sched/fair: Fix and optimize the fork() path
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
8527632d
PG
117static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118{
119 lw->weight += inc;
120 lw->inv_weight = 0;
121}
122
123static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124{
125 lw->weight -= dec;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_set(struct load_weight *lw, unsigned long w)
130{
131 lw->weight = w;
132 lw->inv_weight = 0;
133}
134
029632fb
PZ
135/*
136 * Increase the granularity value when there are more CPUs,
137 * because with more CPUs the 'effective latency' as visible
138 * to users decreases. But the relationship is not linear,
139 * so pick a second-best guess by going with the log2 of the
140 * number of CPUs.
141 *
142 * This idea comes from the SD scheduler of Con Kolivas:
143 */
58ac93e4 144static unsigned int get_update_sysctl_factor(void)
029632fb 145{
58ac93e4 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
147 unsigned int factor;
148
149 switch (sysctl_sched_tunable_scaling) {
150 case SCHED_TUNABLESCALING_NONE:
151 factor = 1;
152 break;
153 case SCHED_TUNABLESCALING_LINEAR:
154 factor = cpus;
155 break;
156 case SCHED_TUNABLESCALING_LOG:
157 default:
158 factor = 1 + ilog2(cpus);
159 break;
160 }
161
162 return factor;
163}
164
165static void update_sysctl(void)
166{
167 unsigned int factor = get_update_sysctl_factor();
168
169#define SET_SYSCTL(name) \
170 (sysctl_##name = (factor) * normalized_sysctl_##name)
171 SET_SYSCTL(sched_min_granularity);
172 SET_SYSCTL(sched_latency);
173 SET_SYSCTL(sched_wakeup_granularity);
174#undef SET_SYSCTL
175}
176
177void sched_init_granularity(void)
178{
179 update_sysctl();
180}
181
9dbdb155 182#define WMULT_CONST (~0U)
029632fb
PZ
183#define WMULT_SHIFT 32
184
9dbdb155
PZ
185static void __update_inv_weight(struct load_weight *lw)
186{
187 unsigned long w;
188
189 if (likely(lw->inv_weight))
190 return;
191
192 w = scale_load_down(lw->weight);
193
194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 lw->inv_weight = 1;
196 else if (unlikely(!w))
197 lw->inv_weight = WMULT_CONST;
198 else
199 lw->inv_weight = WMULT_CONST / w;
200}
029632fb
PZ
201
202/*
9dbdb155
PZ
203 * delta_exec * weight / lw.weight
204 * OR
205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206 *
1c3de5e1 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
208 * we're guaranteed shift stays positive because inv_weight is guaranteed to
209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210 *
211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 213 */
9dbdb155 214static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 215{
9dbdb155
PZ
216 u64 fact = scale_load_down(weight);
217 int shift = WMULT_SHIFT;
029632fb 218
9dbdb155 219 __update_inv_weight(lw);
029632fb 220
9dbdb155
PZ
221 if (unlikely(fact >> 32)) {
222 while (fact >> 32) {
223 fact >>= 1;
224 shift--;
225 }
029632fb
PZ
226 }
227
9dbdb155
PZ
228 /* hint to use a 32x32->64 mul */
229 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 230
9dbdb155
PZ
231 while (fact >> 32) {
232 fact >>= 1;
233 shift--;
234 }
029632fb 235
9dbdb155 236 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
237}
238
239
240const struct sched_class fair_sched_class;
a4c2f00f 241
bf0f6f24
IM
242/**************************************************************
243 * CFS operations on generic schedulable entities:
244 */
245
62160e3f 246#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 247
62160e3f 248/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
249static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250{
62160e3f 251 return cfs_rq->rq;
bf0f6f24
IM
252}
253
62160e3f
IM
254/* An entity is a task if it doesn't "own" a runqueue */
255#define entity_is_task(se) (!se->my_q)
bf0f6f24 256
8f48894f
PZ
257static inline struct task_struct *task_of(struct sched_entity *se)
258{
259#ifdef CONFIG_SCHED_DEBUG
260 WARN_ON_ONCE(!entity_is_task(se));
261#endif
262 return container_of(se, struct task_struct, se);
263}
264
b758149c
PZ
265/* Walk up scheduling entities hierarchy */
266#define for_each_sched_entity(se) \
267 for (; se; se = se->parent)
268
269static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270{
271 return p->se.cfs_rq;
272}
273
274/* runqueue on which this entity is (to be) queued */
275static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276{
277 return se->cfs_rq;
278}
279
280/* runqueue "owned" by this group */
281static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282{
283 return grp->my_q;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
67e86250
PT
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 302 }
3d4b47b4
PZ
303
304 cfs_rq->on_list = 1;
305 }
306}
307
308static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
309{
310 if (cfs_rq->on_list) {
311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
312 cfs_rq->on_list = 0;
313 }
314}
315
b758149c
PZ
316/* Iterate thr' all leaf cfs_rq's on a runqueue */
317#define for_each_leaf_cfs_rq(rq, cfs_rq) \
318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
319
320/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 321static inline struct cfs_rq *
b758149c
PZ
322is_same_group(struct sched_entity *se, struct sched_entity *pse)
323{
324 if (se->cfs_rq == pse->cfs_rq)
fed14d45 325 return se->cfs_rq;
b758149c 326
fed14d45 327 return NULL;
b758149c
PZ
328}
329
330static inline struct sched_entity *parent_entity(struct sched_entity *se)
331{
332 return se->parent;
333}
334
464b7527
PZ
335static void
336find_matching_se(struct sched_entity **se, struct sched_entity **pse)
337{
338 int se_depth, pse_depth;
339
340 /*
341 * preemption test can be made between sibling entities who are in the
342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
343 * both tasks until we find their ancestors who are siblings of common
344 * parent.
345 */
346
347 /* First walk up until both entities are at same depth */
fed14d45
PZ
348 se_depth = (*se)->depth;
349 pse_depth = (*pse)->depth;
464b7527
PZ
350
351 while (se_depth > pse_depth) {
352 se_depth--;
353 *se = parent_entity(*se);
354 }
355
356 while (pse_depth > se_depth) {
357 pse_depth--;
358 *pse = parent_entity(*pse);
359 }
360
361 while (!is_same_group(*se, *pse)) {
362 *se = parent_entity(*se);
363 *pse = parent_entity(*pse);
364 }
365}
366
8f48894f
PZ
367#else /* !CONFIG_FAIR_GROUP_SCHED */
368
369static inline struct task_struct *task_of(struct sched_entity *se)
370{
371 return container_of(se, struct task_struct, se);
372}
bf0f6f24 373
62160e3f
IM
374static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
375{
376 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
377}
378
379#define entity_is_task(se) 1
380
b758149c
PZ
381#define for_each_sched_entity(se) \
382 for (; se; se = NULL)
bf0f6f24 383
b758149c 384static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 385{
b758149c 386 return &task_rq(p)->cfs;
bf0f6f24
IM
387}
388
b758149c
PZ
389static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
390{
391 struct task_struct *p = task_of(se);
392 struct rq *rq = task_rq(p);
393
394 return &rq->cfs;
395}
396
397/* runqueue "owned" by this group */
398static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
399{
400 return NULL;
401}
402
3d4b47b4
PZ
403static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
404{
405}
406
407static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
b758149c
PZ
411#define for_each_leaf_cfs_rq(rq, cfs_rq) \
412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
413
b758149c
PZ
414static inline struct sched_entity *parent_entity(struct sched_entity *se)
415{
416 return NULL;
417}
418
464b7527
PZ
419static inline void
420find_matching_se(struct sched_entity **se, struct sched_entity **pse)
421{
422}
423
b758149c
PZ
424#endif /* CONFIG_FAIR_GROUP_SCHED */
425
6c16a6dc 426static __always_inline
9dbdb155 427void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
428
429/**************************************************************
430 * Scheduling class tree data structure manipulation methods:
431 */
432
1bf08230 433static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 434{
1bf08230 435 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 436 if (delta > 0)
1bf08230 437 max_vruntime = vruntime;
02e0431a 438
1bf08230 439 return max_vruntime;
02e0431a
PZ
440}
441
0702e3eb 442static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
443{
444 s64 delta = (s64)(vruntime - min_vruntime);
445 if (delta < 0)
446 min_vruntime = vruntime;
447
448 return min_vruntime;
449}
450
54fdc581
FC
451static inline int entity_before(struct sched_entity *a,
452 struct sched_entity *b)
453{
454 return (s64)(a->vruntime - b->vruntime) < 0;
455}
456
1af5f730
PZ
457static void update_min_vruntime(struct cfs_rq *cfs_rq)
458{
459 u64 vruntime = cfs_rq->min_vruntime;
460
461 if (cfs_rq->curr)
462 vruntime = cfs_rq->curr->vruntime;
463
464 if (cfs_rq->rb_leftmost) {
465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
466 struct sched_entity,
467 run_node);
468
e17036da 469 if (!cfs_rq->curr)
1af5f730
PZ
470 vruntime = se->vruntime;
471 else
472 vruntime = min_vruntime(vruntime, se->vruntime);
473 }
474
1bf08230 475 /* ensure we never gain time by being placed backwards. */
1af5f730 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
477#ifndef CONFIG_64BIT
478 smp_wmb();
479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
480#endif
1af5f730
PZ
481}
482
bf0f6f24
IM
483/*
484 * Enqueue an entity into the rb-tree:
485 */
0702e3eb 486static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
487{
488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
489 struct rb_node *parent = NULL;
490 struct sched_entity *entry;
bf0f6f24
IM
491 int leftmost = 1;
492
493 /*
494 * Find the right place in the rbtree:
495 */
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct sched_entity, run_node);
499 /*
500 * We dont care about collisions. Nodes with
501 * the same key stay together.
502 */
2bd2d6f2 503 if (entity_before(se, entry)) {
bf0f6f24
IM
504 link = &parent->rb_left;
505 } else {
506 link = &parent->rb_right;
507 leftmost = 0;
508 }
509 }
510
511 /*
512 * Maintain a cache of leftmost tree entries (it is frequently
513 * used):
514 */
1af5f730 515 if (leftmost)
57cb499d 516 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
517
518 rb_link_node(&se->run_node, parent, link);
519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
520}
521
0702e3eb 522static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 523{
3fe69747
PZ
524 if (cfs_rq->rb_leftmost == &se->run_node) {
525 struct rb_node *next_node;
3fe69747
PZ
526
527 next_node = rb_next(&se->run_node);
528 cfs_rq->rb_leftmost = next_node;
3fe69747 529 }
e9acbff6 530
bf0f6f24 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
532}
533
029632fb 534struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 535{
f4b6755f
PZ
536 struct rb_node *left = cfs_rq->rb_leftmost;
537
538 if (!left)
539 return NULL;
540
541 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
542}
543
ac53db59
RR
544static struct sched_entity *__pick_next_entity(struct sched_entity *se)
545{
546 struct rb_node *next = rb_next(&se->run_node);
547
548 if (!next)
549 return NULL;
550
551 return rb_entry(next, struct sched_entity, run_node);
552}
553
554#ifdef CONFIG_SCHED_DEBUG
029632fb 555struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 556{
7eee3e67 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 558
70eee74b
BS
559 if (!last)
560 return NULL;
7eee3e67
IM
561
562 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
563}
564
bf0f6f24
IM
565/**************************************************************
566 * Scheduling class statistics methods:
567 */
568
acb4a848 569int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 570 void __user *buffer, size_t *lenp,
b2be5e96
PZ
571 loff_t *ppos)
572{
8d65af78 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 574 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
575
576 if (ret || !write)
577 return ret;
578
579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
580 sysctl_sched_min_granularity);
581
acb4a848
CE
582#define WRT_SYSCTL(name) \
583 (normalized_sysctl_##name = sysctl_##name / (factor))
584 WRT_SYSCTL(sched_min_granularity);
585 WRT_SYSCTL(sched_latency);
586 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
587#undef WRT_SYSCTL
588
b2be5e96
PZ
589 return 0;
590}
591#endif
647e7cac 592
a7be37ac 593/*
f9c0b095 594 * delta /= w
a7be37ac 595 */
9dbdb155 596static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 597{
f9c0b095 598 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
600
601 return delta;
602}
603
647e7cac
IM
604/*
605 * The idea is to set a period in which each task runs once.
606 *
532b1858 607 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
608 * this period because otherwise the slices get too small.
609 *
610 * p = (nr <= nl) ? l : l*nr/nl
611 */
4d78e7b6
PZ
612static u64 __sched_period(unsigned long nr_running)
613{
8e2b0bf3
BF
614 if (unlikely(nr_running > sched_nr_latency))
615 return nr_running * sysctl_sched_min_granularity;
616 else
617 return sysctl_sched_latency;
4d78e7b6
PZ
618}
619
647e7cac
IM
620/*
621 * We calculate the wall-time slice from the period by taking a part
622 * proportional to the weight.
623 *
f9c0b095 624 * s = p*P[w/rw]
647e7cac 625 */
6d0f0ebd 626static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 627{
0a582440 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 629
0a582440 630 for_each_sched_entity(se) {
6272d68c 631 struct load_weight *load;
3104bf03 632 struct load_weight lw;
6272d68c
LM
633
634 cfs_rq = cfs_rq_of(se);
635 load = &cfs_rq->load;
f9c0b095 636
0a582440 637 if (unlikely(!se->on_rq)) {
3104bf03 638 lw = cfs_rq->load;
0a582440
MG
639
640 update_load_add(&lw, se->load.weight);
641 load = &lw;
642 }
9dbdb155 643 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
644 }
645 return slice;
bf0f6f24
IM
646}
647
647e7cac 648/*
660cc00f 649 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 650 *
f9c0b095 651 * vs = s/w
647e7cac 652 */
f9c0b095 653static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 654{
f9c0b095 655 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
656}
657
a75cdaa9 658#ifdef CONFIG_SMP
ba7e5a27 659static int select_idle_sibling(struct task_struct *p, int cpu);
fb13c7ee
MG
660static unsigned long task_h_load(struct task_struct *p);
661
9d89c257
YD
662/*
663 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
665 * dependent on this value.
9d89c257
YD
666 */
667#define LOAD_AVG_PERIOD 32
668#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 669#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 670
540247fb
YD
671/* Give new sched_entity start runnable values to heavy its load in infant time */
672void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 673{
540247fb 674 struct sched_avg *sa = &se->avg;
a75cdaa9 675
9d89c257
YD
676 sa->last_update_time = 0;
677 /*
678 * sched_avg's period_contrib should be strictly less then 1024, so
679 * we give it 1023 to make sure it is almost a period (1024us), and
680 * will definitely be update (after enqueue).
681 */
682 sa->period_contrib = 1023;
540247fb 683 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
685 /*
686 * At this point, util_avg won't be used in select_task_rq_fair anyway
687 */
688 sa->util_avg = 0;
689 sa->util_sum = 0;
9d89c257 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 691}
7ea241af 692
2b8c41da
YD
693/*
694 * With new tasks being created, their initial util_avgs are extrapolated
695 * based on the cfs_rq's current util_avg:
696 *
697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
698 *
699 * However, in many cases, the above util_avg does not give a desired
700 * value. Moreover, the sum of the util_avgs may be divergent, such
701 * as when the series is a harmonic series.
702 *
703 * To solve this problem, we also cap the util_avg of successive tasks to
704 * only 1/2 of the left utilization budget:
705 *
706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
707 *
708 * where n denotes the nth task.
709 *
710 * For example, a simplest series from the beginning would be like:
711 *
712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
714 *
715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
716 * if util_avg > util_avg_cap.
717 */
718void post_init_entity_util_avg(struct sched_entity *se)
719{
720 struct cfs_rq *cfs_rq = cfs_rq_of(se);
721 struct sched_avg *sa = &se->avg;
172895e6 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
2b8c41da
YD
723
724 if (cap > 0) {
725 if (cfs_rq->avg.util_avg != 0) {
726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
727 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
728
729 if (sa->util_avg > cap)
730 sa->util_avg = cap;
731 } else {
732 sa->util_avg = cap;
733 }
734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
735 }
736}
737
a75cdaa9 738#else
540247fb 739void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
740{
741}
2b8c41da
YD
742void post_init_entity_util_avg(struct sched_entity *se)
743{
744}
a75cdaa9
AS
745#endif
746
bf0f6f24 747/*
9dbdb155 748 * Update the current task's runtime statistics.
bf0f6f24 749 */
b7cc0896 750static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 751{
429d43bc 752 struct sched_entity *curr = cfs_rq->curr;
78becc27 753 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 754 u64 delta_exec;
bf0f6f24
IM
755
756 if (unlikely(!curr))
757 return;
758
9dbdb155
PZ
759 delta_exec = now - curr->exec_start;
760 if (unlikely((s64)delta_exec <= 0))
34f28ecd 761 return;
bf0f6f24 762
8ebc91d9 763 curr->exec_start = now;
d842de87 764
9dbdb155
PZ
765 schedstat_set(curr->statistics.exec_max,
766 max(delta_exec, curr->statistics.exec_max));
767
768 curr->sum_exec_runtime += delta_exec;
769 schedstat_add(cfs_rq, exec_clock, delta_exec);
770
771 curr->vruntime += calc_delta_fair(delta_exec, curr);
772 update_min_vruntime(cfs_rq);
773
d842de87
SV
774 if (entity_is_task(curr)) {
775 struct task_struct *curtask = task_of(curr);
776
f977bb49 777 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 778 cpuacct_charge(curtask, delta_exec);
f06febc9 779 account_group_exec_runtime(curtask, delta_exec);
d842de87 780 }
ec12cb7f
PT
781
782 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
783}
784
6e998916
SG
785static void update_curr_fair(struct rq *rq)
786{
787 update_curr(cfs_rq_of(&rq->curr->se));
788}
789
3ea94de1 790#ifdef CONFIG_SCHEDSTATS
bf0f6f24 791static inline void
5870db5b 792update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 793{
3ea94de1
JP
794 u64 wait_start = rq_clock(rq_of(cfs_rq));
795
796 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
797 likely(wait_start > se->statistics.wait_start))
798 wait_start -= se->statistics.wait_start;
799
800 se->statistics.wait_start = wait_start;
bf0f6f24
IM
801}
802
3ea94de1
JP
803static void
804update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
805{
806 struct task_struct *p;
cb251765
MG
807 u64 delta;
808
809 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start;
3ea94de1
JP
810
811 if (entity_is_task(se)) {
812 p = task_of(se);
813 if (task_on_rq_migrating(p)) {
814 /*
815 * Preserve migrating task's wait time so wait_start
816 * time stamp can be adjusted to accumulate wait time
817 * prior to migration.
818 */
819 se->statistics.wait_start = delta;
820 return;
821 }
822 trace_sched_stat_wait(p, delta);
823 }
824
825 se->statistics.wait_max = max(se->statistics.wait_max, delta);
826 se->statistics.wait_count++;
827 se->statistics.wait_sum += delta;
828 se->statistics.wait_start = 0;
829}
3ea94de1 830
bf0f6f24
IM
831/*
832 * Task is being enqueued - update stats:
833 */
cb251765
MG
834static inline void
835update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 836{
bf0f6f24
IM
837 /*
838 * Are we enqueueing a waiting task? (for current tasks
839 * a dequeue/enqueue event is a NOP)
840 */
429d43bc 841 if (se != cfs_rq->curr)
5870db5b 842 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
843}
844
bf0f6f24 845static inline void
cb251765 846update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 847{
bf0f6f24
IM
848 /*
849 * Mark the end of the wait period if dequeueing a
850 * waiting task:
851 */
429d43bc 852 if (se != cfs_rq->curr)
9ef0a961 853 update_stats_wait_end(cfs_rq, se);
cb251765
MG
854
855 if (flags & DEQUEUE_SLEEP) {
856 if (entity_is_task(se)) {
857 struct task_struct *tsk = task_of(se);
858
859 if (tsk->state & TASK_INTERRUPTIBLE)
860 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
861 if (tsk->state & TASK_UNINTERRUPTIBLE)
862 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
863 }
864 }
865
866}
867#else
868static inline void
869update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
870{
871}
872
873static inline void
874update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
875{
876}
877
878static inline void
879update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
880{
881}
882
883static inline void
884update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
885{
bf0f6f24 886}
cb251765 887#endif
bf0f6f24
IM
888
889/*
890 * We are picking a new current task - update its stats:
891 */
892static inline void
79303e9e 893update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
894{
895 /*
896 * We are starting a new run period:
897 */
78becc27 898 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
899}
900
bf0f6f24
IM
901/**************************************************
902 * Scheduling class queueing methods:
903 */
904
cbee9f88
PZ
905#ifdef CONFIG_NUMA_BALANCING
906/*
598f0ec0
MG
907 * Approximate time to scan a full NUMA task in ms. The task scan period is
908 * calculated based on the tasks virtual memory size and
909 * numa_balancing_scan_size.
cbee9f88 910 */
598f0ec0
MG
911unsigned int sysctl_numa_balancing_scan_period_min = 1000;
912unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
913
914/* Portion of address space to scan in MB */
915unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 916
4b96a29b
PZ
917/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
918unsigned int sysctl_numa_balancing_scan_delay = 1000;
919
598f0ec0
MG
920static unsigned int task_nr_scan_windows(struct task_struct *p)
921{
922 unsigned long rss = 0;
923 unsigned long nr_scan_pages;
924
925 /*
926 * Calculations based on RSS as non-present and empty pages are skipped
927 * by the PTE scanner and NUMA hinting faults should be trapped based
928 * on resident pages
929 */
930 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
931 rss = get_mm_rss(p->mm);
932 if (!rss)
933 rss = nr_scan_pages;
934
935 rss = round_up(rss, nr_scan_pages);
936 return rss / nr_scan_pages;
937}
938
939/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
940#define MAX_SCAN_WINDOW 2560
941
942static unsigned int task_scan_min(struct task_struct *p)
943{
316c1608 944 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
945 unsigned int scan, floor;
946 unsigned int windows = 1;
947
64192658
KT
948 if (scan_size < MAX_SCAN_WINDOW)
949 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
950 floor = 1000 / windows;
951
952 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
953 return max_t(unsigned int, floor, scan);
954}
955
956static unsigned int task_scan_max(struct task_struct *p)
957{
958 unsigned int smin = task_scan_min(p);
959 unsigned int smax;
960
961 /* Watch for min being lower than max due to floor calculations */
962 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
963 return max(smin, smax);
964}
965
0ec8aa00
PZ
966static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
967{
968 rq->nr_numa_running += (p->numa_preferred_nid != -1);
969 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
970}
971
972static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
973{
974 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
975 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
976}
977
8c8a743c
PZ
978struct numa_group {
979 atomic_t refcount;
980
981 spinlock_t lock; /* nr_tasks, tasks */
982 int nr_tasks;
e29cf08b 983 pid_t gid;
4142c3eb 984 int active_nodes;
8c8a743c
PZ
985
986 struct rcu_head rcu;
989348b5 987 unsigned long total_faults;
4142c3eb 988 unsigned long max_faults_cpu;
7e2703e6
RR
989 /*
990 * Faults_cpu is used to decide whether memory should move
991 * towards the CPU. As a consequence, these stats are weighted
992 * more by CPU use than by memory faults.
993 */
50ec8a40 994 unsigned long *faults_cpu;
989348b5 995 unsigned long faults[0];
8c8a743c
PZ
996};
997
be1e4e76
RR
998/* Shared or private faults. */
999#define NR_NUMA_HINT_FAULT_TYPES 2
1000
1001/* Memory and CPU locality */
1002#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1003
1004/* Averaged statistics, and temporary buffers. */
1005#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1006
e29cf08b
MG
1007pid_t task_numa_group_id(struct task_struct *p)
1008{
1009 return p->numa_group ? p->numa_group->gid : 0;
1010}
1011
44dba3d5
IM
1012/*
1013 * The averaged statistics, shared & private, memory & cpu,
1014 * occupy the first half of the array. The second half of the
1015 * array is for current counters, which are averaged into the
1016 * first set by task_numa_placement.
1017 */
1018static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1019{
44dba3d5 1020 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1021}
1022
1023static inline unsigned long task_faults(struct task_struct *p, int nid)
1024{
44dba3d5 1025 if (!p->numa_faults)
ac8e895b
MG
1026 return 0;
1027
44dba3d5
IM
1028 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1029 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1030}
1031
83e1d2cd
MG
1032static inline unsigned long group_faults(struct task_struct *p, int nid)
1033{
1034 if (!p->numa_group)
1035 return 0;
1036
44dba3d5
IM
1037 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1038 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1039}
1040
20e07dea
RR
1041static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1042{
44dba3d5
IM
1043 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1044 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1045}
1046
4142c3eb
RR
1047/*
1048 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1049 * considered part of a numa group's pseudo-interleaving set. Migrations
1050 * between these nodes are slowed down, to allow things to settle down.
1051 */
1052#define ACTIVE_NODE_FRACTION 3
1053
1054static bool numa_is_active_node(int nid, struct numa_group *ng)
1055{
1056 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1057}
1058
6c6b1193
RR
1059/* Handle placement on systems where not all nodes are directly connected. */
1060static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1061 int maxdist, bool task)
1062{
1063 unsigned long score = 0;
1064 int node;
1065
1066 /*
1067 * All nodes are directly connected, and the same distance
1068 * from each other. No need for fancy placement algorithms.
1069 */
1070 if (sched_numa_topology_type == NUMA_DIRECT)
1071 return 0;
1072
1073 /*
1074 * This code is called for each node, introducing N^2 complexity,
1075 * which should be ok given the number of nodes rarely exceeds 8.
1076 */
1077 for_each_online_node(node) {
1078 unsigned long faults;
1079 int dist = node_distance(nid, node);
1080
1081 /*
1082 * The furthest away nodes in the system are not interesting
1083 * for placement; nid was already counted.
1084 */
1085 if (dist == sched_max_numa_distance || node == nid)
1086 continue;
1087
1088 /*
1089 * On systems with a backplane NUMA topology, compare groups
1090 * of nodes, and move tasks towards the group with the most
1091 * memory accesses. When comparing two nodes at distance
1092 * "hoplimit", only nodes closer by than "hoplimit" are part
1093 * of each group. Skip other nodes.
1094 */
1095 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1096 dist > maxdist)
1097 continue;
1098
1099 /* Add up the faults from nearby nodes. */
1100 if (task)
1101 faults = task_faults(p, node);
1102 else
1103 faults = group_faults(p, node);
1104
1105 /*
1106 * On systems with a glueless mesh NUMA topology, there are
1107 * no fixed "groups of nodes". Instead, nodes that are not
1108 * directly connected bounce traffic through intermediate
1109 * nodes; a numa_group can occupy any set of nodes.
1110 * The further away a node is, the less the faults count.
1111 * This seems to result in good task placement.
1112 */
1113 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1114 faults *= (sched_max_numa_distance - dist);
1115 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1116 }
1117
1118 score += faults;
1119 }
1120
1121 return score;
1122}
1123
83e1d2cd
MG
1124/*
1125 * These return the fraction of accesses done by a particular task, or
1126 * task group, on a particular numa node. The group weight is given a
1127 * larger multiplier, in order to group tasks together that are almost
1128 * evenly spread out between numa nodes.
1129 */
7bd95320
RR
1130static inline unsigned long task_weight(struct task_struct *p, int nid,
1131 int dist)
83e1d2cd 1132{
7bd95320 1133 unsigned long faults, total_faults;
83e1d2cd 1134
44dba3d5 1135 if (!p->numa_faults)
83e1d2cd
MG
1136 return 0;
1137
1138 total_faults = p->total_numa_faults;
1139
1140 if (!total_faults)
1141 return 0;
1142
7bd95320 1143 faults = task_faults(p, nid);
6c6b1193
RR
1144 faults += score_nearby_nodes(p, nid, dist, true);
1145
7bd95320 1146 return 1000 * faults / total_faults;
83e1d2cd
MG
1147}
1148
7bd95320
RR
1149static inline unsigned long group_weight(struct task_struct *p, int nid,
1150 int dist)
83e1d2cd 1151{
7bd95320
RR
1152 unsigned long faults, total_faults;
1153
1154 if (!p->numa_group)
1155 return 0;
1156
1157 total_faults = p->numa_group->total_faults;
1158
1159 if (!total_faults)
83e1d2cd
MG
1160 return 0;
1161
7bd95320 1162 faults = group_faults(p, nid);
6c6b1193
RR
1163 faults += score_nearby_nodes(p, nid, dist, false);
1164
7bd95320 1165 return 1000 * faults / total_faults;
83e1d2cd
MG
1166}
1167
10f39042
RR
1168bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1169 int src_nid, int dst_cpu)
1170{
1171 struct numa_group *ng = p->numa_group;
1172 int dst_nid = cpu_to_node(dst_cpu);
1173 int last_cpupid, this_cpupid;
1174
1175 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1176
1177 /*
1178 * Multi-stage node selection is used in conjunction with a periodic
1179 * migration fault to build a temporal task<->page relation. By using
1180 * a two-stage filter we remove short/unlikely relations.
1181 *
1182 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1183 * a task's usage of a particular page (n_p) per total usage of this
1184 * page (n_t) (in a given time-span) to a probability.
1185 *
1186 * Our periodic faults will sample this probability and getting the
1187 * same result twice in a row, given these samples are fully
1188 * independent, is then given by P(n)^2, provided our sample period
1189 * is sufficiently short compared to the usage pattern.
1190 *
1191 * This quadric squishes small probabilities, making it less likely we
1192 * act on an unlikely task<->page relation.
1193 */
1194 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1195 if (!cpupid_pid_unset(last_cpupid) &&
1196 cpupid_to_nid(last_cpupid) != dst_nid)
1197 return false;
1198
1199 /* Always allow migrate on private faults */
1200 if (cpupid_match_pid(p, last_cpupid))
1201 return true;
1202
1203 /* A shared fault, but p->numa_group has not been set up yet. */
1204 if (!ng)
1205 return true;
1206
1207 /*
4142c3eb
RR
1208 * Destination node is much more heavily used than the source
1209 * node? Allow migration.
10f39042 1210 */
4142c3eb
RR
1211 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1212 ACTIVE_NODE_FRACTION)
10f39042
RR
1213 return true;
1214
1215 /*
4142c3eb
RR
1216 * Distribute memory according to CPU & memory use on each node,
1217 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1218 *
1219 * faults_cpu(dst) 3 faults_cpu(src)
1220 * --------------- * - > ---------------
1221 * faults_mem(dst) 4 faults_mem(src)
10f39042 1222 */
4142c3eb
RR
1223 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1224 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1225}
1226
e6628d5b 1227static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1228static unsigned long source_load(int cpu, int type);
1229static unsigned long target_load(int cpu, int type);
ced549fa 1230static unsigned long capacity_of(int cpu);
58d081b5
MG
1231static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1232
fb13c7ee 1233/* Cached statistics for all CPUs within a node */
58d081b5 1234struct numa_stats {
fb13c7ee 1235 unsigned long nr_running;
58d081b5 1236 unsigned long load;
fb13c7ee
MG
1237
1238 /* Total compute capacity of CPUs on a node */
5ef20ca1 1239 unsigned long compute_capacity;
fb13c7ee
MG
1240
1241 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1242 unsigned long task_capacity;
1b6a7495 1243 int has_free_capacity;
58d081b5 1244};
e6628d5b 1245
fb13c7ee
MG
1246/*
1247 * XXX borrowed from update_sg_lb_stats
1248 */
1249static void update_numa_stats(struct numa_stats *ns, int nid)
1250{
83d7f242
RR
1251 int smt, cpu, cpus = 0;
1252 unsigned long capacity;
fb13c7ee
MG
1253
1254 memset(ns, 0, sizeof(*ns));
1255 for_each_cpu(cpu, cpumask_of_node(nid)) {
1256 struct rq *rq = cpu_rq(cpu);
1257
1258 ns->nr_running += rq->nr_running;
1259 ns->load += weighted_cpuload(cpu);
ced549fa 1260 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1261
1262 cpus++;
fb13c7ee
MG
1263 }
1264
5eca82a9
PZ
1265 /*
1266 * If we raced with hotplug and there are no CPUs left in our mask
1267 * the @ns structure is NULL'ed and task_numa_compare() will
1268 * not find this node attractive.
1269 *
1b6a7495
NP
1270 * We'll either bail at !has_free_capacity, or we'll detect a huge
1271 * imbalance and bail there.
5eca82a9
PZ
1272 */
1273 if (!cpus)
1274 return;
1275
83d7f242
RR
1276 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1277 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1278 capacity = cpus / smt; /* cores */
1279
1280 ns->task_capacity = min_t(unsigned, capacity,
1281 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1282 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1283}
1284
58d081b5
MG
1285struct task_numa_env {
1286 struct task_struct *p;
e6628d5b 1287
58d081b5
MG
1288 int src_cpu, src_nid;
1289 int dst_cpu, dst_nid;
e6628d5b 1290
58d081b5 1291 struct numa_stats src_stats, dst_stats;
e6628d5b 1292
40ea2b42 1293 int imbalance_pct;
7bd95320 1294 int dist;
fb13c7ee
MG
1295
1296 struct task_struct *best_task;
1297 long best_imp;
58d081b5
MG
1298 int best_cpu;
1299};
1300
fb13c7ee
MG
1301static void task_numa_assign(struct task_numa_env *env,
1302 struct task_struct *p, long imp)
1303{
1304 if (env->best_task)
1305 put_task_struct(env->best_task);
bac78573
ON
1306 if (p)
1307 get_task_struct(p);
fb13c7ee
MG
1308
1309 env->best_task = p;
1310 env->best_imp = imp;
1311 env->best_cpu = env->dst_cpu;
1312}
1313
28a21745 1314static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1315 struct task_numa_env *env)
1316{
e4991b24
RR
1317 long imb, old_imb;
1318 long orig_src_load, orig_dst_load;
28a21745
RR
1319 long src_capacity, dst_capacity;
1320
1321 /*
1322 * The load is corrected for the CPU capacity available on each node.
