Merge tag 'master-2014-11-25' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
144static int get_update_sysctl_factor(void)
145{
146 unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
aff3e498
PT
286static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 int force_update);
9ee474f5 288
3d4b47b4
PZ
289static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290{
291 if (!cfs_rq->on_list) {
67e86250
PT
292 /*
293 * Ensure we either appear before our parent (if already
294 * enqueued) or force our parent to appear after us when it is
295 * enqueued. The fact that we always enqueue bottom-up
296 * reduces this to two cases.
297 */
298 if (cfs_rq->tg->parent &&
299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 } else {
303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 305 }
3d4b47b4
PZ
306
307 cfs_rq->on_list = 1;
9ee474f5 308 /* We should have no load, but we need to update last_decay. */
aff3e498 309 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
310 }
311}
312
313static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314{
315 if (cfs_rq->on_list) {
316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 cfs_rq->on_list = 0;
318 }
319}
320
b758149c
PZ
321/* Iterate thr' all leaf cfs_rq's on a runqueue */
322#define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324
325/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 326static inline struct cfs_rq *
b758149c
PZ
327is_same_group(struct sched_entity *se, struct sched_entity *pse)
328{
329 if (se->cfs_rq == pse->cfs_rq)
fed14d45 330 return se->cfs_rq;
b758149c 331
fed14d45 332 return NULL;
b758149c
PZ
333}
334
335static inline struct sched_entity *parent_entity(struct sched_entity *se)
336{
337 return se->parent;
338}
339
464b7527
PZ
340static void
341find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342{
343 int se_depth, pse_depth;
344
345 /*
346 * preemption test can be made between sibling entities who are in the
347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 * both tasks until we find their ancestors who are siblings of common
349 * parent.
350 */
351
352 /* First walk up until both entities are at same depth */
fed14d45
PZ
353 se_depth = (*se)->depth;
354 pse_depth = (*pse)->depth;
464b7527
PZ
355
356 while (se_depth > pse_depth) {
357 se_depth--;
358 *se = parent_entity(*se);
359 }
360
361 while (pse_depth > se_depth) {
362 pse_depth--;
363 *pse = parent_entity(*pse);
364 }
365
366 while (!is_same_group(*se, *pse)) {
367 *se = parent_entity(*se);
368 *pse = parent_entity(*pse);
369 }
370}
371
8f48894f
PZ
372#else /* !CONFIG_FAIR_GROUP_SCHED */
373
374static inline struct task_struct *task_of(struct sched_entity *se)
375{
376 return container_of(se, struct task_struct, se);
377}
bf0f6f24 378
62160e3f
IM
379static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380{
381 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
382}
383
384#define entity_is_task(se) 1
385
b758149c
PZ
386#define for_each_sched_entity(se) \
387 for (; se; se = NULL)
bf0f6f24 388
b758149c 389static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 390{
b758149c 391 return &task_rq(p)->cfs;
bf0f6f24
IM
392}
393
b758149c
PZ
394static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395{
396 struct task_struct *p = task_of(se);
397 struct rq *rq = task_rq(p);
398
399 return &rq->cfs;
400}
401
402/* runqueue "owned" by this group */
403static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404{
405 return NULL;
406}
407
3d4b47b4
PZ
408static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409{
410}
411
412static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413{
414}
415
b758149c
PZ
416#define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418
b758149c
PZ
419static inline struct sched_entity *parent_entity(struct sched_entity *se)
420{
421 return NULL;
422}
423
464b7527
PZ
424static inline void
425find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426{
427}
428
b758149c
PZ
429#endif /* CONFIG_FAIR_GROUP_SCHED */
430
6c16a6dc 431static __always_inline
9dbdb155 432void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
433
434/**************************************************************
435 * Scheduling class tree data structure manipulation methods:
436 */
437
1bf08230 438static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 439{
1bf08230 440 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 441 if (delta > 0)
1bf08230 442 max_vruntime = vruntime;
02e0431a 443
1bf08230 444 return max_vruntime;
02e0431a
PZ
445}
446
0702e3eb 447static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
448{
449 s64 delta = (s64)(vruntime - min_vruntime);
450 if (delta < 0)
451 min_vruntime = vruntime;
452
453 return min_vruntime;
454}
455
54fdc581
FC
456static inline int entity_before(struct sched_entity *a,
457 struct sched_entity *b)
458{
459 return (s64)(a->vruntime - b->vruntime) < 0;
460}
461
1af5f730
PZ
462static void update_min_vruntime(struct cfs_rq *cfs_rq)
463{
464 u64 vruntime = cfs_rq->min_vruntime;
465
466 if (cfs_rq->curr)
467 vruntime = cfs_rq->curr->vruntime;
468
469 if (cfs_rq->rb_leftmost) {
470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 struct sched_entity,
472 run_node);
473
e17036da 474 if (!cfs_rq->curr)
1af5f730
PZ
475 vruntime = se->vruntime;
476 else
477 vruntime = min_vruntime(vruntime, se->vruntime);
478 }
479
1bf08230 480 /* ensure we never gain time by being placed backwards. */
1af5f730 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
482#ifndef CONFIG_64BIT
483 smp_wmb();
484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485#endif
1af5f730
PZ
486}
487
bf0f6f24
IM
488/*
489 * Enqueue an entity into the rb-tree:
490 */
0702e3eb 491static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
492{
493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 struct rb_node *parent = NULL;
495 struct sched_entity *entry;
bf0f6f24
IM
496 int leftmost = 1;
497
498 /*
499 * Find the right place in the rbtree:
500 */
501 while (*link) {
502 parent = *link;
503 entry = rb_entry(parent, struct sched_entity, run_node);
504 /*
505 * We dont care about collisions. Nodes with
506 * the same key stay together.
507 */
2bd2d6f2 508 if (entity_before(se, entry)) {
bf0f6f24
IM
509 link = &parent->rb_left;
510 } else {
511 link = &parent->rb_right;
512 leftmost = 0;
513 }
514 }
515
516 /*
517 * Maintain a cache of leftmost tree entries (it is frequently
518 * used):
519 */
1af5f730 520 if (leftmost)
57cb499d 521 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
522
523 rb_link_node(&se->run_node, parent, link);
524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
525}
526
0702e3eb 527static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 528{
3fe69747
PZ
529 if (cfs_rq->rb_leftmost == &se->run_node) {
530 struct rb_node *next_node;
3fe69747
PZ
531
532 next_node = rb_next(&se->run_node);
533 cfs_rq->rb_leftmost = next_node;
3fe69747 534 }
e9acbff6 535
bf0f6f24 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
537}
538
029632fb 539struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 540{
f4b6755f
PZ
541 struct rb_node *left = cfs_rq->rb_leftmost;
542
543 if (!left)
544 return NULL;
545
546 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
547}
548
ac53db59
RR
549static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550{
551 struct rb_node *next = rb_next(&se->run_node);
552
553 if (!next)
554 return NULL;
555
556 return rb_entry(next, struct sched_entity, run_node);
557}
558
559#ifdef CONFIG_SCHED_DEBUG
029632fb 560struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 561{
7eee3e67 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 563
70eee74b
BS
564 if (!last)
565 return NULL;
7eee3e67
IM
566
567 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
568}
569
bf0f6f24
IM
570/**************************************************************
571 * Scheduling class statistics methods:
572 */
573
acb4a848 574int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 575 void __user *buffer, size_t *lenp,
b2be5e96
PZ
576 loff_t *ppos)
577{
8d65af78 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 579 int factor = get_update_sysctl_factor();
b2be5e96
PZ
580
581 if (ret || !write)
582 return ret;
583
584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 sysctl_sched_min_granularity);
586
acb4a848
CE
587#define WRT_SYSCTL(name) \
588 (normalized_sysctl_##name = sysctl_##name / (factor))
589 WRT_SYSCTL(sched_min_granularity);
590 WRT_SYSCTL(sched_latency);
591 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
592#undef WRT_SYSCTL
593
b2be5e96
PZ
594 return 0;
595}
596#endif
647e7cac 597
a7be37ac 598/*
f9c0b095 599 * delta /= w
a7be37ac 600 */
9dbdb155 601static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 602{
f9c0b095 603 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
605
606 return delta;
607}
608
647e7cac
IM
609/*
610 * The idea is to set a period in which each task runs once.
611 *
532b1858 612 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
613 * this period because otherwise the slices get too small.
614 *
615 * p = (nr <= nl) ? l : l*nr/nl
616 */
4d78e7b6
PZ
617static u64 __sched_period(unsigned long nr_running)
618{
619 u64 period = sysctl_sched_latency;
b2be5e96 620 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
621
622 if (unlikely(nr_running > nr_latency)) {
4bf0b771 623 period = sysctl_sched_min_granularity;
4d78e7b6 624 period *= nr_running;
4d78e7b6
PZ
625 }
626
627 return period;
628}
629
647e7cac
IM
630/*
631 * We calculate the wall-time slice from the period by taking a part
632 * proportional to the weight.
633 *
f9c0b095 634 * s = p*P[w/rw]
647e7cac 635 */
6d0f0ebd 636static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 637{
0a582440 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 639
0a582440 640 for_each_sched_entity(se) {
6272d68c 641 struct load_weight *load;
3104bf03 642 struct load_weight lw;
6272d68c
LM
643
644 cfs_rq = cfs_rq_of(se);
645 load = &cfs_rq->load;
f9c0b095 646
0a582440 647 if (unlikely(!se->on_rq)) {
3104bf03 648 lw = cfs_rq->load;
0a582440
MG
649
650 update_load_add(&lw, se->load.weight);
651 load = &lw;
652 }
9dbdb155 653 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
654 }
655 return slice;
bf0f6f24
IM
656}
657
647e7cac 658/*
660cc00f 659 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 660 *
f9c0b095 661 * vs = s/w
647e7cac 662 */
f9c0b095 663static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 664{
f9c0b095 665 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
666}
667
a75cdaa9 668#ifdef CONFIG_SMP
ba7e5a27 669static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
670static unsigned long task_h_load(struct task_struct *p);
671
a75cdaa9
AS
672static inline void __update_task_entity_contrib(struct sched_entity *se);
673
674/* Give new task start runnable values to heavy its load in infant time */
675void init_task_runnable_average(struct task_struct *p)
676{
677 u32 slice;
678
679 p->se.avg.decay_count = 0;
680 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 p->se.avg.runnable_avg_sum = slice;
682 p->se.avg.runnable_avg_period = slice;
683 __update_task_entity_contrib(&p->se);
684}
685#else
686void init_task_runnable_average(struct task_struct *p)
687{
688}
689#endif
690
bf0f6f24 691/*
9dbdb155 692 * Update the current task's runtime statistics.
bf0f6f24 693 */
b7cc0896 694static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 695{
429d43bc 696 struct sched_entity *curr = cfs_rq->curr;
78becc27 697 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 698 u64 delta_exec;
bf0f6f24
IM
699
700 if (unlikely(!curr))
701 return;
702
9dbdb155
PZ
703 delta_exec = now - curr->exec_start;
704 if (unlikely((s64)delta_exec <= 0))
34f28ecd 705 return;
bf0f6f24 706
8ebc91d9 707 curr->exec_start = now;
d842de87 708
9dbdb155
PZ
709 schedstat_set(curr->statistics.exec_max,
710 max(delta_exec, curr->statistics.exec_max));
711
712 curr->sum_exec_runtime += delta_exec;
713 schedstat_add(cfs_rq, exec_clock, delta_exec);
714
715 curr->vruntime += calc_delta_fair(delta_exec, curr);
716 update_min_vruntime(cfs_rq);
717
d842de87
SV
718 if (entity_is_task(curr)) {
719 struct task_struct *curtask = task_of(curr);
720
f977bb49 721 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 722 cpuacct_charge(curtask, delta_exec);
f06febc9 723 account_group_exec_runtime(curtask, delta_exec);
d842de87 724 }
ec12cb7f
PT
725
726 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
727}
728
6e998916
SG
729static void update_curr_fair(struct rq *rq)
730{
731 update_curr(cfs_rq_of(&rq->curr->se));
732}
733
bf0f6f24 734static inline void
5870db5b 735update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 736{
78becc27 737 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
738}
739
bf0f6f24
IM
740/*
741 * Task is being enqueued - update stats:
742 */
d2417e5a 743static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 744{
bf0f6f24
IM
745 /*
746 * Are we enqueueing a waiting task? (for current tasks
747 * a dequeue/enqueue event is a NOP)
748 */
429d43bc 749 if (se != cfs_rq->curr)
5870db5b 750 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
751}
752
bf0f6f24 753static void
9ef0a961 754update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 755{
41acab88 756 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
758 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
759 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 760 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
761#ifdef CONFIG_SCHEDSTATS
762 if (entity_is_task(se)) {
763 trace_sched_stat_wait(task_of(se),
78becc27 764 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
765 }
766#endif
41acab88 767 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
768}
769
770static inline void
19b6a2e3 771update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 772{
bf0f6f24
IM
773 /*
774 * Mark the end of the wait period if dequeueing a
775 * waiting task:
776 */
429d43bc 777 if (se != cfs_rq->curr)
9ef0a961 778 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
779}
780
781/*
782 * We are picking a new current task - update its stats:
783 */
784static inline void
79303e9e 785update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
786{
787 /*
788 * We are starting a new run period:
789 */
78becc27 790 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
791}
792
bf0f6f24
IM
793/**************************************************
794 * Scheduling class queueing methods:
795 */
796
cbee9f88
PZ
797#ifdef CONFIG_NUMA_BALANCING
798/*
598f0ec0
MG
799 * Approximate time to scan a full NUMA task in ms. The task scan period is
800 * calculated based on the tasks virtual memory size and
801 * numa_balancing_scan_size.
cbee9f88 802 */
598f0ec0
MG
803unsigned int sysctl_numa_balancing_scan_period_min = 1000;
804unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
805
806/* Portion of address space to scan in MB */
807unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 808
4b96a29b
PZ
809/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
810unsigned int sysctl_numa_balancing_scan_delay = 1000;
811
598f0ec0
MG
812static unsigned int task_nr_scan_windows(struct task_struct *p)
813{
814 unsigned long rss = 0;
815 unsigned long nr_scan_pages;
816
817 /*
818 * Calculations based on RSS as non-present and empty pages are skipped
819 * by the PTE scanner and NUMA hinting faults should be trapped based
820 * on resident pages
821 */
822 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
823 rss = get_mm_rss(p->mm);
824 if (!rss)
825 rss = nr_scan_pages;
826
827 rss = round_up(rss, nr_scan_pages);
828 return rss / nr_scan_pages;
829}
830
831/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
832#define MAX_SCAN_WINDOW 2560
833
834static unsigned int task_scan_min(struct task_struct *p)
835{
64192658 836 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
837 unsigned int scan, floor;
838 unsigned int windows = 1;
839
64192658
KT
840 if (scan_size < MAX_SCAN_WINDOW)
841 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
842 floor = 1000 / windows;
843
844 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
845 return max_t(unsigned int, floor, scan);
846}
847
848static unsigned int task_scan_max(struct task_struct *p)
849{
850 unsigned int smin = task_scan_min(p);
851 unsigned int smax;
852
853 /* Watch for min being lower than max due to floor calculations */
854 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
855 return max(smin, smax);
856}
857
0ec8aa00
PZ
858static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
859{
860 rq->nr_numa_running += (p->numa_preferred_nid != -1);
861 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
862}
863
864static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
865{
866 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
867 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
868}
869
8c8a743c
PZ
870struct numa_group {
871 atomic_t refcount;
872
873 spinlock_t lock; /* nr_tasks, tasks */
874 int nr_tasks;
e29cf08b 875 pid_t gid;
8c8a743c
PZ
876 struct list_head task_list;
877
878 struct rcu_head rcu;
20e07dea 879 nodemask_t active_nodes;
989348b5 880 unsigned long total_faults;
7e2703e6
RR
881 /*
882 * Faults_cpu is used to decide whether memory should move
883 * towards the CPU. As a consequence, these stats are weighted
884 * more by CPU use than by memory faults.
885 */
50ec8a40 886 unsigned long *faults_cpu;
989348b5 887 unsigned long faults[0];
8c8a743c
PZ
888};
889
be1e4e76
RR
890/* Shared or private faults. */
891#define NR_NUMA_HINT_FAULT_TYPES 2
892
893/* Memory and CPU locality */
894#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895
896/* Averaged statistics, and temporary buffers. */
897#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898
e29cf08b
MG
899pid_t task_numa_group_id(struct task_struct *p)
900{
901 return p->numa_group ? p->numa_group->gid : 0;
902}
903
ac8e895b
MG
904static inline int task_faults_idx(int nid, int priv)
905{
be1e4e76 906 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
907}
908
909static inline unsigned long task_faults(struct task_struct *p, int nid)
910{
ff1df896 911 if (!p->numa_faults_memory)
ac8e895b
MG
912 return 0;
913
ff1df896
RR
914 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
915 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
916}
917
83e1d2cd
MG
918static inline unsigned long group_faults(struct task_struct *p, int nid)
919{
920 if (!p->numa_group)
921 return 0;
922
82897b4f
WL
923 return p->numa_group->faults[task_faults_idx(nid, 0)] +
924 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
925}
926
20e07dea
RR
927static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
928{
929 return group->faults_cpu[task_faults_idx(nid, 0)] +
930 group->faults_cpu[task_faults_idx(nid, 1)];
931}
932
83e1d2cd
MG
933/*
934 * These return the fraction of accesses done by a particular task, or
935 * task group, on a particular numa node. The group weight is given a
936 * larger multiplier, in order to group tasks together that are almost
937 * evenly spread out between numa nodes.
938 */
939static inline unsigned long task_weight(struct task_struct *p, int nid)
940{
941 unsigned long total_faults;
942
ff1df896 943 if (!p->numa_faults_memory)
83e1d2cd
MG
944 return 0;
945
946 total_faults = p->total_numa_faults;
947
948 if (!total_faults)
949 return 0;
950
951 return 1000 * task_faults(p, nid) / total_faults;
952}
953
954static inline unsigned long group_weight(struct task_struct *p, int nid)
955{
989348b5 956 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
957 return 0;
958
989348b5 959 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
960}
961
10f39042
RR
962bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
963 int src_nid, int dst_cpu)
964{
965 struct numa_group *ng = p->numa_group;
966 int dst_nid = cpu_to_node(dst_cpu);
967 int last_cpupid, this_cpupid;
968
969 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
970
971 /*
972 * Multi-stage node selection is used in conjunction with a periodic
973 * migration fault to build a temporal task<->page relation. By using
974 * a two-stage filter we remove short/unlikely relations.
975 *
976 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
977 * a task's usage of a particular page (n_p) per total usage of this
978 * page (n_t) (in a given time-span) to a probability.
979 *
980 * Our periodic faults will sample this probability and getting the
981 * same result twice in a row, given these samples are fully
982 * independent, is then given by P(n)^2, provided our sample period
983 * is sufficiently short compared to the usage pattern.
984 *
985 * This quadric squishes small probabilities, making it less likely we
986 * act on an unlikely task<->page relation.
987 */
988 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
989 if (!cpupid_pid_unset(last_cpupid) &&
990 cpupid_to_nid(last_cpupid) != dst_nid)
991 return false;
992
993 /* Always allow migrate on private faults */
994 if (cpupid_match_pid(p, last_cpupid))
995 return true;
996
997 /* A shared fault, but p->numa_group has not been set up yet. */
998 if (!ng)
999 return true;
1000
1001 /*
1002 * Do not migrate if the destination is not a node that
1003 * is actively used by this numa group.
1004 */
1005 if (!node_isset(dst_nid, ng->active_nodes))
1006 return false;
1007
1008 /*
1009 * Source is a node that is not actively used by this
1010 * numa group, while the destination is. Migrate.
1011 */
1012 if (!node_isset(src_nid, ng->active_nodes))
1013 return true;
1014
1015 /*
1016 * Both source and destination are nodes in active
1017 * use by this numa group. Maximize memory bandwidth
1018 * by migrating from more heavily used groups, to less
1019 * heavily used ones, spreading the load around.
1020 * Use a 1/4 hysteresis to avoid spurious page movement.
1021 */
1022 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1023}
1024
e6628d5b 1025static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1026static unsigned long source_load(int cpu, int type);
1027static unsigned long target_load(int cpu, int type);
ced549fa 1028static unsigned long capacity_of(int cpu);
58d081b5
MG
1029static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1030
fb13c7ee 1031/* Cached statistics for all CPUs within a node */
58d081b5 1032struct numa_stats {
fb13c7ee 1033 unsigned long nr_running;
58d081b5 1034 unsigned long load;
fb13c7ee
MG
1035
1036 /* Total compute capacity of CPUs on a node */
5ef20ca1 1037 unsigned long compute_capacity;
fb13c7ee
MG
1038
1039 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1040 unsigned long task_capacity;
1b6a7495 1041 int has_free_capacity;
58d081b5 1042};
e6628d5b 1043
fb13c7ee
MG
1044/*
1045 * XXX borrowed from update_sg_lb_stats
1046 */
1047static void update_numa_stats(struct numa_stats *ns, int nid)
1048{
83d7f242
RR
1049 int smt, cpu, cpus = 0;
1050 unsigned long capacity;
fb13c7ee
MG
1051
1052 memset(ns, 0, sizeof(*ns));
1053 for_each_cpu(cpu, cpumask_of_node(nid)) {
1054 struct rq *rq = cpu_rq(cpu);
1055
1056 ns->nr_running += rq->nr_running;
1057 ns->load += weighted_cpuload(cpu);
ced549fa 1058 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1059
1060 cpus++;
fb13c7ee
MG
1061 }
1062
5eca82a9
PZ
1063 /*
1064 * If we raced with hotplug and there are no CPUs left in our mask
1065 * the @ns structure is NULL'ed and task_numa_compare() will
1066 * not find this node attractive.
1067 *
1b6a7495
NP
1068 * We'll either bail at !has_free_capacity, or we'll detect a huge
1069 * imbalance and bail there.
5eca82a9
PZ
1070 */
1071 if (!cpus)
1072 return;
1073
83d7f242
RR
1074 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1075 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1076 capacity = cpus / smt; /* cores */
1077
1078 ns->task_capacity = min_t(unsigned, capacity,
1079 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1080 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1081}
1082
58d081b5
MG
1083struct task_numa_env {
1084 struct task_struct *p;
e6628d5b 1085
58d081b5
MG
1086 int src_cpu, src_nid;
1087 int dst_cpu, dst_nid;
e6628d5b 1088
58d081b5 1089 struct numa_stats src_stats, dst_stats;
e6628d5b 1090
40ea2b42 1091 int imbalance_pct;
fb13c7ee
MG
1092
1093 struct task_struct *best_task;
1094 long best_imp;
58d081b5
MG
1095 int best_cpu;
1096};
1097
fb13c7ee
MG
1098static void task_numa_assign(struct task_numa_env *env,
1099 struct task_struct *p, long imp)
1100{
1101 if (env->best_task)
1102 put_task_struct(env->best_task);
1103 if (p)
1104 get_task_struct(p);
1105
1106 env->best_task = p;
1107 env->best_imp = imp;
1108 env->best_cpu = env->dst_cpu;
1109}
1110
28a21745 1111static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1112 struct task_numa_env *env)
1113{
1114 long imb, old_imb;
28a21745
RR
1115 long orig_src_load, orig_dst_load;
1116 long src_capacity, dst_capacity;
1117
1118 /*
1119 * The load is corrected for the CPU capacity available on each node.
1120 *
1121 * src_load dst_load
1122 * ------------ vs ---------
1123 * src_capacity dst_capacity
1124 */
1125 src_capacity = env->src_stats.compute_capacity;
1126 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1127
1128 /* We care about the slope of the imbalance, not the direction. */
1129 if (dst_load < src_load)
1130 swap(dst_load, src_load);
1131
1132 /* Is the difference below the threshold? */
28a21745
RR
1133 imb = dst_load * src_capacity * 100 -
1134 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1135 if (imb <= 0)
1136 return false;
1137
1138 /*
1139 * The imbalance is above the allowed threshold.
1140 * Compare it with the old imbalance.
1141 */
28a21745
RR
1142 orig_src_load = env->src_stats.load;
1143 orig_dst_load = env->dst_stats.load;
1144
e63da036
RR
1145 if (orig_dst_load < orig_src_load)
1146 swap(orig_dst_load, orig_src_load);
1147
28a21745
RR
1148 old_imb = orig_dst_load * src_capacity * 100 -
1149 orig_src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1150
1151 /* Would this change make things worse? */
1662867a 1152 return (imb > old_imb);
e63da036
RR
1153}
1154
fb13c7ee
MG
1155/*
1156 * This checks if the overall compute and NUMA accesses of the system would
1157 * be improved if the source tasks was migrated to the target dst_cpu taking
1158 * into account that it might be best if task running on the dst_cpu should
1159 * be exchanged with the source task
1160 */
887c290e
RR
1161static void task_numa_compare(struct task_numa_env *env,
1162 long taskimp, long groupimp)
fb13c7ee
MG
1163{
1164 struct rq *src_rq = cpu_rq(env->src_cpu);
1165 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1166 struct task_struct *cur;
28a21745 1167 long src_load, dst_load;
fb13c7ee 1168 long load;
1c5d3eb3 1169 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1170 long moveimp = imp;
fb13c7ee
MG
1171
1172 rcu_read_lock();
1effd9f1
KT
1173
1174 raw_spin_lock_irq(&dst_rq->lock);
1175 cur = dst_rq->curr;
1176 /*
1177 * No need to move the exiting task, and this ensures that ->curr
1178 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1179 * is safe under RCU read lock.
1180 * Note that rcu_read_lock() itself can't protect from the final
1181 * put_task_struct() after the last schedule().
1182 */
1183 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
fb13c7ee 1184 cur = NULL;
1effd9f1 1185 raw_spin_unlock_irq(&dst_rq->lock);
fb13c7ee 1186
7af68335
PZ
1187 /*
1188 * Because we have preemption enabled we can get migrated around and
1189 * end try selecting ourselves (current == env->p) as a swap candidate.
1190 */
1191 if (cur == env->p)
1192 goto unlock;
1193
fb13c7ee
MG
1194 /*
1195 * "imp" is the fault differential for the source task between the
1196 * source and destination node. Calculate the total differential for
1197 * the source task and potential destination task. The more negative
1198 * the value is, the more rmeote accesses that would be expected to
1199 * be incurred if the tasks were swapped.
1200 */
1201 if (cur) {
1202 /* Skip this swap candidate if cannot move to the source cpu */
1203 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1204 goto unlock;
1205
887c290e
RR
1206 /*
1207 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1208 * in any group then look only at task weights.
887c290e 1209 */
ca28aa53 1210 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1211 imp = taskimp + task_weight(cur, env->src_nid) -
1212 task_weight(cur, env->dst_nid);
ca28aa53
RR
1213 /*
1214 * Add some hysteresis to prevent swapping the
1215 * tasks within a group over tiny differences.
1216 */
1217 if (cur->numa_group)
1218 imp -= imp/16;
887c290e 1219 } else {
ca28aa53
RR
1220 /*
1221 * Compare the group weights. If a task is all by
1222 * itself (not part of a group), use the task weight
1223 * instead.
1224 */
ca28aa53
RR
1225 if (cur->numa_group)
1226 imp += group_weight(cur, env->src_nid) -
1227 group_weight(cur, env->dst_nid);
1228 else
1229 imp += task_weight(cur, env->src_nid) -
1230 task_weight(cur, env->dst_nid);
887c290e 1231 }
fb13c7ee
MG
1232 }
1233
0132c3e1 1234 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1235 goto unlock;
1236
1237 if (!cur) {
1238 /* Is there capacity at our destination? */
b932c03c 1239 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1240 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1241 goto unlock;
1242
1243 goto balance;
1244 }
1245
1246 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1247 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1248 dst_rq->nr_running == 1)
fb13c7ee
MG
1249 goto assign;
1250
1251 /*
1252 * In the overloaded case, try and keep the load balanced.
1253 */
1254balance:
e720fff6
PZ
1255 load = task_h_load(env->p);
1256 dst_load = env->dst_stats.load + load;
1257 src_load = env->src_stats.load - load;
fb13c7ee 1258
0132c3e1
RR
1259 if (moveimp > imp && moveimp > env->best_imp) {
1260 /*
1261 * If the improvement from just moving env->p direction is
1262 * better than swapping tasks around, check if a move is
1263 * possible. Store a slightly smaller score than moveimp,
1264 * so an actually idle CPU will win.
1265 */
1266 if (!load_too_imbalanced(src_load, dst_load, env)) {
1267 imp = moveimp - 1;
1268 cur = NULL;
1269 goto assign;
1270 }
1271 }
1272
1273 if (imp <= env->best_imp)
1274 goto unlock;
1275
fb13c7ee 1276 if (cur) {
e720fff6
PZ
1277 load = task_h_load(cur);
1278 dst_load -= load;
1279 src_load += load;
fb13c7ee
MG
1280 }
1281
28a21745 1282 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1283 goto unlock;
1284
ba7e5a27
RR
1285 /*
1286 * One idle CPU per node is evaluated for a task numa move.
1287 * Call select_idle_sibling to maybe find a better one.
1288 */
1289 if (!cur)
1290 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1291
fb13c7ee
MG
1292assign:
1293 task_numa_assign(env, cur, imp);
1294unlock:
1295 rcu_read_unlock();
1296}
1297
887c290e
RR
1298static void task_numa_find_cpu(struct task_numa_env *env,
1299 long taskimp, long groupimp)
2c8a50aa
MG
1300{
1301 int cpu;
1302
1303 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1304 /* Skip this CPU if the source task cannot migrate */
1305 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1306 continue;
1307
1308 env->dst_cpu = cpu;
887c290e 1309 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1310 }
1311}
1312
58d081b5
MG
1313static int task_numa_migrate(struct task_struct *p)
1314{
58d081b5
MG
1315 struct task_numa_env env = {
1316 .p = p,
fb13c7ee 1317
58d081b5 1318 .src_cpu = task_cpu(p),
b32e86b4 1319 .src_nid = task_node(p),
fb13c7ee
MG
1320
1321 .imbalance_pct = 112,
1322
1323 .best_task = NULL,
1324 .best_imp = 0,
1325 .best_cpu = -1
58d081b5
MG
1326 };
1327 struct sched_domain *sd;
887c290e 1328 unsigned long taskweight, groupweight;
2c8a50aa 1329 int nid, ret;
887c290e 1330 long taskimp, groupimp;
e6628d5b 1331
58d081b5 1332 /*
fb13c7ee
MG
1333 * Pick the lowest SD_NUMA domain, as that would have the smallest
1334 * imbalance and would be the first to start moving tasks about.
