sched/numa: Allow task switch if load imbalance improves
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
3436ae12 25#include <linux/cpumask.h>
029632fb
PZ
26#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
cbee9f88 29#include <linux/mempolicy.h>
e14808b4 30#include <linux/migrate.h>
cbee9f88 31#include <linux/task_work.h>
029632fb
PZ
32
33#include <trace/events/sched.h>
34
35#include "sched.h"
9745512c 36
bf0f6f24 37/*
21805085 38 * Targeted preemption latency for CPU-bound tasks:
864616ee 39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 40 *
21805085 41 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
bf0f6f24 45 *
d274a4ce
IM
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 48 */
21406928
MG
49unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 51
1983a922
CE
52/*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
2bd8e6d4 64/*
b2be5e96 65 * Minimal preemption granularity for CPU-bound tasks:
864616ee 66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 67 */
0bf377bb
IM
68unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
70
71/*
b2be5e96
PZ
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
0bf377bb 74static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
75
76/*
2bba22c5 77 * After fork, child runs first. If set to 0 (default) then
b2be5e96 78 * parent will (try to) run first.
21805085 79 */
2bba22c5 80unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 81
bf0f6f24
IM
82/*
83 * SCHED_OTHER wake-up granularity.
172e082a 84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
172e082a 90unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 91unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 92
da84d961
IM
93const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
a7a4f8a7
PT
95/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
ec12cb7f
PT
102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
8527632d
PG
116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
029632fb
PZ
134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
9dbdb155 181#define WMULT_CONST (~0U)
029632fb
PZ
182#define WMULT_SHIFT 32
183
9dbdb155
PZ
184static void __update_inv_weight(struct load_weight *lw)
185{
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199}
029632fb
PZ
200
201/*
9dbdb155
PZ
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 212 */
9dbdb155 213static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 214{
9dbdb155
PZ
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
029632fb 217
9dbdb155 218 __update_inv_weight(lw);
029632fb 219
9dbdb155
PZ
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
029632fb
PZ
225 }
226
9dbdb155
PZ
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 229
9dbdb155
PZ
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
029632fb 234
9dbdb155 235 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
236}
237
238
239const struct sched_class fair_sched_class;
a4c2f00f 240
bf0f6f24
IM
241/**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
62160e3f 245#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 246
62160e3f 247/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
248static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249{
62160e3f 250 return cfs_rq->rq;
bf0f6f24
IM
251}
252
62160e3f
IM
253/* An entity is a task if it doesn't "own" a runqueue */
254#define entity_is_task(se) (!se->my_q)
bf0f6f24 255
8f48894f
PZ
256static inline struct task_struct *task_of(struct sched_entity *se)
257{
258#ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260#endif
261 return container_of(se, struct task_struct, se);
262}
263
b758149c
PZ
264/* Walk up scheduling entities hierarchy */
265#define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269{
270 return p->se.cfs_rq;
271}
272
273/* runqueue on which this entity is (to be) queued */
274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275{
276 return se->cfs_rq;
277}
278
279/* runqueue "owned" by this group */
280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281{
282 return grp->my_q;
283}
284
aff3e498
PT
285static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
9ee474f5 287
3d4b47b4
PZ
288static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289{
290 if (!cfs_rq->on_list) {
67e86250
PT
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 304 }
3d4b47b4
PZ
305
306 cfs_rq->on_list = 1;
9ee474f5 307 /* We should have no load, but we need to update last_decay. */
aff3e498 308 update_cfs_rq_blocked_load(cfs_rq, 0);
3d4b47b4
PZ
309 }
310}
311
312static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313{
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318}
319
b758149c
PZ
320/* Iterate thr' all leaf cfs_rq's on a runqueue */
321#define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 325static inline struct cfs_rq *
b758149c
PZ
326is_same_group(struct sched_entity *se, struct sched_entity *pse)
327{
328 if (se->cfs_rq == pse->cfs_rq)
fed14d45 329 return se->cfs_rq;
b758149c 330
fed14d45 331 return NULL;
b758149c
PZ
332}
333
334static inline struct sched_entity *parent_entity(struct sched_entity *se)
335{
336 return se->parent;
337}
338
464b7527
PZ
339static void
340find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341{
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
fed14d45
PZ
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
464b7527
PZ
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369}
370
8f48894f
PZ
371#else /* !CONFIG_FAIR_GROUP_SCHED */
372
373static inline struct task_struct *task_of(struct sched_entity *se)
374{
375 return container_of(se, struct task_struct, se);
376}
bf0f6f24 377
62160e3f
IM
378static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379{
380 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
381}
382
383#define entity_is_task(se) 1
384
b758149c
PZ
385#define for_each_sched_entity(se) \
386 for (; se; se = NULL)
bf0f6f24 387
b758149c 388static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 389{
b758149c 390 return &task_rq(p)->cfs;
bf0f6f24
IM
391}
392
b758149c
PZ
393static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394{
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399}
400
401/* runqueue "owned" by this group */
402static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403{
404 return NULL;
405}
406
3d4b47b4
PZ
407static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408{
409}
410
411static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412{
413}
414
b758149c
PZ
415#define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
b758149c
PZ
418static inline struct sched_entity *parent_entity(struct sched_entity *se)
419{
420 return NULL;
421}
422
464b7527
PZ
423static inline void
424find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425{
426}
427
b758149c
PZ
428#endif /* CONFIG_FAIR_GROUP_SCHED */
429
6c16a6dc 430static __always_inline
9dbdb155 431void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
432
433/**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
1bf08230 437static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 438{
1bf08230 439 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 440 if (delta > 0)
1bf08230 441 max_vruntime = vruntime;
02e0431a 442
1bf08230 443 return max_vruntime;
02e0431a
PZ
444}
445
0702e3eb 446static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
447{
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453}
454
54fdc581
FC
455static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457{
458 return (s64)(a->vruntime - b->vruntime) < 0;
459}
460
1af5f730
PZ
461static void update_min_vruntime(struct cfs_rq *cfs_rq)
462{
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
e17036da 473 if (!cfs_rq->curr)
1af5f730
PZ
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
1bf08230 479 /* ensure we never gain time by being placed backwards. */
1af5f730 480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
481#ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484#endif
1af5f730
PZ
485}
486
bf0f6f24
IM
487/*
488 * Enqueue an entity into the rb-tree:
489 */
0702e3eb 490static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
491{
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
bf0f6f24
IM
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
2bd2d6f2 507 if (entity_before(se, entry)) {
bf0f6f24
IM
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
1af5f730 519 if (leftmost)
57cb499d 520 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
524}
525
0702e3eb 526static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 527{
3fe69747
PZ
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
3fe69747
PZ
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
3fe69747 533 }
e9acbff6 534
bf0f6f24 535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
536}
537
029632fb 538struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 539{
f4b6755f
PZ
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
546}
547
ac53db59
RR
548static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549{
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556}
557
558#ifdef CONFIG_SCHED_DEBUG
029632fb 559struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 560{
7eee3e67 561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 562
70eee74b
BS
563 if (!last)
564 return NULL;
7eee3e67
IM
565
566 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
567}
568
bf0f6f24
IM
569/**************************************************************
570 * Scheduling class statistics methods:
571 */
572
acb4a848 573int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 574 void __user *buffer, size_t *lenp,
b2be5e96
PZ
575 loff_t *ppos)
576{
8d65af78 577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 578 int factor = get_update_sysctl_factor();
b2be5e96
PZ
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
acb4a848
CE
586#define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
591#undef WRT_SYSCTL
592
b2be5e96
PZ
593 return 0;
594}
595#endif
647e7cac 596
a7be37ac 597/*
f9c0b095 598 * delta /= w
a7be37ac 599 */
9dbdb155 600static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 601{
f9c0b095 602 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
604
605 return delta;
606}
607
647e7cac
IM
608/*
609 * The idea is to set a period in which each task runs once.
610 *
532b1858 611 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
4d78e7b6
PZ
616static u64 __sched_period(unsigned long nr_running)
617{
618 u64 period = sysctl_sched_latency;
b2be5e96 619 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
620
621 if (unlikely(nr_running > nr_latency)) {
4bf0b771 622 period = sysctl_sched_min_granularity;
4d78e7b6 623 period *= nr_running;
4d78e7b6
PZ
624 }
625
626 return period;
627}
628
647e7cac
IM
629/*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
f9c0b095 633 * s = p*P[w/rw]
647e7cac 634 */
6d0f0ebd 635static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 636{
0a582440 637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 638
0a582440 639 for_each_sched_entity(se) {
6272d68c 640 struct load_weight *load;
3104bf03 641 struct load_weight lw;
6272d68c
LM
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
f9c0b095 645
0a582440 646 if (unlikely(!se->on_rq)) {
3104bf03 647 lw = cfs_rq->load;
0a582440
MG
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
9dbdb155 652 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
653 }
654 return slice;
bf0f6f24
IM
655}
656
647e7cac 657/*
660cc00f 658 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 659 *
f9c0b095 660 * vs = s/w
647e7cac 661 */
f9c0b095 662static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 663{
f9c0b095 664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
665}
666
a75cdaa9 667#ifdef CONFIG_SMP
fb13c7ee
MG
668static unsigned long task_h_load(struct task_struct *p);
669
a75cdaa9
AS
670static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672/* Give new task start runnable values to heavy its load in infant time */
673void init_task_runnable_average(struct task_struct *p)
674{
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682}
683#else
684void init_task_runnable_average(struct task_struct *p)
685{
686}
687#endif
688
bf0f6f24 689/*
9dbdb155 690 * Update the current task's runtime statistics.
bf0f6f24 691 */
b7cc0896 692static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 693{
429d43bc 694 struct sched_entity *curr = cfs_rq->curr;
78becc27 695 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 696 u64 delta_exec;
bf0f6f24
IM
697
698 if (unlikely(!curr))
699 return;
700
9dbdb155
PZ
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
34f28ecd 703 return;
bf0f6f24 704
8ebc91d9 705 curr->exec_start = now;
d842de87 706
9dbdb155
PZ
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
d842de87
SV
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
f977bb49 719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 720 cpuacct_charge(curtask, delta_exec);
f06febc9 721 account_group_exec_runtime(curtask, delta_exec);
d842de87 722 }
ec12cb7f
PT
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
725}
726
727static inline void
5870db5b 728update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 729{
78becc27 730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
bf0f6f24
IM
731}
732
bf0f6f24
IM
733/*
734 * Task is being enqueued - update stats:
735 */
d2417e5a 736static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 737{
bf0f6f24
IM
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
429d43bc 742 if (se != cfs_rq->curr)
5870db5b 743 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
744}
745
bf0f6f24 746static void
9ef0a961 747update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 748{
41acab88 749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
78becc27 750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
41acab88
LDM
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
78becc27 753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
754#ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
78becc27 757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
768d0c27
PZ
758 }
759#endif
41acab88 760 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
761}
762
763static inline void
19b6a2e3 764update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 765{
bf0f6f24
IM
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
429d43bc 770 if (se != cfs_rq->curr)
9ef0a961 771 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
772}
773
774/*
775 * We are picking a new current task - update its stats:
776 */
777static inline void
79303e9e 778update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
779{
780 /*
781 * We are starting a new run period:
782 */
78becc27 783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
784}
785
bf0f6f24
IM
786/**************************************************
787 * Scheduling class queueing methods:
788 */
789
cbee9f88
PZ
790#ifdef CONFIG_NUMA_BALANCING
791/*
598f0ec0
MG
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
cbee9f88 795 */
598f0ec0
MG
796unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
798
799/* Portion of address space to scan in MB */
800unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 801
4b96a29b
PZ
802/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
598f0ec0
MG
805static unsigned int task_nr_scan_windows(struct task_struct *p)
806{
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822}
823
824/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825#define MAX_SCAN_WINDOW 2560
826
827static unsigned int task_scan_min(struct task_struct *p)
828{
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838}
839
840static unsigned int task_scan_max(struct task_struct *p)
841{
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848}
849
0ec8aa00
PZ
850static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851{
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854}
855
856static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857{
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860}
861
8c8a743c
PZ
862struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
e29cf08b 867 pid_t gid;
8c8a743c
PZ
868 struct list_head task_list;
869
870 struct rcu_head rcu;
20e07dea 871 nodemask_t active_nodes;
989348b5 872 unsigned long total_faults;
7e2703e6
RR
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
50ec8a40 878 unsigned long *faults_cpu;
989348b5 879 unsigned long faults[0];
8c8a743c
PZ
880};
881
be1e4e76
RR
882/* Shared or private faults. */
883#define NR_NUMA_HINT_FAULT_TYPES 2
884
885/* Memory and CPU locality */
886#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888/* Averaged statistics, and temporary buffers. */
889#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
e29cf08b
MG
891pid_t task_numa_group_id(struct task_struct *p)
892{
893 return p->numa_group ? p->numa_group->gid : 0;
894}
895
ac8e895b
MG
896static inline int task_faults_idx(int nid, int priv)
897{
be1e4e76 898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
ac8e895b
MG
899}
900
901static inline unsigned long task_faults(struct task_struct *p, int nid)
902{
ff1df896 903 if (!p->numa_faults_memory)
ac8e895b
MG
904 return 0;
905
ff1df896
RR
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
ac8e895b
MG
908}
909
83e1d2cd
MG
910static inline unsigned long group_faults(struct task_struct *p, int nid)
911{
912 if (!p->numa_group)
913 return 0;
914
82897b4f
WL
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
83e1d2cd
MG
917}
918
20e07dea
RR
919static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920{
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923}
924
83e1d2cd
MG
925/*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931static inline unsigned long task_weight(struct task_struct *p, int nid)
932{
933 unsigned long total_faults;
934
ff1df896 935 if (!p->numa_faults_memory)
83e1d2cd
MG
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944}
945
946static inline unsigned long group_weight(struct task_struct *p, int nid)
947{
989348b5 948 if (!p->numa_group || !p->numa_group->total_faults)
83e1d2cd
MG
949 return 0;
950
989348b5 951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
83e1d2cd
MG
952}
953
10f39042
RR
954bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956{
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015}
1016
e6628d5b 1017static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1018static unsigned long source_load(int cpu, int type);
1019static unsigned long target_load(int cpu, int type);
1020static unsigned long power_of(int cpu);
1021static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
fb13c7ee 1023/* Cached statistics for all CPUs within a node */
58d081b5 1024struct numa_stats {
fb13c7ee 1025 unsigned long nr_running;
58d081b5 1026 unsigned long load;
fb13c7ee
MG
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long power;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long capacity;
1033 int has_capacity;
58d081b5 1034};
e6628d5b 1035
fb13c7ee
MG
1036/*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039static void update_numa_stats(struct numa_stats *ns, int nid)
1040{
5eca82a9 1041 int cpu, cpus = 0;
fb13c7ee
MG
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->power += power_of(cpu);
5eca82a9
PZ
1050
1051 cpus++;
fb13c7ee
MG
1052 }
1053
5eca82a9
PZ
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1060 * and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
fb13c7ee
MG
1065 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1066 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1067 ns->has_capacity = (ns->nr_running < ns->capacity);
1068}
1069
58d081b5
MG
1070struct task_numa_env {
1071 struct task_struct *p;
e6628d5b 1072
58d081b5
MG
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
e6628d5b 1075
58d081b5 1076 struct numa_stats src_stats, dst_stats;
e6628d5b 1077
40ea2b42 1078 int imbalance_pct;
fb13c7ee
MG
1079
1080 struct task_struct *best_task;
1081 long best_imp;
58d081b5
MG
1082 int best_cpu;
1083};
1084
fb13c7ee
MG
1085static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087{
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096}
1097
e63da036
RR
1098static bool load_too_imbalanced(long orig_src_load, long orig_dst_load,
1099 long src_load, long dst_load,
1100 struct task_numa_env *env)
1101{
1102 long imb, old_imb;
1103
1104 /* We care about the slope of the imbalance, not the direction. */
1105 if (dst_load < src_load)
1106 swap(dst_load, src_load);
1107
1108 /* Is the difference below the threshold? */
1109 imb = dst_load * 100 - src_load * env->imbalance_pct;
1110 if (imb <= 0)
1111 return false;
1112
1113 /*
1114 * The imbalance is above the allowed threshold.
1115 * Compare it with the old imbalance.
1116 */
1117 if (orig_dst_load < orig_src_load)
1118 swap(orig_dst_load, orig_src_load);
1119
1120 old_imb = orig_dst_load * 100 - orig_src_load * env->imbalance_pct;
1121
1122 /* Would this change make things worse? */
1123 return (old_imb > imb);
1124}
1125
fb13c7ee
MG
1126/*
1127 * This checks if the overall compute and NUMA accesses of the system would
1128 * be improved if the source tasks was migrated to the target dst_cpu taking
1129 * into account that it might be best if task running on the dst_cpu should
1130 * be exchanged with the source task
1131 */
887c290e
RR
1132static void task_numa_compare(struct task_numa_env *env,
1133 long taskimp, long groupimp)
fb13c7ee
MG
1134{
1135 struct rq *src_rq = cpu_rq(env->src_cpu);
1136 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1137 struct task_struct *cur;
e63da036
RR
1138 long orig_src_load, src_load;
1139 long orig_dst_load, dst_load;
fb13c7ee 1140 long load;
887c290e 1141 long imp = (groupimp > 0) ? groupimp : taskimp;
fb13c7ee
MG
1142
1143 rcu_read_lock();
1144 cur = ACCESS_ONCE(dst_rq->curr);
1145 if (cur->pid == 0) /* idle */
1146 cur = NULL;
1147
1148 /*
1149 * "imp" is the fault differential for the source task between the
1150 * source and destination node. Calculate the total differential for
1151 * the source task and potential destination task. The more negative
1152 * the value is, the more rmeote accesses that would be expected to
1153 * be incurred if the tasks were swapped.
1154 */
1155 if (cur) {
1156 /* Skip this swap candidate if cannot move to the source cpu */
1157 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1158 goto unlock;
1159
887c290e
RR
1160 /*
1161 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1162 * in any group then look only at task weights.
887c290e 1163 */
ca28aa53 1164 if (cur->numa_group == env->p->numa_group) {
887c290e
RR
1165 imp = taskimp + task_weight(cur, env->src_nid) -
1166 task_weight(cur, env->dst_nid);
ca28aa53
RR
1167 /*
1168 * Add some hysteresis to prevent swapping the
1169 * tasks within a group over tiny differences.
1170 */
1171 if (cur->numa_group)
1172 imp -= imp/16;
887c290e 1173 } else {
ca28aa53
RR
1174 /*
1175 * Compare the group weights. If a task is all by
1176 * itself (not part of a group), use the task weight
1177 * instead.
1178 */
1179 if (env->p->numa_group)
1180 imp = groupimp;
1181 else
1182 imp = taskimp;
1183
1184 if (cur->numa_group)
1185 imp += group_weight(cur, env->src_nid) -
1186 group_weight(cur, env->dst_nid);
1187 else
1188 imp += task_weight(cur, env->src_nid) -
1189 task_weight(cur, env->dst_nid);
887c290e 1190 }
fb13c7ee
MG
1191 }
1192
1193 if (imp < env->best_imp)
1194 goto unlock;
1195
1196 if (!cur) {
1197 /* Is there capacity at our destination? */
1198 if (env->src_stats.has_capacity &&
1199 !env->dst_stats.has_capacity)
1200 goto unlock;
1201
1202 goto balance;
1203 }
1204
1205 /* Balance doesn't matter much if we're running a task per cpu */
1206 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1207 goto assign;
1208
1209 /*
1210 * In the overloaded case, try and keep the load balanced.
1211 */
1212balance:
e63da036
RR
1213 orig_dst_load = env->dst_stats.load;
1214 orig_src_load = env->src_stats.load;
fb13c7ee
MG
1215
1216 /* XXX missing power terms */
1217 load = task_h_load(env->p);
e63da036
RR
1218 dst_load = orig_dst_load + load;
1219 src_load = orig_src_load - load;
fb13c7ee
MG
1220
1221 if (cur) {
1222 load = task_h_load(cur);
1223 dst_load -= load;
1224 src_load += load;
1225 }
1226
e63da036
RR
1227 if (load_too_imbalanced(orig_src_load, orig_dst_load,
1228 src_load, dst_load, env))
fb13c7ee
MG
1229 goto unlock;
1230
1231assign:
1232 task_numa_assign(env, cur, imp);
1233unlock:
1234 rcu_read_unlock();
1235}
1236
887c290e
RR
1237static void task_numa_find_cpu(struct task_numa_env *env,
1238 long taskimp, long groupimp)
2c8a50aa
MG
1239{
1240 int cpu;
1241
1242 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1243 /* Skip this CPU if the source task cannot migrate */
1244 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1245 continue;
1246
1247 env->dst_cpu = cpu;
887c290e 1248 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1249 }
1250}
1251
58d081b5
MG
1252static int task_numa_migrate(struct task_struct *p)
1253{
58d081b5
MG
1254 struct task_numa_env env = {
1255 .p = p,
fb13c7ee 1256
58d081b5 1257 .src_cpu = task_cpu(p),
b32e86b4 1258 .src_nid = task_node(p),
fb13c7ee
MG
1259
1260 .imbalance_pct = 112,
1261
1262 .best_task = NULL,
1263 .best_imp = 0,
1264 .best_cpu = -1
58d081b5
MG
1265 };
1266 struct sched_domain *sd;
887c290e 1267 unsigned long taskweight, groupweight;
2c8a50aa 1268 int nid, ret;
887c290e 1269 long taskimp, groupimp;
e6628d5b 1270
58d081b5 1271 /*
fb13c7ee
MG
1272 * Pick the lowest SD_NUMA domain, as that would have the smallest
1273 * imbalance and would be the first to start moving tasks about.
1274 *
1275 * And we want to avoid any moving of tasks about, as that would create
1276 * random movement of tasks -- counter the numa conditions we're trying
1277 * to satisfy here.
58d081b5
MG
1278 */
1279 rcu_read_lock();
fb13c7ee 1280 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1281 if (sd)
1282 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1283 rcu_read_unlock();
1284
46a73e8a
RR
1285 /*
1286 * Cpusets can break the scheduler domain tree into smaller
1287 * balance domains, some of which do not cross NUMA boundaries.
1288 * Tasks that are "trapped" in such domains cannot be migrated
1289 * elsewhere, so there is no point in (re)trying.
1290 */
1291 if (unlikely(!sd)) {
de1b301a 1292 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1293 return -EINVAL;
1294 }
1295
887c290e
RR
1296 taskweight = task_weight(p, env.src_nid);
1297 groupweight = group_weight(p, env.src_nid);
fb13c7ee 1298 update_numa_stats(&env.src_stats, env.src_nid);
2c8a50aa 1299 env.dst_nid = p->numa_preferred_nid;
887c290e
RR
1300 taskimp = task_weight(p, env.dst_nid) - taskweight;
1301 groupimp = group_weight(p, env.dst_nid) - groupweight;
2c8a50aa 1302 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1303
e1dda8a7
RR
1304 /* If the preferred nid has capacity, try to use it. */
1305 if (env.dst_stats.has_capacity)
887c290e 1306 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7
RR
1307
1308 /* No space available on the preferred nid. Look elsewhere. */
1309 if (env.best_cpu == -1) {
2c8a50aa
MG
1310 for_each_online_node(nid) {
1311 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1312 continue;
58d081b5 1313
83e1d2cd 1314 /* Only consider nodes where both task and groups benefit */
887c290e
RR
1315 taskimp = task_weight(p, nid) - taskweight;
1316 groupimp = group_weight(p, nid) - groupweight;
1317 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1318 continue;
1319
2c8a50aa
MG
1320 env.dst_nid = nid;
1321 update_numa_stats(&env.dst_stats, env.dst_nid);
887c290e 1322 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1323 }
1324 }
1325
fb13c7ee
MG
1326 /* No better CPU than the current one was found. */
1327 if (env.best_cpu == -1)
1328 return -EAGAIN;
1329
68d1b02a
RR
1330 /*
1331 * If the task is part of a workload that spans multiple NUMA nodes,
1332 * and is migrating into one of the workload's active nodes, remember
1333 * this node as the task's preferred numa node, so the workload can
1334 * settle down.
1335 * A task that migrated to a second choice node will be better off
1336 * trying for a better one later. Do not set the preferred node here.
1337 */
1338 if (p->numa_group && node_isset(env.dst_nid, p->numa_group->active_nodes))
1339 sched_setnuma(p, env.dst_nid);
0ec8aa00 1340
04bb2f94
RR
1341 /*
1342 * Reset the scan period if the task is being rescheduled on an
1343 * alternative node to recheck if the tasks is now properly placed.
1344 */
1345 p->numa_scan_period = task_scan_min(p);
1346
fb13c7ee 1347 if (env.best_task == NULL) {
286549dc
MG
1348 ret = migrate_task_to(p, env.best_cpu);
1349 if (ret != 0)
1350 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1351 return ret;
1352 }
1353
1354 ret = migrate_swap(p, env.best_task);
286549dc
MG
1355 if (ret != 0)
1356 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1357 put_task_struct(env.best_task);
1358 return ret;
e6628d5b
MG
1359}
1360
6b9a7460
MG
1361/* Attempt to migrate a task to a CPU on the preferred node. */
1362static void numa_migrate_preferred(struct task_struct *p)
1363{
5085e2a3
RR
1364 unsigned long interval = HZ;
1365
2739d3ee 1366 /* This task has no NUMA fault statistics yet */
ff1df896 1367 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
6b9a7460
MG
1368 return;
1369
2739d3ee 1370 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1371 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1372 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1373
1374 /* Success if task is already running on preferred CPU */
de1b301a 1375 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1376 return;
1377
1378 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1379 task_numa_migrate(p);
6b9a7460
MG
1380}
1381
20e07dea
RR
1382/*
1383 * Find the nodes on which the workload is actively running. We do this by
1384 * tracking the nodes from which NUMA hinting faults are triggered. This can
1385 * be different from the set of nodes where the workload's memory is currently
1386 * located.
1387 *
1388 * The bitmask is used to make smarter decisions on when to do NUMA page
1389 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1390 * are added when they cause over 6/16 of the maximum number of faults, but
1391 * only removed when they drop below 3/16.
1392 */
1393static void update_numa_active_node_mask(struct numa_group *numa_group)
1394{
1395 unsigned long faults, max_faults = 0;
1396 int nid;
1397
1398 for_each_online_node(nid) {
1399 faults = group_faults_cpu(numa_group, nid);
1400 if (faults > max_faults)
1401 max_faults = faults;
1402 }
1403
1404 for_each_online_node(nid) {
1405 faults = group_faults_cpu(numa_group, nid);
1406 if (!node_isset(nid, numa_group->active_nodes)) {
1407 if (faults > max_faults * 6 / 16)
1408 node_set(nid, numa_group->active_nodes);
1409 } else if (faults < max_faults * 3 / 16)
1410 node_clear(nid, numa_group->active_nodes);
1411 }
1412}
1413
04bb2f94
RR
1414/*
1415 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1416 * increments. The more local the fault statistics are, the higher the scan
1417 * period will be for the next scan window. If local/remote ratio is below
1418 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1419 * scan period will decrease
1420 */
1421#define NUMA_PERIOD_SLOTS 10
1422#define NUMA_PERIOD_THRESHOLD 3
1423
1424/*
1425 * Increase the scan period (slow down scanning) if the majority of
1426 * our memory is already on our local node, or if the majority of
1427 * the page accesses are shared with other processes.
1428 * Otherwise, decrease the scan period.
1429 */
1430static void update_task_scan_period(struct task_struct *p,
1431 unsigned long shared, unsigned long private)
1432{
1433 unsigned int period_slot;
1434 int ratio;
1435 int diff;
1436
1437 unsigned long remote = p->numa_faults_locality[0];
1438 unsigned long local = p->numa_faults_locality[1];
1439
1440 /*
1441 * If there were no record hinting faults then either the task is
1442 * completely idle or all activity is areas that are not of interest
1443 * to automatic numa balancing. Scan slower
1444 */
1445 if (local + shared == 0) {
1446 p->numa_scan_period = min(p->numa_scan_period_max,
1447 p->numa_scan_period << 1);
1448
1449 p->mm->numa_next_scan = jiffies +
1450 msecs_to_jiffies(p->numa_scan_period);
1451
1452 return;
1453 }
1454
1455 /*
1456 * Prepare to scale scan period relative to the current period.
1457 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1458 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1459 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1460 */
1461 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1462 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1463 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1464 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1465 if (!slot)
1466 slot = 1;
1467 diff = slot * period_slot;
1468 } else {
1469 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1470
1471 /*
1472 * Scale scan rate increases based on sharing. There is an
1473 * inverse relationship between the degree of sharing and
1474 * the adjustment made to the scanning period. Broadly
1475 * speaking the intent is that there is little point
1476 * scanning faster if shared accesses dominate as it may
1477 * simply bounce migrations uselessly
1478 */
04bb2f94
RR
1479 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1480 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1481 }
1482
1483 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1484 task_scan_min(p), task_scan_max(p));
1485 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1486}
1487
7e2703e6
RR
1488/*
1489 * Get the fraction of time the task has been running since the last
1490 * NUMA placement cycle. The scheduler keeps similar statistics, but
1491 * decays those on a 32ms period, which is orders of magnitude off
1492 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1493 * stats only if the task is so new there are no NUMA statistics yet.