1323 *
1324 * src_load dst_load
1325 * ------------ vs ---------
1326 * src_capacity dst_capacity
1327 */
1328 src_capacity = env->src_stats.compute_capacity;
1329 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1330
1331 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1332 if (dst_load < src_load)
1333 swap(dst_load, src_load);
e63da036
RR
1334
1335 /* Is the difference below the threshold? */
e4991b24
RR
1336 imb = dst_load * src_capacity * 100 -
1337 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1338 if (imb <= 0)
1339 return false;
1340
1341 /*
1342 * The imbalance is above the allowed threshold.
e4991b24 1343 * Compare it with the old imbalance.
e63da036 1344 */
28a21745 1345 orig_src_load = env->src_stats.load;
e4991b24 1346 orig_dst_load = env->dst_stats.load;
28a21745 1347
e4991b24
RR
1348 if (orig_dst_load < orig_src_load)
1349 swap(orig_dst_load, orig_src_load);
e63da036 1350
e4991b24
RR
1351 old_imb = orig_dst_load * src_capacity * 100 -
1352 orig_src_load * dst_capacity * env->imbalance_pct;
1353
1354 /* Would this change make things worse? */
1355 return (imb > old_imb);
e63da036
RR
1356}
1357
fb13c7ee
MG
1358/*
1359 * This checks if the overall compute and NUMA accesses of the system would
1360 * be improved if the source tasks was migrated to the target dst_cpu taking
1361 * into account that it might be best if task running on the dst_cpu should
1362 * be exchanged with the source task
1363 */
887c290e
RR
1364static void task_numa_compare(struct task_numa_env *env,
1365 long taskimp, long groupimp)
fb13c7ee
MG
1366{
1367 struct rq *src_rq = cpu_rq(env->src_cpu);
1368 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1369 struct task_struct *cur;
28a21745 1370 long src_load, dst_load;
fb13c7ee 1371 long load;
1c5d3eb3 1372 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1373 long moveimp = imp;
7bd95320 1374 int dist = env->dist;
fb13c7ee
MG
1375
1376 rcu_read_lock();
bac78573
ON
1377 cur = task_rcu_dereference(&dst_rq->curr);
1378 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1379 cur = NULL;
1380
7af68335
PZ
1381 /*
1382 * Because we have preemption enabled we can get migrated around and
1383 * end try selecting ourselves (current == env->p) as a swap candidate.
1384 */
1385 if (cur == env->p)
1386 goto unlock;
1387
fb13c7ee
MG
1388 /*
1389 * "imp" is the fault differential for the source task between the
1390 * source and destination node. Calculate the total differential for
1391 * the source task and potential destination task. The more negative
1392 * the value is, the more rmeote accesses that would be expected to
1393 * be incurred if the tasks were swapped.
1394 */
1395 if (cur) {
1396 /* Skip this swap candidate if cannot move to the source cpu */
1397 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1398 goto unlock;
1399
887c290e
RR
1400 /*
1401 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1402 * in any group then look only at task weights.
887c290e 1403 */
ca28aa53 1404 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1405 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1406 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1407 /*
1408 * Add some hysteresis to prevent swapping the
1409 * tasks within a group over tiny differences.
1410 */
1411 if (cur->numa_group)
1412 imp -= imp/16;
887c290e 1413 } else {
ca28aa53
RR
1414 /*
1415 * Compare the group weights. If a task is all by
1416 * itself (not part of a group), use the task weight
1417 * instead.
1418 */
ca28aa53 1419 if (cur->numa_group)
7bd95320
RR
1420 imp += group_weight(cur, env->src_nid, dist) -
1421 group_weight(cur, env->dst_nid, dist);
ca28aa53 1422 else
7bd95320
RR
1423 imp += task_weight(cur, env->src_nid, dist) -
1424 task_weight(cur, env->dst_nid, dist);
887c290e 1425 }
fb13c7ee
MG
1426 }
1427
0132c3e1 1428 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1429 goto unlock;
1430
1431 if (!cur) {
1432 /* Is there capacity at our destination? */
b932c03c 1433 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1434 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1435 goto unlock;
1436
1437 goto balance;
1438 }
1439
1440 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1441 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1442 dst_rq->nr_running == 1)
fb13c7ee
MG
1443 goto assign;
1444
1445 /*
1446 * In the overloaded case, try and keep the load balanced.
1447 */
1448balance:
e720fff6
PZ
1449 load = task_h_load(env->p);
1450 dst_load = env->dst_stats.load + load;
1451 src_load = env->src_stats.load - load;
fb13c7ee 1452
0132c3e1
RR
1453 if (moveimp > imp && moveimp > env->best_imp) {
1454 /*
1455 * If the improvement from just moving env->p direction is
1456 * better than swapping tasks around, check if a move is
1457 * possible. Store a slightly smaller score than moveimp,
1458 * so an actually idle CPU will win.
1459 */
1460 if (!load_too_imbalanced(src_load, dst_load, env)) {
1461 imp = moveimp - 1;
1462 cur = NULL;
1463 goto assign;
1464 }
1465 }
1466
1467 if (imp <= env->best_imp)
1468 goto unlock;
1469
fb13c7ee 1470 if (cur) {
e720fff6
PZ
1471 load = task_h_load(cur);
1472 dst_load -= load;
1473 src_load += load;
fb13c7ee
MG
1474 }
1475
28a21745 1476 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1477 goto unlock;
1478
ba7e5a27
RR
1479 /*
1480 * One idle CPU per node is evaluated for a task numa move.
1481 * Call select_idle_sibling to maybe find a better one.
1482 */
1483 if (!cur)
1484 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1485
fb13c7ee
MG
1486assign:
1487 task_numa_assign(env, cur, imp);
1488unlock:
1489 rcu_read_unlock();
1490}
1491
887c290e
RR
1492static void task_numa_find_cpu(struct task_numa_env *env,
1493 long taskimp, long groupimp)
2c8a50aa
MG
1494{
1495 int cpu;
1496
1497 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1498 /* Skip this CPU if the source task cannot migrate */
1499 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1500 continue;
1501
1502 env->dst_cpu = cpu;
887c290e 1503 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1504 }
1505}
1506
6f9aad0b
RR
1507/* Only move tasks to a NUMA node less busy than the current node. */
1508static bool numa_has_capacity(struct task_numa_env *env)
1509{
1510 struct numa_stats *src = &env->src_stats;
1511 struct numa_stats *dst = &env->dst_stats;
1512
1513 if (src->has_free_capacity && !dst->has_free_capacity)
1514 return false;
1515
1516 /*
1517 * Only consider a task move if the source has a higher load
1518 * than the destination, corrected for CPU capacity on each node.
1519 *
1520 * src->load dst->load
1521 * --------------------- vs ---------------------
1522 * src->compute_capacity dst->compute_capacity
1523 */
44dcb04f
SD
1524 if (src->load * dst->compute_capacity * env->imbalance_pct >
1525
1526 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1527 return true;
1528
1529 return false;
1530}
1531
58d081b5
MG
1532static int task_numa_migrate(struct task_struct *p)
1533{
58d081b5
MG
1534 struct task_numa_env env = {
1535 .p = p,
fb13c7ee 1536
58d081b5 1537 .src_cpu = task_cpu(p),
b32e86b4 1538 .src_nid = task_node(p),
fb13c7ee
MG
1539
1540 .imbalance_pct = 112,
1541
1542 .best_task = NULL,
1543 .best_imp = 0,
4142c3eb 1544 .best_cpu = -1,
58d081b5
MG
1545 };
1546 struct sched_domain *sd;
887c290e 1547 unsigned long taskweight, groupweight;
7bd95320 1548 int nid, ret, dist;
887c290e 1549 long taskimp, groupimp;
e6628d5b 1550
58d081b5 1551 /*
fb13c7ee
MG
1552 * Pick the lowest SD_NUMA domain, as that would have the smallest
1553 * imbalance and would be the first to start moving tasks about.
1554 *
1555 * And we want to avoid any moving of tasks about, as that would create
1556 * random movement of tasks -- counter the numa conditions we're trying
1557 * to satisfy here.
58d081b5
MG
1558 */
1559 rcu_read_lock();
fb13c7ee 1560 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1561 if (sd)
1562 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1563 rcu_read_unlock();
1564
46a73e8a
RR
1565 /*
1566 * Cpusets can break the scheduler domain tree into smaller
1567 * balance domains, some of which do not cross NUMA boundaries.
1568 * Tasks that are "trapped" in such domains cannot be migrated
1569 * elsewhere, so there is no point in (re)trying.
1570 */
1571 if (unlikely(!sd)) {
de1b301a 1572 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1573 return -EINVAL;
1574 }
1575
2c8a50aa 1576 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1577 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1578 taskweight = task_weight(p, env.src_nid, dist);
1579 groupweight = group_weight(p, env.src_nid, dist);
1580 update_numa_stats(&env.src_stats, env.src_nid);
1581 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1582 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1583 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1584
a43455a1 1585 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1586 if (numa_has_capacity(&env))
1587 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1588
9de05d48
RR
1589 /*
1590 * Look at other nodes in these cases:
1591 * - there is no space available on the preferred_nid
1592 * - the task is part of a numa_group that is interleaved across
1593 * multiple NUMA nodes; in order to better consolidate the group,
1594 * we need to check other locations.
1595 */
4142c3eb 1596 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1597 for_each_online_node(nid) {
1598 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1599 continue;
58d081b5 1600
7bd95320 1601 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1602 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1603 dist != env.dist) {
1604 taskweight = task_weight(p, env.src_nid, dist);
1605 groupweight = group_weight(p, env.src_nid, dist);
1606 }
7bd95320 1607
83e1d2cd 1608 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1609 taskimp = task_weight(p, nid, dist) - taskweight;
1610 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1611 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1612 continue;
1613
7bd95320 1614 env.dist = dist;
2c8a50aa
MG
1615 env.dst_nid = nid;
1616 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1617 if (numa_has_capacity(&env))
1618 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1619 }
1620 }
1621
68d1b02a
RR
1622 /*
1623 * If the task is part of a workload that spans multiple NUMA nodes,
1624 * and is migrating into one of the workload's active nodes, remember
1625 * this node as the task's preferred numa node, so the workload can
1626 * settle down.
1627 * A task that migrated to a second choice node will be better off
1628 * trying for a better one later. Do not set the preferred node here.
1629 */
db015dae 1630 if (p->numa_group) {
4142c3eb
RR
1631 struct numa_group *ng = p->numa_group;
1632
db015dae
RR
1633 if (env.best_cpu == -1)
1634 nid = env.src_nid;
1635 else
1636 nid = env.dst_nid;
1637
4142c3eb 1638 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1639 sched_setnuma(p, env.dst_nid);
1640 }
1641
1642 /* No better CPU than the current one was found. */
1643 if (env.best_cpu == -1)
1644 return -EAGAIN;
0ec8aa00 1645
04bb2f94
RR
1646 /*
1647 * Reset the scan period if the task is being rescheduled on an
1648 * alternative node to recheck if the tasks is now properly placed.
1649 */
1650 p->numa_scan_period = task_scan_min(p);
1651
fb13c7ee 1652 if (env.best_task == NULL) {
286549dc
MG
1653 ret = migrate_task_to(p, env.best_cpu);
1654 if (ret != 0)
1655 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1656 return ret;
1657 }
1658
1659 ret = migrate_swap(p, env.best_task);
286549dc
MG
1660 if (ret != 0)
1661 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1662 put_task_struct(env.best_task);
1663 return ret;
e6628d5b
MG
1664}
1665
6b9a7460
MG
1666/* Attempt to migrate a task to a CPU on the preferred node. */
1667static void numa_migrate_preferred(struct task_struct *p)
1668{
5085e2a3
RR
1669 unsigned long interval = HZ;
1670
2739d3ee 1671 /* This task has no NUMA fault statistics yet */
44dba3d5 1672 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1673 return;
1674
2739d3ee 1675 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1676 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1677 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1678
1679 /* Success if task is already running on preferred CPU */
de1b301a 1680 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1681 return;
1682
1683 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1684 task_numa_migrate(p);
6b9a7460
MG
1685}
1686
20e07dea 1687/*
4142c3eb 1688 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1689 * tracking the nodes from which NUMA hinting faults are triggered. This can
1690 * be different from the set of nodes where the workload's memory is currently
1691 * located.
20e07dea 1692 */
4142c3eb 1693static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1694{
1695 unsigned long faults, max_faults = 0;
4142c3eb 1696 int nid, active_nodes = 0;
20e07dea
RR
1697
1698 for_each_online_node(nid) {
1699 faults = group_faults_cpu(numa_group, nid);
1700 if (faults > max_faults)
1701 max_faults = faults;
1702 }
1703
1704 for_each_online_node(nid) {
1705 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1706 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1707 active_nodes++;
20e07dea 1708 }
4142c3eb
RR
1709
1710 numa_group->max_faults_cpu = max_faults;
1711 numa_group->active_nodes = active_nodes;
20e07dea
RR
1712}
1713
04bb2f94
RR
1714/*
1715 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1716 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1717 * period will be for the next scan window. If local/(local+remote) ratio is
1718 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1719 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1720 */
1721#define NUMA_PERIOD_SLOTS 10
a22b4b01 1722#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1723
1724/*
1725 * Increase the scan period (slow down scanning) if the majority of
1726 * our memory is already on our local node, or if the majority of
1727 * the page accesses are shared with other processes.
1728 * Otherwise, decrease the scan period.
1729 */
1730static void update_task_scan_period(struct task_struct *p,
1731 unsigned long shared, unsigned long private)
1732{
1733 unsigned int period_slot;
1734 int ratio;
1735 int diff;
1736
1737 unsigned long remote = p->numa_faults_locality[0];
1738 unsigned long local = p->numa_faults_locality[1];
1739
1740 /*
1741 * If there were no record hinting faults then either the task is
1742 * completely idle or all activity is areas that are not of interest
074c2381
MG
1743 * to automatic numa balancing. Related to that, if there were failed
1744 * migration then it implies we are migrating too quickly or the local
1745 * node is overloaded. In either case, scan slower
04bb2f94 1746 */
074c2381 1747 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1748 p->numa_scan_period = min(p->numa_scan_period_max,
1749 p->numa_scan_period << 1);
1750
1751 p->mm->numa_next_scan = jiffies +
1752 msecs_to_jiffies(p->numa_scan_period);
1753
1754 return;
1755 }
1756
1757 /*
1758 * Prepare to scale scan period relative to the current period.
1759 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1760 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1761 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1762 */
1763 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1764 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1765 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1766 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1767 if (!slot)
1768 slot = 1;
1769 diff = slot * period_slot;
1770 } else {
1771 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1772
1773 /*
1774 * Scale scan rate increases based on sharing. There is an
1775 * inverse relationship between the degree of sharing and
1776 * the adjustment made to the scanning period. Broadly
1777 * speaking the intent is that there is little point
1778 * scanning faster if shared accesses dominate as it may
1779 * simply bounce migrations uselessly
1780 */
2847c90e 1781 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1782 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1783 }
1784
1785 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1786 task_scan_min(p), task_scan_max(p));
1787 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1788}
1789
7e2703e6
RR
1790/*
1791 * Get the fraction of time the task has been running since the last
1792 * NUMA placement cycle. The scheduler keeps similar statistics, but
1793 * decays those on a 32ms period, which is orders of magnitude off
1794 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1795 * stats only if the task is so new there are no NUMA statistics yet.
1796 */
1797static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1798{
1799 u64 runtime, delta, now;
1800 /* Use the start of this time slice to avoid calculations. */
1801 now = p->se.exec_start;
1802 runtime = p->se.sum_exec_runtime;
1803
1804 if (p->last_task_numa_placement) {
1805 delta = runtime - p->last_sum_exec_runtime;
1806 *period = now - p->last_task_numa_placement;
1807 } else {
9d89c257
YD
1808 delta = p->se.avg.load_sum / p->se.load.weight;
1809 *period = LOAD_AVG_MAX;
7e2703e6
RR
1810 }
1811
1812 p->last_sum_exec_runtime = runtime;
1813 p->last_task_numa_placement = now;
1814
1815 return delta;
1816}
1817
54009416
RR
1818/*
1819 * Determine the preferred nid for a task in a numa_group. This needs to
1820 * be done in a way that produces consistent results with group_weight,
1821 * otherwise workloads might not converge.
1822 */
1823static int preferred_group_nid(struct task_struct *p, int nid)
1824{
1825 nodemask_t nodes;
1826 int dist;
1827
1828 /* Direct connections between all NUMA nodes. */
1829 if (sched_numa_topology_type == NUMA_DIRECT)
1830 return nid;
1831
1832 /*
1833 * On a system with glueless mesh NUMA topology, group_weight
1834 * scores nodes according to the number of NUMA hinting faults on
1835 * both the node itself, and on nearby nodes.
1836 */
1837 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1838 unsigned long score, max_score = 0;
1839 int node, max_node = nid;
1840
1841 dist = sched_max_numa_distance;
1842
1843 for_each_online_node(node) {
1844 score = group_weight(p, node, dist);
1845 if (score > max_score) {
1846 max_score = score;
1847 max_node = node;
1848 }
1849 }
1850 return max_node;
1851 }
1852
1853 /*
1854 * Finding the preferred nid in a system with NUMA backplane
1855 * interconnect topology is more involved. The goal is to locate
1856 * tasks from numa_groups near each other in the system, and
1857 * untangle workloads from different sides of the system. This requires
1858 * searching down the hierarchy of node groups, recursively searching
1859 * inside the highest scoring group of nodes. The nodemask tricks
1860 * keep the complexity of the search down.
1861 */
1862 nodes = node_online_map;
1863 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1864 unsigned long max_faults = 0;
81907478 1865 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1866 int a, b;
1867
1868 /* Are there nodes at this distance from each other? */
1869 if (!find_numa_distance(dist))
1870 continue;
1871
1872 for_each_node_mask(a, nodes) {
1873 unsigned long faults = 0;
1874 nodemask_t this_group;
1875 nodes_clear(this_group);
1876
1877 /* Sum group's NUMA faults; includes a==b case. */
1878 for_each_node_mask(b, nodes) {
1879 if (node_distance(a, b) < dist) {
1880 faults += group_faults(p, b);
1881 node_set(b, this_group);
1882 node_clear(b, nodes);
1883 }
1884 }
1885
1886 /* Remember the top group. */
1887 if (faults > max_faults) {
1888 max_faults = faults;
1889 max_group = this_group;
1890 /*
1891 * subtle: at the smallest distance there is
1892 * just one node left in each "group", the
1893 * winner is the preferred nid.
1894 */
1895 nid = a;
1896 }
1897 }
1898 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
1899 if (!max_faults)
1900 break;
54009416
RR
1901 nodes = max_group;
1902 }
1903 return nid;
1904}
1905
cbee9f88
PZ
1906static void task_numa_placement(struct task_struct *p)
1907{
83e1d2cd
MG
1908 int seq, nid, max_nid = -1, max_group_nid = -1;
1909 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1910 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1911 unsigned long total_faults;
1912 u64 runtime, period;
7dbd13ed 1913 spinlock_t *group_lock = NULL;
cbee9f88 1914
7e5a2c17
JL
1915 /*
1916 * The p->mm->numa_scan_seq field gets updated without
1917 * exclusive access. Use READ_ONCE() here to ensure
1918 * that the field is read in a single access:
1919 */
316c1608 1920 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1921 if (p->numa_scan_seq == seq)
1922 return;
1923 p->numa_scan_seq = seq;
598f0ec0 1924 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1925
7e2703e6
RR
1926 total_faults = p->numa_faults_locality[0] +
1927 p->numa_faults_locality[1];
1928 runtime = numa_get_avg_runtime(p, &period);
1929
7dbd13ed
MG
1930 /* If the task is part of a group prevent parallel updates to group stats */
1931 if (p->numa_group) {
1932 group_lock = &p->numa_group->lock;
60e69eed 1933 spin_lock_irq(group_lock);
7dbd13ed
MG
1934 }
1935
688b7585
MG
1936 /* Find the node with the highest number of faults */
1937 for_each_online_node(nid) {
44dba3d5
IM
1938 /* Keep track of the offsets in numa_faults array */
1939 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 1940 unsigned long faults = 0, group_faults = 0;
44dba3d5 1941 int priv;
745d6147 1942
be1e4e76 1943 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1944 long diff, f_diff, f_weight;
8c8a743c 1945
44dba3d5
IM
1946 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1947 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1948 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1949 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 1950
ac8e895b 1951 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
1952 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1953 fault_types[priv] += p->numa_faults[membuf_idx];
1954 p->numa_faults[membuf_idx] = 0;
fb13c7ee 1955
7e2703e6
RR
1956 /*
1957 * Normalize the faults_from, so all tasks in a group
1958 * count according to CPU use, instead of by the raw
1959 * number of faults. Tasks with little runtime have
1960 * little over-all impact on throughput, and thus their
1961 * faults are less important.
1962 */
1963 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 1964 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 1965 (total_faults + 1);
44dba3d5
IM
1966 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1967 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 1968
44dba3d5
IM
1969 p->numa_faults[mem_idx] += diff;
1970 p->numa_faults[cpu_idx] += f_diff;
1971 faults += p->numa_faults[mem_idx];
83e1d2cd 1972 p->total_numa_faults += diff;
8c8a743c 1973 if (p->numa_group) {
44dba3d5
IM
1974 /*
1975 * safe because we can only change our own group
1976 *
1977 * mem_idx represents the offset for a given
1978 * nid and priv in a specific region because it
1979 * is at the beginning of the numa_faults array.
1980 */
1981 p->numa_group->faults[mem_idx] += diff;
1982 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 1983 p->numa_group->total_faults += diff;
44dba3d5 1984 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 1985 }
ac8e895b
MG
1986 }
1987
688b7585
MG
1988 if (faults > max_faults) {
1989 max_faults = faults;
1990 max_nid = nid;
1991 }
83e1d2cd
MG
1992
1993 if (group_faults > max_group_faults) {
1994 max_group_faults = group_faults;
1995 max_group_nid = nid;
1996 }
1997 }
1998
04bb2f94
RR
1999 update_task_scan_period(p, fault_types[0], fault_types[1]);
2000
7dbd13ed 2001 if (p->numa_group) {
4142c3eb 2002 numa_group_count_active_nodes(p->numa_group);
60e69eed 2003 spin_unlock_irq(group_lock);
54009416 2004 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2005 }
2006
bb97fc31
RR
2007 if (max_faults) {
2008 /* Set the new preferred node */
2009 if (max_nid != p->numa_preferred_nid)
2010 sched_setnuma(p, max_nid);
2011
2012 if (task_node(p) != p->numa_preferred_nid)
2013 numa_migrate_preferred(p);
3a7053b3 2014 }
cbee9f88
PZ
2015}
2016
8c8a743c
PZ
2017static inline int get_numa_group(struct numa_group *grp)
2018{
2019 return atomic_inc_not_zero(&grp->refcount);
2020}
2021
2022static inline void put_numa_group(struct numa_group *grp)
2023{
2024 if (atomic_dec_and_test(&grp->refcount))
2025 kfree_rcu(grp, rcu);
2026}
2027
3e6a9418
MG
2028static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2029 int *priv)
8c8a743c
PZ
2030{
2031 struct numa_group *grp, *my_grp;
2032 struct task_struct *tsk;
2033 bool join = false;
2034 int cpu = cpupid_to_cpu(cpupid);
2035 int i;
2036
2037 if (unlikely(!p->numa_group)) {
2038 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2039 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2040
2041 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2042 if (!grp)
2043 return;
2044
2045 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2046 grp->active_nodes = 1;
2047 grp->max_faults_cpu = 0;
8c8a743c 2048 spin_lock_init(&grp->lock);
e29cf08b 2049 grp->gid = p->pid;
50ec8a40 2050 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2051 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2052 nr_node_ids;
8c8a743c 2053
be1e4e76 2054 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2055 grp->faults[i] = p->numa_faults[i];
8c8a743c 2056
989348b5 2057 grp->total_faults = p->total_numa_faults;
83e1d2cd 2058
8c8a743c
PZ
2059 grp->nr_tasks++;
2060 rcu_assign_pointer(p->numa_group, grp);
2061 }
2062
2063 rcu_read_lock();
316c1608 2064 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2065
2066 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2067 goto no_join;
8c8a743c
PZ
2068
2069 grp = rcu_dereference(tsk->numa_group);
2070 if (!grp)
3354781a 2071 goto no_join;
8c8a743c
PZ
2072
2073 my_grp = p->numa_group;
2074 if (grp == my_grp)
3354781a 2075 goto no_join;
8c8a743c
PZ
2076
2077 /*
2078 * Only join the other group if its bigger; if we're the bigger group,
2079 * the other task will join us.
2080 */
2081 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2082 goto no_join;
8c8a743c
PZ
2083
2084 /*
2085 * Tie-break on the grp address.
2086 */
2087 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2088 goto no_join;
8c8a743c 2089
dabe1d99
RR
2090 /* Always join threads in the same process. */
2091 if (tsk->mm == current->mm)
2092 join = true;
2093
2094 /* Simple filter to avoid false positives due to PID collisions */
2095 if (flags & TNF_SHARED)
2096 join = true;
8c8a743c 2097
3e6a9418
MG
2098 /* Update priv based on whether false sharing was detected */
2099 *priv = !join;
2100
dabe1d99 2101 if (join && !get_numa_group(grp))
3354781a 2102 goto no_join;
8c8a743c 2103
8c8a743c
PZ
2104 rcu_read_unlock();
2105
2106 if (!join)
2107 return;
2108
60e69eed
MG
2109 BUG_ON(irqs_disabled());
2110 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2111
be1e4e76 2112 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2113 my_grp->faults[i] -= p->numa_faults[i];
2114 grp->faults[i] += p->numa_faults[i];
8c8a743c 2115 }
989348b5
MG
2116 my_grp->total_faults -= p->total_numa_faults;
2117 grp->total_faults += p->total_numa_faults;
8c8a743c 2118
8c8a743c
PZ
2119 my_grp->nr_tasks--;
2120 grp->nr_tasks++;
2121
2122 spin_unlock(&my_grp->lock);
60e69eed 2123 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2124
2125 rcu_assign_pointer(p->numa_group, grp);
2126
2127 put_numa_group(my_grp);
3354781a
PZ
2128 return;
2129
2130no_join:
2131 rcu_read_unlock();
2132 return;
8c8a743c
PZ
2133}
2134
2135void task_numa_free(struct task_struct *p)
2136{
2137 struct numa_group *grp = p->numa_group;
44dba3d5 2138 void *numa_faults = p->numa_faults;
e9dd685c
SR
2139 unsigned long flags;
2140 int i;
8c8a743c
PZ
2141
2142 if (grp) {
e9dd685c 2143 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2144 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2145 grp->faults[i] -= p->numa_faults[i];
989348b5 2146 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2147
8c8a743c 2148 grp->nr_tasks--;
e9dd685c 2149 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2150 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2151 put_numa_group(grp);
2152 }
2153
44dba3d5 2154 p->numa_faults = NULL;
82727018 2155 kfree(numa_faults);
8c8a743c
PZ
2156}
2157
cbee9f88
PZ
2158/*
2159 * Got a PROT_NONE fault for a page on @node.
2160 */
58b46da3 2161void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2162{
2163 struct task_struct *p = current;
6688cc05 2164 bool migrated = flags & TNF_MIGRATED;
58b46da3 2165 int cpu_node = task_node(current);
792568ec 2166 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2167 struct numa_group *ng;
ac8e895b 2168 int priv;
cbee9f88 2169
2a595721 2170 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2171 return;
2172
9ff1d9ff
MG
2173 /* for example, ksmd faulting in a user's mm */
2174 if (!p->mm)
2175 return;
2176
f809ca9a 2177 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2178 if (unlikely(!p->numa_faults)) {
2179 int size = sizeof(*p->numa_faults) *
be1e4e76 2180 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2181
44dba3d5
IM
2182 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2183 if (!p->numa_faults)
f809ca9a 2184 return;
745d6147 2185
83e1d2cd 2186 p->total_numa_faults = 0;
04bb2f94 2187 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2188 }
cbee9f88 2189
8c8a743c
PZ
2190 /*
2191 * First accesses are treated as private, otherwise consider accesses
2192 * to be private if the accessing pid has not changed
2193 */
2194 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2195 priv = 1;
2196 } else {
2197 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2198 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2199 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2200 }
2201
792568ec
RR
2202 /*
2203 * If a workload spans multiple NUMA nodes, a shared fault that
2204 * occurs wholly within the set of nodes that the workload is
2205 * actively using should be counted as local. This allows the
2206 * scan rate to slow down when a workload has settled down.
2207 */
4142c3eb
RR
2208 ng = p->numa_group;
2209 if (!priv && !local && ng && ng->active_nodes > 1 &&
2210 numa_is_active_node(cpu_node, ng) &&
2211 numa_is_active_node(mem_node, ng))
792568ec
RR
2212 local = 1;
2213
cbee9f88 2214 task_numa_placement(p);
f809ca9a 2215
2739d3ee
RR
2216 /*
2217 * Retry task to preferred node migration periodically, in case it
2218 * case it previously failed, or the scheduler moved us.
2219 */
2220 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2221 numa_migrate_preferred(p);
2222
b32e86b4
IM
2223 if (migrated)
2224 p->numa_pages_migrated += pages;
074c2381
MG
2225 if (flags & TNF_MIGRATE_FAIL)
2226 p->numa_faults_locality[2] += pages;
b32e86b4 2227
44dba3d5
IM
2228 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2229 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2230 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2231}
2232
6e5fb223
PZ
2233static void reset_ptenuma_scan(struct task_struct *p)
2234{
7e5a2c17
JL
2235 /*
2236 * We only did a read acquisition of the mmap sem, so
2237 * p->mm->numa_scan_seq is written to without exclusive access
2238 * and the update is not guaranteed to be atomic. That's not
2239 * much of an issue though, since this is just used for
2240 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2241 * expensive, to avoid any form of compiler optimizations:
2242 */
316c1608 2243 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2244 p->mm->numa_scan_offset = 0;
2245}
2246
cbee9f88
PZ
2247/*
2248 * The expensive part of numa migration is done from task_work context.
2249 * Triggered from task_tick_numa().
2250 */
2251void task_numa_work(struct callback_head *work)
2252{
2253 unsigned long migrate, next_scan, now = jiffies;
2254 struct task_struct *p = current;
2255 struct mm_struct *mm = p->mm;
51170840 2256 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2257 struct vm_area_struct *vma;
9f40604c 2258 unsigned long start, end;
598f0ec0 2259 unsigned long nr_pte_updates = 0;
4620f8c1 2260 long pages, virtpages;
cbee9f88
PZ
2261
2262 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2263
2264 work->next = work; /* protect against double add */
2265 /*
2266 * Who cares about NUMA placement when they're dying.
2267 *
2268 * NOTE: make sure not to dereference p->mm before this check,
2269 * exit_task_work() happens _after_ exit_mm() so we could be called
2270 * without p->mm even though we still had it when we enqueued this
2271 * work.
2272 */
2273 if (p->flags & PF_EXITING)
2274 return;
2275
930aa174 2276 if (!mm->numa_next_scan) {
7e8d16b6
MG
2277 mm->numa_next_scan = now +
2278 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2279 }
2280
cbee9f88
PZ
2281 /*
2282 * Enforce maximal scan/migration frequency..
2283 */
2284 migrate = mm->numa_next_scan;
2285 if (time_before(now, migrate))
2286 return;
2287
598f0ec0
MG
2288 if (p->numa_scan_period == 0) {
2289 p->numa_scan_period_max = task_scan_max(p);
2290 p->numa_scan_period = task_scan_min(p);
2291 }
cbee9f88 2292
fb003b80 2293 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2294 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2295 return;
2296
19a78d11
PZ
2297 /*
2298 * Delay this task enough that another task of this mm will likely win
2299 * the next time around.
2300 */
2301 p->node_stamp += 2 * TICK_NSEC;
2302
9f40604c
MG
2303 start = mm->numa_scan_offset;
2304 pages = sysctl_numa_balancing_scan_size;
2305 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2306 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2307 if (!pages)
2308 return;
cbee9f88 2309
4620f8c1 2310
6e5fb223 2311 down_read(&mm->mmap_sem);
9f40604c 2312 vma = find_vma(mm, start);
6e5fb223
PZ
2313 if (!vma) {
2314 reset_ptenuma_scan(p);
9f40604c 2315 start = 0;
6e5fb223
PZ
2316 vma = mm->mmap;
2317 }
9f40604c 2318 for (; vma; vma = vma->vm_next) {
6b79c57b 2319 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2320 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2321 continue;
6b79c57b 2322 }
6e5fb223 2323
4591ce4f
MG
2324 /*
2325 * Shared library pages mapped by multiple processes are not
2326 * migrated as it is expected they are cache replicated. Avoid
2327 * hinting faults in read-only file-backed mappings or the vdso
2328 * as migrating the pages will be of marginal benefit.
2329 */
2330 if (!vma->vm_mm ||
2331 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2332 continue;
2333
3c67f474
MG
2334 /*
2335 * Skip inaccessible VMAs to avoid any confusion between
2336 * PROT_NONE and NUMA hinting ptes
2337 */
2338 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2339 continue;
4591ce4f 2340
9f40604c
MG
2341 do {
2342 start = max(start, vma->vm_start);
2343 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2344 end = min(end, vma->vm_end);
4620f8c1 2345 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2346
2347 /*
4620f8c1
RR
2348 * Try to scan sysctl_numa_balancing_size worth of
2349 * hpages that have at least one present PTE that
2350 * is not already pte-numa. If the VMA contains
2351 * areas that are unused or already full of prot_numa
2352 * PTEs, scan up to virtpages, to skip through those
2353 * areas faster.
