2147
f809ca9a 2148 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2149 if (unlikely(!p->numa_faults)) {
2150 int size = sizeof(*p->numa_faults) *
be1e4e76 2151 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2152
44dba3d5
IM
2153 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2154 if (!p->numa_faults)
f809ca9a 2155 return;
745d6147 2156
83e1d2cd 2157 p->total_numa_faults = 0;
04bb2f94 2158 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2159 }
cbee9f88 2160
8c8a743c
PZ
2161 /*
2162 * First accesses are treated as private, otherwise consider accesses
2163 * to be private if the accessing pid has not changed
2164 */
2165 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2166 priv = 1;
2167 } else {
2168 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2169 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2170 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2171 }
2172
792568ec
RR
2173 /*
2174 * If a workload spans multiple NUMA nodes, a shared fault that
2175 * occurs wholly within the set of nodes that the workload is
2176 * actively using should be counted as local. This allows the
2177 * scan rate to slow down when a workload has settled down.
2178 */
2179 if (!priv && !local && p->numa_group &&
2180 node_isset(cpu_node, p->numa_group->active_nodes) &&
2181 node_isset(mem_node, p->numa_group->active_nodes))
2182 local = 1;
2183
cbee9f88 2184 task_numa_placement(p);
f809ca9a 2185
2739d3ee
RR
2186 /*
2187 * Retry task to preferred node migration periodically, in case it
2188 * case it previously failed, or the scheduler moved us.
2189 */
2190 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2191 numa_migrate_preferred(p);
2192
b32e86b4
IM
2193 if (migrated)
2194 p->numa_pages_migrated += pages;
074c2381
MG
2195 if (flags & TNF_MIGRATE_FAIL)
2196 p->numa_faults_locality[2] += pages;
b32e86b4 2197
44dba3d5
IM
2198 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2199 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2200 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2201}
2202
6e5fb223
PZ
2203static void reset_ptenuma_scan(struct task_struct *p)
2204{
7e5a2c17
JL
2205 /*
2206 * We only did a read acquisition of the mmap sem, so
2207 * p->mm->numa_scan_seq is written to without exclusive access
2208 * and the update is not guaranteed to be atomic. That's not
2209 * much of an issue though, since this is just used for
2210 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2211 * expensive, to avoid any form of compiler optimizations:
2212 */
316c1608 2213 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2214 p->mm->numa_scan_offset = 0;
2215}
2216
cbee9f88
PZ
2217/*
2218 * The expensive part of numa migration is done from task_work context.
2219 * Triggered from task_tick_numa().
2220 */
2221void task_numa_work(struct callback_head *work)
2222{
2223 unsigned long migrate, next_scan, now = jiffies;
2224 struct task_struct *p = current;
2225 struct mm_struct *mm = p->mm;
51170840 2226 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2227 struct vm_area_struct *vma;
9f40604c 2228 unsigned long start, end;
598f0ec0 2229 unsigned long nr_pte_updates = 0;
4620f8c1 2230 long pages, virtpages;
cbee9f88
PZ
2231
2232 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2233
2234 work->next = work; /* protect against double add */
2235 /*
2236 * Who cares about NUMA placement when they're dying.
2237 *
2238 * NOTE: make sure not to dereference p->mm before this check,
2239 * exit_task_work() happens _after_ exit_mm() so we could be called
2240 * without p->mm even though we still had it when we enqueued this
2241 * work.
2242 */
2243 if (p->flags & PF_EXITING)
2244 return;
2245
930aa174 2246 if (!mm->numa_next_scan) {
7e8d16b6
MG
2247 mm->numa_next_scan = now +
2248 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2249 }
2250
cbee9f88
PZ
2251 /*
2252 * Enforce maximal scan/migration frequency..
2253 */
2254 migrate = mm->numa_next_scan;
2255 if (time_before(now, migrate))
2256 return;
2257
598f0ec0
MG
2258 if (p->numa_scan_period == 0) {
2259 p->numa_scan_period_max = task_scan_max(p);
2260 p->numa_scan_period = task_scan_min(p);
2261 }
cbee9f88 2262
fb003b80 2263 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2264 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2265 return;
2266
19a78d11
PZ
2267 /*
2268 * Delay this task enough that another task of this mm will likely win
2269 * the next time around.
2270 */
2271 p->node_stamp += 2 * TICK_NSEC;
2272
9f40604c
MG
2273 start = mm->numa_scan_offset;
2274 pages = sysctl_numa_balancing_scan_size;
2275 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2276 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2277 if (!pages)
2278 return;
cbee9f88 2279
4620f8c1 2280
6e5fb223 2281 down_read(&mm->mmap_sem);
9f40604c 2282 vma = find_vma(mm, start);
6e5fb223
PZ
2283 if (!vma) {
2284 reset_ptenuma_scan(p);
9f40604c 2285 start = 0;
6e5fb223
PZ
2286 vma = mm->mmap;
2287 }
9f40604c 2288 for (; vma; vma = vma->vm_next) {
6b79c57b 2289 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2290 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2291 continue;
6b79c57b 2292 }
6e5fb223 2293
4591ce4f
MG
2294 /*
2295 * Shared library pages mapped by multiple processes are not
2296 * migrated as it is expected they are cache replicated. Avoid
2297 * hinting faults in read-only file-backed mappings or the vdso
2298 * as migrating the pages will be of marginal benefit.
2299 */
2300 if (!vma->vm_mm ||
2301 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2302 continue;
2303
3c67f474
MG
2304 /*
2305 * Skip inaccessible VMAs to avoid any confusion between
2306 * PROT_NONE and NUMA hinting ptes
2307 */
2308 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2309 continue;
4591ce4f 2310
9f40604c
MG
2311 do {
2312 start = max(start, vma->vm_start);
2313 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2314 end = min(end, vma->vm_end);
4620f8c1 2315 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2316
2317 /*
4620f8c1
RR
2318 * Try to scan sysctl_numa_balancing_size worth of
2319 * hpages that have at least one present PTE that
2320 * is not already pte-numa. If the VMA contains
2321 * areas that are unused or already full of prot_numa
2322 * PTEs, scan up to virtpages, to skip through those
2323 * areas faster.
598f0ec0
MG
2324 */
2325 if (nr_pte_updates)
2326 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2327 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2328
9f40604c 2329 start = end;
4620f8c1 2330 if (pages <= 0 || virtpages <= 0)
9f40604c 2331 goto out;
3cf1962c
RR
2332
2333 cond_resched();
9f40604c 2334 } while (end != vma->vm_end);
cbee9f88 2335 }
6e5fb223 2336
9f40604c 2337out:
6e5fb223 2338 /*
c69307d5
PZ
2339 * It is possible to reach the end of the VMA list but the last few
2340 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2341 * would find the !migratable VMA on the next scan but not reset the
2342 * scanner to the start so check it now.
6e5fb223
PZ
2343 */
2344 if (vma)
9f40604c 2345 mm->numa_scan_offset = start;
6e5fb223
PZ
2346 else
2347 reset_ptenuma_scan(p);
2348 up_read(&mm->mmap_sem);
51170840
RR
2349
2350 /*
2351 * Make sure tasks use at least 32x as much time to run other code
2352 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2353 * Usually update_task_scan_period slows down scanning enough; on an
2354 * overloaded system we need to limit overhead on a per task basis.
2355 */
2356 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2357 u64 diff = p->se.sum_exec_runtime - runtime;
2358 p->node_stamp += 32 * diff;
2359 }
cbee9f88
PZ
2360}
2361
2362/*
2363 * Drive the periodic memory faults..
2364 */
2365void task_tick_numa(struct rq *rq, struct task_struct *curr)
2366{
2367 struct callback_head *work = &curr->numa_work;
2368 u64 period, now;
2369
2370 /*
2371 * We don't care about NUMA placement if we don't have memory.
2372 */
2373 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2374 return;
2375
2376 /*
2377 * Using runtime rather than walltime has the dual advantage that
2378 * we (mostly) drive the selection from busy threads and that the
2379 * task needs to have done some actual work before we bother with
2380 * NUMA placement.
2381 */
2382 now = curr->se.sum_exec_runtime;
2383 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2384
25b3e5a3 2385 if (now > curr->node_stamp + period) {
4b96a29b 2386 if (!curr->node_stamp)
598f0ec0 2387 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2388 curr->node_stamp += period;
cbee9f88
PZ
2389
2390 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2391 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2392 task_work_add(curr, work, true);
2393 }
2394 }
2395}
2396#else
2397static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2398{
2399}
0ec8aa00
PZ
2400
2401static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2402{
2403}
2404
2405static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2406{
2407}
cbee9f88
PZ
2408#endif /* CONFIG_NUMA_BALANCING */
2409
30cfdcfc
DA
2410static void
2411account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2412{
2413 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2414 if (!parent_entity(se))
029632fb 2415 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2416#ifdef CONFIG_SMP
0ec8aa00
PZ
2417 if (entity_is_task(se)) {
2418 struct rq *rq = rq_of(cfs_rq);
2419
2420 account_numa_enqueue(rq, task_of(se));
2421 list_add(&se->group_node, &rq->cfs_tasks);
2422 }
367456c7 2423#endif
30cfdcfc 2424 cfs_rq->nr_running++;
30cfdcfc
DA
2425}
2426
2427static void
2428account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2429{
2430 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2431 if (!parent_entity(se))
029632fb 2432 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2433 if (entity_is_task(se)) {
2434 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2435 list_del_init(&se->group_node);
0ec8aa00 2436 }
30cfdcfc 2437 cfs_rq->nr_running--;
30cfdcfc
DA
2438}
2439
3ff6dcac
YZ
2440#ifdef CONFIG_FAIR_GROUP_SCHED
2441# ifdef CONFIG_SMP
cf5f0acf
PZ
2442static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2443{
2444 long tg_weight;
2445
2446 /*
9d89c257
YD
2447 * Use this CPU's real-time load instead of the last load contribution
2448 * as the updating of the contribution is delayed, and we will use the
2449 * the real-time load to calc the share. See update_tg_load_avg().
cf5f0acf 2450 */
bf5b986e 2451 tg_weight = atomic_long_read(&tg->load_avg);
9d89c257 2452 tg_weight -= cfs_rq->tg_load_avg_contrib;
fde7d22e 2453 tg_weight += cfs_rq->load.weight;
cf5f0acf
PZ
2454
2455 return tg_weight;
2456}
2457
6d5ab293 2458static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2459{
cf5f0acf 2460 long tg_weight, load, shares;
3ff6dcac 2461
cf5f0acf 2462 tg_weight = calc_tg_weight(tg, cfs_rq);
fde7d22e 2463 load = cfs_rq->load.weight;
3ff6dcac 2464
3ff6dcac 2465 shares = (tg->shares * load);
cf5f0acf
PZ
2466 if (tg_weight)
2467 shares /= tg_weight;
3ff6dcac
YZ
2468
2469 if (shares < MIN_SHARES)
2470 shares = MIN_SHARES;
2471 if (shares > tg->shares)
2472 shares = tg->shares;
2473
2474 return shares;
2475}
3ff6dcac 2476# else /* CONFIG_SMP */
6d5ab293 2477static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2478{
2479 return tg->shares;
2480}
3ff6dcac 2481# endif /* CONFIG_SMP */
2069dd75
PZ
2482static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2483 unsigned long weight)
2484{
19e5eebb
PT
2485 if (se->on_rq) {
2486 /* commit outstanding execution time */
2487 if (cfs_rq->curr == se)
2488 update_curr(cfs_rq);
2069dd75 2489 account_entity_dequeue(cfs_rq, se);
19e5eebb 2490 }
2069dd75
PZ
2491
2492 update_load_set(&se->load, weight);
2493
2494 if (se->on_rq)
2495 account_entity_enqueue(cfs_rq, se);
2496}
2497
82958366
PT
2498static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2499
6d5ab293 2500static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2501{
2502 struct task_group *tg;
2503 struct sched_entity *se;
3ff6dcac 2504 long shares;
2069dd75 2505
2069dd75
PZ
2506 tg = cfs_rq->tg;
2507 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2508 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2509 return;
3ff6dcac
YZ
2510#ifndef CONFIG_SMP
2511 if (likely(se->load.weight == tg->shares))
2512 return;
2513#endif
6d5ab293 2514 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2515
2516 reweight_entity(cfs_rq_of(se), se, shares);
2517}
2518#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2519static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2520{
2521}
2522#endif /* CONFIG_FAIR_GROUP_SCHED */
2523
141965c7 2524#ifdef CONFIG_SMP
5b51f2f8
PT
2525/* Precomputed fixed inverse multiplies for multiplication by y^n */
2526static const u32 runnable_avg_yN_inv[] = {
2527 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2528 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2529 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2530 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2531 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2532 0x85aac367, 0x82cd8698,
2533};
2534
2535/*
2536 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2537 * over-estimates when re-combining.
2538 */
2539static const u32 runnable_avg_yN_sum[] = {
2540 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2541 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2542 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2543};
2544
9d85f21c
PT
2545/*
2546 * Approximate:
2547 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2548 */
2549static __always_inline u64 decay_load(u64 val, u64 n)
2550{
5b51f2f8
PT
2551 unsigned int local_n;
2552
2553 if (!n)
2554 return val;
2555 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2556 return 0;
2557
2558 /* after bounds checking we can collapse to 32-bit */
2559 local_n = n;
2560
2561 /*
2562 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2563 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2564 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2565 *
2566 * To achieve constant time decay_load.
2567 */
2568 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2569 val >>= local_n / LOAD_AVG_PERIOD;
2570 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2571 }
2572
9d89c257
YD
2573 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2574 return val;
5b51f2f8
PT
2575}
2576
2577/*
2578 * For updates fully spanning n periods, the contribution to runnable
2579 * average will be: \Sum 1024*y^n
2580 *
2581 * We can compute this reasonably efficiently by combining:
2582 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2583 */
2584static u32 __compute_runnable_contrib(u64 n)
2585{
2586 u32 contrib = 0;
2587
2588 if (likely(n <= LOAD_AVG_PERIOD))
2589 return runnable_avg_yN_sum[n];
2590 else if (unlikely(n >= LOAD_AVG_MAX_N))
2591 return LOAD_AVG_MAX;
2592
2593 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2594 do {
2595 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2596 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2597
2598 n -= LOAD_AVG_PERIOD;
2599 } while (n > LOAD_AVG_PERIOD);
2600
2601 contrib = decay_load(contrib, n);
2602 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2603}
2604
006cdf02
PZ
2605#if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2606#error "load tracking assumes 2^10 as unit"
2607#endif
2608
54a21385 2609#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2610
9d85f21c
PT
2611/*
2612 * We can represent the historical contribution to runnable average as the
2613 * coefficients of a geometric series. To do this we sub-divide our runnable
2614 * history into segments of approximately 1ms (1024us); label the segment that
2615 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2616 *
2617 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2618 * p0 p1 p2
2619 * (now) (~1ms ago) (~2ms ago)
2620 *
2621 * Let u_i denote the fraction of p_i that the entity was runnable.
2622 *
2623 * We then designate the fractions u_i as our co-efficients, yielding the
2624 * following representation of historical load:
2625 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2626 *
2627 * We choose y based on the with of a reasonably scheduling period, fixing:
2628 * y^32 = 0.5
2629 *
2630 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2631 * approximately half as much as the contribution to load within the last ms
2632 * (u_0).
2633 *
2634 * When a period "rolls over" and we have new u_0`, multiplying the previous
2635 * sum again by y is sufficient to update:
2636 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2637 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2638 */
9d89c257
YD
2639static __always_inline int
2640__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2641 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2642{
e0f5f3af 2643 u64 delta, scaled_delta, periods;
9d89c257 2644 u32 contrib;
6115c793 2645 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2646 unsigned long scale_freq, scale_cpu;
9d85f21c 2647
9d89c257 2648 delta = now - sa->last_update_time;
9d85f21c
PT
2649 /*
2650 * This should only happen when time goes backwards, which it
2651 * unfortunately does during sched clock init when we swap over to TSC.
2652 */
2653 if ((s64)delta < 0) {
9d89c257 2654 sa->last_update_time = now;
9d85f21c
PT
2655 return 0;
2656 }
2657
2658 /*
2659 * Use 1024ns as the unit of measurement since it's a reasonable
2660 * approximation of 1us and fast to compute.
2661 */
2662 delta >>= 10;
2663 if (!delta)
2664 return 0;
9d89c257 2665 sa->last_update_time = now;
9d85f21c 2666
6f2b0452
DE
2667 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2668 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2669
9d85f21c 2670 /* delta_w is the amount already accumulated against our next period */
9d89c257 2671 delta_w = sa->period_contrib;
9d85f21c 2672 if (delta + delta_w >= 1024) {
9d85f21c
PT
2673 decayed = 1;
2674
9d89c257
YD
2675 /* how much left for next period will start over, we don't know yet */
2676 sa->period_contrib = 0;
2677
9d85f21c
PT
2678 /*
2679 * Now that we know we're crossing a period boundary, figure
2680 * out how much from delta we need to complete the current
2681 * period and accrue it.
2682 */
2683 delta_w = 1024 - delta_w;
54a21385 2684 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2685 if (weight) {
e0f5f3af
DE
2686 sa->load_sum += weight * scaled_delta_w;
2687 if (cfs_rq) {
2688 cfs_rq->runnable_load_sum +=
2689 weight * scaled_delta_w;
2690 }
13962234 2691 }
36ee28e4 2692 if (running)
006cdf02 2693 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2694
2695 delta -= delta_w;
2696
2697 /* Figure out how many additional periods this update spans */
2698 periods = delta / 1024;
2699 delta %= 1024;
2700
9d89c257 2701 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2702 if (cfs_rq) {
2703 cfs_rq->runnable_load_sum =
2704 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2705 }
9d89c257 2706 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2707
2708 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2709 contrib = __compute_runnable_contrib(periods);
54a21385 2710 contrib = cap_scale(contrib, scale_freq);
13962234 2711 if (weight) {
9d89c257 2712 sa->load_sum += weight * contrib;
13962234
YD
2713 if (cfs_rq)
2714 cfs_rq->runnable_load_sum += weight * contrib;
2715 }
36ee28e4 2716 if (running)
006cdf02 2717 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2718 }
2719
2720 /* Remainder of delta accrued against u_0` */
54a21385 2721 scaled_delta = cap_scale(delta, scale_freq);
13962234 2722 if (weight) {
e0f5f3af 2723 sa->load_sum += weight * scaled_delta;
13962234 2724 if (cfs_rq)
e0f5f3af 2725 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2726 }
36ee28e4 2727 if (running)
006cdf02 2728 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2729
9d89c257 2730 sa->period_contrib += delta;
9ee474f5 2731
9d89c257
YD
2732 if (decayed) {
2733 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2734 if (cfs_rq) {
2735 cfs_rq->runnable_load_avg =
2736 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2737 }
006cdf02 2738 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2739 }
aff3e498 2740
9d89c257 2741 return decayed;
9ee474f5
PT
2742}
2743
c566e8e9 2744#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2745/*
9d89c257
YD
2746 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2747 * and effective_load (which is not done because it is too costly).
bb17f655 2748 */
9d89c257 2749static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2750{
9d89c257 2751 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2752
aa0b7ae0
WL
2753 /*
2754 * No need to update load_avg for root_task_group as it is not used.
2755 */
2756 if (cfs_rq->tg == &root_task_group)
2757 return;
2758
9d89c257
YD
2759 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2760 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2761 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2762 }
8165e145 2763}
f5f9739d 2764
ad936d86
BP
2765/*
2766 * Called within set_task_rq() right before setting a task's cpu. The
2767 * caller only guarantees p->pi_lock is held; no other assumptions,
2768 * including the state of rq->lock, should be made.
2769 */
2770void set_task_rq_fair(struct sched_entity *se,
2771 struct cfs_rq *prev, struct cfs_rq *next)
2772{
2773 if (!sched_feat(ATTACH_AGE_LOAD))
2774 return;
2775
2776 /*
2777 * We are supposed to update the task to "current" time, then its up to
2778 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2779 * getting what current time is, so simply throw away the out-of-date
2780 * time. This will result in the wakee task is less decayed, but giving
2781 * the wakee more load sounds not bad.
2782 */
2783 if (se->avg.last_update_time && prev) {
2784 u64 p_last_update_time;
2785 u64 n_last_update_time;
2786
2787#ifndef CONFIG_64BIT
2788 u64 p_last_update_time_copy;
2789 u64 n_last_update_time_copy;
2790
2791 do {
2792 p_last_update_time_copy = prev->load_last_update_time_copy;
2793 n_last_update_time_copy = next->load_last_update_time_copy;
2794
2795 smp_rmb();
2796
2797 p_last_update_time = prev->avg.last_update_time;
2798 n_last_update_time = next->avg.last_update_time;
2799
2800 } while (p_last_update_time != p_last_update_time_copy ||
2801 n_last_update_time != n_last_update_time_copy);
2802#else
2803 p_last_update_time = prev->avg.last_update_time;
2804 n_last_update_time = next->avg.last_update_time;
2805#endif
2806 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2807 &se->avg, 0, 0, NULL);
2808 se->avg.last_update_time = n_last_update_time;
2809 }
2810}
6e83125c 2811#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2812static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2813#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2814
9d89c257 2815static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2816
9d89c257
YD
2817/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
2818static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2dac754e 2819{
9d89c257 2820 struct sched_avg *sa = &cfs_rq->avg;
3e386d56 2821 int decayed, removed = 0;
2dac754e 2822
9d89c257 2823 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2824 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
9d89c257
YD
2825 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2826 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
3e386d56 2827 removed = 1;
8165e145 2828 }
2dac754e 2829
9d89c257
YD
2830 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2831 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2832 sa->util_avg = max_t(long, sa->util_avg - r, 0);
006cdf02 2833 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
9d89c257 2834 }
36ee28e4 2835
9d89c257 2836 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2837 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2838
9d89c257
YD
2839#ifndef CONFIG_64BIT
2840 smp_wmb();
2841 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2842#endif
36ee28e4 2843
3e386d56 2844 return decayed || removed;
9ee474f5
PT
2845}
2846
9d89c257
YD
2847/* Update task and its cfs_rq load average */
2848static inline void update_load_avg(struct sched_entity *se, int update_tg)
9d85f21c 2849{
2dac754e 2850 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9d89c257 2851 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2852 int cpu = cpu_of(rq_of(cfs_rq));
2dac754e 2853
f1b17280 2854 /*
9d89c257
YD
2855 * Track task load average for carrying it to new CPU after migrated, and
2856 * track group sched_entity load average for task_h_load calc in migration
f1b17280 2857 */
9d89c257 2858 __update_load_avg(now, cpu, &se->avg,
a05e8c51
BP
2859 se->on_rq * scale_load_down(se->load.weight),
2860 cfs_rq->curr == se, NULL);
f1b17280 2861
9d89c257
YD
2862 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2863 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2864}
2865
a05e8c51
BP
2866static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2867{
a9280514
PZ
2868 if (!sched_feat(ATTACH_AGE_LOAD))
2869 goto skip_aging;
2870
6efdb105
BP
2871 /*
2872 * If we got migrated (either between CPUs or between cgroups) we'll
2873 * have aged the average right before clearing @last_update_time.
2874 */
2875 if (se->avg.last_update_time) {
2876 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2877 &se->avg, 0, 0, NULL);
2878
2879 /*
2880 * XXX: we could have just aged the entire load away if we've been
2881 * absent from the fair class for too long.
2882 */
2883 }
2884
a9280514 2885skip_aging:
a05e8c51
BP
2886 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2887 cfs_rq->avg.load_avg += se->avg.load_avg;
2888 cfs_rq->avg.load_sum += se->avg.load_sum;
2889 cfs_rq->avg.util_avg += se->avg.util_avg;
2890 cfs_rq->avg.util_sum += se->avg.util_sum;
2891}
2892
2893static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2894{
2895 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2896 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2897 cfs_rq->curr == se, NULL);
2898
2899 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2900 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2901 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2902 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2903}
2904
9d89c257
YD
2905/* Add the load generated by se into cfs_rq's load average */
2906static inline void
2907enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2908{
9d89c257
YD
2909 struct sched_avg *sa = &se->avg;
2910 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2911 int migrated, decayed;
9ee474f5 2912
a05e8c51
BP
2913 migrated = !sa->last_update_time;
2914 if (!migrated) {
9d89c257 2915 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
2916 se->on_rq * scale_load_down(se->load.weight),
2917 cfs_rq->curr == se, NULL);
aff3e498 2918 }
c566e8e9 2919
9d89c257 2920 decayed = update_cfs_rq_load_avg(now, cfs_rq);
18bf2805 2921
13962234
YD
2922 cfs_rq->runnable_load_avg += sa->load_avg;
2923 cfs_rq->runnable_load_sum += sa->load_sum;
2924
a05e8c51
BP
2925 if (migrated)
2926 attach_entity_load_avg(cfs_rq, se);
9ee474f5 2927
9d89c257
YD
2928 if (decayed || migrated)
2929 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
2930}
2931
13962234
YD
2932/* Remove the runnable load generated by se from cfs_rq's runnable load average */
2933static inline void
2934dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2935{
2936 update_load_avg(se, 1);
2937
2938 cfs_rq->runnable_load_avg =
2939 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2940 cfs_rq->runnable_load_sum =
a05e8c51 2941 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
2942}
2943
9d89c257 2944#ifndef CONFIG_64BIT
0905f04e
YD
2945static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2946{
9d89c257 2947 u64 last_update_time_copy;
0905f04e 2948 u64 last_update_time;
9ee474f5 2949
9d89c257
YD
2950 do {
2951 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2952 smp_rmb();
2953 last_update_time = cfs_rq->avg.last_update_time;
2954 } while (last_update_time != last_update_time_copy);
0905f04e
YD
2955
2956 return last_update_time;
2957}
9d89c257 2958#else
0905f04e
YD
2959static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2960{
2961 return cfs_rq->avg.last_update_time;
2962}
9d89c257
YD
2963#endif
2964
0905f04e
YD
2965/*
2966 * Task first catches up with cfs_rq, and then subtract
2967 * itself from the cfs_rq (task must be off the queue now).