1494 */
1495static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1496{
1497 u64 runtime, delta, now;
1498 /* Use the start of this time slice to avoid calculations. */
1499 now = p->se.exec_start;
1500 runtime = p->se.sum_exec_runtime;
1501
1502 if (p->last_task_numa_placement) {
1503 delta = runtime - p->last_sum_exec_runtime;
1504 *period = now - p->last_task_numa_placement;
1505 } else {
1506 delta = p->se.avg.runnable_avg_sum;
1507 *period = p->se.avg.runnable_avg_period;
1508 }
1509
1510 p->last_sum_exec_runtime = runtime;
1511 p->last_task_numa_placement = now;
1512
1513 return delta;
1514}
1515
cbee9f88
PZ
1516static void task_numa_placement(struct task_struct *p)
1517{
83e1d2cd
MG
1518 int seq, nid, max_nid = -1, max_group_nid = -1;
1519 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 1520 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
1521 unsigned long total_faults;
1522 u64 runtime, period;
7dbd13ed 1523 spinlock_t *group_lock = NULL;
cbee9f88 1524
2832bc19 1525 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
1526 if (p->numa_scan_seq == seq)
1527 return;
1528 p->numa_scan_seq = seq;
598f0ec0 1529 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 1530
7e2703e6
RR
1531 total_faults = p->numa_faults_locality[0] +
1532 p->numa_faults_locality[1];
1533 runtime = numa_get_avg_runtime(p, &period);
1534
7dbd13ed
MG
1535 /* If the task is part of a group prevent parallel updates to group stats */
1536 if (p->numa_group) {
1537 group_lock = &p->numa_group->lock;
60e69eed 1538 spin_lock_irq(group_lock);
7dbd13ed
MG
1539 }
1540
688b7585
MG
1541 /* Find the node with the highest number of faults */
1542 for_each_online_node(nid) {
83e1d2cd 1543 unsigned long faults = 0, group_faults = 0;
ac8e895b 1544 int priv, i;
745d6147 1545
be1e4e76 1546 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 1547 long diff, f_diff, f_weight;
8c8a743c 1548
ac8e895b 1549 i = task_faults_idx(nid, priv);
745d6147 1550
ac8e895b 1551 /* Decay existing window, copy faults since last scan */
35664fd4 1552 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
ff1df896
RR
1553 fault_types[priv] += p->numa_faults_buffer_memory[i];
1554 p->numa_faults_buffer_memory[i] = 0;
fb13c7ee 1555
7e2703e6
RR
1556 /*
1557 * Normalize the faults_from, so all tasks in a group
1558 * count according to CPU use, instead of by the raw
1559 * number of faults. Tasks with little runtime have
1560 * little over-all impact on throughput, and thus their
1561 * faults are less important.
1562 */
1563 f_weight = div64_u64(runtime << 16, period + 1);
1564 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1565 (total_faults + 1);
35664fd4 1566 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
50ec8a40
RR
1567 p->numa_faults_buffer_cpu[i] = 0;
1568
35664fd4
RR
1569 p->numa_faults_memory[i] += diff;
1570 p->numa_faults_cpu[i] += f_diff;
ff1df896 1571 faults += p->numa_faults_memory[i];
83e1d2cd 1572 p->total_numa_faults += diff;
8c8a743c
PZ
1573 if (p->numa_group) {
1574 /* safe because we can only change our own group */
989348b5 1575 p->numa_group->faults[i] += diff;
50ec8a40 1576 p->numa_group->faults_cpu[i] += f_diff;
989348b5
MG
1577 p->numa_group->total_faults += diff;
1578 group_faults += p->numa_group->faults[i];
8c8a743c 1579 }
ac8e895b
MG
1580 }
1581
688b7585
MG
1582 if (faults > max_faults) {
1583 max_faults = faults;
1584 max_nid = nid;
1585 }
83e1d2cd
MG
1586
1587 if (group_faults > max_group_faults) {
1588 max_group_faults = group_faults;
1589 max_group_nid = nid;
1590 }
1591 }
1592
04bb2f94
RR
1593 update_task_scan_period(p, fault_types[0], fault_types[1]);
1594
7dbd13ed 1595 if (p->numa_group) {
20e07dea 1596 update_numa_active_node_mask(p->numa_group);
7dbd13ed
MG
1597 /*
1598 * If the preferred task and group nids are different,
1599 * iterate over the nodes again to find the best place.
1600 */
1601 if (max_nid != max_group_nid) {
1602 unsigned long weight, max_weight = 0;
1603
1604 for_each_online_node(nid) {
1605 weight = task_weight(p, nid) + group_weight(p, nid);
1606 if (weight > max_weight) {
1607 max_weight = weight;
1608 max_nid = nid;
1609 }
83e1d2cd
MG
1610 }
1611 }
7dbd13ed 1612
60e69eed 1613 spin_unlock_irq(group_lock);
688b7585
MG
1614 }
1615
6b9a7460 1616 /* Preferred node as the node with the most faults */
3a7053b3 1617 if (max_faults && max_nid != p->numa_preferred_nid) {
e6628d5b 1618 /* Update the preferred nid and migrate task if possible */
0ec8aa00 1619 sched_setnuma(p, max_nid);
6b9a7460 1620 numa_migrate_preferred(p);
3a7053b3 1621 }
cbee9f88
PZ
1622}
1623
8c8a743c
PZ
1624static inline int get_numa_group(struct numa_group *grp)
1625{
1626 return atomic_inc_not_zero(&grp->refcount);
1627}
1628
1629static inline void put_numa_group(struct numa_group *grp)
1630{
1631 if (atomic_dec_and_test(&grp->refcount))
1632 kfree_rcu(grp, rcu);
1633}
1634
3e6a9418
MG
1635static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1636 int *priv)
8c8a743c
PZ
1637{
1638 struct numa_group *grp, *my_grp;
1639 struct task_struct *tsk;
1640 bool join = false;
1641 int cpu = cpupid_to_cpu(cpupid);
1642 int i;
1643
1644 if (unlikely(!p->numa_group)) {
1645 unsigned int size = sizeof(struct numa_group) +
50ec8a40 1646 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
1647
1648 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1649 if (!grp)
1650 return;
1651
1652 atomic_set(&grp->refcount, 1);
1653 spin_lock_init(&grp->lock);
1654 INIT_LIST_HEAD(&grp->task_list);
e29cf08b 1655 grp->gid = p->pid;
50ec8a40 1656 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
1657 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1658 nr_node_ids;
8c8a743c 1659
20e07dea
RR
1660 node_set(task_node(current), grp->active_nodes);
1661
be1e4e76 1662 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1663 grp->faults[i] = p->numa_faults_memory[i];
8c8a743c 1664
989348b5 1665 grp->total_faults = p->total_numa_faults;
83e1d2cd 1666
8c8a743c
PZ
1667 list_add(&p->numa_entry, &grp->task_list);
1668 grp->nr_tasks++;
1669 rcu_assign_pointer(p->numa_group, grp);
1670 }
1671
1672 rcu_read_lock();
1673 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1674
1675 if (!cpupid_match_pid(tsk, cpupid))
3354781a 1676 goto no_join;
8c8a743c
PZ
1677
1678 grp = rcu_dereference(tsk->numa_group);
1679 if (!grp)
3354781a 1680 goto no_join;
8c8a743c
PZ
1681
1682 my_grp = p->numa_group;
1683 if (grp == my_grp)
3354781a 1684 goto no_join;
8c8a743c
PZ
1685
1686 /*
1687 * Only join the other group if its bigger; if we're the bigger group,
1688 * the other task will join us.
1689 */
1690 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 1691 goto no_join;
8c8a743c
PZ
1692
1693 /*
1694 * Tie-break on the grp address.
1695 */
1696 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 1697 goto no_join;
8c8a743c 1698
dabe1d99
RR
1699 /* Always join threads in the same process. */
1700 if (tsk->mm == current->mm)
1701 join = true;
1702
1703 /* Simple filter to avoid false positives due to PID collisions */
1704 if (flags & TNF_SHARED)
1705 join = true;
8c8a743c 1706
3e6a9418
MG
1707 /* Update priv based on whether false sharing was detected */
1708 *priv = !join;
1709
dabe1d99 1710 if (join && !get_numa_group(grp))
3354781a 1711 goto no_join;
8c8a743c 1712
8c8a743c
PZ
1713 rcu_read_unlock();
1714
1715 if (!join)
1716 return;
1717
60e69eed
MG
1718 BUG_ON(irqs_disabled());
1719 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 1720
be1e4e76 1721 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
ff1df896
RR
1722 my_grp->faults[i] -= p->numa_faults_memory[i];
1723 grp->faults[i] += p->numa_faults_memory[i];
8c8a743c 1724 }
989348b5
MG
1725 my_grp->total_faults -= p->total_numa_faults;
1726 grp->total_faults += p->total_numa_faults;
8c8a743c
PZ
1727
1728 list_move(&p->numa_entry, &grp->task_list);
1729 my_grp->nr_tasks--;
1730 grp->nr_tasks++;
1731
1732 spin_unlock(&my_grp->lock);
60e69eed 1733 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1734
1735 rcu_assign_pointer(p->numa_group, grp);
1736
1737 put_numa_group(my_grp);
3354781a
PZ
1738 return;
1739
1740no_join:
1741 rcu_read_unlock();
1742 return;
8c8a743c
PZ
1743}
1744
1745void task_numa_free(struct task_struct *p)
1746{
1747 struct numa_group *grp = p->numa_group;
1748 int i;
ff1df896 1749 void *numa_faults = p->numa_faults_memory;
8c8a743c
PZ
1750
1751 if (grp) {
60e69eed 1752 spin_lock_irq(&grp->lock);
be1e4e76 1753 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
ff1df896 1754 grp->faults[i] -= p->numa_faults_memory[i];
989348b5 1755 grp->total_faults -= p->total_numa_faults;
83e1d2cd 1756
8c8a743c
PZ
1757 list_del(&p->numa_entry);
1758 grp->nr_tasks--;
60e69eed 1759 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
1760 rcu_assign_pointer(p->numa_group, NULL);
1761 put_numa_group(grp);
1762 }
1763
ff1df896
RR
1764 p->numa_faults_memory = NULL;
1765 p->numa_faults_buffer_memory = NULL;
50ec8a40
RR
1766 p->numa_faults_cpu= NULL;
1767 p->numa_faults_buffer_cpu = NULL;
82727018 1768 kfree(numa_faults);
8c8a743c
PZ
1769}
1770
cbee9f88
PZ
1771/*
1772 * Got a PROT_NONE fault for a page on @node.
1773 */
58b46da3 1774void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
1775{
1776 struct task_struct *p = current;
6688cc05 1777 bool migrated = flags & TNF_MIGRATED;
58b46da3 1778 int cpu_node = task_node(current);
792568ec 1779 int local = !!(flags & TNF_FAULT_LOCAL);
ac8e895b 1780 int priv;
cbee9f88 1781
10e84b97 1782 if (!numabalancing_enabled)
1a687c2e
MG
1783 return;
1784
9ff1d9ff
MG
1785 /* for example, ksmd faulting in a user's mm */
1786 if (!p->mm)
1787 return;
1788
82727018
RR
1789 /* Do not worry about placement if exiting */
1790 if (p->state == TASK_DEAD)
1791 return;
1792
f809ca9a 1793 /* Allocate buffer to track faults on a per-node basis */
ff1df896 1794 if (unlikely(!p->numa_faults_memory)) {
be1e4e76
RR
1795 int size = sizeof(*p->numa_faults_memory) *
1796 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 1797
be1e4e76 1798 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
ff1df896 1799 if (!p->numa_faults_memory)
f809ca9a 1800 return;
745d6147 1801
ff1df896 1802 BUG_ON(p->numa_faults_buffer_memory);
be1e4e76
RR
1803 /*
1804 * The averaged statistics, shared & private, memory & cpu,
1805 * occupy the first half of the array. The second half of the
1806 * array is for current counters, which are averaged into the
1807 * first set by task_numa_placement.
1808 */
50ec8a40
RR
1809 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1810 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1811 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
83e1d2cd 1812 p->total_numa_faults = 0;
04bb2f94 1813 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 1814 }
cbee9f88 1815
8c8a743c
PZ
1816 /*
1817 * First accesses are treated as private, otherwise consider accesses
1818 * to be private if the accessing pid has not changed
1819 */
1820 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1821 priv = 1;
1822 } else {
1823 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 1824 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 1825 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
1826 }
1827
792568ec
RR
1828 /*
1829 * If a workload spans multiple NUMA nodes, a shared fault that
1830 * occurs wholly within the set of nodes that the workload is
1831 * actively using should be counted as local. This allows the
1832 * scan rate to slow down when a workload has settled down.
1833 */
1834 if (!priv && !local && p->numa_group &&
1835 node_isset(cpu_node, p->numa_group->active_nodes) &&
1836 node_isset(mem_node, p->numa_group->active_nodes))
1837 local = 1;
1838
cbee9f88 1839 task_numa_placement(p);
f809ca9a 1840
2739d3ee
RR
1841 /*
1842 * Retry task to preferred node migration periodically, in case it
1843 * case it previously failed, or the scheduler moved us.
1844 */
1845 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
1846 numa_migrate_preferred(p);
1847
b32e86b4
IM
1848 if (migrated)
1849 p->numa_pages_migrated += pages;
1850
58b46da3
RR
1851 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1852 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
792568ec 1853 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
1854}
1855
6e5fb223
PZ
1856static void reset_ptenuma_scan(struct task_struct *p)
1857{
1858 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1859 p->mm->numa_scan_offset = 0;
1860}
1861
cbee9f88
PZ
1862/*
1863 * The expensive part of numa migration is done from task_work context.
1864 * Triggered from task_tick_numa().
1865 */
1866void task_numa_work(struct callback_head *work)
1867{
1868 unsigned long migrate, next_scan, now = jiffies;
1869 struct task_struct *p = current;
1870 struct mm_struct *mm = p->mm;
6e5fb223 1871 struct vm_area_struct *vma;
9f40604c 1872 unsigned long start, end;
598f0ec0 1873 unsigned long nr_pte_updates = 0;
9f40604c 1874 long pages;
cbee9f88
PZ
1875
1876 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1877
1878 work->next = work; /* protect against double add */
1879 /*
1880 * Who cares about NUMA placement when they're dying.
1881 *
1882 * NOTE: make sure not to dereference p->mm before this check,
1883 * exit_task_work() happens _after_ exit_mm() so we could be called
1884 * without p->mm even though we still had it when we enqueued this
1885 * work.
1886 */
1887 if (p->flags & PF_EXITING)
1888 return;
1889
930aa174 1890 if (!mm->numa_next_scan) {
7e8d16b6
MG
1891 mm->numa_next_scan = now +
1892 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
1893 }
1894
cbee9f88
PZ
1895 /*
1896 * Enforce maximal scan/migration frequency..
1897 */
1898 migrate = mm->numa_next_scan;
1899 if (time_before(now, migrate))
1900 return;
1901
598f0ec0
MG
1902 if (p->numa_scan_period == 0) {
1903 p->numa_scan_period_max = task_scan_max(p);
1904 p->numa_scan_period = task_scan_min(p);
1905 }
cbee9f88 1906
fb003b80 1907 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
1908 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1909 return;
1910
19a78d11
PZ
1911 /*
1912 * Delay this task enough that another task of this mm will likely win
1913 * the next time around.
1914 */
1915 p->node_stamp += 2 * TICK_NSEC;
1916
9f40604c
MG
1917 start = mm->numa_scan_offset;
1918 pages = sysctl_numa_balancing_scan_size;
1919 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1920 if (!pages)
1921 return;
cbee9f88 1922
6e5fb223 1923 down_read(&mm->mmap_sem);
9f40604c 1924 vma = find_vma(mm, start);
6e5fb223
PZ
1925 if (!vma) {
1926 reset_ptenuma_scan(p);
9f40604c 1927 start = 0;
6e5fb223
PZ
1928 vma = mm->mmap;
1929 }
9f40604c 1930 for (; vma; vma = vma->vm_next) {
fc314724 1931 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
6e5fb223
PZ
1932 continue;
1933
4591ce4f
MG
1934 /*
1935 * Shared library pages mapped by multiple processes are not
1936 * migrated as it is expected they are cache replicated. Avoid
1937 * hinting faults in read-only file-backed mappings or the vdso
1938 * as migrating the pages will be of marginal benefit.
1939 */
1940 if (!vma->vm_mm ||
1941 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1942 continue;
1943
3c67f474
MG
1944 /*
1945 * Skip inaccessible VMAs to avoid any confusion between
1946 * PROT_NONE and NUMA hinting ptes
1947 */
1948 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1949 continue;
4591ce4f 1950
9f40604c
MG
1951 do {
1952 start = max(start, vma->vm_start);
1953 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1954 end = min(end, vma->vm_end);
598f0ec0
MG
1955 nr_pte_updates += change_prot_numa(vma, start, end);
1956
1957 /*
1958 * Scan sysctl_numa_balancing_scan_size but ensure that
1959 * at least one PTE is updated so that unused virtual
1960 * address space is quickly skipped.
1961 */
1962 if (nr_pte_updates)
1963 pages -= (end - start) >> PAGE_SHIFT;
6e5fb223 1964
9f40604c
MG
1965 start = end;
1966 if (pages <= 0)
1967 goto out;
3cf1962c
RR
1968
1969 cond_resched();
9f40604c 1970 } while (end != vma->vm_end);
cbee9f88 1971 }
6e5fb223 1972
9f40604c 1973out:
6e5fb223 1974 /*
c69307d5
PZ
1975 * It is possible to reach the end of the VMA list but the last few
1976 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1977 * would find the !migratable VMA on the next scan but not reset the
1978 * scanner to the start so check it now.
6e5fb223
PZ
1979 */
1980 if (vma)
9f40604c 1981 mm->numa_scan_offset = start;
6e5fb223
PZ
1982 else
1983 reset_ptenuma_scan(p);
1984 up_read(&mm->mmap_sem);
cbee9f88
PZ
1985}
1986
1987/*
1988 * Drive the periodic memory faults..
1989 */
1990void task_tick_numa(struct rq *rq, struct task_struct *curr)
1991{
1992 struct callback_head *work = &curr->numa_work;
1993 u64 period, now;
1994
1995 /*
1996 * We don't care about NUMA placement if we don't have memory.
1997 */
1998 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1999 return;
2000
2001 /*
2002 * Using runtime rather than walltime has the dual advantage that
2003 * we (mostly) drive the selection from busy threads and that the
2004 * task needs to have done some actual work before we bother with
2005 * NUMA placement.
2006 */
2007 now = curr->se.sum_exec_runtime;
2008 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2009
2010 if (now - curr->node_stamp > period) {
4b96a29b 2011 if (!curr->node_stamp)
598f0ec0 2012 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2013 curr->node_stamp += period;
cbee9f88
PZ
2014
2015 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2016 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2017 task_work_add(curr, work, true);
2018 }
2019 }
2020}
2021#else
2022static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2023{
2024}
0ec8aa00
PZ
2025
2026static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2027{
2028}
2029
2030static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2031{
2032}
cbee9f88
PZ
2033#endif /* CONFIG_NUMA_BALANCING */
2034
30cfdcfc
DA
2035static void
2036account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2037{
2038 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2039 if (!parent_entity(se))
029632fb 2040 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2041#ifdef CONFIG_SMP
0ec8aa00
PZ
2042 if (entity_is_task(se)) {
2043 struct rq *rq = rq_of(cfs_rq);
2044
2045 account_numa_enqueue(rq, task_of(se));
2046 list_add(&se->group_node, &rq->cfs_tasks);
2047 }
367456c7 2048#endif
30cfdcfc 2049 cfs_rq->nr_running++;
30cfdcfc
DA
2050}
2051
2052static void
2053account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2054{
2055 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2056 if (!parent_entity(se))
029632fb 2057 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
0ec8aa00
PZ
2058 if (entity_is_task(se)) {
2059 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2060 list_del_init(&se->group_node);
0ec8aa00 2061 }
30cfdcfc 2062 cfs_rq->nr_running--;
30cfdcfc
DA
2063}
2064
3ff6dcac
YZ
2065#ifdef CONFIG_FAIR_GROUP_SCHED
2066# ifdef CONFIG_SMP
cf5f0acf
PZ
2067static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2068{
2069 long tg_weight;
2070
2071 /*
2072 * Use this CPU's actual weight instead of the last load_contribution
2073 * to gain a more accurate current total weight. See
2074 * update_cfs_rq_load_contribution().
2075 */
bf5b986e 2076 tg_weight = atomic_long_read(&tg->load_avg);
82958366 2077 tg_weight -= cfs_rq->tg_load_contrib;
cf5f0acf
PZ
2078 tg_weight += cfs_rq->load.weight;
2079
2080 return tg_weight;
2081}
2082
6d5ab293 2083static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac 2084{
cf5f0acf 2085 long tg_weight, load, shares;
3ff6dcac 2086
cf5f0acf 2087 tg_weight = calc_tg_weight(tg, cfs_rq);
6d5ab293 2088 load = cfs_rq->load.weight;
3ff6dcac 2089
3ff6dcac 2090 shares = (tg->shares * load);
cf5f0acf
PZ
2091 if (tg_weight)
2092 shares /= tg_weight;
3ff6dcac
YZ
2093
2094 if (shares < MIN_SHARES)
2095 shares = MIN_SHARES;
2096 if (shares > tg->shares)
2097 shares = tg->shares;
2098
2099 return shares;
2100}
3ff6dcac 2101# else /* CONFIG_SMP */
6d5ab293 2102static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2103{
2104 return tg->shares;
2105}
3ff6dcac 2106# endif /* CONFIG_SMP */
2069dd75
PZ
2107static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2108 unsigned long weight)
2109{
19e5eebb
PT
2110 if (se->on_rq) {
2111 /* commit outstanding execution time */
2112 if (cfs_rq->curr == se)
2113 update_curr(cfs_rq);
2069dd75 2114 account_entity_dequeue(cfs_rq, se);
19e5eebb 2115 }
2069dd75
PZ
2116
2117 update_load_set(&se->load, weight);
2118
2119 if (se->on_rq)
2120 account_entity_enqueue(cfs_rq, se);
2121}
2122
82958366
PT
2123static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2124
6d5ab293 2125static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2126{
2127 struct task_group *tg;
2128 struct sched_entity *se;
3ff6dcac 2129 long shares;
2069dd75 2130
2069dd75
PZ
2131 tg = cfs_rq->tg;
2132 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2133 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2134 return;
3ff6dcac
YZ
2135#ifndef CONFIG_SMP
2136 if (likely(se->load.weight == tg->shares))
2137 return;
2138#endif
6d5ab293 2139 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2140
2141 reweight_entity(cfs_rq_of(se), se, shares);
2142}
2143#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2144static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2145{
2146}
2147#endif /* CONFIG_FAIR_GROUP_SCHED */
2148
141965c7 2149#ifdef CONFIG_SMP
5b51f2f8
PT
2150/*
2151 * We choose a half-life close to 1 scheduling period.
2152 * Note: The tables below are dependent on this value.
2153 */
2154#define LOAD_AVG_PERIOD 32
2155#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2156#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2157
2158/* Precomputed fixed inverse multiplies for multiplication by y^n */
2159static const u32 runnable_avg_yN_inv[] = {
2160 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2161 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2162 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2163 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2164 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2165 0x85aac367, 0x82cd8698,
2166};
2167
2168/*
2169 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2170 * over-estimates when re-combining.
2171 */
2172static const u32 runnable_avg_yN_sum[] = {
2173 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2174 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2175 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2176};
2177
9d85f21c
PT
2178/*
2179 * Approximate:
2180 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2181 */
2182static __always_inline u64 decay_load(u64 val, u64 n)
2183{
5b51f2f8
PT
2184 unsigned int local_n;
2185
2186 if (!n)
2187 return val;
2188 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2189 return 0;
2190
2191 /* after bounds checking we can collapse to 32-bit */
2192 local_n = n;
2193
2194 /*
2195 * As y^PERIOD = 1/2, we can combine
2196 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2197 * With a look-up table which covers k^n (n<PERIOD)
2198 *
2199 * To achieve constant time decay_load.
2200 */
2201 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2202 val >>= local_n / LOAD_AVG_PERIOD;
2203 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2204 }
2205
5b51f2f8
PT
2206 val *= runnable_avg_yN_inv[local_n];
2207 /* We don't use SRR here since we always want to round down. */
2208 return val >> 32;
2209}
2210
2211/*
2212 * For updates fully spanning n periods, the contribution to runnable
2213 * average will be: \Sum 1024*y^n
2214 *
2215 * We can compute this reasonably efficiently by combining:
2216 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2217 */
2218static u32 __compute_runnable_contrib(u64 n)
2219{
2220 u32 contrib = 0;
2221
2222 if (likely(n <= LOAD_AVG_PERIOD))
2223 return runnable_avg_yN_sum[n];
2224 else if (unlikely(n >= LOAD_AVG_MAX_N))
2225 return LOAD_AVG_MAX;
2226
2227 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2228 do {
2229 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2230 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2231
2232 n -= LOAD_AVG_PERIOD;
2233 } while (n > LOAD_AVG_PERIOD);
2234
2235 contrib = decay_load(contrib, n);
2236 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2237}
2238
2239/*
2240 * We can represent the historical contribution to runnable average as the
2241 * coefficients of a geometric series. To do this we sub-divide our runnable
2242 * history into segments of approximately 1ms (1024us); label the segment that
2243 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2244 *
2245 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2246 * p0 p1 p2
2247 * (now) (~1ms ago) (~2ms ago)
2248 *
2249 * Let u_i denote the fraction of p_i that the entity was runnable.
2250 *
2251 * We then designate the fractions u_i as our co-efficients, yielding the
2252 * following representation of historical load:
2253 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2254 *
2255 * We choose y based on the with of a reasonably scheduling period, fixing:
2256 * y^32 = 0.5
2257 *
2258 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2259 * approximately half as much as the contribution to load within the last ms
2260 * (u_0).
2261 *
2262 * When a period "rolls over" and we have new u_0`, multiplying the previous
2263 * sum again by y is sufficient to update:
2264 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2265 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2266 */
2267static __always_inline int __update_entity_runnable_avg(u64 now,
2268 struct sched_avg *sa,
2269 int runnable)
2270{
5b51f2f8
PT
2271 u64 delta, periods;
2272 u32 runnable_contrib;
9d85f21c
PT
2273 int delta_w, decayed = 0;
2274
2275 delta = now - sa->last_runnable_update;
2276 /*
2277 * This should only happen when time goes backwards, which it
2278 * unfortunately does during sched clock init when we swap over to TSC.
2279 */
2280 if ((s64)delta < 0) {
2281 sa->last_runnable_update = now;
2282 return 0;
2283 }
2284
2285 /*
2286 * Use 1024ns as the unit of measurement since it's a reasonable
2287 * approximation of 1us and fast to compute.
2288 */
2289 delta >>= 10;
2290 if (!delta)
2291 return 0;
2292 sa->last_runnable_update = now;
2293
2294 /* delta_w is the amount already accumulated against our next period */
2295 delta_w = sa->runnable_avg_period % 1024;
2296 if (delta + delta_w >= 1024) {
2297 /* period roll-over */
2298 decayed = 1;
2299
2300 /*
2301 * Now that we know we're crossing a period boundary, figure
2302 * out how much from delta we need to complete the current
2303 * period and accrue it.
2304 */
2305 delta_w = 1024 - delta_w;
5b51f2f8
PT
2306 if (runnable)
2307 sa->runnable_avg_sum += delta_w;
2308 sa->runnable_avg_period += delta_w;
2309
2310 delta -= delta_w;
2311
2312 /* Figure out how many additional periods this update spans */
2313 periods = delta / 1024;
2314 delta %= 1024;
2315
2316 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2317 periods + 1);
2318 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2319 periods + 1);
2320
2321 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2322 runnable_contrib = __compute_runnable_contrib(periods);
2323 if (runnable)
2324 sa->runnable_avg_sum += runnable_contrib;
2325 sa->runnable_avg_period += runnable_contrib;
9d85f21c
PT
2326 }
2327
2328 /* Remainder of delta accrued against u_0` */
2329 if (runnable)
2330 sa->runnable_avg_sum += delta;
2331 sa->runnable_avg_period += delta;
2332
2333 return decayed;
2334}
2335
9ee474f5 2336/* Synchronize an entity's decay with its parenting cfs_rq.*/
aff3e498 2337static inline u64 __synchronize_entity_decay(struct sched_entity *se)
9ee474f5
PT
2338{
2339 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2340 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2341
2342 decays -= se->avg.decay_count;
2343 if (!decays)
aff3e498 2344 return 0;
9ee474f5
PT
2345
2346 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2347 se->avg.decay_count = 0;
aff3e498
PT
2348
2349 return decays;
9ee474f5
PT
2350}
2351
c566e8e9
PT
2352#ifdef CONFIG_FAIR_GROUP_SCHED
2353static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2354 int force_update)
2355{
2356 struct task_group *tg = cfs_rq->tg;
bf5b986e 2357 long tg_contrib;
c566e8e9
PT
2358
2359 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2360 tg_contrib -= cfs_rq->tg_load_contrib;
2361
bf5b986e
AS
2362 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2363 atomic_long_add(tg_contrib, &tg->load_avg);
c566e8e9
PT
2364 cfs_rq->tg_load_contrib += tg_contrib;
2365 }
2366}
8165e145 2367
bb17f655
PT
2368/*
2369 * Aggregate cfs_rq runnable averages into an equivalent task_group
2370 * representation for computing load contributions.
2371 */
2372static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2373 struct cfs_rq *cfs_rq)
2374{
2375 struct task_group *tg = cfs_rq->tg;
2376 long contrib;
2377
2378 /* The fraction of a cpu used by this cfs_rq */
85b088e9 2379 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
bb17f655
PT
2380 sa->runnable_avg_period + 1);
2381 contrib -= cfs_rq->tg_runnable_contrib;
2382
2383 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2384 atomic_add(contrib, &tg->runnable_avg);
2385 cfs_rq->tg_runnable_contrib += contrib;
2386 }
2387}
2388
8165e145
PT
2389static inline void __update_group_entity_contrib(struct sched_entity *se)
2390{
2391 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2392 struct task_group *tg = cfs_rq->tg;
bb17f655
PT
2393 int runnable_avg;
2394
8165e145
PT
2395 u64 contrib;
2396
2397 contrib = cfs_rq->tg_load_contrib * tg->shares;
bf5b986e
AS
2398 se->avg.load_avg_contrib = div_u64(contrib,
2399 atomic_long_read(&tg->load_avg) + 1);
bb17f655
PT
2400
2401 /*
2402 * For group entities we need to compute a correction term in the case
2403 * that they are consuming <1 cpu so that we would contribute the same
2404 * load as a task of equal weight.
2405 *
2406 * Explicitly co-ordinating this measurement would be expensive, but
2407 * fortunately the sum of each cpus contribution forms a usable
2408 * lower-bound on the true value.
2409 *
2410 * Consider the aggregate of 2 contributions. Either they are disjoint
2411 * (and the sum represents true value) or they are disjoint and we are
2412 * understating by the aggregate of their overlap.