598f0ec0
MG
2354 */
2355 if (nr_pte_updates)
2356 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2357 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2358
9f40604c 2359 start = end;
4620f8c1 2360 if (pages <= 0 || virtpages <= 0)
9f40604c 2361 goto out;
3cf1962c
RR
2362
2363 cond_resched();
9f40604c 2364 } while (end != vma->vm_end);
cbee9f88 2365 }
6e5fb223 2366
9f40604c 2367out:
6e5fb223 2368 /*
c69307d5
PZ
2369 * It is possible to reach the end of the VMA list but the last few
2370 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2371 * would find the !migratable VMA on the next scan but not reset the
2372 * scanner to the start so check it now.
6e5fb223
PZ
2373 */
2374 if (vma)
9f40604c 2375 mm->numa_scan_offset = start;
6e5fb223
PZ
2376 else
2377 reset_ptenuma_scan(p);
2378 up_read(&mm->mmap_sem);
51170840
RR
2379
2380 /*
2381 * Make sure tasks use at least 32x as much time to run other code
2382 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2383 * Usually update_task_scan_period slows down scanning enough; on an
2384 * overloaded system we need to limit overhead on a per task basis.
2385 */
2386 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2387 u64 diff = p->se.sum_exec_runtime - runtime;
2388 p->node_stamp += 32 * diff;
2389 }
cbee9f88
PZ
2390}
2391
2392/*
2393 * Drive the periodic memory faults..
2394 */
2395void task_tick_numa(struct rq *rq, struct task_struct *curr)
2396{
2397 struct callback_head *work = &curr->numa_work;
2398 u64 period, now;
2399
2400 /*
2401 * We don't care about NUMA placement if we don't have memory.
2402 */
2403 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2404 return;
2405
2406 /*
2407 * Using runtime rather than walltime has the dual advantage that
2408 * we (mostly) drive the selection from busy threads and that the
2409 * task needs to have done some actual work before we bother with
2410 * NUMA placement.
2411 */
2412 now = curr->se.sum_exec_runtime;
2413 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2414
25b3e5a3 2415 if (now > curr->node_stamp + period) {
4b96a29b 2416 if (!curr->node_stamp)
598f0ec0 2417 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2418 curr->node_stamp += period;
cbee9f88
PZ
2419
2420 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2421 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2422 task_work_add(curr, work, true);
2423 }
2424 }
2425}
2426#else
2427static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2428{
2429}
0ec8aa00
PZ
2430
2431static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2432{
2433}
2434
2435static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2436{
2437}
cbee9f88
PZ
2438#endif /* CONFIG_NUMA_BALANCING */
2439
30cfdcfc
DA
2440static void
2441account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2442{
2443 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2444 if (!parent_entity(se))
029632fb 2445 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2446#ifdef CONFIG_SMP
0ec8aa00
PZ
2447 if (entity_is_task(se)) {
2448 struct rq *rq = rq_of(cfs_rq);
2449
2450 account_numa_enqueue(rq, task_of(se));
2451 list_add(&se->group_node, &rq->cfs_tasks);
2452 }
367456c7 2453#endif
30cfdcfc 2454 cfs_rq->nr_running++;
30cfdcfc
DA
2455}
2456
2457static void
2458account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2459{
2460 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2461 if (!parent_entity(se))
029632fb 2462 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2463#ifdef CONFIG_SMP
0ec8aa00
PZ
2464 if (entity_is_task(se)) {
2465 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2466 list_del_init(&se->group_node);
0ec8aa00 2467 }
bfdb198c 2468#endif
30cfdcfc 2469 cfs_rq->nr_running--;
30cfdcfc
DA
2470}
2471
3ff6dcac
YZ
2472#ifdef CONFIG_FAIR_GROUP_SCHED
2473# ifdef CONFIG_SMP
ea1dc6fc 2474static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2475{
ea1dc6fc 2476 long tg_weight, load, shares;
cf5f0acf
PZ
2477
2478 /*
ea1dc6fc
PZ
2479 * This really should be: cfs_rq->avg.load_avg, but instead we use
2480 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2481 * the shares for small weight interactive tasks.
cf5f0acf 2482 */
ea1dc6fc 2483 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2484
ea1dc6fc 2485 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2486
ea1dc6fc
PZ
2487 /* Ensure tg_weight >= load */
2488 tg_weight -= cfs_rq->tg_load_avg_contrib;
2489 tg_weight += load;
3ff6dcac 2490
3ff6dcac 2491 shares = (tg->shares * load);
cf5f0acf
PZ
2492 if (tg_weight)
2493 shares /= tg_weight;
3ff6dcac
YZ
2494
2495 if (shares < MIN_SHARES)
2496 shares = MIN_SHARES;
2497 if (shares > tg->shares)
2498 shares = tg->shares;
2499
2500 return shares;
2501}
3ff6dcac 2502# else /* CONFIG_SMP */
6d5ab293 2503static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2504{
2505 return tg->shares;
2506}
3ff6dcac 2507# endif /* CONFIG_SMP */
ea1dc6fc 2508
2069dd75
PZ
2509static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2510 unsigned long weight)
2511{
19e5eebb
PT
2512 if (se->on_rq) {
2513 /* commit outstanding execution time */
2514 if (cfs_rq->curr == se)
2515 update_curr(cfs_rq);
2069dd75 2516 account_entity_dequeue(cfs_rq, se);
19e5eebb 2517 }
2069dd75
PZ
2518
2519 update_load_set(&se->load, weight);
2520
2521 if (se->on_rq)
2522 account_entity_enqueue(cfs_rq, se);
2523}
2524
82958366
PT
2525static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2526
6d5ab293 2527static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2528{
2529 struct task_group *tg;
2530 struct sched_entity *se;
3ff6dcac 2531 long shares;
2069dd75 2532
2069dd75
PZ
2533 tg = cfs_rq->tg;
2534 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2535 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2536 return;
3ff6dcac
YZ
2537#ifndef CONFIG_SMP
2538 if (likely(se->load.weight == tg->shares))
2539 return;
2540#endif
6d5ab293 2541 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2542
2543 reweight_entity(cfs_rq_of(se), se, shares);
2544}
2545#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2546static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2547{
2548}
2549#endif /* CONFIG_FAIR_GROUP_SCHED */
2550
141965c7 2551#ifdef CONFIG_SMP
5b51f2f8
PT
2552/* Precomputed fixed inverse multiplies for multiplication by y^n */
2553static const u32 runnable_avg_yN_inv[] = {
2554 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2555 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2556 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2557 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2558 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2559 0x85aac367, 0x82cd8698,
2560};
2561
2562/*
2563 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2564 * over-estimates when re-combining.
2565 */
2566static const u32 runnable_avg_yN_sum[] = {
2567 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2568 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2569 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2570};
2571
7b20b916
YD
2572/*
2573 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2574 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2575 * were generated:
2576 */
2577static const u32 __accumulated_sum_N32[] = {
2578 0, 23371, 35056, 40899, 43820, 45281,
2579 46011, 46376, 46559, 46650, 46696, 46719,
2580};
2581
9d85f21c
PT
2582/*
2583 * Approximate:
2584 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2585 */
2586static __always_inline u64 decay_load(u64 val, u64 n)
2587{
5b51f2f8
PT
2588 unsigned int local_n;
2589
2590 if (!n)
2591 return val;
2592 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2593 return 0;
2594
2595 /* after bounds checking we can collapse to 32-bit */
2596 local_n = n;
2597
2598 /*
2599 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2600 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2601 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2602 *
2603 * To achieve constant time decay_load.
2604 */
2605 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2606 val >>= local_n / LOAD_AVG_PERIOD;
2607 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2608 }
2609
9d89c257
YD
2610 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2611 return val;
5b51f2f8
PT
2612}
2613
2614/*
2615 * For updates fully spanning n periods, the contribution to runnable
2616 * average will be: \Sum 1024*y^n
2617 *
2618 * We can compute this reasonably efficiently by combining:
2619 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2620 */
2621static u32 __compute_runnable_contrib(u64 n)
2622{
2623 u32 contrib = 0;
2624
2625 if (likely(n <= LOAD_AVG_PERIOD))
2626 return runnable_avg_yN_sum[n];
2627 else if (unlikely(n >= LOAD_AVG_MAX_N))
2628 return LOAD_AVG_MAX;
2629
7b20b916
YD
2630 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2631 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2632 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2633 contrib = decay_load(contrib, n);
2634 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2635}
2636
54a21385 2637#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2638
9d85f21c
PT
2639/*
2640 * We can represent the historical contribution to runnable average as the
2641 * coefficients of a geometric series. To do this we sub-divide our runnable
2642 * history into segments of approximately 1ms (1024us); label the segment that
2643 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2644 *
2645 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2646 * p0 p1 p2
2647 * (now) (~1ms ago) (~2ms ago)
2648 *
2649 * Let u_i denote the fraction of p_i that the entity was runnable.
2650 *
2651 * We then designate the fractions u_i as our co-efficients, yielding the
2652 * following representation of historical load:
2653 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2654 *
2655 * We choose y based on the with of a reasonably scheduling period, fixing:
2656 * y^32 = 0.5
2657 *
2658 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2659 * approximately half as much as the contribution to load within the last ms
2660 * (u_0).
2661 *
2662 * When a period "rolls over" and we have new u_0`, multiplying the previous
2663 * sum again by y is sufficient to update:
2664 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2665 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2666 */
9d89c257
YD
2667static __always_inline int
2668__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2669 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2670{
e0f5f3af 2671 u64 delta, scaled_delta, periods;
9d89c257 2672 u32 contrib;
6115c793 2673 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2674 unsigned long scale_freq, scale_cpu;
9d85f21c 2675
9d89c257 2676 delta = now - sa->last_update_time;
9d85f21c
PT
2677 /*
2678 * This should only happen when time goes backwards, which it
2679 * unfortunately does during sched clock init when we swap over to TSC.
2680 */
2681 if ((s64)delta < 0) {
9d89c257 2682 sa->last_update_time = now;
9d85f21c
PT
2683 return 0;
2684 }
2685
2686 /*
2687 * Use 1024ns as the unit of measurement since it's a reasonable
2688 * approximation of 1us and fast to compute.
2689 */
2690 delta >>= 10;
2691 if (!delta)
2692 return 0;
9d89c257 2693 sa->last_update_time = now;
9d85f21c 2694
6f2b0452
DE
2695 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2696 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2697
9d85f21c 2698 /* delta_w is the amount already accumulated against our next period */
9d89c257 2699 delta_w = sa->period_contrib;
9d85f21c 2700 if (delta + delta_w >= 1024) {
9d85f21c
PT
2701 decayed = 1;
2702
9d89c257
YD
2703 /* how much left for next period will start over, we don't know yet */
2704 sa->period_contrib = 0;
2705
9d85f21c
PT
2706 /*
2707 * Now that we know we're crossing a period boundary, figure
2708 * out how much from delta we need to complete the current
2709 * period and accrue it.
2710 */
2711 delta_w = 1024 - delta_w;
54a21385 2712 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2713 if (weight) {
e0f5f3af
DE
2714 sa->load_sum += weight * scaled_delta_w;
2715 if (cfs_rq) {
2716 cfs_rq->runnable_load_sum +=
2717 weight * scaled_delta_w;
2718 }
13962234 2719 }
36ee28e4 2720 if (running)
006cdf02 2721 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2722
2723 delta -= delta_w;
2724
2725 /* Figure out how many additional periods this update spans */
2726 periods = delta / 1024;
2727 delta %= 1024;
2728
9d89c257 2729 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2730 if (cfs_rq) {
2731 cfs_rq->runnable_load_sum =
2732 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2733 }
9d89c257 2734 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2735
2736 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2737 contrib = __compute_runnable_contrib(periods);
54a21385 2738 contrib = cap_scale(contrib, scale_freq);
13962234 2739 if (weight) {
9d89c257 2740 sa->load_sum += weight * contrib;
13962234
YD
2741 if (cfs_rq)
2742 cfs_rq->runnable_load_sum += weight * contrib;
2743 }
36ee28e4 2744 if (running)
006cdf02 2745 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2746 }
2747
2748 /* Remainder of delta accrued against u_0` */
54a21385 2749 scaled_delta = cap_scale(delta, scale_freq);
13962234 2750 if (weight) {
e0f5f3af 2751 sa->load_sum += weight * scaled_delta;
13962234 2752 if (cfs_rq)
e0f5f3af 2753 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2754 }
36ee28e4 2755 if (running)
006cdf02 2756 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2757
9d89c257 2758 sa->period_contrib += delta;
9ee474f5 2759
9d89c257
YD
2760 if (decayed) {
2761 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2762 if (cfs_rq) {
2763 cfs_rq->runnable_load_avg =
2764 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2765 }
006cdf02 2766 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2767 }
aff3e498 2768
9d89c257 2769 return decayed;
9ee474f5
PT
2770}
2771
c566e8e9 2772#ifdef CONFIG_FAIR_GROUP_SCHED
bb17f655 2773/*
9d89c257
YD
2774 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2775 * and effective_load (which is not done because it is too costly).
bb17f655 2776 */
9d89c257 2777static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2778{
9d89c257 2779 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2780
aa0b7ae0
WL
2781 /*
2782 * No need to update load_avg for root_task_group as it is not used.
2783 */
2784 if (cfs_rq->tg == &root_task_group)
2785 return;
2786
9d89c257
YD
2787 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2788 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2789 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2790 }
8165e145 2791}
f5f9739d 2792
ad936d86
BP
2793/*
2794 * Called within set_task_rq() right before setting a task's cpu. The
2795 * caller only guarantees p->pi_lock is held; no other assumptions,
2796 * including the state of rq->lock, should be made.
2797 */
2798void set_task_rq_fair(struct sched_entity *se,
2799 struct cfs_rq *prev, struct cfs_rq *next)
2800{
2801 if (!sched_feat(ATTACH_AGE_LOAD))
2802 return;
2803
2804 /*
2805 * We are supposed to update the task to "current" time, then its up to
2806 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2807 * getting what current time is, so simply throw away the out-of-date
2808 * time. This will result in the wakee task is less decayed, but giving
2809 * the wakee more load sounds not bad.
2810 */
2811 if (se->avg.last_update_time && prev) {
2812 u64 p_last_update_time;
2813 u64 n_last_update_time;
2814
2815#ifndef CONFIG_64BIT
2816 u64 p_last_update_time_copy;
2817 u64 n_last_update_time_copy;
2818
2819 do {
2820 p_last_update_time_copy = prev->load_last_update_time_copy;
2821 n_last_update_time_copy = next->load_last_update_time_copy;
2822
2823 smp_rmb();
2824
2825 p_last_update_time = prev->avg.last_update_time;
2826 n_last_update_time = next->avg.last_update_time;
2827
2828 } while (p_last_update_time != p_last_update_time_copy ||
2829 n_last_update_time != n_last_update_time_copy);
2830#else
2831 p_last_update_time = prev->avg.last_update_time;
2832 n_last_update_time = next->avg.last_update_time;
2833#endif
2834 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2835 &se->avg, 0, 0, NULL);
2836 se->avg.last_update_time = n_last_update_time;
2837 }
2838}
6e83125c 2839#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2840static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2841#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2842
9d89c257 2843static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
8165e145 2844
a2c6c91f
SM
2845static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2846{
2847 struct rq *rq = rq_of(cfs_rq);
2848 int cpu = cpu_of(rq);
2849
2850 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) {
2851 unsigned long max = rq->cpu_capacity_orig;
2852
2853 /*
2854 * There are a few boundary cases this might miss but it should
2855 * get called often enough that that should (hopefully) not be
2856 * a real problem -- added to that it only calls on the local
2857 * CPU, so if we enqueue remotely we'll miss an update, but
2858 * the next tick/schedule should update.
2859 *
2860 * It will not get called when we go idle, because the idle
2861 * thread is a different class (!fair), nor will the utilization
2862 * number include things like RT tasks.
2863 *
2864 * As is, the util number is not freq-invariant (we'd have to
2865 * implement arch_scale_freq_capacity() for that).
2866 *
2867 * See cpu_util().
2868 */
2869 cpufreq_update_util(rq_clock(rq),
2870 min(cfs_rq->avg.util_avg, max), max);
2871 }
2872}
2873
89741892
PZ
2874/*
2875 * Unsigned subtract and clamp on underflow.
2876 *
2877 * Explicitly do a load-store to ensure the intermediate value never hits
2878 * memory. This allows lockless observations without ever seeing the negative
2879 * values.
2880 */
2881#define sub_positive(_ptr, _val) do { \
2882 typeof(_ptr) ptr = (_ptr); \
2883 typeof(*ptr) val = (_val); \
2884 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2885 res = var - val; \
2886 if (res > var) \
2887 res = 0; \
2888 WRITE_ONCE(*ptr, res); \
2889} while (0)
2890
9d89c257 2891/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
a2c6c91f
SM
2892static inline int
2893update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 2894{
9d89c257 2895 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 2896 int decayed, removed_load = 0, removed_util = 0;
2dac754e 2897
9d89c257 2898 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 2899 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
2900 sub_positive(&sa->load_avg, r);
2901 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 2902 removed_load = 1;
8165e145 2903 }
2dac754e 2904
9d89c257
YD
2905 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2906 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
2907 sub_positive(&sa->util_avg, r);
2908 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 2909 removed_util = 1;
9d89c257 2910 }
36ee28e4 2911
a2c6c91f 2912 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 2913 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 2914
9d89c257
YD
2915#ifndef CONFIG_64BIT
2916 smp_wmb();
2917 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2918#endif
36ee28e4 2919
a2c6c91f
SM
2920 if (update_freq && (decayed || removed_util))
2921 cfs_rq_util_change(cfs_rq);
21e96f88 2922
41e0d37f 2923 return decayed || removed_load;
21e96f88
SM
2924}
2925
2926/* Update task and its cfs_rq load average */
2927static inline void update_load_avg(struct sched_entity *se, int update_tg)
2928{
2929 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2930 u64 now = cfs_rq_clock_task(cfs_rq);
2931 struct rq *rq = rq_of(cfs_rq);
2932 int cpu = cpu_of(rq);
2933
2934 /*
2935 * Track task load average for carrying it to new CPU after migrated, and
2936 * track group sched_entity load average for task_h_load calc in migration
2937 */
2938 __update_load_avg(now, cpu, &se->avg,
2939 se->on_rq * scale_load_down(se->load.weight),
2940 cfs_rq->curr == se, NULL);
2941
a2c6c91f 2942 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 2943 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
2944}
2945
a05e8c51
BP
2946static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2947{
a9280514
PZ
2948 if (!sched_feat(ATTACH_AGE_LOAD))
2949 goto skip_aging;
2950
6efdb105
BP
2951 /*
2952 * If we got migrated (either between CPUs or between cgroups) we'll
2953 * have aged the average right before clearing @last_update_time.
2954 */
2955 if (se->avg.last_update_time) {
2956 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2957 &se->avg, 0, 0, NULL);
2958
2959 /*
2960 * XXX: we could have just aged the entire load away if we've been
2961 * absent from the fair class for too long.
2962 */
2963 }
2964
a9280514 2965skip_aging:
a05e8c51
BP
2966 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2967 cfs_rq->avg.load_avg += se->avg.load_avg;
2968 cfs_rq->avg.load_sum += se->avg.load_sum;
2969 cfs_rq->avg.util_avg += se->avg.util_avg;
2970 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
2971
2972 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2973}
2974
2975static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2976{
2977 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2978 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2979 cfs_rq->curr == se, NULL);
2980
89741892
PZ
2981 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2982 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
2983 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
2984 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
2985
2986 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
2987}
2988
9d89c257
YD
2989/* Add the load generated by se into cfs_rq's load average */
2990static inline void
2991enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 2992{
9d89c257
YD
2993 struct sched_avg *sa = &se->avg;
2994 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 2995 int migrated, decayed;
9ee474f5 2996
a05e8c51
BP
2997 migrated = !sa->last_update_time;
2998 if (!migrated) {
9d89c257 2999 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3000 se->on_rq * scale_load_down(se->load.weight),
3001 cfs_rq->curr == se, NULL);
aff3e498 3002 }
c566e8e9 3003
a2c6c91f 3004 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3005
13962234
YD
3006 cfs_rq->runnable_load_avg += sa->load_avg;
3007 cfs_rq->runnable_load_sum += sa->load_sum;
3008
a05e8c51
BP
3009 if (migrated)
3010 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3011
9d89c257
YD
3012 if (decayed || migrated)
3013 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3014}
3015
13962234
YD
3016/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3017static inline void
3018dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3019{
3020 update_load_avg(se, 1);
3021
3022 cfs_rq->runnable_load_avg =
3023 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3024 cfs_rq->runnable_load_sum =
a05e8c51 3025 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3026}
3027
9d89c257 3028#ifndef CONFIG_64BIT
0905f04e
YD
3029static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3030{
9d89c257 3031 u64 last_update_time_copy;
0905f04e 3032 u64 last_update_time;
9ee474f5 3033
9d89c257
YD
3034 do {
3035 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3036 smp_rmb();
3037 last_update_time = cfs_rq->avg.last_update_time;
3038 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3039
3040 return last_update_time;
3041}
9d89c257 3042#else
0905f04e
YD
3043static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3044{
3045 return cfs_rq->avg.last_update_time;
3046}
9d89c257
YD
3047#endif
3048
0905f04e
YD
3049/*
3050 * Task first catches up with cfs_rq, and then subtract
3051 * itself from the cfs_rq (task must be off the queue now).
3052 */
3053void remove_entity_load_avg(struct sched_entity *se)
3054{
3055 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3056 u64 last_update_time;
3057
3058 /*
3059 * Newly created task or never used group entity should not be removed
3060 * from its (source) cfs_rq
3061 */
3062 if (se->avg.last_update_time == 0)
3063 return;
3064
3065 last_update_time = cfs_rq_last_update_time(cfs_rq);
3066
13962234 3067 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3068 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3069 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3070}
642dbc39 3071
7ea241af
YD
3072static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3073{
3074 return cfs_rq->runnable_load_avg;
3075}
3076
3077static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3078{
3079 return cfs_rq->avg.load_avg;
3080}
3081
6e83125c
PZ
3082static int idle_balance(struct rq *this_rq);
3083
38033c37
PZ
3084#else /* CONFIG_SMP */
3085
536bd00c
RW
3086static inline void update_load_avg(struct sched_entity *se, int not_used)
3087{
3088 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3089 struct rq *rq = rq_of(cfs_rq);
3090
3091 cpufreq_trigger_update(rq_clock(rq));
3092}
3093
9d89c257
YD
3094static inline void
3095enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3096static inline void
3097dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3098static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3099
a05e8c51
BP
3100static inline void
3101attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3102static inline void
3103detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3104
6e83125c
PZ
3105static inline int idle_balance(struct rq *rq)
3106{
3107 return 0;
3108}
3109
38033c37 3110#endif /* CONFIG_SMP */
9d85f21c 3111
2396af69 3112static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3113{
bf0f6f24 3114#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
3115 struct task_struct *tsk = NULL;
3116
3117 if (entity_is_task(se))
3118 tsk = task_of(se);
3119
41acab88 3120 if (se->statistics.sleep_start) {
78becc27 3121 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
3122
3123 if ((s64)delta < 0)
3124 delta = 0;
3125
41acab88
LDM
3126 if (unlikely(delta > se->statistics.sleep_max))
3127 se->statistics.sleep_max = delta;
bf0f6f24 3128
8c79a045 3129 se->statistics.sleep_start = 0;
41acab88 3130 se->statistics.sum_sleep_runtime += delta;
9745512c 3131
768d0c27 3132 if (tsk) {
e414314c 3133 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
3134 trace_sched_stat_sleep(tsk, delta);
3135 }
bf0f6f24 3136 }
41acab88 3137 if (se->statistics.block_start) {
78becc27 3138 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
3139
3140 if ((s64)delta < 0)
3141 delta = 0;
3142
41acab88
LDM
3143 if (unlikely(delta > se->statistics.block_max))
3144 se->statistics.block_max = delta;
bf0f6f24 3145
8c79a045 3146 se->statistics.block_start = 0;
41acab88 3147 se->statistics.sum_sleep_runtime += delta;
30084fbd 3148
e414314c 3149 if (tsk) {
8f0dfc34 3150 if (tsk->in_iowait) {
41acab88
LDM
3151 se->statistics.iowait_sum += delta;
3152 se->statistics.iowait_count++;
768d0c27 3153 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
3154 }
3155
b781a602
AV
3156 trace_sched_stat_blocked(tsk, delta);
3157
e414314c
PZ
3158 /*
3159 * Blocking time is in units of nanosecs, so shift by
3160 * 20 to get a milliseconds-range estimation of the
3161 * amount of time that the task spent sleeping:
3162 */
3163 if (unlikely(prof_on == SLEEP_PROFILING)) {
3164 profile_hits(SLEEP_PROFILING,
3165 (void *)get_wchan(tsk),
3166 delta >> 20);
3167 }
3168 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 3169 }
bf0f6f24
IM
3170 }
3171#endif
3172}
3173
ddc97297
PZ
3174static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3175{
3176#ifdef CONFIG_SCHED_DEBUG
3177 s64 d = se->vruntime - cfs_rq->min_vruntime;
3178
3179 if (d < 0)
3180 d = -d;
3181
3182 if (d > 3*sysctl_sched_latency)
3183 schedstat_inc(cfs_rq, nr_spread_over);
3184#endif
3185}
3186
aeb73b04
PZ
3187static void
3188place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3189{
1af5f730 3190 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3191
2cb8600e
PZ
3192 /*
3193 * The 'current' period is already promised to the current tasks,
3194 * however the extra weight of the new task will slow them down a
3195 * little, place the new task so that it fits in the slot that
3196 * stays open at the end.
3197 */
94dfb5e7 3198 if (initial && sched_feat(START_DEBIT))
f9c0b095 3199 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3200
a2e7a7eb 3201 /* sleeps up to a single latency don't count. */
5ca9880c 3202 if (!initial) {
a2e7a7eb 3203 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3204
a2e7a7eb
MG
3205 /*
3206 * Halve their sleep time's effect, to allow
3207 * for a gentler effect of sleepers:
3208 */
3209 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3210 thresh >>= 1;
51e0304c 3211
a2e7a7eb 3212 vruntime -= thresh;
aeb73b04
PZ
3213 }
3214
b5d9d734 3215 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3216 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3217}
3218
d3d9dc33
PT
3219static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3220
cb251765
MG
3221static inline void check_schedstat_required(void)
3222{
3223#ifdef CONFIG_SCHEDSTATS
3224 if (schedstat_enabled())
3225 return;
3226
3227 /* Force schedstat enabled if a dependent tracepoint is active */
3228 if (trace_sched_stat_wait_enabled() ||
3229 trace_sched_stat_sleep_enabled() ||
3230 trace_sched_stat_iowait_enabled() ||
3231 trace_sched_stat_blocked_enabled() ||
3232 trace_sched_stat_runtime_enabled()) {
eda8dca5 3233 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3234 "stat_blocked and stat_runtime require the "
3235 "kernel parameter schedstats=enabled or "
3236 "kernel.sched_schedstats=1\n");
3237 }
3238#endif
3239}
3240
b5179ac7
PZ
3241
3242/*
3243 * MIGRATION
3244 *
3245 * dequeue
3246 * update_curr()
3247 * update_min_vruntime()
3248 * vruntime -= min_vruntime
3249 *
3250 * enqueue
3251 * update_curr()
3252 * update_min_vruntime()
3253 * vruntime += min_vruntime
3254 *
3255 * this way the vruntime transition between RQs is done when both
3256 * min_vruntime are up-to-date.
3257 *
3258 * WAKEUP (remote)
3259 *
59efa0ba 3260 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3261 * vruntime -= min_vruntime
3262 *
3263 * enqueue
3264 * update_curr()
3265 * update_min_vruntime()
3266 * vruntime += min_vruntime
3267 *
3268 * this way we don't have the most up-to-date min_vruntime on the originating
3269 * CPU and an up-to-date min_vruntime on the destination CPU.
3270 */
3271
bf0f6f24 3272static void
88ec22d3 3273enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3274{
2f950354
PZ
3275 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3276 bool curr = cfs_rq->curr == se;
3277
88ec22d3 3278 /*
2f950354
PZ
3279 * If we're the current task, we must renormalise before calling
3280 * update_curr().
88ec22d3 3281 */
2f950354 3282 if (renorm && curr)
88ec22d3
PZ
3283 se->vruntime += cfs_rq->min_vruntime;
3284
2f950354
PZ
3285 update_curr(cfs_rq);
3286
bf0f6f24 3287 /*
2f950354
PZ
3288 * Otherwise, renormalise after, such that we're placed at the current
3289 * moment in time, instead of some random moment in the past. Being
3290 * placed in the past could significantly boost this task to the
3291 * fairness detriment of existing tasks.
bf0f6f24 3292 */
2f950354
PZ
3293 if (renorm && !curr)
3294 se->vruntime += cfs_rq->min_vruntime;
3295
9d89c257 3296 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3297 account_entity_enqueue(cfs_rq, se);
3298 update_cfs_shares(cfs_rq);
bf0f6f24 3299
88ec22d3 3300 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 3301 place_entity(cfs_rq, se, 0);
cb251765
MG
3302 if (schedstat_enabled())
3303 enqueue_sleeper(cfs_rq, se);
e9acbff6 3304 }
bf0f6f24 3305
cb251765
MG
3306 check_schedstat_required();
3307 if (schedstat_enabled()) {
3308 update_stats_enqueue(cfs_rq, se);
3309 check_spread(cfs_rq, se);
3310 }
2f950354 3311 if (!curr)
83b699ed 3312 __enqueue_entity(cfs_rq, se);
2069dd75 3313 se->on_rq = 1;
3d4b47b4 3314
d3d9dc33 3315 if (cfs_rq->nr_running == 1) {
3d4b47b4 3316 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3317 check_enqueue_throttle(cfs_rq);
3318 }
bf0f6f24
IM
3319}
3320
2c13c919 3321static void __clear_buddies_last(struct sched_entity *se)
2002c695 3322{
2c13c919
RR
3323 for_each_sched_entity(se) {
3324 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3325 if (cfs_rq->last != se)
2c13c919 3326 break;
f1044799
PZ
3327
3328 cfs_rq->last = NULL;
2c13c919
RR
3329 }
3330}
2002c695 3331
2c13c919
RR
3332static void __clear_buddies_next(struct sched_entity *se)
3333{
3334 for_each_sched_entity(se) {
3335 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3336 if (cfs_rq->next != se)
2c13c919 3337 break;
f1044799
PZ
3338
3339 cfs_rq->next = NULL;
2c13c919 3340 }
2002c695
PZ
3341}
3342
ac53db59
RR
3343static void __clear_buddies_skip(struct sched_entity *se)
3344{
3345 for_each_sched_entity(se) {
3346 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3347 if (cfs_rq->skip != se)
ac53db59 3348 break;
f1044799
PZ
3349
3350 cfs_rq->skip = NULL;
ac53db59
RR
3351 }
3352}
3353
a571bbea
PZ
3354static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3355{
2c13c919
RR
3356 if (cfs_rq->last == se)
3357 __clear_buddies_last(se);
3358
3359 if (cfs_rq->next == se)
3360 __clear_buddies_next(se);
ac53db59
RR
3361
3362 if (cfs_rq->skip == se)
3363 __clear_buddies_skip(se);
a571bbea
PZ
3364}
3365
6c16a6dc 3366static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3367
bf0f6f24 3368static void
371fd7e7 3369dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3370{
a2a2d680
DA
3371 /*
3372 * Update run-time statistics of the 'current'.
3373 */
3374 update_curr(cfs_rq);
13962234 3375 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3376
cb251765
MG
3377 if (schedstat_enabled())
3378 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3379
2002c695 3380 clear_buddies(cfs_rq, se);
4793241b 3381
83b699ed 3382 if (se != cfs_rq->curr)
30cfdcfc 3383 __dequeue_entity(cfs_rq, se);
17bc14b7 3384 se->on_rq = 0;
30cfdcfc 3385 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3386
3387 /*
3388 * Normalize the entity after updating the min_vruntime because the
3389 * update can refer to the ->curr item and we need to reflect this
3390 * movement in our normalized position.
3391 */
371fd7e7 3392 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3393 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3394
d8b4986d
PT
3395 /* return excess runtime on last dequeue */
3396 return_cfs_rq_runtime(cfs_rq);
3397
1e876231 3398 update_min_vruntime(cfs_rq);
17bc14b7 3399 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3400}
3401
3402/*
3403 * Preempt the current task with a newly woken task if needed:
3404 */
7c92e54f 3405static void
2e09bf55 3406check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3407{
11697830 3408 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3409 struct sched_entity *se;
3410 s64 delta;
11697830 3411
6d0f0ebd 3412 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3413 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3414 if (delta_exec > ideal_runtime) {
8875125e 3415 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3416 /*
3417 * The current task ran long enough, ensure it doesn't get
3418 * re-elected due to buddy favours.
3419 */
3420 clear_buddies(cfs_rq, curr);
f685ceac
MG
3421 return;
3422 }
3423
3424 /*
3425 * Ensure that a task that missed wakeup preemption by a
3426 * narrow margin doesn't have to wait for a full slice.
3427 * This also mitigates buddy induced latencies under load.
3428 */
f685ceac
MG
3429 if (delta_exec < sysctl_sched_min_granularity)
3430 return;
3431
f4cfb33e
WX
3432 se = __pick_first_entity(cfs_rq);
3433 delta = curr->vruntime - se->vruntime;
f685ceac 3434
f4cfb33e
WX
3435 if (delta < 0)
3436 return;
d7d82944 3437
f4cfb33e 3438 if (delta > ideal_runtime)
8875125e 3439 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3440}
3441
83b699ed 3442static void
8494f412 3443set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3444{
83b699ed
SV
3445 /* 'current' is not kept within the tree. */
3446 if (se->on_rq) {
3447 /*
3448 * Any task has to be enqueued before it get to execute on
3449 * a CPU. So account for the time it spent waiting on the
3450 * runqueue.