1335 *
1336 * And we want to avoid any moving of tasks about, as that would create
1337 * random movement of tasks -- counter the numa conditions we're trying
1338 * to satisfy here.
58d081b5
MG
1339 */
1340 rcu_read_lock();
fb13c7ee 1341 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1342 if (sd)
1343 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1344 rcu_read_unlock();
1345
46a73e8a
RR
1346 /*
1347 * Cpusets can break the scheduler domain tree into smaller
1348 * balance domains, some of which do not cross NUMA boundaries.
1349 * Tasks that are "trapped" in such domains cannot be migrated
1350 * elsewhere, so there is no point in (re)trying.
1351 */
1352 if (unlikely(!sd)) {
de1b301a 1353 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1354 return -EINVAL;
1355 }
1356
887c290e
RR
1357 taskweight = task_weight(p, env.src_nid);
1358 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1359 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1360 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1361 taskimp = task_weight(p, env.dst_nid) - taskweight;
1362 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1363 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1364
a43455a1
RR
1365 /* Try to find a spot on the preferred nid. */
1366 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1367
1368 /* No space available on the preferred nid. Look elsewhere. */
1369 if (env.best_cpu == -1) {
2c8a50aa
MG
1370 for_each_online_node(nid) {
1371 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1372 continue;
58d081b5 1373
83e1d2cd 1374 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1375 taskimp = task_weight(p, nid) - taskweight;
1376 groupimp = group_weight(p, nid) - groupweight;
1377 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1378 continue;
1379
2c8a50aa
MG
1380 env.dst_nid = nid;
1381 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1382 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1383 }
1384 }
1385
68d1b02a
RR
1386 /*
1387 * If the task is part of a workload that spans multiple NUMA nodes,
1388 * and is migrating into one of the workload's active nodes, remember
1389 * this node as the task's preferred numa node, so the workload can
1390 * settle down.
1391 * A task that migrated to a second choice node will be better off
1392 * trying for a better one later. Do not set the preferred node here.
1393 */
db015dae
RR
1394 if (p->numa_group) {
1395 if (env.best_cpu == -1)
1396 nid = env.src_nid;
1397 else
1398 nid = env.dst_nid;
1399
1400 if (node_isset(nid, p->numa_group->active_nodes))
1401 sched_setnuma(p, env.dst_nid);
1402 }
1403
1404 /* No better CPU than the current one was found. */
1405 if (env.best_cpu == -1)
1406 return -EAGAIN;
0ec8aa00 1407
04bb2f94
RR
1408 /*
1409 * Reset the scan period if the task is being rescheduled on an
1410 * alternative node to recheck if the tasks is now properly placed.
1411 */
1412 p->numa_scan_period = task_scan_min(p);
1413
fb13c7ee 1414 if (env.best_task == NULL) {
286549dc
MG
1415 ret = migrate_task_to(p, env.best_cpu);
1416 if (ret != 0)
1417 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1418 return ret;
1419 }
1420
1421 ret = migrate_swap(p, env.best_task);
286549dc
MG
1422 if (ret != 0)
1423 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1424 put_task_struct(env.best_task);
1425 return ret;
e6628d5b
MG
1426}
1427
6b9a7460
MG
1428/* Attempt to migrate a task to a CPU on the preferred node. */
1429static void numa_migrate_preferred(struct task_struct *p)
1430{
5085e2a3
RR
1431 unsigned long interval = HZ;
1432
2739d3ee 1433 /* This task has no NUMA fault statistics yet */
ff1df896 1434 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1435 return;
1436
2739d3ee 1437 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1438 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1439 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1440
1441 /* Success if task is already running on preferred CPU */
de1b301a 1442 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1443 return;
1444
1445 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1446 task_numa_migrate(p);
6b9a7460
MG
1447}
1448
20e07dea
RR
1449/*
1450 * Find the nodes on which the workload is actively running. We do this by
1451 * tracking the nodes from which NUMA hinting faults are triggered. This can
1452 * be different from the set of nodes where the workload's memory is currently
1453 * located.
1454 *
1455 * The bitmask is used to make smarter decisions on when to do NUMA page
1456 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1457 * are added when they cause over 6/16 of the maximum number of faults, but
1458 * only removed when they drop below 3/16.
1459 */
1460static void update_numa_active_node_mask(struct numa_group *numa_group)
1461{
1462 unsigned long faults, max_faults = 0;
1463 int nid;
1464
1465 for_each_online_node(nid) {
1466 faults = group_faults_cpu(numa_group, nid);
1467 if (faults > max_faults)
1468 max_faults = faults;
1469 }
1470
1471 for_each_online_node(nid) {
1472 faults = group_faults_cpu(numa_group, nid);
1473 if (!node_isset(nid, numa_group->active_nodes)) {
1474 if (faults > max_faults * 6 / 16)
1475 node_set(nid, numa_group->active_nodes);
1476 } else if (faults < max_faults * 3 / 16)
1477 node_clear(nid, numa_group->active_nodes);
1478 }
1479}
1480
04bb2f94
RR
1481/*
1482 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1483 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1484 * period will be for the next scan window. If local/(local+remote) ratio is
1485 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1486 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1487 */
1488#define NUMA_PERIOD_SLOTS 10
a22b4b01 1489#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1490
1491/*
1492 * Increase the scan period (slow down scanning) if the majority of
1493 * our memory is already on our local node, or if the majority of
1494 * the page accesses are shared with other processes.
1495 * Otherwise, decrease the scan period.
1496 */
1497static void update_task_scan_period(struct task_struct *p,
1498 unsigned long shared, unsigned long private)
1499{
1500 unsigned int period_slot;
1501 int ratio;
1502 int diff;
1503
1504 unsigned long remote = p->numa_faults_locality[0];
1505 unsigned long local = p->numa_faults_locality[1];
1506
1507 /*
1508 * If there were no record hinting faults then either the task is
1509 * completely idle or all activity is areas that are not of interest
1510 * to automatic numa balancing. Scan slower
1511 */
1512 if (local + shared == 0) {
1513 p->numa_scan_period = min(p->numa_scan_period_max,
1514 p->numa_scan_period << 1);
1515
1516 p->mm->numa_next_scan = jiffies +
1517 msecs_to_jiffies(p->numa_scan_period);
1518
1519 return;
1520 }
1521
1522 /*
1523 * Prepare to scale scan period relative to the current period.
1524 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1525 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1526 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1527 */
1528 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1529 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1530 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1531 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1532 if (!slot)
1533 slot = 1;
1534 diff = slot * period_slot;
1535 } else {
1536 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1537
1538 /*
1539 * Scale scan rate increases based on sharing. There is an
1540 * inverse relationship between the degree of sharing and
1541 * the adjustment made to the scanning period. Broadly
1542 * speaking the intent is that there is little point
1543 * scanning faster if shared accesses dominate as it may
1544 * simply bounce migrations uselessly
1545 */
2847c90e 1546 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1547 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1548 }
1549
1550 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1551 task_scan_min(p), task_scan_max(p));
1552 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1553}
1554
7e2703e6
RR
1555/*
1556 * Get the fraction of time the task has been running since the last
1557 * NUMA placement cycle. The scheduler keeps similar statistics, but
1558 * decays those on a 32ms period, which is orders of magnitude off
1559 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1560 * stats only if the task is so new there are no NUMA statistics yet.
1561 */
1562static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1563{
1564 u64 runtime, delta, now;
1565 /* Use the start of this time slice to avoid calculations. */
1566 now = p->se.exec_start;
1567 runtime = p->se.sum_exec_runtime;
1568
1569 if (p->last_task_numa_placement) {
1570 delta = runtime - p->last_sum_exec_runtime;
1571 *period = now - p->last_task_numa_placement;
1572 } else {
1573 delta = p->se.avg.runnable_avg_sum;
1574 *period = p->se.avg.runnable_avg_period;
1575 }
1576
1577 p->last_sum_exec_runtime = runtime;
1578 p->last_task_numa_placement = now;
1579
1580 return delta;
1581}
1582
cbee9f88
PZ
1583static void task_numa_placement(struct task_struct *p)
1584{
83e1d2cd
MG
1585 int seq, nid, max_nid = -1, max_group_nid = -1;
1586 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1587 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1588 unsigned long total_faults;
1589 u64 runtime, period;
7dbd13ed 1590 spinlock_t *group_lock = NULL;
cbee9f88 1591
2832bc19 1592 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1593 if (p->numa_scan_seq == seq)
1594 return;
1595 p->numa_scan_seq = seq;
598f0ec0 1596 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1597
7e2703e6
RR
1598 total_faults = p->numa_faults_locality[0] +
1599 p->numa_faults_locality[1];
1600 runtime = numa_get_avg_runtime(p, &period);
1601
7dbd13ed
MG
1602 /* If the task is part of a group prevent parallel updates to group stats */
1603 if (p->numa_group) {
1604 group_lock = &p->numa_group->lock;
60e69eed 1605 spin_lock_irq(group_lock);
7dbd13ed
MG
1606 }
1607
688b7585
MG
1608 /* Find the node with the highest number of faults */
1609 for_each_online_node(nid) {
83e1d2cd 1610 unsigned long faults = 0, group_faults = 0;
ac8e895b 1611 int priv, i;
745d6147 1612
be1e4e76 1613 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1614 long diff, f_diff, f_weight;
8c8a743c 1615
ac8e895b 1616 i = task_faults_idx(nid, priv);
745d6147 1617
ac8e895b 1618 /* Decay existing window, copy faults since last scan */
35664fd4 1619 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1620 fault_types[priv] += p->numa_faults_buffer_memory[i];
1621 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1622
7e2703e6
RR
1623 /*
1624 * Normalize the faults_from, so all tasks in a group
1625 * count according to CPU use, instead of by the raw
1626 * number of faults. Tasks with little runtime have
1627 * little over-all impact on throughput, and thus their
1628 * faults are less important.
1629 */
1630 f_weight = div64_u64(runtime << 16, period + 1);
1631 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1632 (total_faults + 1);
35664fd4 1633 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1634 p->numa_faults_buffer_cpu[i] = 0;
1635
35664fd4
RR
1636 p->numa_faults_memory[i] += diff;
1637 p->numa_faults_cpu[i] += f_diff;
ff1df896 1638 faults += p->numa_faults_memory[i];
83e1d2cd 1639 p->total_numa_faults += diff;
8c8a743c
PZ
1640 if (p->numa_group) {
1641 /* safe because we can only change our own group */
989348b5 1642 p->numa_group->faults[i] += diff;
50ec8a40 1643 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1644 p->numa_group->total_faults += diff;
1645 group_faults += p->numa_group->faults[i];
8c8a743c 1646 }
ac8e895b
MG
1647 }
1648
688b7585
MG
1649 if (faults > max_faults) {
1650 max_faults = faults;
1651 max_nid = nid;
1652 }
83e1d2cd
MG
1653
1654 if (group_faults > max_group_faults) {
1655 max_group_faults = group_faults;
1656 max_group_nid = nid;
1657 }
1658 }
1659
04bb2f94
RR
1660 update_task_scan_period(p, fault_types[0], fault_types[1]);
1661
7dbd13ed 1662 if (p->numa_group) {
20e07dea 1663 update_numa_active_node_mask(p->numa_group);
60e69eed 1664 spin_unlock_irq(group_lock);
f0b8a4af 1665 max_nid = max_group_nid;
688b7585
MG
1666 }
1667
bb97fc31
RR
1668 if (max_faults) {
1669 /* Set the new preferred node */
1670 if (max_nid != p->numa_preferred_nid)
1671 sched_setnuma(p, max_nid);
1672
1673 if (task_node(p) != p->numa_preferred_nid)
1674 numa_migrate_preferred(p);
3a7053b3 1675 }
cbee9f88
PZ
1676}
1677
8c8a743c
PZ
1678static inline int get_numa_group(struct numa_group *grp)
1679{
1680 return atomic_inc_not_zero(&grp->refcount);
1681}
1682
1683static inline void put_numa_group(struct numa_group *grp)
1684{
1685 if (atomic_dec_and_test(&grp->refcount))
1686 kfree_rcu(grp, rcu);
1687}
1688
3e6a9418
MG
1689static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1690 int *priv)
8c8a743c
PZ
1691{
1692 struct numa_group *grp, *my_grp;
1693 struct task_struct *tsk;
1694 bool join = false;
1695 int cpu = cpupid_to_cpu(cpupid);
1696 int i;
1697
1698 if (unlikely(!p->numa_group)) {
1699 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1700 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1701
1702 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1703 if (!grp)
1704 return;
1705
1706 atomic_set(&grp->refcount, 1);
1707 spin_lock_init(&grp->lock);
1708 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1709 grp->gid = p->pid;
50ec8a40 1710 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1711 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1712 nr_node_ids;
8c8a743c 1713
20e07dea
RR
1714 node_set(task_node(current), grp->active_nodes);
1715
be1e4e76 1716 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1717 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1718
989348b5 1719 grp->total_faults = p->total_numa_faults;
83e1d2cd 1720
8c8a743c
PZ
1721 list_add(&p->numa_entry, &grp->task_list);
1722 grp->nr_tasks++;
1723 rcu_assign_pointer(p->numa_group, grp);
1724 }
1725
1726 rcu_read_lock();
1727 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1728
1729 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1730 goto no_join;
8c8a743c
PZ
1731
1732 grp = rcu_dereference(tsk->numa_group);
1733 if (!grp)
3354781a 1734 goto no_join;
8c8a743c
PZ
1735
1736 my_grp = p->numa_group;
1737 if (grp == my_grp)
3354781a 1738 goto no_join;
8c8a743c
PZ
1739
1740 /*
1741 * Only join the other group if its bigger; if we're the bigger group,
1742 * the other task will join us.
1743 */
1744 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1745 goto no_join;
8c8a743c
PZ
1746
1747 /*
1748 * Tie-break on the grp address.
1749 */
1750 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1751 goto no_join;
8c8a743c 1752
dabe1d99
RR
1753 /* Always join threads in the same process. */
1754 if (tsk->mm == current->mm)
1755 join = true;
1756
1757 /* Simple filter to avoid false positives due to PID collisions */
1758 if (flags & TNF_SHARED)
1759 join = true;
8c8a743c 1760
3e6a9418
MG
1761 /* Update priv based on whether false sharing was detected */
1762 *priv = !join;
1763
dabe1d99 1764 if (join && !get_numa_group(grp))
3354781a 1765 goto no_join;
8c8a743c 1766
8c8a743c
PZ
1767 rcu_read_unlock();
1768
1769 if (!join)
1770 return;
1771
60e69eed
MG
1772 BUG_ON(irqs_disabled());
1773 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1774
be1e4e76 1775 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1776 my_grp->faults[i] -= p->numa_faults_memory[i];
1777 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1778 }
989348b5
MG
1779 my_grp->total_faults -= p->total_numa_faults;
1780 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1781
1782 list_move(&p->numa_entry, &grp->task_list);
1783 my_grp->nr_tasks--;
1784 grp->nr_tasks++;
1785
1786 spin_unlock(&my_grp->lock);
60e69eed 1787 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1788
1789 rcu_assign_pointer(p->numa_group, grp);
1790
1791 put_numa_group(my_grp);
3354781a
PZ
1792 return;
1793
1794no_join:
1795 rcu_read_unlock();
1796 return;
8c8a743c
PZ
1797}
1798
1799void task_numa_free(struct task_struct *p)
1800{
1801 struct numa_group *grp = p->numa_group;
ff1df896 1802 void *numa_faults = p->numa_faults_memory;
e9dd685c
SR
1803 unsigned long flags;
1804 int i;
8c8a743c
PZ
1805
1806 if (grp) {
e9dd685c 1807 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 1808 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1809 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1810 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1811
8c8a743c
PZ
1812 list_del(&p->numa_entry);
1813 grp->nr_tasks--;
e9dd685c 1814 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 1815 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
1816 put_numa_group(grp);
1817 }
1818
ff1df896
RR
1819 p->numa_faults_memory = NULL;
1820 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1821 p->numa_faults_cpu= NULL;
1822 p->numa_faults_buffer_cpu = NULL;
82727018 1823 kfree(numa_faults);
8c8a743c
PZ
1824}
1825
cbee9f88
PZ
1826/*
1827 * Got a PROT_NONE fault for a page on @node.
1828 */
58b46da3 1829void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1830{
1831 struct task_struct *p = current;
6688cc05 1832 bool migrated = flags & TNF_MIGRATED;
58b46da3 1833 int cpu_node = task_node(current);
792568ec 1834 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1835 int priv;
cbee9f88 1836
10e84b97 1837 if (!numabalancing_enabled)
1a687c2e
MG
1838 return;
1839
9ff1d9ff
MG
1840 /* for example, ksmd faulting in a user's mm */
1841 if (!p->mm)
1842 return;
1843
f809ca9a 1844 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1845 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1846 int size = sizeof(*p->numa_faults_memory) *
1847 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1848
be1e4e76 1849 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1850 if (!p->numa_faults_memory)
f809ca9a 1851 return;
745d6147 1852
ff1df896 1853 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1854 /*
1855 * The averaged statistics, shared & private, memory & cpu,
1856 * occupy the first half of the array. The second half of the
1857 * array is for current counters, which are averaged into the
1858 * first set by task_numa_placement.
1859 */
50ec8a40
RR
1860 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1861 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1862 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1863 p->total_numa_faults = 0;
04bb2f94 1864 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1865 }
cbee9f88 1866
8c8a743c
PZ
1867 /*
1868 * First accesses are treated as private, otherwise consider accesses
1869 * to be private if the accessing pid has not changed
1870 */
1871 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1872 priv = 1;
1873 } else {
1874 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1875 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1876 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1877 }
1878
792568ec
RR
1879 /*
1880 * If a workload spans multiple NUMA nodes, a shared fault that
1881 * occurs wholly within the set of nodes that the workload is
1882 * actively using should be counted as local. This allows the
1883 * scan rate to slow down when a workload has settled down.
1884 */
1885 if (!priv && !local && p->numa_group &&
1886 node_isset(cpu_node, p->numa_group->active_nodes) &&
1887 node_isset(mem_node, p->numa_group->active_nodes))
1888 local = 1;
1889
cbee9f88 1890 task_numa_placement(p);
f809ca9a 1891
2739d3ee
RR
1892 /*
1893 * Retry task to preferred node migration periodically, in case it
1894 * case it previously failed, or the scheduler moved us.
1895 */
1896 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1897 numa_migrate_preferred(p);
1898
b32e86b4
IM
1899 if (migrated)
1900 p->numa_pages_migrated += pages;
1901
58b46da3
RR
1902 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1903 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1904 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1905}
1906
6e5fb223
PZ
1907static void reset_ptenuma_scan(struct task_struct *p)
1908{
1909 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1910 p->mm->numa_scan_offset = 0;
1911}
1912
cbee9f88
PZ
1913/*
1914 * The expensive part of numa migration is done from task_work context.
1915 * Triggered from task_tick_numa().
1916 */
1917void task_numa_work(struct callback_head *work)
1918{
1919 unsigned long migrate, next_scan, now = jiffies;
1920 struct task_struct *p = current;
1921 struct mm_struct *mm = p->mm;
6e5fb223 1922 struct vm_area_struct *vma;
9f40604c 1923 unsigned long start, end;
598f0ec0 1924 unsigned long nr_pte_updates = 0;
9f40604c 1925 long pages;
cbee9f88
PZ
1926
1927 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1928
1929 work->next = work; /* protect against double add */
1930 /*
1931 * Who cares about NUMA placement when they're dying.
1932 *
1933 * NOTE: make sure not to dereference p->mm before this check,
1934 * exit_task_work() happens _after_ exit_mm() so we could be called
1935 * without p->mm even though we still had it when we enqueued this
1936 * work.
1937 */
1938 if (p->flags & PF_EXITING)
1939 return;
1940
930aa174 1941 if (!mm->numa_next_scan) {
7e8d16b6
MG
1942 mm->numa_next_scan = now +
1943 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1944 }
1945
cbee9f88
PZ
1946 /*
1947 * Enforce maximal scan/migration frequency..
1948 */
1949 migrate = mm->numa_next_scan;
1950 if (time_before(now, migrate))
1951 return;
1952
598f0ec0
MG
1953 if (p->numa_scan_period == 0) {
1954 p->numa_scan_period_max = task_scan_max(p);
1955 p->numa_scan_period = task_scan_min(p);
1956 }
cbee9f88 1957
fb003b80 1958 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1959 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1960 return;
1961
19a78d11
PZ
1962 /*
1963 * Delay this task enough that another task of this mm will likely win
1964 * the next time around.
1965 */
1966 p->node_stamp += 2 * TICK_NSEC;
1967
9f40604c
MG
1968 start = mm->numa_scan_offset;
1969 pages = sysctl_numa_balancing_scan_size;
1970 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1971 if (!pages)
1972 return;
cbee9f88 1973
6e5fb223 1974 down_read(&mm->mmap_sem);
9f40604c 1975 vma = find_vma(mm, start);
6e5fb223
PZ
1976 if (!vma) {
1977 reset_ptenuma_scan(p);
9f40604c 1978 start = 0;
6e5fb223
PZ
1979 vma = mm->mmap;
1980 }
9f40604c 1981 for (; vma; vma = vma->vm_next) {
6b6482bb 1982 if (!vma_migratable(vma) || !vma_policy_mof(vma))
6e5fb223
PZ
1983 continue;
1984
4591ce4f
MG
1985 /*
1986 * Shared library pages mapped by multiple processes are not
1987 * migrated as it is expected they are cache replicated. Avoid
1988 * hinting faults in read-only file-backed mappings or the vdso
1989 * as migrating the pages will be of marginal benefit.
1990 */
1991 if (!vma->vm_mm ||
1992 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1993 continue;
1994
3c67f474
MG
1995 /*
1996 * Skip inaccessible VMAs to avoid any confusion between
1997 * PROT_NONE and NUMA hinting ptes
1998 */
1999 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2000 continue;
4591ce4f 2001
9f40604c
MG
2002 do {
2003 start = max(start, vma->vm_start);
2004 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2005 end = min(end, vma->vm_end);
598f0ec0
MG
2006 nr_pte_updates += change_prot_numa(vma, start, end);
2007
2008 /*
2009 * Scan sysctl_numa_balancing_scan_size but ensure that
2010 * at least one PTE is updated so that unused virtual
2011 * address space is quickly skipped.
2012 */
2013 if (nr_pte_updates)
2014 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2015
9f40604c
MG
2016 start = end;
2017 if (pages <= 0)
2018 goto out;
3cf1962c
RR
2019
2020 cond_resched();
9f40604c 2021 } while (end != vma->vm_end);
cbee9f88 2022 }
6e5fb223 2023
9f40604c 2024out:
6e5fb223 2025 /*
c69307d5
PZ
2026 * It is possible to reach the end of the VMA list but the last few
2027 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2028 * would find the !migratable VMA on the next scan but not reset the
2029 * scanner to the start so check it now.
6e5fb223
PZ
2030 */
2031 if (vma)
9f40604c 2032 mm->numa_scan_offset = start;
6e5fb223
PZ
2033 else
2034 reset_ptenuma_scan(p);
2035 up_read(&mm->mmap_sem);
cbee9f88
PZ
2036}
2037
2038/*
2039 * Drive the periodic memory faults..
2040 */
2041void task_tick_numa(struct rq *rq, struct task_struct *curr)
2042{
2043 struct callback_head *work = &curr->numa_work;
2044 u64 period, now;
2045
2046 /*
2047 * We don't care about NUMA placement if we don't have memory.
2048 */
2049 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2050 return;
2051
2052 /*
2053 * Using runtime rather than walltime has the dual advantage that
2054 * we (mostly) drive the selection from busy threads and that the
2055 * task needs to have done some actual work before we bother with
2056 * NUMA placement.
2057 */
2058 now = curr->se.sum_exec_runtime;
2059 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2060
2061 if (now - curr->node_stamp > period) {
4b96a29b 2062 if (!curr->node_stamp)
598f0ec0 2063 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2064 curr->node_stamp += period;
cbee9f88
PZ
2065
2066 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2067 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2068 task_work_add(curr, work, true);
2069 }
2070 }
2071}
2072#else
2073static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2074{
2075}
0ec8aa00
PZ
2076
2077static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2078{
2079}
2080
2081static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2082{
2083}
cbee9f88
PZ
2084#endif /* CONFIG_NUMA_BALANCING */
2085
30cfdcfc
DA
2086static void
2087account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2088{
2089 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2090 if (!parent_entity(se))
029632fb 2091 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2092#ifdef CONFIG_SMP
0ec8aa00
PZ
2093 if (entity_is_task(se)) {
2094 struct rq *rq = rq_of(cfs_rq);
2095
2096 account_numa_enqueue(rq, task_of(se));
2097 list_add(&se->group_node, &rq->cfs_tasks);
2098 }
367456c7 2099#endif
30cfdcfc 2100 cfs_rq->nr_running++;
30cfdcfc
DA
2101}
2102
2103static void
2104account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2105{
2106 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2107 if (!parent_entity(se))
029632fb 2108 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2109 if (entity_is_task(se)) {
2110 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2111 list_del_init(&se->group_node);
0ec8aa00 2112 }
30cfdcfc 2113 cfs_rq->nr_running--;
30cfdcfc
DA
2114}
2115
3ff6dcac
YZ
2116#ifdef CONFIG_FAIR_GROUP_SCHED
2117# ifdef CONFIG_SMP
cf5f0acf
PZ
2118static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2119{
2120 long tg_weight;
2121
2122 /*
2123 * Use this CPU's actual weight instead of the last load_contribution
2124 * to gain a more accurate current total weight. See
2125 * update_cfs_rq_load_contribution().
2126 */
bf5b986e 2127 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2128 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2129 tg_weight += cfs_rq->load.weight;
2130
2131 return tg_weight;
2132}
2133
6d5ab293 2134static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2135{
cf5f0acf 2136 long tg_weight, load, shares;
3ff6dcac 2137
cf5f0acf 2138 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2139 load = cfs_rq->load.weight;
3ff6dcac 2140
3ff6dcac 2141 shares = (tg->shares * load);
cf5f0acf
PZ
2142 if (tg_weight)
2143 shares /= tg_weight;
3ff6dcac
YZ
2144
2145 if (shares < MIN_SHARES)
2146 shares = MIN_SHARES;
2147 if (shares > tg->shares)
2148 shares = tg->shares;
2149
2150 return shares;
2151}
3ff6dcac 2152# else /* CONFIG_SMP */
6d5ab293 2153static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2154{
2155 return tg->shares;
2156}
3ff6dcac 2157# endif /* CONFIG_SMP */
2069dd75
PZ
2158static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2159 unsigned long weight)
2160{
19e5eebb
PT
2161 if (se->on_rq) {
2162 /* commit outstanding execution time */
2163 if (cfs_rq->curr == se)
2164 update_curr(cfs_rq);
2069dd75 2165 account_entity_dequeue(cfs_rq, se);
19e5eebb 2166 }
2069dd75
PZ
2167
2168 update_load_set(&se->load, weight);
2169
2170 if (se->on_rq)
2171 account_entity_enqueue(cfs_rq, se);
2172}
2173
82958366
PT
2174static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2175
6d5ab293 2176static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2177{
2178 struct task_group *tg;
2179 struct sched_entity *se;
3ff6dcac 2180 long shares;
2069dd75 2181
2069dd75
PZ
2182 tg = cfs_rq->tg;
2183 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2184 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2185 return;
3ff6dcac
YZ
2186#ifndef CONFIG_SMP
2187 if (likely(se->load.weight == tg->shares))
2188 return;
2189#endif
6d5ab293 2190 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2191
2192 reweight_entity(cfs_rq_of(se), se, shares);
2193}
2194#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2195static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2196{
2197}
2198#endif /* CONFIG_FAIR_GROUP_SCHED */
2199
141965c7 2200#ifdef CONFIG_SMP
5b51f2f8
PT
2201/*
2202 * We choose a half-life close to 1 scheduling period.
2203 * Note: The tables below are dependent on this value.
2204 */
2205#define LOAD_AVG_PERIOD 32
2206#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2207#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2208
2209/* Precomputed fixed inverse multiplies for multiplication by y^n */
2210static const u32 runnable_avg_yN_inv[] = {
2211 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2212 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2213 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2214 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2215 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2216 0x85aac367, 0x82cd8698,
2217};
2218
2219/*
2220 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2221 * over-estimates when re-combining.
2222 */
2223static const u32 runnable_avg_yN_sum[] = {
2224 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2225 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2226 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2227};
2228
9d85f21c
PT
2229/*
2230 * Approximate:
2231 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2232 */
2233static __always_inline u64 decay_load(u64 val, u64 n)
2234{
5b51f2f8
PT
2235 unsigned int local_n;
2236
2237 if (!n)
2238 return val;
2239 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2240 return 0;
2241
2242 /* after bounds checking we can collapse to 32-bit */
2243 local_n = n;
2244
2245 /*
2246 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2247 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2248 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2249 *
2250 * To achieve constant time decay_load.
2251 */
2252 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2253 val >>= local_n / LOAD_AVG_PERIOD;
2254 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2255 }
2256
5b51f2f8
PT
2257 val *= runnable_avg_yN_inv[local_n];
2258 /* We don't use SRR here since we always want to round down. */
2259 return val >> 32;
2260}
2261
2262/*
2263 * For updates fully spanning n periods, the contribution to runnable
2264 * average will be: \Sum 1024*y^n
2265 *
2266 * We can compute this reasonably efficiently by combining:
2267 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2268 */
2269static u32 __compute_runnable_contrib(u64 n)
2270{
2271 u32 contrib = 0;
2272
2273 if (likely(n <= LOAD_AVG_PERIOD))
2274 return runnable_avg_yN_sum[n];
2275 else if (unlikely(n >= LOAD_AVG_MAX_N))
2276 return LOAD_AVG_MAX;
2277
2278 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2279 do {
2280 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2281 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2282
2283 n -= LOAD_AVG_PERIOD;
2284 } while (n > LOAD_AVG_PERIOD);
2285
2286 contrib = decay_load(contrib, n);
2287 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2288}
2289
2290/*
2291 * We can represent the historical contribution to runnable average as the
2292 * coefficients of a geometric series. To do this we sub-divide our runnable
2293 * history into segments of approximately 1ms (1024us); label the segment that
2294 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2295 *
2296 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2297 * p0 p1 p2
2298 * (now) (~1ms ago) (~2ms ago)
2299 *
2300 * Let u_i denote the fraction of p_i that the entity was runnable.