2968 */
2969void remove_entity_load_avg(struct sched_entity *se)
2970{
2971 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2972 u64 last_update_time;
2973
2974 /*
2975 * Newly created task or never used group entity should not be removed
2976 * from its (source) cfs_rq
2977 */
2978 if (se->avg.last_update_time == 0)
2979 return;
2980
2981 last_update_time = cfs_rq_last_update_time(cfs_rq);
2982
13962234 2983 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
2984 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2985 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 2986}
642dbc39 2987
7ea241af
YD
2988static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2989{
2990 return cfs_rq->runnable_load_avg;
2991}
2992
2993static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2994{
2995 return cfs_rq->avg.load_avg;
2996}
2997
6e83125c
PZ
2998static int idle_balance(struct rq *this_rq);
2999
38033c37
PZ
3000#else /* CONFIG_SMP */
3001
9d89c257
YD
3002static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
3003static inline void
3004enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3005static inline void
3006dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3007static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3008
a05e8c51
BP
3009static inline void
3010attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3011static inline void
3012detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3013
6e83125c
PZ
3014static inline int idle_balance(struct rq *rq)
3015{
3016 return 0;
3017}
3018
38033c37 3019#endif /* CONFIG_SMP */
9d85f21c 3020
2396af69 3021static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3022{
bf0f6f24 3023#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3024 struct task_struct *tsk = NULL;
3025
3026 if (entity_is_task(se))
3027 tsk = task_of(se);
3028
41acab88 3029 if (se->statistics.sleep_start) {
78becc27 3030 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3031
3032 if ((s64)delta < 0)
3033 delta = 0;
3034
41acab88
LDM
3035 if (unlikely(delta > se->statistics.sleep_max))
3036 se->statistics.sleep_max = delta;
bf0f6f24 3037
8c79a045 3038 se->statistics.sleep_start = 0;
41acab88 3039 se->statistics.sum_sleep_runtime += delta;
9745512c 3040
768d0c27 3041 if (tsk) {
e414314c 3042 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3043 trace_sched_stat_sleep(tsk, delta);
3044 }
bf0f6f24 3045 }
41acab88 3046 if (se->statistics.block_start) {
78becc27 3047 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3048
3049 if ((s64)delta < 0)
3050 delta = 0;
3051
41acab88
LDM
3052 if (unlikely(delta > se->statistics.block_max))
3053 se->statistics.block_max = delta;
bf0f6f24 3054
8c79a045 3055 se->statistics.block_start = 0;
41acab88 3056 se->statistics.sum_sleep_runtime += delta;
30084fbd 3057
e414314c 3058 if (tsk) {
8f0dfc34 3059 if (tsk->in_iowait) {
41acab88
LDM
3060 se->statistics.iowait_sum += delta;
3061 se->statistics.iowait_count++;
768d0c27 3062 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3063 }
3064
b781a602
AV
3065 trace_sched_stat_blocked(tsk, delta);
3066
e414314c
PZ
3067 /*
3068 * Blocking time is in units of nanosecs, so shift by
3069 * 20 to get a milliseconds-range estimation of the
3070 * amount of time that the task spent sleeping:
3071 */
3072 if (unlikely(prof_on == SLEEP_PROFILING)) {
3073 profile_hits(SLEEP_PROFILING,
3074 (void *)get_wchan(tsk),
3075 delta >> 20);
3076 }
3077 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3078 }
bf0f6f24
IM
3079 }
3080#endif
3081}
3082
ddc97297
PZ
3083static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3084{
3085#ifdef CONFIG_SCHED_DEBUG
3086 s64 d = se->vruntime - cfs_rq->min_vruntime;
3087
3088 if (d < 0)
3089 d = -d;
3090
3091 if (d > 3*sysctl_sched_latency)
3092 schedstat_inc(cfs_rq, nr_spread_over);
3093#endif
3094}
3095
aeb73b04
PZ
3096static void
3097place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3098{
1af5f730 3099 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3100
2cb8600e
PZ
3101 /*
3102 * The 'current' period is already promised to the current tasks,
3103 * however the extra weight of the new task will slow them down a
3104 * little, place the new task so that it fits in the slot that
3105 * stays open at the end.
3106 */
94dfb5e7 3107 if (initial && sched_feat(START_DEBIT))
f9c0b095 3108 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3109
a2e7a7eb 3110 /* sleeps up to a single latency don't count. */
5ca9880c 3111 if (!initial) {
a2e7a7eb 3112 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3113
a2e7a7eb
MG
3114 /*
3115 * Halve their sleep time's effect, to allow
3116 * for a gentler effect of sleepers:
3117 */
3118 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3119 thresh >>= 1;
51e0304c 3120
a2e7a7eb 3121 vruntime -= thresh;
aeb73b04
PZ
3122 }
3123
b5d9d734 3124 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3125 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3126}
3127
d3d9dc33
PT
3128static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3129
cb251765
MG
3130static inline void check_schedstat_required(void)
3131{
3132#ifdef CONFIG_SCHEDSTATS
3133 if (schedstat_enabled())
3134 return;
3135
3136 /* Force schedstat enabled if a dependent tracepoint is active */
3137 if (trace_sched_stat_wait_enabled() ||
3138 trace_sched_stat_sleep_enabled() ||
3139 trace_sched_stat_iowait_enabled() ||
3140 trace_sched_stat_blocked_enabled() ||
3141 trace_sched_stat_runtime_enabled()) {
3142 pr_warn_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3143 "stat_blocked and stat_runtime require the "
3144 "kernel parameter schedstats=enabled or "
3145 "kernel.sched_schedstats=1\n");
3146 }
3147#endif
3148}
3149
bf0f6f24 3150static void
88ec22d3 3151enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3152{
88ec22d3
PZ
3153 /*
3154 * Update the normalized vruntime before updating min_vruntime
0fc576d5 3155 * through calling update_curr().
88ec22d3 3156 */
371fd7e7 3157 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
3158 se->vruntime += cfs_rq->min_vruntime;
3159
bf0f6f24 3160 /*
a2a2d680 3161 * Update run-time statistics of the 'current'.
bf0f6f24 3162 */
b7cc0896 3163 update_curr(cfs_rq);
9d89c257 3164 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3165 account_entity_enqueue(cfs_rq, se);
3166 update_cfs_shares(cfs_rq);
bf0f6f24 3167
88ec22d3 3168 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3169 place_entity(cfs_rq, se, 0);
cb251765
MG
3170 if (schedstat_enabled())
3171 enqueue_sleeper(cfs_rq, se);
e9acbff6 3172 }
bf0f6f24 3173
cb251765
MG
3174 check_schedstat_required();
3175 if (schedstat_enabled()) {
3176 update_stats_enqueue(cfs_rq, se);
3177 check_spread(cfs_rq, se);
3178 }
83b699ed
SV
3179 if (se != cfs_rq->curr)
3180 __enqueue_entity(cfs_rq, se);
2069dd75 3181 se->on_rq = 1;
3d4b47b4 3182
d3d9dc33 3183 if (cfs_rq->nr_running == 1) {
3d4b47b4 3184 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3185 check_enqueue_throttle(cfs_rq);
3186 }
bf0f6f24
IM
3187}
3188
2c13c919 3189static void __clear_buddies_last(struct sched_entity *se)
2002c695 3190{
2c13c919
RR
3191 for_each_sched_entity(se) {
3192 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3193 if (cfs_rq->last != se)
2c13c919 3194 break;
f1044799
PZ
3195
3196 cfs_rq->last = NULL;
2c13c919
RR
3197 }
3198}
2002c695 3199
2c13c919
RR
3200static void __clear_buddies_next(struct sched_entity *se)
3201{
3202 for_each_sched_entity(se) {
3203 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3204 if (cfs_rq->next != se)
2c13c919 3205 break;
f1044799
PZ
3206
3207 cfs_rq->next = NULL;
2c13c919 3208 }
2002c695
PZ
3209}
3210
ac53db59
RR
3211static void __clear_buddies_skip(struct sched_entity *se)
3212{
3213 for_each_sched_entity(se) {
3214 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3215 if (cfs_rq->skip != se)
ac53db59 3216 break;
f1044799
PZ
3217
3218 cfs_rq->skip = NULL;
ac53db59
RR
3219 }
3220}
3221
a571bbea
PZ
3222static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3223{
2c13c919
RR
3224 if (cfs_rq->last == se)
3225 __clear_buddies_last(se);
3226
3227 if (cfs_rq->next == se)
3228 __clear_buddies_next(se);
ac53db59
RR
3229
3230 if (cfs_rq->skip == se)
3231 __clear_buddies_skip(se);
a571bbea
PZ
3232}
3233
6c16a6dc 3234static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3235
bf0f6f24 3236static void
371fd7e7 3237dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3238{
a2a2d680
DA
3239 /*
3240 * Update run-time statistics of the 'current'.
3241 */
3242 update_curr(cfs_rq);
13962234 3243 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3244
cb251765
MG
3245 if (schedstat_enabled())
3246 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3247
2002c695 3248 clear_buddies(cfs_rq, se);
4793241b 3249
83b699ed 3250 if (se != cfs_rq->curr)
30cfdcfc 3251 __dequeue_entity(cfs_rq, se);
17bc14b7 3252 se->on_rq = 0;
30cfdcfc 3253 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3254
3255 /*
3256 * Normalize the entity after updating the min_vruntime because the
3257 * update can refer to the ->curr item and we need to reflect this
3258 * movement in our normalized position.
3259 */
371fd7e7 3260 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3261 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3262
d8b4986d
PT
3263 /* return excess runtime on last dequeue */
3264 return_cfs_rq_runtime(cfs_rq);
3265
1e876231 3266 update_min_vruntime(cfs_rq);
17bc14b7 3267 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3268}
3269
3270/*
3271 * Preempt the current task with a newly woken task if needed:
3272 */
7c92e54f 3273static void
2e09bf55 3274check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3275{
11697830 3276 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3277 struct sched_entity *se;
3278 s64 delta;
11697830 3279
6d0f0ebd 3280 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3281 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3282 if (delta_exec > ideal_runtime) {
8875125e 3283 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3284 /*
3285 * The current task ran long enough, ensure it doesn't get
3286 * re-elected due to buddy favours.
3287 */
3288 clear_buddies(cfs_rq, curr);
f685ceac
MG
3289 return;
3290 }
3291
3292 /*
3293 * Ensure that a task that missed wakeup preemption by a
3294 * narrow margin doesn't have to wait for a full slice.
3295 * This also mitigates buddy induced latencies under load.
3296 */
f685ceac
MG
3297 if (delta_exec < sysctl_sched_min_granularity)
3298 return;
3299
f4cfb33e
WX
3300 se = __pick_first_entity(cfs_rq);
3301 delta = curr->vruntime - se->vruntime;
f685ceac 3302
f4cfb33e
WX
3303 if (delta < 0)
3304 return;
d7d82944 3305
f4cfb33e 3306 if (delta > ideal_runtime)
8875125e 3307 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3308}
3309
83b699ed 3310static void
8494f412 3311set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3312{
83b699ed
SV
3313 /* 'current' is not kept within the tree. */
3314 if (se->on_rq) {
3315 /*
3316 * Any task has to be enqueued before it get to execute on
3317 * a CPU. So account for the time it spent waiting on the
3318 * runqueue.
3319 */
cb251765
MG
3320 if (schedstat_enabled())
3321 update_stats_wait_end(cfs_rq, se);
83b699ed 3322 __dequeue_entity(cfs_rq, se);
9d89c257 3323 update_load_avg(se, 1);
83b699ed
SV
3324 }
3325
79303e9e 3326 update_stats_curr_start(cfs_rq, se);
429d43bc 3327 cfs_rq->curr = se;
eba1ed4b
IM
3328#ifdef CONFIG_SCHEDSTATS
3329 /*
3330 * Track our maximum slice length, if the CPU's load is at
3331 * least twice that of our own weight (i.e. dont track it
3332 * when there are only lesser-weight tasks around):
3333 */
cb251765 3334 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3335 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3336 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3337 }
3338#endif
4a55b450 3339 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3340}
3341
3f3a4904
PZ
3342static int
3343wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3344
ac53db59
RR
3345/*
3346 * Pick the next process, keeping these things in mind, in this order:
3347 * 1) keep things fair between processes/task groups
3348 * 2) pick the "next" process, since someone really wants that to run
3349 * 3) pick the "last" process, for cache locality
3350 * 4) do not run the "skip" process, if something else is available
3351 */
678d5718
PZ
3352static struct sched_entity *
3353pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3354{
678d5718
PZ
3355 struct sched_entity *left = __pick_first_entity(cfs_rq);
3356 struct sched_entity *se;
3357
3358 /*
3359 * If curr is set we have to see if its left of the leftmost entity
3360 * still in the tree, provided there was anything in the tree at all.
3361 */
3362 if (!left || (curr && entity_before(curr, left)))
3363 left = curr;
3364
3365 se = left; /* ideally we run the leftmost entity */
f4b6755f 3366
ac53db59
RR
3367 /*
3368 * Avoid running the skip buddy, if running something else can
3369 * be done without getting too unfair.
3370 */
3371 if (cfs_rq->skip == se) {
678d5718
PZ
3372 struct sched_entity *second;
3373
3374 if (se == curr) {
3375 second = __pick_first_entity(cfs_rq);
3376 } else {
3377 second = __pick_next_entity(se);
3378 if (!second || (curr && entity_before(curr, second)))
3379 second = curr;
3380 }
3381
ac53db59
RR
3382 if (second && wakeup_preempt_entity(second, left) < 1)
3383 se = second;
3384 }
aa2ac252 3385
f685ceac
MG
3386 /*
3387 * Prefer last buddy, try to return the CPU to a preempted task.
3388 */
3389 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3390 se = cfs_rq->last;
3391
ac53db59
RR
3392 /*
3393 * Someone really wants this to run. If it's not unfair, run it.
3394 */
3395 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3396 se = cfs_rq->next;
3397
f685ceac 3398 clear_buddies(cfs_rq, se);
4793241b
PZ
3399
3400 return se;
aa2ac252
PZ
3401}
3402
678d5718 3403static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3404
ab6cde26 3405static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3406{
3407 /*
3408 * If still on the runqueue then deactivate_task()
3409 * was not called and update_curr() has to be done:
3410 */
3411 if (prev->on_rq)
b7cc0896 3412 update_curr(cfs_rq);
bf0f6f24 3413
d3d9dc33
PT
3414 /* throttle cfs_rqs exceeding runtime */
3415 check_cfs_rq_runtime(cfs_rq);
3416
cb251765
MG
3417 if (schedstat_enabled()) {
3418 check_spread(cfs_rq, prev);
3419 if (prev->on_rq)
3420 update_stats_wait_start(cfs_rq, prev);
3421 }
3422
30cfdcfc 3423 if (prev->on_rq) {
30cfdcfc
DA
3424 /* Put 'current' back into the tree. */
3425 __enqueue_entity(cfs_rq, prev);
9d85f21c 3426 /* in !on_rq case, update occurred at dequeue */
9d89c257 3427 update_load_avg(prev, 0);
30cfdcfc 3428 }
429d43bc 3429 cfs_rq->curr = NULL;
bf0f6f24
IM
3430}
3431
8f4d37ec
PZ
3432static void
3433entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3434{
bf0f6f24 3435 /*
30cfdcfc 3436 * Update run-time statistics of the 'current'.
bf0f6f24 3437 */
30cfdcfc 3438 update_curr(cfs_rq);
bf0f6f24 3439
9d85f21c
PT
3440 /*
3441 * Ensure that runnable average is periodically updated.
3442 */
9d89c257 3443 update_load_avg(curr, 1);
bf0bd948 3444 update_cfs_shares(cfs_rq);
9d85f21c 3445
8f4d37ec
PZ
3446#ifdef CONFIG_SCHED_HRTICK
3447 /*
3448 * queued ticks are scheduled to match the slice, so don't bother
3449 * validating it and just reschedule.
3450 */
983ed7a6 3451 if (queued) {
8875125e 3452 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3453 return;
3454 }
8f4d37ec
PZ
3455 /*
3456 * don't let the period tick interfere with the hrtick preemption
3457 */
3458 if (!sched_feat(DOUBLE_TICK) &&
3459 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3460 return;
3461#endif
3462
2c2efaed 3463 if (cfs_rq->nr_running > 1)
2e09bf55 3464 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3465}
3466
ab84d31e
PT
3467
3468/**************************************************
3469 * CFS bandwidth control machinery
3470 */
3471
3472#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3473
3474#ifdef HAVE_JUMP_LABEL
c5905afb 3475static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3476
3477static inline bool cfs_bandwidth_used(void)
3478{
c5905afb 3479 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3480}
3481
1ee14e6c 3482void cfs_bandwidth_usage_inc(void)
029632fb 3483{
1ee14e6c
BS
3484 static_key_slow_inc(&__cfs_bandwidth_used);
3485}
3486
3487void cfs_bandwidth_usage_dec(void)
3488{
3489 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3490}
3491#else /* HAVE_JUMP_LABEL */
3492static bool cfs_bandwidth_used(void)
3493{
3494 return true;
3495}
3496
1ee14e6c
BS
3497void cfs_bandwidth_usage_inc(void) {}
3498void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3499#endif /* HAVE_JUMP_LABEL */
3500
ab84d31e
PT
3501/*
3502 * default period for cfs group bandwidth.
3503 * default: 0.1s, units: nanoseconds
3504 */
3505static inline u64 default_cfs_period(void)
3506{
3507 return 100000000ULL;
3508}
ec12cb7f
PT
3509
3510static inline u64 sched_cfs_bandwidth_slice(void)
3511{
3512 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3513}
3514
a9cf55b2
PT
3515/*
3516 * Replenish runtime according to assigned quota and update expiration time.
3517 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3518 * additional synchronization around rq->lock.
3519 *
3520 * requires cfs_b->lock
3521 */
029632fb 3522void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3523{
3524 u64 now;
3525
3526 if (cfs_b->quota == RUNTIME_INF)
3527 return;
3528
3529 now = sched_clock_cpu(smp_processor_id());
3530 cfs_b->runtime = cfs_b->quota;
3531 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3532}
3533
029632fb
PZ
3534static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3535{
3536 return &tg->cfs_bandwidth;
3537}
3538
f1b17280
PT
3539/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3540static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3541{
3542 if (unlikely(cfs_rq->throttle_count))
3543 return cfs_rq->throttled_clock_task;
3544
78becc27 3545 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3546}
3547
85dac906
PT
3548/* returns 0 on failure to allocate runtime */
3549static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3550{
3551 struct task_group *tg = cfs_rq->tg;
3552 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3553 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3554
3555 /* note: this is a positive sum as runtime_remaining <= 0 */
3556 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3557
3558 raw_spin_lock(&cfs_b->lock);
3559 if (cfs_b->quota == RUNTIME_INF)
3560 amount = min_amount;
58088ad0 3561 else {
77a4d1a1 3562 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3563
3564 if (cfs_b->runtime > 0) {
3565 amount = min(cfs_b->runtime, min_amount);
3566 cfs_b->runtime -= amount;
3567 cfs_b->idle = 0;
3568 }
ec12cb7f 3569 }
a9cf55b2 3570 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3571 raw_spin_unlock(&cfs_b->lock);
3572
3573 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3574 /*
3575 * we may have advanced our local expiration to account for allowed
3576 * spread between our sched_clock and the one on which runtime was
3577 * issued.
3578 */
3579 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3580 cfs_rq->runtime_expires = expires;
85dac906
PT
3581
3582 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3583}
3584
a9cf55b2
PT
3585/*
3586 * Note: This depends on the synchronization provided by sched_clock and the
3587 * fact that rq->clock snapshots this value.
3588 */
3589static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3590{
a9cf55b2 3591 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3592
3593 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3594 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3595 return;
3596
a9cf55b2
PT
3597 if (cfs_rq->runtime_remaining < 0)
3598 return;
3599
3600 /*
3601 * If the local deadline has passed we have to consider the
3602 * possibility that our sched_clock is 'fast' and the global deadline
3603 * has not truly expired.
3604 *
3605 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3606 * whether the global deadline has advanced. It is valid to compare
3607 * cfs_b->runtime_expires without any locks since we only care about
3608 * exact equality, so a partial write will still work.
a9cf55b2
PT
3609 */
3610
51f2176d 3611 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3612 /* extend local deadline, drift is bounded above by 2 ticks */
3613 cfs_rq->runtime_expires += TICK_NSEC;
3614 } else {
3615 /* global deadline is ahead, expiration has passed */
3616 cfs_rq->runtime_remaining = 0;
3617 }
3618}
3619
9dbdb155 3620static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3621{
3622 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3623 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3624 expire_cfs_rq_runtime(cfs_rq);
3625
3626 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3627 return;
3628
85dac906
PT
3629 /*
3630 * if we're unable to extend our runtime we resched so that the active
3631 * hierarchy can be throttled
3632 */
3633 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3634 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3635}
3636
6c16a6dc 3637static __always_inline
9dbdb155 3638void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3639{
56f570e5 3640 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3641 return;
3642
3643 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3644}
3645
85dac906
PT
3646static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3647{
56f570e5 3648 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3649}
3650
64660c86
PT
3651/* check whether cfs_rq, or any parent, is throttled */
3652static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3653{
56f570e5 3654 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3655}
3656
3657/*
3658 * Ensure that neither of the group entities corresponding to src_cpu or
3659 * dest_cpu are members of a throttled hierarchy when performing group
3660 * load-balance operations.
3661 */
3662static inline int throttled_lb_pair(struct task_group *tg,
3663 int src_cpu, int dest_cpu)
3664{
3665 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3666
3667 src_cfs_rq = tg->cfs_rq[src_cpu];
3668 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3669
3670 return throttled_hierarchy(src_cfs_rq) ||
3671 throttled_hierarchy(dest_cfs_rq);
3672}
3673
3674/* updated child weight may affect parent so we have to do this bottom up */
3675static int tg_unthrottle_up(struct task_group *tg, void *data)
3676{
3677 struct rq *rq = data;
3678 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3679
3680 cfs_rq->throttle_count--;
3681#ifdef CONFIG_SMP
3682 if (!cfs_rq->throttle_count) {
f1b17280 3683 /* adjust cfs_rq_clock_task() */
78becc27 3684 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3685 cfs_rq->throttled_clock_task;
64660c86
PT
3686 }
3687#endif
3688
3689 return 0;
3690}
3691
3692static int tg_throttle_down(struct task_group *tg, void *data)
3693{
3694 struct rq *rq = data;
3695 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3696
82958366
PT
3697 /* group is entering throttled state, stop time */
3698 if (!cfs_rq->throttle_count)
78becc27 3699 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3700 cfs_rq->throttle_count++;
3701
3702 return 0;
3703}
3704
d3d9dc33 3705static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3706{
3707 struct rq *rq = rq_of(cfs_rq);
3708 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3709 struct sched_entity *se;
3710 long task_delta, dequeue = 1;
77a4d1a1 3711 bool empty;
85dac906
PT
3712
3713 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3714
f1b17280 3715 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3716 rcu_read_lock();
3717 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3718 rcu_read_unlock();
85dac906
PT
3719
3720 task_delta = cfs_rq->h_nr_running;
3721 for_each_sched_entity(se) {
3722 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3723 /* throttled entity or throttle-on-deactivate */
3724 if (!se->on_rq)
3725 break;
3726
3727 if (dequeue)
3728 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3729 qcfs_rq->h_nr_running -= task_delta;
3730
3731 if (qcfs_rq->load.weight)
3732 dequeue = 0;
3733 }
3734
3735 if (!se)
72465447 3736 sub_nr_running(rq, task_delta);
85dac906
PT
3737
3738 cfs_rq->throttled = 1;
78becc27 3739 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3740 raw_spin_lock(&cfs_b->lock);
d49db342 3741 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3742
c06f04c7
BS
3743 /*
3744 * Add to the _head_ of the list, so that an already-started
3745 * distribute_cfs_runtime will not see us
3746 */
3747 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3748
3749 /*
3750 * If we're the first throttled task, make sure the bandwidth
3751 * timer is running.