3451 */
cb251765
MG
3452 if (schedstat_enabled())
3453 update_stats_wait_end(cfs_rq, se);
83b699ed 3454 __dequeue_entity(cfs_rq, se);
9d89c257 3455 update_load_avg(se, 1);
83b699ed
SV
3456 }
3457
79303e9e 3458 update_stats_curr_start(cfs_rq, se);
429d43bc 3459 cfs_rq->curr = se;
eba1ed4b
IM
3460#ifdef CONFIG_SCHEDSTATS
3461 /*
3462 * Track our maximum slice length, if the CPU's load is at
3463 * least twice that of our own weight (i.e. dont track it
3464 * when there are only lesser-weight tasks around):
3465 */
cb251765 3466 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 3467 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
3468 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3469 }
3470#endif
4a55b450 3471 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3472}
3473
3f3a4904
PZ
3474static int
3475wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3476
ac53db59
RR
3477/*
3478 * Pick the next process, keeping these things in mind, in this order:
3479 * 1) keep things fair between processes/task groups
3480 * 2) pick the "next" process, since someone really wants that to run
3481 * 3) pick the "last" process, for cache locality
3482 * 4) do not run the "skip" process, if something else is available
3483 */
678d5718
PZ
3484static struct sched_entity *
3485pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3486{
678d5718
PZ
3487 struct sched_entity *left = __pick_first_entity(cfs_rq);
3488 struct sched_entity *se;
3489
3490 /*
3491 * If curr is set we have to see if its left of the leftmost entity
3492 * still in the tree, provided there was anything in the tree at all.
3493 */
3494 if (!left || (curr && entity_before(curr, left)))
3495 left = curr;
3496
3497 se = left; /* ideally we run the leftmost entity */
f4b6755f 3498
ac53db59
RR
3499 /*
3500 * Avoid running the skip buddy, if running something else can
3501 * be done without getting too unfair.
3502 */
3503 if (cfs_rq->skip == se) {
678d5718
PZ
3504 struct sched_entity *second;
3505
3506 if (se == curr) {
3507 second = __pick_first_entity(cfs_rq);
3508 } else {
3509 second = __pick_next_entity(se);
3510 if (!second || (curr && entity_before(curr, second)))
3511 second = curr;
3512 }
3513
ac53db59
RR
3514 if (second && wakeup_preempt_entity(second, left) < 1)
3515 se = second;
3516 }
aa2ac252 3517
f685ceac
MG
3518 /*
3519 * Prefer last buddy, try to return the CPU to a preempted task.
3520 */
3521 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3522 se = cfs_rq->last;
3523
ac53db59
RR
3524 /*
3525 * Someone really wants this to run. If it's not unfair, run it.
3526 */
3527 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3528 se = cfs_rq->next;
3529
f685ceac 3530 clear_buddies(cfs_rq, se);
4793241b
PZ
3531
3532 return se;
aa2ac252
PZ
3533}
3534
678d5718 3535static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3536
ab6cde26 3537static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3538{
3539 /*
3540 * If still on the runqueue then deactivate_task()
3541 * was not called and update_curr() has to be done:
3542 */
3543 if (prev->on_rq)
b7cc0896 3544 update_curr(cfs_rq);
bf0f6f24 3545
d3d9dc33
PT
3546 /* throttle cfs_rqs exceeding runtime */
3547 check_cfs_rq_runtime(cfs_rq);
3548
cb251765
MG
3549 if (schedstat_enabled()) {
3550 check_spread(cfs_rq, prev);
3551 if (prev->on_rq)
3552 update_stats_wait_start(cfs_rq, prev);
3553 }
3554
30cfdcfc 3555 if (prev->on_rq) {
30cfdcfc
DA
3556 /* Put 'current' back into the tree. */
3557 __enqueue_entity(cfs_rq, prev);
9d85f21c 3558 /* in !on_rq case, update occurred at dequeue */
9d89c257 3559 update_load_avg(prev, 0);
30cfdcfc 3560 }
429d43bc 3561 cfs_rq->curr = NULL;
bf0f6f24
IM
3562}
3563
8f4d37ec
PZ
3564static void
3565entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3566{
bf0f6f24 3567 /*
30cfdcfc 3568 * Update run-time statistics of the 'current'.
bf0f6f24 3569 */
30cfdcfc 3570 update_curr(cfs_rq);
bf0f6f24 3571
9d85f21c
PT
3572 /*
3573 * Ensure that runnable average is periodically updated.
3574 */
9d89c257 3575 update_load_avg(curr, 1);
bf0bd948 3576 update_cfs_shares(cfs_rq);
9d85f21c 3577
8f4d37ec
PZ
3578#ifdef CONFIG_SCHED_HRTICK
3579 /*
3580 * queued ticks are scheduled to match the slice, so don't bother
3581 * validating it and just reschedule.
3582 */
983ed7a6 3583 if (queued) {
8875125e 3584 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3585 return;
3586 }
8f4d37ec
PZ
3587 /*
3588 * don't let the period tick interfere with the hrtick preemption
3589 */
3590 if (!sched_feat(DOUBLE_TICK) &&
3591 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3592 return;
3593#endif
3594
2c2efaed 3595 if (cfs_rq->nr_running > 1)
2e09bf55 3596 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3597}
3598
ab84d31e
PT
3599
3600/**************************************************
3601 * CFS bandwidth control machinery
3602 */
3603
3604#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3605
3606#ifdef HAVE_JUMP_LABEL
c5905afb 3607static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3608
3609static inline bool cfs_bandwidth_used(void)
3610{
c5905afb 3611 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3612}
3613
1ee14e6c 3614void cfs_bandwidth_usage_inc(void)
029632fb 3615{
1ee14e6c
BS
3616 static_key_slow_inc(&__cfs_bandwidth_used);
3617}
3618
3619void cfs_bandwidth_usage_dec(void)
3620{
3621 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3622}
3623#else /* HAVE_JUMP_LABEL */
3624static bool cfs_bandwidth_used(void)
3625{
3626 return true;
3627}
3628
1ee14e6c
BS
3629void cfs_bandwidth_usage_inc(void) {}
3630void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3631#endif /* HAVE_JUMP_LABEL */
3632
ab84d31e
PT
3633/*
3634 * default period for cfs group bandwidth.
3635 * default: 0.1s, units: nanoseconds
3636 */
3637static inline u64 default_cfs_period(void)
3638{
3639 return 100000000ULL;
3640}
ec12cb7f
PT
3641
3642static inline u64 sched_cfs_bandwidth_slice(void)
3643{
3644 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3645}
3646
a9cf55b2
PT
3647/*
3648 * Replenish runtime according to assigned quota and update expiration time.
3649 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3650 * additional synchronization around rq->lock.
3651 *
3652 * requires cfs_b->lock
3653 */
029632fb 3654void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3655{
3656 u64 now;
3657
3658 if (cfs_b->quota == RUNTIME_INF)
3659 return;
3660
3661 now = sched_clock_cpu(smp_processor_id());
3662 cfs_b->runtime = cfs_b->quota;
3663 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3664}
3665
029632fb
PZ
3666static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3667{
3668 return &tg->cfs_bandwidth;
3669}
3670
f1b17280
PT
3671/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3672static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3673{
3674 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3675 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3676
78becc27 3677 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3678}
3679
85dac906
PT
3680/* returns 0 on failure to allocate runtime */
3681static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3682{
3683 struct task_group *tg = cfs_rq->tg;
3684 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3685 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3686
3687 /* note: this is a positive sum as runtime_remaining <= 0 */
3688 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3689
3690 raw_spin_lock(&cfs_b->lock);
3691 if (cfs_b->quota == RUNTIME_INF)
3692 amount = min_amount;
58088ad0 3693 else {
77a4d1a1 3694 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3695
3696 if (cfs_b->runtime > 0) {
3697 amount = min(cfs_b->runtime, min_amount);
3698 cfs_b->runtime -= amount;
3699 cfs_b->idle = 0;
3700 }
ec12cb7f 3701 }
a9cf55b2 3702 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3703 raw_spin_unlock(&cfs_b->lock);
3704
3705 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3706 /*
3707 * we may have advanced our local expiration to account for allowed
3708 * spread between our sched_clock and the one on which runtime was
3709 * issued.
3710 */
3711 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3712 cfs_rq->runtime_expires = expires;
85dac906
PT
3713
3714 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3715}
3716
a9cf55b2
PT
3717/*
3718 * Note: This depends on the synchronization provided by sched_clock and the
3719 * fact that rq->clock snapshots this value.
3720 */
3721static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3722{
a9cf55b2 3723 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3724
3725 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3726 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3727 return;
3728
a9cf55b2
PT
3729 if (cfs_rq->runtime_remaining < 0)
3730 return;
3731
3732 /*
3733 * If the local deadline has passed we have to consider the
3734 * possibility that our sched_clock is 'fast' and the global deadline
3735 * has not truly expired.
3736 *
3737 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3738 * whether the global deadline has advanced. It is valid to compare
3739 * cfs_b->runtime_expires without any locks since we only care about
3740 * exact equality, so a partial write will still work.
a9cf55b2
PT
3741 */
3742
51f2176d 3743 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3744 /* extend local deadline, drift is bounded above by 2 ticks */
3745 cfs_rq->runtime_expires += TICK_NSEC;
3746 } else {
3747 /* global deadline is ahead, expiration has passed */
3748 cfs_rq->runtime_remaining = 0;
3749 }
3750}
3751
9dbdb155 3752static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3753{
3754 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3755 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3756 expire_cfs_rq_runtime(cfs_rq);
3757
3758 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3759 return;
3760
85dac906
PT
3761 /*
3762 * if we're unable to extend our runtime we resched so that the active
3763 * hierarchy can be throttled
3764 */
3765 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3766 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3767}
3768
6c16a6dc 3769static __always_inline
9dbdb155 3770void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3771{
56f570e5 3772 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3773 return;
3774
3775 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3776}
3777
85dac906
PT
3778static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3779{
56f570e5 3780 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3781}
3782
64660c86
PT
3783/* check whether cfs_rq, or any parent, is throttled */
3784static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3785{
56f570e5 3786 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3787}
3788
3789/*
3790 * Ensure that neither of the group entities corresponding to src_cpu or
3791 * dest_cpu are members of a throttled hierarchy when performing group
3792 * load-balance operations.
3793 */
3794static inline int throttled_lb_pair(struct task_group *tg,
3795 int src_cpu, int dest_cpu)
3796{
3797 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3798
3799 src_cfs_rq = tg->cfs_rq[src_cpu];
3800 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3801
3802 return throttled_hierarchy(src_cfs_rq) ||
3803 throttled_hierarchy(dest_cfs_rq);
3804}
3805
3806/* updated child weight may affect parent so we have to do this bottom up */
3807static int tg_unthrottle_up(struct task_group *tg, void *data)
3808{
3809 struct rq *rq = data;
3810 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3811
3812 cfs_rq->throttle_count--;
64660c86 3813 if (!cfs_rq->throttle_count) {
f1b17280 3814 /* adjust cfs_rq_clock_task() */
78becc27 3815 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3816 cfs_rq->throttled_clock_task;
64660c86 3817 }
64660c86
PT
3818
3819 return 0;
3820}
3821
3822static int tg_throttle_down(struct task_group *tg, void *data)
3823{
3824 struct rq *rq = data;
3825 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3826
82958366
PT
3827 /* group is entering throttled state, stop time */
3828 if (!cfs_rq->throttle_count)
78becc27 3829 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3830 cfs_rq->throttle_count++;
3831
3832 return 0;
3833}
3834
d3d9dc33 3835static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3836{
3837 struct rq *rq = rq_of(cfs_rq);
3838 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3839 struct sched_entity *se;
3840 long task_delta, dequeue = 1;
77a4d1a1 3841 bool empty;
85dac906
PT
3842
3843 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3844
f1b17280 3845 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3846 rcu_read_lock();
3847 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3848 rcu_read_unlock();
85dac906
PT
3849
3850 task_delta = cfs_rq->h_nr_running;
3851 for_each_sched_entity(se) {
3852 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3853 /* throttled entity or throttle-on-deactivate */
3854 if (!se->on_rq)
3855 break;
3856
3857 if (dequeue)
3858 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3859 qcfs_rq->h_nr_running -= task_delta;
3860
3861 if (qcfs_rq->load.weight)
3862 dequeue = 0;
3863 }
3864
3865 if (!se)
72465447 3866 sub_nr_running(rq, task_delta);
85dac906
PT
3867
3868 cfs_rq->throttled = 1;
78becc27 3869 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3870 raw_spin_lock(&cfs_b->lock);
d49db342 3871 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3872
c06f04c7
BS
3873 /*
3874 * Add to the _head_ of the list, so that an already-started
3875 * distribute_cfs_runtime will not see us
3876 */
3877 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3878
3879 /*
3880 * If we're the first throttled task, make sure the bandwidth
3881 * timer is running.
3882 */
3883 if (empty)
3884 start_cfs_bandwidth(cfs_b);
3885
85dac906
PT
3886 raw_spin_unlock(&cfs_b->lock);
3887}
3888
029632fb 3889void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3890{
3891 struct rq *rq = rq_of(cfs_rq);
3892 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3893 struct sched_entity *se;
3894 int enqueue = 1;
3895 long task_delta;
3896
22b958d8 3897 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3898
3899 cfs_rq->throttled = 0;
1a55af2e
FW
3900
3901 update_rq_clock(rq);
3902
671fd9da 3903 raw_spin_lock(&cfs_b->lock);
78becc27 3904 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3905 list_del_rcu(&cfs_rq->throttled_list);
3906 raw_spin_unlock(&cfs_b->lock);
3907
64660c86
PT
3908 /* update hierarchical throttle state */
3909 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3910
671fd9da
PT
3911 if (!cfs_rq->load.weight)
3912 return;
3913
3914 task_delta = cfs_rq->h_nr_running;
3915 for_each_sched_entity(se) {
3916 if (se->on_rq)
3917 enqueue = 0;
3918
3919 cfs_rq = cfs_rq_of(se);
3920 if (enqueue)
3921 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3922 cfs_rq->h_nr_running += task_delta;
3923
3924 if (cfs_rq_throttled(cfs_rq))
3925 break;
3926 }
3927
3928 if (!se)
72465447 3929 add_nr_running(rq, task_delta);
671fd9da
PT
3930
3931 /* determine whether we need to wake up potentially idle cpu */
3932 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 3933 resched_curr(rq);
671fd9da
PT
3934}
3935
3936static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3937 u64 remaining, u64 expires)
3938{
3939 struct cfs_rq *cfs_rq;
c06f04c7
BS
3940 u64 runtime;
3941 u64 starting_runtime = remaining;
671fd9da
PT
3942
3943 rcu_read_lock();
3944 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3945 throttled_list) {
3946 struct rq *rq = rq_of(cfs_rq);
3947
3948 raw_spin_lock(&rq->lock);
3949 if (!cfs_rq_throttled(cfs_rq))
3950 goto next;
3951
3952 runtime = -cfs_rq->runtime_remaining + 1;
3953 if (runtime > remaining)
3954 runtime = remaining;
3955 remaining -= runtime;
3956
3957 cfs_rq->runtime_remaining += runtime;
3958 cfs_rq->runtime_expires = expires;
3959
3960 /* we check whether we're throttled above */
3961 if (cfs_rq->runtime_remaining > 0)
3962 unthrottle_cfs_rq(cfs_rq);
3963
3964next:
3965 raw_spin_unlock(&rq->lock);
3966
3967 if (!remaining)
3968 break;
3969 }
3970 rcu_read_unlock();
3971
c06f04c7 3972 return starting_runtime - remaining;
671fd9da
PT
3973}
3974
58088ad0
PT
3975/*
3976 * Responsible for refilling a task_group's bandwidth and unthrottling its
3977 * cfs_rqs as appropriate. If there has been no activity within the last
3978 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3979 * used to track this state.
3980 */
3981static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3982{
671fd9da 3983 u64 runtime, runtime_expires;
51f2176d 3984 int throttled;
58088ad0 3985
58088ad0
PT
3986 /* no need to continue the timer with no bandwidth constraint */
3987 if (cfs_b->quota == RUNTIME_INF)
51f2176d 3988 goto out_deactivate;
58088ad0 3989
671fd9da 3990 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 3991 cfs_b->nr_periods += overrun;
671fd9da 3992
51f2176d
BS
3993 /*
3994 * idle depends on !throttled (for the case of a large deficit), and if
3995 * we're going inactive then everything else can be deferred
3996 */
3997 if (cfs_b->idle && !throttled)
3998 goto out_deactivate;
a9cf55b2
PT
3999
4000 __refill_cfs_bandwidth_runtime(cfs_b);
4001
671fd9da
PT
4002 if (!throttled) {
4003 /* mark as potentially idle for the upcoming period */
4004 cfs_b->idle = 1;
51f2176d 4005 return 0;
671fd9da
PT
4006 }
4007
e8da1b18
NR
4008 /* account preceding periods in which throttling occurred */
4009 cfs_b->nr_throttled += overrun;
4010
671fd9da 4011 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4012
4013 /*
c06f04c7
BS
4014 * This check is repeated as we are holding onto the new bandwidth while
4015 * we unthrottle. This can potentially race with an unthrottled group
4016 * trying to acquire new bandwidth from the global pool. This can result
4017 * in us over-using our runtime if it is all used during this loop, but
4018 * only by limited amounts in that extreme case.
671fd9da 4019 */
c06f04c7
BS
4020 while (throttled && cfs_b->runtime > 0) {
4021 runtime = cfs_b->runtime;
671fd9da
PT
4022 raw_spin_unlock(&cfs_b->lock);
4023 /* we can't nest cfs_b->lock while distributing bandwidth */
4024 runtime = distribute_cfs_runtime(cfs_b, runtime,
4025 runtime_expires);
4026 raw_spin_lock(&cfs_b->lock);
4027
4028 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4029
4030 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4031 }
58088ad0 4032
671fd9da
PT
4033 /*
4034 * While we are ensured activity in the period following an
4035 * unthrottle, this also covers the case in which the new bandwidth is
4036 * insufficient to cover the existing bandwidth deficit. (Forcing the
4037 * timer to remain active while there are any throttled entities.)
4038 */
4039 cfs_b->idle = 0;
58088ad0 4040
51f2176d
BS
4041 return 0;
4042
4043out_deactivate:
51f2176d 4044 return 1;
58088ad0 4045}
d3d9dc33 4046
d8b4986d
PT
4047/* a cfs_rq won't donate quota below this amount */
4048static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4049/* minimum remaining period time to redistribute slack quota */
4050static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4051/* how long we wait to gather additional slack before distributing */
4052static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4053
db06e78c
BS
4054/*
4055 * Are we near the end of the current quota period?
4056 *
4057 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4058 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4059 * migrate_hrtimers, base is never cleared, so we are fine.
4060 */
d8b4986d
PT
4061static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4062{
4063 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4064 u64 remaining;
4065
4066 /* if the call-back is running a quota refresh is already occurring */
4067 if (hrtimer_callback_running(refresh_timer))
4068 return 1;
4069
4070 /* is a quota refresh about to occur? */
4071 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4072 if (remaining < min_expire)
4073 return 1;
4074
4075 return 0;
4076}
4077
4078static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4079{
4080 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4081
4082 /* if there's a quota refresh soon don't bother with slack */
4083 if (runtime_refresh_within(cfs_b, min_left))
4084 return;
4085
4cfafd30
PZ
4086 hrtimer_start(&cfs_b->slack_timer,
4087 ns_to_ktime(cfs_bandwidth_slack_period),
4088 HRTIMER_MODE_REL);
d8b4986d
PT
4089}
4090
4091/* we know any runtime found here is valid as update_curr() precedes return */
4092static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4093{
4094 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4095 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4096
4097 if (slack_runtime <= 0)
4098 return;
4099
4100 raw_spin_lock(&cfs_b->lock);
4101 if (cfs_b->quota != RUNTIME_INF &&
4102 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4103 cfs_b->runtime += slack_runtime;
4104
4105 /* we are under rq->lock, defer unthrottling using a timer */
4106 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4107 !list_empty(&cfs_b->throttled_cfs_rq))
4108 start_cfs_slack_bandwidth(cfs_b);
4109 }
4110 raw_spin_unlock(&cfs_b->lock);
4111
4112 /* even if it's not valid for return we don't want to try again */
4113 cfs_rq->runtime_remaining -= slack_runtime;
4114}
4115
4116static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4117{
56f570e5
PT
4118 if (!cfs_bandwidth_used())
4119 return;
4120
fccfdc6f 4121 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4122 return;
4123
4124 __return_cfs_rq_runtime(cfs_rq);
4125}
4126
4127/*
4128 * This is done with a timer (instead of inline with bandwidth return) since
4129 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4130 */
4131static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4132{
4133 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4134 u64 expires;
4135
4136 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4137 raw_spin_lock(&cfs_b->lock);
4138 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4139 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4140 return;
db06e78c 4141 }
d8b4986d 4142
c06f04c7 4143 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4144 runtime = cfs_b->runtime;
c06f04c7 4145
d8b4986d
PT
4146 expires = cfs_b->runtime_expires;
4147 raw_spin_unlock(&cfs_b->lock);
4148
4149 if (!runtime)
4150 return;
4151
4152 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4153
4154 raw_spin_lock(&cfs_b->lock);
4155 if (expires == cfs_b->runtime_expires)
c06f04c7 4156 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4157 raw_spin_unlock(&cfs_b->lock);
4158}
4159
d3d9dc33
PT
4160/*
4161 * When a group wakes up we want to make sure that its quota is not already
4162 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4163 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4164 */
4165static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4166{
56f570e5
PT
4167 if (!cfs_bandwidth_used())
4168 return;
4169
094f4691
KK
4170 /* Synchronize hierarchical throttle counter: */
4171 if (unlikely(!cfs_rq->throttle_uptodate)) {
4172 struct rq *rq = rq_of(cfs_rq);
4173 struct cfs_rq *pcfs_rq;
4174 struct task_group *tg;
4175
4176 cfs_rq->throttle_uptodate = 1;
4177
4178 /* Get closest up-to-date node, because leaves go first: */
4179 for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) {
4180 pcfs_rq = tg->cfs_rq[cpu_of(rq)];
4181 if (pcfs_rq->throttle_uptodate)
4182 break;
4183 }
4184 if (tg) {
4185 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4186 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4187 }
4188 }
4189
d3d9dc33
PT
4190 /* an active group must be handled by the update_curr()->put() path */
4191 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4192 return;
4193
4194 /* ensure the group is not already throttled */
4195 if (cfs_rq_throttled(cfs_rq))
4196 return;
4197
4198 /* update runtime allocation */
4199 account_cfs_rq_runtime(cfs_rq, 0);
4200 if (cfs_rq->runtime_remaining <= 0)
4201 throttle_cfs_rq(cfs_rq);
4202}
4203
4204/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4205static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4206{
56f570e5 4207 if (!cfs_bandwidth_used())
678d5718 4208 return false;
56f570e5 4209
d3d9dc33 4210 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4211 return false;
d3d9dc33
PT
4212
4213 /*
4214 * it's possible for a throttled entity to be forced into a running
4215 * state (e.g. set_curr_task), in this case we're finished.
4216 */
4217 if (cfs_rq_throttled(cfs_rq))
678d5718 4218 return true;
d3d9dc33
PT
4219
4220 throttle_cfs_rq(cfs_rq);
678d5718 4221 return true;
d3d9dc33 4222}
029632fb 4223
029632fb
PZ
4224static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4225{
4226 struct cfs_bandwidth *cfs_b =
4227 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4228
029632fb
PZ
4229 do_sched_cfs_slack_timer(cfs_b);
4230
4231 return HRTIMER_NORESTART;
4232}
4233
4234static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4235{
4236 struct cfs_bandwidth *cfs_b =
4237 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4238 int overrun;
4239 int idle = 0;
4240
51f2176d 4241 raw_spin_lock(&cfs_b->lock);
029632fb 4242 for (;;) {
77a4d1a1 4243 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4244 if (!overrun)
4245 break;
4246
4247 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4248 }
4cfafd30
PZ
4249 if (idle)
4250 cfs_b->period_active = 0;
51f2176d 4251 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4252
4253 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4254}
4255
4256void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4257{
4258 raw_spin_lock_init(&cfs_b->lock);
4259 cfs_b->runtime = 0;
4260 cfs_b->quota = RUNTIME_INF;
4261 cfs_b->period = ns_to_ktime(default_cfs_period());
4262
4263 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4264 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4265 cfs_b->period_timer.function = sched_cfs_period_timer;
4266 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4267 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4268}
4269
4270static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4271{
4272 cfs_rq->runtime_enabled = 0;
4273 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4274}
4275
77a4d1a1 4276void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4277{
4cfafd30 4278 lockdep_assert_held(&cfs_b->lock);
029632fb 4279
4cfafd30
PZ
4280 if (!cfs_b->period_active) {
4281 cfs_b->period_active = 1;
4282 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4283 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4284 }
029632fb
PZ
4285}
4286
4287static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4288{
7f1a169b
TH
4289 /* init_cfs_bandwidth() was not called */
4290 if (!cfs_b->throttled_cfs_rq.next)
4291 return;
4292
029632fb
PZ
4293 hrtimer_cancel(&cfs_b->period_timer);
4294 hrtimer_cancel(&cfs_b->slack_timer);
4295}
4296
0e59bdae
KT
4297static void __maybe_unused update_runtime_enabled(struct rq *rq)
4298{
4299 struct cfs_rq *cfs_rq;
4300
4301 for_each_leaf_cfs_rq(rq, cfs_rq) {
4302 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4303
4304 raw_spin_lock(&cfs_b->lock);
4305 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4306 raw_spin_unlock(&cfs_b->lock);
4307 }
4308}
4309
38dc3348 4310static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4311{
4312 struct cfs_rq *cfs_rq;
4313
4314 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4315 if (!cfs_rq->runtime_enabled)
4316 continue;
4317
4318 /*
4319 * clock_task is not advancing so we just need to make sure
4320 * there's some valid quota amount
4321 */
51f2176d 4322 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4323 /*
4324 * Offline rq is schedulable till cpu is completely disabled
4325 * in take_cpu_down(), so we prevent new cfs throttling here.
4326 */
4327 cfs_rq->runtime_enabled = 0;
4328
029632fb
PZ
4329 if (cfs_rq_throttled(cfs_rq))
4330 unthrottle_cfs_rq(cfs_rq);
4331 }
4332}
4333
4334#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4335static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4336{
78becc27 4337 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4338}
4339
9dbdb155 4340static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4341static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4342static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 4343static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4344
4345static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4346{
4347 return 0;
4348}
64660c86
PT
4349
4350static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4351{
4352 return 0;
4353}
4354
4355static inline int throttled_lb_pair(struct task_group *tg,
4356 int src_cpu, int dest_cpu)
4357{
4358 return 0;
4359}
029632fb
PZ
4360
4361void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4362
4363#ifdef CONFIG_FAIR_GROUP_SCHED
4364static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4365#endif
4366
029632fb
PZ
4367static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4368{
4369 return NULL;
4370}
4371static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4372static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4373static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4374
4375#endif /* CONFIG_CFS_BANDWIDTH */
4376
bf0f6f24
IM
4377/**************************************************
4378 * CFS operations on tasks:
4379 */
4380
8f4d37ec
PZ
4381#ifdef CONFIG_SCHED_HRTICK
4382static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4383{
8f4d37ec
PZ
4384 struct sched_entity *se = &p->se;
4385 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4386
4387 WARN_ON(task_rq(p) != rq);
4388
b39e66ea 4389 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4390 u64 slice = sched_slice(cfs_rq, se);
4391 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4392 s64 delta = slice - ran;
4393
4394 if (delta < 0) {
4395 if (rq->curr == p)
8875125e 4396 resched_curr(rq);
8f4d37ec
PZ
4397 return;
4398 }
31656519 4399 hrtick_start(rq, delta);
8f4d37ec
PZ
4400 }
4401}
a4c2f00f
PZ
4402
4403/*
4404 * called from enqueue/dequeue and updates the hrtick when the
4405 * current task is from our class and nr_running is low enough
4406 * to matter.
4407 */
4408static void hrtick_update(struct rq *rq)
4409{
4410 struct task_struct *curr = rq->curr;
4411
b39e66ea 4412 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4413 return;
4414
4415 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4416 hrtick_start_fair(rq, curr);
4417}
55e12e5e 4418#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4419static inline void
4420hrtick_start_fair(struct rq *rq, struct task_struct *p)
4421{
4422}
a4c2f00f
PZ
4423
4424static inline void hrtick_update(struct rq *rq)
4425{
4426}
8f4d37ec
PZ
4427#endif
4428
bf0f6f24
IM
4429/*
4430 * The enqueue_task method is called before nr_running is
4431 * increased. Here we update the fair scheduling stats and
4432 * then put the task into the rbtree:
4433 */
ea87bb78 4434static void
371fd7e7 4435enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4436{
4437 struct cfs_rq *cfs_rq;
62fb1851 4438 struct sched_entity *se = &p->se;
bf0f6f24
IM
4439
4440 for_each_sched_entity(se) {
62fb1851 4441 if (se->on_rq)
bf0f6f24
IM
4442 break;
4443 cfs_rq = cfs_rq_of(se);
88ec22d3 4444 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4445
4446 /*
4447 * end evaluation on encountering a throttled cfs_rq
4448 *
4449 * note: in the case of encountering a throttled cfs_rq we will
4450 * post the final h_nr_running increment below.
e210bffd 4451 */
85dac906
PT
4452 if (cfs_rq_throttled(cfs_rq))
4453 break;
953bfcd1 4454 cfs_rq->h_nr_running++;
85dac906 4455
88ec22d3 4456 flags = ENQUEUE_WAKEUP;
bf0f6f24 4457 }
8f4d37ec 4458
2069dd75 4459 for_each_sched_entity(se) {
0f317143 4460 cfs_rq = cfs_rq_of(se);
953bfcd1 4461 cfs_rq->h_nr_running++;
2069dd75 4462
85dac906
PT
4463 if (cfs_rq_throttled(cfs_rq))
4464 break;
4465
9d89c257 4466 update_load_avg(se, 1);
17bc14b7 4467 update_cfs_shares(cfs_rq);
2069dd75
PZ
4468 }
4469
cd126afe 4470 if (!se)
72465447 4471 add_nr_running(rq, 1);
cd126afe 4472
a4c2f00f 4473 hrtick_update(rq);
bf0f6f24
IM
4474}
4475
2f36825b
VP
4476static void set_next_buddy(struct sched_entity *se);
4477
bf0f6f24
IM
4478/*
4479 * The dequeue_task method is called before nr_running is
4480 * decreased. We remove the task from the rbtree and
4481 * update the fair scheduling stats:
4482 */
371fd7e7 4483static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4484{
4485 struct cfs_rq *cfs_rq;
62fb1851 4486 struct sched_entity *se = &p->se;
2f36825b 4487 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4488
4489 for_each_sched_entity(se) {
4490 cfs_rq = cfs_rq_of(se);
371fd7e7 4491 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4492
4493 /*
4494 * end evaluation on encountering a throttled cfs_rq
4495 *
4496 * note: in the case of encountering a throttled cfs_rq we will
4497 * post the final h_nr_running decrement below.
4498 */
4499 if (cfs_rq_throttled(cfs_rq))
4500 break;
953bfcd1 4501 cfs_rq->h_nr_running--;
2069dd75 4502
bf0f6f24 4503 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4504 if (cfs_rq->load.weight) {
754bd598
KK
4505 /* Avoid re-evaluating load for this entity: */
4506 se = parent_entity(se);
2f36825b
VP
4507 /*
4508 * Bias pick_next to pick a task from this cfs_rq, as
4509 * p is sleeping when it is within its sched_slice.
4510 */
754bd598
KK
4511 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4512 set_next_buddy(se);
bf0f6f24 4513 break;
2f36825b 4514 }
371fd7e7 4515 flags |= DEQUEUE_SLEEP;
bf0f6f24 4516 }
8f4d37ec 4517
2069dd75 4518 for_each_sched_entity(se) {
0f317143 4519 cfs_rq = cfs_rq_of(se);
953bfcd1 4520 cfs_rq->h_nr_running--;
2069dd75 4521
85dac906
PT
4522 if (cfs_rq_throttled(cfs_rq))
4523 break;
4524
9d89c257 4525 update_load_avg(se, 1);
17bc14b7 4526 update_cfs_shares(cfs_rq);
2069dd75
PZ
4527 }
4528
cd126afe 4529 if (!se)
72465447 4530 sub_nr_running(rq, 1);
cd126afe 4531
a4c2f00f 4532 hrtick_update(rq);
bf0f6f24
IM
4533}
4534
e7693a36 4535#ifdef CONFIG_SMP
9fd81dd5 4536#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4537/*
4538 * per rq 'load' arrray crap; XXX kill this.
4539 */
4540
4541/*
d937cdc5 4542 * The exact cpuload calculated at every tick would be:
3289bdb4 4543 *
d937cdc5
PZ
4544 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4545 *
4546 * If a cpu misses updates for n ticks (as it was idle) and update gets
4547 * called on the n+1-th tick when cpu may be busy, then we have:
4548 *
4549 * load_n = (1 - 1/2^i)^n * load_0
4550 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4551 *
4552 * decay_load_missed() below does efficient calculation of
3289bdb4 4553 *
d937cdc5
PZ
4554 * load' = (1 - 1/2^i)^n * load
4555 *
4556 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4557 * This allows us to precompute the above in said factors, thereby allowing the
4558 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4559 * fixed_power_int())
3289bdb4 4560 *
d937cdc5 4561 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4562 */
4563#define DEGRADE_SHIFT 7
d937cdc5
PZ
4564
4565static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4566static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4567 { 0, 0, 0, 0, 0, 0, 0, 0 },
4568 { 64, 32, 8, 0, 0, 0, 0, 0 },
4569 { 96, 72, 40, 12, 1, 0, 0, 0 },
4570 { 112, 98, 75, 43, 15, 1, 0, 0 },
4571 { 120, 112, 98, 76, 45, 16, 2, 0 }
4572};
3289bdb4
PZ
4573
4574/*
4575 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4576 * would be when CPU is idle and so we just decay the old load without
4577 * adding any new load.