2413 *
2414 * Extending this to N cpus, for a given overlap, the maximum amount we
2415 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2416 * cpus that overlap for this interval and w_i is the interval width.
2417 *
2418 * On a small machine; the first term is well-bounded which bounds the
2419 * total error since w_i is a subset of the period. Whereas on a
2420 * larger machine, while this first term can be larger, if w_i is the
2421 * of consequential size guaranteed to see n_i*w_i quickly converge to
2422 * our upper bound of 1-cpu.
2423 */
2424 runnable_avg = atomic_read(&tg->runnable_avg);
2425 if (runnable_avg < NICE_0_LOAD) {
2426 se->avg.load_avg_contrib *= runnable_avg;
2427 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2428 }
8165e145 2429}
f5f9739d
DE
2430
2431static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2432{
2433 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2434 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2435}
6e83125c 2436#else /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9
PT
2437static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2438 int force_update) {}
bb17f655
PT
2439static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2440 struct cfs_rq *cfs_rq) {}
8165e145 2441static inline void __update_group_entity_contrib(struct sched_entity *se) {}
f5f9739d 2442static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
6e83125c 2443#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2444
8165e145
PT
2445static inline void __update_task_entity_contrib(struct sched_entity *se)
2446{
2447 u32 contrib;
2448
2449 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2450 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2451 contrib /= (se->avg.runnable_avg_period + 1);
2452 se->avg.load_avg_contrib = scale_load(contrib);
2453}
2454
2dac754e
PT
2455/* Compute the current contribution to load_avg by se, return any delta */
2456static long __update_entity_load_avg_contrib(struct sched_entity *se)
2457{
2458 long old_contrib = se->avg.load_avg_contrib;
2459
8165e145
PT
2460 if (entity_is_task(se)) {
2461 __update_task_entity_contrib(se);
2462 } else {
bb17f655 2463 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
8165e145
PT
2464 __update_group_entity_contrib(se);
2465 }
2dac754e
PT
2466
2467 return se->avg.load_avg_contrib - old_contrib;
2468}
2469
9ee474f5
PT
2470static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2471 long load_contrib)
2472{
2473 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2474 cfs_rq->blocked_load_avg -= load_contrib;
2475 else
2476 cfs_rq->blocked_load_avg = 0;
2477}
2478
f1b17280
PT
2479static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2480
9d85f21c 2481/* Update a sched_entity's runnable average */
9ee474f5
PT
2482static inline void update_entity_load_avg(struct sched_entity *se,
2483 int update_cfs_rq)
9d85f21c 2484{
2dac754e
PT
2485 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2486 long contrib_delta;
f1b17280 2487 u64 now;
2dac754e 2488
f1b17280
PT
2489 /*
2490 * For a group entity we need to use their owned cfs_rq_clock_task() in
2491 * case they are the parent of a throttled hierarchy.
2492 */
2493 if (entity_is_task(se))
2494 now = cfs_rq_clock_task(cfs_rq);
2495 else
2496 now = cfs_rq_clock_task(group_cfs_rq(se));
2497
2498 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2dac754e
PT
2499 return;
2500
2501 contrib_delta = __update_entity_load_avg_contrib(se);
9ee474f5
PT
2502
2503 if (!update_cfs_rq)
2504 return;
2505
2dac754e
PT
2506 if (se->on_rq)
2507 cfs_rq->runnable_load_avg += contrib_delta;
9ee474f5
PT
2508 else
2509 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2510}
2511
2512/*
2513 * Decay the load contributed by all blocked children and account this so that
2514 * their contribution may appropriately discounted when they wake up.
2515 */
aff3e498 2516static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
9ee474f5 2517{
f1b17280 2518 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
9ee474f5
PT
2519 u64 decays;
2520
2521 decays = now - cfs_rq->last_decay;
aff3e498 2522 if (!decays && !force_update)
9ee474f5
PT
2523 return;
2524
2509940f
AS
2525 if (atomic_long_read(&cfs_rq->removed_load)) {
2526 unsigned long removed_load;
2527 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
aff3e498
PT
2528 subtract_blocked_load_contrib(cfs_rq, removed_load);
2529 }
9ee474f5 2530
aff3e498
PT
2531 if (decays) {
2532 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2533 decays);
2534 atomic64_add(decays, &cfs_rq->decay_counter);
2535 cfs_rq->last_decay = now;
2536 }
c566e8e9
PT
2537
2538 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
9d85f21c 2539}
18bf2805 2540
2dac754e
PT
2541/* Add the load generated by se into cfs_rq's child load-average */
2542static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2543 struct sched_entity *se,
2544 int wakeup)
2dac754e 2545{
aff3e498
PT
2546 /*
2547 * We track migrations using entity decay_count <= 0, on a wake-up
2548 * migration we use a negative decay count to track the remote decays
2549 * accumulated while sleeping.
a75cdaa9
AS
2550 *
2551 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2552 * are seen by enqueue_entity_load_avg() as a migration with an already
2553 * constructed load_avg_contrib.
aff3e498
PT
2554 */
2555 if (unlikely(se->avg.decay_count <= 0)) {
78becc27 2556 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
aff3e498
PT
2557 if (se->avg.decay_count) {
2558 /*
2559 * In a wake-up migration we have to approximate the
2560 * time sleeping. This is because we can't synchronize
2561 * clock_task between the two cpus, and it is not
2562 * guaranteed to be read-safe. Instead, we can
2563 * approximate this using our carried decays, which are
2564 * explicitly atomically readable.
2565 */
2566 se->avg.last_runnable_update -= (-se->avg.decay_count)
2567 << 20;
2568 update_entity_load_avg(se, 0);
2569 /* Indicate that we're now synchronized and on-rq */
2570 se->avg.decay_count = 0;
2571 }
9ee474f5
PT
2572 wakeup = 0;
2573 } else {
9390675a 2574 __synchronize_entity_decay(se);
9ee474f5
PT
2575 }
2576
aff3e498
PT
2577 /* migrated tasks did not contribute to our blocked load */
2578 if (wakeup) {
9ee474f5 2579 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
aff3e498
PT
2580 update_entity_load_avg(se, 0);
2581 }
9ee474f5 2582
2dac754e 2583 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
2584 /* we force update consideration on load-balancer moves */
2585 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2dac754e
PT
2586}
2587
9ee474f5
PT
2588/*
2589 * Remove se's load from this cfs_rq child load-average, if the entity is
2590 * transitioning to a blocked state we track its projected decay using
2591 * blocked_load_avg.
2592 */
2dac754e 2593static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2594 struct sched_entity *se,
2595 int sleep)
2dac754e 2596{
9ee474f5 2597 update_entity_load_avg(se, 1);
aff3e498
PT
2598 /* we force update consideration on load-balancer moves */
2599 update_cfs_rq_blocked_load(cfs_rq, !sleep);
9ee474f5 2600
2dac754e 2601 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
9ee474f5
PT
2602 if (sleep) {
2603 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2604 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2605 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2dac754e 2606}
642dbc39
VG
2607
2608/*
2609 * Update the rq's load with the elapsed running time before entering
2610 * idle. if the last scheduled task is not a CFS task, idle_enter will
2611 * be the only way to update the runnable statistic.
2612 */
2613void idle_enter_fair(struct rq *this_rq)
2614{
2615 update_rq_runnable_avg(this_rq, 1);
2616}
2617
2618/*
2619 * Update the rq's load with the elapsed idle time before a task is
2620 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2621 * be the only way to update the runnable statistic.
2622 */
2623void idle_exit_fair(struct rq *this_rq)
2624{
2625 update_rq_runnable_avg(this_rq, 0);
2626}
2627
6e83125c
PZ
2628static int idle_balance(struct rq *this_rq);
2629
38033c37
PZ
2630#else /* CONFIG_SMP */
2631
9ee474f5
PT
2632static inline void update_entity_load_avg(struct sched_entity *se,
2633 int update_cfs_rq) {}
18bf2805 2634static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2dac754e 2635static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2636 struct sched_entity *se,
2637 int wakeup) {}
2dac754e 2638static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
9ee474f5
PT
2639 struct sched_entity *se,
2640 int sleep) {}
aff3e498
PT
2641static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2642 int force_update) {}
6e83125c
PZ
2643
2644static inline int idle_balance(struct rq *rq)
2645{
2646 return 0;
2647}
2648
38033c37 2649#endif /* CONFIG_SMP */
9d85f21c 2650
2396af69 2651static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2652{
bf0f6f24 2653#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
2654 struct task_struct *tsk = NULL;
2655
2656 if (entity_is_task(se))
2657 tsk = task_of(se);
2658
41acab88 2659 if (se->statistics.sleep_start) {
78becc27 2660 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
bf0f6f24
IM
2661
2662 if ((s64)delta < 0)
2663 delta = 0;
2664
41acab88
LDM
2665 if (unlikely(delta > se->statistics.sleep_max))
2666 se->statistics.sleep_max = delta;
bf0f6f24 2667
8c79a045 2668 se->statistics.sleep_start = 0;
41acab88 2669 se->statistics.sum_sleep_runtime += delta;
9745512c 2670
768d0c27 2671 if (tsk) {
e414314c 2672 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
2673 trace_sched_stat_sleep(tsk, delta);
2674 }
bf0f6f24 2675 }
41acab88 2676 if (se->statistics.block_start) {
78becc27 2677 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
bf0f6f24
IM
2678
2679 if ((s64)delta < 0)
2680 delta = 0;
2681
41acab88
LDM
2682 if (unlikely(delta > se->statistics.block_max))
2683 se->statistics.block_max = delta;
bf0f6f24 2684
8c79a045 2685 se->statistics.block_start = 0;
41acab88 2686 se->statistics.sum_sleep_runtime += delta;
30084fbd 2687
e414314c 2688 if (tsk) {
8f0dfc34 2689 if (tsk->in_iowait) {
41acab88
LDM
2690 se->statistics.iowait_sum += delta;
2691 se->statistics.iowait_count++;
768d0c27 2692 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
2693 }
2694
b781a602
AV
2695 trace_sched_stat_blocked(tsk, delta);
2696
e414314c
PZ
2697 /*
2698 * Blocking time is in units of nanosecs, so shift by
2699 * 20 to get a milliseconds-range estimation of the
2700 * amount of time that the task spent sleeping:
2701 */
2702 if (unlikely(prof_on == SLEEP_PROFILING)) {
2703 profile_hits(SLEEP_PROFILING,
2704 (void *)get_wchan(tsk),
2705 delta >> 20);
2706 }
2707 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 2708 }
bf0f6f24
IM
2709 }
2710#endif
2711}
2712
ddc97297
PZ
2713static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2714{
2715#ifdef CONFIG_SCHED_DEBUG
2716 s64 d = se->vruntime - cfs_rq->min_vruntime;
2717
2718 if (d < 0)
2719 d = -d;
2720
2721 if (d > 3*sysctl_sched_latency)
2722 schedstat_inc(cfs_rq, nr_spread_over);
2723#endif
2724}
2725
aeb73b04
PZ
2726static void
2727place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2728{
1af5f730 2729 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 2730
2cb8600e
PZ
2731 /*
2732 * The 'current' period is already promised to the current tasks,
2733 * however the extra weight of the new task will slow them down a
2734 * little, place the new task so that it fits in the slot that
2735 * stays open at the end.
2736 */
94dfb5e7 2737 if (initial && sched_feat(START_DEBIT))
f9c0b095 2738 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 2739
a2e7a7eb 2740 /* sleeps up to a single latency don't count. */
5ca9880c 2741 if (!initial) {
a2e7a7eb 2742 unsigned long thresh = sysctl_sched_latency;
a7be37ac 2743
a2e7a7eb
MG
2744 /*
2745 * Halve their sleep time's effect, to allow
2746 * for a gentler effect of sleepers:
2747 */
2748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2749 thresh >>= 1;
51e0304c 2750
a2e7a7eb 2751 vruntime -= thresh;
aeb73b04
PZ
2752 }
2753
b5d9d734 2754 /* ensure we never gain time by being placed backwards. */
16c8f1c7 2755 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
2756}
2757
d3d9dc33
PT
2758static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2759
bf0f6f24 2760static void
88ec22d3 2761enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2762{
88ec22d3
PZ
2763 /*
2764 * Update the normalized vruntime before updating min_vruntime
0fc576d5 2765 * through calling update_curr().
88ec22d3 2766 */
371fd7e7 2767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
2768 se->vruntime += cfs_rq->min_vruntime;
2769
bf0f6f24 2770 /*
a2a2d680 2771 * Update run-time statistics of the 'current'.
bf0f6f24 2772 */
b7cc0896 2773 update_curr(cfs_rq);
f269ae04 2774 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
17bc14b7
LT
2775 account_entity_enqueue(cfs_rq, se);
2776 update_cfs_shares(cfs_rq);
bf0f6f24 2777
88ec22d3 2778 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 2779 place_entity(cfs_rq, se, 0);
2396af69 2780 enqueue_sleeper(cfs_rq, se);
e9acbff6 2781 }
bf0f6f24 2782
d2417e5a 2783 update_stats_enqueue(cfs_rq, se);
ddc97297 2784 check_spread(cfs_rq, se);
83b699ed
SV
2785 if (se != cfs_rq->curr)
2786 __enqueue_entity(cfs_rq, se);
2069dd75 2787 se->on_rq = 1;
3d4b47b4 2788
d3d9dc33 2789 if (cfs_rq->nr_running == 1) {
3d4b47b4 2790 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
2791 check_enqueue_throttle(cfs_rq);
2792 }
bf0f6f24
IM
2793}
2794
2c13c919 2795static void __clear_buddies_last(struct sched_entity *se)
2002c695 2796{
2c13c919
RR
2797 for_each_sched_entity(se) {
2798 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2799 if (cfs_rq->last != se)
2c13c919 2800 break;
f1044799
PZ
2801
2802 cfs_rq->last = NULL;
2c13c919
RR
2803 }
2804}
2002c695 2805
2c13c919
RR
2806static void __clear_buddies_next(struct sched_entity *se)
2807{
2808 for_each_sched_entity(se) {
2809 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2810 if (cfs_rq->next != se)
2c13c919 2811 break;
f1044799
PZ
2812
2813 cfs_rq->next = NULL;
2c13c919 2814 }
2002c695
PZ
2815}
2816
ac53db59
RR
2817static void __clear_buddies_skip(struct sched_entity *se)
2818{
2819 for_each_sched_entity(se) {
2820 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 2821 if (cfs_rq->skip != se)
ac53db59 2822 break;
f1044799
PZ
2823
2824 cfs_rq->skip = NULL;
ac53db59
RR
2825 }
2826}
2827
a571bbea
PZ
2828static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2829{
2c13c919
RR
2830 if (cfs_rq->last == se)
2831 __clear_buddies_last(se);
2832
2833 if (cfs_rq->next == se)
2834 __clear_buddies_next(se);
ac53db59
RR
2835
2836 if (cfs_rq->skip == se)
2837 __clear_buddies_skip(se);
a571bbea
PZ
2838}
2839
6c16a6dc 2840static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 2841
bf0f6f24 2842static void
371fd7e7 2843dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 2844{
a2a2d680
DA
2845 /*
2846 * Update run-time statistics of the 'current'.
2847 */
2848 update_curr(cfs_rq);
17bc14b7 2849 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
a2a2d680 2850
19b6a2e3 2851 update_stats_dequeue(cfs_rq, se);
371fd7e7 2852 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 2853#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
2854 if (entity_is_task(se)) {
2855 struct task_struct *tsk = task_of(se);
2856
2857 if (tsk->state & TASK_INTERRUPTIBLE)
78becc27 2858 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2859 if (tsk->state & TASK_UNINTERRUPTIBLE)
78becc27 2860 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
bf0f6f24 2861 }
db36cc7d 2862#endif
67e9fb2a
PZ
2863 }
2864
2002c695 2865 clear_buddies(cfs_rq, se);
4793241b 2866
83b699ed 2867 if (se != cfs_rq->curr)
30cfdcfc 2868 __dequeue_entity(cfs_rq, se);
17bc14b7 2869 se->on_rq = 0;
30cfdcfc 2870 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
2871
2872 /*
2873 * Normalize the entity after updating the min_vruntime because the
2874 * update can refer to the ->curr item and we need to reflect this
2875 * movement in our normalized position.
2876 */
371fd7e7 2877 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 2878 se->vruntime -= cfs_rq->min_vruntime;
1e876231 2879
d8b4986d
PT
2880 /* return excess runtime on last dequeue */
2881 return_cfs_rq_runtime(cfs_rq);
2882
1e876231 2883 update_min_vruntime(cfs_rq);
17bc14b7 2884 update_cfs_shares(cfs_rq);
bf0f6f24
IM
2885}
2886
2887/*
2888 * Preempt the current task with a newly woken task if needed:
2889 */
7c92e54f 2890static void
2e09bf55 2891check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 2892{
11697830 2893 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
2894 struct sched_entity *se;
2895 s64 delta;
11697830 2896
6d0f0ebd 2897 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 2898 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 2899 if (delta_exec > ideal_runtime) {
bf0f6f24 2900 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
2901 /*
2902 * The current task ran long enough, ensure it doesn't get
2903 * re-elected due to buddy favours.
2904 */
2905 clear_buddies(cfs_rq, curr);
f685ceac
MG
2906 return;
2907 }
2908
2909 /*
2910 * Ensure that a task that missed wakeup preemption by a
2911 * narrow margin doesn't have to wait for a full slice.
2912 * This also mitigates buddy induced latencies under load.
2913 */
f685ceac
MG
2914 if (delta_exec < sysctl_sched_min_granularity)
2915 return;
2916
f4cfb33e
WX
2917 se = __pick_first_entity(cfs_rq);
2918 delta = curr->vruntime - se->vruntime;
f685ceac 2919
f4cfb33e
WX
2920 if (delta < 0)
2921 return;
d7d82944 2922
f4cfb33e
WX
2923 if (delta > ideal_runtime)
2924 resched_task(rq_of(cfs_rq)->curr);
bf0f6f24
IM
2925}
2926
83b699ed 2927static void
8494f412 2928set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 2929{
83b699ed
SV
2930 /* 'current' is not kept within the tree. */
2931 if (se->on_rq) {
2932 /*
2933 * Any task has to be enqueued before it get to execute on
2934 * a CPU. So account for the time it spent waiting on the
2935 * runqueue.
2936 */
2937 update_stats_wait_end(cfs_rq, se);
2938 __dequeue_entity(cfs_rq, se);
2939 }
2940
79303e9e 2941 update_stats_curr_start(cfs_rq, se);
429d43bc 2942 cfs_rq->curr = se;
eba1ed4b
IM
2943#ifdef CONFIG_SCHEDSTATS
2944 /*
2945 * Track our maximum slice length, if the CPU's load is at
2946 * least twice that of our own weight (i.e. dont track it
2947 * when there are only lesser-weight tasks around):
2948 */
495eca49 2949 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 2950 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
2951 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2952 }
2953#endif
4a55b450 2954 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
2955}
2956
3f3a4904
PZ
2957static int
2958wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2959
ac53db59
RR
2960/*
2961 * Pick the next process, keeping these things in mind, in this order:
2962 * 1) keep things fair between processes/task groups
2963 * 2) pick the "next" process, since someone really wants that to run
2964 * 3) pick the "last" process, for cache locality
2965 * 4) do not run the "skip" process, if something else is available
2966 */
678d5718
PZ
2967static struct sched_entity *
2968pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 2969{
678d5718
PZ
2970 struct sched_entity *left = __pick_first_entity(cfs_rq);
2971 struct sched_entity *se;
2972
2973 /*
2974 * If curr is set we have to see if its left of the leftmost entity
2975 * still in the tree, provided there was anything in the tree at all.
2976 */
2977 if (!left || (curr && entity_before(curr, left)))
2978 left = curr;
2979
2980 se = left; /* ideally we run the leftmost entity */
f4b6755f 2981
ac53db59
RR
2982 /*
2983 * Avoid running the skip buddy, if running something else can
2984 * be done without getting too unfair.
2985 */
2986 if (cfs_rq->skip == se) {
678d5718
PZ
2987 struct sched_entity *second;
2988
2989 if (se == curr) {
2990 second = __pick_first_entity(cfs_rq);
2991 } else {
2992 second = __pick_next_entity(se);
2993 if (!second || (curr && entity_before(curr, second)))
2994 second = curr;
2995 }
2996
ac53db59
RR
2997 if (second && wakeup_preempt_entity(second, left) < 1)
2998 se = second;
2999 }
aa2ac252 3000
f685ceac
MG
3001 /*
3002 * Prefer last buddy, try to return the CPU to a preempted task.
3003 */
3004 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3005 se = cfs_rq->last;
3006
ac53db59
RR
3007 /*
3008 * Someone really wants this to run. If it's not unfair, run it.
3009 */
3010 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3011 se = cfs_rq->next;
3012
f685ceac 3013 clear_buddies(cfs_rq, se);
4793241b
PZ
3014
3015 return se;
aa2ac252
PZ
3016}
3017
678d5718 3018static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3019
ab6cde26 3020static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3021{
3022 /*
3023 * If still on the runqueue then deactivate_task()
3024 * was not called and update_curr() has to be done:
3025 */
3026 if (prev->on_rq)
b7cc0896 3027 update_curr(cfs_rq);
bf0f6f24 3028
d3d9dc33
PT
3029 /* throttle cfs_rqs exceeding runtime */
3030 check_cfs_rq_runtime(cfs_rq);
3031
ddc97297 3032 check_spread(cfs_rq, prev);
30cfdcfc 3033 if (prev->on_rq) {
5870db5b 3034 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3035 /* Put 'current' back into the tree. */
3036 __enqueue_entity(cfs_rq, prev);
9d85f21c 3037 /* in !on_rq case, update occurred at dequeue */
9ee474f5 3038 update_entity_load_avg(prev, 1);
30cfdcfc 3039 }
429d43bc 3040 cfs_rq->curr = NULL;
bf0f6f24
IM
3041}
3042
8f4d37ec
PZ
3043static void
3044entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3045{
bf0f6f24 3046 /*
30cfdcfc 3047 * Update run-time statistics of the 'current'.
bf0f6f24 3048 */
30cfdcfc 3049 update_curr(cfs_rq);
bf0f6f24 3050
9d85f21c
PT
3051 /*
3052 * Ensure that runnable average is periodically updated.
3053 */
9ee474f5 3054 update_entity_load_avg(curr, 1);
aff3e498 3055 update_cfs_rq_blocked_load(cfs_rq, 1);
bf0bd948 3056 update_cfs_shares(cfs_rq);
9d85f21c 3057
8f4d37ec
PZ
3058#ifdef CONFIG_SCHED_HRTICK
3059 /*
3060 * queued ticks are scheduled to match the slice, so don't bother
3061 * validating it and just reschedule.
3062 */
983ed7a6
HH
3063 if (queued) {
3064 resched_task(rq_of(cfs_rq)->curr);
3065 return;
3066 }
8f4d37ec
PZ
3067 /*
3068 * don't let the period tick interfere with the hrtick preemption
3069 */
3070 if (!sched_feat(DOUBLE_TICK) &&
3071 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3072 return;
3073#endif
3074
2c2efaed 3075 if (cfs_rq->nr_running > 1)
2e09bf55 3076 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3077}
3078
ab84d31e
PT
3079
3080/**************************************************
3081 * CFS bandwidth control machinery
3082 */
3083
3084#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3085
3086#ifdef HAVE_JUMP_LABEL
c5905afb 3087static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3088
3089static inline bool cfs_bandwidth_used(void)
3090{
c5905afb 3091 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3092}
3093
1ee14e6c 3094void cfs_bandwidth_usage_inc(void)
029632fb 3095{
1ee14e6c
BS
3096 static_key_slow_inc(&__cfs_bandwidth_used);
3097}
3098
3099void cfs_bandwidth_usage_dec(void)
3100{
3101 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3102}
3103#else /* HAVE_JUMP_LABEL */
3104static bool cfs_bandwidth_used(void)
3105{
3106 return true;
3107}
3108
1ee14e6c
BS
3109void cfs_bandwidth_usage_inc(void) {}
3110void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3111#endif /* HAVE_JUMP_LABEL */
3112
ab84d31e
PT
3113/*
3114 * default period for cfs group bandwidth.
3115 * default: 0.1s, units: nanoseconds
3116 */
3117static inline u64 default_cfs_period(void)
3118{
3119 return 100000000ULL;
3120}
ec12cb7f
PT
3121
3122static inline u64 sched_cfs_bandwidth_slice(void)
3123{
3124 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3125}
3126
a9cf55b2
PT
3127/*
3128 * Replenish runtime according to assigned quota and update expiration time.
3129 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3130 * additional synchronization around rq->lock.
3131 *
3132 * requires cfs_b->lock
3133 */
029632fb 3134void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3135{
3136 u64 now;
3137
3138 if (cfs_b->quota == RUNTIME_INF)
3139 return;
3140
3141 now = sched_clock_cpu(smp_processor_id());
3142 cfs_b->runtime = cfs_b->quota;
3143 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3144}
3145
029632fb
PZ
3146static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3147{
3148 return &tg->cfs_bandwidth;
3149}
3150
f1b17280
PT
3151/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3152static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3153{
3154 if (unlikely(cfs_rq->throttle_count))
3155 return cfs_rq->throttled_clock_task;
3156
78becc27 3157 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3158}
3159
85dac906
PT
3160/* returns 0 on failure to allocate runtime */
3161static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3162{
3163 struct task_group *tg = cfs_rq->tg;
3164 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3165 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3166
3167 /* note: this is a positive sum as runtime_remaining <= 0 */
3168 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3169
3170 raw_spin_lock(&cfs_b->lock);
3171 if (cfs_b->quota == RUNTIME_INF)
3172 amount = min_amount;
58088ad0 3173 else {
a9cf55b2
PT
3174 /*
3175 * If the bandwidth pool has become inactive, then at least one
3176 * period must have elapsed since the last consumption.
3177 * Refresh the global state and ensure bandwidth timer becomes
3178 * active.
3179 */
3180 if (!cfs_b->timer_active) {
3181 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 3182 __start_cfs_bandwidth(cfs_b);
a9cf55b2 3183 }
58088ad0
PT
3184
3185 if (cfs_b->runtime > 0) {
3186 amount = min(cfs_b->runtime, min_amount);
3187 cfs_b->runtime -= amount;
3188 cfs_b->idle = 0;
3189 }
ec12cb7f 3190 }
a9cf55b2 3191 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3192 raw_spin_unlock(&cfs_b->lock);
3193
3194 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3195 /*
3196 * we may have advanced our local expiration to account for allowed
3197 * spread between our sched_clock and the one on which runtime was
3198 * issued.
3199 */
3200 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3201 cfs_rq->runtime_expires = expires;
85dac906
PT
3202
3203 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3204}
3205
a9cf55b2
PT
3206/*
3207 * Note: This depends on the synchronization provided by sched_clock and the
3208 * fact that rq->clock snapshots this value.
3209 */
3210static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3211{
a9cf55b2 3212 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3213
3214 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3215 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3216 return;
3217
a9cf55b2
PT
3218 if (cfs_rq->runtime_remaining < 0)
3219 return;
3220
3221 /*
3222 * If the local deadline has passed we have to consider the
3223 * possibility that our sched_clock is 'fast' and the global deadline
3224 * has not truly expired.
3225 *
3226 * Fortunately we can check determine whether this the case by checking
3227 * whether the global deadline has advanced.
3228 */
3229
3230 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3231 /* extend local deadline, drift is bounded above by 2 ticks */
3232 cfs_rq->runtime_expires += TICK_NSEC;
3233 } else {
3234 /* global deadline is ahead, expiration has passed */
3235 cfs_rq->runtime_remaining = 0;
3236 }
3237}
3238
9dbdb155 3239static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3240{
3241 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3242 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3243 expire_cfs_rq_runtime(cfs_rq);
3244
3245 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3246 return;
3247
85dac906
PT
3248 /*
3249 * if we're unable to extend our runtime we resched so that the active
3250 * hierarchy can be throttled
3251 */
3252 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3253 resched_task(rq_of(cfs_rq)->curr);
ec12cb7f
PT
3254}
3255
6c16a6dc 3256static __always_inline
9dbdb155 3257void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3258{
56f570e5 3259 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3260 return;
3261
3262 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3263}
3264
85dac906
PT
3265static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3266{
56f570e5 3267 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3268}
3269
64660c86
PT
3270/* check whether cfs_rq, or any parent, is throttled */
3271static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3272{
56f570e5 3273 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3274}
3275
3276/*
3277 * Ensure that neither of the group entities corresponding to src_cpu or
3278 * dest_cpu are members of a throttled hierarchy when performing group
3279 * load-balance operations.