3752 */
3753 if (empty)
3754 start_cfs_bandwidth(cfs_b);
3755
85dac906
PT
3756 raw_spin_unlock(&cfs_b->lock);
3757}
3758
029632fb 3759void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3760{
3761 struct rq *rq = rq_of(cfs_rq);
3762 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3763 struct sched_entity *se;
3764 int enqueue = 1;
3765 long task_delta;
3766
22b958d8 3767 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3768
3769 cfs_rq->throttled = 0;
1a55af2e
FW
3770
3771 update_rq_clock(rq);
3772
671fd9da 3773 raw_spin_lock(&cfs_b->lock);
78becc27 3774 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3775 list_del_rcu(&cfs_rq->throttled_list);
3776 raw_spin_unlock(&cfs_b->lock);
3777
64660c86
PT
3778 /* update hierarchical throttle state */
3779 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3780
671fd9da
PT
3781 if (!cfs_rq->load.weight)
3782 return;
3783
3784 task_delta = cfs_rq->h_nr_running;
3785 for_each_sched_entity(se) {
3786 if (se->on_rq)
3787 enqueue = 0;
3788
3789 cfs_rq = cfs_rq_of(se);
3790 if (enqueue)
3791 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3792 cfs_rq->h_nr_running += task_delta;
3793
3794 if (cfs_rq_throttled(cfs_rq))
3795 break;
3796 }
3797
3798 if (!se)
72465447 3799 add_nr_running(rq, task_delta);
671fd9da
PT
3800
3801 /* determine whether we need to wake up potentially idle cpu */
3802 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3803 resched_curr(rq);
671fd9da
PT
3804}
3805
3806static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3807 u64 remaining, u64 expires)
3808{
3809 struct cfs_rq *cfs_rq;
c06f04c7
BS
3810 u64 runtime;
3811 u64 starting_runtime = remaining;
671fd9da
PT
3812
3813 rcu_read_lock();
3814 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3815 throttled_list) {
3816 struct rq *rq = rq_of(cfs_rq);
3817
3818 raw_spin_lock(&rq->lock);
3819 if (!cfs_rq_throttled(cfs_rq))
3820 goto next;
3821
3822 runtime = -cfs_rq->runtime_remaining + 1;
3823 if (runtime > remaining)
3824 runtime = remaining;
3825 remaining -= runtime;
3826
3827 cfs_rq->runtime_remaining += runtime;
3828 cfs_rq->runtime_expires = expires;
3829
3830 /* we check whether we're throttled above */
3831 if (cfs_rq->runtime_remaining > 0)
3832 unthrottle_cfs_rq(cfs_rq);
3833
3834next:
3835 raw_spin_unlock(&rq->lock);
3836
3837 if (!remaining)
3838 break;
3839 }
3840 rcu_read_unlock();
3841
c06f04c7 3842 return starting_runtime - remaining;
671fd9da
PT
3843}
3844
58088ad0
PT
3845/*
3846 * Responsible for refilling a task_group's bandwidth and unthrottling its
3847 * cfs_rqs as appropriate. If there has been no activity within the last
3848 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3849 * used to track this state.
3850 */
3851static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3852{
671fd9da 3853 u64 runtime, runtime_expires;
51f2176d 3854 int throttled;
58088ad0 3855
58088ad0
PT
3856 /* no need to continue the timer with no bandwidth constraint */
3857 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3858 goto out_deactivate;
58088ad0 3859
671fd9da 3860 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3861 cfs_b->nr_periods += overrun;
671fd9da 3862
51f2176d
BS
3863 /*
3864 * idle depends on !throttled (for the case of a large deficit), and if
3865 * we're going inactive then everything else can be deferred
3866 */
3867 if (cfs_b->idle && !throttled)
3868 goto out_deactivate;
a9cf55b2
PT
3869
3870 __refill_cfs_bandwidth_runtime(cfs_b);
3871
671fd9da
PT
3872 if (!throttled) {
3873 /* mark as potentially idle for the upcoming period */
3874 cfs_b->idle = 1;
51f2176d 3875 return 0;
671fd9da
PT
3876 }
3877
e8da1b18
NR
3878 /* account preceding periods in which throttling occurred */
3879 cfs_b->nr_throttled += overrun;
3880
671fd9da 3881 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3882
3883 /*
c06f04c7
BS
3884 * This check is repeated as we are holding onto the new bandwidth while
3885 * we unthrottle. This can potentially race with an unthrottled group
3886 * trying to acquire new bandwidth from the global pool. This can result
3887 * in us over-using our runtime if it is all used during this loop, but
3888 * only by limited amounts in that extreme case.
671fd9da 3889 */
c06f04c7
BS
3890 while (throttled && cfs_b->runtime > 0) {
3891 runtime = cfs_b->runtime;
671fd9da
PT
3892 raw_spin_unlock(&cfs_b->lock);
3893 /* we can't nest cfs_b->lock while distributing bandwidth */
3894 runtime = distribute_cfs_runtime(cfs_b, runtime,
3895 runtime_expires);
3896 raw_spin_lock(&cfs_b->lock);
3897
3898 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3899
3900 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3901 }
58088ad0 3902
671fd9da
PT
3903 /*
3904 * While we are ensured activity in the period following an
3905 * unthrottle, this also covers the case in which the new bandwidth is
3906 * insufficient to cover the existing bandwidth deficit. (Forcing the
3907 * timer to remain active while there are any throttled entities.)
3908 */
3909 cfs_b->idle = 0;
58088ad0 3910
51f2176d
BS
3911 return 0;
3912
3913out_deactivate:
51f2176d 3914 return 1;
58088ad0 3915}
d3d9dc33 3916
d8b4986d
PT
3917/* a cfs_rq won't donate quota below this amount */
3918static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3919/* minimum remaining period time to redistribute slack quota */
3920static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3921/* how long we wait to gather additional slack before distributing */
3922static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3923
db06e78c
BS
3924/*
3925 * Are we near the end of the current quota period?
3926 *
3927 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 3928 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
3929 * migrate_hrtimers, base is never cleared, so we are fine.
3930 */
d8b4986d
PT
3931static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3932{
3933 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3934 u64 remaining;
3935
3936 /* if the call-back is running a quota refresh is already occurring */
3937 if (hrtimer_callback_running(refresh_timer))
3938 return 1;
3939
3940 /* is a quota refresh about to occur? */
3941 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3942 if (remaining < min_expire)
3943 return 1;
3944
3945 return 0;
3946}
3947
3948static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3949{
3950 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3951
3952 /* if there's a quota refresh soon don't bother with slack */
3953 if (runtime_refresh_within(cfs_b, min_left))
3954 return;
3955
4cfafd30
PZ
3956 hrtimer_start(&cfs_b->slack_timer,
3957 ns_to_ktime(cfs_bandwidth_slack_period),
3958 HRTIMER_MODE_REL);
d8b4986d
PT
3959}
3960
3961/* we know any runtime found here is valid as update_curr() precedes return */
3962static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3963{
3964 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3965 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3966
3967 if (slack_runtime <= 0)
3968 return;
3969
3970 raw_spin_lock(&cfs_b->lock);
3971 if (cfs_b->quota != RUNTIME_INF &&
3972 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3973 cfs_b->runtime += slack_runtime;
3974
3975 /* we are under rq->lock, defer unthrottling using a timer */
3976 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3977 !list_empty(&cfs_b->throttled_cfs_rq))
3978 start_cfs_slack_bandwidth(cfs_b);
3979 }
3980 raw_spin_unlock(&cfs_b->lock);
3981
3982 /* even if it's not valid for return we don't want to try again */
3983 cfs_rq->runtime_remaining -= slack_runtime;
3984}
3985
3986static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3987{
56f570e5
PT
3988 if (!cfs_bandwidth_used())
3989 return;
3990
fccfdc6f 3991 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3992 return;
3993
3994 __return_cfs_rq_runtime(cfs_rq);
3995}
3996
3997/*
3998 * This is done with a timer (instead of inline with bandwidth return) since
3999 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4000 */
4001static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4002{
4003 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4004 u64 expires;
4005
4006 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4007 raw_spin_lock(&cfs_b->lock);
4008 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4009 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4010 return;
db06e78c 4011 }
d8b4986d 4012
c06f04c7 4013 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4014 runtime = cfs_b->runtime;
c06f04c7 4015
d8b4986d
PT
4016 expires = cfs_b->runtime_expires;
4017 raw_spin_unlock(&cfs_b->lock);
4018
4019 if (!runtime)
4020 return;
4021
4022 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4023
4024 raw_spin_lock(&cfs_b->lock);
4025 if (expires == cfs_b->runtime_expires)
c06f04c7 4026 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4027 raw_spin_unlock(&cfs_b->lock);
4028}
4029
d3d9dc33
PT
4030/*
4031 * When a group wakes up we want to make sure that its quota is not already
4032 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4033 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4034 */
4035static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4036{
56f570e5
PT
4037 if (!cfs_bandwidth_used())
4038 return;
4039
d3d9dc33
PT
4040 /* an active group must be handled by the update_curr()->put() path */
4041 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4042 return;
4043
4044 /* ensure the group is not already throttled */
4045 if (cfs_rq_throttled(cfs_rq))
4046 return;
4047
4048 /* update runtime allocation */
4049 account_cfs_rq_runtime(cfs_rq, 0);
4050 if (cfs_rq->runtime_remaining <= 0)
4051 throttle_cfs_rq(cfs_rq);
4052}
4053
4054/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4055static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4056{
56f570e5 4057 if (!cfs_bandwidth_used())
678d5718 4058 return false;
56f570e5 4059
d3d9dc33 4060 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4061 return false;
d3d9dc33
PT
4062
4063 /*
4064 * it's possible for a throttled entity to be forced into a running
4065 * state (e.g. set_curr_task), in this case we're finished.
4066 */
4067 if (cfs_rq_throttled(cfs_rq))
678d5718 4068 return true;
d3d9dc33
PT
4069
4070 throttle_cfs_rq(cfs_rq);
678d5718 4071 return true;
d3d9dc33 4072}
029632fb 4073
029632fb
PZ
4074static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4075{
4076 struct cfs_bandwidth *cfs_b =
4077 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4078
029632fb
PZ
4079 do_sched_cfs_slack_timer(cfs_b);
4080
4081 return HRTIMER_NORESTART;
4082}
4083
4084static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4085{
4086 struct cfs_bandwidth *cfs_b =
4087 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4088 int overrun;
4089 int idle = 0;
4090
51f2176d 4091 raw_spin_lock(&cfs_b->lock);
029632fb 4092 for (;;) {
77a4d1a1 4093 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4094 if (!overrun)
4095 break;
4096
4097 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4098 }
4cfafd30
PZ
4099 if (idle)
4100 cfs_b->period_active = 0;
51f2176d 4101 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4102
4103 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4104}
4105
4106void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4107{
4108 raw_spin_lock_init(&cfs_b->lock);
4109 cfs_b->runtime = 0;
4110 cfs_b->quota = RUNTIME_INF;
4111 cfs_b->period = ns_to_ktime(default_cfs_period());
4112
4113 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4114 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4115 cfs_b->period_timer.function = sched_cfs_period_timer;
4116 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4117 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4118}
4119
4120static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4121{
4122 cfs_rq->runtime_enabled = 0;
4123 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4124}
4125
77a4d1a1 4126void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4127{
4cfafd30 4128 lockdep_assert_held(&cfs_b->lock);
029632fb 4129
4cfafd30
PZ
4130 if (!cfs_b->period_active) {
4131 cfs_b->period_active = 1;
4132 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4133 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4134 }
029632fb
PZ
4135}
4136
4137static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4138{
7f1a169b
TH
4139 /* init_cfs_bandwidth() was not called */
4140 if (!cfs_b->throttled_cfs_rq.next)
4141 return;
4142
029632fb
PZ
4143 hrtimer_cancel(&cfs_b->period_timer);
4144 hrtimer_cancel(&cfs_b->slack_timer);
4145}
4146
0e59bdae
KT
4147static void __maybe_unused update_runtime_enabled(struct rq *rq)
4148{
4149 struct cfs_rq *cfs_rq;
4150
4151 for_each_leaf_cfs_rq(rq, cfs_rq) {
4152 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4153
4154 raw_spin_lock(&cfs_b->lock);
4155 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4156 raw_spin_unlock(&cfs_b->lock);
4157 }
4158}
4159
38dc3348 4160static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4161{
4162 struct cfs_rq *cfs_rq;
4163
4164 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4165 if (!cfs_rq->runtime_enabled)
4166 continue;
4167
4168 /*
4169 * clock_task is not advancing so we just need to make sure
4170 * there's some valid quota amount
4171 */
51f2176d 4172 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4173 /*
4174 * Offline rq is schedulable till cpu is completely disabled
4175 * in take_cpu_down(), so we prevent new cfs throttling here.
4176 */
4177 cfs_rq->runtime_enabled = 0;
4178
029632fb
PZ
4179 if (cfs_rq_throttled(cfs_rq))
4180 unthrottle_cfs_rq(cfs_rq);
4181 }
4182}
4183
4184#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4185static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4186{
78becc27 4187 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4188}
4189
9dbdb155 4190static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4191static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4192static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4193static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4194
4195static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4196{
4197 return 0;
4198}
64660c86
PT
4199
4200static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4201{
4202 return 0;
4203}
4204
4205static inline int throttled_lb_pair(struct task_group *tg,
4206 int src_cpu, int dest_cpu)
4207{
4208 return 0;
4209}
029632fb
PZ
4210
4211void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4212
4213#ifdef CONFIG_FAIR_GROUP_SCHED
4214static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4215#endif
4216
029632fb
PZ
4217static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4218{
4219 return NULL;
4220}
4221static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4222static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4223static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4224
4225#endif /* CONFIG_CFS_BANDWIDTH */
4226
bf0f6f24
IM
4227/**************************************************
4228 * CFS operations on tasks:
4229 */
4230
8f4d37ec
PZ
4231#ifdef CONFIG_SCHED_HRTICK
4232static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4233{
8f4d37ec
PZ
4234 struct sched_entity *se = &p->se;
4235 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4236
4237 WARN_ON(task_rq(p) != rq);
4238
b39e66ea 4239 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4240 u64 slice = sched_slice(cfs_rq, se);
4241 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4242 s64 delta = slice - ran;
4243
4244 if (delta < 0) {
4245 if (rq->curr == p)
8875125e 4246 resched_curr(rq);
8f4d37ec
PZ
4247 return;
4248 }
31656519 4249 hrtick_start(rq, delta);
8f4d37ec
PZ
4250 }
4251}
a4c2f00f
PZ
4252
4253/*
4254 * called from enqueue/dequeue and updates the hrtick when the
4255 * current task is from our class and nr_running is low enough
4256 * to matter.
4257 */
4258static void hrtick_update(struct rq *rq)
4259{
4260 struct task_struct *curr = rq->curr;
4261
b39e66ea 4262 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4263 return;
4264
4265 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4266 hrtick_start_fair(rq, curr);
4267}
55e12e5e 4268#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4269static inline void
4270hrtick_start_fair(struct rq *rq, struct task_struct *p)
4271{
4272}
a4c2f00f
PZ
4273
4274static inline void hrtick_update(struct rq *rq)
4275{
4276}
8f4d37ec
PZ
4277#endif
4278
bf0f6f24
IM
4279/*
4280 * The enqueue_task method is called before nr_running is
4281 * increased. Here we update the fair scheduling stats and
4282 * then put the task into the rbtree:
4283 */
ea87bb78 4284static void
371fd7e7 4285enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4286{
4287 struct cfs_rq *cfs_rq;
62fb1851 4288 struct sched_entity *se = &p->se;
bf0f6f24
IM
4289
4290 for_each_sched_entity(se) {
62fb1851 4291 if (se->on_rq)
bf0f6f24
IM
4292 break;
4293 cfs_rq = cfs_rq_of(se);
88ec22d3 4294 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4295
4296 /*
4297 * end evaluation on encountering a throttled cfs_rq
4298 *
4299 * note: in the case of encountering a throttled cfs_rq we will
4300 * post the final h_nr_running increment below.
4301 */
4302 if (cfs_rq_throttled(cfs_rq))
4303 break;
953bfcd1 4304 cfs_rq->h_nr_running++;
85dac906 4305
88ec22d3 4306 flags = ENQUEUE_WAKEUP;
bf0f6f24 4307 }
8f4d37ec 4308
2069dd75 4309 for_each_sched_entity(se) {
0f317143 4310 cfs_rq = cfs_rq_of(se);
953bfcd1 4311 cfs_rq->h_nr_running++;
2069dd75 4312
85dac906
PT
4313 if (cfs_rq_throttled(cfs_rq))
4314 break;
4315
9d89c257 4316 update_load_avg(se, 1);
17bc14b7 4317 update_cfs_shares(cfs_rq);
2069dd75
PZ
4318 }
4319
cd126afe 4320 if (!se)
72465447 4321 add_nr_running(rq, 1);
cd126afe 4322
a4c2f00f 4323 hrtick_update(rq);
bf0f6f24
IM
4324}
4325
2f36825b
VP
4326static void set_next_buddy(struct sched_entity *se);
4327
bf0f6f24
IM
4328/*
4329 * The dequeue_task method is called before nr_running is
4330 * decreased. We remove the task from the rbtree and
4331 * update the fair scheduling stats:
4332 */
371fd7e7 4333static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4334{
4335 struct cfs_rq *cfs_rq;
62fb1851 4336 struct sched_entity *se = &p->se;
2f36825b 4337 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4338
4339 for_each_sched_entity(se) {
4340 cfs_rq = cfs_rq_of(se);
371fd7e7 4341 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4342
4343 /*
4344 * end evaluation on encountering a throttled cfs_rq
4345 *
4346 * note: in the case of encountering a throttled cfs_rq we will
4347 * post the final h_nr_running decrement below.
4348 */
4349 if (cfs_rq_throttled(cfs_rq))
4350 break;
953bfcd1 4351 cfs_rq->h_nr_running--;
2069dd75 4352
bf0f6f24 4353 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4354 if (cfs_rq->load.weight) {
4355 /*
4356 * Bias pick_next to pick a task from this cfs_rq, as
4357 * p is sleeping when it is within its sched_slice.
4358 */
4359 if (task_sleep && parent_entity(se))
4360 set_next_buddy(parent_entity(se));
9598c82d
PT
4361
4362 /* avoid re-evaluating load for this entity */
4363 se = parent_entity(se);
bf0f6f24 4364 break;
2f36825b 4365 }
371fd7e7 4366 flags |= DEQUEUE_SLEEP;
bf0f6f24 4367 }
8f4d37ec 4368
2069dd75 4369 for_each_sched_entity(se) {
0f317143 4370 cfs_rq = cfs_rq_of(se);
953bfcd1 4371 cfs_rq->h_nr_running--;
2069dd75 4372
85dac906
PT
4373 if (cfs_rq_throttled(cfs_rq))
4374 break;
4375
9d89c257 4376 update_load_avg(se, 1);
17bc14b7 4377 update_cfs_shares(cfs_rq);
2069dd75
PZ
4378 }
4379
cd126afe 4380 if (!se)
72465447 4381 sub_nr_running(rq, 1);
cd126afe 4382
a4c2f00f 4383 hrtick_update(rq);
bf0f6f24
IM
4384}
4385
e7693a36 4386#ifdef CONFIG_SMP
3289bdb4
PZ
4387
4388/*
4389 * per rq 'load' arrray crap; XXX kill this.
4390 */
4391
4392/*
d937cdc5 4393 * The exact cpuload calculated at every tick would be:
3289bdb4 4394 *
d937cdc5
PZ
4395 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4396 *
4397 * If a cpu misses updates for n ticks (as it was idle) and update gets
4398 * called on the n+1-th tick when cpu may be busy, then we have:
4399 *
4400 * load_n = (1 - 1/2^i)^n * load_0
4401 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4402 *
4403 * decay_load_missed() below does efficient calculation of
3289bdb4 4404 *
d937cdc5
PZ
4405 * load' = (1 - 1/2^i)^n * load
4406 *
4407 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4408 * This allows us to precompute the above in said factors, thereby allowing the
4409 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4410 * fixed_power_int())
3289bdb4 4411 *
d937cdc5 4412 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4413 */
4414#define DEGRADE_SHIFT 7
d937cdc5
PZ
4415
4416static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4417static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4418 { 0, 0, 0, 0, 0, 0, 0, 0 },
4419 { 64, 32, 8, 0, 0, 0, 0, 0 },
4420 { 96, 72, 40, 12, 1, 0, 0, 0 },
4421 { 112, 98, 75, 43, 15, 1, 0, 0 },
4422 { 120, 112, 98, 76, 45, 16, 2, 0 }
4423};
3289bdb4
PZ
4424
4425/*
4426 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4427 * would be when CPU is idle and so we just decay the old load without
4428 * adding any new load.
4429 */
4430static unsigned long
4431decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4432{
4433 int j = 0;
4434
4435 if (!missed_updates)
4436 return load;
4437
4438 if (missed_updates >= degrade_zero_ticks[idx])
4439 return 0;
4440
4441 if (idx == 1)
4442 return load >> missed_updates;
4443
4444 while (missed_updates) {
4445 if (missed_updates % 2)
4446 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4447
4448 missed_updates >>= 1;
4449 j++;
4450 }
4451 return load;
4452}
4453
59543275
BP
4454/**
4455 * __update_cpu_load - update the rq->cpu_load[] statistics
4456 * @this_rq: The rq to update statistics for
4457 * @this_load: The current load
4458 * @pending_updates: The number of missed updates
4459 * @active: !0 for NOHZ_FULL
4460 *
3289bdb4 4461 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4462 * scheduler tick (TICK_NSEC).
4463 *
4464 * This function computes a decaying average:
4465 *
4466 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4467 *
4468 * Because of NOHZ it might not get called on every tick which gives need for
4469 * the @pending_updates argument.
4470 *
4471 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4472 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4473 * = A * (A * load[i]_n-2 + B) + B
4474 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4475 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4476 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4477 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4478 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4479 *
4480 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4481 * any change in load would have resulted in the tick being turned back on.
4482 *
4483 * For regular NOHZ, this reduces to:
4484 *
4485 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4486 *
4487 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4488 * term. See the @active paramter.
3289bdb4
PZ
4489 */
4490static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
59543275 4491 unsigned long pending_updates, int active)
3289bdb4 4492{
59543275 4493 unsigned long tickless_load = active ? this_rq->cpu_load[0] : 0;
3289bdb4
PZ
4494 int i, scale;
4495
4496 this_rq->nr_load_updates++;
4497
4498 /* Update our load: */
4499 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4500 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4501 unsigned long old_load, new_load;
4502
4503 /* scale is effectively 1 << i now, and >> i divides by scale */
4504
59543275 4505 old_load = this_rq->cpu_load[i] - tickless_load;
3289bdb4 4506 old_load = decay_load_missed(old_load, pending_updates - 1, i);
59543275 4507 old_load += tickless_load;
3289bdb4
PZ
4508 new_load = this_load;
4509 /*
4510 * Round up the averaging division if load is increasing. This
4511 * prevents us from getting stuck on 9 if the load is 10, for
4512 * example.
4513 */
4514 if (new_load > old_load)
4515 new_load += scale - 1;
4516
4517 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4518 }
4519
4520 sched_avg_update(this_rq);
4521}
4522
7ea241af
YD
4523/* Used instead of source_load when we know the type == 0 */
4524static unsigned long weighted_cpuload(const int cpu)
4525{
4526 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4527}
4528
3289bdb4
PZ
4529#ifdef CONFIG_NO_HZ_COMMON
4530/*
4531 * There is no sane way to deal with nohz on smp when using jiffies because the
4532 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4533 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4534 *
4535 * Therefore we cannot use the delta approach from the regular tick since that
4536 * would seriously skew the load calculation. However we'll make do for those
4537 * updates happening while idle (nohz_idle_balance) or coming out of idle
4538 * (tick_nohz_idle_exit).
4539 *
4540 * This means we might still be one tick off for nohz periods.
4541 */
4542
4543/*
4544 * Called from nohz_idle_balance() to update the load ratings before doing the
4545 * idle balance.
4546 */
4547static void update_idle_cpu_load(struct rq *this_rq)
4548{
316c1608 4549 unsigned long curr_jiffies = READ_ONCE(jiffies);
7ea241af 4550 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4551 unsigned long pending_updates;
4552
4553 /*
4554 * bail if there's load or we're actually up-to-date.
4555 */
4556 if (load || curr_jiffies == this_rq->last_load_update_tick)
4557 return;
4558
4559 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4560 this_rq->last_load_update_tick = curr_jiffies;
4561
59543275 4562 __update_cpu_load(this_rq, load, pending_updates, 0);
3289bdb4
PZ
4563}
4564
4565/*
4566 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4567 */
525705d1 4568void update_cpu_load_nohz(int active)
3289bdb4
PZ
4569{
4570 struct rq *this_rq = this_rq();
316c1608 4571 unsigned long curr_jiffies = READ_ONCE(jiffies);
525705d1 4572 unsigned long load = active ? weighted_cpuload(cpu_of(this_rq)) : 0;
3289bdb4
PZ
4573 unsigned long pending_updates;
4574
4575 if (curr_jiffies == this_rq->last_load_update_tick)
4576 return;
4577
4578 raw_spin_lock(&this_rq->lock);
4579 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4580 if (pending_updates) {
4581 this_rq->last_load_update_tick = curr_jiffies;
4582 /*
525705d1
BP
4583 * In the regular NOHZ case, we were idle, this means load 0.
4584 * In the NOHZ_FULL case, we were non-idle, we should consider
4585 * its weighted load.
3289bdb4 4586 */
525705d1 4587 __update_cpu_load(this_rq, load, pending_updates, active);
3289bdb4
PZ
4588 }
4589 raw_spin_unlock(&this_rq->lock);
4590}
4591#endif /* CONFIG_NO_HZ */
4592
4593/*
4594 * Called from scheduler_tick()
4595 */
4596void update_cpu_load_active(struct rq *this_rq)
4597{
7ea241af 4598 unsigned long load = weighted_cpuload(cpu_of(this_rq));
3289bdb4
PZ
4599 /*
4600 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4601 */
4602 this_rq->last_load_update_tick = jiffies;
59543275 4603 __update_cpu_load(this_rq, load, 1, 1);
3289bdb4
PZ
4604}
4605
029632fb
PZ
4606/*
4607 * Return a low guess at the load of a migration-source cpu weighted
4608 * according to the scheduling class and "nice" value.
4609 *
4610 * We want to under-estimate the load of migration sources, to
4611 * balance conservatively.