2301 *
2302 * We then designate the fractions u_i as our co-efficients, yielding the
2303 * following representation of historical load:
2304 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2305 *
2306 * We choose y based on the with of a reasonably scheduling period, fixing:
2307 * y^32 = 0.5
2308 *
2309 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2310 * approximately half as much as the contribution to load within the last ms
2311 * (u_0).
2312 *
2313 * When a period "rolls over" and we have new u_0`, multiplying the previous
2314 * sum again by y is sufficient to update:
2315 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2316 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2317 */
2318static __always_inline int __update_entity_runnable_avg(u64 now,
2319 struct sched_avg *sa,
2320 int runnable)
2321{
5b51f2f8
PT
2322 u64 delta, periods;
2323 u32 runnable_contrib;
9d85f21c
PT
2324 int delta_w, decayed = 0;
2325
2326 delta = now - sa->last_runnable_update;
2327 /*
2328 * This should only happen when time goes backwards, which it
2329 * unfortunately does during sched clock init when we swap over to TSC.
2330 */
2331 if ((s64)delta < 0) {
2332 sa->last_runnable_update = now;
2333 return 0;
2334 }
2335
2336 /*
2337 * Use 1024ns as the unit of measurement since it's a reasonable
2338 * approximation of 1us and fast to compute.
2339 */
2340 delta >>= 10;
2341 if (!delta)
2342 return 0;
2343 sa->last_runnable_update = now;
2344
2345 /* delta_w is the amount already accumulated against our next period */
2346 delta_w = sa->runnable_avg_period % 1024;
2347 if (delta + delta_w >= 1024) {
2348 /* period roll-over */
2349 decayed = 1;
2350
2351 /*
2352 * Now that we know we're crossing a period boundary, figure
2353 * out how much from delta we need to complete the current
2354 * period and accrue it.
2355 */
2356 delta_w = 1024 - delta_w;
5b51f2f8
PT
2357 if (runnable)
2358 sa->runnable_avg_sum += delta_w;
2359 sa->runnable_avg_period += delta_w;
2360
2361 delta -= delta_w;
2362
2363 /* Figure out how many additional periods this update spans */
2364 periods = delta / 1024;
2365 delta %= 1024;
2366
2367 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2368 periods + 1);
2369 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2370 periods + 1);
2371
2372 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2373 runnable_contrib = __compute_runnable_contrib(periods);
2374 if (runnable)
2375 sa->runnable_avg_sum += runnable_contrib;
2376 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2377 }
2378
2379 /* Remainder of delta accrued against u_0` */
2380 if (runnable)
2381 sa->runnable_avg_sum += delta;
2382 sa->runnable_avg_period += delta;
2383
2384 return decayed;
2385}
2386
9ee474f5 2387/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2388static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2389{
2390 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2391 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2392
2393 decays -= se->avg.decay_count;
2394 if (!decays)
aff3e498 2395 return 0;
9ee474f5
PT
2396
2397 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2398 se->avg.decay_count = 0;
aff3e498
PT
2399
2400 return decays;
9ee474f5
PT
2401}
2402
c566e8e9
PT
2403#ifdef CONFIG_FAIR_GROUP_SCHED
2404static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2405 int force_update)
2406{
2407 struct task_group *tg = cfs_rq->tg;
bf5b986e 2408 long tg_contrib;
c566e8e9
PT
2409
2410 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2411 tg_contrib -= cfs_rq->tg_load_contrib;
2412
8236d907
JL
2413 if (!tg_contrib)
2414 return;
2415
bf5b986e
AS
2416 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2417 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2418 cfs_rq->tg_load_contrib += tg_contrib;
2419 }
2420}
8165e145 2421
bb17f655
PT
2422/*
2423 * Aggregate cfs_rq runnable averages into an equivalent task_group
2424 * representation for computing load contributions.
2425 */
2426static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2427 struct cfs_rq *cfs_rq)
2428{
2429 struct task_group *tg = cfs_rq->tg;
2430 long contrib;
2431
2432 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2433 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2434 sa->runnable_avg_period + 1);
2435 contrib -= cfs_rq->tg_runnable_contrib;
2436
2437 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2438 atomic_add(contrib, &tg->runnable_avg);
2439 cfs_rq->tg_runnable_contrib += contrib;
2440 }
2441}
2442
8165e145
PT
2443static inline void __update_group_entity_contrib(struct sched_entity *se)
2444{
2445 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2446 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2447 int runnable_avg;
2448
8165e145
PT
2449 u64 contrib;
2450
2451 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2452 se->avg.load_avg_contrib = div_u64(contrib,
2453 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2454
2455 /*
2456 * For group entities we need to compute a correction term in the case
2457 * that they are consuming <1 cpu so that we would contribute the same
2458 * load as a task of equal weight.
2459 *
2460 * Explicitly co-ordinating this measurement would be expensive, but
2461 * fortunately the sum of each cpus contribution forms a usable
2462 * lower-bound on the true value.
2463 *
2464 * Consider the aggregate of 2 contributions. Either they are disjoint
2465 * (and the sum represents true value) or they are disjoint and we are
2466 * understating by the aggregate of their overlap.
2467 *
2468 * Extending this to N cpus, for a given overlap, the maximum amount we
2469 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2470 * cpus that overlap for this interval and w_i is the interval width.
2471 *
2472 * On a small machine; the first term is well-bounded which bounds the
2473 * total error since w_i is a subset of the period. Whereas on a
2474 * larger machine, while this first term can be larger, if w_i is the
2475 * of consequential size guaranteed to see n_i*w_i quickly converge to
2476 * our upper bound of 1-cpu.
2477 */
2478 runnable_avg = atomic_read(&tg->runnable_avg);
2479 if (runnable_avg < NICE_0_LOAD) {
2480 se->avg.load_avg_contrib *= runnable_avg;
2481 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2482 }
8165e145 2483}
f5f9739d
DE
2484
2485static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2486{
2487 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2488 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2489}
6e83125c 2490#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2491static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2492 int force_update) {}
bb17f655
PT
2493static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2494 struct cfs_rq *cfs_rq) {}
8165e145 2495static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2496static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2497#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2498
8165e145
PT
2499static inline void __update_task_entity_contrib(struct sched_entity *se)
2500{
2501 u32 contrib;
2502
2503 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2504 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2505 contrib /= (se->avg.runnable_avg_period + 1);
2506 se->avg.load_avg_contrib = scale_load(contrib);
2507}
2508
2dac754e
PT
2509/* Compute the current contribution to load_avg by se, return any delta */
2510static long __update_entity_load_avg_contrib(struct sched_entity *se)
2511{
2512 long old_contrib = se->avg.load_avg_contrib;
2513
8165e145
PT
2514 if (entity_is_task(se)) {
2515 __update_task_entity_contrib(se);
2516 } else {
bb17f655 2517 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2518 __update_group_entity_contrib(se);
2519 }
2dac754e
PT
2520
2521 return se->avg.load_avg_contrib - old_contrib;
2522}
2523
9ee474f5
PT
2524static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2525 long load_contrib)
2526{
2527 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2528 cfs_rq->blocked_load_avg -= load_contrib;
2529 else
2530 cfs_rq->blocked_load_avg = 0;
2531}
2532
f1b17280
PT
2533static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2534
9d85f21c 2535/* Update a sched_entity's runnable average */
9ee474f5
PT
2536static inline void update_entity_load_avg(struct sched_entity *se,
2537 int update_cfs_rq)
9d85f21c 2538{
2dac754e
PT
2539 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2540 long contrib_delta;
f1b17280 2541 u64 now;
2dac754e 2542
f1b17280
PT
2543 /*
2544 * For a group entity we need to use their owned cfs_rq_clock_task() in
2545 * case they are the parent of a throttled hierarchy.
2546 */
2547 if (entity_is_task(se))
2548 now = cfs_rq_clock_task(cfs_rq);
2549 else
2550 now = cfs_rq_clock_task(group_cfs_rq(se));
2551
2552 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2553 return;
2554
2555 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2556
2557 if (!update_cfs_rq)
2558 return;
2559
2dac754e
PT
2560 if (se->on_rq)
2561 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2562 else
2563 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2564}
2565
2566/*
2567 * Decay the load contributed by all blocked children and account this so that
2568 * their contribution may appropriately discounted when they wake up.
2569 */
aff3e498 2570static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2571{
f1b17280 2572 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2573 u64 decays;
2574
2575 decays = now - cfs_rq->last_decay;
aff3e498 2576 if (!decays && !force_update)
9ee474f5
PT
2577 return;
2578
2509940f
AS
2579 if (atomic_long_read(&cfs_rq->removed_load)) {
2580 unsigned long removed_load;
2581 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2582 subtract_blocked_load_contrib(cfs_rq, removed_load);
2583 }
9ee474f5 2584
aff3e498
PT
2585 if (decays) {
2586 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2587 decays);
2588 atomic64_add(decays, &cfs_rq->decay_counter);
2589 cfs_rq->last_decay = now;
2590 }
c566e8e9
PT
2591
2592 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2593}
18bf2805 2594
2dac754e
PT
2595/* Add the load generated by se into cfs_rq's child load-average */
2596static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2597 struct sched_entity *se,
2598 int wakeup)
2dac754e 2599{
aff3e498
PT
2600 /*
2601 * We track migrations using entity decay_count <= 0, on a wake-up
2602 * migration we use a negative decay count to track the remote decays
2603 * accumulated while sleeping.
a75cdaa9
AS
2604 *
2605 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2606 * are seen by enqueue_entity_load_avg() as a migration with an already
2607 * constructed load_avg_contrib.
aff3e498
PT
2608 */
2609 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2610 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2611 if (se->avg.decay_count) {
2612 /*
2613 * In a wake-up migration we have to approximate the
2614 * time sleeping. This is because we can't synchronize
2615 * clock_task between the two cpus, and it is not
2616 * guaranteed to be read-safe. Instead, we can
2617 * approximate this using our carried decays, which are
2618 * explicitly atomically readable.
2619 */
2620 se->avg.last_runnable_update -= (-se->avg.decay_count)
2621 << 20;
2622 update_entity_load_avg(se, 0);
2623 /* Indicate that we're now synchronized and on-rq */
2624 se->avg.decay_count = 0;
2625 }
9ee474f5
PT
2626 wakeup = 0;
2627 } else {
9390675a 2628 __synchronize_entity_decay(se);
9ee474f5
PT
2629 }
2630
aff3e498
PT
2631 /* migrated tasks did not contribute to our blocked load */
2632 if (wakeup) {
9ee474f5 2633 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2634 update_entity_load_avg(se, 0);
2635 }
9ee474f5 2636
2dac754e 2637 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2638 /* we force update consideration on load-balancer moves */
2639 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2640}
2641
9ee474f5
PT
2642/*
2643 * Remove se's load from this cfs_rq child load-average, if the entity is
2644 * transitioning to a blocked state we track its projected decay using
2645 * blocked_load_avg.
2646 */
2dac754e 2647static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2648 struct sched_entity *se,
2649 int sleep)
2dac754e 2650{
9ee474f5 2651 update_entity_load_avg(se, 1);
aff3e498
PT
2652 /* we force update consideration on load-balancer moves */
2653 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2654
2dac754e 2655 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2656 if (sleep) {
2657 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2658 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2659 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2660}
642dbc39
VG
2661
2662/*
2663 * Update the rq's load with the elapsed running time before entering
2664 * idle. if the last scheduled task is not a CFS task, idle_enter will
2665 * be the only way to update the runnable statistic.
2666 */
2667void idle_enter_fair(struct rq *this_rq)
2668{
2669 update_rq_runnable_avg(this_rq, 1);
2670}
2671
2672/*
2673 * Update the rq's load with the elapsed idle time before a task is
2674 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2675 * be the only way to update the runnable statistic.
2676 */
2677void idle_exit_fair(struct rq *this_rq)
2678{
2679 update_rq_runnable_avg(this_rq, 0);
2680}
2681
6e83125c
PZ
2682static int idle_balance(struct rq *this_rq);
2683
38033c37
PZ
2684#else /* CONFIG_SMP */
2685
9ee474f5
PT
2686static inline void update_entity_load_avg(struct sched_entity *se,
2687 int update_cfs_rq) {}
18bf2805 2688static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2689static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2690 struct sched_entity *se,
2691 int wakeup) {}
2dac754e 2692static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2693 struct sched_entity *se,
2694 int sleep) {}
aff3e498
PT
2695static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2696 int force_update) {}
6e83125c
PZ
2697
2698static inline int idle_balance(struct rq *rq)
2699{
2700 return 0;
2701}
2702
38033c37 2703#endif /* CONFIG_SMP */
9d85f21c 2704
2396af69 2705static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2706{
bf0f6f24 2707#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2708 struct task_struct *tsk = NULL;
2709
2710 if (entity_is_task(se))
2711 tsk = task_of(se);
2712
41acab88 2713 if (se->statistics.sleep_start) {
78becc27 2714 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2715
2716 if ((s64)delta < 0)
2717 delta = 0;
2718
41acab88
LDM
2719 if (unlikely(delta > se->statistics.sleep_max))
2720 se->statistics.sleep_max = delta;
bf0f6f24 2721
8c79a045 2722 se->statistics.sleep_start = 0;
41acab88 2723 se->statistics.sum_sleep_runtime += delta;
9745512c 2724
768d0c27 2725 if (tsk) {
e414314c 2726 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2727 trace_sched_stat_sleep(tsk, delta);
2728 }
bf0f6f24 2729 }
41acab88 2730 if (se->statistics.block_start) {
78becc27 2731 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2732
2733 if ((s64)delta < 0)
2734 delta = 0;
2735
41acab88
LDM
2736 if (unlikely(delta > se->statistics.block_max))
2737 se->statistics.block_max = delta;
bf0f6f24 2738
8c79a045 2739 se->statistics.block_start = 0;
41acab88 2740 se->statistics.sum_sleep_runtime += delta;
30084fbd 2741
e414314c 2742 if (tsk) {
8f0dfc34 2743 if (tsk->in_iowait) {
41acab88
LDM
2744 se->statistics.iowait_sum += delta;
2745 se->statistics.iowait_count++;
768d0c27 2746 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2747 }
2748
b781a602
AV
2749 trace_sched_stat_blocked(tsk, delta);
2750
e414314c
PZ
2751 /*
2752 * Blocking time is in units of nanosecs, so shift by
2753 * 20 to get a milliseconds-range estimation of the
2754 * amount of time that the task spent sleeping:
2755 */
2756 if (unlikely(prof_on == SLEEP_PROFILING)) {
2757 profile_hits(SLEEP_PROFILING,
2758 (void *)get_wchan(tsk),
2759 delta >> 20);
2760 }
2761 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2762 }
bf0f6f24
IM
2763 }
2764#endif
2765}
2766
ddc97297
PZ
2767static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2768{
2769#ifdef CONFIG_SCHED_DEBUG
2770 s64 d = se->vruntime - cfs_rq->min_vruntime;
2771
2772 if (d < 0)
2773 d = -d;
2774
2775 if (d > 3*sysctl_sched_latency)
2776 schedstat_inc(cfs_rq, nr_spread_over);
2777#endif
2778}
2779
aeb73b04
PZ
2780static void
2781place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2782{
1af5f730 2783 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2784
2cb8600e
PZ
2785 /*
2786 * The 'current' period is already promised to the current tasks,
2787 * however the extra weight of the new task will slow them down a
2788 * little, place the new task so that it fits in the slot that
2789 * stays open at the end.
2790 */
94dfb5e7 2791 if (initial && sched_feat(START_DEBIT))
f9c0b095 2792 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2793
a2e7a7eb 2794 /* sleeps up to a single latency don't count. */
5ca9880c 2795 if (!initial) {
a2e7a7eb 2796 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2797
a2e7a7eb
MG
2798 /*
2799 * Halve their sleep time's effect, to allow
2800 * for a gentler effect of sleepers:
2801 */
2802 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2803 thresh >>= 1;
51e0304c 2804
a2e7a7eb 2805 vruntime -= thresh;
aeb73b04
PZ
2806 }
2807
b5d9d734 2808 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2809 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2810}
2811
d3d9dc33
PT
2812static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2813
bf0f6f24 2814static void
88ec22d3 2815enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2816{
88ec22d3
PZ
2817 /*
2818 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2819 * through calling update_curr().
88ec22d3 2820 */
371fd7e7 2821 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2822 se->vruntime += cfs_rq->min_vruntime;
2823
bf0f6f24 2824 /*
a2a2d680 2825 * Update run-time statistics of the 'current'.
bf0f6f24 2826 */
b7cc0896 2827 update_curr(cfs_rq);
f269ae04 2828 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2829 account_entity_enqueue(cfs_rq, se);
2830 update_cfs_shares(cfs_rq);
bf0f6f24 2831
88ec22d3 2832 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2833 place_entity(cfs_rq, se, 0);
2396af69 2834 enqueue_sleeper(cfs_rq, se);
e9acbff6 2835 }
bf0f6f24 2836
d2417e5a 2837 update_stats_enqueue(cfs_rq, se);
ddc97297 2838 check_spread(cfs_rq, se);
83b699ed
SV
2839 if (se != cfs_rq->curr)
2840 __enqueue_entity(cfs_rq, se);
2069dd75 2841 se->on_rq = 1;
3d4b47b4 2842
d3d9dc33 2843 if (cfs_rq->nr_running == 1) {
3d4b47b4 2844 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2845 check_enqueue_throttle(cfs_rq);
2846 }
bf0f6f24
IM
2847}
2848
2c13c919 2849static void __clear_buddies_last(struct sched_entity *se)
2002c695 2850{
2c13c919
RR
2851 for_each_sched_entity(se) {
2852 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2853 if (cfs_rq->last != se)
2c13c919 2854 break;
f1044799
PZ
2855
2856 cfs_rq->last = NULL;
2c13c919
RR
2857 }
2858}
2002c695 2859
2c13c919
RR
2860static void __clear_buddies_next(struct sched_entity *se)
2861{
2862 for_each_sched_entity(se) {
2863 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2864 if (cfs_rq->next != se)
2c13c919 2865 break;
f1044799
PZ
2866
2867 cfs_rq->next = NULL;
2c13c919 2868 }
2002c695
PZ
2869}
2870
ac53db59
RR
2871static void __clear_buddies_skip(struct sched_entity *se)
2872{
2873 for_each_sched_entity(se) {
2874 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2875 if (cfs_rq->skip != se)
ac53db59 2876 break;
f1044799
PZ
2877
2878 cfs_rq->skip = NULL;
ac53db59
RR
2879 }
2880}
2881
a571bbea
PZ
2882static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2883{
2c13c919
RR
2884 if (cfs_rq->last == se)
2885 __clear_buddies_last(se);
2886
2887 if (cfs_rq->next == se)
2888 __clear_buddies_next(se);
ac53db59
RR
2889
2890 if (cfs_rq->skip == se)
2891 __clear_buddies_skip(se);
a571bbea
PZ
2892}
2893
6c16a6dc 2894static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2895
bf0f6f24 2896static void
371fd7e7 2897dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2898{
a2a2d680
DA
2899 /*
2900 * Update run-time statistics of the 'current'.
2901 */
2902 update_curr(cfs_rq);
17bc14b7 2903 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2904
19b6a2e3 2905 update_stats_dequeue(cfs_rq, se);
371fd7e7 2906 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2907#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2908 if (entity_is_task(se)) {
2909 struct task_struct *tsk = task_of(se);
2910
2911 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2912 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2913 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2914 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2915 }
db36cc7d 2916#endif
67e9fb2a
PZ
2917 }
2918
2002c695 2919 clear_buddies(cfs_rq, se);
4793241b 2920
83b699ed 2921 if (se != cfs_rq->curr)
30cfdcfc 2922 __dequeue_entity(cfs_rq, se);
17bc14b7 2923 se->on_rq = 0;
30cfdcfc 2924 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2925
2926 /*
2927 * Normalize the entity after updating the min_vruntime because the
2928 * update can refer to the ->curr item and we need to reflect this
2929 * movement in our normalized position.
2930 */
371fd7e7 2931 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2932 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2933
d8b4986d
PT
2934 /* return excess runtime on last dequeue */
2935 return_cfs_rq_runtime(cfs_rq);
2936
1e876231 2937 update_min_vruntime(cfs_rq);
17bc14b7 2938 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2939}
2940
2941/*
2942 * Preempt the current task with a newly woken task if needed:
2943 */
7c92e54f 2944static void
2e09bf55 2945check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2946{
11697830 2947 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2948 struct sched_entity *se;
2949 s64 delta;
11697830 2950
6d0f0ebd 2951 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2952 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2953 if (delta_exec > ideal_runtime) {
8875125e 2954 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
2955 /*
2956 * The current task ran long enough, ensure it doesn't get
2957 * re-elected due to buddy favours.
2958 */
2959 clear_buddies(cfs_rq, curr);
f685ceac
MG
2960 return;
2961 }
2962
2963 /*
2964 * Ensure that a task that missed wakeup preemption by a
2965 * narrow margin doesn't have to wait for a full slice.
2966 * This also mitigates buddy induced latencies under load.
2967 */
f685ceac
MG
2968 if (delta_exec < sysctl_sched_min_granularity)
2969 return;
2970
f4cfb33e
WX
2971 se = __pick_first_entity(cfs_rq);
2972 delta = curr->vruntime - se->vruntime;
f685ceac 2973
f4cfb33e
WX
2974 if (delta < 0)
2975 return;
d7d82944 2976
f4cfb33e 2977 if (delta > ideal_runtime)
8875125e 2978 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
2979}
2980
83b699ed 2981static void
8494f412 2982set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2983{
83b699ed
SV
2984 /* 'current' is not kept within the tree. */
2985 if (se->on_rq) {
2986 /*
2987 * Any task has to be enqueued before it get to execute on
2988 * a CPU. So account for the time it spent waiting on the
2989 * runqueue.
2990 */
2991 update_stats_wait_end(cfs_rq, se);
2992 __dequeue_entity(cfs_rq, se);
2993 }
2994
79303e9e 2995 update_stats_curr_start(cfs_rq, se);
429d43bc 2996 cfs_rq->curr = se;
eba1ed4b
IM
2997#ifdef CONFIG_SCHEDSTATS
2998 /*
2999 * Track our maximum slice length, if the CPU's load is at
3000 * least twice that of our own weight (i.e. dont track it
3001 * when there are only lesser-weight tasks around):
3002 */
495eca49 3003 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3004 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3005 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3006 }
3007#endif
4a55b450 3008 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3009}
3010
3f3a4904
PZ
3011static int
3012wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3013
ac53db59
RR
3014/*
3015 * Pick the next process, keeping these things in mind, in this order:
3016 * 1) keep things fair between processes/task groups
3017 * 2) pick the "next" process, since someone really wants that to run
3018 * 3) pick the "last" process, for cache locality
3019 * 4) do not run the "skip" process, if something else is available
3020 */
678d5718
PZ
3021static struct sched_entity *
3022pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3023{
678d5718
PZ
3024 struct sched_entity *left = __pick_first_entity(cfs_rq);
3025 struct sched_entity *se;
3026
3027 /*
3028 * If curr is set we have to see if its left of the leftmost entity
3029 * still in the tree, provided there was anything in the tree at all.
3030 */
3031 if (!left || (curr && entity_before(curr, left)))
3032 left = curr;
3033
3034 se = left; /* ideally we run the leftmost entity */
f4b6755f 3035
ac53db59
RR
3036 /*
3037 * Avoid running the skip buddy, if running something else can
3038 * be done without getting too unfair.
3039 */
3040 if (cfs_rq->skip == se) {
678d5718
PZ
3041 struct sched_entity *second;
3042
3043 if (se == curr) {
3044 second = __pick_first_entity(cfs_rq);
3045 } else {
3046 second = __pick_next_entity(se);
3047 if (!second || (curr && entity_before(curr, second)))
3048 second = curr;
3049 }
3050
ac53db59
RR
3051 if (second && wakeup_preempt_entity(second, left) < 1)
3052 se = second;
3053 }
aa2ac252 3054
f685ceac
MG
3055 /*
3056 * Prefer last buddy, try to return the CPU to a preempted task.
3057 */
3058 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3059 se = cfs_rq->last;
3060
ac53db59
RR
3061 /*
3062 * Someone really wants this to run. If it's not unfair, run it.
3063 */
3064 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3065 se = cfs_rq->next;
3066
f685ceac 3067 clear_buddies(cfs_rq, se);
4793241b
PZ
3068
3069 return se;
aa2ac252
PZ
3070}
3071
678d5718 3072static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3073
ab6cde26 3074static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3075{
3076 /*
3077 * If still on the runqueue then deactivate_task()
3078 * was not called and update_curr() has to be done:
3079 */
3080 if (prev->on_rq)
b7cc0896 3081 update_curr(cfs_rq);
bf0f6f24 3082
d3d9dc33
PT
3083 /* throttle cfs_rqs exceeding runtime */
3084 check_cfs_rq_runtime(cfs_rq);
3085
ddc97297 3086 check_spread(cfs_rq, prev);
30cfdcfc 3087 if (prev->on_rq) {
5870db5b 3088 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3089 /* Put 'current' back into the tree. */
3090 __enqueue_entity(cfs_rq, prev);
9d85f21c 3091 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3092 update_entity_load_avg(prev, 1);
30cfdcfc 3093 }
429d43bc 3094 cfs_rq->curr = NULL;
bf0f6f24
IM
3095}
3096
8f4d37ec
PZ
3097static void
3098entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3099{
bf0f6f24 3100 /*
30cfdcfc 3101 * Update run-time statistics of the 'current'.
bf0f6f24 3102 */
30cfdcfc 3103 update_curr(cfs_rq);
bf0f6f24 3104
9d85f21c
PT
3105 /*
3106 * Ensure that runnable average is periodically updated.
3107 */
9ee474f5 3108 update_entity_load_avg(curr, 1);
aff3e498 3109 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3110 update_cfs_shares(cfs_rq);
9d85f21c 3111
8f4d37ec
PZ
3112#ifdef CONFIG_SCHED_HRTICK
3113 /*
3114 * queued ticks are scheduled to match the slice, so don't bother
3115 * validating it and just reschedule.
3116 */
983ed7a6 3117 if (queued) {
8875125e 3118 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3119 return;
3120 }
8f4d37ec
PZ
3121 /*
3122 * don't let the period tick interfere with the hrtick preemption
3123 */
3124 if (!sched_feat(DOUBLE_TICK) &&
3125 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3126 return;
3127#endif
3128
2c2efaed 3129 if (cfs_rq->nr_running > 1)
2e09bf55 3130 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3131}
3132
ab84d31e
PT
3133
3134/**************************************************
3135 * CFS bandwidth control machinery
3136 */
3137
3138#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3139
3140#ifdef HAVE_JUMP_LABEL
c5905afb 3141static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3142
3143static inline bool cfs_bandwidth_used(void)
3144{
c5905afb 3145 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3146}
3147
1ee14e6c 3148void cfs_bandwidth_usage_inc(void)
029632fb 3149{
1ee14e6c
BS
3150 static_key_slow_inc(&__cfs_bandwidth_used);
3151}
3152
3153void cfs_bandwidth_usage_dec(void)
3154{
3155 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3156}
3157#else /* HAVE_JUMP_LABEL */
3158static bool cfs_bandwidth_used(void)
3159{
3160 return true;
3161}
3162
1ee14e6c
BS
3163void cfs_bandwidth_usage_inc(void) {}
3164void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3165#endif /* HAVE_JUMP_LABEL */
3166
ab84d31e
PT
3167/*
3168 * default period for cfs group bandwidth.
3169 * default: 0.1s, units: nanoseconds
3170 */
3171static inline u64 default_cfs_period(void)
3172{
3173 return 100000000ULL;
3174}
ec12cb7f
PT
3175
3176static inline u64 sched_cfs_bandwidth_slice(void)
3177{
3178 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3179}
3180
a9cf55b2
PT
3181/*
3182 * Replenish runtime according to assigned quota and update expiration time.
3183 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3184 * additional synchronization around rq->lock.
3185 *
3186 * requires cfs_b->lock
3187 */
029632fb 3188void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3189{
3190 u64 now;
3191
3192 if (cfs_b->quota == RUNTIME_INF)
3193 return;
3194
3195 now = sched_clock_cpu(smp_processor_id());
3196 cfs_b->runtime = cfs_b->quota;
3197 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3198}
3199
029632fb
PZ
3200static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3201{
3202 return &tg->cfs_bandwidth;
3203}
3204
f1b17280
PT
3205/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3206static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3207{
3208 if (unlikely(cfs_rq->throttle_count))
3209 return cfs_rq->throttled_clock_task;
3210
78becc27 3211 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3212}
3213
85dac906
PT
3214/* returns 0 on failure to allocate runtime */
3215static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3216{
3217 struct task_group *tg = cfs_rq->tg;
3218 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3219 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3220
3221 /* note: this is a positive sum as runtime_remaining <= 0 */
3222 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3223
3224 raw_spin_lock(&cfs_b->lock);
3225 if (cfs_b->quota == RUNTIME_INF)
3226 amount = min_amount;
58088ad0 3227 else {
a9cf55b2
PT
3228 /*
3229 * If the bandwidth pool has become inactive, then at least one
3230 * period must have elapsed since the last consumption.
3231 * Refresh the global state and ensure bandwidth timer becomes
3232 * active.
3233 */
3234 if (!cfs_b->timer_active) {
3235 __refill_cfs_bandwidth_runtime(cfs_b);
09dc4ab0 3236 __start_cfs_bandwidth(cfs_b, false);
a9cf55b2 3237 }
58088ad0
PT
3238
3239 if (cfs_b->runtime > 0) {
3240 amount = min(cfs_b->runtime, min_amount);
3241 cfs_b->runtime -= amount;
3242 cfs_b->idle = 0;
3243 }
ec12cb7f 3244 }
a9cf55b2 3245 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3246 raw_spin_unlock(&cfs_b->lock);
3247
3248 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3249 /*
3250 * we may have advanced our local expiration to account for allowed
3251 * spread between our sched_clock and the one on which runtime was
3252 * issued.
3253 */
3254 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3255 cfs_rq->runtime_expires = expires;
85dac906
PT
3256
3257 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3258}
3259
a9cf55b2
PT
3260/*
3261 * Note: This depends on the synchronization provided by sched_clock and the
3262 * fact that rq->clock snapshots this value.
3263 */
3264static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3265{
a9cf55b2 3266 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3267
3268 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3269 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3270 return;
3271
a9cf55b2
PT
3272 if (cfs_rq->runtime_remaining < 0)
3273 return;
3274
3275 /*
3276 * If the local deadline has passed we have to consider the
3277 * possibility that our sched_clock is 'fast' and the global deadline
3278 * has not truly expired.