4578 */
4579static unsigned long
4580decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4581{
4582 int j = 0;
4583
4584 if (!missed_updates)
4585 return load;
4586
4587 if (missed_updates >= degrade_zero_ticks[idx])
4588 return 0;
4589
4590 if (idx == 1)
4591 return load >> missed_updates;
4592
4593 while (missed_updates) {
4594 if (missed_updates % 2)
4595 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4596
4597 missed_updates >>= 1;
4598 j++;
4599 }
4600 return load;
4601}
9fd81dd5 4602#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4603
59543275 4604/**
cee1afce 4605 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4606 * @this_rq: The rq to update statistics for
4607 * @this_load: The current load
4608 * @pending_updates: The number of missed updates
59543275 4609 *
3289bdb4 4610 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4611 * scheduler tick (TICK_NSEC).
4612 *
4613 * This function computes a decaying average:
4614 *
4615 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4616 *
4617 * Because of NOHZ it might not get called on every tick which gives need for
4618 * the @pending_updates argument.
4619 *
4620 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4621 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4622 * = A * (A * load[i]_n-2 + B) + B
4623 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4624 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4625 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4626 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4627 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4628 *
4629 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4630 * any change in load would have resulted in the tick being turned back on.
4631 *
4632 * For regular NOHZ, this reduces to:
4633 *
4634 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4635 *
4636 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4637 * term.
3289bdb4 4638 */
1f41906a
FW
4639static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4640 unsigned long pending_updates)
3289bdb4 4641{
9fd81dd5 4642 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4643 int i, scale;
4644
4645 this_rq->nr_load_updates++;
4646
4647 /* Update our load: */
4648 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4649 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4650 unsigned long old_load, new_load;
4651
4652 /* scale is effectively 1 << i now, and >> i divides by scale */
4653
7400d3bb 4654 old_load = this_rq->cpu_load[i];
9fd81dd5 4655#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4656 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4657 if (tickless_load) {
4658 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4659 /*
4660 * old_load can never be a negative value because a
4661 * decayed tickless_load cannot be greater than the
4662 * original tickless_load.
4663 */
4664 old_load += tickless_load;
4665 }
9fd81dd5 4666#endif
3289bdb4
PZ
4667 new_load = this_load;
4668 /*
4669 * Round up the averaging division if load is increasing. This
4670 * prevents us from getting stuck on 9 if the load is 10, for
4671 * example.
4672 */
4673 if (new_load > old_load)
4674 new_load += scale - 1;
4675
4676 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4677 }
4678
4679 sched_avg_update(this_rq);
4680}
4681
7ea241af
YD
4682/* Used instead of source_load when we know the type == 0 */
4683static unsigned long weighted_cpuload(const int cpu)
4684{
4685 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4686}
4687
3289bdb4 4688#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4689/*
4690 * There is no sane way to deal with nohz on smp when using jiffies because the
4691 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4692 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4693 *
4694 * Therefore we need to avoid the delta approach from the regular tick when
4695 * possible since that would seriously skew the load calculation. This is why we
4696 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4697 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4698 * loop exit, nohz_idle_balance, nohz full exit...)
4699 *
4700 * This means we might still be one tick off for nohz periods.
4701 */
4702
4703static void cpu_load_update_nohz(struct rq *this_rq,
4704 unsigned long curr_jiffies,
4705 unsigned long load)
be68a682
FW
4706{
4707 unsigned long pending_updates;
4708
4709 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4710 if (pending_updates) {
4711 this_rq->last_load_update_tick = curr_jiffies;
4712 /*
4713 * In the regular NOHZ case, we were idle, this means load 0.
4714 * In the NOHZ_FULL case, we were non-idle, we should consider
4715 * its weighted load.
4716 */
1f41906a 4717 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4718 }
4719}
4720
3289bdb4
PZ
4721/*
4722 * Called from nohz_idle_balance() to update the load ratings before doing the
4723 * idle balance.
4724 */
cee1afce 4725static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4726{
3289bdb4
PZ
4727 /*
4728 * bail if there's load or we're actually up-to-date.
4729 */
be68a682 4730 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4731 return;
4732
1f41906a 4733 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4734}
4735
4736/*
1f41906a
FW
4737 * Record CPU load on nohz entry so we know the tickless load to account
4738 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4739 * than other cpu_load[idx] but it should be fine as cpu_load readers
4740 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4741 */
1f41906a 4742void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4743{
4744 struct rq *this_rq = this_rq();
1f41906a
FW
4745
4746 /*
4747 * This is all lockless but should be fine. If weighted_cpuload changes
4748 * concurrently we'll exit nohz. And cpu_load write can race with
4749 * cpu_load_update_idle() but both updater would be writing the same.
4750 */
4751 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4752}
4753
4754/*
4755 * Account the tickless load in the end of a nohz frame.
4756 */
4757void cpu_load_update_nohz_stop(void)
4758{
316c1608 4759 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4760 struct rq *this_rq = this_rq();
4761 unsigned long load;
3289bdb4
PZ
4762
4763 if (curr_jiffies == this_rq->last_load_update_tick)
4764 return;
4765
1f41906a 4766 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4767 raw_spin_lock(&this_rq->lock);
b52fad2d 4768 update_rq_clock(this_rq);
1f41906a 4769 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4770 raw_spin_unlock(&this_rq->lock);
4771}
1f41906a
FW
4772#else /* !CONFIG_NO_HZ_COMMON */
4773static inline void cpu_load_update_nohz(struct rq *this_rq,
4774 unsigned long curr_jiffies,
4775 unsigned long load) { }
4776#endif /* CONFIG_NO_HZ_COMMON */
4777
4778static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4779{
9fd81dd5 4780#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4781 /* See the mess around cpu_load_update_nohz(). */
4782 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4783#endif
1f41906a
FW
4784 cpu_load_update(this_rq, load, 1);
4785}
3289bdb4
PZ
4786
4787/*
4788 * Called from scheduler_tick()
4789 */
cee1afce 4790void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4791{
7ea241af 4792 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4793
4794 if (tick_nohz_tick_stopped())
4795 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4796 else
4797 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4798}
4799
029632fb
PZ
4800/*
4801 * Return a low guess at the load of a migration-source cpu weighted
4802 * according to the scheduling class and "nice" value.
4803 *
4804 * We want to under-estimate the load of migration sources, to
4805 * balance conservatively.
4806 */
4807static unsigned long source_load(int cpu, int type)
4808{
4809 struct rq *rq = cpu_rq(cpu);
4810 unsigned long total = weighted_cpuload(cpu);
4811
4812 if (type == 0 || !sched_feat(LB_BIAS))
4813 return total;
4814
4815 return min(rq->cpu_load[type-1], total);
4816}
4817
4818/*
4819 * Return a high guess at the load of a migration-target cpu weighted
4820 * according to the scheduling class and "nice" value.
4821 */
4822static unsigned long target_load(int cpu, int type)
4823{
4824 struct rq *rq = cpu_rq(cpu);
4825 unsigned long total = weighted_cpuload(cpu);
4826
4827 if (type == 0 || !sched_feat(LB_BIAS))
4828 return total;
4829
4830 return max(rq->cpu_load[type-1], total);
4831}
4832
ced549fa 4833static unsigned long capacity_of(int cpu)
029632fb 4834{
ced549fa 4835 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4836}
4837
ca6d75e6
VG
4838static unsigned long capacity_orig_of(int cpu)
4839{
4840 return cpu_rq(cpu)->cpu_capacity_orig;
4841}
4842
029632fb
PZ
4843static unsigned long cpu_avg_load_per_task(int cpu)
4844{
4845 struct rq *rq = cpu_rq(cpu);
316c1608 4846 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4847 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4848
4849 if (nr_running)
b92486cb 4850 return load_avg / nr_running;
029632fb
PZ
4851
4852 return 0;
4853}
4854
bb3469ac 4855#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4856/*
4857 * effective_load() calculates the load change as seen from the root_task_group
4858 *
4859 * Adding load to a group doesn't make a group heavier, but can cause movement
4860 * of group shares between cpus. Assuming the shares were perfectly aligned one
4861 * can calculate the shift in shares.
cf5f0acf
PZ
4862 *
4863 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4864 * on this @cpu and results in a total addition (subtraction) of @wg to the
4865 * total group weight.
4866 *
4867 * Given a runqueue weight distribution (rw_i) we can compute a shares
4868 * distribution (s_i) using:
4869 *
4870 * s_i = rw_i / \Sum rw_j (1)
4871 *
4872 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4873 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4874 * shares distribution (s_i):
4875 *
4876 * rw_i = { 2, 4, 1, 0 }
4877 * s_i = { 2/7, 4/7, 1/7, 0 }
4878 *
4879 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4880 * task used to run on and the CPU the waker is running on), we need to
4881 * compute the effect of waking a task on either CPU and, in case of a sync
4882 * wakeup, compute the effect of the current task going to sleep.
4883 *
4884 * So for a change of @wl to the local @cpu with an overall group weight change
4885 * of @wl we can compute the new shares distribution (s'_i) using:
4886 *
4887 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4888 *
4889 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4890 * differences in waking a task to CPU 0. The additional task changes the
4891 * weight and shares distributions like:
4892 *
4893 * rw'_i = { 3, 4, 1, 0 }
4894 * s'_i = { 3/8, 4/8, 1/8, 0 }
4895 *
4896 * We can then compute the difference in effective weight by using:
4897 *
4898 * dw_i = S * (s'_i - s_i) (3)
4899 *
4900 * Where 'S' is the group weight as seen by its parent.
4901 *
4902 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4903 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4904 * 4/7) times the weight of the group.
f5bfb7d9 4905 */
2069dd75 4906static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4907{
4be9daaa 4908 struct sched_entity *se = tg->se[cpu];
f1d239f7 4909
9722c2da 4910 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4911 return wl;
4912
4be9daaa 4913 for_each_sched_entity(se) {
7dd49125
PZ
4914 struct cfs_rq *cfs_rq = se->my_q;
4915 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 4916
7dd49125 4917 tg = cfs_rq->tg;
bb3469ac 4918
cf5f0acf
PZ
4919 /*
4920 * W = @wg + \Sum rw_j
4921 */
7dd49125
PZ
4922 W = wg + atomic_long_read(&tg->load_avg);
4923
4924 /* Ensure \Sum rw_j >= rw_i */
4925 W -= cfs_rq->tg_load_avg_contrib;
4926 W += w;
4be9daaa 4927
cf5f0acf
PZ
4928 /*
4929 * w = rw_i + @wl
4930 */
7dd49125 4931 w += wl;
940959e9 4932
cf5f0acf
PZ
4933 /*
4934 * wl = S * s'_i; see (2)
4935 */
4936 if (W > 0 && w < W)
32a8df4e 4937 wl = (w * (long)tg->shares) / W;
977dda7c
PT
4938 else
4939 wl = tg->shares;
940959e9 4940
cf5f0acf
PZ
4941 /*
4942 * Per the above, wl is the new se->load.weight value; since
4943 * those are clipped to [MIN_SHARES, ...) do so now. See
4944 * calc_cfs_shares().
4945 */
977dda7c
PT
4946 if (wl < MIN_SHARES)
4947 wl = MIN_SHARES;
cf5f0acf
PZ
4948
4949 /*
4950 * wl = dw_i = S * (s'_i - s_i); see (3)
4951 */
9d89c257 4952 wl -= se->avg.load_avg;
cf5f0acf
PZ
4953
4954 /*
4955 * Recursively apply this logic to all parent groups to compute
4956 * the final effective load change on the root group. Since
4957 * only the @tg group gets extra weight, all parent groups can
4958 * only redistribute existing shares. @wl is the shift in shares
4959 * resulting from this level per the above.
4960 */
4be9daaa 4961 wg = 0;
4be9daaa 4962 }
bb3469ac 4963
4be9daaa 4964 return wl;
bb3469ac
PZ
4965}
4966#else
4be9daaa 4967
58d081b5 4968static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4969{
83378269 4970 return wl;
bb3469ac 4971}
4be9daaa 4972
bb3469ac
PZ
4973#endif
4974
c58d25f3
PZ
4975static void record_wakee(struct task_struct *p)
4976{
4977 /*
4978 * Only decay a single time; tasks that have less then 1 wakeup per
4979 * jiffy will not have built up many flips.
4980 */
4981 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4982 current->wakee_flips >>= 1;
4983 current->wakee_flip_decay_ts = jiffies;
4984 }
4985
4986 if (current->last_wakee != p) {
4987 current->last_wakee = p;
4988 current->wakee_flips++;
4989 }
4990}
4991
63b0e9ed
MG
4992/*
4993 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 4994 *
63b0e9ed 4995 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
4996 * at a frequency roughly N times higher than one of its wakees.
4997 *
4998 * In order to determine whether we should let the load spread vs consolidating
4999 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5000 * partner, and a factor of lls_size higher frequency in the other.
5001 *
5002 * With both conditions met, we can be relatively sure that the relationship is
5003 * non-monogamous, with partner count exceeding socket size.
5004 *
5005 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5006 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5007 * socket size.
63b0e9ed 5008 */
62470419
MW
5009static int wake_wide(struct task_struct *p)
5010{
63b0e9ed
MG
5011 unsigned int master = current->wakee_flips;
5012 unsigned int slave = p->wakee_flips;
7d9ffa89 5013 int factor = this_cpu_read(sd_llc_size);
62470419 5014
63b0e9ed
MG
5015 if (master < slave)
5016 swap(master, slave);
5017 if (slave < factor || master < slave * factor)
5018 return 0;
5019 return 1;
62470419
MW
5020}
5021
c88d5910 5022static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 5023{
e37b6a7b 5024 s64 this_load, load;
bd61c98f 5025 s64 this_eff_load, prev_eff_load;
c88d5910 5026 int idx, this_cpu, prev_cpu;
c88d5910 5027 struct task_group *tg;
83378269 5028 unsigned long weight;
b3137bc8 5029 int balanced;
098fb9db 5030
c88d5910
PZ
5031 idx = sd->wake_idx;
5032 this_cpu = smp_processor_id();
5033 prev_cpu = task_cpu(p);
5034 load = source_load(prev_cpu, idx);
5035 this_load = target_load(this_cpu, idx);
098fb9db 5036
b3137bc8
MG
5037 /*
5038 * If sync wakeup then subtract the (maximum possible)
5039 * effect of the currently running task from the load
5040 * of the current CPU:
5041 */
83378269
PZ
5042 if (sync) {
5043 tg = task_group(current);
9d89c257 5044 weight = current->se.avg.load_avg;
83378269 5045
c88d5910 5046 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5047 load += effective_load(tg, prev_cpu, 0, -weight);
5048 }
b3137bc8 5049
83378269 5050 tg = task_group(p);
9d89c257 5051 weight = p->se.avg.load_avg;
b3137bc8 5052
71a29aa7
PZ
5053 /*
5054 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5055 * due to the sync cause above having dropped this_load to 0, we'll
5056 * always have an imbalance, but there's really nothing you can do
5057 * about that, so that's good too.
71a29aa7
PZ
5058 *
5059 * Otherwise check if either cpus are near enough in load to allow this
5060 * task to be woken on this_cpu.
5061 */
bd61c98f
VG
5062 this_eff_load = 100;
5063 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5064
bd61c98f
VG
5065 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5066 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5067
bd61c98f 5068 if (this_load > 0) {
e51fd5e2
PZ
5069 this_eff_load *= this_load +
5070 effective_load(tg, this_cpu, weight, weight);
5071
e51fd5e2 5072 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5073 }
e51fd5e2 5074
bd61c98f 5075 balanced = this_eff_load <= prev_eff_load;
098fb9db 5076
41acab88 5077 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db 5078
05bfb65f
VG
5079 if (!balanced)
5080 return 0;
098fb9db 5081
05bfb65f
VG
5082 schedstat_inc(sd, ttwu_move_affine);
5083 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5084
5085 return 1;
098fb9db
IM
5086}
5087
aaee1203
PZ
5088/*
5089 * find_idlest_group finds and returns the least busy CPU group within the
5090 * domain.
5091 */
5092static struct sched_group *
78e7ed53 5093find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5094 int this_cpu, int sd_flag)
e7693a36 5095{
b3bd3de6 5096 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5097 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5098 int load_idx = sd->forkexec_idx;
aaee1203 5099 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5100
c44f2a02
VG
5101 if (sd_flag & SD_BALANCE_WAKE)
5102 load_idx = sd->wake_idx;
5103
aaee1203
PZ
5104 do {
5105 unsigned long load, avg_load;
5106 int local_group;
5107 int i;
e7693a36 5108
aaee1203
PZ
5109 /* Skip over this group if it has no CPUs allowed */
5110 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5111 tsk_cpus_allowed(p)))
aaee1203
PZ
5112 continue;
5113
5114 local_group = cpumask_test_cpu(this_cpu,
5115 sched_group_cpus(group));
5116
5117 /* Tally up the load of all CPUs in the group */
5118 avg_load = 0;
5119
5120 for_each_cpu(i, sched_group_cpus(group)) {
5121 /* Bias balancing toward cpus of our domain */
5122 if (local_group)
5123 load = source_load(i, load_idx);
5124 else
5125 load = target_load(i, load_idx);
5126
5127 avg_load += load;
5128 }
5129
63b2ca30 5130 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5131 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5132
5133 if (local_group) {
5134 this_load = avg_load;
aaee1203
PZ
5135 } else if (avg_load < min_load) {
5136 min_load = avg_load;
5137 idlest = group;
5138 }
5139 } while (group = group->next, group != sd->groups);
5140
5141 if (!idlest || 100*this_load < imbalance*min_load)
5142 return NULL;
5143 return idlest;
5144}
5145
5146/*
5147 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5148 */
5149static int
5150find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5151{
5152 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5153 unsigned int min_exit_latency = UINT_MAX;
5154 u64 latest_idle_timestamp = 0;
5155 int least_loaded_cpu = this_cpu;
5156 int shallowest_idle_cpu = -1;
aaee1203
PZ
5157 int i;
5158
5159 /* Traverse only the allowed CPUs */
fa17b507 5160 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5161 if (idle_cpu(i)) {
5162 struct rq *rq = cpu_rq(i);
5163 struct cpuidle_state *idle = idle_get_state(rq);
5164 if (idle && idle->exit_latency < min_exit_latency) {
5165 /*
5166 * We give priority to a CPU whose idle state
5167 * has the smallest exit latency irrespective
5168 * of any idle timestamp.
5169 */
5170 min_exit_latency = idle->exit_latency;
5171 latest_idle_timestamp = rq->idle_stamp;
5172 shallowest_idle_cpu = i;
5173 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5174 rq->idle_stamp > latest_idle_timestamp) {
5175 /*
5176 * If equal or no active idle state, then
5177 * the most recently idled CPU might have
5178 * a warmer cache.
5179 */
5180 latest_idle_timestamp = rq->idle_stamp;
5181 shallowest_idle_cpu = i;
5182 }
9f96742a 5183 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5184 load = weighted_cpuload(i);
5185 if (load < min_load || (load == min_load && i == this_cpu)) {
5186 min_load = load;
5187 least_loaded_cpu = i;
5188 }
e7693a36
GH
5189 }
5190 }
5191
83a0a96a 5192 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5193}
e7693a36 5194
a50bde51
PZ
5195/*
5196 * Try and locate an idle CPU in the sched_domain.
5197 */
99bd5e2f 5198static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 5199{
99bd5e2f 5200 struct sched_domain *sd;
37407ea7 5201 struct sched_group *sg;
e0a79f52 5202 int i = task_cpu(p);
a50bde51 5203
e0a79f52
MG
5204 if (idle_cpu(target))
5205 return target;
99bd5e2f
SS
5206
5207 /*
e0a79f52 5208 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5209 */
e0a79f52
MG
5210 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5211 return i;
a50bde51
PZ
5212
5213 /*
d4335581
MF
5214 * Otherwise, iterate the domains and find an eligible idle cpu.
5215 *
5216 * A completely idle sched group at higher domains is more
5217 * desirable than an idle group at a lower level, because lower
5218 * domains have smaller groups and usually share hardware
5219 * resources which causes tasks to contend on them, e.g. x86
5220 * hyperthread siblings in the lowest domain (SMT) can contend
5221 * on the shared cpu pipeline.
5222 *
5223 * However, while we prefer idle groups at higher domains
5224 * finding an idle cpu at the lowest domain is still better than
5225 * returning 'target', which we've already established, isn't
5226 * idle.
a50bde51 5227 */
518cd623 5228 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5229 for_each_lower_domain(sd) {
37407ea7
LT
5230 sg = sd->groups;
5231 do {
5232 if (!cpumask_intersects(sched_group_cpus(sg),
5233 tsk_cpus_allowed(p)))
5234 goto next;
5235
d4335581 5236 /* Ensure the entire group is idle */
37407ea7 5237 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5238 if (i == target || !idle_cpu(i))
37407ea7
LT
5239 goto next;
5240 }
970e1789 5241
d4335581
MF
5242 /*
5243 * It doesn't matter which cpu we pick, the
5244 * whole group is idle.
5245 */
37407ea7
LT
5246 target = cpumask_first_and(sched_group_cpus(sg),
5247 tsk_cpus_allowed(p));
5248 goto done;
5249next:
5250 sg = sg->next;
5251 } while (sg != sd->groups);
5252 }
5253done:
a50bde51
PZ
5254 return target;
5255}
231678b7 5256
8bb5b00c 5257/*
9e91d61d 5258 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5259 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5260 * compare the utilization with the capacity of the CPU that is available for
5261 * CFS task (ie cpu_capacity).
231678b7
DE
5262 *
5263 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5264 * recent utilization of currently non-runnable tasks on a CPU. It represents
5265 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5266 * capacity_orig is the cpu_capacity available at the highest frequency
5267 * (arch_scale_freq_capacity()).
5268 * The utilization of a CPU converges towards a sum equal to or less than the
5269 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5270 * the running time on this CPU scaled by capacity_curr.
5271 *
5272 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5273 * higher than capacity_orig because of unfortunate rounding in
5274 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5275 * the average stabilizes with the new running time. We need to check that the
5276 * utilization stays within the range of [0..capacity_orig] and cap it if
5277 * necessary. Without utilization capping, a group could be seen as overloaded
5278 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5279 * available capacity. We allow utilization to overshoot capacity_curr (but not
5280 * capacity_orig) as it useful for predicting the capacity required after task
5281 * migrations (scheduler-driven DVFS).
8bb5b00c 5282 */
9e91d61d 5283static int cpu_util(int cpu)
8bb5b00c 5284{
9e91d61d 5285 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5286 unsigned long capacity = capacity_orig_of(cpu);
5287
231678b7 5288 return (util >= capacity) ? capacity : util;
8bb5b00c 5289}
a50bde51 5290
aaee1203 5291/*
de91b9cb
MR
5292 * select_task_rq_fair: Select target runqueue for the waking task in domains
5293 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5294 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5295 *
de91b9cb
MR
5296 * Balances load by selecting the idlest cpu in the idlest group, or under
5297 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5298 *
de91b9cb 5299 * Returns the target cpu number.
aaee1203
PZ
5300 *
5301 * preempt must be disabled.
5302 */
0017d735 5303static int
ac66f547 5304select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5305{
29cd8bae 5306 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5307 int cpu = smp_processor_id();
63b0e9ed 5308 int new_cpu = prev_cpu;
99bd5e2f 5309 int want_affine = 0;
5158f4e4 5310 int sync = wake_flags & WF_SYNC;
c88d5910 5311
c58d25f3
PZ
5312 if (sd_flag & SD_BALANCE_WAKE) {
5313 record_wakee(p);
63b0e9ed 5314 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5315 }
aaee1203 5316
dce840a0 5317 rcu_read_lock();
aaee1203 5318 for_each_domain(cpu, tmp) {
e4f42888 5319 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5320 break;
e4f42888 5321
fe3bcfe1 5322 /*
99bd5e2f
SS
5323 * If both cpu and prev_cpu are part of this domain,
5324 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5325 */
99bd5e2f
SS
5326 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5327 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5328 affine_sd = tmp;
29cd8bae 5329 break;
f03542a7 5330 }
29cd8bae 5331
f03542a7 5332 if (tmp->flags & sd_flag)
29cd8bae 5333 sd = tmp;
63b0e9ed
MG
5334 else if (!want_affine)
5335 break;
29cd8bae
PZ
5336 }
5337
63b0e9ed
MG
5338 if (affine_sd) {
5339 sd = NULL; /* Prefer wake_affine over balance flags */
5340 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5341 new_cpu = cpu;
8b911acd 5342 }
e7693a36 5343
63b0e9ed
MG
5344 if (!sd) {
5345 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5346 new_cpu = select_idle_sibling(p, new_cpu);
5347
5348 } else while (sd) {
aaee1203 5349 struct sched_group *group;
c88d5910 5350 int weight;
098fb9db 5351
0763a660 5352 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5353 sd = sd->child;
5354 continue;
5355 }
098fb9db 5356
c44f2a02 5357 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5358 if (!group) {
5359 sd = sd->child;
5360 continue;
5361 }
4ae7d5ce 5362
d7c33c49 5363 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5364 if (new_cpu == -1 || new_cpu == cpu) {
5365 /* Now try balancing at a lower domain level of cpu */
5366 sd = sd->child;
5367 continue;
e7693a36 5368 }
aaee1203
PZ
5369
5370 /* Now try balancing at a lower domain level of new_cpu */
5371 cpu = new_cpu;
669c55e9 5372 weight = sd->span_weight;
aaee1203
PZ
5373 sd = NULL;
5374 for_each_domain(cpu, tmp) {
669c55e9 5375 if (weight <= tmp->span_weight)
aaee1203 5376 break;
0763a660 5377 if (tmp->flags & sd_flag)
aaee1203
PZ
5378 sd = tmp;
5379 }
5380 /* while loop will break here if sd == NULL */
e7693a36 5381 }
dce840a0 5382 rcu_read_unlock();
e7693a36 5383
c88d5910 5384 return new_cpu;
e7693a36 5385}
0a74bef8
PT
5386
5387/*
5388 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5389 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5390 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5391 */
5a4fd036 5392static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5393{
59efa0ba
PZ
5394 /*
5395 * As blocked tasks retain absolute vruntime the migration needs to
5396 * deal with this by subtracting the old and adding the new
5397 * min_vruntime -- the latter is done by enqueue_entity() when placing
5398 * the task on the new runqueue.
5399 */
5400 if (p->state == TASK_WAKING) {
5401 struct sched_entity *se = &p->se;
5402 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5403 u64 min_vruntime;
5404
5405#ifndef CONFIG_64BIT
5406 u64 min_vruntime_copy;
5407
5408 do {
5409 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5410 smp_rmb();
5411 min_vruntime = cfs_rq->min_vruntime;
5412 } while (min_vruntime != min_vruntime_copy);
5413#else
5414 min_vruntime = cfs_rq->min_vruntime;
5415#endif
5416
5417 se->vruntime -= min_vruntime;
5418 }
5419
aff3e498 5420 /*
9d89c257
YD
5421 * We are supposed to update the task to "current" time, then its up to date
5422 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5423 * what current time is, so simply throw away the out-of-date time. This
5424 * will result in the wakee task is less decayed, but giving the wakee more
5425 * load sounds not bad.
aff3e498 5426 */
9d89c257
YD
5427 remove_entity_load_avg(&p->se);
5428
5429 /* Tell new CPU we are migrated */
5430 p->se.avg.last_update_time = 0;
3944a927
BS
5431
5432 /* We have migrated, no longer consider this task hot */
9d89c257 5433 p->se.exec_start = 0;
0a74bef8 5434}
12695578
YD
5435
5436static void task_dead_fair(struct task_struct *p)
5437{
5438 remove_entity_load_avg(&p->se);
5439}
e7693a36
GH
5440#endif /* CONFIG_SMP */
5441
e52fb7c0
PZ
5442static unsigned long
5443wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5444{
5445 unsigned long gran = sysctl_sched_wakeup_granularity;
5446
5447 /*
e52fb7c0
PZ
5448 * Since its curr running now, convert the gran from real-time
5449 * to virtual-time in his units.
13814d42
MG
5450 *
5451 * By using 'se' instead of 'curr' we penalize light tasks, so
5452 * they get preempted easier. That is, if 'se' < 'curr' then
5453 * the resulting gran will be larger, therefore penalizing the
5454 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5455 * be smaller, again penalizing the lighter task.
5456 *
5457 * This is especially important for buddies when the leftmost
5458 * task is higher priority than the buddy.
0bbd3336 5459 */
f4ad9bd2 5460 return calc_delta_fair(gran, se);
0bbd3336
PZ
5461}
5462
464b7527
PZ
5463/*
5464 * Should 'se' preempt 'curr'.
5465 *
5466 * |s1
5467 * |s2
5468 * |s3
5469 * g
5470 * |<--->|c
5471 *
5472 * w(c, s1) = -1
5473 * w(c, s2) = 0
5474 * w(c, s3) = 1
5475 *
5476 */
5477static int
5478wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5479{
5480 s64 gran, vdiff = curr->vruntime - se->vruntime;
5481
5482 if (vdiff <= 0)
5483 return -1;
5484
e52fb7c0 5485 gran = wakeup_gran(curr, se);
464b7527
PZ
5486 if (vdiff > gran)
5487 return 1;
5488
5489 return 0;
5490}
5491
02479099
PZ
5492static void set_last_buddy(struct sched_entity *se)
5493{
69c80f3e
VP
5494 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5495 return;
5496
5497 for_each_sched_entity(se)
5498 cfs_rq_of(se)->last = se;
02479099
PZ
5499}
5500
5501static void set_next_buddy(struct sched_entity *se)
5502{
69c80f3e
VP
5503 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5504 return;
5505
5506 for_each_sched_entity(se)
5507 cfs_rq_of(se)->next = se;
02479099
PZ
5508}
5509
ac53db59
RR
5510static void set_skip_buddy(struct sched_entity *se)
5511{
69c80f3e
VP
5512 for_each_sched_entity(se)
5513 cfs_rq_of(se)->skip = se;
ac53db59
RR
5514}
5515
bf0f6f24
IM
5516/*
5517 * Preempt the current task with a newly woken task if needed:
5518 */
5a9b86f6 5519static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5520{
5521 struct task_struct *curr = rq->curr;
8651a86c 5522 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5523 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5524 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5525 int next_buddy_marked = 0;
bf0f6f24 5526
4ae7d5ce
IM
5527 if (unlikely(se == pse))
5528 return;
5529
5238cdd3 5530 /*
163122b7 5531 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5532 * unconditionally check_prempt_curr() after an enqueue (which may have
5533 * lead to a throttle). This both saves work and prevents false
5534 * next-buddy nomination below.
5535 */
5536 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5537 return;
5538
2f36825b 5539 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5540 set_next_buddy(pse);
2f36825b
VP
5541 next_buddy_marked = 1;
5542 }
57fdc26d 5543
aec0a514
BR
5544 /*
5545 * We can come here with TIF_NEED_RESCHED already set from new task
5546 * wake up path.
5238cdd3
PT
5547 *
5548 * Note: this also catches the edge-case of curr being in a throttled
5549 * group (e.g. via set_curr_task), since update_curr() (in the
5550 * enqueue of curr) will have resulted in resched being set. This
5551 * prevents us from potentially nominating it as a false LAST_BUDDY
5552 * below.
aec0a514
BR
5553 */
5554 if (test_tsk_need_resched(curr))
5555 return;
5556
a2f5c9ab
DH
5557 /* Idle tasks are by definition preempted by non-idle tasks. */
5558 if (unlikely(curr->policy == SCHED_IDLE) &&
5559 likely(p->policy != SCHED_IDLE))
5560 goto preempt;
5561
91c234b4 5562 /*
a2f5c9ab
DH
5563 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5564 * is driven by the tick):
91c234b4 5565 */
8ed92e51 5566 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5567 return;
bf0f6f24 5568
464b7527 5569 find_matching_se(&se, &pse);
9bbd7374 5570 update_curr(cfs_rq_of(se));
002f128b 5571 BUG_ON(!pse);
2f36825b
VP
5572 if (wakeup_preempt_entity(se, pse) == 1) {
5573 /*
5574 * Bias pick_next to pick the sched entity that is
5575 * triggering this preemption.
5576 */
5577 if (!next_buddy_marked)
5578 set_next_buddy(pse);
3a7e73a2 5579 goto preempt;
2f36825b 5580 }
464b7527 5581
3a7e73a2 5582 return;
a65ac745 5583
3a7e73a2 5584preempt:
8875125e 5585 resched_curr(rq);
3a7e73a2
PZ
5586 /*
5587 * Only set the backward buddy when the current task is still
5588 * on the rq. This can happen when a wakeup gets interleaved
5589 * with schedule on the ->pre_schedule() or idle_balance()
5590 * point, either of which can * drop the rq lock.
5591 *
5592 * Also, during early boot the idle thread is in the fair class,
5593 * for obvious reasons its a bad idea to schedule back to it.
5594 */
5595 if (unlikely(!se->on_rq || curr == rq->idle))
5596 return;
5597
5598 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5599 set_last_buddy(se);
bf0f6f24
IM
5600}
5601
606dba2e 5602static struct task_struct *
e7904a28 5603pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5604{
5605 struct cfs_rq *cfs_rq = &rq->cfs;
5606 struct sched_entity *se;
678d5718 5607 struct task_struct *p;
37e117c0 5608 int new_tasks;
678d5718 5609
6e83125c 5610again:
678d5718
PZ
5611#ifdef CONFIG_FAIR_GROUP_SCHED
5612 if (!cfs_rq->nr_running)
38033c37 5613 goto idle;
678d5718 5614
3f1d2a31 5615 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5616 goto simple;
5617
5618 /*
5619 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5620 * likely that a next task is from the same cgroup as the current.
5621 *
5622 * Therefore attempt to avoid putting and setting the entire cgroup
5623 * hierarchy, only change the part that actually changes.