4612 */
4613static unsigned long source_load(int cpu, int type)
4614{
4615 struct rq *rq = cpu_rq(cpu);
4616 unsigned long total = weighted_cpuload(cpu);
4617
4618 if (type == 0 || !sched_feat(LB_BIAS))
4619 return total;
4620
4621 return min(rq->cpu_load[type-1], total);
4622}
4623
4624/*
4625 * Return a high guess at the load of a migration-target cpu weighted
4626 * according to the scheduling class and "nice" value.
4627 */
4628static unsigned long target_load(int cpu, int type)
4629{
4630 struct rq *rq = cpu_rq(cpu);
4631 unsigned long total = weighted_cpuload(cpu);
4632
4633 if (type == 0 || !sched_feat(LB_BIAS))
4634 return total;
4635
4636 return max(rq->cpu_load[type-1], total);
4637}
4638
ced549fa 4639static unsigned long capacity_of(int cpu)
029632fb 4640{
ced549fa 4641 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4642}
4643
ca6d75e6
VG
4644static unsigned long capacity_orig_of(int cpu)
4645{
4646 return cpu_rq(cpu)->cpu_capacity_orig;
4647}
4648
029632fb
PZ
4649static unsigned long cpu_avg_load_per_task(int cpu)
4650{
4651 struct rq *rq = cpu_rq(cpu);
316c1608 4652 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4653 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4654
4655 if (nr_running)
b92486cb 4656 return load_avg / nr_running;
029632fb
PZ
4657
4658 return 0;
4659}
4660
62470419
MW
4661static void record_wakee(struct task_struct *p)
4662{
4663 /*
4664 * Rough decay (wiping) for cost saving, don't worry
4665 * about the boundary, really active task won't care
4666 * about the loss.
4667 */
2538d960 4668 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4669 current->wakee_flips >>= 1;
62470419
MW
4670 current->wakee_flip_decay_ts = jiffies;
4671 }
4672
4673 if (current->last_wakee != p) {
4674 current->last_wakee = p;
4675 current->wakee_flips++;
4676 }
4677}
098fb9db 4678
74f8e4b2 4679static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4680{
4681 struct sched_entity *se = &p->se;
4682 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4683 u64 min_vruntime;
4684
4685#ifndef CONFIG_64BIT
4686 u64 min_vruntime_copy;
88ec22d3 4687
3fe1698b
PZ
4688 do {
4689 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4690 smp_rmb();
4691 min_vruntime = cfs_rq->min_vruntime;
4692 } while (min_vruntime != min_vruntime_copy);
4693#else
4694 min_vruntime = cfs_rq->min_vruntime;
4695#endif
88ec22d3 4696
3fe1698b 4697 se->vruntime -= min_vruntime;
62470419 4698 record_wakee(p);
88ec22d3
PZ
4699}
4700
bb3469ac 4701#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4702/*
4703 * effective_load() calculates the load change as seen from the root_task_group
4704 *
4705 * Adding load to a group doesn't make a group heavier, but can cause movement
4706 * of group shares between cpus. Assuming the shares were perfectly aligned one
4707 * can calculate the shift in shares.
cf5f0acf
PZ
4708 *
4709 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4710 * on this @cpu and results in a total addition (subtraction) of @wg to the
4711 * total group weight.
4712 *
4713 * Given a runqueue weight distribution (rw_i) we can compute a shares
4714 * distribution (s_i) using:
4715 *
4716 * s_i = rw_i / \Sum rw_j (1)
4717 *
4718 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4719 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4720 * shares distribution (s_i):
4721 *
4722 * rw_i = { 2, 4, 1, 0 }
4723 * s_i = { 2/7, 4/7, 1/7, 0 }
4724 *
4725 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4726 * task used to run on and the CPU the waker is running on), we need to
4727 * compute the effect of waking a task on either CPU and, in case of a sync
4728 * wakeup, compute the effect of the current task going to sleep.
4729 *
4730 * So for a change of @wl to the local @cpu with an overall group weight change
4731 * of @wl we can compute the new shares distribution (s'_i) using:
4732 *
4733 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4734 *
4735 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4736 * differences in waking a task to CPU 0. The additional task changes the
4737 * weight and shares distributions like:
4738 *
4739 * rw'_i = { 3, 4, 1, 0 }
4740 * s'_i = { 3/8, 4/8, 1/8, 0 }
4741 *
4742 * We can then compute the difference in effective weight by using:
4743 *
4744 * dw_i = S * (s'_i - s_i) (3)
4745 *
4746 * Where 'S' is the group weight as seen by its parent.
4747 *
4748 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4749 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4750 * 4/7) times the weight of the group.
f5bfb7d9 4751 */
2069dd75 4752static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4753{
4be9daaa 4754 struct sched_entity *se = tg->se[cpu];
f1d239f7 4755
9722c2da 4756 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4757 return wl;
4758
4be9daaa 4759 for_each_sched_entity(se) {
cf5f0acf 4760 long w, W;
4be9daaa 4761
977dda7c 4762 tg = se->my_q->tg;
bb3469ac 4763
cf5f0acf
PZ
4764 /*
4765 * W = @wg + \Sum rw_j
4766 */
4767 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4768
cf5f0acf
PZ
4769 /*
4770 * w = rw_i + @wl
4771 */
7ea241af 4772 w = cfs_rq_load_avg(se->my_q) + wl;
940959e9 4773
cf5f0acf
PZ
4774 /*
4775 * wl = S * s'_i; see (2)
4776 */
4777 if (W > 0 && w < W)
32a8df4e 4778 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4779 else
4780 wl = tg->shares;
940959e9 4781
cf5f0acf
PZ
4782 /*
4783 * Per the above, wl is the new se->load.weight value; since
4784 * those are clipped to [MIN_SHARES, ...) do so now. See
4785 * calc_cfs_shares().
4786 */
977dda7c
PT
4787 if (wl < MIN_SHARES)
4788 wl = MIN_SHARES;
cf5f0acf
PZ
4789
4790 /*
4791 * wl = dw_i = S * (s'_i - s_i); see (3)
4792 */
9d89c257 4793 wl -= se->avg.load_avg;
cf5f0acf
PZ
4794
4795 /*
4796 * Recursively apply this logic to all parent groups to compute
4797 * the final effective load change on the root group. Since
4798 * only the @tg group gets extra weight, all parent groups can
4799 * only redistribute existing shares. @wl is the shift in shares
4800 * resulting from this level per the above.
4801 */
4be9daaa 4802 wg = 0;
4be9daaa 4803 }
bb3469ac 4804
4be9daaa 4805 return wl;
bb3469ac
PZ
4806}
4807#else
4be9daaa 4808
58d081b5 4809static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4810{
83378269 4811 return wl;
bb3469ac 4812}
4be9daaa 4813
bb3469ac
PZ
4814#endif
4815
63b0e9ed
MG
4816/*
4817 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4818 * A waker of many should wake a different task than the one last awakened
4819 * at a frequency roughly N times higher than one of its wakees. In order
4820 * to determine whether we should let the load spread vs consolodating to
4821 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4822 * partner, and a factor of lls_size higher frequency in the other. With
4823 * both conditions met, we can be relatively sure that the relationship is
4824 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4825 * being client/server, worker/dispatcher, interrupt source or whatever is
4826 * irrelevant, spread criteria is apparent partner count exceeds socket size.
4827 */
62470419
MW
4828static int wake_wide(struct task_struct *p)
4829{
63b0e9ed
MG
4830 unsigned int master = current->wakee_flips;
4831 unsigned int slave = p->wakee_flips;
7d9ffa89 4832 int factor = this_cpu_read(sd_llc_size);
62470419 4833
63b0e9ed
MG
4834 if (master < slave)
4835 swap(master, slave);
4836 if (slave < factor || master < slave * factor)
4837 return 0;
4838 return 1;
62470419
MW
4839}
4840
c88d5910 4841static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4842{
e37b6a7b 4843 s64 this_load, load;
bd61c98f 4844 s64 this_eff_load, prev_eff_load;
c88d5910 4845 int idx, this_cpu, prev_cpu;
c88d5910 4846 struct task_group *tg;
83378269 4847 unsigned long weight;
b3137bc8 4848 int balanced;
098fb9db 4849
c88d5910
PZ
4850 idx = sd->wake_idx;
4851 this_cpu = smp_processor_id();
4852 prev_cpu = task_cpu(p);
4853 load = source_load(prev_cpu, idx);
4854 this_load = target_load(this_cpu, idx);
098fb9db 4855
b3137bc8
MG
4856 /*
4857 * If sync wakeup then subtract the (maximum possible)
4858 * effect of the currently running task from the load
4859 * of the current CPU:
4860 */
83378269
PZ
4861 if (sync) {
4862 tg = task_group(current);
9d89c257 4863 weight = current->se.avg.load_avg;
83378269 4864
c88d5910 4865 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4866 load += effective_load(tg, prev_cpu, 0, -weight);
4867 }
b3137bc8 4868
83378269 4869 tg = task_group(p);
9d89c257 4870 weight = p->se.avg.load_avg;
b3137bc8 4871
71a29aa7
PZ
4872 /*
4873 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4874 * due to the sync cause above having dropped this_load to 0, we'll
4875 * always have an imbalance, but there's really nothing you can do
4876 * about that, so that's good too.
71a29aa7
PZ
4877 *
4878 * Otherwise check if either cpus are near enough in load to allow this
4879 * task to be woken on this_cpu.
4880 */
bd61c98f
VG
4881 this_eff_load = 100;
4882 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4883
bd61c98f
VG
4884 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4885 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4886
bd61c98f 4887 if (this_load > 0) {
e51fd5e2
PZ
4888 this_eff_load *= this_load +
4889 effective_load(tg, this_cpu, weight, weight);
4890
e51fd5e2 4891 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4892 }
e51fd5e2 4893
bd61c98f 4894 balanced = this_eff_load <= prev_eff_load;
098fb9db 4895
41acab88 4896 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4897
05bfb65f
VG
4898 if (!balanced)
4899 return 0;
098fb9db 4900
05bfb65f
VG
4901 schedstat_inc(sd, ttwu_move_affine);
4902 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4903
4904 return 1;
098fb9db
IM
4905}
4906
aaee1203
PZ
4907/*
4908 * find_idlest_group finds and returns the least busy CPU group within the
4909 * domain.
4910 */
4911static struct sched_group *
78e7ed53 4912find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4913 int this_cpu, int sd_flag)
e7693a36 4914{
b3bd3de6 4915 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4916 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4917 int load_idx = sd->forkexec_idx;
aaee1203 4918 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4919
c44f2a02
VG
4920 if (sd_flag & SD_BALANCE_WAKE)
4921 load_idx = sd->wake_idx;
4922
aaee1203
PZ
4923 do {
4924 unsigned long load, avg_load;
4925 int local_group;
4926 int i;
e7693a36 4927
aaee1203
PZ
4928 /* Skip over this group if it has no CPUs allowed */
4929 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4930 tsk_cpus_allowed(p)))
aaee1203
PZ
4931 continue;
4932
4933 local_group = cpumask_test_cpu(this_cpu,
4934 sched_group_cpus(group));
4935
4936 /* Tally up the load of all CPUs in the group */
4937 avg_load = 0;
4938
4939 for_each_cpu(i, sched_group_cpus(group)) {
4940 /* Bias balancing toward cpus of our domain */
4941 if (local_group)
4942 load = source_load(i, load_idx);
4943 else
4944 load = target_load(i, load_idx);
4945
4946 avg_load += load;
4947 }
4948
63b2ca30 4949 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4950 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4951
4952 if (local_group) {
4953 this_load = avg_load;
aaee1203
PZ
4954 } else if (avg_load < min_load) {
4955 min_load = avg_load;
4956 idlest = group;
4957 }
4958 } while (group = group->next, group != sd->groups);
4959
4960 if (!idlest || 100*this_load < imbalance*min_load)
4961 return NULL;
4962 return idlest;
4963}
4964
4965/*
4966 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4967 */
4968static int
4969find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4970{
4971 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4972 unsigned int min_exit_latency = UINT_MAX;
4973 u64 latest_idle_timestamp = 0;
4974 int least_loaded_cpu = this_cpu;
4975 int shallowest_idle_cpu = -1;
aaee1203
PZ
4976 int i;
4977
4978 /* Traverse only the allowed CPUs */
fa17b507 4979 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4980 if (idle_cpu(i)) {
4981 struct rq *rq = cpu_rq(i);
4982 struct cpuidle_state *idle = idle_get_state(rq);
4983 if (idle && idle->exit_latency < min_exit_latency) {
4984 /*
4985 * We give priority to a CPU whose idle state
4986 * has the smallest exit latency irrespective
4987 * of any idle timestamp.
4988 */
4989 min_exit_latency = idle->exit_latency;
4990 latest_idle_timestamp = rq->idle_stamp;
4991 shallowest_idle_cpu = i;
4992 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4993 rq->idle_stamp > latest_idle_timestamp) {
4994 /*
4995 * If equal or no active idle state, then
4996 * the most recently idled CPU might have
4997 * a warmer cache.
4998 */
4999 latest_idle_timestamp = rq->idle_stamp;
5000 shallowest_idle_cpu = i;
5001 }
9f96742a 5002 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5003 load = weighted_cpuload(i);
5004 if (load < min_load || (load == min_load && i == this_cpu)) {
5005 min_load = load;
5006 least_loaded_cpu = i;
5007 }
e7693a36
GH
5008 }
5009 }
5010
83a0a96a 5011 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5012}
e7693a36 5013
a50bde51
PZ
5014/*
5015 * Try and locate an idle CPU in the sched_domain.
5016 */
99bd5e2f 5017static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5018{
99bd5e2f 5019 struct sched_domain *sd;
37407ea7 5020 struct sched_group *sg;
e0a79f52 5021 int i = task_cpu(p);
a50bde51 5022
e0a79f52
MG
5023 if (idle_cpu(target))
5024 return target;
99bd5e2f
SS
5025
5026 /*
e0a79f52 5027 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5028 */
e0a79f52
MG
5029 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5030 return i;
a50bde51
PZ
5031
5032 /*
37407ea7 5033 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 5034 */
518cd623 5035 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5036 for_each_lower_domain(sd) {
37407ea7
LT
5037 sg = sd->groups;
5038 do {
5039 if (!cpumask_intersects(sched_group_cpus(sg),
5040 tsk_cpus_allowed(p)))
5041 goto next;
5042
5043 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5044 if (i == target || !idle_cpu(i))
37407ea7
LT
5045 goto next;
5046 }
970e1789 5047
37407ea7
LT
5048 target = cpumask_first_and(sched_group_cpus(sg),
5049 tsk_cpus_allowed(p));
5050 goto done;
5051next:
5052 sg = sg->next;
5053 } while (sg != sd->groups);
5054 }
5055done:
a50bde51
PZ
5056 return target;
5057}
231678b7 5058
8bb5b00c 5059/*
9e91d61d 5060 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5061 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5062 * compare the utilization with the capacity of the CPU that is available for
5063 * CFS task (ie cpu_capacity).
231678b7
DE
5064 *
5065 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5066 * recent utilization of currently non-runnable tasks on a CPU. It represents
5067 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5068 * capacity_orig is the cpu_capacity available at the highest frequency
5069 * (arch_scale_freq_capacity()).
5070 * The utilization of a CPU converges towards a sum equal to or less than the
5071 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5072 * the running time on this CPU scaled by capacity_curr.
5073 *
5074 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5075 * higher than capacity_orig because of unfortunate rounding in
5076 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5077 * the average stabilizes with the new running time. We need to check that the
5078 * utilization stays within the range of [0..capacity_orig] and cap it if
5079 * necessary. Without utilization capping, a group could be seen as overloaded
5080 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5081 * available capacity. We allow utilization to overshoot capacity_curr (but not
5082 * capacity_orig) as it useful for predicting the capacity required after task
5083 * migrations (scheduler-driven DVFS).
8bb5b00c 5084 */
9e91d61d 5085static int cpu_util(int cpu)
8bb5b00c 5086{
9e91d61d 5087 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5088 unsigned long capacity = capacity_orig_of(cpu);
5089
231678b7 5090 return (util >= capacity) ? capacity : util;
8bb5b00c 5091}
a50bde51 5092
aaee1203 5093/*
de91b9cb
MR
5094 * select_task_rq_fair: Select target runqueue for the waking task in domains
5095 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5096 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5097 *
de91b9cb
MR
5098 * Balances load by selecting the idlest cpu in the idlest group, or under
5099 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5100 *
de91b9cb 5101 * Returns the target cpu number.
aaee1203
PZ
5102 *
5103 * preempt must be disabled.
5104 */
0017d735 5105static int
ac66f547 5106select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5107{
29cd8bae 5108 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5109 int cpu = smp_processor_id();
63b0e9ed 5110 int new_cpu = prev_cpu;
99bd5e2f 5111 int want_affine = 0;
5158f4e4 5112 int sync = wake_flags & WF_SYNC;
c88d5910 5113
a8edd075 5114 if (sd_flag & SD_BALANCE_WAKE)
63b0e9ed 5115 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 5116
dce840a0 5117 rcu_read_lock();
aaee1203 5118 for_each_domain(cpu, tmp) {
e4f42888 5119 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5120 break;
e4f42888 5121
fe3bcfe1 5122 /*
99bd5e2f
SS
5123 * If both cpu and prev_cpu are part of this domain,
5124 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5125 */
99bd5e2f
SS
5126 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5127 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5128 affine_sd = tmp;
29cd8bae 5129 break;
f03542a7 5130 }
29cd8bae 5131
f03542a7 5132 if (tmp->flags & sd_flag)
29cd8bae 5133 sd = tmp;
63b0e9ed
MG
5134 else if (!want_affine)
5135 break;
29cd8bae
PZ
5136 }
5137
63b0e9ed
MG
5138 if (affine_sd) {
5139 sd = NULL; /* Prefer wake_affine over balance flags */
5140 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5141 new_cpu = cpu;
8b911acd 5142 }
e7693a36 5143
63b0e9ed
MG
5144 if (!sd) {
5145 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5146 new_cpu = select_idle_sibling(p, new_cpu);
5147
5148 } else while (sd) {
aaee1203 5149 struct sched_group *group;
c88d5910 5150 int weight;
098fb9db 5151
0763a660 5152 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5153 sd = sd->child;
5154 continue;
5155 }
098fb9db 5156
c44f2a02 5157 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5158 if (!group) {
5159 sd = sd->child;
5160 continue;
5161 }
4ae7d5ce 5162
d7c33c49 5163 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5164 if (new_cpu == -1 || new_cpu == cpu) {
5165 /* Now try balancing at a lower domain level of cpu */
5166 sd = sd->child;
5167 continue;
e7693a36 5168 }
aaee1203
PZ
5169
5170 /* Now try balancing at a lower domain level of new_cpu */
5171 cpu = new_cpu;
669c55e9 5172 weight = sd->span_weight;
aaee1203
PZ
5173 sd = NULL;
5174 for_each_domain(cpu, tmp) {
669c55e9 5175 if (weight <= tmp->span_weight)
aaee1203 5176 break;
0763a660 5177 if (tmp->flags & sd_flag)
aaee1203
PZ
5178 sd = tmp;
5179 }
5180 /* while loop will break here if sd == NULL */
e7693a36 5181 }
dce840a0 5182 rcu_read_unlock();
e7693a36 5183
c88d5910 5184 return new_cpu;
e7693a36 5185}
0a74bef8
PT
5186
5187/*
5188 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5189 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5190 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5191 */
5a4fd036 5192static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5193{
aff3e498 5194 /*
9d89c257
YD
5195 * We are supposed to update the task to "current" time, then its up to date
5196 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5197 * what current time is, so simply throw away the out-of-date time. This
5198 * will result in the wakee task is less decayed, but giving the wakee more
5199 * load sounds not bad.
aff3e498 5200 */
9d89c257
YD
5201 remove_entity_load_avg(&p->se);
5202
5203 /* Tell new CPU we are migrated */
5204 p->se.avg.last_update_time = 0;
3944a927
BS
5205
5206 /* We have migrated, no longer consider this task hot */
9d89c257 5207 p->se.exec_start = 0;
0a74bef8 5208}
12695578
YD
5209
5210static void task_dead_fair(struct task_struct *p)
5211{
5212 remove_entity_load_avg(&p->se);
5213}
e7693a36
GH
5214#endif /* CONFIG_SMP */
5215
e52fb7c0
PZ
5216static unsigned long
5217wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5218{
5219 unsigned long gran = sysctl_sched_wakeup_granularity;
5220
5221 /*
e52fb7c0
PZ
5222 * Since its curr running now, convert the gran from real-time
5223 * to virtual-time in his units.
13814d42
MG
5224 *
5225 * By using 'se' instead of 'curr' we penalize light tasks, so
5226 * they get preempted easier. That is, if 'se' < 'curr' then
5227 * the resulting gran will be larger, therefore penalizing the
5228 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5229 * be smaller, again penalizing the lighter task.
5230 *
5231 * This is especially important for buddies when the leftmost
5232 * task is higher priority than the buddy.
0bbd3336 5233 */
f4ad9bd2 5234 return calc_delta_fair(gran, se);
0bbd3336
PZ
5235}
5236
464b7527
PZ
5237/*
5238 * Should 'se' preempt 'curr'.
5239 *
5240 * |s1
5241 * |s2
5242 * |s3
5243 * g
5244 * |<--->|c
5245 *
5246 * w(c, s1) = -1
5247 * w(c, s2) = 0
5248 * w(c, s3) = 1
5249 *
5250 */
5251static int
5252wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5253{
5254 s64 gran, vdiff = curr->vruntime - se->vruntime;
5255
5256 if (vdiff <= 0)
5257 return -1;
5258
e52fb7c0 5259 gran = wakeup_gran(curr, se);
464b7527
PZ
5260 if (vdiff > gran)
5261 return 1;
5262
5263 return 0;
5264}
5265
02479099
PZ
5266static void set_last_buddy(struct sched_entity *se)
5267{
69c80f3e
VP
5268 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5269 return;
5270
5271 for_each_sched_entity(se)
5272 cfs_rq_of(se)->last = se;
02479099
PZ
5273}
5274
5275static void set_next_buddy(struct sched_entity *se)
5276{
69c80f3e
VP
5277 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5278 return;
5279
5280 for_each_sched_entity(se)
5281 cfs_rq_of(se)->next = se;
02479099
PZ
5282}
5283
ac53db59
RR
5284static void set_skip_buddy(struct sched_entity *se)
5285{
69c80f3e
VP
5286 for_each_sched_entity(se)
5287 cfs_rq_of(se)->skip = se;
ac53db59
RR
5288}
5289
bf0f6f24
IM
5290/*
5291 * Preempt the current task with a newly woken task if needed:
5292 */
5a9b86f6 5293static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5294{
5295 struct task_struct *curr = rq->curr;
8651a86c 5296 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5297 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5298 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5299 int next_buddy_marked = 0;
bf0f6f24 5300
4ae7d5ce
IM
5301 if (unlikely(se == pse))
5302 return;
5303
5238cdd3 5304 /*
163122b7 5305 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5306 * unconditionally check_prempt_curr() after an enqueue (which may have
5307 * lead to a throttle). This both saves work and prevents false
5308 * next-buddy nomination below.
5309 */
5310 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5311 return;
5312
2f36825b 5313 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5314 set_next_buddy(pse);
2f36825b
VP
5315 next_buddy_marked = 1;
5316 }
57fdc26d 5317
aec0a514
BR
5318 /*
5319 * We can come here with TIF_NEED_RESCHED already set from new task
5320 * wake up path.
5238cdd3
PT
5321 *
5322 * Note: this also catches the edge-case of curr being in a throttled
5323 * group (e.g. via set_curr_task), since update_curr() (in the
5324 * enqueue of curr) will have resulted in resched being set. This
5325 * prevents us from potentially nominating it as a false LAST_BUDDY
5326 * below.
aec0a514
BR
5327 */
5328 if (test_tsk_need_resched(curr))
5329 return;
5330
a2f5c9ab
DH
5331 /* Idle tasks are by definition preempted by non-idle tasks. */
5332 if (unlikely(curr->policy == SCHED_IDLE) &&
5333 likely(p->policy != SCHED_IDLE))
5334 goto preempt;
5335
91c234b4 5336 /*
a2f5c9ab
DH
5337 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5338 * is driven by the tick):
91c234b4 5339 */
8ed92e51 5340 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5341 return;
bf0f6f24 5342
464b7527 5343 find_matching_se(&se, &pse);
9bbd7374 5344 update_curr(cfs_rq_of(se));
002f128b 5345 BUG_ON(!pse);
2f36825b
VP
5346 if (wakeup_preempt_entity(se, pse) == 1) {
5347 /*
5348 * Bias pick_next to pick the sched entity that is
5349 * triggering this preemption.
5350 */
5351 if (!next_buddy_marked)
5352 set_next_buddy(pse);
3a7e73a2 5353 goto preempt;
2f36825b 5354 }
464b7527 5355
3a7e73a2 5356 return;
a65ac745 5357
3a7e73a2 5358preempt:
8875125e 5359 resched_curr(rq);
3a7e73a2
PZ
5360 /*
5361 * Only set the backward buddy when the current task is still
5362 * on the rq. This can happen when a wakeup gets interleaved
5363 * with schedule on the ->pre_schedule() or idle_balance()
5364 * point, either of which can * drop the rq lock.
5365 *
5366 * Also, during early boot the idle thread is in the fair class,
5367 * for obvious reasons its a bad idea to schedule back to it.