3280 */
3281static inline int throttled_lb_pair(struct task_group *tg,
3282 int src_cpu, int dest_cpu)
3283{
3284 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3285
3286 src_cfs_rq = tg->cfs_rq[src_cpu];
3287 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3288
3289 return throttled_hierarchy(src_cfs_rq) ||
3290 throttled_hierarchy(dest_cfs_rq);
3291}
3292
3293/* updated child weight may affect parent so we have to do this bottom up */
3294static int tg_unthrottle_up(struct task_group *tg, void *data)
3295{
3296 struct rq *rq = data;
3297 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3298
3299 cfs_rq->throttle_count--;
3300#ifdef CONFIG_SMP
3301 if (!cfs_rq->throttle_count) {
f1b17280 3302 /* adjust cfs_rq_clock_task() */
78becc27 3303 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3304 cfs_rq->throttled_clock_task;
64660c86
PT
3305 }
3306#endif
3307
3308 return 0;
3309}
3310
3311static int tg_throttle_down(struct task_group *tg, void *data)
3312{
3313 struct rq *rq = data;
3314 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3315
82958366
PT
3316 /* group is entering throttled state, stop time */
3317 if (!cfs_rq->throttle_count)
78becc27 3318 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3319 cfs_rq->throttle_count++;
3320
3321 return 0;
3322}
3323
d3d9dc33 3324static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3325{
3326 struct rq *rq = rq_of(cfs_rq);
3327 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3328 struct sched_entity *se;
3329 long task_delta, dequeue = 1;
3330
3331 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3332
f1b17280 3333 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3334 rcu_read_lock();
3335 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3336 rcu_read_unlock();
85dac906
PT
3337
3338 task_delta = cfs_rq->h_nr_running;
3339 for_each_sched_entity(se) {
3340 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3341 /* throttled entity or throttle-on-deactivate */
3342 if (!se->on_rq)
3343 break;
3344
3345 if (dequeue)
3346 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3347 qcfs_rq->h_nr_running -= task_delta;
3348
3349 if (qcfs_rq->load.weight)
3350 dequeue = 0;
3351 }
3352
3353 if (!se)
72465447 3354 sub_nr_running(rq, task_delta);
85dac906
PT
3355
3356 cfs_rq->throttled = 1;
78becc27 3357 cfs_rq->throttled_clock = rq_clock(rq);
85dac906
PT
3358 raw_spin_lock(&cfs_b->lock);
3359 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
f9f9ffc2
BS
3360 if (!cfs_b->timer_active)
3361 __start_cfs_bandwidth(cfs_b);
85dac906
PT
3362 raw_spin_unlock(&cfs_b->lock);
3363}
3364
029632fb 3365void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3366{
3367 struct rq *rq = rq_of(cfs_rq);
3368 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3369 struct sched_entity *se;
3370 int enqueue = 1;
3371 long task_delta;
3372
22b958d8 3373 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3374
3375 cfs_rq->throttled = 0;
1a55af2e
FW
3376
3377 update_rq_clock(rq);
3378
671fd9da 3379 raw_spin_lock(&cfs_b->lock);
78becc27 3380 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3381 list_del_rcu(&cfs_rq->throttled_list);
3382 raw_spin_unlock(&cfs_b->lock);
3383
64660c86
PT
3384 /* update hierarchical throttle state */
3385 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3386
671fd9da
PT
3387 if (!cfs_rq->load.weight)
3388 return;
3389
3390 task_delta = cfs_rq->h_nr_running;
3391 for_each_sched_entity(se) {
3392 if (se->on_rq)
3393 enqueue = 0;
3394
3395 cfs_rq = cfs_rq_of(se);
3396 if (enqueue)
3397 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3398 cfs_rq->h_nr_running += task_delta;
3399
3400 if (cfs_rq_throttled(cfs_rq))
3401 break;
3402 }
3403
3404 if (!se)
72465447 3405 add_nr_running(rq, task_delta);
671fd9da
PT
3406
3407 /* determine whether we need to wake up potentially idle cpu */
3408 if (rq->curr == rq->idle && rq->cfs.nr_running)
3409 resched_task(rq->curr);
3410}
3411
3412static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3413 u64 remaining, u64 expires)
3414{
3415 struct cfs_rq *cfs_rq;
3416 u64 runtime = remaining;
3417
3418 rcu_read_lock();
3419 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3420 throttled_list) {
3421 struct rq *rq = rq_of(cfs_rq);
3422
3423 raw_spin_lock(&rq->lock);
3424 if (!cfs_rq_throttled(cfs_rq))
3425 goto next;
3426
3427 runtime = -cfs_rq->runtime_remaining + 1;
3428 if (runtime > remaining)
3429 runtime = remaining;
3430 remaining -= runtime;
3431
3432 cfs_rq->runtime_remaining += runtime;
3433 cfs_rq->runtime_expires = expires;
3434
3435 /* we check whether we're throttled above */
3436 if (cfs_rq->runtime_remaining > 0)
3437 unthrottle_cfs_rq(cfs_rq);
3438
3439next:
3440 raw_spin_unlock(&rq->lock);
3441
3442 if (!remaining)
3443 break;
3444 }
3445 rcu_read_unlock();
3446
3447 return remaining;
3448}
3449
58088ad0
PT
3450/*
3451 * Responsible for refilling a task_group's bandwidth and unthrottling its
3452 * cfs_rqs as appropriate. If there has been no activity within the last
3453 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3454 * used to track this state.
3455 */
3456static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3457{
671fd9da
PT
3458 u64 runtime, runtime_expires;
3459 int idle = 1, throttled;
58088ad0
PT
3460
3461 raw_spin_lock(&cfs_b->lock);
3462 /* no need to continue the timer with no bandwidth constraint */
3463 if (cfs_b->quota == RUNTIME_INF)
3464 goto out_unlock;
3465
671fd9da
PT
3466 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3467 /* idle depends on !throttled (for the case of a large deficit) */
3468 idle = cfs_b->idle && !throttled;
e8da1b18 3469 cfs_b->nr_periods += overrun;
671fd9da 3470
a9cf55b2
PT
3471 /* if we're going inactive then everything else can be deferred */
3472 if (idle)
3473 goto out_unlock;
3474
927b54fc
BS
3475 /*
3476 * if we have relooped after returning idle once, we need to update our
3477 * status as actually running, so that other cpus doing
3478 * __start_cfs_bandwidth will stop trying to cancel us.
3479 */
3480 cfs_b->timer_active = 1;
3481
a9cf55b2
PT
3482 __refill_cfs_bandwidth_runtime(cfs_b);
3483
671fd9da
PT
3484 if (!throttled) {
3485 /* mark as potentially idle for the upcoming period */
3486 cfs_b->idle = 1;
3487 goto out_unlock;
3488 }
3489
e8da1b18
NR
3490 /* account preceding periods in which throttling occurred */
3491 cfs_b->nr_throttled += overrun;
3492
671fd9da
PT
3493 /*
3494 * There are throttled entities so we must first use the new bandwidth
3495 * to unthrottle them before making it generally available. This
3496 * ensures that all existing debts will be paid before a new cfs_rq is
3497 * allowed to run.
3498 */
3499 runtime = cfs_b->runtime;
3500 runtime_expires = cfs_b->runtime_expires;
3501 cfs_b->runtime = 0;
3502
3503 /*
3504 * This check is repeated as we are holding onto the new bandwidth
3505 * while we unthrottle. This can potentially race with an unthrottled
3506 * group trying to acquire new bandwidth from the global pool.
3507 */
3508 while (throttled && runtime > 0) {
3509 raw_spin_unlock(&cfs_b->lock);
3510 /* we can't nest cfs_b->lock while distributing bandwidth */
3511 runtime = distribute_cfs_runtime(cfs_b, runtime,
3512 runtime_expires);
3513 raw_spin_lock(&cfs_b->lock);
3514
3515 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3516 }
58088ad0 3517
671fd9da
PT
3518 /* return (any) remaining runtime */
3519 cfs_b->runtime = runtime;
3520 /*
3521 * While we are ensured activity in the period following an
3522 * unthrottle, this also covers the case in which the new bandwidth is
3523 * insufficient to cover the existing bandwidth deficit. (Forcing the
3524 * timer to remain active while there are any throttled entities.)
3525 */
3526 cfs_b->idle = 0;
58088ad0
PT
3527out_unlock:
3528 if (idle)
3529 cfs_b->timer_active = 0;
3530 raw_spin_unlock(&cfs_b->lock);
3531
3532 return idle;
3533}
d3d9dc33 3534
d8b4986d
PT
3535/* a cfs_rq won't donate quota below this amount */
3536static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3537/* minimum remaining period time to redistribute slack quota */
3538static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3539/* how long we wait to gather additional slack before distributing */
3540static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3541
db06e78c
BS
3542/*
3543 * Are we near the end of the current quota period?
3544 *
3545 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3546 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3547 * migrate_hrtimers, base is never cleared, so we are fine.
3548 */
d8b4986d
PT
3549static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3550{
3551 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3552 u64 remaining;
3553
3554 /* if the call-back is running a quota refresh is already occurring */
3555 if (hrtimer_callback_running(refresh_timer))
3556 return 1;
3557
3558 /* is a quota refresh about to occur? */
3559 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3560 if (remaining < min_expire)
3561 return 1;
3562
3563 return 0;
3564}
3565
3566static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3567{
3568 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3569
3570 /* if there's a quota refresh soon don't bother with slack */
3571 if (runtime_refresh_within(cfs_b, min_left))
3572 return;
3573
3574 start_bandwidth_timer(&cfs_b->slack_timer,
3575 ns_to_ktime(cfs_bandwidth_slack_period));
3576}
3577
3578/* we know any runtime found here is valid as update_curr() precedes return */
3579static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3580{
3581 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3582 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3583
3584 if (slack_runtime <= 0)
3585 return;
3586
3587 raw_spin_lock(&cfs_b->lock);
3588 if (cfs_b->quota != RUNTIME_INF &&
3589 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3590 cfs_b->runtime += slack_runtime;
3591
3592 /* we are under rq->lock, defer unthrottling using a timer */
3593 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3594 !list_empty(&cfs_b->throttled_cfs_rq))
3595 start_cfs_slack_bandwidth(cfs_b);
3596 }
3597 raw_spin_unlock(&cfs_b->lock);
3598
3599 /* even if it's not valid for return we don't want to try again */
3600 cfs_rq->runtime_remaining -= slack_runtime;
3601}
3602
3603static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3604{
56f570e5
PT
3605 if (!cfs_bandwidth_used())
3606 return;
3607
fccfdc6f 3608 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
3609 return;
3610
3611 __return_cfs_rq_runtime(cfs_rq);
3612}
3613
3614/*
3615 * This is done with a timer (instead of inline with bandwidth return) since
3616 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3617 */
3618static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3619{
3620 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3621 u64 expires;
3622
3623 /* confirm we're still not at a refresh boundary */
db06e78c
BS
3624 raw_spin_lock(&cfs_b->lock);
3625 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3626 raw_spin_unlock(&cfs_b->lock);
d8b4986d 3627 return;
db06e78c 3628 }
d8b4986d 3629
d8b4986d
PT
3630 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3631 runtime = cfs_b->runtime;
3632 cfs_b->runtime = 0;
3633 }
3634 expires = cfs_b->runtime_expires;
3635 raw_spin_unlock(&cfs_b->lock);
3636
3637 if (!runtime)
3638 return;
3639
3640 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3641
3642 raw_spin_lock(&cfs_b->lock);
3643 if (expires == cfs_b->runtime_expires)
3644 cfs_b->runtime = runtime;
3645 raw_spin_unlock(&cfs_b->lock);
3646}
3647
d3d9dc33
PT
3648/*
3649 * When a group wakes up we want to make sure that its quota is not already
3650 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3651 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3652 */
3653static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3654{
56f570e5
PT
3655 if (!cfs_bandwidth_used())
3656 return;
3657
d3d9dc33
PT
3658 /* an active group must be handled by the update_curr()->put() path */
3659 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3660 return;
3661
3662 /* ensure the group is not already throttled */
3663 if (cfs_rq_throttled(cfs_rq))
3664 return;
3665
3666 /* update runtime allocation */
3667 account_cfs_rq_runtime(cfs_rq, 0);
3668 if (cfs_rq->runtime_remaining <= 0)
3669 throttle_cfs_rq(cfs_rq);
3670}
3671
3672/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 3673static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 3674{
56f570e5 3675 if (!cfs_bandwidth_used())
678d5718 3676 return false;
56f570e5 3677
d3d9dc33 3678 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 3679 return false;
d3d9dc33
PT
3680
3681 /*
3682 * it's possible for a throttled entity to be forced into a running
3683 * state (e.g. set_curr_task), in this case we're finished.
3684 */
3685 if (cfs_rq_throttled(cfs_rq))
678d5718 3686 return true;
d3d9dc33
PT
3687
3688 throttle_cfs_rq(cfs_rq);
678d5718 3689 return true;
d3d9dc33 3690}
029632fb 3691
029632fb
PZ
3692static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3693{
3694 struct cfs_bandwidth *cfs_b =
3695 container_of(timer, struct cfs_bandwidth, slack_timer);
3696 do_sched_cfs_slack_timer(cfs_b);
3697
3698 return HRTIMER_NORESTART;
3699}
3700
3701static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3702{
3703 struct cfs_bandwidth *cfs_b =
3704 container_of(timer, struct cfs_bandwidth, period_timer);
3705 ktime_t now;
3706 int overrun;
3707 int idle = 0;
3708
3709 for (;;) {
3710 now = hrtimer_cb_get_time(timer);
3711 overrun = hrtimer_forward(timer, now, cfs_b->period);
3712
3713 if (!overrun)
3714 break;
3715
3716 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3717 }
3718
3719 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3720}
3721
3722void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3723{
3724 raw_spin_lock_init(&cfs_b->lock);
3725 cfs_b->runtime = 0;
3726 cfs_b->quota = RUNTIME_INF;
3727 cfs_b->period = ns_to_ktime(default_cfs_period());
3728
3729 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3730 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3731 cfs_b->period_timer.function = sched_cfs_period_timer;
3732 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3733 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3734}
3735
3736static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3737{
3738 cfs_rq->runtime_enabled = 0;
3739 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3740}
3741
3742/* requires cfs_b->lock, may release to reprogram timer */
3743void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3744{
3745 /*
3746 * The timer may be active because we're trying to set a new bandwidth
3747 * period or because we're racing with the tear-down path
3748 * (timer_active==0 becomes visible before the hrtimer call-back
3749 * terminates). In either case we ensure that it's re-programmed
3750 */
927b54fc
BS
3751 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3752 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3753 /* bounce the lock to allow do_sched_cfs_period_timer to run */
029632fb 3754 raw_spin_unlock(&cfs_b->lock);
927b54fc 3755 cpu_relax();
029632fb
PZ
3756 raw_spin_lock(&cfs_b->lock);
3757 /* if someone else restarted the timer then we're done */
3758 if (cfs_b->timer_active)
3759 return;
3760 }
3761
3762 cfs_b->timer_active = 1;
3763 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3764}
3765
3766static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3767{
3768 hrtimer_cancel(&cfs_b->period_timer);
3769 hrtimer_cancel(&cfs_b->slack_timer);
3770}
3771
38dc3348 3772static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
3773{
3774 struct cfs_rq *cfs_rq;
3775
3776 for_each_leaf_cfs_rq(rq, cfs_rq) {
3777 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3778
3779 if (!cfs_rq->runtime_enabled)
3780 continue;
3781
3782 /*
3783 * clock_task is not advancing so we just need to make sure
3784 * there's some valid quota amount
3785 */
3786 cfs_rq->runtime_remaining = cfs_b->quota;
3787 if (cfs_rq_throttled(cfs_rq))
3788 unthrottle_cfs_rq(cfs_rq);
3789 }
3790}
3791
3792#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
3793static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3794{
78becc27 3795 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
3796}
3797
9dbdb155 3798static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 3799static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 3800static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6c16a6dc 3801static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
3802
3803static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3804{
3805 return 0;
3806}
64660c86
PT
3807
3808static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3809{
3810 return 0;
3811}
3812
3813static inline int throttled_lb_pair(struct task_group *tg,
3814 int src_cpu, int dest_cpu)
3815{
3816 return 0;
3817}
029632fb
PZ
3818
3819void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3820
3821#ifdef CONFIG_FAIR_GROUP_SCHED
3822static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
3823#endif
3824
029632fb
PZ
3825static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3826{
3827 return NULL;
3828}
3829static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
a4c96ae3 3830static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
3831
3832#endif /* CONFIG_CFS_BANDWIDTH */
3833
bf0f6f24
IM
3834/**************************************************
3835 * CFS operations on tasks:
3836 */
3837
8f4d37ec
PZ
3838#ifdef CONFIG_SCHED_HRTICK
3839static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3840{
8f4d37ec
PZ
3841 struct sched_entity *se = &p->se;
3842 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3843
3844 WARN_ON(task_rq(p) != rq);
3845
b39e66ea 3846 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
3847 u64 slice = sched_slice(cfs_rq, se);
3848 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3849 s64 delta = slice - ran;
3850
3851 if (delta < 0) {
3852 if (rq->curr == p)
3853 resched_task(p);
3854 return;
3855 }
3856
3857 /*
3858 * Don't schedule slices shorter than 10000ns, that just
3859 * doesn't make sense. Rely on vruntime for fairness.
3860 */
31656519 3861 if (rq->curr != p)
157124c1 3862 delta = max_t(s64, 10000LL, delta);
8f4d37ec 3863
31656519 3864 hrtick_start(rq, delta);
8f4d37ec
PZ
3865 }
3866}
a4c2f00f
PZ
3867
3868/*
3869 * called from enqueue/dequeue and updates the hrtick when the
3870 * current task is from our class and nr_running is low enough
3871 * to matter.
3872 */
3873static void hrtick_update(struct rq *rq)
3874{
3875 struct task_struct *curr = rq->curr;
3876
b39e66ea 3877 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
3878 return;
3879
3880 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3881 hrtick_start_fair(rq, curr);
3882}
55e12e5e 3883#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
3884static inline void
3885hrtick_start_fair(struct rq *rq, struct task_struct *p)
3886{
3887}
a4c2f00f
PZ
3888
3889static inline void hrtick_update(struct rq *rq)
3890{
3891}
8f4d37ec
PZ
3892#endif
3893
bf0f6f24
IM
3894/*
3895 * The enqueue_task method is called before nr_running is
3896 * increased. Here we update the fair scheduling stats and
3897 * then put the task into the rbtree:
3898 */
ea87bb78 3899static void
371fd7e7 3900enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3901{
3902 struct cfs_rq *cfs_rq;
62fb1851 3903 struct sched_entity *se = &p->se;
bf0f6f24
IM
3904
3905 for_each_sched_entity(se) {
62fb1851 3906 if (se->on_rq)
bf0f6f24
IM
3907 break;
3908 cfs_rq = cfs_rq_of(se);
88ec22d3 3909 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
3910
3911 /*
3912 * end evaluation on encountering a throttled cfs_rq
3913 *
3914 * note: in the case of encountering a throttled cfs_rq we will
3915 * post the final h_nr_running increment below.
3916 */
3917 if (cfs_rq_throttled(cfs_rq))
3918 break;
953bfcd1 3919 cfs_rq->h_nr_running++;
85dac906 3920
88ec22d3 3921 flags = ENQUEUE_WAKEUP;
bf0f6f24 3922 }
8f4d37ec 3923
2069dd75 3924 for_each_sched_entity(se) {
0f317143 3925 cfs_rq = cfs_rq_of(se);
953bfcd1 3926 cfs_rq->h_nr_running++;
2069dd75 3927
85dac906
PT
3928 if (cfs_rq_throttled(cfs_rq))
3929 break;
3930
17bc14b7 3931 update_cfs_shares(cfs_rq);
9ee474f5 3932 update_entity_load_avg(se, 1);
2069dd75
PZ
3933 }
3934
18bf2805
BS
3935 if (!se) {
3936 update_rq_runnable_avg(rq, rq->nr_running);
72465447 3937 add_nr_running(rq, 1);
18bf2805 3938 }
a4c2f00f 3939 hrtick_update(rq);
bf0f6f24
IM
3940}
3941
2f36825b
VP
3942static void set_next_buddy(struct sched_entity *se);
3943
bf0f6f24
IM
3944/*
3945 * The dequeue_task method is called before nr_running is
3946 * decreased. We remove the task from the rbtree and
3947 * update the fair scheduling stats:
3948 */
371fd7e7 3949static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
3950{
3951 struct cfs_rq *cfs_rq;
62fb1851 3952 struct sched_entity *se = &p->se;
2f36825b 3953 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
3954
3955 for_each_sched_entity(se) {
3956 cfs_rq = cfs_rq_of(se);
371fd7e7 3957 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
3958
3959 /*
3960 * end evaluation on encountering a throttled cfs_rq
3961 *
3962 * note: in the case of encountering a throttled cfs_rq we will
3963 * post the final h_nr_running decrement below.
3964 */
3965 if (cfs_rq_throttled(cfs_rq))
3966 break;
953bfcd1 3967 cfs_rq->h_nr_running--;
2069dd75 3968
bf0f6f24 3969 /* Don't dequeue parent if it has other entities besides us */
2f36825b
VP
3970 if (cfs_rq->load.weight) {
3971 /*
3972 * Bias pick_next to pick a task from this cfs_rq, as
3973 * p is sleeping when it is within its sched_slice.
3974 */
3975 if (task_sleep && parent_entity(se))
3976 set_next_buddy(parent_entity(se));
9598c82d
PT
3977
3978 /* avoid re-evaluating load for this entity */
3979 se = parent_entity(se);
bf0f6f24 3980 break;
2f36825b 3981 }
371fd7e7 3982 flags |= DEQUEUE_SLEEP;
bf0f6f24 3983 }
8f4d37ec 3984
2069dd75 3985 for_each_sched_entity(se) {
0f317143 3986 cfs_rq = cfs_rq_of(se);
953bfcd1 3987 cfs_rq->h_nr_running--;
2069dd75 3988
85dac906
PT
3989 if (cfs_rq_throttled(cfs_rq))
3990 break;
3991
17bc14b7 3992 update_cfs_shares(cfs_rq);
9ee474f5 3993 update_entity_load_avg(se, 1);
2069dd75
PZ
3994 }
3995
18bf2805 3996 if (!se) {
72465447 3997 sub_nr_running(rq, 1);
18bf2805
BS
3998 update_rq_runnable_avg(rq, 1);
3999 }
a4c2f00f 4000 hrtick_update(rq);
bf0f6f24
IM
4001}
4002
e7693a36 4003#ifdef CONFIG_SMP
029632fb
PZ
4004/* Used instead of source_load when we know the type == 0 */
4005static unsigned long weighted_cpuload(const int cpu)
4006{
b92486cb 4007 return cpu_rq(cpu)->cfs.runnable_load_avg;
029632fb
PZ
4008}
4009
4010/*
4011 * Return a low guess at the load of a migration-source cpu weighted
4012 * according to the scheduling class and "nice" value.
4013 *
4014 * We want to under-estimate the load of migration sources, to
4015 * balance conservatively.
4016 */
4017static unsigned long source_load(int cpu, int type)
4018{
4019 struct rq *rq = cpu_rq(cpu);
4020 unsigned long total = weighted_cpuload(cpu);
4021
4022 if (type == 0 || !sched_feat(LB_BIAS))
4023 return total;
4024
4025 return min(rq->cpu_load[type-1], total);
4026}
4027
4028/*
4029 * Return a high guess at the load of a migration-target cpu weighted
4030 * according to the scheduling class and "nice" value.
4031 */
4032static unsigned long target_load(int cpu, int type)
4033{
4034 struct rq *rq = cpu_rq(cpu);
4035 unsigned long total = weighted_cpuload(cpu);
4036
4037 if (type == 0 || !sched_feat(LB_BIAS))
4038 return total;
4039
4040 return max(rq->cpu_load[type-1], total);
4041}
4042
4043static unsigned long power_of(int cpu)
4044{
4045 return cpu_rq(cpu)->cpu_power;
4046}
4047
4048static unsigned long cpu_avg_load_per_task(int cpu)
4049{
4050 struct rq *rq = cpu_rq(cpu);
4051 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
b92486cb 4052 unsigned long load_avg = rq->cfs.runnable_load_avg;
029632fb
PZ
4053
4054 if (nr_running)
b92486cb 4055 return load_avg / nr_running;
029632fb
PZ
4056
4057 return 0;
4058}
4059
62470419
MW
4060static void record_wakee(struct task_struct *p)
4061{
4062 /*
4063 * Rough decay (wiping) for cost saving, don't worry
4064 * about the boundary, really active task won't care
4065 * about the loss.
4066 */
4067 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4068 current->wakee_flips = 0;
4069 current->wakee_flip_decay_ts = jiffies;
4070 }
4071
4072 if (current->last_wakee != p) {
4073 current->last_wakee = p;
4074 current->wakee_flips++;
4075 }
4076}
098fb9db 4077
74f8e4b2 4078static void task_waking_fair(struct task_struct *p)
88ec22d3
PZ
4079{
4080 struct sched_entity *se = &p->se;
4081 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3fe1698b
PZ
4082 u64 min_vruntime;
4083
4084#ifndef CONFIG_64BIT
4085 u64 min_vruntime_copy;
88ec22d3 4086
3fe1698b
PZ
4087 do {
4088 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4089 smp_rmb();
4090 min_vruntime = cfs_rq->min_vruntime;
4091 } while (min_vruntime != min_vruntime_copy);
4092#else
4093 min_vruntime = cfs_rq->min_vruntime;
4094#endif
88ec22d3 4095
3fe1698b 4096 se->vruntime -= min_vruntime;
62470419 4097 record_wakee(p);
88ec22d3
PZ
4098}
4099
bb3469ac 4100#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4101/*
4102 * effective_load() calculates the load change as seen from the root_task_group
4103 *
4104 * Adding load to a group doesn't make a group heavier, but can cause movement
4105 * of group shares between cpus. Assuming the shares were perfectly aligned one
4106 * can calculate the shift in shares.
cf5f0acf
PZ
4107 *
4108 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4109 * on this @cpu and results in a total addition (subtraction) of @wg to the
4110 * total group weight.
4111 *
4112 * Given a runqueue weight distribution (rw_i) we can compute a shares
4113 * distribution (s_i) using:
4114 *
4115 * s_i = rw_i / \Sum rw_j (1)
4116 *
4117 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4118 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4119 * shares distribution (s_i):
4120 *
4121 * rw_i = { 2, 4, 1, 0 }
4122 * s_i = { 2/7, 4/7, 1/7, 0 }
4123 *
4124 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4125 * task used to run on and the CPU the waker is running on), we need to
4126 * compute the effect of waking a task on either CPU and, in case of a sync
4127 * wakeup, compute the effect of the current task going to sleep.
4128 *
4129 * So for a change of @wl to the local @cpu with an overall group weight change
4130 * of @wl we can compute the new shares distribution (s'_i) using:
4131 *
4132 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4133 *
4134 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4135 * differences in waking a task to CPU 0. The additional task changes the
4136 * weight and shares distributions like:
4137 *
4138 * rw'_i = { 3, 4, 1, 0 }
4139 * s'_i = { 3/8, 4/8, 1/8, 0 }
4140 *
4141 * We can then compute the difference in effective weight by using:
4142 *
4143 * dw_i = S * (s'_i - s_i) (3)
4144 *
4145 * Where 'S' is the group weight as seen by its parent.
4146 *
4147 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4148 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4149 * 4/7) times the weight of the group.
f5bfb7d9 4150 */
2069dd75 4151static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4152{
4be9daaa 4153 struct sched_entity *se = tg->se[cpu];
f1d239f7 4154
9722c2da 4155 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4156 return wl;
4157
4be9daaa 4158 for_each_sched_entity(se) {
cf5f0acf 4159 long w, W;
4be9daaa 4160
977dda7c 4161 tg = se->my_q->tg;
bb3469ac 4162
cf5f0acf
PZ
4163 /*
4164 * W = @wg + \Sum rw_j
4165 */
4166 W = wg + calc_tg_weight(tg, se->my_q);
4be9daaa 4167
cf5f0acf
PZ
4168 /*
4169 * w = rw_i + @wl
4170 */
4171 w = se->my_q->load.weight + wl;
940959e9 4172
cf5f0acf
PZ
4173 /*
4174 * wl = S * s'_i; see (2)
4175 */
4176 if (W > 0 && w < W)
4177 wl = (w * tg->shares) / W;
977dda7c
PT
4178 else
4179 wl = tg->shares;
940959e9 4180
cf5f0acf
PZ
4181 /*
4182 * Per the above, wl is the new se->load.weight value; since
4183 * those are clipped to [MIN_SHARES, ...) do so now. See
4184 * calc_cfs_shares().
4185 */
977dda7c
PT
4186 if (wl < MIN_SHARES)
4187 wl = MIN_SHARES;
cf5f0acf
PZ
4188
4189 /*
4190 * wl = dw_i = S * (s'_i - s_i); see (3)
4191 */
977dda7c 4192 wl -= se->load.weight;
cf5f0acf
PZ
4193
4194 /*
4195 * Recursively apply this logic to all parent groups to compute
4196 * the final effective load change on the root group. Since
4197 * only the @tg group gets extra weight, all parent groups can
4198 * only redistribute existing shares. @wl is the shift in shares
4199 * resulting from this level per the above.
4200 */
4be9daaa 4201 wg = 0;
4be9daaa 4202 }
bb3469ac 4203
4be9daaa 4204 return wl;
bb3469ac
PZ
4205}
4206#else
4be9daaa 4207
58d081b5 4208static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 4209{
83378269 4210 return wl;
bb3469ac 4211}
4be9daaa 4212
bb3469ac
PZ
4213#endif
4214
62470419
MW
4215static int wake_wide(struct task_struct *p)
4216{
7d9ffa89 4217 int factor = this_cpu_read(sd_llc_size);
62470419
MW
4218
4219 /*
4220 * Yeah, it's the switching-frequency, could means many wakee or
4221 * rapidly switch, use factor here will just help to automatically
4222 * adjust the loose-degree, so bigger node will lead to more pull.
4223 */
4224 if (p->wakee_flips > factor) {
4225 /*
4226 * wakee is somewhat hot, it needs certain amount of cpu
4227 * resource, so if waker is far more hot, prefer to leave
4228 * it alone.
4229 */
4230 if (current->wakee_flips > (factor * p->wakee_flips))
4231 return 1;
4232 }
4233
4234 return 0;
4235}
4236
c88d5910 4237static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 4238{
e37b6a7b 4239 s64 this_load, load;
c88d5910 4240 int idx, this_cpu, prev_cpu;
098fb9db 4241 unsigned long tl_per_task;
c88d5910 4242 struct task_group *tg;
83378269 4243 unsigned long weight;
b3137bc8 4244 int balanced;
098fb9db 4245
62470419
MW
4246 /*
4247 * If we wake multiple tasks be careful to not bounce
4248 * ourselves around too much.
4249 */
4250 if (wake_wide(p))
4251 return 0;
4252
c88d5910
PZ
4253 idx = sd->wake_idx;
4254 this_cpu = smp_processor_id();
4255 prev_cpu = task_cpu(p);
4256 load = source_load(prev_cpu, idx);
4257 this_load = target_load(this_cpu, idx);
098fb9db 4258
b3137bc8
MG
4259 /*
4260 * If sync wakeup then subtract the (maximum possible)
4261 * effect of the currently running task from the load
4262 * of the current CPU:
4263 */
83378269
PZ
4264 if (sync) {
4265 tg = task_group(current);
4266 weight = current->se.load.weight;
4267
c88d5910 4268 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
4269 load += effective_load(tg, prev_cpu, 0, -weight);
4270 }
b3137bc8 4271
83378269
PZ
4272 tg = task_group(p);
4273 weight = p->se.load.weight;
b3137bc8 4274
71a29aa7
PZ
4275 /*
4276 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
4277 * due to the sync cause above having dropped this_load to 0, we'll
4278 * always have an imbalance, but there's really nothing you can do
4279 * about that, so that's good too.