3279 *
3280 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3281 * whether the global deadline has advanced. It is valid to compare
3282 * cfs_b->runtime_expires without any locks since we only care about
3283 * exact equality, so a partial write will still work.
a9cf55b2
PT
3284 */
3285
51f2176d 3286 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3287 /* extend local deadline, drift is bounded above by 2 ticks */
3288 cfs_rq->runtime_expires += TICK_NSEC;
3289 } else {
3290 /* global deadline is ahead, expiration has passed */
3291 cfs_rq->runtime_remaining = 0;
3292 }
3293}
3294
9dbdb155 3295static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3296{
3297 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3298 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3299 expire_cfs_rq_runtime(cfs_rq);
3300
3301 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3302 return;
3303
85dac906
PT
3304 /*
3305 * if we're unable to extend our runtime we resched so that the active
3306 * hierarchy can be throttled
3307 */
3308 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3309 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3310}
3311
6c16a6dc 3312static __always_inline
9dbdb155 3313void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3314{
56f570e5 3315 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3316 return;
3317
3318 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3319}
3320
85dac906
PT
3321static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3322{
56f570e5 3323 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3324}
3325
64660c86
PT
3326/* check whether cfs_rq, or any parent, is throttled */
3327static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3328{
56f570e5 3329 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3330}
3331
3332/*
3333 * Ensure that neither of the group entities corresponding to src_cpu or
3334 * dest_cpu are members of a throttled hierarchy when performing group
3335 * load-balance operations.
3336 */
3337static inline int throttled_lb_pair(struct task_group *tg,
3338 int src_cpu, int dest_cpu)
3339{
3340 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3341
3342 src_cfs_rq = tg->cfs_rq[src_cpu];
3343 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3344
3345 return throttled_hierarchy(src_cfs_rq) ||
3346 throttled_hierarchy(dest_cfs_rq);
3347}
3348
3349/* updated child weight may affect parent so we have to do this bottom up */
3350static int tg_unthrottle_up(struct task_group *tg, void *data)
3351{
3352 struct rq *rq = data;
3353 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3354
3355 cfs_rq->throttle_count--;
3356#ifdef CONFIG_SMP
3357 if (!cfs_rq->throttle_count) {
f1b17280 3358 /* adjust cfs_rq_clock_task() */
78becc27 3359 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3360 cfs_rq->throttled_clock_task;
64660c86
PT
3361 }
3362#endif
3363
3364 return 0;
3365}
3366
3367static int tg_throttle_down(struct task_group *tg, void *data)
3368{
3369 struct rq *rq = data;
3370 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3371
82958366
PT
3372 /* group is entering throttled state, stop time */
3373 if (!cfs_rq->throttle_count)
78becc27 3374 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3375 cfs_rq->throttle_count++;
3376
3377 return 0;
3378}
3379
d3d9dc33 3380static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3381{
3382 struct rq *rq = rq_of(cfs_rq);
3383 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3384 struct sched_entity *se;
3385 long task_delta, dequeue = 1;
3386
3387 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3388
f1b17280 3389 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3390 rcu_read_lock();
3391 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3392 rcu_read_unlock();
85dac906
PT
3393
3394 task_delta = cfs_rq->h_nr_running;
3395 for_each_sched_entity(se) {
3396 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3397 /* throttled entity or throttle-on-deactivate */
3398 if (!se->on_rq)
3399 break;
3400
3401 if (dequeue)
3402 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3403 qcfs_rq->h_nr_running -= task_delta;
3404
3405 if (qcfs_rq->load.weight)
3406 dequeue = 0;
3407 }
3408
3409 if (!se)
72465447 3410 sub_nr_running(rq, task_delta);
85dac906
PT
3411
3412 cfs_rq->throttled = 1;
78becc27 3413 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3414 raw_spin_lock(&cfs_b->lock);
c06f04c7
BS
3415 /*
3416 * Add to the _head_ of the list, so that an already-started
3417 * distribute_cfs_runtime will not see us
3418 */
3419 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2 3420 if (!cfs_b->timer_active)
09dc4ab0 3421 __start_cfs_bandwidth(cfs_b, false);
85dac906
PT
3422 raw_spin_unlock(&cfs_b->lock);
3423}
3424
029632fb 3425void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3426{
3427 struct rq *rq = rq_of(cfs_rq);
3428 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3429 struct sched_entity *se;
3430 int enqueue = 1;
3431 long task_delta;
3432
22b958d8 3433 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3434
3435 cfs_rq->throttled = 0;
1a55af2e
FW
3436
3437 update_rq_clock(rq);
3438
671fd9da 3439 raw_spin_lock(&cfs_b->lock);
78becc27 3440 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3441 list_del_rcu(&cfs_rq->throttled_list);
3442 raw_spin_unlock(&cfs_b->lock);
3443
64660c86
PT
3444 /* update hierarchical throttle state */
3445 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3446
671fd9da
PT
3447 if (!cfs_rq->load.weight)
3448 return;
3449
3450 task_delta = cfs_rq->h_nr_running;
3451 for_each_sched_entity(se) {
3452 if (se->on_rq)
3453 enqueue = 0;
3454
3455 cfs_rq = cfs_rq_of(se);
3456 if (enqueue)
3457 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3458 cfs_rq->h_nr_running += task_delta;
3459
3460 if (cfs_rq_throttled(cfs_rq))
3461 break;
3462 }
3463
3464 if (!se)
72465447 3465 add_nr_running(rq, task_delta);
671fd9da
PT
3466
3467 /* determine whether we need to wake up potentially idle cpu */
3468 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3469 resched_curr(rq);
671fd9da
PT
3470}
3471
3472static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3473 u64 remaining, u64 expires)
3474{
3475 struct cfs_rq *cfs_rq;
c06f04c7
BS
3476 u64 runtime;
3477 u64 starting_runtime = remaining;
671fd9da
PT
3478
3479 rcu_read_lock();
3480 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3481 throttled_list) {
3482 struct rq *rq = rq_of(cfs_rq);
3483
3484 raw_spin_lock(&rq->lock);
3485 if (!cfs_rq_throttled(cfs_rq))
3486 goto next;
3487
3488 runtime = -cfs_rq->runtime_remaining + 1;
3489 if (runtime > remaining)
3490 runtime = remaining;
3491 remaining -= runtime;
3492
3493 cfs_rq->runtime_remaining += runtime;
3494 cfs_rq->runtime_expires = expires;
3495
3496 /* we check whether we're throttled above */
3497 if (cfs_rq->runtime_remaining > 0)
3498 unthrottle_cfs_rq(cfs_rq);
3499
3500next:
3501 raw_spin_unlock(&rq->lock);
3502
3503 if (!remaining)
3504 break;
3505 }
3506 rcu_read_unlock();
3507
c06f04c7 3508 return starting_runtime - remaining;
671fd9da
PT
3509}
3510
58088ad0
PT
3511/*
3512 * Responsible for refilling a task_group's bandwidth and unthrottling its
3513 * cfs_rqs as appropriate. If there has been no activity within the last
3514 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3515 * used to track this state.
3516 */
3517static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3518{
671fd9da 3519 u64 runtime, runtime_expires;
51f2176d 3520 int throttled;
58088ad0 3521
58088ad0
PT
3522 /* no need to continue the timer with no bandwidth constraint */
3523 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3524 goto out_deactivate;
58088ad0 3525
671fd9da 3526 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3527 cfs_b->nr_periods += overrun;
671fd9da 3528
51f2176d
BS
3529 /*
3530 * idle depends on !throttled (for the case of a large deficit), and if
3531 * we're going inactive then everything else can be deferred
3532 */
3533 if (cfs_b->idle && !throttled)
3534 goto out_deactivate;
a9cf55b2 3535
927b54fc
BS
3536 /*
3537 * if we have relooped after returning idle once, we need to update our
3538 * status as actually running, so that other cpus doing
3539 * __start_cfs_bandwidth will stop trying to cancel us.
3540 */
3541 cfs_b->timer_active = 1;
3542
a9cf55b2
PT
3543 __refill_cfs_bandwidth_runtime(cfs_b);
3544
671fd9da
PT
3545 if (!throttled) {
3546 /* mark as potentially idle for the upcoming period */
3547 cfs_b->idle = 1;
51f2176d 3548 return 0;
671fd9da
PT
3549 }
3550
e8da1b18
NR
3551 /* account preceding periods in which throttling occurred */
3552 cfs_b->nr_throttled += overrun;
3553
671fd9da 3554 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
3555
3556 /*
c06f04c7
BS
3557 * This check is repeated as we are holding onto the new bandwidth while
3558 * we unthrottle. This can potentially race with an unthrottled group
3559 * trying to acquire new bandwidth from the global pool. This can result
3560 * in us over-using our runtime if it is all used during this loop, but
3561 * only by limited amounts in that extreme case.
671fd9da 3562 */
c06f04c7
BS
3563 while (throttled && cfs_b->runtime > 0) {
3564 runtime = cfs_b->runtime;
671fd9da
PT
3565 raw_spin_unlock(&cfs_b->lock);
3566 /* we can't nest cfs_b->lock while distributing bandwidth */
3567 runtime = distribute_cfs_runtime(cfs_b, runtime,
3568 runtime_expires);
3569 raw_spin_lock(&cfs_b->lock);
3570
3571 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
3572
3573 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 3574 }
58088ad0 3575
671fd9da
PT
3576 /*
3577 * While we are ensured activity in the period following an
3578 * unthrottle, this also covers the case in which the new bandwidth is
3579 * insufficient to cover the existing bandwidth deficit. (Forcing the
3580 * timer to remain active while there are any throttled entities.)
3581 */
3582 cfs_b->idle = 0;
58088ad0 3583
51f2176d
BS
3584 return 0;
3585
3586out_deactivate:
3587 cfs_b->timer_active = 0;
3588 return 1;
58088ad0 3589}
d3d9dc33 3590
d8b4986d
PT
3591/* a cfs_rq won't donate quota below this amount */
3592static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3593/* minimum remaining period time to redistribute slack quota */
3594static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3595/* how long we wait to gather additional slack before distributing */
3596static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3597
db06e78c
BS
3598/*
3599 * Are we near the end of the current quota period?
3600 *
3601 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3602 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3603 * migrate_hrtimers, base is never cleared, so we are fine.
3604 */
d8b4986d
PT
3605static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3606{
3607 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3608 u64 remaining;
3609
3610 /* if the call-back is running a quota refresh is already occurring */
3611 if (hrtimer_callback_running(refresh_timer))
3612 return 1;
3613
3614 /* is a quota refresh about to occur? */
3615 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3616 if (remaining < min_expire)
3617 return 1;
3618
3619 return 0;
3620}
3621
3622static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3623{
3624 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3625
3626 /* if there's a quota refresh soon don't bother with slack */
3627 if (runtime_refresh_within(cfs_b, min_left))
3628 return;
3629
3630 start_bandwidth_timer(&cfs_b->slack_timer,
3631 ns_to_ktime(cfs_bandwidth_slack_period));
3632}
3633
3634/* we know any runtime found here is valid as update_curr() precedes return */
3635static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3636{
3637 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3638 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3639
3640 if (slack_runtime <= 0)
3641 return;
3642
3643 raw_spin_lock(&cfs_b->lock);
3644 if (cfs_b->quota != RUNTIME_INF &&
3645 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3646 cfs_b->runtime += slack_runtime;
3647
3648 /* we are under rq->lock, defer unthrottling using a timer */
3649 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3650 !list_empty(&cfs_b->throttled_cfs_rq))
3651 start_cfs_slack_bandwidth(cfs_b);
3652 }
3653 raw_spin_unlock(&cfs_b->lock);
3654
3655 /* even if it's not valid for return we don't want to try again */
3656 cfs_rq->runtime_remaining -= slack_runtime;
3657}
3658
3659static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3660{
56f570e5
PT
3661 if (!cfs_bandwidth_used())
3662 return;
3663
fccfdc6f 3664 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3665 return;
3666
3667 __return_cfs_rq_runtime(cfs_rq);
3668}
3669
3670/*
3671 * This is done with a timer (instead of inline with bandwidth return) since
3672 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3673 */
3674static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3675{
3676 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3677 u64 expires;
3678
3679 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3680 raw_spin_lock(&cfs_b->lock);
3681 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3682 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3683 return;
db06e78c 3684 }
d8b4986d 3685
c06f04c7 3686 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 3687 runtime = cfs_b->runtime;
c06f04c7 3688
d8b4986d
PT
3689 expires = cfs_b->runtime_expires;
3690 raw_spin_unlock(&cfs_b->lock);
3691
3692 if (!runtime)
3693 return;
3694
3695 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3696
3697 raw_spin_lock(&cfs_b->lock);
3698 if (expires == cfs_b->runtime_expires)
c06f04c7 3699 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
3700 raw_spin_unlock(&cfs_b->lock);
3701}
3702
d3d9dc33
PT
3703/*
3704 * When a group wakes up we want to make sure that its quota is not already
3705 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3706 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3707 */
3708static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3709{
56f570e5
PT
3710 if (!cfs_bandwidth_used())
3711 return;
3712
d3d9dc33
PT
3713 /* an active group must be handled by the update_curr()->put() path */
3714 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3715 return;
3716
3717 /* ensure the group is not already throttled */
3718 if (cfs_rq_throttled(cfs_rq))
3719 return;
3720
3721 /* update runtime allocation */
3722 account_cfs_rq_runtime(cfs_rq, 0);
3723 if (cfs_rq->runtime_remaining <= 0)
3724 throttle_cfs_rq(cfs_rq);
3725}
3726
3727/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3728static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3729{
56f570e5 3730 if (!cfs_bandwidth_used())
678d5718 3731 return false;
56f570e5 3732
d3d9dc33 3733 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3734 return false;
d3d9dc33
PT
3735
3736 /*
3737 * it's possible for a throttled entity to be forced into a running
3738 * state (e.g. set_curr_task), in this case we're finished.
3739 */
3740 if (cfs_rq_throttled(cfs_rq))
678d5718 3741 return true;
d3d9dc33
PT
3742
3743 throttle_cfs_rq(cfs_rq);
678d5718 3744 return true;
d3d9dc33 3745}
029632fb 3746
029632fb
PZ
3747static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3748{
3749 struct cfs_bandwidth *cfs_b =
3750 container_of(timer, struct cfs_bandwidth, slack_timer);
3751 do_sched_cfs_slack_timer(cfs_b);
3752
3753 return HRTIMER_NORESTART;
3754}
3755
3756static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3757{
3758 struct cfs_bandwidth *cfs_b =
3759 container_of(timer, struct cfs_bandwidth, period_timer);
3760 ktime_t now;
3761 int overrun;
3762 int idle = 0;
3763
51f2176d 3764 raw_spin_lock(&cfs_b->lock);
029632fb
PZ
3765 for (;;) {
3766 now = hrtimer_cb_get_time(timer);
3767 overrun = hrtimer_forward(timer, now, cfs_b->period);
3768
3769 if (!overrun)
3770 break;
3771
3772 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3773 }
51f2176d 3774 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
3775
3776 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3777}
3778
3779void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3780{
3781 raw_spin_lock_init(&cfs_b->lock);
3782 cfs_b->runtime = 0;
3783 cfs_b->quota = RUNTIME_INF;
3784 cfs_b->period = ns_to_ktime(default_cfs_period());
3785
3786 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3787 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3788 cfs_b->period_timer.function = sched_cfs_period_timer;
3789 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3790 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3791}
3792
3793static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3794{
3795 cfs_rq->runtime_enabled = 0;
3796 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3797}
3798
3799/* requires cfs_b->lock, may release to reprogram timer */
09dc4ab0 3800void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
029632fb
PZ
3801{
3802 /*
3803 * The timer may be active because we're trying to set a new bandwidth
3804 * period or because we're racing with the tear-down path
3805 * (timer_active==0 becomes visible before the hrtimer call-back
3806 * terminates). In either case we ensure that it's re-programmed
3807 */
927b54fc
BS
3808 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3809 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3810 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3811 raw_spin_unlock(&cfs_b->lock);
927b54fc 3812 cpu_relax();
029632fb
PZ
3813 raw_spin_lock(&cfs_b->lock);
3814 /* if someone else restarted the timer then we're done */
09dc4ab0 3815 if (!force && cfs_b->timer_active)
029632fb
PZ
3816 return;
3817 }
3818
3819 cfs_b->timer_active = 1;
3820 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3821}
3822
3823static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3824{
3825 hrtimer_cancel(&cfs_b->period_timer);
3826 hrtimer_cancel(&cfs_b->slack_timer);
3827}
3828
0e59bdae
KT
3829static void __maybe_unused update_runtime_enabled(struct rq *rq)
3830{
3831 struct cfs_rq *cfs_rq;
3832
3833 for_each_leaf_cfs_rq(rq, cfs_rq) {
3834 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3835
3836 raw_spin_lock(&cfs_b->lock);
3837 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3838 raw_spin_unlock(&cfs_b->lock);
3839 }
3840}
3841
38dc3348 3842static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3843{
3844 struct cfs_rq *cfs_rq;
3845
3846 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
3847 if (!cfs_rq->runtime_enabled)
3848 continue;
3849
3850 /*
3851 * clock_task is not advancing so we just need to make sure
3852 * there's some valid quota amount
3853 */
51f2176d 3854 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
3855 /*
3856 * Offline rq is schedulable till cpu is completely disabled
3857 * in take_cpu_down(), so we prevent new cfs throttling here.
3858 */
3859 cfs_rq->runtime_enabled = 0;
3860
029632fb
PZ
3861 if (cfs_rq_throttled(cfs_rq))
3862 unthrottle_cfs_rq(cfs_rq);
3863 }
3864}
3865
3866#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3867static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3868{
78becc27 3869 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3870}
3871
9dbdb155 3872static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3873static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3874static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3875static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3876
3877static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3878{
3879 return 0;
3880}
64660c86
PT
3881
3882static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3883{
3884 return 0;
3885}
3886
3887static inline int throttled_lb_pair(struct task_group *tg,
3888 int src_cpu, int dest_cpu)
3889{
3890 return 0;
3891}
029632fb
PZ
3892
3893void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3894
3895#ifdef CONFIG_FAIR_GROUP_SCHED
3896static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3897#endif
3898
029632fb
PZ
3899static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3900{
3901 return NULL;
3902}
3903static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 3904static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 3905static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3906
3907#endif /* CONFIG_CFS_BANDWIDTH */
3908
bf0f6f24
IM
3909/**************************************************
3910 * CFS operations on tasks:
3911 */
3912
8f4d37ec
PZ
3913#ifdef CONFIG_SCHED_HRTICK
3914static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3915{
8f4d37ec
PZ
3916 struct sched_entity *se = &p->se;
3917 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3918
3919 WARN_ON(task_rq(p) != rq);
3920
b39e66ea 3921 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3922 u64 slice = sched_slice(cfs_rq, se);
3923 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3924 s64 delta = slice - ran;
3925
3926 if (delta < 0) {
3927 if (rq->curr == p)
8875125e 3928 resched_curr(rq);
8f4d37ec
PZ
3929 return;
3930 }
31656519 3931 hrtick_start(rq, delta);
8f4d37ec
PZ
3932 }
3933}
a4c2f00f
PZ
3934
3935/*
3936 * called from enqueue/dequeue and updates the hrtick when the
3937 * current task is from our class and nr_running is low enough
3938 * to matter.
3939 */
3940static void hrtick_update(struct rq *rq)
3941{
3942 struct task_struct *curr = rq->curr;
3943
b39e66ea 3944 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3945 return;
3946
3947 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3948 hrtick_start_fair(rq, curr);
3949}
55e12e5e 3950#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3951static inline void
3952hrtick_start_fair(struct rq *rq, struct task_struct *p)
3953{
3954}
a4c2f00f
PZ
3955
3956static inline void hrtick_update(struct rq *rq)
3957{
3958}
8f4d37ec
PZ
3959#endif
3960
bf0f6f24
IM
3961/*
3962 * The enqueue_task method is called before nr_running is
3963 * increased. Here we update the fair scheduling stats and
3964 * then put the task into the rbtree:
3965 */
ea87bb78 3966static void
371fd7e7 3967enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3968{
3969 struct cfs_rq *cfs_rq;
62fb1851 3970 struct sched_entity *se = &p->se;
bf0f6f24
IM
3971
3972 for_each_sched_entity(se) {
62fb1851 3973 if (se->on_rq)
bf0f6f24
IM
3974 break;
3975 cfs_rq = cfs_rq_of(se);
88ec22d3 3976 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3977
3978 /*
3979 * end evaluation on encountering a throttled cfs_rq
3980 *
3981 * note: in the case of encountering a throttled cfs_rq we will
3982 * post the final h_nr_running increment below.
3983 */
3984 if (cfs_rq_throttled(cfs_rq))
3985 break;
953bfcd1 3986 cfs_rq->h_nr_running++;
85dac906 3987
88ec22d3 3988 flags = ENQUEUE_WAKEUP;
bf0f6f24 3989 }
8f4d37ec 3990
2069dd75 3991 for_each_sched_entity(se) {
0f317143 3992 cfs_rq = cfs_rq_of(se);
953bfcd1 3993 cfs_rq->h_nr_running++;
2069dd75 3994
85dac906
PT
3995 if (cfs_rq_throttled(cfs_rq))
3996 break;
3997
17bc14b7 3998 update_cfs_shares(cfs_rq);
9ee474f5 3999 update_entity_load_avg(se, 1);
2069dd75
PZ
4000 }
4001
18bf2805
BS
4002 if (!se) {
4003 update_rq_runnable_avg(rq, rq->nr_running);
72465447 4004 add_nr_running(rq, 1);
18bf2805 4005 }
a4c2f00f 4006 hrtick_update(rq);
bf0f6f24
IM
4007}
4008
2f36825b
VP
4009static void set_next_buddy(struct sched_entity *se);
4010
bf0f6f24
IM
4011/*
4012 * The dequeue_task method is called before nr_running is
4013 * decreased. We remove the task from the rbtree and
4014 * update the fair scheduling stats:
4015 */
371fd7e7 4016static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4017{
4018 struct cfs_rq *cfs_rq;
62fb1851 4019 struct sched_entity *se = &p->se;
2f36825b 4020 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4021
4022 for_each_sched_entity(se) {
4023 cfs_rq = cfs_rq_of(se);
371fd7e7 4024 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4025
4026 /*
4027 * end evaluation on encountering a throttled cfs_rq
4028 *
4029 * note: in the case of encountering a throttled cfs_rq we will
4030 * post the final h_nr_running decrement below.
4031 */
4032 if (cfs_rq_throttled(cfs_rq))
4033 break;
953bfcd1 4034 cfs_rq->h_nr_running--;
2069dd75 4035
bf0f6f24 4036 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
4037 if (cfs_rq->load.weight) {
4038 /*
4039 * Bias pick_next to pick a task from this cfs_rq, as
4040 * p is sleeping when it is within its sched_slice.
4041 */
4042 if (task_sleep && parent_entity(se))
4043 set_next_buddy(parent_entity(se));
9598c82d
PT
4044
4045 /* avoid re-evaluating load for this entity */
4046 se = parent_entity(se);
bf0f6f24 4047 break;
2f36825b 4048 }
371fd7e7 4049 flags |= DEQUEUE_SLEEP;
bf0f6f24 4050 }
8f4d37ec 4051
2069dd75 4052 for_each_sched_entity(se) {
0f317143 4053 cfs_rq = cfs_rq_of(se);
953bfcd1 4054 cfs_rq->h_nr_running--;
2069dd75 4055
85dac906
PT
4056 if (cfs_rq_throttled(cfs_rq))
4057 break;
4058
17bc14b7 4059 update_cfs_shares(cfs_rq);
9ee474f5 4060 update_entity_load_avg(se, 1);
2069dd75
PZ
4061 }
4062
18bf2805 4063 if (!se) {
72465447 4064 sub_nr_running(rq, 1);
18bf2805
BS
4065 update_rq_runnable_avg(rq, 1);
4066 }
a4c2f00f 4067 hrtick_update(rq);
bf0f6f24
IM
4068}
4069
e7693a36 4070#ifdef CONFIG_SMP
029632fb
PZ
4071/* Used instead of source_load when we know the type == 0 */
4072static unsigned long weighted_cpuload(const int cpu)
4073{
b92486cb 4074 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4075}
4076
4077/*
4078 * Return a low guess at the load of a migration-source cpu weighted
4079 * according to the scheduling class and "nice" value.
4080 *
4081 * We want to under-estimate the load of migration sources, to
4082 * balance conservatively.
4083 */
4084static unsigned long source_load(int cpu, int type)
4085{
4086 struct rq *rq = cpu_rq(cpu);
4087 unsigned long total = weighted_cpuload(cpu);
4088
4089 if (type == 0 || !sched_feat(LB_BIAS))
4090 return total;
4091
4092 return min(rq->cpu_load[type-1], total);
4093}
4094
4095/*
4096 * Return a high guess at the load of a migration-target cpu weighted
4097 * according to the scheduling class and "nice" value.
4098 */
4099static unsigned long target_load(int cpu, int type)
4100{
4101 struct rq *rq = cpu_rq(cpu);
4102 unsigned long total = weighted_cpuload(cpu);
4103
4104 if (type == 0 || !sched_feat(LB_BIAS))
4105 return total;
4106
4107 return max(rq->cpu_load[type-1], total);
4108}
4109
ced549fa 4110static unsigned long capacity_of(int cpu)
029632fb 4111{
ced549fa 4112 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4113}
4114
4115static unsigned long cpu_avg_load_per_task(int cpu)
4116{
4117 struct rq *rq = cpu_rq(cpu);
65fdac08 4118 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
b92486cb 4119 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4120
4121 if (nr_running)
b92486cb 4122 return load_avg / nr_running;
029632fb
PZ
4123
4124 return 0;
4125}
4126
62470419
MW
4127static void record_wakee(struct task_struct *p)
4128{
4129 /*
4130 * Rough decay (wiping) for cost saving, don't worry
4131 * about the boundary, really active task won't care
4132 * about the loss.
4133 */
2538d960 4134 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
096aa338 4135 current->wakee_flips >>= 1;
62470419
MW
4136 current->wakee_flip_decay_ts = jiffies;
4137 }
4138
4139 if (current->last_wakee != p) {
4140 current->last_wakee = p;
4141 current->wakee_flips++;
4142 }
4143}
098fb9db 4144
74f8e4b2 4145static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4146{
4147 struct sched_entity *se = &p->se;
4148 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4149 u64 min_vruntime;
4150
4151#ifndef CONFIG_64BIT
4152 u64 min_vruntime_copy;
88ec22d3 4153
3fe1698b
PZ
4154 do {
4155 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4156 smp_rmb();
4157 min_vruntime = cfs_rq->min_vruntime;
4158 } while (min_vruntime != min_vruntime_copy);
4159#else
4160 min_vruntime = cfs_rq->min_vruntime;
4161#endif
88ec22d3 4162
3fe1698b 4163 se->vruntime -= min_vruntime;
62470419 4164 record_wakee(p);
88ec22d3
PZ
4165}
4166
bb3469ac 4167#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4168/*
4169 * effective_load() calculates the load change as seen from the root_task_group
4170 *
4171 * Adding load to a group doesn't make a group heavier, but can cause movement
4172 * of group shares between cpus. Assuming the shares were perfectly aligned one
4173 * can calculate the shift in shares.
cf5f0acf
PZ
4174 *
4175 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4176 * on this @cpu and results in a total addition (subtraction) of @wg to the
4177 * total group weight.
4178 *
4179 * Given a runqueue weight distribution (rw_i) we can compute a shares
4180 * distribution (s_i) using:
4181 *
4182 * s_i = rw_i / \Sum rw_j (1)
4183 *
4184 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4185 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4186 * shares distribution (s_i):
4187 *
4188 * rw_i = { 2, 4, 1, 0 }
4189 * s_i = { 2/7, 4/7, 1/7, 0 }
4190 *
4191 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4192 * task used to run on and the CPU the waker is running on), we need to
4193 * compute the effect of waking a task on either CPU and, in case of a sync
4194 * wakeup, compute the effect of the current task going to sleep.
4195 *
4196 * So for a change of @wl to the local @cpu with an overall group weight change
4197 * of @wl we can compute the new shares distribution (s'_i) using:
4198 *
4199 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4200 *
4201 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4202 * differences in waking a task to CPU 0. The additional task changes the
4203 * weight and shares distributions like:
4204 *
4205 * rw'_i = { 3, 4, 1, 0 }
4206 * s'_i = { 3/8, 4/8, 1/8, 0 }
4207 *
4208 * We can then compute the difference in effective weight by using:
4209 *
4210 * dw_i = S * (s'_i - s_i) (3)
4211 *
4212 * Where 'S' is the group weight as seen by its parent.
4213 *
4214 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4215 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4216 * 4/7) times the weight of the group.
f5bfb7d9 4217 */
2069dd75 4218static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4219{
4be9daaa 4220 struct sched_entity *se = tg->se[cpu];
f1d239f7 4221
9722c2da 4222 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4223 return wl;
4224
4be9daaa 4225 for_each_sched_entity(se) {
cf5f0acf 4226 long w, W;
4be9daaa 4227
977dda7c 4228 tg = se->my_q->tg;
bb3469ac 4229
cf5f0acf
PZ
4230 /*
4231 * W = @wg + \Sum rw_j
4232 */
4233 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4234
cf5f0acf
PZ
4235 /*
4236 * w = rw_i + @wl
4237 */
4238 w = se->my_q->load.weight + wl;
940959e9 4239
cf5f0acf
PZ
4240 /*
4241 * wl = S * s'_i; see (2)
4242 */
4243 if (W > 0 && w < W)
4244 wl = (w * tg->shares) / W;
977dda7c
PT
4245 else
4246 wl = tg->shares;
940959e9 4247
cf5f0acf
PZ
4248 /*
4249 * Per the above, wl is the new se->load.weight value; since
4250 * those are clipped to [MIN_SHARES, ...) do so now. See
4251 * calc_cfs_shares().
4252 */
977dda7c
PT
4253 if (wl < MIN_SHARES)
4254 wl = MIN_SHARES;
cf5f0acf
PZ
4255
4256 /*
4257 * wl = dw_i = S * (s'_i - s_i); see (3)
4258 */
977dda7c 4259 wl -= se->load.weight;
cf5f0acf
PZ
4260
4261 /*
4262 * Recursively apply this logic to all parent groups to compute
4263 * the final effective load change on the root group. Since
4264 * only the @tg group gets extra weight, all parent groups can
4265 * only redistribute existing shares. @wl is the shift in shares
4266 * resulting from this level per the above.