5368 */
5369 if (unlikely(!se->on_rq || curr == rq->idle))
5370 return;
5371
5372 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5373 set_last_buddy(se);
bf0f6f24
IM
5374}
5375
606dba2e
PZ
5376static struct task_struct *
5377pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5378{
5379 struct cfs_rq *cfs_rq = &rq->cfs;
5380 struct sched_entity *se;
678d5718 5381 struct task_struct *p;
37e117c0 5382 int new_tasks;
678d5718 5383
6e83125c 5384again:
678d5718
PZ
5385#ifdef CONFIG_FAIR_GROUP_SCHED
5386 if (!cfs_rq->nr_running)
38033c37 5387 goto idle;
678d5718 5388
3f1d2a31 5389 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5390 goto simple;
5391
5392 /*
5393 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5394 * likely that a next task is from the same cgroup as the current.
5395 *
5396 * Therefore attempt to avoid putting and setting the entire cgroup
5397 * hierarchy, only change the part that actually changes.
5398 */
5399
5400 do {
5401 struct sched_entity *curr = cfs_rq->curr;
5402
5403 /*
5404 * Since we got here without doing put_prev_entity() we also
5405 * have to consider cfs_rq->curr. If it is still a runnable
5406 * entity, update_curr() will update its vruntime, otherwise
5407 * forget we've ever seen it.
5408 */
54d27365
BS
5409 if (curr) {
5410 if (curr->on_rq)
5411 update_curr(cfs_rq);
5412 else
5413 curr = NULL;
678d5718 5414
54d27365
BS
5415 /*
5416 * This call to check_cfs_rq_runtime() will do the
5417 * throttle and dequeue its entity in the parent(s).
5418 * Therefore the 'simple' nr_running test will indeed
5419 * be correct.
5420 */
5421 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5422 goto simple;
5423 }
678d5718
PZ
5424
5425 se = pick_next_entity(cfs_rq, curr);
5426 cfs_rq = group_cfs_rq(se);
5427 } while (cfs_rq);
5428
5429 p = task_of(se);
5430
5431 /*
5432 * Since we haven't yet done put_prev_entity and if the selected task
5433 * is a different task than we started out with, try and touch the
5434 * least amount of cfs_rqs.
5435 */
5436 if (prev != p) {
5437 struct sched_entity *pse = &prev->se;
5438
5439 while (!(cfs_rq = is_same_group(se, pse))) {
5440 int se_depth = se->depth;
5441 int pse_depth = pse->depth;
5442
5443 if (se_depth <= pse_depth) {
5444 put_prev_entity(cfs_rq_of(pse), pse);
5445 pse = parent_entity(pse);
5446 }
5447 if (se_depth >= pse_depth) {
5448 set_next_entity(cfs_rq_of(se), se);
5449 se = parent_entity(se);
5450 }
5451 }
5452
5453 put_prev_entity(cfs_rq, pse);
5454 set_next_entity(cfs_rq, se);
5455 }
5456
5457 if (hrtick_enabled(rq))
5458 hrtick_start_fair(rq, p);
5459
5460 return p;
5461simple:
5462 cfs_rq = &rq->cfs;
5463#endif
bf0f6f24 5464
36ace27e 5465 if (!cfs_rq->nr_running)
38033c37 5466 goto idle;
bf0f6f24 5467
3f1d2a31 5468 put_prev_task(rq, prev);
606dba2e 5469
bf0f6f24 5470 do {
678d5718 5471 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5472 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5473 cfs_rq = group_cfs_rq(se);
5474 } while (cfs_rq);
5475
8f4d37ec 5476 p = task_of(se);
678d5718 5477
b39e66ea
MG
5478 if (hrtick_enabled(rq))
5479 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5480
5481 return p;
38033c37
PZ
5482
5483idle:
cbce1a68
PZ
5484 /*
5485 * This is OK, because current is on_cpu, which avoids it being picked
5486 * for load-balance and preemption/IRQs are still disabled avoiding
5487 * further scheduler activity on it and we're being very careful to
5488 * re-start the picking loop.
5489 */
5490 lockdep_unpin_lock(&rq->lock);
e4aa358b 5491 new_tasks = idle_balance(rq);
cbce1a68 5492 lockdep_pin_lock(&rq->lock);
37e117c0
PZ
5493 /*
5494 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5495 * possible for any higher priority task to appear. In that case we
5496 * must re-start the pick_next_entity() loop.
5497 */
e4aa358b 5498 if (new_tasks < 0)
37e117c0
PZ
5499 return RETRY_TASK;
5500
e4aa358b 5501 if (new_tasks > 0)
38033c37 5502 goto again;
38033c37
PZ
5503
5504 return NULL;
bf0f6f24
IM
5505}
5506
5507/*
5508 * Account for a descheduled task:
5509 */
31ee529c 5510static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5511{
5512 struct sched_entity *se = &prev->se;
5513 struct cfs_rq *cfs_rq;
5514
5515 for_each_sched_entity(se) {
5516 cfs_rq = cfs_rq_of(se);
ab6cde26 5517 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5518 }
5519}
5520
ac53db59
RR
5521/*
5522 * sched_yield() is very simple
5523 *
5524 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5525 */
5526static void yield_task_fair(struct rq *rq)
5527{
5528 struct task_struct *curr = rq->curr;
5529 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5530 struct sched_entity *se = &curr->se;
5531
5532 /*
5533 * Are we the only task in the tree?
5534 */
5535 if (unlikely(rq->nr_running == 1))
5536 return;
5537
5538 clear_buddies(cfs_rq, se);
5539
5540 if (curr->policy != SCHED_BATCH) {
5541 update_rq_clock(rq);
5542 /*
5543 * Update run-time statistics of the 'current'.
5544 */
5545 update_curr(cfs_rq);
916671c0
MG
5546 /*
5547 * Tell update_rq_clock() that we've just updated,
5548 * so we don't do microscopic update in schedule()
5549 * and double the fastpath cost.
5550 */
9edfbfed 5551 rq_clock_skip_update(rq, true);
ac53db59
RR
5552 }
5553
5554 set_skip_buddy(se);
5555}
5556
d95f4122
MG
5557static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5558{
5559 struct sched_entity *se = &p->se;
5560
5238cdd3
PT
5561 /* throttled hierarchies are not runnable */
5562 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5563 return false;
5564
5565 /* Tell the scheduler that we'd really like pse to run next. */
5566 set_next_buddy(se);
5567
d95f4122
MG
5568 yield_task_fair(rq);
5569
5570 return true;
5571}
5572
681f3e68 5573#ifdef CONFIG_SMP
bf0f6f24 5574/**************************************************
e9c84cb8
PZ
5575 * Fair scheduling class load-balancing methods.
5576 *
5577 * BASICS
5578 *
5579 * The purpose of load-balancing is to achieve the same basic fairness the
5580 * per-cpu scheduler provides, namely provide a proportional amount of compute
5581 * time to each task. This is expressed in the following equation:
5582 *
5583 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5584 *
5585 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5586 * W_i,0 is defined as:
5587 *
5588 * W_i,0 = \Sum_j w_i,j (2)
5589 *
5590 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5591 * is derived from the nice value as per prio_to_weight[].
5592 *
5593 * The weight average is an exponential decay average of the instantaneous
5594 * weight:
5595 *
5596 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5597 *
ced549fa 5598 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5599 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5600 * can also include other factors [XXX].
5601 *
5602 * To achieve this balance we define a measure of imbalance which follows
5603 * directly from (1):
5604 *
ced549fa 5605 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5606 *
5607 * We them move tasks around to minimize the imbalance. In the continuous
5608 * function space it is obvious this converges, in the discrete case we get
5609 * a few fun cases generally called infeasible weight scenarios.
5610 *
5611 * [XXX expand on:
5612 * - infeasible weights;
5613 * - local vs global optima in the discrete case. ]
5614 *
5615 *
5616 * SCHED DOMAINS
5617 *
5618 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5619 * for all i,j solution, we create a tree of cpus that follows the hardware
5620 * topology where each level pairs two lower groups (or better). This results
5621 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5622 * tree to only the first of the previous level and we decrease the frequency
5623 * of load-balance at each level inv. proportional to the number of cpus in
5624 * the groups.
5625 *
5626 * This yields:
5627 *
5628 * log_2 n 1 n
5629 * \Sum { --- * --- * 2^i } = O(n) (5)
5630 * i = 0 2^i 2^i
5631 * `- size of each group
5632 * | | `- number of cpus doing load-balance
5633 * | `- freq
5634 * `- sum over all levels
5635 *
5636 * Coupled with a limit on how many tasks we can migrate every balance pass,
5637 * this makes (5) the runtime complexity of the balancer.
5638 *
5639 * An important property here is that each CPU is still (indirectly) connected
5640 * to every other cpu in at most O(log n) steps:
5641 *
5642 * The adjacency matrix of the resulting graph is given by:
5643 *
5644 * log_2 n
5645 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5646 * k = 0
5647 *
5648 * And you'll find that:
5649 *
5650 * A^(log_2 n)_i,j != 0 for all i,j (7)
5651 *
5652 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5653 * The task movement gives a factor of O(m), giving a convergence complexity
5654 * of:
5655 *
5656 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5657 *
5658 *
5659 * WORK CONSERVING
5660 *
5661 * In order to avoid CPUs going idle while there's still work to do, new idle
5662 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5663 * tree itself instead of relying on other CPUs to bring it work.
5664 *
5665 * This adds some complexity to both (5) and (8) but it reduces the total idle
5666 * time.
5667 *
5668 * [XXX more?]
5669 *
5670 *
5671 * CGROUPS
5672 *
5673 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5674 *
5675 * s_k,i
5676 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5677 * S_k
5678 *
5679 * Where
5680 *
5681 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5682 *
5683 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5684 *
5685 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5686 * property.
5687 *
5688 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5689 * rewrite all of this once again.]
5690 */
bf0f6f24 5691
ed387b78
HS
5692static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5693
0ec8aa00
PZ
5694enum fbq_type { regular, remote, all };
5695
ddcdf6e7 5696#define LBF_ALL_PINNED 0x01
367456c7 5697#define LBF_NEED_BREAK 0x02
6263322c
PZ
5698#define LBF_DST_PINNED 0x04
5699#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5700
5701struct lb_env {
5702 struct sched_domain *sd;
5703
ddcdf6e7 5704 struct rq *src_rq;
85c1e7da 5705 int src_cpu;
ddcdf6e7
PZ
5706
5707 int dst_cpu;
5708 struct rq *dst_rq;
5709
88b8dac0
SV
5710 struct cpumask *dst_grpmask;
5711 int new_dst_cpu;
ddcdf6e7 5712 enum cpu_idle_type idle;
bd939f45 5713 long imbalance;
b9403130
MW
5714 /* The set of CPUs under consideration for load-balancing */
5715 struct cpumask *cpus;
5716
ddcdf6e7 5717 unsigned int flags;
367456c7
PZ
5718
5719 unsigned int loop;
5720 unsigned int loop_break;
5721 unsigned int loop_max;
0ec8aa00
PZ
5722
5723 enum fbq_type fbq_type;
163122b7 5724 struct list_head tasks;
ddcdf6e7
PZ
5725};
5726
029632fb
PZ
5727/*
5728 * Is this task likely cache-hot:
5729 */
5d5e2b1b 5730static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5731{
5732 s64 delta;
5733
e5673f28
KT
5734 lockdep_assert_held(&env->src_rq->lock);
5735
029632fb
PZ
5736 if (p->sched_class != &fair_sched_class)
5737 return 0;
5738
5739 if (unlikely(p->policy == SCHED_IDLE))
5740 return 0;
5741
5742 /*
5743 * Buddy candidates are cache hot:
5744 */
5d5e2b1b 5745 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5746 (&p->se == cfs_rq_of(&p->se)->next ||
5747 &p->se == cfs_rq_of(&p->se)->last))
5748 return 1;
5749
5750 if (sysctl_sched_migration_cost == -1)
5751 return 1;
5752 if (sysctl_sched_migration_cost == 0)
5753 return 0;
5754
5d5e2b1b 5755 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5756
5757 return delta < (s64)sysctl_sched_migration_cost;
5758}
5759
3a7053b3 5760#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5761/*
2a1ed24c
SD
5762 * Returns 1, if task migration degrades locality
5763 * Returns 0, if task migration improves locality i.e migration preferred.
5764 * Returns -1, if task migration is not affected by locality.
c1ceac62 5765 */
2a1ed24c 5766static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5767{
b1ad065e 5768 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5769 unsigned long src_faults, dst_faults;
3a7053b3
MG
5770 int src_nid, dst_nid;
5771
2a595721 5772 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5773 return -1;
5774
c3b9bc5b 5775 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 5776 return -1;
7a0f3083
MG
5777
5778 src_nid = cpu_to_node(env->src_cpu);
5779 dst_nid = cpu_to_node(env->dst_cpu);
5780
83e1d2cd 5781 if (src_nid == dst_nid)
2a1ed24c 5782 return -1;
7a0f3083 5783
2a1ed24c
SD
5784 /* Migrating away from the preferred node is always bad. */
5785 if (src_nid == p->numa_preferred_nid) {
5786 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
5787 return 1;
5788 else
5789 return -1;
5790 }
b1ad065e 5791
c1ceac62
RR
5792 /* Encourage migration to the preferred node. */
5793 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 5794 return 0;
b1ad065e 5795
c1ceac62
RR
5796 if (numa_group) {
5797 src_faults = group_faults(p, src_nid);
5798 dst_faults = group_faults(p, dst_nid);
5799 } else {
5800 src_faults = task_faults(p, src_nid);
5801 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
5802 }
5803
c1ceac62 5804 return dst_faults < src_faults;
7a0f3083
MG
5805}
5806
3a7053b3 5807#else
2a1ed24c 5808static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
5809 struct lb_env *env)
5810{
2a1ed24c 5811 return -1;
7a0f3083 5812}
3a7053b3
MG
5813#endif
5814
1e3c88bd
PZ
5815/*
5816 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5817 */
5818static
8e45cb54 5819int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5820{
2a1ed24c 5821 int tsk_cache_hot;
e5673f28
KT
5822
5823 lockdep_assert_held(&env->src_rq->lock);
5824
1e3c88bd
PZ
5825 /*
5826 * We do not migrate tasks that are:
d3198084 5827 * 1) throttled_lb_pair, or
1e3c88bd 5828 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5829 * 3) running (obviously), or
5830 * 4) are cache-hot on their current CPU.
1e3c88bd 5831 */
d3198084
JK
5832 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5833 return 0;
5834
ddcdf6e7 5835 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5836 int cpu;
88b8dac0 5837
41acab88 5838 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5839
6263322c
PZ
5840 env->flags |= LBF_SOME_PINNED;
5841
88b8dac0
SV
5842 /*
5843 * Remember if this task can be migrated to any other cpu in
5844 * our sched_group. We may want to revisit it if we couldn't
5845 * meet load balance goals by pulling other tasks on src_cpu.
5846 *
5847 * Also avoid computing new_dst_cpu if we have already computed
5848 * one in current iteration.
5849 */
6263322c 5850 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5851 return 0;
5852
e02e60c1
JK
5853 /* Prevent to re-select dst_cpu via env's cpus */
5854 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5855 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5856 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5857 env->new_dst_cpu = cpu;
5858 break;
5859 }
88b8dac0 5860 }
e02e60c1 5861
1e3c88bd
PZ
5862 return 0;
5863 }
88b8dac0
SV
5864
5865 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5866 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5867
ddcdf6e7 5868 if (task_running(env->src_rq, p)) {
41acab88 5869 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5870 return 0;
5871 }
5872
5873 /*
5874 * Aggressive migration if:
3a7053b3
MG
5875 * 1) destination numa is preferred
5876 * 2) task is cache cold, or
5877 * 3) too many balance attempts have failed.
1e3c88bd 5878 */
2a1ed24c
SD
5879 tsk_cache_hot = migrate_degrades_locality(p, env);
5880 if (tsk_cache_hot == -1)
5881 tsk_cache_hot = task_hot(p, env);
3a7053b3 5882
2a1ed24c 5883 if (tsk_cache_hot <= 0 ||
7a96c231 5884 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 5885 if (tsk_cache_hot == 1) {
3a7053b3
MG
5886 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5887 schedstat_inc(p, se.statistics.nr_forced_migrations);
5888 }
1e3c88bd
PZ
5889 return 1;
5890 }
5891
4e2dcb73
ZH
5892 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5893 return 0;
1e3c88bd
PZ
5894}
5895
897c395f 5896/*
163122b7
KT
5897 * detach_task() -- detach the task for the migration specified in env
5898 */
5899static void detach_task(struct task_struct *p, struct lb_env *env)
5900{
5901 lockdep_assert_held(&env->src_rq->lock);
5902
163122b7 5903 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 5904 deactivate_task(env->src_rq, p, 0);
163122b7
KT
5905 set_task_cpu(p, env->dst_cpu);
5906}
5907
897c395f 5908/*
e5673f28 5909 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5910 * part of active balancing operations within "domain".
897c395f 5911 *
e5673f28 5912 * Returns a task if successful and NULL otherwise.
897c395f 5913 */
e5673f28 5914static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5915{
5916 struct task_struct *p, *n;
897c395f 5917
e5673f28
KT
5918 lockdep_assert_held(&env->src_rq->lock);
5919
367456c7 5920 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5921 if (!can_migrate_task(p, env))
5922 continue;
897c395f 5923
163122b7 5924 detach_task(p, env);
e5673f28 5925
367456c7 5926 /*
e5673f28 5927 * Right now, this is only the second place where
163122b7 5928 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5929 * so we can safely collect stats here rather than
163122b7 5930 * inside detach_tasks().
367456c7
PZ
5931 */
5932 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5933 return p;
897c395f 5934 }
e5673f28 5935 return NULL;
897c395f
PZ
5936}
5937
eb95308e
PZ
5938static const unsigned int sched_nr_migrate_break = 32;
5939
5d6523eb 5940/*
163122b7
KT
5941 * detach_tasks() -- tries to detach up to imbalance weighted load from
5942 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5943 *
163122b7 5944 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5945 */
163122b7 5946static int detach_tasks(struct lb_env *env)
1e3c88bd 5947{
5d6523eb
PZ
5948 struct list_head *tasks = &env->src_rq->cfs_tasks;
5949 struct task_struct *p;
367456c7 5950 unsigned long load;
163122b7
KT
5951 int detached = 0;
5952
5953 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5954
bd939f45 5955 if (env->imbalance <= 0)
5d6523eb 5956 return 0;
1e3c88bd 5957
5d6523eb 5958 while (!list_empty(tasks)) {
985d3a4c
YD
5959 /*
5960 * We don't want to steal all, otherwise we may be treated likewise,
5961 * which could at worst lead to a livelock crash.
5962 */
5963 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
5964 break;
5965
5d6523eb 5966 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5967
367456c7
PZ
5968 env->loop++;
5969 /* We've more or less seen every task there is, call it quits */
5d6523eb 5970 if (env->loop > env->loop_max)
367456c7 5971 break;
5d6523eb
PZ
5972
5973 /* take a breather every nr_migrate tasks */
367456c7 5974 if (env->loop > env->loop_break) {
eb95308e 5975 env->loop_break += sched_nr_migrate_break;
8e45cb54 5976 env->flags |= LBF_NEED_BREAK;
ee00e66f 5977 break;
a195f004 5978 }
1e3c88bd 5979
d3198084 5980 if (!can_migrate_task(p, env))
367456c7
PZ
5981 goto next;
5982
5983 load = task_h_load(p);
5d6523eb 5984
eb95308e 5985 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5986 goto next;
5987
bd939f45 5988 if ((load / 2) > env->imbalance)
367456c7 5989 goto next;
1e3c88bd 5990
163122b7
KT
5991 detach_task(p, env);
5992 list_add(&p->se.group_node, &env->tasks);
5993
5994 detached++;
bd939f45 5995 env->imbalance -= load;
1e3c88bd
PZ
5996
5997#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5998 /*
5999 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6000 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6001 * the critical section.
6002 */
5d6523eb 6003 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6004 break;
1e3c88bd
PZ
6005#endif
6006
ee00e66f
PZ
6007 /*
6008 * We only want to steal up to the prescribed amount of
6009 * weighted load.
6010 */
bd939f45 6011 if (env->imbalance <= 0)
ee00e66f 6012 break;
367456c7
PZ
6013
6014 continue;
6015next:
5d6523eb 6016 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6017 }
5d6523eb 6018
1e3c88bd 6019 /*
163122b7
KT
6020 * Right now, this is one of only two places we collect this stat
6021 * so we can safely collect detach_one_task() stats here rather
6022 * than inside detach_one_task().
1e3c88bd 6023 */
163122b7 6024 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6025
163122b7
KT
6026 return detached;
6027}
6028
6029/*
6030 * attach_task() -- attach the task detached by detach_task() to its new rq.
6031 */
6032static void attach_task(struct rq *rq, struct task_struct *p)
6033{
6034 lockdep_assert_held(&rq->lock);
6035
6036 BUG_ON(task_rq(p) != rq);
163122b7 6037 activate_task(rq, p, 0);
3ea94de1 6038 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6039 check_preempt_curr(rq, p, 0);
6040}
6041
6042/*
6043 * attach_one_task() -- attaches the task returned from detach_one_task() to
6044 * its new rq.
6045 */
6046static void attach_one_task(struct rq *rq, struct task_struct *p)
6047{
6048 raw_spin_lock(&rq->lock);
6049 attach_task(rq, p);
6050 raw_spin_unlock(&rq->lock);
6051}
6052
6053/*
6054 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6055 * new rq.
6056 */
6057static void attach_tasks(struct lb_env *env)
6058{
6059 struct list_head *tasks = &env->tasks;
6060 struct task_struct *p;
6061
6062 raw_spin_lock(&env->dst_rq->lock);
6063
6064 while (!list_empty(tasks)) {
6065 p = list_first_entry(tasks, struct task_struct, se.group_node);
6066 list_del_init(&p->se.group_node);
1e3c88bd 6067
163122b7
KT
6068 attach_task(env->dst_rq, p);
6069 }
6070
6071 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6072}
6073
230059de 6074#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6075static void update_blocked_averages(int cpu)
9e3081ca 6076{
9e3081ca 6077 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6078 struct cfs_rq *cfs_rq;
6079 unsigned long flags;
9e3081ca 6080
48a16753
PT
6081 raw_spin_lock_irqsave(&rq->lock, flags);
6082 update_rq_clock(rq);
9d89c257 6083
9763b67f
PZ
6084 /*
6085 * Iterates the task_group tree in a bottom up fashion, see
6086 * list_add_leaf_cfs_rq() for details.
6087 */
64660c86 6088 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6089 /* throttled entities do not contribute to load */
6090 if (throttled_hierarchy(cfs_rq))
6091 continue;
48a16753 6092
9d89c257
YD
6093 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6094 update_tg_load_avg(cfs_rq, 0);
6095 }
48a16753 6096 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6097}
6098
9763b67f 6099/*
68520796 6100 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6101 * This needs to be done in a top-down fashion because the load of a child
6102 * group is a fraction of its parents load.
6103 */
68520796 6104static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6105{
68520796
VD
6106 struct rq *rq = rq_of(cfs_rq);
6107 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6108 unsigned long now = jiffies;
68520796 6109 unsigned long load;
a35b6466 6110
68520796 6111 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6112 return;
6113
68520796
VD
6114 cfs_rq->h_load_next = NULL;
6115 for_each_sched_entity(se) {
6116 cfs_rq = cfs_rq_of(se);
6117 cfs_rq->h_load_next = se;
6118 if (cfs_rq->last_h_load_update == now)
6119 break;
6120 }
a35b6466 6121
68520796 6122 if (!se) {
7ea241af 6123 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6124 cfs_rq->last_h_load_update = now;
6125 }
6126
6127 while ((se = cfs_rq->h_load_next) != NULL) {
6128 load = cfs_rq->h_load;
7ea241af
YD
6129 load = div64_ul(load * se->avg.load_avg,
6130 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6131 cfs_rq = group_cfs_rq(se);
6132 cfs_rq->h_load = load;
6133 cfs_rq->last_h_load_update = now;
6134 }
9763b67f
PZ
6135}
6136
367456c7 6137static unsigned long task_h_load(struct task_struct *p)
230059de 6138{
367456c7 6139 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6140
68520796 6141 update_cfs_rq_h_load(cfs_rq);
9d89c257 6142 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6143 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6144}
6145#else
48a16753 6146static inline void update_blocked_averages(int cpu)
9e3081ca 6147{
6c1d47c0
VG
6148 struct rq *rq = cpu_rq(cpu);
6149 struct cfs_rq *cfs_rq = &rq->cfs;
6150 unsigned long flags;
6151
6152 raw_spin_lock_irqsave(&rq->lock, flags);
6153 update_rq_clock(rq);
6154 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6155 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6156}
6157
367456c7 6158static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6159{
9d89c257 6160 return p->se.avg.load_avg;
1e3c88bd 6161}
230059de 6162#endif
1e3c88bd 6163
1e3c88bd 6164/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6165
6166enum group_type {
6167 group_other = 0,
6168 group_imbalanced,
6169 group_overloaded,
6170};
6171
1e3c88bd
PZ
6172/*
6173 * sg_lb_stats - stats of a sched_group required for load_balancing
6174 */
6175struct sg_lb_stats {
6176 unsigned long avg_load; /*Avg load across the CPUs of the group */
6177 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6178 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6179 unsigned long load_per_task;
63b2ca30 6180 unsigned long group_capacity;
9e91d61d 6181 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6182 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6183 unsigned int idle_cpus;
6184 unsigned int group_weight;
caeb178c 6185 enum group_type group_type;
ea67821b 6186 int group_no_capacity;
0ec8aa00
PZ
6187#ifdef CONFIG_NUMA_BALANCING
6188 unsigned int nr_numa_running;
6189 unsigned int nr_preferred_running;
6190#endif
1e3c88bd
PZ
6191};
6192
56cf515b
JK
6193/*
6194 * sd_lb_stats - Structure to store the statistics of a sched_domain
6195 * during load balancing.