5624 */
5625
5626 do {
5627 struct sched_entity *curr = cfs_rq->curr;
5628
5629 /*
5630 * Since we got here without doing put_prev_entity() we also
5631 * have to consider cfs_rq->curr. If it is still a runnable
5632 * entity, update_curr() will update its vruntime, otherwise
5633 * forget we've ever seen it.
5634 */
54d27365
BS
5635 if (curr) {
5636 if (curr->on_rq)
5637 update_curr(cfs_rq);
5638 else
5639 curr = NULL;
678d5718 5640
54d27365
BS
5641 /*
5642 * This call to check_cfs_rq_runtime() will do the
5643 * throttle and dequeue its entity in the parent(s).
5644 * Therefore the 'simple' nr_running test will indeed
5645 * be correct.
5646 */
5647 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5648 goto simple;
5649 }
678d5718
PZ
5650
5651 se = pick_next_entity(cfs_rq, curr);
5652 cfs_rq = group_cfs_rq(se);
5653 } while (cfs_rq);
5654
5655 p = task_of(se);
5656
5657 /*
5658 * Since we haven't yet done put_prev_entity and if the selected task
5659 * is a different task than we started out with, try and touch the
5660 * least amount of cfs_rqs.
5661 */
5662 if (prev != p) {
5663 struct sched_entity *pse = &prev->se;
5664
5665 while (!(cfs_rq = is_same_group(se, pse))) {
5666 int se_depth = se->depth;
5667 int pse_depth = pse->depth;
5668
5669 if (se_depth <= pse_depth) {
5670 put_prev_entity(cfs_rq_of(pse), pse);
5671 pse = parent_entity(pse);
5672 }
5673 if (se_depth >= pse_depth) {
5674 set_next_entity(cfs_rq_of(se), se);
5675 se = parent_entity(se);
5676 }
5677 }
5678
5679 put_prev_entity(cfs_rq, pse);
5680 set_next_entity(cfs_rq, se);
5681 }
5682
5683 if (hrtick_enabled(rq))
5684 hrtick_start_fair(rq, p);
5685
5686 return p;
5687simple:
5688 cfs_rq = &rq->cfs;
5689#endif
bf0f6f24 5690
36ace27e 5691 if (!cfs_rq->nr_running)
38033c37 5692 goto idle;
bf0f6f24 5693
3f1d2a31 5694 put_prev_task(rq, prev);
606dba2e 5695
bf0f6f24 5696 do {
678d5718 5697 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5698 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5699 cfs_rq = group_cfs_rq(se);
5700 } while (cfs_rq);
5701
8f4d37ec 5702 p = task_of(se);
678d5718 5703
b39e66ea
MG
5704 if (hrtick_enabled(rq))
5705 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5706
5707 return p;
38033c37
PZ
5708
5709idle:
cbce1a68
PZ
5710 /*
5711 * This is OK, because current is on_cpu, which avoids it being picked
5712 * for load-balance and preemption/IRQs are still disabled avoiding
5713 * further scheduler activity on it and we're being very careful to
5714 * re-start the picking loop.
5715 */
e7904a28 5716 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5717 new_tasks = idle_balance(rq);
e7904a28 5718 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5719 /*
5720 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5721 * possible for any higher priority task to appear. In that case we
5722 * must re-start the pick_next_entity() loop.
5723 */
e4aa358b 5724 if (new_tasks < 0)
37e117c0
PZ
5725 return RETRY_TASK;
5726
e4aa358b 5727 if (new_tasks > 0)
38033c37 5728 goto again;
38033c37
PZ
5729
5730 return NULL;
bf0f6f24
IM
5731}
5732
5733/*
5734 * Account for a descheduled task:
5735 */
31ee529c 5736static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5737{
5738 struct sched_entity *se = &prev->se;
5739 struct cfs_rq *cfs_rq;
5740
5741 for_each_sched_entity(se) {
5742 cfs_rq = cfs_rq_of(se);
ab6cde26 5743 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5744 }
5745}
5746
ac53db59
RR
5747/*
5748 * sched_yield() is very simple
5749 *
5750 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5751 */
5752static void yield_task_fair(struct rq *rq)
5753{
5754 struct task_struct *curr = rq->curr;
5755 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5756 struct sched_entity *se = &curr->se;
5757
5758 /*
5759 * Are we the only task in the tree?
5760 */
5761 if (unlikely(rq->nr_running == 1))
5762 return;
5763
5764 clear_buddies(cfs_rq, se);
5765
5766 if (curr->policy != SCHED_BATCH) {
5767 update_rq_clock(rq);
5768 /*
5769 * Update run-time statistics of the 'current'.
5770 */
5771 update_curr(cfs_rq);
916671c0
MG
5772 /*
5773 * Tell update_rq_clock() that we've just updated,
5774 * so we don't do microscopic update in schedule()
5775 * and double the fastpath cost.
5776 */
9edfbfed 5777 rq_clock_skip_update(rq, true);
ac53db59
RR
5778 }
5779
5780 set_skip_buddy(se);
5781}
5782
d95f4122
MG
5783static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5784{
5785 struct sched_entity *se = &p->se;
5786
5238cdd3
PT
5787 /* throttled hierarchies are not runnable */
5788 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5789 return false;
5790
5791 /* Tell the scheduler that we'd really like pse to run next. */
5792 set_next_buddy(se);
5793
d95f4122
MG
5794 yield_task_fair(rq);
5795
5796 return true;
5797}
5798
681f3e68 5799#ifdef CONFIG_SMP
bf0f6f24 5800/**************************************************
e9c84cb8
PZ
5801 * Fair scheduling class load-balancing methods.
5802 *
5803 * BASICS
5804 *
5805 * The purpose of load-balancing is to achieve the same basic fairness the
5806 * per-cpu scheduler provides, namely provide a proportional amount of compute
5807 * time to each task. This is expressed in the following equation:
5808 *
5809 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5810 *
5811 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5812 * W_i,0 is defined as:
5813 *
5814 * W_i,0 = \Sum_j w_i,j (2)
5815 *
5816 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5817 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5818 *
5819 * The weight average is an exponential decay average of the instantaneous
5820 * weight:
5821 *
5822 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5823 *
ced549fa 5824 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5825 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5826 * can also include other factors [XXX].
5827 *
5828 * To achieve this balance we define a measure of imbalance which follows
5829 * directly from (1):
5830 *
ced549fa 5831 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5832 *
5833 * We them move tasks around to minimize the imbalance. In the continuous
5834 * function space it is obvious this converges, in the discrete case we get
5835 * a few fun cases generally called infeasible weight scenarios.
5836 *
5837 * [XXX expand on:
5838 * - infeasible weights;
5839 * - local vs global optima in the discrete case. ]
5840 *
5841 *
5842 * SCHED DOMAINS
5843 *
5844 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5845 * for all i,j solution, we create a tree of cpus that follows the hardware
5846 * topology where each level pairs two lower groups (or better). This results
5847 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5848 * tree to only the first of the previous level and we decrease the frequency
5849 * of load-balance at each level inv. proportional to the number of cpus in
5850 * the groups.
5851 *
5852 * This yields:
5853 *
5854 * log_2 n 1 n
5855 * \Sum { --- * --- * 2^i } = O(n) (5)
5856 * i = 0 2^i 2^i
5857 * `- size of each group
5858 * | | `- number of cpus doing load-balance
5859 * | `- freq
5860 * `- sum over all levels
5861 *
5862 * Coupled with a limit on how many tasks we can migrate every balance pass,
5863 * this makes (5) the runtime complexity of the balancer.
5864 *
5865 * An important property here is that each CPU is still (indirectly) connected
5866 * to every other cpu in at most O(log n) steps:
5867 *
5868 * The adjacency matrix of the resulting graph is given by:
5869 *
5870 * log_2 n
5871 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5872 * k = 0
5873 *
5874 * And you'll find that:
5875 *
5876 * A^(log_2 n)_i,j != 0 for all i,j (7)
5877 *
5878 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5879 * The task movement gives a factor of O(m), giving a convergence complexity
5880 * of:
5881 *
5882 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5883 *
5884 *
5885 * WORK CONSERVING
5886 *
5887 * In order to avoid CPUs going idle while there's still work to do, new idle
5888 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5889 * tree itself instead of relying on other CPUs to bring it work.
5890 *
5891 * This adds some complexity to both (5) and (8) but it reduces the total idle
5892 * time.
5893 *
5894 * [XXX more?]
5895 *
5896 *
5897 * CGROUPS
5898 *
5899 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5900 *
5901 * s_k,i
5902 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5903 * S_k
5904 *
5905 * Where
5906 *
5907 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5908 *
5909 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5910 *
5911 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5912 * property.
5913 *
5914 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5915 * rewrite all of this once again.]
5916 */
bf0f6f24 5917
ed387b78
HS
5918static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5919
0ec8aa00
PZ
5920enum fbq_type { regular, remote, all };
5921
ddcdf6e7 5922#define LBF_ALL_PINNED 0x01
367456c7 5923#define LBF_NEED_BREAK 0x02
6263322c
PZ
5924#define LBF_DST_PINNED 0x04
5925#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5926
5927struct lb_env {
5928 struct sched_domain *sd;
5929
ddcdf6e7 5930 struct rq *src_rq;
85c1e7da 5931 int src_cpu;
ddcdf6e7
PZ
5932
5933 int dst_cpu;
5934 struct rq *dst_rq;
5935
88b8dac0
SV
5936 struct cpumask *dst_grpmask;
5937 int new_dst_cpu;
ddcdf6e7 5938 enum cpu_idle_type idle;
bd939f45 5939 long imbalance;
b9403130
MW
5940 /* The set of CPUs under consideration for load-balancing */
5941 struct cpumask *cpus;
5942
ddcdf6e7 5943 unsigned int flags;
367456c7
PZ
5944
5945 unsigned int loop;
5946 unsigned int loop_break;
5947 unsigned int loop_max;
0ec8aa00
PZ
5948
5949 enum fbq_type fbq_type;
163122b7 5950 struct list_head tasks;
ddcdf6e7
PZ
5951};
5952
029632fb
PZ
5953/*
5954 * Is this task likely cache-hot:
5955 */
5d5e2b1b 5956static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
5957{
5958 s64 delta;
5959
e5673f28
KT
5960 lockdep_assert_held(&env->src_rq->lock);
5961
029632fb
PZ
5962 if (p->sched_class != &fair_sched_class)
5963 return 0;
5964
5965 if (unlikely(p->policy == SCHED_IDLE))
5966 return 0;
5967
5968 /*
5969 * Buddy candidates are cache hot:
5970 */
5d5e2b1b 5971 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
5972 (&p->se == cfs_rq_of(&p->se)->next ||
5973 &p->se == cfs_rq_of(&p->se)->last))
5974 return 1;
5975
5976 if (sysctl_sched_migration_cost == -1)
5977 return 1;
5978 if (sysctl_sched_migration_cost == 0)
5979 return 0;
5980
5d5e2b1b 5981 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
5982
5983 return delta < (s64)sysctl_sched_migration_cost;
5984}
5985
3a7053b3 5986#ifdef CONFIG_NUMA_BALANCING
c1ceac62 5987/*
2a1ed24c
SD
5988 * Returns 1, if task migration degrades locality
5989 * Returns 0, if task migration improves locality i.e migration preferred.
5990 * Returns -1, if task migration is not affected by locality.
c1ceac62 5991 */
2a1ed24c 5992static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 5993{
b1ad065e 5994 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 5995 unsigned long src_faults, dst_faults;
3a7053b3
MG
5996 int src_nid, dst_nid;
5997
2a595721 5998 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
5999 return -1;
6000
c3b9bc5b 6001 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6002 return -1;
7a0f3083
MG
6003
6004 src_nid = cpu_to_node(env->src_cpu);
6005 dst_nid = cpu_to_node(env->dst_cpu);
6006
83e1d2cd 6007 if (src_nid == dst_nid)
2a1ed24c 6008 return -1;
7a0f3083 6009
2a1ed24c
SD
6010 /* Migrating away from the preferred node is always bad. */
6011 if (src_nid == p->numa_preferred_nid) {
6012 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6013 return 1;
6014 else
6015 return -1;
6016 }
b1ad065e 6017
c1ceac62
RR
6018 /* Encourage migration to the preferred node. */
6019 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6020 return 0;
b1ad065e 6021
c1ceac62
RR
6022 if (numa_group) {
6023 src_faults = group_faults(p, src_nid);
6024 dst_faults = group_faults(p, dst_nid);
6025 } else {
6026 src_faults = task_faults(p, src_nid);
6027 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6028 }
6029
c1ceac62 6030 return dst_faults < src_faults;
7a0f3083
MG
6031}
6032
3a7053b3 6033#else
2a1ed24c 6034static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6035 struct lb_env *env)
6036{
2a1ed24c 6037 return -1;
7a0f3083 6038}
3a7053b3
MG
6039#endif
6040
1e3c88bd
PZ
6041/*
6042 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6043 */
6044static
8e45cb54 6045int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6046{
2a1ed24c 6047 int tsk_cache_hot;
e5673f28
KT
6048
6049 lockdep_assert_held(&env->src_rq->lock);
6050
1e3c88bd
PZ
6051 /*
6052 * We do not migrate tasks that are:
d3198084 6053 * 1) throttled_lb_pair, or
1e3c88bd 6054 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6055 * 3) running (obviously), or
6056 * 4) are cache-hot on their current CPU.
1e3c88bd 6057 */
d3198084
JK
6058 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6059 return 0;
6060
ddcdf6e7 6061 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6062 int cpu;
88b8dac0 6063
41acab88 6064 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 6065
6263322c
PZ
6066 env->flags |= LBF_SOME_PINNED;
6067
88b8dac0
SV
6068 /*
6069 * Remember if this task can be migrated to any other cpu in
6070 * our sched_group. We may want to revisit it if we couldn't
6071 * meet load balance goals by pulling other tasks on src_cpu.
6072 *
6073 * Also avoid computing new_dst_cpu if we have already computed
6074 * one in current iteration.
6075 */
6263322c 6076 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6077 return 0;
6078
e02e60c1
JK
6079 /* Prevent to re-select dst_cpu via env's cpus */
6080 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6081 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6082 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6083 env->new_dst_cpu = cpu;
6084 break;
6085 }
88b8dac0 6086 }
e02e60c1 6087
1e3c88bd
PZ
6088 return 0;
6089 }
88b8dac0
SV
6090
6091 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6092 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6093
ddcdf6e7 6094 if (task_running(env->src_rq, p)) {
41acab88 6095 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6096 return 0;
6097 }
6098
6099 /*
6100 * Aggressive migration if:
3a7053b3
MG
6101 * 1) destination numa is preferred
6102 * 2) task is cache cold, or
6103 * 3) too many balance attempts have failed.
1e3c88bd 6104 */
2a1ed24c
SD
6105 tsk_cache_hot = migrate_degrades_locality(p, env);
6106 if (tsk_cache_hot == -1)
6107 tsk_cache_hot = task_hot(p, env);
3a7053b3 6108
2a1ed24c 6109 if (tsk_cache_hot <= 0 ||
7a96c231 6110 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6111 if (tsk_cache_hot == 1) {
3a7053b3
MG
6112 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6113 schedstat_inc(p, se.statistics.nr_forced_migrations);
6114 }
1e3c88bd
PZ
6115 return 1;
6116 }
6117
4e2dcb73
ZH
6118 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6119 return 0;
1e3c88bd
PZ
6120}
6121
897c395f 6122/*
163122b7
KT
6123 * detach_task() -- detach the task for the migration specified in env
6124 */
6125static void detach_task(struct task_struct *p, struct lb_env *env)
6126{
6127 lockdep_assert_held(&env->src_rq->lock);
6128
163122b7 6129 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6130 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6131 set_task_cpu(p, env->dst_cpu);
6132}
6133
897c395f 6134/*
e5673f28 6135 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6136 * part of active balancing operations within "domain".
897c395f 6137 *
e5673f28 6138 * Returns a task if successful and NULL otherwise.
897c395f 6139 */
e5673f28 6140static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6141{
6142 struct task_struct *p, *n;
897c395f 6143
e5673f28
KT
6144 lockdep_assert_held(&env->src_rq->lock);
6145
367456c7 6146 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6147 if (!can_migrate_task(p, env))
6148 continue;
897c395f 6149
163122b7 6150 detach_task(p, env);
e5673f28 6151
367456c7 6152 /*
e5673f28 6153 * Right now, this is only the second place where
163122b7 6154 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6155 * so we can safely collect stats here rather than
163122b7 6156 * inside detach_tasks().
367456c7
PZ
6157 */
6158 schedstat_inc(env->sd, lb_gained[env->idle]);
e5673f28 6159 return p;
897c395f 6160 }
e5673f28 6161 return NULL;
897c395f
PZ
6162}
6163
eb95308e
PZ
6164static const unsigned int sched_nr_migrate_break = 32;
6165
5d6523eb 6166/*
163122b7
KT
6167 * detach_tasks() -- tries to detach up to imbalance weighted load from
6168 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6169 *
163122b7 6170 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6171 */
163122b7 6172static int detach_tasks(struct lb_env *env)
1e3c88bd 6173{
5d6523eb
PZ
6174 struct list_head *tasks = &env->src_rq->cfs_tasks;
6175 struct task_struct *p;
367456c7 6176 unsigned long load;
163122b7
KT
6177 int detached = 0;
6178
6179 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6180
bd939f45 6181 if (env->imbalance <= 0)
5d6523eb 6182 return 0;
1e3c88bd 6183
5d6523eb 6184 while (!list_empty(tasks)) {
985d3a4c
YD
6185 /*
6186 * We don't want to steal all, otherwise we may be treated likewise,
6187 * which could at worst lead to a livelock crash.
6188 */
6189 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6190 break;
6191
5d6523eb 6192 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6193
367456c7
PZ
6194 env->loop++;
6195 /* We've more or less seen every task there is, call it quits */
5d6523eb 6196 if (env->loop > env->loop_max)
367456c7 6197 break;
5d6523eb
PZ
6198
6199 /* take a breather every nr_migrate tasks */
367456c7 6200 if (env->loop > env->loop_break) {
eb95308e 6201 env->loop_break += sched_nr_migrate_break;
8e45cb54 6202 env->flags |= LBF_NEED_BREAK;
ee00e66f 6203 break;
a195f004 6204 }
1e3c88bd 6205
d3198084 6206 if (!can_migrate_task(p, env))
367456c7
PZ
6207 goto next;
6208
6209 load = task_h_load(p);
5d6523eb 6210
eb95308e 6211 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6212 goto next;
6213
bd939f45 6214 if ((load / 2) > env->imbalance)
367456c7 6215 goto next;
1e3c88bd 6216
163122b7
KT
6217 detach_task(p, env);
6218 list_add(&p->se.group_node, &env->tasks);
6219
6220 detached++;
bd939f45 6221 env->imbalance -= load;
1e3c88bd
PZ
6222
6223#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6224 /*
6225 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6226 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6227 * the critical section.
6228 */
5d6523eb 6229 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6230 break;
1e3c88bd
PZ
6231#endif
6232
ee00e66f
PZ
6233 /*
6234 * We only want to steal up to the prescribed amount of
6235 * weighted load.
6236 */
bd939f45 6237 if (env->imbalance <= 0)
ee00e66f 6238 break;
367456c7
PZ
6239
6240 continue;
6241next:
5d6523eb 6242 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6243 }
5d6523eb 6244
1e3c88bd 6245 /*
163122b7
KT
6246 * Right now, this is one of only two places we collect this stat
6247 * so we can safely collect detach_one_task() stats here rather
6248 * than inside detach_one_task().
1e3c88bd 6249 */
163122b7 6250 schedstat_add(env->sd, lb_gained[env->idle], detached);
1e3c88bd 6251
163122b7
KT
6252 return detached;
6253}
6254
6255/*
6256 * attach_task() -- attach the task detached by detach_task() to its new rq.
6257 */
6258static void attach_task(struct rq *rq, struct task_struct *p)
6259{
6260 lockdep_assert_held(&rq->lock);
6261
6262 BUG_ON(task_rq(p) != rq);
163122b7 6263 activate_task(rq, p, 0);
3ea94de1 6264 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6265 check_preempt_curr(rq, p, 0);
6266}
6267
6268/*
6269 * attach_one_task() -- attaches the task returned from detach_one_task() to
6270 * its new rq.
6271 */
6272static void attach_one_task(struct rq *rq, struct task_struct *p)
6273{
6274 raw_spin_lock(&rq->lock);
6275 attach_task(rq, p);
6276 raw_spin_unlock(&rq->lock);
6277}
6278
6279/*
6280 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6281 * new rq.
6282 */
6283static void attach_tasks(struct lb_env *env)
6284{
6285 struct list_head *tasks = &env->tasks;
6286 struct task_struct *p;
6287
6288 raw_spin_lock(&env->dst_rq->lock);
6289
6290 while (!list_empty(tasks)) {
6291 p = list_first_entry(tasks, struct task_struct, se.group_node);
6292 list_del_init(&p->se.group_node);
1e3c88bd 6293
163122b7
KT
6294 attach_task(env->dst_rq, p);
6295 }
6296
6297 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6298}
6299
230059de 6300#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6301static void update_blocked_averages(int cpu)
9e3081ca 6302{
9e3081ca 6303 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6304 struct cfs_rq *cfs_rq;
6305 unsigned long flags;
9e3081ca 6306
48a16753
PT
6307 raw_spin_lock_irqsave(&rq->lock, flags);
6308 update_rq_clock(rq);
9d89c257 6309
9763b67f
PZ
6310 /*
6311 * Iterates the task_group tree in a bottom up fashion, see
6312 * list_add_leaf_cfs_rq() for details.
6313 */
64660c86 6314 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6315 /* throttled entities do not contribute to load */
6316 if (throttled_hierarchy(cfs_rq))
6317 continue;
48a16753 6318
a2c6c91f 6319 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6320 update_tg_load_avg(cfs_rq, 0);
6321 }
48a16753 6322 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6323}
6324
9763b67f 6325/*
68520796 6326 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6327 * This needs to be done in a top-down fashion because the load of a child
6328 * group is a fraction of its parents load.
6329 */
68520796 6330static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6331{
68520796
VD
6332 struct rq *rq = rq_of(cfs_rq);
6333 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6334 unsigned long now = jiffies;
68520796 6335 unsigned long load;
a35b6466 6336
68520796 6337 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6338 return;
6339
68520796
VD
6340 cfs_rq->h_load_next = NULL;
6341 for_each_sched_entity(se) {
6342 cfs_rq = cfs_rq_of(se);
6343 cfs_rq->h_load_next = se;
6344 if (cfs_rq->last_h_load_update == now)
6345 break;
6346 }
a35b6466 6347
68520796 6348 if (!se) {
7ea241af 6349 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6350 cfs_rq->last_h_load_update = now;
6351 }
6352
6353 while ((se = cfs_rq->h_load_next) != NULL) {
6354 load = cfs_rq->h_load;
7ea241af
YD
6355 load = div64_ul(load * se->avg.load_avg,
6356 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6357 cfs_rq = group_cfs_rq(se);
6358 cfs_rq->h_load = load;
6359 cfs_rq->last_h_load_update = now;
6360 }
9763b67f
PZ
6361}
6362
367456c7 6363static unsigned long task_h_load(struct task_struct *p)
230059de 6364{
367456c7 6365 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6366
68520796 6367 update_cfs_rq_h_load(cfs_rq);
9d89c257 6368 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6369 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6370}
6371#else
48a16753 6372static inline void update_blocked_averages(int cpu)
9e3081ca 6373{
6c1d47c0
VG
6374 struct rq *rq = cpu_rq(cpu);
6375 struct cfs_rq *cfs_rq = &rq->cfs;
6376 unsigned long flags;
6377
6378 raw_spin_lock_irqsave(&rq->lock, flags);
6379 update_rq_clock(rq);
a2c6c91f 6380 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6381 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6382}
6383
367456c7 6384static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6385{
9d89c257 6386 return p->se.avg.load_avg;
1e3c88bd 6387}
230059de 6388#endif
1e3c88bd 6389
1e3c88bd 6390/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6391
6392enum group_type {
6393 group_other = 0,
6394 group_imbalanced,
6395 group_overloaded,
6396};
6397
1e3c88bd
PZ
6398/*
6399 * sg_lb_stats - stats of a sched_group required for load_balancing
6400 */
6401struct sg_lb_stats {
6402 unsigned long avg_load; /*Avg load across the CPUs of the group */
6403 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6404 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6405 unsigned long load_per_task;
63b2ca30 6406 unsigned long group_capacity;
9e91d61d 6407 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6408 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6409 unsigned int idle_cpus;
6410 unsigned int group_weight;
caeb178c 6411 enum group_type group_type;
ea67821b 6412 int group_no_capacity;
0ec8aa00
PZ
6413#ifdef CONFIG_NUMA_BALANCING
6414 unsigned int nr_numa_running;
6415 unsigned int nr_preferred_running;
6416#endif
1e3c88bd
PZ
6417};
6418
56cf515b
JK
6419/*
6420 * sd_lb_stats - Structure to store the statistics of a sched_domain
6421 * during load balancing.
6422 */
6423struct sd_lb_stats {
6424 struct sched_group *busiest; /* Busiest group in this sd */
6425 struct sched_group *local; /* Local group in this sd */
6426 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6427 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6428 unsigned long avg_load; /* Average load across all groups in sd */
6429
56cf515b 6430 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6431 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6432};
6433
147c5fc2
PZ
6434static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6435{
6436 /*
6437 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6438 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6439 * We must however clear busiest_stat::avg_load because
6440 * update_sd_pick_busiest() reads this before assignment.
6441 */
6442 *sds = (struct sd_lb_stats){
6443 .busiest = NULL,
6444 .local = NULL,
6445 .total_load = 0UL,
63b2ca30 6446 .total_capacity = 0UL,
147c5fc2
PZ
6447 .busiest_stat = {
6448 .avg_load = 0UL,
caeb178c
RR
6449 .sum_nr_running = 0,
6450 .group_type = group_other,
147c5fc2
PZ
6451 },
6452 };
6453}
6454
1e3c88bd
PZ
6455/**
6456 * get_sd_load_idx - Obtain the load index for a given sched domain.
6457 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6458 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6459 *
6460 * Return: The load index.
1e3c88bd
PZ
6461 */
6462static inline int get_sd_load_idx(struct sched_domain *sd,
6463 enum cpu_idle_type idle)
6464{
6465 int load_idx;
6466
6467 switch (idle) {
6468 case CPU_NOT_IDLE:
6469 load_idx = sd->busy_idx;
6470 break;
6471
6472 case CPU_NEWLY_IDLE:
6473 load_idx = sd->newidle_idx;
6474 break;
6475 default:
6476 load_idx = sd->idle_idx;
6477 break;
6478 }
6479
6480 return load_idx;
6481}
6482
ced549fa 6483static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6484{
6485 struct rq *rq = cpu_rq(cpu);
b5b4860d 6486 u64 total, used, age_stamp, avg;
cadefd3d 6487 s64 delta;
1e3c88bd 6488
b654f7de
PZ
6489 /*
6490 * Since we're reading these variables without serialization make sure
6491 * we read them once before doing sanity checks on them.
6492 */
316c1608
JL
6493 age_stamp = READ_ONCE(rq->age_stamp);
6494 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6495 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6496
cadefd3d
PZ
6497 if (unlikely(delta < 0))
6498 delta = 0;
6499
6500 total = sched_avg_period() + delta;
aa483808 6501
b5b4860d 6502 used = div_u64(avg, total);
1e3c88bd 6503
b5b4860d
VG
6504 if (likely(used < SCHED_CAPACITY_SCALE))
6505 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6506
b5b4860d 6507 return 1;
1e3c88bd
PZ
6508}
6509
ced549fa 6510static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6511{
8cd5601c 6512 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6513 struct sched_group *sdg = sd->groups;
6514
ca6d75e6 6515 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6516
ced549fa 6517 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6518 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6519
ced549fa
NP
6520 if (!capacity)
6521 capacity = 1;
1e3c88bd 6522
ced549fa
NP
6523 cpu_rq(cpu)->cpu_capacity = capacity;
6524 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6525}
6526
63b2ca30 6527void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6528{
6529 struct sched_domain *child = sd->child;
6530 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6531 unsigned long capacity;
4ec4412e
VG
6532 unsigned long interval;
6533
6534 interval = msecs_to_jiffies(sd->balance_interval);
6535 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6536 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6537
6538 if (!child) {
ced549fa 6539 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6540 return;
6541 }
6542
dc7ff76e 6543 capacity = 0;
1e3c88bd 6544
74a5ce20
PZ
6545 if (child->flags & SD_OVERLAP) {
6546 /*
6547 * SD_OVERLAP domains cannot assume that child groups
6548 * span the current group.
6549 */
6550
863bffc8 6551 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6552 struct sched_group_capacity *sgc;
9abf24d4 6553 struct rq *rq = cpu_rq(cpu);
863bffc8 6554
9abf24d4 6555 /*
63b2ca30 6556 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6557 * gets here before we've attached the domains to the
6558 * runqueues.
6559 *
ced549fa
NP
6560 * Use capacity_of(), which is set irrespective of domains
6561 * in update_cpu_capacity().
9abf24d4 6562 *
dc7ff76e 6563 * This avoids capacity from being 0 and
9abf24d4 6564 * causing divide-by-zero issues on boot.
9abf24d4
SD
6565 */
6566 if (unlikely(!rq->sd)) {
ced549fa 6567 capacity += capacity_of(cpu);
9abf24d4
SD
6568 continue;
6569 }
863bffc8 6570
63b2ca30 6571 sgc = rq->sd->groups->sgc;
63b2ca30 6572 capacity += sgc->capacity;
863bffc8 6573 }
74a5ce20
PZ
6574 } else {
6575 /*
6576 * !SD_OVERLAP domains can assume that child groups
6577 * span the current group.
6578 */
6579
6580 group = child->groups;
6581 do {
63b2ca30 6582 capacity += group->sgc->capacity;
74a5ce20
PZ
6583 group = group->next;
6584 } while (group != child->groups);
6585 }
1e3c88bd 6586
63b2ca30 6587 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6588}
6589
9d5efe05 6590/*
ea67821b
VG
6591 * Check whether the capacity of the rq has been noticeably reduced by side
6592 * activity. The imbalance_pct is used for the threshold.
6593 * Return true is the capacity is reduced
9d5efe05
SV
6594 */
6595static inline int
ea67821b 6596check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6597{
ea67821b
VG
6598 return ((rq->cpu_capacity * sd->imbalance_pct) <
6599 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6600}
6601
30ce5dab
PZ
6602/*
6603 * Group imbalance indicates (and tries to solve) the problem where balancing
6604 * groups is inadequate due to tsk_cpus_allowed() constraints.
6605 *
6606 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6607 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6608 * Something like:
6609 *
6610 * { 0 1 2 3 } { 4 5 6 7 }
6611 * * * * *
6612 *
6613 * If we were to balance group-wise we'd place two tasks in the first group and
6614 * two tasks in the second group. Clearly this is undesired as it will overload
6615 * cpu 3 and leave one of the cpus in the second group unused.
6616 *
6617 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6618 * by noticing the lower domain failed to reach balance and had difficulty
6619 * moving tasks due to affinity constraints.
30ce5dab
PZ
6620 *
6621 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6622 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6623 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6624 * to create an effective group imbalance.
6625 *
6626 * This is a somewhat tricky proposition since the next run might not find the
6627 * group imbalance and decide the groups need to be balanced again. A most
6628 * subtle and fragile situation.
6629 */
6630
6263322c 6631static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6632{
63b2ca30 6633 return group->sgc->imbalance;
30ce5dab
PZ
6634}
6635
b37d9316 6636/*
ea67821b
VG
6637 * group_has_capacity returns true if the group has spare capacity that could
6638 * be used by some tasks.
6639 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6640 * smaller than the number of CPUs or if the utilization is lower than the
6641 * available capacity for CFS tasks.
ea67821b
VG
6642 * For the latter, we use a threshold to stabilize the state, to take into
6643 * account the variance of the tasks' load and to return true if the available
6644 * capacity in meaningful for the load balancer.
6645 * As an example, an available capacity of 1% can appear but it doesn't make
6646 * any benefit for the load balance.
b37d9316 6647 */
ea67821b
VG
6648static inline bool
6649group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6650{
ea67821b
VG
6651 if (sgs->sum_nr_running < sgs->group_weight)
6652 return true;
c61037e9 6653
ea67821b 6654 if ((sgs->group_capacity * 100) >
9e91d61d 6655 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6656 return true;
b37d9316 6657
ea67821b
VG
6658 return false;
6659}
6660
6661/*
6662 * group_is_overloaded returns true if the group has more tasks than it can
6663 * handle.
6664 * group_is_overloaded is not equals to !group_has_capacity because a group
6665 * with the exact right number of tasks, has no more spare capacity but is not
6666 * overloaded so both group_has_capacity and group_is_overloaded return
6667 * false.
6668 */
6669static inline bool
6670group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6671{
6672 if (sgs->sum_nr_running <= sgs->group_weight)
6673 return false;
b37d9316 6674
ea67821b 6675 if ((sgs->group_capacity * 100) <
9e91d61d 6676 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6677 return true;
b37d9316 6678
ea67821b 6679 return false;
b37d9316
PZ
6680}
6681
79a89f92
LY
6682static inline enum
6683group_type group_classify(struct sched_group *group,
6684 struct sg_lb_stats *sgs)
caeb178c 6685{
ea67821b 6686 if (sgs->group_no_capacity)
caeb178c
RR
6687 return group_overloaded;
6688
6689 if (sg_imbalanced(group))
6690 return group_imbalanced;
6691
6692 return group_other;
6693}
6694
1e3c88bd
PZ
6695/**
6696 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6697 * @env: The load balancing environment.
1e3c88bd 6698 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6699 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6700 * @local_group: Does group contain this_cpu.