4267 */
4be9daaa 4268 wg = 0;
4be9daaa 4269 }
bb3469ac 4270
4be9daaa 4271 return wl;
bb3469ac
PZ
4272}
4273#else
4be9daaa 4274
58d081b5 4275static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4276{
83378269 4277 return wl;
bb3469ac 4278}
4be9daaa 4279
bb3469ac
PZ
4280#endif
4281
62470419
MW
4282static int wake_wide(struct task_struct *p)
4283{
7d9ffa89 4284 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4285
4286 /*
4287 * Yeah, it's the switching-frequency, could means many wakee or
4288 * rapidly switch, use factor here will just help to automatically
4289 * adjust the loose-degree, so bigger node will lead to more pull.
4290 */
4291 if (p->wakee_flips > factor) {
4292 /*
4293 * wakee is somewhat hot, it needs certain amount of cpu
4294 * resource, so if waker is far more hot, prefer to leave
4295 * it alone.
4296 */
4297 if (current->wakee_flips > (factor * p->wakee_flips))
4298 return 1;
4299 }
4300
4301 return 0;
4302}
4303
c88d5910 4304static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4305{
e37b6a7b 4306 s64 this_load, load;
bd61c98f 4307 s64 this_eff_load, prev_eff_load;
c88d5910 4308 int idx, this_cpu, prev_cpu;
c88d5910 4309 struct task_group *tg;
83378269 4310 unsigned long weight;
b3137bc8 4311 int balanced;
098fb9db 4312
62470419
MW
4313 /*
4314 * If we wake multiple tasks be careful to not bounce
4315 * ourselves around too much.
4316 */
4317 if (wake_wide(p))
4318 return 0;
4319
c88d5910
PZ
4320 idx = sd->wake_idx;
4321 this_cpu = smp_processor_id();
4322 prev_cpu = task_cpu(p);
4323 load = source_load(prev_cpu, idx);
4324 this_load = target_load(this_cpu, idx);
098fb9db 4325
b3137bc8
MG
4326 /*
4327 * If sync wakeup then subtract the (maximum possible)
4328 * effect of the currently running task from the load
4329 * of the current CPU:
4330 */
83378269
PZ
4331 if (sync) {
4332 tg = task_group(current);
4333 weight = current->se.load.weight;
4334
c88d5910 4335 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4336 load += effective_load(tg, prev_cpu, 0, -weight);
4337 }
b3137bc8 4338
83378269
PZ
4339 tg = task_group(p);
4340 weight = p->se.load.weight;
b3137bc8 4341
71a29aa7
PZ
4342 /*
4343 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4344 * due to the sync cause above having dropped this_load to 0, we'll
4345 * always have an imbalance, but there's really nothing you can do
4346 * about that, so that's good too.
71a29aa7
PZ
4347 *
4348 * Otherwise check if either cpus are near enough in load to allow this
4349 * task to be woken on this_cpu.
4350 */
bd61c98f
VG
4351 this_eff_load = 100;
4352 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 4353
bd61c98f
VG
4354 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4355 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 4356
bd61c98f 4357 if (this_load > 0) {
e51fd5e2
PZ
4358 this_eff_load *= this_load +
4359 effective_load(tg, this_cpu, weight, weight);
4360
e51fd5e2 4361 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 4362 }
e51fd5e2 4363
bd61c98f 4364 balanced = this_eff_load <= prev_eff_load;
098fb9db 4365
41acab88 4366 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 4367
05bfb65f
VG
4368 if (!balanced)
4369 return 0;
098fb9db 4370
05bfb65f
VG
4371 schedstat_inc(sd, ttwu_move_affine);
4372 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4373
4374 return 1;
098fb9db
IM
4375}
4376
aaee1203
PZ
4377/*
4378 * find_idlest_group finds and returns the least busy CPU group within the
4379 * domain.
4380 */
4381static struct sched_group *
78e7ed53 4382find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4383 int this_cpu, int sd_flag)
e7693a36 4384{
b3bd3de6 4385 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4386 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4387 int load_idx = sd->forkexec_idx;
aaee1203 4388 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4389
c44f2a02
VG
4390 if (sd_flag & SD_BALANCE_WAKE)
4391 load_idx = sd->wake_idx;
4392
aaee1203
PZ
4393 do {
4394 unsigned long load, avg_load;
4395 int local_group;
4396 int i;
e7693a36 4397
aaee1203
PZ
4398 /* Skip over this group if it has no CPUs allowed */
4399 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4400 tsk_cpus_allowed(p)))
aaee1203
PZ
4401 continue;
4402
4403 local_group = cpumask_test_cpu(this_cpu,
4404 sched_group_cpus(group));
4405
4406 /* Tally up the load of all CPUs in the group */
4407 avg_load = 0;
4408
4409 for_each_cpu(i, sched_group_cpus(group)) {
4410 /* Bias balancing toward cpus of our domain */
4411 if (local_group)
4412 load = source_load(i, load_idx);
4413 else
4414 load = target_load(i, load_idx);
4415
4416 avg_load += load;
4417 }
4418
63b2ca30 4419 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 4420 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
4421
4422 if (local_group) {
4423 this_load = avg_load;
aaee1203
PZ
4424 } else if (avg_load < min_load) {
4425 min_load = avg_load;
4426 idlest = group;
4427 }
4428 } while (group = group->next, group != sd->groups);
4429
4430 if (!idlest || 100*this_load < imbalance*min_load)
4431 return NULL;
4432 return idlest;
4433}
4434
4435/*
4436 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4437 */
4438static int
4439find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4440{
4441 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
4442 unsigned int min_exit_latency = UINT_MAX;
4443 u64 latest_idle_timestamp = 0;
4444 int least_loaded_cpu = this_cpu;
4445 int shallowest_idle_cpu = -1;
aaee1203
PZ
4446 int i;
4447
4448 /* Traverse only the allowed CPUs */
fa17b507 4449 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
4450 if (idle_cpu(i)) {
4451 struct rq *rq = cpu_rq(i);
4452 struct cpuidle_state *idle = idle_get_state(rq);
4453 if (idle && idle->exit_latency < min_exit_latency) {
4454 /*
4455 * We give priority to a CPU whose idle state
4456 * has the smallest exit latency irrespective
4457 * of any idle timestamp.
4458 */
4459 min_exit_latency = idle->exit_latency;
4460 latest_idle_timestamp = rq->idle_stamp;
4461 shallowest_idle_cpu = i;
4462 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
4463 rq->idle_stamp > latest_idle_timestamp) {
4464 /*
4465 * If equal or no active idle state, then
4466 * the most recently idled CPU might have
4467 * a warmer cache.
4468 */
4469 latest_idle_timestamp = rq->idle_stamp;
4470 shallowest_idle_cpu = i;
4471 }
4472 } else {
4473 load = weighted_cpuload(i);
4474 if (load < min_load || (load == min_load && i == this_cpu)) {
4475 min_load = load;
4476 least_loaded_cpu = i;
4477 }
e7693a36
GH
4478 }
4479 }
4480
83a0a96a 4481 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 4482}
e7693a36 4483
a50bde51
PZ
4484/*
4485 * Try and locate an idle CPU in the sched_domain.
4486 */
99bd5e2f 4487static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4488{
99bd5e2f 4489 struct sched_domain *sd;
37407ea7 4490 struct sched_group *sg;
e0a79f52 4491 int i = task_cpu(p);
a50bde51 4492
e0a79f52
MG
4493 if (idle_cpu(target))
4494 return target;
99bd5e2f
SS
4495
4496 /*
e0a79f52 4497 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4498 */
e0a79f52
MG
4499 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4500 return i;
a50bde51
PZ
4501
4502 /*
37407ea7 4503 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4504 */
518cd623 4505 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4506 for_each_lower_domain(sd) {
37407ea7
LT
4507 sg = sd->groups;
4508 do {
4509 if (!cpumask_intersects(sched_group_cpus(sg),
4510 tsk_cpus_allowed(p)))
4511 goto next;
4512
4513 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4514 if (i == target || !idle_cpu(i))
37407ea7
LT
4515 goto next;
4516 }
970e1789 4517
37407ea7
LT
4518 target = cpumask_first_and(sched_group_cpus(sg),
4519 tsk_cpus_allowed(p));
4520 goto done;
4521next:
4522 sg = sg->next;
4523 } while (sg != sd->groups);
4524 }
4525done:
a50bde51
PZ
4526 return target;
4527}
4528
aaee1203 4529/*
de91b9cb
MR
4530 * select_task_rq_fair: Select target runqueue for the waking task in domains
4531 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4532 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4533 *
de91b9cb
MR
4534 * Balances load by selecting the idlest cpu in the idlest group, or under
4535 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4536 *
de91b9cb 4537 * Returns the target cpu number.
aaee1203
PZ
4538 *
4539 * preempt must be disabled.
4540 */
0017d735 4541static int
ac66f547 4542select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4543{
29cd8bae 4544 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4545 int cpu = smp_processor_id();
c88d5910 4546 int new_cpu = cpu;
99bd5e2f 4547 int want_affine = 0;
5158f4e4 4548 int sync = wake_flags & WF_SYNC;
c88d5910 4549
29baa747 4550 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4551 return prev_cpu;
4552
a8edd075
KT
4553 if (sd_flag & SD_BALANCE_WAKE)
4554 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
aaee1203 4555
dce840a0 4556 rcu_read_lock();
aaee1203 4557 for_each_domain(cpu, tmp) {
e4f42888
PZ
4558 if (!(tmp->flags & SD_LOAD_BALANCE))
4559 continue;
4560
fe3bcfe1 4561 /*
99bd5e2f
SS
4562 * If both cpu and prev_cpu are part of this domain,
4563 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4564 */
99bd5e2f
SS
4565 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4566 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4567 affine_sd = tmp;
29cd8bae 4568 break;
f03542a7 4569 }
29cd8bae 4570
f03542a7 4571 if (tmp->flags & sd_flag)
29cd8bae
PZ
4572 sd = tmp;
4573 }
4574
8bf21433
RR
4575 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4576 prev_cpu = cpu;
dce840a0 4577
8bf21433 4578 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4579 new_cpu = select_idle_sibling(p, prev_cpu);
4580 goto unlock;
8b911acd 4581 }
e7693a36 4582
aaee1203
PZ
4583 while (sd) {
4584 struct sched_group *group;
c88d5910 4585 int weight;
098fb9db 4586
0763a660 4587 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4588 sd = sd->child;
4589 continue;
4590 }
098fb9db 4591
c44f2a02 4592 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4593 if (!group) {
4594 sd = sd->child;
4595 continue;
4596 }
4ae7d5ce 4597
d7c33c49 4598 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4599 if (new_cpu == -1 || new_cpu == cpu) {
4600 /* Now try balancing at a lower domain level of cpu */
4601 sd = sd->child;
4602 continue;
e7693a36 4603 }
aaee1203
PZ
4604
4605 /* Now try balancing at a lower domain level of new_cpu */
4606 cpu = new_cpu;
669c55e9 4607 weight = sd->span_weight;
aaee1203
PZ
4608 sd = NULL;
4609 for_each_domain(cpu, tmp) {
669c55e9 4610 if (weight <= tmp->span_weight)
aaee1203 4611 break;
0763a660 4612 if (tmp->flags & sd_flag)
aaee1203
PZ
4613 sd = tmp;
4614 }
4615 /* while loop will break here if sd == NULL */
e7693a36 4616 }
dce840a0
PZ
4617unlock:
4618 rcu_read_unlock();
e7693a36 4619
c88d5910 4620 return new_cpu;
e7693a36 4621}
0a74bef8
PT
4622
4623/*
4624 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4625 * cfs_rq_of(p) references at time of call are still valid and identify the
4626 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4627 * other assumptions, including the state of rq->lock, should be made.
4628 */
4629static void
4630migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4631{
aff3e498
PT
4632 struct sched_entity *se = &p->se;
4633 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4634
4635 /*
4636 * Load tracking: accumulate removed load so that it can be processed
4637 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4638 * to blocked load iff they have a positive decay-count. It can never
4639 * be negative here since on-rq tasks have decay-count == 0.
4640 */
4641 if (se->avg.decay_count) {
4642 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4643 atomic_long_add(se->avg.load_avg_contrib,
4644 &cfs_rq->removed_load);
aff3e498 4645 }
3944a927
BS
4646
4647 /* We have migrated, no longer consider this task hot */
4648 se->exec_start = 0;
0a74bef8 4649}
e7693a36
GH
4650#endif /* CONFIG_SMP */
4651
e52fb7c0
PZ
4652static unsigned long
4653wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4654{
4655 unsigned long gran = sysctl_sched_wakeup_granularity;
4656
4657 /*
e52fb7c0
PZ
4658 * Since its curr running now, convert the gran from real-time
4659 * to virtual-time in his units.
13814d42
MG
4660 *
4661 * By using 'se' instead of 'curr' we penalize light tasks, so
4662 * they get preempted easier. That is, if 'se' < 'curr' then
4663 * the resulting gran will be larger, therefore penalizing the
4664 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4665 * be smaller, again penalizing the lighter task.
4666 *
4667 * This is especially important for buddies when the leftmost
4668 * task is higher priority than the buddy.
0bbd3336 4669 */
f4ad9bd2 4670 return calc_delta_fair(gran, se);
0bbd3336
PZ
4671}
4672
464b7527
PZ
4673/*
4674 * Should 'se' preempt 'curr'.
4675 *
4676 * |s1
4677 * |s2
4678 * |s3
4679 * g
4680 * |<--->|c
4681 *
4682 * w(c, s1) = -1
4683 * w(c, s2) = 0
4684 * w(c, s3) = 1
4685 *
4686 */
4687static int
4688wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4689{
4690 s64 gran, vdiff = curr->vruntime - se->vruntime;
4691
4692 if (vdiff <= 0)
4693 return -1;
4694
e52fb7c0 4695 gran = wakeup_gran(curr, se);
464b7527
PZ
4696 if (vdiff > gran)
4697 return 1;
4698
4699 return 0;
4700}
4701
02479099
PZ
4702static void set_last_buddy(struct sched_entity *se)
4703{
69c80f3e
VP
4704 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4705 return;
4706
4707 for_each_sched_entity(se)
4708 cfs_rq_of(se)->last = se;
02479099
PZ
4709}
4710
4711static void set_next_buddy(struct sched_entity *se)
4712{
69c80f3e
VP
4713 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4714 return;
4715
4716 for_each_sched_entity(se)
4717 cfs_rq_of(se)->next = se;
02479099
PZ
4718}
4719
ac53db59
RR
4720static void set_skip_buddy(struct sched_entity *se)
4721{
69c80f3e
VP
4722 for_each_sched_entity(se)
4723 cfs_rq_of(se)->skip = se;
ac53db59
RR
4724}
4725
bf0f6f24
IM
4726/*
4727 * Preempt the current task with a newly woken task if needed:
4728 */
5a9b86f6 4729static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4730{
4731 struct task_struct *curr = rq->curr;
8651a86c 4732 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4733 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4734 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4735 int next_buddy_marked = 0;
bf0f6f24 4736
4ae7d5ce
IM
4737 if (unlikely(se == pse))
4738 return;
4739
5238cdd3 4740 /*
163122b7 4741 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
4742 * unconditionally check_prempt_curr() after an enqueue (which may have
4743 * lead to a throttle). This both saves work and prevents false
4744 * next-buddy nomination below.
4745 */
4746 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4747 return;
4748
2f36825b 4749 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4750 set_next_buddy(pse);
2f36825b
VP
4751 next_buddy_marked = 1;
4752 }
57fdc26d 4753
aec0a514
BR
4754 /*
4755 * We can come here with TIF_NEED_RESCHED already set from new task
4756 * wake up path.
5238cdd3
PT
4757 *
4758 * Note: this also catches the edge-case of curr being in a throttled
4759 * group (e.g. via set_curr_task), since update_curr() (in the
4760 * enqueue of curr) will have resulted in resched being set. This
4761 * prevents us from potentially nominating it as a false LAST_BUDDY
4762 * below.
aec0a514
BR
4763 */
4764 if (test_tsk_need_resched(curr))
4765 return;
4766
a2f5c9ab
DH
4767 /* Idle tasks are by definition preempted by non-idle tasks. */
4768 if (unlikely(curr->policy == SCHED_IDLE) &&
4769 likely(p->policy != SCHED_IDLE))
4770 goto preempt;
4771
91c234b4 4772 /*
a2f5c9ab
DH
4773 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4774 * is driven by the tick):
91c234b4 4775 */
8ed92e51 4776 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4777 return;
bf0f6f24 4778
464b7527 4779 find_matching_se(&se, &pse);
9bbd7374 4780 update_curr(cfs_rq_of(se));
002f128b 4781 BUG_ON(!pse);
2f36825b
VP
4782 if (wakeup_preempt_entity(se, pse) == 1) {
4783 /*
4784 * Bias pick_next to pick the sched entity that is
4785 * triggering this preemption.
4786 */
4787 if (!next_buddy_marked)
4788 set_next_buddy(pse);
3a7e73a2 4789 goto preempt;
2f36825b 4790 }
464b7527 4791
3a7e73a2 4792 return;
a65ac745 4793
3a7e73a2 4794preempt:
8875125e 4795 resched_curr(rq);
3a7e73a2
PZ
4796 /*
4797 * Only set the backward buddy when the current task is still
4798 * on the rq. This can happen when a wakeup gets interleaved
4799 * with schedule on the ->pre_schedule() or idle_balance()
4800 * point, either of which can * drop the rq lock.
4801 *
4802 * Also, during early boot the idle thread is in the fair class,
4803 * for obvious reasons its a bad idea to schedule back to it.
4804 */
4805 if (unlikely(!se->on_rq || curr == rq->idle))
4806 return;
4807
4808 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4809 set_last_buddy(se);
bf0f6f24
IM
4810}
4811
606dba2e
PZ
4812static struct task_struct *
4813pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4814{
4815 struct cfs_rq *cfs_rq = &rq->cfs;
4816 struct sched_entity *se;
678d5718 4817 struct task_struct *p;
37e117c0 4818 int new_tasks;
678d5718 4819
6e83125c 4820again:
678d5718
PZ
4821#ifdef CONFIG_FAIR_GROUP_SCHED
4822 if (!cfs_rq->nr_running)
38033c37 4823 goto idle;
678d5718 4824
3f1d2a31 4825 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4826 goto simple;
4827
4828 /*
4829 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4830 * likely that a next task is from the same cgroup as the current.
4831 *
4832 * Therefore attempt to avoid putting and setting the entire cgroup
4833 * hierarchy, only change the part that actually changes.
4834 */
4835
4836 do {
4837 struct sched_entity *curr = cfs_rq->curr;
4838
4839 /*
4840 * Since we got here without doing put_prev_entity() we also
4841 * have to consider cfs_rq->curr. If it is still a runnable
4842 * entity, update_curr() will update its vruntime, otherwise
4843 * forget we've ever seen it.
4844 */
4845 if (curr && curr->on_rq)
4846 update_curr(cfs_rq);
4847 else
4848 curr = NULL;
4849
4850 /*
4851 * This call to check_cfs_rq_runtime() will do the throttle and
4852 * dequeue its entity in the parent(s). Therefore the 'simple'
4853 * nr_running test will indeed be correct.
4854 */
4855 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4856 goto simple;
4857
4858 se = pick_next_entity(cfs_rq, curr);
4859 cfs_rq = group_cfs_rq(se);
4860 } while (cfs_rq);
4861
4862 p = task_of(se);
4863
4864 /*
4865 * Since we haven't yet done put_prev_entity and if the selected task
4866 * is a different task than we started out with, try and touch the
4867 * least amount of cfs_rqs.
4868 */
4869 if (prev != p) {
4870 struct sched_entity *pse = &prev->se;
4871
4872 while (!(cfs_rq = is_same_group(se, pse))) {
4873 int se_depth = se->depth;
4874 int pse_depth = pse->depth;
4875
4876 if (se_depth <= pse_depth) {
4877 put_prev_entity(cfs_rq_of(pse), pse);
4878 pse = parent_entity(pse);
4879 }
4880 if (se_depth >= pse_depth) {
4881 set_next_entity(cfs_rq_of(se), se);
4882 se = parent_entity(se);
4883 }
4884 }
4885
4886 put_prev_entity(cfs_rq, pse);
4887 set_next_entity(cfs_rq, se);
4888 }
4889
4890 if (hrtick_enabled(rq))
4891 hrtick_start_fair(rq, p);
4892
4893 return p;
4894simple:
4895 cfs_rq = &rq->cfs;
4896#endif
bf0f6f24 4897
36ace27e 4898 if (!cfs_rq->nr_running)
38033c37 4899 goto idle;
bf0f6f24 4900
3f1d2a31 4901 put_prev_task(rq, prev);
606dba2e 4902
bf0f6f24 4903 do {
678d5718 4904 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4905 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4906 cfs_rq = group_cfs_rq(se);
4907 } while (cfs_rq);
4908
8f4d37ec 4909 p = task_of(se);
678d5718 4910
b39e66ea
MG
4911 if (hrtick_enabled(rq))
4912 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4913
4914 return p;
38033c37
PZ
4915
4916idle:
e4aa358b 4917 new_tasks = idle_balance(rq);
37e117c0
PZ
4918 /*
4919 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4920 * possible for any higher priority task to appear. In that case we
4921 * must re-start the pick_next_entity() loop.
4922 */
e4aa358b 4923 if (new_tasks < 0)
37e117c0
PZ
4924 return RETRY_TASK;
4925
e4aa358b 4926 if (new_tasks > 0)
38033c37 4927 goto again;
38033c37
PZ
4928
4929 return NULL;
bf0f6f24
IM
4930}
4931
4932/*
4933 * Account for a descheduled task:
4934 */
31ee529c 4935static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4936{
4937 struct sched_entity *se = &prev->se;
4938 struct cfs_rq *cfs_rq;
4939
4940 for_each_sched_entity(se) {
4941 cfs_rq = cfs_rq_of(se);
ab6cde26 4942 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4943 }
4944}
4945
ac53db59
RR
4946/*
4947 * sched_yield() is very simple
4948 *
4949 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4950 */
4951static void yield_task_fair(struct rq *rq)
4952{
4953 struct task_struct *curr = rq->curr;
4954 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4955 struct sched_entity *se = &curr->se;
4956
4957 /*
4958 * Are we the only task in the tree?
4959 */
4960 if (unlikely(rq->nr_running == 1))
4961 return;
4962
4963 clear_buddies(cfs_rq, se);
4964
4965 if (curr->policy != SCHED_BATCH) {
4966 update_rq_clock(rq);
4967 /*
4968 * Update run-time statistics of the 'current'.
4969 */
4970 update_curr(cfs_rq);
916671c0
MG
4971 /*
4972 * Tell update_rq_clock() that we've just updated,
4973 * so we don't do microscopic update in schedule()
4974 * and double the fastpath cost.
4975 */
4976 rq->skip_clock_update = 1;
ac53db59
RR
4977 }
4978
4979 set_skip_buddy(se);
4980}
4981
d95f4122
MG
4982static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4983{
4984 struct sched_entity *se = &p->se;
4985
5238cdd3
PT
4986 /* throttled hierarchies are not runnable */
4987 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4988 return false;
4989
4990 /* Tell the scheduler that we'd really like pse to run next. */
4991 set_next_buddy(se);
4992
d95f4122
MG
4993 yield_task_fair(rq);
4994
4995 return true;
4996}
4997
681f3e68 4998#ifdef CONFIG_SMP
bf0f6f24 4999/**************************************************
e9c84cb8
PZ
5000 * Fair scheduling class load-balancing methods.
5001 *
5002 * BASICS
5003 *
5004 * The purpose of load-balancing is to achieve the same basic fairness the
5005 * per-cpu scheduler provides, namely provide a proportional amount of compute
5006 * time to each task. This is expressed in the following equation:
5007 *
5008 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5009 *
5010 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5011 * W_i,0 is defined as:
5012 *
5013 * W_i,0 = \Sum_j w_i,j (2)
5014 *
5015 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5016 * is derived from the nice value as per prio_to_weight[].
5017 *
5018 * The weight average is an exponential decay average of the instantaneous
5019 * weight:
5020 *
5021 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5022 *
ced549fa 5023 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5024 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5025 * can also include other factors [XXX].
5026 *
5027 * To achieve this balance we define a measure of imbalance which follows
5028 * directly from (1):
5029 *
ced549fa 5030 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5031 *
5032 * We them move tasks around to minimize the imbalance. In the continuous
5033 * function space it is obvious this converges, in the discrete case we get
5034 * a few fun cases generally called infeasible weight scenarios.
5035 *
5036 * [XXX expand on:
5037 * - infeasible weights;
5038 * - local vs global optima in the discrete case. ]
5039 *
5040 *
5041 * SCHED DOMAINS
5042 *
5043 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5044 * for all i,j solution, we create a tree of cpus that follows the hardware
5045 * topology where each level pairs two lower groups (or better). This results
5046 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5047 * tree to only the first of the previous level and we decrease the frequency
5048 * of load-balance at each level inv. proportional to the number of cpus in
5049 * the groups.
5050 *
5051 * This yields:
5052 *
5053 * log_2 n 1 n
5054 * \Sum { --- * --- * 2^i } = O(n) (5)
5055 * i = 0 2^i 2^i
5056 * `- size of each group
5057 * | | `- number of cpus doing load-balance
5058 * | `- freq
5059 * `- sum over all levels
5060 *
5061 * Coupled with a limit on how many tasks we can migrate every balance pass,
5062 * this makes (5) the runtime complexity of the balancer.
5063 *
5064 * An important property here is that each CPU is still (indirectly) connected
5065 * to every other cpu in at most O(log n) steps:
5066 *
5067 * The adjacency matrix of the resulting graph is given by:
5068 *
5069 * log_2 n
5070 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5071 * k = 0
5072 *
5073 * And you'll find that:
5074 *
5075 * A^(log_2 n)_i,j != 0 for all i,j (7)
5076 *
5077 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5078 * The task movement gives a factor of O(m), giving a convergence complexity
5079 * of:
5080 *
5081 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5082 *
5083 *
5084 * WORK CONSERVING
5085 *
5086 * In order to avoid CPUs going idle while there's still work to do, new idle
5087 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5088 * tree itself instead of relying on other CPUs to bring it work.
5089 *
5090 * This adds some complexity to both (5) and (8) but it reduces the total idle
5091 * time.
5092 *
5093 * [XXX more?]
5094 *
5095 *
5096 * CGROUPS
5097 *
5098 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5099 *
5100 * s_k,i
5101 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5102 * S_k
5103 *
5104 * Where
5105 *
5106 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5107 *
5108 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5109 *
5110 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5111 * property.
5112 *
5113 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5114 * rewrite all of this once again.]
5115 */
bf0f6f24 5116
ed387b78
HS
5117static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5118
0ec8aa00
PZ
5119enum fbq_type { regular, remote, all };
5120
ddcdf6e7 5121#define LBF_ALL_PINNED 0x01
367456c7 5122#define LBF_NEED_BREAK 0x02
6263322c
PZ
5123#define LBF_DST_PINNED 0x04
5124#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5125
5126struct lb_env {
5127 struct sched_domain *sd;
5128
ddcdf6e7 5129 struct rq *src_rq;
85c1e7da 5130 int src_cpu;
ddcdf6e7
PZ
5131
5132 int dst_cpu;
5133 struct rq *dst_rq;
5134
88b8dac0
SV
5135 struct cpumask *dst_grpmask;
5136 int new_dst_cpu;
ddcdf6e7 5137 enum cpu_idle_type idle;
bd939f45 5138 long imbalance;
b9403130
MW
5139 /* The set of CPUs under consideration for load-balancing */
5140 struct cpumask *cpus;
5141
ddcdf6e7 5142 unsigned int flags;
367456c7
PZ
5143
5144 unsigned int loop;
5145 unsigned int loop_break;
5146 unsigned int loop_max;
0ec8aa00
PZ
5147
5148 enum fbq_type fbq_type;
163122b7 5149 struct list_head tasks;
ddcdf6e7
PZ
5150};
5151
029632fb
PZ
5152/*
5153 * Is this task likely cache-hot:
5154 */
5d5e2b1b 5155static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5156{
5157 s64 delta;
5158
e5673f28
KT
5159 lockdep_assert_held(&env->src_rq->lock);
5160
029632fb
PZ
5161 if (p->sched_class != &fair_sched_class)
5162 return 0;
5163
5164 if (unlikely(p->policy == SCHED_IDLE))
5165 return 0;
5166
5167 /*
5168 * Buddy candidates are cache hot:
5169 */
5d5e2b1b 5170 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5171 (&p->se == cfs_rq_of(&p->se)->next ||
5172 &p->se == cfs_rq_of(&p->se)->last))
5173 return 1;
5174
5175 if (sysctl_sched_migration_cost == -1)
5176 return 1;
5177 if (sysctl_sched_migration_cost == 0)
5178 return 0;
5179
5d5e2b1b 5180 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5181
5182 return delta < (s64)sysctl_sched_migration_cost;
5183}
5184
3a7053b3
MG
5185#ifdef CONFIG_NUMA_BALANCING
5186/* Returns true if the destination node has incurred more faults */
5187static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5188{
b1ad065e 5189 struct numa_group *numa_group = rcu_dereference(p->numa_group);
3a7053b3
MG
5190 int src_nid, dst_nid;
5191
ff1df896 5192 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5193 !(env->sd->flags & SD_NUMA)) {
5194 return false;
5195 }
5196
5197 src_nid = cpu_to_node(env->src_cpu);
5198 dst_nid = cpu_to_node(env->dst_cpu);
5199
83e1d2cd 5200 if (src_nid == dst_nid)
3a7053b3
MG
5201 return false;
5202
b1ad065e
RR
5203 if (numa_group) {
5204 /* Task is already in the group's interleave set. */
5205 if (node_isset(src_nid, numa_group->active_nodes))
5206 return false;
83e1d2cd 5207
b1ad065e
RR
5208 /* Task is moving into the group's interleave set. */
5209 if (node_isset(dst_nid, numa_group->active_nodes))
5210 return true;
83e1d2cd 5211
b1ad065e
RR
5212 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5213 }
5214
5215 /* Encourage migration to the preferred node. */
5216 if (dst_nid == p->numa_preferred_nid)
3a7053b3
MG
5217 return true;
5218
b1ad065e 5219 return task_faults(p, dst_nid) > task_faults(p, src_nid);
3a7053b3 5220}
7a0f3083
MG
5221
5222
5223static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5224{
b1ad065e 5225 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7a0f3083
MG
5226 int src_nid, dst_nid;
5227
5228 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5229 return false;
5230
ff1df896 5231 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5232 return false;
5233
5234 src_nid = cpu_to_node(env->src_cpu);
5235 dst_nid = cpu_to_node(env->dst_cpu);
5236
83e1d2cd 5237 if (src_nid == dst_nid)
7a0f3083
MG
5238 return false;
5239
b1ad065e
RR
5240 if (numa_group) {
5241 /* Task is moving within/into the group's interleave set. */
5242 if (node_isset(dst_nid, numa_group->active_nodes))
5243 return false;
5244
5245 /* Task is moving out of the group's interleave set. */
5246 if (node_isset(src_nid, numa_group->active_nodes))
5247 return true;
5248
5249 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5250 }
5251
83e1d2cd
MG
5252 /* Migrating away from the preferred node is always bad. */
5253 if (src_nid == p->numa_preferred_nid)
5254 return true;
5255
b1ad065e 5256 return task_faults(p, dst_nid) < task_faults(p, src_nid);
7a0f3083
MG
5257}
5258
3a7053b3
MG
5259#else
5260static inline bool migrate_improves_locality(struct task_struct *p,
5261 struct lb_env *env)
5262{
5263 return false;
5264}
7a0f3083
MG
5265
5266static inline bool migrate_degrades_locality(struct task_struct *p,
5267 struct lb_env *env)
5268{
5269 return false;
5270}
3a7053b3
MG
5271#endif
5272
1e3c88bd
PZ
5273/*
5274 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5275 */
5276static
8e45cb54 5277int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5278{
5279 int tsk_cache_hot = 0;
e5673f28
KT
5280
5281 lockdep_assert_held(&env->src_rq->lock);
5282
1e3c88bd
PZ
5283 /*
5284 * We do not migrate tasks that are:
d3198084 5285 * 1) throttled_lb_pair, or
1e3c88bd 5286 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5287 * 3) running (obviously), or
5288 * 4) are cache-hot on their current CPU.