6196 */
6197struct sd_lb_stats {
6198 struct sched_group *busiest; /* Busiest group in this sd */
6199 struct sched_group *local; /* Local group in this sd */
6200 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6201 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6202 unsigned long avg_load; /* Average load across all groups in sd */
6203
56cf515b 6204 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6205 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6206};
6207
147c5fc2
PZ
6208static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6209{
6210 /*
6211 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6212 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6213 * We must however clear busiest_stat::avg_load because
6214 * update_sd_pick_busiest() reads this before assignment.
6215 */
6216 *sds = (struct sd_lb_stats){
6217 .busiest = NULL,
6218 .local = NULL,
6219 .total_load = 0UL,
63b2ca30 6220 .total_capacity = 0UL,
147c5fc2
PZ
6221 .busiest_stat = {
6222 .avg_load = 0UL,
caeb178c
RR
6223 .sum_nr_running = 0,
6224 .group_type = group_other,
147c5fc2
PZ
6225 },
6226 };
6227}
6228
1e3c88bd
PZ
6229/**
6230 * get_sd_load_idx - Obtain the load index for a given sched domain.
6231 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6232 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6233 *
6234 * Return: The load index.
1e3c88bd
PZ
6235 */
6236static inline int get_sd_load_idx(struct sched_domain *sd,
6237 enum cpu_idle_type idle)
6238{
6239 int load_idx;
6240
6241 switch (idle) {
6242 case CPU_NOT_IDLE:
6243 load_idx = sd->busy_idx;
6244 break;
6245
6246 case CPU_NEWLY_IDLE:
6247 load_idx = sd->newidle_idx;
6248 break;
6249 default:
6250 load_idx = sd->idle_idx;
6251 break;
6252 }
6253
6254 return load_idx;
6255}
6256
ced549fa 6257static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6258{
6259 struct rq *rq = cpu_rq(cpu);
b5b4860d 6260 u64 total, used, age_stamp, avg;
cadefd3d 6261 s64 delta;
1e3c88bd 6262
b654f7de
PZ
6263 /*
6264 * Since we're reading these variables without serialization make sure
6265 * we read them once before doing sanity checks on them.
6266 */
316c1608
JL
6267 age_stamp = READ_ONCE(rq->age_stamp);
6268 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6269 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6270
cadefd3d
PZ
6271 if (unlikely(delta < 0))
6272 delta = 0;
6273
6274 total = sched_avg_period() + delta;
aa483808 6275
b5b4860d 6276 used = div_u64(avg, total);
1e3c88bd 6277
b5b4860d
VG
6278 if (likely(used < SCHED_CAPACITY_SCALE))
6279 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6280
b5b4860d 6281 return 1;
1e3c88bd
PZ
6282}
6283
ced549fa 6284static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6285{
8cd5601c 6286 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6287 struct sched_group *sdg = sd->groups;
6288
ca6d75e6 6289 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6290
ced549fa 6291 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6292 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6293
ced549fa
NP
6294 if (!capacity)
6295 capacity = 1;
1e3c88bd 6296
ced549fa
NP
6297 cpu_rq(cpu)->cpu_capacity = capacity;
6298 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6299}
6300
63b2ca30 6301void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6302{
6303 struct sched_domain *child = sd->child;
6304 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6305 unsigned long capacity;
4ec4412e
VG
6306 unsigned long interval;
6307
6308 interval = msecs_to_jiffies(sd->balance_interval);
6309 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6310 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6311
6312 if (!child) {
ced549fa 6313 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6314 return;
6315 }
6316
dc7ff76e 6317 capacity = 0;
1e3c88bd 6318
74a5ce20
PZ
6319 if (child->flags & SD_OVERLAP) {
6320 /*
6321 * SD_OVERLAP domains cannot assume that child groups
6322 * span the current group.
6323 */
6324
863bffc8 6325 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6326 struct sched_group_capacity *sgc;
9abf24d4 6327 struct rq *rq = cpu_rq(cpu);
863bffc8 6328
9abf24d4 6329 /*
63b2ca30 6330 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6331 * gets here before we've attached the domains to the
6332 * runqueues.
6333 *
ced549fa
NP
6334 * Use capacity_of(), which is set irrespective of domains
6335 * in update_cpu_capacity().
9abf24d4 6336 *
dc7ff76e 6337 * This avoids capacity from being 0 and
9abf24d4 6338 * causing divide-by-zero issues on boot.
9abf24d4
SD
6339 */
6340 if (unlikely(!rq->sd)) {
ced549fa 6341 capacity += capacity_of(cpu);
9abf24d4
SD
6342 continue;
6343 }
863bffc8 6344
63b2ca30 6345 sgc = rq->sd->groups->sgc;
63b2ca30 6346 capacity += sgc->capacity;
863bffc8 6347 }
74a5ce20
PZ
6348 } else {
6349 /*
6350 * !SD_OVERLAP domains can assume that child groups
6351 * span the current group.
6352 */
6353
6354 group = child->groups;
6355 do {
63b2ca30 6356 capacity += group->sgc->capacity;
74a5ce20
PZ
6357 group = group->next;
6358 } while (group != child->groups);
6359 }
1e3c88bd 6360
63b2ca30 6361 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6362}
6363
9d5efe05 6364/*
ea67821b
VG
6365 * Check whether the capacity of the rq has been noticeably reduced by side
6366 * activity. The imbalance_pct is used for the threshold.
6367 * Return true is the capacity is reduced
9d5efe05
SV
6368 */
6369static inline int
ea67821b 6370check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6371{
ea67821b
VG
6372 return ((rq->cpu_capacity * sd->imbalance_pct) <
6373 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6374}
6375
30ce5dab
PZ
6376/*
6377 * Group imbalance indicates (and tries to solve) the problem where balancing
6378 * groups is inadequate due to tsk_cpus_allowed() constraints.
6379 *
6380 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6381 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6382 * Something like:
6383 *
6384 * { 0 1 2 3 } { 4 5 6 7 }
6385 * * * * *
6386 *
6387 * If we were to balance group-wise we'd place two tasks in the first group and
6388 * two tasks in the second group. Clearly this is undesired as it will overload
6389 * cpu 3 and leave one of the cpus in the second group unused.
6390 *
6391 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6392 * by noticing the lower domain failed to reach balance and had difficulty
6393 * moving tasks due to affinity constraints.
30ce5dab
PZ
6394 *
6395 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6396 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6397 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6398 * to create an effective group imbalance.
6399 *
6400 * This is a somewhat tricky proposition since the next run might not find the
6401 * group imbalance and decide the groups need to be balanced again. A most
6402 * subtle and fragile situation.
6403 */
6404
6263322c 6405static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6406{
63b2ca30 6407 return group->sgc->imbalance;
30ce5dab
PZ
6408}
6409
b37d9316 6410/*
ea67821b
VG
6411 * group_has_capacity returns true if the group has spare capacity that could
6412 * be used by some tasks.
6413 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6414 * smaller than the number of CPUs or if the utilization is lower than the
6415 * available capacity for CFS tasks.
ea67821b
VG
6416 * For the latter, we use a threshold to stabilize the state, to take into
6417 * account the variance of the tasks' load and to return true if the available
6418 * capacity in meaningful for the load balancer.
6419 * As an example, an available capacity of 1% can appear but it doesn't make
6420 * any benefit for the load balance.
b37d9316 6421 */
ea67821b
VG
6422static inline bool
6423group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6424{
ea67821b
VG
6425 if (sgs->sum_nr_running < sgs->group_weight)
6426 return true;
c61037e9 6427
ea67821b 6428 if ((sgs->group_capacity * 100) >
9e91d61d 6429 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6430 return true;
b37d9316 6431
ea67821b
VG
6432 return false;
6433}
6434
6435/*
6436 * group_is_overloaded returns true if the group has more tasks than it can
6437 * handle.
6438 * group_is_overloaded is not equals to !group_has_capacity because a group
6439 * with the exact right number of tasks, has no more spare capacity but is not
6440 * overloaded so both group_has_capacity and group_is_overloaded return
6441 * false.
6442 */
6443static inline bool
6444group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6445{
6446 if (sgs->sum_nr_running <= sgs->group_weight)
6447 return false;
b37d9316 6448
ea67821b 6449 if ((sgs->group_capacity * 100) <
9e91d61d 6450 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6451 return true;
b37d9316 6452
ea67821b 6453 return false;
b37d9316
PZ
6454}
6455
79a89f92
LY
6456static inline enum
6457group_type group_classify(struct sched_group *group,
6458 struct sg_lb_stats *sgs)
caeb178c 6459{
ea67821b 6460 if (sgs->group_no_capacity)
caeb178c
RR
6461 return group_overloaded;
6462
6463 if (sg_imbalanced(group))
6464 return group_imbalanced;
6465
6466 return group_other;
6467}
6468
1e3c88bd
PZ
6469/**
6470 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6471 * @env: The load balancing environment.
1e3c88bd 6472 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6473 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6474 * @local_group: Does group contain this_cpu.
1e3c88bd 6475 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6476 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6477 */
bd939f45
PZ
6478static inline void update_sg_lb_stats(struct lb_env *env,
6479 struct sched_group *group, int load_idx,
4486edd1
TC
6480 int local_group, struct sg_lb_stats *sgs,
6481 bool *overload)
1e3c88bd 6482{
30ce5dab 6483 unsigned long load;
a426f99c 6484 int i, nr_running;
1e3c88bd 6485
b72ff13c
PZ
6486 memset(sgs, 0, sizeof(*sgs));
6487
b9403130 6488 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6489 struct rq *rq = cpu_rq(i);
6490
1e3c88bd 6491 /* Bias balancing toward cpus of our domain */
6263322c 6492 if (local_group)
04f733b4 6493 load = target_load(i, load_idx);
6263322c 6494 else
1e3c88bd 6495 load = source_load(i, load_idx);
1e3c88bd
PZ
6496
6497 sgs->group_load += load;
9e91d61d 6498 sgs->group_util += cpu_util(i);
65fdac08 6499 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6500
a426f99c
WL
6501 nr_running = rq->nr_running;
6502 if (nr_running > 1)
4486edd1
TC
6503 *overload = true;
6504
0ec8aa00
PZ
6505#ifdef CONFIG_NUMA_BALANCING
6506 sgs->nr_numa_running += rq->nr_numa_running;
6507 sgs->nr_preferred_running += rq->nr_preferred_running;
6508#endif
1e3c88bd 6509 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6510 /*
6511 * No need to call idle_cpu() if nr_running is not 0
6512 */
6513 if (!nr_running && idle_cpu(i))
aae6d3dd 6514 sgs->idle_cpus++;
1e3c88bd
PZ
6515 }
6516
63b2ca30
NP
6517 /* Adjust by relative CPU capacity of the group */
6518 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6519 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6520
dd5feea1 6521 if (sgs->sum_nr_running)
38d0f770 6522 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6523
aae6d3dd 6524 sgs->group_weight = group->group_weight;
b37d9316 6525
ea67821b 6526 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6527 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6528}
6529
532cb4c4
MN
6530/**
6531 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6532 * @env: The load balancing environment.
532cb4c4
MN
6533 * @sds: sched_domain statistics
6534 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6535 * @sgs: sched_group statistics
532cb4c4
MN
6536 *
6537 * Determine if @sg is a busier group than the previously selected
6538 * busiest group.
e69f6186
YB
6539 *
6540 * Return: %true if @sg is a busier group than the previously selected
6541 * busiest group. %false otherwise.
532cb4c4 6542 */
bd939f45 6543static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6544 struct sd_lb_stats *sds,
6545 struct sched_group *sg,
bd939f45 6546 struct sg_lb_stats *sgs)
532cb4c4 6547{
caeb178c 6548 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6549
caeb178c 6550 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6551 return true;
6552
caeb178c
RR
6553 if (sgs->group_type < busiest->group_type)
6554 return false;
6555
6556 if (sgs->avg_load <= busiest->avg_load)
6557 return false;
6558
6559 /* This is the busiest node in its class. */
6560 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6561 return true;
6562
6563 /*
6564 * ASYM_PACKING needs to move all the work to the lowest
6565 * numbered CPUs in the group, therefore mark all groups
6566 * higher than ourself as busy.
6567 */
caeb178c 6568 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6569 if (!sds->busiest)
6570 return true;
6571
6572 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6573 return true;
6574 }
6575
6576 return false;
6577}
6578
0ec8aa00
PZ
6579#ifdef CONFIG_NUMA_BALANCING
6580static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6581{
6582 if (sgs->sum_nr_running > sgs->nr_numa_running)
6583 return regular;
6584 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6585 return remote;
6586 return all;
6587}
6588
6589static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6590{
6591 if (rq->nr_running > rq->nr_numa_running)
6592 return regular;
6593 if (rq->nr_running > rq->nr_preferred_running)
6594 return remote;
6595 return all;
6596}
6597#else
6598static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6599{
6600 return all;
6601}
6602
6603static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6604{
6605 return regular;
6606}
6607#endif /* CONFIG_NUMA_BALANCING */
6608
1e3c88bd 6609/**
461819ac 6610 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6611 * @env: The load balancing environment.
1e3c88bd
PZ
6612 * @sds: variable to hold the statistics for this sched_domain.
6613 */
0ec8aa00 6614static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6615{
bd939f45
PZ
6616 struct sched_domain *child = env->sd->child;
6617 struct sched_group *sg = env->sd->groups;
56cf515b 6618 struct sg_lb_stats tmp_sgs;
1e3c88bd 6619 int load_idx, prefer_sibling = 0;
4486edd1 6620 bool overload = false;
1e3c88bd
PZ
6621
6622 if (child && child->flags & SD_PREFER_SIBLING)
6623 prefer_sibling = 1;
6624
bd939f45 6625 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6626
6627 do {
56cf515b 6628 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6629 int local_group;
6630
bd939f45 6631 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6632 if (local_group) {
6633 sds->local = sg;
6634 sgs = &sds->local_stat;
b72ff13c
PZ
6635
6636 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6637 time_after_eq(jiffies, sg->sgc->next_update))
6638 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6639 }
1e3c88bd 6640
4486edd1
TC
6641 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6642 &overload);
1e3c88bd 6643
b72ff13c
PZ
6644 if (local_group)
6645 goto next_group;
6646
1e3c88bd
PZ
6647 /*
6648 * In case the child domain prefers tasks go to siblings
ea67821b 6649 * first, lower the sg capacity so that we'll try
75dd321d
NR
6650 * and move all the excess tasks away. We lower the capacity
6651 * of a group only if the local group has the capacity to fit
ea67821b
VG
6652 * these excess tasks. The extra check prevents the case where
6653 * you always pull from the heaviest group when it is already
6654 * under-utilized (possible with a large weight task outweighs
6655 * the tasks on the system).
1e3c88bd 6656 */
b72ff13c 6657 if (prefer_sibling && sds->local &&
ea67821b
VG
6658 group_has_capacity(env, &sds->local_stat) &&
6659 (sgs->sum_nr_running > 1)) {
6660 sgs->group_no_capacity = 1;
79a89f92 6661 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6662 }
1e3c88bd 6663
b72ff13c 6664 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6665 sds->busiest = sg;
56cf515b 6666 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6667 }
6668
b72ff13c
PZ
6669next_group:
6670 /* Now, start updating sd_lb_stats */
6671 sds->total_load += sgs->group_load;
63b2ca30 6672 sds->total_capacity += sgs->group_capacity;
b72ff13c 6673
532cb4c4 6674 sg = sg->next;
bd939f45 6675 } while (sg != env->sd->groups);
0ec8aa00
PZ
6676
6677 if (env->sd->flags & SD_NUMA)
6678 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6679
6680 if (!env->sd->parent) {
6681 /* update overload indicator if we are at root domain */
6682 if (env->dst_rq->rd->overload != overload)
6683 env->dst_rq->rd->overload = overload;
6684 }
6685
532cb4c4
MN
6686}
6687
532cb4c4
MN
6688/**
6689 * check_asym_packing - Check to see if the group is packed into the
6690 * sched doman.
6691 *
6692 * This is primarily intended to used at the sibling level. Some
6693 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6694 * case of POWER7, it can move to lower SMT modes only when higher
6695 * threads are idle. When in lower SMT modes, the threads will
6696 * perform better since they share less core resources. Hence when we
6697 * have idle threads, we want them to be the higher ones.
6698 *
6699 * This packing function is run on idle threads. It checks to see if
6700 * the busiest CPU in this domain (core in the P7 case) has a higher
6701 * CPU number than the packing function is being run on. Here we are
6702 * assuming lower CPU number will be equivalent to lower a SMT thread
6703 * number.
6704 *
e69f6186 6705 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6706 * this CPU. The amount of the imbalance is returned in *imbalance.
6707 *
cd96891d 6708 * @env: The load balancing environment.
532cb4c4 6709 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6710 */
bd939f45 6711static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6712{
6713 int busiest_cpu;
6714
bd939f45 6715 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6716 return 0;
6717
6718 if (!sds->busiest)
6719 return 0;
6720
6721 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6722 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6723 return 0;
6724
bd939f45 6725 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6726 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6727 SCHED_CAPACITY_SCALE);
bd939f45 6728
532cb4c4 6729 return 1;
1e3c88bd
PZ
6730}
6731
6732/**
6733 * fix_small_imbalance - Calculate the minor imbalance that exists
6734 * amongst the groups of a sched_domain, during
6735 * load balancing.
cd96891d 6736 * @env: The load balancing environment.
1e3c88bd 6737 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6738 */
bd939f45
PZ
6739static inline
6740void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6741{
63b2ca30 6742 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6743 unsigned int imbn = 2;
dd5feea1 6744 unsigned long scaled_busy_load_per_task;
56cf515b 6745 struct sg_lb_stats *local, *busiest;
1e3c88bd 6746
56cf515b
JK
6747 local = &sds->local_stat;
6748 busiest = &sds->busiest_stat;
1e3c88bd 6749
56cf515b
JK
6750 if (!local->sum_nr_running)
6751 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6752 else if (busiest->load_per_task > local->load_per_task)
6753 imbn = 1;
dd5feea1 6754
56cf515b 6755 scaled_busy_load_per_task =
ca8ce3d0 6756 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6757 busiest->group_capacity;
56cf515b 6758
3029ede3
VD
6759 if (busiest->avg_load + scaled_busy_load_per_task >=
6760 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6761 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6762 return;
6763 }
6764
6765 /*
6766 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6767 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6768 * moving them.
6769 */
6770
63b2ca30 6771 capa_now += busiest->group_capacity *
56cf515b 6772 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6773 capa_now += local->group_capacity *
56cf515b 6774 min(local->load_per_task, local->avg_load);
ca8ce3d0 6775 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6776
6777 /* Amount of load we'd subtract */
a2cd4260 6778 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6779 capa_move += busiest->group_capacity *
56cf515b 6780 min(busiest->load_per_task,
a2cd4260 6781 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6782 }
1e3c88bd
PZ
6783
6784 /* Amount of load we'd add */
63b2ca30 6785 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6786 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6787 tmp = (busiest->avg_load * busiest->group_capacity) /
6788 local->group_capacity;
56cf515b 6789 } else {
ca8ce3d0 6790 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6791 local->group_capacity;
56cf515b 6792 }
63b2ca30 6793 capa_move += local->group_capacity *
3ae11c90 6794 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6795 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6796
6797 /* Move if we gain throughput */
63b2ca30 6798 if (capa_move > capa_now)
56cf515b 6799 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6800}
6801
6802/**
6803 * calculate_imbalance - Calculate the amount of imbalance present within the
6804 * groups of a given sched_domain during load balance.
bd939f45 6805 * @env: load balance environment
1e3c88bd 6806 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6807 */
bd939f45 6808static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6809{
dd5feea1 6810 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6811 struct sg_lb_stats *local, *busiest;
6812
6813 local = &sds->local_stat;
56cf515b 6814 busiest = &sds->busiest_stat;
dd5feea1 6815
caeb178c 6816 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6817 /*
6818 * In the group_imb case we cannot rely on group-wide averages
6819 * to ensure cpu-load equilibrium, look at wider averages. XXX
6820 */
56cf515b
JK
6821 busiest->load_per_task =
6822 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6823 }
6824
1e3c88bd
PZ
6825 /*
6826 * In the presence of smp nice balancing, certain scenarios can have
6827 * max load less than avg load(as we skip the groups at or below
ced549fa 6828 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6829 */
b1885550
VD
6830 if (busiest->avg_load <= sds->avg_load ||
6831 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6832 env->imbalance = 0;
6833 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6834 }
6835
9a5d9ba6
PZ
6836 /*
6837 * If there aren't any idle cpus, avoid creating some.
6838 */
6839 if (busiest->group_type == group_overloaded &&
6840 local->group_type == group_overloaded) {
ea67821b
VG
6841 load_above_capacity = busiest->sum_nr_running *
6842 SCHED_LOAD_SCALE;
6843 if (load_above_capacity > busiest->group_capacity)
6844 load_above_capacity -= busiest->group_capacity;
6845 else
6846 load_above_capacity = ~0UL;
dd5feea1
SS
6847 }
6848
6849 /*
6850 * We're trying to get all the cpus to the average_load, so we don't
6851 * want to push ourselves above the average load, nor do we wish to
6852 * reduce the max loaded cpu below the average load. At the same time,
6853 * we also don't want to reduce the group load below the group capacity
6854 * (so that we can implement power-savings policies etc). Thus we look
6855 * for the minimum possible imbalance.
dd5feea1 6856 */
30ce5dab 6857 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6858
6859 /* How much load to actually move to equalise the imbalance */
56cf515b 6860 env->imbalance = min(
63b2ca30
NP
6861 max_pull * busiest->group_capacity,
6862 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6863 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6864
6865 /*
6866 * if *imbalance is less than the average load per runnable task
25985edc 6867 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6868 * a think about bumping its value to force at least one task to be
6869 * moved
6870 */
56cf515b 6871 if (env->imbalance < busiest->load_per_task)
bd939f45 6872 return fix_small_imbalance(env, sds);
1e3c88bd 6873}
fab47622 6874
1e3c88bd
PZ
6875/******* find_busiest_group() helpers end here *********************/
6876
6877/**
6878 * find_busiest_group - Returns the busiest group within the sched_domain
6879 * if there is an imbalance. If there isn't an imbalance, and
6880 * the user has opted for power-savings, it returns a group whose
6881 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6882 * such a group exists.
6883 *
6884 * Also calculates the amount of weighted load which should be moved
6885 * to restore balance.
6886 *
cd96891d 6887 * @env: The load balancing environment.
1e3c88bd 6888 *
e69f6186 6889 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6890 * - If no imbalance and user has opted for power-savings balance,
6891 * return the least loaded group whose CPUs can be
6892 * put to idle by rebalancing its tasks onto our group.
6893 */
56cf515b 6894static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6895{
56cf515b 6896 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6897 struct sd_lb_stats sds;
6898
147c5fc2 6899 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6900
6901 /*
6902 * Compute the various statistics relavent for load balancing at
6903 * this level.
6904 */
23f0d209 6905 update_sd_lb_stats(env, &sds);
56cf515b
JK
6906 local = &sds.local_stat;
6907 busiest = &sds.busiest_stat;
1e3c88bd 6908
ea67821b 6909 /* ASYM feature bypasses nice load balance check */
bd939f45
PZ
6910 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6911 check_asym_packing(env, &sds))
532cb4c4
MN
6912 return sds.busiest;
6913
cc57aa8f 6914 /* There is no busy sibling group to pull tasks from */
56cf515b 6915 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6916 goto out_balanced;
6917
ca8ce3d0
NP
6918 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6919 / sds.total_capacity;
b0432d8f 6920
866ab43e
PZ
6921 /*
6922 * If the busiest group is imbalanced the below checks don't
30ce5dab 6923 * work because they assume all things are equal, which typically
866ab43e
PZ
6924 * isn't true due to cpus_allowed constraints and the like.
6925 */
caeb178c 6926 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6927 goto force_balance;
6928
cc57aa8f 6929 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
6930 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
6931 busiest->group_no_capacity)
fab47622
NR
6932 goto force_balance;
6933
cc57aa8f 6934 /*
9c58c79a 6935 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6936 * don't try and pull any tasks.
6937 */
56cf515b 6938 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6939 goto out_balanced;
6940
cc57aa8f
PZ
6941 /*
6942 * Don't pull any tasks if this group is already above the domain
6943 * average load.
6944 */
56cf515b 6945 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6946 goto out_balanced;
6947
bd939f45 6948 if (env->idle == CPU_IDLE) {
aae6d3dd 6949 /*
43f4d666
VG
6950 * This cpu is idle. If the busiest group is not overloaded
6951 * and there is no imbalance between this and busiest group
6952 * wrt idle cpus, it is balanced. The imbalance becomes
6953 * significant if the diff is greater than 1 otherwise we
6954 * might end up to just move the imbalance on another group
aae6d3dd 6955 */
43f4d666
VG
6956 if ((busiest->group_type != group_overloaded) &&
6957 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6958 goto out_balanced;
c186fafe
PZ
6959 } else {
6960 /*
6961 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6962 * imbalance_pct to be conservative.