1e3c88bd 6701 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6702 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6703 */
bd939f45
PZ
6704static inline void update_sg_lb_stats(struct lb_env *env,
6705 struct sched_group *group, int load_idx,
4486edd1
TC
6706 int local_group, struct sg_lb_stats *sgs,
6707 bool *overload)
1e3c88bd 6708{
30ce5dab 6709 unsigned long load;
a426f99c 6710 int i, nr_running;
1e3c88bd 6711
b72ff13c
PZ
6712 memset(sgs, 0, sizeof(*sgs));
6713
b9403130 6714 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6715 struct rq *rq = cpu_rq(i);
6716
1e3c88bd 6717 /* Bias balancing toward cpus of our domain */
6263322c 6718 if (local_group)
04f733b4 6719 load = target_load(i, load_idx);
6263322c 6720 else
1e3c88bd 6721 load = source_load(i, load_idx);
1e3c88bd
PZ
6722
6723 sgs->group_load += load;
9e91d61d 6724 sgs->group_util += cpu_util(i);
65fdac08 6725 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6726
a426f99c
WL
6727 nr_running = rq->nr_running;
6728 if (nr_running > 1)
4486edd1
TC
6729 *overload = true;
6730
0ec8aa00
PZ
6731#ifdef CONFIG_NUMA_BALANCING
6732 sgs->nr_numa_running += rq->nr_numa_running;
6733 sgs->nr_preferred_running += rq->nr_preferred_running;
6734#endif
1e3c88bd 6735 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6736 /*
6737 * No need to call idle_cpu() if nr_running is not 0
6738 */
6739 if (!nr_running && idle_cpu(i))
aae6d3dd 6740 sgs->idle_cpus++;
1e3c88bd
PZ
6741 }
6742
63b2ca30
NP
6743 /* Adjust by relative CPU capacity of the group */
6744 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6745 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6746
dd5feea1 6747 if (sgs->sum_nr_running)
38d0f770 6748 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6749
aae6d3dd 6750 sgs->group_weight = group->group_weight;
b37d9316 6751
ea67821b 6752 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6753 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6754}
6755
532cb4c4
MN
6756/**
6757 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6758 * @env: The load balancing environment.
532cb4c4
MN
6759 * @sds: sched_domain statistics
6760 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6761 * @sgs: sched_group statistics
532cb4c4
MN
6762 *
6763 * Determine if @sg is a busier group than the previously selected
6764 * busiest group.
e69f6186
YB
6765 *
6766 * Return: %true if @sg is a busier group than the previously selected
6767 * busiest group. %false otherwise.
532cb4c4 6768 */
bd939f45 6769static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6770 struct sd_lb_stats *sds,
6771 struct sched_group *sg,
bd939f45 6772 struct sg_lb_stats *sgs)
532cb4c4 6773{
caeb178c 6774 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6775
caeb178c 6776 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6777 return true;
6778
caeb178c
RR
6779 if (sgs->group_type < busiest->group_type)
6780 return false;
6781
6782 if (sgs->avg_load <= busiest->avg_load)
6783 return false;
6784
6785 /* This is the busiest node in its class. */
6786 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6787 return true;
6788
1f621e02
SD
6789 /* No ASYM_PACKING if target cpu is already busy */
6790 if (env->idle == CPU_NOT_IDLE)
6791 return true;
532cb4c4
MN
6792 /*
6793 * ASYM_PACKING needs to move all the work to the lowest
6794 * numbered CPUs in the group, therefore mark all groups
6795 * higher than ourself as busy.
6796 */
caeb178c 6797 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6798 if (!sds->busiest)
6799 return true;
6800
1f621e02
SD
6801 /* Prefer to move from highest possible cpu's work */
6802 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6803 return true;
6804 }
6805
6806 return false;
6807}
6808
0ec8aa00
PZ
6809#ifdef CONFIG_NUMA_BALANCING
6810static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6811{
6812 if (sgs->sum_nr_running > sgs->nr_numa_running)
6813 return regular;
6814 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6815 return remote;
6816 return all;
6817}
6818
6819static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6820{
6821 if (rq->nr_running > rq->nr_numa_running)
6822 return regular;
6823 if (rq->nr_running > rq->nr_preferred_running)
6824 return remote;
6825 return all;
6826}
6827#else
6828static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6829{
6830 return all;
6831}
6832
6833static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6834{
6835 return regular;
6836}
6837#endif /* CONFIG_NUMA_BALANCING */
6838
1e3c88bd 6839/**
461819ac 6840 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6841 * @env: The load balancing environment.
1e3c88bd
PZ
6842 * @sds: variable to hold the statistics for this sched_domain.
6843 */
0ec8aa00 6844static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6845{
bd939f45
PZ
6846 struct sched_domain *child = env->sd->child;
6847 struct sched_group *sg = env->sd->groups;
56cf515b 6848 struct sg_lb_stats tmp_sgs;
1e3c88bd 6849 int load_idx, prefer_sibling = 0;
4486edd1 6850 bool overload = false;
1e3c88bd
PZ
6851
6852 if (child && child->flags & SD_PREFER_SIBLING)
6853 prefer_sibling = 1;
6854
bd939f45 6855 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6856
6857 do {
56cf515b 6858 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6859 int local_group;
6860
bd939f45 6861 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6862 if (local_group) {
6863 sds->local = sg;
6864 sgs = &sds->local_stat;
b72ff13c
PZ
6865
6866 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6867 time_after_eq(jiffies, sg->sgc->next_update))
6868 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6869 }
1e3c88bd 6870
4486edd1
TC
6871 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6872 &overload);
1e3c88bd 6873
b72ff13c
PZ
6874 if (local_group)
6875 goto next_group;
6876
1e3c88bd
PZ
6877 /*
6878 * In case the child domain prefers tasks go to siblings
ea67821b 6879 * first, lower the sg capacity so that we'll try
75dd321d
NR
6880 * and move all the excess tasks away. We lower the capacity
6881 * of a group only if the local group has the capacity to fit
ea67821b
VG
6882 * these excess tasks. The extra check prevents the case where
6883 * you always pull from the heaviest group when it is already
6884 * under-utilized (possible with a large weight task outweighs
6885 * the tasks on the system).
1e3c88bd 6886 */
b72ff13c 6887 if (prefer_sibling && sds->local &&
ea67821b
VG
6888 group_has_capacity(env, &sds->local_stat) &&
6889 (sgs->sum_nr_running > 1)) {
6890 sgs->group_no_capacity = 1;
79a89f92 6891 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6892 }
1e3c88bd 6893
b72ff13c 6894 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6895 sds->busiest = sg;
56cf515b 6896 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6897 }
6898
b72ff13c
PZ
6899next_group:
6900 /* Now, start updating sd_lb_stats */
6901 sds->total_load += sgs->group_load;
63b2ca30 6902 sds->total_capacity += sgs->group_capacity;
b72ff13c 6903
532cb4c4 6904 sg = sg->next;
bd939f45 6905 } while (sg != env->sd->groups);
0ec8aa00
PZ
6906
6907 if (env->sd->flags & SD_NUMA)
6908 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
6909
6910 if (!env->sd->parent) {
6911 /* update overload indicator if we are at root domain */
6912 if (env->dst_rq->rd->overload != overload)
6913 env->dst_rq->rd->overload = overload;
6914 }
6915
532cb4c4
MN
6916}
6917
532cb4c4
MN
6918/**
6919 * check_asym_packing - Check to see if the group is packed into the
6920 * sched doman.
6921 *
6922 * This is primarily intended to used at the sibling level. Some
6923 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6924 * case of POWER7, it can move to lower SMT modes only when higher
6925 * threads are idle. When in lower SMT modes, the threads will
6926 * perform better since they share less core resources. Hence when we
6927 * have idle threads, we want them to be the higher ones.
6928 *
6929 * This packing function is run on idle threads. It checks to see if
6930 * the busiest CPU in this domain (core in the P7 case) has a higher
6931 * CPU number than the packing function is being run on. Here we are
6932 * assuming lower CPU number will be equivalent to lower a SMT thread
6933 * number.
6934 *
e69f6186 6935 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6936 * this CPU. The amount of the imbalance is returned in *imbalance.
6937 *
cd96891d 6938 * @env: The load balancing environment.
532cb4c4 6939 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6940 */
bd939f45 6941static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6942{
6943 int busiest_cpu;
6944
bd939f45 6945 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6946 return 0;
6947
1f621e02
SD
6948 if (env->idle == CPU_NOT_IDLE)
6949 return 0;
6950
532cb4c4
MN
6951 if (!sds->busiest)
6952 return 0;
6953
6954 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6955 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6956 return 0;
6957
bd939f45 6958 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 6959 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 6960 SCHED_CAPACITY_SCALE);
bd939f45 6961
532cb4c4 6962 return 1;
1e3c88bd
PZ
6963}
6964
6965/**
6966 * fix_small_imbalance - Calculate the minor imbalance that exists
6967 * amongst the groups of a sched_domain, during
6968 * load balancing.
cd96891d 6969 * @env: The load balancing environment.
1e3c88bd 6970 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6971 */
bd939f45
PZ
6972static inline
6973void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6974{
63b2ca30 6975 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 6976 unsigned int imbn = 2;
dd5feea1 6977 unsigned long scaled_busy_load_per_task;
56cf515b 6978 struct sg_lb_stats *local, *busiest;
1e3c88bd 6979
56cf515b
JK
6980 local = &sds->local_stat;
6981 busiest = &sds->busiest_stat;
1e3c88bd 6982
56cf515b
JK
6983 if (!local->sum_nr_running)
6984 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6985 else if (busiest->load_per_task > local->load_per_task)
6986 imbn = 1;
dd5feea1 6987
56cf515b 6988 scaled_busy_load_per_task =
ca8ce3d0 6989 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 6990 busiest->group_capacity;
56cf515b 6991
3029ede3
VD
6992 if (busiest->avg_load + scaled_busy_load_per_task >=
6993 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6994 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6995 return;
6996 }
6997
6998 /*
6999 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7000 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7001 * moving them.
7002 */
7003
63b2ca30 7004 capa_now += busiest->group_capacity *
56cf515b 7005 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7006 capa_now += local->group_capacity *
56cf515b 7007 min(local->load_per_task, local->avg_load);
ca8ce3d0 7008 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7009
7010 /* Amount of load we'd subtract */
a2cd4260 7011 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7012 capa_move += busiest->group_capacity *
56cf515b 7013 min(busiest->load_per_task,
a2cd4260 7014 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7015 }
1e3c88bd
PZ
7016
7017 /* Amount of load we'd add */
63b2ca30 7018 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7019 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7020 tmp = (busiest->avg_load * busiest->group_capacity) /
7021 local->group_capacity;
56cf515b 7022 } else {
ca8ce3d0 7023 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7024 local->group_capacity;
56cf515b 7025 }
63b2ca30 7026 capa_move += local->group_capacity *
3ae11c90 7027 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7028 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7029
7030 /* Move if we gain throughput */
63b2ca30 7031 if (capa_move > capa_now)
56cf515b 7032 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7033}
7034
7035/**
7036 * calculate_imbalance - Calculate the amount of imbalance present within the
7037 * groups of a given sched_domain during load balance.
bd939f45 7038 * @env: load balance environment
1e3c88bd 7039 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7040 */
bd939f45 7041static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7042{
dd5feea1 7043 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7044 struct sg_lb_stats *local, *busiest;
7045
7046 local = &sds->local_stat;
56cf515b 7047 busiest = &sds->busiest_stat;
dd5feea1 7048
caeb178c 7049 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7050 /*
7051 * In the group_imb case we cannot rely on group-wide averages
7052 * to ensure cpu-load equilibrium, look at wider averages. XXX
7053 */
56cf515b
JK
7054 busiest->load_per_task =
7055 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7056 }
7057
1e3c88bd 7058 /*
885e542c
DE
7059 * Avg load of busiest sg can be less and avg load of local sg can
7060 * be greater than avg load across all sgs of sd because avg load
7061 * factors in sg capacity and sgs with smaller group_type are
7062 * skipped when updating the busiest sg:
1e3c88bd 7063 */
b1885550
VD
7064 if (busiest->avg_load <= sds->avg_load ||
7065 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7066 env->imbalance = 0;
7067 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7068 }
7069
9a5d9ba6
PZ
7070 /*
7071 * If there aren't any idle cpus, avoid creating some.
7072 */
7073 if (busiest->group_type == group_overloaded &&
7074 local->group_type == group_overloaded) {
1be0eb2a 7075 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7076 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7077 load_above_capacity -= busiest->group_capacity;
cfa10334
MR
7078 load_above_capacity *= NICE_0_LOAD;
7079 load_above_capacity /= busiest->group_capacity;
7080 } else
ea67821b 7081 load_above_capacity = ~0UL;
dd5feea1
SS
7082 }
7083
7084 /*
7085 * We're trying to get all the cpus to the average_load, so we don't
7086 * want to push ourselves above the average load, nor do we wish to
7087 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7088 * we also don't want to reduce the group load below the group
7089 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7090 */
30ce5dab 7091 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7092
7093 /* How much load to actually move to equalise the imbalance */
56cf515b 7094 env->imbalance = min(
63b2ca30
NP
7095 max_pull * busiest->group_capacity,
7096 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7097 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7098
7099 /*
7100 * if *imbalance is less than the average load per runnable task
25985edc 7101 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7102 * a think about bumping its value to force at least one task to be
7103 * moved
7104 */
56cf515b 7105 if (env->imbalance < busiest->load_per_task)
bd939f45 7106 return fix_small_imbalance(env, sds);
1e3c88bd 7107}
fab47622 7108
1e3c88bd
PZ
7109/******* find_busiest_group() helpers end here *********************/
7110
7111/**
7112 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7113 * if there is an imbalance.
1e3c88bd
PZ
7114 *
7115 * Also calculates the amount of weighted load which should be moved
7116 * to restore balance.
7117 *
cd96891d 7118 * @env: The load balancing environment.
1e3c88bd 7119 *
e69f6186 7120 * Return: - The busiest group if imbalance exists.
1e3c88bd 7121 */
56cf515b 7122static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7123{
56cf515b 7124 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7125 struct sd_lb_stats sds;
7126
147c5fc2 7127 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7128
7129 /*
7130 * Compute the various statistics relavent for load balancing at
7131 * this level.
7132 */
23f0d209 7133 update_sd_lb_stats(env, &sds);
56cf515b
JK
7134 local = &sds.local_stat;
7135 busiest = &sds.busiest_stat;
1e3c88bd 7136
ea67821b 7137 /* ASYM feature bypasses nice load balance check */
1f621e02 7138 if (check_asym_packing(env, &sds))
532cb4c4
MN
7139 return sds.busiest;
7140
cc57aa8f 7141 /* There is no busy sibling group to pull tasks from */
56cf515b 7142 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7143 goto out_balanced;
7144
ca8ce3d0
NP
7145 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7146 / sds.total_capacity;
b0432d8f 7147
866ab43e
PZ
7148 /*
7149 * If the busiest group is imbalanced the below checks don't
30ce5dab 7150 * work because they assume all things are equal, which typically
866ab43e
PZ
7151 * isn't true due to cpus_allowed constraints and the like.
7152 */
caeb178c 7153 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7154 goto force_balance;
7155
cc57aa8f 7156 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7157 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7158 busiest->group_no_capacity)
fab47622
NR
7159 goto force_balance;
7160
cc57aa8f 7161 /*
9c58c79a 7162 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7163 * don't try and pull any tasks.
7164 */
56cf515b 7165 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7166 goto out_balanced;
7167
cc57aa8f
PZ
7168 /*
7169 * Don't pull any tasks if this group is already above the domain
7170 * average load.
7171 */
56cf515b 7172 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7173 goto out_balanced;
7174
bd939f45 7175 if (env->idle == CPU_IDLE) {
aae6d3dd 7176 /*
43f4d666
VG
7177 * This cpu is idle. If the busiest group is not overloaded
7178 * and there is no imbalance between this and busiest group
7179 * wrt idle cpus, it is balanced. The imbalance becomes
7180 * significant if the diff is greater than 1 otherwise we
7181 * might end up to just move the imbalance on another group
aae6d3dd 7182 */
43f4d666
VG
7183 if ((busiest->group_type != group_overloaded) &&
7184 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7185 goto out_balanced;
c186fafe
PZ
7186 } else {
7187 /*
7188 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7189 * imbalance_pct to be conservative.
7190 */
56cf515b
JK
7191 if (100 * busiest->avg_load <=
7192 env->sd->imbalance_pct * local->avg_load)
c186fafe 7193 goto out_balanced;
aae6d3dd 7194 }
1e3c88bd 7195
fab47622 7196force_balance:
1e3c88bd 7197 /* Looks like there is an imbalance. Compute it */
bd939f45 7198 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7199 return sds.busiest;
7200
7201out_balanced:
bd939f45 7202 env->imbalance = 0;
1e3c88bd
PZ
7203 return NULL;
7204}
7205
7206/*
7207 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7208 */
bd939f45 7209static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7210 struct sched_group *group)
1e3c88bd
PZ
7211{
7212 struct rq *busiest = NULL, *rq;
ced549fa 7213 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7214 int i;
7215
6906a408 7216 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7217 unsigned long capacity, wl;
0ec8aa00
PZ
7218 enum fbq_type rt;
7219
7220 rq = cpu_rq(i);
7221 rt = fbq_classify_rq(rq);
1e3c88bd 7222
0ec8aa00
PZ
7223 /*
7224 * We classify groups/runqueues into three groups:
7225 * - regular: there are !numa tasks
7226 * - remote: there are numa tasks that run on the 'wrong' node
7227 * - all: there is no distinction
7228 *
7229 * In order to avoid migrating ideally placed numa tasks,
7230 * ignore those when there's better options.
7231 *
7232 * If we ignore the actual busiest queue to migrate another
7233 * task, the next balance pass can still reduce the busiest
7234 * queue by moving tasks around inside the node.
7235 *
7236 * If we cannot move enough load due to this classification
7237 * the next pass will adjust the group classification and
7238 * allow migration of more tasks.
7239 *
7240 * Both cases only affect the total convergence complexity.
7241 */
7242 if (rt > env->fbq_type)
7243 continue;
7244
ced549fa 7245 capacity = capacity_of(i);
9d5efe05 7246
6e40f5bb 7247 wl = weighted_cpuload(i);
1e3c88bd 7248
6e40f5bb
TG
7249 /*
7250 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7251 * which is not scaled with the cpu capacity.
6e40f5bb 7252 */
ea67821b
VG
7253
7254 if (rq->nr_running == 1 && wl > env->imbalance &&
7255 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7256 continue;
7257
6e40f5bb
TG
7258 /*
7259 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7260 * the weighted_cpuload() scaled with the cpu capacity, so
7261 * that the load can be moved away from the cpu that is
7262 * potentially running at a lower capacity.
95a79b80 7263 *
ced549fa 7264 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7265 * multiplication to rid ourselves of the division works out
ced549fa
NP
7266 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7267 * our previous maximum.
6e40f5bb 7268 */
ced549fa 7269 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7270 busiest_load = wl;
ced549fa 7271 busiest_capacity = capacity;
1e3c88bd
PZ
7272 busiest = rq;
7273 }
7274 }
7275
7276 return busiest;
7277}
7278
7279/*
7280 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7281 * so long as it is large enough.
7282 */
7283#define MAX_PINNED_INTERVAL 512
7284
7285/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7286DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7287
bd939f45 7288static int need_active_balance(struct lb_env *env)
1af3ed3d 7289{
bd939f45
PZ
7290 struct sched_domain *sd = env->sd;
7291
7292 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7293
7294 /*
7295 * ASYM_PACKING needs to force migrate tasks from busy but
7296 * higher numbered CPUs in order to pack all tasks in the
7297 * lowest numbered CPUs.
7298 */
bd939f45 7299 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7300 return 1;
1af3ed3d
PZ
7301 }
7302
1aaf90a4
VG
7303 /*
7304 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7305 * It's worth migrating the task if the src_cpu's capacity is reduced
7306 * because of other sched_class or IRQs if more capacity stays
7307 * available on dst_cpu.
7308 */
7309 if ((env->idle != CPU_NOT_IDLE) &&
7310 (env->src_rq->cfs.h_nr_running == 1)) {
7311 if ((check_cpu_capacity(env->src_rq, sd)) &&
7312 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7313 return 1;
7314 }
7315
1af3ed3d
PZ
7316 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7317}
7318
969c7921
TH
7319static int active_load_balance_cpu_stop(void *data);
7320
23f0d209
JK
7321static int should_we_balance(struct lb_env *env)
7322{
7323 struct sched_group *sg = env->sd->groups;
7324 struct cpumask *sg_cpus, *sg_mask;
7325 int cpu, balance_cpu = -1;
7326
7327 /*
7328 * In the newly idle case, we will allow all the cpu's
7329 * to do the newly idle load balance.
7330 */
7331 if (env->idle == CPU_NEWLY_IDLE)
7332 return 1;
7333
7334 sg_cpus = sched_group_cpus(sg);
7335 sg_mask = sched_group_mask(sg);
7336 /* Try to find first idle cpu */
7337 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7338 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7339 continue;
7340
7341 balance_cpu = cpu;
7342 break;
7343 }
7344
7345 if (balance_cpu == -1)
7346 balance_cpu = group_balance_cpu(sg);
7347
7348 /*
7349 * First idle cpu or the first cpu(busiest) in this sched group
7350 * is eligible for doing load balancing at this and above domains.
7351 */
b0cff9d8 7352 return balance_cpu == env->dst_cpu;
23f0d209
JK
7353}
7354
1e3c88bd
PZ
7355/*
7356 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7357 * tasks if there is an imbalance.
7358 */
7359static int load_balance(int this_cpu, struct rq *this_rq,
7360 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7361 int *continue_balancing)
1e3c88bd 7362{
88b8dac0 7363 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7364 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7365 struct sched_group *group;
1e3c88bd
PZ
7366 struct rq *busiest;
7367 unsigned long flags;
4ba29684 7368 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7369
8e45cb54
PZ
7370 struct lb_env env = {
7371 .sd = sd,
ddcdf6e7
PZ
7372 .dst_cpu = this_cpu,
7373 .dst_rq = this_rq,
88b8dac0 7374 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7375 .idle = idle,
eb95308e 7376 .loop_break = sched_nr_migrate_break,
b9403130 7377 .cpus = cpus,
0ec8aa00 7378 .fbq_type = all,
163122b7 7379 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7380 };
7381
cfc03118
JK
7382 /*
7383 * For NEWLY_IDLE load_balancing, we don't need to consider
7384 * other cpus in our group
7385 */
e02e60c1 7386 if (idle == CPU_NEWLY_IDLE)
cfc03118 7387 env.dst_grpmask = NULL;
cfc03118 7388
1e3c88bd
PZ
7389 cpumask_copy(cpus, cpu_active_mask);
7390
1e3c88bd
PZ
7391 schedstat_inc(sd, lb_count[idle]);
7392
7393redo:
23f0d209
JK
7394 if (!should_we_balance(&env)) {
7395 *continue_balancing = 0;
1e3c88bd 7396 goto out_balanced;
23f0d209 7397 }
1e3c88bd 7398
23f0d209 7399 group = find_busiest_group(&env);
1e3c88bd
PZ
7400 if (!group) {
7401 schedstat_inc(sd, lb_nobusyg[idle]);
7402 goto out_balanced;
7403 }
7404
b9403130 7405 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
7406 if (!busiest) {
7407 schedstat_inc(sd, lb_nobusyq[idle]);
7408 goto out_balanced;
7409 }
7410
78feefc5 7411 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7412
bd939f45 7413 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd 7414
1aaf90a4
VG
7415 env.src_cpu = busiest->cpu;
7416 env.src_rq = busiest;
7417
1e3c88bd
PZ
7418 ld_moved = 0;
7419 if (busiest->nr_running > 1) {
7420 /*
7421 * Attempt to move tasks. If find_busiest_group has found
7422 * an imbalance but busiest->nr_running <= 1, the group is
7423 * still unbalanced. ld_moved simply stays zero, so it is
7424 * correctly treated as an imbalance.
7425 */
8e45cb54 7426 env.flags |= LBF_ALL_PINNED;
c82513e5 7427 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7428
5d6523eb 7429more_balance:
163122b7 7430 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7431
7432 /*
7433 * cur_ld_moved - load moved in current iteration
7434 * ld_moved - cumulative load moved across iterations
7435 */
163122b7 7436 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7437
7438 /*
163122b7
KT
7439 * We've detached some tasks from busiest_rq. Every
7440 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7441 * unlock busiest->lock, and we are able to be sure
7442 * that nobody can manipulate the tasks in parallel.
7443 * See task_rq_lock() family for the details.
1e3c88bd 7444 */
163122b7
KT
7445
7446 raw_spin_unlock(&busiest->lock);
7447
7448 if (cur_ld_moved) {
7449 attach_tasks(&env);
7450 ld_moved += cur_ld_moved;
7451 }
7452
1e3c88bd 7453 local_irq_restore(flags);
88b8dac0 7454
f1cd0858
JK
7455 if (env.flags & LBF_NEED_BREAK) {
7456 env.flags &= ~LBF_NEED_BREAK;
7457 goto more_balance;
7458 }
7459
88b8dac0
SV
7460 /*
7461 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7462 * us and move them to an alternate dst_cpu in our sched_group
7463 * where they can run. The upper limit on how many times we
7464 * iterate on same src_cpu is dependent on number of cpus in our
7465 * sched_group.
7466 *
7467 * This changes load balance semantics a bit on who can move
7468 * load to a given_cpu. In addition to the given_cpu itself
7469 * (or a ilb_cpu acting on its behalf where given_cpu is
7470 * nohz-idle), we now have balance_cpu in a position to move
7471 * load to given_cpu. In rare situations, this may cause
7472 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7473 * _independently_ and at _same_ time to move some load to
7474 * given_cpu) causing exceess load to be moved to given_cpu.
7475 * This however should not happen so much in practice and
7476 * moreover subsequent load balance cycles should correct the
7477 * excess load moved.
7478 */
6263322c 7479 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7480
7aff2e3a
VD
7481 /* Prevent to re-select dst_cpu via env's cpus */
7482 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7483
78feefc5 7484 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7485 env.dst_cpu = env.new_dst_cpu;
6263322c 7486 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7487 env.loop = 0;
7488 env.loop_break = sched_nr_migrate_break;
e02e60c1 7489
88b8dac0
SV
7490 /*
7491 * Go back to "more_balance" rather than "redo" since we
7492 * need to continue with same src_cpu.
7493 */
7494 goto more_balance;
7495 }
1e3c88bd 7496
6263322c
PZ
7497 /*
7498 * We failed to reach balance because of affinity.
7499 */
7500 if (sd_parent) {
63b2ca30 7501 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7502
afdeee05 7503 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7504 *group_imbalance = 1;
6263322c
PZ
7505 }
7506
1e3c88bd 7507 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7508 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7509 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7510 if (!cpumask_empty(cpus)) {
7511 env.loop = 0;
7512 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7513 goto redo;
bbf18b19 7514 }
afdeee05 7515 goto out_all_pinned;
1e3c88bd
PZ
7516 }
7517 }
7518
7519 if (!ld_moved) {
7520 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
7521 /*
7522 * Increment the failure counter only on periodic balance.
7523 * We do not want newidle balance, which can be very
7524 * frequent, pollute the failure counter causing
7525 * excessive cache_hot migrations and active balances.
7526 */
7527 if (idle != CPU_NEWLY_IDLE)
7528 sd->nr_balance_failed++;
1e3c88bd 7529
bd939f45 7530 if (need_active_balance(&env)) {
1e3c88bd
PZ
7531 raw_spin_lock_irqsave(&busiest->lock, flags);
7532
969c7921
TH
7533 /* don't kick the active_load_balance_cpu_stop,
7534 * if the curr task on busiest cpu can't be
7535 * moved to this_cpu
1e3c88bd
PZ
7536 */
7537 if (!cpumask_test_cpu(this_cpu,
fa17b507 7538 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7539 raw_spin_unlock_irqrestore(&busiest->lock,
7540 flags);
8e45cb54 7541 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7542 goto out_one_pinned;
7543 }
7544
969c7921
TH
7545 /*
7546 * ->active_balance synchronizes accesses to
7547 * ->active_balance_work. Once set, it's cleared
7548 * only after active load balance is finished.
7549 */
1e3c88bd
PZ
7550 if (!busiest->active_balance) {
7551 busiest->active_balance = 1;
7552 busiest->push_cpu = this_cpu;
7553 active_balance = 1;
7554 }
7555 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7556
bd939f45 7557 if (active_balance) {
969c7921
TH
7558 stop_one_cpu_nowait(cpu_of(busiest),
7559 active_load_balance_cpu_stop, busiest,
7560 &busiest->active_balance_work);
bd939f45 7561 }
1e3c88bd 7562
d02c0711 7563 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7564 sd->nr_balance_failed = sd->cache_nice_tries+1;
7565 }
7566 } else
7567 sd->nr_balance_failed = 0;
7568
7569 if (likely(!active_balance)) {
7570 /* We were unbalanced, so reset the balancing interval */
7571 sd->balance_interval = sd->min_interval;
7572 } else {
7573 /*
7574 * If we've begun active balancing, start to back off. This
7575 * case may not be covered by the all_pinned logic if there
7576 * is only 1 task on the busy runqueue (because we don't call
163122b7 7577 * detach_tasks).
1e3c88bd
PZ
7578 */
7579 if (sd->balance_interval < sd->max_interval)
7580 sd->balance_interval *= 2;
7581 }
7582
1e3c88bd
PZ
7583 goto out;
7584
7585out_balanced:
afdeee05
VG
7586 /*
7587 * We reach balance although we may have faced some affinity
7588 * constraints. Clear the imbalance flag if it was set.
7589 */
7590 if (sd_parent) {
7591 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7592
7593 if (*group_imbalance)
7594 *group_imbalance = 0;
7595 }
7596
7597out_all_pinned:
7598 /*
7599 * We reach balance because all tasks are pinned at this level so
7600 * we can't migrate them. Let the imbalance flag set so parent level
7601 * can try to migrate them.
7602 */
1e3c88bd
PZ
7603 schedstat_inc(sd, lb_balanced[idle]);
7604
7605 sd->nr_balance_failed = 0;
7606
7607out_one_pinned:
7608 /* tune up the balancing interval */
8e45cb54 7609 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7610 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7611 (sd->balance_interval < sd->max_interval))
7612 sd->balance_interval *= 2;
7613
46e49b38 7614 ld_moved = 0;
1e3c88bd 7615out:
1e3c88bd
PZ
7616 return ld_moved;
7617}
7618
52a08ef1
JL
7619static inline unsigned long
7620get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7621{
7622 unsigned long interval = sd->balance_interval;
7623
7624 if (cpu_busy)
7625 interval *= sd->busy_factor;
7626
7627 /* scale ms to jiffies */
7628 interval = msecs_to_jiffies(interval);
7629 interval = clamp(interval, 1UL, max_load_balance_interval);
7630
7631 return interval;
7632}
7633
7634static inline void
7635update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7636{
7637 unsigned long interval, next;
7638
7639 interval = get_sd_balance_interval(sd, cpu_busy);
7640 next = sd->last_balance + interval;
7641
7642 if (time_after(*next_balance, next))
7643 *next_balance = next;
7644}
7645
1e3c88bd
PZ
7646/*
7647 * idle_balance is called by schedule() if this_cpu is about to become
7648 * idle. Attempts to pull tasks from other CPUs.
7649 */
6e83125c 7650static int idle_balance(struct rq *this_rq)
1e3c88bd 7651{
52a08ef1
JL
7652 unsigned long next_balance = jiffies + HZ;
7653 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7654 struct sched_domain *sd;
7655 int pulled_task = 0;
9bd721c5 7656 u64 curr_cost = 0;
1e3c88bd 7657
6e83125c
PZ
7658 /*
7659 * We must set idle_stamp _before_ calling idle_balance(), such that we
7660 * measure the duration of idle_balance() as idle time.
7661 */
7662 this_rq->idle_stamp = rq_clock(this_rq);
7663
4486edd1
TC
7664 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7665 !this_rq->rd->overload) {
52a08ef1
JL
7666 rcu_read_lock();
7667 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7668 if (sd)
7669 update_next_balance(sd, 0, &next_balance);
7670 rcu_read_unlock();
7671
6e83125c 7672 goto out;
52a08ef1 7673 }
1e3c88bd 7674
f492e12e
PZ
7675 raw_spin_unlock(&this_rq->lock);
7676
48a16753 7677 update_blocked_averages(this_cpu);
dce840a0 7678 rcu_read_lock();
1e3c88bd 7679 for_each_domain(this_cpu, sd) {
23f0d209 7680 int continue_balancing = 1;
9bd721c5 7681 u64 t0, domain_cost;
1e3c88bd
PZ
7682
7683 if (!(sd->flags & SD_LOAD_BALANCE))
7684 continue;
7685
52a08ef1
JL
7686 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7687 update_next_balance(sd, 0, &next_balance);
9bd721c5 7688 break;
52a08ef1 7689 }
9bd721c5 7690
f492e12e 7691 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7692 t0 = sched_clock_cpu(this_cpu);
7693
f492e12e 7694 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7695 sd, CPU_NEWLY_IDLE,
7696 &continue_balancing);
9bd721c5
JL
7697
7698 domain_cost = sched_clock_cpu(this_cpu) - t0;
7699 if (domain_cost > sd->max_newidle_lb_cost)
7700 sd->max_newidle_lb_cost = domain_cost;
7701
7702 curr_cost += domain_cost;
f492e12e 7703 }
1e3c88bd 7704
52a08ef1 7705 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
7706
7707 /*
7708 * Stop searching for tasks to pull if there are
7709 * now runnable tasks on this rq.