71a29aa7
PZ
4280 *
4281 * Otherwise check if either cpus are near enough in load to allow this
4282 * task to be woken on this_cpu.
4283 */
e37b6a7b
PT
4284 if (this_load > 0) {
4285 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
4286
4287 this_eff_load = 100;
4288 this_eff_load *= power_of(prev_cpu);
4289 this_eff_load *= this_load +
4290 effective_load(tg, this_cpu, weight, weight);
4291
4292 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4293 prev_eff_load *= power_of(this_cpu);
4294 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4295
4296 balanced = this_eff_load <= prev_eff_load;
4297 } else
4298 balanced = true;
b3137bc8 4299
098fb9db 4300 /*
4ae7d5ce
IM
4301 * If the currently running task will sleep within
4302 * a reasonable amount of time then attract this newly
4303 * woken task:
098fb9db 4304 */
2fb7635c
PZ
4305 if (sync && balanced)
4306 return 1;
098fb9db 4307
41acab88 4308 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
4309 tl_per_task = cpu_avg_load_per_task(this_cpu);
4310
c88d5910
PZ
4311 if (balanced ||
4312 (this_load <= load &&
4313 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
4314 /*
4315 * This domain has SD_WAKE_AFFINE and
4316 * p is cache cold in this domain, and
4317 * there is no bad imbalance.
4318 */
c88d5910 4319 schedstat_inc(sd, ttwu_move_affine);
41acab88 4320 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
4321
4322 return 1;
4323 }
4324 return 0;
4325}
4326
aaee1203
PZ
4327/*
4328 * find_idlest_group finds and returns the least busy CPU group within the
4329 * domain.
4330 */
4331static struct sched_group *
78e7ed53 4332find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 4333 int this_cpu, int sd_flag)
e7693a36 4334{
b3bd3de6 4335 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 4336 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 4337 int load_idx = sd->forkexec_idx;
aaee1203 4338 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 4339
c44f2a02
VG
4340 if (sd_flag & SD_BALANCE_WAKE)
4341 load_idx = sd->wake_idx;
4342
aaee1203
PZ
4343 do {
4344 unsigned long load, avg_load;
4345 int local_group;
4346 int i;
e7693a36 4347
aaee1203
PZ
4348 /* Skip over this group if it has no CPUs allowed */
4349 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 4350 tsk_cpus_allowed(p)))
aaee1203
PZ
4351 continue;
4352
4353 local_group = cpumask_test_cpu(this_cpu,
4354 sched_group_cpus(group));
4355
4356 /* Tally up the load of all CPUs in the group */
4357 avg_load = 0;
4358
4359 for_each_cpu(i, sched_group_cpus(group)) {
4360 /* Bias balancing toward cpus of our domain */
4361 if (local_group)
4362 load = source_load(i, load_idx);
4363 else
4364 load = target_load(i, load_idx);
4365
4366 avg_load += load;
4367 }
4368
4369 /* Adjust by relative CPU power of the group */
9c3f75cb 4370 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
aaee1203
PZ
4371
4372 if (local_group) {
4373 this_load = avg_load;
aaee1203
PZ
4374 } else if (avg_load < min_load) {
4375 min_load = avg_load;
4376 idlest = group;
4377 }
4378 } while (group = group->next, group != sd->groups);
4379
4380 if (!idlest || 100*this_load < imbalance*min_load)
4381 return NULL;
4382 return idlest;
4383}
4384
4385/*
4386 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4387 */
4388static int
4389find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4390{
4391 unsigned long load, min_load = ULONG_MAX;
4392 int idlest = -1;
4393 int i;
4394
4395 /* Traverse only the allowed CPUs */
fa17b507 4396 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
aaee1203
PZ
4397 load = weighted_cpuload(i);
4398
4399 if (load < min_load || (load == min_load && i == this_cpu)) {
4400 min_load = load;
4401 idlest = i;
e7693a36
GH
4402 }
4403 }
4404
aaee1203
PZ
4405 return idlest;
4406}
e7693a36 4407
a50bde51
PZ
4408/*
4409 * Try and locate an idle CPU in the sched_domain.
4410 */
99bd5e2f 4411static int select_idle_sibling(struct task_struct *p, int target)
a50bde51 4412{
99bd5e2f 4413 struct sched_domain *sd;
37407ea7 4414 struct sched_group *sg;
e0a79f52 4415 int i = task_cpu(p);
a50bde51 4416
e0a79f52
MG
4417 if (idle_cpu(target))
4418 return target;
99bd5e2f
SS
4419
4420 /*
e0a79f52 4421 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 4422 */
e0a79f52
MG
4423 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4424 return i;
a50bde51
PZ
4425
4426 /*
37407ea7 4427 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 4428 */
518cd623 4429 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 4430 for_each_lower_domain(sd) {
37407ea7
LT
4431 sg = sd->groups;
4432 do {
4433 if (!cpumask_intersects(sched_group_cpus(sg),
4434 tsk_cpus_allowed(p)))
4435 goto next;
4436
4437 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 4438 if (i == target || !idle_cpu(i))
37407ea7
LT
4439 goto next;
4440 }
970e1789 4441
37407ea7
LT
4442 target = cpumask_first_and(sched_group_cpus(sg),
4443 tsk_cpus_allowed(p));
4444 goto done;
4445next:
4446 sg = sg->next;
4447 } while (sg != sd->groups);
4448 }
4449done:
a50bde51
PZ
4450 return target;
4451}
4452
aaee1203 4453/*
de91b9cb
MR
4454 * select_task_rq_fair: Select target runqueue for the waking task in domains
4455 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4456 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 4457 *
de91b9cb
MR
4458 * Balances load by selecting the idlest cpu in the idlest group, or under
4459 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 4460 *
de91b9cb 4461 * Returns the target cpu number.
aaee1203
PZ
4462 *
4463 * preempt must be disabled.
4464 */
0017d735 4465static int
ac66f547 4466select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 4467{
29cd8bae 4468 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 4469 int cpu = smp_processor_id();
c88d5910 4470 int new_cpu = cpu;
99bd5e2f 4471 int want_affine = 0;
5158f4e4 4472 int sync = wake_flags & WF_SYNC;
c88d5910 4473
29baa747 4474 if (p->nr_cpus_allowed == 1)
76854c7e
MG
4475 return prev_cpu;
4476
0763a660 4477 if (sd_flag & SD_BALANCE_WAKE) {
fa17b507 4478 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
c88d5910
PZ
4479 want_affine = 1;
4480 new_cpu = prev_cpu;
4481 }
aaee1203 4482
dce840a0 4483 rcu_read_lock();
aaee1203 4484 for_each_domain(cpu, tmp) {
e4f42888
PZ
4485 if (!(tmp->flags & SD_LOAD_BALANCE))
4486 continue;
4487
fe3bcfe1 4488 /*
99bd5e2f
SS
4489 * If both cpu and prev_cpu are part of this domain,
4490 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 4491 */
99bd5e2f
SS
4492 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4493 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4494 affine_sd = tmp;
29cd8bae 4495 break;
f03542a7 4496 }
29cd8bae 4497
f03542a7 4498 if (tmp->flags & sd_flag)
29cd8bae
PZ
4499 sd = tmp;
4500 }
4501
8bf21433
RR
4502 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4503 prev_cpu = cpu;
dce840a0 4504
8bf21433 4505 if (sd_flag & SD_BALANCE_WAKE) {
dce840a0
PZ
4506 new_cpu = select_idle_sibling(p, prev_cpu);
4507 goto unlock;
8b911acd 4508 }
e7693a36 4509
aaee1203
PZ
4510 while (sd) {
4511 struct sched_group *group;
c88d5910 4512 int weight;
098fb9db 4513
0763a660 4514 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
4515 sd = sd->child;
4516 continue;
4517 }
098fb9db 4518
c44f2a02 4519 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
4520 if (!group) {
4521 sd = sd->child;
4522 continue;
4523 }
4ae7d5ce 4524
d7c33c49 4525 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
4526 if (new_cpu == -1 || new_cpu == cpu) {
4527 /* Now try balancing at a lower domain level of cpu */
4528 sd = sd->child;
4529 continue;
e7693a36 4530 }
aaee1203
PZ
4531
4532 /* Now try balancing at a lower domain level of new_cpu */
4533 cpu = new_cpu;
669c55e9 4534 weight = sd->span_weight;
aaee1203
PZ
4535 sd = NULL;
4536 for_each_domain(cpu, tmp) {
669c55e9 4537 if (weight <= tmp->span_weight)
aaee1203 4538 break;
0763a660 4539 if (tmp->flags & sd_flag)
aaee1203
PZ
4540 sd = tmp;
4541 }
4542 /* while loop will break here if sd == NULL */
e7693a36 4543 }
dce840a0
PZ
4544unlock:
4545 rcu_read_unlock();
e7693a36 4546
c88d5910 4547 return new_cpu;
e7693a36 4548}
0a74bef8
PT
4549
4550/*
4551 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4552 * cfs_rq_of(p) references at time of call are still valid and identify the
4553 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4554 * other assumptions, including the state of rq->lock, should be made.
4555 */
4556static void
4557migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4558{
aff3e498
PT
4559 struct sched_entity *se = &p->se;
4560 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4561
4562 /*
4563 * Load tracking: accumulate removed load so that it can be processed
4564 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4565 * to blocked load iff they have a positive decay-count. It can never
4566 * be negative here since on-rq tasks have decay-count == 0.
4567 */
4568 if (se->avg.decay_count) {
4569 se->avg.decay_count = -__synchronize_entity_decay(se);
2509940f
AS
4570 atomic_long_add(se->avg.load_avg_contrib,
4571 &cfs_rq->removed_load);
aff3e498 4572 }
3944a927
BS
4573
4574 /* We have migrated, no longer consider this task hot */
4575 se->exec_start = 0;
0a74bef8 4576}
e7693a36
GH
4577#endif /* CONFIG_SMP */
4578
e52fb7c0
PZ
4579static unsigned long
4580wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
4581{
4582 unsigned long gran = sysctl_sched_wakeup_granularity;
4583
4584 /*
e52fb7c0
PZ
4585 * Since its curr running now, convert the gran from real-time
4586 * to virtual-time in his units.
13814d42
MG
4587 *
4588 * By using 'se' instead of 'curr' we penalize light tasks, so
4589 * they get preempted easier. That is, if 'se' < 'curr' then
4590 * the resulting gran will be larger, therefore penalizing the
4591 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4592 * be smaller, again penalizing the lighter task.
4593 *
4594 * This is especially important for buddies when the leftmost
4595 * task is higher priority than the buddy.
0bbd3336 4596 */
f4ad9bd2 4597 return calc_delta_fair(gran, se);
0bbd3336
PZ
4598}
4599
464b7527
PZ
4600/*
4601 * Should 'se' preempt 'curr'.
4602 *
4603 * |s1
4604 * |s2
4605 * |s3
4606 * g
4607 * |<--->|c
4608 *
4609 * w(c, s1) = -1
4610 * w(c, s2) = 0
4611 * w(c, s3) = 1
4612 *
4613 */
4614static int
4615wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4616{
4617 s64 gran, vdiff = curr->vruntime - se->vruntime;
4618
4619 if (vdiff <= 0)
4620 return -1;
4621
e52fb7c0 4622 gran = wakeup_gran(curr, se);
464b7527
PZ
4623 if (vdiff > gran)
4624 return 1;
4625
4626 return 0;
4627}
4628
02479099
PZ
4629static void set_last_buddy(struct sched_entity *se)
4630{
69c80f3e
VP
4631 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4632 return;
4633
4634 for_each_sched_entity(se)
4635 cfs_rq_of(se)->last = se;
02479099
PZ
4636}
4637
4638static void set_next_buddy(struct sched_entity *se)
4639{
69c80f3e
VP
4640 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4641 return;
4642
4643 for_each_sched_entity(se)
4644 cfs_rq_of(se)->next = se;
02479099
PZ
4645}
4646
ac53db59
RR
4647static void set_skip_buddy(struct sched_entity *se)
4648{
69c80f3e
VP
4649 for_each_sched_entity(se)
4650 cfs_rq_of(se)->skip = se;
ac53db59
RR
4651}
4652
bf0f6f24
IM
4653/*
4654 * Preempt the current task with a newly woken task if needed:
4655 */
5a9b86f6 4656static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
4657{
4658 struct task_struct *curr = rq->curr;
8651a86c 4659 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 4660 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 4661 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 4662 int next_buddy_marked = 0;
bf0f6f24 4663
4ae7d5ce
IM
4664 if (unlikely(se == pse))
4665 return;
4666
5238cdd3 4667 /*
ddcdf6e7 4668 * This is possible from callers such as move_task(), in which we
5238cdd3
PT
4669 * unconditionally check_prempt_curr() after an enqueue (which may have
4670 * lead to a throttle). This both saves work and prevents false
4671 * next-buddy nomination below.
4672 */
4673 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4674 return;
4675
2f36825b 4676 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 4677 set_next_buddy(pse);
2f36825b
VP
4678 next_buddy_marked = 1;
4679 }
57fdc26d 4680
aec0a514
BR
4681 /*
4682 * We can come here with TIF_NEED_RESCHED already set from new task
4683 * wake up path.
5238cdd3
PT
4684 *
4685 * Note: this also catches the edge-case of curr being in a throttled
4686 * group (e.g. via set_curr_task), since update_curr() (in the
4687 * enqueue of curr) will have resulted in resched being set. This
4688 * prevents us from potentially nominating it as a false LAST_BUDDY
4689 * below.
aec0a514
BR
4690 */
4691 if (test_tsk_need_resched(curr))
4692 return;
4693
a2f5c9ab
DH
4694 /* Idle tasks are by definition preempted by non-idle tasks. */
4695 if (unlikely(curr->policy == SCHED_IDLE) &&
4696 likely(p->policy != SCHED_IDLE))
4697 goto preempt;
4698
91c234b4 4699 /*
a2f5c9ab
DH
4700 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4701 * is driven by the tick):
91c234b4 4702 */
8ed92e51 4703 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
91c234b4 4704 return;
bf0f6f24 4705
464b7527 4706 find_matching_se(&se, &pse);
9bbd7374 4707 update_curr(cfs_rq_of(se));
002f128b 4708 BUG_ON(!pse);
2f36825b
VP
4709 if (wakeup_preempt_entity(se, pse) == 1) {
4710 /*
4711 * Bias pick_next to pick the sched entity that is
4712 * triggering this preemption.
4713 */
4714 if (!next_buddy_marked)
4715 set_next_buddy(pse);
3a7e73a2 4716 goto preempt;
2f36825b 4717 }
464b7527 4718
3a7e73a2 4719 return;
a65ac745 4720
3a7e73a2
PZ
4721preempt:
4722 resched_task(curr);
4723 /*
4724 * Only set the backward buddy when the current task is still
4725 * on the rq. This can happen when a wakeup gets interleaved
4726 * with schedule on the ->pre_schedule() or idle_balance()
4727 * point, either of which can * drop the rq lock.
4728 *
4729 * Also, during early boot the idle thread is in the fair class,
4730 * for obvious reasons its a bad idea to schedule back to it.
4731 */
4732 if (unlikely(!se->on_rq || curr == rq->idle))
4733 return;
4734
4735 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4736 set_last_buddy(se);
bf0f6f24
IM
4737}
4738
606dba2e
PZ
4739static struct task_struct *
4740pick_next_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4741{
4742 struct cfs_rq *cfs_rq = &rq->cfs;
4743 struct sched_entity *se;
678d5718 4744 struct task_struct *p;
37e117c0 4745 int new_tasks;
678d5718 4746
6e83125c 4747again:
678d5718
PZ
4748#ifdef CONFIG_FAIR_GROUP_SCHED
4749 if (!cfs_rq->nr_running)
38033c37 4750 goto idle;
678d5718 4751
3f1d2a31 4752 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
4753 goto simple;
4754
4755 /*
4756 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4757 * likely that a next task is from the same cgroup as the current.
4758 *
4759 * Therefore attempt to avoid putting and setting the entire cgroup
4760 * hierarchy, only change the part that actually changes.
4761 */
4762
4763 do {
4764 struct sched_entity *curr = cfs_rq->curr;
4765
4766 /*
4767 * Since we got here without doing put_prev_entity() we also
4768 * have to consider cfs_rq->curr. If it is still a runnable
4769 * entity, update_curr() will update its vruntime, otherwise
4770 * forget we've ever seen it.
4771 */
4772 if (curr && curr->on_rq)
4773 update_curr(cfs_rq);
4774 else
4775 curr = NULL;
4776
4777 /*
4778 * This call to check_cfs_rq_runtime() will do the throttle and
4779 * dequeue its entity in the parent(s). Therefore the 'simple'
4780 * nr_running test will indeed be correct.
4781 */
4782 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4783 goto simple;
4784
4785 se = pick_next_entity(cfs_rq, curr);
4786 cfs_rq = group_cfs_rq(se);
4787 } while (cfs_rq);
4788
4789 p = task_of(se);
4790
4791 /*
4792 * Since we haven't yet done put_prev_entity and if the selected task
4793 * is a different task than we started out with, try and touch the
4794 * least amount of cfs_rqs.
4795 */
4796 if (prev != p) {
4797 struct sched_entity *pse = &prev->se;
4798
4799 while (!(cfs_rq = is_same_group(se, pse))) {
4800 int se_depth = se->depth;
4801 int pse_depth = pse->depth;
4802
4803 if (se_depth <= pse_depth) {
4804 put_prev_entity(cfs_rq_of(pse), pse);
4805 pse = parent_entity(pse);
4806 }
4807 if (se_depth >= pse_depth) {
4808 set_next_entity(cfs_rq_of(se), se);
4809 se = parent_entity(se);
4810 }
4811 }
4812
4813 put_prev_entity(cfs_rq, pse);
4814 set_next_entity(cfs_rq, se);
4815 }
4816
4817 if (hrtick_enabled(rq))
4818 hrtick_start_fair(rq, p);
4819
4820 return p;
4821simple:
4822 cfs_rq = &rq->cfs;
4823#endif
bf0f6f24 4824
36ace27e 4825 if (!cfs_rq->nr_running)
38033c37 4826 goto idle;
bf0f6f24 4827
3f1d2a31 4828 put_prev_task(rq, prev);
606dba2e 4829
bf0f6f24 4830 do {
678d5718 4831 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 4832 set_next_entity(cfs_rq, se);
bf0f6f24
IM
4833 cfs_rq = group_cfs_rq(se);
4834 } while (cfs_rq);
4835
8f4d37ec 4836 p = task_of(se);
678d5718 4837
b39e66ea
MG
4838 if (hrtick_enabled(rq))
4839 hrtick_start_fair(rq, p);
8f4d37ec
PZ
4840
4841 return p;
38033c37
PZ
4842
4843idle:
e4aa358b 4844 new_tasks = idle_balance(rq);
37e117c0
PZ
4845 /*
4846 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4847 * possible for any higher priority task to appear. In that case we
4848 * must re-start the pick_next_entity() loop.
4849 */
e4aa358b 4850 if (new_tasks < 0)
37e117c0
PZ
4851 return RETRY_TASK;
4852
e4aa358b 4853 if (new_tasks > 0)
38033c37 4854 goto again;
38033c37
PZ
4855
4856 return NULL;
bf0f6f24
IM
4857}
4858
4859/*
4860 * Account for a descheduled task:
4861 */
31ee529c 4862static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
4863{
4864 struct sched_entity *se = &prev->se;
4865 struct cfs_rq *cfs_rq;
4866
4867 for_each_sched_entity(se) {
4868 cfs_rq = cfs_rq_of(se);
ab6cde26 4869 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
4870 }
4871}
4872
ac53db59
RR
4873/*
4874 * sched_yield() is very simple
4875 *
4876 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4877 */
4878static void yield_task_fair(struct rq *rq)
4879{
4880 struct task_struct *curr = rq->curr;
4881 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4882 struct sched_entity *se = &curr->se;
4883
4884 /*
4885 * Are we the only task in the tree?
4886 */
4887 if (unlikely(rq->nr_running == 1))
4888 return;
4889
4890 clear_buddies(cfs_rq, se);
4891
4892 if (curr->policy != SCHED_BATCH) {
4893 update_rq_clock(rq);
4894 /*
4895 * Update run-time statistics of the 'current'.
4896 */
4897 update_curr(cfs_rq);
916671c0
MG
4898 /*
4899 * Tell update_rq_clock() that we've just updated,
4900 * so we don't do microscopic update in schedule()
4901 * and double the fastpath cost.
4902 */
4903 rq->skip_clock_update = 1;
ac53db59
RR
4904 }
4905
4906 set_skip_buddy(se);
4907}
4908
d95f4122
MG
4909static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4910{
4911 struct sched_entity *se = &p->se;
4912
5238cdd3
PT
4913 /* throttled hierarchies are not runnable */
4914 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
4915 return false;
4916
4917 /* Tell the scheduler that we'd really like pse to run next. */
4918 set_next_buddy(se);
4919
d95f4122
MG
4920 yield_task_fair(rq);
4921
4922 return true;
4923}
4924
681f3e68 4925#ifdef CONFIG_SMP
bf0f6f24 4926/**************************************************
e9c84cb8
PZ
4927 * Fair scheduling class load-balancing methods.
4928 *
4929 * BASICS
4930 *
4931 * The purpose of load-balancing is to achieve the same basic fairness the
4932 * per-cpu scheduler provides, namely provide a proportional amount of compute
4933 * time to each task. This is expressed in the following equation:
4934 *
4935 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4936 *
4937 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4938 * W_i,0 is defined as:
4939 *
4940 * W_i,0 = \Sum_j w_i,j (2)
4941 *
4942 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4943 * is derived from the nice value as per prio_to_weight[].
4944 *
4945 * The weight average is an exponential decay average of the instantaneous
4946 * weight:
4947 *
4948 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4949 *
4950 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4951 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4952 * can also include other factors [XXX].
4953 *
4954 * To achieve this balance we define a measure of imbalance which follows
4955 * directly from (1):
4956 *
4957 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4958 *
4959 * We them move tasks around to minimize the imbalance. In the continuous
4960 * function space it is obvious this converges, in the discrete case we get
4961 * a few fun cases generally called infeasible weight scenarios.
4962 *
4963 * [XXX expand on:
4964 * - infeasible weights;
4965 * - local vs global optima in the discrete case. ]
4966 *
4967 *
4968 * SCHED DOMAINS
4969 *
4970 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4971 * for all i,j solution, we create a tree of cpus that follows the hardware
4972 * topology where each level pairs two lower groups (or better). This results
4973 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4974 * tree to only the first of the previous level and we decrease the frequency
4975 * of load-balance at each level inv. proportional to the number of cpus in
4976 * the groups.
4977 *
4978 * This yields:
4979 *
4980 * log_2 n 1 n
4981 * \Sum { --- * --- * 2^i } = O(n) (5)
4982 * i = 0 2^i 2^i
4983 * `- size of each group
4984 * | | `- number of cpus doing load-balance
4985 * | `- freq
4986 * `- sum over all levels
4987 *
4988 * Coupled with a limit on how many tasks we can migrate every balance pass,
4989 * this makes (5) the runtime complexity of the balancer.
4990 *
4991 * An important property here is that each CPU is still (indirectly) connected
4992 * to every other cpu in at most O(log n) steps:
4993 *
4994 * The adjacency matrix of the resulting graph is given by:
4995 *
4996 * log_2 n
4997 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4998 * k = 0
4999 *
5000 * And you'll find that:
5001 *
5002 * A^(log_2 n)_i,j != 0 for all i,j (7)
5003 *
5004 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5005 * The task movement gives a factor of O(m), giving a convergence complexity
5006 * of:
5007 *
5008 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5009 *
5010 *
5011 * WORK CONSERVING
5012 *
5013 * In order to avoid CPUs going idle while there's still work to do, new idle
5014 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5015 * tree itself instead of relying on other CPUs to bring it work.
5016 *
5017 * This adds some complexity to both (5) and (8) but it reduces the total idle
5018 * time.
5019 *
5020 * [XXX more?]
5021 *
5022 *
5023 * CGROUPS
5024 *
5025 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5026 *
5027 * s_k,i
5028 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5029 * S_k
5030 *
5031 * Where
5032 *
5033 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5034 *
5035 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5036 *
5037 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5038 * property.
5039 *
5040 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5041 * rewrite all of this once again.]
5042 */
bf0f6f24 5043
ed387b78
HS
5044static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5045
0ec8aa00
PZ
5046enum fbq_type { regular, remote, all };
5047
ddcdf6e7 5048#define LBF_ALL_PINNED 0x01
367456c7 5049#define LBF_NEED_BREAK 0x02
6263322c
PZ
5050#define LBF_DST_PINNED 0x04
5051#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
5052
5053struct lb_env {
5054 struct sched_domain *sd;
5055
ddcdf6e7 5056 struct rq *src_rq;
85c1e7da 5057 int src_cpu;
ddcdf6e7
PZ
5058
5059 int dst_cpu;
5060 struct rq *dst_rq;
5061
88b8dac0
SV
5062 struct cpumask *dst_grpmask;
5063 int new_dst_cpu;
ddcdf6e7 5064 enum cpu_idle_type idle;
bd939f45 5065 long imbalance;
b9403130
MW
5066 /* The set of CPUs under consideration for load-balancing */
5067 struct cpumask *cpus;
5068
ddcdf6e7 5069 unsigned int flags;
367456c7
PZ
5070
5071 unsigned int loop;
5072 unsigned int loop_break;
5073 unsigned int loop_max;
0ec8aa00
PZ
5074
5075 enum fbq_type fbq_type;
ddcdf6e7
PZ
5076};
5077
1e3c88bd 5078/*
ddcdf6e7 5079 * move_task - move a task from one runqueue to another runqueue.
1e3c88bd
PZ
5080 * Both runqueues must be locked.
5081 */
ddcdf6e7 5082static void move_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 5083{
ddcdf6e7
PZ
5084 deactivate_task(env->src_rq, p, 0);
5085 set_task_cpu(p, env->dst_cpu);
5086 activate_task(env->dst_rq, p, 0);
5087 check_preempt_curr(env->dst_rq, p, 0);
1e3c88bd
PZ
5088}
5089
029632fb
PZ
5090/*
5091 * Is this task likely cache-hot:
5092 */
5093static int
6037dd1a 5094task_hot(struct task_struct *p, u64 now)
029632fb
PZ
5095{
5096 s64 delta;
5097
5098 if (p->sched_class != &fair_sched_class)
5099 return 0;
5100
5101 if (unlikely(p->policy == SCHED_IDLE))
5102 return 0;
5103
5104 /*
5105 * Buddy candidates are cache hot:
5106 */
5107 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
5108 (&p->se == cfs_rq_of(&p->se)->next ||
5109 &p->se == cfs_rq_of(&p->se)->last))
5110 return 1;
5111
5112 if (sysctl_sched_migration_cost == -1)
5113 return 1;
5114 if (sysctl_sched_migration_cost == 0)
5115 return 0;
5116
5117 delta = now - p->se.exec_start;
5118
5119 return delta < (s64)sysctl_sched_migration_cost;
5120}
5121
3a7053b3
MG
5122#ifdef CONFIG_NUMA_BALANCING
5123/* Returns true if the destination node has incurred more faults */
5124static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5125{
5126 int src_nid, dst_nid;
5127
ff1df896 5128 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
3a7053b3
MG
5129 !(env->sd->flags & SD_NUMA)) {
5130 return false;
5131 }
5132
5133 src_nid = cpu_to_node(env->src_cpu);
5134 dst_nid = cpu_to_node(env->dst_cpu);
5135
83e1d2cd 5136 if (src_nid == dst_nid)
3a7053b3
MG
5137 return false;
5138
83e1d2cd
MG
5139 /* Always encourage migration to the preferred node. */
5140 if (dst_nid == p->numa_preferred_nid)
5141 return true;
5142
887c290e
RR
5143 /* If both task and group weight improve, this move is a winner. */
5144 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
5145 group_weight(p, dst_nid) > group_weight(p, src_nid))
3a7053b3
MG
5146 return true;
5147
5148 return false;
5149}
7a0f3083
MG
5150
5151
5152static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5153{
5154 int src_nid, dst_nid;
5155
5156 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5157 return false;
5158
ff1df896 5159 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
7a0f3083
MG
5160 return false;
5161
5162 src_nid = cpu_to_node(env->src_cpu);
5163 dst_nid = cpu_to_node(env->dst_cpu);
5164
83e1d2cd 5165 if (src_nid == dst_nid)
7a0f3083
MG
5166 return false;
5167
83e1d2cd
MG
5168 /* Migrating away from the preferred node is always bad. */
5169 if (src_nid == p->numa_preferred_nid)
5170 return true;
5171
887c290e
RR
5172 /* If either task or group weight get worse, don't do it. */
5173 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5174 group_weight(p, dst_nid) < group_weight(p, src_nid))
7a0f3083
MG
5175 return true;
5176
5177 return false;
5178}
5179
3a7053b3
MG
5180#else
5181static inline bool migrate_improves_locality(struct task_struct *p,
5182 struct lb_env *env)
5183{
5184 return false;
5185}
7a0f3083
MG
5186
5187static inline bool migrate_degrades_locality(struct task_struct *p,
5188 struct lb_env *env)
5189{
5190 return false;
5191}
3a7053b3
MG
5192#endif
5193
1e3c88bd
PZ
5194/*
5195 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5196 */
5197static
8e45cb54 5198int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd
PZ
5199{
5200 int tsk_cache_hot = 0;
5201 /*
5202 * We do not migrate tasks that are:
d3198084 5203 * 1) throttled_lb_pair, or
1e3c88bd 5204 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
5205 * 3) running (obviously), or
5206 * 4) are cache-hot on their current CPU.
1e3c88bd 5207 */
d3198084
JK
5208 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5209 return 0;
5210
ddcdf6e7 5211 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 5212 int cpu;
88b8dac0 5213
41acab88 5214 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
88b8dac0 5215
6263322c
PZ
5216 env->flags |= LBF_SOME_PINNED;
5217
88b8dac0
SV
5218 /*
5219 * Remember if this task can be migrated to any other cpu in
5220 * our sched_group. We may want to revisit it if we couldn't
5221 * meet load balance goals by pulling other tasks on src_cpu.