1e3c88bd 5289 */
d3198084
JK
5290 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5291 return 0;
5292
ddcdf6e7 5293 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5294 int cpu;
88b8dac0 5295
41acab88 5296 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5297
6263322c
PZ
5298 env->flags |= LBF_SOME_PINNED;
5299
88b8dac0
SV
5300 /*
5301 * Remember if this task can be migrated to any other cpu in
5302 * our sched_group. We may want to revisit it if we couldn't
5303 * meet load balance goals by pulling other tasks on src_cpu.
5304 *
5305 * Also avoid computing new_dst_cpu if we have already computed
5306 * one in current iteration.
5307 */
6263322c 5308 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5309 return 0;
5310
e02e60c1
JK
5311 /* Prevent to re-select dst_cpu via env's cpus */
5312 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5313 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5314 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5315 env->new_dst_cpu = cpu;
5316 break;
5317 }
88b8dac0 5318 }
e02e60c1 5319
1e3c88bd
PZ
5320 return 0;
5321 }
88b8dac0
SV
5322
5323 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5324 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5325
ddcdf6e7 5326 if (task_running(env->src_rq, p)) {
41acab88 5327 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5328 return 0;
5329 }
5330
5331 /*
5332 * Aggressive migration if:
3a7053b3
MG
5333 * 1) destination numa is preferred
5334 * 2) task is cache cold, or
5335 * 3) too many balance attempts have failed.
1e3c88bd 5336 */
5d5e2b1b 5337 tsk_cache_hot = task_hot(p, env);
7a0f3083
MG
5338 if (!tsk_cache_hot)
5339 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3 5340
7a96c231
KT
5341 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5342 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3a7053b3
MG
5343 if (tsk_cache_hot) {
5344 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5345 schedstat_inc(p, se.statistics.nr_forced_migrations);
5346 }
1e3c88bd
PZ
5347 return 1;
5348 }
5349
4e2dcb73
ZH
5350 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5351 return 0;
1e3c88bd
PZ
5352}
5353
897c395f 5354/*
163122b7
KT
5355 * detach_task() -- detach the task for the migration specified in env
5356 */
5357static void detach_task(struct task_struct *p, struct lb_env *env)
5358{
5359 lockdep_assert_held(&env->src_rq->lock);
5360
5361 deactivate_task(env->src_rq, p, 0);
5362 p->on_rq = TASK_ON_RQ_MIGRATING;
5363 set_task_cpu(p, env->dst_cpu);
5364}
5365
897c395f 5366/*
e5673f28 5367 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 5368 * part of active balancing operations within "domain".
897c395f 5369 *
e5673f28 5370 * Returns a task if successful and NULL otherwise.
897c395f 5371 */
e5673f28 5372static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
5373{
5374 struct task_struct *p, *n;
897c395f 5375
e5673f28
KT
5376 lockdep_assert_held(&env->src_rq->lock);
5377
367456c7 5378 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5379 if (!can_migrate_task(p, env))
5380 continue;
897c395f 5381
163122b7 5382 detach_task(p, env);
e5673f28 5383
367456c7 5384 /*
e5673f28 5385 * Right now, this is only the second place where
163122b7 5386 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 5387 * so we can safely collect stats here rather than
163122b7 5388 * inside detach_tasks().
367456c7
PZ
5389 */
5390 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 5391 return p;
897c395f 5392 }
e5673f28 5393 return NULL;
897c395f
PZ
5394}
5395
eb95308e
PZ
5396static const unsigned int sched_nr_migrate_break = 32;
5397
5d6523eb 5398/*
163122b7
KT
5399 * detach_tasks() -- tries to detach up to imbalance weighted load from
5400 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 5401 *
163122b7 5402 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 5403 */
163122b7 5404static int detach_tasks(struct lb_env *env)
1e3c88bd 5405{
5d6523eb
PZ
5406 struct list_head *tasks = &env->src_rq->cfs_tasks;
5407 struct task_struct *p;
367456c7 5408 unsigned long load;
163122b7
KT
5409 int detached = 0;
5410
5411 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 5412
bd939f45 5413 if (env->imbalance <= 0)
5d6523eb 5414 return 0;
1e3c88bd 5415
5d6523eb
PZ
5416 while (!list_empty(tasks)) {
5417 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5418
367456c7
PZ
5419 env->loop++;
5420 /* We've more or less seen every task there is, call it quits */
5d6523eb 5421 if (env->loop > env->loop_max)
367456c7 5422 break;
5d6523eb
PZ
5423
5424 /* take a breather every nr_migrate tasks */
367456c7 5425 if (env->loop > env->loop_break) {
eb95308e 5426 env->loop_break += sched_nr_migrate_break;
8e45cb54 5427 env->flags |= LBF_NEED_BREAK;
ee00e66f 5428 break;
a195f004 5429 }
1e3c88bd 5430
d3198084 5431 if (!can_migrate_task(p, env))
367456c7
PZ
5432 goto next;
5433
5434 load = task_h_load(p);
5d6523eb 5435
eb95308e 5436 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5437 goto next;
5438
bd939f45 5439 if ((load / 2) > env->imbalance)
367456c7 5440 goto next;
1e3c88bd 5441
163122b7
KT
5442 detach_task(p, env);
5443 list_add(&p->se.group_node, &env->tasks);
5444
5445 detached++;
bd939f45 5446 env->imbalance -= load;
1e3c88bd
PZ
5447
5448#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5449 /*
5450 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 5451 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
5452 * the critical section.
5453 */
5d6523eb 5454 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5455 break;
1e3c88bd
PZ
5456#endif
5457
ee00e66f
PZ
5458 /*
5459 * We only want to steal up to the prescribed amount of
5460 * weighted load.
5461 */
bd939f45 5462 if (env->imbalance <= 0)
ee00e66f 5463 break;
367456c7
PZ
5464
5465 continue;
5466next:
5d6523eb 5467 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5468 }
5d6523eb 5469
1e3c88bd 5470 /*
163122b7
KT
5471 * Right now, this is one of only two places we collect this stat
5472 * so we can safely collect detach_one_task() stats here rather
5473 * than inside detach_one_task().
1e3c88bd 5474 */
163122b7 5475 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 5476
163122b7
KT
5477 return detached;
5478}
5479
5480/*
5481 * attach_task() -- attach the task detached by detach_task() to its new rq.
5482 */
5483static void attach_task(struct rq *rq, struct task_struct *p)
5484{
5485 lockdep_assert_held(&rq->lock);
5486
5487 BUG_ON(task_rq(p) != rq);
5488 p->on_rq = TASK_ON_RQ_QUEUED;
5489 activate_task(rq, p, 0);
5490 check_preempt_curr(rq, p, 0);
5491}
5492
5493/*
5494 * attach_one_task() -- attaches the task returned from detach_one_task() to
5495 * its new rq.
5496 */
5497static void attach_one_task(struct rq *rq, struct task_struct *p)
5498{
5499 raw_spin_lock(&rq->lock);
5500 attach_task(rq, p);
5501 raw_spin_unlock(&rq->lock);
5502}
5503
5504/*
5505 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5506 * new rq.
5507 */
5508static void attach_tasks(struct lb_env *env)
5509{
5510 struct list_head *tasks = &env->tasks;
5511 struct task_struct *p;
5512
5513 raw_spin_lock(&env->dst_rq->lock);
5514
5515 while (!list_empty(tasks)) {
5516 p = list_first_entry(tasks, struct task_struct, se.group_node);
5517 list_del_init(&p->se.group_node);
1e3c88bd 5518
163122b7
KT
5519 attach_task(env->dst_rq, p);
5520 }
5521
5522 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
5523}
5524
230059de 5525#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5526/*
5527 * update tg->load_weight by folding this cpu's load_avg
5528 */
48a16753 5529static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5530{
48a16753
PT
5531 struct sched_entity *se = tg->se[cpu];
5532 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5533
48a16753
PT
5534 /* throttled entities do not contribute to load */
5535 if (throttled_hierarchy(cfs_rq))
5536 return;
9e3081ca 5537
aff3e498 5538 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5539
82958366
PT
5540 if (se) {
5541 update_entity_load_avg(se, 1);
5542 /*
5543 * We pivot on our runnable average having decayed to zero for
5544 * list removal. This generally implies that all our children
5545 * have also been removed (modulo rounding error or bandwidth
5546 * control); however, such cases are rare and we can fix these
5547 * at enqueue.
5548 *
5549 * TODO: fix up out-of-order children on enqueue.
5550 */
5551 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5552 list_del_leaf_cfs_rq(cfs_rq);
5553 } else {
48a16753 5554 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5555 update_rq_runnable_avg(rq, rq->nr_running);
5556 }
9e3081ca
PZ
5557}
5558
48a16753 5559static void update_blocked_averages(int cpu)
9e3081ca 5560{
9e3081ca 5561 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5562 struct cfs_rq *cfs_rq;
5563 unsigned long flags;
9e3081ca 5564
48a16753
PT
5565 raw_spin_lock_irqsave(&rq->lock, flags);
5566 update_rq_clock(rq);
9763b67f
PZ
5567 /*
5568 * Iterates the task_group tree in a bottom up fashion, see
5569 * list_add_leaf_cfs_rq() for details.
5570 */
64660c86 5571 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5572 /*
5573 * Note: We may want to consider periodically releasing
5574 * rq->lock about these updates so that creating many task
5575 * groups does not result in continually extending hold time.
5576 */
5577 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5578 }
48a16753
PT
5579
5580 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5581}
5582
9763b67f 5583/*
68520796 5584 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5585 * This needs to be done in a top-down fashion because the load of a child
5586 * group is a fraction of its parents load.
5587 */
68520796 5588static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5589{
68520796
VD
5590 struct rq *rq = rq_of(cfs_rq);
5591 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5592 unsigned long now = jiffies;
68520796 5593 unsigned long load;
a35b6466 5594
68520796 5595 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5596 return;
5597
68520796
VD
5598 cfs_rq->h_load_next = NULL;
5599 for_each_sched_entity(se) {
5600 cfs_rq = cfs_rq_of(se);
5601 cfs_rq->h_load_next = se;
5602 if (cfs_rq->last_h_load_update == now)
5603 break;
5604 }
a35b6466 5605
68520796 5606 if (!se) {
7e3115ef 5607 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5608 cfs_rq->last_h_load_update = now;
5609 }
5610
5611 while ((se = cfs_rq->h_load_next) != NULL) {
5612 load = cfs_rq->h_load;
5613 load = div64_ul(load * se->avg.load_avg_contrib,
5614 cfs_rq->runnable_load_avg + 1);
5615 cfs_rq = group_cfs_rq(se);
5616 cfs_rq->h_load = load;
5617 cfs_rq->last_h_load_update = now;
5618 }
9763b67f
PZ
5619}
5620
367456c7 5621static unsigned long task_h_load(struct task_struct *p)
230059de 5622{
367456c7 5623 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5624
68520796 5625 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5626 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5627 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5628}
5629#else
48a16753 5630static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5631{
5632}
5633
367456c7 5634static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5635{
a003a25b 5636 return p->se.avg.load_avg_contrib;
1e3c88bd 5637}
230059de 5638#endif
1e3c88bd 5639
1e3c88bd 5640/********** Helpers for find_busiest_group ************************/
caeb178c
RR
5641
5642enum group_type {
5643 group_other = 0,
5644 group_imbalanced,
5645 group_overloaded,
5646};
5647
1e3c88bd
PZ
5648/*
5649 * sg_lb_stats - stats of a sched_group required for load_balancing
5650 */
5651struct sg_lb_stats {
5652 unsigned long avg_load; /*Avg load across the CPUs of the group */
5653 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5654 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5655 unsigned long load_per_task;
63b2ca30 5656 unsigned long group_capacity;
147c5fc2 5657 unsigned int sum_nr_running; /* Nr tasks running in the group */
0fedc6c8 5658 unsigned int group_capacity_factor;
147c5fc2
PZ
5659 unsigned int idle_cpus;
5660 unsigned int group_weight;
caeb178c 5661 enum group_type group_type;
1b6a7495 5662 int group_has_free_capacity;
0ec8aa00
PZ
5663#ifdef CONFIG_NUMA_BALANCING
5664 unsigned int nr_numa_running;
5665 unsigned int nr_preferred_running;
5666#endif
1e3c88bd
PZ
5667};
5668
56cf515b
JK
5669/*
5670 * sd_lb_stats - Structure to store the statistics of a sched_domain
5671 * during load balancing.
5672 */
5673struct sd_lb_stats {
5674 struct sched_group *busiest; /* Busiest group in this sd */
5675 struct sched_group *local; /* Local group in this sd */
5676 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 5677 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
5678 unsigned long avg_load; /* Average load across all groups in sd */
5679
56cf515b 5680 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5681 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5682};
5683
147c5fc2
PZ
5684static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5685{
5686 /*
5687 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5688 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5689 * We must however clear busiest_stat::avg_load because
5690 * update_sd_pick_busiest() reads this before assignment.
5691 */
5692 *sds = (struct sd_lb_stats){
5693 .busiest = NULL,
5694 .local = NULL,
5695 .total_load = 0UL,
63b2ca30 5696 .total_capacity = 0UL,
147c5fc2
PZ
5697 .busiest_stat = {
5698 .avg_load = 0UL,
caeb178c
RR
5699 .sum_nr_running = 0,
5700 .group_type = group_other,
147c5fc2
PZ
5701 },
5702 };
5703}
5704
1e3c88bd
PZ
5705/**
5706 * get_sd_load_idx - Obtain the load index for a given sched domain.
5707 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5708 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5709 *
5710 * Return: The load index.
1e3c88bd
PZ
5711 */
5712static inline int get_sd_load_idx(struct sched_domain *sd,
5713 enum cpu_idle_type idle)
5714{
5715 int load_idx;
5716
5717 switch (idle) {
5718 case CPU_NOT_IDLE:
5719 load_idx = sd->busy_idx;
5720 break;
5721
5722 case CPU_NEWLY_IDLE:
5723 load_idx = sd->newidle_idx;
5724 break;
5725 default:
5726 load_idx = sd->idle_idx;
5727 break;
5728 }
5729
5730 return load_idx;
5731}
5732
ced549fa 5733static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5734{
ca8ce3d0 5735 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5736}
5737
ca8ce3d0 5738unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5739{
ced549fa 5740 return default_scale_capacity(sd, cpu);
1e3c88bd
PZ
5741}
5742
26bc3c50 5743static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5744{
26bc3c50
VG
5745 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5746 return sd->smt_gain / sd->span_weight;
1e3c88bd 5747
26bc3c50 5748 return SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5749}
5750
26bc3c50 5751unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5752{
26bc3c50 5753 return default_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5754}
5755
ced549fa 5756static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
5757{
5758 struct rq *rq = cpu_rq(cpu);
b654f7de 5759 u64 total, available, age_stamp, avg;
cadefd3d 5760 s64 delta;
1e3c88bd 5761
b654f7de
PZ
5762 /*
5763 * Since we're reading these variables without serialization make sure
5764 * we read them once before doing sanity checks on them.
5765 */
5766 age_stamp = ACCESS_ONCE(rq->age_stamp);
5767 avg = ACCESS_ONCE(rq->rt_avg);
5768
cadefd3d
PZ
5769 delta = rq_clock(rq) - age_stamp;
5770 if (unlikely(delta < 0))
5771 delta = 0;
5772
5773 total = sched_avg_period() + delta;
aa483808 5774
b654f7de 5775 if (unlikely(total < avg)) {
ced549fa 5776 /* Ensures that capacity won't end up being negative */
aa483808
VP
5777 available = 0;
5778 } else {
b654f7de 5779 available = total - avg;
aa483808 5780 }
1e3c88bd 5781
ca8ce3d0
NP
5782 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5783 total = SCHED_CAPACITY_SCALE;
1e3c88bd 5784
ca8ce3d0 5785 total >>= SCHED_CAPACITY_SHIFT;
1e3c88bd
PZ
5786
5787 return div_u64(available, total);
5788}
5789
ced549fa 5790static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 5791{
ca8ce3d0 5792 unsigned long capacity = SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
5793 struct sched_group *sdg = sd->groups;
5794
26bc3c50
VG
5795 if (sched_feat(ARCH_CAPACITY))
5796 capacity *= arch_scale_cpu_capacity(sd, cpu);
5797 else
5798 capacity *= default_scale_cpu_capacity(sd, cpu);
1e3c88bd 5799
26bc3c50 5800 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5801
ced549fa 5802 sdg->sgc->capacity_orig = capacity;
9d5efe05 5803
5d4dfddd 5804 if (sched_feat(ARCH_CAPACITY))
ca8ce3d0 5805 capacity *= arch_scale_freq_capacity(sd, cpu);
9d5efe05 5806 else
ced549fa 5807 capacity *= default_scale_capacity(sd, cpu);
9d5efe05 5808
ca8ce3d0 5809 capacity >>= SCHED_CAPACITY_SHIFT;
9d5efe05 5810
ced549fa 5811 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 5812 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 5813
ced549fa
NP
5814 if (!capacity)
5815 capacity = 1;
1e3c88bd 5816
ced549fa
NP
5817 cpu_rq(cpu)->cpu_capacity = capacity;
5818 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5819}
5820
63b2ca30 5821void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5822{
5823 struct sched_domain *child = sd->child;
5824 struct sched_group *group, *sdg = sd->groups;
63b2ca30 5825 unsigned long capacity, capacity_orig;
4ec4412e
VG
5826 unsigned long interval;
5827
5828 interval = msecs_to_jiffies(sd->balance_interval);
5829 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 5830 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
5831
5832 if (!child) {
ced549fa 5833 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
5834 return;
5835 }
5836
63b2ca30 5837 capacity_orig = capacity = 0;
1e3c88bd 5838
74a5ce20
PZ
5839 if (child->flags & SD_OVERLAP) {
5840 /*
5841 * SD_OVERLAP domains cannot assume that child groups
5842 * span the current group.
5843 */
5844
863bffc8 5845 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 5846 struct sched_group_capacity *sgc;
9abf24d4 5847 struct rq *rq = cpu_rq(cpu);
863bffc8 5848
9abf24d4 5849 /*
63b2ca30 5850 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
5851 * gets here before we've attached the domains to the
5852 * runqueues.
5853 *
ced549fa
NP
5854 * Use capacity_of(), which is set irrespective of domains
5855 * in update_cpu_capacity().
9abf24d4 5856 *
63b2ca30 5857 * This avoids capacity/capacity_orig from being 0 and
9abf24d4
SD
5858 * causing divide-by-zero issues on boot.
5859 *
63b2ca30 5860 * Runtime updates will correct capacity_orig.
9abf24d4
SD
5861 */
5862 if (unlikely(!rq->sd)) {
ced549fa
NP
5863 capacity_orig += capacity_of(cpu);
5864 capacity += capacity_of(cpu);
9abf24d4
SD
5865 continue;
5866 }
863bffc8 5867
63b2ca30
NP
5868 sgc = rq->sd->groups->sgc;
5869 capacity_orig += sgc->capacity_orig;
5870 capacity += sgc->capacity;
863bffc8 5871 }
74a5ce20
PZ
5872 } else {
5873 /*
5874 * !SD_OVERLAP domains can assume that child groups
5875 * span the current group.
5876 */
5877
5878 group = child->groups;
5879 do {
63b2ca30
NP
5880 capacity_orig += group->sgc->capacity_orig;
5881 capacity += group->sgc->capacity;
74a5ce20
PZ
5882 group = group->next;
5883 } while (group != child->groups);
5884 }
1e3c88bd 5885
63b2ca30
NP
5886 sdg->sgc->capacity_orig = capacity_orig;
5887 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
5888}
5889
9d5efe05
SV
5890/*
5891 * Try and fix up capacity for tiny siblings, this is needed when
5892 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5893 * which on its own isn't powerful enough.
5894 *
5895 * See update_sd_pick_busiest() and check_asym_packing().
5896 */
5897static inline int
5898fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5899{
5900 /*
ca8ce3d0 5901 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
9d5efe05 5902 */
5d4dfddd 5903 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
9d5efe05
SV
5904 return 0;
5905
5906 /*
63b2ca30 5907 * If ~90% of the cpu_capacity is still there, we're good.
9d5efe05 5908 */
63b2ca30 5909 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
9d5efe05
SV
5910 return 1;
5911
5912 return 0;
5913}
5914
30ce5dab
PZ
5915/*
5916 * Group imbalance indicates (and tries to solve) the problem where balancing
5917 * groups is inadequate due to tsk_cpus_allowed() constraints.
5918 *
5919 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5920 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5921 * Something like:
5922 *
5923 * { 0 1 2 3 } { 4 5 6 7 }
5924 * * * * *
5925 *
5926 * If we were to balance group-wise we'd place two tasks in the first group and
5927 * two tasks in the second group. Clearly this is undesired as it will overload
5928 * cpu 3 and leave one of the cpus in the second group unused.
5929 *
5930 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5931 * by noticing the lower domain failed to reach balance and had difficulty
5932 * moving tasks due to affinity constraints.
30ce5dab
PZ
5933 *
5934 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5935 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5936 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5937 * to create an effective group imbalance.
5938 *
5939 * This is a somewhat tricky proposition since the next run might not find the
5940 * group imbalance and decide the groups need to be balanced again. A most
5941 * subtle and fragile situation.
5942 */
5943
6263322c 5944static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5945{
63b2ca30 5946 return group->sgc->imbalance;
30ce5dab
PZ
5947}
5948
b37d9316 5949/*
0fedc6c8 5950 * Compute the group capacity factor.
b37d9316 5951 *
ced549fa 5952 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
c61037e9 5953 * first dividing out the smt factor and computing the actual number of cores
63b2ca30 5954 * and limit unit capacity with that.
b37d9316 5955 */
0fedc6c8 5956static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
b37d9316 5957{
0fedc6c8 5958 unsigned int capacity_factor, smt, cpus;
63b2ca30 5959 unsigned int capacity, capacity_orig;
c61037e9 5960
63b2ca30
NP
5961 capacity = group->sgc->capacity;
5962 capacity_orig = group->sgc->capacity_orig;
c61037e9 5963 cpus = group->group_weight;
b37d9316 5964
63b2ca30 5965 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
ca8ce3d0 5966 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
0fedc6c8 5967 capacity_factor = cpus / smt; /* cores */
b37d9316 5968
63b2ca30 5969 capacity_factor = min_t(unsigned,
ca8ce3d0 5970 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
0fedc6c8
NP
5971 if (!capacity_factor)
5972 capacity_factor = fix_small_capacity(env->sd, group);
b37d9316 5973
0fedc6c8 5974 return capacity_factor;
b37d9316
PZ
5975}
5976
caeb178c
RR
5977static enum group_type
5978group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5979{
5980 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5981 return group_overloaded;
5982
5983 if (sg_imbalanced(group))
5984 return group_imbalanced;
5985
5986 return group_other;
5987}
5988
1e3c88bd
PZ
5989/**
5990 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5991 * @env: The load balancing environment.
1e3c88bd 5992 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5993 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5994 * @local_group: Does group contain this_cpu.
1e3c88bd 5995 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 5996 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 5997 */
bd939f45
PZ
5998static inline void update_sg_lb_stats(struct lb_env *env,
5999 struct sched_group *group, int load_idx,
4486edd1
TC
6000 int local_group, struct sg_lb_stats *sgs,
6001 bool *overload)
1e3c88bd 6002{
30ce5dab 6003 unsigned long load;
bd939f45 6004 int i;
1e3c88bd 6005
b72ff13c
PZ
6006 memset(sgs, 0, sizeof(*sgs));
6007
b9403130 6008 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6009 struct rq *rq = cpu_rq(i);
6010
1e3c88bd 6011 /* Bias balancing toward cpus of our domain */
6263322c 6012 if (local_group)
04f733b4 6013 load = target_load(i, load_idx);
6263322c 6014 else
1e3c88bd 6015 load = source_load(i, load_idx);
1e3c88bd
PZ
6016
6017 sgs->group_load += load;
65fdac08 6018 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1
TC
6019
6020 if (rq->nr_running > 1)
6021 *overload = true;
6022
0ec8aa00
PZ
6023#ifdef CONFIG_NUMA_BALANCING
6024 sgs->nr_numa_running += rq->nr_numa_running;
6025 sgs->nr_preferred_running += rq->nr_preferred_running;
6026#endif
1e3c88bd 6027 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
6028 if (idle_cpu(i))
6029 sgs->idle_cpus++;
1e3c88bd
PZ
6030 }
6031
63b2ca30
NP
6032 /* Adjust by relative CPU capacity of the group */
6033 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6034 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6035
dd5feea1 6036 if (sgs->sum_nr_running)
38d0f770 6037 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6038
aae6d3dd 6039 sgs->group_weight = group->group_weight;
0fedc6c8 6040 sgs->group_capacity_factor = sg_capacity_factor(env, group);
caeb178c 6041 sgs->group_type = group_classify(group, sgs);
b37d9316 6042
0fedc6c8 6043 if (sgs->group_capacity_factor > sgs->sum_nr_running)
1b6a7495 6044 sgs->group_has_free_capacity = 1;
1e3c88bd
PZ
6045}
6046
532cb4c4
MN
6047/**
6048 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6049 * @env: The load balancing environment.
532cb4c4
MN
6050 * @sds: sched_domain statistics
6051 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6052 * @sgs: sched_group statistics
532cb4c4
MN
6053 *
6054 * Determine if @sg is a busier group than the previously selected
6055 * busiest group.
e69f6186
YB
6056 *
6057 * Return: %true if @sg is a busier group than the previously selected
6058 * busiest group. %false otherwise.
532cb4c4 6059 */
bd939f45 6060static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6061 struct sd_lb_stats *sds,
6062 struct sched_group *sg,
bd939f45 6063 struct sg_lb_stats *sgs)
532cb4c4 6064{
caeb178c 6065 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6066
caeb178c 6067 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6068 return true;
6069
caeb178c
RR
6070 if (sgs->group_type < busiest->group_type)
6071 return false;
6072
6073 if (sgs->avg_load <= busiest->avg_load)
6074 return false;
6075
6076 /* This is the busiest node in its class. */
6077 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6078 return true;
6079
6080 /*
6081 * ASYM_PACKING needs to move all the work to the lowest
6082 * numbered CPUs in the group, therefore mark all groups
6083 * higher than ourself as busy.
6084 */
caeb178c 6085 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6086 if (!sds->busiest)
6087 return true;
6088
6089 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6090 return true;
6091 }
6092
6093 return false;
6094}
6095
0ec8aa00
PZ
6096#ifdef CONFIG_NUMA_BALANCING
6097static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6098{
6099 if (sgs->sum_nr_running > sgs->nr_numa_running)
6100 return regular;
6101 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6102 return remote;
6103 return all;
6104}
6105
6106static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6107{
6108 if (rq->nr_running > rq->nr_numa_running)
6109 return regular;
6110 if (rq->nr_running > rq->nr_preferred_running)
6111 return remote;
6112 return all;
6113}
6114#else
6115static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6116{
6117 return all;
6118}
6119
6120static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6121{
6122 return regular;
6123}
6124#endif /* CONFIG_NUMA_BALANCING */
6125
1e3c88bd 6126/**
461819ac 6127 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6128 * @env: The load balancing environment.
1e3c88bd
PZ
6129 * @sds: variable to hold the statistics for this sched_domain.