7710 */
7711 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7712 break;
1e3c88bd 7713 }
dce840a0 7714 rcu_read_unlock();
f492e12e
PZ
7715
7716 raw_spin_lock(&this_rq->lock);
7717
0e5b5337
JL
7718 if (curr_cost > this_rq->max_idle_balance_cost)
7719 this_rq->max_idle_balance_cost = curr_cost;
7720
e5fc6611 7721 /*
0e5b5337
JL
7722 * While browsing the domains, we released the rq lock, a task could
7723 * have been enqueued in the meantime. Since we're not going idle,
7724 * pretend we pulled a task.
e5fc6611 7725 */
0e5b5337 7726 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7727 pulled_task = 1;
e5fc6611 7728
52a08ef1
JL
7729out:
7730 /* Move the next balance forward */
7731 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7732 this_rq->next_balance = next_balance;
9bd721c5 7733
e4aa358b 7734 /* Is there a task of a high priority class? */
46383648 7735 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7736 pulled_task = -1;
7737
38c6ade2 7738 if (pulled_task)
6e83125c
PZ
7739 this_rq->idle_stamp = 0;
7740
3c4017c1 7741 return pulled_task;
1e3c88bd
PZ
7742}
7743
7744/*
969c7921
TH
7745 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7746 * running tasks off the busiest CPU onto idle CPUs. It requires at
7747 * least 1 task to be running on each physical CPU where possible, and
7748 * avoids physical / logical imbalances.
1e3c88bd 7749 */
969c7921 7750static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7751{
969c7921
TH
7752 struct rq *busiest_rq = data;
7753 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7754 int target_cpu = busiest_rq->push_cpu;
969c7921 7755 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7756 struct sched_domain *sd;
e5673f28 7757 struct task_struct *p = NULL;
969c7921
TH
7758
7759 raw_spin_lock_irq(&busiest_rq->lock);
7760
7761 /* make sure the requested cpu hasn't gone down in the meantime */
7762 if (unlikely(busiest_cpu != smp_processor_id() ||
7763 !busiest_rq->active_balance))
7764 goto out_unlock;
1e3c88bd
PZ
7765
7766 /* Is there any task to move? */
7767 if (busiest_rq->nr_running <= 1)
969c7921 7768 goto out_unlock;
1e3c88bd
PZ
7769
7770 /*
7771 * This condition is "impossible", if it occurs
7772 * we need to fix it. Originally reported by
7773 * Bjorn Helgaas on a 128-cpu setup.
7774 */
7775 BUG_ON(busiest_rq == target_rq);
7776
1e3c88bd 7777 /* Search for an sd spanning us and the target CPU. */
dce840a0 7778 rcu_read_lock();
1e3c88bd
PZ
7779 for_each_domain(target_cpu, sd) {
7780 if ((sd->flags & SD_LOAD_BALANCE) &&
7781 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7782 break;
7783 }
7784
7785 if (likely(sd)) {
8e45cb54
PZ
7786 struct lb_env env = {
7787 .sd = sd,
ddcdf6e7
PZ
7788 .dst_cpu = target_cpu,
7789 .dst_rq = target_rq,
7790 .src_cpu = busiest_rq->cpu,
7791 .src_rq = busiest_rq,
8e45cb54
PZ
7792 .idle = CPU_IDLE,
7793 };
7794
1e3c88bd
PZ
7795 schedstat_inc(sd, alb_count);
7796
e5673f28 7797 p = detach_one_task(&env);
d02c0711 7798 if (p) {
1e3c88bd 7799 schedstat_inc(sd, alb_pushed);
d02c0711
SD
7800 /* Active balancing done, reset the failure counter. */
7801 sd->nr_balance_failed = 0;
7802 } else {
1e3c88bd 7803 schedstat_inc(sd, alb_failed);
d02c0711 7804 }
1e3c88bd 7805 }
dce840a0 7806 rcu_read_unlock();
969c7921
TH
7807out_unlock:
7808 busiest_rq->active_balance = 0;
e5673f28
KT
7809 raw_spin_unlock(&busiest_rq->lock);
7810
7811 if (p)
7812 attach_one_task(target_rq, p);
7813
7814 local_irq_enable();
7815
969c7921 7816 return 0;
1e3c88bd
PZ
7817}
7818
d987fc7f
MG
7819static inline int on_null_domain(struct rq *rq)
7820{
7821 return unlikely(!rcu_dereference_sched(rq->sd));
7822}
7823
3451d024 7824#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7825/*
7826 * idle load balancing details
83cd4fe2
VP
7827 * - When one of the busy CPUs notice that there may be an idle rebalancing
7828 * needed, they will kick the idle load balancer, which then does idle
7829 * load balancing for all the idle CPUs.
7830 */
1e3c88bd 7831static struct {
83cd4fe2 7832 cpumask_var_t idle_cpus_mask;
0b005cf5 7833 atomic_t nr_cpus;
83cd4fe2
VP
7834 unsigned long next_balance; /* in jiffy units */
7835} nohz ____cacheline_aligned;
1e3c88bd 7836
3dd0337d 7837static inline int find_new_ilb(void)
1e3c88bd 7838{
0b005cf5 7839 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7840
786d6dc7
SS
7841 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7842 return ilb;
7843
7844 return nr_cpu_ids;
1e3c88bd 7845}
1e3c88bd 7846
83cd4fe2
VP
7847/*
7848 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7849 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7850 * CPU (if there is one).
7851 */
0aeeeeba 7852static void nohz_balancer_kick(void)
83cd4fe2
VP
7853{
7854 int ilb_cpu;
7855
7856 nohz.next_balance++;
7857
3dd0337d 7858 ilb_cpu = find_new_ilb();
83cd4fe2 7859
0b005cf5
SS
7860 if (ilb_cpu >= nr_cpu_ids)
7861 return;
83cd4fe2 7862
cd490c5b 7863 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7864 return;
7865 /*
7866 * Use smp_send_reschedule() instead of resched_cpu().
7867 * This way we generate a sched IPI on the target cpu which
7868 * is idle. And the softirq performing nohz idle load balance
7869 * will be run before returning from the IPI.
7870 */
7871 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7872 return;
7873}
7874
20a5c8cc 7875void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7876{
7877 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7878 /*
7879 * Completely isolated CPUs don't ever set, so we must test.
7880 */
7881 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7882 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7883 atomic_dec(&nohz.nr_cpus);
7884 }
71325960
SS
7885 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7886 }
7887}
7888
69e1e811
SS
7889static inline void set_cpu_sd_state_busy(void)
7890{
7891 struct sched_domain *sd;
37dc6b50 7892 int cpu = smp_processor_id();
69e1e811 7893
69e1e811 7894 rcu_read_lock();
37dc6b50 7895 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7896
7897 if (!sd || !sd->nohz_idle)
7898 goto unlock;
7899 sd->nohz_idle = 0;
7900
63b2ca30 7901 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7902unlock:
69e1e811
SS
7903 rcu_read_unlock();
7904}
7905
7906void set_cpu_sd_state_idle(void)
7907{
7908 struct sched_domain *sd;
37dc6b50 7909 int cpu = smp_processor_id();
69e1e811 7910
69e1e811 7911 rcu_read_lock();
37dc6b50 7912 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
7913
7914 if (!sd || sd->nohz_idle)
7915 goto unlock;
7916 sd->nohz_idle = 1;
7917
63b2ca30 7918 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 7919unlock:
69e1e811
SS
7920 rcu_read_unlock();
7921}
7922
1e3c88bd 7923/*
c1cc017c 7924 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7925 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7926 */
c1cc017c 7927void nohz_balance_enter_idle(int cpu)
1e3c88bd 7928{
71325960
SS
7929 /*
7930 * If this cpu is going down, then nothing needs to be done.
7931 */
7932 if (!cpu_active(cpu))
7933 return;
7934
c1cc017c
AS
7935 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7936 return;
1e3c88bd 7937
d987fc7f
MG
7938 /*
7939 * If we're a completely isolated CPU, we don't play.
7940 */
7941 if (on_null_domain(cpu_rq(cpu)))
7942 return;
7943
c1cc017c
AS
7944 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7945 atomic_inc(&nohz.nr_cpus);
7946 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
7947}
7948#endif
7949
7950static DEFINE_SPINLOCK(balancing);
7951
49c022e6
PZ
7952/*
7953 * Scale the max load_balance interval with the number of CPUs in the system.
7954 * This trades load-balance latency on larger machines for less cross talk.
7955 */
029632fb 7956void update_max_interval(void)
49c022e6
PZ
7957{
7958 max_load_balance_interval = HZ*num_online_cpus()/10;
7959}
7960
1e3c88bd
PZ
7961/*
7962 * It checks each scheduling domain to see if it is due to be balanced,
7963 * and initiates a balancing operation if so.
7964 *
b9b0853a 7965 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7966 */
f7ed0a89 7967static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7968{
23f0d209 7969 int continue_balancing = 1;
f7ed0a89 7970 int cpu = rq->cpu;
1e3c88bd 7971 unsigned long interval;
04f733b4 7972 struct sched_domain *sd;
1e3c88bd
PZ
7973 /* Earliest time when we have to do rebalance again */
7974 unsigned long next_balance = jiffies + 60*HZ;
7975 int update_next_balance = 0;
f48627e6
JL
7976 int need_serialize, need_decay = 0;
7977 u64 max_cost = 0;
1e3c88bd 7978
48a16753 7979 update_blocked_averages(cpu);
2069dd75 7980
dce840a0 7981 rcu_read_lock();
1e3c88bd 7982 for_each_domain(cpu, sd) {
f48627e6
JL
7983 /*
7984 * Decay the newidle max times here because this is a regular
7985 * visit to all the domains. Decay ~1% per second.
7986 */
7987 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7988 sd->max_newidle_lb_cost =
7989 (sd->max_newidle_lb_cost * 253) / 256;
7990 sd->next_decay_max_lb_cost = jiffies + HZ;
7991 need_decay = 1;
7992 }
7993 max_cost += sd->max_newidle_lb_cost;
7994
1e3c88bd
PZ
7995 if (!(sd->flags & SD_LOAD_BALANCE))
7996 continue;
7997
f48627e6
JL
7998 /*
7999 * Stop the load balance at this level. There is another
8000 * CPU in our sched group which is doing load balancing more
8001 * actively.
8002 */
8003 if (!continue_balancing) {
8004 if (need_decay)
8005 continue;
8006 break;
8007 }
8008
52a08ef1 8009 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8010
8011 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8012 if (need_serialize) {
8013 if (!spin_trylock(&balancing))
8014 goto out;
8015 }
8016
8017 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8018 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8019 /*
6263322c 8020 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8021 * env->dst_cpu, so we can't know our idle
8022 * state even if we migrated tasks. Update it.
1e3c88bd 8023 */
de5eb2dd 8024 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8025 }
8026 sd->last_balance = jiffies;
52a08ef1 8027 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8028 }
8029 if (need_serialize)
8030 spin_unlock(&balancing);
8031out:
8032 if (time_after(next_balance, sd->last_balance + interval)) {
8033 next_balance = sd->last_balance + interval;
8034 update_next_balance = 1;
8035 }
f48627e6
JL
8036 }
8037 if (need_decay) {
1e3c88bd 8038 /*
f48627e6
JL
8039 * Ensure the rq-wide value also decays but keep it at a
8040 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8041 */
f48627e6
JL
8042 rq->max_idle_balance_cost =
8043 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8044 }
dce840a0 8045 rcu_read_unlock();
1e3c88bd
PZ
8046
8047 /*
8048 * next_balance will be updated only when there is a need.
8049 * When the cpu is attached to null domain for ex, it will not be
8050 * updated.
8051 */
c5afb6a8 8052 if (likely(update_next_balance)) {
1e3c88bd 8053 rq->next_balance = next_balance;
c5afb6a8
VG
8054
8055#ifdef CONFIG_NO_HZ_COMMON
8056 /*
8057 * If this CPU has been elected to perform the nohz idle
8058 * balance. Other idle CPUs have already rebalanced with
8059 * nohz_idle_balance() and nohz.next_balance has been
8060 * updated accordingly. This CPU is now running the idle load
8061 * balance for itself and we need to update the
8062 * nohz.next_balance accordingly.
8063 */
8064 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8065 nohz.next_balance = rq->next_balance;
8066#endif
8067 }
1e3c88bd
PZ
8068}
8069
3451d024 8070#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8071/*
3451d024 8072 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8073 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8074 */
208cb16b 8075static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8076{
208cb16b 8077 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8078 struct rq *rq;
8079 int balance_cpu;
c5afb6a8
VG
8080 /* Earliest time when we have to do rebalance again */
8081 unsigned long next_balance = jiffies + 60*HZ;
8082 int update_next_balance = 0;
83cd4fe2 8083
1c792db7
SS
8084 if (idle != CPU_IDLE ||
8085 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8086 goto end;
83cd4fe2
VP
8087
8088 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8089 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8090 continue;
8091
8092 /*
8093 * If this cpu gets work to do, stop the load balancing
8094 * work being done for other cpus. Next load
8095 * balancing owner will pick it up.
8096 */
1c792db7 8097 if (need_resched())
83cd4fe2 8098 break;
83cd4fe2 8099
5ed4f1d9
VG
8100 rq = cpu_rq(balance_cpu);
8101
ed61bbc6
TC
8102 /*
8103 * If time for next balance is due,
8104 * do the balance.
8105 */
8106 if (time_after_eq(jiffies, rq->next_balance)) {
8107 raw_spin_lock_irq(&rq->lock);
8108 update_rq_clock(rq);
cee1afce 8109 cpu_load_update_idle(rq);
ed61bbc6
TC
8110 raw_spin_unlock_irq(&rq->lock);
8111 rebalance_domains(rq, CPU_IDLE);
8112 }
83cd4fe2 8113
c5afb6a8
VG
8114 if (time_after(next_balance, rq->next_balance)) {
8115 next_balance = rq->next_balance;
8116 update_next_balance = 1;
8117 }
83cd4fe2 8118 }
c5afb6a8
VG
8119
8120 /*
8121 * next_balance will be updated only when there is a need.
8122 * When the CPU is attached to null domain for ex, it will not be
8123 * updated.
8124 */
8125 if (likely(update_next_balance))
8126 nohz.next_balance = next_balance;
1c792db7
SS
8127end:
8128 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8129}
8130
8131/*
0b005cf5 8132 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8133 * of an idle cpu in the system.
0b005cf5 8134 * - This rq has more than one task.
1aaf90a4
VG
8135 * - This rq has at least one CFS task and the capacity of the CPU is
8136 * significantly reduced because of RT tasks or IRQs.
8137 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8138 * multiple busy cpu.
0b005cf5
SS
8139 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8140 * domain span are idle.
83cd4fe2 8141 */
1aaf90a4 8142static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8143{
8144 unsigned long now = jiffies;
0b005cf5 8145 struct sched_domain *sd;
63b2ca30 8146 struct sched_group_capacity *sgc;
4a725627 8147 int nr_busy, cpu = rq->cpu;
1aaf90a4 8148 bool kick = false;
83cd4fe2 8149
4a725627 8150 if (unlikely(rq->idle_balance))
1aaf90a4 8151 return false;
83cd4fe2 8152
1c792db7
SS
8153 /*
8154 * We may be recently in ticked or tickless idle mode. At the first
8155 * busy tick after returning from idle, we will update the busy stats.
8156 */
69e1e811 8157 set_cpu_sd_state_busy();
c1cc017c 8158 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8159
8160 /*
8161 * None are in tickless mode and hence no need for NOHZ idle load
8162 * balancing.
8163 */
8164 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8165 return false;
1c792db7
SS
8166
8167 if (time_before(now, nohz.next_balance))
1aaf90a4 8168 return false;
83cd4fe2 8169
0b005cf5 8170 if (rq->nr_running >= 2)
1aaf90a4 8171 return true;
83cd4fe2 8172
067491b7 8173 rcu_read_lock();
37dc6b50 8174 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8175 if (sd) {
63b2ca30
NP
8176 sgc = sd->groups->sgc;
8177 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8178
1aaf90a4
VG
8179 if (nr_busy > 1) {
8180 kick = true;
8181 goto unlock;
8182 }
8183
83cd4fe2 8184 }
37dc6b50 8185
1aaf90a4
VG
8186 sd = rcu_dereference(rq->sd);
8187 if (sd) {
8188 if ((rq->cfs.h_nr_running >= 1) &&
8189 check_cpu_capacity(rq, sd)) {
8190 kick = true;
8191 goto unlock;
8192 }
8193 }
37dc6b50 8194
1aaf90a4 8195 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8196 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8197 sched_domain_span(sd)) < cpu)) {
8198 kick = true;
8199 goto unlock;
8200 }
067491b7 8201
1aaf90a4 8202unlock:
067491b7 8203 rcu_read_unlock();
1aaf90a4 8204 return kick;
83cd4fe2
VP
8205}
8206#else
208cb16b 8207static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8208#endif
8209
8210/*
8211 * run_rebalance_domains is triggered when needed from the scheduler tick.
8212 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8213 */
1e3c88bd
PZ
8214static void run_rebalance_domains(struct softirq_action *h)
8215{
208cb16b 8216 struct rq *this_rq = this_rq();
6eb57e0d 8217 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8218 CPU_IDLE : CPU_NOT_IDLE;
8219
1e3c88bd 8220 /*
83cd4fe2 8221 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8222 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8223 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8224 * give the idle cpus a chance to load balance. Else we may
8225 * load balance only within the local sched_domain hierarchy
8226 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8227 */
208cb16b 8228 nohz_idle_balance(this_rq, idle);
d4573c3e 8229 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8230}
8231
1e3c88bd
PZ
8232/*
8233 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8234 */
7caff66f 8235void trigger_load_balance(struct rq *rq)
1e3c88bd 8236{
1e3c88bd 8237 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8238 if (unlikely(on_null_domain(rq)))
8239 return;
8240
8241 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8242 raise_softirq(SCHED_SOFTIRQ);
3451d024 8243#ifdef CONFIG_NO_HZ_COMMON
c726099e 8244 if (nohz_kick_needed(rq))
0aeeeeba 8245 nohz_balancer_kick();
83cd4fe2 8246#endif
1e3c88bd
PZ
8247}
8248
0bcdcf28
CE
8249static void rq_online_fair(struct rq *rq)
8250{
8251 update_sysctl();
0e59bdae
KT
8252
8253 update_runtime_enabled(rq);
0bcdcf28
CE
8254}
8255
8256static void rq_offline_fair(struct rq *rq)
8257{
8258 update_sysctl();
a4c96ae3
PB
8259
8260 /* Ensure any throttled groups are reachable by pick_next_task */
8261 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8262}
8263
55e12e5e 8264#endif /* CONFIG_SMP */
e1d1484f 8265
bf0f6f24
IM
8266/*
8267 * scheduler tick hitting a task of our scheduling class:
8268 */
8f4d37ec 8269static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8270{
8271 struct cfs_rq *cfs_rq;
8272 struct sched_entity *se = &curr->se;
8273
8274 for_each_sched_entity(se) {
8275 cfs_rq = cfs_rq_of(se);
8f4d37ec 8276 entity_tick(cfs_rq, se, queued);
bf0f6f24 8277 }
18bf2805 8278
b52da86e 8279 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8280 task_tick_numa(rq, curr);
bf0f6f24
IM
8281}
8282
8283/*
cd29fe6f
PZ
8284 * called on fork with the child task as argument from the parent's context
8285 * - child not yet on the tasklist
8286 * - preemption disabled
bf0f6f24 8287 */
cd29fe6f 8288static void task_fork_fair(struct task_struct *p)
bf0f6f24 8289{
4fc420c9
DN
8290 struct cfs_rq *cfs_rq;
8291 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8292 struct rq *rq = this_rq();
bf0f6f24 8293
e210bffd 8294 raw_spin_lock(&rq->lock);
861d034e
PZ
8295 update_rq_clock(rq);
8296
4fc420c9
DN
8297 cfs_rq = task_cfs_rq(current);
8298 curr = cfs_rq->curr;
e210bffd
PZ
8299 if (curr) {
8300 update_curr(cfs_rq);
b5d9d734 8301 se->vruntime = curr->vruntime;
e210bffd 8302 }
aeb73b04 8303 place_entity(cfs_rq, se, 1);
4d78e7b6 8304
cd29fe6f 8305 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8306 /*
edcb60a3
IM
8307 * Upon rescheduling, sched_class::put_prev_task() will place
8308 * 'current' within the tree based on its new key value.
8309 */
4d78e7b6 8310 swap(curr->vruntime, se->vruntime);
8875125e 8311 resched_curr(rq);
4d78e7b6 8312 }
bf0f6f24 8313
88ec22d3 8314 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8315 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8316}
8317
cb469845
SR
8318/*
8319 * Priority of the task has changed. Check to see if we preempt
8320 * the current task.
8321 */
da7a735e
PZ
8322static void
8323prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8324{
da0c1e65 8325 if (!task_on_rq_queued(p))
da7a735e
PZ
8326 return;
8327
cb469845
SR
8328 /*
8329 * Reschedule if we are currently running on this runqueue and
8330 * our priority decreased, or if we are not currently running on
8331 * this runqueue and our priority is higher than the current's
8332 */
da7a735e 8333 if (rq->curr == p) {
cb469845 8334 if (p->prio > oldprio)
8875125e 8335 resched_curr(rq);
cb469845 8336 } else
15afe09b 8337 check_preempt_curr(rq, p, 0);
cb469845
SR
8338}
8339
daa59407 8340static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8341{
8342 struct sched_entity *se = &p->se;
da7a735e
PZ
8343
8344 /*
daa59407
BP
8345 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8346 * the dequeue_entity(.flags=0) will already have normalized the
8347 * vruntime.
8348 */
8349 if (p->on_rq)
8350 return true;
8351
8352 /*
8353 * When !on_rq, vruntime of the task has usually NOT been normalized.
8354 * But there are some cases where it has already been normalized:
da7a735e 8355 *
daa59407
BP
8356 * - A forked child which is waiting for being woken up by
8357 * wake_up_new_task().
8358 * - A task which has been woken up by try_to_wake_up() and
8359 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8360 */
daa59407
BP
8361 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8362 return true;
8363
8364 return false;
8365}
8366
8367static void detach_task_cfs_rq(struct task_struct *p)
8368{
8369 struct sched_entity *se = &p->se;
8370 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8371
8372 if (!vruntime_normalized(p)) {
da7a735e
PZ
8373 /*
8374 * Fix up our vruntime so that the current sleep doesn't
8375 * cause 'unlimited' sleep bonus.
8376 */
8377 place_entity(cfs_rq, se, 0);
8378 se->vruntime -= cfs_rq->min_vruntime;
8379 }
9ee474f5 8380
9d89c257 8381 /* Catch up with the cfs_rq and remove our load when we leave */
a05e8c51 8382 detach_entity_load_avg(cfs_rq, se);
da7a735e
PZ
8383}
8384
daa59407 8385static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8386{
f36c019c 8387 struct sched_entity *se = &p->se;
daa59407 8388 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7855a35a
BP
8389
8390#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8391 /*
8392 * Since the real-depth could have been changed (only FAIR
8393 * class maintain depth value), reset depth properly.
8394 */
8395 se->depth = se->parent ? se->parent->depth + 1 : 0;
8396#endif
7855a35a 8397
6efdb105 8398 /* Synchronize task with its cfs_rq */
daa59407
BP
8399 attach_entity_load_avg(cfs_rq, se);
8400
8401 if (!vruntime_normalized(p))
8402 se->vruntime += cfs_rq->min_vruntime;
8403}
6efdb105 8404
daa59407
BP
8405static void switched_from_fair(struct rq *rq, struct task_struct *p)
8406{
8407 detach_task_cfs_rq(p);
8408}
8409
8410static void switched_to_fair(struct rq *rq, struct task_struct *p)
8411{
8412 attach_task_cfs_rq(p);
7855a35a 8413
daa59407 8414 if (task_on_rq_queued(p)) {
7855a35a 8415 /*
daa59407
BP
8416 * We were most likely switched from sched_rt, so
8417 * kick off the schedule if running, otherwise just see
8418 * if we can still preempt the current task.
7855a35a 8419 */
daa59407
BP
8420 if (rq->curr == p)
8421 resched_curr(rq);
8422 else
8423 check_preempt_curr(rq, p, 0);
7855a35a 8424 }
cb469845
SR
8425}
8426
83b699ed
SV
8427/* Account for a task changing its policy or group.
8428 *
8429 * This routine is mostly called to set cfs_rq->curr field when a task
8430 * migrates between groups/classes.
8431 */
8432static void set_curr_task_fair(struct rq *rq)
8433{
8434 struct sched_entity *se = &rq->curr->se;
8435
ec12cb7f
PT
8436 for_each_sched_entity(se) {
8437 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8438
8439 set_next_entity(cfs_rq, se);
8440 /* ensure bandwidth has been allocated on our new cfs_rq */
8441 account_cfs_rq_runtime(cfs_rq, 0);
8442 }
83b699ed
SV
8443}
8444
029632fb
PZ
8445void init_cfs_rq(struct cfs_rq *cfs_rq)
8446{
8447 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8448 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8449#ifndef CONFIG_64BIT
8450 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8451#endif
141965c7 8452#ifdef CONFIG_SMP
9d89c257
YD
8453 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8454 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8455#endif
029632fb
PZ
8456}
8457
810b3817 8458#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 8459static void task_move_group_fair(struct task_struct *p)
810b3817 8460{
daa59407 8461 detach_task_cfs_rq(p);
b2b5ce02 8462 set_task_rq(p, task_cpu(p));
6efdb105
BP
8463
8464#ifdef CONFIG_SMP
8465 /* Tell se's cfs_rq has been changed -- migrated */
8466 p->se.avg.last_update_time = 0;
8467#endif
daa59407 8468 attach_task_cfs_rq(p);
810b3817 8469}
029632fb
PZ
8470
8471void free_fair_sched_group(struct task_group *tg)
8472{
8473 int i;
8474
8475 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8476
8477 for_each_possible_cpu(i) {
8478 if (tg->cfs_rq)
8479 kfree(tg->cfs_rq[i]);
6fe1f348 8480 if (tg->se)
029632fb
PZ
8481 kfree(tg->se[i]);
8482 }
8483
8484 kfree(tg->cfs_rq);
8485 kfree(tg->se);
8486}
8487
8488int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8489{
029632fb 8490 struct sched_entity *se;
b7fa30c9
PZ
8491 struct cfs_rq *cfs_rq;
8492 struct rq *rq;
029632fb
PZ
8493 int i;
8494
8495 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8496 if (!tg->cfs_rq)
8497 goto err;
8498 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8499 if (!tg->se)
8500 goto err;
8501
8502 tg->shares = NICE_0_LOAD;
8503
8504 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8505
8506 for_each_possible_cpu(i) {
b7fa30c9
PZ
8507 rq = cpu_rq(i);
8508
029632fb
PZ
8509 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8510 GFP_KERNEL, cpu_to_node(i));
8511 if (!cfs_rq)
8512 goto err;
8513
8514 se = kzalloc_node(sizeof(struct sched_entity),
8515 GFP_KERNEL, cpu_to_node(i));
8516 if (!se)
8517 goto err_free_rq;
8518
8519 init_cfs_rq(cfs_rq);
8520 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8521 init_entity_runnable_average(se);
b7fa30c9
PZ
8522
8523 raw_spin_lock_irq(&rq->lock);
2b8c41da 8524 post_init_entity_util_avg(se);
b7fa30c9 8525 raw_spin_unlock_irq(&rq->lock);
029632fb
PZ
8526 }
8527
8528 return 1;
8529
8530err_free_rq:
8531 kfree(cfs_rq);
8532err:
8533 return 0;
8534}
8535
6fe1f348 8536void unregister_fair_sched_group(struct task_group *tg)
029632fb 8537{
029632fb 8538 unsigned long flags;
6fe1f348
PZ
8539 struct rq *rq;
8540 int cpu;
029632fb 8541
6fe1f348
PZ
8542 for_each_possible_cpu(cpu) {
8543 if (tg->se[cpu])
8544 remove_entity_load_avg(tg->se[cpu]);
029632fb 8545
6fe1f348
PZ
8546 /*
8547 * Only empty task groups can be destroyed; so we can speculatively
8548 * check on_list without danger of it being re-added.
8549 */
8550 if (!tg->cfs_rq[cpu]->on_list)
8551 continue;
8552
8553 rq = cpu_rq(cpu);
8554
8555 raw_spin_lock_irqsave(&rq->lock, flags);
8556 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8557 raw_spin_unlock_irqrestore(&rq->lock, flags);
8558 }
029632fb
PZ
8559}
8560
8561void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8562 struct sched_entity *se, int cpu,
8563 struct sched_entity *parent)
8564{
8565 struct rq *rq = cpu_rq(cpu);
8566
8567 cfs_rq->tg = tg;
8568 cfs_rq->rq = rq;
029632fb
PZ
8569 init_cfs_rq_runtime(cfs_rq);
8570
8571 tg->cfs_rq[cpu] = cfs_rq;
8572 tg->se[cpu] = se;
8573
8574 /* se could be NULL for root_task_group */
8575 if (!se)
8576 return;
8577
fed14d45 8578 if (!parent) {
029632fb 8579 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8580 se->depth = 0;
8581 } else {
029632fb 8582 se->cfs_rq = parent->my_q;
fed14d45
PZ
8583 se->depth = parent->depth + 1;
8584 }
029632fb
PZ
8585
8586 se->my_q = cfs_rq;
0ac9b1c2
PT
8587 /* guarantee group entities always have weight */
8588 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8589 se->parent = parent;
8590}
8591
8592static DEFINE_MUTEX(shares_mutex);
8593
8594int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8595{
8596 int i;
8597 unsigned long flags;
8598
8599 /*
8600 * We can't change the weight of the root cgroup.
8601 */
8602 if (!tg->se[0])
8603 return -EINVAL;
8604
8605 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8606
8607 mutex_lock(&shares_mutex);
8608 if (tg->shares == shares)
8609 goto done;
8610
8611 tg->shares = shares;
8612 for_each_possible_cpu(i) {
8613 struct rq *rq = cpu_rq(i);
8614 struct sched_entity *se;
8615
8616 se = tg->se[i];
8617 /* Propagate contribution to hierarchy */
8618 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8619
8620 /* Possible calls to update_curr() need rq clock */
8621 update_rq_clock(rq);
17bc14b7 8622 for_each_sched_entity(se)
029632fb
PZ
8623 update_cfs_shares(group_cfs_rq(se));
8624 raw_spin_unlock_irqrestore(&rq->lock, flags);
8625 }
8626
8627done:
8628 mutex_unlock(&shares_mutex);
8629 return 0;
8630}
8631#else /* CONFIG_FAIR_GROUP_SCHED */
8632
8633void free_fair_sched_group(struct task_group *tg) { }
8634
8635int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8636{
8637 return 1;
8638}
8639
6fe1f348 8640void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8641
8642#endif /* CONFIG_FAIR_GROUP_SCHED */
8643
810b3817 8644
6d686f45 8645static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8646{
8647 struct sched_entity *se = &task->se;
0d721cea
PW
8648 unsigned int rr_interval = 0;
8649
8650 /*
8651 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8652 * idle runqueue:
8653 */
0d721cea 8654 if (rq->cfs.load.weight)
a59f4e07 8655 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8656
8657 return rr_interval;
8658}
8659
bf0f6f24
IM
8660/*
8661 * All the scheduling class methods:
8662 */
029632fb 8663const struct sched_class fair_sched_class = {
5522d5d5 8664 .next = &idle_sched_class,
bf0f6f24
IM
8665 .enqueue_task = enqueue_task_fair,
8666 .dequeue_task = dequeue_task_fair,
8667 .yield_task = yield_task_fair,
d95f4122 8668 .yield_to_task = yield_to_task_fair,
bf0f6f24 8669
2e09bf55 8670 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8671
8672 .pick_next_task = pick_next_task_fair,
8673 .put_prev_task = put_prev_task_fair,
8674
681f3e68 8675#ifdef CONFIG_SMP
4ce72a2c 8676 .select_task_rq = select_task_rq_fair,
0a74bef8 8677 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8678
0bcdcf28
CE
8679 .rq_online = rq_online_fair,
8680 .rq_offline = rq_offline_fair,
88ec22d3 8681
12695578 8682 .task_dead = task_dead_fair,
c5b28038 8683 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8684#endif
bf0f6f24 8685
83b699ed 8686 .set_curr_task = set_curr_task_fair,
bf0f6f24 8687 .task_tick = task_tick_fair,
cd29fe6f 8688 .task_fork = task_fork_fair,
cb469845
SR
8689
8690 .prio_changed = prio_changed_fair,
da7a735e 8691 .switched_from = switched_from_fair,
cb469845 8692 .switched_to = switched_to_fair,
810b3817 8693
0d721cea
PW
8694 .get_rr_interval = get_rr_interval_fair,
8695
6e998916
SG
8696 .update_curr = update_curr_fair,
8697
810b3817 8698#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 8699 .task_move_group = task_move_group_fair,
810b3817 8700#endif
bf0f6f24
IM
8701};
8702
8703#ifdef CONFIG_SCHED_DEBUG
029632fb 8704void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8705{
bf0f6f24
IM
8706 struct cfs_rq *cfs_rq;
8707
5973e5b9 8708 rcu_read_lock();
c3b64f1e 8709 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8710 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8711 rcu_read_unlock();
bf0f6f24 8712}
397f2378
SD
8713
8714#ifdef CONFIG_NUMA_BALANCING
8715void show_numa_stats(struct task_struct *p, struct seq_file *m)
8716{
8717 int node;
8718 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8719
8720 for_each_online_node(node) {
8721 if (p->numa_faults) {
8722 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8723 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8724 }
8725 if (p->numa_group) {
8726 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8727 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8728 }
8729 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8730 }
8731}
8732#endif /* CONFIG_NUMA_BALANCING */
8733#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8734
8735__init void init_sched_fair_class(void)
8736{
8737#ifdef CONFIG_SMP
8738 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8739
3451d024 8740#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8741 nohz.next_balance = jiffies;
029632fb 8742 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8743#endif
8744#endif /* SMP */
8745
8746}
This page took 1.4174 seconds and 5 git commands to generate.