5222 *
5223 * Also avoid computing new_dst_cpu if we have already computed
5224 * one in current iteration.
5225 */
6263322c 5226 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
5227 return 0;
5228
e02e60c1
JK
5229 /* Prevent to re-select dst_cpu via env's cpus */
5230 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5231 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 5232 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
5233 env->new_dst_cpu = cpu;
5234 break;
5235 }
88b8dac0 5236 }
e02e60c1 5237
1e3c88bd
PZ
5238 return 0;
5239 }
88b8dac0
SV
5240
5241 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 5242 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 5243
ddcdf6e7 5244 if (task_running(env->src_rq, p)) {
41acab88 5245 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
5246 return 0;
5247 }
5248
5249 /*
5250 * Aggressive migration if:
3a7053b3
MG
5251 * 1) destination numa is preferred
5252 * 2) task is cache cold, or
5253 * 3) too many balance attempts have failed.
1e3c88bd 5254 */
6037dd1a 5255 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq));
7a0f3083
MG
5256 if (!tsk_cache_hot)
5257 tsk_cache_hot = migrate_degrades_locality(p, env);
3a7053b3
MG
5258
5259 if (migrate_improves_locality(p, env)) {
5260#ifdef CONFIG_SCHEDSTATS
5261 if (tsk_cache_hot) {
5262 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5263 schedstat_inc(p, se.statistics.nr_forced_migrations);
5264 }
5265#endif
5266 return 1;
5267 }
5268
1e3c88bd 5269 if (!tsk_cache_hot ||
8e45cb54 5270 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4e2dcb73 5271
1e3c88bd 5272 if (tsk_cache_hot) {
8e45cb54 5273 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
41acab88 5274 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd 5275 }
4e2dcb73 5276
1e3c88bd
PZ
5277 return 1;
5278 }
5279
4e2dcb73
ZH
5280 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5281 return 0;
1e3c88bd
PZ
5282}
5283
897c395f
PZ
5284/*
5285 * move_one_task tries to move exactly one task from busiest to this_rq, as
5286 * part of active balancing operations within "domain".
5287 * Returns 1 if successful and 0 otherwise.
5288 *
5289 * Called with both runqueues locked.
5290 */
8e45cb54 5291static int move_one_task(struct lb_env *env)
897c395f
PZ
5292{
5293 struct task_struct *p, *n;
897c395f 5294
367456c7 5295 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
5296 if (!can_migrate_task(p, env))
5297 continue;
897c395f 5298
367456c7
PZ
5299 move_task(p, env);
5300 /*
5301 * Right now, this is only the second place move_task()
5302 * is called, so we can safely collect move_task()
5303 * stats here rather than inside move_task().
5304 */
5305 schedstat_inc(env->sd, lb_gained[env->idle]);
5306 return 1;
897c395f 5307 }
897c395f
PZ
5308 return 0;
5309}
5310
eb95308e
PZ
5311static const unsigned int sched_nr_migrate_break = 32;
5312
5d6523eb 5313/*
bd939f45 5314 * move_tasks tries to move up to imbalance weighted load from busiest to
5d6523eb
PZ
5315 * this_rq, as part of a balancing operation within domain "sd".
5316 * Returns 1 if successful and 0 otherwise.
5317 *
5318 * Called with both runqueues locked.
5319 */
5320static int move_tasks(struct lb_env *env)
1e3c88bd 5321{
5d6523eb
PZ
5322 struct list_head *tasks = &env->src_rq->cfs_tasks;
5323 struct task_struct *p;
367456c7
PZ
5324 unsigned long load;
5325 int pulled = 0;
1e3c88bd 5326
bd939f45 5327 if (env->imbalance <= 0)
5d6523eb 5328 return 0;
1e3c88bd 5329
5d6523eb
PZ
5330 while (!list_empty(tasks)) {
5331 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 5332
367456c7
PZ
5333 env->loop++;
5334 /* We've more or less seen every task there is, call it quits */
5d6523eb 5335 if (env->loop > env->loop_max)
367456c7 5336 break;
5d6523eb
PZ
5337
5338 /* take a breather every nr_migrate tasks */
367456c7 5339 if (env->loop > env->loop_break) {
eb95308e 5340 env->loop_break += sched_nr_migrate_break;
8e45cb54 5341 env->flags |= LBF_NEED_BREAK;
ee00e66f 5342 break;
a195f004 5343 }
1e3c88bd 5344
d3198084 5345 if (!can_migrate_task(p, env))
367456c7
PZ
5346 goto next;
5347
5348 load = task_h_load(p);
5d6523eb 5349
eb95308e 5350 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
5351 goto next;
5352
bd939f45 5353 if ((load / 2) > env->imbalance)
367456c7 5354 goto next;
1e3c88bd 5355
ddcdf6e7 5356 move_task(p, env);
ee00e66f 5357 pulled++;
bd939f45 5358 env->imbalance -= load;
1e3c88bd
PZ
5359
5360#ifdef CONFIG_PREEMPT
ee00e66f
PZ
5361 /*
5362 * NEWIDLE balancing is a source of latency, so preemptible
5363 * kernels will stop after the first task is pulled to minimize
5364 * the critical section.
5365 */
5d6523eb 5366 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 5367 break;
1e3c88bd
PZ
5368#endif
5369
ee00e66f
PZ
5370 /*
5371 * We only want to steal up to the prescribed amount of
5372 * weighted load.
5373 */
bd939f45 5374 if (env->imbalance <= 0)
ee00e66f 5375 break;
367456c7
PZ
5376
5377 continue;
5378next:
5d6523eb 5379 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 5380 }
5d6523eb 5381
1e3c88bd 5382 /*
ddcdf6e7
PZ
5383 * Right now, this is one of only two places move_task() is called,
5384 * so we can safely collect move_task() stats here rather than
5385 * inside move_task().
1e3c88bd 5386 */
8e45cb54 5387 schedstat_add(env->sd, lb_gained[env->idle], pulled);
1e3c88bd 5388
5d6523eb 5389 return pulled;
1e3c88bd
PZ
5390}
5391
230059de 5392#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
5393/*
5394 * update tg->load_weight by folding this cpu's load_avg
5395 */
48a16753 5396static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
9e3081ca 5397{
48a16753
PT
5398 struct sched_entity *se = tg->se[cpu];
5399 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
9e3081ca 5400
48a16753
PT
5401 /* throttled entities do not contribute to load */
5402 if (throttled_hierarchy(cfs_rq))
5403 return;
9e3081ca 5404
aff3e498 5405 update_cfs_rq_blocked_load(cfs_rq, 1);
9e3081ca 5406
82958366
PT
5407 if (se) {
5408 update_entity_load_avg(se, 1);
5409 /*
5410 * We pivot on our runnable average having decayed to zero for
5411 * list removal. This generally implies that all our children
5412 * have also been removed (modulo rounding error or bandwidth
5413 * control); however, such cases are rare and we can fix these
5414 * at enqueue.
5415 *
5416 * TODO: fix up out-of-order children on enqueue.
5417 */
5418 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5419 list_del_leaf_cfs_rq(cfs_rq);
5420 } else {
48a16753 5421 struct rq *rq = rq_of(cfs_rq);
82958366
PT
5422 update_rq_runnable_avg(rq, rq->nr_running);
5423 }
9e3081ca
PZ
5424}
5425
48a16753 5426static void update_blocked_averages(int cpu)
9e3081ca 5427{
9e3081ca 5428 struct rq *rq = cpu_rq(cpu);
48a16753
PT
5429 struct cfs_rq *cfs_rq;
5430 unsigned long flags;
9e3081ca 5431
48a16753
PT
5432 raw_spin_lock_irqsave(&rq->lock, flags);
5433 update_rq_clock(rq);
9763b67f
PZ
5434 /*
5435 * Iterates the task_group tree in a bottom up fashion, see
5436 * list_add_leaf_cfs_rq() for details.
5437 */
64660c86 5438 for_each_leaf_cfs_rq(rq, cfs_rq) {
48a16753
PT
5439 /*
5440 * Note: We may want to consider periodically releasing
5441 * rq->lock about these updates so that creating many task
5442 * groups does not result in continually extending hold time.
5443 */
5444 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
64660c86 5445 }
48a16753
PT
5446
5447 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
5448}
5449
9763b67f 5450/*
68520796 5451 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
5452 * This needs to be done in a top-down fashion because the load of a child
5453 * group is a fraction of its parents load.
5454 */
68520796 5455static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 5456{
68520796
VD
5457 struct rq *rq = rq_of(cfs_rq);
5458 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 5459 unsigned long now = jiffies;
68520796 5460 unsigned long load;
a35b6466 5461
68520796 5462 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
5463 return;
5464
68520796
VD
5465 cfs_rq->h_load_next = NULL;
5466 for_each_sched_entity(se) {
5467 cfs_rq = cfs_rq_of(se);
5468 cfs_rq->h_load_next = se;
5469 if (cfs_rq->last_h_load_update == now)
5470 break;
5471 }
a35b6466 5472
68520796 5473 if (!se) {
7e3115ef 5474 cfs_rq->h_load = cfs_rq->runnable_load_avg;
68520796
VD
5475 cfs_rq->last_h_load_update = now;
5476 }
5477
5478 while ((se = cfs_rq->h_load_next) != NULL) {
5479 load = cfs_rq->h_load;
5480 load = div64_ul(load * se->avg.load_avg_contrib,
5481 cfs_rq->runnable_load_avg + 1);
5482 cfs_rq = group_cfs_rq(se);
5483 cfs_rq->h_load = load;
5484 cfs_rq->last_h_load_update = now;
5485 }
9763b67f
PZ
5486}
5487
367456c7 5488static unsigned long task_h_load(struct task_struct *p)
230059de 5489{
367456c7 5490 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 5491
68520796 5492 update_cfs_rq_h_load(cfs_rq);
a003a25b
AS
5493 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5494 cfs_rq->runnable_load_avg + 1);
230059de
PZ
5495}
5496#else
48a16753 5497static inline void update_blocked_averages(int cpu)
9e3081ca
PZ
5498{
5499}
5500
367456c7 5501static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 5502{
a003a25b 5503 return p->se.avg.load_avg_contrib;
1e3c88bd 5504}
230059de 5505#endif
1e3c88bd 5506
1e3c88bd 5507/********** Helpers for find_busiest_group ************************/
1e3c88bd
PZ
5508/*
5509 * sg_lb_stats - stats of a sched_group required for load_balancing
5510 */
5511struct sg_lb_stats {
5512 unsigned long avg_load; /*Avg load across the CPUs of the group */
5513 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 5514 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 5515 unsigned long load_per_task;
3ae11c90 5516 unsigned long group_power;
147c5fc2
PZ
5517 unsigned int sum_nr_running; /* Nr tasks running in the group */
5518 unsigned int group_capacity;
5519 unsigned int idle_cpus;
5520 unsigned int group_weight;
1e3c88bd 5521 int group_imb; /* Is there an imbalance in the group ? */
fab47622 5522 int group_has_capacity; /* Is there extra capacity in the group? */
0ec8aa00
PZ
5523#ifdef CONFIG_NUMA_BALANCING
5524 unsigned int nr_numa_running;
5525 unsigned int nr_preferred_running;
5526#endif
1e3c88bd
PZ
5527};
5528
56cf515b
JK
5529/*
5530 * sd_lb_stats - Structure to store the statistics of a sched_domain
5531 * during load balancing.
5532 */
5533struct sd_lb_stats {
5534 struct sched_group *busiest; /* Busiest group in this sd */
5535 struct sched_group *local; /* Local group in this sd */
5536 unsigned long total_load; /* Total load of all groups in sd */
5537 unsigned long total_pwr; /* Total power of all groups in sd */
5538 unsigned long avg_load; /* Average load across all groups in sd */
5539
56cf515b 5540 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 5541 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
5542};
5543
147c5fc2
PZ
5544static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5545{
5546 /*
5547 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5548 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5549 * We must however clear busiest_stat::avg_load because
5550 * update_sd_pick_busiest() reads this before assignment.
5551 */
5552 *sds = (struct sd_lb_stats){
5553 .busiest = NULL,
5554 .local = NULL,
5555 .total_load = 0UL,
5556 .total_pwr = 0UL,
5557 .busiest_stat = {
5558 .avg_load = 0UL,
5559 },
5560 };
5561}
5562
1e3c88bd
PZ
5563/**
5564 * get_sd_load_idx - Obtain the load index for a given sched domain.
5565 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 5566 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
5567 *
5568 * Return: The load index.
1e3c88bd
PZ
5569 */
5570static inline int get_sd_load_idx(struct sched_domain *sd,
5571 enum cpu_idle_type idle)
5572{
5573 int load_idx;
5574
5575 switch (idle) {
5576 case CPU_NOT_IDLE:
5577 load_idx = sd->busy_idx;
5578 break;
5579
5580 case CPU_NEWLY_IDLE:
5581 load_idx = sd->newidle_idx;
5582 break;
5583 default:
5584 load_idx = sd->idle_idx;
5585 break;
5586 }
5587
5588 return load_idx;
5589}
5590
15f803c9 5591static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
1e3c88bd 5592{
1399fa78 5593 return SCHED_POWER_SCALE;
1e3c88bd
PZ
5594}
5595
5596unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5597{
5598 return default_scale_freq_power(sd, cpu);
5599}
5600
15f803c9 5601static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
1e3c88bd 5602{
669c55e9 5603 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
5604 unsigned long smt_gain = sd->smt_gain;
5605
5606 smt_gain /= weight;
5607
5608 return smt_gain;
5609}
5610
5611unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5612{
5613 return default_scale_smt_power(sd, cpu);
5614}
5615
15f803c9 5616static unsigned long scale_rt_power(int cpu)
1e3c88bd
PZ
5617{
5618 struct rq *rq = cpu_rq(cpu);
b654f7de 5619 u64 total, available, age_stamp, avg;
cadefd3d 5620 s64 delta;
1e3c88bd 5621
b654f7de
PZ
5622 /*
5623 * Since we're reading these variables without serialization make sure
5624 * we read them once before doing sanity checks on them.
5625 */
5626 age_stamp = ACCESS_ONCE(rq->age_stamp);
5627 avg = ACCESS_ONCE(rq->rt_avg);
5628
cadefd3d
PZ
5629 delta = rq_clock(rq) - age_stamp;
5630 if (unlikely(delta < 0))
5631 delta = 0;
5632
5633 total = sched_avg_period() + delta;
aa483808 5634
b654f7de 5635 if (unlikely(total < avg)) {
aa483808
VP
5636 /* Ensures that power won't end up being negative */
5637 available = 0;
5638 } else {
b654f7de 5639 available = total - avg;
aa483808 5640 }
1e3c88bd 5641
1399fa78
NR
5642 if (unlikely((s64)total < SCHED_POWER_SCALE))
5643 total = SCHED_POWER_SCALE;
1e3c88bd 5644
1399fa78 5645 total >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5646
5647 return div_u64(available, total);
5648}
5649
5650static void update_cpu_power(struct sched_domain *sd, int cpu)
5651{
669c55e9 5652 unsigned long weight = sd->span_weight;
1399fa78 5653 unsigned long power = SCHED_POWER_SCALE;
1e3c88bd
PZ
5654 struct sched_group *sdg = sd->groups;
5655
1e3c88bd
PZ
5656 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5657 if (sched_feat(ARCH_POWER))
5658 power *= arch_scale_smt_power(sd, cpu);
5659 else
5660 power *= default_scale_smt_power(sd, cpu);
5661
1399fa78 5662 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5663 }
5664
9c3f75cb 5665 sdg->sgp->power_orig = power;
9d5efe05
SV
5666
5667 if (sched_feat(ARCH_POWER))
5668 power *= arch_scale_freq_power(sd, cpu);
5669 else
5670 power *= default_scale_freq_power(sd, cpu);
5671
1399fa78 5672 power >>= SCHED_POWER_SHIFT;
9d5efe05 5673
1e3c88bd 5674 power *= scale_rt_power(cpu);
1399fa78 5675 power >>= SCHED_POWER_SHIFT;
1e3c88bd
PZ
5676
5677 if (!power)
5678 power = 1;
5679
e51fd5e2 5680 cpu_rq(cpu)->cpu_power = power;
9c3f75cb 5681 sdg->sgp->power = power;
1e3c88bd
PZ
5682}
5683
029632fb 5684void update_group_power(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
5685{
5686 struct sched_domain *child = sd->child;
5687 struct sched_group *group, *sdg = sd->groups;
863bffc8 5688 unsigned long power, power_orig;
4ec4412e
VG
5689 unsigned long interval;
5690
5691 interval = msecs_to_jiffies(sd->balance_interval);
5692 interval = clamp(interval, 1UL, max_load_balance_interval);
5693 sdg->sgp->next_update = jiffies + interval;
1e3c88bd
PZ
5694
5695 if (!child) {
5696 update_cpu_power(sd, cpu);
5697 return;
5698 }
5699
863bffc8 5700 power_orig = power = 0;
1e3c88bd 5701
74a5ce20
PZ
5702 if (child->flags & SD_OVERLAP) {
5703 /*
5704 * SD_OVERLAP domains cannot assume that child groups
5705 * span the current group.
5706 */
5707
863bffc8 5708 for_each_cpu(cpu, sched_group_cpus(sdg)) {
9abf24d4
SD
5709 struct sched_group_power *sgp;
5710 struct rq *rq = cpu_rq(cpu);
863bffc8 5711
9abf24d4
SD
5712 /*
5713 * build_sched_domains() -> init_sched_groups_power()
5714 * gets here before we've attached the domains to the
5715 * runqueues.
5716 *
5717 * Use power_of(), which is set irrespective of domains
5718 * in update_cpu_power().
5719 *
5720 * This avoids power/power_orig from being 0 and
5721 * causing divide-by-zero issues on boot.
5722 *
5723 * Runtime updates will correct power_orig.
5724 */
5725 if (unlikely(!rq->sd)) {
5726 power_orig += power_of(cpu);
5727 power += power_of(cpu);
5728 continue;
5729 }
863bffc8 5730
9abf24d4
SD
5731 sgp = rq->sd->groups->sgp;
5732 power_orig += sgp->power_orig;
5733 power += sgp->power;
863bffc8 5734 }
74a5ce20
PZ
5735 } else {
5736 /*
5737 * !SD_OVERLAP domains can assume that child groups
5738 * span the current group.
5739 */
5740
5741 group = child->groups;
5742 do {
863bffc8 5743 power_orig += group->sgp->power_orig;
74a5ce20
PZ
5744 power += group->sgp->power;
5745 group = group->next;
5746 } while (group != child->groups);
5747 }
1e3c88bd 5748
863bffc8
PZ
5749 sdg->sgp->power_orig = power_orig;
5750 sdg->sgp->power = power;
1e3c88bd
PZ
5751}
5752
9d5efe05
SV
5753/*
5754 * Try and fix up capacity for tiny siblings, this is needed when
5755 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5756 * which on its own isn't powerful enough.
5757 *
5758 * See update_sd_pick_busiest() and check_asym_packing().
5759 */
5760static inline int
5761fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5762{
5763 /*
1399fa78 5764 * Only siblings can have significantly less than SCHED_POWER_SCALE
9d5efe05 5765 */
a6c75f2f 5766 if (!(sd->flags & SD_SHARE_CPUPOWER))
9d5efe05
SV
5767 return 0;
5768
5769 /*
5770 * If ~90% of the cpu_power is still there, we're good.
5771 */
9c3f75cb 5772 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
9d5efe05
SV
5773 return 1;
5774
5775 return 0;
5776}
5777
30ce5dab
PZ
5778/*
5779 * Group imbalance indicates (and tries to solve) the problem where balancing
5780 * groups is inadequate due to tsk_cpus_allowed() constraints.
5781 *
5782 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5783 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5784 * Something like:
5785 *
5786 * { 0 1 2 3 } { 4 5 6 7 }
5787 * * * * *
5788 *
5789 * If we were to balance group-wise we'd place two tasks in the first group and
5790 * two tasks in the second group. Clearly this is undesired as it will overload
5791 * cpu 3 and leave one of the cpus in the second group unused.
5792 *
5793 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
5794 * by noticing the lower domain failed to reach balance and had difficulty
5795 * moving tasks due to affinity constraints.
30ce5dab
PZ
5796 *
5797 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 5798 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 5799 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
5800 * to create an effective group imbalance.
5801 *
5802 * This is a somewhat tricky proposition since the next run might not find the
5803 * group imbalance and decide the groups need to be balanced again. A most
5804 * subtle and fragile situation.
5805 */
5806
6263322c 5807static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 5808{
6263322c 5809 return group->sgp->imbalance;
30ce5dab
PZ
5810}
5811
b37d9316
PZ
5812/*
5813 * Compute the group capacity.
5814 *
c61037e9
PZ
5815 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5816 * first dividing out the smt factor and computing the actual number of cores
5817 * and limit power unit capacity with that.
b37d9316
PZ
5818 */
5819static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5820{
c61037e9
PZ
5821 unsigned int capacity, smt, cpus;
5822 unsigned int power, power_orig;
5823
5824 power = group->sgp->power;
5825 power_orig = group->sgp->power_orig;
5826 cpus = group->group_weight;
b37d9316 5827
c61037e9
PZ
5828 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5829 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5830 capacity = cpus / smt; /* cores */
b37d9316 5831
c61037e9 5832 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
b37d9316
PZ
5833 if (!capacity)
5834 capacity = fix_small_capacity(env->sd, group);
5835
5836 return capacity;
5837}
5838
1e3c88bd
PZ
5839/**
5840 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 5841 * @env: The load balancing environment.
1e3c88bd 5842 * @group: sched_group whose statistics are to be updated.
1e3c88bd 5843 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 5844 * @local_group: Does group contain this_cpu.
1e3c88bd
PZ
5845 * @sgs: variable to hold the statistics for this group.
5846 */
bd939f45
PZ
5847static inline void update_sg_lb_stats(struct lb_env *env,
5848 struct sched_group *group, int load_idx,
23f0d209 5849 int local_group, struct sg_lb_stats *sgs)
1e3c88bd 5850{
30ce5dab 5851 unsigned long load;
bd939f45 5852 int i;
1e3c88bd 5853
b72ff13c
PZ
5854 memset(sgs, 0, sizeof(*sgs));
5855
b9403130 5856 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
5857 struct rq *rq = cpu_rq(i);
5858
1e3c88bd 5859 /* Bias balancing toward cpus of our domain */
6263322c 5860 if (local_group)
04f733b4 5861 load = target_load(i, load_idx);
6263322c 5862 else
1e3c88bd 5863 load = source_load(i, load_idx);
1e3c88bd
PZ
5864
5865 sgs->group_load += load;
380c9077 5866 sgs->sum_nr_running += rq->nr_running;
0ec8aa00
PZ
5867#ifdef CONFIG_NUMA_BALANCING
5868 sgs->nr_numa_running += rq->nr_numa_running;
5869 sgs->nr_preferred_running += rq->nr_preferred_running;
5870#endif
1e3c88bd 5871 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
5872 if (idle_cpu(i))
5873 sgs->idle_cpus++;
1e3c88bd
PZ
5874 }
5875
1e3c88bd 5876 /* Adjust by relative CPU power of the group */
3ae11c90
PZ
5877 sgs->group_power = group->sgp->power;
5878 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
1e3c88bd 5879
dd5feea1 5880 if (sgs->sum_nr_running)
38d0f770 5881 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 5882
aae6d3dd 5883 sgs->group_weight = group->group_weight;
fab47622 5884
b37d9316
PZ
5885 sgs->group_imb = sg_imbalanced(group);
5886 sgs->group_capacity = sg_capacity(env, group);
5887
fab47622
NR
5888 if (sgs->group_capacity > sgs->sum_nr_running)
5889 sgs->group_has_capacity = 1;
1e3c88bd
PZ
5890}
5891
532cb4c4
MN
5892/**
5893 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 5894 * @env: The load balancing environment.
532cb4c4
MN
5895 * @sds: sched_domain statistics
5896 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 5897 * @sgs: sched_group statistics
532cb4c4
MN
5898 *
5899 * Determine if @sg is a busier group than the previously selected
5900 * busiest group.
e69f6186
YB
5901 *
5902 * Return: %true if @sg is a busier group than the previously selected
5903 * busiest group. %false otherwise.
532cb4c4 5904 */
bd939f45 5905static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
5906 struct sd_lb_stats *sds,
5907 struct sched_group *sg,
bd939f45 5908 struct sg_lb_stats *sgs)
532cb4c4 5909{
56cf515b 5910 if (sgs->avg_load <= sds->busiest_stat.avg_load)
532cb4c4
MN
5911 return false;
5912
5913 if (sgs->sum_nr_running > sgs->group_capacity)
5914 return true;
5915
5916 if (sgs->group_imb)
5917 return true;
5918
5919 /*
5920 * ASYM_PACKING needs to move all the work to the lowest
5921 * numbered CPUs in the group, therefore mark all groups
5922 * higher than ourself as busy.
5923 */
bd939f45
PZ
5924 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5925 env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
5926 if (!sds->busiest)
5927 return true;
5928
5929 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5930 return true;
5931 }
5932
5933 return false;
5934}
5935
0ec8aa00
PZ
5936#ifdef CONFIG_NUMA_BALANCING
5937static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5938{
5939 if (sgs->sum_nr_running > sgs->nr_numa_running)
5940 return regular;
5941 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5942 return remote;
5943 return all;
5944}
5945
5946static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5947{
5948 if (rq->nr_running > rq->nr_numa_running)
5949 return regular;
5950 if (rq->nr_running > rq->nr_preferred_running)
5951 return remote;
5952 return all;
5953}
5954#else
5955static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5956{
5957 return all;
5958}
5959
5960static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5961{
5962 return regular;
5963}
5964#endif /* CONFIG_NUMA_BALANCING */
5965
1e3c88bd 5966/**
461819ac 5967 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 5968 * @env: The load balancing environment.
1e3c88bd
PZ
5969 * @sds: variable to hold the statistics for this sched_domain.
5970 */
0ec8aa00 5971static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 5972{
bd939f45
PZ
5973 struct sched_domain *child = env->sd->child;
5974 struct sched_group *sg = env->sd->groups;
56cf515b 5975 struct sg_lb_stats tmp_sgs;
1e3c88bd
PZ
5976 int load_idx, prefer_sibling = 0;
5977
5978 if (child && child->flags & SD_PREFER_SIBLING)
5979 prefer_sibling = 1;
5980
bd939f45 5981 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
5982
5983 do {
56cf515b 5984 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
5985 int local_group;
5986
bd939f45 5987 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
5988 if (local_group) {
5989 sds->local = sg;
5990 sgs = &sds->local_stat;
b72ff13c
PZ
5991
5992 if (env->idle != CPU_NEWLY_IDLE ||
5993 time_after_eq(jiffies, sg->sgp->next_update))
5994 update_group_power(env->sd, env->dst_cpu);
56cf515b 5995 }
1e3c88bd 5996
56cf515b 5997 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
1e3c88bd 5998
b72ff13c
PZ
5999 if (local_group)
6000 goto next_group;
6001
1e3c88bd
PZ
6002 /*
6003 * In case the child domain prefers tasks go to siblings
532cb4c4 6004 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
6005 * and move all the excess tasks away. We lower the capacity
6006 * of a group only if the local group has the capacity to fit
6007 * these excess tasks, i.e. nr_running < group_capacity. The
6008 * extra check prevents the case where you always pull from the
6009 * heaviest group when it is already under-utilized (possible
6010 * with a large weight task outweighs the tasks on the system).
1e3c88bd 6011 */
b72ff13c
PZ
6012 if (prefer_sibling && sds->local &&
6013 sds->local_stat.group_has_capacity)
147c5fc2 6014 sgs->group_capacity = min(sgs->group_capacity, 1U);
1e3c88bd 6015
b72ff13c 6016 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 6017 sds->busiest = sg;
56cf515b 6018 sds->busiest_stat = *sgs;
1e3c88bd
PZ
6019 }
6020
b72ff13c
PZ
6021next_group:
6022 /* Now, start updating sd_lb_stats */
6023 sds->total_load += sgs->group_load;
6024 sds->total_pwr += sgs->group_power;
6025
532cb4c4 6026 sg = sg->next;
bd939f45 6027 } while (sg != env->sd->groups);
0ec8aa00
PZ
6028
6029 if (env->sd->flags & SD_NUMA)
6030 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
532cb4c4
MN
6031}
6032
532cb4c4
MN
6033/**
6034 * check_asym_packing - Check to see if the group is packed into the
6035 * sched doman.
6036 *
6037 * This is primarily intended to used at the sibling level. Some
6038 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6039 * case of POWER7, it can move to lower SMT modes only when higher
6040 * threads are idle. When in lower SMT modes, the threads will
6041 * perform better since they share less core resources. Hence when we
6042 * have idle threads, we want them to be the higher ones.
6043 *
6044 * This packing function is run on idle threads. It checks to see if
6045 * the busiest CPU in this domain (core in the P7 case) has a higher
6046 * CPU number than the packing function is being run on. Here we are
6047 * assuming lower CPU number will be equivalent to lower a SMT thread
6048 * number.
6049 *
e69f6186 6050 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
6051 * this CPU. The amount of the imbalance is returned in *imbalance.
6052 *
cd96891d 6053 * @env: The load balancing environment.
532cb4c4 6054 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 6055 */
bd939f45 6056static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
6057{
6058 int busiest_cpu;
6059
bd939f45 6060 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6061 return 0;
6062
6063 if (!sds->busiest)
6064 return 0;
6065
6066 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 6067 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
6068 return 0;
6069
bd939f45 6070 env->imbalance = DIV_ROUND_CLOSEST(
3ae11c90
PZ
6071 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
6072 SCHED_POWER_SCALE);
bd939f45 6073
532cb4c4 6074 return 1;
1e3c88bd
PZ
6075}
6076
6077/**
6078 * fix_small_imbalance - Calculate the minor imbalance that exists
6079 * amongst the groups of a sched_domain, during
6080 * load balancing.
cd96891d 6081 * @env: The load balancing environment.