6130 */
0ec8aa00 6131static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6132{
bd939f45
PZ
6133 struct sched_domain *child = env->sd->child;
6134 struct sched_group *sg = env->sd->groups;
56cf515b 6135 struct sg_lb_stats tmp_sgs;
1e3c88bd 6136 int load_idx, prefer_sibling = 0;
4486edd1 6137 bool overload = false;
1e3c88bd
PZ
6138
6139 if (child && child->flags & SD_PREFER_SIBLING)
6140 prefer_sibling = 1;
6141
bd939f45 6142 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6143
6144 do {
56cf515b 6145 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6146 int local_group;
6147
bd939f45 6148 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6149 if (local_group) {
6150 sds->local = sg;
6151 sgs = &sds->local_stat;
b72ff13c
PZ
6152
6153 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6154 time_after_eq(jiffies, sg->sgc->next_update))
6155 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6156 }
1e3c88bd 6157
4486edd1
TC
6158 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6159 &overload);
1e3c88bd 6160
b72ff13c
PZ
6161 if (local_group)
6162 goto next_group;
6163
1e3c88bd
PZ
6164 /*
6165 * In case the child domain prefers tasks go to siblings
0fedc6c8 6166 * first, lower the sg capacity factor to one so that we'll try
75dd321d
NR
6167 * and move all the excess tasks away. We lower the capacity
6168 * of a group only if the local group has the capacity to fit
0fedc6c8 6169 * these excess tasks, i.e. nr_running < group_capacity_factor. The
75dd321d
NR
6170 * extra check prevents the case where you always pull from the
6171 * heaviest group when it is already under-utilized (possible
6172 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6173 */
b72ff13c 6174 if (prefer_sibling && sds->local &&
1b6a7495 6175 sds->local_stat.group_has_free_capacity)
0fedc6c8 6176 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
1e3c88bd 6177
b72ff13c 6178 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6179 sds->busiest = sg;
56cf515b 6180 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6181 }
6182
b72ff13c
PZ
6183next_group:
6184 /* Now, start updating sd_lb_stats */
6185 sds->total_load += sgs->group_load;
63b2ca30 6186 sds->total_capacity += sgs->group_capacity;
b72ff13c 6187
532cb4c4 6188 sg = sg->next;
bd939f45 6189 } while (sg != env->sd->groups);
0ec8aa00
PZ
6190
6191 if (env->sd->flags & SD_NUMA)
6192 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6193
6194 if (!env->sd->parent) {
6195 /* update overload indicator if we are at root domain */
6196 if (env->dst_rq->rd->overload != overload)
6197 env->dst_rq->rd->overload = overload;
6198 }
6199
532cb4c4
MN
6200}
6201
532cb4c4
MN
6202/**
6203 * check_asym_packing - Check to see if the group is packed into the
6204 * sched doman.
6205 *
6206 * This is primarily intended to used at the sibling level. Some
6207 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6208 * case of POWER7, it can move to lower SMT modes only when higher
6209 * threads are idle. When in lower SMT modes, the threads will
6210 * perform better since they share less core resources. Hence when we
6211 * have idle threads, we want them to be the higher ones.
6212 *
6213 * This packing function is run on idle threads. It checks to see if
6214 * the busiest CPU in this domain (core in the P7 case) has a higher
6215 * CPU number than the packing function is being run on. Here we are
6216 * assuming lower CPU number will be equivalent to lower a SMT thread
6217 * number.
6218 *
e69f6186 6219 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6220 * this CPU. The amount of the imbalance is returned in *imbalance.
6221 *
cd96891d 6222 * @env: The load balancing environment.
532cb4c4 6223 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6224 */
bd939f45 6225static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6226{
6227 int busiest_cpu;
6228
bd939f45 6229 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6230 return 0;
6231
6232 if (!sds->busiest)
6233 return 0;
6234
6235 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6236 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6237 return 0;
6238
bd939f45 6239 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6240 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6241 SCHED_CAPACITY_SCALE);
bd939f45 6242
532cb4c4 6243 return 1;
1e3c88bd
PZ
6244}
6245
6246/**
6247 * fix_small_imbalance - Calculate the minor imbalance that exists
6248 * amongst the groups of a sched_domain, during
6249 * load balancing.
cd96891d 6250 * @env: The load balancing environment.
1e3c88bd 6251 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6252 */
bd939f45
PZ
6253static inline
6254void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6255{
63b2ca30 6256 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6257 unsigned int imbn = 2;
dd5feea1 6258 unsigned long scaled_busy_load_per_task;
56cf515b 6259 struct sg_lb_stats *local, *busiest;
1e3c88bd 6260
56cf515b
JK
6261 local = &sds->local_stat;
6262 busiest = &sds->busiest_stat;
1e3c88bd 6263
56cf515b
JK
6264 if (!local->sum_nr_running)
6265 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6266 else if (busiest->load_per_task > local->load_per_task)
6267 imbn = 1;
dd5feea1 6268
56cf515b 6269 scaled_busy_load_per_task =
ca8ce3d0 6270 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6271 busiest->group_capacity;
56cf515b 6272
3029ede3
VD
6273 if (busiest->avg_load + scaled_busy_load_per_task >=
6274 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6275 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6276 return;
6277 }
6278
6279 /*
6280 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 6281 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
6282 * moving them.
6283 */
6284
63b2ca30 6285 capa_now += busiest->group_capacity *
56cf515b 6286 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 6287 capa_now += local->group_capacity *
56cf515b 6288 min(local->load_per_task, local->avg_load);
ca8ce3d0 6289 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6290
6291 /* Amount of load we'd subtract */
a2cd4260 6292 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 6293 capa_move += busiest->group_capacity *
56cf515b 6294 min(busiest->load_per_task,
a2cd4260 6295 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6296 }
1e3c88bd
PZ
6297
6298 /* Amount of load we'd add */
63b2ca30 6299 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 6300 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
6301 tmp = (busiest->avg_load * busiest->group_capacity) /
6302 local->group_capacity;
56cf515b 6303 } else {
ca8ce3d0 6304 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6305 local->group_capacity;
56cf515b 6306 }
63b2ca30 6307 capa_move += local->group_capacity *
3ae11c90 6308 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 6309 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6310
6311 /* Move if we gain throughput */
63b2ca30 6312 if (capa_move > capa_now)
56cf515b 6313 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6314}
6315
6316/**
6317 * calculate_imbalance - Calculate the amount of imbalance present within the
6318 * groups of a given sched_domain during load balance.
bd939f45 6319 * @env: load balance environment
1e3c88bd 6320 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6321 */
bd939f45 6322static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6323{
dd5feea1 6324 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6325 struct sg_lb_stats *local, *busiest;
6326
6327 local = &sds->local_stat;
56cf515b 6328 busiest = &sds->busiest_stat;
dd5feea1 6329
caeb178c 6330 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
6331 /*
6332 * In the group_imb case we cannot rely on group-wide averages
6333 * to ensure cpu-load equilibrium, look at wider averages. XXX
6334 */
56cf515b
JK
6335 busiest->load_per_task =
6336 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6337 }
6338
1e3c88bd
PZ
6339 /*
6340 * In the presence of smp nice balancing, certain scenarios can have
6341 * max load less than avg load(as we skip the groups at or below
ced549fa 6342 * its cpu_capacity, while calculating max_load..)
1e3c88bd 6343 */
b1885550
VD
6344 if (busiest->avg_load <= sds->avg_load ||
6345 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6346 env->imbalance = 0;
6347 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6348 }
6349
9a5d9ba6
PZ
6350 /*
6351 * If there aren't any idle cpus, avoid creating some.
6352 */
6353 if (busiest->group_type == group_overloaded &&
6354 local->group_type == group_overloaded) {
56cf515b 6355 load_above_capacity =
0fedc6c8 6356 (busiest->sum_nr_running - busiest->group_capacity_factor);
dd5feea1 6357
ca8ce3d0 6358 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
63b2ca30 6359 load_above_capacity /= busiest->group_capacity;
dd5feea1
SS
6360 }
6361
6362 /*
6363 * We're trying to get all the cpus to the average_load, so we don't
6364 * want to push ourselves above the average load, nor do we wish to
6365 * reduce the max loaded cpu below the average load. At the same time,
6366 * we also don't want to reduce the group load below the group capacity
6367 * (so that we can implement power-savings policies etc). Thus we look
6368 * for the minimum possible imbalance.
dd5feea1 6369 */
30ce5dab 6370 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6371
6372 /* How much load to actually move to equalise the imbalance */
56cf515b 6373 env->imbalance = min(
63b2ca30
NP
6374 max_pull * busiest->group_capacity,
6375 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 6376 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
6377
6378 /*
6379 * if *imbalance is less than the average load per runnable task
25985edc 6380 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6381 * a think about bumping its value to force at least one task to be
6382 * moved
6383 */
56cf515b 6384 if (env->imbalance < busiest->load_per_task)
bd939f45 6385 return fix_small_imbalance(env, sds);
1e3c88bd 6386}
fab47622 6387
1e3c88bd
PZ
6388/******* find_busiest_group() helpers end here *********************/
6389
6390/**
6391 * find_busiest_group - Returns the busiest group within the sched_domain
6392 * if there is an imbalance. If there isn't an imbalance, and
6393 * the user has opted for power-savings, it returns a group whose
6394 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6395 * such a group exists.
6396 *
6397 * Also calculates the amount of weighted load which should be moved
6398 * to restore balance.
6399 *
cd96891d 6400 * @env: The load balancing environment.
1e3c88bd 6401 *
e69f6186 6402 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6403 * - If no imbalance and user has opted for power-savings balance,
6404 * return the least loaded group whose CPUs can be
6405 * put to idle by rebalancing its tasks onto our group.
6406 */
56cf515b 6407static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6408{
56cf515b 6409 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6410 struct sd_lb_stats sds;
6411
147c5fc2 6412 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6413
6414 /*
6415 * Compute the various statistics relavent for load balancing at
6416 * this level.
6417 */
23f0d209 6418 update_sd_lb_stats(env, &sds);
56cf515b
JK
6419 local = &sds.local_stat;
6420 busiest = &sds.busiest_stat;
1e3c88bd 6421
bd939f45
PZ
6422 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6423 check_asym_packing(env, &sds))
532cb4c4
MN
6424 return sds.busiest;
6425
cc57aa8f 6426 /* There is no busy sibling group to pull tasks from */
56cf515b 6427 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6428 goto out_balanced;
6429
ca8ce3d0
NP
6430 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6431 / sds.total_capacity;
b0432d8f 6432
866ab43e
PZ
6433 /*
6434 * If the busiest group is imbalanced the below checks don't
30ce5dab 6435 * work because they assume all things are equal, which typically
866ab43e
PZ
6436 * isn't true due to cpus_allowed constraints and the like.
6437 */
caeb178c 6438 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
6439 goto force_balance;
6440
cc57aa8f 6441 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
1b6a7495
NP
6442 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6443 !busiest->group_has_free_capacity)
fab47622
NR
6444 goto force_balance;
6445
cc57aa8f 6446 /*
9c58c79a 6447 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
6448 * don't try and pull any tasks.
6449 */
56cf515b 6450 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6451 goto out_balanced;
6452
cc57aa8f
PZ
6453 /*
6454 * Don't pull any tasks if this group is already above the domain
6455 * average load.
6456 */
56cf515b 6457 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6458 goto out_balanced;
6459
bd939f45 6460 if (env->idle == CPU_IDLE) {
aae6d3dd 6461 /*
43f4d666
VG
6462 * This cpu is idle. If the busiest group is not overloaded
6463 * and there is no imbalance between this and busiest group
6464 * wrt idle cpus, it is balanced. The imbalance becomes
6465 * significant if the diff is greater than 1 otherwise we
6466 * might end up to just move the imbalance on another group
aae6d3dd 6467 */
43f4d666
VG
6468 if ((busiest->group_type != group_overloaded) &&
6469 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 6470 goto out_balanced;
c186fafe
PZ
6471 } else {
6472 /*
6473 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6474 * imbalance_pct to be conservative.
6475 */
56cf515b
JK
6476 if (100 * busiest->avg_load <=
6477 env->sd->imbalance_pct * local->avg_load)
c186fafe 6478 goto out_balanced;
aae6d3dd 6479 }
1e3c88bd 6480
fab47622 6481force_balance:
1e3c88bd 6482 /* Looks like there is an imbalance. Compute it */
bd939f45 6483 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6484 return sds.busiest;
6485
6486out_balanced:
bd939f45 6487 env->imbalance = 0;
1e3c88bd
PZ
6488 return NULL;
6489}
6490
6491/*
6492 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6493 */
bd939f45 6494static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6495 struct sched_group *group)
1e3c88bd
PZ
6496{
6497 struct rq *busiest = NULL, *rq;
ced549fa 6498 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
6499 int i;
6500
6906a408 6501 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ced549fa 6502 unsigned long capacity, capacity_factor, wl;
0ec8aa00
PZ
6503 enum fbq_type rt;
6504
6505 rq = cpu_rq(i);
6506 rt = fbq_classify_rq(rq);
1e3c88bd 6507
0ec8aa00
PZ
6508 /*
6509 * We classify groups/runqueues into three groups:
6510 * - regular: there are !numa tasks
6511 * - remote: there are numa tasks that run on the 'wrong' node
6512 * - all: there is no distinction
6513 *
6514 * In order to avoid migrating ideally placed numa tasks,
6515 * ignore those when there's better options.
6516 *
6517 * If we ignore the actual busiest queue to migrate another
6518 * task, the next balance pass can still reduce the busiest
6519 * queue by moving tasks around inside the node.
6520 *
6521 * If we cannot move enough load due to this classification
6522 * the next pass will adjust the group classification and
6523 * allow migration of more tasks.
6524 *
6525 * Both cases only affect the total convergence complexity.
6526 */
6527 if (rt > env->fbq_type)
6528 continue;
6529
ced549fa 6530 capacity = capacity_of(i);
ca8ce3d0 6531 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
0fedc6c8
NP
6532 if (!capacity_factor)
6533 capacity_factor = fix_small_capacity(env->sd, group);
9d5efe05 6534
6e40f5bb 6535 wl = weighted_cpuload(i);
1e3c88bd 6536
6e40f5bb
TG
6537 /*
6538 * When comparing with imbalance, use weighted_cpuload()
ced549fa 6539 * which is not scaled with the cpu capacity.
6e40f5bb 6540 */
0fedc6c8 6541 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6542 continue;
6543
6e40f5bb
TG
6544 /*
6545 * For the load comparisons with the other cpu's, consider
ced549fa
NP
6546 * the weighted_cpuload() scaled with the cpu capacity, so
6547 * that the load can be moved away from the cpu that is
6548 * potentially running at a lower capacity.
95a79b80 6549 *
ced549fa 6550 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 6551 * multiplication to rid ourselves of the division works out
ced549fa
NP
6552 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6553 * our previous maximum.
6e40f5bb 6554 */
ced549fa 6555 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 6556 busiest_load = wl;
ced549fa 6557 busiest_capacity = capacity;
1e3c88bd
PZ
6558 busiest = rq;
6559 }
6560 }
6561
6562 return busiest;
6563}
6564
6565/*
6566 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6567 * so long as it is large enough.
6568 */
6569#define MAX_PINNED_INTERVAL 512
6570
6571/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6572DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6573
bd939f45 6574static int need_active_balance(struct lb_env *env)
1af3ed3d 6575{
bd939f45
PZ
6576 struct sched_domain *sd = env->sd;
6577
6578 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6579
6580 /*
6581 * ASYM_PACKING needs to force migrate tasks from busy but
6582 * higher numbered CPUs in order to pack all tasks in the
6583 * lowest numbered CPUs.
6584 */
bd939f45 6585 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6586 return 1;
1af3ed3d
PZ
6587 }
6588
6589 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6590}
6591
969c7921
TH
6592static int active_load_balance_cpu_stop(void *data);
6593
23f0d209
JK
6594static int should_we_balance(struct lb_env *env)
6595{
6596 struct sched_group *sg = env->sd->groups;
6597 struct cpumask *sg_cpus, *sg_mask;
6598 int cpu, balance_cpu = -1;
6599
6600 /*
6601 * In the newly idle case, we will allow all the cpu's
6602 * to do the newly idle load balance.
6603 */
6604 if (env->idle == CPU_NEWLY_IDLE)
6605 return 1;
6606
6607 sg_cpus = sched_group_cpus(sg);
6608 sg_mask = sched_group_mask(sg);
6609 /* Try to find first idle cpu */
6610 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6611 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6612 continue;
6613
6614 balance_cpu = cpu;
6615 break;
6616 }
6617
6618 if (balance_cpu == -1)
6619 balance_cpu = group_balance_cpu(sg);
6620
6621 /*
6622 * First idle cpu or the first cpu(busiest) in this sched group
6623 * is eligible for doing load balancing at this and above domains.
6624 */
b0cff9d8 6625 return balance_cpu == env->dst_cpu;
23f0d209
JK
6626}
6627
1e3c88bd
PZ
6628/*
6629 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6630 * tasks if there is an imbalance.
6631 */
6632static int load_balance(int this_cpu, struct rq *this_rq,
6633 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6634 int *continue_balancing)
1e3c88bd 6635{
88b8dac0 6636 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6637 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6638 struct sched_group *group;
1e3c88bd
PZ
6639 struct rq *busiest;
6640 unsigned long flags;
4ba29684 6641 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 6642
8e45cb54
PZ
6643 struct lb_env env = {
6644 .sd = sd,
ddcdf6e7
PZ
6645 .dst_cpu = this_cpu,
6646 .dst_rq = this_rq,
88b8dac0 6647 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6648 .idle = idle,
eb95308e 6649 .loop_break = sched_nr_migrate_break,
b9403130 6650 .cpus = cpus,
0ec8aa00 6651 .fbq_type = all,
163122b7 6652 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
6653 };
6654
cfc03118
JK
6655 /*
6656 * For NEWLY_IDLE load_balancing, we don't need to consider
6657 * other cpus in our group
6658 */
e02e60c1 6659 if (idle == CPU_NEWLY_IDLE)
cfc03118 6660 env.dst_grpmask = NULL;
cfc03118 6661
1e3c88bd
PZ
6662 cpumask_copy(cpus, cpu_active_mask);
6663
1e3c88bd
PZ
6664 schedstat_inc(sd, lb_count[idle]);
6665
6666redo:
23f0d209
JK
6667 if (!should_we_balance(&env)) {
6668 *continue_balancing = 0;
1e3c88bd 6669 goto out_balanced;
23f0d209 6670 }
1e3c88bd 6671
23f0d209 6672 group = find_busiest_group(&env);
1e3c88bd
PZ
6673 if (!group) {
6674 schedstat_inc(sd, lb_nobusyg[idle]);
6675 goto out_balanced;
6676 }
6677
b9403130 6678 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6679 if (!busiest) {
6680 schedstat_inc(sd, lb_nobusyq[idle]);
6681 goto out_balanced;
6682 }
6683
78feefc5 6684 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6685
bd939f45 6686 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6687
6688 ld_moved = 0;
6689 if (busiest->nr_running > 1) {
6690 /*
6691 * Attempt to move tasks. If find_busiest_group has found
6692 * an imbalance but busiest->nr_running <= 1, the group is
6693 * still unbalanced. ld_moved simply stays zero, so it is
6694 * correctly treated as an imbalance.
6695 */
8e45cb54 6696 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6697 env.src_cpu = busiest->cpu;
6698 env.src_rq = busiest;
6699 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6700
5d6523eb 6701more_balance:
163122b7 6702 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
6703
6704 /*
6705 * cur_ld_moved - load moved in current iteration
6706 * ld_moved - cumulative load moved across iterations
6707 */
163122b7 6708 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
6709
6710 /*
163122b7
KT
6711 * We've detached some tasks from busiest_rq. Every
6712 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6713 * unlock busiest->lock, and we are able to be sure
6714 * that nobody can manipulate the tasks in parallel.
6715 * See task_rq_lock() family for the details.
1e3c88bd 6716 */
163122b7
KT
6717
6718 raw_spin_unlock(&busiest->lock);
6719
6720 if (cur_ld_moved) {
6721 attach_tasks(&env);
6722 ld_moved += cur_ld_moved;
6723 }
6724
1e3c88bd 6725 local_irq_restore(flags);
88b8dac0 6726
f1cd0858
JK
6727 if (env.flags & LBF_NEED_BREAK) {
6728 env.flags &= ~LBF_NEED_BREAK;
6729 goto more_balance;
6730 }
6731
88b8dac0
SV
6732 /*
6733 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6734 * us and move them to an alternate dst_cpu in our sched_group
6735 * where they can run. The upper limit on how many times we
6736 * iterate on same src_cpu is dependent on number of cpus in our
6737 * sched_group.
6738 *
6739 * This changes load balance semantics a bit on who can move
6740 * load to a given_cpu. In addition to the given_cpu itself
6741 * (or a ilb_cpu acting on its behalf where given_cpu is
6742 * nohz-idle), we now have balance_cpu in a position to move
6743 * load to given_cpu. In rare situations, this may cause
6744 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6745 * _independently_ and at _same_ time to move some load to
6746 * given_cpu) causing exceess load to be moved to given_cpu.
6747 * This however should not happen so much in practice and
6748 * moreover subsequent load balance cycles should correct the
6749 * excess load moved.
6750 */
6263322c 6751 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6752
7aff2e3a
VD
6753 /* Prevent to re-select dst_cpu via env's cpus */
6754 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6755
78feefc5 6756 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6757 env.dst_cpu = env.new_dst_cpu;
6263322c 6758 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6759 env.loop = 0;
6760 env.loop_break = sched_nr_migrate_break;
e02e60c1 6761
88b8dac0
SV
6762 /*
6763 * Go back to "more_balance" rather than "redo" since we
6764 * need to continue with same src_cpu.
6765 */
6766 goto more_balance;
6767 }
1e3c88bd 6768
6263322c
PZ
6769 /*
6770 * We failed to reach balance because of affinity.
6771 */
6772 if (sd_parent) {
63b2ca30 6773 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 6774
afdeee05 6775 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 6776 *group_imbalance = 1;
6263322c
PZ
6777 }
6778
1e3c88bd 6779 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6780 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6781 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6782 if (!cpumask_empty(cpus)) {
6783 env.loop = 0;
6784 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6785 goto redo;
bbf18b19 6786 }
afdeee05 6787 goto out_all_pinned;
1e3c88bd
PZ
6788 }
6789 }
6790
6791 if (!ld_moved) {
6792 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6793 /*
6794 * Increment the failure counter only on periodic balance.
6795 * We do not want newidle balance, which can be very
6796 * frequent, pollute the failure counter causing
6797 * excessive cache_hot migrations and active balances.
6798 */
6799 if (idle != CPU_NEWLY_IDLE)
6800 sd->nr_balance_failed++;
1e3c88bd 6801
bd939f45 6802 if (need_active_balance(&env)) {
1e3c88bd
PZ
6803 raw_spin_lock_irqsave(&busiest->lock, flags);
6804
969c7921
TH
6805 /* don't kick the active_load_balance_cpu_stop,
6806 * if the curr task on busiest cpu can't be
6807 * moved to this_cpu
1e3c88bd
PZ
6808 */
6809 if (!cpumask_test_cpu(this_cpu,
fa17b507 6810 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6811 raw_spin_unlock_irqrestore(&busiest->lock,
6812 flags);
8e45cb54 6813 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6814 goto out_one_pinned;
6815 }
6816
969c7921
TH
6817 /*
6818 * ->active_balance synchronizes accesses to
6819 * ->active_balance_work. Once set, it's cleared
6820 * only after active load balance is finished.
6821 */
1e3c88bd
PZ
6822 if (!busiest->active_balance) {
6823 busiest->active_balance = 1;
6824 busiest->push_cpu = this_cpu;
6825 active_balance = 1;
6826 }
6827 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6828
bd939f45 6829 if (active_balance) {
969c7921
TH
6830 stop_one_cpu_nowait(cpu_of(busiest),
6831 active_load_balance_cpu_stop, busiest,
6832 &busiest->active_balance_work);
bd939f45 6833 }
1e3c88bd
PZ
6834
6835 /*
6836 * We've kicked active balancing, reset the failure
6837 * counter.
6838 */
6839 sd->nr_balance_failed = sd->cache_nice_tries+1;
6840 }
6841 } else
6842 sd->nr_balance_failed = 0;
6843
6844 if (likely(!active_balance)) {
6845 /* We were unbalanced, so reset the balancing interval */
6846 sd->balance_interval = sd->min_interval;
6847 } else {
6848 /*
6849 * If we've begun active balancing, start to back off. This
6850 * case may not be covered by the all_pinned logic if there
6851 * is only 1 task on the busy runqueue (because we don't call
163122b7 6852 * detach_tasks).
1e3c88bd
PZ
6853 */
6854 if (sd->balance_interval < sd->max_interval)
6855 sd->balance_interval *= 2;
6856 }
6857
1e3c88bd
PZ
6858 goto out;
6859
6860out_balanced:
afdeee05
VG
6861 /*
6862 * We reach balance although we may have faced some affinity
6863 * constraints. Clear the imbalance flag if it was set.
6864 */
6865 if (sd_parent) {
6866 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6867
6868 if (*group_imbalance)
6869 *group_imbalance = 0;
6870 }
6871
6872out_all_pinned:
6873 /*
6874 * We reach balance because all tasks are pinned at this level so
6875 * we can't migrate them. Let the imbalance flag set so parent level
6876 * can try to migrate them.
6877 */
1e3c88bd
PZ
6878 schedstat_inc(sd, lb_balanced[idle]);
6879
6880 sd->nr_balance_failed = 0;
6881
6882out_one_pinned:
6883 /* tune up the balancing interval */
8e45cb54 6884 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6885 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6886 (sd->balance_interval < sd->max_interval))
6887 sd->balance_interval *= 2;
6888
46e49b38 6889 ld_moved = 0;
1e3c88bd 6890out:
1e3c88bd
PZ
6891 return ld_moved;
6892}
6893
52a08ef1
JL
6894static inline unsigned long
6895get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6896{
6897 unsigned long interval = sd->balance_interval;
6898
6899 if (cpu_busy)
6900 interval *= sd->busy_factor;
6901
6902 /* scale ms to jiffies */
6903 interval = msecs_to_jiffies(interval);
6904 interval = clamp(interval, 1UL, max_load_balance_interval);
6905
6906 return interval;
6907}
6908
6909static inline void
6910update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6911{
6912 unsigned long interval, next;
6913
6914 interval = get_sd_balance_interval(sd, cpu_busy);
6915 next = sd->last_balance + interval;
6916
6917 if (time_after(*next_balance, next))
6918 *next_balance = next;
6919}
6920
1e3c88bd
PZ
6921/*
6922 * idle_balance is called by schedule() if this_cpu is about to become
6923 * idle. Attempts to pull tasks from other CPUs.
6924 */
6e83125c 6925static int idle_balance(struct rq *this_rq)
1e3c88bd 6926{
52a08ef1
JL
6927 unsigned long next_balance = jiffies + HZ;
6928 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6929 struct sched_domain *sd;
6930 int pulled_task = 0;
9bd721c5 6931 u64 curr_cost = 0;
1e3c88bd 6932
6e83125c 6933 idle_enter_fair(this_rq);
0e5b5337 6934
6e83125c
PZ
6935 /*
6936 * We must set idle_stamp _before_ calling idle_balance(), such that we
6937 * measure the duration of idle_balance() as idle time.
6938 */
6939 this_rq->idle_stamp = rq_clock(this_rq);
6940
4486edd1
TC
6941 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6942 !this_rq->rd->overload) {
52a08ef1
JL
6943 rcu_read_lock();
6944 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6945 if (sd)
6946 update_next_balance(sd, 0, &next_balance);
6947 rcu_read_unlock();
6948
6e83125c 6949 goto out;
52a08ef1 6950 }
1e3c88bd 6951
f492e12e
PZ
6952 /*
6953 * Drop the rq->lock, but keep IRQ/preempt disabled.
6954 */
6955 raw_spin_unlock(&this_rq->lock);
6956
48a16753 6957 update_blocked_averages(this_cpu);
dce840a0 6958 rcu_read_lock();
1e3c88bd 6959 for_each_domain(this_cpu, sd) {
23f0d209 6960 int continue_balancing = 1;
9bd721c5 6961 u64 t0, domain_cost;
1e3c88bd
PZ
6962
6963 if (!(sd->flags & SD_LOAD_BALANCE))
6964 continue;
6965
52a08ef1
JL
6966 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6967 update_next_balance(sd, 0, &next_balance);
9bd721c5 6968 break;
52a08ef1 6969 }
9bd721c5 6970
f492e12e 6971 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6972 t0 = sched_clock_cpu(this_cpu);
6973
f492e12e 6974 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6975 sd, CPU_NEWLY_IDLE,
6976 &continue_balancing);
9bd721c5
JL
6977
6978 domain_cost = sched_clock_cpu(this_cpu) - t0;
6979 if (domain_cost > sd->max_newidle_lb_cost)
6980 sd->max_newidle_lb_cost = domain_cost;
6981
6982 curr_cost += domain_cost;
f492e12e 6983 }
1e3c88bd 6984
52a08ef1 6985 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6986
6987 /*
6988 * Stop searching for tasks to pull if there are
6989 * now runnable tasks on this rq.
6990 */
6991 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6992 break;
1e3c88bd 6993 }
dce840a0 6994 rcu_read_unlock();
f492e12e
PZ
6995
6996 raw_spin_lock(&this_rq->lock);
6997
0e5b5337
JL
6998 if (curr_cost > this_rq->max_idle_balance_cost)
6999 this_rq->max_idle_balance_cost = curr_cost;
7000
e5fc6611 7001 /*
0e5b5337
JL
7002 * While browsing the domains, we released the rq lock, a task could
7003 * have been enqueued in the meantime. Since we're not going idle,
7004 * pretend we pulled a task.
e5fc6611 7005 */
0e5b5337 7006 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7007 pulled_task = 1;
e5fc6611 7008
52a08ef1
JL
7009out:
7010 /* Move the next balance forward */
7011 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7012 this_rq->next_balance = next_balance;
9bd721c5 7013
e4aa358b 7014 /* Is there a task of a high priority class? */
46383648 7015 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7016 pulled_task = -1;
7017
7018 if (pulled_task) {
7019 idle_exit_fair(this_rq);
6e83125c 7020 this_rq->idle_stamp = 0;
e4aa358b 7021 }
6e83125c 7022
3c4017c1 7023 return pulled_task;
1e3c88bd
PZ
7024}
7025
7026/*
969c7921
TH
7027 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7028 * running tasks off the busiest CPU onto idle CPUs. It requires at
7029 * least 1 task to be running on each physical CPU where possible, and
7030 * avoids physical / logical imbalances.
1e3c88bd 7031 */
969c7921 7032static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7033{
969c7921
TH
7034 struct rq *busiest_rq = data;
7035 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7036 int target_cpu = busiest_rq->push_cpu;
969c7921 7037 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7038 struct sched_domain *sd;
e5673f28 7039 struct task_struct *p = NULL;
969c7921
TH
7040
7041 raw_spin_lock_irq(&busiest_rq->lock);
7042
7043 /* make sure the requested cpu hasn't gone down in the meantime */
7044 if (unlikely(busiest_cpu != smp_processor_id() ||
7045 !busiest_rq->active_balance))
7046 goto out_unlock;
1e3c88bd
PZ
7047
7048 /* Is there any task to move? */
7049 if (busiest_rq->nr_running <= 1)
969c7921 7050 goto out_unlock;
1e3c88bd
PZ
7051
7052 /*
7053 * This condition is "impossible", if it occurs
7054 * we need to fix it. Originally reported by
7055 * Bjorn Helgaas on a 128-cpu setup.