6963 */
56cf515b
JK
6964 if (100 * busiest->avg_load <=
6965 env->sd->imbalance_pct * local->avg_load)
c186fafe 6966 goto out_balanced;
aae6d3dd 6967 }
1e3c88bd 6968
fab47622 6969force_balance:
1e3c88bd 6970 /* Looks like there is an imbalance. Compute it */
bd939f45 6971 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6972 return sds.busiest;
6973
6974out_balanced:
bd939f45 6975 env->imbalance = 0;
1e3c88bd
PZ
6976 return NULL;
6977}
6978
6979/*
6980 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6981 */
bd939f45 6982static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6983 struct sched_group *group)
1e3c88bd
PZ
6984{
6985 struct rq *busiest = NULL, *rq;
ced549fa 6986 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6987 int i;
6988
6906a408 6989 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 6990 unsigned long capacity, wl;
0ec8aa00
PZ
6991 enum fbq_type rt;
6992
6993 rq = cpu_rq(i);
6994 rt = fbq_classify_rq(rq);
1e3c88bd 6995
0ec8aa00
PZ
6996 /*
6997 * We classify groups/runqueues into three groups:
6998 * - regular: there are !numa tasks
6999 * - remote: there are numa tasks that run on the 'wrong' node
7000 * - all: there is no distinction
7001 *
7002 * In order to avoid migrating ideally placed numa tasks,
7003 * ignore those when there's better options.
7004 *
7005 * If we ignore the actual busiest queue to migrate another
7006 * task, the next balance pass can still reduce the busiest
7007 * queue by moving tasks around inside the node.
7008 *
7009 * If we cannot move enough load due to this classification
7010 * the next pass will adjust the group classification and
7011 * allow migration of more tasks.
7012 *
7013 * Both cases only affect the total convergence complexity.
7014 */
7015 if (rt > env->fbq_type)
7016 continue;
7017
ced549fa 7018 capacity = capacity_of(i);
9d5efe05 7019
6e40f5bb 7020 wl = weighted_cpuload(i);
1e3c88bd 7021
6e40f5bb
TG
7022 /*
7023 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7024 * which is not scaled with the cpu capacity.
6e40f5bb 7025 */
ea67821b
VG
7026
7027 if (rq->nr_running == 1 && wl > env->imbalance &&
7028 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7029 continue;
7030
6e40f5bb
TG
7031 /*
7032 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7033 * the weighted_cpuload() scaled with the cpu capacity, so
7034 * that the load can be moved away from the cpu that is
7035 * potentially running at a lower capacity.
95a79b80 7036 *
ced549fa 7037 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7038 * multiplication to rid ourselves of the division works out
ced549fa
NP
7039 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7040 * our previous maximum.
6e40f5bb 7041 */
ced549fa 7042 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7043 busiest_load = wl;
ced549fa 7044 busiest_capacity = capacity;
1e3c88bd
PZ
7045 busiest = rq;
7046 }
7047 }
7048
7049 return busiest;
7050}
7051
7052/*
7053 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7054 * so long as it is large enough.
7055 */
7056#define MAX_PINNED_INTERVAL 512
7057
7058/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7059DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7060
bd939f45 7061static int need_active_balance(struct lb_env *env)
1af3ed3d 7062{
bd939f45
PZ
7063 struct sched_domain *sd = env->sd;
7064
7065 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7066
7067 /*
7068 * ASYM_PACKING needs to force migrate tasks from busy but
7069 * higher numbered CPUs in order to pack all tasks in the
7070 * lowest numbered CPUs.
7071 */
bd939f45 7072 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7073 return 1;
1af3ed3d
PZ
7074 }
7075
1aaf90a4
VG
7076 /*
7077 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7078 * It's worth migrating the task if the src_cpu's capacity is reduced
7079 * because of other sched_class or IRQs if more capacity stays
7080 * available on dst_cpu.
7081 */
7082 if ((env->idle != CPU_NOT_IDLE) &&
7083 (env->src_rq->cfs.h_nr_running == 1)) {
7084 if ((check_cpu_capacity(env->src_rq, sd)) &&
7085 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7086 return 1;
7087 }
7088
1af3ed3d
PZ
7089 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7090}
7091
969c7921
TH
7092static int active_load_balance_cpu_stop(void *data);
7093
23f0d209
JK
7094static int should_we_balance(struct lb_env *env)
7095{
7096 struct sched_group *sg = env->sd->groups;
7097 struct cpumask *sg_cpus, *sg_mask;
7098 int cpu, balance_cpu = -1;
7099
7100 /*
7101 * In the newly idle case, we will allow all the cpu's
7102 * to do the newly idle load balance.
7103 */
7104 if (env->idle == CPU_NEWLY_IDLE)
7105 return 1;
7106
7107 sg_cpus = sched_group_cpus(sg);
7108 sg_mask = sched_group_mask(sg);
7109 /* Try to find first idle cpu */
7110 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7111 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7112 continue;
7113
7114 balance_cpu = cpu;
7115 break;
7116 }
7117
7118 if (balance_cpu == -1)
7119 balance_cpu = group_balance_cpu(sg);
7120
7121 /*
7122 * First idle cpu or the first cpu(busiest) in this sched group
7123 * is eligible for doing load balancing at this and above domains.
7124 */
b0cff9d8 7125 return balance_cpu == env->dst_cpu;
23f0d209
JK
7126}
7127
1e3c88bd
PZ
7128/*
7129 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7130 * tasks if there is an imbalance.
7131 */
7132static int load_balance(int this_cpu, struct rq *this_rq,
7133 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7134 int *continue_balancing)
1e3c88bd 7135{
88b8dac0 7136 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7137 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7138 struct sched_group *group;
1e3c88bd
PZ
7139 struct rq *busiest;
7140 unsigned long flags;
4ba29684 7141 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7142
8e45cb54
PZ
7143 struct lb_env env = {
7144 .sd = sd,
ddcdf6e7
PZ
7145 .dst_cpu = this_cpu,
7146 .dst_rq = this_rq,
88b8dac0 7147 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7148 .idle = idle,
eb95308e 7149 .loop_break = sched_nr_migrate_break,
b9403130 7150 .cpus = cpus,
0ec8aa00 7151 .fbq_type = all,
163122b7 7152 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7153 };
7154
cfc03118
JK
7155 /*
7156 * For NEWLY_IDLE load_balancing, we don't need to consider
7157 * other cpus in our group
7158 */
e02e60c1 7159 if (idle == CPU_NEWLY_IDLE)
cfc03118 7160 env.dst_grpmask = NULL;
cfc03118 7161
1e3c88bd
PZ
7162 cpumask_copy(cpus, cpu_active_mask);
7163
1e3c88bd
PZ
7164 schedstat_inc(sd, lb_count[idle]);
7165
7166redo:
23f0d209
JK
7167 if (!should_we_balance(&env)) {
7168 *continue_balancing = 0;
1e3c88bd 7169 goto out_balanced;
23f0d209 7170 }
1e3c88bd 7171
23f0d209 7172 group = find_busiest_group(&env);
1e3c88bd
PZ
7173 if (!group) {
7174 schedstat_inc(sd, lb_nobusyg[idle]);
7175 goto out_balanced;
7176 }
7177
b9403130 7178 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7179 if (!busiest) {
7180 schedstat_inc(sd, lb_nobusyq[idle]);
7181 goto out_balanced;
7182 }
7183
78feefc5 7184 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7185
bd939f45 7186 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7187
1aaf90a4
VG
7188 env.src_cpu = busiest->cpu;
7189 env.src_rq = busiest;
7190
1e3c88bd
PZ
7191 ld_moved = 0;
7192 if (busiest->nr_running > 1) {
7193 /*
7194 * Attempt to move tasks. If find_busiest_group has found
7195 * an imbalance but busiest->nr_running <= 1, the group is
7196 * still unbalanced. ld_moved simply stays zero, so it is
7197 * correctly treated as an imbalance.
7198 */
8e45cb54 7199 env.flags |= LBF_ALL_PINNED;
c82513e5 7200 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7201
5d6523eb 7202more_balance:
163122b7 7203 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7204
7205 /*
7206 * cur_ld_moved - load moved in current iteration
7207 * ld_moved - cumulative load moved across iterations
7208 */
163122b7 7209 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7210
7211 /*
163122b7
KT
7212 * We've detached some tasks from busiest_rq. Every
7213 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7214 * unlock busiest->lock, and we are able to be sure
7215 * that nobody can manipulate the tasks in parallel.
7216 * See task_rq_lock() family for the details.
1e3c88bd 7217 */
163122b7
KT
7218
7219 raw_spin_unlock(&busiest->lock);
7220
7221 if (cur_ld_moved) {
7222 attach_tasks(&env);
7223 ld_moved += cur_ld_moved;
7224 }
7225
1e3c88bd 7226 local_irq_restore(flags);
88b8dac0 7227
f1cd0858
JK
7228 if (env.flags & LBF_NEED_BREAK) {
7229 env.flags &= ~LBF_NEED_BREAK;
7230 goto more_balance;
7231 }
7232
88b8dac0
SV
7233 /*
7234 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7235 * us and move them to an alternate dst_cpu in our sched_group
7236 * where they can run. The upper limit on how many times we
7237 * iterate on same src_cpu is dependent on number of cpus in our
7238 * sched_group.
7239 *
7240 * This changes load balance semantics a bit on who can move
7241 * load to a given_cpu. In addition to the given_cpu itself
7242 * (or a ilb_cpu acting on its behalf where given_cpu is
7243 * nohz-idle), we now have balance_cpu in a position to move
7244 * load to given_cpu. In rare situations, this may cause
7245 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7246 * _independently_ and at _same_ time to move some load to
7247 * given_cpu) causing exceess load to be moved to given_cpu.
7248 * This however should not happen so much in practice and
7249 * moreover subsequent load balance cycles should correct the
7250 * excess load moved.
7251 */
6263322c 7252 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7253
7aff2e3a
VD
7254 /* Prevent to re-select dst_cpu via env's cpus */
7255 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7256
78feefc5 7257 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7258 env.dst_cpu = env.new_dst_cpu;
6263322c 7259 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7260 env.loop = 0;
7261 env.loop_break = sched_nr_migrate_break;
e02e60c1 7262
88b8dac0
SV
7263 /*
7264 * Go back to "more_balance" rather than "redo" since we
7265 * need to continue with same src_cpu.
7266 */
7267 goto more_balance;
7268 }
1e3c88bd 7269
6263322c
PZ
7270 /*
7271 * We failed to reach balance because of affinity.
7272 */
7273 if (sd_parent) {
63b2ca30 7274 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7275
afdeee05 7276 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7277 *group_imbalance = 1;
6263322c
PZ
7278 }
7279
1e3c88bd 7280 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7281 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7282 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7283 if (!cpumask_empty(cpus)) {
7284 env.loop = 0;
7285 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7286 goto redo;
bbf18b19 7287 }
afdeee05 7288 goto out_all_pinned;
1e3c88bd
PZ
7289 }
7290 }
7291
7292 if (!ld_moved) {
7293 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7294 /*
7295 * Increment the failure counter only on periodic balance.
7296 * We do not want newidle balance, which can be very
7297 * frequent, pollute the failure counter causing
7298 * excessive cache_hot migrations and active balances.
7299 */
7300 if (idle != CPU_NEWLY_IDLE)
7301 sd->nr_balance_failed++;
1e3c88bd 7302
bd939f45 7303 if (need_active_balance(&env)) {
1e3c88bd
PZ
7304 raw_spin_lock_irqsave(&busiest->lock, flags);
7305
969c7921
TH
7306 /* don't kick the active_load_balance_cpu_stop,
7307 * if the curr task on busiest cpu can't be
7308 * moved to this_cpu
1e3c88bd
PZ
7309 */
7310 if (!cpumask_test_cpu(this_cpu,
fa17b507 7311 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7312 raw_spin_unlock_irqrestore(&busiest->lock,
7313 flags);
8e45cb54 7314 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7315 goto out_one_pinned;
7316 }
7317
969c7921
TH
7318 /*
7319 * ->active_balance synchronizes accesses to
7320 * ->active_balance_work. Once set, it's cleared
7321 * only after active load balance is finished.
7322 */
1e3c88bd
PZ
7323 if (!busiest->active_balance) {
7324 busiest->active_balance = 1;
7325 busiest->push_cpu = this_cpu;
7326 active_balance = 1;
7327 }
7328 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7329
bd939f45 7330 if (active_balance) {
969c7921
TH
7331 stop_one_cpu_nowait(cpu_of(busiest),
7332 active_load_balance_cpu_stop, busiest,
7333 &busiest->active_balance_work);
bd939f45 7334 }
1e3c88bd
PZ
7335
7336 /*
7337 * We've kicked active balancing, reset the failure
7338 * counter.
7339 */
7340 sd->nr_balance_failed = sd->cache_nice_tries+1;
7341 }
7342 } else
7343 sd->nr_balance_failed = 0;
7344
7345 if (likely(!active_balance)) {
7346 /* We were unbalanced, so reset the balancing interval */
7347 sd->balance_interval = sd->min_interval;
7348 } else {
7349 /*
7350 * If we've begun active balancing, start to back off. This
7351 * case may not be covered by the all_pinned logic if there
7352 * is only 1 task on the busy runqueue (because we don't call
163122b7 7353 * detach_tasks).
1e3c88bd
PZ
7354 */
7355 if (sd->balance_interval < sd->max_interval)
7356 sd->balance_interval *= 2;
7357 }
7358
1e3c88bd
PZ
7359 goto out;
7360
7361out_balanced:
afdeee05
VG
7362 /*
7363 * We reach balance although we may have faced some affinity
7364 * constraints. Clear the imbalance flag if it was set.
7365 */
7366 if (sd_parent) {
7367 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7368
7369 if (*group_imbalance)
7370 *group_imbalance = 0;
7371 }
7372
7373out_all_pinned:
7374 /*
7375 * We reach balance because all tasks are pinned at this level so
7376 * we can't migrate them. Let the imbalance flag set so parent level
7377 * can try to migrate them.
7378 */
1e3c88bd
PZ
7379 schedstat_inc(sd, lb_balanced[idle]);
7380
7381 sd->nr_balance_failed = 0;
7382
7383out_one_pinned:
7384 /* tune up the balancing interval */
8e45cb54 7385 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7386 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7387 (sd->balance_interval < sd->max_interval))
7388 sd->balance_interval *= 2;
7389
46e49b38 7390 ld_moved = 0;
1e3c88bd 7391out:
1e3c88bd
PZ
7392 return ld_moved;
7393}
7394
52a08ef1
JL
7395static inline unsigned long
7396get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7397{
7398 unsigned long interval = sd->balance_interval;
7399
7400 if (cpu_busy)
7401 interval *= sd->busy_factor;
7402
7403 /* scale ms to jiffies */
7404 interval = msecs_to_jiffies(interval);
7405 interval = clamp(interval, 1UL, max_load_balance_interval);
7406
7407 return interval;
7408}
7409
7410static inline void
7411update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7412{
7413 unsigned long interval, next;
7414
7415 interval = get_sd_balance_interval(sd, cpu_busy);
7416 next = sd->last_balance + interval;
7417
7418 if (time_after(*next_balance, next))
7419 *next_balance = next;
7420}
7421
1e3c88bd
PZ
7422/*
7423 * idle_balance is called by schedule() if this_cpu is about to become
7424 * idle. Attempts to pull tasks from other CPUs.
7425 */
6e83125c 7426static int idle_balance(struct rq *this_rq)
1e3c88bd 7427{
52a08ef1
JL
7428 unsigned long next_balance = jiffies + HZ;
7429 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7430 struct sched_domain *sd;
7431 int pulled_task = 0;
9bd721c5 7432 u64 curr_cost = 0;
1e3c88bd 7433
6e83125c
PZ
7434 /*
7435 * We must set idle_stamp _before_ calling idle_balance(), such that we
7436 * measure the duration of idle_balance() as idle time.
7437 */
7438 this_rq->idle_stamp = rq_clock(this_rq);
7439
4486edd1
TC
7440 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7441 !this_rq->rd->overload) {
52a08ef1
JL
7442 rcu_read_lock();
7443 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7444 if (sd)
7445 update_next_balance(sd, 0, &next_balance);
7446 rcu_read_unlock();
7447
6e83125c 7448 goto out;
52a08ef1 7449 }
1e3c88bd 7450
f492e12e
PZ
7451 raw_spin_unlock(&this_rq->lock);
7452
48a16753 7453 update_blocked_averages(this_cpu);
dce840a0 7454 rcu_read_lock();
1e3c88bd 7455 for_each_domain(this_cpu, sd) {
23f0d209 7456 int continue_balancing = 1;
9bd721c5 7457 u64 t0, domain_cost;
1e3c88bd
PZ
7458
7459 if (!(sd->flags & SD_LOAD_BALANCE))
7460 continue;
7461
52a08ef1
JL
7462 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7463 update_next_balance(sd, 0, &next_balance);
9bd721c5 7464 break;
52a08ef1 7465 }
9bd721c5 7466
f492e12e 7467 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7468 t0 = sched_clock_cpu(this_cpu);
7469
f492e12e 7470 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7471 sd, CPU_NEWLY_IDLE,
7472 &continue_balancing);
9bd721c5
JL
7473
7474 domain_cost = sched_clock_cpu(this_cpu) - t0;
7475 if (domain_cost > sd->max_newidle_lb_cost)
7476 sd->max_newidle_lb_cost = domain_cost;
7477
7478 curr_cost += domain_cost;
f492e12e 7479 }
1e3c88bd 7480
52a08ef1 7481 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7482
7483 /*
7484 * Stop searching for tasks to pull if there are
7485 * now runnable tasks on this rq.
7486 */
7487 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7488 break;
1e3c88bd 7489 }
dce840a0 7490 rcu_read_unlock();
f492e12e
PZ
7491
7492 raw_spin_lock(&this_rq->lock);
7493
0e5b5337
JL
7494 if (curr_cost > this_rq->max_idle_balance_cost)
7495 this_rq->max_idle_balance_cost = curr_cost;
7496
e5fc6611 7497 /*
0e5b5337
JL
7498 * While browsing the domains, we released the rq lock, a task could
7499 * have been enqueued in the meantime. Since we're not going idle,
7500 * pretend we pulled a task.
e5fc6611 7501 */
0e5b5337 7502 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7503 pulled_task = 1;
e5fc6611 7504
52a08ef1
JL
7505out:
7506 /* Move the next balance forward */
7507 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7508 this_rq->next_balance = next_balance;
9bd721c5 7509
e4aa358b 7510 /* Is there a task of a high priority class? */
46383648 7511 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7512 pulled_task = -1;
7513
38c6ade2 7514 if (pulled_task)
6e83125c
PZ
7515 this_rq->idle_stamp = 0;
7516
3c4017c1 7517 return pulled_task;
1e3c88bd
PZ
7518}
7519
7520/*
969c7921
TH
7521 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7522 * running tasks off the busiest CPU onto idle CPUs. It requires at
7523 * least 1 task to be running on each physical CPU where possible, and
7524 * avoids physical / logical imbalances.
1e3c88bd 7525 */
969c7921 7526static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7527{
969c7921
TH
7528 struct rq *busiest_rq = data;
7529 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7530 int target_cpu = busiest_rq->push_cpu;
969c7921 7531 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7532 struct sched_domain *sd;
e5673f28 7533 struct task_struct *p = NULL;
969c7921
TH
7534
7535 raw_spin_lock_irq(&busiest_rq->lock);
7536
7537 /* make sure the requested cpu hasn't gone down in the meantime */
7538 if (unlikely(busiest_cpu != smp_processor_id() ||
7539 !busiest_rq->active_balance))
7540 goto out_unlock;
1e3c88bd
PZ
7541
7542 /* Is there any task to move? */
7543 if (busiest_rq->nr_running <= 1)
969c7921 7544 goto out_unlock;
1e3c88bd
PZ
7545
7546 /*
7547 * This condition is "impossible", if it occurs
7548 * we need to fix it. Originally reported by
7549 * Bjorn Helgaas on a 128-cpu setup.
7550 */
7551 BUG_ON(busiest_rq == target_rq);
7552
1e3c88bd 7553 /* Search for an sd spanning us and the target CPU. */
dce840a0 7554 rcu_read_lock();
1e3c88bd
PZ
7555 for_each_domain(target_cpu, sd) {
7556 if ((sd->flags & SD_LOAD_BALANCE) &&
7557 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7558 break;
7559 }
7560
7561 if (likely(sd)) {
8e45cb54
PZ
7562 struct lb_env env = {
7563 .sd = sd,
ddcdf6e7
PZ
7564 .dst_cpu = target_cpu,
7565 .dst_rq = target_rq,
7566 .src_cpu = busiest_rq->cpu,
7567 .src_rq = busiest_rq,
8e45cb54
PZ
7568 .idle = CPU_IDLE,
7569 };
7570
1e3c88bd
PZ
7571 schedstat_inc(sd, alb_count);
7572
e5673f28
KT
7573 p = detach_one_task(&env);
7574 if (p)
1e3c88bd
PZ
7575 schedstat_inc(sd, alb_pushed);
7576 else
7577 schedstat_inc(sd, alb_failed);
7578 }
dce840a0 7579 rcu_read_unlock();
969c7921
TH
7580out_unlock:
7581 busiest_rq->active_balance = 0;
e5673f28
KT
7582 raw_spin_unlock(&busiest_rq->lock);
7583
7584 if (p)
7585 attach_one_task(target_rq, p);
7586
7587 local_irq_enable();
7588
969c7921 7589 return 0;
1e3c88bd
PZ
7590}
7591
d987fc7f
MG
7592static inline int on_null_domain(struct rq *rq)
7593{
7594 return unlikely(!rcu_dereference_sched(rq->sd));
7595}
7596
3451d024 7597#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7598/*
7599 * idle load balancing details
83cd4fe2
VP
7600 * - When one of the busy CPUs notice that there may be an idle rebalancing
7601 * needed, they will kick the idle load balancer, which then does idle
7602 * load balancing for all the idle CPUs.
7603 */
1e3c88bd 7604static struct {
83cd4fe2 7605 cpumask_var_t idle_cpus_mask;
0b005cf5 7606 atomic_t nr_cpus;
83cd4fe2
VP
7607 unsigned long next_balance; /* in jiffy units */
7608} nohz ____cacheline_aligned;
1e3c88bd 7609
3dd0337d 7610static inline int find_new_ilb(void)
1e3c88bd 7611{
0b005cf5 7612 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7613
786d6dc7
SS
7614 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7615 return ilb;
7616
7617 return nr_cpu_ids;
1e3c88bd 7618}
1e3c88bd 7619
83cd4fe2
VP
7620/*
7621 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7622 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7623 * CPU (if there is one).
7624 */
0aeeeeba 7625static void nohz_balancer_kick(void)
83cd4fe2
VP
7626{
7627 int ilb_cpu;
7628
7629 nohz.next_balance++;
7630
3dd0337d 7631 ilb_cpu = find_new_ilb();
83cd4fe2 7632
0b005cf5
SS
7633 if (ilb_cpu >= nr_cpu_ids)
7634 return;
83cd4fe2 7635
cd490c5b 7636 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7637 return;
7638 /*
7639 * Use smp_send_reschedule() instead of resched_cpu().
7640 * This way we generate a sched IPI on the target cpu which
7641 * is idle. And the softirq performing nohz idle load balance
7642 * will be run before returning from the IPI.
7643 */
7644 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7645 return;
7646}
7647
c1cc017c 7648static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7649{
7650 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7651 /*
7652 * Completely isolated CPUs don't ever set, so we must test.
7653 */
7654 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7655 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7656 atomic_dec(&nohz.nr_cpus);
7657 }
71325960
SS
7658 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7659 }
7660}
7661
69e1e811
SS
7662static inline void set_cpu_sd_state_busy(void)
7663{
7664 struct sched_domain *sd;
37dc6b50 7665 int cpu = smp_processor_id();
69e1e811 7666
69e1e811 7667 rcu_read_lock();
37dc6b50 7668 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7669
7670 if (!sd || !sd->nohz_idle)
7671 goto unlock;
7672 sd->nohz_idle = 0;
7673
63b2ca30 7674 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7675unlock:
69e1e811
SS
7676 rcu_read_unlock();
7677}
7678
7679void set_cpu_sd_state_idle(void)
7680{
7681 struct sched_domain *sd;
37dc6b50 7682 int cpu = smp_processor_id();
69e1e811 7683
69e1e811 7684 rcu_read_lock();
37dc6b50 7685 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7686
7687 if (!sd || sd->nohz_idle)
7688 goto unlock;
7689 sd->nohz_idle = 1;
7690
63b2ca30 7691 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7692unlock:
69e1e811
SS
7693 rcu_read_unlock();
7694}
7695
1e3c88bd 7696/*
c1cc017c 7697 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7698 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7699 */
c1cc017c 7700void nohz_balance_enter_idle(int cpu)
1e3c88bd 7701{
71325960
SS
7702 /*
7703 * If this cpu is going down, then nothing needs to be done.
7704 */
7705 if (!cpu_active(cpu))
7706 return;
7707
c1cc017c
AS
7708 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7709 return;
1e3c88bd 7710
d987fc7f
MG
7711 /*
7712 * If we're a completely isolated CPU, we don't play.
7713 */
7714 if (on_null_domain(cpu_rq(cpu)))
7715 return;
7716
c1cc017c
AS
7717 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7718 atomic_inc(&nohz.nr_cpus);
7719 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7720}
71325960 7721
0db0628d 7722static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7723 unsigned long action, void *hcpu)
7724{
7725 switch (action & ~CPU_TASKS_FROZEN) {
7726 case CPU_DYING:
c1cc017c 7727 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7728 return NOTIFY_OK;
7729 default:
7730 return NOTIFY_DONE;
7731 }
7732}
1e3c88bd
PZ
7733#endif
7734
7735static DEFINE_SPINLOCK(balancing);
7736
49c022e6
PZ
7737/*
7738 * Scale the max load_balance interval with the number of CPUs in the system.
7739 * This trades load-balance latency on larger machines for less cross talk.