1e3c88bd 6082 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6083 */
bd939f45
PZ
6084static inline
6085void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd
PZ
6086{
6087 unsigned long tmp, pwr_now = 0, pwr_move = 0;
6088 unsigned int imbn = 2;
dd5feea1 6089 unsigned long scaled_busy_load_per_task;
56cf515b 6090 struct sg_lb_stats *local, *busiest;
1e3c88bd 6091
56cf515b
JK
6092 local = &sds->local_stat;
6093 busiest = &sds->busiest_stat;
1e3c88bd 6094
56cf515b
JK
6095 if (!local->sum_nr_running)
6096 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6097 else if (busiest->load_per_task > local->load_per_task)
6098 imbn = 1;
dd5feea1 6099
56cf515b
JK
6100 scaled_busy_load_per_task =
6101 (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6102 busiest->group_power;
56cf515b 6103
3029ede3
VD
6104 if (busiest->avg_load + scaled_busy_load_per_task >=
6105 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 6106 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6107 return;
6108 }
6109
6110 /*
6111 * OK, we don't have enough imbalance to justify moving tasks,
6112 * however we may be able to increase total CPU power used by
6113 * moving them.
6114 */
6115
3ae11c90 6116 pwr_now += busiest->group_power *
56cf515b 6117 min(busiest->load_per_task, busiest->avg_load);
3ae11c90 6118 pwr_now += local->group_power *
56cf515b 6119 min(local->load_per_task, local->avg_load);
1399fa78 6120 pwr_now /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6121
6122 /* Amount of load we'd subtract */
a2cd4260 6123 if (busiest->avg_load > scaled_busy_load_per_task) {
3ae11c90 6124 pwr_move += busiest->group_power *
56cf515b 6125 min(busiest->load_per_task,
a2cd4260 6126 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 6127 }
1e3c88bd
PZ
6128
6129 /* Amount of load we'd add */
3ae11c90 6130 if (busiest->avg_load * busiest->group_power <
56cf515b 6131 busiest->load_per_task * SCHED_POWER_SCALE) {
3ae11c90
PZ
6132 tmp = (busiest->avg_load * busiest->group_power) /
6133 local->group_power;
56cf515b
JK
6134 } else {
6135 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
3ae11c90 6136 local->group_power;
56cf515b 6137 }
3ae11c90
PZ
6138 pwr_move += local->group_power *
6139 min(local->load_per_task, local->avg_load + tmp);
1399fa78 6140 pwr_move /= SCHED_POWER_SCALE;
1e3c88bd
PZ
6141
6142 /* Move if we gain throughput */
6143 if (pwr_move > pwr_now)
56cf515b 6144 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
6145}
6146
6147/**
6148 * calculate_imbalance - Calculate the amount of imbalance present within the
6149 * groups of a given sched_domain during load balance.
bd939f45 6150 * @env: load balance environment
1e3c88bd 6151 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 6152 */
bd939f45 6153static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6154{
dd5feea1 6155 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
6156 struct sg_lb_stats *local, *busiest;
6157
6158 local = &sds->local_stat;
56cf515b 6159 busiest = &sds->busiest_stat;
dd5feea1 6160
56cf515b 6161 if (busiest->group_imb) {
30ce5dab
PZ
6162 /*
6163 * In the group_imb case we cannot rely on group-wide averages
6164 * to ensure cpu-load equilibrium, look at wider averages. XXX
6165 */
56cf515b
JK
6166 busiest->load_per_task =
6167 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
6168 }
6169
1e3c88bd
PZ
6170 /*
6171 * In the presence of smp nice balancing, certain scenarios can have
6172 * max load less than avg load(as we skip the groups at or below
6173 * its cpu_power, while calculating max_load..)
6174 */
b1885550
VD
6175 if (busiest->avg_load <= sds->avg_load ||
6176 local->avg_load >= sds->avg_load) {
bd939f45
PZ
6177 env->imbalance = 0;
6178 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
6179 }
6180
56cf515b 6181 if (!busiest->group_imb) {
dd5feea1
SS
6182 /*
6183 * Don't want to pull so many tasks that a group would go idle.
30ce5dab
PZ
6184 * Except of course for the group_imb case, since then we might
6185 * have to drop below capacity to reach cpu-load equilibrium.
dd5feea1 6186 */
56cf515b
JK
6187 load_above_capacity =
6188 (busiest->sum_nr_running - busiest->group_capacity);
dd5feea1 6189
1399fa78 6190 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3ae11c90 6191 load_above_capacity /= busiest->group_power;
dd5feea1
SS
6192 }
6193
6194 /*
6195 * We're trying to get all the cpus to the average_load, so we don't
6196 * want to push ourselves above the average load, nor do we wish to
6197 * reduce the max loaded cpu below the average load. At the same time,
6198 * we also don't want to reduce the group load below the group capacity
6199 * (so that we can implement power-savings policies etc). Thus we look
6200 * for the minimum possible imbalance.
dd5feea1 6201 */
30ce5dab 6202 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
6203
6204 /* How much load to actually move to equalise the imbalance */
56cf515b 6205 env->imbalance = min(
3ae11c90
PZ
6206 max_pull * busiest->group_power,
6207 (sds->avg_load - local->avg_load) * local->group_power
56cf515b 6208 ) / SCHED_POWER_SCALE;
1e3c88bd
PZ
6209
6210 /*
6211 * if *imbalance is less than the average load per runnable task
25985edc 6212 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
6213 * a think about bumping its value to force at least one task to be
6214 * moved
6215 */
56cf515b 6216 if (env->imbalance < busiest->load_per_task)
bd939f45 6217 return fix_small_imbalance(env, sds);
1e3c88bd 6218}
fab47622 6219
1e3c88bd
PZ
6220/******* find_busiest_group() helpers end here *********************/
6221
6222/**
6223 * find_busiest_group - Returns the busiest group within the sched_domain
6224 * if there is an imbalance. If there isn't an imbalance, and
6225 * the user has opted for power-savings, it returns a group whose
6226 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6227 * such a group exists.
6228 *
6229 * Also calculates the amount of weighted load which should be moved
6230 * to restore balance.
6231 *
cd96891d 6232 * @env: The load balancing environment.
1e3c88bd 6233 *
e69f6186 6234 * Return: - The busiest group if imbalance exists.
1e3c88bd
PZ
6235 * - If no imbalance and user has opted for power-savings balance,
6236 * return the least loaded group whose CPUs can be
6237 * put to idle by rebalancing its tasks onto our group.
6238 */
56cf515b 6239static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 6240{
56cf515b 6241 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
6242 struct sd_lb_stats sds;
6243
147c5fc2 6244 init_sd_lb_stats(&sds);
1e3c88bd
PZ
6245
6246 /*
6247 * Compute the various statistics relavent for load balancing at
6248 * this level.
6249 */
23f0d209 6250 update_sd_lb_stats(env, &sds);
56cf515b
JK
6251 local = &sds.local_stat;
6252 busiest = &sds.busiest_stat;
1e3c88bd 6253
bd939f45
PZ
6254 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6255 check_asym_packing(env, &sds))
532cb4c4
MN
6256 return sds.busiest;
6257
cc57aa8f 6258 /* There is no busy sibling group to pull tasks from */
56cf515b 6259 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
6260 goto out_balanced;
6261
1399fa78 6262 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
b0432d8f 6263
866ab43e
PZ
6264 /*
6265 * If the busiest group is imbalanced the below checks don't
30ce5dab 6266 * work because they assume all things are equal, which typically
866ab43e
PZ
6267 * isn't true due to cpus_allowed constraints and the like.
6268 */
56cf515b 6269 if (busiest->group_imb)
866ab43e
PZ
6270 goto force_balance;
6271
cc57aa8f 6272 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
56cf515b
JK
6273 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6274 !busiest->group_has_capacity)
fab47622
NR
6275 goto force_balance;
6276
cc57aa8f
PZ
6277 /*
6278 * If the local group is more busy than the selected busiest group
6279 * don't try and pull any tasks.
6280 */
56cf515b 6281 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
6282 goto out_balanced;
6283
cc57aa8f
PZ
6284 /*
6285 * Don't pull any tasks if this group is already above the domain
6286 * average load.
6287 */
56cf515b 6288 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
6289 goto out_balanced;
6290
bd939f45 6291 if (env->idle == CPU_IDLE) {
aae6d3dd
SS
6292 /*
6293 * This cpu is idle. If the busiest group load doesn't
6294 * have more tasks than the number of available cpu's and
6295 * there is no imbalance between this and busiest group
6296 * wrt to idle cpu's, it is balanced.
6297 */
56cf515b
JK
6298 if ((local->idle_cpus < busiest->idle_cpus) &&
6299 busiest->sum_nr_running <= busiest->group_weight)
aae6d3dd 6300 goto out_balanced;
c186fafe
PZ
6301 } else {
6302 /*
6303 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6304 * imbalance_pct to be conservative.
6305 */
56cf515b
JK
6306 if (100 * busiest->avg_load <=
6307 env->sd->imbalance_pct * local->avg_load)
c186fafe 6308 goto out_balanced;
aae6d3dd 6309 }
1e3c88bd 6310
fab47622 6311force_balance:
1e3c88bd 6312 /* Looks like there is an imbalance. Compute it */
bd939f45 6313 calculate_imbalance(env, &sds);
1e3c88bd
PZ
6314 return sds.busiest;
6315
6316out_balanced:
bd939f45 6317 env->imbalance = 0;
1e3c88bd
PZ
6318 return NULL;
6319}
6320
6321/*
6322 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6323 */
bd939f45 6324static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 6325 struct sched_group *group)
1e3c88bd
PZ
6326{
6327 struct rq *busiest = NULL, *rq;
95a79b80 6328 unsigned long busiest_load = 0, busiest_power = 1;
1e3c88bd
PZ
6329 int i;
6330
6906a408 6331 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
0ec8aa00
PZ
6332 unsigned long power, capacity, wl;
6333 enum fbq_type rt;
6334
6335 rq = cpu_rq(i);
6336 rt = fbq_classify_rq(rq);
1e3c88bd 6337
0ec8aa00
PZ
6338 /*
6339 * We classify groups/runqueues into three groups:
6340 * - regular: there are !numa tasks
6341 * - remote: there are numa tasks that run on the 'wrong' node
6342 * - all: there is no distinction
6343 *
6344 * In order to avoid migrating ideally placed numa tasks,
6345 * ignore those when there's better options.
6346 *
6347 * If we ignore the actual busiest queue to migrate another
6348 * task, the next balance pass can still reduce the busiest
6349 * queue by moving tasks around inside the node.
6350 *
6351 * If we cannot move enough load due to this classification
6352 * the next pass will adjust the group classification and
6353 * allow migration of more tasks.
6354 *
6355 * Both cases only affect the total convergence complexity.
6356 */
6357 if (rt > env->fbq_type)
6358 continue;
6359
6360 power = power_of(i);
6361 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
9d5efe05 6362 if (!capacity)
bd939f45 6363 capacity = fix_small_capacity(env->sd, group);
9d5efe05 6364
6e40f5bb 6365 wl = weighted_cpuload(i);
1e3c88bd 6366
6e40f5bb
TG
6367 /*
6368 * When comparing with imbalance, use weighted_cpuload()
6369 * which is not scaled with the cpu power.
6370 */
bd939f45 6371 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
1e3c88bd
PZ
6372 continue;
6373
6e40f5bb
TG
6374 /*
6375 * For the load comparisons with the other cpu's, consider
6376 * the weighted_cpuload() scaled with the cpu power, so that
6377 * the load can be moved away from the cpu that is potentially
6378 * running at a lower capacity.
95a79b80
JK
6379 *
6380 * Thus we're looking for max(wl_i / power_i), crosswise
6381 * multiplication to rid ourselves of the division works out
6382 * to: wl_i * power_j > wl_j * power_i; where j is our
6383 * previous maximum.
6e40f5bb 6384 */
95a79b80
JK
6385 if (wl * busiest_power > busiest_load * power) {
6386 busiest_load = wl;
6387 busiest_power = power;
1e3c88bd
PZ
6388 busiest = rq;
6389 }
6390 }
6391
6392 return busiest;
6393}
6394
6395/*
6396 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6397 * so long as it is large enough.
6398 */
6399#define MAX_PINNED_INTERVAL 512
6400
6401/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 6402DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 6403
bd939f45 6404static int need_active_balance(struct lb_env *env)
1af3ed3d 6405{
bd939f45
PZ
6406 struct sched_domain *sd = env->sd;
6407
6408 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
6409
6410 /*
6411 * ASYM_PACKING needs to force migrate tasks from busy but
6412 * higher numbered CPUs in order to pack all tasks in the
6413 * lowest numbered CPUs.
6414 */
bd939f45 6415 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 6416 return 1;
1af3ed3d
PZ
6417 }
6418
6419 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6420}
6421
969c7921
TH
6422static int active_load_balance_cpu_stop(void *data);
6423
23f0d209
JK
6424static int should_we_balance(struct lb_env *env)
6425{
6426 struct sched_group *sg = env->sd->groups;
6427 struct cpumask *sg_cpus, *sg_mask;
6428 int cpu, balance_cpu = -1;
6429
6430 /*
6431 * In the newly idle case, we will allow all the cpu's
6432 * to do the newly idle load balance.
6433 */
6434 if (env->idle == CPU_NEWLY_IDLE)
6435 return 1;
6436
6437 sg_cpus = sched_group_cpus(sg);
6438 sg_mask = sched_group_mask(sg);
6439 /* Try to find first idle cpu */
6440 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6441 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6442 continue;
6443
6444 balance_cpu = cpu;
6445 break;
6446 }
6447
6448 if (balance_cpu == -1)
6449 balance_cpu = group_balance_cpu(sg);
6450
6451 /*
6452 * First idle cpu or the first cpu(busiest) in this sched group
6453 * is eligible for doing load balancing at this and above domains.
6454 */
b0cff9d8 6455 return balance_cpu == env->dst_cpu;
23f0d209
JK
6456}
6457
1e3c88bd
PZ
6458/*
6459 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6460 * tasks if there is an imbalance.
6461 */
6462static int load_balance(int this_cpu, struct rq *this_rq,
6463 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 6464 int *continue_balancing)
1e3c88bd 6465{
88b8dac0 6466 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 6467 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 6468 struct sched_group *group;
1e3c88bd
PZ
6469 struct rq *busiest;
6470 unsigned long flags;
e6252c3e 6471 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
1e3c88bd 6472
8e45cb54
PZ
6473 struct lb_env env = {
6474 .sd = sd,
ddcdf6e7
PZ
6475 .dst_cpu = this_cpu,
6476 .dst_rq = this_rq,
88b8dac0 6477 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 6478 .idle = idle,
eb95308e 6479 .loop_break = sched_nr_migrate_break,
b9403130 6480 .cpus = cpus,
0ec8aa00 6481 .fbq_type = all,
8e45cb54
PZ
6482 };
6483
cfc03118
JK
6484 /*
6485 * For NEWLY_IDLE load_balancing, we don't need to consider
6486 * other cpus in our group
6487 */
e02e60c1 6488 if (idle == CPU_NEWLY_IDLE)
cfc03118 6489 env.dst_grpmask = NULL;
cfc03118 6490
1e3c88bd
PZ
6491 cpumask_copy(cpus, cpu_active_mask);
6492
1e3c88bd
PZ
6493 schedstat_inc(sd, lb_count[idle]);
6494
6495redo:
23f0d209
JK
6496 if (!should_we_balance(&env)) {
6497 *continue_balancing = 0;
1e3c88bd 6498 goto out_balanced;
23f0d209 6499 }
1e3c88bd 6500
23f0d209 6501 group = find_busiest_group(&env);
1e3c88bd
PZ
6502 if (!group) {
6503 schedstat_inc(sd, lb_nobusyg[idle]);
6504 goto out_balanced;
6505 }
6506
b9403130 6507 busiest = find_busiest_queue(&env, group);
1e3c88bd
PZ
6508 if (!busiest) {
6509 schedstat_inc(sd, lb_nobusyq[idle]);
6510 goto out_balanced;
6511 }
6512
78feefc5 6513 BUG_ON(busiest == env.dst_rq);
1e3c88bd 6514
bd939f45 6515 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
1e3c88bd
PZ
6516
6517 ld_moved = 0;
6518 if (busiest->nr_running > 1) {
6519 /*
6520 * Attempt to move tasks. If find_busiest_group has found
6521 * an imbalance but busiest->nr_running <= 1, the group is
6522 * still unbalanced. ld_moved simply stays zero, so it is
6523 * correctly treated as an imbalance.
6524 */
8e45cb54 6525 env.flags |= LBF_ALL_PINNED;
c82513e5
PZ
6526 env.src_cpu = busiest->cpu;
6527 env.src_rq = busiest;
6528 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 6529
5d6523eb 6530more_balance:
1e3c88bd 6531 local_irq_save(flags);
78feefc5 6532 double_rq_lock(env.dst_rq, busiest);
88b8dac0
SV
6533
6534 /*
6535 * cur_ld_moved - load moved in current iteration
6536 * ld_moved - cumulative load moved across iterations
6537 */
6538 cur_ld_moved = move_tasks(&env);
6539 ld_moved += cur_ld_moved;
78feefc5 6540 double_rq_unlock(env.dst_rq, busiest);
1e3c88bd
PZ
6541 local_irq_restore(flags);
6542
6543 /*
6544 * some other cpu did the load balance for us.
6545 */
88b8dac0
SV
6546 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6547 resched_cpu(env.dst_cpu);
6548
f1cd0858
JK
6549 if (env.flags & LBF_NEED_BREAK) {
6550 env.flags &= ~LBF_NEED_BREAK;
6551 goto more_balance;
6552 }
6553
88b8dac0
SV
6554 /*
6555 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6556 * us and move them to an alternate dst_cpu in our sched_group
6557 * where they can run. The upper limit on how many times we
6558 * iterate on same src_cpu is dependent on number of cpus in our
6559 * sched_group.
6560 *
6561 * This changes load balance semantics a bit on who can move
6562 * load to a given_cpu. In addition to the given_cpu itself
6563 * (or a ilb_cpu acting on its behalf where given_cpu is
6564 * nohz-idle), we now have balance_cpu in a position to move
6565 * load to given_cpu. In rare situations, this may cause
6566 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6567 * _independently_ and at _same_ time to move some load to
6568 * given_cpu) causing exceess load to be moved to given_cpu.
6569 * This however should not happen so much in practice and
6570 * moreover subsequent load balance cycles should correct the
6571 * excess load moved.
6572 */
6263322c 6573 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 6574
7aff2e3a
VD
6575 /* Prevent to re-select dst_cpu via env's cpus */
6576 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6577
78feefc5 6578 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 6579 env.dst_cpu = env.new_dst_cpu;
6263322c 6580 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
6581 env.loop = 0;
6582 env.loop_break = sched_nr_migrate_break;
e02e60c1 6583
88b8dac0
SV
6584 /*
6585 * Go back to "more_balance" rather than "redo" since we
6586 * need to continue with same src_cpu.
6587 */
6588 goto more_balance;
6589 }
1e3c88bd 6590
6263322c
PZ
6591 /*
6592 * We failed to reach balance because of affinity.
6593 */
6594 if (sd_parent) {
6595 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6596
6597 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6598 *group_imbalance = 1;
6599 } else if (*group_imbalance)
6600 *group_imbalance = 0;
6601 }
6602
1e3c88bd 6603 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 6604 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 6605 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
6606 if (!cpumask_empty(cpus)) {
6607 env.loop = 0;
6608 env.loop_break = sched_nr_migrate_break;
1e3c88bd 6609 goto redo;
bbf18b19 6610 }
1e3c88bd
PZ
6611 goto out_balanced;
6612 }
6613 }
6614
6615 if (!ld_moved) {
6616 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
6617 /*
6618 * Increment the failure counter only on periodic balance.
6619 * We do not want newidle balance, which can be very
6620 * frequent, pollute the failure counter causing
6621 * excessive cache_hot migrations and active balances.
6622 */
6623 if (idle != CPU_NEWLY_IDLE)
6624 sd->nr_balance_failed++;
1e3c88bd 6625
bd939f45 6626 if (need_active_balance(&env)) {
1e3c88bd
PZ
6627 raw_spin_lock_irqsave(&busiest->lock, flags);
6628
969c7921
TH
6629 /* don't kick the active_load_balance_cpu_stop,
6630 * if the curr task on busiest cpu can't be
6631 * moved to this_cpu
1e3c88bd
PZ
6632 */
6633 if (!cpumask_test_cpu(this_cpu,
fa17b507 6634 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
6635 raw_spin_unlock_irqrestore(&busiest->lock,
6636 flags);
8e45cb54 6637 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
6638 goto out_one_pinned;
6639 }
6640
969c7921
TH
6641 /*
6642 * ->active_balance synchronizes accesses to
6643 * ->active_balance_work. Once set, it's cleared
6644 * only after active load balance is finished.
6645 */
1e3c88bd
PZ
6646 if (!busiest->active_balance) {
6647 busiest->active_balance = 1;
6648 busiest->push_cpu = this_cpu;
6649 active_balance = 1;
6650 }
6651 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 6652
bd939f45 6653 if (active_balance) {
969c7921
TH
6654 stop_one_cpu_nowait(cpu_of(busiest),
6655 active_load_balance_cpu_stop, busiest,
6656 &busiest->active_balance_work);
bd939f45 6657 }
1e3c88bd
PZ
6658
6659 /*
6660 * We've kicked active balancing, reset the failure
6661 * counter.
6662 */
6663 sd->nr_balance_failed = sd->cache_nice_tries+1;
6664 }
6665 } else
6666 sd->nr_balance_failed = 0;
6667
6668 if (likely(!active_balance)) {
6669 /* We were unbalanced, so reset the balancing interval */
6670 sd->balance_interval = sd->min_interval;
6671 } else {
6672 /*
6673 * If we've begun active balancing, start to back off. This
6674 * case may not be covered by the all_pinned logic if there
6675 * is only 1 task on the busy runqueue (because we don't call
6676 * move_tasks).
6677 */
6678 if (sd->balance_interval < sd->max_interval)
6679 sd->balance_interval *= 2;
6680 }
6681
1e3c88bd
PZ
6682 goto out;
6683
6684out_balanced:
6685 schedstat_inc(sd, lb_balanced[idle]);
6686
6687 sd->nr_balance_failed = 0;
6688
6689out_one_pinned:
6690 /* tune up the balancing interval */
8e45cb54 6691 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 6692 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
6693 (sd->balance_interval < sd->max_interval))
6694 sd->balance_interval *= 2;
6695
46e49b38 6696 ld_moved = 0;
1e3c88bd 6697out:
1e3c88bd
PZ
6698 return ld_moved;
6699}
6700
52a08ef1
JL
6701static inline unsigned long
6702get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6703{
6704 unsigned long interval = sd->balance_interval;
6705
6706 if (cpu_busy)
6707 interval *= sd->busy_factor;
6708
6709 /* scale ms to jiffies */
6710 interval = msecs_to_jiffies(interval);
6711 interval = clamp(interval, 1UL, max_load_balance_interval);
6712
6713 return interval;
6714}
6715
6716static inline void
6717update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6718{
6719 unsigned long interval, next;
6720
6721 interval = get_sd_balance_interval(sd, cpu_busy);
6722 next = sd->last_balance + interval;
6723
6724 if (time_after(*next_balance, next))
6725 *next_balance = next;
6726}
6727
1e3c88bd
PZ
6728/*
6729 * idle_balance is called by schedule() if this_cpu is about to become
6730 * idle. Attempts to pull tasks from other CPUs.
6731 */
6e83125c 6732static int idle_balance(struct rq *this_rq)
1e3c88bd 6733{
52a08ef1
JL
6734 unsigned long next_balance = jiffies + HZ;
6735 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
6736 struct sched_domain *sd;
6737 int pulled_task = 0;
9bd721c5 6738 u64 curr_cost = 0;
1e3c88bd 6739
6e83125c 6740 idle_enter_fair(this_rq);
0e5b5337 6741
6e83125c
PZ
6742 /*
6743 * We must set idle_stamp _before_ calling idle_balance(), such that we
6744 * measure the duration of idle_balance() as idle time.
6745 */
6746 this_rq->idle_stamp = rq_clock(this_rq);
6747
52a08ef1
JL
6748 if (this_rq->avg_idle < sysctl_sched_migration_cost) {
6749 rcu_read_lock();
6750 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6751 if (sd)
6752 update_next_balance(sd, 0, &next_balance);
6753 rcu_read_unlock();
6754
6e83125c 6755 goto out;
52a08ef1 6756 }
1e3c88bd 6757
f492e12e
PZ
6758 /*
6759 * Drop the rq->lock, but keep IRQ/preempt disabled.
6760 */
6761 raw_spin_unlock(&this_rq->lock);
6762
48a16753 6763 update_blocked_averages(this_cpu);
dce840a0 6764 rcu_read_lock();
1e3c88bd 6765 for_each_domain(this_cpu, sd) {
23f0d209 6766 int continue_balancing = 1;
9bd721c5 6767 u64 t0, domain_cost;
1e3c88bd
PZ
6768
6769 if (!(sd->flags & SD_LOAD_BALANCE))
6770 continue;
6771
52a08ef1
JL
6772 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6773 update_next_balance(sd, 0, &next_balance);
9bd721c5 6774 break;
52a08ef1 6775 }
9bd721c5 6776
f492e12e 6777 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
6778 t0 = sched_clock_cpu(this_cpu);
6779
f492e12e 6780 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
6781 sd, CPU_NEWLY_IDLE,
6782 &continue_balancing);
9bd721c5
JL
6783
6784 domain_cost = sched_clock_cpu(this_cpu) - t0;
6785 if (domain_cost > sd->max_newidle_lb_cost)
6786 sd->max_newidle_lb_cost = domain_cost;
6787
6788 curr_cost += domain_cost;
f492e12e 6789 }
1e3c88bd 6790
52a08ef1 6791 update_next_balance(sd, 0, &next_balance);
39a4d9ca
JL
6792
6793 /*
6794 * Stop searching for tasks to pull if there are
6795 * now runnable tasks on this rq.
6796 */
6797 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 6798 break;
1e3c88bd 6799 }
dce840a0 6800 rcu_read_unlock();
f492e12e
PZ
6801
6802 raw_spin_lock(&this_rq->lock);
6803
0e5b5337
JL
6804 if (curr_cost > this_rq->max_idle_balance_cost)
6805 this_rq->max_idle_balance_cost = curr_cost;
6806
e5fc6611 6807 /*
0e5b5337
JL
6808 * While browsing the domains, we released the rq lock, a task could
6809 * have been enqueued in the meantime. Since we're not going idle,
6810 * pretend we pulled a task.
e5fc6611 6811 */
0e5b5337 6812 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 6813 pulled_task = 1;
e5fc6611 6814
52a08ef1
JL
6815out:
6816 /* Move the next balance forward */
6817 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 6818 this_rq->next_balance = next_balance;
9bd721c5 6819
e4aa358b 6820 /* Is there a task of a high priority class? */
46383648 6821 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
6822 pulled_task = -1;
6823
6824 if (pulled_task) {
6825 idle_exit_fair(this_rq);
6e83125c 6826 this_rq->idle_stamp = 0;
e4aa358b 6827 }
6e83125c 6828
3c4017c1 6829 return pulled_task;
1e3c88bd
PZ
6830}
6831
6832/*
969c7921
TH
6833 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6834 * running tasks off the busiest CPU onto idle CPUs. It requires at
6835 * least 1 task to be running on each physical CPU where possible, and
6836 * avoids physical / logical imbalances.
1e3c88bd 6837 */
969c7921 6838static int active_load_balance_cpu_stop(void *data)
1e3c88bd 6839{
969c7921
TH
6840 struct rq *busiest_rq = data;
6841 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 6842 int target_cpu = busiest_rq->push_cpu;
969c7921 6843 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 6844 struct sched_domain *sd;
969c7921
TH
6845
6846 raw_spin_lock_irq(&busiest_rq->lock);
6847
6848 /* make sure the requested cpu hasn't gone down in the meantime */
6849 if (unlikely(busiest_cpu != smp_processor_id() ||
6850 !busiest_rq->active_balance))
6851 goto out_unlock;
1e3c88bd
PZ
6852
6853 /* Is there any task to move? */
6854 if (busiest_rq->nr_running <= 1)
969c7921 6855 goto out_unlock;
1e3c88bd
PZ
6856
6857 /*
6858 * This condition is "impossible", if it occurs
6859 * we need to fix it. Originally reported by
6860 * Bjorn Helgaas on a 128-cpu setup.
6861 */
6862 BUG_ON(busiest_rq == target_rq);
6863
6864 /* move a task from busiest_rq to target_rq */
6865 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
6866
6867 /* Search for an sd spanning us and the target CPU. */
dce840a0 6868 rcu_read_lock();
1e3c88bd
PZ
6869 for_each_domain(target_cpu, sd) {
6870 if ((sd->flags & SD_LOAD_BALANCE) &&
6871 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6872 break;
6873 }
6874
6875 if (likely(sd)) {
8e45cb54
PZ
6876 struct lb_env env = {
6877 .sd = sd,
ddcdf6e7
PZ
6878 .dst_cpu = target_cpu,
6879 .dst_rq = target_rq,
6880 .src_cpu = busiest_rq->cpu,
6881 .src_rq = busiest_rq,
8e45cb54
PZ
6882 .idle = CPU_IDLE,
6883 };
6884
1e3c88bd
PZ
6885 schedstat_inc(sd, alb_count);
6886
8e45cb54 6887 if (move_one_task(&env))
1e3c88bd
PZ
6888 schedstat_inc(sd, alb_pushed);
6889 else
6890 schedstat_inc(sd, alb_failed);
6891 }
dce840a0 6892 rcu_read_unlock();
1e3c88bd 6893 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
6894out_unlock:
6895 busiest_rq->active_balance = 0;
6896 raw_spin_unlock_irq(&busiest_rq->lock);
6897 return 0;
1e3c88bd
PZ
6898}
6899
d987fc7f
MG
6900static inline int on_null_domain(struct rq *rq)
6901{
6902 return unlikely(!rcu_dereference_sched(rq->sd));
6903}
6904
3451d024 6905#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
6906/*
6907 * idle load balancing details
83cd4fe2
VP
6908 * - When one of the busy CPUs notice that there may be an idle rebalancing
6909 * needed, they will kick the idle load balancer, which then does idle
6910 * load balancing for all the idle CPUs.