7056 */
7057 BUG_ON(busiest_rq == target_rq);
7058
1e3c88bd 7059 /* Search for an sd spanning us and the target CPU. */
dce840a0 7060 rcu_read_lock();
1e3c88bd
PZ
7061 for_each_domain(target_cpu, sd) {
7062 if ((sd->flags & SD_LOAD_BALANCE) &&
7063 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7064 break;
7065 }
7066
7067 if (likely(sd)) {
8e45cb54
PZ
7068 struct lb_env env = {
7069 .sd = sd,
ddcdf6e7
PZ
7070 .dst_cpu = target_cpu,
7071 .dst_rq = target_rq,
7072 .src_cpu = busiest_rq->cpu,
7073 .src_rq = busiest_rq,
8e45cb54
PZ
7074 .idle = CPU_IDLE,
7075 };
7076
1e3c88bd
PZ
7077 schedstat_inc(sd, alb_count);
7078
e5673f28
KT
7079 p = detach_one_task(&env);
7080 if (p)
1e3c88bd
PZ
7081 schedstat_inc(sd, alb_pushed);
7082 else
7083 schedstat_inc(sd, alb_failed);
7084 }
dce840a0 7085 rcu_read_unlock();
969c7921
TH
7086out_unlock:
7087 busiest_rq->active_balance = 0;
e5673f28
KT
7088 raw_spin_unlock(&busiest_rq->lock);
7089
7090 if (p)
7091 attach_one_task(target_rq, p);
7092
7093 local_irq_enable();
7094
969c7921 7095 return 0;
1e3c88bd
PZ
7096}
7097
d987fc7f
MG
7098static inline int on_null_domain(struct rq *rq)
7099{
7100 return unlikely(!rcu_dereference_sched(rq->sd));
7101}
7102
3451d024 7103#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7104/*
7105 * idle load balancing details
83cd4fe2
VP
7106 * - When one of the busy CPUs notice that there may be an idle rebalancing
7107 * needed, they will kick the idle load balancer, which then does idle
7108 * load balancing for all the idle CPUs.
7109 */
1e3c88bd 7110static struct {
83cd4fe2 7111 cpumask_var_t idle_cpus_mask;
0b005cf5 7112 atomic_t nr_cpus;
83cd4fe2
VP
7113 unsigned long next_balance; /* in jiffy units */
7114} nohz ____cacheline_aligned;
1e3c88bd 7115
3dd0337d 7116static inline int find_new_ilb(void)
1e3c88bd 7117{
0b005cf5 7118 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7119
786d6dc7
SS
7120 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7121 return ilb;
7122
7123 return nr_cpu_ids;
1e3c88bd 7124}
1e3c88bd 7125
83cd4fe2
VP
7126/*
7127 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7128 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7129 * CPU (if there is one).
7130 */
0aeeeeba 7131static void nohz_balancer_kick(void)
83cd4fe2
VP
7132{
7133 int ilb_cpu;
7134
7135 nohz.next_balance++;
7136
3dd0337d 7137 ilb_cpu = find_new_ilb();
83cd4fe2 7138
0b005cf5
SS
7139 if (ilb_cpu >= nr_cpu_ids)
7140 return;
83cd4fe2 7141
cd490c5b 7142 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7143 return;
7144 /*
7145 * Use smp_send_reschedule() instead of resched_cpu().
7146 * This way we generate a sched IPI on the target cpu which
7147 * is idle. And the softirq performing nohz idle load balance
7148 * will be run before returning from the IPI.
7149 */
7150 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7151 return;
7152}
7153
c1cc017c 7154static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
7155{
7156 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7157 /*
7158 * Completely isolated CPUs don't ever set, so we must test.
7159 */
7160 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7161 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7162 atomic_dec(&nohz.nr_cpus);
7163 }
71325960
SS
7164 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7165 }
7166}
7167
69e1e811
SS
7168static inline void set_cpu_sd_state_busy(void)
7169{
7170 struct sched_domain *sd;
37dc6b50 7171 int cpu = smp_processor_id();
69e1e811 7172
69e1e811 7173 rcu_read_lock();
37dc6b50 7174 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7175
7176 if (!sd || !sd->nohz_idle)
7177 goto unlock;
7178 sd->nohz_idle = 0;
7179
63b2ca30 7180 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7181unlock:
69e1e811
SS
7182 rcu_read_unlock();
7183}
7184
7185void set_cpu_sd_state_idle(void)
7186{
7187 struct sched_domain *sd;
37dc6b50 7188 int cpu = smp_processor_id();
69e1e811 7189
69e1e811 7190 rcu_read_lock();
37dc6b50 7191 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7192
7193 if (!sd || sd->nohz_idle)
7194 goto unlock;
7195 sd->nohz_idle = 1;
7196
63b2ca30 7197 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7198unlock:
69e1e811
SS
7199 rcu_read_unlock();
7200}
7201
1e3c88bd 7202/*
c1cc017c 7203 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7204 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7205 */
c1cc017c 7206void nohz_balance_enter_idle(int cpu)
1e3c88bd 7207{
71325960
SS
7208 /*
7209 * If this cpu is going down, then nothing needs to be done.
7210 */
7211 if (!cpu_active(cpu))
7212 return;
7213
c1cc017c
AS
7214 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7215 return;
1e3c88bd 7216
d987fc7f
MG
7217 /*
7218 * If we're a completely isolated CPU, we don't play.
7219 */
7220 if (on_null_domain(cpu_rq(cpu)))
7221 return;
7222
c1cc017c
AS
7223 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7224 atomic_inc(&nohz.nr_cpus);
7225 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7226}
71325960 7227
0db0628d 7228static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7229 unsigned long action, void *hcpu)
7230{
7231 switch (action & ~CPU_TASKS_FROZEN) {
7232 case CPU_DYING:
c1cc017c 7233 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7234 return NOTIFY_OK;
7235 default:
7236 return NOTIFY_DONE;
7237 }
7238}
1e3c88bd
PZ
7239#endif
7240
7241static DEFINE_SPINLOCK(balancing);
7242
49c022e6
PZ
7243/*
7244 * Scale the max load_balance interval with the number of CPUs in the system.
7245 * This trades load-balance latency on larger machines for less cross talk.
7246 */
029632fb 7247void update_max_interval(void)
49c022e6
PZ
7248{
7249 max_load_balance_interval = HZ*num_online_cpus()/10;
7250}
7251
1e3c88bd
PZ
7252/*
7253 * It checks each scheduling domain to see if it is due to be balanced,
7254 * and initiates a balancing operation if so.
7255 *
b9b0853a 7256 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7257 */
f7ed0a89 7258static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7259{
23f0d209 7260 int continue_balancing = 1;
f7ed0a89 7261 int cpu = rq->cpu;
1e3c88bd 7262 unsigned long interval;
04f733b4 7263 struct sched_domain *sd;
1e3c88bd
PZ
7264 /* Earliest time when we have to do rebalance again */
7265 unsigned long next_balance = jiffies + 60*HZ;
7266 int update_next_balance = 0;
f48627e6
JL
7267 int need_serialize, need_decay = 0;
7268 u64 max_cost = 0;
1e3c88bd 7269
48a16753 7270 update_blocked_averages(cpu);
2069dd75 7271
dce840a0 7272 rcu_read_lock();
1e3c88bd 7273 for_each_domain(cpu, sd) {
f48627e6
JL
7274 /*
7275 * Decay the newidle max times here because this is a regular
7276 * visit to all the domains. Decay ~1% per second.
7277 */
7278 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7279 sd->max_newidle_lb_cost =
7280 (sd->max_newidle_lb_cost * 253) / 256;
7281 sd->next_decay_max_lb_cost = jiffies + HZ;
7282 need_decay = 1;
7283 }
7284 max_cost += sd->max_newidle_lb_cost;
7285
1e3c88bd
PZ
7286 if (!(sd->flags & SD_LOAD_BALANCE))
7287 continue;
7288
f48627e6
JL
7289 /*
7290 * Stop the load balance at this level. There is another
7291 * CPU in our sched group which is doing load balancing more
7292 * actively.
7293 */
7294 if (!continue_balancing) {
7295 if (need_decay)
7296 continue;
7297 break;
7298 }
7299
52a08ef1 7300 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7301
7302 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7303 if (need_serialize) {
7304 if (!spin_trylock(&balancing))
7305 goto out;
7306 }
7307
7308 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7309 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7310 /*
6263322c 7311 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7312 * env->dst_cpu, so we can't know our idle
7313 * state even if we migrated tasks. Update it.
1e3c88bd 7314 */
de5eb2dd 7315 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7316 }
7317 sd->last_balance = jiffies;
52a08ef1 7318 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7319 }
7320 if (need_serialize)
7321 spin_unlock(&balancing);
7322out:
7323 if (time_after(next_balance, sd->last_balance + interval)) {
7324 next_balance = sd->last_balance + interval;
7325 update_next_balance = 1;
7326 }
f48627e6
JL
7327 }
7328 if (need_decay) {
1e3c88bd 7329 /*
f48627e6
JL
7330 * Ensure the rq-wide value also decays but keep it at a
7331 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7332 */
f48627e6
JL
7333 rq->max_idle_balance_cost =
7334 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7335 }
dce840a0 7336 rcu_read_unlock();
1e3c88bd
PZ
7337
7338 /*
7339 * next_balance will be updated only when there is a need.
7340 * When the cpu is attached to null domain for ex, it will not be
7341 * updated.
7342 */
7343 if (likely(update_next_balance))
7344 rq->next_balance = next_balance;
7345}
7346
3451d024 7347#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7348/*
3451d024 7349 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7350 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7351 */
208cb16b 7352static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7353{
208cb16b 7354 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7355 struct rq *rq;
7356 int balance_cpu;
7357
1c792db7
SS
7358 if (idle != CPU_IDLE ||
7359 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7360 goto end;
83cd4fe2
VP
7361
7362 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7363 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7364 continue;
7365
7366 /*
7367 * If this cpu gets work to do, stop the load balancing
7368 * work being done for other cpus. Next load
7369 * balancing owner will pick it up.
7370 */
1c792db7 7371 if (need_resched())
83cd4fe2 7372 break;
83cd4fe2 7373
5ed4f1d9
VG
7374 rq = cpu_rq(balance_cpu);
7375
ed61bbc6
TC
7376 /*
7377 * If time for next balance is due,
7378 * do the balance.
7379 */
7380 if (time_after_eq(jiffies, rq->next_balance)) {
7381 raw_spin_lock_irq(&rq->lock);
7382 update_rq_clock(rq);
7383 update_idle_cpu_load(rq);
7384 raw_spin_unlock_irq(&rq->lock);
7385 rebalance_domains(rq, CPU_IDLE);
7386 }
83cd4fe2 7387
83cd4fe2
VP
7388 if (time_after(this_rq->next_balance, rq->next_balance))
7389 this_rq->next_balance = rq->next_balance;
7390 }
7391 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7392end:
7393 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7394}
7395
7396/*
0b005cf5
SS
7397 * Current heuristic for kicking the idle load balancer in the presence
7398 * of an idle cpu is the system.
7399 * - This rq has more than one task.
7400 * - At any scheduler domain level, this cpu's scheduler group has multiple
63b2ca30 7401 * busy cpu's exceeding the group's capacity.
0b005cf5
SS
7402 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7403 * domain span are idle.
83cd4fe2 7404 */
4a725627 7405static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7406{
7407 unsigned long now = jiffies;
0b005cf5 7408 struct sched_domain *sd;
63b2ca30 7409 struct sched_group_capacity *sgc;
4a725627 7410 int nr_busy, cpu = rq->cpu;
83cd4fe2 7411
4a725627 7412 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7413 return 0;
7414
1c792db7
SS
7415 /*
7416 * We may be recently in ticked or tickless idle mode. At the first
7417 * busy tick after returning from idle, we will update the busy stats.
7418 */
69e1e811 7419 set_cpu_sd_state_busy();
c1cc017c 7420 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7421
7422 /*
7423 * None are in tickless mode and hence no need for NOHZ idle load
7424 * balancing.
7425 */
7426 if (likely(!atomic_read(&nohz.nr_cpus)))
7427 return 0;
1c792db7
SS
7428
7429 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7430 return 0;
7431
0b005cf5
SS
7432 if (rq->nr_running >= 2)
7433 goto need_kick;
83cd4fe2 7434
067491b7 7435 rcu_read_lock();
37dc6b50 7436 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7437
37dc6b50 7438 if (sd) {
63b2ca30
NP
7439 sgc = sd->groups->sgc;
7440 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 7441
37dc6b50 7442 if (nr_busy > 1)
067491b7 7443 goto need_kick_unlock;
83cd4fe2 7444 }
37dc6b50
PM
7445
7446 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7447
7448 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7449 sched_domain_span(sd)) < cpu))
7450 goto need_kick_unlock;
7451
067491b7 7452 rcu_read_unlock();
83cd4fe2 7453 return 0;
067491b7
PZ
7454
7455need_kick_unlock:
7456 rcu_read_unlock();
0b005cf5
SS
7457need_kick:
7458 return 1;
83cd4fe2
VP
7459}
7460#else
208cb16b 7461static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7462#endif
7463
7464/*
7465 * run_rebalance_domains is triggered when needed from the scheduler tick.
7466 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7467 */
1e3c88bd
PZ
7468static void run_rebalance_domains(struct softirq_action *h)
7469{
208cb16b 7470 struct rq *this_rq = this_rq();
6eb57e0d 7471 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7472 CPU_IDLE : CPU_NOT_IDLE;
7473
f7ed0a89 7474 rebalance_domains(this_rq, idle);
1e3c88bd 7475
1e3c88bd 7476 /*
83cd4fe2 7477 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7478 * balancing on behalf of the other idle cpus whose ticks are
7479 * stopped.
7480 */
208cb16b 7481 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7482}
7483
1e3c88bd
PZ
7484/*
7485 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7486 */
7caff66f 7487void trigger_load_balance(struct rq *rq)
1e3c88bd 7488{
1e3c88bd 7489 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7490 if (unlikely(on_null_domain(rq)))
7491 return;
7492
7493 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7494 raise_softirq(SCHED_SOFTIRQ);
3451d024 7495#ifdef CONFIG_NO_HZ_COMMON
c726099e 7496 if (nohz_kick_needed(rq))
0aeeeeba 7497 nohz_balancer_kick();
83cd4fe2 7498#endif
1e3c88bd
PZ
7499}
7500
0bcdcf28
CE
7501static void rq_online_fair(struct rq *rq)
7502{
7503 update_sysctl();
0e59bdae
KT
7504
7505 update_runtime_enabled(rq);
0bcdcf28
CE
7506}
7507
7508static void rq_offline_fair(struct rq *rq)
7509{
7510 update_sysctl();
a4c96ae3
PB
7511
7512 /* Ensure any throttled groups are reachable by pick_next_task */
7513 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7514}
7515
55e12e5e 7516#endif /* CONFIG_SMP */
e1d1484f 7517
bf0f6f24
IM
7518/*
7519 * scheduler tick hitting a task of our scheduling class:
7520 */
8f4d37ec 7521static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7522{
7523 struct cfs_rq *cfs_rq;
7524 struct sched_entity *se = &curr->se;
7525
7526 for_each_sched_entity(se) {
7527 cfs_rq = cfs_rq_of(se);
8f4d37ec 7528 entity_tick(cfs_rq, se, queued);
bf0f6f24 7529 }
18bf2805 7530
10e84b97 7531 if (numabalancing_enabled)
cbee9f88 7532 task_tick_numa(rq, curr);
3d59eebc 7533
18bf2805 7534 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7535}
7536
7537/*
cd29fe6f
PZ
7538 * called on fork with the child task as argument from the parent's context
7539 * - child not yet on the tasklist
7540 * - preemption disabled
bf0f6f24 7541 */
cd29fe6f 7542static void task_fork_fair(struct task_struct *p)
bf0f6f24 7543{
4fc420c9
DN
7544 struct cfs_rq *cfs_rq;
7545 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7546 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7547 struct rq *rq = this_rq();
7548 unsigned long flags;
7549
05fa785c 7550 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7551
861d034e
PZ
7552 update_rq_clock(rq);
7553
4fc420c9
DN
7554 cfs_rq = task_cfs_rq(current);
7555 curr = cfs_rq->curr;
7556
6c9a27f5
DN
7557 /*
7558 * Not only the cpu but also the task_group of the parent might have
7559 * been changed after parent->se.parent,cfs_rq were copied to
7560 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7561 * of child point to valid ones.
7562 */
7563 rcu_read_lock();
7564 __set_task_cpu(p, this_cpu);
7565 rcu_read_unlock();
bf0f6f24 7566
7109c442 7567 update_curr(cfs_rq);
cd29fe6f 7568
b5d9d734
MG
7569 if (curr)
7570 se->vruntime = curr->vruntime;
aeb73b04 7571 place_entity(cfs_rq, se, 1);
4d78e7b6 7572
cd29fe6f 7573 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7574 /*
edcb60a3
IM
7575 * Upon rescheduling, sched_class::put_prev_task() will place
7576 * 'current' within the tree based on its new key value.
7577 */
4d78e7b6 7578 swap(curr->vruntime, se->vruntime);
8875125e 7579 resched_curr(rq);
4d78e7b6 7580 }
bf0f6f24 7581
88ec22d3
PZ
7582 se->vruntime -= cfs_rq->min_vruntime;
7583
05fa785c 7584 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7585}
7586
cb469845
SR
7587/*
7588 * Priority of the task has changed. Check to see if we preempt
7589 * the current task.
7590 */
da7a735e
PZ
7591static void
7592prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7593{
da0c1e65 7594 if (!task_on_rq_queued(p))
da7a735e
PZ
7595 return;
7596
cb469845
SR
7597 /*
7598 * Reschedule if we are currently running on this runqueue and
7599 * our priority decreased, or if we are not currently running on
7600 * this runqueue and our priority is higher than the current's
7601 */
da7a735e 7602 if (rq->curr == p) {
cb469845 7603 if (p->prio > oldprio)
8875125e 7604 resched_curr(rq);
cb469845 7605 } else
15afe09b 7606 check_preempt_curr(rq, p, 0);
cb469845
SR
7607}
7608
da7a735e
PZ
7609static void switched_from_fair(struct rq *rq, struct task_struct *p)
7610{
7611 struct sched_entity *se = &p->se;
7612 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7613
7614 /*
791c9e02 7615 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7616 * switched back to the fair class the enqueue_entity(.flags=0) will
7617 * do the right thing.
7618 *
da0c1e65
KT
7619 * If it's queued, then the dequeue_entity(.flags=0) will already
7620 * have normalized the vruntime, if it's !queued, then only when
da7a735e
PZ
7621 * the task is sleeping will it still have non-normalized vruntime.
7622 */
da0c1e65 7623 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
da7a735e
PZ
7624 /*
7625 * Fix up our vruntime so that the current sleep doesn't
7626 * cause 'unlimited' sleep bonus.
7627 */
7628 place_entity(cfs_rq, se, 0);
7629 se->vruntime -= cfs_rq->min_vruntime;
7630 }
9ee474f5 7631
141965c7 7632#ifdef CONFIG_SMP
9ee474f5
PT
7633 /*
7634 * Remove our load from contribution when we leave sched_fair
7635 * and ensure we don't carry in an old decay_count if we
7636 * switch back.
7637 */
87e3c8ae
KT
7638 if (se->avg.decay_count) {
7639 __synchronize_entity_decay(se);
7640 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7641 }
7642#endif
da7a735e
PZ
7643}
7644
cb469845
SR
7645/*
7646 * We switched to the sched_fair class.
7647 */
da7a735e 7648static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7649{
eb7a59b2 7650#ifdef CONFIG_FAIR_GROUP_SCHED
f36c019c 7651 struct sched_entity *se = &p->se;
eb7a59b2
M
7652 /*
7653 * Since the real-depth could have been changed (only FAIR
7654 * class maintain depth value), reset depth properly.
7655 */
7656 se->depth = se->parent ? se->parent->depth + 1 : 0;
7657#endif
da0c1e65 7658 if (!task_on_rq_queued(p))
da7a735e
PZ
7659 return;
7660
cb469845
SR
7661 /*
7662 * We were most likely switched from sched_rt, so
7663 * kick off the schedule if running, otherwise just see
7664 * if we can still preempt the current task.
7665 */
da7a735e 7666 if (rq->curr == p)
8875125e 7667 resched_curr(rq);
cb469845 7668 else
15afe09b 7669 check_preempt_curr(rq, p, 0);
cb469845
SR
7670}
7671
83b699ed
SV
7672/* Account for a task changing its policy or group.
7673 *
7674 * This routine is mostly called to set cfs_rq->curr field when a task
7675 * migrates between groups/classes.
7676 */
7677static void set_curr_task_fair(struct rq *rq)
7678{
7679 struct sched_entity *se = &rq->curr->se;
7680
ec12cb7f
PT
7681 for_each_sched_entity(se) {
7682 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7683
7684 set_next_entity(cfs_rq, se);
7685 /* ensure bandwidth has been allocated on our new cfs_rq */
7686 account_cfs_rq_runtime(cfs_rq, 0);
7687 }
83b699ed
SV
7688}
7689
029632fb
PZ
7690void init_cfs_rq(struct cfs_rq *cfs_rq)
7691{
7692 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7693 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7694#ifndef CONFIG_64BIT
7695 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7696#endif
141965c7 7697#ifdef CONFIG_SMP
9ee474f5 7698 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7699 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7700#endif
029632fb
PZ
7701}
7702
810b3817 7703#ifdef CONFIG_FAIR_GROUP_SCHED
da0c1e65 7704static void task_move_group_fair(struct task_struct *p, int queued)
810b3817 7705{
fed14d45 7706 struct sched_entity *se = &p->se;
aff3e498 7707 struct cfs_rq *cfs_rq;
fed14d45 7708
b2b5ce02
PZ
7709 /*
7710 * If the task was not on the rq at the time of this cgroup movement
7711 * it must have been asleep, sleeping tasks keep their ->vruntime
7712 * absolute on their old rq until wakeup (needed for the fair sleeper
7713 * bonus in place_entity()).
7714 *
7715 * If it was on the rq, we've just 'preempted' it, which does convert
7716 * ->vruntime to a relative base.
7717 *
7718 * Make sure both cases convert their relative position when migrating
7719 * to another cgroup's rq. This does somewhat interfere with the
7720 * fair sleeper stuff for the first placement, but who cares.
7721 */
7ceff013 7722 /*
da0c1e65 7723 * When !queued, vruntime of the task has usually NOT been normalized.
7ceff013
DN
7724 * But there are some cases where it has already been normalized:
7725 *
7726 * - Moving a forked child which is waiting for being woken up by
7727 * wake_up_new_task().
62af3783
DN
7728 * - Moving a task which has been woken up by try_to_wake_up() and
7729 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7730 *
7731 * To prevent boost or penalty in the new cfs_rq caused by delta
7732 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7733 */
da0c1e65
KT
7734 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7735 queued = 1;
7ceff013 7736
da0c1e65 7737 if (!queued)
fed14d45 7738 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7739 set_task_rq(p, task_cpu(p));
fed14d45 7740 se->depth = se->parent ? se->parent->depth + 1 : 0;
da0c1e65 7741 if (!queued) {
fed14d45
PZ
7742 cfs_rq = cfs_rq_of(se);
7743 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7744#ifdef CONFIG_SMP
7745 /*
7746 * migrate_task_rq_fair() will have removed our previous
7747 * contribution, but we must synchronize for ongoing future
7748 * decay.
7749 */
fed14d45
PZ
7750 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7751 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7752#endif
7753 }
810b3817 7754}
029632fb
PZ
7755
7756void free_fair_sched_group(struct task_group *tg)
7757{
7758 int i;
7759
7760 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7761
7762 for_each_possible_cpu(i) {
7763 if (tg->cfs_rq)
7764 kfree(tg->cfs_rq[i]);
7765 if (tg->se)
7766 kfree(tg->se[i]);
7767 }
7768
7769 kfree(tg->cfs_rq);
7770 kfree(tg->se);
7771}
7772
7773int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7774{
7775 struct cfs_rq *cfs_rq;
7776 struct sched_entity *se;
7777 int i;
7778
7779 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7780 if (!tg->cfs_rq)
7781 goto err;
7782 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7783 if (!tg->se)
7784 goto err;
7785
7786 tg->shares = NICE_0_LOAD;
7787
7788 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7789
7790 for_each_possible_cpu(i) {
7791 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7792 GFP_KERNEL, cpu_to_node(i));
7793 if (!cfs_rq)
7794 goto err;
7795
7796 se = kzalloc_node(sizeof(struct sched_entity),
7797 GFP_KERNEL, cpu_to_node(i));
7798 if (!se)
7799 goto err_free_rq;
7800
7801 init_cfs_rq(cfs_rq);
7802 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7803 }
7804
7805 return 1;
7806
7807err_free_rq:
7808 kfree(cfs_rq);
7809err:
7810 return 0;
7811}
7812
7813void unregister_fair_sched_group(struct task_group *tg, int cpu)
7814{
7815 struct rq *rq = cpu_rq(cpu);
7816 unsigned long flags;
7817
7818 /*
7819 * Only empty task groups can be destroyed; so we can speculatively
7820 * check on_list without danger of it being re-added.
7821 */
7822 if (!tg->cfs_rq[cpu]->on_list)
7823 return;
7824
7825 raw_spin_lock_irqsave(&rq->lock, flags);
7826 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7827 raw_spin_unlock_irqrestore(&rq->lock, flags);
7828}
7829
7830void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7831 struct sched_entity *se, int cpu,
7832 struct sched_entity *parent)
7833{
7834 struct rq *rq = cpu_rq(cpu);
7835
7836 cfs_rq->tg = tg;
7837 cfs_rq->rq = rq;
029632fb
PZ
7838 init_cfs_rq_runtime(cfs_rq);
7839
7840 tg->cfs_rq[cpu] = cfs_rq;
7841 tg->se[cpu] = se;
7842
7843 /* se could be NULL for root_task_group */
7844 if (!se)
7845 return;
7846
fed14d45 7847 if (!parent) {
029632fb 7848 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7849 se->depth = 0;
7850 } else {
029632fb 7851 se->cfs_rq = parent->my_q;
fed14d45
PZ
7852 se->depth = parent->depth + 1;
7853 }
029632fb
PZ
7854
7855 se->my_q = cfs_rq;
0ac9b1c2
PT
7856 /* guarantee group entities always have weight */
7857 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7858 se->parent = parent;
7859}
7860
7861static DEFINE_MUTEX(shares_mutex);
7862
7863int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7864{
7865 int i;
7866 unsigned long flags;
7867
7868 /*
7869 * We can't change the weight of the root cgroup.
7870 */
7871 if (!tg->se[0])
7872 return -EINVAL;
7873
7874 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7875
7876 mutex_lock(&shares_mutex);
7877 if (tg->shares == shares)
7878 goto done;
7879
7880 tg->shares = shares;
7881 for_each_possible_cpu(i) {
7882 struct rq *rq = cpu_rq(i);
7883 struct sched_entity *se;
7884
7885 se = tg->se[i];
7886 /* Propagate contribution to hierarchy */
7887 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7888
7889 /* Possible calls to update_curr() need rq clock */
7890 update_rq_clock(rq);
17bc14b7 7891 for_each_sched_entity(se)
029632fb
PZ
7892 update_cfs_shares(group_cfs_rq(se));
7893 raw_spin_unlock_irqrestore(&rq->lock, flags);
7894 }
7895
7896done:
7897 mutex_unlock(&shares_mutex);
7898 return 0;
7899}
7900#else /* CONFIG_FAIR_GROUP_SCHED */
7901
7902void free_fair_sched_group(struct task_group *tg) { }
7903
7904int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7905{
7906 return 1;
7907}
7908
7909void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7910
7911#endif /* CONFIG_FAIR_GROUP_SCHED */
7912
810b3817 7913
6d686f45 7914static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7915{
7916 struct sched_entity *se = &task->se;
0d721cea
PW
7917 unsigned int rr_interval = 0;
7918
7919 /*
7920 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7921 * idle runqueue:
7922 */
0d721cea 7923 if (rq->cfs.load.weight)
a59f4e07 7924 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7925
7926 return rr_interval;
7927}
7928
bf0f6f24
IM
7929/*
7930 * All the scheduling class methods:
7931 */
029632fb 7932const struct sched_class fair_sched_class = {
5522d5d5 7933 .next = &idle_sched_class,
bf0f6f24
IM
7934 .enqueue_task = enqueue_task_fair,
7935 .dequeue_task = dequeue_task_fair,
7936 .yield_task = yield_task_fair,
d95f4122 7937 .yield_to_task = yield_to_task_fair,
bf0f6f24 7938
2e09bf55 7939 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7940
7941 .pick_next_task = pick_next_task_fair,
7942 .put_prev_task = put_prev_task_fair,
7943
681f3e68 7944#ifdef CONFIG_SMP
4ce72a2c 7945 .select_task_rq = select_task_rq_fair,
0a74bef8 7946 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7947
0bcdcf28
CE
7948 .rq_online = rq_online_fair,
7949 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7950
7951 .task_waking = task_waking_fair,
681f3e68 7952#endif
bf0f6f24 7953
83b699ed 7954 .set_curr_task = set_curr_task_fair,
bf0f6f24 7955 .task_tick = task_tick_fair,
cd29fe6f 7956 .task_fork = task_fork_fair,
cb469845
SR
7957
7958 .prio_changed = prio_changed_fair,
da7a735e 7959 .switched_from = switched_from_fair,
cb469845 7960 .switched_to = switched_to_fair,
810b3817 7961
0d721cea
PW
7962 .get_rr_interval = get_rr_interval_fair,
7963
6e998916
SG
7964 .update_curr = update_curr_fair,
7965
810b3817 7966#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7967 .task_move_group = task_move_group_fair,
810b3817 7968#endif
bf0f6f24
IM
7969};
7970
7971#ifdef CONFIG_SCHED_DEBUG
029632fb 7972void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7973{
bf0f6f24
IM
7974 struct cfs_rq *cfs_rq;
7975
5973e5b9 7976 rcu_read_lock();
c3b64f1e 7977 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7978 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7979 rcu_read_unlock();
bf0f6f24
IM
7980}
7981#endif
029632fb
PZ
7982
7983__init void init_sched_fair_class(void)
7984{
7985#ifdef CONFIG_SMP
7986 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7987
3451d024 7988#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7989 nohz.next_balance = jiffies;
029632fb 7990 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7991 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7992#endif
7993#endif /* SMP */
7994
7995}
This page took 1.654922 seconds and 5 git commands to generate.