7740 */
029632fb 7741void update_max_interval(void)
49c022e6
PZ
7742{
7743 max_load_balance_interval = HZ*num_online_cpus()/10;
7744}
7745
1e3c88bd
PZ
7746/*
7747 * It checks each scheduling domain to see if it is due to be balanced,
7748 * and initiates a balancing operation if so.
7749 *
b9b0853a 7750 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7751 */
f7ed0a89 7752static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7753{
23f0d209 7754 int continue_balancing = 1;
f7ed0a89 7755 int cpu = rq->cpu;
1e3c88bd 7756 unsigned long interval;
04f733b4 7757 struct sched_domain *sd;
1e3c88bd
PZ
7758 /* Earliest time when we have to do rebalance again */
7759 unsigned long next_balance = jiffies + 60*HZ;
7760 int update_next_balance = 0;
f48627e6
JL
7761 int need_serialize, need_decay = 0;
7762 u64 max_cost = 0;
1e3c88bd 7763
48a16753 7764 update_blocked_averages(cpu);
2069dd75 7765
dce840a0 7766 rcu_read_lock();
1e3c88bd 7767 for_each_domain(cpu, sd) {
f48627e6
JL
7768 /*
7769 * Decay the newidle max times here because this is a regular
7770 * visit to all the domains. Decay ~1% per second.
7771 */
7772 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7773 sd->max_newidle_lb_cost =
7774 (sd->max_newidle_lb_cost * 253) / 256;
7775 sd->next_decay_max_lb_cost = jiffies + HZ;
7776 need_decay = 1;
7777 }
7778 max_cost += sd->max_newidle_lb_cost;
7779
1e3c88bd
PZ
7780 if (!(sd->flags & SD_LOAD_BALANCE))
7781 continue;
7782
f48627e6
JL
7783 /*
7784 * Stop the load balance at this level. There is another
7785 * CPU in our sched group which is doing load balancing more
7786 * actively.
7787 */
7788 if (!continue_balancing) {
7789 if (need_decay)
7790 continue;
7791 break;
7792 }
7793
52a08ef1 7794 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7795
7796 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7797 if (need_serialize) {
7798 if (!spin_trylock(&balancing))
7799 goto out;
7800 }
7801
7802 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7803 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7804 /*
6263322c 7805 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7806 * env->dst_cpu, so we can't know our idle
7807 * state even if we migrated tasks. Update it.
1e3c88bd 7808 */
de5eb2dd 7809 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7810 }
7811 sd->last_balance = jiffies;
52a08ef1 7812 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7813 }
7814 if (need_serialize)
7815 spin_unlock(&balancing);
7816out:
7817 if (time_after(next_balance, sd->last_balance + interval)) {
7818 next_balance = sd->last_balance + interval;
7819 update_next_balance = 1;
7820 }
f48627e6
JL
7821 }
7822 if (need_decay) {
1e3c88bd 7823 /*
f48627e6
JL
7824 * Ensure the rq-wide value also decays but keep it at a
7825 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7826 */
f48627e6
JL
7827 rq->max_idle_balance_cost =
7828 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7829 }
dce840a0 7830 rcu_read_unlock();
1e3c88bd
PZ
7831
7832 /*
7833 * next_balance will be updated only when there is a need.
7834 * When the cpu is attached to null domain for ex, it will not be
7835 * updated.
7836 */
c5afb6a8 7837 if (likely(update_next_balance)) {
1e3c88bd 7838 rq->next_balance = next_balance;
c5afb6a8
VG
7839
7840#ifdef CONFIG_NO_HZ_COMMON
7841 /*
7842 * If this CPU has been elected to perform the nohz idle
7843 * balance. Other idle CPUs have already rebalanced with
7844 * nohz_idle_balance() and nohz.next_balance has been
7845 * updated accordingly. This CPU is now running the idle load
7846 * balance for itself and we need to update the
7847 * nohz.next_balance accordingly.
7848 */
7849 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
7850 nohz.next_balance = rq->next_balance;
7851#endif
7852 }
1e3c88bd
PZ
7853}
7854
3451d024 7855#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7856/*
3451d024 7857 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7858 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7859 */
208cb16b 7860static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7861{
208cb16b 7862 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7863 struct rq *rq;
7864 int balance_cpu;
c5afb6a8
VG
7865 /* Earliest time when we have to do rebalance again */
7866 unsigned long next_balance = jiffies + 60*HZ;
7867 int update_next_balance = 0;
83cd4fe2 7868
1c792db7
SS
7869 if (idle != CPU_IDLE ||
7870 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7871 goto end;
83cd4fe2
VP
7872
7873 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7874 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7875 continue;
7876
7877 /*
7878 * If this cpu gets work to do, stop the load balancing
7879 * work being done for other cpus. Next load
7880 * balancing owner will pick it up.
7881 */
1c792db7 7882 if (need_resched())
83cd4fe2 7883 break;
83cd4fe2 7884
5ed4f1d9
VG
7885 rq = cpu_rq(balance_cpu);
7886
ed61bbc6
TC
7887 /*
7888 * If time for next balance is due,
7889 * do the balance.
7890 */
7891 if (time_after_eq(jiffies, rq->next_balance)) {
7892 raw_spin_lock_irq(&rq->lock);
7893 update_rq_clock(rq);
7894 update_idle_cpu_load(rq);
7895 raw_spin_unlock_irq(&rq->lock);
7896 rebalance_domains(rq, CPU_IDLE);
7897 }
83cd4fe2 7898
c5afb6a8
VG
7899 if (time_after(next_balance, rq->next_balance)) {
7900 next_balance = rq->next_balance;
7901 update_next_balance = 1;
7902 }
83cd4fe2 7903 }
c5afb6a8
VG
7904
7905 /*
7906 * next_balance will be updated only when there is a need.
7907 * When the CPU is attached to null domain for ex, it will not be
7908 * updated.
7909 */
7910 if (likely(update_next_balance))
7911 nohz.next_balance = next_balance;
1c792db7
SS
7912end:
7913 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7914}
7915
7916/*
0b005cf5 7917 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 7918 * of an idle cpu in the system.
0b005cf5 7919 * - This rq has more than one task.
1aaf90a4
VG
7920 * - This rq has at least one CFS task and the capacity of the CPU is
7921 * significantly reduced because of RT tasks or IRQs.
7922 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
7923 * multiple busy cpu.
0b005cf5
SS
7924 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7925 * domain span are idle.
83cd4fe2 7926 */
1aaf90a4 7927static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7928{
7929 unsigned long now = jiffies;
0b005cf5 7930 struct sched_domain *sd;
63b2ca30 7931 struct sched_group_capacity *sgc;
4a725627 7932 int nr_busy, cpu = rq->cpu;
1aaf90a4 7933 bool kick = false;
83cd4fe2 7934
4a725627 7935 if (unlikely(rq->idle_balance))
1aaf90a4 7936 return false;
83cd4fe2 7937
1c792db7
SS
7938 /*
7939 * We may be recently in ticked or tickless idle mode. At the first
7940 * busy tick after returning from idle, we will update the busy stats.
7941 */
69e1e811 7942 set_cpu_sd_state_busy();
c1cc017c 7943 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7944
7945 /*
7946 * None are in tickless mode and hence no need for NOHZ idle load
7947 * balancing.
7948 */
7949 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 7950 return false;
1c792db7
SS
7951
7952 if (time_before(now, nohz.next_balance))
1aaf90a4 7953 return false;
83cd4fe2 7954
0b005cf5 7955 if (rq->nr_running >= 2)
1aaf90a4 7956 return true;
83cd4fe2 7957
067491b7 7958 rcu_read_lock();
37dc6b50 7959 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 7960 if (sd) {
63b2ca30
NP
7961 sgc = sd->groups->sgc;
7962 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7963
1aaf90a4
VG
7964 if (nr_busy > 1) {
7965 kick = true;
7966 goto unlock;
7967 }
7968
83cd4fe2 7969 }
37dc6b50 7970
1aaf90a4
VG
7971 sd = rcu_dereference(rq->sd);
7972 if (sd) {
7973 if ((rq->cfs.h_nr_running >= 1) &&
7974 check_cpu_capacity(rq, sd)) {
7975 kick = true;
7976 goto unlock;
7977 }
7978 }
37dc6b50 7979
1aaf90a4 7980 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 7981 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
7982 sched_domain_span(sd)) < cpu)) {
7983 kick = true;
7984 goto unlock;
7985 }
067491b7 7986
1aaf90a4 7987unlock:
067491b7 7988 rcu_read_unlock();
1aaf90a4 7989 return kick;
83cd4fe2
VP
7990}
7991#else
208cb16b 7992static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7993#endif
7994
7995/*
7996 * run_rebalance_domains is triggered when needed from the scheduler tick.
7997 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7998 */
1e3c88bd
PZ
7999static void run_rebalance_domains(struct softirq_action *h)
8000{
208cb16b 8001 struct rq *this_rq = this_rq();
6eb57e0d 8002 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8003 CPU_IDLE : CPU_NOT_IDLE;
8004
1e3c88bd 8005 /*
83cd4fe2 8006 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8007 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8008 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8009 * give the idle cpus a chance to load balance. Else we may
8010 * load balance only within the local sched_domain hierarchy
8011 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8012 */
208cb16b 8013 nohz_idle_balance(this_rq, idle);
d4573c3e 8014 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8015}
8016
1e3c88bd
PZ
8017/*
8018 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8019 */
7caff66f 8020void trigger_load_balance(struct rq *rq)
1e3c88bd 8021{
1e3c88bd 8022 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8023 if (unlikely(on_null_domain(rq)))
8024 return;
8025
8026 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8027 raise_softirq(SCHED_SOFTIRQ);
3451d024 8028#ifdef CONFIG_NO_HZ_COMMON
c726099e 8029 if (nohz_kick_needed(rq))
0aeeeeba 8030 nohz_balancer_kick();
83cd4fe2 8031#endif
1e3c88bd
PZ
8032}
8033
0bcdcf28
CE
8034static void rq_online_fair(struct rq *rq)
8035{
8036 update_sysctl();
0e59bdae
KT
8037
8038 update_runtime_enabled(rq);
0bcdcf28
CE
8039}
8040
8041static void rq_offline_fair(struct rq *rq)
8042{
8043 update_sysctl();
a4c96ae3
PB
8044
8045 /* Ensure any throttled groups are reachable by pick_next_task */
8046 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8047}
8048
55e12e5e 8049#endif /* CONFIG_SMP */
e1d1484f 8050
bf0f6f24
IM
8051/*
8052 * scheduler tick hitting a task of our scheduling class:
8053 */
8f4d37ec 8054static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8055{
8056 struct cfs_rq *cfs_rq;
8057 struct sched_entity *se = &curr->se;
8058
8059 for_each_sched_entity(se) {
8060 cfs_rq = cfs_rq_of(se);
8f4d37ec 8061 entity_tick(cfs_rq, se, queued);
bf0f6f24 8062 }
18bf2805 8063
b52da86e 8064 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8065 task_tick_numa(rq, curr);
bf0f6f24
IM
8066}
8067
8068/*
cd29fe6f
PZ
8069 * called on fork with the child task as argument from the parent's context
8070 * - child not yet on the tasklist
8071 * - preemption disabled
bf0f6f24 8072 */
cd29fe6f 8073static void task_fork_fair(struct task_struct *p)
bf0f6f24 8074{
4fc420c9
DN
8075 struct cfs_rq *cfs_rq;
8076 struct sched_entity *se = &p->se, *curr;
00bf7bfc 8077 int this_cpu = smp_processor_id();
cd29fe6f
PZ
8078 struct rq *rq = this_rq();
8079 unsigned long flags;
8080
05fa785c 8081 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 8082
861d034e
PZ
8083 update_rq_clock(rq);
8084
4fc420c9
DN
8085 cfs_rq = task_cfs_rq(current);
8086 curr = cfs_rq->curr;
8087
6c9a27f5
DN
8088 /*
8089 * Not only the cpu but also the task_group of the parent might have
8090 * been changed after parent->se.parent,cfs_rq were copied to
8091 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8092 * of child point to valid ones.
8093 */
8094 rcu_read_lock();
8095 __set_task_cpu(p, this_cpu);
8096 rcu_read_unlock();
bf0f6f24 8097
7109c442 8098 update_curr(cfs_rq);
cd29fe6f 8099
b5d9d734
MG
8100 if (curr)
8101 se->vruntime = curr->vruntime;
aeb73b04 8102 place_entity(cfs_rq, se, 1);
4d78e7b6 8103
cd29fe6f 8104 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8105 /*
edcb60a3
IM
8106 * Upon rescheduling, sched_class::put_prev_task() will place
8107 * 'current' within the tree based on its new key value.
8108 */
4d78e7b6 8109 swap(curr->vruntime, se->vruntime);
8875125e 8110 resched_curr(rq);
4d78e7b6 8111 }
bf0f6f24 8112
88ec22d3
PZ
8113 se->vruntime -= cfs_rq->min_vruntime;
8114
05fa785c 8115 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
8116}
8117
cb469845
SR
8118/*
8119 * Priority of the task has changed. Check to see if we preempt
8120 * the current task.
8121 */
da7a735e
PZ
8122static void
8123prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8124{
da0c1e65 8125 if (!task_on_rq_queued(p))
da7a735e
PZ
8126 return;
8127
cb469845
SR
8128 /*
8129 * Reschedule if we are currently running on this runqueue and
8130 * our priority decreased, or if we are not currently running on
8131 * this runqueue and our priority is higher than the current's
8132 */
da7a735e 8133 if (rq->curr == p) {
cb469845 8134 if (p->prio > oldprio)
8875125e 8135 resched_curr(rq);
cb469845 8136 } else
15afe09b 8137 check_preempt_curr(rq, p, 0);
cb469845
SR
8138}
8139
daa59407 8140static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8141{
8142 struct sched_entity *se = &p->se;
da7a735e
PZ
8143
8144 /*
daa59407
BP
8145 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8146 * the dequeue_entity(.flags=0) will already have normalized the
8147 * vruntime.
8148 */
8149 if (p->on_rq)
8150 return true;
8151
8152 /*
8153 * When !on_rq, vruntime of the task has usually NOT been normalized.
8154 * But there are some cases where it has already been normalized:
da7a735e 8155 *
daa59407
BP
8156 * - A forked child which is waiting for being woken up by
8157 * wake_up_new_task().
8158 * - A task which has been woken up by try_to_wake_up() and
8159 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8160 */
daa59407
BP
8161 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8162 return true;
8163
8164 return false;
8165}
8166
8167static void detach_task_cfs_rq(struct task_struct *p)
8168{
8169 struct sched_entity *se = &p->se;
8170 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8171
8172 if (!vruntime_normalized(p)) {
da7a735e
PZ
8173 /*
8174 * Fix up our vruntime so that the current sleep doesn't
8175 * cause 'unlimited' sleep bonus.
8176 */
8177 place_entity(cfs_rq, se, 0);
8178 se->vruntime -= cfs_rq->min_vruntime;
8179 }
9ee474f5 8180
9d89c257 8181 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8182 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8183}
8184
daa59407 8185static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8186{
f36c019c 8187 struct sched_entity *se = &p->se;
daa59407 8188 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8189
8190#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8191 /*
8192 * Since the real-depth could have been changed (only FAIR
8193 * class maintain depth value), reset depth properly.
8194 */
8195 se->depth = se->parent ? se->parent->depth + 1 : 0;
8196#endif
7855a35a 8197
6efdb105 8198 /* Synchronize task with its cfs_rq */
daa59407
BP
8199 attach_entity_load_avg(cfs_rq, se);
8200
8201 if (!vruntime_normalized(p))
8202 se->vruntime += cfs_rq->min_vruntime;
8203}
6efdb105 8204
daa59407
BP
8205static void switched_from_fair(struct rq *rq, struct task_struct *p)
8206{
8207 detach_task_cfs_rq(p);
8208}
8209
8210static void switched_to_fair(struct rq *rq, struct task_struct *p)
8211{
8212 attach_task_cfs_rq(p);
7855a35a 8213
daa59407 8214 if (task_on_rq_queued(p)) {
7855a35a 8215 /*
daa59407
BP
8216 * We were most likely switched from sched_rt, so
8217 * kick off the schedule if running, otherwise just see
8218 * if we can still preempt the current task.
7855a35a 8219 */
daa59407
BP
8220 if (rq->curr == p)
8221 resched_curr(rq);
8222 else
8223 check_preempt_curr(rq, p, 0);
7855a35a 8224 }
cb469845
SR
8225}
8226
83b699ed
SV
8227/* Account for a task changing its policy or group.
8228 *
8229 * This routine is mostly called to set cfs_rq->curr field when a task
8230 * migrates between groups/classes.
8231 */
8232static void set_curr_task_fair(struct rq *rq)
8233{
8234 struct sched_entity *se = &rq->curr->se;
8235
ec12cb7f
PT
8236 for_each_sched_entity(se) {
8237 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8238
8239 set_next_entity(cfs_rq, se);
8240 /* ensure bandwidth has been allocated on our new cfs_rq */
8241 account_cfs_rq_runtime(cfs_rq, 0);
8242 }
83b699ed
SV
8243}
8244
029632fb
PZ
8245void init_cfs_rq(struct cfs_rq *cfs_rq)
8246{
8247 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8248 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8249#ifndef CONFIG_64BIT
8250 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8251#endif
141965c7 8252#ifdef CONFIG_SMP
9d89c257
YD
8253 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8254 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8255#endif
029632fb
PZ
8256}
8257
810b3817 8258#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8259static void task_move_group_fair(struct task_struct *p)
810b3817 8260{
daa59407 8261 detach_task_cfs_rq(p);
b2b5ce02 8262 set_task_rq(p, task_cpu(p));
6efdb105
BP
8263
8264#ifdef CONFIG_SMP
8265 /* Tell se's cfs_rq has been changed -- migrated */
8266 p->se.avg.last_update_time = 0;
8267#endif
daa59407 8268 attach_task_cfs_rq(p);
810b3817 8269}
029632fb
PZ
8270
8271void free_fair_sched_group(struct task_group *tg)
8272{
8273 int i;
8274
8275 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8276
8277 for_each_possible_cpu(i) {
8278 if (tg->cfs_rq)
8279 kfree(tg->cfs_rq[i]);
12695578
YD
8280 if (tg->se) {
8281 if (tg->se[i])
8282 remove_entity_load_avg(tg->se[i]);
029632fb 8283 kfree(tg->se[i]);
12695578 8284 }
029632fb
PZ
8285 }
8286
8287 kfree(tg->cfs_rq);
8288 kfree(tg->se);
8289}
8290
8291int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8292{
8293 struct cfs_rq *cfs_rq;
8294 struct sched_entity *se;
8295 int i;
8296
8297 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8298 if (!tg->cfs_rq)
8299 goto err;
8300 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8301 if (!tg->se)
8302 goto err;
8303
8304 tg->shares = NICE_0_LOAD;
8305
8306 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8307
8308 for_each_possible_cpu(i) {
8309 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8310 GFP_KERNEL, cpu_to_node(i));
8311 if (!cfs_rq)
8312 goto err;
8313
8314 se = kzalloc_node(sizeof(struct sched_entity),
8315 GFP_KERNEL, cpu_to_node(i));
8316 if (!se)
8317 goto err_free_rq;
8318
8319 init_cfs_rq(cfs_rq);
8320 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8321 init_entity_runnable_average(se);
029632fb
PZ
8322 }
8323
8324 return 1;
8325
8326err_free_rq:
8327 kfree(cfs_rq);
8328err:
8329 return 0;
8330}
8331
8332void unregister_fair_sched_group(struct task_group *tg, int cpu)
8333{
8334 struct rq *rq = cpu_rq(cpu);
8335 unsigned long flags;
8336
8337 /*
8338 * Only empty task groups can be destroyed; so we can speculatively
8339 * check on_list without danger of it being re-added.
8340 */
8341 if (!tg->cfs_rq[cpu]->on_list)
8342 return;
8343
8344 raw_spin_lock_irqsave(&rq->lock, flags);
8345 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8346 raw_spin_unlock_irqrestore(&rq->lock, flags);
8347}
8348
8349void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8350 struct sched_entity *se, int cpu,
8351 struct sched_entity *parent)
8352{
8353 struct rq *rq = cpu_rq(cpu);
8354
8355 cfs_rq->tg = tg;
8356 cfs_rq->rq = rq;
029632fb
PZ
8357 init_cfs_rq_runtime(cfs_rq);
8358
8359 tg->cfs_rq[cpu] = cfs_rq;
8360 tg->se[cpu] = se;
8361
8362 /* se could be NULL for root_task_group */
8363 if (!se)
8364 return;
8365
fed14d45 8366 if (!parent) {
029632fb 8367 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8368 se->depth = 0;
8369 } else {
029632fb 8370 se->cfs_rq = parent->my_q;
fed14d45
PZ
8371 se->depth = parent->depth + 1;
8372 }
029632fb
PZ
8373
8374 se->my_q = cfs_rq;
0ac9b1c2
PT
8375 /* guarantee group entities always have weight */
8376 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8377 se->parent = parent;
8378}
8379
8380static DEFINE_MUTEX(shares_mutex);
8381
8382int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8383{
8384 int i;
8385 unsigned long flags;
8386
8387 /*
8388 * We can't change the weight of the root cgroup.
8389 */
8390 if (!tg->se[0])
8391 return -EINVAL;
8392
8393 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8394
8395 mutex_lock(&shares_mutex);
8396 if (tg->shares == shares)
8397 goto done;
8398
8399 tg->shares = shares;
8400 for_each_possible_cpu(i) {
8401 struct rq *rq = cpu_rq(i);
8402 struct sched_entity *se;
8403
8404 se = tg->se[i];
8405 /* Propagate contribution to hierarchy */
8406 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8407
8408 /* Possible calls to update_curr() need rq clock */
8409 update_rq_clock(rq);
17bc14b7 8410 for_each_sched_entity(se)
029632fb
PZ
8411 update_cfs_shares(group_cfs_rq(se));
8412 raw_spin_unlock_irqrestore(&rq->lock, flags);
8413 }
8414
8415done:
8416 mutex_unlock(&shares_mutex);
8417 return 0;
8418}
8419#else /* CONFIG_FAIR_GROUP_SCHED */
8420
8421void free_fair_sched_group(struct task_group *tg) { }
8422
8423int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8424{
8425 return 1;
8426}
8427
8428void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8429
8430#endif /* CONFIG_FAIR_GROUP_SCHED */
8431
810b3817 8432
6d686f45 8433static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8434{
8435 struct sched_entity *se = &task->se;
0d721cea
PW
8436 unsigned int rr_interval = 0;
8437
8438 /*
8439 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8440 * idle runqueue:
8441 */
0d721cea 8442 if (rq->cfs.load.weight)
a59f4e07 8443 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8444
8445 return rr_interval;
8446}
8447
bf0f6f24
IM
8448/*
8449 * All the scheduling class methods:
8450 */
029632fb 8451const struct sched_class fair_sched_class = {
5522d5d5 8452 .next = &idle_sched_class,
bf0f6f24
IM
8453 .enqueue_task = enqueue_task_fair,
8454 .dequeue_task = dequeue_task_fair,
8455 .yield_task = yield_task_fair,
d95f4122 8456 .yield_to_task = yield_to_task_fair,
bf0f6f24 8457
2e09bf55 8458 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8459
8460 .pick_next_task = pick_next_task_fair,
8461 .put_prev_task = put_prev_task_fair,
8462
681f3e68 8463#ifdef CONFIG_SMP
4ce72a2c 8464 .select_task_rq = select_task_rq_fair,
0a74bef8 8465 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8466
0bcdcf28
CE
8467 .rq_online = rq_online_fair,
8468 .rq_offline = rq_offline_fair,
88ec22d3
PZ
8469
8470 .task_waking = task_waking_fair,
12695578 8471 .task_dead = task_dead_fair,
c5b28038 8472 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8473#endif
bf0f6f24 8474
83b699ed 8475 .set_curr_task = set_curr_task_fair,
bf0f6f24 8476 .task_tick = task_tick_fair,
cd29fe6f 8477 .task_fork = task_fork_fair,
cb469845
SR
8478
8479 .prio_changed = prio_changed_fair,
da7a735e 8480 .switched_from = switched_from_fair,
cb469845 8481 .switched_to = switched_to_fair,
810b3817 8482
0d721cea
PW
8483 .get_rr_interval = get_rr_interval_fair,
8484
6e998916
SG
8485 .update_curr = update_curr_fair,
8486
810b3817 8487#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8488 .task_move_group = task_move_group_fair,
810b3817 8489#endif
bf0f6f24
IM
8490};
8491
8492#ifdef CONFIG_SCHED_DEBUG
029632fb 8493void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8494{
bf0f6f24
IM
8495 struct cfs_rq *cfs_rq;
8496
5973e5b9 8497 rcu_read_lock();
c3b64f1e 8498 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8499 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8500 rcu_read_unlock();
bf0f6f24 8501}
397f2378
SD
8502
8503#ifdef CONFIG_NUMA_BALANCING
8504void show_numa_stats(struct task_struct *p, struct seq_file *m)
8505{
8506 int node;
8507 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8508
8509 for_each_online_node(node) {
8510 if (p->numa_faults) {
8511 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8512 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8513 }
8514 if (p->numa_group) {
8515 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8516 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8517 }
8518 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8519 }
8520}
8521#endif /* CONFIG_NUMA_BALANCING */
8522#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8523
8524__init void init_sched_fair_class(void)
8525{
8526#ifdef CONFIG_SMP
8527 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8528
3451d024 8529#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8530 nohz.next_balance = jiffies;
029632fb 8531 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 8532 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
8533#endif
8534#endif /* SMP */
8535
8536}
This page took 1.392269 seconds and 5 git commands to generate.