6911 */
1e3c88bd 6912static struct {
83cd4fe2 6913 cpumask_var_t idle_cpus_mask;
0b005cf5 6914 atomic_t nr_cpus;
83cd4fe2
VP
6915 unsigned long next_balance; /* in jiffy units */
6916} nohz ____cacheline_aligned;
1e3c88bd 6917
3dd0337d 6918static inline int find_new_ilb(void)
1e3c88bd 6919{
0b005cf5 6920 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 6921
786d6dc7
SS
6922 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6923 return ilb;
6924
6925 return nr_cpu_ids;
1e3c88bd 6926}
1e3c88bd 6927
83cd4fe2
VP
6928/*
6929 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6930 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6931 * CPU (if there is one).
6932 */
0aeeeeba 6933static void nohz_balancer_kick(void)
83cd4fe2
VP
6934{
6935 int ilb_cpu;
6936
6937 nohz.next_balance++;
6938
3dd0337d 6939 ilb_cpu = find_new_ilb();
83cd4fe2 6940
0b005cf5
SS
6941 if (ilb_cpu >= nr_cpu_ids)
6942 return;
83cd4fe2 6943
cd490c5b 6944 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
6945 return;
6946 /*
6947 * Use smp_send_reschedule() instead of resched_cpu().
6948 * This way we generate a sched IPI on the target cpu which
6949 * is idle. And the softirq performing nohz idle load balance
6950 * will be run before returning from the IPI.
6951 */
6952 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
6953 return;
6954}
6955
c1cc017c 6956static inline void nohz_balance_exit_idle(int cpu)
71325960
SS
6957{
6958 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
6959 /*
6960 * Completely isolated CPUs don't ever set, so we must test.
6961 */
6962 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
6963 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6964 atomic_dec(&nohz.nr_cpus);
6965 }
71325960
SS
6966 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6967 }
6968}
6969
69e1e811
SS
6970static inline void set_cpu_sd_state_busy(void)
6971{
6972 struct sched_domain *sd;
37dc6b50 6973 int cpu = smp_processor_id();
69e1e811 6974
69e1e811 6975 rcu_read_lock();
37dc6b50 6976 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6977
6978 if (!sd || !sd->nohz_idle)
6979 goto unlock;
6980 sd->nohz_idle = 0;
6981
37dc6b50 6982 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 6983unlock:
69e1e811
SS
6984 rcu_read_unlock();
6985}
6986
6987void set_cpu_sd_state_idle(void)
6988{
6989 struct sched_domain *sd;
37dc6b50 6990 int cpu = smp_processor_id();
69e1e811 6991
69e1e811 6992 rcu_read_lock();
37dc6b50 6993 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
6994
6995 if (!sd || sd->nohz_idle)
6996 goto unlock;
6997 sd->nohz_idle = 1;
6998
37dc6b50 6999 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
25f55d9d 7000unlock:
69e1e811
SS
7001 rcu_read_unlock();
7002}
7003
1e3c88bd 7004/*
c1cc017c 7005 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 7006 * This info will be used in performing idle load balancing in the future.
1e3c88bd 7007 */
c1cc017c 7008void nohz_balance_enter_idle(int cpu)
1e3c88bd 7009{
71325960
SS
7010 /*
7011 * If this cpu is going down, then nothing needs to be done.
7012 */
7013 if (!cpu_active(cpu))
7014 return;
7015
c1cc017c
AS
7016 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7017 return;
1e3c88bd 7018
d987fc7f
MG
7019 /*
7020 * If we're a completely isolated CPU, we don't play.
7021 */
7022 if (on_null_domain(cpu_rq(cpu)))
7023 return;
7024
c1cc017c
AS
7025 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7026 atomic_inc(&nohz.nr_cpus);
7027 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd 7028}
71325960 7029
0db0628d 7030static int sched_ilb_notifier(struct notifier_block *nfb,
71325960
SS
7031 unsigned long action, void *hcpu)
7032{
7033 switch (action & ~CPU_TASKS_FROZEN) {
7034 case CPU_DYING:
c1cc017c 7035 nohz_balance_exit_idle(smp_processor_id());
71325960
SS
7036 return NOTIFY_OK;
7037 default:
7038 return NOTIFY_DONE;
7039 }
7040}
1e3c88bd
PZ
7041#endif
7042
7043static DEFINE_SPINLOCK(balancing);
7044
49c022e6
PZ
7045/*
7046 * Scale the max load_balance interval with the number of CPUs in the system.
7047 * This trades load-balance latency on larger machines for less cross talk.
7048 */
029632fb 7049void update_max_interval(void)
49c022e6
PZ
7050{
7051 max_load_balance_interval = HZ*num_online_cpus()/10;
7052}
7053
1e3c88bd
PZ
7054/*
7055 * It checks each scheduling domain to see if it is due to be balanced,
7056 * and initiates a balancing operation if so.
7057 *
b9b0853a 7058 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 7059 */
f7ed0a89 7060static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 7061{
23f0d209 7062 int continue_balancing = 1;
f7ed0a89 7063 int cpu = rq->cpu;
1e3c88bd 7064 unsigned long interval;
04f733b4 7065 struct sched_domain *sd;
1e3c88bd
PZ
7066 /* Earliest time when we have to do rebalance again */
7067 unsigned long next_balance = jiffies + 60*HZ;
7068 int update_next_balance = 0;
f48627e6
JL
7069 int need_serialize, need_decay = 0;
7070 u64 max_cost = 0;
1e3c88bd 7071
48a16753 7072 update_blocked_averages(cpu);
2069dd75 7073
dce840a0 7074 rcu_read_lock();
1e3c88bd 7075 for_each_domain(cpu, sd) {
f48627e6
JL
7076 /*
7077 * Decay the newidle max times here because this is a regular
7078 * visit to all the domains. Decay ~1% per second.
7079 */
7080 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7081 sd->max_newidle_lb_cost =
7082 (sd->max_newidle_lb_cost * 253) / 256;
7083 sd->next_decay_max_lb_cost = jiffies + HZ;
7084 need_decay = 1;
7085 }
7086 max_cost += sd->max_newidle_lb_cost;
7087
1e3c88bd
PZ
7088 if (!(sd->flags & SD_LOAD_BALANCE))
7089 continue;
7090
f48627e6
JL
7091 /*
7092 * Stop the load balance at this level. There is another
7093 * CPU in our sched group which is doing load balancing more
7094 * actively.
7095 */
7096 if (!continue_balancing) {
7097 if (need_decay)
7098 continue;
7099 break;
7100 }
7101
52a08ef1 7102 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7103
7104 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
7105 if (need_serialize) {
7106 if (!spin_trylock(&balancing))
7107 goto out;
7108 }
7109
7110 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 7111 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 7112 /*
6263322c 7113 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
7114 * env->dst_cpu, so we can't know our idle
7115 * state even if we migrated tasks. Update it.
1e3c88bd 7116 */
de5eb2dd 7117 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
7118 }
7119 sd->last_balance = jiffies;
52a08ef1 7120 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
7121 }
7122 if (need_serialize)
7123 spin_unlock(&balancing);
7124out:
7125 if (time_after(next_balance, sd->last_balance + interval)) {
7126 next_balance = sd->last_balance + interval;
7127 update_next_balance = 1;
7128 }
f48627e6
JL
7129 }
7130 if (need_decay) {
1e3c88bd 7131 /*
f48627e6
JL
7132 * Ensure the rq-wide value also decays but keep it at a
7133 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 7134 */
f48627e6
JL
7135 rq->max_idle_balance_cost =
7136 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 7137 }
dce840a0 7138 rcu_read_unlock();
1e3c88bd
PZ
7139
7140 /*
7141 * next_balance will be updated only when there is a need.
7142 * When the cpu is attached to null domain for ex, it will not be
7143 * updated.
7144 */
7145 if (likely(update_next_balance))
7146 rq->next_balance = next_balance;
7147}
7148
3451d024 7149#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 7150/*
3451d024 7151 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
7152 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7153 */
208cb16b 7154static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 7155{
208cb16b 7156 int this_cpu = this_rq->cpu;
83cd4fe2
VP
7157 struct rq *rq;
7158 int balance_cpu;
7159
1c792db7
SS
7160 if (idle != CPU_IDLE ||
7161 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7162 goto end;
83cd4fe2
VP
7163
7164 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 7165 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
7166 continue;
7167
7168 /*
7169 * If this cpu gets work to do, stop the load balancing
7170 * work being done for other cpus. Next load
7171 * balancing owner will pick it up.
7172 */
1c792db7 7173 if (need_resched())
83cd4fe2 7174 break;
83cd4fe2 7175
5ed4f1d9
VG
7176 rq = cpu_rq(balance_cpu);
7177
7178 raw_spin_lock_irq(&rq->lock);
7179 update_rq_clock(rq);
7180 update_idle_cpu_load(rq);
7181 raw_spin_unlock_irq(&rq->lock);
83cd4fe2 7182
f7ed0a89 7183 rebalance_domains(rq, CPU_IDLE);
83cd4fe2 7184
83cd4fe2
VP
7185 if (time_after(this_rq->next_balance, rq->next_balance))
7186 this_rq->next_balance = rq->next_balance;
7187 }
7188 nohz.next_balance = this_rq->next_balance;
1c792db7
SS
7189end:
7190 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
7191}
7192
7193/*
0b005cf5
SS
7194 * Current heuristic for kicking the idle load balancer in the presence
7195 * of an idle cpu is the system.
7196 * - This rq has more than one task.
7197 * - At any scheduler domain level, this cpu's scheduler group has multiple
7198 * busy cpu's exceeding the group's power.
7199 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7200 * domain span are idle.
83cd4fe2 7201 */
4a725627 7202static inline int nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
7203{
7204 unsigned long now = jiffies;
0b005cf5 7205 struct sched_domain *sd;
37dc6b50 7206 struct sched_group_power *sgp;
4a725627 7207 int nr_busy, cpu = rq->cpu;
83cd4fe2 7208
4a725627 7209 if (unlikely(rq->idle_balance))
83cd4fe2
VP
7210 return 0;
7211
1c792db7
SS
7212 /*
7213 * We may be recently in ticked or tickless idle mode. At the first
7214 * busy tick after returning from idle, we will update the busy stats.
7215 */
69e1e811 7216 set_cpu_sd_state_busy();
c1cc017c 7217 nohz_balance_exit_idle(cpu);
0b005cf5
SS
7218
7219 /*
7220 * None are in tickless mode and hence no need for NOHZ idle load
7221 * balancing.
7222 */
7223 if (likely(!atomic_read(&nohz.nr_cpus)))
7224 return 0;
1c792db7
SS
7225
7226 if (time_before(now, nohz.next_balance))
83cd4fe2
VP
7227 return 0;
7228
0b005cf5
SS
7229 if (rq->nr_running >= 2)
7230 goto need_kick;
83cd4fe2 7231
067491b7 7232 rcu_read_lock();
37dc6b50 7233 sd = rcu_dereference(per_cpu(sd_busy, cpu));
83cd4fe2 7234
37dc6b50
PM
7235 if (sd) {
7236 sgp = sd->groups->sgp;
7237 nr_busy = atomic_read(&sgp->nr_busy_cpus);
0b005cf5 7238
37dc6b50 7239 if (nr_busy > 1)
067491b7 7240 goto need_kick_unlock;
83cd4fe2 7241 }
37dc6b50
PM
7242
7243 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7244
7245 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7246 sched_domain_span(sd)) < cpu))
7247 goto need_kick_unlock;
7248
067491b7 7249 rcu_read_unlock();
83cd4fe2 7250 return 0;
067491b7
PZ
7251
7252need_kick_unlock:
7253 rcu_read_unlock();
0b005cf5
SS
7254need_kick:
7255 return 1;
83cd4fe2
VP
7256}
7257#else
208cb16b 7258static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
7259#endif
7260
7261/*
7262 * run_rebalance_domains is triggered when needed from the scheduler tick.
7263 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7264 */
1e3c88bd
PZ
7265static void run_rebalance_domains(struct softirq_action *h)
7266{
208cb16b 7267 struct rq *this_rq = this_rq();
6eb57e0d 7268 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
7269 CPU_IDLE : CPU_NOT_IDLE;
7270
f7ed0a89 7271 rebalance_domains(this_rq, idle);
1e3c88bd 7272
1e3c88bd 7273 /*
83cd4fe2 7274 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
7275 * balancing on behalf of the other idle cpus whose ticks are
7276 * stopped.
7277 */
208cb16b 7278 nohz_idle_balance(this_rq, idle);
1e3c88bd
PZ
7279}
7280
1e3c88bd
PZ
7281/*
7282 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 7283 */
7caff66f 7284void trigger_load_balance(struct rq *rq)
1e3c88bd 7285{
1e3c88bd 7286 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
7287 if (unlikely(on_null_domain(rq)))
7288 return;
7289
7290 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 7291 raise_softirq(SCHED_SOFTIRQ);
3451d024 7292#ifdef CONFIG_NO_HZ_COMMON
c726099e 7293 if (nohz_kick_needed(rq))
0aeeeeba 7294 nohz_balancer_kick();
83cd4fe2 7295#endif
1e3c88bd
PZ
7296}
7297
0bcdcf28
CE
7298static void rq_online_fair(struct rq *rq)
7299{
7300 update_sysctl();
7301}
7302
7303static void rq_offline_fair(struct rq *rq)
7304{
7305 update_sysctl();
a4c96ae3
PB
7306
7307 /* Ensure any throttled groups are reachable by pick_next_task */
7308 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
7309}
7310
55e12e5e 7311#endif /* CONFIG_SMP */
e1d1484f 7312
bf0f6f24
IM
7313/*
7314 * scheduler tick hitting a task of our scheduling class:
7315 */
8f4d37ec 7316static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
7317{
7318 struct cfs_rq *cfs_rq;
7319 struct sched_entity *se = &curr->se;
7320
7321 for_each_sched_entity(se) {
7322 cfs_rq = cfs_rq_of(se);
8f4d37ec 7323 entity_tick(cfs_rq, se, queued);
bf0f6f24 7324 }
18bf2805 7325
10e84b97 7326 if (numabalancing_enabled)
cbee9f88 7327 task_tick_numa(rq, curr);
3d59eebc 7328
18bf2805 7329 update_rq_runnable_avg(rq, 1);
bf0f6f24
IM
7330}
7331
7332/*
cd29fe6f
PZ
7333 * called on fork with the child task as argument from the parent's context
7334 * - child not yet on the tasklist
7335 * - preemption disabled
bf0f6f24 7336 */
cd29fe6f 7337static void task_fork_fair(struct task_struct *p)
bf0f6f24 7338{
4fc420c9
DN
7339 struct cfs_rq *cfs_rq;
7340 struct sched_entity *se = &p->se, *curr;
00bf7bfc 7341 int this_cpu = smp_processor_id();
cd29fe6f
PZ
7342 struct rq *rq = this_rq();
7343 unsigned long flags;
7344
05fa785c 7345 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 7346
861d034e
PZ
7347 update_rq_clock(rq);
7348
4fc420c9
DN
7349 cfs_rq = task_cfs_rq(current);
7350 curr = cfs_rq->curr;
7351
6c9a27f5
DN
7352 /*
7353 * Not only the cpu but also the task_group of the parent might have
7354 * been changed after parent->se.parent,cfs_rq were copied to
7355 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7356 * of child point to valid ones.
7357 */
7358 rcu_read_lock();
7359 __set_task_cpu(p, this_cpu);
7360 rcu_read_unlock();
bf0f6f24 7361
7109c442 7362 update_curr(cfs_rq);
cd29fe6f 7363
b5d9d734
MG
7364 if (curr)
7365 se->vruntime = curr->vruntime;
aeb73b04 7366 place_entity(cfs_rq, se, 1);
4d78e7b6 7367
cd29fe6f 7368 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 7369 /*
edcb60a3
IM
7370 * Upon rescheduling, sched_class::put_prev_task() will place
7371 * 'current' within the tree based on its new key value.
7372 */
4d78e7b6 7373 swap(curr->vruntime, se->vruntime);
aec0a514 7374 resched_task(rq->curr);
4d78e7b6 7375 }
bf0f6f24 7376
88ec22d3
PZ
7377 se->vruntime -= cfs_rq->min_vruntime;
7378
05fa785c 7379 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
7380}
7381
cb469845
SR
7382/*
7383 * Priority of the task has changed. Check to see if we preempt
7384 * the current task.
7385 */
da7a735e
PZ
7386static void
7387prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 7388{
da7a735e
PZ
7389 if (!p->se.on_rq)
7390 return;
7391
cb469845
SR
7392 /*
7393 * Reschedule if we are currently running on this runqueue and
7394 * our priority decreased, or if we are not currently running on
7395 * this runqueue and our priority is higher than the current's
7396 */
da7a735e 7397 if (rq->curr == p) {
cb469845
SR
7398 if (p->prio > oldprio)
7399 resched_task(rq->curr);
7400 } else
15afe09b 7401 check_preempt_curr(rq, p, 0);
cb469845
SR
7402}
7403
da7a735e
PZ
7404static void switched_from_fair(struct rq *rq, struct task_struct *p)
7405{
7406 struct sched_entity *se = &p->se;
7407 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7408
7409 /*
791c9e02 7410 * Ensure the task's vruntime is normalized, so that when it's
da7a735e
PZ
7411 * switched back to the fair class the enqueue_entity(.flags=0) will
7412 * do the right thing.
7413 *
791c9e02
GM
7414 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7415 * have normalized the vruntime, if it's !on_rq, then only when
da7a735e
PZ
7416 * the task is sleeping will it still have non-normalized vruntime.
7417 */
791c9e02 7418 if (!p->on_rq && p->state != TASK_RUNNING) {
da7a735e
PZ
7419 /*
7420 * Fix up our vruntime so that the current sleep doesn't
7421 * cause 'unlimited' sleep bonus.
7422 */
7423 place_entity(cfs_rq, se, 0);
7424 se->vruntime -= cfs_rq->min_vruntime;
7425 }
9ee474f5 7426
141965c7 7427#ifdef CONFIG_SMP
9ee474f5
PT
7428 /*
7429 * Remove our load from contribution when we leave sched_fair
7430 * and ensure we don't carry in an old decay_count if we
7431 * switch back.
7432 */
87e3c8ae
KT
7433 if (se->avg.decay_count) {
7434 __synchronize_entity_decay(se);
7435 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
9ee474f5
PT
7436 }
7437#endif
da7a735e
PZ
7438}
7439
cb469845
SR
7440/*
7441 * We switched to the sched_fair class.
7442 */
da7a735e 7443static void switched_to_fair(struct rq *rq, struct task_struct *p)
cb469845 7444{
eb7a59b2
M
7445 struct sched_entity *se = &p->se;
7446#ifdef CONFIG_FAIR_GROUP_SCHED
7447 /*
7448 * Since the real-depth could have been changed (only FAIR
7449 * class maintain depth value), reset depth properly.
7450 */
7451 se->depth = se->parent ? se->parent->depth + 1 : 0;
7452#endif
7453 if (!se->on_rq)
da7a735e
PZ
7454 return;
7455
cb469845
SR
7456 /*
7457 * We were most likely switched from sched_rt, so
7458 * kick off the schedule if running, otherwise just see
7459 * if we can still preempt the current task.
7460 */
da7a735e 7461 if (rq->curr == p)
cb469845
SR
7462 resched_task(rq->curr);
7463 else
15afe09b 7464 check_preempt_curr(rq, p, 0);
cb469845
SR
7465}
7466
83b699ed
SV
7467/* Account for a task changing its policy or group.
7468 *
7469 * This routine is mostly called to set cfs_rq->curr field when a task
7470 * migrates between groups/classes.
7471 */
7472static void set_curr_task_fair(struct rq *rq)
7473{
7474 struct sched_entity *se = &rq->curr->se;
7475
ec12cb7f
PT
7476 for_each_sched_entity(se) {
7477 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7478
7479 set_next_entity(cfs_rq, se);
7480 /* ensure bandwidth has been allocated on our new cfs_rq */
7481 account_cfs_rq_runtime(cfs_rq, 0);
7482 }
83b699ed
SV
7483}
7484
029632fb
PZ
7485void init_cfs_rq(struct cfs_rq *cfs_rq)
7486{
7487 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
7488 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7489#ifndef CONFIG_64BIT
7490 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7491#endif
141965c7 7492#ifdef CONFIG_SMP
9ee474f5 7493 atomic64_set(&cfs_rq->decay_counter, 1);
2509940f 7494 atomic_long_set(&cfs_rq->removed_load, 0);
9ee474f5 7495#endif
029632fb
PZ
7496}
7497
810b3817 7498#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7499static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 7500{
fed14d45 7501 struct sched_entity *se = &p->se;
aff3e498 7502 struct cfs_rq *cfs_rq;
fed14d45 7503
b2b5ce02
PZ
7504 /*
7505 * If the task was not on the rq at the time of this cgroup movement
7506 * it must have been asleep, sleeping tasks keep their ->vruntime
7507 * absolute on their old rq until wakeup (needed for the fair sleeper
7508 * bonus in place_entity()).
7509 *
7510 * If it was on the rq, we've just 'preempted' it, which does convert
7511 * ->vruntime to a relative base.
7512 *
7513 * Make sure both cases convert their relative position when migrating
7514 * to another cgroup's rq. This does somewhat interfere with the
7515 * fair sleeper stuff for the first placement, but who cares.
7516 */
7ceff013
DN
7517 /*
7518 * When !on_rq, vruntime of the task has usually NOT been normalized.
7519 * But there are some cases where it has already been normalized:
7520 *
7521 * - Moving a forked child which is waiting for being woken up by
7522 * wake_up_new_task().
62af3783
DN
7523 * - Moving a task which has been woken up by try_to_wake_up() and
7524 * waiting for actually being woken up by sched_ttwu_pending().
7ceff013
DN
7525 *
7526 * To prevent boost or penalty in the new cfs_rq caused by delta
7527 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7528 */
fed14d45 7529 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7ceff013
DN
7530 on_rq = 1;
7531
b2b5ce02 7532 if (!on_rq)
fed14d45 7533 se->vruntime -= cfs_rq_of(se)->min_vruntime;
b2b5ce02 7534 set_task_rq(p, task_cpu(p));
fed14d45 7535 se->depth = se->parent ? se->parent->depth + 1 : 0;
aff3e498 7536 if (!on_rq) {
fed14d45
PZ
7537 cfs_rq = cfs_rq_of(se);
7538 se->vruntime += cfs_rq->min_vruntime;
aff3e498
PT
7539#ifdef CONFIG_SMP
7540 /*
7541 * migrate_task_rq_fair() will have removed our previous
7542 * contribution, but we must synchronize for ongoing future
7543 * decay.
7544 */
fed14d45
PZ
7545 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7546 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
aff3e498
PT
7547#endif
7548 }
810b3817 7549}
029632fb
PZ
7550
7551void free_fair_sched_group(struct task_group *tg)
7552{
7553 int i;
7554
7555 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7556
7557 for_each_possible_cpu(i) {
7558 if (tg->cfs_rq)
7559 kfree(tg->cfs_rq[i]);
7560 if (tg->se)
7561 kfree(tg->se[i]);
7562 }
7563
7564 kfree(tg->cfs_rq);
7565 kfree(tg->se);
7566}
7567
7568int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7569{
7570 struct cfs_rq *cfs_rq;
7571 struct sched_entity *se;
7572 int i;
7573
7574 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7575 if (!tg->cfs_rq)
7576 goto err;
7577 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7578 if (!tg->se)
7579 goto err;
7580
7581 tg->shares = NICE_0_LOAD;
7582
7583 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7584
7585 for_each_possible_cpu(i) {
7586 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7587 GFP_KERNEL, cpu_to_node(i));
7588 if (!cfs_rq)
7589 goto err;
7590
7591 se = kzalloc_node(sizeof(struct sched_entity),
7592 GFP_KERNEL, cpu_to_node(i));
7593 if (!se)
7594 goto err_free_rq;
7595
7596 init_cfs_rq(cfs_rq);
7597 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7598 }
7599
7600 return 1;
7601
7602err_free_rq:
7603 kfree(cfs_rq);
7604err:
7605 return 0;
7606}
7607
7608void unregister_fair_sched_group(struct task_group *tg, int cpu)
7609{
7610 struct rq *rq = cpu_rq(cpu);
7611 unsigned long flags;
7612
7613 /*
7614 * Only empty task groups can be destroyed; so we can speculatively
7615 * check on_list without danger of it being re-added.
7616 */
7617 if (!tg->cfs_rq[cpu]->on_list)
7618 return;
7619
7620 raw_spin_lock_irqsave(&rq->lock, flags);
7621 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7622 raw_spin_unlock_irqrestore(&rq->lock, flags);
7623}
7624
7625void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7626 struct sched_entity *se, int cpu,
7627 struct sched_entity *parent)
7628{
7629 struct rq *rq = cpu_rq(cpu);
7630
7631 cfs_rq->tg = tg;
7632 cfs_rq->rq = rq;
029632fb
PZ
7633 init_cfs_rq_runtime(cfs_rq);
7634
7635 tg->cfs_rq[cpu] = cfs_rq;
7636 tg->se[cpu] = se;
7637
7638 /* se could be NULL for root_task_group */
7639 if (!se)
7640 return;
7641
fed14d45 7642 if (!parent) {
029632fb 7643 se->cfs_rq = &rq->cfs;
fed14d45
PZ
7644 se->depth = 0;
7645 } else {
029632fb 7646 se->cfs_rq = parent->my_q;
fed14d45
PZ
7647 se->depth = parent->depth + 1;
7648 }
029632fb
PZ
7649
7650 se->my_q = cfs_rq;
0ac9b1c2
PT
7651 /* guarantee group entities always have weight */
7652 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
7653 se->parent = parent;
7654}
7655
7656static DEFINE_MUTEX(shares_mutex);
7657
7658int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7659{
7660 int i;
7661 unsigned long flags;
7662
7663 /*
7664 * We can't change the weight of the root cgroup.
7665 */
7666 if (!tg->se[0])
7667 return -EINVAL;
7668
7669 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7670
7671 mutex_lock(&shares_mutex);
7672 if (tg->shares == shares)
7673 goto done;
7674
7675 tg->shares = shares;
7676 for_each_possible_cpu(i) {
7677 struct rq *rq = cpu_rq(i);
7678 struct sched_entity *se;
7679
7680 se = tg->se[i];
7681 /* Propagate contribution to hierarchy */
7682 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
7683
7684 /* Possible calls to update_curr() need rq clock */
7685 update_rq_clock(rq);
17bc14b7 7686 for_each_sched_entity(se)
029632fb
PZ
7687 update_cfs_shares(group_cfs_rq(se));
7688 raw_spin_unlock_irqrestore(&rq->lock, flags);
7689 }
7690
7691done:
7692 mutex_unlock(&shares_mutex);
7693 return 0;
7694}
7695#else /* CONFIG_FAIR_GROUP_SCHED */
7696
7697void free_fair_sched_group(struct task_group *tg) { }
7698
7699int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7700{
7701 return 1;
7702}
7703
7704void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7705
7706#endif /* CONFIG_FAIR_GROUP_SCHED */
7707
810b3817 7708
6d686f45 7709static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
7710{
7711 struct sched_entity *se = &task->se;
0d721cea
PW
7712 unsigned int rr_interval = 0;
7713
7714 /*
7715 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7716 * idle runqueue:
7717 */
0d721cea 7718 if (rq->cfs.load.weight)
a59f4e07 7719 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
7720
7721 return rr_interval;
7722}
7723
bf0f6f24
IM
7724/*
7725 * All the scheduling class methods:
7726 */
029632fb 7727const struct sched_class fair_sched_class = {
5522d5d5 7728 .next = &idle_sched_class,
bf0f6f24
IM
7729 .enqueue_task = enqueue_task_fair,
7730 .dequeue_task = dequeue_task_fair,
7731 .yield_task = yield_task_fair,
d95f4122 7732 .yield_to_task = yield_to_task_fair,
bf0f6f24 7733
2e09bf55 7734 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
7735
7736 .pick_next_task = pick_next_task_fair,
7737 .put_prev_task = put_prev_task_fair,
7738
681f3e68 7739#ifdef CONFIG_SMP
4ce72a2c 7740 .select_task_rq = select_task_rq_fair,
0a74bef8 7741 .migrate_task_rq = migrate_task_rq_fair,
141965c7 7742
0bcdcf28
CE
7743 .rq_online = rq_online_fair,
7744 .rq_offline = rq_offline_fair,
88ec22d3
PZ
7745
7746 .task_waking = task_waking_fair,
681f3e68 7747#endif
bf0f6f24 7748
83b699ed 7749 .set_curr_task = set_curr_task_fair,
bf0f6f24 7750 .task_tick = task_tick_fair,
cd29fe6f 7751 .task_fork = task_fork_fair,
cb469845
SR
7752
7753 .prio_changed = prio_changed_fair,
da7a735e 7754 .switched_from = switched_from_fair,
cb469845 7755 .switched_to = switched_to_fair,
810b3817 7756
0d721cea
PW
7757 .get_rr_interval = get_rr_interval_fair,
7758
810b3817 7759#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7760 .task_move_group = task_move_group_fair,
810b3817 7761#endif
bf0f6f24
IM
7762};
7763
7764#ifdef CONFIG_SCHED_DEBUG
029632fb 7765void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 7766{
bf0f6f24
IM
7767 struct cfs_rq *cfs_rq;
7768
5973e5b9 7769 rcu_read_lock();
c3b64f1e 7770 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 7771 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 7772 rcu_read_unlock();
bf0f6f24
IM
7773}
7774#endif
029632fb
PZ
7775
7776__init void init_sched_fair_class(void)
7777{
7778#ifdef CONFIG_SMP
7779 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7780
3451d024 7781#ifdef CONFIG_NO_HZ_COMMON
554cecaf 7782 nohz.next_balance = jiffies;
029632fb 7783 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
71325960 7784 cpu_notifier(sched_ilb_notifier, 0);
029632fb
PZ
7785#endif
7786#endif /* SMP */
7787
7788}
This page took 1.278841 seconds and 5 git commands to generate.